

Department of Computer Science

Selma Lagerlöfsvej 300

http://www.cs.aau.dk

Title:
MiniRTS : Strategy Identifica-
tion using Bayesian Grid Mod-
els

Theme:
Strategy Identification

Semester:
SW10, 1. Feb. - 14. Aug. 2008

Group:
d632c

Members:
Mads Dancker-Jensen

Supervisor:
Yifeng Zeng

Copies: 4

Report - pages: 41

Appendices: 2

CD: 1

Total pages: 52

Abstract:

This report describes the inves-
tigation of using Bayesian Grid
Models for reasoning in RTS
games.
The first part of this report docu-
ments the implementation of the
environment used to study the
performance of the Bayesian Grid
Model. The environment is a RTS
game called MiniRTS which is
similar to the commercial games
but has been simplified to fit the
purposes of this project best.
In the experimentation phase of
the project, different scenarios
have been created with the pur-
pose of comparing different mod-
els to see which factors could im-
prove the performance.
Finally the report concludes and
evaluates upon the results, and de-
scribes which improvements could
be made in the future.

Preface

The following report is written during the fall of 2008 by one Software En-
gineering student at the Department of Computer Science at Aalborg Uni-
versity.

When the words we and our are used, it refers to the author of this
report and he refers to he/she.

When code is presented, it may differ from the actual source code. It
may have been modified and have had some details removed to make it fit
into the report. This has been done to heighten the legibility of the code,
and to focus on essential functionality.

The first time an abbreviation is used, the entire word or sentence is
written, followed by the abbreviation in parentheses. Throughout the rest
of the report, the abbreviation is used.

It is expected that the reader has basic knowledge of software engineer-
ing, and computer games.

Mads Dancker-Jensen

iii

Contents

1 Introduction 2
1.1 Related Work . 3
1.2 Content . 4

2 Mini Game 5
2.1 Rules . 5
2.2 Development Environment . 7
2.3 Implementation . 7

2.3.1 GameObject . 7
2.3.2 Actor . 7
2.3.3 TileMap . 8
2.3.4 Unit . 8
2.3.5 Pathfinding . 9
2.3.6 Orders . 10
2.3.7 Groups . 11
2.3.8 Fog of War . 11
2.3.9 Scenario . 11

3 Techniques 13
3.1 Bayesian Networks . 14

3.1.1 Bayes Theorem . 14
3.1.2 D-Separation . 15

3.2 Naive Bayes Classifier . 16

4 Approach 20
4.1 Strategy Identification . 20
4.2 Strategy Management . 21
4.3 Bayesian Grid Model . 22
4.4 Tools . 23
4.5 Implementation . 24

4.5.1 Strategy Learner . 24
4.5.2 Strategy Identifier . 24
4.5.3 Defining Strategies . 25

iv

CONTENTS

4.5.4 Tree Based Learner . 26
4.5.5 Tree Based Identifier 27
4.5.6 Naive Identifier . 27
4.5.7 Generating Models . 28

5 Experiments 30
5.1 Graph Plotting Tools . 30

5.1.1 Strategy Monitoring Tool 30
5.1.2 Strategy Evaluator Tool 30

5.2 Scenarios . 32
5.2.1 Learning Scenario . 32
5.2.2 Test Scenario 1 . 33
5.2.3 Test Scenario 2 . 33
5.2.4 Test Scenario 3 . 33

5.3 Results . 34
5.3.1 Test Scenario 1 . 34
5.3.2 Test Scenario 2 . 35
5.3.3 Test Scenario 3 . 37

6 Conclusion 39
6.1 Discussion . 39
6.2 Future Work . 40

7 Bibliography 42

Appendices 44

A Large Graphs 44

B CD Content 52

v

List of Figures

1.1 Screenshot from the popular game StarCraft [3] 3

2.1 Fog of War . 12

3.1 Serial Connection . 14
3.2 Serial Connection . 15
3.3 Diverging Connection . 16
3.4 Converging Connection . 16
3.5 Example of a classifier . 17
3.6 Naive Bayes Classifier . 17

4.1 Bayesian Grid Model . 22
4.2 Bayesian Grid Model . 26
4.3 Strategy Points . 26
4.4 Naive Identifier . 28
4.5 Model Generator GUI . 29

5.1 Scenario . 32
5.2 Scenario with Fog of War . 34
5.3 Naive Identifier . 35
5.4 3x3x3 Identifier . 35
5.5 9x9x9 Identifier . 35
5.6 11x11x9 Identifier . 35
5.7 Increasing Model Grid Size 36
5.8 Increasing Number of States 37
5.9 Strategy Evaluation with Fog of War 38

A.1 Naive Identifier . 45
A.2 3x3x3 Identifier . 46
A.3 9x9x9 Identifier . 47
A.4 11x11x9 Identifier . 48
A.5 Increasing Model Grid Size 49
A.6 Increasing Number of States 50
A.7 Strategy Evaluation with Fog of War 51

vi

List of Tables

3.1 Training Data . 18

5.1 Penalty Matrix . 31

vii

Listings

2.1 Order processing for units . 10

viii

Chapter 1

Introduction

Real-Time Strategy (RTS) games is a popular genre of computer games
and it is in the best interest of the industry to develop more interesting
and entertaining RTS games. One area of developing a RTS games involves
developing Artificial Intelligence (AI) and since a successful RTS must have
good AI the game developers has put more attention on in this area.

RTS games is a category of computer games where the players have
to think out strategies to beat the enemy. Such games are often war games
where the player can see the battlefield form top-view and controls troopers,
tanks and other kinds of military equipment. Real-Time means that the
game is not turn-based, so the players do not have to wait for other players
to end their turn.

Most RTS games have Computer Controlled Players (CP) to play against
as a substitute for human players. But most of the CP is not satisfying
because of various problems. In some games the CP is extremely stupid,
due to poor AI, while others are extremely hard to beat. Not because of an
intelligent AI, but because they cheat.

It is important to distinguish between the high-level and low-level (also
known as unit-level) AI in RTS games. The unit level AI is responsible for
navigation such as finding the shortest path from A to B and avoiding obsta-
cles. It is also responsible for identifying enemies and attacking. The high
level AI corresponds to the CP, which is responsible for choosing strategies
and carries them out by grouping unit and issue orders.

This project will try to look into the subject of creating a high-level AI for
RTS games that will be able to identify the opponent’s strategy. This project

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Screenshot from the popular game StarCraft [3]

will focus on how to do that using Bayesian Networks, or more specific a
model which in this project is called the Bayesian Grid Model. Since RTS
games are often very complex, and have many different variations of possible
strategies, we will in this project create a mini game, which only represents
a fraction of the commercial games. This mini game is called MiniRTS.

1.1 Related Work

In general it is in the last few years that attention has been directed at
AI in RTS games, though most research has focused on the low-level, e.g.
by improving unit cooperation [10], making the units learn from experience
using and more intelligent in general, while less focus has been at the high
level AI.

It is very hard to find research material no non-cheating high-level AI
in RTS games, mainly because is a relative new research topic [2] and also
because of the commercial interest, where implementation are closed source.
A lead producer of upcoming sequel of StarCraft, StarCraft II [4] speaks out
they are developing a non-cheating AI [6] for the game.

The low amount of research in this topic only makes our project more

3

1.2. CONTENT

interesting.

1.2 Content

The following list shows the content of this report:

• Chapter 2 - Mini Game: A description of the game which is used
as test environment in this project.

• Chapter 3 - Techniques: A description of the techniques used in
this project.

• Chapter 4 - Approach: A description of the idea and concepts
which is going to be tested.

• Chapter 5 - Experiments: Explains the experiments and after-
wards shows the results.

• Chapter 6 - Conclusion: Evaluates and conclude upon this project.

4

Chapter 2

Mini Game

This chapter will describe the mini game which is the environment for study-
ing the use of Bayesian Networks to identify strategies.

Since many commercial games are closed source, we either has to use
an open source RTS or create our own. There are some open source RTS
available for downloading e.g. ORTS [7], but they would need too much
modification for the purpose of this project. Instead a new RTS game is
created for this project.

The game we want to create should be similar to the commercial games
to be able to prove that this project could be used in such games. But
we also have to consider simplifying the problem so we can focus on the
important part.

The name of the game created in this project is MiniRTS. This chapter
will first descript the rules of MiniRTS. Then there will be a short intro-
duction of the development environment used to implement MiniRTS, and
last the implementation where the most important parts of the MiniRTS
are described. This chapter will only explain the game. The AI part of
MiniRTS will be explained in the Approach chapter on page 20.

2.1 Rules

This section describes the rules of the game. The basic rules should be
similar to the rules of the most popular commercial RTS games, but some
parts are cut away since they are irrelevant for this project. In many RTS
games the player has to build a base, gather resources and produce units for

5

2.1. RULES

an army. These parts are removed form this game. Instead the player starts
with an army and cannot build new units. To minimize the complexity of
the game there are no obstacle on battlefield. The goal of the game is to
destroy the enemy Head Quarter (HQ) or all the enemy units.

Like most other RTS games, MiniRTS also have a unit level AI which
is responsible for the behavior of the units. The units can be regarded
as small agents with sensors and are able to gather information about the
environment and act accordingly. The players of the game can issue orders
to the units belonging to their team. If the player orders a unit to move
form location A to B, it is the units responsibility to move form A to B while
avoiding obstacle. The unit is also responsible for attacking enemy units if
they are within range of fire.

In some games units will not always obey orders, e.g. if a unit is under
heavy attack, the unit could go in panic mode and run away. In MiniRTS
units will always obey orders even though it is a suicide mission. There are
four main types of orders which can be issued to the units:

• Move: This order tells the unit to move to a new location.

• Attack: Given an enemy unit, the attack order tells the unit to move
so the enemy unit is within range of fire and attack it.

• AttackMove: The AttackMove order tells the unit to move to a new
location like the Move order, but while moving the unit should attack
any enemy unit it spots and destroy it.

• Defend: The defend order tells the unit to stand still and defend the
position. The Defend order is the default order which means that if
the unit has been issued no other order it will be defending.

Fog of War (FOW) is an important aspect of many RTS games which
are a layer of dark clouds covering the battlefield. The player can only see
the areas of the battlefield where he has units placed. This means that it is
often necessary to send units out to scout to be able to identify the enemy
strategy. MiniRTS can also be played with Fog of War enabled.

6

CHAPTER 2. MINI GAME

2.2 Development Environment

MiniRTS is implemented using the XNA Framework developed by Microsoft
where the target language is C#. XNA is a collection of tools with the inten-
tion of making game development easier and less time consuming. The XNA
Framework provides commonly used data structures, classes and methods
which are the foundation of most of today’s games. [8]

2.3 Implementation

This section describes the implementation of MiniRTS where the most im-
portant classes are described.

2.3.1 GameObject

GameObject is the base class of all objects in MiniRTS which is a part of the
game, or either has to updated in the game loop or drawn to the screen. The
game contains a collection of active game objects (GameObjectCollection)
and all GameObjects added to this collection will automatically be updated
and/or drawn. The GameObjectCollection also ensures that adding and
removal of GameObjects does not conflict with the update and draw process.

2.3.2 Actor

In a RTS game it is necessary that object moves in Real-Time e.g. if an
object has to move to a new location it has to move towards it with a certain
speed and not pop to that location instantly. The Actor class is responsible
for such behavior and implements two methods:

• MoveTo: This method takes a destination and movement speed as
input, and tells the actor to move towards the destination with that
speed. The actor does not stop moving until it has reached the desti-
nation or a new destination is given.

• RotateTo: This method takes a rotation target and rotation speed as
input, and tells the actor to rotate towards the rotation target. Since
there are two ways to rotate (clockwise and counter clockwise) it will
always pick the shortest.

7

2.3. IMPLEMENTATION

The Actor class inherits form GameObject so it can be drawn and up-
dated.

2.3.3 TileMap

Tile maps have many purposes. In MiniRTS the TileMap class also is used
for different purposes and therefore the class is made generic so it can contain
different types of objects. The TileMap is very similar to a two dimensional
array but with added functionalities and a definition of the tile size. These
functionalities allow different ways of getting access to the tiles, e.g. getting
all tiles inside a certain rectangle.

2.3.4 Unit

Units are the main element of RTS games and which in war games often
troopers and/or tanks. In MiniRTS the Unit class is the base class of all the
different unit type classes (e.g. troopers and tanks) and since units should
be able to move around it inherits from the Actor class. The Unit class
has a collection of different variables which can be modified in the inherited
classes so we can create a variety of units, e.g. a weak but very fast unit or
a slow but powerful unit.

List of variables:

• MovementSpeed: Defines how fast the unit can move around.

• RotationSpeed: Defines how fast the unit rotates.

• HitPoints: Defines the number of hit points. If the unit reaches 0 hit
points the unit has been killed/destroyed.

• HitPointsMax: Defines the maximum number of hit points. E.g.
strong armored unit like a tank will have a large maximum amount of
hit points while a weak unit like a trooper will have a low maximum
amount of hit points.

• Armor: Defines how much armor the unit has. The armor absorbs
some of the damage given to the unit. E.g. if a unit with 15 in armor
is hit by a projectile which does 50 in damage, the unit will only loose
35 health points.

8

CHAPTER 2. MINI GAME

• SightRadius: Defines how far the unit is able to see. This has to do
with Fog of War, where the players of the game are only able to see
areas of the map where they have units placed.

• FireRange: Defines how long the unit is able to shoot.

• CoolDownTime: Defines how long it takes before the unit is able to
fire again.

Besides all these variables which allow us to create different unit types,
the Unit class is also responsible Navigation and Issuing Orders.

2.3.5 Pathfinding

In order to make the units able to navigate around MiniRTS have a Path
Finding module. The Path Finding module contains tree classes:

• PathNode

• PathNetwork

• AStarAlgorithm

To be able to use the A* algorithm [5] for navigation a network of path
nodes is needed. The solution that fits this project best is simply to align
the path nods in a grid since the game is grid based. So the PathNetwork
inherits from TileMap and each tile contains a PathNode.

Since the units should not be able move trough each other, the Unit
class has an IsMovePossible method which is called by the AStarAlgorithm
to tell if a move from one cell to another is possible. In this way units can
move around each other. But “dead-lock” situations can occur e.g. when
two unit moving in opposite directions blocks the path of each others. One
solution to this problem could be Cooperative Pathfinding [10] where the
group will find the overall best path to a new location. But this seems to be
overkill for the purpose of this project so we stick to an ad-hoc local repair
A* method where “dead-lock”-situations is solved when they occur, which
should be enough for this project.

9

2.3. IMPLEMENTATION

2.3.6 Orders

In a RTS game the player should be able to issue orders to the units e.g. if
a unit should move to a location or if should attack an enemy.

All orders are classes which inherit from the Order class. The Unit class
has a method called IssueOrder which take an order as input.

The IssueOrder method is meant to be overridden in inherited classes so
special types of units can receive special orders to execute their unique task.
E.g. consider a unit which is able switch to stealth mode it would have to
receive a stealth-order to activate that mode. Other types of units which
are not able to execute that order would just ignore it.

1 class Unit
2 {
3 public virtual void IssueOrder(Order order)
4 {
5 if (order is Move)
6 {
7 MoveTo((order as Move).Position);
8 }
9 }

10 }
11

12 class StealthUnit : Unit
13 {
14 public override void IssueOrder(Order order)
15 {
16 if (order is StealthMode)
17 {
18 ActivateStealth();
19 }
20

21 base.IssueOrder(order);
22 }
23 }

Listing 2.1: Order processing for units

10

CHAPTER 2. MINI GAME

2.3.7 Groups

In the game, it is necessary to be able to giver orders to a group of units,
and then be notified when all the units in the group have done executing
the order.

The Group class is responsible for this task the units can be added and
removed from groups. Units can be in multiple groups at the same time.

2.3.8 Fog of War

As Fog of War is an important aspect of many RTS games, MiniRTS have
a FogOfWar class which implements this concept. The FogOfWar class is a
TileMap containing integer values and has the same size as the battlefield.
Each integer in the TileMap tells if the corresponding cell on the battlefield
is visible or not. If the integer is equal to zero the cell is visible, and if it is
greater than zero it is not.

Each team has a Fog of War layer associated with them, and only the
units on that team can influence the layer. When units move around they
subtracts one from all cell in the FogOfWar tile map which are inside their
sight radius, and then adds one to all cells at the new location. Figure 2.1
shows two units (circles) and how the influence the FogOfWar tile map.

2.3.9 Scenario

To enable testing it is necessary to be able to setup scenarios. A scenario is
a definition of how many teams are in the game, the number of units, the
type of units, where the units are placed, initial visible areas on the FoW
layer, and also additional rules besides the ordinary rules of the game.

The Scenario class has the following methods:

• Initialize: The Initialize method is used to initialize all needed com-
ponents of a scenario, e.g. initialize the players in the scenario.

• Update: The Update method is used to update the components in
the scenario, which are not updated elsewhere.

• Draw: The Draw method can be used to draw additional content
on the battlefield, e.g. if extra information about the units has to be
shown.

11

2.3. IMPLEMENTATION

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0

0 0 0 0 1 1 2 1 1 1 1 1 1 0 0

0 0 0 1 1 1 2 2 1 1 1 1 1 0 0

0 0 1 1 1 1 2 2 2 1 1 1 1 0 0

0 0 1 1 1 1 1 2 2 1 1 1 0 0 0

0 0 1 1 1 1 1 1 2 1 1 0 0 0 0

0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

Figure 2.1: Fog of War

• Load: The Load method can load the battlefield settings from a file.
These settings are the teams in the game, the position of each unit
and so on.

• Save: The Save method saves the current battlefield settings in to a
file.

• ResetCondition: This method can be used to tell when the scenario
should reset itself. The implementation of this method should return
true if the scenario should be reset, otherwise is should return false.

• Reset: This method is call when the reset conditions are fulfilled. It
is used to set up the scenario when it is reset.

Most of these methods should be implemented in inherited scenarios,
except the Load and Save methods.

12

Chapter 3

Techniques

This chapter describes the techniques used in this project which are Bayesian
Networks and Naive Bayes Classifier, and is written using primarily [9], [11]
and [12]

The reason why Bayesian Networks is chosen for this project is because
they can be used to simulate human-like reasoning. The computer player
of this project should be able to make choices based on information about
the opponent, but it should do it in a non-cheating manner where it only
has access to the same information as a human player. Consider a game
where full information of the opponent is not available due to e.g. Fog of
War. In such game one strategy could be to fool the opponent by attacking
with a small group of units, while at the same time secretly building a huge
army outside the range of the enemy sight. A human player would direct
attention at the attacking units and therefore not notice the secret army,
but a cheating computer player would be aware of it.

Bayesian Networks are well suited for this task because the can be used to
make decisions even though all information is not available. Identification of
the enemy strategy is a classification problem and among the most practical
approaches to certain classification problems is Naive Bayes Classifier.

Naive Bayes Classifiers has proven to be one of the most consistently
well-performing set of classifiers.

The two following sections describe Bayesian Networks and Naive Bayes
Classifiers.

13

3.1. BAYESIAN NETWORKS

3.1 Bayesian Networks

Bayesian Networks is a graph model for probabilistic reasoning which rep-
resents a set of variables and their probabilistic independencies. It is used
for reasoning under some uncertainty e.g. in medicine where it is often used
for diagnostics of a patient. If the network is given the symptoms of the
patient it can compute the probability for various diseases that the patient
could have.

Formally, a Bayesian Network is a directed acyclic graph (DAG) where
the nodes are variables with a finite set of states. The arcs between the
nodes represent dependencies. Figure 3.1 shows an example of a Bayesian
Network where the sprinkler and rain can cause the grass to be wet. The
rain can affect the sprinkler because if it has not rained for a while, the
sprinkler has to be activated.

Sprinkler Rain

Grass Wet

Figure 3.1: Serial Connection

3.1.1 Bayes Theorem

When working with Bayesian Networks we are often interested in determin-
ing the best hypothesis, given some observed data, e.g. if we can observe
that the sky is cloudy the best hypothesis might be that it is going to rain.

Let the space of hypotheses be called H where h is on specific hypothesis
and D represents the data that can be observed. h may have some initial
probabilities even though no data is observed, e.g. even though the sky has
not been observed, the chance for rain is 35%. These initial probabilities is
often called prior probabilities and is denote P (x) where x is the hypothesis.
If we want to write the probability of something given something else, it is
denote P (x|y) which means the probability of x given y, also called the pos-

14

CHAPTER 3. TECHNIQUES

terior probabilities. E.g. the probability for rain given that we can observe
clouds, might be 70%.

All this leads us to the Bayes Theorem which is the foundation of
Bayesian Networks. Bayes Theorem is important because it provides a
way to calculate the posterior probability of a hypothesis given some data,
P (h|D), using the prior probability P (h) together with the probabilities
P (D) and P (D|h).

P (h|D) =
P (D|h)P (h)

P (D)

3.1.2 D-Separation

Representing dependencies is an important property of Bayesian Networks.
Dependency means that the probabilities of one variable can influence the
probabilities of others. In this way, information can flow through the net-
work. If two variables A and B are connected through a third set of vari-
ables and information cannot flow between them, A and B are said to be
d-separated. If A and B are not d-separated they are said to be d-connected.
Probabilities can be changed due to some knowledge about a variable. When
the state of a variable is known it is called evidence. The following shows
the three types of connections where d-separation can occur.

Serial Connection

Figure 3.2 shows a Serial connection where C is dependent on B which
is dependent on A. Information can flow through a serial connection unless
there is evidence on B. If there is evidence on B then A and C are d-separated
and they cannot influence each other.

A B C

Figure 3.2: Serial Connection

Diverging

Figure 3.3 shows a Diverging connection, where B and C are dependent on
A. Information can flow between B and C unless there is evidence on A.

15

3.2. NAIVE BAYES CLASSIFIER

Evidence on A, d-separates B and C.

A

CB

Figure 3.3: Diverging Connection

Converging

Figure 3.4 shows a Converging connection. In a Converging connection no
information can flow between A and B. But if there is evidence on C or one
of its children A and B are d-connected and information can flow between
them.

A

C

B

D

Figure 3.4: Converging Connection

3.2 Naive Bayes Classifier

A classifier is a model used for classification problems e.g. a model which
is able to classify if an incoming e-mail is a spam mail or not, see figure
3.5. These classification models contain two types of variables; attributes
variables and class variables. The attribute variables can be considered as
input for the model while the class variables can be considered as output.
Figure 3.5 shows an example of a classifier. The spam-mail example shows
the attribute variables (Input) and the class variable (Output).

16

CHAPTER 3. TECHNIQUES

Contains ’$’

Yes / No

Input

Contains ’Money’

Yes / No

Contains ’Viagra’

Yes / No

Contains ’Adult’

Yes / No

Contains ’Zambia’

Yes / No

...

E-Mail

Classifier
Spam Mail

Yes / No

Output

Figure 3.5: Example of a classifier

Bayesian Networks is a model which is very suitable for classification
problems. A Naive Bayes Classifier is one of the simplest Bayesian Network
based classifiers where there are no dependencies between the attribute vari-
ables given the class variable. The only dependencies are between the class
variable and the attribute variables where all the attributes are dependent
on the class variable. Figure 3.6 shows the Naive Bayes Classifier.

A1 A2 A3 An

C

Figure 3.6: Naive Bayes Classifier

Naive Bayes Classifiers has proven to be one of the most consistently
well-performing set of classifiers.

17

3.2. NAIVE BAYES CLASSIFIER

Learning Classifier

When we want to find the most likely classification using a Naive Bayes
Network and give the attribute values a1, a2, ...an the following theorem is
used:

Vbn = argmaxvj∈V P (vj)
∏

P (ai|vj)

It originate from Bayes Theorem and has been rewritten using the as-
sumption that all attribute variables are independent.

Because Naive Bayesian Classifiers uses the assumption that all the at-
tribute variables are independent, learning the network becomes relative
easy. Given some training data, learning the classifier is just a matter of
counting occurrences target value. Table shows some 3.1 which tells if the
weather is good.

Outlook Temperature Humidity Wind GoodWeather
Sunny Hot High Weak Yes
Sunny Hot High Strong No
Rain Hot High Weak No

Overcast Mild Normal Strong Yes
Overcast Cool Normal Strong No
Sunny Mild Normal Weak Yes

Overcast Mild High Weak No
Rain Cool Normal Strong No
Sunny Hot Normal Weak Yes

Overcast Mild High Weak Yes
Rain Cool High Strong No

Overcast Cool Normal Strong No

Table 3.1: Training Data

Using this data we can estimate the probability for good and bad weather
just by counting the occurrences:

P (GoodWeather = Y es) =
5
12

= .42

P (GoodWeather = No) =
7
12

= .58

Similarly we can estimate the conditional probability of summer given
the weather:

18

CHAPTER 3. TECHNIQUES

P (Season = Summer|GoodWeather = Y es) =
3
5

= .60

P (Season = Summer|GoodWeather = No) =
1
7

= .14

Using the Naive Bayes Theorem we can also estimate the most likely
weather classification given the training data and the following observed
attribute variables: Season = Summer, Temperature = Hot, Humidity =
Normal, Wind = Strong. The following shows how Naive Bayes Theorem is
used:

P (Y es)P (Summer|Y es)P (Hot|Y es)P (Normal|Y es)P (Strong|Y es) = .012

P (No)P (Summer|No)P (Hot|No)P (Normal|No)P (Strong|No) = .0073

Because GoodWeather = Y es has the highest value, the classifier Good-
Weather as Yes. To get the conditional probability of P (Y es) we just need
to normalize the probability estimated form the training data .60

.60+.14 = .81.
All this works well if you have a complete dataset with all excising occur-

rences. But this method fails if our training data only contains a fraction of
the existing occurrences. The probability estimation of P (Temperature =
Cool|GoodWeather = Y es) is nc

n where n is the number of occurrences of
GoodWeather = Y es and nc is the number of occurrences where Temperature =
Cool given GoodWeather = Y es. In reality the probability for P (Temperature =
Cool|GoodWeather = Y es) = .08, but since we have no observation of this
occurrences in our training data nc is equal to zero, and the probability
of Temperature = Cool given GoodWeather = Y es will also be zero. To
overcome this underestimation the m-estimation is introduced:

P (ai|vj) =
nc + mp

n + m

p is a priori estimate for P (ai|vj) and a typical method for choosing p

if no other information exist is to assume uniform priors. This is done by
counting the possible values k of the attribute and let p = 1

k .
m is a constant weight called equivalent sample size and is user specified.

19

Chapter 4

Approach

This chapter will describe how to approach the subject, and describe the
concepts of the methods that are going to be used. But before going into
detail with the techniques we will use, we will look into what identifies
strategies and they how can be managed.

4.1 Strategy Identification

First we have to consider which factors we could use to identify the enemy
strategy. It should be no more than a human would be able to observe since
the CP should be non-cheating. This list shows what a human player can
observe when playing:

• Unit position: Tells something about where the interests of the
player are, e.g. if the player has located a large amount of units around
a resource field, it might indicate that he is protecting it so he can
gather resource. The player could also have a large amount of units
around the enemy base, which might indicate that he soon is going to
attack.

• Unit movement: The unit movement tells something about the next
goal of the player or if the player is in a heavy fight the movement tells
if he is retreating.

• Unit type: The unit types also tell a lot about the enemy strategy.
One strategy could be to build some of artillery units and a lot of
infantry units. The artillery could the most dangerous of the enemy

20

CHAPTER 4. APPROACH

units from a long save distance, and when they are destroyed, then
attack with the infantry.

• Unit groupings The unit grouping also tell something about the
strategy like in the previous example where the combination of artillery
and infantry. It is likely that in order to execute that strategy these
units will move in a group.

• Timing The timing of which player attacks or expands his base could
indicates if the player is playing aggressive or defensive. If the enemy
player attacks with an army very early in the game he is properly
playing aggressive, and it is likely the he’s base is poorly defended
since there would be not enough time to build a sufficient deface.

There could also be many other factors which could indicate the strategy,
but it very much depends on the game. These factors listed here are the
most general and gave us an idea of what a CP could use to identify the
enemy strategy. In this project we will only use the unit position and the
next sections will describe how to continue with this approach.

4.2 Strategy Management

What we want is to be able to identify the enemy strategy. Depending
on the game there are many different strategies where some strategies are
very similar to each other while others are very different. The goal of this
project is not to identify which strategies are available in a game, but identify
which of some known strategies the enemy is using and further more pick
the strategy that counters the enemy strategy best.

The idea is to make at tree of strategies, where the root is the most
general strategy and the leaves are the most specific. Actually the root is
the base strategy for all strategies. This strategy tree is used to identify
the enemy strategy, where the first step is to identify the general strategy
and from that point a more specific strategy can be identified until a leaf is
reached. Each strategy in the strategy tree contains a counter strategy or
a list of counter strategies which will be used against the enemy. In some
cases there will be an uncertainty in identifying the enemy strategy. If the
uncertainty is too high the player could choose the more general strategy
and execute that counter strategy.

21

4.3. BAYESIAN GRID MODEL

4.3 Bayesian Grid Model

In this approach we will only try to identify the enemy strategy by observing
the unit positions. A model which can represent the position of the units on
the battlefield is needed. One approach could be to use a general Bayesian
Network where one node represents the whole battlefield. The problem with
this approach is that it will either perform very poorly due to low number
of states or it will be very complex because the node should contain many
states representing all the variants of the unit positions. Instead a Bayesian
Grid Model is used, which is a variant of a Naive Bayes Classifier. The
battlefield is split into several grid cells and the Bayesian Grid Model has
an attribute variable node corresponding to each grid cell on the battlefield.
The class variable of the Bayesian Grid Model is the node that classifies
which strategy the enemy is using. Figure 4.1 shows the Bayesian Grid
Model where x and y is the number of grid cells on the battlefield.

0,0 1,0 x,0

0,1 1,1 x,1

0,y 1,y x,y

Enemy

Strategy

Figure 4.1: Bayesian Grid Model

To measure the position of units on the battlefield the number of units

22

CHAPTER 4. APPROACH

in each grid cell is counted. The Bayesian Grid Model has to represent this.
There are two ways of doing this either measure the actual number of units
in each grid cell or measure the percentage of units in each grid cell. Each of
these two ways has some pros and cons. To define these variable nodes and
measure the number of units in each grid cell we have to define a number of
states, and since we cannot define an unlimited number of states we have to
figure out the best maximum value (number of units) and the interval. One
way to find the maximum value is to count how many units can fit into one
grid cell. The problem with that is that some games got flying units which
means that units can overlap each other and therefore there can be unlimited
units in a grid cell. The problem with using the percentage of units in a
cell is that it is necessary to know the total number of units in the game.
It is no problem if all information on the battlefield is available, but many
RTS games use Fog of War which means that only parts of the battlefield
are visible. The good thing about using percentage is the scalability. Even
though the Bayesian Grid Model has been trained with a certain number of
units, the model will still work if the game is played with a different number
of units.

To be able to identify the enemy strategy, each node in the strategy
tree contains a Bayesian Grid Model which is a variant of a Naive Bayes
Classifier. This model is used to identify a more specific strategy.

4.4 Tools

In order to be able to model Bayesian Networks a tool is needed and in
this project a tool called Hugin Expert is used. Hugin Expert is a set of
tools which can be used to model Bayesian Networks. It has a graphical
editor where it is easy to create networks. The editor can also be used to
get a graphical view of a network and be used to test it by manually putting
evidence on different variable nodes.

Hugin Expert also provides an Application Programming Interface (API)
supporting several programming languages, including C# which is the target
programming language of this project.

By using the API enables us to develop programs which use Bayesian
Networks. In this way we can create programs which make decisions based
on Bayesian Networks. It also makes it easy to generate very large and

23

4.5. IMPLEMENTATION

complex networks which otherwise would be impossible to create with the
graphical editor. [1]

4.5 Implementation

This section describes how the Bayesian Grid Model is implemented in
MiniRTS using the Hugin Expert API. There are two classes which are
described; the Strategy Learner and Strategy Identifier. Both classes can
handle Bayesian Grid Model of any size. Afterwards the implementation of
the Strategy Tree will be described.

4.5.1 Strategy Learner

The StrategyLearner is a class which is responsible for learning a given
Bayesian Grid Model. It has the following four methods:

• Load: The load method can load a Bayesian Grid Model of any size.
The Bayesian Grid Model can either be a model with no data or a
model which has been trained. A trained model is may not sufficient
enough so in some cases it can save time to load the trained model
instead of starting all over with an empty model.

• Save: The save method is used to save a Bayesian Grid Model after
it have been trained so it contains all the collected data.

• SetValues: This method is used to synchronize the state of the bat-
tlefield with the states of the attribute variables of the Bayesian Grid
Model. It takes a team as input, and the percentage of units in each
grid cell owned by that team is stored in the corresponding attribute
variables.

• Adapt: The adapt method makes the Bayesian Grid Model adapt to
the new attribute variable settings.

4.5.2 Strategy Identifier

The StrategyIdentifier class is responsible for identifying the enemy strategy.
To identify the enemy strategy it uses a given Bayesian Grid Model of any
size. This class has the following three methods:

24

CHAPTER 4. APPROACH

• Load: The load method can load a Bayesian Grid Model of any size.

• SetValues: Like in the StrategyLearner this method synchronizes the
battlefield state with the Bayesian grid model. In addition this method
can be given Fog of War which leaves the unseen areas of the battlefield
to be uncertain in the Bayesian Grid Model.

• SelectStrategy: This method returns the strategy type which is iden-
tified.

4.5.3 Defining Strategies

In this section we will describe the strategies used in this project. So for our
approach we define the following strategies.

Aggressive Strategies:

• Attack from north

• Attack from the middle

• Attack from south

Defensive Strategies:

• Defend north lane

• Defend middle lane

• Defend south lane

The strategies are selected so they counter each other. Attack from north
can be countered by the Defend north lane and so on. Figure 4.2 shows the
strategy tree.

To help defining these strategies, strategy points are placed on the bat-
tlefield. Strategy points define where to move to when the strategies is ex-
ecuted, e.g. the AttackNorth strategy point tells where all the units should
move to when attacking from north. Figure 4.3 shows how the strategy
points are placed.

25

4.5. IMPLEMENTATION

AttackNorth AttackMiddle AttackSouth DefendNorth DefendMiddle DefendSouth

Aggressive Defensive

Root

Figure 4.2: Bayesian Grid Model

Figure 4.3: Strategy Points

4.5.4 Tree Based Learner

The TreeBasedLearner is a strategy learner which implements the strategy
tree and used the strategy definitions from the previous section. It uses three
StrategyLearners described in section 4.5.1 on page 24 where one is used to
learn the Aggressive and Defensive patterns, the other is used to learn the
AttackNorth, AttackMiddle and AttackSouth strategies while the last is used
to learn the DefendNorth, DefendMiddle and DefendSouth strategies.

26

CHAPTER 4. APPROACH

4.5.5 Tree Based Identifier

The TreeBasedIdentifier and is similar to the TreeBasedLearner, but in ad-
dition it can use Fog of War to make the input data incomplete.

4.5.6 Naive Identifier

To be able to argue that using Bayesian Grid Models is actually better than
a simple approach we need to compare it with such an approach. In this
project the simple approach is called the Naive Identifier.

The Naive Identifier splits the battlefield into six zones, one for each type
of strategy. The zones are placed in the areas where the different strategies
are played, e.g. if the player attacks from north the units will move in
the north region of the battlefield. Figure 4.4 shows the six zones where
the aggressive zones are rectangular and the defensive are radius zones.
The defensive zones are radius zones because when the player is playing
a defensive strategy all the units will group together in these areas. The
aggressive zones are rectangular zones span from the left to the right side
of the battlefield because the units will move from the one end to the other
while playing aggressive. The placement of the defensive zones are based
upon the defensive strategy points form figure 4.3, while the aggressive zones
are created by dividing the battlefield in three equally sized zones.

When identifying the strategy it is just a matter of counting the units
in the different zones and the zone with most units is used to select the
identified strategy. But as the figure shows the zones overlap each other
due to the fact that some strategies are played in the same regions e.g. the
defend middle is almost fully overlapped by the attack middle zone. These
overlaps make the counting of units rater complicated, so instead of doing
a lot geometry calculations a much simpler approach is used. The total
number of units in the aggressive zones is multiplied with 0.75 to lower the
number. So if all units are inside the defend middle zone and also inside the
attack middle, the defend middle will be rated higher due to the reduction
of count of attack middle.

In this way we have created a very simple but also reliable identifier to
testes against the Bayesian Grid Model based identifiers.

27

4.5. IMPLEMENTATION

Battlefield

Attack North

Attack Middle

Attack South

Defend North

Defend Middle

Defend South

Figure 4.4: Naive Identifier

4.5.7 Generating Models

In this project we want to test different models against each other the to
see which one performs best. In order to do that we need at tool which
can create a variety of Bayesian Grid Models, since it is very large and it is
impossible to create them by hand in the Hugin Expert model editor.

The ModelGenerator is a tool with the purpose of creating all the vari-
ants of the Bayesian Grid Models. Figure 4.5 shows the Graphical User
Interface (GUI) which can be used to generate these models. The following
list explains the input boxes:

• Filename: The name of the file where the model is saved, when it
has been generated.

• Size X: The horizontal number of attribute variables in the Bayesian
Grid Model.

• Size Y: The vertical number of attribute variables in the Bayesian
Grid Model.

28

CHAPTER 4. APPROACH

• Number of States: The number of states in each attribute variable.

• Max Value: If the model does not use percentage the Max Values de-
fines the maximum number of units the attribute variables can count.
If Use Percentage is checked the maximum value will always be 100%.

• Output States: The states which the class variable should contain.

Even though the ModelGenerator GUI has mostly been used for test e.g.
to test if the model is generated correctly, the ModelGenerater can also be
accessed in program code.

Figure 4.5: Model Generator GUI

29

Chapter 5

Experiments

This chapter describes experiments performed to study which strategy iden-
tifier is the best. But before going to the results we first describe the tools
used to monitor the performances of the different identifiers. Afterwards the
different scenarios, which is used in the experiments is explained. At last
the results will be shown and commented.

5.1 Graph Plotting Tools

In order to be able to monitor the performance for the diffident models
we need tools that can generate reprehensive data. The following sections
describe the two tools which are used.

5.1.1 Strategy Monitoring Tool

This tool can keep track of which strategies the players are playing, and at
the same time keep track the identification of the strategy. Every time the
player changes strategy this tool generates a time stamp together with a
value representing the strategy. The same applies with the identifier, when
the identifier identifies the strategy. This data can then be plotted into
graphs to see how long it takes for the identifier to identify the strategy, or
if it identifies the right strategy at all.

5.1.2 Strategy Evaluator Tool

This tool is an evaluation tool used to evaluate the different identifiers.
The tool constantly compares the strategies selected by identifiers with the

30

CHAPTER 5. EXPERIMENTS

real strategy which is being played. Penalty points are given to the iden-
tifier when the identified strategy dos not correspond to the real strategy.
The penalties are defined by a penalty matrix and each strategy is given
a number, so the identified and real strategy together creates an index in
the matrix, e.g. AttackMiddle and AttackSouth = index(2, 3). Table 5.1
shows the penalty matrix, and the following list shows how the strategies
are numerated.

1. AN = Attack North

2. AM = Attack Middle

3. AS = Attack South

4. DN = Defend North

5. DM = Defend Middle

6. DS = Defend South

7. NI = Not Identified

Strategies AN AM AS DN DM DS NI
AN 0 1 2 10 15 15 20
AM 1 0 1 15 10 15 20
AS 2 1 0 15 15 10 20
DN 10 15 15 0 1 2 20
DM 15 10 15 1 0 1 20
DS 15 15 10 2 1 0 20

Table 5.1: Penalty Matrix

The penalties are given based on how different the strategies are from
each other, and how critical it is to identify the wrong strategy, e.g. if player
A thinks that player B is defending his base but in reality is attacking,
player A might attack and leave his base defenseless. This is critical miss-
identification and therefore the penalty points are high. The penalty points
between similar strategies is low, e.g. if the player miss-identifies the enemy
strategy as attack north but it in reality is attack middle it is not that
critical. The distance between defend middle and defend north is small, and
the units can move to the other location in a short period of time. The
same applies with the defensive strategies because when player B is playing

31

5.2. SCENARIOS

defensive he is no threat to the base, and player A can just pick another
attacking direction.

5.2 Scenarios

In order to be able to run experiments, the game has to be setup in a
way that is suitable for the experiments. These setups are called scenarios
and will be described in this section. All scenarios use the Scenario class
described in chapter 2 which they inherits form.

5.2.1 Learning Scenario

The learning scenario is designed specific to learn the Bayesian Grid Models
so it can be used to identify the enemy strategy. Figure 5.1 shows the
battlefield setup of the learning scenario, where there are two players. Both
players have a Head Quarter (HQ) and 23 units and are located in each end
of the map.

Figure 5.1: Scenario

To learn the Bayesian Grid Model properly it is necessary to plays all
the strategies against each other. In the beginning of each game the players
pick random strategies but to avoid a never ending game the players can
not pick a defensive strategy at the same time.

32

CHAPTER 5. EXPERIMENTS

The learning scenario resets the battlefield when one of the players wins
the game, which is either when the enemy HQ is destroyed or all the enemy
units are destroyed.

To get a decent amount of data the game is played 500 times where each
player chooses a random strategy. Two TreeBasedLearners collects data for
each player and after the 500 games the data is saved and ready to be used
in the test scenarios.

The learning scenario can be given a list of any Bayesain Grid Model
sizes, an the scenario will automatically generate these models using the
ModelGenerator and afterwards train them.

5.2.2 Test Scenario 1

The first test scenario is a scenario where all information on the map is
available. This scenario is created to test how well different models perform
and is compared against each other. The battlefield setup is different from
the learning scenario. In this scenario we only have one player because the
other player is irrelevant for this test.

When the game starts the player selects a strategy. The models then
have to identify the strategy. After some time the player changes strategy
and then the models have to identify the new strategy. In this scenario the
Strategy Monitoring Tool is used described in section 5.1

5.2.3 Test Scenario 2

This scenario is used to test how the increasing number of grid cells and
number of states in the Bayesian Grid Models will influence the performance
of the identifiers. To compare the performance the Strategy Evaluator Tool
is used. The battlefield settings are the same as in the previous scenario,
where there is only one team on the battlefield.

5.2.4 Test Scenario 3

In his scenario we want to test how well the identifiers perform when the
battlefield data is incomplete due to Fog of War. The areas which are visible
in the layer Fog of War are place semi-randomly. By semi-random we mean
that the visible areas are randomly placed, but still not so random that we
will never catch activity. In a way which ensures that at least a few units

33

5.3. RESULTS

are revealed. Figure 5.2 shows the Fog of War. The rest of the battlefield
setting is the same as before.

Figure 5.2: Scenario with Fog of War

5.3 Results

This section will present the results from the experiments in the differ-
ent test scenarios. Before showing the results let’s define some notations.
The Bayesian Grid Models can vary in size and can have different number
of states. The following notation AxBxC notates the complexity of the
Bayesian Grid Model where A is the number of attribute variables in hor-
izontal direction, B is the number in vertical direction and C notates the
number of states. E.g. 4x3x5 notates a Bayesian Grid Model which is 4
wide and 3 high, and have 5 states. All figures of from the results can be
found in a large version in the appendix A on page 44.

5.3.1 Test Scenario 1

This section presents the results from the first test scenario. The following
figures shows the strategy changes of the player and the identifier over time,
where the Y-Axis contains all the different strategies that can be played and

34

CHAPTER 5. EXPERIMENTS

the X-Axis is the time line. The graphs have been generated by using the
Strategy Monitoring Tool from section 5.1 on page 30.

In general all the identifiers tested in this scenario were able to identify
the strategy but some performed better than others. There are two factors,
the time it takes to identify the strategy and what strategy it identifies.
As the figures shows, the Naive Identifier and the 3x3x3 Identifier are more
likely to pick the wrong strategy, before actually picking the right one.

Both the 9x9x9 and 11x11x9 Identifier performs better than the Naive
and 3x3x3 Identifier, but which one performs best is hard to tell. It seems
that the 11x11x9 Identifier can identify the strategy a little faster than the
9x9x9 sometimes, but the figure also shows that it at one point identifies
the strategy wrong.

Attack North

Attack Middle

Attack South

Defend North

Defend Middle

Defend South

 0 20 40 60 80 100

S
tr

at
eg

ie
s

Game Time (seconds)

Current Strategy
Naive Identifier

Figure 5.3: Naive Identifier

Attack North

Attack Middle

Attack South

Defend North

Defend Middle

Defend South

 0 20 40 60 80 100

S
tr

at
eg

ie
s

Game Time (seconds)

Current Strategy
3x3x3 Identifier

Figure 5.4: 3x3x3 Identifier

Attack North

Attack Middle

Attack South

Defend North

Defend Middle

Defend South

 0 20 40 60 80 100

S
tr

at
eg

ie
s

Game Time (seconds)

Current Strategy
9x9x9 Identifier

Figure 5.5: 9x9x9 Identifier

Attack North

Attack Middle

Attack South

Defend North

Defend Middle

Defend South

 0 20 40 60 80 100

S
tr

at
eg

ie
s

Game Time (seconds)

Current Strategy
11x11x9 Identifier

Figure 5.6: 11x11x9 Identifier

It is very hard to tell which one performs best by just looking at these
figures. This scenario just gave a brief overview of the performance of some
identifiers the next sections will look into the models in more detail.

5.3.2 Test Scenario 2

In this scenario we tested how the increasement of the model complexity will
influence the performance of the strategy identifiers. The following figures

35

5.3. RESULTS

has been generated using the Strategy Evaluator Tool described in section
5.1 on page 30.

Figure 5.7 shows the result, where the model grid size is increased. The
X-Axis represents different grid sizes and the Y-Axis represents the penalties.
Each graph on the figure represents a different identifier. By looking at
the figure we can see that in general, increasing the number of grid cells
improves performance. But as the complexity get higher, the improvement
gets smaller. It even looks like complexity can be too high and worsens the
performance, but this could also be due to the uncertainties of at model
which have not been trained enough. When comparing the model with
different number of states, it can be noticed that the three graphs is following
each other, it means the increasing the number of states does improve the
performance of all models. Though the one with 21 states performs best
followed by the one with 9 states (note: comparing the states when the grid
size is low seems to be unreliable). All the Bayesian Grid Models performs
better than the Naive Identifier.

 300

 400

 500

 600

 700

 800

 900

 1000

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16

P
en

al
ty

 P
oi

nt
s

Identifiaction Models

Naive Identifier
3 States
9 States

21 States

Figure 5.7: Increasing Model Grid Size

Figure 5.8 shows the same as the other, but instead it is the number of
states that is shown on the X-Axis, and the different graphs are the grid sizes.
This figure tells the same as the other, where comparing a grid models with
low complexity is unreliable, and increasing the number of states improves
the performance.

36

CHAPTER 5. EXPERIMENTS

 350

 400

 450

 500

 550

 600

3 6 9 12 15 18 21 24 27

P
en

al
ty

 P
oi

nt
s

Identifiaction Models

Naive Identifier
7x7
9x9

11x11

Figure 5.8: Increasing Number of States

The scenario has shown that in an open environment where all informa-
tion is available, the Bayesian Grid Models performs very well when they
have a reasonable grid size. The next scenario will add Fog of War.

5.3.3 Test Scenario 3

The scenario has tested how Fog of War has influenced the performance
of the identifiers. Figure 5.9 shows the same as figure 5.7 but in this one
the graphs is generated on incomplete data due using Fog of War. The
results shows once again that increasing the complexity of the grid model
increases the performance, though the given penalty points are in general
much higher. Also the Bayesian Grid Models performed better than the
Naive Identifier.

37

5.3. RESULTS

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 1050

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16

P
en

al
ty

 P
oi

nt
s

Identifiaction Models

Naive Identifier
3 States
9 States

21 States

Figure 5.9: Strategy Evaluation with Fog of War

38

Chapter 6

Conclusion

This chapter will evaluate and conclude upon this project. The focus of this
project was on non-cheating AI in RTS games where the goal was to study
the usability of Bayesian Grid Models to identify the enemy strategy when
give the positions of units. The results of this project will be discussed in
the discussion section

6.1 Discussion

In this project we have studied which identifier performed best and how the
increasing model complexity (size and number of states) would improve the
performance. Increasing the number grid cells improved the model until a
certain point and after that; increasing complexity did not improve perfor-
mance. Changing the number of states also improved performance. The
project has also shown that Bayesian Grid Model is usable in games with
Fog of War.

Since the goal was to develop an AI for a RTS game to is important that
the Bayesian Grid Model does not consume too much CPU resources. The
model is very usable since the results have shown that a complex model is
not necessary.

Most models performed well and were able to identify the enemy strat-
egy. Even the performance of the Naive Identifier was acceptable. Why not
always use the Naive Identifier then? There are different reasons why to use
Bayesian Grid Models instead of the Naive Identifier. First, in general the
Bayesian Grid Models performed better as long the model had a proper grid

39

6.2. FUTURE WORK

size and number of states. Second, imagine a game with many strategies
instead of the six used in this project. The Naive Identifier should contain
many zones and different statements to be able to identify one specific strat-
egy. Creating such an identifier would be at very complicated job, and it
has to be done manually. By using Bayesian Grid Models

This project has shown that using the position of units can be used to
identify strategies. But using positions alone is not enough, e.g. when the
player is attacking and suddenly retreads. The Bayesian Grid Models do
not capture this before the units are at the defensive positions, but it can
be trained to capture it. This requires a Bayesian Grid Model with a large
number of grid cells since a moving group of units is spread out. If the model
has a low number of cells it would not capture it since too many units would
be in the same cell. An alternative could be to capture the unit movement
directions in addition.

6.2 Future Work

This project has only investigated subtopic of creating a non-cheating AI
for RTS games, where the focus was on using the positions of the units to
identify the enemy strategy. As described in section 4.1 on page 20 there
is more information than the unit position that helps identifying the enemy
strategy. This information could be used to improve the strategy identifiers.

In this project we used a strategy tree to identify the correct strategy,
and select the counter strategy. This was just a simple solution that fitted
this project. The strategy management is a whole other research area of the
high-level AI, and maybe there exists a better way to align the strategies
than in a tree. The type of strategies also depends very much on the rules
of the game, so if one should use Bayesian Grid Models identify strategies
in a game another organization of strategies could be preferable.

The environment in this project used a battlefield with no obstacles.
Most RTS games have different maps where there are obstacles like trees,
rocks, cliffs and so on. Using Bayesian Grid Models in this project was no
problem since the battlefield was always the same. But when battlefields
can change one Bayesian Grid Model trained on one map will not work in
another, so a new Bayesian Grid Model has to be trained for each map.
To avoid this, a more general way of representing the battlefield than grid

40

CHAPTER 6. CONCLUSION

cells may be considered. This could be by representing the battlefield using
important key areas on the battlefield e.g. resource areas or outposts.

41

Chapter 7

Bibliography

[1] Hugin Expert A/S. HUGIN EXPERT. http://www.hugin.com/, 2008.
Online: 14/08-2008.

[2] Alex J. Champandard. Research Opportunities in Game AI. http://

aigamedev.com/questions/research-opportunities, 2007. Online:
14/08-2008.

[3] Blizzard Entertainment. Blizzard Entertainment - StarCraft. http:

//www.blizzard.com/us/starcraft/, 1998. Online: 14/08-2008.

[4] Blizzard Entertainment. StarCraft II. http://www.starcraft2.com/,
2008. Online: 14/08-2008.

[5] Olav Geil. The Mathematical Foundation of A*. http://www.

math.aau.dk/~olav/undervisning/dat06/astar.pdf, 2006. Online:
09/12-2007.

[6] Chris Sigaty James Mielke. Starcraft 2’s AI Does Not Cheat Like Before.
http://aigamedev.com/links/2008-week-19, 2008. Online: 14/08-
2008.

[7] Alexander Kovarsky Marc Lanctot terling Orsten Michael Buro, Tim-
othy Furtak. ORTS - A Free Software RTS Game Engine. http:

//www.cs.ualberta.ca/~mburo/orts/, 2007. Online: 14/08-2008.

[8] Microsoft. xna.com. http://www.xna.com/, 2008. Online: 14/08-2008.

[9] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

42

http://www.hugin.com/
http://aigamedev.com/questions/research-opportunities
http://aigamedev.com/questions/research-opportunities
http://www.blizzard.com/us/starcraft/
http://www.blizzard.com/us/starcraft/
http://www.starcraft2.com/
http://www.math.aau.dk/~olav/undervisning/dat06/astar.pdf
http://www.math.aau.dk/~olav/undervisning/dat06/astar.pdf
http://aigamedev.com/links/2008-week-19
http://www.cs.ualberta.ca/~mburo/orts/
http://www.cs.ualberta.ca/~mburo/orts/
http://www.xna.com/

CHAPTER 7. BIBLIOGRAPHY

[10] David Silver. Cooperative pathfinding. 2005.

[11] Wikipedia. Bayesian network - Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/wiki/Bayesian_network. Online: 14/08-2008.

[12] Wikipedia. Naive Bayes classifier - Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Naive_Bayes_classifier. Online:
14/08-2008.

43

http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Naive_Bayes_classifier

Appendix A

Large Graphs

44

APPENDIX A. LARGE GRAPHS

A
tta

ck
 N

or
th

A
tta

ck
 M

id
dl

e

A
tta

ck
 S

ou
th

D
ef

en
d

N
or

th

D
ef

en
d

M
id

dl
e

D
ef

en
d

S
ou

th

 0
 2

0
 4

0
 6

0
 8

0
 1

00

Strategies

G
am

e
T

im
e

(s
ec

on
ds

)

C
ur

re
nt

 S
tr

at
eg

y
N

ai
ve

 Id
en

tif
ie

r

F
ig

ur
e

A
.1

:
N

ai
ve

Id
en

ti
fie

r

45

A
tta

ck
 N

or
th

A
tta

ck
 M

id
dl

e

A
tta

ck
 S

ou
th

D
ef

en
d

N
or

th

D
ef

en
d

M
id

dl
e

D
ef

en
d

S
ou

th

 0
 2

0
 4

0
 6

0
 8

0
 1

00

Strategies

G
am

e
T

im
e

(s
ec

on
ds

)

C
ur

re
nt

 S
tr

at
eg

y
3x

3x
3

Id
en

tif
ie

r

F
ig

ur
e

A
.2

:
3x

3x
3

Id
en

ti
fie

r

46

APPENDIX A. LARGE GRAPHS

A
tta

ck
 N

or
th

A
tta

ck
 M

id
dl

e

A
tta

ck
 S

ou
th

D
ef

en
d

N
or

th

D
ef

en
d

M
id

dl
e

D
ef

en
d

S
ou

th

 0
 2

0
 4

0
 6

0
 8

0
 1

00

Strategies

G
am

e
T

im
e

(s
ec

on
ds

)

C
ur

re
nt

 S
tr

at
eg

y
9x

9x
9

Id
en

tif
ie

r

F
ig

ur
e

A
.3

:
9x

9x
9

Id
en

ti
fie

r

47

A
tta

ck
 N

or
th

A
tta

ck
 M

id
dl

e

A
tta

ck
 S

ou
th

D
ef

en
d

N
or

th

D
ef

en
d

M
id

dl
e

D
ef

en
d

S
ou

th

 0
 2

0
 4

0
 6

0
 8

0
 1

00

Strategies

G
am

e
T

im
e

(s
ec

on
ds

)

C
ur

re
nt

 S
tr

at
eg

y
11

x1
1x

9
Id

en
tif

ie
r

F
ig

ur
e

A
.4

:
11

x1
1x

9
Id

en
ti

fie
r

48

APPENDIX A. LARGE GRAPHS

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00

0

2x
2

3x
3

4x
4

5x
5

6x
6

7x
7

8x
8

9x
9

10
x1

0
11

x1
1

12
x1

2
13

x1
3

14
x1

4
15

x1
5

16
x1

6

Penalty Points

Id
en

tif
ia

ct
io

n
M

od
el

s

N
ai

ve
 Id

en
tif

ie
r

3
S

ta
te

s
9

S
ta

te
s

21
 S

ta
te

s

F
ig

ur
e

A
.5

:
In

cr
ea

si
ng

M
od

el
G

ri
d

Si
ze

49

 3
50

 4
00

 4
50

 5
00

 5
50

 6
00

3
6

9
12

15
18

21
24

27

Penalty Points

Id
en

tif
ia

ct
io

n
M

od
el

s

N
ai

ve
 Id

en
tif

ie
r

7x
7

9x
9

11
x1

1

F
ig

ur
e

A
.6

:
In

cr
ea

si
ng

N
um

be
r

of
St

at
es

50

APPENDIX A. LARGE GRAPHS

 6
00

 6
50

 7
00

 7
50

 8
00

 8
50

 9
00

 9
50

 1
00

0

 1
05

0

2x
2

3x
3

4x
4

5x
5

6x
6

7x
7

8x
8

9x
9

10
x1

0
11

x1
1

12
x1

2
13

x1
3

14
x1

4
15

x1
5

16
x1

6

Penalty Points

Id
en

tif
ia

ct
io

n
M

od
el

s

N
ai

ve
 Id

en
tif

ie
r

3
S

ta
te

s
9

S
ta

te
s

21
 S

ta
te

s

F
ig

ur
e

A
.7

:
St

ra
te

gy
E

va
lu

at
io

n
w

it
h

Fo
g

of
W

ar

51

Appendix B

CD Content

Included in the report is a CD which contains the following content.

• MiniRTS source code

• MiniRTS complied code

• This report

52

	Introduction
	Related Work
	Content

	Mini Game
	Rules
	Development Environment
	Implementation
	GameObject
	Actor
	TileMap
	Unit
	Pathfinding
	Orders
	Groups
	Fog of War
	Scenario

	Techniques
	Bayesian Networks
	Bayes Theorem
	D-Separation

	Naive Bayes Classifier

	Approach
	Strategy Identification
	Strategy Management
	Bayesian Grid Model
	Tools
	Implementation
	Strategy Learner
	Strategy Identifier
	Defining Strategies
	Tree Based Learner
	Tree Based Identifier
	Naive Identifier
	Generating Models

	Experiments
	Graph Plotting Tools
	Strategy Monitoring Tool
	Strategy Evaluator Tool

	Scenarios
	Learning Scenario
	Test Scenario 1
	Test Scenario 2
	Test Scenario 3

	Results
	Test Scenario 1
	Test Scenario 2
	Test Scenario 3

	Conclusion
	Discussion
	Future Work

	Bibliography
	Appendices
	Large Graphs
	CD Content

