
Learning
Inference-friendly
Bayesian Networks
Using Incremental Compilation

Dat 6, Spring 2008.

Martin Karlsen

Søren Pedersen

e
Aalborg University
Department of Computer Science

Aalborg University
Department of Computer Science c
TITLE:

Learning Inference-friendly
Bayesian Networks

Using Incremental
Compilation

THEME:
Machine Learning

PROJECT PERIOD:
1/2/2008-5/6/2008

PROJECT GROUP:
d630a

GROUP MEMBERS:
Martin Karlsen
Søren Pedersen

SUPERVISOR:
Thomas D. Nielsen

NUMBER OF COPIES: 4

NUMBER OF PAGES: 96

CONCLUDED: 5/6/2008

SYNOPSIS:

This report describes a project with the aim
of exploring structural learning of Bayesian
networks. Specifically the complexity of the
generated network, as a result of the chosen
learning method.
We examine the junction tree method for do-
ing propagation in Bayesian networks, de-
scribing the steps in compiling the junction
tree from the network structure. From this
analysis we learn that one cause of complex-
ity in junction tree is the size of the cliques.
A score function which scored a network di-
rectly on the combined size of the cliques and
the log-likelihood are proposed. This func-
tion uses a parameter to weight whether the
complexity versus the likelihood. This func-
tion uses incremental compilation to avoid
having to re-triangulate the entire junction
tree for each candidate network.
This score function and regular BIC scoring
(also augmented with a weighing parameter)
was tested for precision and inference time.
This analysis shows that there is a gain in
using the size of the junction tree as a com-
ponent in the scoring of learned nets, as these
net scored using this function was most often
faster when used for inference, and in some
cases even able to produce usable networks
where the networks learned with BIC-scoring
proved too complex.

ii

This report was written by:

Martin Karlsen Søren Pedersen

Contents

1 Introduction 1
1.1 Structural Learning Caveats 2
1.2 Preliminary Work . 4
1.3 Our Goal . 5

I Probalistic Graphical Models and Inference 7

2 Bayesian Networks 9
2.1 Probability Functions . 9
2.2 Independence . 10
2.3 Bayesian Network . 11
2.4 d-separation . 12
2.5 Chain rule . 13

3 Inference 15
3.1 Junction tree inference . 15
3.2 Domain graph . 16
3.3 Triangulation . 17
3.4 Cliques . 19
3.5 Join Tree . 20
3.6 Junction tree structure . 20
3.7 Exact inference using junction trees 21
3.8 Triangulation heuristics . 23

3.8.1 Minimal triangulation 26

II Learning Inference Models 29

4 Structural learning 31
4.1 Search Space . 32

iii

iv CONTENTS

4.2 BIC-scoring . 34

4.3 Junction tree scoring . 35

5 Incremental Compilation 39

5.1 Maximal prime subgraph decomposition 40

5.2 Incremental compilation . 42

5.2.1 Algorithms . 44

5.2.2 ConstructJoinTree . 44

5.2.3 ModifyMoralGraph . 45

5.2.4 MarkAffectedMPSsByRemoveLink 46

5.2.5 MarkAffectedMPSsByAddLink 46

5.2.6 Replace . 47

5.3 Examples with incremental compilation 47

5.3.1 ASIA network . 48

5.3.2 Example 1 - Deleting a link 48

5.3.3 Example 2 - Adding a link 51

6 Incremental Compilation in JTC Scoring 57

6.1 Establishing bounds on complexity 57

6.2 Predicting junction tree state space with minimal re-compilation 59

6.2.1 Special cases . 60

6.3 Learning process . 61

6.3.1 Scoring . 62

6.3.2 Data structures . 64

6.3.3 Applying changes . 65

III Results 67

7 Experiments 69

7.1 Test setup . 69

7.1.1 Test Setup for Structural Learning 70

7.1.2 Test Setup for Inference Benchmarks 71

7.1.3 Test Setup for Classification Benchmarks 72

7.2 Experimental Results . 73

8 Conclusion 91

References 93

CONTENTS v

IV Appendix 97

A Preliminary Results 99

B Constraint-Based Learning 107
B.1 Independence tests . 107
B.2 Building graph skeleton . 108
B.3 Produce DAG by directing edges 110

C Incremental compilation algorithms 111

Chapter 1

Introduction

In many areas within research and engineering, probabilistic models play
a central task when it comes to modeling and reasoning about certain phe-
nomenons, investigating influence, or predicting the outcome of certain events.
The Bayesian network model class is one such probalistic model. It is a
graphical language that can model the probabilistic and causal relationships
presented in a given domain. It can be used for reasoning about any at-
tribute in the domain, given observations about som eof the attribute vari-
ables. This has proven to be usefull within a number of areas: diagnosis
[AWFA87], [BHP+92], [DH92], process optimization [POL07], [FN91], fore-
casting [Abr94], [GPC+94], [CSG04], automated vision [LAB90], classifica-
tion [CS96], data mining [Hec97], and spam filtering [Gra03].

A Bayesian network consists of an acyclic directed graph and a set of
local probability distributions. Each node in the graph represents a random
variable. Variables models the various entities of a given domain, and may
denote an attribute, feature, or hypothesis which we may be uncertain about.
That is a variable has a set of possible values that it can take, and we are
uncertain about which specific value it has. The relationships among the
entities of a domain are modelled as directed links between the nodes in the
graph. The links represent probabilistic dependencies, namely whether the
occurnce of one event will change the belief about the occurence of another
event. The semantics of the directed links may specifically represent causal
relationships; (one entity is the cause of another entity) but this is not a
requirement.

A Bayesian network can be constructed in a number of ways. One way
is that the network is constructed by a human domain expert, such that
the graphically structure as well as the parameters are determined by the
expert. One might choose to construct the graphical structure by hand, and
then use a dataset for learning parameters. If the dataset is complete the task

1

2 CHAPTER 1. INTRODUCTION

of learning the parameters can be done by merely counting frequencies, but
even with incomplete data, good approximate estimations can be computed
[DLR77].

A network may also be constructed through so called structural learning.
There are several possibilities: score based learning, where the network struc-
ture as well as the parameters are “extracted” from the dataset, resulting in
the structure and a set of parameters that is the most likely to have “gener-
ated the data”. Or constraint based learning where the structure represents
conditional independencies presented in the dataset based on a number of
statistical tests. Structural learning is dealt with in greater detail in Chapter
4.

Learning a Bayesian network from data may serve many different pur-
poses. The analyst may learn models with the purpose of exploratory analysis
such as discovering dependencies in data. From an engineering perspective
this analysis may be less interesting, and instead focus will be on producing
models tailored towards inference that can be put to use in an application
context.

Regardless of the purpose, be it research or from an engineering perspec-
tive, the resulting model may prove to be impossible to use for probability
updating, or too complex to visually comprehend. This may be because of
model size or other factors.

In this project we work with a structural learning approach that may
satisfy the requirements for both of these perspectives. The starting point
of the work is the preliminary work described in the report [KP07], in which
we explore structural learning of Bayesian networks with specific relation to
the complexity of learned models. But let us first look a little more at some
of the caveats of structural learning.

1.1 Structural Learning Caveats

Structural learning may become problematic if the domain that we are trying
to learn contains a set of unobserved latent variables, where the presence
and structure of these variables is unknown - or if the domain is simply
too complex. To illustrate this problem consider learning a model of an
industrial production plant from a dataset of sensor readings: We wish to
learn the structure from a dataset of observations which is sampled from
the true domain represented by the network in Figure 1.1(a). Only the the
sample variables S0, . . . , S3 are observed, and the latent variables L0, . . . , L3
as well as their structure is unkown to us. Then the structure that we end
up with is the very complex network in Figure 1.1(b). (This is the case

1.1. STRUCTURAL LEARNING CAVEATS 3

as none of the variables S0, . . . , S3 block information and they all seem to
be dependent on each other - the explanation for this can be found in the
property of d-separation covered in Chapter 2). A complex structure such as
the one in Figure 1.1(b), where all variables seems to be dependant, could
be a strong indication that the actual domain we are trying to learn contain
unobserved latent variables.

S0

L3L2L1L0

S3S2S1

(a) The sampled domain. The structure as well as the
latent variables L0, . . . , L3 is unknown to us, and only
variables S0, . . . , S3 are observed.

S3

S0 S1

S2

(b) The network that we
end up with after perform-
ing structural learning. The
complexity of the network
could indicate unobserved
latent variables (in this case
it does.

Figure 1.1: Unobserved latent variables makes the learned structure overly
complex, as all variables seems to be dependant on each other.

There are several ways to deal with problems where the learned structure
becomes too complex, one being to introduce a set of structural constraints
such as naive Bayes [DP97], tree augmented naive Bayes [FGG97] or Chow
Liu trees [CL68], or introduce additional variables to approximate the actual
set of hidden variables that could account for the strong dependencies found
[Hec95], [ELFK00]. Additionally it seems as the problem could also be dealt

4 CHAPTER 1. INTRODUCTION

with by introducing constraints in the form of an upper limit on the number
of parents any given node can have.

Typically the term complexity refers to the density of the Bayesian net-
work structure, which we will refer to as network complexity. The network
complexity might not be the most accurate definition for our purposes. As
the task of inference, for example inserting evidence and calculating marginal
probabilities, is often performed in a secondary structure known as a junction
tree (junction trees are covered in more detal in Chapter 3), the computa-
tional effort required is thus determined by the complexity of the junction
tree, rather than the complexity of the Bayesian network - which we will refer
to as the effective complexity. This means that imposing constraints on the
Bayesian network structure does not neccessarily result in a simpler junction
tree, and in term a degration of effective complexity (except in the case where
the constraints impose a tree-like structure of the Bayesian network).

Another way of dealing with the problem of minimizing effective com-
plexity could be to have the domain expert cut away “less important” links,
in order to simplify the model and reduce model complexity - which is in fact
very similar to the structural learning method that we propose in this report!

1.2 Preliminary Work

The learning method we proposed in [KP07] makes it possible to explicit
trade complexity for precision and vice versa. One could think of it as being
some kind of“unsupervised re-configuration”of network links - just like when
the domain expert cut away links. Therefore we think it might be better to
use the effective complexity as the criterion for such a learning method. This
is exactly what the learning method proposed in [KP07] does. Preliminary
structural learning experiments suggest that by using this approach it is
possible to trade an acceptable reduction in model precision in return for a
network with a low effective complexity (which we refer to as an inference-
friendly network). More details about the results from these experiments can
be found in Appendix A. Although it seems that the method was better at
producing inference-friendly networks, it suffered in performance - especially
for large domains. The lack of performance can be explained by the numerous
junction tree re-compilations required during a structural learning run.

1.3. OUR GOAL 5

1.3 Our Goal

The purpose of this project is to improve upon the learning method from
[KP07] as to the lack of performance on bigger domains. This means we seek
to propose a learning method that makes it possible to trade model precision
in return for lower effective complexity in the learned model. In addition
we wish that the method should be compuationally affordable, and that the
tradeoff between effective complexity and precision should be acceptible for
inference-friendly networks.

We achieved this goal in a number of steps which is covered in the different
parts of this report.

Part 1 covers the basic foundations for Bayesian networks and inference.

We introduce Bayesian networks with a little more detail in Chapter 2.
The problem of inference is covered in Chapter 3.

Part 2 introduce structural learning, explores incremental compilation and
concludes by proposing the desired learning method which benefits from
it.

Details of structural learning are explored in Chapter 4. In in Section
4.3 we propose the JTC score function, which motivates the need for
junction tree decomposition and in turn incremental compilation.

We explore incremental compilation in Chapter 5, and in Chapter 6 we
explore a number of possible optimizations that could benefit structural
learning using using the proposed JTC score function.

Part 3 puts the proposed method to the test and concludes on the results.

In Chapter 7 we perform a number of structural learning experiments
which we subsequent analyze and this leads us to the conclusion in
Chapter 8.

Part I

Probalistic Graphical Models
and Inference

7

Chapter 2

Bayesian Networks

A Bayesian network is a probabilistic model, and we need to introduce a few
probabilistic concepts, namely probability functions, independence and the
chain rule to fully appreciate the model. These sections are slightly modified
copies of sections of [KP07].

2.1 Probability Functions

Probability functions expresses belief about variables. Variables can be though
of as experiments or observations, where each state represents a possible out-
come. Each variable has a finite number of mutually exclusive states, and
these states should be exhaustive. A probability function is a function from
two sets of variables to a real number: P : V ×C → [0; 1] , where V is the set
of variables about which we are expressing probabilities, and C is the set of
conditioning variables (which might be empty). The probability ranges from
0, impossible - to 1, absolute certainty. Probability functions are written as
P (A) (read as the probability of A) if the there are no conditioning variables,
and P (A|B) (“the probability of A given B”) where B are the conditioning
variables. The domain of P (A|B) is denoted dom(P (A|B)) = {A,B}. The
probability function P (A) for a variable A with states a1, . . . , an is a list of
probabilities x1, . . . , xn where xj represents the probability that A is in state
aj . An example table is shown in table 2.1. Such a function is called the
marginal or prior probability. Since the states of A are exhaustive, all entries
in the table P (A) sum to 1, that is

∑n

j=1 xj = 1.

For variablesA with states a1, . . . , an andB with states b1, . . . , bm, P (A|B)
contains n ·m conditional probabilities P (ai|bj). This can be represented as
a n × m table where cell j, k contains the probability that A is in state aj

given that we know B is in state bk. Such a table is illustrated in table 2.2.

9

10 CHAPTER 2. BAYESIAN NETWORKS

State Probability
a1 0.3
a2 0.7

Table 2.1: Probability table for P (A)

states b1 b2 · · · bm

a1 0.33 0.11 · · · 0.46
a2 0.37 0.25 · · · 0.24
...

...
...

. . .
...

an 0.21 0.32 · · · 0.03

Table 2.2: Probability table for P (A|B)

The states for B is exhaustive: for each state bk , all associated states of A
must sum to one:

∑n

j=1 P (A = aj |B = bk) = 1 for all values of k.
The joint probability for variables A and B is written as P (A,B). This

expresses the probability of both A and B . Similarly to conditional prob-
ability, a joint probability can also be represented as a table with n · m
entries for states A1, . . . , an of A and states b1, . . . , bm of B, such a table is
shown in Table 2.3. In a joint probability table all entries must sum to 1:
∑n

j=1

∑m

k=1 P (A = aj , B = bk) = 1.
From a joint probability table we can “extract” probabilities for smaller

sets of variables. If we want to find the probability for A, we calculate the
total the probability for each state a1, . . . an of A, by summing the probability
for all entries in the table where A is in state ai. In the example table in
Table 2.3, this would means we would calculate

P (ai) =

m
∑

j=1

P (ai|bj)

where m is the number of states in B. When this calculation has been done
for all states of A we have P (A). We call this operation marginalization and
say that B was marginalized out

2.2 Independence

Independence among variables indicate whether their states influence each
other: If two variables are independent an occurrence of one event for one
of the variables does not affect the probability for the events for the other

2.3. BAYESIAN NETWORK 11

states b1 b2 · · · bm

a1 0.2 0.04 · · · 0.06
a2 0.06 0.03 · · · 0.0
...

...
...

. . .
...

an 0.012 0.11 · · · 0.03

Table 2.3: Joint probability table for P (A,B)

variables. For example, the probability for tails in consecutive coin-tosses (of
a regular symmetric coin) are independent in that the result of the first toss
does not impact the second. On the other hand, the probability for getting
three consecutive tails are not independent of the result of the first toss, since
if it is impossible to get three tails in a row if the first toss ends up a head.
It might also be the case that information about one variable renders other
variables independent. Formally two variables A and B are conditionally
independent given a third variable C if P (ai|ck) = P (ai|bj, ck) for all values
of i, j, k. This is a misuse of the notation in that the probability tables are
not the same size, what it means is that if the state of C is known, the state
of B does not influence A.

2.3 Bayesian Network

The property of independence among the variables within the given domain
is exploited making the Bayesian network a compact representation, and is
thus one of the key features of the language.

A Bayesian network is a graphical structure that represent the indepen-
dencies among variables in a domain. The structure of the Bayesian net-
work is represented as a directed, acyclic graph in which the nodes represent
variables each with a number of states. The edges of a Bayesian network
represents probabilistic relations among variables. The state of a variable is
affected by the states of all its parents. Each variable in the network has an
associated probability table, listing the probability that the node is in each of
its states.

Formally a Bayesian network could be defined as follows:

Definition 1. A Bayesian network BN = (G,Θ) for variables V = V1, . . . , Vn

consists of the following:

• A directed acyclic graph G = (V,E), where node Ni ∈ V represents a
variable Vi.

12 CHAPTER 2. BAYESIAN NETWORKS

• A set of conditional probabilities Θ, such that for each Vi, Θ contains
P (Vi|pa(Vi)) specifying the conditional distribution for Vi given its par-
ents.

In this report we deal only with discrete variables, that is, variables with
a finite number of mutually exclusive states (that is the variable is only in a
single state at a time).

2.4 d-separation

An interesting property of Bayesian networks is d-separation. For A,B,C ⊆
V where A ∩ B = ∅, A ∩ B = ∅ and B ∩ C = ∅, that is 3 disjoint subsets
of variables, C d-separates A from B if every path from a node A ∈ A to a
node B ∈ B qualifies as one of the following:

1. a serial connection A→ C → B where C is instantiated.

2. a diverging connection A← C → B where C is instantiated.

3. a converging connection A → C ← B where neither C nor any of its
descendants are instantiated.

Rule 1 is illustrated in Figure 2.1(a), rule 2 in Figure 2.1(c) and rule 3 in
2.1(b)

A BC

(a) Serial connection

A B

C

(b) Converging con-
nection

A B

C

(c) Diverging connec-
tion

Figure 2.1: d-separation.

When variables are d-separated, they are also conditionally independent.
Independence among variables may be encoded in the associated probability
tables, such that P (A|B) = P (A) despite A and B not being d-separated. So
d-separation implies independence, but independence does not (necessarily)
imply d-separation.

2.5. CHAIN RULE 13

2.5 Chain rule

Since all nodes in the network represents a variable with associated prob-
ability distribution over itself and its parents, summing these probability
distributions for all nodes yields the joint probability distributions for the
domain. Let U = {V1, . . . , Vn} be a universe of variables in a given domain,
and let P (U) be the joint probability distribution over the variables of this
domain.

From the Bayesian network the joint probability distribution P (U) for a
domain is given using the chain rule stated in Equation (2.1).

P (U) =
∏

X∈U

P (X|pa(X)) (2.1)

The chain rule states that a joint probability distribution can be obtained
by multiplying the conditional probabilities for all variables in the network.
In this way a Bayesian network is a compact representation of a joint prob-
ability distribution.

All queries regarding probabilities in the network can be answered using
P (U), however the size of P (U) is exponential in the number of states of
the variables, making it hard to represent the distribution of even a small
network within the memory limitations of a computer.

Chapter 3

Inference

The definitions in Chapter 2 only describes the elements of a Bayesian net-
work as a description of probabilistic independencies, but the model can also
be used for inference.

Inference means propagating knowledge (called evidence about some vari-
ables throughout the model, with the purpose of seeing the effect on other
variables.

There are different approaches to performing inference, even though the
general problem has been shown to be NP-hard [Coo90]. Yet different meth-
ods may still be preferred over others. A widely used method for doing
inference is to use a secondary structure, called a junction tree. Instead of
working with the individual variables, the junction tree work with sets of
variables. And instead of working with the probability functions from the
Bayesian network, the general notion of potentials are used.

3.1 Junction tree inference

A junction tree is an effective structure used together with a message-parsing
method for performing inference over a Bayesian network. Using the function
tree for inference is discussed in Section 3.7, but before we get to that we
will introduce the procedure used when compiling a Bayesian network into a
junction tree.

In order to use the junction tree method, the variable sets (called cliques)
and potentials must be constructed by compiling the Bayesian network to a
junction tree.

Definition 2. A potential φ is a real-valued function over a domain of a set
of finite variables V: φ : space(V) → R. A potential with a domain over
variables A and B are denoted as φ(A,B).

15

16 CHAPTER 3. INFERENCE

Definition 3. A clique is a complete set of nodes that is not a subset of
another complete set.

A complete set of nodes, is a set of nodes that are fully connected. These
cliques represent the domains of the potentials we may need to calculate
when doing belief updating. The process of compiling a Bayesian network to
a junction tree structure involves a number of steps:

• Construct domain graph

• Triangulate domain graph

• Identify cliques

• Construct join tree

• Construct junction tree

In the following section this process will be explored. Throughout this
chapter we will use the network shown in Figure 3.1, with probability func-
tions P (A), P (B|A), P (C|A), P (D|B,C) and P (E|C) as an example.

A

B C

D E

Figure 3.1: Example network

3.2 Domain graph

The first step in producing a junction tree from a Bayesian network is to
construct a domain graph from the Bayesian network. The domain graph
is a graphical representation of the domains of the probability potentials in
the Bayesian network Φ. For our example graph we have the potentials φ(A),
φ(B,A), φ(C,A), φ(D,B,C) and φ(E,C).

3.3. TRIANGULATION 17

A domain graph is an undirected graph where the nodes are variables from
the potentials in Φ, and the edges signifies that the variables are member of
the same domain.

Constructing a domain graph from a Bayesian network consists of adding
edges between any pair of variables with a common child, and then remove
the orientation of all edges.

Looking at our example graph, the potential φ(D,B,C) which in this case
is the probability function P (D|B,C), has the variables D,B and C in its
domain. An edge is therefore added between the two nodes B and C in the
domain graph. Since the new edge connects (“marries”) two nodes which
share a child, this process is called moralization. We do this for all nodes
sharing a child. Finally the orientation is removed from all edges, resulting
in the graph shown in Figure 3.2.

A

B C

D E

Figure 3.2: Moralized graph

3.3 Triangulation

Triangulation is an important step in the compilation process in that the
structure of the resulting graph have great influence on the computational
complexity of the junction tree, and that there are numerous ways to perform
the triangulation.

To illustrate the first point we must draw parallels between the domain
graph that we have established through moralization and the calculations
needed to perform inference.

Notation. The product of a set of potentials Φ = {φ1, ..., φn} is denoted
∏

Φ.

18 CHAPTER 3. INFERENCE

Assume U = {A1, . . . , An} and that we want to calculate P (A1). We
would then have to marginalize out A2, . . . , An from U . When a variable V
is Marginalized out of Φ, all potentials Φ′ = {φ|V ∈ domain of φ} will be

removed from Φ and replaced by a single potential φ∗ =
∑

V

∏

φ∈Φ′

φ. How

complex this operation is depends on the size of the involved domains. For
a set X of variables

∑

X

∏

Φ is calculated by repeatedly eliminating V ∈
X from Φ. This means that the order in which variables are eliminated
has a big impact on the size of the resulting potentials in Φ. For example:
As previously mentioned, our example network have the set of potentials
Φ = {φ(A), φ(B,A), φ(C,A), φ(D,B,C), φ(E,C)}. If we were to marginalize out the
variables A and B we could choose to first marginalize out A and then B or
the other way around. We examine both options:

• If we start with A and do
∑

A

∏

Φ we get Φ′ = {φ(D,B,C), φ(E,C), φ(B,C)}
where the last potential φ(B,C), while new, is over (part of) the same
domain as φ(D,B,C). The next step is to do

∑

B

∏

Φ′ which yields
Φ′′ = {φ(E,C), φ(D,C), φ(C)} and again, the domains for the potentials
are subsets of previously used domains.

• If we start with withB and do
∑

B

∏

Φ we get Φ′ = {φ(A), φ(C,A), φ(E,C), φ(D,C,A)}.
This time the potential φ(D,C,A) describes a completely new domain that
has not been previously calculated. Then we can marginalize out A as
∑

A

∏

Φ′ = Φ′′ = {φ(E,C), φ(D,C), φ(C)}. In this set of potentials no new
domains are needed.

The order of marginalization is important for efficient calculation, but how
do we know which order is a good one? For this we can use the domain graph.
When talking about triangulation of graphs we have the notion of elimination
of nodes. Eliminating a nodes means to mark the node as eliminated and
then connect all non-eliminated neighbours of the node. The edges that are
added are called fill-in edges. So that after the elimination the non-eliminated
nodes constitute a complete subgraph.

Eliminating a variable from the graph corresponds to marginalizing out
the variable from the set of potentials that the graph represents. The addition
of fill-in edges signifies that calculations will include working with a potential
over a domain that was not present initially. This is illustrated in Figure
3.3(a) which shows the domain graph after A has been eliminated, and Figure
3.3(b) which shows the domain graph after the elimination of B. In Figure
3.3(b) a fill-in has been added between A and D such that the nodes A,D
and C constitutes complete subgraph. These nodes are also the ones who

3.4. CLIQUES 19

constituted the new domain to be calculated if we chose to marginalize B
out first.

A

B C

D E

(a) A eliminated

A

B C

D E

(b) B eliminated and a fill-in edge
added

Figure 3.3: Examples of elimination of nodes and the produced fill-in edges.

An elimination sequence is a list of variables that denotes in which order
the variables should be eliminated from the graph. An elimination sequence
that results in no fill-in edges (called a perfect elimination sequence)have
smaller complexity than an elimination sequence that introduce fill-ins, as
new larger potentials will have to be created in the process. Thus it is
advantageous to find an elimination sequence that introduces no fill-ins. A
graph with a perfect elimination sequence is called a triangulated graph. A
triangulated graph is also characterised by having no cycles of length ≥ 4
that is not cut by a chord. A chord is an edge between two non-consecutive
nodes in the cycle. If a graph is not triangulated, then extra edges will
have to be added until the graph satisfies the requirements. The process of
converting the domain graph to a triangulated graph is called triangulation.
Triangulation may be done by choosing an elimination sequence (or using an
already known sequence) and then eliminate the variables from the domain
graph in that order. A triangulation T for a graph G is a set of fill-in edges
and the triangulated graph is then the domain graph, with the addition of the
triangulation (that is, the set of fill-in edges produced during the elimination).
Due to the high number of possible sequences, a heuristic approach is often
used in finding a triangulation. We discuss triangulation heuristics in detail
in Section 3.8.

3.4 Cliques

From the triangulated graph, a set of cliques can be identified. In our exam-
ple, the graph is already triangulated and so no fill-in edges are added. The

20 CHAPTER 3. INFERENCE

cliques are (ABC), (BCD), (CE) as shown in Figure 3.4.

A

B C

D E

Figure 3.4: Cliques in the triangulated graph.

3.5 Join Tree

The cliques are arranged in a join graph. Two cliques C1,C2 are connected
if C1 ∩C2 6= ∅, that is if they share one or more variables. The join graph
can be transformed into a join tree by constructing a Maximum spanning tree
where the weight of an edge e = (C1, C2) connecting C1 and C2, is defined
as w(e) = |C1 ∩C2|, namely the number of variables the connected cliques
share.

A maximum weight spanning tree is constructed by continuously selecting
one of the edges with the highest weight until all nodes are connected to the
tree. An example of this process is shown in Figure 3.5

3.6 Junction tree structure

A junction tree is a join tree, where edges are annotated with separators. Let
T be a join tree for the domain graph G with potentials Φ. A junction tree
for G consists of T with these additions:

1. Each potential φ ∈ Φ is assigned to a clique containing dom(φ), where
dom(φ) is the domain of φ

2. Each edge in T has a separator attached.

3. Each separator contains two mailboxes, one for each direction.

The separators acts as a mailboxes between the cliques, communicating
potentials between them. The variables associated represents the domain of
the potential communicated.

3.7. EXACT INFERENCE USING JUNCTION TREES 21

ABC

BCD CE

(a) Join graph

ABC

BCD CE

1

1

2

(b) Join graph with weights

ABC

BCD CE

(c) Join tree

Figure 3.5: Transforming the join graph to a join tree

3.7 Exact inference using junction trees

Propagation in junction trees consists of two operations: Collect evidence
and Distribute evidence, which work by projecting potentials associated with
the cliques and passing them about as messages in the junction tree.

Definition 4. For a set Φ of potentials whose domains are a subset of V,
the projection of Φ↓W down to W ⊆ V is defined as:

Φ↓W = {φ ∈ Φ|dom(φ) ∩ V\W = ∅} ∪ {φ∗}, where

φ∗ =
∑

V\W

∏

{φ ∈ Φ|dom(φ) ∩ V\W 6= ∅}

That is Φ↓W is a set of potentials resulting from eliminating the variables
in V\W.

Definition 5. Message passing: A clique V , with a set of potentials ΦV and
neighbouring separator S1, . . . , Sk, where each Si have received a message ψi

for V , can send the message (ΦV ∪ ψ1 ∪ . . . ∪ ψk)
↓S to another neighbouring

separator S. The direction V to S is then said to have been triggered. For
a separator S, the messages ψS and ψS represent the two different messages
(one for each direction) that can pass over the separator.

22 CHAPTER 3. INFERENCE

Collection is done by selecting a node as temporary root, and passing
messages towards that node. Distribution is done afterwards by passing
messages the other way. If only a single marginal probability is needed,
it is sufficient to collect evidence to a clique containing that node and no
distribution will be needed.

φ1, φ2, φ3

V1 : A,B,C

φ4

V2 : B,C,D

φ5

V3 : C,E

S1 : B,C S2 : C

↓↓

↑↑

Figure 3.6: Junction tree

Inference Example

Lets consider our example network, and the associated junction tree (as
shown in Figure 3.6). If we want to calculate P (D) we would need to collect
evidence in a clique containing D (e.g. V2). So V2 is made the temporary root
and we need to send messages from the leaves towards it. In our network the
only leaf is V3, with the neighbouring separator S2. We trigger the direction
V3 to S2 by passing the message ψ2 = (φ5)

↓S2 = (φ5)
↓C . Notice that the

message is a reduction of the set of potentials in V3 that “fits” in S2. Then we
create a message to pass from V1 to S1, this message is ψ1 = (φ1φ2φ3ψ2)

↓S1 .
Now the message has reached V2 and the collection stages is completed (the
state of the junction tree at this stage is shown in Figure 3.7). The mes-
sage ψ1 represents a perfect elimination order ending with the variables in
V2 and so the product φ4ψ

1 is the projection of the entire product down to
B,C,D. We can now calculate P (D) by eliminating V2\D from φ4ψ

1, namely
P (D) = (φ4ψ

1)↓D.

3.8. TRIANGULATION HEURISTICS 23

φ1, φ2, φ3

V1 : A,B,C

φ4

V2 : B,C,D

φ5

V3 : C,E

S1 : B,C

ψ1 = (φ1φ2φ3ψ1)
↓S1

S2 : C

ψ2 = (φ5)
↓C

↓↓

↑↑

Figure 3.7: Junction tree after evidence collection

To be able to calculate the rest of the marginals in the network we need to
distribute the evidence, so messages must be send towards the leaves. From
V2 to S1 we send the message ψ1 = (φ4ψ

1)↓S1, and from V1 to S2 we send the
message ψ2 = (φ1φ2φ3ψ1)

↓S2 . The tree has now been “filled”, and we have
performed a complete propagation. The junction tree with all messages is
shown in Figure 3.8.

Inferring probabilities with evidence in the network is a matter of placing
the evidence, represented as a 0-1 potential, in the appropriate cliques and
doing a full propagation. E.g. with evidence e that A is in state ai, P (X, e)
is calculated by placing e in V1 and then doing a full propagation.

3.8 Triangulation heuristics

As finding an optimal triangulation with regards to the size of potentials
is NP-hard, heuristics are often employed in place of an exhaustive search.
Many different types of heuristics can be imagined, a simple one could be
to simply use a lexical ordering over the nodes as the elimination order. A
heuristic search that often works quite well is to simple use a greedy algo-
rithm with a one step lookahead. A generic algorithm is shown below. This
algorithm greedily searches for a minimal value of a criterion c(X) where
X is a node in the graph. The return value is a set of fill-in edges and a

24 CHAPTER 3. INFERENCE

φ1, φ2, φ3

V1 : A,B,C

φ4

V2 : B,C,D

φ5

V3 : C,E

S1 : B,C

ψ1 = (φ1φ2φ3ψ1)
↓S1

ψ1 = (φ4ψ
1)↓S1

S2 : C

ψ2 = (φ1φ2φ3ψ1)
↓S2

ψ2 = (φ5)
↓C

↓↓

↑↑

Figure 3.8: Junction tree after complete propagation

corresponding elimination order.

Triangulation(Graph G = (V,E),Optimisation criterionc(X))

1 F ← {}
2 L ← {}
3 V ′ ← V
4 Repeat
5 do Select a node X ∈ V ′ such that c(X) is minimal
6 F ← F ∪ {{Y, Z}|Y, Z are neighbours of X, Y 6= Z, {Y, Z} 6∈ F}
7 Remove X from V ′

8 Add X to the end of L
9 Until all nodes N ∈ V ′ has been eliminated

10 return F ,L

In this algorithm the criterion c(X) can be a swapped for different func-
tion if it is desirable. Possible functions could be Fill-ins (the number of
added fill-in edges) and clique-size (the minimal combined size of the cliques),
both of which are described in [Kjæ93] and repeated below. This makes the
clique size heuristic a good choice for our project, since smaller cliques means
smaller potentials and thus shorter inference time.

This algorithm simply returns the number of fill-in edges that would have
to be added to the graph if the node in question where eliminated.

3.8. TRIANGULATION HEURISTICS 25

Fill-ins(node X)

1 N ← all neighbour of X
2 Eexist ← {(Y, Z)|Y, Z ∈ N , Y 6= Z}

3 return
(

|N |
2

)

− |Eexist|

The clique-size algorithm returns the size of the clique the node would be in
after the triangulation.

Clique-size(node X)

1 N ← X ∪ {Y |Y is a neighbour of X}
2 return

∏

Z∈N |Z|

Some heuristics are more expensive to calculate than others, but this might
be an acceptable tradeoff if the resulting junction tree is much faster for
inference.

Since our example graph is already triangulated, we will use the graph
in figure 3.9 where the variables A,B and C all have two states and the
variables D and E has 5 states.

A

B C

D E

Figure 3.9: Example graph

Triangulation of this graph using the fill-ins heuristics would work like
this: The first node to be added to the elimination order is either D or E,
both of which produces no fill-ins. If we choose D, the next step adds either
E or D which (in the current state of the graph) both introduces no fill-
ins. The process continues in the same manner and all nodes can be added
without introducing fill-ins. If we used the Clique-size heuristic, the process
would be as follows:

First iteration The scores for the nodes are:
Node Score
A 2 · 2 · 2 8
B 2 · 2 · 5 20
C 2 · 2 · 5 20
D 2 · 5 10
E 2 · 5 10

26 CHAPTER 3. INFERENCE

So the node A is added to the elimination order. This introduces the
fill-in edge (B,C). The graph after this iteration is shown in Figure
3.10(a)

Second iteration the scores are:
Node Score
B 2 · 2 · 5 20
C 2 · 2 · 5 20
D 2 · 5 10
E 2 · 5 10

At this point either D or E is added to the elimination order, followed
by the rest of the nodes.From this point no more fill-ins are added. The
final triangulated graph is shown in Figure 3.10(b).

A

B C

D E

(a) Example graph triangu-
lated using the clique-size
heuristic, after first itera-
tion

A

B C

D E

(b) Example graph triangu-
lated using the clique-size
heuristic

Figure 3.10: Triangulation of the example graph using clique-size heuristic

3.8.1 Minimal triangulation

A minimal triangulation is one in which no fill-in edges are redundant, that is
for edge e in triangulated graph GT = V,E, GT ′

= (V,E\{e}) is also trian-
gulated. Redundant fill-in edges can be product of the elimination sequence
selected. An example of a redundant fill-in edge is the edge (B,C) in Figure
3.10(b)

While there exists triangulation algorithms for finding minimal triangu-
lations (such as LEX M[RTL76]), another approach is to use the recursive
thinning algorithm (described in [Kjæ93]) which can remove redundant fill-in
edges from any triangulation. The algorithm is as follows:

3.8. TRIANGULATION HEURISTICS 27

Thin(graph G = (V,E), triangulation T for G)

1 R′ ← T
2 Repeat
3 do T ′ ← {(X, Y)|neighbours(X) ∩ neighbours(Y) is complete in G}
4 T ← T\T ′

5 G← (V,E ∪ T)
6 R′ ← {e1|∃e2 ∈ T ′ such that e1 ∩ e2 6= ∅}
7 Until T ′ = ∅
8 return T

The algorithm works by finding the edges that connects two nodes which
has fully connected common neighbours. In the network depicted in Fig-
ure 3.10(b) the edge (B,C) is such an edge since neighbours(B)∩neighbours(C)
is the single node A. In the first iteration loop all edges are considered.
In subsequent loops only edges that shares a node with an edge that was
removed in a the previous loop are considered. The running time of the
algorithm is O(|T |2).

Part II

Learning Inference Models

29

Chapter 4

Structural learning

Structural learning refers to the process of building a network structure from
a dataset. A dataset is a database of cases, where each case represent a
particular configuration of the variables. If the dataset contains no missing
values the dataset is complete, and incomplete if it contains missing values.
Complete datasets are easier to work with, but not an explicit requirement
for performing structural learning [Fri98], [Nea03].

There are two different paradigms for performing structural learning. The
first approach may be refferred to as constraint-based, where the learning
process consists of building a graph by performing a set of independence
tests on the dataset. (This is, for example, the structural learning method
implemented in the Hugin tool [hug]). We have described the details of
constraint based structural learning in Appendix B.

The other approach may be refferred to as score based learning. In score
based learning, the learning problem becomes a search problem within the
space of possible network structures. Then a search is performed using some
scoring criterion for the search to maximize. A typical scoring criterion is
the Bayesian information criterion (BIC) [Sch78], [LB94], [FG] that assigns a
score to a network structure which combines the likelihood that this structure
“generated the data” and how dense the structure is.

The differences between these two methods are apparent: The constraint
based approach produces a network structure based on categorical informa-
tion about conditional independencies derived by a number of statistical tests
on the dataset. The score based approach ranks each network structure based
on a computation of the conditional probability of the structure given the
dataset. Consequently given small datasets, constraint based may make in-
correct categorical decisions about conditional independencies. Score based
can handle missing data items where constraint based typically throws out
a case containing missing values. A longer discussion of differences can be

31

32 CHAPTER 4. STRUCTURAL LEARNING

found in [Nea03].
For our purposes the score based approach has one main advantage over

the constraint-based approach, namely that the scoring criterion offers an
opportunity for better control over the search by specifying which properties
the resulting network structure should maximize, and by what weights.

Althoug a similar effect could be approached in constraint based learning
by changing the threshold value for when edges are considered significant
enough to be added to the structure, it does not take into accout the factor of
effective complexity. (As noted in section 3.7, a major factor on the inference
complexity is the existence of undirected cycles, so one could perhaps pre-
process the graph skeleton in terms of removing cycles. This could be done
by considering each edge in a cycle and remove the one that represents the
lowest mutual information).

As the purpose of this project is to find a learning method that makes
it possible to weight the relationship between effective complexity and pre-
cision, the score based approach seems a better fit than constraint-based.
This chapter explores the score based learning approach and concludes by
formulating a scoring criterion that offers this kind of control.

4.1 Search Space

As mentioned above, the problem of learning a Bayesian network structure
from a dataset can be considered as a search problem. The search space
is the set of possible network structures. The purpose of the search is to
find the member that maximizes some scoring criterion (BIC scoring and
our proposed scoring criteron is explored later in Sections 4.2 and 4.3). The
scoring criterion most commonly incorporates finding a structure that serves
as a good description of the dataset while satisfying some other constraints
at the same time.

For a given structural learning problem, it is in theory possible to enumer-
ate all members of the search space, and then evaluate each member using
the scoring criterion. But in practice this approach is impossibe as the shear
size of the search space makes such brute force evaluation impossible. This is
evident at it has been shown that the number of member network structures
f(n) grows super exponentially in the number of nodes n:

f(n) =

n
∑

i=1

(−1)i+1 n!

(n− i)!n!
2i(n−i)f(n− 1).

And it is the reason heuristics are used for directing the search. Structural
search proceeds by using some candidate as a starting point, most commonly

4.1. SEARCH SPACE 33

representing the empty network, and then performing the search step by
step. In the rest of this report we shall use the word ‘candidate’ to denote
a member of the search space, which in turn represents a unique network
structure - or, depending on the search strategy, a set of network structures.

An example of the search space over network structures with four nodes
can be seen in Figure 4.1.

Figure 4.1: The space of network structures with four nodes (543 members.)

At each search step, which corresponds to a given point in the search
space, the next set of possible candidates are evaluated. If one candidate is
better than the best found so far, the search continues using that candidate.
This procedure repeats itself until the scoring criterion yields that none of the
possible candidates are better than the current candidate, thus a maximizing
candidate has been found. This search can be depicted by a search tree as
in Figure 4.2. In the search tree each vertex corresponds to a candidate, and
the candidate pointed to by a dotted line represents the starting point of the
structural search. The outgoing arrows from a candidate represents the set
of candidates reachable from from that point.

Step #

2

3

4

5

6

7

The Search Tree

1

Figure 4.2: Representation of a search tree. Each vertex corresponds to a
given structure candidate.

The search starts from the candidate pointed to by the dotted arrow, (this
is step 1). Then the set of candidates reachable from that point is evaluated
using the given scoring criterion. The candidate that maximizes the score

34 CHAPTER 4. STRUCTURAL LEARNING

is chosen (indicated by a black vertice) and the remaining are discarded
(indicated by shaded vertices). The next step of the search then continues
from the maximizing candidate. This is repeated until no further candidates
that maximize the scoring criterion are found (in the example the search ends
at step 7, where the entire set of reachable candidates are discarded as they
are all rated lower than the current candidate). This way we only explore a
portion of all possible candidates, as only a particular branch is investigated
using the scoring criterion as a heuristics.

How the next set of candidates are generated from a given point in the
search space depends on the search strategy used, for example the commonly
used simple greedy search. Greedy search explores the search space by in-
crementally modifying the current candidate structure using the following
transformations:

• Add edge

• Remove edge

• Reverse edge

That is, the set of possible candidates reachable from a given candidate
in one step, can be enumerated by repeatedly applying a single edge trans-
formation to the candidate. For the purpose of this discussion we denote
the greedy search as the usual method associated with score-based structural
learning.

The type and size of the search space may have a big impact on the com-
putational effort required. As the search space is defined by the type of search
strategy used, in addition to greedy search additional strategies that offer dif-
ferent levels of performance exists. Two such strategies are Equivalence class
search[JN07]pages 248-150, and Ordering based search[TK05].

4.2 BIC-scoring

A commonly used score function that takes into account both likelihood and
complexity is the Bayesian information criterion (BIC). This section is from
[KP07]. The BIC score consists of two terms, one regarding likelihood and
the other regarding the complexity of the network. It is defined as:

BIC(S|D) = log2 P (D|Θ̂s, S)−
size(S)

2
log2(N) (4.1)

where Θ̂s is an estimate of the maximum likelihood for the structure S, and
N is the number of cases. size(S) is the number of free parameters in the

4.3. JUNCTION TREE SCORING 35

model
∑

V inV(sp(V) − 1) ·
∑

W∈pa(V) sp(W). When learning from complete
data, we can use frequency counts for the maximum likelihood parameter
estimates. A compelling feature of the BIC-score is that it is a decomposable
score function, this means that the score can be expressed as the sum of local
scores that is score for each node family in the structure. The BIC-score for
a network with n variables can be calculated as

BIC(S|D) =

n
∑

i=1

[

qi
∑

j=1

ri
∑

k=1

Nijk log2

(

Nijk

Nij

)

−
1

2
qi(ri − 1) logN

]

(4.2)

where ri denotes the number of states for variable Xi, qi denotes the number
of configurations over the parents ofXi (or 1 if Xi has no parents), and Nijk is
the number of cases in the dataset that express configurations where variable
Xi is in its i’th state and the parents of X is in the jth configuration. Nij

is the number of cases where the parents of Xi is in the jth configuration.
The part of equation (4.2) within braces is the decomposable part and can
be calculated individually for each node family.

A simple extension to the BIC-score model is to add an explicit parameter
that balances the likelihood term and the network complexity penalty term.
This λ-parameter is used as in equation (4.3) below:

BIC(S|D, λ) =

n
∑

i=1

[

λ

(

qi
∑

j=1

ri
∑

k=1

Nijk log2

(

Nijk

Nij

)

)

− (1− λ)

(

−
1

2
qi(ri − 1) logN

)

]

(4.3)
The λ-parameter is set to a value between 1 and 0 and represents how much
we value accuracy versus complexity. A higher λ-parameter adds weight to
the part of the score that represents the maximum likelihood, whereas a lower
value increases the weight of the part that represents network complexity. For
a λ value of 0.5, 2 · BIC(S|D, λ) = BIC(S|D).

Score based learning offers the most direct way to balance network com-
plexity and likelihood. We speculate that a highly complex network structure
would result in a complex junction tree and thus slower inference. So it seems
likely that at least some control over the complexity of the junction tree can
be exercised by controlling the complexity of the network.

4.3 Junction tree scoring

A more direct approach for controlling the balance between accuracy and
effective complexity would be to use a score function that compiles and mea-
sures a junction tree for the network in question. This is exactly the approach

36 CHAPTER 4. STRUCTURAL LEARNING

we used in [KP07], which we seek to optimize with regards to performance
(interesting preliminary results can be found in Appendix A). In the rest of
this section we shall introduces the junction tree scoring criterion (JTC) as
well as the disadvantages imposed. Then we shall, in pursuit of our project
goal, explore a way of dealing with these issues.

If we consider a more abstract version of BIC from the last section, we
get an expression on the following form:

SC = LL− d (4.4)

and similarly for the λ-version of BIC, we get an expression on the form:

SC = λ · LL− (1− λ) · d (4.5)

Where LL is the log-likelihood of the network given the dataset, and d is
the dimension of the structure. For the BIC score, the term that penalized
according to network size was d, and in this way BIC serves as the inspiration
for the JTC scoring criterion.

As we saw in Chapter 3 the computational effort required for performing
junction tree inference is largely determined by the size of the cliques that
make up the junction tree, as the size of cliques determines the size of the
probability potentials that are operated upon. The larger the probability po-
tentials, the more computational effort is required for performing inference.
Thus the JTC criterion should score a candidate based on the state space of
the resulting junction tree. As there does not exist a one-to-one correspon-
dance between a Bayesian network and a junction tree, the score assigned by
JTC will of course be in relation to the specific triangulation heuristic used
for producing a junction tree.

Based on the expression in equation 4.5, we can formulate the JTC scoring
criterion:

JTC(S|D, λ) = λ · log2 P (D|Θ̂s, S)− (1− λ) ·
statespace(T)

2
log2(N) (4.6)

JTC is almost identical to BIC. The first part of the term incorporates
the log likelihood, which is the same for BIC - but the second part of the term
differs as instead of using the size of the graph structure S, it incorporates
the state space of a junction tree T for the graph structure S.

The structural search consist largely of iterative scoring candidates that
share certain structural similarities. Similar to the decomposability of BIC,
it would improve performance if JTC score could be expressed as a sum of
local computations.

4.3. JUNCTION TREE SCORING 37

As for the BIC score, the log likelihood part of the JTC term are decom-
posable over the node families. This property has the effect that as a set of
modifications to the graph structure changes the families of a subset of the
nodes, likelihood must be recomputed for these nodes. The term need not be
recomputed for nodes unaffected by the changes, as cached results from previ-
ous computations of these can be re-used. This gives a JTC scoring criterion
with at least the log likelihood part of the expression being decomposable:

JTC(S|D, λ) =
n
∑

i=1

λ·

[

qi
∑

j=1

ri
∑

k=1

Nijk log2

(

Nijk

Nij

)

]

−(1−λ)·
statespace(T)

2
log2(N)

(4.7)
The parts within braces are decomposable and can be calculated individually
for each node family. The JTC in equation 4.7 is similar to the one we used
in [KP07].

Chapter 5

Incremental Compilation

As described in the previous chapter, the problem with learning using the
JTC-scoring method was the prohibitively long learning time. Two observa-
tions can be made regarding the performance of the method:

• The score function is not decomposable, so we are required to score the
entire junction tree. As previously described one of the hallmarks of a
good score functions is that is can be divided as a sum over divisions
in the net (such as families of nodes in the case of BIB).

• The most costly, in terms of computer time, step in the JTC-scoring
method is the re-triangulation of the entire tree. Since triangulation is
such an expensive step on the construction of a junction tree, it is the
most likely step to start with in search for optimisations.

Whereas little can be done about the decomposability of the score func-
tion, the notion of dividing the graph into smaller parts and only dealing
with the part(s) that have changed can be employed. What we need is a
division of the graph (or the junction tree) in such a way that a change in
the set of edges can be associated with one or more parts which needs to be
updated and the rest of the graph can be ignored with regards the change
(in that these parts remain the same). The next section describes a structure
that divides the graph into parts that can be triangulated individually and
connected together to produce a junction tree for the graph. In [FGO03] a
method for incremental compilation of Bayesian networks is presented. The
method divides the graph into maximal prime subgraphs[OM02], which has
the property were are looking for.

39

40 CHAPTER 5. INCREMENTAL COMPILATION

5.1 Maximal prime subgraph decomposition

This section introduces a method for decomposing Bayesian networks into
their maximal prime subgraphs as described in [OM02]. At first we need a
couple of definitions:

Definition 6. A separator S, where S ⊂ V of the set of variables in GM =
(V,E), is complete if the subgraph gM induced by S is complete.

Consider the junction tree (Figure 5.1(b)) for the graph in Figure 5.1(a):
The junction tree has two separators BC and CD. The separator BC is
a complete separator as the induced subgraph in Figure 5.1(c) is complete,
whereas the separator CD is incomplete which can be verified by looking at
the induced subgraph in Figure 5.1(d) which is incomplete.

Definition 7. A maximal prime subgraph is a sub-graph that is d-separated
from its surroundings by complete separators.

The maximal prime subgraph decomposition (MPD) can be used as com-
putational structure for incremental construction of junction trees. The MPD
is related to maximal complete subgraphs of the moral graph of the Bayesian
network, and is also known as decomposition by clique separators. MPD con-
cerns the graph theoretical part of Bayesian networks and does not consider
information about the associated probability potentials. A Maximal prime
subgraph decomposition can be constructed from the junction tree by recur-
sively aggregating cliques connected by incomplete separators. The clusters
in the resulting tree are the maximal prime subgraphs of the graph of the
Bayesian network. It is a requirement that junction tree junction tree are
based on a minimal triangulation.

A graph G is decomposed into its maximal prime subgraphs as follows:
Let GM be the moral graph of G, let GTmin be the graph corresponding to a
minimal triangulation of GM and let Tmin be a junction tree correspoinding
to the cliques induced by GTmin . The maximal prime subgraphs of GM are
formed by aggregating adjacent cliques connected by a separator which is
incomplete in GM . This method is formalized to algorithm 1 below.

Algorithm 1.

ConstructMPDTree(join tree T , moral graph GM)

1 TMPD ← T
2 Merge all adjacent cliques in TMPD with

an incomplete separator in GM

3 if TMPD is a forest
4 then Connect trees in T MPD with empty separators
5 return T MPD

5.1. MAXIMAL PRIME SUBGRAPH DECOMPOSITION 41

B

ED

C

A

(a) Graph. Bold lines repre-
sent moral edges, dotted line
represents fill-in

BCD CDBC CDEABC

(b) Junction tree

CB

(c) Subgraph of moral
graph induced by separator
BC

DC

(d) Subgraph of moral
graph induced by separator
CD

Figure 5.1: Graph, junction tree and induced subgraphs of separators

BC BCDEABC

Figure 5.2: Maximal prime decomposition of junction tree from Figure 5.1(b)

The MPD for the junction tree in Figure 5.1(b) can be seen in Figure 5.2.
The MPD contains a maximal prime subgraph ABC, which is based on the
clique ABC from the junction tree. The MPS and the clique are identical as
the clique is only connected to complete separators, namely BC. The MPS
BCDE does not correspond to any single clique in the junction tree. Figure
5.3 visualises which parts of the MPD corresponds to aggregated parts of
the junction tree. The MPS BCDE has been formed by aggregating cliques
BCD and CDE as they are connected by an incomplete separator CD. This
can be exploited as structural changes in the Bayesian network only affect
the MPD structure locally. For example structural changes to the Bayesian
network affecting B, D and E will be local to the MPS BCDE and only the
cliques corresponding to that MPS would have to be recompiled - not the
entire tree.

42 CHAPTER 5. INCREMENTAL COMPILATION

BC

Junction tree

MPD

CDECDBCDBCABC

BCDEABC

Figure 5.3: MPD and junction tree. Each MPS and separator represents a
part of the junction tree, indicated by dotted rectangles.

5.2 Incremental compilation

As previously discussed the biggest reason for the long learning times when
using junction tree scoring was that scoring each candidate required a tri-
angulation of the entire graph. Decomposing the graph to a MPD allows
us to only re-triangulate the MPS’s that are affected by the changes. The
method is proposed in [FGO03] and discussed in terms of speeding up the
user feedback in a graphical environment (namely Elvira[Elv]). Incremental
compilation should lower the time required to re-compile when modifying
large Bayesian network structures, although naturally some amount of book-
keeping is required for maintaining a correspondance between the Bayesian
network and junction tree. In [FGO04] test are presented that shows that
the most performance is gained by incremental compilation when smaller
changes are made in between each recompilation. This seems reasonable as
smaller increments are more likely to affect a smaller part of the graph (and
thus requires fewer MPS’s to be retriangulated).

The process of incremental compilation is illustrated in figure 5.4 and ex-
plained in the following: The steps in the top (connected by arrows pointing
right) represents the initial steps needed for producing a junction tree and its
corresponding maximal prime subgraph decomposition. First the Bayesian
network graph G is moralized to obtaion moral graph GM , which is triangu-
lated to obtain a triangulation GT and construct the junction tree T and its
maximal prime subgraph decomposition TMPD.

Assume that some modifications are applied to graph G (e.g. add/re-
move/reverse arc) resulting in the updated structure G′ (step 1 in Figure
5.4). To perform incremental compilation (step 2) the moral graph must be
updated G′M . In step 3 the minimal set of maximal prime subgraphs affected
by the modifications are marked in TMPD, and for each marked connected
subgraph the following steps are performed: The subgraph gM of G′M are
identified by the variables of a connected marked subtree of T MPD and tri-
angulated gT to produce a junction tree t and its corresponding maximal

5.2. INCREMENTAL COMPILATION 43

Figure 5.4: The process of incremental compilation. (the figure is from
[FGO03])

prime subgraph decomposition tMPD (step 4). The graphs t and tMPD are
subgraphs used to replace parts of the junction tree T and decomposition
T MPD to produce an updated junction tree T ′ and decomposition T ′MPD

(step 5). These steps are formalised in algorithm 2 below:

Algorithm 2.

IncrementalCompilation(Modification list ModList, moral graph GM ,
Maximal Prime subgraph Decomposition tree T MPD , junction tree T)

1 for each modification mod ∈ModList
2 do L←ModifyMoralGraph(mod,G,GM)
3 case mod of
4 Delete link X → Y
5 do let MY be a MPS ∈ T MPD that contains both X and Y
6 MarkAffectedMPSsByRemoveLink(MY , nil, L, T MPD)
7 Add link X → Y
8 do MarkAffectedMPSsByAddLink(L, T MPD)
9 for each connected marked subtree TMPD ∈ TMPD

10 do T ← subtree of T corresponding to TMPD

11 V ← all variables included in TMPD

12 gM ← GM(V)
13 t← ConstructJoinTree(gM)
14 tMPD ← ConstructMPDTree(t, gM)
15 Replace(T, t, T)
16 Replace(TMPD, tMPD, TMPD)

Algorithm 2 performs the steps needed for incremental compilation. The
task performed by the algorithm can be divided in two parts: 1) Identify

44 CHAPTER 5. INCREMENTAL COMPILATION

affected parts of the Bayesian network and the junction tree that must be
re-compiled. 2) Perform re-compilation and replace relevant parts of the
junction tree. Lines 1 - 8 incrementally modifies the moral graph and marks
affected parts in the MPD tree. When all subtrees have been marked in the
MPD, lines 9 - 16 identifies the corresponding parts of the junction tree, re-
compiles each part and replace the subtrees of the MPD- and junction tree.
The additional algorithm called from IncrementalCompilation are de-
scribed in the next sections, and a few examples of incremental compilation of
simple changes to a graph are presented in Section 5.3. IncrementalCompilation

can handle single edge modifications (adding or removing a single edge), as
well as a sequence of edge modifications. It is relevant to note that in the
case of a single edge modifcation the loop in line 9 is only iterated once. For
our purposes we are only considering adding or deleting links, which is why
steps needed for adding or removing nodes have been ommitted.

5.2.1 Algorithms

This section presents supportive algorithms for doing incremental compila-
tion. The algorithms are based on the work in [FGO03], in which algorithms
for doing general purpose incremental compilation is presented (the algo-
rithms from the paper, as well as our comments on each, can be found in
appendix C). The algorithms have been designed with the purpose of using
incremental compilation for scoring candidates in a structural search, and
thus operations for adding or deleting nodes are omitted. Each algorithm is
presented along with a description of its purpose.

5.2.2 ConstructJoinTree

This algorithm constructs a junction tree from a directed acyclic graph,
through moralization and triangulation as described in Chapter 2. Invoking
ConstructJoinTree on the entire Bayesian network yields the complete
junction tree and invoking the algorithm on connected maximal prime sub-
graphs of a network yields the corresponding cliques. This algorithm only
differs from the usual procedure (described in Chapter 2) by the requirement
that the triangulation be minimal.

5.2. INCREMENTAL COMPILATION 45

Algorithm 3.

ConstructJoinTree(DAG G)

1 Moralize G to obtain GM .
2 Triangulate GM to obtain minimal triangulation GT .
3 Organize the clique decomposition induced by GT

as a junction tree T .
4 return T

5.2.3 ModifyMoralGraph

This algorithm modifies the moral graph such that it represents the moral
graph of the modified network. The return value is the set of edges that were
removed or added as a result of the modification. The check made in lines
6-8 of the algorithm ensures that no moral edges from the moral graph are
deleted if the involved nodes share children. Lines 9-12 check if there are
any moral edges that needs to be deleted along with X → Y . That is, if the
only shared child between X and another of Y s parents Z is Y , and there
is no edge between X and Z in the graph (the BN DAG), then the moral
edge between X and Z can be deleted. In the case of an added edge the list
returned contains a single directed link, where the case of a deleted edge the
list returned contains one or more undirected links.

Algorithm 4.

ModifyMoralGraph(modification mod, DAG G, moral graph GM)

1 L← ∅
2 case mod of
3 Add link X → Y
4 do Add X → Y to L
5 GM ← GM ∪ { all links needed to make Y ∪X ∪ parents(Y)

a complete subgraph in GM}
6 Delete link X → Y
7 do if children(X) ∩ children(Y) = ∅
8 then Delete X − Y in GM

9 Add X − Y to L
� delete any moral edges no longer needed

10 for each link X − Z ∈ GM where Z ∈ parents(Y)\{X}
11 do if X → Z,Z → X 6∈ G

and children(X) ∩ children(Z) = {Y }
12 then Delete X − Z in GM

13 Add X − Z to L
14 return L

46 CHAPTER 5. INCREMENTAL COMPILATION

5.2.4 MarkAffectedMPSsByRemoveLink

The purpose of this algorithm is to mark a MPS and any MPSs connected by
separators that would be incomplete after the modification. The algorithm
is a recursive depth first search, that use a list of links that have been deleted
from the moral graph to guide the search. If two MPSs are connected by a
separator affected by any of the links, the MPSs are marked and the search
continues. It is also worth mentioning that the list L contains undirected
links only, which is ensured by algorithm 4 ModifyMoralGraph.

Algorithm 5.

MarkAffectedMPSsByRemoveLink(Maximal Prime Subgraph MY ,
MZ , Link list L, Maximal Prime subgraph Decomposition tree T MPD)

1 Mark MY in T MPD

2 for each neighbour MK 6= MZ of MY ∈ T MPD

3 do S ← separator between MY and MK

4 for each link X − Y ∈ L
5 do if |S| ≥ 2 and X ∈ S and Y ∈ S OR either X ∈ S or Y ∈ S
6 then MarkAffectedMPSsByRemoveLink(MK ,MY , L, T MPD)
7 continue to next neighbour

5.2.5 MarkAffectedMPSsByAddLink

This algorithm marks two MPSs as well as the path between them. The link
list L (produced by algorithm 4 ModifyMoralGraph) contains a single
edge that has been added. If the path between the MPS’s that contains
families for the nodes of the link contains an empty separator, this separator
is removed and a new separator is created, directly connecting the two MPS’s.
Otherwise all MPS’s on the path are marked for re-triangulation. The family
of a node X is defined as X and its parents in the Bayesian network prior to
modification .

5.3. EXAMPLES WITH INCREMENTAL COMPILATION 47

Algorithm 6.

MarkAffectedMPSsByAddLink(link list L , Maximal Prime subgraph
Decomposition tree T MPD)

1 (X → Y)← the single element from L
2 Let MY be a MPS ∈ T MPD containing the family of Y

and let MX be some MPS ∈ T MPD containing the family of X
such that the path from MX to MY is minimal in terms of
the number of separators.

3 if The path between MX and MY contains an empty separator S
4 then Delete S
5 Connect MX and MY directly, with a new separator

containing X
6 Mark MX and MY in T MPD

7 else Mark MX , MY and all MZ on the path between them in T MPD

5.2.6 Replace

Algorithm 7 replaces a subtree with another one and connects the separa-
tors, possibly merging cliques as necessary. This is used to merge the newly
compiled parts of both the junction tree and the MPS with the parts that
are unaltered.

Algorithm 7.

Replace(Cluster tree told, Cluster tree tnew, Cluster tree T)

1 S ← all separators connecting a cluster in told to a cluster outside told in T
2 Delete told in T , but keep S
3 T ← T ∪ tnew

4 for each separator S in S
5 do C ← the cluster in T that S is associated to
6 let Cnew be a cluster in tnew such that C ∩ Cnew is maximal.
7 if S = Cnew

8 then Merge Cnew and C in T
9 else Connect S to Cnew in T

5.3 Examples with incremental compilation

In this section we provide some examples of incremental compilation.

48 CHAPTER 5. INCREMENTAL COMPILATION

5.3.1 ASIA network

In our examples we will use the asia network[LS88] that is shown in figure
5.5. The moralized and triangulated graph are shown in figures 5.6(a). This
leads to the junction tree shown in figure 5.7(a). From this structure we
can construct the MPD-tree shown in figure 5.7 by using algorithm 1 Con-

structMPDTree. One noteworthy detail is that the cliques LBS and
LBE is merged in the MPS-tree (while separate in the junction tree). The
reason is that the nodes (L and B) making up the separator between the
cliques are not fully connected in the moral graph.

A

D

E

X

B

S

LT

Figure 5.5: Asia network

5.3.2 Example 1 - Deleting a link

This example is based on the Asia example from [OM02]. The link A → T
is deleted, splitting the Bayesian network in two graphs. In this example we
will walk through the algorithm is some detail to show mechanics in play.
The network is shown in figure 5.8

Having deleted the link, we start the IncrementalCompilation algo-
rithm with the various moral graph, junction tree and MPD-tree for asia as
parameters.

• The first order of business is the ModifyMoralGraph algorithm,
that updates the moral graph and returns a list of changed edges.

• Since the nodes A and T have no common children and T has no other
parents, the only action takes in the removal of the edge A − T from
the moral graph.

• ModifyMoralGraph returns the list L = {A− B}.

5.3. EXAMPLES WITH INCREMENTAL COMPILATION 49

X

E

D

B

S

LT

A

(a) Moralized and triangulated graph for asia

Figure 5.6: Asia network

AT

T

TLE

E

EX

LE

LBS

LB

LBE

EB

DEB

(a) Junction tree for Asia
network

AT

T

TLE

E

EX

LE

EB

DEB

LBES

(b) Maximal prime sub-
graph decomposition tree
for Asia network

Figure 5.7: Junction tree and MPD for asia network

50 CHAPTER 5. INCREMENTAL COMPILATION

X

A

T L

S

B

D

E

Figure 5.8: Asia network with link A→ T removed

• As we are deleting edges we need to call MarkAffectedMPSs-

ByRemoveLink with this list as a parameter. Another parameter
is a MPS that contains both A and T , which can only be the MPS AT .

• The first thing that happens in MarkAffectedMPSsByRemoveLink

is that AT is marked for recompilation. The next thing is to determine
whether other MPSs need to be marked as well.

– We check AT s neighbour TLE by checking if the separator be-
tween the two MPS (the separator T) contains both A and T .
Since it does not TLE is not marked.

– AT has no other neighbours, so we are done.

• By now we have the MPS AT marked in the MPD-tree and the moral
graph updated to reflect the removal of the edge. The next step is to
update the junction tree and the MPD-tree. This situation is shown in
figure 5.9

• We extract the part of the moral graph that is included in the marked
subgraph and use this to generate new junction trees and MPD-trees
to replace the old parts.

• The junction tree consists simply of the two nodes A and T (as they
are not connected).

• The MPD-tree has both of these nodes connected by an empty sepa-
rator. The algorithm does not allow for more than one MPD-tree so
empty separators are introduced at this step.

5.3. EXAMPLES WITH INCREMENTAL COMPILATION 51

X

E

D

B

S

LT

A

(a) Moral graph for asia without A→ T (b) Marked subtrees in the
MPD-tree for asia

Figure 5.9: Asia network with marked MPSs and updated moral graph

• All that remains at this step is to use the Replace algorithm to replace
the old AT cliques and MPS with the newly generated ones.

• In the case of the junction tree we have the separator T that was
connected to the AT clique before the modification. This separator
“contains” the same nodes as the T clique, so the T clique is merged
into the TLE clique. The A clique remains separate.

• In the case of the MPD-tree, the situation is similar except that the A
clique is still connected via the empty separator introduced previously.

• Having updated both the junction tree and the MPD-tree (to the states
shown in figure 5.10) we are now done.

5.3.3 Example 2 - Adding a link

This example shows what happens when an edge is added between the nodes
A and B, resulting in the graph shown in Figure 5.11. In this scenario the
cliques AT, TLE,LBS and LBE, and the MPSs AT, TLE and LBES needs
to be recompiled and the new structure inserted with Replace.

• As Before, the first step is ModifyMoralGraph. As A and S now
has a common child, they are “married” by adding the edge A− S to
the moral graph.

52 CHAPTER 5. INCREMENTAL COMPILATION

TLE

E

EX

LE

LBS

LB

LBE

EB

DEB

A

(a) Junction tree

TLE

E

EX

LE

EB

DEB

LBES

A

empty

(b) Maximal prime sub-
graph decomposition tree

Figure 5.10: Updated junction tree and MPD-tree

D

B

S

L

X

E

T

A

Figure 5.11: Asia network with link A→ B added

5.3. EXAMPLES WITH INCREMENTAL COMPILATION 53

• ModifyMoralGraph returns the list {(A → B)} and leaves the
moral graph in the state shown in Figure 5.12.

D
X

E

B

S

T L

A

Figure 5.12: Moral graph for the asia network with A→ B added

• The next step is MarkAffectedMPSsByAddLink. This algorithm
First identifies two MPS, one that holds the family of A, which is the
MPS AT ; and another that holds the family of B. The family of B is
the set {B, S} as S is a parent in the graph previous to the modification,
and the MPS that holds this set is the MPS LEBS.

• The path between AT and LEBS contains the additional MPS TLE,
and all of these MPS’s are marked for re-triangulation as shown in
Figure 5.13.

• The variables in the marked MPS’s (that is A, T, L, E,B and S) are
saved as the set V .

• The part of the moralized graph that holds the variables in V are
extracted and stored as gM(shown in Figure 5.14(a).

• A new junction tree is created from gM , this junction tree is shown in
Figure 5.14(c). Notice that the outcome of this step depends on the tri-
angulation heuristic chosen, and as such there are different possibilities.
The heuristic employed here is minimum fill-ins.

• From the newly create join tree a new MPD (shown in Figure 5.14(d))is
created.

54 CHAPTER 5. INCREMENTAL COMPILATION

TLE LBES

AT

T

E

EX

LE

EB

DEB

Figure 5.13: Marked MPS’s in the asia MPD

• All that remains now is to replace the obsolete parts of the junction
tree and MPD with the newly created parts. This is done in Replace:

• The separators in the junction tree that needs to be updated are S1 = E
and S2 = EB:

– For the separator S1 connected to the clique C1 = {EX} in the
unaltered part of the junction tree, the new clique that has the
most nodes in common with C1 is either LEB or TLE. TLE is
chosen arbitrarily and S1 is connected.

– For the separator EB connected to the clique C2 = {DEB} in
the unaltered part of the junction tree, the new clique that has
the most nodes in common with C2 is LEB and S2 is connected.

– We have now constructed the new join tree as shown in Figure
5.15(a).

• The separators in the MPD that needs to be updated are SM
1 = E and

SM
2 = EB

– For the separator SM
1 connected to the cluster CM

1 = {EX} in
the unaltered part of the MPD, the new cluster that has the most

5.3. EXAMPLES WITH INCREMENTAL COMPILATION 55

E

B

S

LT

A

(a) Part of moral graph

E

B

S

LT

A

(b) Part of moral graph triangulated

AL

TLE

LEB ATL

ALSB

LE TL

(c) New join tree to be included in the
junction tree for asia

LEB ALSB

ATLE

ALLE

(d) New MPD to be included in the MPD
for asia

Figure 5.14: Affected part of asia network when adding link

TLE

ALSB

AL

EX
E

DEB

EB

TLLE

ATLLEB

(a) Join tree

ATLE

ALSB

AL

DEBEB

EX

E

LEB

LE

(b) MPD

Figure 5.15: Final MPD and join tree

56 CHAPTER 5. INCREMENTAL COMPILATION

nodes in common with CM
1 is either LEB or ATLE. ATLE is

chosen and S1 is connected.

– For the separator SM
2 connected to the cluster CM

1 = {DEB} in
the unaltered part of the MPD, the new cluster that has the most
nodes in common with CM

2 is LEB and S1 is connected.

– We have now constructed the new MPD as shown in Figure 5.15(b).

• We have only a single connected marked subgraph so we only need to
iterate through the loop once, and thus we are done.

Chapter 6

Incremental Compilation in
JTC Scoring

In the previous chapter we introduced a way to do incremental compilation
of Bayesian network and we hope to apply this method in combination with
the JTC scoring to produce a learning method that allows balancing between
accuracy and effective complexity as well as a speedier learning than those
that were found in [KP07]. Bear in mind that the search strategy we are
proposing is a simple greedy search as described in Section 4.1 and propose
to use incremental compilation as part of the score function. The important
distinction is that the point of doing incremental compilation of a (sub-)graph
is to speed up the calculation of the junction tree score, not to produce a
network. For this reason some of the algorithms have been modified for this
purpose. These changes are described in Section 6.3. But before we get to
that we describe a few observations that may allow us to discard candidates
before without doing any compilation at all.

6.1 Establishing bounds on complexity

In this section we will show how knowing the score of a network can be used
in determining bounds on “nearby” networks in the search. In the Figure 6.1
we have a selected network G0 and three candidate networks G1, G2, G3 that
can be reached with a single arc-operation. For network G0 we know that
the score is:

Sc0 = LL0 − Comp0

(as per junction tree scoring described in Section 4.3. The score is composed
of the Log-Likelihood for the network (a negative number) and the size of the
corresponding junction tree, which is calculated as the total sum of the size

57

58 CHAPTER 6. INCREMENTAL COMPILATION IN JTC SCORING

of the cliques (a positive number). The two components of the score can be
calculated and cached individually and, depending on the size of the database,
the log-likelihood is usually faster to compute than the junction tree size. In
this setup two different types of bounds are interesting: A bound on the total
score and a bound on the size of the junction tree. The correlation of these
two bounds is that a lower bound on the size of the junction tree imposes an
upper bound on the total score, and vice versa. We denote bounds as Sc for
an upper bound on the score function and Sc for a lower bound, and Compl
for an upper bound on the junction tree size and Compl for a lower bound.

G0

G1 G2 G3

Figure 6.1: Network G0 and candidates G1, G2 and G3

These properties can be exploited to reason about the score for a candidate
network without compiling it. A discriminating bound for the candidates
would be an upper bound on the score. This type of bound can be produced
when adding edges. The addition of a link will always produce a network of
at least the same size as the one previous to the addition.

Theorem 1. Given a network G0 with score Sc0 = LL0−Compl0
and a candidate G1 (for which the score is unknown) where the
only difference is the addition of one link, it will always be the
case that Compl0 ≤ Compl1 if optimal triangulation is used.

Proof:
A junction tree JT1 for graph G1 with moral graph M1 and optimal

triangulation T1, cannot be smaller than the junction tree JT0 for graph G0

with moral graph M0 and optimal triangulation T0, when the difference from
G0 to G1 is the addition of a single edge X → Y .

To show that this is the case, a valid triangulation T ′ for M0 can be
constructed from T1 as T ′ = ET1

∪ (EM1
\EM0

). The triangulation T ′ may not
be the optimal triangulation T0 for M0, thus we have that size1 = size′ ≥
size0, as for any triangulation of a moral graph M , we know that sizenon ≥
sizeoptimal comparing the junction tree for the optimal triangulation Toptimal

with any non-optimal triangulation Tnon.

6.2. PREDICTING JUNCTION TREE STATE SPACE WITH MINIMAL RE-COMPILATION59

Theorem 1 can be used in establishing the upper bound for the score of new
network G1 using only the log-likelihood:

Corollary 1. Given a network G0 with score Sc0 = LL0−Compl0
and a candidate G1 (for which the score is unknown) where the
only difference is the addition of one link, then Sc1 = LL1 −
Compl0

The upper bound is useful in that it describes the maximum score a
particular network can archive. If the upper bound for a candidate is lower
than the score for the best score so far, the candidate can be ignored.

Another way to use the two part nature of the score is to compare the
candidates directly and discriminate based on log-likelihood alone.

Proposition 1. Given a current best score Sc0 and a candidate
G1 (for which the score is unknown, but the Log-Likelihood LL1

is known), it is the case that if LL1 < Sc0 the G1 can be ignored
since the junction tree size can only reduce the score further.

The combination of the observations regarding the upper bound when
adding a link and the possibility to complete ignore certain networks based
only on their log-likelihood should allow us to save quite a few junction tree
size measurements (with associated triangulations) and thus speed up the
search. The problem is that Theorem 1 demands that the triangulation is
optimal. In practice this can not be guaranteed as we employ heuristics in
out triangulation.

6.2 Predicting junction tree state space with

minimal re-compilation

The purpose of our work is to use incremental compilation for speeding up
structural learning, using likelihood and the junction tree state space as the
score metric. Acknowledging that the most expensive step in the process
will be the triangulation part, additional steps should be taken such that as
few unnecessary triangulations will be performed. This involves identifying
the special cases where triangulation can be omitted to either score or re-
ject a candidate network structure, as well as measures for only performing
“enough” triangulation to be able to reject certain candidates.

We have the following ideas:

60 CHAPTER 6. INCREMENTAL COMPILATION IN JTC SCORING

• When adding or deleting an edge such that no changes are implied in
the moral graph, the state space of the junction tree remains unchanged
and just calculating a new likelihood will be sufficient for scoring the
candidate.

• Maintain the product of the state space for each nodes family. When
adding a link X → Y it should be checked if |X| · |Y | ·

∑

Z∈pa(Y) |Z|
alone would make the state space so large that new score is worse than
the best so far.

• If the scoring of a candidate reaches the point at which triangulation
is performed, the score of the state space should be incrementally up-
dated as cliques are identified, and triangulation should be aborted if
it reaches a point where the induced state space makes the total score
worse than best so far.

6.2.1 Special cases

Predicting junction tree state space of a modified Bayesian network without
compiling a new junction tree is possible when the modification is an instance
of some special cases. One such case is deleting the single edge of a node.

Theorem 2. If X only has a single edge X → Y , and the edge
were deleted, then the state space S1 of a resulting junction tree
can be calculated without compilation like this

S0 ← size of junction tree JT ,
∑

C∈JT

∏

Z∈C |Z|

CY ←the single clique ∈ JT where X ∈ C

S1 ← S0 −
∏

Z∈CY
|Z|+

∏

Z∈CY \{X} |Z|+ |X|

Proof: As the family for Y (including X) becomes a fully connected set after
moralization, it will also be fully contained in a single clique CY . Removing
X from the set of parents of Y would result in two new cliques: CX containing
only X and C ′

Y containing CY without X. The size of a resulting JT would
be the same as the size of the JT before the modification except that the
contribution of CY would have been replaced by the sum of contributions
from the two new cliques CX and C ′

Y .

Another special case of modifications is edge additions where the new
edge connects two disjoint subgraphs.

6.3. LEARNING PROCESS 61

Theorem 3. When adding an edge X → Y such that two dis-
joint subgraphs of a Bayesian network becomes connected, then
the state space S1 of a resulting junction tree can be calculated as

S0 ← size of junction tree JT ,
∑

C∈JT

∏

Z∈C |Z|

CY ← clique that contains Y ∪ pa(Y)

C ′
Y ← CY ∪ {X}

S1 ← S0 −
∏

Z∈CY
|Z|+

∏

Z∈C′

Y

|Z|

Proof: When adding edge X → Y , X becomes a member of the family for
Y , and as the two subgraphs were disjoint before, triangulation would not
introduce undirected cycles either. This means that the clique CY with the
family of Y will be replaced by a clique C ′

Y which is CY extended with a single
new member X, and a separator will be introduced connecting this clique
to some clique containing X. The size a resulting JT would be the same as
the size of the JT before the modification except that the contribution of CY

would have been replaced by the contribution from the new clique C ′
Y .

If structural search was performed using a full triangulation of each candi-
date structure to compute the junction tree size, then these two cases would
improve the time needed to score a candidate network as the costly triangu-
lation could be omitted.

But when using incremental compilation these two cases of modifications
become trivial, as the moral subgraph is already triangulated in terms that
no fill-in edges are needed. Thus the before costly triangulation becomes less
expensive and the method described in these cases might become unnecessary.
This leaves us to believe that predictions about junction tree state space
is most interesting when the modifications performed are non-trivial (cases
there the moral subgraph does need triangulation). Such special cases would
have to be very carefully explored to ensure that they are worth the effort to
detect them.

6.3 Learning process

The purpose of using incremental compilation is to produce a junction tree
complexity score for a candidate quicker than using a complete compilation.
This means that only the operations needed to produce a complexity score is
required to be performed and remaining operations should be postponed and
only performed for the chosen candidate. Structural learning is performed

62 CHAPTER 6. INCREMENTAL COMPILATION IN JTC SCORING

as a regular greedy search, with the score function being Algorithm 8 de-
scribed below in Section 6.3.1. When all candidates have been scored and
one selected, Algorithm 10 (Commit described in Section 6.3.3) is then used
to update the graph to the chosen candidate. The data structures that are
maintained in between search steps and for each candidate are described in
Section 6.3.2

6.3.1 Scoring

This algorithm is similar to Algorithm 2 IncrementalCompilation in that
is utilises the other algorithm to perform a partial triangulation of a graph.
The different is that this algorithm does not alter the graph, instead it returns
a junction tree score(∆size) and enough information that the actual changes
can be performed later. This is very important in the context of learning
as we do not know which changes to perform until we have evaluated all
candidates.

Algorithm 8.

Score(Modification list ModList, moral graph GM , Maximal Prime sub-
graph Decomposition tree T MPD , junction tree T)

1 for each modification mod ∈ModList
2 do L←ModifyMoralGraph(mod,G,GM)
3 case mod of
4 Delete link X → Y
5 do let MY be a MPS ∈ T MPD that contains both X and Y
6 MarkAffectedMPSsByRemoveLink(MY , nil, L, T MPD)
7 Add link X → Y
8 do MarkAffectedMPSsByAddLink(L)
9 ∆size ← 0

10 for each MPS M ∈Mmarked

11 do SMPD ← ∅
12 V ← ∅
13 sizedeleted ← IdentifyMPDSubtree(M,SMPD, V, null, sizedeleted)
14 SJT ← JT separators corresponding to MPS separators in SMPD

15 gM ← GM(V)
16 CJT ← ConstructJoinTree(gM)
17 sizenew ← GetNewSize(SJT , CJT)
18 ∆size ← ∆size + sizenew − sizedeleted

19 return 〈∆size,SJT ,SMPD, CJT ,ModList, gM〉

6.3. LEARNING PROCESS 63

The IdentifyMPDSubtree algorithm performs a depth-first recursive search
of the MPD to identifies the clusters that make up a particular subtree. As
it moves along it uses the marks left by MarkAffectedMPSsByAddLink

and MarkAffectedMPSsByRemoveLink and removes those that it finds
to ensure that MPDs are only added to the list SMPD once. At the same
time it performs this walk it collects the state space of the junction trees
corresponding to the MPSs it ads to the list. In this way the state space for
the part of the junction tree that are to be replaced are collected and this is
the final value to be returned. This value can then be used together with the
score for the new parts of the junction tree to calculate the total score for a
candidate.

Algorithm 9.

IdentifyMPDSubtree(MPS M , List of MPD separators SMPD, List of
variables V , MPD Separator Signore, State space of deleted cliques sizedeleted)

1 V ← V ∪ variables in M
2 ZMPD ← list of separators in M
3 for each separator S 6= Signore in ZMPD

4 do M ′ ← other MPS in S
5 SJT ← separator in JT that S represents
6 if M ′ is marked
7 then sizedeleted ← sizedeleted+IdentifyMPDSubtree(M ′,SMPD, V, S, sizedeleted)
8 else SMPD ← SMPD ∪ S
9 C ← list of cliques from JT associated with M

10 for each C ∈ C
11 do sizedeleted ← sizedeleted+ state space of C
12 if M has pointer to location inMmarked

13 then if Signore 6= null
14 then inMmarked: remove M
15 return sizedeleted

Replace (Algorithm 7) substitutes the obsolete parts of the junction and
MPD trees with new substructures which means that the algorithm enforces
a legal tree structure. Calculating the complexity of the junction tree only
requires a valid set of cliques, and as such a legal tree structure is not a
requirement for our purpose. Therefore the algorithm has been replaced by
GetNewSize and ReplaceFinal (Algorithm 11).The difference between
Replace and GetNewSize is that operations that connects the cluster tree
tnew to T producing a valid tree structure, has been omitted. The only task

64 CHAPTER 6. INCREMENTAL COMPILATION IN JTC SCORING

that GetNewSize performs is to calculate the new junction tree score. To
do this it need to consider that any pair of clusters where the members of one
is a subset of the members of the other should merged. The algorithm does
not do the actual merge, it simply calculates the correct score considering
this special case as the score would not be accurate if both clusters in any
such pairs contributes to the total state space.

6.3.2 Data structures

In this section we describe the data structures that are involved in scoring
with incremental compilation. These come in two categories: Some structures
are generated for each candidate when scored and used if the candidate was
the one with the best score. The other variety are structures that are updated
each time a candidate is selected (that is, once for each step in the search)
and are reused in the scoring of the next set of candidates.

The structures that are only updated once per step requires a some book-
keeping but on the other hand allows for speedier lookup in the scoring of all
the candidates. The structures are:

• A list of parents for each node in the network. By caching this infor-
mation this list can be created once instead of each time it is needed.

• The log-likelihood for the family of each node in the network, like in
regular BIC scoring.

The structures that represents a candidate and are returned from a call
to Score are:

• SJT is a list of junction tree separators that should be disconnected
from an obsolete part of the junction tree and reconnected to the new
junction tree.

• SMPD is a list of junction tree separators that should be disconnected
from an obsolete part of the MPD and reconnected to the new MPD,
when it is created later.

• CJT is a new junction tree made from the variables that were affected
by the change to the network.

• ModList is the list of arc operations that transforms the original graph
into the candidate.

• gM is a moral graph over the variables that were affected by the change
to the network.

6.3. LEARNING PROCESS 65

If a candidate is selected, these structures are passed to commit which is
described below.

6.3.3 Applying changes

When a candidate is selected the graph needs to be updated to represent it.
This is the duty of Algorithm 10. It is not until Commit has been called
that any changes are made to the graph and the junction tree.

Algorithm 10.

Commit(〈∆size,SJT ,SMPD, CJT ,ModList, gM , GM〉)

1 CMPD ← ConstructMPDTree(CJT , g
M)

2 ReplaceFinal(SJT , CJT)
3 ReplaceFinal(SMPD, CMPD)
4 for each modificiation mod ∈ModList
5 do case mod of
6 Add link X → Y
7 do in children(X): add Y
8 in parents(Y): add X
9 Remove link X → Y

10 do in children(X): remove Y
11 in parents(Y): remove X

ReplaceFinal is used in the Commit algorithm to unite a newly com-
piled part of the junction tree or MPD into the old structure. It checks for
empty separators to ensure the MPD is never a forest and is responsible that
the resulting structures are valid.

66 CHAPTER 6. INCREMENTAL COMPILATION IN JTC SCORING

Algorithm 11.

ReplaceFinal(S, C)

1 for each separator S in S
2 do if |S| = 0 � empty separator. connects anywhere.
3 then in S: overwrite null-pointer with a pointer to first element in C
4 continue to next separator
5 C ← the cluster that S is associated to
6 Cnew ← null
7 max← 0
8 for each cluster C ′ in C
9 do maxcurrent ← 0

10 for each node A in C ′

11 do for each node B in C
12 do if A = B
13 then maxcurrent ← maxcurrent + 1
14 if maxcurrent > max
15 then max← maxcurrent

16 Cnew ← C ′

17 in S: overwrite null-pointer with a pointer to Cnew

ReplaceFinal uses a procedure called MergeInto for merging a clique
C1 into another clique C2. This is done by adding separators from C1 to C2

and updating any pointers. When C1 has been merged into C2, C1 is deleted.

Algorithm 12.

MergeInto(Cluster C1, Cluster C2)

1 S ← list of separators from C1

2 for each separator S in S
3 do in S: replace C1 with C2

4 in C2: add S to list of separators
5 delete C1

This concludes the modifications of incremental compilation neccessary
for speeding up the JTC scoring method.

Part III

Results

67

Chapter 7

Experiments

To investigate the practical usability of using the proposed method of the JTC
scoring criterion in combination with incremental compilation, a number of
experiments have been performed. The experiments consists of the following:

1. Perform structural learning from training data to produce networks
that can be used in the remaining experiments.

2. Submit trained networks to an inference bencmarking to measure ef-
fective performance.

3. Submit trained networks to a classification benchmarking in relation to
the set of training data and a set of test data.

Experiments will be conducted using both the proposed method for doing
structural learning as well as using the BIC scoring criterion.

7.1 Test setup

The basis for the experiments are sets of training data. Most of these data
sets we have generated from a set of networks, which we will denote the
“gold standard”networks. Additionally some experiments were performed on
training data for which there exists no gold standard network, and for which
traditionally learning methods has been problematic to use. The networks
we have used as our gold standard networks are listed in Table 7.1.

The first network, Asia, is the well known toy-network often used as an
example in education when introducing Bayesian networks. The network is
rather small so we do not expect the significant results to come from this. The
Alarm network is a research network, often used in connection with structural

69

70 CHAPTER 7. EXPERIMENTS

Network name # Nodes Dimension (sum of CPT sizes)
Asia 8 36

Alarm 37 752
Hut 74 8148

Big dense 25 5084

Table 7.1: The original (Gold-standard) networks used for generating the
training data

Name # Training cases # Test cases
Asia 1000 1000

Alarm 10000 10000
Hut 10000 10000

Big dense 10000 10000
Elsam 4053 3246

Table 7.2: The data sets available. (all data sets except for Elsam are gen-
erated from the respective gold-standard networks)

learning and classification. The Hut network models a real-world domain,
and the network produced interesting results in the preliminary work. The
network Big dense was automatic generated with the tool presented in [ICR],
and did also produce interesting results in the preliminary work.

In addition we have a large data set from a research project [var04] on
establishing a monitoring system giving early warnings when a production
plant may be heading into serious production disturbances. The data set
proved to be problematic for traditionally learning methods as the networks
produced were too complex. It would be interesting to see the performance
of the proposed method on these data. The data provided from that project
have been split in a training data set and a test data set.

In total we have ten data sets available for the experiments (two sets for
each problem), the data sets are summarized in Table 7.2.

7.1.1 Test Setup for Structural Learning

All networks produced during structural learning were learned using a num-
ber of different λ-values, to test whether the values represents a balance of
accuracy and effective complexity. As the two scoring criteria in question,
namely JTC and BIC, differs the networks learned using either is not di-
rectly comparable by their λ-values. Learned networks for different score
functions should instead be compared on common properties such that the

7.1. TEST SETUP 71

BIC score or log-likelihood for a given network. Another reason for using a
number of different λ-values for training, is that it should produce a bigger
span of learned networks that might overlap on comparable features, making
comparisons easier.

The following statistics were collected during structural learning:

• The total time it took to learn the network.

• The number of steps the algorithm took (which is the height of the
search tree as depicted in Figure 4.2 on page 33).

• The BIC score for the final network given the training data (also for
the networks scored using IC-scoring).

• The log-likelihood of the network given the training data.

• Total size of the CPTs (conditional probability table) of learned net-
work

• Size of Junction tree (sum of clique sizes) produced using clique size
triangulation heuristic on the learned network.

7.1.2 Test Setup for Inference Benchmarks

For the inference benchmarking the set of training data with 40% MCAR
(40% of the values missing completely at random [JN07] page 200) were
propagated, by randomly withhelding evidence for 40% of the variables. The
inference benchmark has two purposes. One purpose is to give a picture of
the relationship between the λ-values and effective complexity, namely the
inference time. The other purpose is to measure the accuracy of the learned
networks. The accuracy is measured in terms of the Kullback-Leibler diver-
gence (also known as the relative entropy) [KL51], [SJ80] from the generating
distribution to the induced distribution, that is from the gold-standard net-
work to the learned network.

For proability distributions P and Q of a discrete random variable, the
Kullback-Leibler divergence from P to Q is defined to be:

DKL(P ||Q) =
∑

X

P (xi)log2
P (xi)

Q(xi)
(7.1)

Note that the Kullback-Leibler divergence is not symmetric, which means
that DKL(P ||Q) 6= DKL(Q||P). Another property of the Kullback-Leibler
divergence is is that DKL(P ||Q) ≥ 0, and DKL(P ||Q) = 0 if and only if

72 CHAPTER 7. EXPERIMENTS

P = Q. Thus it implies that when seeking a network to approximate the true
distribution P , one should select the network presenting the distribution Q
such that DKL(P ||Q) is minimized.

For our purposes we modify the Kullback-Leibler divergence such that
an average is calculated for the entire set of cases. For the distributions
P and Q we use the gold-standard network for P as the true distribution
and the learned network to be the approximated distribution Q. Only the
divergence for variables for which evidence has been withheld are considered,
so the average Kullback-Leibler divergence for the inference benchmark can
be expressed as:

DKL(P ||Q) =
1

N

N
∑

i=1

1

|Vi|

∑

X∈Vi

P (xj|ci)log2
P (xj |ci)

Q(xj |ci)
(7.2)

Where c1, . . . , cn ∈ D is a set of cases, P is the distribution presented
by the gold-standard network, Q is the distribution presented by the learned
network, N is the number of cases in D, Vi is the number of query variables
for case i for which evidence is withheld in both P and Q.

Thus the following information was collected during the inference bench-
marks for learned networks for which a gold-standard network exists:

• Time taken to propagate all training data cases in the learned network

• Accuracy of the learned network in terms of the average Kullback-
Leibler divergence

7.1.3 Test Setup for Classification Benchmarks

Classification is a basic task in data analysis and pattern recognition that
requires the construction of a classifier [FGG97], [JN07] Ch. 8, [CS96]. A
classifier is a function that assigns a class label to instances described by a
set of features. That is you have a set of feature variables {F1, . . . , Fn} and
a class variable C, where the states of C corresponds to the possible classes.
Bayesian networks learned from at data set of observations over feature vari-
ables and class variable, {F1, . . . , Fn} ∪ C, can be used for classification.
Classification is then done by calculating P (C|f1, . . . , fn) for a given instance
{f1, . . . , fn}, and predicting the class with the highest posterior probability.

A way to distinguish the quality of a Bayesian classifier is by its ability
to classify not-yet-seen cases. For the classification benchmark a set of test
data have been generated from the gold-standard networks. In the case
where we do not have such a network, we have retained a portion of the

7.2. EXPERIMENTAL RESULTS 73

training data such that the remaining portion can be used as a test set.
The learned networks are then used as Bayesian classifiers to classify the
instances represented in the test data. For each case in the test data, 40% of
the variables are randomly selected as the feature variables, and one of the
remaining is selected as the class variable. For a given case, only the selected
feature variables F1, . . . , Fn will receive evidence. The classification will be
ranked true or false by comparing the predicted class to the the class observed
in the given case. The accuracy of the classifier can then be expressed as:

ACC =
#Correct

#Wrong
(7.3)

where #Correct is the number of correctly classified cases and #Wrong is
the number of wrongly classified cases. Thus the following information is
collected for the classification benchmarks:

• The accuracy of the network as a classifier for the test data.

• The accuracy of the network as a classifier for the training data.

The results from the experiments can be found in Section 7.2

7.2 Experimental Results

The following pages presents the experimental results of using the JTC score
function in combination with incremental compilation for structural learning
in comparison to using the BIC score function. The information collected
from structural learning and the inference benchmarks can be found in Tables
7.4 p. 78 (Alarm), 7.5 p. 79 (Hut), 7.6 p. 80 (Big dense), 7.7 p. 81 (Elsam)
and 7.3 p. 77(Asia). The colums of the tables are:

• λ the lambda value used in the score function.

• Learn. Time the time it took to learn the networks in seconds.

• Steps The number of steps taken by the algorithm (as described in
Section 7.1.1).

• CPT dimension of the resulting network (measured as the sum of the
size of each CPT)

• JT size (RH) junction tree size of the junction tree used for structural
learning with incremental compilation. (measured as the sum of state
space for the cliques).

74 CHAPTER 7. EXPERIMENTS

• Inf. time the time it took to propagate the set of training data with
40% MCAR (measured in seconds).

• KL Average Kullback-Leibler divergence from the gold-standard net-
work to the learned network in question (as described in Section 7.1.2).

• BIC the BIC score of the resulting network given the training data.

• LL the log-likelihood of the resulting network given the training data.

• JT size (H) junction tree size of the junction tree used for the inference
and classification benchmarks. Note: JT size (RH) and JT size (H)
might differ for some of the results, as the sequence for eliminating
equally good candidates might differ between RHugin (RH) used for
structural learning and Hugin (H) used for inference and classification
benchmarks.

The information collected from the Bayesian classifier experiments can be
found in Tables 7.9 p. 82 (Alarm), 7.10 p. 83 (Hut), 7.11 p. 83 (Big dense),
7.12 p. 84 (Elsam) and 7.8 p. 82 (Asia). The columns of the tables are:

• λ the lambda value used in when learning the network.

• ACCtest accuracy of the network as a Bayesian classifier on the set of
test data, measured in terms of #Correct

#Wrong
as described in Section 7.1.3.

• ACCtraining accuracy of the network as a Bayesian classifier on the set
of training data used when learning the network.

A number of observations can be made. Many of the observations are sup-
ported by the preliminary results of [KP07], summarized in Appendix A.

1. The λ values for JTC seems to be a good indicator of the junction
tree complexity in the learned network (that is, low values produce less
complex junction trees than higher values), as opposed to the λ value
in BIC where the junction tree complexity seems unpredictable as it
rapidly explodes. This can be seen in Figure 7.2 and by inspecting JT
size and λ columns in data for all networks, Tables 7.4 (Alarm), 7.5
(Hut), 7.6 (Big dense), 7.7 (Elsam).

2. Networks with low inference time are generally concentrated about the
low end of the λ values. This can be seen by inspecting the λ and Inf.
time columns in data for all networks, Tables 7.4 (Alarm), 7.5 (Hut),
7.6 (Big dense), 7.7 (Elsam).

7.2. EXPERIMENTAL RESULTS 75

3. Higher λ values favor more densely connected networks which can be
seen in Figure 7.3, and higher λ values generally also results in higher
log-likelihood scores which can be seen in Figure 7.5. Especially net-
works learned with BIC was susceptible to a rapid increase in network
size for higher λ values. For networks learned with JTC only Elsam
and Big dense seems to exhibit a rapid increase in network size for the
highest λ values (but the rapid increase for Big dense with JTC and
λ0.95 this is somewhat expected, as with such a high λ value learning
will be almost entirely based on likelihood).

4. Some of the high λ value networks learned with BIC scoring produced
networks which were impossible to compile due to memory limitations
or intractable to use for inference, and as a result some benchmarking
information have not been collected for them. This relates to the fol-
lowing networks: Big dense λ0.9 and Elsam λ0.5 for which inferrence
became intractable as a single case took about 10 seconds or more
to propagate and Elsam λ0.8 and Hut λ0.9 which were impossible to
compile due to memory limitations.

5. For λ values ≤ 0.5, the learning time for JTC is comparable to the BIC
learned networks with λ0.5 (which exhibits the same performance as the
“unmodified BIC score function” as 2 ·BIC(S|D, λ = 0.5) = BIC(S|D),
refer to Section 4.2), except for the Elsam network. The JTC learning
time is comparable in the sense that it is close to twice the time for BIC
λ0.5. This can be seen by inspecting the λ and Learn. Time columns.

6. Larger λ-values may increase the learning time significantly for JTC
scoring, this can be seen in Figures 7.4 and by inspecting the λ and
Learn. Time columns. This behavior is expected as larger parts of the
MPD structure needs to be recompiled when networks grow denser,
as more cliques will be collected in the same MPSs. Thus we suspect
that for the higher λ values for JTC there is little to gain from using
incremental compilation, as almost the entire junction tree will have to
be recompiled during the search.

7. For the classification benchmarking all networks performed nearly as
good (or bad) as the gold-standard networks with regards to predicting
the training data, and with regards to predicting the test data. The BIC
learned networks seems to have a slightly higher accuracy as classifiers
compared to the JTC learned networks. This can be seen by inspecting
the Acc. Test and Acc. Train columns for in Tables 7.9 (Alarm), 7.10
(Hut), 7.11 (Big dense), 7.12 (Elsam) and 7.8 (Asia).

76 CHAPTER 7. EXPERIMENTS

8. For the Elsam networks as classifiers there is a big difference between
how the network performes on the training data and on the test data,
which can be seen in Table 7.12 (Elsam). Elsam learned with BIC λ0.5
was intractable to use for the classification benchmark as propagating
a single case took about 10 seconds, and Elsam learned with BIC λ0.8
could not even be compiled because of memory limitations.

9. From the experiments with Asia there does not seem to be any ad-
vantage to using either BIC of JTC based learning. This can be seen
by inspecting the data from the learning and inference benchmark in
Table 7.3 and the classification benchmark in Table 7.8. This behavior
was expected and just verifies an observation in the preliminary work
[KP07] that there is nothing to gain by junction tree scoring for learning
of small networks.

7
.2

.
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
77

Table 7.3: Combined results for Asia
λ Learn. Time Steps CPT JT size (RH) Inf. time KL BIC LL JT size (H)

Gold-standard Asia

36 0.0666361916666667 0 -2236.72389569369 -2174.55409818285 40

IC

0.2 0.047000 5 22 18 0.0439679683333333 0.0417475306464872 -2363.30625654305 -2325.31360250865 18

0.3 0.047000 6 28 20 0.048539248 0.0315765173111843 -2349.66107736961 -2301.30679041673 20

0.4 0.094000 11 42 28 0.0531099203333333 0.0215569060202409 -2317.91069948263 -2245.37926905331 28

0.5 0.078000 8 30 22 0.049630451 0.0136662378531017 -2282.82018804326 -2231.01202345089 22

0.6 0.047000 7 30 22 0.0500115066666667 0.0136653226885139 -2282.93870737952 -2231.13054278715 22

0.7 0.047000 7 30 22 0.0499158756666667 0.0136653226885139 -2282.93870737952 -2231.13054278715 22

0.8 0.141000 14 54 36 0.056849284 0.00367301259636479 -2269.3323399935 -2176.07764372724 36

0.850000 0.140000 14 54 36 0.056489667 0.00367301259636479 -2269.3323399935 -2176.07764372724 36

0.9 0.188000 17 70 48 0.060078517 0.00386193392388671 -2294.19272912768 -2173.30701174549 48

0.910000 0.235000 19 94 56 0.05803429 0.00456971154071699 -2337.72656061488 -2175.3943115588 56

0.950000 0.219000 19 94 56 0.0586373193333333 0.00456971154071699 -2337.72656061488 -2175.3943115588 56

0.980000 0.250000 19 94 64 0.0591725456666667 0.00429642881309366 -2335.77621690665 -2173.44396785057 64

BIC

0.2 0.031000 12 28 0.058566785 0.0158114987130239 -2278.64767350091 -2230.29338654803 26

0.3 0.016000 13 34 0.05343531 0.00985483121550303 -2269.21649726711 -2210.50057739576 26

0.4 0.015000 10 40 0.0584814963333333 0.00307875297217731 -2243.87490374487 -2174.79735095504 42

0.5 0.031000 11 40 0.0576749543333333 0.0030663067466805 -2243.73720550072 -2174.6596527109 42

0.6 0.032000 10 40 0.057478776 0.00310510678158019 -2243.86357375244 -2174.78602096262 42

0.7 0.031000 11 42 0.0621152626666667 0.0032384410672974 -2245.6855189576 -2173.15408852829 44

0.8 0.031000 19 46 0.060329551 0.00713432655661742 -2276.4057776065 -2196.9665918982 56

78
C

H
A

P
T

E
R

7
.

E
X

P
E

R
IM

E
N

T
S

Table 7.4: Combined results for Alarm
λ Learn. Time Steps CPT JT size (RH) Inf. time KL BIC LL JT size (H)

Gold-standard Alarm

752 3.58694955333333 0 -102791.178581756 -100447.146957088 1020

IC

0.2 16.750000 44 456 375 2.81542774833333 0.0721813778436179 -116510.256706381 -115174.757352444 375

0.5 17.329000 43 483 493 2.97292725833333 0.0259569820598821 -107772.625036896 -106271.339556264 484

0.8 30.063000 50 567 624 3.19081988166667 0.0163685501195988 -105555.459835449 -103768.653803286 615

0.850000 34.656000 52 676 824 3.39956981933333 0.0106891443962561 -104589.66349357 -102452.864527271 815

0.9 31.484000 49 641 831 3.38531768666667 0.0110576194736628 -104388.258582775 -102352.773360569 822

BIC

0.2 6.234000 65 682 3.58115708166667 0.00767525694215299 -103813.631937629 -101768.93637505 855

0.5 7.172000 73 882 3.75870486466667 0.00567840386194616 -103730.194871646 -101105.247865633 986

0.8 8.328000 84 1192 4.82674396533333 0.00198875398722218 -103911.16895489 -100374.398252051 1999

0.85 9.141000 92 1186 8.73980455266667 0.01014186009447 -105419.369622272 -101785.890345527 9161

0.9 11.344000 115 1803 37.1335960703333 0.00324254308432525 -105640.93652712 -100266.702920072 73740

7
.2

.
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
79

Table 7.5: Combined results for Hut
λ Learn. Time Steps CPT JT size (RH) Inf. time KL BIC LL JT size (H)

Gold-standard Hut

8148 51.3532609866667 0 -356921.644640181 -325832.140714576 93114

IC

0.2 106.625000 53 965 914 5.92443802133333 0.115954207279515 -378046.423933517 -374615.572144956 914

0.5 153.000000 69 1201 1160 6.06402668466667 0.0793024455672249 -362952.000708101 -358752.08549848 1160

0.8 198.000000 73 1623 1504 6.26566336933333 0.0657893875754167 -358636.053230167 -353119.059347353 1504

0.85 226.969000 78 2252 2038 6.72770770066667 0.05847941175558 -357798.980144513 -349836.640892939 2038

0.9 245.922000 80 2390 2268 6.727917862 0.0577479860752004 -357895.511018971 -349541.732301589 2268

BIC

0.2 60.485000 120 1457 7.60311296933333 0.0676503291862309 -357483.27268195 -352620.212965547 3095

0.5 83.156000 154 2994 14.485069882 0.0289707564722859 -346684.586157293 -336622.28930091 16591

0.8 118.594000 198 7731 86.2742590893333 0.017322991427133 -357030.407060691 -330476.995768284 179481

0.9 213.359000 283 20923 ERROR ERROR ERROR ERROR ERROR

80
C

H
A

P
T

E
R

7
.

E
X

P
E

R
IM

E
N

T
S

Table 7.6: Combined results for Big dense
λ Learn. Time Steps CPT JT size (RH) Inf. time KL BIC LL JT size (H)

Gold-standard Big dense

5084 2352.071843194 0 -249928.070180471 -233455.376425191 2379136

IC

0.2 1.531000 10 173 150 1.999047253 0.206108345468155 -262977.789783019 -262420.564190515 150

0.5 4.984000 27 425 394 2.402551444 0.139357874721931 -254426.47470897 -253026.502972429 394

0.8 8.172000 31 486 583 2.80545502133333 0.12147482176031 -251960.683000799 -250362.688946261 583

0.85 18.406000 38 858 1176 3.34010421433333 0.0978880647828956 -249515.195643236 -246798.145233503 1176

0.9 61.313000 66 3842 3355 5.135321235 0.0706170407447025 -253727.335254266 -241763.103111069 3355

0.91 64.563000 68 3826 3355 5.07886026066667 0.0706195347443623 -253726.984622994 -241762.752479796 3355

0.95 840.969000 103 57944 49088 40.8214111046667 0.106163660947062 -422495.335255218 -233632.70075766 49088

BIC

0.2 2.594000 49 622 3.87288484266667 0.0993473859107273 -249772.354738193 -247732.2643458 1729

0.5 3.875000 66 1261 12.090671341 0.069700778425427 -246576.397269579 -242883.050780417 15506

0.8 5.797000 87 3278 820.498713125333 0.0547506511565102 -250266.750430877 -240038.667447797 956864

0.9 10.610000 113 14998 -281065.944849188 -231864.306582091 12130176

7
.2

.
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
81

Table 7.7: Combined results for Elsam
λ Learn. Time Steps CPT JT size (RH) Inf. time BIC LL

IC

0.2 1405.547000 84 1706 1682 5.46121662666667 -244809.257673303 -239185.274725076

0.5 433.500000 93 2540 2479- 6.73545138766667 229648.550854843 -221262.419708262

0.8 778.297000 122 7102 6692 8.37966471733333 -229555.787021231 -206008.992831053

BIC

0.2 50.515000 98 2488 7.691395364 -218975.035359967 -210755.048465919

0.5 118.781000 165 6234 -212877.616289629 -192246.653731398

0.8 144.734000 202 22303 MEM MEM

82 CHAPTER 7. EXPERIMENTS

lambda Acc. test Acc. Train

Gold-standard 0.8620 0.858

IC

0.2 0.816 0.826

0.3 0.816 0.826

0.4 0.847 0.833

0.5 0.846 0.851

0.6 0.846 0.851

0.7 0.846 0.851

0.8 0.858 0.861

0.85 0.858 0.861

0.9 0.857 0.86

0.91 0.858 0.861

0.95 0.858 0.861

0.98 0.858 0.862

BIC

0.2 0.849 0.852

0.3 0.856 0.859

0.4 0.858 0.861

0.5 0.858 0.861

0.6 0.858 0.861

0.7 0.858 0.861

0.8 0.858 0.86

Table 7.8: Classification results for Asia

lambda Acc. test Acc. Train

Gold-standard 0.9106 0.9092

IC

0.2 0.8939 0.9038

0.5 0.9013 0.8964

0.8 0.9058 0.9079

0.85 0.9068 0.9089

0.9 0.9069 0.9094

BIC

0.2 0.9075 0.9097

0.5 0.9082 0.9107

0.8 0.909 0.9113

0.9 0.9091 0.9113

Table 7.9: Classification results for Alarm

7.2. EXPERIMENTAL RESULTS 83

lambda Acc. test Acc. Train

Gold-standard 0.8136 0.8086

IC

0.5 0.7826 0.7849

0.2 0.7654 0.7712

0.8 0.7876 0.7904

0.85 0.7894 0.7938

0.9 0.7883 0.7941

BIC

0.2 0.7928 0.7939

0.5 0.8043 0.8068

0.8 0.8078 0.8141

0.9 Error Error

Table 7.10: Classification results for Hut

lambda Acc. test Acc. Train

Gold-standard 0.5078 0.505

IC

0.5 0.4531 0.4551

0.2 0.429 0.4222

0.8 0.4615 0.4643

0.85 0.4693 0.4683

0.9 0.4799 0.4866

0.91 0.4798 0.4859

0.95 0.4762 0.494

BIC

0.5 0.482 0.4858

0.2 0.4665 0.4786

0.8 0.487 0.4952

0.9 Time Time

Table 7.11: Classification results for Big dense

84 CHAPTER 7. EXPERIMENTS

lambda Acc. test Acc. Train

IC

0.2 0.429583975346687 0.708610905502097

0.5 0.415100154083205 0.734270910436714

0.8 0.428043143297381 0.754502837404392

BIC

0.2 0.430816640986133 0.749568221070812

Table 7.12: Classification results for Elsam. Elsam with BIC and λ0.5 is
missing as running the classification benchamrk proved to be intractable, as
propagating a single case took 10 seconds.

7.2. EXPERIMENTAL RESULTS 85

-115000

-110000

-105000

-100000

-95000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
g

Li
ke

lih
oo

d

lambda value

LL/lambda for alarm

JTC
BIC

(a) alarm

-375000

-370000

-365000

-360000

-355000

-350000

-345000

-340000

-335000

-330000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
g

Li
ke

lih
oo

d

lambda value

LL/lambda for hut

JTC
BIC

(b) hut

-265000

-260000

-255000

-250000

-245000

-240000

-235000

-230000

-225000

-220000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
g

Li
ke

lih
oo

d

lambda value

LL/lambda for big_dense

JTC
BIC

(c) big dense

Figure 7.1: In all networks the likelihood of learned networks increases when
learned with higher λ value

86 CHAPTER 7. EXPERIMENTS

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

JT
-s

iz
e

lambda

alarm
hut

big_dense

(a) JTC scored networks

 0

 50000

 100000

 150000

 200000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

JT
-s

iz
e

lambda

alarm
hut

big_dense

(b) BIC scored networks

Figure 7.2: In all networks junction tree size increases when learned with
higher λ values. Junction tree size for BIC learned networks rapidly explodes
with higher λ values.

7.2. EXPERIMENTAL RESULTS 87

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

T

lambda

alarm
hut

big_dense

(a) JTC scored networks

 0

 5000

 10000

 15000

 20000

 25000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
P

T

lambda

alarm
hut

big_dense

(b) BIC scored networks

Figure 7.3: Network size (CPT) increases when learned with higher λ value.

88 CHAPTER 7. EXPERIMENTS

 0

 50

 100

 150

 200

 250

 300

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Le
ar

n
tim

e

lambda

alarm
hut

big_dense

(a) JTC scored networks

 0

 20

 40

 60

 80

 100

 120

 140

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Le
ar

n
tim

e

lambda

alarm
hut

big_dense

(b) BIC scored networks

Figure 7.4: In all networks learning time increases when learned with higher
λ values.

7.2. EXPERIMENTAL RESULTS 89

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

In
f.

tim
e

(s
ec

.)

D(P||Q)

JTC
BIC

(a) alarm

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

In
f.

tim
e

(s
ec

.)

D(P||Q)

JTC
BIC

(b) hut

 5

 10

 15

 20

 25

 30

 35

 40

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

In
f.

tim
e

(s
ec

.)

D(P||Q)

JTC
BIC

(c) big dense

Figure 7.5: Inference time for BIC learned networks are much langer than
inference time for JTC scored networks

90 CHAPTER 7. EXPERIMENTS

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
(P

||Q
)

lambda value

JTC
BIC

(a) alarm

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
(P

||Q
)

lambda value

JTC
BIC

(b) hut

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
(P

||Q
)

lambda value

JTC
BIC

(c) big dense

Figure 7.6: In most cases a higher λ value results in a better Kullback-Leibler
divergence.

Chapter 8

Conclusion

In this project we have explored how control of the effective complexity of
Bayesian networks learned from data can be exercised. This was done in the
light of improving upon the learning method from our previous work [KP07],
which exhibited poor learning times for large networks. We have examined
the process of constructing junction trees from Bayesian networks and the
process of performing inference in the network using these junction trees.
From this evaluation the conclusion was drawn that a major contributor to
the complexity of inference is the size of the cliques in the junction tree.
The cliques are constructed from the triangulated domain graph for the net-
work. We explored common triangulation heuristics to get an insight into
how cliques-size can be limited. Then the score-based method of structural
learning from data was explored. The BIC scoring function was found (by our
previous work) to be inadequate in describing the computational complexity
for the resulting network, even when augmented with a λ parameter that
allows for explicit weighing of the log-likelihood and size estimation. One
answer would be to apply a score function directly on the junction tree of the
candidate network. In our previous work we presented a score function that
simply triangulates each candidate to crate a junction tree and then measures
the clique-size of that tree (together with the log-likelihood and weighed by a
λ-parameter) to give the candidate a score. In this report we propose a sim-
ilar score function denoted JTC scoring. Unfortunately this score function
is not decomposable. Scoring a complete junction tree with a score function
that is not decomposable is possible, yet impractical in that the learning
becomes prohibitively slow. As the score function could not easily be made
decomposable, another option was to try to speed up the triangulation of
the network. One way which has proven to do just that is incremental com-
pilation of the junction tree. This method relies on a third structure (the
maximal prime subgraph decomposition) which has the property that the

91

92 CHAPTER 8. CONCLUSION

individual clusters it is comprised of can be triangulated individually. This
method fits well with structural learning as it is likely only a small part of the
network are changed at each step in the structural search. The incremental
compilation method was modified to better fit in the process of structural
learning. The major difference is that the goal of the method is no longer to
produce a junction tree, but simply to provide enough of a tree (namely the
cliques) to allow for a scoring to take place, the rest of the process can be
skipped until a candidate is selected.

A number of experiments were done with a number of networks and λ val-
ues. The results of these experiments shows that networks scored with JTC
scoring are generally less complex in terms of junction tree size (triangulated
using clique size heuristic) than junction trees for those networks scored with
BIC, which in turn allows for faster inference in these networks. In some
cases the networks learned with BIC scoring proved practically unusable.
With regards to the balancing of complexity and accuracy, the results also
indicate that some measure of complexity control can be exercised through
the λ parameter. This supports the results from the preliminary work.

With regards to improving on the performance with regards to learning
time reguired, speeding up JTC scoring using incremental compilation im-
proves significantly upon this. This can be verified by inspecting the learning
time for networks Hut and Big dense (learned with LL-JT) from the prelim-
inary results in Appendix A to the learning times for the same networks
(learned with JTC) in Chapter 7.2 (note comparison cannot be made di-
rectly on the lambda values they are implemented in slightly different ways
between the preliminary work and in this report). It is evident that the
learning time for most of the Hut and Big dense learned with JTC scoring
has been significantly improved in comparison with the best learning times
for Hut and Big dense networks in the preliminary results.

Results indicate that structural learning using JTC seems to be compu-
tationally affordable, as the learning time is comparable to that of using BIC
scoring (except for some of the higher λ values). This effect degrades for the
higher λ values, but this is expected as the learning will almost be based
purely on log-likelihood, which favor denser structures, resulting in larger
parts of the MPD to be retriangulated for the scoring of each candidate.
The precision (Kullback-Leibler and classification benchmark) of networks
learned with BIC scoring is slightly better than for those learned with JTC
scoring, but the JTC scored networks has a much better effective complexity
and thus the degrade in precision seems acceptable.

References

[Abr94] Bruce Abramson. The design of belief network-based systems for
price forecasting. Comput. Electr. Eng., 20(2):163–180, 1994.

[AWFA87] Steen Andreassen, Marianne Woldbye, Björn Falck, and Stig K.
Andersen. Munin - a causal probabilistic network for interpre-
tation of electromyographic findings. In IJCAI, pages 366–372,
1987.

[BHP+92] J Breese, E Horvitz, M Peot, R Gay, and G Quentin. Auto-
mated decision-analytic diagnosis of thermal performance in gas
turbines. In In Proceedings of the International Gas Turbine and
Aeroengine Congress and Exposition, 1992.

[CL68] C. Chow and C. Liu. Approximating discrete probability distribu-
tions with dependence trees. Information Theory, IEEE Trans-
actions on, 14(3):462–467, May 1968.

[Coo90] Gregory F. Cooper. The computational complexity of probabilis-
tic inference using bayesian belief networks (research note). Artif.
Intell., 42(2-3):393–405, 1990.

[CS96] Peter Cheeseman and John Stutz. Bayesian classification (auto-
class): Theory and results. In Advances in Knowledge Discovery
and Data Mining, pages 153–180. 1996.

[CSG04] Rafael Cano, Carmen Sordo, and José M. Gutiérrez. Applica-
tions of bayesian networks in meteorology. Advances in Bayesian
Networks, pages 309–327, 2004.

[DH92] BN Nathwani DE Heckerman, EJ Horvitz. Toward normative
expert systems: Part i. the pathfinder project. In Methods of inf.
Med. 32, pages 90–105, 1992.

93

94 REFERENCES

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum like-
lihood estimations from incomplete data via the em algorithm.
Journal of the Royal Statistical Society, 39(1):1–38, 1977.

[DP97] Pedro Domingos and Michael J. Pazzani. On the optimality of the
simple bayesian classifier under zero-one loss. Machine Learning,
29(2-3):103–130, 1997.

[ELFK00] Gal Elidan, Noam Lotner, Nir Friedman, and Daphne Koller.
Discovering hidden variables: A structure-based approach. In
NIPS, pages 479–485, 2000.

[Elv] Elvira. Elvira. http://leo.ugr.es/elvira/.

[FG] Nir Friedman and Moises Goldszmidt. Learning Bayesian net-
works with local structure. pages 252–262.

[FGG97] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian
network classifiers. Machine Learning, 29(2-3):131–163, 1997.

[FGO03] M. Julia Flores, José A. Gámez, and Kristian G. Olesen. In-
cremental compilation of bayesian networks. In Proceedings of
the 19th Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI-03), pages 233–240, San Francisco, CA, 2003. Morgan
Kaufmann.

[FGO04] M. Julia Flores, José A. Gámez, and Kristian G. Olesen. Incre-
mental compilation of Bayesian networks in practice. In Proceed-
ings of the 4th International Conference on Intelligent Systems
Design and Applications (ISDA-2004), pages 843–848, Budapest
(Hungŕıa), 2004.

[FN91] DA Hodges F Nadi, AM Agogino. Use of influence diagrams and
neural networks in modeling semiconductor manufacturing pro-
cesses. In IEEE Transactions on Semiconductor Manufacturing,
volume 4, pages 52–8, 1991.

[Fri98] Nir Friedman. The Bayesian structural EM algorithm. In UAI,
pages 129–138, 1998.

[GPC+94] Yiqun Gu, D.R. Peiris, J.W. Crawford, J.W. NcNicol, B. Mar-
shall, and R.A. Jefferies. An application of belief networks to
future crop production. Artificial Intelligence for Applications,
1994., Proceedings of the Tenth Conference on, pages 305–309,
Mar 1994.

http://leo.ugr.es/elvira/

REFERENCES 95

[Gra03] Paul Graham. A plan for spam.
http://www.paulgraham.com/spam.html, 2003.

[Hec95] D. Heckerman. A tutorial on learning with bayesian networks,
1995.

[Hec97] David Heckerman. Bayesian networks for data mining. Data
Mining and Knowledge Discovery, 1(1):79–119, 1997.

[hug] Hugin expert a/s. http://www.hugin.com.

[ICR] Jaime S. Ide, Fabio G. Cozman, and Fábio T. Ramos. Generation
of random bayesian networks with constraints on induced width.

[JN07] Finn V. Jensen and Thomas D. Nielsen. Bayesian networks and
Decision Graphs. Springer, second edition, 2007.

[Kjæ93] U. Kjærulff. Aspects of Efficiency Improvements in Bayesian Net-
works. PhD thesis, Aalborg University, 1993.

[KL51] S. Kullback and R. A. Leibler. On information and sufficiency.
The Annals of Mathematical Statistics, 22(1):79–86, 1951.

[KP07] M. Karlsen and S. Pedersen. Learning inference-friendly bayesian
networks - initial analysis. Dat5 project from Aalborg University,
2007.

[LAB90] Tod S. Levitt, John Mark Agosta, and Thomas O. Binford.
Model-based influence diagrams for machine vision. In UAI ’89:
Proceedings of the Fifth Annual Conference on Uncertainty in
Artificial Intelligence, pages 371–388, Amsterdam, The Nether-
lands, The Netherlands, 1990. North-Holland Publishing Co.

[LB94] W. Lam and F. Bacchus. Learning bayesian belief networks: An
approach based on the mdl principle, 1994.

[LS88] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with
probabilities on graphical structures and their application to ex-
pert systems. Journal of the Royal Statistical Society, 50:157–224,
1988.

[Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice
Hall, April 2003.

http://www.paulgraham.com/spam.html
http://www.hugin.com

96 REFERENCES

[OM02] K.G. Olesen and A.L. Madsen. Maximal prime subgraph decom-
position of bayesian networks. Systems, Man, and Cybernetics,
Part B, IEEE Transactions on, 32(1):21–31, Feb 2002.

[POL07] Artem Parakhine, Tim O’Neill, and John Leaney. Application of
bayesian networks to architectural optimisation. In ECBS ’07:
Proceedings of the 14th Annual IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems,
pages 37–44, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[RTL76] Donald J. Rose, R. Endre Tarjan, and George S. Lueker. Algo-
rithmic aspects of vertex elimination on graphs. SIAM Journal
on Computing, 5(2):266–283, 1976.

[Sch78] Gideon Schwarz. Estimating the dimension of a model. The
Annals of Statistics, 6(2):461–464, 1978.

[SGS01] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation,
Prediction, and Search, Second Edition (Adaptive Computation
and Machine Learning), chapter 5. The MIT Press, January 2001.

[SJ80] J. Shore and R. Johnson. Axiomatic derivation of the princi-
ple of maximum entropy and the principle of minimum cross-
entropy. Information Theory, IEEE Transactions on, 26(1):26–
37, Jan 1980.

[TK05] Marc Teyssier and Daphne Koller. Ordering-based search: A
simple and effective algorithm for learning bayesian networks. In
UAI, pages 548–549, 2005.

[var04] Värmforsk, 2003-04.
http://vbn.aau.dk/research/surveillance of power plants varmforsk(16266).

Part IV

Appendix

97

Appendix A

Preliminary Results

This appendix goes through some of the testing results from the preliminary
work in [KP07]. The tests consists of learning a number of networks using
structural learning and subsequently submitting the networks to an infer-
ence benchmark. The training data as well as the test data was generated
from a set of networks, which we will denote the “gold standard” networks,
representing the models that we wished to approximate through structural
learning.

Structural learning was conducted using a greedy search and two different
score functions: The BIC score function, and a score function (denoted as
LL-JT) based on a combination of log-likelihood and junction tree size (sum
of state space for the cliques). Junction trees were constructed using the
clique size heuristic. The score functions took as a parameter a λ-value for
ballancing log-likelihood against model complexity.

The inference benchmark consisted of propagating the a set of test data
with 40% MCAR for both the gold standard and the learned network. Then
the difference between marginal probabilities between these two were mea-
sured.

Two gold standard networks produced the most interesting results, namely
the Hut and the Big dense network. The dimension of the Hut network is
8148, and the dimension of the Big dense network is 5048. (these are the
same networks used in the experiments for this project, described in Chapter
7). The preliminary tests were conducted using a number of different λ-values
and the results are presented on the following pages. Table A.1 shows results
from testing based on the Hut network, Table A.2 shows results based on the
Big dense network. The colums of the tables are:

• λ the lambda value used in the score function.

• BIC the BIC score of the resulting network given the training data.

99

100 APPENDIX A. PRELIMINARY RESULTS

• LL the log-likelihood of the resulting network given the training data.

• JT size junction tree size of the resulting network (measured as the
sum of state space for the cliques).

• CPT dimension of the resulting network (measured as the sum of the
size of each CPT)

• Learn. Time (H:M:S) the time it took to learn the networks (Hours:Minutes:Seconds).

• Inf. time the time it took to propagate the set of test data (measured
in seconds)

• Accuracy differnce between marginals for the gold standard network
and the learned network given the data set. The closer the value is to 0,
the closer the marginals of the learned network comes to the marginals
of the gold standard network. These numbers should be taken with a
grain of salt as the one in Table A.1 is a summation of euclidian distance
between marginals of the gold standard and learned for each test case,
and the one in Table A.2 is a summation of an approximation of the
Kullback-Leibler divergence between marginals of the gold standard
and learned for each test case - despite this both measures has the
property that the closer the value gets to 0, the closer the the learned
network is to the gold standard network.

Based on the preliminary experiments a number of observations were made:

1. Networks with low inference time are generally concentrated about the
low end of the λ values. This can be seen by inspecting the λ and Inf.
time columns. This effect was somewhat expected, as high λ values for
both BIC and LL-JT should favour densely connected networks, which
might not be fast for inference. Dense networks generally also produce
larger junction trees, which is why the Hut network learned with BIC
scoring and λ = 0.9 does not participate in the inference benchmark,
as the test computer ran out of memory when compiling the network
(indicated by “unknown” in Table A.1).

2. Taking the junction tree size into account we can see that the inference
time increase as the JT size increase, this is effect can be seen in Figure
A.1.

3. Learning using LL-JT score can be several orders of magnitude slower
than using BIC score. This can be seen by inspecting the Learn.time
columns of BIC and LL-JT. Most learning runs for for LL-JT took at

101

least twice the time or more, as did most of the learning runs using
BIC.

4. LL-JT seems to have a smaller accuracy difference for about the same
inference time compared to BIC. This is evident in Figure A.6 where
LL-JT scored networks are generally closer to the point (0; 0) than BIC
scored networks. Thus it seems there is something to gain by choosing
LL-JT as the score function with regards to resulting inference time.

5. Taking junction tree size into account has a deep impact on the learn-
ing time comparing it to the learning time when using BIC. But this
behaviour is somewhat expected as the LL-JT score is far more com-
plex than the BIC, as LL-JT involves performing a large number of
triangulations.

6. The λ values for LL-JT seems to be a good indicator of the junction
tree complexity in the learned network (that is, low values produce less
complex junction trees than higher values), as opposed to the λ value in
BIC where the junction tree complexity seems to fluctuate a lot more.
This can be seen in Figure A.2.

7. It seems that as the network increase in complexity, the Log-Likelihood
increases as well. This can be seen in Figure A.4.

8. The BIC-score of a network does not seem to be a good prediction of
the resulting junction tree, Figure A.5.

10
2

A
P

P
E

N
D

IX
A

.
P

R
E

L
IM

IN
A

R
Y

R
E

S
U

L
T

S

Table A.1: Results of preliminary testing on Hut data sets.
λ BIC LL JT size CPT Learn.Time (H:M:S) Inf. time Accuracy
LL-JT
0.1 -356283,250 -349103,7905 2334 2135 00:33:35 7,214 2,837
0.15 -358792,766 -351364,627 2423 2192 00:35:03 7,156 2,987
0.2 -359094,104 -349105,4901 2948 2876 00:38:25 7,323 2,789
0.25 -362140,830 -345718,7933 4504 4948 00:50:19 8,534 2,658
0.3 -364434,399 -349605,7516 4210 4119 00:48:06 8,4 2,962
0.4 -364926,364 -343466,2716 6466 5854 01:00:41 9,587 2,448
0.5 -372233,362 -339743,8868 10596 9411 01:07:54 11,874 2,241
0.6 -379974,007 -344044,4693 13513 10421 01:08:27 13,321 2,717
0.7 -433340,178 -342176,2294 25510 25232 02:19:29 25,093 3,038
0.8 -552056,361 -341986,9186 70557 62034 04:55:45 51,445 3,474
0.9 -1107137,707 -343752,4614 218794 205514 14:17:38 167,441 4,211
BIC
0.1 -357774,637 -353464,1983 1474 1233 00:07:21 6,567 3,100
0.15 -354254,706 -349317,9645 2900 1463 00:08:51 7,694 2,934
0.2 -358455,809 -353979,5842 2503 1296 00:07:56 7,334 3,284
0.25 -354104,917 -347772,8086 6089 1821 00:10:28 8,971 2,875
0.3 -354949,261 -348165,8457 5398 2008 00:12:09 9,265 2,816
0.4 -351266,764 -342899,1699 10284 2514 00:14:29 11,505 2,322
0.5 -355235,624 -345684,5012 8830 2740 00:15:26 10,418 2,652
0.6 -353607,269 -342780,514 14241 3297 00:18:20 13,032 2,425
0.7 -359811,846 -345121,3534 39278 4246 00:22:09 22,357 2,657
0.8 -354628,095 -335056,1224 3804706 5840 00:31:13 3419,098 1,936
0.9 -429882,043 unknown unknown 30939 01:54:24 unknown unknown

103

Table A.2: Results of preliminary testing on Big dense.
λ BIC LL JT size CPT Learn.Time (H:M:S) Inf. time Accuracy
LL-JT, big dense,net

0,1 -249714,3495 -246965,0629 839 841 0:0:52,078 2,810147794 0,099595098
0,2 -248390,3589 -244397,6763 1700 1180 0:0:59,609 3,584115142 0,082003285
0,3 -250487,5892 -243644,3063 2280 2103 0:01:33,859 4,189805606 0,079441753
0,4 -248685,7264 -242477,957 2456 1898 0:01:23,516 3,967183702 0,070612631
0,5 -249529,8191 -242635,8793 2592 2029 0:02:07,5 4,07486707 0,073128371
0,6 -270307,5795 -242022,6242 8032 8338 0:03:32,313 8,662986495 0,089077271
BIC, big dense,net

0,1 -253912,6414 -252793,5851 1109 359 0:0:14,375 2,923148461 0,137587847
0,2 -248736,0726 -246847,9529 2248 583 0:0:29,375 3,823394573 0,096405933
0,3 -247371,1798 -244870,5724 5628 773 0:0:35,047 5,385194663 0,082074183
0,4 -247316,7123 -244742,4221 11104 799 0:0:36,453 8,533886394 0,08141089
0,5 -244999,3888 -239063,3244 144336 1858 0:01:10,969 63,27850802 0,044747685
0,6 -247240,3474 -242948,3288 35672 1384 0:0:52,140 25,75348437 0,070742416

104 APPENDIX A. PRELIMINARY RESULTS

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000 12000 14000

In
fe

re
nc

e
tim

e

Junction tree size

All

Figure A.1: There seems to be a dependence between inference time and
junction tree size. (plot includes data from networks learned with both BIC
and LL-JT for both Hut, Big dense and some additional networks).

 0

 5000

 10000

 15000

 20000

 0.1 0.2 0.3 0.4 0.5 0.6

S
iz

e
of

 r
es

ul
tin

g
JT

Lambda

Big_dense - BIC
Big_dense - LL-JT

Hut - BIC
Hut - LL-JT

Figure A.2: Junction tree size for Hut and Big dense networks using both
LL-JT and BIC scoring with varying λ values

105

 6

 7

 8

 9

 10

 11

 12

 13

 2.2 2.4 2.6 2.8 3 3.2 3.4

In
fe

re
nc

e
tim

e

Accuracy difference

BIC
LL-JT

Figure A.3: Results from inference benchmark for Hut.

-254000

-252000

-250000

-248000

-246000

-244000

-242000

-240000

-238000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

lo
g-

lik
el

yh
oo

d

BN-size (CPT)

BIC
LL-JT

Figure A.4: Plot of Log-Likelihood over the network size (sum of CPT sizes)
for networks learned from Hut. Plot includes data from networks learned with
both BIC and LL-JT in big dense.net.

106 APPENDIX A. PRELIMINARY RESULTS

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

-254000 -252000 -250000 -248000 -246000

si
ze

(J
T

)

BIC-score

BIC
LL-JT

Figure A.5: It seems that the BIC-score of a network cannot predict the size
of the resulting junction tree. (Plot includes data from networks learned with
BIC and LL-JT for Big dense).

 0

 10

 20

 30

 40

 50

 60

 70

 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

A
cc

ur
ac

y
di

ffe
re

nc
e

Inference time

BIC
LL-JT

Figure A.6: Kullback-Leibler divergence between learned network and the
generative network, compared with inference time in the learned network
(results from learned networks with BIC and LL-JT for big dense.net.)

Appendix B

Constraint-Based Learning

The constraint-based learning method (described in [Nea03] ch. 10, [JN07]
ch. 7.1) creates the structure of the graph so that it models the independen-
cies in the database. The process can be divided into two phases:

1. Build a graph skeleton by applying independence tests to the observa-
tions

2. Apply a number of rules to direct the edges of the skeleton to produce
a directed acyclic graph (DAG)

B.1 Independence tests

Independence tests are used for determining dependencies between variables.
A test on two variables A and B will evaluate to true if the variables are
independent. The notation for independence tests has the form I(A,B) when
testing on two variables, or I(A,B|X) when conditioning on variables X .

Dependencies are determined by analyzing the set of observations used
for learning. This is done by calculating the conditional mutual information
and use the result in an independence test:

CMI(A,B|X) =
∑

X

P#(X)
∑

A,B

P#(A,B|X) log2

P#(A,B|X)

P#(A|X)P#(B|X)

Where P#(v) means the relative count of how many times the configuration
V = v is observed in the data.

The calculated value is then used in a statistical test on the hypothesis
I(A,B|X) = true, called the null hypothesis. The statistical test is based on
a χ2 distribution, and use the notion of degrees of freedom. In the statistical

107

108 APPENDIX B. CONSTRAINT-BASED LEARNING

test, degrees of freedom can be thought of as the number of different out-
comes of an event, which corresponds to the number of parameters needed
for determining P (A)P (B)P (X).

The degrees of freedom in the test is thus defined as

(sA − 1)(sB − 1)
∏

X

(sX − 1)

where SZ is the number of states in variable Z.
For the statistical test we decide on a significance level. The significance

level represents the maximum acceptable level of uncertainty about the null
hypothesis. With a significance level of 0.05 we will accept a 0.5% probability
that the null hypothesis is false. Thus if the χ2 test determines that the
probability of the null hypothesis being false is greater than 0.5%, we reject
the null hypothesis and accept the alternative hypothesis, namely that A and
B is not independent given X .

In practice the value for I(A,B|X) is calculated and compared against a
critical value. The critical value represents the maximum acceptable CMI,
given the specific degrees of freedom, such that the probability of the null
hypothesis being false is less than or equal to the significance level.

The critical value for different significance levels can be looked up in pre-
calculated tables like the one shown in Table B.1. Common significance levels
are 0, 01 and 0, 05 and the higher the level is set, the fewer independencies
are found.

Performing the independence tests is basically about counting observa-
tions, thus the cost of performing an independence test linear in the number
of observations in the database.

B.2 Building graph skeleton

The skeleton for a Bayesian network is an undirected graph over the same set
of variables and edges. The first part of the learning process is to construct a
graph skeleton, which ultimately can be transformed into a Bayesian network
structure by directing the edges.

We start with a fully connected undirected graph. By performing inde-
pendence tests on the observations, edges between the nodes may iteratively
be removed in accordance to their independence properties. Thus a edge
may remain between two nodes A and B if for all X: ¬I(A,B|X). This is
because two connected nodes cannot be d-separated, and under the assump-
tion that the database is faithful the nodes can only be independent if they
are d-separated.

B.2. BUILDING GRAPH SKELETON 109

DF 0,01 0,05
1 3,84 6,64
2 5,99 9,21
3 7,82 11,35
4 9,49 13,28
5 11,07 15,09
6 12,59 16,81
7 14,07 18,48
8 15,51 20,09
9 16,92 21,67

10 18,31 23,21
11 19,68 24,73
12 21,03 26,22
13 22,36 27,69
14 23,69 29,14
15 25,00 30,58

Table B.1: Critical values for the χ2 Distribution for different significance
levels (Degrees of Freedom [DF] in the first column)

Explicitly enumerating all independencies, by making a full run through
the database for each hypothesis, may be too expensive. Thus edges should
be removed from the graph skeleton by using as few tests as possible. The
number of tests can be reduced by performing test I(A,B|X) only when
X ∈ neighbours(A)∩neighbours(B). This is the case since an edge between
A and B, in the “real”Bayesian network, cannot exist if they are d-separated
given their parent nodes. Since the skeleton is undirected we do not know
which part of each nodes neighbourhood is its parents or children, so we have
to consider the entire neighbourhood.

The PC-algorithm converts the complete undirected graph into the graph
skeleton by removing edges in an efficient way, by restricting independence
queries to node neighbourhoods.

1. Start with the complete graph

2. i := 0

3. while a node has at least i+ 1 neighbours

for all nodes A with at least i+ 1 neighbours

for all neighbours B of A

110 APPENDIX B. CONSTRAINT-BASED LEARNING

for all neighbour sets χ such that |χ| = i andX ⊆ (nb(A)\{B})

if I(A,B,X) then remove the link A−B and store I(A,B,X)

i := i+ 1

The worst-case complexity of the PC-algorithm is O(n2(n−1)k−1

(k−1)!
) where k is

the maximum degree for any node and n is the number of nodes. According
to [SGS01] the worst-case scenario is very rare, although they present no
expected average complexity analysis.

B.3 Produce DAG by directing edges

The edges of the graph skeleton may be directed using the following four
rules until all edges have been directed. A v-structure in a DAG G is an
ordered triple of nodes (X, Y, Z) such that G contains the edges X → Y and
Z → Y , and X and Z are not adjacent in G.

Introduction of V-structures For any connections A−B−C, direct edges
A→ B ← C if for all X where B /∈ X: I(A,C|X) or I(A,C).

Avoid further V-structures When no further V-structures can be intro-
duced based on independence tests, if possible direct any connections
A→ B − C such that V-structures are avoided i.e. A→ B → C.

Avoid Cycles If directing any of the edges introduces a directed cycle in
the graph, reverse the edge.

Random When all rules have been exhausted and undirected edges still ex-
ists, chose a random direction for the remaining edges without violating
the cycle condition.

This method may produce different graphs (on account on some of the rules
chooses randomly), but all generated DAGs have the same d-separation prop-
erties.

Appendix C

Incremental compilation
algorithms

This appendix is a short presentation of the incremental compilation algo-
rithms found in [FGO03], as well as our comments.

ConstructMPDTree (JoinTree T , Graph GM)

1. Aggregate all adjacent cliques in T with an incomplete separator in
GM to obtain TMPD

2. Return TMPD

We assume that this is the function referred to as AggregateCliques in
the IncrementalCompilation algorithm of the paper. The maximal prime
subgraph decomposition tree must be a single structure, so it seems that the
paper does not consider the case when the junction tree is a junction forest
(we have added a step that transforms a forest to a single structure in the
version we use).

IncrementalCompilation (Modification list ModList)

1. For each modification mod in ModList do

(a) L ← ModifyMoralGraph(mod)

(b) Case mod of

i. Add node X: AddNode(X)

ii. Delete node X: RemoveNode(X)

iii. Delete link X → Y :
MarkAffectedMPSsByRemoveLink(MY , nil, L)

111

112 APPENDIX C. INCREMENTAL COMPILATION ALGORITHMS

iv. Add link X → Y :
MarkAffectedMPSsByAddLink(L)

2. For each connected marked subtree, TMPD, of TMPD do

(a) Mark all cliques in subtree T of T corresponding to TMPD

(b) Let C be any cluster of T and let M be any cluster of TMPD

(c) V ← {all variables included in TMPD}

(d) gM ← GM(V)

(e) t← ConstructJoinTree(gM)

(f) tMPD ←ConstructMPDTree(t, gM)

(g) T ← Connect(t, C, nil)

(h) TMPD ← Connect(t,MPD ,M, nil)

(i) Delete T and TMPD

The algorithm as presented in the paper contains a few typos and minor
mistakes, which has been corrected in the above version. Our algorithm
differs from the one presented in the paper by omitting the additional marking
of clusters in junction tree and maximal prime subgraph decomposition tree,
as we use our own Replace algorithm instead of the Connect algorithm
from the paper. All of the algorithms mentioned will be presented below.

ModifyMoralGraph(Modification mod)

1. L← ∅

2. case mod of

• Add node X: add a new (isolated) node X to GM

• Delete node X: remove X from GM

• Add link X → Y : add X → Y to L together with all new links
needed to make Y ∪ parents(Y) a complete sub-graph

• Delete link X → Y :

(a) if (children(X) ∩ children(Y) = ∅) then

– delete (X, Y) from GM

– add (X, Y) to L

(b) for all Zi ∈ parents(Y) \ {X} do

113

i. if ((children(Zi) ∩ children(X) = {Y }) and Zi → X in
G and X → Zi not in G) then

– delete (X,Zi) from GM

– add (X,Zi) to L

3. Return L

We have made these observations about ModifyMoralGraph in addition
to MarkAffectedMPSsByAddLink :

• Should the links in the link list have orientation or be undirected?

In the case of Add link X → Y , the link X → Y is added to the
link list. In addition any links needed to make Y ∪ pa(Y) a complete
subgraph is also added, but these links must naturally be without orien-
tation, as this must refer to the process of moralization of Y ’s parents.
However, careful reading suggests that these undirected edges should
only be added to the moral graph, not the link list

• should it say “Zi → X not in G” instead of “Zi → X in G” in the delete
link part?

As we have interpreted the purpose of line (b), it is to: delete moral
edges between X and any Z ∈ pa(Y), where Y is the only common
child between X and Z, and there does not exist a link between X and
Z in the BN DAG.

Therefore we suspect that the line should have said “Zi → X not in
G” instead of “Zi → X in G”, as this would be part of the condition
that no links existed between the two nodes in the BN DAG in order
to delete the moral edge.

In our version we have omitted the parts that deals with added or deleted
nodes, since the structural search only involves adding and deleting edges.
Based on our observations we have rewritten the add link part such that it is
clear which edges are added to the list. The delete link part of the algorithm
has been re-written as well, to clarify what should happen.

MarkAffectedMPSsByRemoveLink(MPS MY , MPS MZ, LinkList
L)

1. Mark MY

2. For all neighbours MK 6= MZ of MY do

114 APPENDIX C. INCREMENTAL COMPILATION ALGORITHMS

(a) SY K ← separator between MY and MK

(b) if L ∩ links(SY K) 6= ∅ then
MarkAffectedMPSsByRemoveLink(MK ,MY , L)

The way to identify separators that will become incomplete after modi-
fication is to find separators that includes both nodes of a link in the list of
deleted edges. The version presented in the paper uses an undefined operator
links when performing this check. We have replaced this operator with the
procedure just described.

MarkAffectedMPSsByAddLink(LinkList L)

For each Link X → Y in L do

1. Let MX be the nearest neighbour to MY containing X

2. If there is an empty separator S on the path between MX and MY then

(a) Disconnect TMPD and delete S

(b) Connect MX to MY by an (artificial) separator containing X

3. Mark MX , MY and all MZ on the path between them

At some point in the paper, the notation of MX is introduced as “[. . .]
MX will identify the MPS in TMPD which has the family of X associated.”
Where we assume that the family of X refers to the set of nodes X ∪ pa(X)
in the Bayesian network.

We have made these observations:

• Is MX a MPS containing X ∪ pa(X), or is it the MPS that contains
the node X and is closest to MY in the MPD tree?

It seems like the notation has been overloaded, as we are very certain
that MY should be interpreted as an MPS that contains Y ∪ pa(Y).
However, the elvira source code documentation seems to indicate that
MX is just a cluster containing X, and it is the closest such cluster to
MY

• Which MY should be chosen if Y ∪pa(Y) is contained in several MPSs?

The problem is illustrated with the Bayesian network and MPD tree
in Figure C.1. In which case the link A→ E is added and ME can be
any of the two MPSs IEF and EFG as both contains E ∪ pa(E). ???

115

A

D

B

C

H

I

E

F

G

(a) DAG (Graph is also triangulated. Bold line is
moral edge.)

ABD AB ABC C EFGEFIEFICHI

(b) Corresponding MPD tree (also junction tree)

A

D

B

C

H

I

E

F

G

(c) Link E → A added

Figure C.1: Which of the MPSs should be marked by MarkAffect-

edMPSsByAddLink ABD,ABC, IEF and EFG?

• Since the link list returned by ModifyMoralGraph, when dealing
with added links, contains only a single oriented edge, the for each
statement seems unnecessary.

The version presented in the paper is ambiguous with regards to which
MPSs should be marked as the endpoints of the path constituting the con-
nected subtree. Also it seems that MX should be the MPS which has the
family of X associated, but it is not always the case that the family of a node
is associated with the only one MPS. It is also worth mentioning that the
list L contains a single directed link, which is ensured by ModifyMoral-

Graph.

Connect(Cluster tree t, Cluster Ci, Cluster CJ)

For each separator S between Ci and CK 6= Cj do
If Ck is unmarked then

1. locate cluster C ∈ t such that C ∩ CK is maximal

2. Connect C with CK by S

3. If S = C then amalgamate C and CK

116 APPENDIX C. INCREMENTAL COMPILATION ALGORITHMS

else Connect(t,CK ,Ci)

	Introduction
	Structural Learning Caveats
	Preliminary Work
	Our Goal

	I Probalistic Graphical Models and Inference
	Bayesian Networks
	Probability Functions
	Independence
	Bayesian Network
	d-separation
	Chain rule

	Inference
	Junction tree inference
	Domain graph
	Triangulation
	Cliques
	Join Tree
	Junction tree structure
	Exact inference using junction trees
	Triangulation heuristics
	Minimal triangulation

	II Learning Inference Models
	Structural learning
	Search Space
	BIC-scoring
	Junction tree scoring

	Incremental Compilation
	Maximal prime subgraph decomposition
	Incremental compilation
	Algorithms
	ConstructJoinTree
	ModifyMoralGraph
	MarkAffectedMPSsByRemoveLink
	MarkAffectedMPSsByAddLink
	Replace

	Examples with incremental compilation
	ASIA network
	Example 1 - Deleting a link
	Example 2 - Adding a link

	Incremental Compilation in JTC Scoring
	Establishing bounds on complexity
	Predicting junction tree state space with minimal re-compilation
	Special cases

	Learning process
	Scoring
	Data structures
	Applying changes

	III Results
	Experiments
	Test setup
	Test Setup for Structural Learning
	Test Setup for Inference Benchmarks
	Test Setup for Classification Benchmarks

	Experimental Results

	Conclusion
	References

	IV Appendix
	Preliminary Results
	Constraint-Based Learning
	Independence tests
	Building graph skeleton
	Produce DAG by directing edges

	Incremental compilation algorithms

