
`
LEARNING BAYESIAN NETWORKS

THROUGH KNOWLEDGE REDUCTION

AA TThheessiiss PPrreesseenntteedd ttoo tthhee AAccaaddeemmiicc FFaaccuullttyy

by

Jorge Pablo Cordero Hernández Jorge Pablo Cordero Hernández

IInn PPaarrttiiaall FFuullffiillllmmeenntt

ooff tthhee RReeqquuiirreemmeennttss ffoorr tthhee DDeeggrreeee ooff

MMaasstteerr ooff EEnnggiinneeeerriinngg iinn CCoommppuutteerr EEnnggiinneeeerriinngg

at the

Machine Intelligence Group Machine Intelligence Group

Department of Computer Science Department of Computer Science

Aalborg University Aalborg University

TThheessiiss CCoommmmiitttteeee::

YYiiffeenngg ZZEENNGG

AAnnddeerrss LL.. MMaaddsseenn

Ålborg, Jylland, Denmark Ålborg, Jylland, Denmark

AAuugguusstt 22000077

© 2007. Jorge Cordero H. All Rights Reserved.

mailto:jorgecordero@gmail.com?subject=AAU%20Master's%20Thesis%20in%20CS%20Comment
http://www.cs.aau.dk/en/research/mi/staff/
http://www.cs.aau.dk/
http://en.aau.dk/
http://www.denmark.dk/

Abstract

Learning Bayesian networks from data becomes intractable when a large number of
variables are involved in the application domain. Much effort has been made in the past
to overcome the computational problem using the divide and conquer strategy. In this
Master thesis, it is provided a prior solution to this strategy by introducing a general class
of models, named the Bayesian network knots, which explicitly partition the variables
into several local components in the network. We propose a learning algorithm called the
Overlapping Expansion Learning (OSL) algorithm. Furthermore, we investigate the
implications of attribute clustering for learning Bayesian networks. Experimental results
show that the OSL is highly competitive. Moreover, we developed a novel attribute
clustering algorithm, named the Star Discovery (SD) algorithm. The SD algorithm is able
to discover groups of variables with a higher performance than several attribute clustering
approaches.

ACKNOWLEDGEMENTS

The author would like to thank Yifeng Zeng for his remarkable supervision and
mentoring, Manfred Jaeger for his valuable comments on this work, Uffe Kjaerulff for
his support during my Master studies at Aalborg University and the HUGIN company for
providing me with the essential software tools.

Contents

1 Introduction 1

2 Related Work 5
2.1 Bayesian Networks . 5

2.1.1 Markov Blanket . 6
2.1.2 Structure Learning in Bayesian Networks 6
2.1.3 Learning the Structure of BN from Small Datasets . . 11
2.1.4 Attribute Clustering 13

3 A Universal Dependency Estimator 15
3.1 Information Theory Based Approaches 17

3.1.1 Information Entropy 18
3.1.2 Joint Entropy . 19

3.2 Algorithmic Information Theory 20
3.3 Mutual Information . 21

3.3.1 Properties and important remarks regarding mutual
information . 23

3.3.2 Chain Rule for mutual information 26
3.3.3 Total Correlation . 28
3.3.4 Interaction Information 29

3.4 Towards an efficient computation of information 30
3.4.1 Normalized Mutual Information 32

4 Dependency Graphs from Data 37
4.0.2 The N-Cut Dependency Graph 39
4.0.3 The Maximum Spanning Tree 41
4.0.4 Beyond the MAST . 42

5 Discovering Local Components 55
5.1 Attribute Clustering Methods 59

5.1.1 Attribute Clustering Algorithm 59

i

CONTENTS

5.1.2 Standard Euclidean Minimum Spanning Tree 61
5.1.3 The Maximum Cost Spanning Tree Algorithm 66
5.1.4 Zahn Euclidean Minimum Spanning Tree Algorithm . . 68

5.2 From Complex Networks to the Star Discovery Algorithm . . . 72
5.2.1 The Star Discovery algorithm 75

6 Recovering Bayesian Networks from Clusters 79
6.1 Adopting a Divide and Conquer Paradigm 80
6.2 Learning Bayesian networks from Distributed Data 81
6.3 The Overlapping Structure learning Algorithm 85

6.3.1 Learning Bayesian Network Knots 93
6.3.2 Combination Phase . 94

7 Experimental Results 99
7.1 Attribute Clustering Experiments 100

7.1.1 Reliability Tests for the Attribute Clustering Algorithm 101
7.1.2 Comparing the Clustering Quality 102

7.2 Structural Experiments for Bayesian networks 103
7.2.1 Results on the Alarm network 104

8 Conclusion 113
8.0.2 Future Developments 113
8.0.3 Final Conclusion . 115

Appendix A: Relevant Bayesian Networks 127

ii

Chapter 1

Introduction

A milestone in machine learning, Bayesian networks [1, 2] are employed to

represent the probabilistic relationship among random variables. They have

been successfully applied in many domains such as the medical, biological,

and ecological domains [3, 4]. The core element is to recover a dependency

structure in the application, usually called the structural learning of Bayesian

networks [5]. Nearly over the past two decades, there has been much research

on the problem of learning Bayesian networks from data, which resulted in

many effective and efficient learning algorithms [6, 7, 8].

However, learning a complex Bayesian network (composed of a large num-

ber of variables) from data is still a difficult task since a huge amount of

computation is involved in the learning process. Currently, much effort has

been made on this topic, and some desired learning algorithms are appreci-

ated [9, 10, 11, 12, 13]. Most of them adopt the divide and conquer strategy

to alleviate the computational problem. They learn a large Bayesian network

by recovering small components in the whole network.

For example, the Markov blankets are identified in the sparse candidate

algorithm [9] and the max-min hill climbing algorithm [10], the module frame-

work in the learning module networks [11], and the block in the block learning

1

CHAPTER 1. INTRODUCTION

algorithm [12]. The designing of those algorithms depends on the component

formulation in a large network. On the other hand, in general, a component

is a local model in a huge network having enormous variables, and represents

the reduced expertise or knowledge in the domain.

To draw the reader’s attention into the importance to simplify knowledge,

consider the following example: Some knowledge engineers or any specialized

user may be interested in the specification of the left ulnaris or right ulnaris

in the MUNIN Bayesian network [14]; which consists of 1041 variables (on

the fourth subset). Figure 1.1 shows the golden MUNIN Bayesian network,

notice the agglomeration of variables in different regions. Naturally, subsets

of variables in this domain present zones with higher dependencies.

In this work, the local component formulation is researched by introducing

the Bayesian network knots. Several methods will be introduced in order to

learn and create the knots. We also introduce a new partitioning algorithm

denominated the Star Discovery algorithm. The Bayesian network knots

cluster some variables into several subsets from a given dataset.

Each Bayesian network knot contains a set of variables having a sound re-

lationship between one another. A Bayesian network knot may be considered

a genuine local structure in a large Bayesian network. The Bayesian network

knots do not provide only a basic element to recover a large Bayesian network

from data, but also present insight into reduced knowledge. Knowledge often

overlooked by the global connectivity of a large Bayesian network structure.

In this work, several approaches based in data mining (attribute-variable

clustering) were formulated to learn the knots from data.

Finally a further BN structure algorithm is introduced. The algorithm

is based on the searching in a dependency graph, the identification of sveral

local components or knots and then a final combination in order to convey

2

CHAPTER 1. INTRODUCTION

to the final DAG for a given domain.

The rest of this thesis is organized as follows: Chapter 2 refers to some

relevant work and preliminaries. Chapter 3 is an study of different depen-

dency measures. Chapter 4 introduces the notion of dependency graphs and

their relevance. Chapter 5 presents several attribute clustering algorithms

that are used to perform attribute clustering. In Chapter 6 we introduce

the proposed BN learning algorithm. Chapter 7 shows experimental results.

Chapter 9 provides a final conclusion on this work and outlines future work.

3

CHAPTER 1. INTRODUCTION

Figure 1.1: The MUNIN Bayesian network.

4

Chapter 2

Related Work

On this section relevant work is presented, firstly to guide the reader through

the necessary background and basic concepts and secondly, it presents an

overview of the related work. Mathematical definitions are provided when

necessary as well as insightful comments about the relationship between the

related work and the current work.

2.1 Bayesian Networks

A Bayesian Network B can be defined as a relation B = (G, P) where

G = (V, E) is a directed acyclic graph [15] or DAG (having a set of vertices

V representing variables1 and a set of arcs E which represent causal depen-

dencies between nodes) and P is a probability distribution over G [1, 2].

The set of parents of a variable Xi denoted as Pa(Xi) is the set of nodes

in V that have a direct arc pointing to Xi. The set of children of a variable

Xi defined as Ch(Xi) is the set of nodes in V that are pointed by X trough

an an arc. The set of parents of the children of a variable Xi denoted as

1During this work we will use the term variable, vertex and node to refer to attributes
or random variables indistinctly. Likewise we can refer to an arc as an edge or also as a
link.

5

CHAPTER 2. RELATED WORK

Pc(Xi), that is the set of variables in V which point with an arc any element

of Ch(Xi). G provides a causal structure in order to establish that a variable

Xi is conditionally independent of its non- descendants given its parents

Pa(Xi). Therefore the joint probability distribution for the full set of n

variables in B is given by:

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (2.1)

2.1.1 Markov Blanket

Having a DAG G = (V, E) and a variable X ∈ V , the Markov blanket for X

stated as MB(X) (being V a set of random variables and E a set of arcs),

is the set of variables which make X conditional independent from the rest

of the variables V −MB(X). The Markov blanket MB(X) consists of the

parents Pa(X), children Ch(x) and the parents of the children Pc(X) of

variable X.

2.1.2 Structure Learning in Bayesian Networks

Structure Learning of Bayesian networks is an interesting and challenging

task, several approaches have been proposed to perform this task [16, 17,

18, 19, 20, 21, 22, 23, 24]. A general classification for structure learning

of Bayesian networks was presented by Kevin Murphy in [25] and has been

stated as four different cases:

I. Known structure, full observed data.

II. Known structure, partial observed data.

III. Unknown structure, full observed data.

6

CHAPTER 2. RELATED WORK

IV. Unknown structure, partial observed data.

The approach presented in this work can be classified on the third class

(refer to Chapter 6 for further details).

Learning Bayesian networks from data is a computationally NP-hard

problem and a detailed study on this subject was introduced in [26], and

consequently a large amount of work on the field has been dedicated to

heuristic-search techniques to identify good models. Two general classes of

structural learning algorithms have been widely studied namely the score

based methods and the constraint based methods.

Finding a Bayesian network structure with the highest score even from a

small sample data with each node having two parents at most is shown to be

a hard task. Learning the structure of a Bayesian network is an optimization

task, the aim of the score based learning algorithms is to find the structure

having the highest statistical score; this process is to exploit a large search

space of candidates.

In regard of constraint based learning algorithms, the PC algorithm [6]

could be mentioned which is a quite efficient algorithm. The PC algorithm

starts with the complete graph over a domain of variables and then it es-

tablishes a set of conditional independence statements holding for the data,

and uses this set to build a causal network with d-separation properties cor-

responding to the conditional independence properties.

A good overview of the PC Algorithm was documented in [5] and it was

described in detail in [27]] by the following set of steps:

• Step 1 is to begin with a complete graph containing all of the variables.

• In step 2 a variable k is set to zero, whereas k identifies the order of

the subset of attributes to be considered for independence tests. Then

7

CHAPTER 2. RELATED WORK

for all pairs of nodes X and Y set DSEP (X, Y) = ∅.

• In step 3 for every adjacent pair of nodes X and Y , remove the arc

between them if and only if for all subsets S of order k containing nodes

adjacent to X (but not containing Y) the sample partial correlation

rXY.S is not significantly different from zero. Add the nodes in S to

DSEP (X, Y).

• Step 4 searches tracks the arcs which were removed, it increments k

and returns to step 3.

• In step 5, for each triple X, Y , Z in an undirected chain (such that X

and Y are connected and Y and Z are connected, but not X and Z),

replace the chain with X → Y ← Z if and only if Y /∈ DSEP (X,Z).

• Finally step 6 directs back to step 3.

The PC algorithm is probably the widest known, and several improve-

ments and sub developments were devised. Abellan et. al. in [28] proposed

a series of variations of the PC algorithm. These variations mainly consist

in determining a minimum size of cut sets between pairs of nodes in order

to accelerate the process of link deletion and the introduction of a Bayesian

score to refine the learned network by a greedy optimization process.

Efforts have been made to improve the structure learning of Bayesian

networks. Different approaches for tackling the complexity issue have been

adopted. The Sparse Candidate algorithm (SC) [9] is a powerful learning

algorithm to recover Bayesian network structures from a large dataset. How-

ever it requires two main inputs the network to be sparse and an estimation

of the degree of connectivity.

Generally speaking, the SC algorithm takes as input: A dataset D =

{X1, X2, . . . , Xn}, an initial Bayesian network B, a parameter k, and finally

8

CHAPTER 2. RELATED WORK

some score function Score(B|D) =
∑

i Score(Xi|PaB(Xi), D). The SC al-

gorithm returns a Bayesian network B. For a t number of iterations (until

convergence) a restrict step defines a directed graph Hn = (X,E), where

E = {Xj → Xi|∀i, Xj ∈ Cn
i } having that Cn

i (|Cn
i | ≤ k) is a set of candidate

parents for each variable Xi. Afterward, a maximization step finds a Bayesian

network Bn = (Gn, Pn) maximizing the Score(Bn|D) among networks that

satisfy Gn ⊂ Hn (i.e., ∀Xi, PaGn(Xi) ⊆ Cn
i).

By analyzing the SC algorithm it can be sated that the novel idea of the

SC is to constrain the search: each variable X is constrained to have parents

only from within a predetermined candidate-parents set C(X) of size at most

k, where k is defined by the user. Initially, the candidate sets are heuristically

estimated, and then hill-climbing (or some other search method) is used to

identify a network that (locally) maximizes the score metric. Subsequently,

the candidate sets are estimated and another hill-climbing search round is

initiated. Cycles of candidate sets estimation and hill climbing are called an

iteration. SC iterates until there is no change in the candidate sets or a given

number of iterations have passed with no improvement in the network score.

The importance of this Sparse candidate algorithm for the present work relies

in that our proposed algorithm could fit in the class of SC algorithms. Thus,

it is an hybrid and modular approach thought to overtake the complexity in

several domains.

SC and several algorithms like Max-Min Hill-Climbing (MMHC) [29] try

to speed up the search process in the search space candidates. Some re-

searchers have used data mining techniques such as Evolutionary program-

ming [30] to learn the Bayesian networks. In this approach in the conditional

phase, dependency analysis is conducted to reduce the size of the search

space. In the search phase, the good Bayesian network models are generated

9

CHAPTER 2. RELATED WORK

by using an evolutionary algorithm.

Feature selection [31] also has been used in order to learn the Bayesian

networks more efficiently, by selecting the most indicating values to generate

networks which are computationally simpler to evaluate. Several approaches

have been adopted to break the Bayesian networks into smaller building

blocks and then to learn these blocks separately which will be less costly

regarding the computational costs and finally to aggregate these blocks to

recover the full network, see [12]. Some researchers have proposed the idea

of module networks where it could be used in domains like stock market or

biotechnology where many variables could have similar behaviors. Hence, this

method tries to partition the data based on the variables sharing the same

conditional probability distribution and encapsulate a set of such similar

variables formally in a structure called modules [11].

However, research work has not been directed on the study of identifying

truly subsets of Bayesian network structures. Centralized structure learning

of Bayesian networks is by no means the only concern in knowledge engi-

neering. As a matter of fact the vast number of databases in the world has

a distributed character.

Computing the Bayesian network over distributed data can be a difficult

task. Nevertheless, whenever the data is separated in several locations and

it is heterogeneous, the structure of a Bayesian network can be learned by

applying the collective learning algorithm designed by Sivakumar et al. in

[32].

In the later algorithm the Bayesian network can be acquired with the

same precision as if the data were centralized into a single place. Thus,

the collective learning algorithm consists of four main steps: local learning,

sample selection, cross learning and combination. This collective learning

10

CHAPTER 2. RELATED WORK

algorithm (specially the last step) is interesting for the current work that is

to be presented in this thesis. Thus, the arrangement of subsets of variables

can be seen as a set of distributed variables across many locations then a

later step should unite the subsets to complete the full Bayesian network.

Another framework to learn Bayesian networks from distributed data was

proposed by Li et al. [33].

Interestingly enough, it is clear that much work has been done in the past

for distributed structure learning of Bayesian network, but still a good moti-

vation in this work is to introduce the notion of local components. These lo-

cal components can also be used for other applications such as gene selection

in gene expression data or knowledge simplification over massive domains.

However, we will adhere to the orthodox paradigm of learning BN from a

single source.

2.1.3 Learning the Structure of BN from Small Datasets

Real life data such as those ones in the biomedical databases are relatively

small when compared to their number of variables. Logically, domains such

as research in genes and genomes produce a huge number of variables and

a considerably small set of samples. Thus, depending of the area of study,

samples can be subtracted only from a small group of subjects. A dramat-

ically true example on this assertion is the colon cancer dataset [34] which

has 2000 variables and 62 samples and the leukemia dataset [35] has only

72 samples and 7 129 variables. The small sample size issue is not exclusive

for medical applications but it may affect any domain in which a dataset is

small enough to produce a non realistic model.

Evidently, working with small and reduced datasets is a major issue when

referring to practical purposes. Modeling a domain with a reduced observa-

11

CHAPTER 2. RELATED WORK

tion and mapping it to a Bayesian Network is a challenging task. Two fun-

damental concerns are involved in this case: Learning the BN structure and

learning the parameters from data. Even though, a general rule for deciding

the sample size for accurate learning of Bayesian networks does not exist,

empirical research have provided a particular convergence point in which the

structure and parameters do not change with a very high amount.

Accurate structural learning of Bayesian networks depends mainly on the

domain in question. Thus, for some datasets the Bayesian network can be

rapidly found; for others may need an extensive observation in order to return

a comprehensive and reliable DAG.

In terms of structure learning of Bayesian networks (having a reduced

sample size), Carrillo et al. proposed in [36] a score based algorithm in

which the structure learning task is modeled as an optimization problem.

By using simulated annealing as the search procedure and a given Bayesian

score as a measure of goodness, the selection of parents of a given node

is restricted. Finally a pruning phase of the algorithm eliminates incorrect

edges. In a slightly different field, Agnieszka et al. [37], developed a new

method for learning parameters from small datasets was presented and tested

with good results using a rather small but not trivial Bayesian Network, the

HEPAR Network [38]. The novel idea of the later work was to present a

noisy OR gate in order to reduce the amount of data necessary to complete

several conditional independence tests. The denominated ”noisy OR” has the

capability to approximate some conditional probability distributions. Thus,

an elementary binary noisy OR can be sated as:

”If there exists a variable Y having a set of parents X = Pa(Y) and

each variable in X has a mutually exclusive probability pi of affecting Y the

12

CHAPTER 2. RELATED WORK

following expression.”.

pi = Pr(y|x̄1, x̄2, . . . , barxi, . . . , ¯xn−1, x̄) (2.2)

can be reformulated to:

pi = Pr(y|x̄1, x̄2, . . . , barxi, . . . , ¯xn−1, x̄) (2.3)

whereas x̄1, x̄2, . . . , barxi denotes the absence of the causes x1, x2 and the

presence of xi.

The mutually exclusive assumption aided to catch an artificial indepen-

dence test. The leaky noisy OR is a more sophisticated idea to apply the

same principle to categorical variables. With no doubt this is a true exam-

ple of how an ”external mechanism” can bypass the conventional calculation

of probability distributions. In essence a similar idea is introduced in the

present work for structure learning, an external process (an information ap-

proach) can detect sets of correlated variables which can be immediately

considered for structural learning in small groups.

2.1.4 Attribute Clustering

Attribute clustering has been previously employed to detect the inner depen-

dence between subsets of variables, especially in genetics due to its complex

nature (both on small and sufficient sample sizes). Several conventional clus-

tering algorithms have been applied to re-group and reveal subsets of cor-

related genes such as: K-means algorithm, fuzzy clustering, self organizing

maps, hierarchical clustering and gene selection techniques.

An accurate information based method for this task is the k-modes algo-

rithm and it was presented by Au et. al. in [39]. A set of highly correlated

13

CHAPTER 2. RELATED WORK

variables is obtained by computing an information theoretic measure that is

properly introduced in Chapter 3. Briefly speaking, the k-modes algorithm

works on the following way: First it is initialized with k clusters, each of

them having one mode attribute (a mode is an attribute with the highest

dependency among variables). The second step assigns an attribute Xj to a

cluster Ci with the highest proximity. The third step computes a new mode

for each cluster by finding the new best local correlated variable. Finally the

process is repeated for a number of iterations or if the modes in each clusters

do not change.

What was the reason to relate attribute clustering to this research? De-

spite of the fact that the work presented on this report does not perform

attribute clustering, it is believed that future development can yield to a

comprehensive unified mechanism for attribute clustering. Therefore, the

main algorithm or variations from it would perform attribute clustering be-

sides of structural learning and knowledge reduction over the knots. The

reason to state this is the confidence on the k-modes method to produce

truly correlated sets of variables. Actually the k-modes approach was ap-

plied to a discrete set of variables. Obviously, that method can be applied

to any domain since it is based on an information metric and not in a very

specific metric as distance measurement or Pearson’s correlation. A more

detailed explanation on future work on this matter is presented in chapter 6.

14

Chapter 3

A Universal Dependency
Estimator

A major objective of machine learning is to gain knowledge domain. This

task often regarded as learning by experience aims to acquire certain under-

standing of a domain given (continuous or discrete) Data. As seen in chapter

1, a domain U (for the effect of the present work) can be described by a set

X of random variables having Ω observations.

An initial step before detecting knowledge is to find a correlation between

variables. This correlation estimate has to serve as a dependency metric.

This chapter presents a comprehensive study of several meaningful metrics to

test relationships between those variables. Finally, I present the normalized

mutual information; an all-purpose field-independent dependency metric.

Euclidean distance and Pearson correlation have been previously used to

find meaningful relationships between genes [40, 41]. Nevertheless, the results

of these estimates are absolute magnitudes; thus, difficult to generalize for

other domains. They are useful if all variables {X1, . . . , Xn} ∈ X can take

values from equal intervals (implying the same cardinality when working with

discrete variables). Hence, they incorporate inaccurate results whenever the

range (cardinality) of the random variables is sparse. Consider a simple

15

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

example inspired in terms of Euclidean distance:

Example 3.1. Consider two pairs of points p1, p2, and p3, p4 in a two di-

mensional Euclidean space (defined by a X, Y axis). p1 and p2 are situated

in the coordinates (1000, 1000) and (500, 500) respectively. p3 is in the point

(10, 10) and p4 is in (9, 9). The Euclidean distance between two points situ-

ated in the coordinates (x1, y1) and (x2, y2) is:

d(p1, p2) = d((x1, y1), (x2, y2)) =
√

(x1− x2)2 + (y1− y2)2 (3.1)

By using Equation 3.1 we obtain that the Euclidean distance for the first

pair is d(p1, p2) =
√

500000 and d(p3, p4) =
√

2. Therefore, d(p1, p2) >>

d(p3, p4). Now, suppose we impose a limit in the range of p1 and p2 to

take values from 0 to 1000 in the domain and counter domain; then, we

restrict the range of p3 and p4 to take values from 0 to 10. However, the

later comparison is not fair since p3 and p4 were limited to a smaller space

whatsoever.

Instead, if we divide each of the terms (x1 − x2), (y1 − y2) by 1000 for

p1, p2, and by 10 for p3, p4; then, the relative proportions are found and the

comparison of distances is admissible.

We can adapt Equation 3.1 to test dependency between two continuous

random variables Xi and Xj. These variables take the values wi,k, wj,k ∈ <

for k = 1, . . . , Ω samples. Then, the Euclidean distance between two random

variables can be defined as:

d(Xi, Xj) = (
Ω∑

k=1

(wi,k − wj,k)
2)

1
2 (3.2)

Holding the same notation from the previous formula, a more robust

16

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

metric named the Pearson correlation coefficient [39] is defined as:

PC(Xi, Xj) =

Ω∑
k=1

(wi,k − w̄i)(wj,k − w̄j)

(
Ω∑

k=1

(wi,k − w̄i)
2)

1
2 (

Ω∑
k=1

(wj,k − w̄j)
2)

1
2

, (3.3)

whereas w̄i and w̄j are the mean values 1
Ω

Ω∑
k=1

wi,k , 1
Ω

Ω∑
k=1

wj,k for Xi

and Xj respectively. This coefficient measures the strength of the linear

relationship between the random variables. However, the application of the

previous distance-based metrics into discrete and complex domains is not

clear. Hence, there is the need to device a universal metric which could

be applied to either continuous or discrete domains; moreover, it has to be

independent of the domain in study.

3.1 Information Theory Based Approaches

I continued the search for a true proximity measure that could really ex-

press certain level of dependency. Information theory metrics such as en-

tropy (firstly introduced by the prominent American mathematician Claude

E. Shanon in 1948 [42]) and mutual information rely in the concept of un-

certainty among variables.

These information-based distances were founded by Shannon in the field

of communication theory. Paraphrasing Cover et al. in [43]: ”. . .entropy

is the minimum descriptive complexity of a random variable, and mutual

information is the communication rate in the presence of noise.” Therefore,

we define dependency as the lack of uncertainty among a set of variables.

17

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

3.1.1 Information Entropy

The (marginal) entropy of a single discrete random variable Xi having a set

of possible states Xi = {xi
1, . . . , x

i
l} and cardinality l is given by:

H(Xi) =
l∑

k=1

p(xi
k) log2 p(xi

k), (3.4)

where p(xi
k) is the marginal probability distribution that variable Xi is

instantiated to state k. Conclusively, as stated in [43], the entropy of a

random variable is its average uncertainty; it is minimal in the extreme values

0 and 1. Figure 3.1 depicts an example of a Bernoulli trial. The behavior of

the marginal entropy for Xi always increases as the probabilities tend to be

equally distributed among the possible outcomes (instantiations), such that

if ∀(xi
a,xi

b∈Xi,a 6=b)x
i
a = xi

b then H(Xi) is maximal.

Figure 3.1: The Entropy of a Bernoulli trial. Two outcomes are equally
possible. Therefore, H(Xi) = 1 iff P (Xi) = 0.5.

18

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

3.1.2 Joint Entropy

The joint entropy between two random variables Xi and Xj is given by the

following formula:

H(Xi, Xj) =
l∑

a=1

m∑
b=1

p(xi
a, x

j
b) log2 p(xi

a, x
j
b), (3.5)

where the cardinality of Xi and Xj is l and m respectively. Moreover, we

can extend and generalize Equation 3.5 for more than two random variables:

H(X1, . . . , Xn) =
l∑

a=1

, . . . ,
m∑

z=1

p(x1
a, , . . . , x

n
z) log2 p(x1

a, . . . , x
n
z) (3.6)

Remark 3.1. The estimation of probability distributions is reduced to the

counting of frequencies. Assume σ is the selection operator [44] and R is a

relation. Table 3.1 shows the methodology used in this work to estimate prob-

abilities among discrete random variables. I use a notation similar to [39] to

describe the counts. Consider |σ∗(R)| as the select-all operation (|σXi 6=∅(R)|

for an arbitrary variable Xi) returning the Ω total of samples in the Data D.

Table 3.1: Frequency Estimation.

Probability Distributions Counts

p(Xi = xi
k)

|σ
Xi=xi

k
(R)|

|σ∗(R)|

p(Xi = xi
a ∧Xj = xj

b)
|σ

Xi=xi
a∧Xj=x

j
b

(R)|

|σ∗(R)|

Analogously to the discrete versions of entropy, suppose p(xi, xj) is the

joint probability distribution function for Xi and Xj, and p(xi) is the marginal

probability distribution function for Xi; then, Equations 3.4, 3.5 and 3.6 are

19

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

rewritten to meet continuous domains:

H(Xi) =

∫
xi∈Xi

p(xi) log2 p(xid(xi)) (3.7)

H(Xi, Xj) =

∫
xi∈Xi,xj∈Xj

p(xi, xj) log2 p(xi, xj)d(xi)d(xj) (3.8)

H(X1, . . . , Xn) =

∫
xi∈Xi,...,xn∈Xn

p(x1, . . . , xn) log2 p(x1, . . . , xn)d(xi), . . . , d(xj)

(3.9)

Remark 3.2. Any continuous random variable Xp ∈ X with a probability

density function f(Xp) can be discretized by bounding its domain into Z

intervals.

3.2 Algorithmic Information Theory

Andrey Kolmogorov, a brilliant Russian mathematician extended the no-

tion of probabilistic information entropy into a more general concept, the

descriptive complexity. Instead of representing Xi as a random variable, all

of its observations are compressed into a binary code. The aim is to find

the shortest description d(Xi) of a program p that can output Xi by using

a universal computer UC. Thus, the descriptive complexity is defined as

KUC(Xi) = argminp:UC(p)=x|d(Xi)| or just K(Xi) = |d(Xi)|.

Similarly, K(XiXj) is formulated as the complexity of encoding the con-

catenation of Xi and Xj. K(Xi|Xj) is the conditional algorithmic complexity

between Xi and Xj and can be interpreted as the minimal description nec-

essary to output Xi receiving Xj as side information [45]. The following

20

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

equivalence was proved in [45]:

0 ≤ K(Xi|Xj) ≈ K(XiXj)−K(Xj) ≤ K(Xi) (3.10)

A complete analysis of Kolmogorov complexity can be found in [43]. A

useful tool called the Normalized compression distance (NCD) to compute

algorithmic information estimates was presented in [45]. Kraskow et al. [46]

adapted the NCD to Shannon’s probabilistic entropy.

3.3 Mutual Information

The mutual information, transinformation or ”information” I(Xi, Xj) is a

”conceptual distance” between two random variables, namely Xi and Xj

[42]. This information tool provides useful estimates regarding dependency

or interaction between pair-wise relationships among two or more random

variables1.

Indeed, I(Xi, Xj) is the average reduction in uncertainty of variable Xi

by knowing Xj [43]. The higher the mutual information, the better Xi can

be predicted due to the knowledge of Xj and vice versa. Conclusively, the

mutual information can be used either to test the degree of relationship

between discrete or continuous random variables. The mutual information

between two discrete random variables Xi, Xj ∈ X (holding the notation of

Equation 3.5) can be defined as:

I(Xi, Xj) =
l∑

a=1

m∑
b=1

p(xi
a, x

j
b) log2

p(xi
a, x

j
b)

p(xi
a)p(xj

b)
(3.11)

1Another notation which is frequently used to describe mutual information in literature
is I(Xi;Xj).

21

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

On the other hand if Xi and Xj are continuous, then the mutual infor-

mation is:

I(Xi, Xj) =

∫
xi∈Xi,xj∈Xj

f(xi, xj) log2

f(xi, xj)

f(xi)f(xj)
d(xi)d(xj), (3.12)

whereas f(xi, xj) is the joint density for both variables; f(xi) and f(xj)

are the densities for Xi and Xj respectively. In the most general case for

any arbitrary pair of random variables, the mutual information is identical

to the least upper bound of computing Equation 3.11 for the quantization of

Xi and Xj in P and Q partitions respectively [43], Equation 3.13 presents

this generalization.

I(Xi, Xj) = supP,QI([Xi]P , [Xj]Q), (3.13)

where [Xi]P is the quantization (discretization) of Xi in a collection P of

disjoint sets
⋃

i Pi = χi (χi is the range of Xi). Similarly, [Xj]Q follows the

previous definition for Xj. In all cases 3.13 monotonically increases iff |P | or

|Q| increase.

Remark 3.3. The base of the logarithm in Equations 3.11 and 3.12 specifies

the units in which the mutual information is measured. A base 2 logarithm

measures I(Xi, Xj) in bits, whereas a base exp logarithm measures the mutual

information in nats. Generally, a base of 2 is assumed in literature; for the

effect of this work logarithms base 2 are employed (unless specified).

If we wish to denote information metrics using another base for the log-

arithm we write the base b as a subindex next to the literal of the func-

tion in question. For example if X1, X2andX3 are random variables then

Hb(X1), Hb(X1, X2) and Ib(X1, X2) are the entropy, joint entropy and mu-

tual information functions using a base b.

22

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

3.3.1 Properties and important remarks regarding mu-

tual information

The mutual information is simetric I(Xi, Xj) = I(Xj, Xi) and non-negative

I(Xi, Xj) ≥ 0. Actually, a value of I(Xi, Xj) = 0 represents strict inde-

pendence between the random variables Xi and Xj such that p(Xi, Xj) =

p(Xi)p(Xj) holds. A fundamental remark is the equivalence between mutual

information and Shannon entropy. The following properties describe several

relationships:

I(Xi, Xj) = H(Xi)−H(Xi|Xj) (3.14)

I(Xi, Xj) = H(Xj)−H(Xj|Xi) (3.15)

I(Xi, Xj) = H(Xi) + H(Xj)−H(Xi, Xj) (3.16)

I(Xi, Xi) = H(Xi) (3.17)

Remark 3.4. Equation 3.18 is the marginalization of xa upon xb (l is the

cardinality of the set of instantiations {x1, x2, . . . , xl}):

p(xa) =
l∑

b=1

p(xa, xb) (3.18)

In the case of Equations 3.14 and 3.15, these quantities are substituted

and proved to be equivalent to mutual information [43] by the following:

I(Xi, Xj) =
l∑

a=1

m∑
b=1

p(xi
a, x

j
b) log2

p(xi
a|x

j
b)

p(xi
a)

=
l∑

a=1

m∑
b=1

p(xi
a, x

j
b) log2

p(xj
b|xi

a)

p(xj
b)

(3.19)

23

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

Now, by substituting in Equation 3.14:

= −
l∑

a=1

m∑
b=1

p(xi
a, x

j
b) log2 p(xi

a) +
l∑

a=1

m∑
b=1

p(xi
a, x

j
b) log2 p(xi

a|x
j
b)

= −
l∑

a=1

p(xi
a) log2 p(xi

a)−

(
−

l∑
a=1

m∑
b=1

p(xi
a, x

j
b) log2 p(xi

a|x
j
b)

)

= H(Xi)−H(Xi|Xj)

Equivalently, Equation 3.15 becomes:

= −
l∑

a=1

m∑
b=1

p(xi
a, x

j
b) log2 p(xj

b) +
l∑

a=1

m∑
b=1

p(xi
a, x

j
b) log2 p(xj

b|x
i
a)

= −
m∑

b=1

p(xj
b) log2 p(xj

b)−

(
−

l∑
a=1

m∑
b=1

p(xi
a, x

j
b) log2 p(xj

b|x
i
a)

)

= H(Xj)−H(Xj|Xi)

The equality stated in 3.16 is a well known rule for mutual information.

It provides an idea regarding the level of knowledge or dependency between

two random variables (the remaining information which results from the dif-

ference of the sole average uncertainties minus the joint average uncertainty).

Obviously, mutual information is symmetric since 3.16 is always symmetric:

I(Xi, Xj) =
l∑

a=1

m∑
b=1

p(xi
a, x

j
b) log2

p(xi
a, x

j
b)

p(xi
a)p(xj

b)

24

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

=
l∑

a=1

m∑
b=1

p(xi
a, x

j
b)log2p(xi

a, x
j
b)−

l∑
a=1

m∑
b=1

p(xi
a, x

j
b)log2p(xi

a)p(xj
b)

= −
l∑

a=1

m∑
b=1

p(xi
a, x

j
b)(log2p(xi

a)+log2p(xj
b))−

(
−

l∑
a=1

m∑
b=1

p(xi
a, x

j
b)log2p(xi

a, x
j
b)

)

= −
l∑

a=1

m∑
b=1

p(xi
a, x

j
b) log2 p(xi

a)−
l∑

a=1

m∑
b=1

p(xi
a, x

j
b) log2 p(xj

b)−

(
−

l∑
a=1

m∑
b=1

p(xi
a, x

j
b)log2p(xi

a, x
j
b)

)

= −
l∑

a=1

p(xi
a) log2 p(xi

a)−
l∑

b=1

p(xj
b) log2 p(xj

b)−

(
−

l∑
a=1

m∑
b=1

p(xi
a, x

j
b)log2p(xi

a, x
j
b)

)

= H(Xi) + H(Xj)−H(Xi, Xj)

The equivalence in 3.17 is also denominated self information and can be

proved by showing a similar substitution as in 3.14:

I(Xi, Xi) = H(Xi)−H(Xi|Xi)

p(xi
a, x

i
a) = 0, p(xi

a|xi
a) =

p(xi
a, x

i
a)

p(xi
a)

= 0

= −
l∑

a=1

p(xi
a) log2 p(xi

a)−

(
−

l∑
a=1

l∑
a=1

p(xi
a, x

i
a) log2 p(xi

a|xi
a)

)

25

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

= −
l∑

a=1

p(xi
a) log2 p(xi

a)− 0

= H(Xi)

A final equivalence is the connection between mutual information and

relative entropy:

I(Xi, Xj) = D(p(xi
a, x

j
b)||p(xi

a)p(xj
b)) =

l∑
a=1

m∑
b=1

(p(xi
a, x

j
b)) log2

(p(xi
a, x

j
b))

(p(xi
a)p(xj

b))

(3.20)

For a complete description of the proofs from the previous properties refer

to [43].

3.3.2 Chain Rule for mutual information

Mutual information can be used to calculate the dependency level for more

than 2 random variables. Intuitively, Equation 3.14 can be extended to admit

a set S ⊆ X of variables ((|S| = r) ∧ (r > 2)) instead of two. Therefore, the

information for r variables is given by the recursive sum of the conditional

entropies over subsets of S. Assume that S = {X1, X2, . . . , Xr} is the set of

random variables, an arbitrary variable Xq ∈ S, and Xh = S\Xq such that

|Xh| = o.

I(X1, X2, . . . , Xo, Xq) =
o∑

i=1

I(Xi, Xq|Xi−1, Xi2, . . . , X1) (3.21)

The later Equation is found after using identity 3.21 in Xh and Xq:

26

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

I(Xh, Xq) = H(Xh)−H(Xh, Xq)

= H(X1, X2, . . . , Xo)−H(X1, X2, . . . , Xo|Xq)

=
o∑

i=1

H(Xi|Xi−1, . . . , X1)−
o∑

i=1

H(Xi|Xi−1, . . . , X1, Xq)

=
o∑

i=1

I(Xi, Xq|Xi−1, Xi2, . . . , X1)

Two key definitions are necessary to substitute the right hand side of 3.21.

The first one is the expansion rule for entropy between 2 or more variables:

H(Xi, Xj) = H(Xi) + H(Xj|Xi) (3.22)

Consequently, 3.22 is used to generalize the second requirement, the joint

entropy for o variables {X1, X2, . . . , Xo}:

H(X1, X2, . . . , Xo) =
o∑

i=1

H(Xi|Xi−1, . . . , X1) (3.23)

= H(X1) + H(X2|X1) + . . . + H(Xk|Xk−1, Xk−2, . . . , X1) + . . .

+H(Xo|Xo−1, Xo−2, . . . , X1)

Equation 3.23 is also called the chain rule for entropy and it is equivalent

to 3.6 but easier to compute since the chain rule factorizes the extensive

joint entropy into several terms. Two alternate definitions of the chain rule

have also been stated: Total correlation [47, 48] and interaction information

[49, 50]. These approaches can be understood as generalizations of mutual

27

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

information.

3.3.3 Total Correlation

The total correlation C(X1, X2, . . . , Xs) between s variables is the difference

between the marginal entropies (assuming that all of the variables are inde-

pendent of each other) and the joint entropy of all variables:

C(X1, X2, . . . , Xs) =
s∑

i=1

H(Xi)−H(X1, X2, . . . , Xs) (3.24)

Actually, it is easy to device that total correlation is a multi characteri-

zation of Equation 3.16 (trying to generalize in a sense from 2 to s random

variables). The motivation of total correlation is to provide the simplest mea-

sure of relationship between s random variables based in the most general

(loosest) estimation. Therefore, total correlation disregards any other possi-

ble calculation of entropy among other subsets of variables. Total correlation

is symmetric and non zero since H(Xi) ≥ H(X1, X2, . . . , Xs) (a value of 0

indicates total independence between the s random variables).

The main inconvenient of total correlation is that it might not provide a

realistic estimate of dependency between n variables. The marginal average

uncertainties and the largest joint uncertainty may not have been enough

to capture the real dependency among other (possibly important) subsets

of variables.On the other hand, the total correlation explores only a subset

of the arrangements of variables considered in the initial chain rule used to

calculate the mutual information. Therefore, the computation of the total

correlation is faster than the one in the chain rule.

28

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

3.3.4 Interaction Information

Another interesting tool for testing the level of stochastic dependency be-

tween a collection of variables is interaction information [50, 51]. Interaction

information calculates the ”synergy” between a k−way arrangement of vari-

ables (|X| = k). Jakulin et al. [51] made a distinction between the semantics

of dependency and interaction. An interaction is an atomic relationship be-

tween a pair of variables only. Dependency can be established between two

or more variables.

The interaction information for a set of variables X = {X1, X2, , Xn} is

defined by the following formula:

II(X) = −
∑
S⊆X

(−1)|X|−|S|H(S), (3.25)

whereas, H(S) is the entropy over a set S ⊆ X of variables. Thus, the

k − way interaction information can be interpreted as the sum of the joint

entropies of the power set 2|S| of S (omitting the empty set). Interaction

information can also be expressed in terms of conditional entropy. Let Xi ∈

X, then the k − way interaction information is given by:

II(X, Xi) = II(X|Xi)− II(X) (3.26)

The main drawback of interaction information is its (vague) interpreta-

tion. In the simplest case the mutual information is obtained by substituting

the two variables in Equation 3.25; logically, the properties of mutual infor-

mation (non zero and symmetry) hold. Regardless of the number of random

variables, interaction information is always symmetric. However, if |X| ≥ 3,

then positive and negative values are possible.

29

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

A positive interaction information indicates that the variables in X con-

tain a higher dependency level (synergy) than in S (Having that S ⊂ X and

|S| = |X| − 1). In contrast, a negative value of interaction information de-

notes redundancy among the elements of X. Thus, there exist |X|−1 values

contained in X sharing a higher relationship. The only admissible indepen-

dence test for this estimate is: II(X1, X2, . . . , Xn) = −II(X1, X2, . . . , Xn−1)

iff the variables in the set X1, X2, . . . , Xn−1 become independent given Xn.

The next section presents the differences between the chain rule of mutual

information, total correlation and interaction information.

3.4 Towards an efficient computation of in-

formation

The calculation of mutual information between 2 or more random variables,

total correlation and interaction information rely on the calculation of several

entropies. In any case the computation is not simple due to the estimation

of joint probability distributions (a frequency counting problem).

Several attempts have been made in the past to approximate the cal-

culation of information. In the case of mutual information Vilmansen [52]

establishes that it is possible to approximate mutual information if we as-

sume some prior probability distributions. The main problem is to find a

function which efficiently approximates joint probability distributions.

Ultimately, the objective is to reduce the time complexity of the counting

of frequencies. Friedman et al. stated in [53] that the time required in order

to estimate frequencies can be optimized by reducing the sample size of the

domain. This mechanism reduces the complexity of the counting problem

by a factor β < 1. This threshold β ∗ Ω defines a point in which the mu-

30

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

tual information, entropy or the target function converges in an acceptance

interval (reaching sufficient statistics). Thus, the function in question does

not significantly improve its value by increasing the sample size. However,

the selection of β is subject to the complexity of the domain in study.

Polynomial density expansions based on cumulants [54] have been pre-

viously used to approximate the joint probability functions. Another com-

pacting simplification of joint probabilities is acquired by defining a latent

attribute [55] with a lower cardinality than the ones in the original variables.

A more refined approach is the one proposed by Hyvärinen in [56]. This

method is a robust approximation of marginal entropies based on the con-

cept of maximum entropy density. Specifically, this approach approximates

the entropy H(Xi) of a random variable Xi with a density function ∆(xi).

H(Xi) = −
∫

∆(xi)log∆(xi)d(xi) (3.27)

Assuming that the density function ∆(xi) is quantisized according to a

collection of Gaussian functions into m intervals C = {c1, c2, . . . , cm}:∫
∆(xi)Gjd(xi) = cj, j = 1, . . . ,m (3.28)

Then, the marginal entropy can be approximated as:

H(Xi) ≈ −
∫

∆(xi)log∆(xi)d(xi) ≈ H(V i)− 1

2

m∑
j=1

c2
j , (3.29)

where H(V i) is the entropy of a standardized Gaussian variable and it

is equal to 1
2
log2π [56]. This method offers good marginal approximations

of entropy. Nevertheless, the question still remains open for joint entropy

estimations. The study of a concrete and efficient approximation of multi-

31

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

variate probability distributions is a theme which is beyond the scope of this

work. Moreover, a comparison between approximate and true estimates of

information is regarded as future work. Further details are provided in chap-

ter FUTUREWORK. In this work for practical purposes; I used the data

structures described in chapter XXX to efficiently compute the queries when

necessary.

3.4.1 Normalized Mutual Information

Mutual information is a sound estimate to describe dependency. Neverthe-

less, its analysis as a true distance metric is decisive since we want to device a

suitable dependency estimator. As previously mentioned in [39, 46], mutual

information is probably the best option to define a degree of dependency

or interaction between two or more variables. However, it is obvious to ap-

preciate that its definition as formulated in Equation 3.11 is biased by the

cardinality of the variables involved in the calculation of the marginal and

joint probability distributions.

Indeed, mutual information can be regarded as an absolute metric; thus,

it is not completely accurate to reflex true dependencies in a realistic domain.

When working in massive domains, it is unlikely that all attributes would

have the same cardinality. Therefore, there is the need to find a metric which

is relative depending on the cardinality of a given set of variables. Li et al.

introduced in [45] a normalized universal distance (NID) using algorithmic

mutual information. The NID as any other proper metric is based upon the

following definition.

Definition 3.1. Let X be a set of variables and Xi, Xj, Xk ∈ X. A dis-

tance D(Xi, Xj) between Xi and Xj is a true metric iff D(Xi, Xj) holds the

identity axiom: D(Xi, Xj) = 0 iff Xi = Xj;

32

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

D(Xi, Xj) holds the symmetry axiom: D(Xi, Xj) = D(Xj, Xi);

D(Xi, Xj) holds the triangle inequality axiom: D(Xi, Xj)+D(Xj, Xk) ≥

D(Xi, Xk).

Finally, the NID between two sequences Si and Sj consist of the following

expression:

NID(Si, Sj) =
K(Si|Sj) + K(Sj|Si)

K(Si, Sj)
, (3.30)

or simply

NID(Si, Sj) = 1− Ialg(Si|Sj)

K(Si, Sj)
, (3.31)

whereas Ialg(Si, Sj) = K(Xj) − K(Xj|Xi) is the algorithmic mutual in-

formation. Recall that K(), K(., .) and K(.|.) are the marginal, joint and

conditional Kolmogorov complexities (Section KOLMOGOROV). However,

they showed that the previous estimate might produce not accurate results if

we use more than 2 variables. This argument made them device the following

metric:

NID′(Si, Sj) =
argmax{K(Si|Sj), K(Sj|Si)}

argmax{K(Si), K(Sj)}
(3.32)

Furthermore, the two NID variants have been adapted from its Kol-

mogorov version into the terms of Shannon’s entropy by Kraskov et al. in

[46]. Therefore, the mutual information distances D(Xi, Xj) and D′(Xi, Xj)

between two random variables Xi and Xj are defined as:

dI(Xi, Xj) = 1− I(Xi, Xj)

H(Xi, Xj)
(3.33)

dI ′(Xi, Xj) =
argmax{H(Xi|Xj), H(Xj|Xi)}

argmax{H(Xi), H(Xj)}
(3.34)

Both of these formulas are not identical. Nevertheless, they have been

33

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

empirically proved to be equivalent with some minimal deviation between

each other (refer to [46] for further details). Another measure was employed

by Au et al. [39] in the ACA algorithm as the central metric in order to test

dependency between pairs of random variables. The ACA algorithm uses a

similar version of Equation 3.33:

R(Xi, Xj) =
I(Xi, Xj)

H(Xi, Xj)
(3.35)

This estimate was firstly shown in [ACAAAAAA56] in the bioinformatic’s

field, it is called the interdependency redundancy measure or i.r.m. and

fullfils the identity, symmetry and triangle inequality axioms. The interde-

pendence redundancy measure is a straightforward normalization of mutual

information and mirrors Equation 3.33. A low value for Equation 3.33 repre-

sents a short distance (high dependency) between Xi and Xj; a high distance

dI(Xi, Xj) reflects a strong independence (low value for R(Xi, Xj)). On the

other hand, a high estimate for Equation 3.35 describes a substantial devi-

ation from independence (sound dependency) among Xi and Xj. Formally

speaking, and analogously with I(Xi, Xj), if R(Xi, Xj) = 1, then Xi and

Xj are truly dependent; if R(Xi, Xj) = 0, then Xi and Xj are indepen-

dent (p(Xi, Xj) = p(Xi)p(Xj)); if 0 < R(Xi, Xj) > 1, then then Xi and

Xj have certain degree of dependency; and lastly, if R(Xi, Xj) > R(Xi, Xk),

Xi, Xj, Xk ∈ X and i 6= j 6= k, then Xi and Xj have a greater dependency

than Xi and Xk [39].

Assume that c ∈ < is the punctual result of either dI(Xi, Xj) or R(Xi, Xj).

Table 3.4.1 describes some properties of these two dependency estimators.

Conclusively, given a collection of random variables the maximum dis-

tance for dI(Xi, Xj) is the minimal dependency for R(Xi, Xj). These two es-

timators and some other normalized versions of mutual information were pre-

34

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

Table 3.2: Relationship between the dI(Xi, Xj) and R(Xi, Xj) metrics.

c ∈ < dI(Xi, Xj) = c R(Xi, Xj) = c
0 Total Dependency Total Independence
1 Total Independence Total Dependency

sented in [57]. The interdependency redundancy measure was chosen as the

dependency metric for effects of the presented work. This decision is founded

in the following assumptions: R(Xi, Xj) is symmetrical to dI(Xi, Xj), I pre-

ferred to semantically sustain a maximization of dependency rather than a

minimization of independence.

Although, the interdependency redundancy measure is not as accurate as

the mutual information distance defined in Equation 3.34 it is simpler and

conclusively, more robust than simply using mutual information. The last

argument is valid since R(Xi, Xj) is a relative true metric. The interdepen-

dency redundancy measure is an information theory based metric which is

independent of feature or background information. Hence, it can be univer-

sally applied to either continuous or discrete domains.

35

CHAPTER 3. A UNIVERSAL DEPENDENCY ESTIMATOR

36

Chapter 4

Dependency Graphs from Data

We investigated in Chapter 3 several possible metrics, distances and infor-

mation theory measures that could help us to reveal dependencies among

variables. We concluded that the i.r.m. is a good estimate to evaluate depen-

dencies among a set of variables. In this Chapter, we discuss the importance

of using dependence graphs for describing a set of random variables.

We are interested in gaining reduced knowledge from data. Discovering

all necessary interactions between groups of variables is not a trivial task.

A sound attempt is to obtain a graph which describes the domain’s nature.

Then, another sectioning method could partition such graph in order to gen-

erate a set of subsets of χ. On the other hand, we could also try some

information theory tools such as the calculation of mutual information for

more than 2 variables.

We could try to experiment with combinations of k-subsets (for some

small k) of variables and then keep those groups of variables that present

higher estimates. However, the computation of many combinations is a slow

task. Therefore, it is not reasonable to test too many combinations. We can

see in Figure 4.1, that the number of possible combinations grows polynomi-

ally (being the k-subsets between n and k = n
2

the highest possible number

37

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

of combinations).

Figure 4.1: Possible number of combinations between a set of n elements and
a given integer number k.

Before we proceed with our investigation, it is important to notice that

through this work, we will tackle discrete random variables. We will denote

the set of all variables with the symbol χ that is the set of the n random

variables χ = {X1, X1, . . . , Xn} from a given domain. Following, several de-

pendency graphs are explained in detail. A final note is that, for any graph

that is presented through this work, every node corresponds to a random

variable. Every edge corresponds to a ”sound” interaction or dependency

between pairs of variables. The weight that is attached to an edge in a de-

pendency graph is the degree of dependency or interaction between those two

variables (we chose the i.r.m. measure to denote weights in any dependency

graph because of the reasons explained in the final section of Chapter 3).

38

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

4.0.2 The N-Cut Dependency Graph

Another idea is to compute the complete graph Kχ over the set χ (i.e. by

using mutual information or the i.r.m.), sort its weights decreasingly; and

then, add the N edges whose weights are maximal. This method is highly

intuitive but also highly naive; in practice, many domains will present a small

group of variables that are highly correlated, but many others will be isolated

since they are not statistically significant. Figures 4.2, 4.3 and 4.4 present an

example of this method when applied to dataset generated from the Alarm

BN1, in every case we set N to 3 different values; we selected the |χ|, 2|χ|

and 3|χ| edges with highest weights.

The N-cut approach is an agglomerative method, which adds arcs given

a parameter N . However, this method lacks of the universality property

because depending of the domain in study we may require to add more or

less arcs. Figure4.5 shows the weight distribution over the complete graph

built for the Alarm domain (notice how it is not intuitive to select a threshold

N).

The granularity parameter N has to be regulated according to the domain.

For example, in Figure 4.2 we can see that if we set N to a very small value

then we end up with few components and many isolated variables (from the

set of 37 variables only 23 variables were assigned to 5 groups).

Secondly, if we slightly increment N to 74 (Figure 4.3) we can observe

that the number of considered variables increased to 29 (in 4 groups). Nev-

ertheless, 8 variables are still not considered. Finally, in Figure 4.4 we aimed

to attach a considerably higher amount of edges (111). In this case we ob-

1The ALARM BN was firstly introduced by Beinlich et al. [58] for monitoring patients
in intensive care. This Bayesian network is preferred for testing deterministic algorithms
due to its simplicity. In this Chapter, we will show examples of dependency graphs that
were built by using generated data from this BN with a sample size Ω = 10, 000.

39

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

Figure 4.2: The N-cut method. The parameter N was set to |χ| = 37.

tained a single group with 31 variables. Obviously, from this scenario we can

foresee that if we continue incrementing N , we may cover all 37 variables

soon. However, having such big groups is impractical, since they do not

reveal simplified settings from the domain.

Judging by the previous facts, we can have the certainty that finding

a domain’s topology is not a straightforward process. It is convenient to

investigate some other paradigms that could help us to encapsulate the most

relevant dependencies among the full collection of variables. In the next

section we present a key feature in our work, a dependency graph called the

Maximum Spanning tree.

40

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

4.0.3 The Maximum Spanning Tree

The Maximum Spanning (MAST) tree was firstly introduced by Chow and

Liu in [59] and has been through fully investigated in [60]. This structure was

one of the first attempts to represent probabilistic distributions by using a

graphical model. In concrete, the Maximum Spanning tree has the objective

of approximating a joint probability distribution P (X1, X2, . . . , Xn) among

n variables. We shall note that a MAST is the smallest graph that optimally

approximates the probability distribution between the variables. In other

words, a Maximum Spanning Tree (MAST) MAST = (V MAST, EMAST)

is a set of nodes V MAST = {X1, · · · , Xn} connected by a set of edges

EMAST = {e1,j, · · · , ey,n−1}. Each edge ei,j is attached with the weight

R(Xi, Xj). The MAST provides a raw dependency graph. Fig. 4.6 describes

a MAST construction procedure.

In this procedure, the i.r.m. R(Xi, Xj) is computed for all pairs of vari-

ables (for l = 1 to Ω samples) and an adjacency matrix CA is built (line 1).

The complexity of this task is in the order of O(n2). In lines 3-6, a modi-

fied version of the Kruskal’s algorithm is used to build the tree (the original

Kruskal’s algorithm for finding the minimum Spanning tree sorts the weights

decreasingly instead of increasingly in line 4). We used an union-finder data

structure [61] and a sorted list for adding and removing arcs. The complexity

of this procedure is in the order of O(n log n).

The MAST has been used for classification of images, for several tasks in

pattern recognition, and it is still considered a good probabilistic model for

encoding loose constraints. An example of the MAST is shown in Figure 4.7

for the Alarm Bayesian network[58]. We used 10,000 samples and the i.r.m.

to generate it. Notice how the adjacent variables in the MAST turn out to

be also adjacent variables in the BN (Appendix A).

41

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

The MAST is the smallest connected graph that ”optimally” approxi-

mates the joint probability of the domain2. On the other hand, if we use the

MAST not as a graphical model, but as a dependency graph that reveals a

sound amount of dependencies; then it could not be enough to represent all

the valuable dependencies.

The constraint of leaving only n−1 edges restrict also those other weights

that may provide helpful dependencies. Thus, many important relationships

are lost because of this restriction. It might be convenient to augment this

tree in order to gain information about the most important dependencies.

Nevertheless, its value relies in the fact that it can be easily partitioned for

domain reduction. In the next Chapter we introduce several partitioning

methods (some take the MAST as the dependency graph to be partitioned),

and in the next sections we propose several extensions to the MAST.

4.0.4 Beyond the MAST

The MAST by itself is a good candidate to depict the minimal connectiv-

ity among all variables in χ. Nevertheless, we show in this section several

augmentation procedures in order to recover more dependencies: Minimal

expansion, maximal expansion, average expansion and the Maximum Span-

ning Forrest. These add-ins could help to direct further sectioning algorithms

in order to discover smaller groups of variables.

Minimal Expansion

This method takes the MAST and the complete graph as inputs and then for

every variable X, the method finds its arc with lowest weight w, then we find

2Although BNs are known to be the best graphical models for graphical probabilistic
modeling.

42

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

the edge e′ (from the complete graph) with the highest weight w′ connecting

another variable X ′ to X (X ′ is not initially adjacent to X in the MAST).

Finally we add e′ to the dependency graph iff w′ ¿ w. This method adds very

few edges, (around 30 percent of the n− 1 initial arcs). Figure 4.8 shows an

example of such expansion.

Maximal Expansion

The maximal expansion method takes the MAST and the complete graph

as inputs and then, for every variable X, the arc with lowest weight w is

detected; then we find the set of edges E ′ with weights W ′ connecting the set

of variables X ′
1, X

′
2, . . . , X

′
l to X (the variables X ′

1, X
′
2, . . . , X

′
l are not initially

adjacent to X in the MAST), finally we add E ′ to the dependency graph iff

w < w′ ∈ W ′. This method adds the highest number of arcs producing a

dependency graph with around 4(n-1) edges (Figure 4.9).

Average Expansion

The average expansion receives the same inputs as the previous methods and

again, for every variable X, the method finds the average weight w of the

weights attached to the arcs connecting X. Following, we find the set of arcs

E ′ with weights W ′ connecting the set of variables X ′
1, X

′
2, . . . , X

′
l to X (the

variables X ′
1, X

′
2, . . . , X

′
l are not initially adjacent to X in the MAST). At

the end, we add E ′ to the dependency graph iff w < w′ ∈ W ′. This method

adds around (n−1)
2

extra arcs to the MAST ((n − 1) + (n−1)
2

edges in total).

Figure 4.10 shows an example of the average expansion. 4.9).

43

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

Maximum Spanning Forrest

The Maximum Spanning Forrest (MSF) provides a more robust picture of

the domain’s nature. Thus, it reinforces the dependencies between highly

correlated variables by using small expansions. Therefore, it fulfills the two

constraints of minimal connectivity with maximal weights. This method is

basically the MAST approach but applied for N iterations. After one MAST

is computed, then its weights and arcs are removed from the complete graph

(from which the spanning forest is built). At the end, the MSF − N is

the smallest dependency graph with N inner trees that maximize the total

weight of the graph. It was seen empirically, that N should be kept to a

small value, and N may vary according to the domain in study. Figures 4.11

and 4.12 show the second and third tress that were obtained after the initial

MAST shown in Figure 4.7 was calculated.

All the previous dependency graphs offer a sound interpretation of the

domain’s topology. Moreover, the decision of considering a given dependency

graph will depend on the complexity of the domain in study. Conclusively, an

specialized clustering method has to be applied for each dependency graph

(since clustering or sectioning methods that aim partitioning trees are logi-

cally not the best options for partitioning highly connected graphs). In this

work we chose the complete graph and the MAST for further grouping of

variables. The reason for the later is that the complete graph provide full in-

formation regarding pairwise interactions. On the other hand, the MAST is a

dependency graph that can be rigorously partitioned without loosing gener-

ality. The next Chapter explains in detail some relevant clustering methods

used in this investigation.

44

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

Figure 4.3: The N-cut method. N was set to 2|χ| = 74.

45

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

Figure 4.4: The N-cut method. N was set to 3|χ| = 111.

46

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

Figure 4.5: The weight distribution in the complete graph across all edges
for the Alarm domain.

MAST Construction Algorithm
Input: Data D = {a1,l, · · · , an,l}
Output: MAST = (V MAST, EMAST), MA
1: Compute a complete Graph G = {χ,E} with weights

CA = {cai,j = R(Xi, Xj)|i, j = 1, · · · , n and i 6= j}
2: k = 0, V MAST ← χ, EMAST ← ∅, MA← ∅
3: Sort E decreasingly according to the weights in CA
4: FOR ei ∈ E AND k < |χ| DO
5: IF(ei ∈ EMAST) do not create a cycle in MAST THEN
6: EMAST ← (ei ∪ EMAST), MA← (cai,j ∪MA), k = k + 1

Figure 4.6: Identifying a maximum spanning tree from Data D.

47

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

Figure 4.7: The MAST for the Alarm BN.

48

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

Figure 4.8: The minimal expansion for the MAST in the Alarm BN.

49

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

Figure 4.9: The maximal expansion for the MAST in the Alarm BN.

50

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

Figure 4.10: The average expansion for the MAST in the Alarm BN.

51

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

Figure 4.11: The second MAST in the Alarm BN.

52

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

Figure 4.12: The third MAST in the Alarm BN.

53

CHAPTER 4. DEPENDENCY GRAPHS FROM DATA

54

Chapter 5

Discovering Local Components

How can we define a group of highly correlated genes while examining gene

expression data? How can we find those relevant features in a dataset having

numerous variables? How could we define a set of classes over a collection of

observations? Basically, all these questions have been the fundamental moti-

vation for one of the most popular branches of data mining; data clustering.

Data Clustering is probably one of the best known techniques of data

mining. This task is one of the most important unsupervised learning prob-

lems that computer scientists, statisticians and mathematicians have tried

to develop and improve for years. For more than two decades, clustering

has taken special interest between the scientific community and it is proba-

bly in the jargon of other professionals that have no direct relationship with

machine learning or even computer science. The reason for the later relies

beneath its clear definition and interpretation. In general, we can define

clustering as the task of detecting groups of points, entities or elements that

hold a substantial similarity.

There exist two potential fields in which clustering has been extensively

studied in the past. Firstly, data clustering is a data mining operation that

help us to define relationships between samples over a given dataset. These

55

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

groups of similar objects are then labeled as clusters; then they can be used

either for data analysis directly or to define classes which describe the domain

upon several characteristics. Probably the second widest use of clustering

in the past years has been the task of selecting genes (variable selection) in

Bioinformatics. Both approaches rely on a golden principle, the optimization

of an objective function.

In the case of data clustering (and according to [62]), this task can be

classified in for major paradigms:

• Model based methods.

• Hierarchical methods.

• Partitioning methods.

• Density estimation methods.

Besides of the previous classification, clustering approaches can also be

independently classified in other terms. They can be either exhaustive or not

exhaustive methods (exhaustive procedures aim to add every possible object

to a given cluster, whereas in the second case some variables could be left

aside isolated). Moreover, a given clustering algorithm can produce disjoint

or overlapping clusters (By using the same notation and lexems than in set

theory we can define that a disjoint set of clusters {Ci, Cj} have no element

in common ∃c∈Ci
c ⊆ (Ci ∧ Cj), in the sacond case they could share one or

more variables such that Ci ∧ Cj /∈ empty).

Every clustering algorithm in literature has been developed with the aim

of solving very specific problems. The construction of clustering algorithm

is normally ad hoc; logically, two clustering algorithms that present different

aims become incomparable in the same terms.

56

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

For the effects of this project we aim for the second class of clustering,

namely variable selection and more specifically, attribute clustering. We

also reduced our search for clustering algorithm to the class of partitioning

techniques. The later was done because of the focus of this work, that is

the discovering of highly correlated random variables for simplified analysis

of a given domain. We also adopt the assumption that all variables can be

seen as points in an euclidean space because we have complete information

regarding pairwise proximities. Thus, the use of a true metric is remarkably

helpful since the partitioning becomes intuitive.

Before we continue with our discussion it is convenient to introduce the

most well known partitioning clustering algorithm, the k-means [63]. This

algorithm is intuitively based on the discovery of k different clusters among

a collection of n points p1, p2, . . . , pn by grouping each element to its nearest

mean m1, m2, ...,mk (Initially the means are either selected or chosen at ran-

dom) such that their distance d(pj, mi) is minimal. Once that each point has

been covered in one cluster a new ”center of mass” or mean is again recalcu-

lated in order to define a geometrical center between that local collection of

points. Finally, the two previous instructions are repeated until convergence.

Algorithm 5.1 present an abstraction of the k-means algorithm.

The k-means algorithm can actually be formulated in more specific terms.

We say that k-means algorithm aims to find a superset of points C over every

element of P by maximizing the following objective function:

W = argmax
pj∈P,mi∈M

(
n∑

j=1

k∑
i=1

d(pj, mi)) (5.1)

A further extension of the k-means algorithm is the k-modes or k-medoids

algorithm that is basically similar in nature to algorithm 5.1 except that in

57

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

K-means Algorithm

Input: A collection of points P = {p1, p2, . . . , pn} and means M = {m1,m2, ...,mk}
Output: A set of clusters C = {C1, C2, . . . , Ck}

1: WHILE Mold 6= M
2: Mold = M
3: Assign each element pj to Ci iff d(pj ,mi) is minimal.
4: Once that all elements in P have been covered recalculate the means M

Figure 5.1: A general description of the k-means algorithm.

this case instead of using virtual means we define an elements in P as the

modes or centers for each cluster. This, algorithm present a very intuitive

and solid foundation for variable selection since the center of each cluster

has special relevance (it is the variable with the highest similarity with any

other variable in its group). In the next section we will study in detail an

instantiation of the k-modes algorithm and we will explain its relevance to

our study.

Up to this point we have introduced the necessary background to guide

our focus into one of the objectives of this study, the selection of clusters

of highly dependent random variables. Clearly, we can reduce the problem

of discovering local components of similar random variables into a clustering

problem, and more specifically into a graph partitioning problem. For the

next sections on this chapter we will assume that the data has been statisti-

cally measured in terms of the i.r.m and that each pair of variables Xi and Xj

(i 6= j) hold a similarity distance d(Xi, Xj) that is equal to R(Xi, Xj). There-

fore, the complete set of distances between all the possible combinations of

variables χ can be seen as weights W attached to edges E in a complete

undirected graph Kn = (χ, E).

58

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

5.1 Attribute Clustering Methods

Two paradigms of graph partitioning were taken in order to find clusters of

random variables. The first technique is the attribute clustering algorithm

based in a k-modes algorithm and it is presented in the next section. Later

in this chapter we will also examine another sound method for performing

clustering of attributes based in the partitioning of Minimum and Maximum

Spanning Trees.

5.1.1 Attribute Clustering Algorithm

The novel attribute clustering algorithm (ACA) has its root in the class

of the k-medoid [64] approach. The k-modes algorithm [39] is basically an

implementation of the k-medoid algorithm but replacing euclidean distance

by the i.r.m measure. Given the set of variables χ = {X1, X2, . . . , Xn} and

an integer k, the objective of ACA is to find a disjoint set of clusters C =

{Ci|(i = 1, . . . , k) ∧ (∀i6=jCi ∩ Cj = ∅)} with centers O = {oi|i = 1, . . . , k}

which has the maximal global weight WC which is presented in Equation 5.2:

WC =
k∑

i=1

|Ci−oi|∑
j=1

wj,oi
(5.2)

Ultimately, the aim in this algorithm is to iteratively find the right centers

O. Figure 5.2 presents the attribute clustering algorithm.

ACA receives a complete graph Kn and two positive integers: The number

of Stars k and the maximal number of iterations q.

The algorithm works in the following order: Firstly, in the initialization

phase (line 1) a group of centers is selected and stored in the auxiliary set

Onew; the set Randχ
k is an artificially generated set of k variables from χ

59

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

Attribute Clustering Algorithm (ACA)

Input: Kn = (χ,E), k, q ∈ Z+

Output: C = {C1, C2, . . . , Ck}

1: Onew = Randχ
k , O = ∅

2: WHILE Onew 6= O AND r ≤ q
3: O = Onew

4: C = ∅, C1 = ∅, C2 = ∅, . . . , Ck = ∅
5: Onew = ∅, onew

1 = ∅, onew
2 = ∅, . . . , onew

k = ∅
6: FOR i = 1 to k
7: Ci ⇐ oi

8: FOR i = 1 to |χ−O|
9: Cj ⇐ Xi iff wi = argmaxoj∈Cj (wXi,oj)
10: FOR i = 1 to k
11: C ⇐ Ci

12: FOR i = 1 to k

13: onew
i = Xj iff wj = argmax

Xj∈Ci

(
|Ci−Xj |∑

h=1

wXj ,Xh
)

14: Onew ⇐ onew
i

15: r = r + 1

Figure 5.2: The Attribute Clustering Algorithm.

taken at random. Immediately, the set of working centers is obtained (line

3) and all clusters are renewed (line 4), the auxiliary Onew is set to empty

for further center assignations and all clusters are generated (lines 6-7) by

adding their centers. In the assignment phase (lines 8-9), a variable Xi is

assigned to a cluster Cj iff the weight wXi,oj
> wXi,oh

is the highest for all

oj, oh ∈ O such that oj ∈ Sj ∧ oh ∈ Ch. Following, the clusters are assigned

to C (lines 10-11). In the next phase (lines 12-14), a new center onew
i in all

clusters Ci ∈ C is calculated; such that onew
i = Xj for all Xj, Xh ∈ Ci iff∑|Ci−Xj |

l=1 wXj ,Xl
>
∑|Ci−Xh|

l=1 wXh,Xl
.

The complexity of the attribute clustering algorithm can be easily esti-

60

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

mated by considering a total of n variables in χ, k clusters, q iterations and

a total of p samples (p = Ω).

First of all, there is the need to receive a complete graph with all pair-

wise arcs; the computation of such a structure is in the complexity of O(n2p).

Following, we consider only the most phases which dominate the complexity

of the algorithm. First, in the assignment phase (lines 8-9) it takes O(k(n−

k)) ∈ O(kn) operations to assign all free variables to the clusters. Then,

when the new centers are calculated for all clusters (lines 12-14), it takes

O(t2) steps to decide the highest weight WCi of one cluster Ci having that

t is the highest cardinality of the Stars. Thus, it takes O(kt2) operations to

discover all centers oi ∈ O.

In conclusion, it takes a time in the order O(k(n + t2)q) ∈ O(knt2q) to

output the set of clusters C if we do not compute the complete graph Kn. If

Kn is not provided then ACA has a time complexity of O((n2p)+ (knt2q)) ∈

O(kn2pq). ACA is a smooth process, simple but robust enough at the same

time; it has shown convincing results for gene selection and micro array

analysis in two datasets describing the gene expression levels of a form of

leukemia [35] and colon cancer [34].

5.1.2 Standard Euclidean Minimum Spanning Tree

The k-modes approach is a straightforward approach to detect the clusters

based in some center variables. However, the k-modes algorithm attempts

to partition a complete graph Kn containing n random variables. Thus, it

results convenient to choose a looser dependency graph to be partitioned.

One of the most popular graphs for clustering is the Minimal or Maximal

Spanning Tree (MST and MAST) presented in Chapter 4.

Clustering algorithms based in partitioning MST (MAST) are commonly

61

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

applied to gene expression analysis and image processing. One application of

this method was successfully devised by Xu et. al in [65, 66] in bioinformat-

ics. An interesting application of maximum and minimum spanning trees to

image color clustering can be found in [67].

A minimalistic topology of the domain is relevant since we are interested

in finding groups of non distant variables seen as points in an euclidean space.

Thus, as previously stated, the MST creates a backbone in which only the

highest correlations are recovered. In the MST one arc depicts only the most

dependent variables in the domain, thus the partitioning becomes intuitive,

and now the question is to decide which edges are appropriate to remove

from this tree.

The MST-based clustering algorithms are commonly based in heuristics

that aim at removing a set of ”inconsistent” edges from the tree. An impor-

tant factor in this technique is the selection of a heuristic or process which

decides what arcs are relevant (and will remain) and which edges are incon-

sistent with the topology and removed. These algorithms do not require a

high amount of parameters to perform bisections over a tree; however, they

are probably the best clustering options for domains containing points that

are not geometrically well situated. Nevertheless, this class of algorithms

are faster than the k-means type of algorithms at the price of quality of the

solution. It is interesting to develop a fast partitioning algorithm that could

provide a satisfactory result. Figure 5.3 presents a framework for MST-based

clustering algorithms.

Since all algorithms that construct Minimum and Maximum Spanning

Trees require an initial complete graph Kn; we will consider that all of the

MST-based algorithms receive the Maximum Spanning Tree MAST before-

hand (we already know that in order to produce the complete graph we need

62

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

MST-based Algorithms

Input: A complete graph Kn = (χ,E)} with weights WKn

Output: A set of clusters C = {C1, C2, . . . , Ck}

1: Find a Maximum Spanning Tree MST from Kn.
2: Remove the ”inconsistent” edges from MST.
3: Form the set of clusters from the remaining subgraphs from MST .

Figure 5.3: A Framework for algorithms which partition a MST.

to compute the complete set of weigths in O(n2p) where p is the number of

observations p = Ω). Having introduced the framework of tree based parti-

tioning we will proceed to review several clustering algorithms based on this

principle.

The first and simplest MST-based approach is called the Standard EMS

clustering algorithm. The short term EMST stands for Euclidean minimum

spanning tree algorithm. That is the use of a MST to divide sets of dense

regions of points. The SEMST algorithm was introduced by Asano et. al in

[68]. This algorithm applies the principle of separability which states that

two sets of points over connected trough a MST are separated by stabbing

line. In other words k sets of points can be isolated in a MST if we remove the

k − 1 ”inconsistent” edges whose weight is maximal (or minimal, depending

if we are employing a minimum or maximum spanning tree). The SEMST

algorithm is presented in Figure 5.4.

The objective function of the SEMST algorithm is not that simple to

determine since the algorithm is mostly discriminative only with respect of

k − 1 arcs. We have that, the objective is to maximize the sum of weights

WG for every subgraph Gi = (Vi, Ei) (with a set of variables Vi and a set of

63

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

arcs Ei) after we delete k − 1 arcs. Thus, the objective function becomes:

WG =
k∑

i=1

∑
Xh,Xj∈Vi

wh,j (5.3)

Notice that for this thesis we aim to maximize the dependency between

random variables; therefore, by following the previous premises we will par-

tition the MAST in order to find the desired clusters.

Standard Euclidean Minimum Spanning Tree Algorithm (SEMSTA)

Input: MAST = (χ,EMAST), WMAST , k ∈ Z+

Output: A set of clusters C = {C1, C2, . . . , Ck}

1: FOR i = 1 to (k − 1)
2: I = (I ∪ (Xr, Xs)) iff (Xr, Xs) /∈ I ∧ (Xr, Xs) = argmin

w∈W MAST

(w)

3: FOR i = 1 to I
4: ei = (Xr, Xs)
5: EMAST = (EMAST − ei)
6: IF i = 1
7: G1 ⇐ (Xr ∪ V RMAST

Xr
)

8: G2 ⇐ (Xs ∪ V RMAST
Xs

)
9: G⇐ G1, G⇐ C2

10: ElSE
11: FOR h = 1 to |G|
12: IF eh ∈ EMASTh

13: G1 ⇐ RMAST
Xr

14: G2 ⇐ (Xs ∪ V RMAST
Xs

)
15: G = (G−Gh)
16: G = (G ∪G1), G = (G ∪G2)
17: FOR i = 1 to |G|
18: Ci = Vi having that Gi = (Vi, Ei)

Figure 5.4: The Standard Euclidean Minimum Spanning Tree Algorithm

The SEMST algorithm receives the Maximum Spanning Tree MAST

and a number k and it initially stores in I the ”inconsistent” edges having

64

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

minimal weights (lines 1-2) attached to edges EMAST . Then, the SEMST

iteratively bisects the MAST (lines 3-16) selecting each arc ei = (Xr, Xs)

in I, and in the first iteration it separates the tree into two disjoint clusters

G1 = (V1, E1) and G2 = (V2, E2) by pulling the reachable subgraphs RXr and

RXs (RXr = (V RXr, ERXr) where V RXr and V EXr are the set of nodes

and edges that connect Xr,note that Xr ∈ V RXr). Once that we have the

two initial subgraphs G1, G2 the algorithm continue pruning arcs but now

among the existing subgraphs (lines 11-16). At the end we say that each set

of variables Vi from Gi = (Vi, Ei) in every subgraph in Gi ∈ G correspond to

one cluster Ci (lines 17-18).

The complexity of the SEMST algorithm is trivial compared to other

clustering algorithms, since it takes O(n log n) to construct the Maximum

Spanning Tree. If we use the kruskal algorithm to build the initial tree

MAST then we already have sorted arcs according to their weights WMAST ,

in such case it will take constant time O(k− 1) to remove the ”inconsistent”

edges (lines 1-2). For the assemble of clusters (lines 3-16) it may take at most

a time of O(kt) whereas t is the highest number of variables in a subgraph

Gi ∈ G.

Clearly, the SEMST algorithm seems to be a simplistic but not robust

algorithm for attribute clustering. Theoretically, we have that the instanta-

neous deletion of k − 1 edges might produce clusters that are too small in

order to acquire any knowledge whatsoever. Indeed, if we have that every

weight is different, then some variables that are the least correlated in the

domain will suffer the risk of being discriminated and isolated in clusters by

themselves.

65

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

5.1.3 The Maximum Cost Spanning Tree Algorithm

In order to avoid the problems related with the SEMST approach we devel-

oped the Maximum Cost Spanning Tree Algorithm (MCST). The algorithm

works exactly in the same fashion as SEMST. However, we bias the search of

those ”inconsistent” edges by substituting the weights attached to the arcs

for costs. Bang Ye et. al describe in [] a class of euclidean trees, namely the

Minimum Routing Spanning Trees [69]. These trees are widely used in net-

work design. In these case the goal is to find a backbone tree such that the

average delay of communication between any endpoints is minimized. The

delay is semantically defined in terms of costs associated to every link in the

network.

A routing load or cost C(ei,j) in a tree T = (V, E) associated with an

edge ei,j ∈ E is equal to the product of the weight wi,j and the cardinali-

ties Deg(Xi) and Deg(Xj) between the endpoints Xi and Xj respectively.

Equation 5.4 describes this metric.

C(ei,j) = Deg(Xi)Deg(Xj)wi,j (5.4)

We are interested in developing a clustering algorithm that aims to parti-

tion subsets of highly correlated variables, but we are also aiming for clusters

that are not too small or too big with respect of the full domain of variables

χ. Thus we detect and delete the arcs whose associated cost is maximal. At

first sight, it is not clear why we took this decision. However, the reason

is founded in terms of the cardinality of the variables. In other words we

guide the search for ”inconsistent” edges for those regions of the tree that

are highly connected.

Opposing to the previous objective functions, we want to minimize equa-

66

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

tion 5.3. This is because we want to minimize the damage of removing an

edge whose weight might be of a relevant magnitude. Thus, in cases in

which two edges ei,j and eh,l have the same cardinality product (Deg(Xi) ∗

Deg(Xj)) = (Deg(Xh) ∗ Deg(Xl)) then we choose to delete that arc whose

weight w ∈ {wi,j, wh,l} is minimal.

Edges that connect leaf variables with the rest of the tree have higher

probability of being discriminated since its own cardinality is low. Equation

5.5 describe the objective function for the MCST procedure and Figure 5.5

presents its algorithm.

WG =
k∑

i=1

∑
Xh,Xj∈Vi

C(eh,j) (5.5)

The algorithm is almost identical to the SEMST algorithm, the only

difference is in the calculation of costs (lines 1-4) and the selection of edges er,s

whose associated costr,s is maximal. The pruning and construction of clusters

behave exactly in the same fashion which was seen in the previous section.

The complexity of the MCST algorithm primarily relies in the calculation of

the degree for each variable, having that we count with an adjacency matrix

for each edge er,s ∈ EMAST then it takes at most O(n ∗ 2d) operations to

complete the calculation for each individual cost (whereas d is the maximal

cardinality of a given variable X∈χ).

Evidently, this algorithm as well as the SEMST algorithm do not directly

optimize a specific concrete function. This unsupervised partitioning is of

course not optimal if we try to evaluate it in terms of a stricter target such

as equation 5.2. On the other hand, this approach might respond significantly

better than the SEMST algorithm (in fact, this asseveration is empirically

proved in the experimental results in section EXPERIMENT.SECTION).

67

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

Minimum Cost Spanning Tree Algorithm (MCSTA)

Input: MAST = (χ,EMAST), WMAST , k ∈ Z+

Output: C = {C1, C2, . . . , Ck}

1: FOR h = 1 to EMAST
2: ei = (Xr, Xs)
3: costr,s = |Xr| ∗ |Xs| ∗ wr,s

4: Costs⇐ costr,s
5: FOR i = 1 to (k − 1)
6: I = (I ∪ er,s) iff (Xr, Xs) /∈ I ∧ er,s has a costr,s = argmax

cost∈Costs
(cost)

7: FOR j = 1 to I
8: er,s = (Xr, Xs)
9: EMAST = (EMAST − er,s)
10: IF i = 1
11: G1 ⇐ RXr

12: G2 ⇐ RXs

13: G⇐ G1, G⇐ C2

14: ElSE
15: FOR h = 1 to |G|
16: IF eh ∈ EGh

17: G1 ⇐ RXr

18: G2 ⇐ RXs

19: G = (G−Gh)
20: G = (G ∪G1), G = (G ∪G2)
21: FOR i = 1 to |G|
22: Ci = Vi having that Gi = (Vi, Ei)

Figure 5.5: The Minimum Cost Spanning Tree Algorithm

5.1.4 Zahn Euclidean Minimum Spanning Tree Algo-

rithm

The previous MAST-based clustering attempts used a truly heuristic rule

to partition a given domain. However, the rule they use to select candidate

edges for deletion is greedy and offers no guaranties in global terms. For this

reason, it is interesting to evaluate an algorithm which not only focus in a

68

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

given arc er,s; but also verifies the set of neighboring arcs in Nr and Ns with

respect of its endpoints Xr and Xs.

In this case we can visualize that the MCST and SEMST algorithms

perform a greedy blind search over the dependency graph in order to select

inconsistencies. On the other hand, the Zahn’s Euclidean Minimum Spanning

Tree (ZEMST) algorithm firstly introduced by Zahn [70] takes into account

not only a given arc but its relevance among its neighbors. This clustering

process is based in the comparison between a weight wr,s and the arithmetic

measures such as the means (w̄Nr , w̄Ns) and the standard deviations (σNr ,

σNs) of neighboring weights (wNr , wNs).

These neighboring weights are related to the edges in the subgraphs be-

longing to the neighbor hods Nr = (VNr , ENr) and Ns = (VNs , ENs) were VNr

and VNs are the set of variables; and ENr , ENs are the set of edges expanding

from the variables Xr and Xs (not counting the direction that includes the

edge (Xr, Xs)).

Let us define the methods that are necessary for detecting ”inconsistent”

edges in the ZEMST algorithm. Firstly, the mean w̄Nr of a neighborhood Nr

can be defined as:

w̄Nr =
1

|ENr |
∑

(Xi,Xj)∈ENr

wi,j (5.6)

Secondly, the standard deviation σNr of neighborhood Nr is equivalent

to:

σNr = (
1

|ENr |
∑

(Xi,Xj)∈ENr

(wi,j − w̄Nr))
1
2 (5.7)

Before any calculation takes place we need to define the the size of the

subgraph Nr (neighborhood). For this reason we need a parameter d that

is the diameter of Nr. In other words. This neighborhood can be easily

obtained for any edge by performing a classic bread first search with depth

69

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

d over the Maximum Spanning Tree. We proceed to examine the ZEMST

algorithm in Figure 5.6.

Zhan’s Euclidean Minimum Spanning Tree Algorithm (ZEMSTA)

Input: MAST = (χ,EMAST), WMAST , d ∈ Z+, c, f ∈ <
Output: C = {C1, C2, . . . , Ck}

1: FOR i = 1 to |EMAST |
2: er,s = (Xr, Xs)
3: Construct Nr = (VNr , ENr), Ns = (VNs , ENs) of depth d.
4: Calculate w̄Nr and w̄Ns using equation 5.6.
5: Calculate σNr and σNs using equation 5.7.
6: IF (wr,s < (w̄Nr − σNr)) OR (wr,s < (w̄Ns − σNs))
7: IF |G| = 0
8: G1 ⇐ RXr , G2 ⇐ RXs

9: G⇐ G1, G⇐ G2

10: ElSE
11: FOR j = 1 to |G|
12: IF er,s ∈ Ej

13: G1 ⇐ RXr , G2 ⇐ RXs

14: G = (G−Gj), G = (G ∪G1), G = (G ∪G2)
15: ELSE IF wr,s

max(c∗w̄Nr ,c∗w̄N2
)

16: IF |G| = 0
17: G1 ⇐ RXr , G2 ⇐ RXs

18: G⇐ G1, G⇐ G2

19: ElSE
20: FOR j = 1 to |G|
21: IF er,s ∈ Ej

22: G1 ⇐ RXr , G2 ⇐ RXs

23: G = (G−Gj), G = (G ∪G1), G = (G ∪G2)
24: FOR i = 1 to |G|
25: Ci = Vi having that Gi = (Vi, Ei)

Figure 5.6: The Zahn’s Euclidean Minimum Spanning Tree Algorithm

The algorithm receives the Maximum Spanning Tree MAST , the set of

weights WMAST , the depth d and two threshold parameters c and f . First, it

70

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

is important to note that all the calculations are always taken from the full

MAST . We obtain the neighborhoods Nr and Ns by a search of depth d (line

3). Then, for each edge er,s ∈ EMAST we calculate the means w̄Nr , w̄Ns for

the neighborhoods Nr, Ns and the standard deviations σNr and σNs (lines

4-5). Now in order to decide if an edge er,s is inconsistent we perform two

tests. First we check if the weight wr,s is significantly smaller than any of the

means minus its standard deviations (line 6), and then we just assembly the

auxiliary graphs as in the previous algorithms (lines 7-14). The second test

(line 15) removes those outliers that are far away from the mean (targeting

those edges whose weight is significantly higher than the mean), and if this

equality holds then the auxiliary graphs are redefined (lines 16-23). Finally,

every variable X ∈ Vi contained in an auxiliary subgraph Gi = Vi, Ei is

mapped to a cluster Ci (lines 24-25).

The complexity of the ZEMST algorithm is more elaborate than its pre-

decessors, since it has to perform a search of at most d−1 adjacent variables;

thus, the most significant part of the algorithm runs (lines 3-5) in a time with

a lower boundary in O(n ∗ d) and a worst case scenario in O(n2) whenever

d ≈ n. The organization of the auxiliary subgraphs in lines and could be

handled in a time O(|G|c) if appropriate data structures are used (c is the

highest number of variables in a subgraph).

We can see from Figure 5.6(lines 6 and 15) that the ZEMST algorithm

basically removes all the edges that are not close to its mean. However, it

does not only removes those edges presenting low weights but also those ones

that are proportionally higher to the highest of the two neighboring means.

Indeed the algorithm targets a different objective function; that is to keep

all the edges that are arithmetically closer to the mean.

71

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

5.2 From Complex Networks to the Star Dis-

covery Algorithm

The last MST-based clustering approaches perform clustering by executing

simple pruning rules. We can intuitively realize that, as the rules for parti-

tioning become more complex then the final clustering seems to be of a better

quality. Thus, the search for ”inconsistent” edges is directed to ”convenient”

zones (regions in which by cutting edges we can obtain clusters with a fair

number of variables). However, we are interested in finding a competitive

and robust algorithm that could be offered as another option besides ACA

in order to find a set of clusters. Even though, we have not seen convincing

results by using a MAST for performing clustering that does not represent

that such dependency graph is not valuable.

On the other hand, we aim in this section for a robust MAST partitioning

algorithm that is mostly founded in graph theory operations, and motivated

by the theory of complex networks [71, 72]. Complex networks has its roots

in the study of interactions between a group of different entities. Therefore, it

is an abstraction and a study of topologies, interactions, densities of clusters

of nodes, dynamics of networks, etc.

Complex networks seek for ”hidden” phenomenas that are behind a given

network that can be described in terms of graph theory. One of the fields

of complex networks is the study of scale-free networks [73] that are nothing

but graphs that initially start with a given number of variables and edges

and then whenever they grow through the pass of time they seem to conserve

the same topology (i.e. initial dense zones of connected components remain

with a similar connectivity while other regions remain sparse). A scale-free

network is a graph whose nodes have a degree distribution that follows a

72

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

power law distribution Pi(k) ∼ k−γ, whereas Pi(k) is the probability that a

given node connect other k nodes (γ is an empirical threshold).

This field of study is new and it is currently widely studied. There exist

many examples of scale-free networks such as interaction between groups of

persons in social networks or epidemics. However, there are other examples

of networks that are believed to be scale-free networks such as the world wide

web since some patterns in its growth suggest a geometrical extension.

Focusing back in our search for a good clustering algorithm we may ask

to ourselves: How is that scale-free networks relate to attribute clustering?

Indeed, if we can reduce our problem to a graph partitioning problem, and

then into a tree clustering problem; we could follow the intuition relying some

empirical properties of scale-free networks. It has been reported in [71] the

hypothesis that in real world cases such as the world wide web, (see Figure5.7)

there may exist a correlation between pairs of nodes that hold a high degree

of connectivity. However, these asseverations are still in study, since there

is not nearly complete data regarding the exact topology for every domain

in the WWW. The Opte project [74] is one of the efforts to describe related

structures and patterns on the net. Once we acquire knowledge regarding

connectivity and faithful patterns; then the discovered topology could be

analyzed.

Scale-free networks was the premise that motivated the previous work of

Ninna Paivinen in [75] in order to formulate a simple but acceptable clus-

tering algorithm based in scale-free networks. The clustering algorithm is

based on the modification of Prim’s algorithm [76] for MST construction.

In that approach a tree is iteratively constructed with the difference that,

whenever a node that is already in the MST reaches a certain degree then it

starts to absorb more new nodes than its counterparts. the later is possible

73

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

Figure 5.7: A Shallow description on several domains in the WWW.
Each color represents a given domain, i.e. Yellow= {.net, cn, au}, Blue=
{.net, .ca, .us}.

by affecting the weight of that node versus the rest of the domain. Then,

a final process searches for nodes with a high degree, and then pulls these

center nodes as well as its branches into several clusters.

The novel idea of using the SFMST algorithm (over a conventional k-

medoid algorithm) is to direct the search of regions of highly correlated

variables. Such grouping of variables may provide a clearer picture of the

domain. Therefore, those k partitions are identical to those regions in the

SFMST that present a high density of variables. However, the definition

of a region with a high density of variables is heuristic (depending in some

predefined rules). Biasing the placement of nodes in a tree might intuitively

reduce the problem of selecting centers of performing bisections in a given de-

pendency graph. However, the process of biasing might be unnecessary, since

74

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

a Maximum Spanning Tree can provide enough features for the selection of

centers or modes.

5.2.1 The Star Discovery algorithm

In this section the Star Discovery algorithm (SD) is introduced. This ap-

proach follows the same clustering principle as the previous work. We select

take a Maximum Spanning Tree and then we search for candidate modes or

centers depending on some constraints. Once a candidate node is selected as

a true mode it is stored in a cluster with its adjacent and leaf nodes. The

process is repeated until no more variables remain unassigned into clusters

(exhaustive clustering).

Before we analyze the approach in more detail, we will review a key

concept in which the SD algorithm is based upon. Guiding the search for

centers by only examining the topology is probably not a good idea, since

we completely ignore the weights. Actually, from the previous algorithms we

can see that they based the clustering in a very simplistic combined search

involving topology and weights. However, by examining only isolated edges

or neighborhoods for clustering trees is probably not a good idea. We may

exploit further features from this dependency graph.

A sound and clear approach is to look for subgraphs from the MAST that

could reveal information about the ”nature” of the domain. One abstraction

of our technique is to look for spanning stars as subgraphs contained in the

MAST.

A spanning star [77] is a spanning tree of m nodes over the initial Max-

imum Spanning Tree. A spanning star S = (V S, ES) of m = |S| nodes has

one center o ∈ V S with a degree equals to m− 1. All the other nodes in the

spanning star have a degree of one.

75

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

In fact, the idea of the k-modes clustering algorithm is indirectly based

on the same idea of discovering stars. In the k-modes, the process starts by

selecting a random set of modes and then all the other nodes are associated

to a given star such that the weight is maximal. Later, a new set of modes are

recalculated and the process repeats once more until no new stars are found.

Actually, the k-modes is the optimal algorithm in order to find stars since

it has complete information among all pairwise interactions in the domain.

However, detecting the set of k-stars whose global weight is maximal from a

complete graph Kn requires a high number of computations.

Without loss of generality over the whole domain, we can input the Maxi-

mum Dependency graph and perform the discovering of stars on its topology.

Any graph that contains n variables can have up to n different stars. We

aim to detect a set of clusters that were originated from a set of stars ζ such

that equation 5.8 is maximized.

W ζ =
∑
Si∈ζ

(
∑

Xj∈A

(wi,j) +
∑

Xj∈A,Xh∈L

(wj,h)) (5.8)

Notice that we extended the notion of a star S to include the leaf nodes L

connecting adjacent nodes A to a center o. The later is done because during

experimentation we found that leaf nodes have a higher correlation to the

center of its adjacent node than to any other center in any other star.

The SD algorithm as well as the previous algorithms receives a Maximum

Spanning Tree MAST and the set of weights WMAST . Initially, it forms n

different stars Si ∈ ζ, by selecting each variable Xi as center oi, and attach-

ing its adjacent nodes A and leaf nodes L (lines 2-6). Once that all possible

stars ζ have been constructed we proceed to the partitioning task (lines 7-9).

Finally, the algorithm selects the set of variables SVj to become the new clus-

76

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

Star Discovery Algorithm (SDA)

Input: MAST = (χ,EMAST), WMAST

Output: C = {C1, C2, . . . , Ck}

1: FOR i = 1 to |χ|
2: o

′
i = Xi

3: A
′
i ⇐ Xj iff (Xi, Xj) ∈ EMAST

4: L
′
i ⇐ Xh iff (Xh, Xj) ∈ EMAST ∧Xj ∈ A

5: S
′
i = (oi ∪Aaux

i ∪ Laux
i)

6: ζ
′
= S

′
i

7: WHILE V aux 6= ∅
8: Ci = SV

′
j iff wS

′
j = argmax

w∈W ′
(w)

9: V aux = (V aux − V S
′
j)

Figure 5.8: The Star Discovery Algorithm.

ter Ci iff the weight wSj of the star Sj = (SVj, SEj) is maximal(line 8). The

process is repeated until all variables are assigned to clusters (condition in

line 7). Assuming that there are n variables, the complexity of the algorithm

is dominated in its first phase (star construction in lines 1-6) since it takes

O(n3) operations to search for all the adjacent nodes and leaves.

The star discovery algorithm always provide solutions that are determin-

istic. Thus, if the algorithm runs for several times it will always give the

same solution. On the other hand, the star discovery might not offer results

that are better in quality than the ones given from the k-modes algorithm (k-

modes has complete information about the domain). However, ACA based

in k-modes could grant better solutions in many cases but it has the risks

of falling in local optima. Chapter EXPERIMENT.CHAPTER, present sev-

eral comparisons made to evaluate each of the algorithms presented in this

chapter.

77

CHAPTER 5. DISCOVERING LOCAL COMPONENTS

78

Chapter 6

Recovering Bayesian Networks
from Clusters

In previous chapters, we have discussed several properties that are important

in order to gain reduced knowledge from a given domain. We have seen in

Chapter 4 that the use of dependency graphs such as the Maximum Spanning

tree simplify the nature of the domain (i.e. a MAST can approximate with an

acceptable). In Chapter 5, we presented and studied the process of dividing

a full domain into clusters of highly correlated attributes. These subsets of

highly dependent variables are in fact valuable, since they reveal compact

features from the domain study (i.e. isolating genes that are responsible for

detonating upheavals related to leukemia [35]).

Now, it is relevant to study the relevance between many components in

order to learn the structure of Bayesian networks. We present the hypothesis

that clustering χ in to several subsets C is in fact the same problem of

identifying ”regions” from a complete Bayesian network.

This chapter introduces a class of BN structural learning algorithms. This

class is based in the ”divide and conquer” principle. We have the objective

of dividing the instance of a structure learning problem into a more tractable

scenario. First, we introduce the motivation for divide and conquer problem

79

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

solving. Then, we present related work in the field and finally, we formulate

the Overlapping Structure Learning algorithm for recovering the structure of

Bayes nets.

6.1 Adopting a Divide and Conquer Paradigm

The computational divide and conquer strategy sections an instance of a

problem into two, three or more smaller and clearer instances. Each new in-

stance of the problem encodes an easier but important feature of the original

problem. We have that whenever these smaller instances can be solved read-

ily, the solution of the original problem can be achieved by combining these

small components. Therefore, the divide and conquer approach is a ”top-

down” class of solutions. Furthermore, if the smaller solutions of a problem

are still large enough they may be divided into some tractable instances.

Well known algorithms (commonly used by programmers and computer

scientists) employing the divide and conquer paradigm are: Binary search,

merge-sort, quick-sort, Strassen’s matrix multiplication algorithm between

many others. On the other hand it is also important to know when not to

apply this paradigm. It has been stated in literature [78] that this approach

is not useful when:

• A problem of size n is divided into several instances each almost of size

n.

• An instance of a problem with size n is divided into almost n instances

of size n
c

where c is a constant.

80

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

6.2 Learning Bayesian networks from Distributed

Data

This section provides related work that motivated the formulation of our

further learning algorithm. Before we continue with the discussion regarding

overlapping partitions, lets recall two important constraints that must hold

in order to learn proper Bayesian networks: The Markov Assumption and

the Faithfulness assumption.

• Markov assumption: Some variable Xi is conditionally independent of

all the non descendants and not non parents given Pa(Xj).

• Faithful assumption: If two variables Xi and Xj are conditional inde-

pendent given the separator set S, then there is no edge in the BN.

Logically, the Markov assumption is the central idea behind the factor-

ization of joint probability distributions into n different probabilities. On the

other hand, the faithful assumption ensures that if an edge exists in the BN

is because they are real causals, such that no subset S ⊂ χ can make them

conditional independent.

Two key factors motivate the study of learning Bayesian networks from

multiple subsets of variables. First, suppose we want to learn the BN from

several datasets. These datasets could have overlapping or common variables;

therefore, at one point one might result interested in merging one or more

datasets that are situated in different locations. Social datasets for example

have common variables and are used probably for different purposes. A

knowledge engineer might suddenly become interested in learning a BN in

each dataset at first, but there can also be the case that he is interested in

learning the full BN.

81

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

On the other hand, the second factor that motivates this approach is the

reduction of complexity for learning BN by a set of partitions. The previous

section presented the divide and conquer paradigm and we may formulate

learning BNs from data in the same fashion. In concrete, learning a BN

can be formulated as learning overlapping partitions of its variables. Then

combining and merging the resulting networks in order to convey to the full

network.

One of the first attempts to solve the combination problem was shown

in [79] by Danks. Such work is a constrained based learning algorithm.

In his work, he proposed a learning algorithm that combines components by

following heuristics that are similar to the PC algorithm [6]. Specifically, that

work introduced two important rules that aim to deal with the combination

of two smaller BNs BNA = (GA, PA) (such that GA = (A, EA) having

a set A of variables and a set EA of edges) and BNB = (GB, PB) such

that (GB = (B, EB) having a set B of variables and a set EB of edges)

into a complete Bayesian network BNχ = (χ, E) where χ = A ∪ B and

M = A ∩ B. Figure 6.1 graphically presents those relevant sets of variables

for this discussion.

Figure 6.1: The overlapping (A and B) sets of variables.

The first rule states that if two variables Xi and Xz are not adjacent in

either GA or GB then they must not be adjacent in Gχ. Thus, there is no

82

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

dependency between them. The second rule says that for all Xi ∈ X = A/M ,

Xj ∈ Y = B/M and Xh ∈ M if there is a directed path from Xi to Xh in

the GA that involve only variables in X; and Xh and Xj are not adjacent in

GB, then Xi and Xj are not adjacent in Gχ.

The implications of the previous rules ensure that in any combination

algorithm only those relevant edges will be considered for Gχ. If we consider

a constraint learning algorithm, in which we start with the full undirected

graph, then these rules can be understood as edge removal heuristics. Thus,

rule one discards those edges that do not show causality in any subset. While

the second rule removes those edges that are conditional independent to Xj.

If Xh and Xj are not adjacent it is because there exist another set of variables

that makes them d-separated; therefore, any ancestor of Xh that is only

contained in GA can not be adjacent in the final graph ensuring this way the

Markov and faithful assumptions.

Finally, we present the structure learning using prior results (SLPR) al-

gorithm. It is basically, an instantiation of the PC algorithm with a focus

in independence tests around M , and those variables in either X or Y that

have links to the elements of M . Following we present a general description

of each of the steps in the SLPR algorithm.

I. Start with the complete undirected graph and remove those edges that

do not exist in either GA or GB (applying rule the first deletion rule).

For all the elements in M delete those edges that appear in only one

graph (this indicates that the variables are conditionally independent

given a d-separation set in the other graph). Make undirected those

edges in M that are in conflict (i.e. Xi,Xj ∈ M and Xi → Xj in GA

and Xi ← inXj in GB).

II. For all Xi ∈ X = A/M , Xj ∈ Y = B/M and Xh ∈ M if there is a

83

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

directed path from Xi to Xh in the GA that involve only variables in

X; and Xh and Xj are not adjacent in GB, then delete Xi → Xj in Gχ

(this is a direct application of the second rule as described above).

III. Test for conditional independence for each edge that connects variables

between X and Y by considering a d-separation set S of size k. This

rule is exactly applied as in the PC algorithm (Performing conditional

tests by incrementing the size of the d-separation set k).

IV. Produce v-structures. For each triple of variables Xi, Xj and Xh, such

that there exist the edges Xi−−Xj and Xj −−Xh but Xi and Xh are

not adjacent; then orient Xi − −Xj − −Xh for Xi → Xj ← Xh iff Xj

is not in the separator set between Xi and Xh.

V. Test for independence all edges that connect any element in M from

either X or Y . Indeed, in the combination phase, we want to assure

the faithful assumption, such that no pair of variables are connected

given a d-separation set. Thus, since we are merging BNA and BNB

there could be elements in B (A) that make independent those adjacent

variables in M ∪ A(M ∪B).

VI. For all edges in Gχ are undirected. Then we apply (in order) the

following two rules:

For each triple of variables Xi, Xj and Xh, such that there exist

the edges Xi − −Xj and Xj − −Xh but Xi and Xh are not adjacent;

then orient Xi − −Xj − −Xh for Xi → Xj ← Xh iff Xj is not in the

separator set between Xi and Xh.

Iteratively, apply the following sub-rules until all edges in Gχ have

been oriented:

84

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

If Xi → Xj − −Xh and Xi, Xh are not adjacent, then orient

Xj −−Xh as Xj → Xh.

Avoid cycles. If there is a directed path from Xi to Xj, and Xi,

Xj are adjacent, then orient Xi −−Xj as Xi → Xj.

Initially, the SLPR algorithm originally takes the d-separation sets ob-

tained by earlier learning algorithms which obtained BNA and BNB. Then

it performs a set of tests and heuristic rules in order to for the final BN.

This algorithm has shown to have a polynomial complexity equivalent to the

cardinalities of the sets O(|X||Y |+ |A||X|+ |B||Y |+ |M |(|A|+ |B|)) in the

worst case scenario.

6.3 The Overlapping Structure learning Al-

gorithm

The SLPR algorithm seems to be a good option to learn two Bayesian net-

works if they have overlapping variables. However, there is an inconvenient

of using the SLPR algorithm for further learning. First, the SLPR algorithm

has shown to be efficient with only a pair of variables; thus, it might be useful

to extend it in order to learn and combine a set of k clusters. Another issue

is that, the SLPR algorithm makes full of prior d-separation sets. The later

implies that the algorithm in fact, will work only if the previous subsets of

variables were learned by a another constraint based method. This consid-

eration narrows the potential of the algorithm in order to experiment with

different types of structure learning algorithms.

In this section we introduce the Overlapping Structure learning (OSL)

algorithm. The OSL algorithm aims to overtake those limitations offered

85

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

by the SLPR algorithm. We are interested in this case in learning the full

structure of the BN but from more than two subsets of variables. One may

think that the SLPR algorithm can be used to perform such task. However,

the problem arises whenever more than two clusters of variables overlaps.

In short terms, the OSL algorithm receives a dataset with a complete set

of variables χ and then it performs attribute clustering in order to detect

disjoint components. Once that the components are identified, they are ex-

panded and merged into the full BN in a smart way. Figure6.2 depicts the

OSL algorithm.

Overlapping Structure Learning Algorithm (OSLA)

Input: D = {a1,l, · · · , an,l} and parameters PAR
Output: A BN BNχ = (χ,E)

1: Load the data D.
2: Detect a dependency graph H.
3: Partition H into overlapping clusters OC.
4: Form a Cluster Graph CG = (U,F) from OC.
5: WHILE i = 1 < |U |
6: Learn a Bayesian knot KUi for cluster OCi.
7: K ← KUi .
8: Combine all KUi ,KUj ∈ K.

Figure 6.2: The Overlapping Structure Learning algorithm.

The OSL algorithm receives the Data D having a sample size l = Ω (each

attribute ai is mapped to a discrete random variable Xj, with a domain) and

a set of parameters PAR (these parameters are necessary for the clustering

and combination parts that will be described in the next two subsections).

First, the algorithm loads D and calculates a dependency graph H for this

domain (lines 1-2). Next, we proceed to divide H into smaller overlapping

clusters and we form a Cluster Graph (G = (U, F) with the set of clusters

86

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

U and the set of edges F) using the methods that are described in the next

section (lines 3-4). Then, for each cluster Ui ∈ U we learn its BN Knot KUi

and we store it in the superset K(lines 5-7). Finally, we combine all the

Knots KUi
, KUj

∈ K (following the topology dictated by the Cluster Graph

CG) and we form the full Bayesian network BNχ (line 8).

Logically, if we opted for using a divide and conquer strategy for solving

the instance of a problem (in this case learning Bayesian networks); then

we may require fast and reliable partitioning and merging processes. For

this reason we develop the OSL algorithm in a straightforward fashion. We

just need to recover those local regions inherent in the full BN and then

just add those links that connect single components between each other.

Thus, the OSL algorithm is an hybrid process since its complexity depends in

several exchangeable subroutines (division and combination of components).

Therefore, the complexity of the algorithm will be dominated by the specific

instances of the algorithms that are used to handle each of its steps (we can

input any division process in line 3 such as those techniques introduced in

the previous chapter).

Eventually, we may see that if the number of components is relatively

small compared to the full set of variables in χ then the algorithm can be

competitive in terms of time only if the combination phase can be covered

in a fair amount of computational time. The next subsections will explain

in detail the subroutines that are necessary in order to produce overlapping

clusters, generate the Bayesian knots and how to combine the Bayesian net-

work components into a final Bayesian network BNχ.

87

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

Overlapping Clustering

So far we have been discussing the big picture of the problem. In this subsec-

tion we will discuss in detail how is it possible to partition a given dependency

graph H into several components that are in fact overlapping. During the

course of this investigation we found that there are two major approaches

towards the generation of overlapping clusters. We can either run an special-

ized overlapping clustering algorithm or we can turn a disjoint set of clusters

into overlapping ones.

The overlapping partitioning cluster (OPC) algorithm introduced by Chen

in [80] performs non-exhaustive clustering by assigning an element to the

nearest clusters according to two constraints: The first one is to maximize

the distance between centers in different Clusters. Secondly, and probably

more importantly it maximizes the number of variables in each Cluster.

The OPC algorithm seems to fit our needs; However, there exist some

flaws in its formulation. Fist, we need to perform exhaustive clustering in

order to detect the desired number of reduced components (It is not of much

use to discover clusters that contain only one variable). Conclusively, we may

like to discover those local components that really reveal a high correlation

between its true contents (We may loose local correlations if we move the

centers far away from each other from a global perspective). Having this in

mind we proceeded to develop our own overlapping clustering algorithm in

order to meet our specific demands. We are interested in discovering a set of

disjoint clusters that hold true dependencies between its contents and then

we proceed to expand each cluster.

We introduce the Overlapping Expansion (OE) algorithm. The OE al-

gorithm relies in the class of fuzzy clustering approaches and is constructed

based in similar grounds than [81]. Suppose we have the complete graph over

88

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

the set of points or variables that compose the clusters. In this way we can

formulate this problem in terms of euclidean distance. The basic idea behind

this algorithm is to expand the clusters C in order to include the nearest

neighbors that are contained in other clusters (producing the set of overlap-

ping clusters OC = {OCi|i = 1, . . . , n}). The number of nearest neighbors

that will be include in every cluster Ci is given by equation 6.1.

fCi(ε) = d|Ci| ∗ εe (6.1)

where fCi : <+ 7→ Z+, |Ci| is the cardinality of the cluster Ci and ε is an

empirical threshold that aims to control the number of nodes to be added

to the current cluster (0 ≥ ε ≤ 0). Equation 6.1 defines a fuzzy number of

variables or points that will be included to Ci equal to the ceil function of a ε

percentage of the number of variables in Ci. Its fuzzy function is graphically

expressed in Figure 6.3.

Notice from Figure 6.3 that we can automatically control the number of

nodes to be added to each cluster by just varying ε. All clusters with be

expanded in the same proportion. Intuitively, the assignation of variables (in

the case of random variables) works by sorting those weights connecting all

variables in Ci to outliers. Then, we choose the variables OV /∈ Ci(|OV | =

fCi(ε)) with the highest relationship (minimal distance) to a single element

in Ci.

fCi(ε) is bijective since two elements in OV can point to the same variable

in Ci and two or more variables in Ci can output to the same variable in OV .

In this way we ensure to recover only the most correlated variables that

were not initially included in any of the clusters. Figure 6.4 shows the OE

algorithm.

From Figure6.4 we can see that it inputs a set of clusters and then maps

89

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

Figure 6.3: The function fCi(ε) calculates the number of nearest variables
(belonging to other clusters) that will be included into Ci to produce the
overlapping cluster OCi.

every Ci ∈ C into the new OCi ∈ OC (line 1). Then for all clusters, we

expand OCi ∈ OC by detecting its nearest neighbors OV (lines 3-8). The

expansion rule to follow is to include those true nearest variables to each

cluster Ci (line 5). The complexity in this case is governed by the search of

the set OV and it is in the order of O(ns) where s is the maximal cardinality

of any given cluster Ci. The whole process of this algorithm is explained in

Figure 6.5 by using a small example involving four clusters and 21 variables.

The example in Figure 6.5 with a fixed parameter ε = 0.1 and set of clus-

ters C1 = {X1, X2, X3, X4, X5, X6, X7, X8, X9, X10}, C2 = {X11, X20, X14},

C3 = {X12, X13, X15, X16, X17} and C4 = {X18, X19, X21} works in the fol-

90

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

Overlapping Expansion Algorithm (OEA)

Input: C = {C1, C2, . . . , Ck}, ε ∈ (0, 1], χ, WG

Output: OC = {OC1, OC2, . . . , OCk}

1: OC = C
2: OV = ∅
3: FOR i = 1 to k
4: FOR h = 1 to d|Ci| ∗ εe
5: Xh = argmax

wh,j∈W
(wh,j) iff (Xh ∈ Ci) ∧ (Xj 6= OV) ∧ (Xj ∈ (χ− Ci))

6: OV = OV ∪ {Xj}
7: OCi = OCi ∪OV
8: OV = ∅

Figure 6.4: The Overlapping Expansion Algorithm

lowing way: a)Initial setup. b)C1 is the candidate cluster to be expanded.

c)X21 ∈ C4 is the nearest variable to X8 ∈ C4. d)C2 is the new candidate

cluster to be expanded. e)X19 ∈ C4 is the nearest variable to X11 ∈ C4. f)C3

is the cluster to be expanded. g)X4 ∈ C1 is the nearest variable to X15 ∈ C3.

h)Finally, C4 is the candidate cluster to be expanded (Although C4 is already

connected to C1 the expansion rule states that we are interested in verifying

its nearest variable). i)X8 ∈ C1 is the nearest variable to X21 ∈ C4.

We can apply any of the algorithms studied in Chapter 5 to find a set

of disjoint clusters; and then convert them into overlapping groups by using

the OE algorithm. However, there is a drawback related to this process. If

we only consider the expansion formulated in terms of the nearest neighbors,

we have the possibility of finding isolated regions of clusters. For example,

suppose we have four clusters C1, C2, C3andC4 (with the same cardinality

—C1—=—C2—=—C3—=—C4—=10) and we set ε to 0.1. Therefore, we

aim to expand each cluster with one external variable. Then, after running

91

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

the OE algorithm we find that C1 is connected to C2 as well as C3 is linked

to C4. We can see that there is no connection between the regions C1 ∪ C2

and C3 ∪ C4.

The objective now is to generate a general structure that can help us to

integrate the small instances into the full BN. Therefore, in order to deal

with the later issue, we provide a new algorithm that ensures connectivity

and complete reachability between every pair of clusters in C. The resulting

general structure is denominated the Cluster Graph CG. The Cluster Graph

is based in the Cluster Tree presented by Friedman et al. in [53]. Specifically,

A Cluster Graph is a pair CG = (U, F) where U is a set of overlapping clusters

and F indicates the set of edges (Ci, Cj) ∈ F representing adjacent clusters

Ci and Cj.

We developed the Cluster Graph (CG) algorithm to discover the cluster

topology between a given set of clusters. This process actually do not aug-

ment the components in a fuzzy proportion. It verifies that the full set of

clusters are reachable. In a negative case, it locates the isolated regions, and

then merges them into a full CG by adding only the nearest variable to every

isolated region.

In other words, we find the union R for all the overlapping clusters

produced by the OE algorithm. If more than one region is found (R =

{R1, . . . , Rl}), then we start expanding every region Ri = {C1, C1, . . . , Cm}

with the nearest variable Xj ∈ χ − Ri. Xj will be stored in the cluster(s)

that has a variable Xi such that wi,j is maximal (nearest neighbors). Figure

6.6 introduces the Cluster Graph algorithm.

The CG algorithm receives the overlapping clusters OV , a complete set

of variables χ and the set of all weights W χ. Then, we form a region R by

searching all reachable nodes in U (lines 3-5). Next, if the cardinality of R

92

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

is smaller than |χ| then we obtain the nearest neighbor Xj (lines 6-7) and

we add it to the nearest cluster(s) included in R (lines 8-10). Finally, we

construct the set of edges F (lines 11-14). The complexity of this algorithm

is dominated in lines 3 to 7 and it is in the order of O(st) where s is the

maximum number of variables in a region and t is the maximum number

of variables outside R (logically, the extensive search is done between these

subsets of χ). The rest of the steps (lines 8-10 and lines 11-14) are just every

case scenarios in the order of O(k) and O(k2) that aim to add variables and

edges to U and F respectively.

6.3.1 Learning Bayesian Network Knots

Once that we have ensured total connectivity between all the variables, we

learn every cluster separately. Each cluster has a subset of domain variables.

The final procedure is to learn the directed acyclic graph (DAG) for each

cluster by using any available learning technique. The output is a set of knots

{K1, · · · , Ki, · · · , Km|Ki = (Ui, Ei, Pi)}. Each knot has a DAG structure

(Ui, Ei) (with the set of variables Ui and the set Ei of edges) and a probability

distribution Pi associated to Yi. The procedure of recovering Knot structures

is shown in Figure 6.7.

The complexity depends on the selected learning technique. For example,

if the PC algorithm [6] is used, the complexity of line 2 is in the order of

O(mqs), where s is the largest number of parents for a node, q is the largest

cardinality of a cluster. In general q � n, the complexity of learning knots

is trivial in comparison with learning the complete network.

93

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

6.3.2 Combination Phase

The final procedure of the OSL algorithm is the combination of the dif-

ferent knots. We follow a simplistic procedure in order to recover the full

Bayesian network BNχ. The procedure we employ is based in some parts of

the SLPR algorithm. Basically, we avoid to conduct expensive conditional

independence tests and we aim to just use the following combination rules:

I. Start with the global skeleton provided by the Cluster Graph CG =

(U, F) and the structures that were learned in the knots K. For all

the arcs residing inside overlapping areas M = {(U1, U2), . . . , (Ur, Us)}

delete those edges that appear in only one knot. Make undirected those

edges in the overlapping zones that are in conflict (i.e. Xi,Xj ∈M and

Xi → Xj in KUi
and Xi ← inXj in KUj

).

II. For all edges in Gχ are undirected. Then we apply the following two

rules:

If Xi → Xj −−Xh and Xi, Xh are not adjacent, then orient Xj −

−Xh as Xj → Xh.

Avoid cycles. If there is a directed path from Xi to Xj, and Xi, Xj

are adjacent, then orient Xi −−Xj as Xi → Xj.

Given that we have the Cluster Graph CG, we just need to respect its

topology, we keep the edges that are learned in the knots and we only solve

conflicts in the overlapping areas M of CG. We can have an efficient combi-

nation by only using these rules because we assume that the clusters contain

subsets of highly correlated variables from χ. The conditional independences

were tested beforehand in the learning knots phase. This process differs with

the SLPR algorithm in which we already have the true correlated subsets of

94

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

variables. On the other hand, the SLPR algorithm needs to perform more

testing due to the fact that the algorithm integrates different datasets that

were never tested from a global point of view. In our case the clusters pro-

ceed from a dependency graph that encoded a true topology of the domain

of study; in this way, we can have more reliable clusters.

95

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

Figure 6.5: An example of the OE algorithm with ε = 0.1. In this case, every
cluster will be expanded by only one variable according to Equation 6.1.

96

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

Cluster Graph Algorithm (CGA)

Input: OC = {OC1, OC2, . . . , OCk}, χ, WG

Output: CG = (U,F)

1: U = OC, F = ∅
2: WHILE R 6= χ
3: FOR h = 1 to k
4: IF (R ∩ Uh) 6= ∅ OR |R| = 0
5: R = R ∪ Uh

6: IF |R| < |χ|
7: Xj = argmax

wi,j∈W
(wi,j) iff (Xi ∈ R) ∧ (Xj ∈ (χ−R))

8: FOR r = 1 to k
9: IF Xi ∈ Ur AND Ur ⊆ R
10: Ur = Ur ∪Xj

11: FOR i = 1 to k − 1
12: FOR j = i + 1 to k
13: IF (Ui ∩ Uj) 6= ∅
14: F = F ∪ {(Ui, Uj)}

Figure 6.6: The Cluster Graph Algorithm

Learning Bayesian knots Algorithm (CGA)

Input: U = {U1, U2, · · · , Uk}, Data D = {a1,l, · · · , an,l}
Output: K = {K1,K2, · · · ,Kk}

1: Load the data D and C = {C1, C2, · · · , Ck}
2: Build K = {K1,K2, · · · ,Kk} by applying a structure learning technique.
3: LReturn K = {K1,K2, · · · ,Kk}

Figure 6.7: A Bayesian network is learned for each overlapping cluster.

97

CHAPTER 6. RECOVERING BAYESIAN NETWORKS FROM
CLUSTERS

98

Chapter 7

Experimental Results

In this Chapter we will investigate the quality of the results of several al-

gorithms proposed in this thesis. Initially, I present a set of experiments

regarding attribute clustering; in this group of experiments I compare the

k-modes (ACA) algorithm versus the other partitioning approaches such as

the SEMST, ZEMST, CEMST and SD algorithms. Following, several BN

structural experiments are presented in order to test the efficiency of the

OSL algorithm. We compare the OSL algorithm against some traditional

learning algorithms that recover the full structure by accessing the complete

set of variables χ.

I developed a KD system written in Java in order to produce the clus-

ters of attributes and the Bayesian networks for all the methods presented in

this work. The system makes use of MySQL to store results and the Hugin

[82] system to visualize the generated Bayesian networks. Besides this, and

given that our OSL algorithm is dependent of a primary learning algorithm

(in order to learn the small clusters), we used the structure learning algo-

rithms employed in the Causal Explorer package [83]. Between the Bayesian

networks involved in these experiments1 we have:

1The DAG of these networks can be found at the end of this thesis in Appendix A.

99

CHAPTER 7. EXPERIMENTAL RESULTS

• The Alarm BN (|χ| = 37) [58].

• The Barley BN (|χ| = 48). The BARLEY network is a real world

application. It assists in the production of beer from Danish barley

[84].

• The HeparII BN (|χ| = 70). The HEPAR II network helps to diagnose

some types of liver malfunctions [85]. The nodes cirrhosis, chronic

hepatitis, hepatic steatosis and toxic hepatitis present a high degree.

• The Hailfinder BN (|χ| = 56). This Bayesian network was built with

the purpose to forecast summer hail in the northeastern part of Col-

orado [86]. One of its variables (Scenario) has a high out degree

• The Pathfinder BN (|χ| = 109).The PATHFINDER network provides

knowledge domain for the diagnosis of lymphatic-node sicknesses [87].

Notice in Appendix A the highest out degree of the Fault node.

7.1 Attribute Clustering Experiments

In this section we will review several features regarding attribute clustering.

Firstly, we will investigate the reliability of the AC algorithm (k-modes) to

find local and global maximums. Next, we proceed to compare ACA versus

all the other attribute clustering methods shown in Chapter 5 in terms of

quality of the results.

100

CHAPTER 7. EXPERIMENTAL RESULTS

7.1.1 Reliability Tests for the Attribute Clustering Al-

gorithm

Firstly, we will focus in testing the reliability of the AC algorithm. Initially,

ACA was tested in [39] in order to test its ability to reveal true clusters

of variables (by using a synthetic dataset). Nevertheless, such experiment

is not convincing regarding reliability. Thus, the synthetic dataset which

was employed was very well divided. Furthermore, we would like to test the

performance of this method in other real and more complex datasets. In fact,

since the formulation of the k-modes algorithm is greedy, there is the risk

of falling into local optima. Therefore, in order to test the susceptibility of

ACA to fall in local optima, we feed it in each domain with all the possible(
n
2

)
combinations of variables.

For this experiment, we used datasets that were generated by Hugin [82]

setting a sample size of 10,000 from the following BNs: Alarm, Barley, Hep-

arII, Hailfinder and Pathfinder. Figure 7.1 presents a table with the different

modes, weights that were found in each dataset.

We found that indeed ACA does fall in local optima. For example, in

the Alarm domain, it was interesting to see that ACA converges into an

optimal value of 6.13 with modes VentAlv and HR. However, it falls into two

local optima in 5.91 and 4.06 having VentAlv and LVEDVolume (VentAlv,

Shunt) as modes. In the optimal result, the size of the clusters is about n
2
. In

the local optima, the cluster containing LVEDVolume (Shunt) is relatively

small (10 variables). Clearly the small cluster is the isolated because of the

suboptimal value. Actually, whenever LVEDVolume (Shunt) is selected as a

mode, then no improvement is made. This mode dominates its neighborhood.

The previous analysis is a straightforward example of techniques based solely

in iterative greedy search. For the other domains the situation becomes more

101

CHAPTER 7. EXPERIMENTAL RESULTS

dramatic. For Barley, Hailfinder, Pathfinder and HeparII we found 17, 91,

117 and 130 local optima respectively (however, the for these domains the

differences between the local results and the optimums are very close).

7.1.2 Comparing the Clustering Quality

Even though, every attribute clustering algorithm used a different objective

function, it is interesting to evaluate the quality of the final results. In fact,

a sound estimate in order to evaluate the goodness of a cluster of attributes

is given in [39] by the following Equation:

WC =
k∑

i=1

|Ci−oi|∑
j=1

wj,oi
(7.1)

In other words, we are concerned to calculate the degree of dependency

between the center or ”mode” oi of each cluster Ci against its elements. Then,

we get the global weight of the clustering by adding each measure from each

cluster. Equation 7.1 is in fact the objective function of the AC algorithm.

For this reason we may expect that ACA is the optimal answer (whenever it

does not converge in local optima) for this experiment.

For this experiment we used artificially generated datasets from the fol-

lowing BNs: Alarm, Barley, HeparII, Hailfinder and Pathfinder. In every

case, we considered and used several sample sizes in order to test the response

of the algorithms to different statistics. We supplied different datasets with

various sample sizes ranging from 4000 to 10000 in intervals of 2000. Figures

7.2, 7.3, 7.4, 7.5, and 7.6 present all the results in terms of global weight and

sample size for each domain. Notice that the X-Axis is the supplied sample

size and the Y-Axis is the global weight WC . For all algorithms we set k = 4.

In the case of ZEMST we set the depth to 15, c to 1 and f to 0.1. In all cases

102

CHAPTER 7. EXPERIMENTAL RESULTS

for the expansion we chose a minimal setting for ε = 0.1. We empirically

found that those settings produced the best results.

Actually, it is easy to conclude just by appreciation that the SD algo-

rithm actually performs better than the other clustering algorithms. Indeed,

sometimes the SD appear higher than ACA. This does not mean that SD

is more optimal than ACA. It means that, ACA was kept in a local op-

tima (this is a theoretical claim since I used the best value for ACA in each

plot). We can also conclude that the most unstable clustering algorithm is

the ZEMST algorithm since it performs very poorly in some domains such

as Alarm and Barley. Conclusively, we can learn that the MAST is actually

useful whenever a sound clustering method is applied to section it.

7.2 Structural Experiments for Bayesian net-

works

In order to test the efficiency of the OSL algorithm, we performed a set of

structural experiments. We learned several Bayesian networks by using our

method and other learning techniques. We employed the MDL score [88, 89]

to test the quality of the resulting networks. The MDL score is a well known

metric for testing the structural quality of Bayesian network. The MDL

metric is based in the principle that minimizes the encoding length of the

model, and the encoding length of the data given the model. It is important

to notice that the MDL principle will obtain an optimal trade off between

the accuracy and the complexity from a given model to represent the data

[88].

In every case, we considered and used several sample sizes in order to test

the response of the algorithms to different statistics. The values for the re-

103

CHAPTER 7. EXPERIMENTAL RESULTS

duced statistics oscillated from multiples of |χ| times d = {6, 9, 12, 15, 18, 21}.

The values for the sufficient statistics were normally from 2000 to 10000 in

intervals of 2000.

7.2.1 Results on the Alarm network

We conducted this experiment with the aim of testing the performance of the

OSL algorithm to learn the full BN. We employed the 4 different structure

learning algorithms in Causal Explorer to learn the knots: The PC algorithm

[6], the Three-Phase Dependency Analysis TPDA [90], the Sparse Candidate

SC [53] and the MaxMin Hill Climbing MMHC [29] algorithms.

Before we continue with our experiment, it is relevant to recall the previ-

ous results that were offered in [29] regarding the performance among these

learning algorithms. We used datasets generated in Hugin for the Alarm BN

with several sample sizes. Then, we used each of the learning algorithms

to generate the full BN. We can see from Figure 7.7 that the MMHC algo-

rithm is the best option for learning Bayesian networks. However, we will

investigate the performance of the OSL algorithm by using each of these four

algorithms.

In order to investigate the response of the OSL algorithm we chose the

two best clustering algorithms: The SD and the ACA approaches. k was set

to 4 in the case of ACA in order to produce higher quality of results. We

know from experience that, as k tends to be small the clusters also tend to

improve. Figures 7.8, 7.9, 7.10 and 7.11 present the structure learning results

for the PC, TPDA, SC and MMHC algorithms.

Interestingly enough, we can see that SD again performs better in general

(even though, in some sample sizes i.e. SC from Ω = 6000 to 1000, ACA

performed slightly better due to the higher dimensions of its clusters).

104

CHAPTER 7. EXPERIMENTAL RESULTS

In fact, the OSL algorithm (with the help of the SD clustering approach)

performs significantly better than the PC, TPDA, and SC algorithms. We

chose the same learning algorithm in every case in order to make this com-

parison admissible. We can conclude that the OSL algorithm performs better

in the constraint based algorithms because it restricts the sets of variables to

be target for conditional independence sets. We know that the smaller the

number of variables the more reliable the tests are.

On the other hand, for the SC algorithm the reason of the big improve-

ment is also clear, we are avoiding noisy variables by restricting only those

highly correlated variables as parents for each variable in every cluster. In

all cases the isolation of clusters inhibits false or redundant arcs between

different sets of variables (this indirect pruning in fact help to avoid extra

edges).

Finally, in the case of the MMHC algorithm the OSL algorithm is almost

as competitive. However, further extensions to our algorithm could help to

converge into the best results (i.e. using some conditional tests in order to

ensure faithfulness between variables which around the neighborhood of the

overlapping sets). To conclude our experimentation in the Alarm domain

we recorded the elapsed times for all these learning algorithms. Notice that

I just include the learning time in the knots, since the computation of the

complete graph is still very expensive. the clustering methods, overlapping

extensions and combination phases spend no more than 2 seconds in any

instance of the OSL algorithm. It is extremely important to devise a way to

approximate the calculation of the MAST; in order to provide competitive

time. Figures 7.12 and 7.13 present the timing results for the OSL using the

SD and the ACA algorithms respectively2.

2I will present a set of comprehensive experiments during the oral examination. For
technical reasons I was not able to include all results in this document.

105

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.1: Different convergent modes for each domains. In every domain,
we denote the optimal result in bold. The rest of the combinations of modes
are local optima.

106

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.2: Clustering results for the Alarm Domain.

Figure 7.3: Clustering results for the Barley Domain.

107

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.4: Clustering results for the Hailfinder Domain.

Figure 7.5: Clustering results for the HeparII Domain.

108

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.6: Clustering results for the Pathfinder Domain.

Figure 7.7: Structure learning results for the full networks in the Alarm
domain. MMHC is clearly the best algorithm.

109

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.8: Structure learning results produced by applying the PC algo-
rithm.

Figure 7.9: Structure learning results produced by applying the TPDA algo-
rithm.

110

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.10: Structure learning results produced by applying the SC algo-
rithm.

Figure 7.11: Structure learning results produced by applying the MMHC
algorithm.

111

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.12: Time results in all instances of the OSL-SD algorithm.

Figure 7.13: Time results in all instances of the OSL-ACA k = 4 algorithm.

112

Chapter 8

Conclusion

This final Chapter reveals some of the thoughts of the author regarding the

proposed approaches for attribute clustering and learning Bayesian networks.

Firstly, the reader will have the opportunity to visualize several tracks of

future work founded in the current research. Finally, some conclusions re-

garding this investigations are provided.

8.0.2 Future Developments

Further work is in several levels of this research. In the case of attribute

clustering we have seen that the AC algorithm provide the best solutions.

However, the only drawback regarding this method is the risk of falling into

local optima. We may propose some further method that could help to avoid

this problem (i.e. some search technique that may aim to calculate the global

clustering before the elements are assigned to clusters in the third phase of

the algorithm, in this way we may detect local optima at a certain deepth).

Moreover, the attribute clustering methods are well suited to calculate and

detect the local dependencies among entities in several biological datasets.

In the case of the learning algorithm a number of improvements can be

done. Initially, we have that in most cases the sum of the sectioning time,

113

CHAPTER 8. CONCLUSION

learning time of the knots and combination time is faster than the learning

time (by other algorithm) of the full domain. However, the only issue regard-

ing time in the OSL algorithm is the calculation of the complete graph. As

we know, the idea of generating a complete graph is to be able to built the

MAST from the dataset. The time that is necessary to generate a complete

graph is quadratic in terms of the attributes and lineal in terms of the num-

ber of observations. Even though, that construction of the complete graph

is in polynomial time, it is surely an expensive and many times not afford-

able computation. For this reason, we may opt for developing a new method

in order to approximate the MAST. The MAST approximation is primarily

founded by Moore et al. in [60].

This new method works in the following way: First, we start with a

random tree, then we perform tests over all pairs of variables in the tree that

are not connected. We calculate the weight between them; next, we detect

the path that makes then reachable in the tree. If the weight of the recent

considered edge, is higher than a weight attached to an arc connecting this

pair of variables in the tree, then we substitute that arc in the tree for the

new one (deleting the edge in the tree and adding the new one).

Concerning the learning algorithm itself, the combination phase could

be improved. We may use a set of conditional tests (or a small score Hill

climbing approach) in order to solve the conflicts in those arcs residing inside

the overlapping regions of the cluster graph. Currently, we employ a set of

rules that aim at forming the full network. We defend the fact that most

clusters contain all the relevant v-structures and most relevant parent sets of

variables. However, there is the risk of loosing some arcs between variables

connecting elements in the overlaps. It is for this reason that a further

step could validate the faithfulness of the overlapping regions. On the other

114

CHAPTER 8. CONCLUSION

hand, we could apply an iterative score-based method that adds, removes or

reverses edges between the overlapping variables and its neighbors. In any

case, this further steps will help to finally improve the full BN (probably

ending up with a result at least as good as the BNs produced by the MMHC

algorithm).

We also could test the Bayesian network knots for representing reduced

knowledge from regions of full network. We can learn the parameters of the

knots (possibly with the EM algorithm). Then, use a metric (such as the

KL divergence) in order to test the deviation between the probabilities in the

simplified network and the full setting. Finally, we could propose some use of

the knots for evidence propagation. We know that propagating evidence in

large domain is a very hard task. For this reason, we may restrict the propa-

gation to only those elements inside the clusters. Then, we could propagate

that evidence with the rest of the network through the overlapping variables

(passing evidence from clusters to clusters of variables). Conclusively, some

other clustering algorithms or sectioning methods could be used in order to

generate the subsets of variables for learning.

It is important to notice that the author is currently involved in the

calculation of more results for the learning algorithm. More structural results

will be provided during the presentation in the final examination. In the case

that the reader is interested in the new comprehensive set of experiments.

8.0.3 Final Conclusion

In general, the present work extended the notion of attribute clustering for

learning Bayesian networks from Data. We reduced the problem of learning

Bayesian networks from a full set of variables χ into the learning of local

components of variables (knots). Moreover, the work presented in this thesis

115

CHAPTER 8. CONCLUSION

involves in detail two aspects: The study of attribute clustering and a new

approach for learning the structure of Bayesian networks.

The major contributions of this work are:

• The development of a KD system that performs attribute clustering

and structure learning of Bayesian networks.

• We proposed several MAST based clustering algorithms for attribute

clustering (in the past, only the k-modes algorithm had been used for

this purpose).

• We introduced two new clustering algorithms: The first one is denom-

inated the Star Discovery algorithm (SD). The SD algorithm is based

in the intuition behind scale free networks (the degree of a variable

in a network also denotes its relevance to the inner domain, highly

connected variables are likely to be the most dependent and relevant

features in a given domain). The second clustering algorithm named

the Cost Maximum Spanning Tree algorithm (CMST) was a natural

extension to the notion of tree partitioning; instead of deleting the k

edges according to their lowest weights, we considered the costs (which

involved cardinality of the variables). These two algorithms can actu-

ally be used for traditional clustering or attribute clustering.

• A new BN structure learning algorithm called the Overlapping Struc-

ture Learning algorithm (OSL) was introduced. Experimental results

show that the OSL algorithm is a competitive approach. Furthermore,

the OSL algorithm proved to be more efficient than learning full do-

mains with other traditional methods (such as the PC, TPDA and SC

algorithms).

116

CHAPTER 8. CONCLUSION

In terms of attribute clustering, we found that the traditional k-modes

approach the AC algorithm provides in some cases, the best clustering. How-

ever, it falls into local optima. On the other hand, the SD algorithm was

close to ACA in terms of quality but performed faster. Moreover, the SD

algorithm does not have the risk of falling into local optimums since it is a

deterministic approach. In regards of the clustering methods, we found that

there is a correlation between the degree of complexity and the quality of the

results. Robust and more strict clustering algorithms find better clusters in

longer elapsed times. Thus, the ranking (in order) from best to worst cluster-

ing algorithms is: ACA, SD, ZEMST, CMST, SEMST. In terms of elapsed

times the list repeats backwards from the fastest to the slowest (SEMST,

CMST, ZEMST, SD, ACA).

The OSL algorithm provided a new framework for learning Bayesian net-

works. Its process can be easily described in these steps: Identification of

a dependency graph, clustering of the dependency graph, expansion of dis-

joint clusters, construction of a cluster graph, learning of local components

or knots and combination of knots. A set of experiments in the Alarm BN

show that the OSL algorithm is better than two constrained learning algo-

rithms(PC and TPDA) and one score based algorithm (SC). For the con-

strained learning algorithms, the OSL restricts the set of conditioning sets

in all variables (thus, a smaller number of variables is more reliable for test-

ing independences). In the case of the Sparse Candidate algorithm. The

OSL approach restricts the ”parent” variables to be only the ones contained

in a single cluster (since the variables that are located in clusters are the

most mutual correlated, the restriction is done over only the relevant sets of

variables).

Conclusively, we can state that the problem of structure learning of

117

CHAPTER 8. CONCLUSION

Bayesian networks, and finding clusters of variables are truly related; and

in fact, complementary. Good clusterings encapsulate groups of truly corre-

lated variables. Those correlated sets are adjacent variables in the full BN.

The potential of the current work deserves further study and development

such that it could provide optimal results by using further auxiliary com-

bination steps (i.e. conditional independence tests or score-based structure

search over those reduced set of overlapping variables connecting clusters).

The idea of recovering reduced knowledge in the form of local components is

indeed valuable for describing the full domain.

118

Bibliography

[1] F. V. Jensen, An introduction to Bayesian networks. New York:
Springer, 1996.

[2] F. V. Jensen, Bayesian Networks and Decision Graphs (Information
Science and Statistics). Springer, 2002.

[3] I. N. Friedman, M. Linial and D. Pe’er, “Using bayesian network to ana-
lyze expression data,” Journal of Computational Biology, no. 7, pp. 601–
620, 2000.

[4] R. e. a. Marot, B. G.; Holthausen, “Using bayesian belief networks to
evaluate fish and wildlife population viability,” Forest Ecology and Man-
agement, vol. 1-3, no. 153, pp. 29–42, 2000.

[5] R. E. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2004.

[6] G. Spirtes, P.; Glymour and R. Scheines, Causation, Prediction and
Search. New York: Springer-Verlag, 1993.

[7] R. e. a. Cheng, J.; Greiner, “Learning bayesian networks from data: an
information-theory based approach,” The Artificial Intelligence Journal,
no. 137, pp. 43–90, 2002.

[8] D. Margatitis, “Learning bayesian network model structure from data,”
Doctoral Dissertation, School of Computer Science, Carnegie Mellon
University, 2003.

[9] I. Friedman, N.; Nachman and D. Peer, “Learning bayesian networks
structure from massive dataset: the sparse candidate algorithm,” Pro-
ceedings of the Fifteen Conference on Uncertainty Artificial Intelligence,
pp. 206–215, 1999.

[10] L. E. Tsamardinos, I.; Brown and C. F. Aliferis, “The max-min
hill-climbing bayesian network structure learning algorithm,” Machine
Learning, 2006.

119

BIBLIOGRAPHY

[11] A. R. e. a. E. Segal; D. Pe’er, “Learning module networks,” Proceedings
of the Nineteenth Conference on Uncertainty in Artificial Intelligence,
pp. 525–534, 2003.

[12] Y. F. Zeng and K. L. Poh, “Block learning bayesian network structures
from data,” Proceedings of the Fourth International Conference on Hy-
brid Intelligent Systems (HIS’04), pp. 14–19, 2004.

[13] Z. Xie, X. C.; Geng and Q. Zhao, “Decomposition of structural learning
about directed acyclic graphs,” Artificial Intelligence, no. 170, pp. 422–
439, 2006.

[14] U. e. a. Olesen, K.G.; Kjaerulff, “A munin network for the median nerve
- a case study in loops,” Applied Artificial Intelligence, no. 3, pp. 385–
404, 1989.

[15] J. Gross and Y. J, Handbook of graph theory. CRC Press, 2003.

[16] M. Koivisto and K. Sood, “Exact bayesian structure discovery in
bayesian networks,” Journal of Machine Learning Research, vol. 5,
pp. 549–573, 2004.

[17] D. Margaritis, “Distribution-free learning of bayesian network structure
in continuos domains,” Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI), July 2005.

[18] C. Gonzales and N. Jouve, “Learning bayesian networks structure using
markov networks,” Third European Workshop on Probabilistic Graphical
Models, 2006.

[19] Z. Kim and R. Nevatia, “Learning bayesian networks for diverse and
varying numbers of evidence sets,” Proceedings of the 17th International
Conference on Machine Learning, pp. 479–486, 2000.

[20] J. e. a. Campos, L; Gamez, “Learning bayesian networks by ant colony
optimisation: searching in two different spaces,” Mathware and Soft
Computing, no. 2-3, pp. 251–268, 2002.

[21] L. G. Prashant Doshi and J. C. et. al, “Towards effective structure
learning for large bayesian networks,” Proceedings of the Workshop on
Probabilistic Approaches in Search, Eighteenth National Conference on
Artificial Intelligence, pp. 16–22, July 2002.

120

BIBLIOGRAPHY

[22] D. H. D.M. Chickering and C. Meek, “A bayesian approach to learning
bayesian networks with local structure,” Proc. 13th Conf. on Uncer-
tainty in Artificial Intelligence (UAI’97), pp. 80–89, 1997.

[23] T. Silander and P. Myllymaki, “A simple approach for finding the glob-
ally optimal bayesian network structure,” 22nd Conference on Uncer-
tainty in Artificial Intelligence, 2006.

[24] K. B. L. J. W. Myers and T. Levitt, “Learning bayesian networks from
incomplete data with stochastic search algorithms,” Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 476–
485, 1989.

[25] K. Murphy, “A brief introduction to graphical models and bayesian net-
works,” Online article, 2000.

[26] D.; and H. Lenz, “Learning bayesian networks is np-complete,” Learning
from Data: Artificial Intelligence and Statistics, 1996.

[27] K. Korb and A. Nicholson, Bayesian Artificial Intelligence. Chapman
and Hall, 2003.

[28] J. G. M. e. a. Abellan, “Some variations on the pc algorithm,” Third
European Workshop on Probabilistic Graphical Models, 2006.

[29] A. Brown and I. Tsamardinos, “A novel algorithm for scalable and ac-
curate bayesian network learning,” Discovery Systems Laboratory, De-
partment of Biomedical Informatics, Vanderbilt University, USA, 2004.

[30] Wonng and Leung, “An efficient data mining method for learning
bayesian networks using an evolutionary algorithm-based hybrid ap-
proach,” IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTA-
TION, 2004.

[31] G. Provan and M. Singh, “Learning bayesian networks using feature
selection,” IEEE TRANSACTIONS ON EVOLUTIONARY COMPU-
TATION, 1995.

[32] R. C. K. Sivakumar and H. Kargupta, “Learning bayesian network struc-
ture from distributed data,” Proceedings of the SIAM International Con-
ference in Data Mining, San Franciso, USA, pp. 284–288, 2003.

[33] G. Li and T.-Y. Leong, “A framework to learn bayesian networks from
changing, multiple-source biomedical data,” Proceedings of the 2005

121

BIBLIOGRAPHY

AAAI Spring Symposium on Challenges to Decision Support in a Chang-
ing World, Stanford University, CA, USA, pp. 66–72, 2005.

[34] D. A. N. e. a. U. Alon, N. Barkai, “Broad patterns of gene expression
revealed by clustering of tumor and normal colon tissues probed by
oligonucleotide arrays,” PNAS, vol. 96, pp. 6745–6750, June 1999.

[35] P. T. e. a. T. R. Golub, D. K. Slonim, “Molecular classification of cancer:
Class discovery and class prediction by gene expression monitoring,”
Science, vol. 286, pp. 531–537, October 1999.

[36] M. Carrillo and R. Cantu, “Learning bayesian network structures from
small datasets using simulated annealing and bayesian score,” Proceed-
ings of Artificial Intelligence and Applications, no. 453, 2005.

[37] M. J. D. Agnieszka Onisko and H. Wasyluk, “Learning bayesian network
parameters from small data sets: Application of noisy-or gates,” Inter-
national Journal of Approximate Reasoning, vol. 2, no. 27, pp. 165–182,
2001.

[38] A. Onisko, “Probabilistic causal models in medicine: Application to di-
agnosis of liver disorders,” Ph.D. Dissertation, Institute of Biocybernet-
ics and Biomedical Engineering, Polish Academy of Science, Warsaw,
2003.

[39] A. Y. W. Wai-Ho Au; Chan, K.C.C.; Wong, “Attribute clustering
for grouping, selection, and classification of gene expression data,”
IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics, vol. 2, pp. 83–101, April-June 2005.

[40] C. T. D. Jiang and A. Zhang, “Cluster analysis for gene expression data:
A survey,” IEEE Trans. Knowledge and Data Eng., vol. 16, pp. 1370–
1386, November 2004.

[41] S. K. L.J. Hejer and S. Yooseph, “Exploring expression data: Identi-
fication and analysis of coexpressed genes,” Genome Research, vol. 9,
pp. 1106–1115, 1999.

[42] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, pp. 379–423, 623–656, July, October
1948.

[43] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Telecommunications and Signal Processing, Hoboken, New Jersey, USA:
Wiley-Interscience, 2nd ed., 2006.

122

BIBLIOGRAPHY

[44] C. J. Date, Database in Depth: Relational Theory for Practitioners.
O’Reilly Media, Inc., first ed., May 2005.

[45] M. L. X. C. X. L. B. Ma and P. Vitanyi, “The similarity metric,” 14th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 863–872,
2003.

[46] A. K. H. S. R. G. Andrzejak and P. Grassberger, “Hierarchical clustering
based on mutual information,” ARXIV Quantitative Biology, pp. 1–11,
December 2003.

[47] S. Watanabe, “Information theoretical analysis of multivariate correla-
tion,” IBM Journal or Research and Development, vol. 4, no. 1, pp. 66–
82, 1960.

[48] M. Studenty and J. Vejnarova, “The multiinformation function as a tool
for measuring stochastic dependence,” Learning in Graphical Models,
pp. 261–297, 1998.

[49] W. McGill, “Multivariate information transmission,” Information The-
ory, IEEE Transactions on, vol. 4, pp. 93–111, September 1954.

[50] A. Jakulin and I. Bratko, “Analyzing attribute dependencies,” PKDD,
vol. 2838, pp. 229–240, 2003.

[51] A. Jakulin and I. Bratko, “Testing the significance of attribute inter-
actions,” 21st International Conference on Machine Learning, pp. 409–
416, 2004.

[52] T. Vilmansen, “On an approximation of mutual information,” IEEE
Transactionon Computers, vol. C-23, no. 12, pp. 1311–1313, 1974.

[53] I. N. N. Friedman and D. Peer, “Learning bayesian network struc-
tures from massive datasets: The sparse candidate algorithm,” Proceed-
ings of the Fifteenth Conference on Uncertainty in Articial Intelligence
(UAI99), pp. 206–215, 1999.

[54] P. Comon, “Independent component analysis, a new concept?,” Signal
Processing: Special issue on Higher-Order Statistics, vol. 36, pp. 287–
314, April 1999.

[55] A. M. K. Vilalta R. and E. C. F., “Independent component analysis, a
new concept?,” Third IEEE International Conference on Data Mining
(ICDM), pp. 673–676, November 2003.

123

BIBLIOGRAPHY

[56] A. Hyvärinen, “New approximations of differential entropy for indepen-
dent component analysis and projection pursuit,” Advances in Neural
Information Processing Systems, vol. 10, pp. 273–279, 1998.

[57] S. W. Y.Y. Yao and C. Butz, “On information-theoretic measures of at-
tribute importance,” Third Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD’99), pp. 133–137, April 1999.

[58] R. C. I. Beinlich, G. Suermondt and G. Cooper, “The alarm monitoring
system: A case study with two probabilistic inference techniques for
belief networks,” Proceedings of the 2nd European Conference on AI
and Medicine, 1989.

[59] C. C. K.; and L. C. N.;, “Approximating discrete probability distribu-
tions with dependence trees,” IEEE Transaction on Information Theory,
no. 12, pp. 462–467, 1968.

[60] D. Pelleg and A. Moore, “Dependency trees in sub-linear time and
bounded memory,” The VLDB Journal The International Journal on
Very Large Data Bases, vol. 15, no. 3, pp. 250–262, 2006.

[61] R. Sedgewich, Algorithms in Java Part 5 Graph Algorithms. Addison
Wesley, 1 ed., 2004.

[62] J. Han and K. Kamber, Data Minning: Concepts and Tecniques. San
Francisco: Academic press, 2001.

[63] J. B. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” Proceedings of 5-th Berkeley Symposium on Math-
ematical Statistics and Probability, Berkeley, University of California
Press, no. 1, pp. 281–297, 1967.

[64] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data” An Intro-
duction to Cluster Analysis. New York: John Wiley and Sons, 1990.

[65] V. O. Ying Xu and D. Xu, “Minimum spanning trees for gene expression
data clustering,” Genome Informatics, vol. 12, pp. 24–33, 2001.

[66] V. O. Ying Xu and D. Xu, “Clustering gene expression data using a
graph-theoretic approach: an application of minimum spanning trees,”
Bioinformatics, vol. 18, no. 4, pp. 536–545, 2002.

[67] Y. Z. O. Grygorash and Z. Jorgensen, “Minimum spanning tree based
clustering algorithms,” IEEE International Conference on Tools with
Artificial Intelligence, 2006.

124

BIBLIOGRAPHY

[68] M. K. T. Asano, B. Bhattacharya and F. Yao, “Clustering algorithms
based on minimum and maximum spanning trees,” Proceedings of the
fourth annual symposium on Computational Geometry, pp. 252–257,
1988.

[69] B. Ye and K. M. Chao, Spanning Trees and Optimization Problems.
London: Chapman and Hall, 2004.

[70] C. Zahn, “Graph theoretical methods for detecting and describing
gestalt clusters,” IEEE Transactions in Computers, no. 20, pp. 68–86,
1971.

[71] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, pp. 167–256, June 1957.

[72] A. R. and B. A.-L, “Statistical mechanics of complex networks,” Modern
Physics, no. 74, pp. 47–97, 2002.

[73] D. b. A. R. Cohen and S. Havlin, Structural Properties of Scale Free
Networks. Handbook of graphs and networks, chp. 4, Berlin GmbH:
WILEY-VCH, 2002.

[74] T. O. Project, “Online resource,” http://www.opte.org/maps/, 2007.

[75] N. Paivinen, “Clustering with a minimum spanning tree of scale-free
structure,” Pattern Recognition Letters, no. 26, pp. 921–930, 2005.

[76] R. C. Prim, “Shortest connection networks and some generalisations,”
Bell System Technical Journal, no. 36, pp. 1389–1401, 1957.

[77] J. Gallian, “Dynamic survey of graph labeling,” Elec. J. Combin.,
vol. 14, no. 6, 2007.

[78] R. Neapolitan, Foundations of Algorithms Using C++ Pseudocode.
Jones and Bartlett Publishers, 3 ed., 2003.

[79] D. Danks, “Learning the causal structure of overlapping variable sets,”
Proceedings of the 5th International Conference on Discovery Science,
no. 2534, pp. 178–191, 2002.

[80] Y.-L. Chen and H.-L. Hua, “An overlapping cluster algorithm to provide
non-exhaustive clustering,” European Journal of Operational Research,
vol. 173, pp. 762–780, September 2005.

125

BIBLIOGRAPHY

[81] J. Galtier and S. Lanteri, “On overlapping partitions,” in International
Conference on Parallel Processing, pp. 461–468, 2000.

[82] H. Expert, “Hugin,” Online Resource, 2007.

[83] C. Aliferis, I. Tsamardinos, A. Statnikov, and L. Brown, “Causal ex-
plorer: A causal probabilistic network learning toolkit for biomedical
discovery,” 2003.

[84] K. Kristensen and I. A. Rasmussen, “Preliminary model for barley de-
veloped under the project : Production of beer from danish malting
barley grown without the use of pesticides,” Online Resource, 2000.

[85] A. Onisko, “Probabilistic causal models in medicine: Application to di-
agnosis of liver disorders,” Ph.D. Dissertation, Institute of Biocybernet-
ics and Biomedical Engineering, Polish Academy of Science, Warsaw,
March, 2003.

[86] e. a. Abramson, B.; J. Brown, “Hailfinder: A bayesian system for fore-
casting severe weather,” International Journal of Forecasting, vol. 1,
no. 12, pp. 57–72, 1996.

[87] E. J. H. D. E. Heckerman and B. N. Nathwani.;, “Toward normative
expert systems: Part i the pathfinder project,” Journal of Methods of
Information in Medicine, pp. 90–105, 2000.

[88] Y. Zheng and C. Kwoh, “Improved mdl score for learning of bayesian
networks,” International Conference on Artificial Intelligence in Science
and Technology, 2004.

[89] W. Lam and F. Bacchus, “Learning bayesian belief networks: An ap-
proach based on the mdl principle,” 1994.

[90] J. Cheng, D. A. Bell, and W. Liu, “Learning belief networks from data:
An information theory based approach,” in CIKM, pp. 325–331, 1997.

[91] G. Elidan, “Bayesian network repository,” Online Resource, 2007.

[92] Genie and Smile, “Genie and smile bayesian network repository,” Online
Resource, 2007.

126

Appendix A: Relevant Bayesian
Networks

Following some of the Bayesian networks used in this thesis are presented.

The datasets presented in this thesis were generating these BNs and the

efficient HUGIN [82] system. Some of this networks were obtained from the

Bayesian network repository in [91] and in the Genie and Smile website [92].

Figure 1: The ALARM Bayesian network.

127

APPENDIX . APPENDIX A: RELEVANT BAYESIAN NETWORKS

Figure 2: The HEPARII Bayesian network.

Figure 3: The PATHFINDER Bayesian network.

128

APPENDIX . APPENDIX A: RELEVANT BAYESIAN NETWORKS

Figure 4: The WATER Bayesian network.

Figure 5: The BARLEY Bayesian network.

129

APPENDIX . APPENDIX A: RELEVANT BAYESIAN NETWORKS

Figure 6: The HAILFINDER Bayesian network.

130

APPENDIX . APPENDIX A: RELEVANT BAYESIAN NETWORKS

Figure 7: The WIN95PTS Bayesian network.

131

APPENDIX . APPENDIX A: RELEVANT BAYESIAN NETWORKS

Figure 8: The MILDEW Bayesian network.

132

	title
	Abstract
	ACKNOWLEDGEMENTS
	corderoMScThesis07

