

Department of Computer Science
Aalborg University

DAT 6

TITLE:

A Generic Backend for Fast Au-
dio Fingerprint Matching

PROJECT PERIOD:

Spring semester 2008

PROJECT GROUP:

d622b / Computer Science

AUTHOR:

Anders Skovsgaard

SUPERVISOR:

Christian S. Jensen

NUMBER OF COPIES: 3

TOTAL PAGE COUNT: 42

Synopsis

This thesis documents the development

of a generic backend capable of �nding

the best match for audio �ngerprints.

It can be used with various �ngerprint

generators and audio sources subject to

noise. The best matching �ngerprint is

determined by a scoring system, where

the scores depend on the amounts of

correctly positioned n-grams in the �n-

gerprints. The developed algorithm

uses n-grams and hash tables for fast

lookup. Additionally, a similarity mea-

sure is developed to quickly create can-

didate sets. The candidate set contains

a subset of the database �ngerprints,

that is estimated as a possible match.

The search algorithm guarantees no

false dismissals and parameters can

be adjusted to alter the reliability of

the results. Experimental performance

studies shows that the solution is orders

of magnitude faster than related work.

Preface

This master's thesis is a result of a four-month DAT6 project at the Department of
Computer Science, Aalborg University. It takes its outset in an article composed
at DAT5 during autumn of 2007. The present research builds on that article, and
some of its �ndings are used as motivation for this thesis. The relation to the past
work is covered in Section 2.3.3.

Reading Notes

References will be represented in the form [20]. The list of references can be found
on page 40. This thesis starts by describe relevant background material in order to
understand the next part, which covers the problem. A solution for this problem
will then be described, and experimental performance studies follows. Finally, the
thesis contains conclusions and proposals for future work.

Source Code and Tools

The development of this project involved several software tools. The algorithms are
developed in C# 2.0 and run on the .NET 3.0 platform. For the implementation,
Microsoft Visual C# 2005 Express Edition was used as the integrated development
environment (IDE). The database server used the relational database management
system, Microsoft SQL Server 2005 running on a Microsoft Windows 2003 Enter-
prise Server.

Source code is available from the enclosed CD-ROM.

1

Contents

Contents 2

1 Introduction 4

2 Preliminaries 6

2.1 Audio Fingerprints . 6
2.1.1 Generating String Fingerprint 7
2.1.2 Time Shifting . 9

2.2 String Comparing with N-grams . 10
2.3 Related Work . 10

2.3.1 Existing Audio Identi�cation Systems 10
2.3.2 Search Algorithms . 11
2.3.3 Previous Work . 13

2.4 Problem Statement . 14

3 Scalable Fingerprint Matching 15

3.1 Architecture . 15
3.2 Fingerprint Matching using N-Grams and Hash Tables 16

3.2.1 Indexing the Database Fingerprints 16
3.2.2 Querying the Database . 17

3.3 Limits of the Search Algorithm . 19
3.4 Filtering Trivial Fingerprints . 20
3.5 Push rather than Brute Force . 21

3.5.1 Early Termination . 22
3.5.2 Non-Unique N-gram Search 23
3.5.3 Supporting Streaming Fingerprints 24
3.5.4 Pseudo Code for the Proposed Optimization 25

3.6 Other Optimizations . 27
3.6.1 Table Division . 27

3.7 Performance Factors . 28
3.7.1 Running Time . 28

2

CONTENTS

3.7.2 Space Consumption . 29
3.7.3 Memory Usage . 30

4 Experimental Performance Study 31

4.1 Test Setup . 31
4.2 Choice of Parameter Settings . 32

4.2.1 N-gram Length . 32
4.2.2 The MinMatch Parameter 32
4.2.3 The WinningFactor Parameter 33

4.3 Query Performance . 35
4.3.1 Comparison with Previous Work 35
4.3.2 Worst Case Database Scenario 36
4.3.3 Summary . 37

5 Conclusion 38

6 Future Work 39

REFERENCES 40

3

Chapter 1

Introduction

Music has existed as long as anyone can remember. It is everywhere, from the
natural sounds such as birdsong to music on the radio. Music exists on numerous
mediums and has been subject to comprehensive development through the last
centuries. The development has gone from analogue mediums such as gramophone
records and cassettes to digital compact discs and �les on computers and mobile
phones. And the development continues this day with new medium and formats
for better sound reproduction emerging.

Today, it is possible to access catalogues with millions of music �les through the
Internet and within minutes be able to listen to a song on a desktop computer.
This development has also moved to mobile phones where music �les can be found
and downloaded or retrieved from a desktop computer and listened to while on
the move. With all this music everywhere, people may �nd themselves listening
to a song they like, but do not know the name of. This is a problem for both
the producers of music and the consumers. The goal of the producers is to sell
music and when the consumers can not �nd the music they are interested in, the
producers loose costumers.

The problem can be addressed by audio recognition software that has the ability
to record a piece of a song and return meta data such as the artist, title, and where
to buy the song. Several methods exists for audio recognition, but most of today's
audio recognition software is proprietary. The methods all share some basic steps
in order to recognize a song. First, a piece of the song is recorded. This recording
is then compressed and transferred to a backend server over the Internet. The
backend server subsequently performs a lookup and returns the meta data of the
song.

Since the recognition software is proprietary, it is not known how the lookups in
the database are performed or which features the software extracts from the audio
signal to perform the lookups. Much e�ort has been put into the area of �nding
robust features from audio that are not as vulnerable to noise and distortion. These

4

CHAPTER 1. INTRODUCTION

features could, e.g., be beats per minute or dominant frequencies present in the
signal. Together, these features could form a �ngerprint of the signal. But since an
audio signal from a microphone can contain additional speech, background noise,
and other sources of noise, it is impossible to create the exact same representation
of a signal as the original. Thus, some margin of error is needed when searching
the database for a given �ngerprint.

The database lookup requires, in addition to a robust �ngerprint algorithm, a
�ngerprint matching algorithm. This matching algorithm should be able to �nd
a match in spite of varying numbers of errors in the �ngerprints and perform fast
lookups in databases containing millions of �ngerprints. It should be able to search
all �ngerprints in the database in order to be positive that no better �ngerprint
exists.

This thesis introduces a complete framework for fast �ngerprint matching ca-
pable of searching millions of �ngerprints. It works with any chosen features
from an audio signal given that the features yield a su�cient separation between
�ngerprints of distinct songs and also contain some similarities when they derived
from the same song. The proposed framework is scalable, searches while recording,
and returns a match with no false dismissals when enough data from the signal
is present. The representation of a �ngerprint is a string of characters where the
size depends on the length of the signal. Each character represents a small piece
of the signal and can be assigned a di�erent meaning depending on the extracted
features.

String searching is a well explored research area, and this thesis introduces new
ideas for string matching built on top of existing search techniques.

The remainder of this thesis is organized as follows. Initially, the preliminaries
are descriebed in Chapter 2 to give some background knowledge before introducing
the related work and the problem statement. Then the overall architecture is
described in Chapter 3 followed by a description of previous work used by this
thesis. In Section 3.3 the limits of the previous work is outlined, followed by
the proposed solution. The algorithm is then described in details and possible
optimizations are given before the experimental performance studies, in Chapter
4. This thesis is closed by a conclusion and future work proposals.

5

Chapter 2

Preliminaries

In order to understand the problems with �ngerprint generators and �ngerprint
matching, some background knowledge is described in this chapter. Several prob-
lems that should to be solved in order to gain fast lookup speeds on large collections
of �ngerprints will be outlined.

Section 2.1 describes the di�culties in creating a robust �ngerprint. In Section
2.2, a fuzzy string search technique, which is used in this thesis, is outlined. Related
work and previous work are covered in Section 2.3. Some parts of the previous
work are used in this thesis, and problems that arose during that work serve as
motivation for this thesis.

2.1 Audio Fingerprints

An audio signal is represented as a wave-form that shows the amplitude over time.
In Figures 2.1 and 2.2, two di�erent audio signals are illustrated. Having the exact
same audio signal gives the exact same wave-form, but when the signal changes, so
does the wave-form. A signal with background noise therefore changes the wave-
form. This makes it di�cult to �nd a reliable match between two audio signals
when these contain noise. To obtain a robust representation of an audio signal,
only important features from the signal should be preserved. This can reduce the
di�erences between two noisy signals. Often the query �ngerprints contain di�erent
kinds of noise, and the database �ngerprints are generated free from noise. The
extracted features should be used when generating �ngerprints of audio signals.
Some �ngerprint generators [10] make use of the most dominant frequencies in
the signal by using the Fourier Transformation [8], which outputs the amplitude
of each frequency present in the signal. Along with other features, such as the
Beats-Per-Minute, a high quality �ngerprint generator can be developed. A high
quality �ngerprint generator is capable of creating di�erent �ngerprints for two

6

CHAPTER 2. PRELIMINARIES

di�erent audio signals and creating similar �ngerprints for identical audio signals
even though they might be subject to "random" noise. By only extracting features
that are of relevance in a given context, di�erent wave-forms ideally give the same
representation.

Figure 2.1: Audio signal in wave-form.

Figure 2.2: Audio signal in wave-form.

But the sources of noise are heterogeneous, such as additional speech, a distorted
signal because of di�erent speakers or microphones, or "random" background
noises. This makes it the di�cult to develop a completely robust �ngerprinting
technique. Therefore, the search method must be able to contend with �ngerprints
that contains di�erent amounts of errors.

2.1.1 Generating String Fingerprint

String searching is a well-explored research area and is well-suited for representing
audio �ngerprints. Numerous index types and search algorithms exist for strings
and fuzzy string search. Therefore, this thesis utilizes strings as representation for
�ngerprints and builds on top of existing string search techniques.

7

CHAPTER 2. PRELIMINARIES

In order to build a string �ngerprint which is based on features in a signal,
�rst a codebook of mean feature vectors should be prepared. These mean vectors
a created from a representative set of samples from the audio signal database.
Features are extracted continuously for each block of the samples, and a vector
for each block of audio is created. This is illustrated in Figure 2.3. By using
the K-means clustering algorithm [6], k numbers of mean vectors are found. The
k mean vectors are each assigned a character. The �ngerprint generator used in
this thesis, uses a codebook of 64 vectors, each of 16 dimensions. Therefore, the
BASE64 charset can be used to represent the vectors. Each vector correlates to
the Bark scale [4], that is a scale to measure the subjective human perception of
sounds.

Figure 2.3: Vectors created from features extracted from blocks of the audio signal.

Having build the codebook, audio signals can be converted to �ngerprints. This
is done by extracting the feature vectors for each block of the signal, and by
using a nearest neighbour search on the vector, the nearest codebook vector is
found. Finally, the corresponding codebook vector character is assigning. Figure
2.4 illustrates an audio signal that is divided into blocks of audio. Each block has
been compared to the codebook and the nearest vector is assigned to the block.
When an audio block has been assigned a vector the correlated symbol can be
assigned to that block as illustrated in Figure 2.4. The result of these operations
is a string �ngerprint for each audio signal in the database. As audio signals may
vary in size, the �ngerprints are of di�erent lengths.

8

CHAPTER 2. PRELIMINARIES

Figure 2.4: Characters assigned to each block of the audio signal.

2.1.2 Time Shifting

The recording of an audio signal may begin at random locations in the signal. It
could happen that the recording begins in the middle of an audio block that exists
in the reference database signal. This time shifting can in�uence a query in a
way where an query audio signal, identical to the reference audio signal, obtains
a di�erent �ngerprint. This is illustrated in Figure 2.5 where two identical audio
signals obtains di�erent �ngerprints because they start at di�erent locations. By
starting at di�erent locations one audio block may be dominated by the signal
in a neighbor block in such way that the �ngerprint assigns the neighbor symbol.
Therefore, the �ngerprint matching algorithm has to be able to take into account
that characters can be positioned "incorrectly" due to time shifting.

Figure 2.5: Time shifting that in�uences the �ngerprint.

9

CHAPTER 2. PRELIMINARIES

2.2 String Comparing with N-grams

It will be mentioned in Section 2.3 that string comparing can be done in di�erent
manners, but this thesis uses n-grams because other related methods for approxi-
mate substring matching are not performing faster [20]. An n-gram is a continuous
division of a string in sub-strings of length n. Having a string s1 = "example" and
a n-gram length of 2 gives the following n-grams: "ex", "xa", "am", "mp", "pl",
and "le". Having another string s2="exomple" that looks much like s1 gives the
following n-grams: "ex", "xo", "om", "mp", "pl", and "le". It is clear to see that
s1 and s2 contains several similar n-grams. This is the intuition behind n-gram
string matching. The greater similarity between two strings, the more n-grams
they share. As the length of the n-gram increases, the number of n-grams in a
string decreases. Formally, the number of n-grams of length n in a string of length
s is s−(n−1). Consequently, the number of common n-grams between two strings
is reduced as n increases.

2.3 Related Work

The following section covers related work in terms of existing audio identi�cation
systems and approximate string search, as well as previous work by the author.

2.3.1 Existing Audio Identi�cation Systems

There already exists several audio identi�cation systems for free usage. Products
for the desktop computer and mobile phones are available for free download and
are widely used. The next sections will describe some of the most popular products
for audio identi�cation.

TrackID

Since the cell phone, W850i by Sony/Ericsson, was introduced in 2006 [17], all high-
end mobile phones from Sony/Ericsson have been equipped with a native music
recognition application called "TrackID". TrackID works by recording music with
the built-in microphone, and after a �xed amount of time, it sends the recorded
signal to a backend server. The backend server then returns the matching song.
The application is proprietary, which means none of the mechanism behind are
known. It is not known which features are extracted, nor are their representations
known. Also, it is not known how the backend server performs the database lookup.
TrackID uses Gracenote's extensive music database in order to recognize the music
requested by the users. Gracenote collects its music from all major companies in
the music industry and indexes it for fast retrieval. Gracenote sells these services to

10

CHAPTER 2. PRELIMINARIES

various companies [5]. Also, desktop music programs such as iTunes use Gracenote
technology to tag music �les with the correct meta data.

Tunatic

Another audio identi�cation system called "Tunatic" runs only on desktop com-
puters [18]. It identi�es all genres except classical music. The recognition is based
on audio samples of various lengths. When enough data has been recorded, Tunatic
returns meta data of the found song. Again, this requires an extensive database
of music, but rather than buying this from music companies like Gracenote does,
Tunatic gets it from its users. Users can create �ngerprints for every song on their
computer and send these �ngerprints to Tunatic's backend server along with meta
data of the song. With enough users doing this an extensive music database can
be built without costs other than server and network expenses.

As with the TrackID application, Tunatic is proprietary, and no information is
available on how the �ngerprints are created or how the database lookups are
performed.

MusicBrainz's "FutureProofFingerprintFunction"

MusicBrainz has made a description of a �ngerprint functioning they called "Fu-
tureProofFingerprintFunction" (FPFF) [11]. This was indented to replace their
existing �ngerprint function "TRM", but because of no volunteer developers, they
are now cooperating with MusicIP and use their closed-source PUID technology
[12]. The FPFF is an open source description of a �ngerprint for music recognition.
It describes how to go from a digital signal to a �ngerprint that represents the ex-
tracted features. The �ngerprint is a string of symbols each representing continuous
portions of the audio signal. An implementation of this, done by Heljoranta [7] is
used in this thesis as the �ngerprint generator. However, there are some limits of
this implementation: it is not as robust against noise since it is not developed to
support microphones. But people with knowledge in digital signal processing are
free to replace this �ngerprint generator, as the proposed solution is generic with
regard to the �ngerprint generator.

2.3.2 Search Algorithms

String search is a popular subject within database technology. Exact string search
has for years been a well-researched area that has give rise to di�erent index struc-
tures that speed up performance, e.g., Hash tables [3] and B-trees [14]. Also fuzzy
string search has gained wide usage, since companies often gets data from multiple
data sources with duplicate entries. This could, e.g., be costumer information

11

CHAPTER 2. PRELIMINARIES

gathered from di�erent sources that need to be paired. In order to do this, fuzzy
string search has been developed in order to pair, e.g., "John Smith" with "Juhn
Smith" [9].

Also in genome research string search is extremely popular. Genomes are often
represented as long strings, and searching for genomes is done by fuzzy string
search. If a scientist has some DNA with unknown origin, a fuzzy string search
can be applied in order to �nd the best matching genome in the database. Since the
DNA string does not necessarily match completely, fuzzy string search techniques
for fast lookup have been developed. In the following, di�erent search algorithms
are described. Each has their own purpose to ful�ll, which is the reason that none
of them can be directly applied to audio �ngerprint matching.

Edit Distance

The Edit Distance is the number of opertions required to transform one string into
another. Several algorithms that de�ne and measure this metric exist. One of the
more famous algorithms is the Hamming Distance [15], developed by Hamming in
1950, that works on strings of same length. The number of substitutions necessary
to transform one string into another, is de�ned as the distance between the two
strings. However, this is inadequate for this solution since the query �ngerprint is
of di�erent length than the database �ngerprints.

Another popular and more sophisticated metric is the Levensthein Distance
algorithm that was developed by Vladimir Levensthein in 1965 [19]. This distance
algorithm is often used by spell checkers in order to measure how similar two
words are. The distance between two strings is the number of operations needed
to transform one string into the other. The operations available are insertion,
deletion, and substitution. To implement a simple spell checker using only the
Levenshtein Distance, every word needs to be measured against a dictionary of
words. As the words get longer and the number of operation to match the strings
get larger, this approach might not be the optimal. Also, when the dictionary gets
larger, the number of necessary transformations increases. Comparing with the
strings generated from audio signals, it is clear to see that Levensthein Distance
is inappropriate, because each string is extremely long and the dictionary could
consist of millions of strings.

Gravano et. al. has developed a solution that based on the Levenshtein Distance
�nds candidate sets for appoximate string matcing [9]. This solution, however, is
not suitable for the purpose this thesis covers, since the query �ngerprints and the
database �ngerprints are of great di�erence in terms of lengths.

12

CHAPTER 2. PRELIMINARIES

BLAST

Basic Local Alignment Search Tool (BLAST) is a popular algorithm in genome
researching for comparing genomes [16]. It looks at how many symbols a query
and a database string have positioned at the same place. The more correctly
positioned symbols there are in the database string, the greater score the database
string gets. BLAST also supports insertions and deletions to support gaps. BLAST
does not, however, support the assignment of scores to symbols that are positioned
almost correctly. This is needed in order to recognize audio, since time shifting
can occur. It utilizes su�x trees to accomplish fast lookup, but the performance
is not as good as the performance of SSAHA, which is described below.

SSAHA

Sequence Search and Alignment by Hashing Algorithm (SSAHA) is an algorithm
with the same objective as BLAST: to �nd similar DNA sequences [20]. It claims
that it outperforms BLAST by using n-grams and hash tables. However, SSAHA
has the same limitations as BLAST in terms of symbol position diviation. In
order for a database string to obtain a score the n-gram has to be positioned at
the correct position. Therefore, the time shifting is not supported by SSAHA. The
past work by the author extended SSAHA to support the time shifting as described
below.

2.3.3 Previous Work

In a project at the seventh semester at Aalborg University, the author and two
others created the �rst steps towards an audio identi�cation system [2]. This
section describes parts of our previous research that are relevant to this thesis.

The goal was to create an audio identi�cation system capable of recognizing
music recorded from a microphone on a cell phone. The "FutureProofFingerprint-
Function" [7] was used throughout the project as the �ngerprint generator, and an
algorithm for �ngerprint matching based on SSAHA was developed. The developed
algorithm had some shortcomings that is the motivation for this thesis.

Fingerprint Matching

The developed algorithm for �ngerprint matching was based on the SSAHA algo-
rithm, but, designed speci�cally to �t the �ngerprint searching. As described in
Section 2.1.2, time shifting might in�uence the positions of characters. Therefore,
the developed �ngerprint matching algorithm allowed symbols to be positioned at
neighbor positions. Since the strategy used by the SSAHA algorithm had proven
to be fast for approximate substring matching, SSAHA was modi�ed to support

13

CHAPTER 2. PRELIMINARIES

time shifting. How the indexing and search are performed is described in detail in
Section 3.2, where the limitations of this technique are also described.

2.4 Problem Statement

Having described how an audio signal is represented and the intuition behind n-
gram-based string matching, this section outlines the problem addressed in the
thesis.

To be able to recognize a given audio signal, a database of digital audio �les
has to be available. This database is used in order to compare query audio signals
against database audio signals and �nd the best matches. Obviously, the database
has to be of great size in order to recognize all possible queried audio signals. In
the case of music recognition, the database requires the music from all companies
in the music industry. With the database in place, each �le should be converted
to a �ngerprint and indexed for fast lookup.

When receiving the query audio signal, it should be converted to a �ngerprint in
the same manner as the database audio signals and then looked up in the database.
Since the audio signal can be subject to noise, two otherwise identical audio
signals are most likely to have di�erent �ngerprints. This means that approximate
substring search is needed; an exact string search is likely to return no matches.
Also, the query audio signal can start at arbitrary positions in the complete signal,
which rules out a complete approximate string search in the database.

Instead a fast, approximate substring search should be applied in order to
�nd a match in the database. If a query audio signal q is identical to d in the
database, but is missing the beginning of the signal, q is a sub signal of d. Having
converted the audio signals to �ngerprints results in the problem of �nding the
best approximate substring. This problem is partially solved by previous work by
the author. However, the existing solution only works on small datasets. This
thesis will focus on creating a fast, generic backend for searching datasets of great
size. This is under the assumption that suitable features have been extracted and
used to generate the �ngerprints. The backend should �nd the best approximate
substring in the database.

The following will often refer to database results as "best match" and "next
best match". This is with regard to the �ngerprint string and not the audio
signal itself. When the best match is found, this is the �ngerprint in the database
that best matches the queried �ngerprint. The returned meta data will therefore
also be with regard to the best �ngerprint match. If the �ngerprint generator is
malfunctioning, the expected best audio match may not be consistent with the
best �ngerprint match. This thesis focuses on the �ngerprint string matching and
not the audio �ngerprint generator.

14

Chapter 3

Scalable Fingerprint Matching

Having covered the preliminaries and related work, the following introduces a new
strategy, and details behind creating a backend for scalable �ngerprint matching.
First the architecture of the complete audio identi�cation system is outlined in Sec-
tion 3.1. Then Section 3.2 describes in details how the previous developed search
algorithm operates in order to point out where the problems are in Section 3.3.
Finally, the proposed solution is described and other optimizations are discussed.

3.1 Architecture

To create a complete solution for �ngerprint matching a number of collaborating
components with di�erent purposes is necessary. First of all, the end user has to
be able to use the application easily through di�erent mediums. This could, e.g.
be a mobile phone, a desktop computer or a phone line. Picture 3.1 shows a setup
where the client application has been developed for a mobile phone. The client
application contains the �ngerprint generator, a client/server implementation over
the Internet and a GUI in order to display the results from the backend server.
When an audio signal is recorded, the �ngerprint is generated and continuously
streamed to the backend server. The streaming continues until enough data has
been recorded in order to �nd a match from the �ngerprint database. Finally,
the backend server returns the relevant metadata to the client application. This
could be the song title, artist name and links to where to buy the music. The
client application could be on any device with audio recording equipment, such
as desktop computers, laptops, portable audio players etc. A setup where the
end user does not use a client application directly is also possible. This could be
through a phone line that is connected to the client application. Thus, the user
only has to dial a curtain number and then communicate with client application
that could provide the meta data with speech through the phone line.

15

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

Figure 3.1: The architecture of a complete audio identi�cation system.

The emphasis in this thesis will be on the backend. In order to create a complete
audio identi�cation system for end users, a client on any given medium should be
developed and interplay with the backend.

3.2 Fingerprint Matching using N-Grams and Hash

Tables

This section describes the �ngerprint search algorithm developed by Skovsgaard et
al.[2] to provide an overview of how the best match is determined. The matching
strategy is also used in this thesis. First, the indexing is described, followed by
how the actual �ngerprint search is performed.

3.2.1 Indexing the Database Fingerprints

To be able to query the database �ngerprints an index initially has to be created.
The index is build from all �ngerprints in the database. The structure is con-
ceptually simple and uses a hash table for fast lookup. An example index from
two �ngerprints have been created in Figure 3.2. When indexing the �ngerprints
every n-gram for every position is extracted and placed in the hash table with the
n-gram itself as key. The n-gram extraction has to be for every position and not
a step length of the n-gram size, since this is more robust against errors in the
�ngerprints. The n-gram extraction is illustrated in the left table in Figure 3.2.
The value of the hash table is a list of objects, each containing the song identi�er
and the position of the n-gram. If the n-gram does not exist in the hash table a
new entry is created and the object is added as value. If, however, the n-gram
already exists, the object is added to the already existing list. This is illustrated

16

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

by the list of n-gram occurrences in the right side of Figure 3.2. The list contains
tuples on the form S × P where S is the song identi�ers and P is the positions.

Figure 3.2: The index.

3.2.2 Querying the Database

Having build the n-gram index, the database is ready to be searched with a query
�ngerprint. An algorithm for this has been developed in past work by Skovsgaard
et al. [2]. When querying the database with a �ngerprint, several database
�ngerprints can have similarities with the query �ngerprint. In order to distinguish
these candidates a scoring system has been created. The database �ngerprint that
obtains the highest score is the best match to a given query �ngerprint. One point
is given to a �ngerprint for every n-gram correctly positioned in the �ngerprint.
This principle is based on the research made by SSAHA [20], but extended by
Skovsgaard et al. to support the time shifting problem described in 2.1.2, such
that a character may deviate by one position.

The �ngerprint search algorithm is illustrated in Figure 3.3 and starts by ex-
tracting each n-gram from the left side of the query �ngerprint. Each n-gram
is looked up in the index in Figure 3.2 to �nd all occurrences of the n-gram in
the database �ngerprints. This list contains objects with song identi�er and the
position of the n-gram in the database �ngerprint. The position is used to create a
"position group", pgroup. The pgroup is calculated by taking the position in the
index object and subtracting the position of the queried n-gram. In the example

17

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

in Figure 3.3 �rst the "aab" n-gram is looked up, giving two occurences. The �rst
is positioned in the same position as the queried n-gram, giving pgroup 0. The
next occurrence is positioned at position 7 giving the pgroup 7. These pgroup are
created to keep track of which n-grams that are linked together in terms of correct
positions. If two n-grams is within the same pgroup they are mutually positioned
correctly with regard to the query �ngerprint.

When a new pgroup is created it is added as key to a hash table Hposition

with a new hash table Hsongnr as value. The hash table Hsongnr maintains all
song identi�ers that is already known to be within the given pgroup. The scoring
system is maintained while searching, and when a new pgroup is created the song
identi�er is, if not existing, added to a new Hsongnr. The value of Hsongnr is a
list of objects containing the score of the given pgroup. This list can contain more
than one entry because of the support for character deviation. A new element is
added to this list whenever a pgroup does not exists for a given song identi�er.
Then the score is set to 1. If the pgroup already exists, the score is incremented by
1. Also if pgroup-+1 exists this group is incremented by one. This is to support
the time shifting problem by also giving one point to the n-grams that deviate by
one position. It is also illustrated in Figure 3.3 by the n-gram "bce" that correctly
should be in pgroup 1 but since pgroup 0 exists this is incremented by one. In
Figure 3.3 the query �ngerprint has found eight matching occurrences in the index
of which �ve pgroup have been created. The �ngerprint with the most points is
�ngerprint "1" with three points.

Figure 3.3: Fingerprint matching

When the highest score is a prede�ned constant higher than the next best the
search can be terminated and the �ngerprint with the highest score is returned as
best match. If this does not occur within a prede�ned period of time, the search
is terminated and no match is found.

18

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

3.3 Limits of the Search Algorithm

Although the above outlined �ngerprint search algorithm is an e�cient search
method it has some shortcomings. It is fast on a small dataset such as in Figure 3.2,
since the lists in the index only contains few elements. This gives a small number
of iterations when searching. But as the dataset gets larger, so does the number
of elements in the lists, and thereby the performance of a query will decrease since
more objects have to be evaluated. The evaluation of an object is the process
of lookups in the index and in the two runtime hash tables or create new keys if
they do not exists, and maintain the scores. This becomes the bottleneck of the
algorithm as the index increases, and limits the matching algorithm signi�cantly
in terms of scalability.

To improve on the search speed, the lists in the hash table have to be reduced.
The past work iterated over every object in the list within a given n-gram. This
was to ensure that no better match exists somewhere in the database. Since the
lists of objects in the index determines for how long the search should continue,
the size of these lists has the greatest impact on the performance. Whenever a
�ngerprint is added to the index numerous objects are created within several n-
gram lists. Therefore, the search algorithm has to evaluate even more objects.
Thus, the number of necessary evaluations increases linearly with the number of
�ngerprints. This is not scalable since the number of �ngerprints could be from
thousands to millions. Therefore, a reduction of the lists will improve the search
speed signi�cantly.

One method of solving this scalability problem could be by have a prioritized
index that contains only a small subset of the dataset. This subset could for
instance be the 100 most played songs in the radio or the most requested songs
in system. If the requested song is given a convenient score when searching the
subset, it could be roughly estimated that this must be the correct match. If it
does not, however, get a high enough score the next 100 most played songs could
be searches and so on. This would reduce the search time dramatically. However,
some problems emerge with this solution. How high should the convenient score for
a correct match be? And when should the search be aborted, if the requested song
does not match any song from the database? Also, it is impossible to guarantee
that the best match in the prioritized list is the best from the full dataset, since
a song with higher score could exists somewhere else in the database. Thus, it
is clear that this solution is not desirable if the requested songs are not in the
prioritized lists.

19

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

3.4 Filtering Trivial Fingerprints

Since the greatest improvements of the search speed can be achieved by reducing
the lists in the index, this section proposes another solution without the above
mentioned problems. We propose a solution that �lters out trivial �ngerprints.
Trivial �ngerprints refer to �ngerprints that have less possibility of obtaining a
high score. Having the �ngerprints A: "aabbccddee" and B: "qqwwwmmmde" and
the query �ngerprint Q: "aabbccdee" it is clear to see that B and Q have no other
similarities than the "de" characters. But A and Q are almost identical. Thus, A
should be chosen as the best match. If two �ngerprint have minimal similarities
they are trivial �ngerprints for the given search, since other �ngerprints with more
similarities most likely can get higher scores. Therefore, it is not necessary to use
computational time to iterate over these trivial �ngerprints. Instead, time should
be used on the most similar �ngerprints.

To measure similarity, the number of common n-grams between two �ngerprints
have to be calculated. A �ngerprint f has g = s− (n− 1) n-grams, where s is the
number of characters in f and n is the n-gram length. As the number of common
n-grams in two �ngerprints approaches the smallest of the two g, they are more
likely to be similar since they share more n-grams. Using the above �ngerprints
A, B and Q as example and a n-gram length of 2, the smallest g is 9-(2-1) = 8
n-grams and can be found in �ngerprint Q. A and Q has n-gram "aa", "ab", "bb",
"bc", "cc", "cd", "de" and "ee" in common. That is exactly the smallest g and
therefore their similarities are expected to be high. On the other hand is B and Q.
They only share the n-gram "de" and the expected similarity is therefore very low.
Estimating the best matching �ngerprint only by looking at the common n-grams
gives good conditions for fast lookup in databases. The database could be designed
as depicted in the ER-diagram [1] in Figure 3.4 using the Crow's Foot notation.
Thus, issuing a SQL query as in Listing 3.1 gives the desired output.

Figure 3.4: Entity-relationship diagram for the proposed solution.

1 SELECT songid, count(n-gram) AS ng

2 FROM fingerprint-n-gram

3 WHERE n-gram in (’aa’, ’ab’, ’bb’, ’bc’)

20

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

4 GROUP BY songid

5 ORDER BY ng DESC

Listing 3.1: Query the retrieves the most common n-grams.

There are, however, some exceptions that make this solution unpractical. To
prove this by example a new �ngerprint C: "deedqqbccdqqabbaa" is introduced.
Having the query �ngerprint Q, the common n-gram between C and Q are "aa",
"ab", "bb", "bc", "cc", "cd", "de" and "ee" where g is still 8 n-grams. This
means that C and Q share exactly the same n-grams as A and Q, thus having the
same high expected similarity. However, it is clear to see that C and Q have no
similarities whatsoever, and is very unlikely to become a best match. Therefore,
the similarity measure outlined can not be used solely as a solution for �nding the
best match. It can, however, be utilized in order to reduce to number of objects
that have to be evaluated as the next section describes.

3.5 Push rather than Brute Force

With the above conclusion that similarity measure based on common n-grams can
not be a sole solution, this section proposes a new method using the strategy from
above. The objective is still to reduce the large lists in the index. Thus, some
objects in the lists must be removed giving a remaining candidate set of objects.
The objects that should be �ltered out are those that belong to �ngerprints that
are estimated as trivial, and therefore not expected to make a good match. The
resulting candidate set should consist of those �ngerprints that have the highest
probability of being the best match. Thus, �ltering out those �ngerprints which are
extremely time-consuming to evaluate. The above mentioned similarity measure
gives a good candidate set, since similar �ngerprints will naturally share many
common n-grams. However, even though they have a high similarity, they can
have a low number of correctly positioned n-gram as the above example showed.

It can occur that the �ngerprint with the most common n-grams is not the best
match due to incorrectly positioned n-grams. Therefore, the returned �ngerprints
need some post processing to calculate the amount of correctly positioned n-gram.
This is done by modifying the algorithm proposed by Skovsgaard et al. [2] in such
way that the candidate objects are pushed to the algorithm, in order to calculate
the score, rather than brute forcing every �ngerprint in the index. As mentioned
above the existing search algorithm terminates once a prede�ned distance between
the two best matches is reached. This strategy can not be directly used in
the modi�ed algorithm since selected �ngerprints are pushed to the algorithm.
This means that the algorithm can not keep track of the current score in every
�ngerprint, as with the past solution. To be able know when to terminate and to

21

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

guarantee that no other match can exists in the database, the following strategy
can be applied.

Let a query �ngerprint have the highest possible number of n-grams, σ, in
common with α database �ngerprints. Each of the α �ngerprints are then evaluated
with the modi�ed algorithm in order to determine how many of the n-grams that
are positioned correctly. The best score, ε, is given to �ngerprint φ. If ε is not
equal to σ it is possible, that other �ngerprint with lower common n-grams than
σ contains more or the same amount of n-grams as �ngerprint φ. Therefore, all
�ngerprints with ε common n-grams have to be pushed to the modi�ed algoritm
in other to �nd the best score.

If the best score in this search is given to �ngerprint δ and it is below ε it is
known that no other �ngerprint with a higher score than φ exists in the database.
This is due to the fact that a �ngerprint cannot get a score that is higher than the
number of common n-grams. And since all �ngerprints with ε n-grams have been
evaluated, no �ngerprint can exists with more correctly positioned n-grams than
�ngerprint φ.

If �ngerprint δ had a higher score than ε the best match in the database would
be δ.

3.5.1 Early Termination

To improve the search time by not evaluting all candidates and to guarentee that
the search stops once a reliable match has been found, the following describes
methods for early termination.

WinningFactor

If two or more �ngerprints have the same highest score it is not possible to
determine which the best match is. The search can not be terminated with
more than one matching �ngerprint, since the end user expects only one match.
Therefore, a longer query �ngerprint should be used for searching. By having more
n-grams in the query �ngerprint, it is most likely that the distance between the two
best matching �ngerprints increases. Then the overall search can be terminated
when the distance between the best and the next best match is over a prede�ned
percentage called the WinningFactor . If the WinningFactor is set to 10% then
the search will return the result once the next best match has a score that is more
than 10% lower than the best match. As the WinningFactor increases, the higher
the distance between the matches will be before returning. This is shown in the
pseudo code in Listing 3.2 at line 29 and 31.

22

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

MaxTime

If the WinningFactor is not reached within a prede�ned number of seconds of audio
data, called MaxTime, one of two actions can be taken. The �rst possibility is
to abort the search and return no match. The second action could be returning
two or more possible best matches, if they all have the same or almost same score.
This could be depending on the choice of the end user. The user could prefer an
ambiguous result rather than no result.

This early termination factor is shown in the pseudo code in Listing 3.2 at line
17. If the search has not been terminated and the round variable has incremented
over the TQL threshold the search is terminated with no match found.

MinMatch

False positives results can occur in the case where the database does not contain
the queried �ngerprint, or the queried �ngerprint is extremely subject to noise and
other disturbing sources. If only a small number of the n-grams are positioned
correctly, and there are many more n-grams in the query, it is likely that the
found �ngerprint is a false positive. This is due to the fact that �ngerprints with
a small number of correctly positioned n-grams are less similar. To help avoiding
false positives and also preventing iterating through �ngerprints of no interest, a
similarity threshold, MinMatch, between the query �ngerprint and best matching
�ngerprint are to be selected. This threshold should be based on the formula:
(common n-grams / number of n-grams in the query) * 100. That means that
database �ngerprints not containing the prede�ned percentage of n-grams from the
query �ngerprint will be discarded. If a given search can not exceed MinMatch
the iteration should be terminated, since it is not possible to �nd a reliable result.
This is used in the pseudo code in Listing 3.2 at line 19 where the current iteration
is aborted and more query data is searched.

As MinMatch approaches 100 then false positives is less likely to occur since it
forces more n-gram to be correctly positioned. However, depending of the amount
of noise in the signal it is possible that a correct match would be suppressed in
case of a high MinMatch and no match would be returned. Choosing a too low
MinMatch would increase the probability of false positives. Thus, MinMatch
should be carefully selected with respect to the robustness of the �ngerprint algo-
rithm.

3.5.2 Non-Unique N-gram Search

If a query �ngerprint contains, e.g., 16 n-grams, but only 3 unique n-grams, the
highest number of unique common n-grams is 3. This may cause some problems

23

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

in the search when assuming 3 is the highest possible score. But the 16 n-grams
could be correctly positioned giving a score of 16. Therefore, when building the
index all equal n-grams should be su�xed with an unique identi�er. This could be
the number of occurrences of the given n-gram. Thus, giving records with n-gram
values: "gram", "gram2", "gram3". When performing the search the queried n-
grams should also be su�xed with the identi�er for all equal n-grams. This simple
solution solves the problem of the highest score assumption being only the unique
common n-grams.

3.5.3 Supporting Streaming Fingerprints

The backend should support streaming �ngerprints and be able to terminate the
search whenever enough data has been received to guarentee a best match. There-
fore, some adjustments of the above mentioned strategy must be made. As the
�ngerprint is streamed to the backend in blocks of audio, the block size should be
chosen. The amount of data in each block could be from a few n-grams and up
to the MaxTime value. The amount could be chosen to be the average amount
of data necessary to identify an audio signal. This will, however, give longer than
necessary search time for some client users. Therefore, data blocks of one seconds
could also be chosen. Since only the block gets processed at each query and not
the complete signal the overhead of small blocks is minimal.

Having a block size of one seconds and dividing the signal into blocks of 62.5ms
gives 16 n-grams per block. The �rst block of n-grams should be queried to the
database. If the best match has ε n-gram correctly positioned the search should
continue until all �ngerprints with ε − (ε ∗ (WinningFactor ∗ 0.01)) common n-
grams has been evaluated. Notice that the best match, ε, is constantly maintained
as shown in Listing 3.2 at line 29. It is necessary to evaluated this number of
�ngerprint, since the WinningFactor value is the termination factor for when
the best match is considered correct and the backend guarantees that no other
�ngerprint in the database can be a better match. If the next best match has less
than ε− (ε∗ (WinningFactor ∗0.01)) correctly positioned n-grams the search could
be terminated and the best match returned. However, if this is not the case, more
of the streamed �ngerprint should be searched. Again 16 n-grams is searched and
all �ngerprints down to the WinningFactor threshold is evaluated. Now the score
is added to the previous result in order to give a score for the total 2 seconds of
streamed �ngerprint. If the distance between the two best matches is over the
WinningFactor threshold the search is terminated or else it continues in the same
manner.

Before each candidate is pushed to the algorithm the MinMatch parameter is
used as a termination threshold. If the number of common n-grams in a �ngerprint
is below MinMatch, the remaining candidates will be considered too di�erent and

24

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

will be discarded.

3.5.4 Pseudo Code for the Proposed Optimization

Having described the strategy and arguments for the solution above, this section
gives an exact overview of the searching algorithm in form of pseudo codes for the
database searching in Listing 3.2 and the score calculation in Listing 3.3.

1 Variables:

2 Q - query song.

3 L - temporary list of grams.

4 J - number of n-grams to process

5 H - sorted highscore list.

6 W - WinningFactor
7 TFP - MinMatch
8 TQL - MaxTime
9 BEGIN

10 DATABASE-SEARCH(L, round)

11 if L is empty

12 L ← first J n-grams in Q

13 round ← 0

14 do

15 tmpsong ← extract next fingerprint from database where the results is

sorted by most common n-grams from L.

16 tmpcommon ← number of n-grams that tmpsong has in common with J.

17 if round*(J/16) > TQL then // the search has taken too long

18 terminate search and return no best match

19 if (tmpcommon / J) * 100) < TFP // it is not possible to satisfy TFP

with this part of the signal - get more

20 break

21 scores ← EVALSCORE(tmpsong, round, J)

22 totalscore ← scores[0] // evaluation with modified matching algorithm

- the total score

23 score ← scores[0]-scores[1] // evaluation with modified matching

algorithm - the score of the iteration

24 if tmpsong exists in H then

25 tmpsong.score ← totalscore

26 else

27 add tmpsong to H with tmpsong.score ← totalscore

28 while

29 tmpcommon > H[0] - (H[0]*(W*0.01)) // search until W is guarenteed

30

31 if H[0]-(H[0]*(W*0.01)) > H[1]

32 terminate search and return tmpsong as best match

25

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

33

34 L ← next J n-grams in Q

35 round ← round + 1

36 DATABASE-SEARCH(L, round)

37 END

Listing 3.2: Pseudo code for the database search.

1 Variables:

2 Q - query song.

3 N - size of gram.

4 S - song table that has song id as key and pgroup with corresponding

highscore as value.

5 Output:

6 Song with most points.

7 BEGIN

8 EVALSCORE(Q, round, J)

9 songlist ← S[Q] // get if it exists to correctly use previous pgroup and

score.

10 querypos ← 0

11 while querypos < characters in Q-N-1

12 querysubstring ← characters from position querypos to querypos+N

13 for each gram g in database fingerprint with id Q, that is equal to

querysubstring

14 posgroup ← g.position - querypos + (round*J)

15 gsonglist ← all entires from songlist positiongroup equal to

posgroup

16 if gsonglist is not empty

17 foreach songobject s in gsonglist

18 if querypos != s.queryround // do not give more than one

point per query n-gram.

19 give s one more point

20 else

21 tcounter ← -1

22 while tcounter <= 1 // For character diviation

23 add posgroup+tcounter as key to songlist and a new songobject

as value

24 tcounter ← tcounter + 1

25 querypos ← querypos + 1

26 return score of best songobject, score of best songobject before this

iteration

27 END

Listing 3.3: Pseudo code for the match algorithm.

26

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

3.6 Other Optimizations

This section describes other possible optimizations that can be made in order to
improve the search time. However, the use of these optimization are not generic as
the above described algorithm. These optimizations are depending on the speci�c
�ngerprint generator used.

3.6.1 Table Division

As of now, all �ngerprints are within the same table. This table could contain
millions of �ngerprints and the search time is naturally depending on the number
of �ngerprints. If the amount of �ngerprints in the table could be minimized, the
search time would be improved. In some audio signals it is possible to extract
curtain features, such that a classi�cation of the signal can be estimated with only
a portion of the signal. This classi�cation could be used to divide the large main
table into smaller tables. Thus, the classi�cation of a �ngerprint determines, in
which table it should be located. When the query signal is recorded the features
to determine the classi�cation are extracted while generating the �ngerprint. This
classi�cation should then be used for fast lookup in the speci�c table containing
the �ngerprints within the given classi�cation. The performance gain is naturally
depending on the number of groups a classi�cation can have and the distribution
of the �ngerprints. Also, the classi�cation has to be robust on all queries in order
to work. To adjust the algorithm in Listing 3.2, in order to comply with this
optimization, is simple. An extra variable, C - classi�cation of query, should be
added. And line 15 should be corrected to " extract next �ngerprint from database
with classi�cation C where the results is sorted by most common n-grams from L."
If the robustness of the classi�cation can not be completely guaranteed then all
tables must be searched in order to comply with the no false dismissal guarantee.

Genre Based

Research made by P. Ahrendt et al. [13] shows a technique that estimates the genre
with only a small portion of a song. There are �ve genres "Classical", "Heavy",
"Jazz", "Popular" and "Techno". These genres can be determined at all locations
in a song. However, since some songs can have pieces that contains di�erent genres
more sample data could be needed in order to fully determine a songs genre. Since
it is possible to distinguish the �ve genres the main �ngerprint table could be
divided in �ve smaller table - one for each genre. When querying the database, the
genre is extracted and the corresponding table searched. If the database songs are
evenly distributed across the genres then each table will be reduced with a factor
�ve. This will improve the search time even further.

27

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

3.7 Performance Factors

This section describes aspects that a�ect to performance of the proposed solution
and also compares with previous work. Running time is covered in Section 3.7.1,
and space consumption is covered in Section 3.7.2.

3.7.1 Running Time

The search time is depending on several factors that in�uence the search algorithm.
First of all are the di�erent parameters to the algorithm which are the n-gram
size, the WinningFactor , the MaxTime and the MinMatch. All these have great
in�uence on the performance of the algorithm. But also the �ngerprint generator
and the dataset in�uence the search time. Having a �ngerprint generator that is
not capable of making a good distinction �ngerprints in-between results in many
�ngerprints that will be candidates for the best match. The result is a slower
search time since more �ngerprints has to be evaluated. However having a robust
�ngerprint generator that can distinguish the �ngerprints in-between improves
performance.

Worst Case

Here we consider the worst-case scenario. But as this only has relevance when
the parameters are set to values that will make no sense in a practical setup, it
is not likely to happen. However, it is described to outline the limitations of the
algorithm and intended parameter values. The worst case setup occurs when the
WinningFactor is set to 100, the MinMatch is set to zero, and the MaxTime is set
to in�nity. Having the WinningFactor set to 100 will �rst of all cause the algorithm
to evaluate all �ngerprints until MaxTime is reached. Since the MaxTime is
in�nity, the search will not be aborted at any time. With the MinMatch set to
zero, all entries with only one matching n-gram will be evaluated. This is clearly an
undesirable situation, since for every block of the query, all database �ngerprints
with only one matching n-gram have to be evaluated. Thus, the search time
will be slower than what is achieved in previous work, because the same amount of
�ngerprints will be evaluated in addition to the overhead of the database similarity
lookup. An important factor is also the n-gram size. Having a small n-gram size
will increase the possibility of common n-grams, since the number of unique n-gram
decreases. Thus, the worst case n-gram size is 1.

Another worst case scenario is related to the dataset. Assume every �ngerprint
in the database contains the exact same n-grams, just at di�erent positions. Also
assume, that the query �ngerprint contains the same n-grams. This would cause
every �ngerprint to have the same high similarity. Depending on the positioning

28

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

of the n-grams, a full table search could me necessary. However, this setup is very
unlikely to occur, since all the audio signals would have to be extremely similar.

Typical Case

Having described the worst-case setup, we cover the intended setup where the
parameters are set to values that �t the dataset. The WinningFactor has great
in�uence on the reliability of the results. Setting it too low may yield incorrect
results, and the impact of setting it too high was outlined above. The value could
be set to 10, thus limiting the number substantially from the full dataset. The
selection of an appropriate value for MaxTime depends again on the use. For
music recognition, a good setting could be about 10-15 seconds of audio. This
means that the search is sure to terminate.

Since the choice of a good value for MaxTime depends on the robustness of
the �ngerprint generator, the value to use can vary. But the �ngerprint generator
can be expected to be robust such that a least 80% of the n-grams are positioned
correctly. This also �lters out all �ngerprints with less common n-grams than
MinMatch.

As mentioned above, the size of the n-grams is also an important factor. With
large n-grams it is less likely that �ngerprints have n-grams in common, since many
unique n-grams exist. Previous work [2] has shown that a n-gram size of three is
appropriate for the tested �ngerprint generator. But with a more robust �ngerprint
generator, a higher n-gram size can be chosen, since errors in the �ngerprints are
less likely to occur.

3.7.2 Space Consumption

Since each �ngerprint is divided into n-grams of �xed length and has associated
some meta data, the space consumption of the solution depends on the number of
�ngerprints, the lengths of these, and the n-gram length. The number of n-grams
in a �ngerprint is determined by the length of the n-gram, n, and the length of
the �ngerprint, s: s− (n− 1). Thus, the number of symbols a �ngerprint occupies
is: n× (s− (n− 1)). This gives a worst case space consumption when the n-gram
length is n = s/2. The best case space consumption occurs when n = 1 or n = s
resulting in s symbols. However, when n = 1, the number of unique n-grams is
low, causing the search to be slower since more �ngerprints can have n-grams in
common.

Having a collection of i �ngerprints of length s with best-case n-gram length
thus gives a n-gram space consumption of i×s. The worst case space consumption
would be i× (s/2 + 0.5)2.

29

CHAPTER 3. SCALABLE FINGERPRINT MATCHING

3.7.3 Memory Usage

As shown in Listing 3.3 the calculation of a �ngerprint's score requires some
memory while post-processing the result from the database. However, the amount
of memory needed is determined by the number of candidates and the number
of corretly positioned n-grams. As the size of the candidate set increases, so
does the amount of necessary memory. If many of the candidate �ngerprints are
poor candidates, the amount of pgroups will increase and cause a higher memory
consumption. However, compared to the previous work, the memory consumption
is orders of magnitude less, since the candidate set is a subset of the dataset. The
previous work calculated the score of every �ngerprint in the dataset with the n-
grams from the query. The proposed solution reduces this number dramatically,
thus leading to lower memory usage during post processing.

The database server that �nds candidate �ngerprints will use more memory
with the proposed solution, as it has to perform the GROUPBY operation. The
previous work used a lookup at each n-gram, causing many more database requests,
but each of lower memory consumtion than the proposed solution. However, the
proposed solution only makes one database request in order to �nd the candidate
set.

30

Chapter 4

Experimental Performance Study

4.1 Test Setup

This section will describe the test setup for the following experimental performance
studies. All test results were created using a database server with an Intel Celeron
2.66GHz CPU with 1GB of physical RAM. The harddrive was a Seagate Barracuda
160GB 7200RPM. The operating system installed was Microsoft Windows 2003
Enterprise Server, and the database server was Microsoft SQL Server 2005.

The computer querying the database and doing post-processing was an Intel
Pentium 4 3.20GHz CPU with 1GB of physical RAM. The harddrive used was
a Western Digital Raptor 36GB 10.000RPM with Microsoft Windows XP Profes-
sional SP3 as operating system.

All post-processing algorithms that queried the database server were imple-
mented in C#.

To test the performance of the algorithms, a large database with �ngerprints
was necessary. A dataset based on 1,000 real songs was created using the FPFF
�ngerprint generator. But in order to test the algorithms on a larger dataset,
hundreds of thousands of complete music �les are needed. The fact that this
number of music �les is hard to �nd and the tremendous task of transforming them
into �ngerprints, led to the choice of another solution. Instead, the 1,000 music
�les were analyzed in order to see what was characteristic about the �ngerprints.
These characteristics were then used to create a large dataset containing randomly
generated �ngerprints. The �ngerprints were created from the BASE64 charset
with a length that could vary from three to �ve minutes of audio. It was discovered
that the same symbols often occur up to three times next to each other; this
observation was also used to build the random data. The result is �ngerprints
where some have a high similarity and some have less similarity. This seems to
be a good simulation of a �ngerprint generator that is capable of distinguishing

31

CHAPTER 4. EXPERIMENTAL PERFORMANCE STUDY

among di�erent audio signals.
The largest dataset generated contains 250,000 �ngerprints with 547,912 unique

n-grams, which are located at 852,818,455 di�erent positions within the �nger-
prints. This gives an average �ngerprint length of 3,411 n-grams, which corre-
sponds to about 3½ minutes of audio.

4.2 Choice of Parameter Settings

The proposed algorithm has some di�erent parameters that can be adjusted to
�t the architectural context. The following sections will outline the performance
results and discuss what the di�erent value entails.

4.2.1 N-gram Length

The n-gram length has in�uence on the space consumptions as described in Section
3.7.2 and the performance of the algorithm. As the n-gram length becomes larger
more unique n-grams will emerge, thus leading to fewer common n-grams when
querying. This has great in�uence of the performance since the database lookups
will become faster and the candidate set smaller. The side e�ect is, however, that it
requires an extremely robust �ngerprint generator that is unlikely to generate errors
in the query �ngerprint compared to the database �ngerprint. If the n-gram length
is of great length, one error in a block of the �ngerprint would lead to no matching
n-grams for a large part of the �ngerprint. As the n-gram length is reduced the
performence decreases, since less unique n-grams can emerge. Therefore, the n-
gram length should be carefully selected. In the past work, a performance study
of the optimal n-gram length, with a �ngerprint generator that is not very robust
was found to be three [2]. Since this �ngerprint generator is also used in these
performance studies, three will be the value for the n-gram length. It is important
to note that the n-gram length should be chosen to �t the used �ngerprint generator
as the performance very likely could be improved.

4.2.2 The MinMatch Parameter

This test studies what happens when the search is performed with di�erent values
for the MinMatch parameter. Five �ngerprints have been randomly selected from
the database and n-grams corresponding to 8 seconds of audio have been extracted.
The input was streamed to the algorithm with one second blocks resulting in 16 n-
grams per second. The number of unique database �ngerprints found as candidates
was summed for the complete query and an average of the �ve �ngerprints was

32

CHAPTER 4. EXPERIMENTAL PERFORMANCE STUDY

taken. Each �ngerprint was searched with a varying value of the MinMatch
parameter as show in �gure 4.1.

When the MinMatch value is low, a large number of �ngerprints are excepted
to be good candidates, since many n-gram contains smiliar n-grams over the small
threshold. As the MinMatch increases the candidate set decreases dramatically.
When the value reaches 60 it is less than 100 and with the value 80 there is only
one candidate left; that is the best match. Therefore, the WinningFactor will
never be used when the MinMatch is above 80 with �ngerprints with no noise
in this dataset. This would of cause be di�erent if the dataset contained more
similar �ngerprints. If the �ngerprints was subject to great amounts of noise the
MinMatch factor must be carefully selected since a too high value could result
in no matches. A value of 80 can be used with the �ngerprint generator used in
this thesis, however, a higher value could be selected with more robust �ngerprint
generators.

Figure 4.1: Worst case scenario for previous work

4.2.3 The WinningFactor Parameter

The WinningFactor parameter determines when a �ngerprint is expected to be
the best match. The higher value the more di�erence between the best and
the next best match there is, thus making the result more reliable. But as the
WinningFactor increases more �ngerprints have to be examined since they may
be within the WinningFactor threshold. With a small WinningFactor value less
�ngerprints have to be evaluated since only the �ngerprints with high number of
similar n-grams are candidates. However, a very low WinningFactor value can
cause wrong results, since at a given time a wrong �ngerprint can be estimated as
the best match with a small distance to the next best match.

33

CHAPTER 4. EXPERIMENTAL PERFORMANCE STUDY

The level of reliabitity has its costs as �gure 4.2 shows. The graph was created by
taking �ve random �ngerprints and extracting n-grams corresponding to 8 seconds
of audio. The n-grams was streamed to the algorithm with one second intervals.
The noise was made by replacing symbols corresponding to the percentage spread
equaly in the �ngerprint. The MinMatch was set to 0 since a higher value could
become the dominant threshold and giving useless results.

With a �ngerprint with no noise the number of necessary evaluated �ngerprints
are within a few �ngerprints while the WinningFactor is below 40 percentage
point. This is because only a few database �ngerprints have the necessary number
of �ngerprints in common with the query �ngerprint. Notice that when there is
no noise in the signal and WinningFactor uses the same limit as MinMatch,
the candidate set or number of evaluated �ngerprints are the same. As the
WinningFactor is set to 50, about 1.000 �ngerprint have to be evaluated because
more can be within the threshold for the next best match.

A �ngerprint with noise will naturally not get as good a score as one without
noise. Therefore, more �ngerprint in the dataset have to be searched, since the
threshold for the next best match depends on the best found score. With 10%
of noise in the query �ngerprint the number of evaluated �ngerprints naturally
increases as shown in �gure 4.2. For both 10% and 20% of noise the number
of evaluated �ngerprints are within 1.000 when the WinningFactor is below 30.
The past work evaluated at all times n-grams from all 250.000 �ngerprints since
n-grams from the test queries is present in every �ngerprint in the dataset. Thus,
the candidate set is clearly orders of magnitude smaller than the dataset.

When noisy �ngerprints are searches, the MinMatch parameter will often
become most dominant, because the WinningFactor threshold will evaluate �n-
gerprints with less common n-grams than the MinMatch parameter allows.

Figure 4.2: The WinningFactor with di�erent number of errors.

34

CHAPTER 4. EXPERIMENTAL PERFORMANCE STUDY

As mentioned above a very low WinningFactor may result in a false posi-
tive result. However, at no time in the test was a "false" best match over the
WinningFactor threshold. This is also logical because if a �ngerprint has many
n-grams in common with a "false" match it must also have many �ngerprints in
common with the "true" match. However, if the �ngerprint is extremely noisy it
could be possible that the WinningFactor will be reached for a "false" match.
But then the �ngerprint generator is not robust enough and the WinningFactor
should be set to a higher value for this context. A WinningFactor of 10 will
therefore be suitable for this setup.

4.3 Query Performance

This section contains tests that shows the performance of the overall system when
querying. The tests are performed on di�erent datasets in order to show the
positives and negatives aspects of the proposed solution.

4.3.1 Comparison with Previous Work

This test was made in order to show the di�erence between the previous work
and the proposed solution on an average case. It was performed on a dataset of
varying size to show how the algorithm performs on small and large collections of
�ngerprints. The query �ngerprints contained n-grams corresponding to 8 seconds
of audio and the n-gram length was set to 3. The datasets was created with
the above described random �ngerprint generator. Five random �ngerprint was
selected from the database that was present in all ten datasets. This was to
simulate a query song that exists in the database. To force both algorithms to
query the complete query, the WinningFactor was set to the maximum value
100. In the proposed algorithm the MinMatch was set to 80% thus allowing 20%
of errors in the candidate set.

Figure 4.3 shows the result of the performance test. Both algorithms has found
the same best match with the same score within ten seconds when the dataset
contains 25.000 �ngerprints. But as the dataset gets larger it is clear that the
previous work does not scale. The proposed algorithm, however, is below �ve
seconds at all times in the test and up to 20 times faster than the previous work.
Thus, it is clear that the proposed solution has the intended results.

The performance of both algorithms is e�ected by the number of similar n-grams
in the �ngerprints. If numerous �ngerprints in the database contains many of the
same n-grams and the query also contains all these n-gram the performance of both
algorithms will become slower. The past work has then problem of large lists in the
index that it has to iterate through. The proposed algorithm has to do more work

35

CHAPTER 4. EXPERIMENTAL PERFORMANCE STUDY

Figure 4.3: Previous work compared with the proposed solution.

at the database level since the GROUPBY operation has to compare the result of
the queried n-grams. This in combination with the fact that there naturally will
be more candidates also slows the performance of the proposed algorithm. This is
described in details in the next section.

4.3.2 Worst Case Database Scenario

To show how much faster the database server performs under di�cult conditions
compared to the past work, a worst case scenario has been created. As mentioned
above the greatest impact on the performance is when the lists within a queried
n-gram in the index is of great size. As more lists in the index gets larger the
performance decreases. This naturally also in�uences the proposed algorithm when
querying the database for similar matches but the e�ect is far from the previous
work as �gure 4.4 shows.

A new dataset has been created where every �ngerprint contains the same n-
grams except one �ngerprint that contains one unique n-gram more than the others.
All n-grams are of size 3, and are positioned at di�erent locations giving unique
�ngerprints. When the query �ngerprint contains the same n-grams and the one
unique, corresponding to 8 seconds of audio, it causes the past work to iterated
over signi�cantly large index lists. This has great in�uence on the performance as
�gure 4.4 shows. But also the proposed solution gets a worst case scenario on the
database server as the �gure also shows. This is because more objects has to be
grouped in order to count n-gram contained in the �ngerprints.

As described in Section 3.7.1 the worst case would occur if the query contained
100% of the n-grams in the database, since all �ngerprints would have a similarity

36

CHAPTER 4. EXPERIMENTAL PERFORMANCE STUDY

factor of 100.

Figure 4.4: Worst case scenario for previous work

4.3.3 Summary

Having performed the tests of the proposed solution it is clear that it is orders of
magnitude faster than previous work, and still guarentee that no order �ngerprint
in the database is a better match. The di�erent parameters was tested, and
explained to give a intuition of what values will be suitable for a given context.
The values used in these tests was designed to work well with the �ngerprint
generator developed by Heljoranta [7]. Other �ngerprint generators will produce
a di�erent dataset, and therefore other values should be applied. This, however,
will not change the fact that the proposed solution is orders of magnitude faster
than the previous work, since the logic of the candidate set will stand. To further
improve the performance, it would be possible to distribute the �ngerprint dataset
across several database servers. Thus, the requirements to the database server
could be minimal as the dataset increases. Each database server could then return
a candidate set for the portion of the dataset it maintains.

37

Chapter 5

Conclusion

The goal of this thesis was to create a scalable backend for audio �ngerprint
matching that improves the search speed of existing techniques. The requirements
were that the search technique should guarentee that no better match can exist
in the database. The proposed solution complies with this requirement as the
algorithm evaluates the �ngerprints necessary in order to �nd the best �ngerprint
match. To improve the search speed, a new search strategy was developed that
is capable of quickly �nding an estimated candidate set. Having such a candidate
set that is a subset of the original dataset results in signi�cant fewer �ngerprint
evalutions. The experimental studies show that the proposed algorithm searches
orders of magnitude faster than the previous technique that it improves upon.

The developed solution is e�cient with �ngerprint generators of good quality.
Also, the search algorithm can be used with generators that produces di�erent
number of errors in the �ngerprints. For example a setup on a desktop computer
that recognizes digital audio �les will contain no noise, and thereby no errors in the
�ngerprint. In contrast, mobile phones that record audio in noisy environments are
likely to contains errors. The parameters should therefore be set in accordance with
the system context. However, it is di�cult to set the parameters to suitable values
as di�erent client users may be in di�erent environments. As the environments
changes, such a bus, a bar, or at home, the level and the diversity of the ambient
noise will vary and therefore optimal parameters can be di�cult to predict.

The experimental performance studies shows that the solution is scalable with
respect to the database size. Futher, the solution can be a distributed across
several backend servers to improve the performance.

38

Chapter 6

Future Work

Potential users of this backend might be discouraged by the di�culties in determin-
ing which parameters to use for a speci�c setup. The experimental performance
studies show and explain what happens when the di�erent parameters are set
to speci�c values. But the parameters always depend on the �ngerprint gener-
ators and the overall system usage. A high-quality �ngerprint generator and a
homogeneous and stable audio recording system can have parameter values that
are suitable for low numbers of errors. However, a system that produces a high
number of errors should adjust the parameters to accommodate this.

If the system contains di�erent microphones that can produce di�erent amounts
of noise or the usage environment is heterogeneous, the parameters are di�cult
to set. To make the system easy to install and to be more compatible with
di�erent environments, a future work project could be to extend the solution
to automatically determine and set the parameters for the speci�c context. For
example, if the input signal is noisy and the parameters are set to be suitable
for low number of errors, most likely, no matches will be found. However, if an
input signal is without errors, and the parameters are set to support high amounts
of errors, the search speed would become unnecessary slow. If the system could
determine good values for the parameters before searching, the system could both
be more easy to install, and the performance and quality could be improved even
futher. The parameters could, e.g., be set according to which mobile phone or
microphone that was used for recording the query song.

Testing a complete solution that is to be deployed in heterogeneous environ-
ments is di�cult. The variations of the noise and the music quality are endless.
Therefore, a future project could be to develop an application that can simulate
changing environments. It could, e.g., simulate being in a bus while recording a
song from a speaker of di�erent quality or being amongst noisy people. Thus, the
�ngerprint generator and the parameter settings of the algorithm could be tested
for correctness before releasing a solution.

39

REFERENCES

[1] A. Silberschatz and P. B. Galvin. Operating System Concepts. John
Wiley & Sons, Inc., New York, NY, USA, 1999.

[2] A. Skovsgaard, L. T. Sørensen and M. Larsen. Audio Identi�cation
using N-grams. Project at Aalborg University, Denmark (Jan. 2008).

[3] D. Knuth. Sorting and searching. The Art of Computer Programming,
volume 3 (1973), 506�542.

[4] E. Zwickler. Subdivision of the Audible Frequency Range into Critical
Bands (Frequenzgruppen. The Journal of the Acoustical Society of America
33 (Feb. 1961), 248�+.

[5] Gracenote. Gracenote: Powered by gracenote, http://www.gracenote.com/
powered_by_gracenote/.

[6] J. B. Macqueen. Some methods of classi�cation and analysis of multivariate
observations. Proceedings of the Fifth Berkeley Symposium on Mathemtical
Statistics and Probability (1967), 281�297.

[7] J. Heljoranta. Future proof �ngerprint function, http://www.fsfe.org/
en/fellows/juha/fpfpf.

[8] J. W. Cooley, and J. W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Math. Comput. 19 (1965), 297�301.

[9] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S.
Muthukrishnan and D. Srivastava. Approximate string joins in a
database (almost) for free. The VLDB Journal (2001), 491�500.

[10] M. Betser, P. Collen and J. Rault. Audio identi�cation using sinusoidal
modeling and application to jingle detection. Austrian Computer Society
(OCG) (2007).

40

http://www.gracenote.com/powered_by_gracenote/
http://www.gracenote.com/powered_by_gracenote/
http://www.fsfe.org/en/fellows/juha/fpfpf
http://www.fsfe.org/en/fellows/juha/fpfpf

[11] MusicBrainz. Future proof acoustic �ngerprinting techonology, http://

musicbrainz.org/doc/FutureProofFingerPrint.

[12] MusicBrainz. Musicip, http://musicbrainz.org/doc/MusicIP.

[13] P. Ahrendt, A. Meng, J. Larsen and S. Lehmann. The clever toolbox
- the art of automated genre classi�cation. ISP Group, Informatics and
Mathematical Modelling, Tehcnical University of Denmark (2005).

[14] R. Bayer. Symmetric binary b-trees: Data structure and maintenance
algorithms. Acta Inf. 1 (1972), 290�306.

[15] R.W. Hamming. Error Detecting and Error Correcting Codes. Bell System
Technical 26 (1950), 147�160.

[16] S. F. Altschul, W. Gish, W. Miller, E.W. Myers and D. J. Lipman.
Basic local alignment search tool. J Mol Biol 215, 3 (October 1990), 403�410.

[17] Sony/Ericsson. Sony/ericsson, http://www.sonyericsson.com/cws/

products/mobilephones/overview/w850i.

[18] Tunatic. Tunatic, http://www.wildbits.com/tunatic/.

[19] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals. Soviet Physics Doklady 10 (Feb. 1966), 707�+.

[20] Z. Ning, A. J. Cox and J. C. Mullikin. SSAHA: A Fast Search Method
for Large DNA Databases. Genome Research 11 (2001), 1725�1729.

http://musicbrainz.org/doc/FutureProofFingerPrint
http://musicbrainz.org/doc/FutureProofFingerPrint
http://musicbrainz.org/doc/MusicIP
http://www.sonyericsson.com/cws/products/mobilephones/overview/w850i
http://www.sonyericsson.com/cws/products/mobilephones/overview/w850i
http://www.wildbits.com/tunatic/

Resumé

This thesis documents the development and results of a generic backend capable
of �nding the best match for audio �ngerprints.

The goal of this thesis is to create a backend that is scalable without loosing the
reliability of the results. In past work by the author an algorithm was developed
that could determine the best matching �ngerprint. However, the solution was
not scalable. It used a scoring system that was based on research made by a
bioinformatics research team.

Since an audio signal can be subject to noise, the queried �ngerprints does not
match exactly with the database �ngerprints. Thus, an approximate substring
search is necessary. This thesis uses n-grams and hash tables for fast lookup.
The best matching �ngerprint is determined by a scoring system, where the scores
depend on the amounts of correctly positioned n-grams in the �ngerprints. The
previous work was not scalable, since it evaluated all possible �ngerprints.

This thesis provides a new strategy that involves the creation of a candidate set
of �ngerprints. The candidate set is a subset of the database �ngerprints, where the
candidate �ngerprints are estimated as possible matches. This estimation is based
on the number of n-grams, that the query �ngerprint and the database �ngerprints
have in common. By not examining the n-gram positions a fast candidate set can
be created. This candidate set is then searched by an algorithm that evaluates the
scores of each candidate. If the �ngerprints in the candidate set does not comply
with the requirements for a best match, more �ngerprints from the database will
be evaluated.

The search algorithm guarantees no false dismissals and parameters can be
adjusted to alter the reliability of the results. Experimental performance studies
show which parameter values that are suitable for the suitable �ngerprint gen-
erator. However, these values depends on the �ngerprint generator used and the
system context. The candidate set is orders of magnitude smaller than the dataset.
Often the candidate set only contains one candidate which is the best match. The
result is a solution that is orders of magnitude faster than related work.

42

	Contents
	Introduction
	Preliminaries
	Audio Fingerprints
	Generating String Fingerprint
	Time Shifting

	String Comparing with N-grams
	Related Work
	Existing Audio Identification Systems
	Search Algorithms
	Previous Work

	Problem Statement

	Scalable Fingerprint Matching
	Architecture
	Fingerprint Matching using N-Grams and Hash Tables
	Indexing the Database Fingerprints
	Querying the Database

	Limits of the Search Algorithm
	Filtering Trivial Fingerprints
	Push rather than Brute Force
	Early Termination
	Non-Unique N-gram Search
	Supporting Streaming Fingerprints
	Pseudo Code for the Proposed Optimization

	Other Optimizations
	Table Division

	Performance Factors
	Running Time
	Space Consumption
	Memory Usage

	Experimental Performance Study
	Test Setup
	Choice of Parameter Settings
	N-gram Length
	The MinMatch Parameter
	The WinningFactor Parameter

	Query Performance
	Comparison with Previous Work
	Worst Case Database Scenario
	Summary

	Conclusion
	Future Work
	REFERENCES

