
The LINK Operating System Architecture and Security Model

Anders Franz Terkelsen

27th July 2007





Department of Computer Science
Aalborg University

Title:
The LINK Operating System Archi-
tecture and Security Model

Topic:
Distributed systems and semantics,
operating system architectures,
formal security models

Group Members:
Anders Franz Terkelsen

Project Group:
d602a (room B2-201)

Supervisor:
Josva Kleist

Semester:
Dat6

Project Period:
Feb 1st 2007 to Jul 27th 2007

Copies:
5

Pages:
Thesis: 73
Appendices: 8
Total: 82

Synopsis:
LINK Is Not a Kernel (LINK) is a new
operating system architecture developed for
IA-32 (x86) computers. In LINK there is no
kernel, but instead a set of system services

which cooperate to perform the duties of an
OS. All these system services, except one,
run at privilege level 3. The only privilege
level 0 system service is the task switcher

which has the responsibility of performing
context switches between tasks.
A new security model has been developed

for LINK that use hierachically named ca-
pabilities. This security model is formally
analysed and it is proved that it can be used
to reason about access control and informa-
tion �ow. It is also proved that the LINK
security model can simulate the Unix user-
group security model.
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1. Introduction

LINK Is Not a Kernel (LINK) is a new operating system (OS) architecture developed for
IA-32 (x86) computers. As the name implies there is no kernel in the LINK architecture,
instead the OS is designed as a set cooperating system services. LINK is an attempt of
rethinking the OS, so let us de�ne what we actual mean by an OS:

De�nition 1.1 (Operating System) An operating system is a software system de-
signed to create and maintain suitable and safe environments for applications to run
in. 2

Now what is a suitable and safe environment for applications ment to run on the OS?
If the application can trust that its data will not be corrupted or manipulated with by
other applications then the environment is safe. If the application has all the resources
available which it needs to function properly then the environment is suitable.
Our de�nition of an OS is very broad but that is on purpose. An OS is from our point

of view the entire Trusted Computing Base but exactly what this TCB should consist of
our de�nition does not say. In operating systems like various BSD and Linux systems
the TCB consists of the kernel and a set of trusted applications and libraries (shells, c
compiler, standard c library, etc.). The TCB, as de�ned by Lampson[LABW92] is:

A small amount of software and hardware that security depends on and that
we distinguish from a much larger amount that can misbehave without af-
fecting security.

In LINK the TCB has become a set of system services, libraries, and applications. The
system services are actually also just applications running in user space (privilige level
3) as any other application would do.
The only system service that run at privilege level 0 is the task scheduler as it needs

access to privileged machine code instructions in order to perform context switches be-
tween tasks. We talk about tasks in LINK instead of processes, as LINK is developed for
the IA-32 computer architecture, and this architecture has the concept of tasks which
are a kind minimalistic processes, if compared to for instance Linux processes.
But why create yet another OS? Can we not be content with systems like the various

�avours of BSD[ope, fre, net] and Linux[lin]? There are still many issues in the world
of operating systems that needs to be resolved, so our answer is no. We have identi�ed
some problems with the current available operating systems which we now look into:

Performance One of the greatest virtues of any OS is to get the most out of the hard-
ware it is running on. Performance is in no way trivial as the central processing unit
(CPU) must multitask a bunch of applications while constantly being interrupted
by I/O devices that needs work done as well, and preferably do all this without
wasting any CPU cycles. The art of wasting as little CPU cycles as possible is very
dependant on what the system in mind is going to be used for. This has lead to
a lot of research in process scheduling and how to dynamically create scheduling
policies that satisfy every process on the system as best as possible.



1. Introduction

Today we also have the concept of real-time applications to further complicate
scheduling, as some processes now have strict deadlines which must be met and
it is the job of the OS to ensure this. In general purpose OSes the problem only
concerns soft real-time where some deadlines may be missed, as there are no way
to guarantee hard real-time on a system that can have an arbitrary amount of
processes running which all need CPU cycles to do their job.

The problem as we see it is that given some OS it is not possible to create a
proper scheduling algorithm unless it is known what applications will be run on
that system. Furthermore, the OS has no way to know the actually needs of
an application. In every OS di�erent application programming interfaces (API)
are available to application developers allowing them to interact with the OS and
through these interfaces specify the application's needs. The problem is however
that there is no way to create an interface that allows all kinds of applications
to su�ciently express their needs. This results in applications not getting exactly
what they need and thus we get sub-optimal performance.

Dawson R. Engler [Eng98] found a possible solution to this problem. The OS
kernel, which is where the scheduling mechanisms normally are located, should not
try to intelligently schedule processes. It should simply allow the applications to
say what quantums (time slices) they want. In fact, the kernel should not try to
manage resources at all, but only safely multiplex them to applications. This idea
has been proven to be very e�cient[KEG+97] and we will look closer at the ideas
of Engler et. al in Section 3.4.

Portability With all the di�erent kinds of computer architectures that exists today
it is important that an OS can be ported to another hardware without to much
trouble. NetBSD[net] is an excellent example of an OS that is very portable. It
runs on most workstation, server, and PC architectures, as well as several game
systems. To make OSes portable various techniques are used, such as adding a
hardware abstraction layer (HAL) to conceal the actually hardware and present
the rest of the system with a generic computer no matter what hardware it in
reality is running on. The problem with creating generic OSes in this way is that
the HAL might prevent the hardware from being used optimally. As described
in the above point about performance, only the applications knows their needs,
and perhaps some applications could use a hardware speci�c feature but since only
some hardware architectures have this feature, the HAL abstracts it away and the
application might not even know that the feature is available. One could of course
just make hardware speci�c additions to the HAL but this would in turn force
application developers to create di�erent versions for di�erent hardware platforms;
something a HAL is ment to prevent. The real problem causing this is actually the
commonly accepted philosophy behind operating systems: An operating system has
a kernel which abstracts away the hardware from applications. But why abstract
these things in the kernel where it is impossible to change it? Instead let shared
libraries provide the abstractions, and let the kernel present the hardware for what
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it is. This way application developers can either work directly with the primitives
provided by the kernel or use a library which has an appropriate level of abstraction.

This does not mean that the kernel has to be programmed from scratch for each new
operating system, as many hardware architectures has similar features, but these
things can be appropriately handled using proper code management techniques. As
another solution to this problem, one could eliminate the kernel and create a set of
system services that together provide the same functionality as the kernel. Then
some of the system services might be usable more or less as-is on various hardware
platforms, and others might have to be created from scratch to make proper use of
hardware speci�c features.

The problems with supporting di�erent hardware platforms also arise when support
for new hardware devices is needed. Again, the typical way to handle this is to
let the kernel have generic interfaces that allow applications to use the di�erent
hardware components. But then the problem with interfaces described above arise.
So instead of letting the kernel manage this, let there be a system service for each
hardware device. Then some library or other system service can serve as a generic
interface to a set of similar devices (e.g. ethernet adapters) and applications can
use the generic approach if they do not have any special requirements.

Flexibility Much of what has been discussed above are actual �exibility issues. In
De�nition 1.1 we stated that the OS should create a suitable environment for ap-
plications. An environment that is suitable for one application might be close to
inhabitable by another, so how should an OS ever be able to make application
developers content? By not forcing any high-level abstraction upon them. Hard-
ware should be abstracted as little as possible, and as much information as possible
should be available about the system and its hardware � without it compromising
security.

This approach gives applications the freedom to use the available resources as
they please, and shared libraries could supply the generic functionality to all the
applications without special needs.

Extensibility An OS should also be extensible. That is, if new hardware is added,
new network protocols invented, etc., then it should be possible to add these new
features to the OS without having to rebuild a kernel, or something similar. What's
more important is that extending the system should not only be something OS
developers can do. Extensibility is a special case of �exibility but a case more
about what the operating system can do, and less about what the applications can
do. A problem with extensibility is how to control what new software can become
part of the OS and what cannot. If there is a kernel, then how do we grantee
that the code we are about to load into kernel space does not crash the entire
system? Instead of trying to solve this problem directly there is a way to avoid
it altogether. Do not have a kernel. Have a set of system services that cooperate
in order to function as an operating system. Then the problem of adding a new
feature to a kernel has been transformed into to the problem of creating a new
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system service. System services should of course work in such a way that if one
service crashes it cannot bring the entire system down. So system services should
have their own address space, and this in turn means that for x86 architecture
that they should run at privilege level 3 (in user space). Some system services as
for instance a task scheduler or memory manager cannot a�ord to crash as this
would kill the entire system therefore have to be marked as trusted and special
care must be taken when handling these. However, the question of extensibility
could probably never end up concerning a trusted system service as these services
are part of the hardware that normally do not change.

Parallelism Today multi-core processors are becoming more and more common, and
multi-processor systems have been common for many years. On top of this dis-
tributed system continue to evolve and mature. The problem of parallelism exists
in all of these cases. When we go from single-core CPU multitasking to true par-
allel computation a whole new set of problems comes along as well. A modern OS
should support true parallelism from day one. An OS with a kernel needs to take
protective measures such that the kernels code can be safely run in parallel. It
is however often hard to fathom the intricacies of intra-kernel communication and
thus implementing e�cient parallelism is hard. The problem is how to properly
implement parallelism using only non-blocking mechanisms. The more places dur-
ing execution of a parallel process it has to wait for another process to �nish, the
greater the ine�ciency of the overall system becomes. Implementing parallelism
using blocking constructions (e.g. spinlocks) is the same as directly implementing
ine�ciency into it, but sometimes it might of course be needed to ensure proper
program behaviour. It should however only be done as an absolute last resort as it
forces parallelism into sequential bottlenecks.

If a kernel were to be split up into a set of system services then each system
service must live up to the requirements of parallelism. The good thing about
system services versus a kernel is that they are much smaller and less complex.
Less complexity greatly improves the possibility of implementing proper parallelism
as their small size makes it much more probable to for instance create formal
concurrency models of them and verify these in a model checker to ensure correct
behaviour. The importance of the ability to easily create formal models cannot be
emphasized enough. It is humanly impossible to foresee all the possible interactions
between parallel process and we need formally proved methods of veri�cation to
ensure that our programs indeed behaves correctly.

Using a set of system services, all able to run in parallel with each other also
simpli�es the task of creating distributed software for such a system. By ensuring
parallelism in every system service, a system can be thought of as nothing more
than a set of resources which can be shared among applications, whether these are
running on the same machine or somewhere else connected via some network.

Safety In De�nition 1.1 we stated that the OS should create and maintain safe en-
vironments for applications. The OS must ensure that an application's data is
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private, and that applications safely can share their data with other applications.
This can easily be done using virtual memory (paging) as is the method used by
most OSes today. Virtual memory allows each application to have its own address
space and if an application wishes to share some memory with another application
then the OS simply creates an alias to the memory page in the other applications
address space. This does of course means that data shared will at least be the size
of a page. There is however one part of the system which normally lacks memory
protection and that is the kernel. The kernel has access to all the systems memory
since the memory manager, which is part of the kernel, is responsible for managing
it all. This is however a very bad thing as anything in the kernel can cause total
and utter havoc to the system. If a new device driver is loaded into kernel space it
can crash the system in an instant if it does something it should not. In reality, on
the x86 architecture, only the memory manager needs to have access to the entire
memory, and only the part of the kernel which does context switching needs to have
access to the privileged machine code instructions. So again, if the kernel is split
into a set of system services, then the memory manager system service can as the
only service have access to all memory, and is of course considered a trusted system
service. This will make OS development a lot easier as the causes of errors suddenly
become easy to locate to a single system service and a failure in one system service
cannot cause failures in other system services. If a trusted system service crashes
it can however still crash the entire system, but as a system service is very small
and simpel compared to an entire kernel they are likely to be less error-prone.

Security There is an important di�erence between safety and security : Safety refers
to the protection of resources using protection mechanisms, and security refers to
the policies used to control the protection mechanisms.

An OS must have some way of allowing the system's administrator to control what
each user and application has the right to do on the system. That is, the OS must
have some way to specify and enforce access control. But access control is not
always enough, as some systems might need the insurance that a user cannot give
a certain piece of information along to others. In other words, an OS with such
requirements must have some way to specify and enforce information �ow policies
as well.

System security is an entire research �eld in itself and will be looked upon in detail
in Section 6.

The above problems were the motivation for the invention of a new OS architecture,
and the LINK architecture is the result of this.
LINK as described in this thesis is already mentioned designed for the IA-32 computer

architecture and it is thus assumed throughout this thesis that the reader has some basic
knowledge about this speci�c architecture. Otherwise, this thesis is self-contained. The
full documentation for the IA-32 architecture can be found in [inta, intb, intc, intd, inte].
In the following section we will present the contributions of this thesis. In Section 3

we look into other operating system architectures. Especially one particular architecture
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which has been a great inspiration when designing LINK. In Section 4 we present the
LINK architecture and in Section 5 we present two systems which have been implemented
as part of this project: A benchmark tool for benchmarking di�erent task switching
mechanisms, and a proof of concept implementation of the LINK architecture. A new
security model has been developed for the LINK architecture and is discussed in detail
in Section 6. We discuss future work in Section 7 and conclude in Section 8.

2. Contributions

This thesis contributes with the following to the �eld of computer science:

• A new operating system architecture called LINK (Section 4).

• A proof of concept implementation of LINK (Section 5.3).

• Performance benchmarks of the hardware task switching mechanism that is avail-
able on the IA-32 architectures as well as benchmarks of a simple software task
switching mechanism, and a comparison of the two (Section 5.1).

• A new security model based on hierarchically named capabilities, along with a
formalism for reasoning about it (Section 6).

• Analysis of how the developed formalism can be used to reason about access control
and information �ow in an operating system applying the model (Section 6).

• Proof that the developed security model is both a discretionary access control model
and a mandatory access control model (Section 6).

• A formal model of the Unix user-group security model expressed using the formal-
ism developed for hierarchically named capabilities (Section 6.5),

3. Related Work

Ever since the invention of the stored program computer, operating systems have played
an important part of the evolution of both software and hardware. New hardware is
invented and the OS must support it or sometimes new ideas arise in the �eld of software
which results in new hardware being invented.

Thus many di�erent operating systems have been invented over the years. In this
section we will look at some of them. We start by looking at di�erent general OS
architectures and then go into detail with a couple of speci�c architectures which have
inspired some of the ideas behind LINK.
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3.1. Monolithic kernels

3.1. Monolithic kernels

A monolithic kernel operating system is what we today think of as the classical OS
architecture. Linux and most Unix systems all have monolithic kernels[Lov05]. The
kernel is the heart of such an OS. It manages the hardware and abstracts it to a level
where it is deemed suitable for applications to use. Monolithic kernels have always
been known to be big and hard to maintain due to the very high coupling between the
components of the kernel. They are however known to be fast and provide a single point
of entry for applications wishing to interact with the underlying hardware. The main
reason for monolithic kernels still being so widely used and popular is that they are fast.
The IA-32 architecture have di�erent privilege levels (or protection rings as called in
IA-32 terminology[inta]) built into the CPU . The kernel normally runs at privilege level
0 in a single all-encompassing address space, which means it has full control over the
entire system; and applications run at privilege level 3, each having their own address
space, meaning that they for instance do not have access to privileged machine code
instruction for manipulating the virtual memory, and cannot manipulate the memory of
other applications. Crossing a privilege level boundary, for instance when an application
calls into the kernel, consumes considerable more CPU cycles than for instance a normal
function call within the same privilege level and address space. This is due to the time
it takes for the CPU to enable the privileged instructions and load the new set of page
tables etc.

Loading and running an application typically means creating a new process, loading
the executable into that process, allocating the needed memory and so on. This means
that a lot of di�erent components of the kernel become active during this: the process
scheduler, memory manager, disk driver, etc. Since the kernel resides in a single address
space and has full privilege all these intra-kernel calls are just normal function calls. The
performance gained by this does however not come for free: A change in the hardware
means that a new kernel must be build and loaded. This problem has been partially
solved in some systems by using modules. For instance, a lot of the functionality in the
Linux kernel can be build as modules, which are blocks of binary code that can be loaded
into and unloaded out of the kernel while the system is running. However, if an erroneous
module is loaded into kernel-space it can easily crash the entire system. Furthermore,
not everything can be build as a module.

On Figure 1 an overview of an OS architecture with a monolithic kernel can be seen.

On the �gure there is a box labelled System calls. This represents the interface the
kernel supplies to the rest of the system (normally supplied as an API), and which is the
only point of entry into the kernel. All the unlabelled boxes shown in kernel space are
various parts of the kernel, such as a process scheduler, memory manager, disk driver,
etc. If the kernel supports the loading of modules then a module would be shown as such
a box as well. The kernel may interact directly with the hardware and some system call
might even just be wrappers for calling some hardware device directly.
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App. App.

Intra-
kernel
calls

Hardware

System calls

User space
Kernel space

Figure 1: Monolithic kernel overview.

3.2. Micro-kernels

The micro-kernel (sometimes written µ-kernel) was invented to solve some of the problems
found with monolithic kernels. The micro-kernel, is as the name implies, a small kernel.
The idea is that only the most essential functionality should be located in the kernel,
and the rest of the functionality should be handled by user space servers. The user space
servers, like any other application in user space, have their own address space but have
more privileges than the average user application. The idea is that a �le server has the
necessary privileges needed to supply applications with �le system services but it should
not be allowed to do more than that. In a micro-kernel system the applications use
inter-process communication (IPC) to communicate with servers and each other. Every
time IPC is performed it means a protection boundary is crossed. The kernel must save
the message, load the address space of the process which the message is for and then
give the control over to that process. The �rst generation of micro-kernels su�ered a
serious performance overhead caused by IPC. However, today's second generation micro-
kernels have highly optimized IPC and can now be compared in speed to monolithic
kernels[HHL+] though still slower, the performance gap between the two is getting smaller
and smaller.

An overview of a micro-kernel system is shown in Figure 2.

As can been seen on the �gure applications and servers all execute in user space.
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server
Display

server
FileClient

app.

Hardware

User space
Kernel space

Micro kernel

Figure 2: Micro-kernel overview.

3.3. Object-Oriented and Component-Based Operating Systems

The huge success of objected oriented design and programming languages of course also
led to the invention of objected oriented operating systems (OOOSes). There have been
di�erent kinds of OOOSes, each supporting objects in di�erent ways. But common for
all of them is the wish to incorporate concepts of object orientation into an operating
system in one way or the other. One OOOS worth mentioning is Spring[MGH+94] which
was created by Sun Microsystems. Objects were speci�ed using an Interface De�nition
Language (IDL) and techniques like inheritance could be used throughout the system.

Component-Based operating systems are sometimes hard to di�erentiate from OOOSes
as it is not o�cial de�ned anywhere what makes an object and what makes a component.
Greg Law has, however, given a good way to mentally categorise the two[Law01]:

A good di�erentiator is that objects are fundamentally a programmer's tool
while components are more concrete entities. That is, traditional objects
exist in the program's source code only, and are pertinent mainly to type-
theory. For example, once a C++ program is compiled, the boundaries be-
tween objects disappear; indeed, it is not possible to state with 100% con�-
dence whether a binary were produced using C++ or C as its source (or even
assembly). On the other hand, the boundaries between components are con-
crete and are present in the running system � it should be trivial to produce
a tool to allow the user to examine what components exists at any time. In
this regard, a traditional �le is closer to a component than is an object. In
fact, a process is a better analogy still since a process includes behaviour as
well as state.

Like with OOOSes there are di�erent kinds of Component-Based Operating Systems.
One of the recent and quite interesting Component-Based OSes is Greg Law's OS, called
Go![Law01]. In Go! there is no longer the ordinary notion of a kernel. Instead it has
an Object Request Broker (ORB) that is responsible for managing the system's available
objects. It can be argued that an ORB is just an extremely small kernel with a very
limited service, and thus some people refer to component-based OSes like Go! as nano
kernel operating systems. What really makes Go! a di�erent kind of OS is that everything
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runs in kernel space and the OS scans the instruction stream before executing it to ensure
no disallowed instructions are contained within it. This does however not have anything
to do with it being component-based.

3.4. Exokernels

In the exokernel architecture[Eng98] the kernel is even more minimalistic than a micro-
kernel. This is mainly due to two principles which the exokernels abide to: �Separate
protection from management� and �expose hardware�. An exokernel does nothing more
than safely multiplex the hardware and all the abstractions over the hardware is up
to user-space programs. On an exokernel system one can use user-space servers like
with micro-kernels but with exokernels it is preferred to use library operating systems
(libOSes). Library operating systems are shared libraries together with some controlling
processes which applications can communicate with via IPC. The di�erence between
a libOS and a user-space server is that a libOS is not a �gate keeper�; meaning that
applications do not need to use a speci�c libOS, they can if they want to, communicate
directly with the exokernel. This has the great bene�t of increasing the �exibility and
extensibility of the OS. Applications can use abstraction provided by libOSes or they can
build their own; or a mixture of the two. A libOS is actually just another application
residing in user space.

Exokernels also apply �ne-grained protection due to their low-level abstractions over
hardware. For instance, access control mechanisms on the disk block level instead of
the �le level. The obvious reason for this is that in order for the kernel to perform
access control on a �le it must understand the �le system on the disk, and that would
in turn mean that the �le system was part of the kernel. But a �le system is a high-
level abstraction and is more about management than protection and thus do not belong
inside the exokernel.

An overview of an exokernel OS is shown in Figure 3.
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Figure 3: Exokernel overview.

The exokernel, like any other kernel, serves as interface to the hardware, though with
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a much lower level of abstraction. As can be seen on the �gure, applications typically
make use of libOSes but the leftmost of applications also directly use the kernel's interface,
which is shown by the arrow directly from the application to the exokernel.

3.4.1. The MIT Exokernels

At MIT, a couple of exokernels named Aegis and Xok, were developed during the mid-
nineteen-nineties and early two-thousand. These exokernels were the �rst of their kind
and have later inspired other system architectures such as for instance Nemesis[RF,
LMB+] and Xen[BDF+03b, BDF+03a].
In this section we will look into some of the general principles and concepts that were

developed for Aegis and Xok, which became the principles for exokernels in general.

Design Principles As already mentioned, the exokernel is build around the principle
of �seperate protection from management�. The principle of �expose hardware� follows
from this, and as explained so does the principle of �protect �ne-grained units�.
Furthermore, the exokernel principles require the exposure of allocation, revocation,

names, and information. Exposing allocation means that applications explicitly state
which resource they want to allocate. In practice it will of course be common to im-
plement the possibility for applications to just request a certain amount of a type of
resource and not have to state that it for instance wants to allocate exactly that and
that memory page for reading and writing. Going hand-in-hand with exposing allocation
comes exposing revocation. When resources are going sparse the exokernel decides on an
application and tells it to release a certain amount of resources. The application decides
what instances of the resource to release and thus has the possibility to make intelligent
decisions on which instance to release. The kernel must of course implement some kind
of protocol for handling applications which do not release resources when asked to. This
is what Dawson R. Engler refers to as an abort protocol [Eng98]. A simple abort protocol
would be to simply kill applications which do not release the required resources within a
certain time limit.
Exposing names means exposing the physical names of resources (i.e. hardware) when-

ever possible and exposing information means exposing as much system information to
applications as possible without compromising security. The exposure of names and
information gives applications a lot useful data which they can use to take intelligent
decisions on the use and allocation of resources.
All the design principles can be linked back to the seperation of protection from man-

agement. This is the fundamental principle of the exokernel and it is this which gives
the exokernel its unique capabilities as a fast, �exible, extensible operating system. One
could say that the exokernel applications lives in freedom under responsibility. They can
allocate resources as freely and madly as they want as long as they release these resources
when told to. If they do not, the abort protocol de�nes the consequences.

Protection vs. Security Separating protection from management is possible since pro-
tection does not imply the submission to any policy. As soon as policies for how to
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protect resources are added we are no longer talking about protection but security. Se-
curity is a question of how one wishes to manage the rights to certain resources and does
not fall inside the domain of the exokernel. Every resource must be protected at the
�nest possible granularity and if this is done any security policy can be applied on top
of it in user-space. A security policy can never be ensured if the protection mechanism
cannot enforce it. Thus the exokernel concerns itself with protection mechanisms and
not security.

Secure Bindings Even though the name might imply it, secure bindings have nothing
to do with security. A secure binding is a protection mechanism.

De�nition 3.1 (Secure Binding) A secure binding is a protection mechanism that
decouples the authorisation from the actual use of the resource. 2

The de�nition says that when an application requests a resource, protection checks are
performed, and if all qualify then the resource is bound to that application. All further
access to the resource from the application no longer needs to be checked.

Secure bindings is an e�cient way to implement �ne-grained protection of resources
since it ensures that protection checks only need to be done at bind time. If the checks
were done at access time it would create an enormous performance overhead.

A simple example of a secure binding is when an applications requests to allocate a
certain page in memory. The kernel performs protection checks which means it checks if
the page is free; if it is, then it maps the page into applications address space. From that
point on the application can access the resource without any further protection checks.

Hierarchically Named Capabilities Keeping management entirely out of the kernel is
impossible if there is to be any hope of having a secure operating system. Some security
model is needed such that it is possible to specify which applications, processes, or users
have access to what resources. The problem with a security model is that it can easily
impose too many restrictions.

Mazières[MK97] proposed the use of hierarchically named capabilities in the exokernel
as this is a simple and elegant security model which allows other models to be imple-
mented on top of it. Hierachically named capabilities will be examined in detail in
Section 6.

4. LINK Architecture

The basic LINK architecture was developed in the autumn of 2006[Ter07] as part of the
preliminary research for this thesis. In last semester's technical report it was noted that
the use of the IA-32 architecture's hardware task switching mechanism might not be as
fast using a software task switcher. We have since then benchmarked the two against
each other and found that the software task switcher we wrote indeed is faster. We will
discuss the benchmarks that prove this in Section 5.1.
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The original LINK architecture was built around the hardware task switching mech-
anism and has thus has modi�ed to use a software task switcher instead. This section
describes the LINK architecture as it was originally developed followed by a description
of the new architecture and discuss why the changes made are insigni�cant to the general
architectural idea and principles behind LINK.

4.1. Original LINK Architecture

An overview of the old LINK architecture is shown in Figure 4. Everything seems to be
running directly �on the bare metal�, and indeed, that is the case. To understand how this
is possible two things must be remembered: One, switching between tasks is handled in
hardware, and two, protection of memory is done using virtual memory (paging). Instead
of having a kernel providing the most essential system services, LINK has a set of system
services which each has a speci�c job to perform. For instance, all memory management is
handled by a memory manager system service, tasks are scheduled by the task scheduler
system service, and so on. Each of these services has their own protected address space
and communicate with other services via remote procedure calls. The procedure calls
are remote in the sense that they are inter-task procedure calls.

Memory Manager Scheduler

Privilege
Level 3
(Ring 3)

Micro-code
Level

Application. . .

Hardware

LibOS

App. App.

Figure 4: The old LINK architecture using hardware task switching.

The virtual memory is the glue that binds everything together. The overview in
Figure 4 shows a running LINK OS. Booting the OS is done using a bootstrap task
which sets up the virtual memory, loads the system services, then unloads itself and
gives control to the task scheduler which selects the �rst task for execution. Applications
do not need to make use of libOS functionality if they do not want to as can be seen on
the �gure. Applications can also combine the functionality of libOSes just as it is the
case in exokernel systems (the right-most application).
The architecture has been developed following the same principles that the exokernel

was built around. The system services must therefore only protect resources, never man-
age them. Even the memory manager only protects resources. So why call it a manager?
Because LINK uses virtual memory, so in reality the memory is being managed; not by
the memory manager system service but by the virtual memory hardware. The memory
manager therefore simply provides support for functionality that exists in hardware.

Memory Organisation The CPU associates a Task State Segment (TSS) with each
running task which contains the entire state of the task. The state consists of the following
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[intd]1:

• General purpose registers: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP.

• Segment registers: CS, DS, SS, ES, FS, GS.

• EFLAGS register.

• Page Table Base Register (PTBR): CR3

• Instruction pointer: EIP

• Additional three stack segment selectors and stack pointers for privilege levels 0,
1, and 2.

• Address of the I/O bitmap.

• Value of the Local Descriptor Table (LDT) register.

• Pointer to the previously executed task.

Basically, a TSS contains all information about a task except the Global Descriptor
Table (GDT) selector and the �oating point registers, and all this information can be
handled directly in hardware. By constructing TSSs for every task on the system the
hardware task switching mechanism can be used to switch between them. To support
this the memory has been organised as shown in Figure 5.
As can be seen on the �gure, all applications share the same TSS. This is because the

GDT only has 8192 entries[intd], where two of them are reserved (one for the null segment
selector and one for the LDT selector, not taking into account various segment selectors),
leaving 8190 entries left for the OS to use. It is not possible to use multiple GDTs as
loading the GDT register requires the current privilege level to be 0 and LINK always
runs in privilege level 3. Since there might be more than 8190 applications running on a
single system the applications share a single TSS. It is now the job of the task scheduler
to keep the TSS data of all tasks and use this data when switching between tasks. Before
a task switch, the task scheduler saves the TSS data of the currently running task, loads
the next task's TSS data, and performs the switch. This might seem like a lot of data
to save and load on each task switch but in practice only a single value has to be read
and stored. If the task scheduler has write access to the part of memory which holds the
GDT then it can simply keep TSSs for each task, structured as the CPU wants them,
and then it just changes the applications TSS selector in the GDT, and performs the
task switch.
The service calls have a TSS each, and every system service may implement one or

more service calls. A service call is what in other OSes is called a system call, and more
than 8000 possible service calls should be more than enough for any OS. Especially an
OS like LINK which uses low-level abstraction over hardware and thus wont need service

1It is assumed throughout this thesis that the CPU is 32 bit and running in what Intel calls legacy

mode.
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Figure 5: LINK memory organisation

calls for interfaces to higher level abstractions. In fact, there will probably be very few
service calls in total, and as an optimisation, heavily used applications (e.g. libOSes)
could get their own TSS to make switching to them faster. The entries in the GDT
function as nothing more than entry points into code somewhere in memory, and by
calling such an entry point the hardware makes sure to switch to the appropriate context
before continuing.

What makes the LINK architecture possible is the fact that everything is just data
structures in memory. The CPU may require some speci�c privilege level before a task
can use a certain machine code instruction but most of the work that needs to be done by
system services is no more than the manipulation of data structures in memory. The key
to making it all work is simply to set up the memory in such a manner that each system
service has access to the appropriate data structures in memory, and without giving it
access to any more than it needs.

Since every task is running with privilege level 3, and every entry in the GDT requires
privilege level 3 to call, every task can perform a hardware task switch to any other task.
This means that if for instance an application calls a system service, and that system
service needs to call another service as the last thing it does, it could just ask that second
system service to return directly to the application. Applications which communicate
a lot with each other could also return a reply by doing the task switch themselves
to the previously running task, without having to switch to the task scheduler. This
trick would however require one more entry in the GDT since only one TSS is used
for all applications. Using two entries would allow an application to switch to another
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application using the task scheduler and then the called application could switch directly
back to the �rst application. This saves the applications one call to the task scheduler
and could give a signi�cant performance gain if two applications communicate a lot. The
amount of communication would however have to be enough to outweigh the extra cycles
used to manage the extra application GDT entry.

The architecture we have just described is built on the assumption that hardware task
switching is fast. If hardware task switching is slow, then it would be senseless to use it.
This is in fact the case as benchmarks have shown which will be described in Section 5.1.
The result means that the architecture has to be modi�ed, and a software task switcher
needs to be added.

4.2. New LINK Architecture

An overview of the new LINK architecture can be seen on Figure 6. Any application
(including system services) can call the Software Task Switcher (STS) by using the SY-
SENTER instruction. SYSENTER (�Fast System Call�) does a fast switch of the CPU
state into privilege level 0, and its companion SYSEXIT (�Fast Return from Fast System
Call�) returns from privilege level 0 back into the context from where SYSENTER was
called2. Using SYSENTER/SYSEXIT is a faster way to perform context switches than
forcing a context switch using a software generated interrupt � which were the original
method used by IA-32 OSes to implement system calls; and SYSENTER/SYSEXIT is
also faster than using hardware task switching. One reason for SYSENTER/SYSEXIT
being so fast is that the instructions do not save or restore any context state (not even
the return EIP is saved). This is a huge advantage over hardware task switching (HTS)
as the HTS might have saved some unneeded state, and thus wasted CPU cycles. The
task switcher should do as little work as possible and leave the saving of task state up to
applications, or more likely, libOSes.

As can be seen on Figure 6, events generated by hardware call directly up to system
services that enforce protection upon it, so this is the same as in the old architecture.
Since HTS is no longer used we wont need a TSS for every application and system service
and we wont be needing to keep entries for all the TSSs in the GDT. So we are no longer
restricted to only having a total of approximate 8000 TSSs. The STS has its own data
structures and more and more applications can be added to the system as long as there
are memory available. The memory organisation is however still nearly the same as
previously explained and showed on Figure 5, except that the TSS data structures are
de�ned by the task scheduler system services, and applications has a data structure each
just like service calls.

The STS can do all sorts of clever optimisations since the actions performed by the
SYSENTER/SYSEXIT duo are fully dependant on values in some of the CPUs registers
(see [intd] for details). So when SYSENTER is called and STS is invoked, the STS loads
values of the new task to run into the speci�c registers and calls SYSEXIT. Now the
CPU switches to the new task and its context. More details about the intricacies of the

2 SYSEXIT can actualy return to another context instead if setup to do so.
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Figure 6: The new LINK architecture

STS will be given in Section 5.3 where the implementation of a proof of concept LINK
OS is explained.

Input/Output The IA-32 architecture has 256 available I/O ports. Whether or not a
task can access an I/O port depends on either its I/O Privilege Level (IOPL) or if it has
an I/O Bitmap loaded, and whether the bit for the speci�c port in the bitmap is set or
cleared. The use I/O Bitmaps is a simple way to control I/O on a per task basis. If every
task gets an IOPL equal to 3 it will be the I/O Bitmap supplied for each task which
decides whether or not access to a speci�c port is granted. Creation of I/O Bitmaps
could be done as part of a standard task creation procedure.
In the case of memory mapped I/O, access control simply becomes a memory manage-

ment issue. One elegant solution to this would be to have a system service for handling
all memory mapped I/O and when a task requests access to memory mapped I/O then
the system service would decide whether or not access should be granted, and if granted
it could tell the memory manager to map the speci�c page into the tasks address space.
That way protection is done on time of authorisation and not on time of access (i.e. using
secure bindings).

Interrupt and Exception Handling All interrupts and exceptions are handled via the
Interrupt Vector Table (IVT). In short, the table entries specify the address of Interrupt
Service Routines (ISRs). The Advanced Programmable Interrupts Controller (APIC)
also generates interrupts when either the Local or External APIC devices needs the CPU
to handle their events. An obvious way to manage all these kinds of events would be
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to create an event manager system service. This system service would have access to
the IVT and APIC data such as the Local Vector Table (LVT) and could then manage
ISRs in a similar way to how memory mapped I/O could be handled. As an ISR is
automatically used from the moment it is inserted into a vector table, controlling access
like this again means using secure bindings.

Portability With the new LINK architecture there is no reason why the architecture
cannot be applied to other hardware platforms than the IA-32 architure. The only
requirement LINK has is that the hardware platform has some sort of �exible memory
protection mechanism like the virtual memory mechanisms the IA-32 architecture has.
Since virtual memory is the common way to do memory protection today, LINK versions
can be build for many di�erent hardware platforms.

5. Implementation

Two systems have been implemented as part of the work for this thesis. First a bench-
mark tool was developed that benchmarks the amount of cycles needed to perform con-
text switches using di�erent mechanisms. Later a proof-of-concept version of LINK
was implemented, called POCLINK (Proof-Of-Concept LINK). We will start out in
this section by explaining the benchmark tool and then look at the results it gave.
Then we will look at POCLINK in detail. Both systems are mainly written in as-
sembler for the Net-wide Assembler (NASM) and expects to be run in an preboot
execution environment (PXE) [Cor99] which is available on most PCs with modern
ethernet adapters. Instructions on how to set up a test environment can be found
in Appendix B. Source code for both the benchmark tool and POCLINK can down-
loaded at http://www.cs.aau.dk/~zion1459. The source code is available in a single
gzipped tar-�le. The �le contains two directories, microbenchmark and poclink, where
microbenchmark contains the benchmark tool source code and poclink obviously con-
tains the POCLINK source code. To compile the code the NASM assembler, GCC
compiler, and utility Make must all be available. Compiling is then a simple matter
of entering either the microbenchmark or poclink directory and running the command
make. For further information about compilation refer to the Make�les themselves which
are purposely overly simplistic. The compiled binaries are so-called Network Boot Pro-
grams (NPBs), and should function in any PXE 2.0 environment[Cor99].

5.1. The Benchmark Tool

The performance of an operating system is highly dependant on the time it takes to per-
form a context switch. Thus, in the case of LINK, the performance of the task switcher
is very important. Originally LINK was designed to use the hardware task switcher
(HTS) as it was an elegant way to perform context switches, but before de�nitively
choosing to use a HTS, a software task switchter (STS) were build and benchmarks of
both were made. We wrote a benchmark �tool� in assembler code for the Net-wide As-
sembler (NASM). The benchmarks the tool can perform are so-called micro-benchmarks
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as they benchmark low-level functionality. Even though micro-benchmarks of an OS are
good, the overall performance can still be bad due to other factors. Nevertheless, micro-
benchmarks are useful as they illustrate the highest possible performance of a certain
mechanism and in our case where there is a choice to make between using a HTS or STS,
the benchmarks are essential.

The tool we wrote is nothing more than a single source �le named microbenchmark.asm

where macros de�ne the kind of benchmark the assembled binary will perform. The tool
can make four types of benchmarks:

• Hardware task switching.

• SYSENTER/SYSEXIT.

• Software task switching with no task state saved.

• Software task switching with with state saved.

Each of these types of benchmarks can be performed with and without paging enabled
and with various combinations of cache settings.

When the binary runs of the target machine it performs 100 context switches and
prints the number of CPU cycles it took to perform each switch to the screen. After the
100 numbers it prints an empty line and after that it prints the average number of cycles
used (this saves the tester from the trouble of reading the hundred numbers of the screen
and performing that calculation himself). To do more than a 100 benchmarks can easily
be done by making a small modi�cation to the assembler code.

Note that it is the number of cycles used to switch from one user space task to another
that is benchmarked, which means that in the case of the STS it is the total amount of
cycles used to enter privilege level 0, save the old task state, load the new task state, and
switch back to privilege level 3 into the new tasks context. The SYSENTER/SYSEXIT
benchmarks gives the number of cycles used to enter and exit privilege level 0 using
those instructions, but without performing any work while in privilege level 0. This
simply benchmarks the pure SYSENTER/SYSEXIT mechanism and does not perform a
context switch from one user space task to another.

The �le microbenchmark.asm only contains 527 lines of assembler code, including
comments. The �le can however still seem confusing at �rst glance due to the use
of preprocessor macros. The use of macros did however make it easy to develop the
di�erent types of benchmarks in a single source �le and also makes it easy to quickly
compile di�erent kinds of benchmark programs. To make the assembler easier to read,
set the macro values to your liking and then invoke NASM with the �-e� parameter
which causes it to preprocess the �le but not assemble it (refer to the NASM manual for
details). The result will be the assembler code that is actually assembled, which should
be self-explanatory even without comments (which is also removed by the preprocessor).

The benchmarks are performed in protected mode at privilige level 3. When paging
is enable a single page directory is used, and a single page table containing the needed
pages. To keep things simple, all pages are identity-mapped, meaning their physical
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and virtual addresses are the same. Both tasks use the same page directory, but CR3 is
nonetheless reloaded when the STS switches tasks since an actual OS most likely would
load a new page directory for each task.

5.2. Benchmark Results

We assembled microbenchmark.asm for each of the possible valid macro value variations
and ran all the binaries on an old AMD Athlon 700MHz PC with 384MB RAM. A
complete set of benchmark results can be found in Appendix A.

We will in this section only compare the average number of cycles used for each of the
four types of benchmarks with paging enabled and with the parameters set to the values
that they would use in a typical running system. These results shows us if it is faster or
slower to use a STS instead of a HTS. The results are shown in Table 1.

Mechanism CR0.CD CR0.NW PWT PCD Cycles

HTS 0 0 0 0 483
STS, w. state 0 0 0 0 490
STS, no state 0 0 0 0 280
S.ENTER/EXIT 0 0 0 0 134

Table 1: Benchmark comparison of di�erent mechanisms for performing context switches.

The four parameters mean the following:

CR0.CD and CR0.NW: These two parameters represent a bit each in the CR0
control register. When both the Cache Disable (CD) and Not Write-through (NW)
are clear (i.e. 0), caching of memory locations for the whole of physical memory in
the CPUs internal and external caches is enabled.

PWT and PCD: The two parameters represent control bits in page directory and page
table entries of the currently active pages. When the Page-level Write-Through
(PWT) bit is clear write-back caching is enabled for the associated page or page
table.

When the Page-level Cache Disable (PCD) bit is clear the associated page or page
table can be cached.

These parameter settings are most like the settings that a typical system would use as
caching improves performance greatly. However, on multi-CPU systems caching might
be disabled at some points to ensure cache-coherence, but even with other parameter
settings the relative di�erence between the four types of benchmarks remain the same,
as can be seen on the results in Appendix A.

The results in Table 1 show us that our own STS, which saves the same amount of
task state as HTS, only use 7 cycles more to do so. This is a negligible di�erence. But
when the STS does not save any task state except the state needed to perform the switch
it only use 280 cycles. This is something the HTS has no possibility of doing, and this

28



5.3. Proof of Concept LINK (POCLINK)

makes the STS the better choice. Sometimes we might want to switch to another task,
but we might not need to save all the previous tasks state. Maybe we know it has not
changed, or maybe the changes are unimportant. Using a STS we can greatly optimise
task switching in some cases. Even if we never use the STS without saving the entire
task state, the STS has the advantage that it can be used on other platforms which may
not have a task switching mechanism implemented in hardware. Also, in Section 5.3 it
is shown that the POCLINK STS in fact never needs to save as much task state as the
HTS.

5.3. Proof of Concept LINK (POCLINK)

To prove that the LINK architecture is possible to use in practice we implemented a
small proof of concept OS called POCLINK (Proof of Concept LINK). When compiled
POCLINK is a single binary which like the benchmark tool can be sent to a client
computer via the network. The original idea was that the binary sent via the network
would initialise the system and put it in a state where it could use the PXE API to
download the rest of the operating system as a set of ELF binaries. Unfortunately, there
was a bug in either QEMU or Etherboot which prevented us from using the PXE API
(refer to Appendix B for an explanation of the test environment used). The problem we
encountered was that the API calls never returned, but the system did not crash either.
We could call into the API but then the machine would just hang. The QEMU monitor
allowed us to see the value of the EIP (Instruction Pointer), and thus verify that we had
entered into the code supplied as part of the PXE environment. After double-checking
several times with the PXE speci�cation and trying various setups, we concluded that it
must be a bug, and continued development without the PXE API. We will further test
QEMU and Etherboot in the near future to locate the bug and �le a bug-report. Without
the API we would have to implement the network driver and protocols ourselves, which
we did not have the time to do, so instead we �cheated�. The PXE environment allows
the network boot program (NBP) to have a size up to 64Kb. This is enough for the
entire POCLINK system so we simply include everything in the NBP. NASM allows us
to do this easily with the instruction incbin. This means that running POCLINK is
done in exactly the same way as running the benchmark tool.

POCLINK consists of the following:

• A bootstrapper

• A software task switcher

• A task scheduler

• Three small applications

• A tiny shared library

The bootstrapper is the actual NBP and the task switcher, scheduler, applications,
and shared library are included in that binary as described above. The set of pages
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and page tables are static, meaning that all memory needed must be allocated during
bootstrapping. The bootstrapper sets up a page directory along with page tables for
the entire systems memory, with all pages identity-mapped. Had there been a memory
manager this would be the page directory it would use, which would allow it to access
all memory, and thus manage it, even when running at privilege level 3.
The software task switcher is the only task after bootstrapping is complete that runs

at privilege level 0, as it should be. POCLINK has been developed in QEMU and runs
perfectly, it has also been successfully tested on a Fujitsu Siemens laptop with a Core Duo
1,6 GHz CPU and 2GB of RAM. Only one of the CPU's cores are used by POCLINK. The
reason why POCLINK has been tested on a di�erent machine that the micro benchmarks
were performed on is because our original machine for testing died some time between
the development of the benchmark tool and POCLINK.
A tree list of all the source code �les of POCLINK, excluding the Make�les, can be

seen in Figure 7. The �les listed in Figure 7 consists of just 2498 lines of code total,
including comments.

shared

do_return

do_return.asm

yield_to

yield_to.asm

task_scheduler

task_scheduler.asm

task_switcher

task_switcher.asm

test_application1

test_application3

test_application1.asm

test_application2

test_application2.asm

test_application3.asm

poclink

include

common.h

task.inc

nbp

elf.h

nbp.asm

paging.asm

byte_clear.c

byte_copy.c

byte_copy.h

elf_binaries.asm

elf_utils.c

elf_utils.h

Figure 7: POCLINK source code �le tree.

Here follows a short description of each �le's purpose:

include/common.h: C header �le containing a few type de�nitions.

include/task.inc: Assembler �header� �le, therefore the .inc post�x on the name in-
stead of the typical .asm post�x. The �le contains the de�nition of the structure
for containing a task's state.

nbp/byte_clear.c: Contains the funtion byte_clear which given a 32 bit memory ad-
dress and size in bytes clears size bytes starting for the speci�ed address.

nbp/byte_copy.c: Contains the function byte_copy which given a source address, des-
tination address, and size in bytes, copies size bytes from the source address to
the destination address.

nbp/byte_copy.h: Contains a few preprocessor de�nitions.

nbp/elf_binaries.asm: Includes all the ELF binaries using the incbin NASM instruc-
tion.
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nbp/elf_utils.c: Contains functions used for relocating the text and data sections of
ELF binaries.

nbp/elf_utils.h: Contains various type and structure de�nitions and preprocessor con-
stants all obtained from the Tool Interface Standard (TIS) Portable Formats [Com93]
speci�cation of the Executable Linkable Format.

nbp/nbp.asm: Contains the bootstrapping code.

nbp/paging.asm: Contains the code setting up page directories and page tables for the
task switcher and the three test applications.

shared/do_return.asm: Contains the routine do_return which is called by the task
switcher on exit and loads the newly scheduled task's unprivileged state before
returning control to the task itself.

shared/yield_to.asm: Contains the routine yield_to which given an index into the
Task Table yields the quantum to the task which has its entry at the speci�ed
location in the Task Table. This function is only used once in nbp.asm for switching
to the �rst task and thus starting the system. The Task Table is the data structure
in memory containing the state of all tasks in the system.

task_scheduler/task_scheduler.asm: Contains the scheduling algorithm which is a
simply round-robin algorithm that traverses through all tasks in the Task Table.

task_switcher/task_switcher.asm: Contains the task switching mechanism which get
run when the SYSENTER instruction is executed.

test_application1/test_application1.asm: The three test applications are identical
except for their names. They print to the screen the APIC Timer counting down
and their own Task Table index.

The entry point is found in nbp.asm at the label _start. This is where execution starts
in the compiled binary poclink.bin. The �rst thing that happens when execution starts
is that the PXE environment is detected. If PXE 2.0 or later is found execution continues
and switches the processor into protected mode. Bootstrapping the processor is done by
setting up the following data structures:

• Global Descriptor Table (GDT)

• Local Descriptor Table (LDT)

• Task State Segment (TSS)

• Interrupt Vector Table (IVT)

The GDT is set up with six descriptors:

code32dsc_dpl0: Code segment descriptor with Descriptor Privilege Level (DPL) 0. It
spans the entire 4GB address space. This is only use by the task switcher.
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data32dsc_dpl0: Data segment descriptor with DPL 0. It spans the entire 4GB address
space. This is only use by the task switcher.

code32dsc: Code segment descriptor with DPL 3. It spans the entire 4GB address space.

data32dsc: Data segment descriptor with DPL 3. It spans the entire 4GB address space.

ldtdsc: LDT descriptor. The LDT is not used but it must nonetheless be speci�ed and
loaded. It is however just loaded with a base address and size of 0, since it never
is used. This descriptor has DPL 3.

tssdsc: Even though hardware task switching will not be used a single TSS must be
speci�ed, this is the descriptor for that TSS. This descriptor has DPL 3.

The six descriptors are located in the order they are listed, with code32dsc_dpl0

having GDT index 1. Index 0 is referred to as the null descriptor and cannot be used
when referencing a descriptor. Entries 1 through 4 must be located in the relative order
shown above, as the SYSENTER/SYSEXIT instructions calculate the addresses of the
rest of the descriptors from the address of the code32dsc_dpl0.

Before interrupts can be enabled the IVT must be set up. The �rst 20 interrupt
vectors are speci�ed by Intel (with the exception of vector 1 and 15 which are marked
reserved). These vectors are all set up with a Interrupt Gate pointing to the location of
the dummy_isr routine. dummy_isr is a small routine which simply re-enables interrupts
and returns from the interrupt. That is, none of these interrupts are used for anything in
POCLINK. The only interrupt that is used is the one sent to interrupt vector 42. This
is where the Advanced Programmable Interrupt Controller (APIC) Timer is set up to
deliver its interrupts. The Interrupt Gate for vector 42 points to the entry point of the
task scheduler, meaning that every time the APIC timer generates an interrupt the task
scheduler is invoked.

The Task Table structure is not part of the Intel speci�cation but a structure we
created to keep the data of the tasks in the system. Each entry in the Task Table is 44
bytes long and contains the following:

• Instruction Pointer (EIP).

• Stack Pointer and Stack Base Pointer (ESP and EBP)

• Page Directory Base Address (CR3)

• EFLAGS

• General purpose registers: ESI, EDI, EAX, EBX, ECX, and EDX.

As all tasks use the same code and data segments there is no need to save the segment
registers. The following events take place during a task switch:

1. The APIC Timer generates an interrupt and the task scheduler is invoked.
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2. The task scheduler saves the interrupted tasks state in a special memory page and
invokes the task switcher using the SYSENTER instruction. Before invoking the
task switcher it locates the next task that should have a quantum and passes its
Task Table index along as a paramenter to the task switcher.

3. The task switcher saves the task info found in the special memory page into the
task's entry in the Task Table, loads the next task's state, and then executes the
SYSEXIT command.

4. The SYSEXIT command does not return directly to next task but to a routine
called do_return which loads the unprivileged parts of the new task's state (general
purpose registers, etc.) and then returns to the actual new task.

The reason why the task's state is temporarily saved in a prede�ned memory location
is due to the task scheduler running at the same privilege level as the tasks. This means
that when an interrupt occurs it has access to the same memory pages as the interrupt
task. It could just push the values onto the stack but that would mean the task switcher
would have to know the address of each task's stack. This value can of course be passed
along as a parameter, but before this address can be used by the task switcher it would
need to get that page mapped into its address space. A task cannot manipulate the task
switching routine in any way by polluting that special memory location, the only thing
that can occur if it did that is that it most likely would crash itself next time it got its
quantum. To prevent a memory leak the temporary data should be cleared by the task
switcher before returning to the next task. This is not done since security is no issue in
POCLINK and we prefer only to include the most essential code.

We cheated a bit when it came to reading ELF binaries. Since implementing full
support for ELF binaries would take more time than we had available for implementation
we have only implemented the very basics of ELF support. The bootstrapping code in
POCLINK can detect whether a block of data in memory is an ELF binary or not, and
if so it can relocate its data and text section to speci�ed locations. However, since no
dynamic linking has been implemented the �nal address of the text and data sections
must be speci�ed when the ELF is originally compiled. For instance, if one looks in the
Make�le in the test_application1 directory one will see the following line:

ld -o test_app1 -Ttext $(TEXT_OFFSET) -Tdata $(DATA_OFFSET) $(OBJECTS)

Which sets the text and data o�set in the �le to values speci�ed above in that �le. Also,
in order for the relocated text section to be referred to as the entry point for a binary,
we made sure the label _start is located at the very beginning of the text section. Had
any of the ELF binaries contained more than one entry point, like for instance a shared
ELF object might, this hack would not work, but in our small implementation this was
not needed so no problem arose. These two small hacks made it possible to use ELF
binaries for POCLINK, as a proper LINK OS would do, but with minimal e�ort and
time spent on implementing something which does not have anything directly to do with
the architecture.
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The task switcher and each of the three test applications have their own page directory.
They only have access to the most essential. There is, however, one page that the
applications have access to which they should not have access to: The page containing
the Task Table. Each task should have read access to its own task state contained in the
Task Table but by giving them read access to the page containing the Task Table they
obviously can also read the state of all other tasks on the system. This situation does,
however, have a simple �x: Each task should have a read-only memory page containing
its own task state (and perhaps other useful read-only data as well) and the Task Table
should then contain a list of addresses instead of the actual task state data structures.
Basically, this is the same thing which is done in the GDT with the TSS descriptors. The
reason why this has not been done in POCLINK is that it would require a substantial
change in the code (one of the troubles when programming in assembler) and due to lack
of time this change was not made. However, it is obvious that this issue can be resolved
used very simple measures.

5.4. Summary

Task switching has been benchmarked and we found that the software task switcher and
hardware task switcher have nearly the same performances when all task state is saved.
But when only some of the task state needs to be saved the software task switcher is
the better choice. As our proof of concept implementation POCLINK has shown we do
not need to save all the task state. Hardware task switching takes into account that
di�erent tasks use di�erent segments but the LINK architecture uses the same segments
for all tasks (with the exception of the task switcher) and thus no segment information
needs to be saved when switching tasks. As this will improve the software task switchers
performance it is clearly a better choice than the hardware task switcher.

Our implementation of POCLINK has shown that the LINK architecture can be ap-
plied in practice and that it can be done using very little code and with very little
complexity. POCLINK is of course only a proof of concept implementation but the es-
sentials of a LINK operating system are there. With POCLINK as a reference an actual
LINK OS can be build one system service at a time: Memory manager, device manager,
security manager, and so on. Implementing an OS in such a maner removes a lot of
complexity. Even though POCLINK is mainly implemented in assembler a lot of it could
be implemented in C, with an occasional couple of lines of inline assembler code. The
bootstrapping code is however needed to be implemented in assembler. Each component
can be unit tested and their small size makes it easy to create formal models of them for
making sure that concurrent execution does not cause errors.

POCLINK is only a proof of concept implementation and as such it does not try to
stay true to all the LINK principles only enough to prove the architectur's feasibility.
For instance, POCLINK does not use an explicit revocation policy, but a complete LINK
OS should.
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LINK has mechanisms for supporting �ne-grained protection of resources but these mech-
anisms are no good without security policies de�ning when to use those mechanisms.
That is, we need to de�ne what secure means in an operating system context. The prob-
lems with security policies is that they need to be tailored to the speci�c needs of each
system. For instance, an average computer user is often both administrator and user
on his own computer systems and does not care that much about high local security as
he is the sole user of the system. On the �ip side there are computers used at military
facilities where strict security policies has to be followed[Lan81]. Therefore, creating a
�xed and unchangeable security policy for an OS is out of the question. Instead OSes
support one ore more security models which allows administrators to de�ne policies using
those models.
The problem in case of LINK has now become creating a security model that is �exible

enough to enforce �ne-grained protection of resources and at the same time be simple
and elegant enough to be useful in practice. But why think so much about what model
to use? Why not just use the user-group model from the Unix world? And perhaps
extend it with access control lists (ACLs) on �les, which modern �le systems already
support. . . Because the protection model is too coarse-grained,
Even when the user-group model is extended with ACLs on �les, it still only has

users, groups, and �les, not to mention it works on a to high level of abstraction. Also,
there are a lot of problems with the user-group model which have been known for a
long time[MK97], and many new security models have been proposed since then. One
attempt to make an OS with tight security is the Security-Enhanced Linux (SELinux)
project[selb]. With SELinux the administrators can choose from various kinds of security
models and use the one they �nd appropriate, or create their own. SELinux thus adds
a �ner granularity to Linux security but has been criticized for being to complex to
use[sela, NSRL06]. However, SELinux is a step in the right direction. There is a security
model in SELinux which apparently is �exible enough to simulate other security models
on top of it. The di�erent models SELinux supports are often called policies, but that
is to diminish the true power of them. SELinux supports, amongst others, role-based
access control [SCFY96, TJ98] policies, but the role-based access control is in fact an
entire security model in itself.
When talking about security models there is often talk about either Discretionary

Access Control (DAC) models or Mandatory Access Control (MAC) models. Both terms
have been de�ned by the US Department of Defense as follows[oD85]:

Discretionary Access Control: A means of restricting access to objects based on
the identity of subjects and/or groups to which they belong. The controls are
discretionary in the sense that a subject with a certain access permission is capable
of passing that permission (perhaps indirectly) on to any other subject (unless
restrained by mandatory access control).

Mandatory Access Control: A means of restricting access to objects based on the
sensitivity (as represented by a label) of the information contained in the objects
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and the formal authorization (i.e., clearance) of subjects to access information of
such sensitivity.

It is quite common to combine both DAC and MAC in one security model. Security
models have in many decades been categorised as either MAC or DAC models, or a
combination of the two. However, role-based access control models are actually neither
MAC nor DAC models, but an independent component of access control coexisting with
MAC and DAC[SCFY96]. So security models is not just a question of using DAC, MAC
or both.
The LINK security model is build around hierarchically named capabilities (HNCs),

which were also used for the MIT exokernel Xok as proposed by Mazières[MK97]. This
model uses both capability lists (CLs) and access control lists (ACLs). Each principal
(e.g. users, or processes) has a CL containing its capabilities and each resource (e.g. �les
or a block of memory) has an ACL containing a list of capabilities which has access to
it and which speci�es what kind of access the capabilities have. Using HNCs gives us a
discretionary access control model but we actually have the ability to perform mandatory
access control as well. This will become apparent later when we do a formal analysis of
the security model in Sections 6.1 to 6.4.
A HNC has a name and a set of access permissions. If a HNC A's name is the pre�x

of another HNC B's name, then A is said to dominate B, meaning that A has all the
rights B has (through B). This is the key advantage of HNCs. The hierarchy enables
us to ensure the principle of least privilege. A principal should never have more privilege
than it needs and when a principal dominates another and uses the dominated principal's
capabilities, it is those privileges that are used, and not its own (which dominates the
others). That is, the least privileged capability is always used.
The HNC structure on Figure 8, which is the structure as proposed by Mazières, has

a name up to 7 bytes long and 1 byte is used for access/control settings.

Bits: 012346 57

Name

Bytes:

AC

. . .

M/DA W

PERM

V P LENGTH

0 1 7

Figure 8: Hierarchically named capability structure, as proposed by Mazieres.

The access/control bits do the following:

M/D: Modify/duplicate permission, depending on whether the HNC is in a ACL or a
CL. If in an ACL it means the current HNC gives modify capabilities to the ACL;
if the HNC is in a CL it means that owner of CL are permitted to duplicate this
HNC (meaning the capability can be copied along to others).

A: Allocate resource.
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W: Write permission.

V: Valid bit. Makes it easy to temporarily enable/disable a capability in a CL or ACL.

P: Pointer bit for extended ACLs[MK97].

LENGTH: The length of HNC's name.

Mazières explains the usage of HNCs in the exokernel as follows[MK97]:

The kernel maintains a list of capabilities owned by each process, and an
access control list (ACL) of capabilities allowed access to each object in the
system. When a process requests access to a particular resource, it must
explicitly specify which of its capabilities it intends to gain access with. The
kernel then traverses the resource's ACL. If it �nds an ACL entry that either
matches or is dominated by the designated capability, and if the appropriate
permission bits are set both in the process' capability and in the access control
list entry, then the request is granted. Otherwise, it is rejected.

Applications can create or forge new capabilities at will, but a new capability
must be dominated by an existing one. . .

One thing to notice, and keep in mind, about HNCs is that they function di�erently
whether they are in a CL or ACL. Another thing about Mazières' HNC structure is that
it has no permission bit for read rights. This means that when you have a capability for
something you automatically have read access to it. This is a problem if one wishes to
model other security models on top of HNCs; models such as the Unix user-group security
model. In Unix systems it is possible to have write-only access to �les, something which
Mazières capabilities cannot express. Specifying the length of the name is needed as the
value 0 in this context is the empty string. Thus if the name is more than 7 bytes long,
LENGTH can be set to 0 to indicate that, and the system can look up the next 8 bytes of
the name.

To remedy the lack of write-only access, LINK uses a modi�ed version of Mazières'
HNCs. The pointer bit has been dropped and is used to indicate read access instead, as
we could not �nd any good reason for having the pointer bit in the HNCs name. The
LINK HNC structure can be seen on Figure 9.

Name

Bytes:

AC

. . .

LENGTH

0 1 7

Bits: 012346 57

WRAM/D

PERM

V

Figure 9: Hierarchically named capability structure, as used in LINK.
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Having de�ned the HNC structure is not enough. Building a security model around
HNCs seems like a good choice for an OS applying �ne-grained protection to resources,
but is it really? To get a better understanding of HNCs we have created a formal model
to express the semantics of access control rules within a HNC system. This model also
provided insight into information �ow channels in a system using HNCs; insight that
allows us to create security policies concerning information �ow as well.

Finding a formalism for describing security models was not as trivial as �rst expected as
many di�erent models have been proposed during the last three decades[Lan81, McL94].
The main reason for even wanting to make such a formal model is that when working
with formalisms all minor details about the model will come to light. The model will
allow us to ask questions such as: �If we have a LINK system with these LibOSes on
them, and these and these processes running, can application A then ever get direct write
access to resource R?�. We need to be able to give concrete answers to such questions
as it time and time again has been shown that a small miscon�guration in for instance
access permissions to �les can cause unexpected security holes. Also, having a formalism
we might use that formalism to model other security models and for instance compare
their expressive power.

The �rst idea that came to mind was to use formal language theory[Sip06], due to
the obvious approach of using pattern matching on capability names to reason about
capability hierarchies (if one name is a pre�x of another then that name dominates the
other, thus capturing the hierarchy of the capabilities). However, it ended up being the
only part of that idea which trivially made sense under such an abstraction; everything
else simply became too cumbersome. After that we turned towards transition systems,
more speci�cally di�erent variations of the π-calculus[MR00, Lho04], in hopes of �nding
an elegant solution in an already existing formalism. But to actually express what we
wanted we had to create a type system for the calculus (many already exists but the type
system is what actually describes the security model in such a system so one for HNCs
would be needed). So it was not the calculus we wanted at all but a type system to reason
about. We therefore turned away from the calculus and looked directly at proof theory,
since type systems are just proof systems in a certain context. This however brought us
a bit away from the actual reality of the questions we wanted to ask. We want know
what can happen in a system given the use of a certain type system (our HNC based
security model). So this led us in the direction graph theory and we suddenly ended up
at some articles from the late seventies about the Take-Grant model and how it can be
formally analysed using graph theory[LS77, BS79]. The idea is to model the security
model in a graph, called a protection graph, with a set of di�erent types of vertices, and
a set of labels to be added to the oriented edges between vertices. The security model
would essentially be expressed as a set of graph rewriting rules (which in reality also is
a form of proof system).

6.1. Hierarchical Protection Graphs

Our idea of using protection graphs comes mainly from the article by Matt Bishop
and Lawrence Snyder about transfer of information and authority in the Take-Grant
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model[BS79]. We have, however, extended their de�nition of a protection graph with
capabilities, in order to capture the hierarchy between HNCs.

De�nition 6.1 (Hierachical Protection Graph (HPG)) A hierarchical protection
graph is a �nite directed loop-free graph with three types of vertices: Principals (◦),
resources (•), and capabilities (4).
Edges from one capability to another are labelled with the symbol τ . All other edges

are labelled with a set of symbols α, where α ⊆ {m, r,w, a}, α 6= ∅. 2

The labels correspond to the permission bits in the HNC structure. M/D we label using
m. Two shorthand notations will be used throughout our models.

De�nition 6.2 (Principal or resource) The symbol ⊗ represents either a principal
or a resource. 2

De�nition 6.3 (τ -path) A τ -path is a chain of one ore more capabilities. Graphically,

τ τ ττ⇒τ

t t1 t2 tn−1 tn

n ≥ 1

The left-most (or �rst) capability in the τ -path is called the initial capability of the τ -
path and the right-most (or last) capability in the τ -path is called the terminal capability
of the τ -path. 2

Our formalism has principals which are active entities (e.g. users or applications),
and resources which are passive (e.g. �les or a block of memory). Capabilities are the
middle-men between principals and resources. If a principal has a {r}-labelled edge
to a capability, and there are other {r}-labelled edges from that capability to a set of
resources, then that principal has read access to those resource. The {τ}-labelled edges
between capabilities shows the hierarchy amongst capabilities.
With our formalism we wish to reason about things like when a principal can aquire a

certain access permission to a certian resource. There are in general two ways a principal
can aquire some �right� to a resource:

De jure aquisition which means that the access right is transferred to the principal.

De facto aquisition which means that the principal gets the information without getting
direct authority to access it.

De jure acquisitions can be seen as questions about access control, and de facto aqui-
sitions can be seen as questions about information �ow. A security model generally
describes de jure rules, that is, how access rights can propagate through the system.
We will now de�ne a set of de jure rewriting rules which represents the functionality of
hierarchically named capabilities as used in LINK. In Section 6.3 we de�ne a set of de
facto rewriting rules which allow us to reason about information �ow as well.
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6.2. De Jure Rules

We take a couple of liberties in the following graphical representations of the rewriting
rules. Instead of labeling an edge {m,a} we simply write m,a over the edge and when
we write m,α where α is a subset of a set of labels, the label really should say {m} ∪ α.
We now de�ne the de jure rewriting rules.

CreateR/P: Let x be a distinct principal and y a distinct τ -path in a HPG G. Let there
be an edge from x to the initial capability of y labelled with {m, a}. CreateR/P
de�nes a new graph G′ by adding a new principal or resource z and an edge from
the terminal capability of y to z labelled {m}. Graphically,

x y zyx

⇒m, a m, a m
τ τ

Informally: Any principal which has a capability granting it allocate rights can
use that right to allocate either a new resource or principal. The newly created
resource/principal will be managed by the capability which was used to create it.

CreateCap: Let x be a principal and y a τ -path in a HPG G and let there be an edge
from x to the initial capability of y labelled α, where α ⊆ {m,a, r, w}, α 6= ∅.
CreateCap de�nes a new graph G′ by adding a new capability z and an edge from
the terminal capability of y to z labelled {τ}. Graphically,

x y yx z

τ τ
τ⇒α α

Informally: Any principal can create a new capability which is dominated by an-
other capability in their CL.

Duplicate: Let x and z be distinct principals, and y a distinct τ -path in a HPG G.
Let there be an edge from x to the initial capability of y labelled m ∪ α, where
α ⊆ {r, w, a}, α 6= ∅. Duplicate de�nes a new graph G′ by adding an edge from
z to the terminal capability of y labelled with β, where β ⊆ {m} ∪ α, β 6⊆ {m}.
Graphically,

x y x yz z

β
ττ

m, α ⇒ m,α

Informally: A principal which has duplicate rights to a capability can give that
capability or a subset of it to other principals.

Add: Let x be a principal, z a principal or resource, n a capability, and y a τ -path in a
HPG G. Let there be an edge from x to the initial capability of y and another from
the terminal capability y to z, both labelled {m}. Add de�nes a new graph G′ by
adding an edge from n to z labelled α, where α ⊆ {m, r,w, a}, α 6= ∅. Graphically,
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x y zyxz

nn

⇒
τ τ

α

m m m m

Informally: A principal which has �modify ACL� rights to another principal or
resource can add new capabilities to that principal's or resource's ACL.

RemoveOther: Let x be a principal, z a principal or resource, p a capability, and y a
τ -path in a HPG G. Let there be {m}-labelled edges from x to the initial capability
of y and from the terminal capability of y to z and let there be an edge labelled α
from either z to p, or p to z, where α ⊆ {m, r,w, a}, α 6= ∅. RemoveOther de�nes
a new graph G′ by removing the set of labels β from α where β ⊆ α, β 6= ∅. If
α = β the edge between z and p is removed. Graphically,

x y

z

x y

z

p p

α− βα ⇒

m m m m
τ τ

Note that the edge between z and p can be directed in either direction, and therefore
the edge is drawn without direction.

Informally: A principal that has modify ACL rights to another principal or resource
can remove any other capability from that principal's or resource's ACL.

RemoveSelf: Let x be a principal, z a principal or resource, p1, . . . , pn capabilities, and
y a τ -path in a HPG G. Let there be an edge from x to the initial capability of
y labelled {m}, an edge from the terminal capability of y to z labelled {m} ∪ α
where α ⊆ {r, w, a}, α 6= ∅, and edges from p1, . . . , pn to z labelled αp1 , . . . , αpn ,
respectively, where αp1 , . . . , αpn ⊆ {m, r,w, a}, αp1 , . . . , αpn 6= ∅. RemoveSelf de-
�nes a new graph G′ by removing the set of labels β ⊆ {m} ∪ α, β 6= ∅ from the
edge between the terminal capability of y and z, if one of the following three cases
hold:

1. m 6∈ β.

2. m ∈ β and m ∈ αp1 ∨ . . . ∨m ∈ αpn .

3. m ∈ β and the edge from the terminal capability of y to z is the only {m}-
labelled incomming edge to z.

If z no longer has any incomming or outgoing edges the vertice is removed.
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x y

z

⇒

m,αm

αp1
αpn

p1 pn

x y

z
m

αpn
αp1

pnp1

(m, α)− β
τ τ

Informally: If a principal has the right to modify another principal's or resource's
ACL then it can remove its own capabilities from the ACL. It can however only
remove its right to modify the ACL if its capability is the only one in the ACL or if
there is another capability in the ACL which has modify rights as well. If this side
condition is left out then it would be possible to create a resource or principal that
no one controls (and never again can control) which obviously would be a problem.

By studying the above rewrite rules one will notice that the symbol a (allocate) only
has a function in labels on edges going to capabilities. If a principal has an edge labelled
a going to a capability it means it can use that capability to allocate new resource and/or
principals. Allocating a resource or principal in practice may mean many di�erent things
depending on the speci�c resource or principal. From an access control point of view
we do not wish to concern ourselves with such implementation details and simply state
that if a principal has allocate access with a certain capability then it can create new
resources or principals which will be managed by it.
Also notice that given the above rules it holds that in any HPG the τ -paths form a

tree. We call this tree the system's capability tree. That this holds is obviously true as
capabilities can only be created using another capability and in doing so an {τ}-labelled
edge is added from the old capability to the new one. This is the only way a capability
can be created, and thus results in capabilities being structured as a tree with the edges
oriented from the root node towards the leafs of the tree.
Having the de jure rules we can now de�ne a predicate for when two principals can

share a resource. We de�ne the predicate can-share(α, p, q, G0) where α ∈ {m,a, r, w},
p is a principal, q is a resource or principal, and G0 is a protection graph containing p
and q.

De�nition 6.4 can-share(α, p, q, G0) ⇔ There exists a sequence of HPGs G1, . . . , Gn,
n ≤ 0 such that Gi+1 follows from Gi, 0 ≤ i < n (henceforth written G0 `∗ Gn) by one
of the de jure rules, and in Gn there exists a τ -path t such that there is an α-labelled
edge from p to the initial capability of t and another from the terminal capability of t
to q. Graphically,

τ
α α

tp q
2

We now state when the predicate is true.

Theorem 6.1 Let p be a distinct principal and q a distinct resource or principal in a
HPG G and let α ∈ {m,a, r, w}. The predicate can-share(α, p, q, G) is true if and only
if one of the following hold:
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1. There exists a τ -path t ∈ G, where there is an α-labelled edge from p to the initial
capability of t and another from the terminal capability of t to q.

2. There exists a principal s and a τ -path t ∈ G, where there is a {m,α}-labelled
edge from s to the initial capability of t and an α-labelled edge from the terminal
capability of t to q.

3. There exists a principal s, and τ -paths t, c ∈ G, where there exists {m}-labelled
edges from s to the initial capability of c and from the terminal capability of c to
q, and there is a α-labelled edge from p to the initial capability of c.

4. There exists principals s, v, and τ -paths t, c ∈ G, where there is exists {m}-labelled
edges from v to the initial capability of t and from the terminal capability of t to q,
and there is a {m, α}-labelled edge from s to c. 2

Proof We prove the two directions of the bi-implication in turn.
If one of the four statements in Theorem 6.1 is true then can-share(α, p, q, G) is true:
For the graph con�gurations de�ned in each of the four statements we show that using

only de jure rewriting rules we can come to a new graph for which the can-share predicate
holds.

1. There exists a τ -path t ∈ G, where there is an α-labelled edge from p to the initial
capability of t and another from the terminal capability of t to q.

This case makes the predicate trivially true as the principal p already has �α-rights�
to q and no rewriting rules needs to be used. Formally,

can-share(α, p, q, G) is true.

2. There exists a principal s and a τ -path t ∈ G, where there is a {m,α}-labelled
edge from s to the initial capability of t and an α-labelled edge from the terminal
capability of t to q.

The principal s has α-right to q and also has manage rights to the capability
granting it α-right. Thus it can give p (or any other vertex) this same capability.
Formally,

G `Duplicate G′, where can-share(α, p, q, G′) is true.

3. There exists a principal s, and τ -paths t, c ∈ G, where there exists {m}-labelled
edges from s to the initial capability of c and from the terminal capability of c to
q, and there is a α-labelled edge from p to the initial capability of c.

The principal s can give p an m-labelled edge to q and then p using this new edge
can create an α-labelled edge from c to q, thus getting α-right to q. Formally,

G `Duplicate`Add G′, where can-share(α, p, q, G′) is true.

43



6. Security Model

4. There exists principals s, v, and τ -paths t, c ∈ G, where there is exists {m}-labelled
edges from v to the initial capability of t and from the terminal capability of t to q,
and there is a {m,α}-labelled edge from s to c.

The principal v can create an α-labelled edge from p to c and principal s can create
an α-labelled edge from a capability in t to q. Formally,

G `Duplicate`Add G′, where can-share(α, p, q, G′) is true.

Now we show the other direction:

If can-share(α, p, q, G) is true then one of the four statements from Theorem 6.1
holds.

We must in other words prove that the four graph con�gurations in Theorem 6.1 are
the only graph con�gurations that can can result in the can-share predicate becoming
true. We prove this by back-tracking from the con�gurations where the predicate is true,
and showing that for any possible series of traces we end at �xed point which is exactly
one of the four con�gurations from the theorem.

As de�ned by De�nition 6.4 the predicate is true if we by using only HNC de jure rules
can come to a graph with the following con�guration in it:

τ
α α

tp q

There are �ve general cases from which we the above con�guration might be be possible
to create using de jure rules if it did not exist in the graph already. We test each of these
�ve cases in turn.

1. If there is an α-labelled edge from p to some capability c, and another α-labelled
edge from some capability d to q, but there is no τ -path from c to d. Is it possible
to create a τ -path that connects c and d? The answer is no. The only rule which
can create a {τ}-labelled edge is CreateCap but it can only do so by creating a new
capability which this edge points to. Thus two distinct capabilities which are not
in the same τ -path can never be in such a path.

2. If there is no outgoing α-labelled edge from p then the only rule which can create
outgoing edge α-labelled edge from a principal is Duplicate. From Duplicate we
get that in order to use the rule there must be some principal, say s which has an
{m, α}-labelled edge to the initial capability of some τ -path, say c. This means
that there must be some previous graph con�guration which using de jure rules
has led to this con�guration. So if there were no {m,α}-labelled edge from s to
the initial capability of t which rule could then have been applied to create it?
The answer is again Duplicate, since no other rule can create outgoing edges from
principals. Thus we have the situation where we can only create a {m, α}-labelled
edge from some principal s to the initial capability of some τ -path c if there exits
some other principal v, which has an {m,α}-labelled edge to the initial capability
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of some τ -path d. In other words we have a �xed point, since we have proved that
we can only create an {m,α}-labelled outgoing edge from a principal if such an
edge already exists somewhere in the graph. Furthermore, from the �rst case we
know that the τ -path c must in fact be the τ -path t as there is no way to connect
capabilities which are not already connected. Thus the �xed point con�guration
looks as follows:

τ
α

m, α

t qp

s

3. If q has no incoming α-labelled edge then the only rule which can create an in-
coming α-labelled edge to q is Add. For this rule to be usable there must be some
principal, say s, that has an outgoing {m}-labelled edge to the initial capability
of some τ -path c, and there must be another {m}-labelled edge from the terminal
capability of c to q. So back-tracking from this con�guration we get that the only
way a capability can get an {m}-labelled edge to q if it does not already have one
is if there exists another capability which has an {m}-labelled edge to q and a
principal which has an {m}-labelled edge to that capability or another capability
which dominates it. In other words, a {m}-labelled edge to q cannot be created
unless there already exists one. We have thus found the �xed point. Graphically,
the �xed point con�guration looks as follows:

τ
α

p t q

τ
m m

c s

4. If both the α-labelled edges are missing, then what previous con�guration could
cause these to be created? We know when we can create the α-labelled edge from
p to the initial capability of t, and when we can create the α-labelled edge from
the terminal capability of t to q, so we now combine those two. The �xed point
con�guration looks as follows:

τ

m, α

t qp

s

τ
m m

c v

As can be seen on the graph the τ -path (which can be a single capability) does not
need to be connected to p or q.

5. If only the two vertices p and q are present the con�guration needed to create
an α-labelled edge from p to the initial capability of some τ -path t, and another
α-labelled edge from the terminal capability of t to q is the same con�guration as
in the previous case.
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The �rst con�guration (case 1) in Theorem 6.1 is the case where the path discribed in
De�nition 6.4 (can-share) exists already, and the remaining three con�gurations described
in cases 2�4 in Theorem 6.1 are exactly the three distinct �xed point con�gurations shown
above.

We have now proved both directions of the bi-implication in Theorem 6.1. �

Having proved Theorem 6.1 we have also shown the decidability of the can-share pred-
icate. The decidability is not guarantied for a model as ours as we given some graph can
create in�nitely many new graphs using our de jure rules. The system becomes in�nite
because of the rules CreateCap and CreateR/P which are essential to our model. Having
proved the decidability we can go on to writing a can-share algorithm. This we will
however not persue in this thesis, the reader should however notice that Theorem 6.1
give us the essentials of such an algorithm and an unoptimized algorithm would be very
trivial to implement using the theorem as a guide.

6.3. De Facto Rules

De jure rules allows us the reason about the potential accesses to principals and resources
in a system using HNCs. Our model however also allows us to reason about information
�ow. We de�ne information �ow as a set of rewriting rules we call the de facto rewriting
rules. These rules capture some information �ow but not all. They do not capture
information �ow via covert channels[Lan81], which we will not get further into in this
thesis. To ease the reasoning about information �ow we extend the HPG model:

De�nition 6.5 (Extended Hierachical Protection Graph (EHPG)) An EHPG is
de�ned as a HPG extended with a new type of directed edges called implicit edges be-
tween principals and/or resources. Implicit egdes are graphically represented as dotted
lines, and are always labelled {r}. 2

The implicit edges show where information �ow may happen, but this information is
already available in HPGs. The extension to EHPGs just gives us a more elegant way to
represent it. Using EHPGs, we now present the de facto rewriting rules:

Read: Let p, q, t be vertices in a EHPG G, where p is a principal, q is a principal or
resource, and t is a τ -path. Let there be {r}-labelled edges from p to the initial
capability of t, and from the terminal capability of t to q. Read de�nes a new
graph G′ by adding an implicit edge from p to q. Graphically,

τ

τ

qp

p q

⇓

r r

r r

r

t

t
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Informally: If a principal has read rights to a resource (or other principal) it might
invoke that right.

Receive: Let p, q, t be vertices in a EHPG G, where q is a principal, p is a principal or
resource, and t is a τ -path. Let there be {w}-labelled edges from q to the initial
capability of t, and from the terminal capability of t to p. Receive de�nes a new
graph G′ by adding an implicit edge from p to q. Graphically,

w w

ww

τ

τ

qp

p q

⇓

r

t

t

Informally: If a principal has the right to write to another principal or resource
then that principal or resource receives information.

Spy: Let p, x, q be principals or resources in a EHPG G and let there be implicit edges
from p to x, and from x to q. Spy de�nes a new graph G′ by adding an implicit
edge from p to q.

qp

p q

⇓

r r

r r

r

x

x

Informally: If a principal (or resource) can read from another principal (or re-
source), which again can read from a third principal (or resource), then the �rst
principal can �spy� on the second, thus indirectly receiving information from the
third.

We now de�ne a predicate df-can-know(p, q, G0) where p is a principal, q is a resource
(or principal) and G0 is a HPG containing p and q.

De�nition 6.6 df-can-know(p,q,G0) ⇔ G0 is a HPG and there exists a sequence of
EHPGs G0 `∗ Gn, n ≥ 0 using only de facto rules and in Gn there exists an implicit edge
from p to q. 2

To help us state when the predicate df-can-know(p, q, G0) is true we need a few
de�nitions.
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De�nition 6.7 (rw-τ -path) A rw-τ -path in a HPG G is a sequence of vertices v0, v1,
. . . , vk−1, vk, where k ≥ 2, v1, . . . , vk−1 is a τ -path from v1 to vk−1, v0 is a principal, vk

is a principal or resource, and there is an edge from v0 to v1, and from vk−1 to vk, both
edges being labelled either {r}, {w}, or {r, w}.

v0 is called the initial vertex, and vk the terminal vertex, of the rw-τ -path. 2

De�nition 6.8 (rw-τ -chain) A rw-τ -chain in a HPG G is a sequence of rw-τ -paths
t0, . . . , tk, k ≥ 1, such that the initial or terminal vertex of ti is either initial or terminal
vertex of ti+1, 0 < i < k. Such vertices are called shared vertices.

The initial vertex of t0 is called the initial vertex of the rw-τ -chain, and the terminal
vertex of tk is called the terminal vertex of the rw-τ -chain. 2

De�nition 6.9 (Admissible rw-τ -chain) Let there be a sequence of rw-τ -paths t0,
. . . , tk, k ≥ 1, that form a rw-τ -chain c in a HPG G. c is an admissible rw-τ -chain if
and only if the following hold simultaniously for all i, where 0 ≤ i < k:

1. If the shared vertex bewteen ti and ti+1 has an incomming edge from the τ -path
in ti then that edge is labelled α, where r ∈ α.

2. If the shared vertex between ti and ti+1 has an incomming edge from the τ -path
in ti+1 then that edge is labelled β, where w ∈ β.

3. If the shared vertex between ti and ti+1 has an outgoing edge then it is a principal.2

Now we state when the df-can-know predicate is true.

Theorem 6.2 Let p and q be vertices in a HPG G. Then df-can-know(p, q, G) is true
if and only if one of the following hold:

1. There exists a τ -path t ∈ G with an {r}-labelled explicit edge from p to the initial
capability of t and another explicit {r}-labelled edge from the terminal capability of
t to q.

2. There exists a τ -path t ∈ G with an {w}-labelled explicit edge from q to the initial
capability of t and another explicit {w}-labelled edge from the terminal capability of
t to p, and q is a principal.

3. There is an admissible rw-τ -chain from p to q. 2

Proof We prove each direction of the bi-implication in turn.

If one of the cases in Theorem 6.2 are hold the df-can-know(p, q, G) is true.

For the graph con�gurations in each case in Theorem 6.2 we now show using only de
facto rewriting rules that we can create new graphs for which the df-can-know predicate
holds.
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1. There exists a τ -path t ∈ G with an {r}-labelled explicit edge from p to the initial
capability of t and another explicit {r}-labelled edge from the terminal capability of
t to q.

Applying the rule Read once gives us a new graph G′ that satis�es the predicate
trivially. Formally,

G `Read G′, where df-can-know(p, q, G′) is true.

2. There exists a τ -path t ∈ G with an {w}-labelled explicit edge from q to the initial
capability of t and another explicit {w}-labelled edge from the terminal capability of
t to p, and q is a principal.

Applying the rule Receive once gives us a new graph G′ that satis�es the predicate
trivially. Formally,

G `Receive G′, where df-can-know(p, q, G′) is true.

3. There is an admissible rw-τ -chain from p to q.

From the de�nition of a admissible rw-τ -chain we know that for each rw-τ -path in
the chain one of the following two statements hold:

a) The initial vertex has read-access to the terminal vertex of the rw-τ -path.

b) The initial vertex has write-access to the terminal vertex of the rw-τ -path.

In case (a) we apply the de facto rule Read, to create an implicit {r}-labelled edge
from the initial to the terminal vertex.

In case (b) we apply the rule Receive to create an implicit edge from terminal vertex
to the initial vertex.

We do this for every rw-τ -path in the rw-τ -chain. Due to the ordering of direction
amongst the rw-τ -paths in a rw-τ -chain this gives us a chain of implicit edges
going from vertex to vertex, starting from the initial vertex towards the terminal
vertex, and now we simply use the Spy rule until we obtain a graph G′ that trivially
satis�es the df-can-know predicate. Formally,

G `Read
m
2 `Receive

n
2 `Spyk

G′,

where m = number of αi-labelled edges in the rw-τ -chain and r ∈ αi, n = number
of βi-labelled edges in the rw-τ -chain and w ∈ βi ∧ r 6∈ βi, k = m

2 + n
2 − 1, df-can-

know(p, q, G′) is true.

We now prove the other direction of the bi-implication: If df-can-know(p, q, G) is true
then one of the four statements from Theorem 6.2 holds.
We prove the four cases in Theorem 6.2 by back-tracking from the graph con�guration

de�ned in De�nition 6.6, where the df-can-know predicate is trivially true, and show that
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the �x-point con�gurations exists and that they are exactly the con�guration showed in
the cases of the theorem. df-can-know(p, q, G) is trivially true if there is an implicit
edge from p to q. So if that implicit edge does not exist the only way that it can be
created is if one of the following three cases hold:

1. If there exists a τ -path t and {r}-labelled edges from p to the initial capability of
t, and from the terminal capability of t to q. In other words, the con�guration
where the rule Read can be applied.

2. If there exists a τ -path t and {w}-labelled edges from q to the initial capability
of t, and from the terminal capability of t to p. In other words, the con�guration
where the rule Receive can be applied.

3. If there exists an admissible rw-τ -chain between p and q. Each rw-τ -path in the
chain satisfy one of the above two cases and we have already shown that if there is
an admissible rw-τ -chain between p and q then we can use de facto rules to add an
implicit edge from p to q. That the ordering de�ned in De�nition 6.9 (admissible
rw-τ -chain) is the only ordering allowing the eventual creation of an implicit edge
from p to q is obvious by simply examining the de facto rewriting rules.

We have now proven both direction of the bi-implication. �

The above proof is of course very trivial as none of the de facto rules can create new
vertices. df-can-know has its limitations as it only can tell us about the currently possible
information �ows in a graph given that we do not change the explicit egdes. Therefore
we will now move on to combining the sets of de jure and de facto rewriting rules.
The df-can-know is however not wasted as it simpli�es the proof given in the following
section.

6.4. Combined Transfers

We call the combination of the de jure and de facto rules for combined transfers. The
reason for creating combined transfers becomes clear by looking at the example in Fig-
ure 10.

On the �gure three graphs can be seen, G, G′, and G′′. In G there is no sequence of
de jure rules which can create a {r}-labelled edge from p to q and there is no sequence
of de facto rules that can do it either (i.e. create an implicit edge from p to q). So
our predicates can-share and df-can-know are both false for the graph G, meaning that
p cannot get information from q. However, we can apply a sequence of de jure rules
and get the graph G′, and then applying a sequence of de facto rules we get G′′, where
there is an implicit edge from p to q. So we need a new predicate for reasoning about
combined transfers. In practice when we want to reason about information �ow it is
combined transfers we are interested in, i.e. any sequence of actions which can cause the
information �ow to happen.

50



6.4. Combined Transfers

r w

m, a τ τ

p x

ys

z

w

m, a τ τ

w
p

s

r

y

z

⇓

r w

m, a τ τ

w
p x

s

r

y

z

⇓

x

G

G′

G′′

q

q

q
m, r

m, r

r

rr

r

Figure 10: Example of a combined transfer.
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De�nition 6.10 can-know(p,q,G0)⇔ G0 is a HPG and there exists a sequence of HPGs
and EHPGs such that G0 `∗ Gn using combined transfers and in Gn there exists an
implicit edge from p to q. 2

Theorem 6.3 Let p and q be vertices in a HPG G. Then can-know(p, q, G) is true if
and only if one of the following hold:

1. can-share(r, p, q, G) is true.

2. can-share(w, q, p, G) is true.

3. df-can-know(p, q, G) is true.

4. There exists a principal or resource s such that can-know(p, s, G) and can-know(s,
q, G) are true. 2

Proof Note that de jure rules are not de�ned on EHPGs. This means that any sequence
of combined transfers must be ordered as �rst a sequence of de jure rewriting rules and
then a sequence of de facto rewriting rules.

We now prove the �rst direction of the bi-implicitation: If one of the cases in Theo-
rem 6.3 hold then can-know(p, q, G) is true.

For the graph con�gurations in each case in Theorem 6.2 we show that using de jure
and de facto rewriting rule we can create new graphs for which the df-can-know predicate
holds.

1. can-share(r, p, q, G) is true.

We know from the de�nition of can-share (De�nition 6.4) that the above means
that there exists a sequence of de jure rewriting rules resulting in a graph with a
τ -path t such that there are {r}-labelled edges from p to the initial capability of
t and from the terminal capability of t to q. We can apply the de facto rule Read
to create an implicit edge from p to q, and thus trivially satisfy the predicate:

G `Read G′, where can-know(p, q, G′) is true.

2. can-share(w, q, p, G) is true.

We know from the de�nition of can-share (De�nition 6.4) that the above means
that there exists a sequence of de jure rewriting rules resulting in a graph with a
τ -path t such that there are {w}-labelled edges from q to the initial capability of t
and from the terminal capability of t to p. We can apply the de facto rule Receive
to create an implicit edge from p to q, and thus trivially satisfy the predicate:

G `Receive G′, where can-know(p, q, G′) is true.
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3. df-can-know(p, q, G) is true.

We know from the de�nition of df-can-know that the above means that there we
can use a sequence of de facto rules to create an implicit edge from p to q, and
thus trivially satisfy the can-know predicate.

4. There exists a principal or resource s such that can-know(p, s, G) and can-know(s,
q, G) are true.

We know that it is possible, by using combined transfers, to get a EHPG G′ where
there is an implicit edge from p to s, and another implicit edge from s to q. This
means that we can apply the de facto rule Spy and get a new graph G′′ that trivially
satisfy the can-know predicate.

We now prove the other direction of the bi-implication: If can-know(p, q, G) is true
then one of the �ve statements from Theorem 6.3 hold.

As with the other two theorems we use back-tracking to prove that the cases in Theo-
rem 6.3 are the only possible graph con�gurations which via combined transfers can lead
to a graph that trivially satis�es the can-know predicate.

We know that the use of de jure rules on a graph G may lead to a new graph G′

where de facto rules can be used that could not be used in G. That is, access control
a�ects information �ow. We also know that the use of de facto rules only can lead to the
further use of de facto rules, as de jure rules does not work with implicit edges. That
is, information �ow does not a�ect access control. From Theorem 6.2 (df-can-know) we
know the con�gurations that allow us to use de facto rules to create an implicit edge from
p to q. Only de facto rules can create an implicit edge so the con�gurations identi�ed in
Theorem 6.2 are the con�gurations we must be able to create using de jure rules if the
can-know predicate is to hold true.

The three cases are:

1. There exists a τ -path t ∈ G with an {r}-labelled explicit edge from p to the initial
capability of t and another explicit {r}-labelled edge from the terminal capability of
t to q.

This is exactly when can-share(r, p, q, G) is true.

2. There exists a τ -path t ∈ G with an {w}-labelled explicit edge from q to the initial
capability of t and another explicit {w}-labelled edge from the terminal capability of
t to p, and q is a principal.

This is exactly when can-share(w, q, p, G) is true.

3. There is an admissible rw-τ -chain from p to q.

We prove this case by induction on the number of τ -paths in the rw-τ -chain. We
know from De�nition 6.9 (admissible rw-τ -chain) that a rw-τ -path with initial
vertice x and terminal vertice y, found in an admissible rw-τ -chain, satisfy either
can-share(r, x, y, G) or can-share(w, x, y, G).
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Base Case: For an admissible rw-τ -chain consisting of two τ -paths (the smallest
possible rw-τ -chain) we trivially satisfy statement four of theorem: Each τ -path
satisfy either statement one or two of the theorem, and the vertex s is the single
shared vertex in the rw-τ -chain.

Inductive Step: Assuming that any admissible rw-τ -chain containing n τ -paths
satisfy statement four of the theorem. We show that this also holds for admissible
rw-τ -chains containing n + 1 τ -paths.

The admissible rw-τ -chain starting from the �rst shared vertex satisfy our inductive
hypthesis. The rw-τ -path from the �rst vertex of the original admissible rw-τ -chain
to the �rst shared vertex satis�es either statement one or two of the theorem.

Thus for any admissible rw-τ -chain the theorem is satis�ed.

The above three cases are exactly the cases identi�ed in Theorem 6.3.
We have now proven both direction of the bi-implication. �

Our proof of Theorem 6.3 is also proof of the decibility of information �ow questions
asked about a system using HNCs. So a HNC system actually has the abilitiy to support
information �ow control as well as access control, without having to extend the model.
We thus get Corollary 6.4.

Corollary 6.4 The LINK security model is both a DAC and a MAC model. 2

In practice one might allow certain users to create information �ow policies, and maybe
allow the grouping of resources into di�erent security levels, or something even more
exotic. All of this can simply be implemented in libOSes, i.e. applications, as it is
nothing more than further abstractions put on top of HNCs.

6.5. Modelling User-Group Using HNCs

The purpose of using hierarchically named capabilities is that it should be possible to
implement other security models on top of it. To show this we will now model the Unix
user-group model using HNCs. Also, even though this should be obvious, show that the
HNC model has more expressive power than the user-group model.
We start out by modeling the user-group model on top of HNCs: In Unix everything

is a �le and every �le has a three-entry ACL. The �rst entry is the owner, the second is
for the group the �le belongs to, and the third is for other which means everybody else
on the system. Each ACL entry specify three rights: read, write, and execute.
Users and groups on Unix systems both have 16 bit distinct names, a name used for a

user can however also be used for a group. It is in fact common on many Linux systems
(which use the same user-group model) that there for every user is a group with the same
name that that user is the sole member of. So �rst o�, there are two distinct concepts
that HNCs must be able to simulate: The access control rights and the names (of users
and groups).
The access rights we have already touched upon in Section 6 when we discussed why

Mazières's HNC structure could not capture write-only rights. The read and write rights
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in the user-group model is obviously mapped directly to the read and write rights of our
HNC structure. The execute right of the user-group model is mapped to the allocate
right in HNCs since it basically is the same thing. The ability to execute a �le in a Unix
system, means to allocate a process, read the �le into that process's address space and
start executing the instruction stream. This is also why that in order to execute a �le
in Unix it is not enough to have execute access to it, one must also have read access, in
order to read the �les data. In a Unix system any process can spawn more processes,
so it is not necessary to have execute access to a �le in order to run it. Read access
is enough. A user can spawn a new process, read the �le into that process's address
space manually and then manually jump to the newly loaded instructions. So the key to
executing anything is the ability to allocate the needed resources to do so. Also, we are
interested in access control �ow, and thus do not concern ourselves with the hierarchy
amongst �les - i.e. �les and directories. Directories which in turn just are special �les in
the Unix world anyway. Thus we simply model the execute right in HNCs as the allocate
right.

Regarding the names in the user-group model, Mazières showed, through a small ex-
ample, how one could model names using HNCs. One problem with HNCs is that they
use 8 bit hierarchically ordered names, and the user-group model uses 16 bit for its
names. This problem is simply solved as showed by Mazières[MK97], by using two levels
of the hierarchy to represent one name. This is an implementation speci�c detail and
is therefore ignored throughout the rest of this section. We ignore it as Mazières has
already showed it not to be a problem. To solve the problem that users and groups can
have the same names, we simply split the capability tree into two branches, right after
the root node. One branch for groups, and one for users.

We now de�ne the Unix concepts of root, user, group,other, and �les using HNCs.

De�nition 6.11 (root) Root is a principal with an {m,a, r, w} labelled edge to the
initial capability of the systems capability tree. Graphically,

ττ

m, a, r, w

root

groups users

τ τ τ τ

r

The graph also shows how the capability tree is split into two branches right after root's
all-dominating capability r, one branch for groups starting from the capability called
groups and one for users starting from the capability called users. 2
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De�nition 6.12 (user) A user u is a principal which has an edge labelled {m,a, r, w}
to exactly one capability x directly dominated3by users, has an edge labelled {a, r, w}
to the capability other which is directly dominated by groups and has an edge to
capabilities y1, . . . , yn, n ≥ 1 labelled {a, r, w} which are also directly dominated by
groups, and has an incomming edge from the capability the root capability r labelled
{m,a, r, w}. Graphically,

usersgroups

xother

u

ττττ

yny1

m, a, r, w
a, r, w a, r, w

ττ

r

a, r, w

m, a, r, w

2

De�nition 6.13 (group) A group is a capability g which is directly dominated by
groups and where all incomming edges are labelled {a, r, w} and all outgoing edges are
labelled with nonempty subsets of {a, r, w}. 2

De�nition 6.14 (other) Other is a capability other which is directly dominated by
groups and has incomming edges labelled {a, r, w} from all principals, and outgoing
edges to all resources labelled with nonempty subsets of {a, r, w}. 2

De�nition 6.15 (�le) A �le is a resource f with an incoming edge labelled {m,a, r, w}
from a capability x directly dominated by users, an incomming edge labelled αother from
the capability other directly dominated by groups, an incomming edge from a capability
y with label α, where αother, α are nonempty subsets of {a, r, w}, and an incomming edge
from the root capability r labelled {m,a, r, w}. Graphically,

usersgroups

xother

τττ

m, a, r, w

f

y

ααother

r

τ τ

3Directly dominated means that the there is only one {τ}-labelled edge in the τ -path from users to

the principal.
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The reason why the edge from x to f is labelled {m,a, r, w} is that the owner of a �le
can change its own access rights to it. So since a user in reality has the possibility to
gain full access to any �le it owns we simply de�ne it to always have full access. This is
a restriction we make in order to make our graphical representations simpler. In practice
this restriction can be trivially removed. 2

Having showed how to capture the main concepts of the user-group model using HNCs
we now proceed to de�ne de jure rules for the user-group model and show that these can
be simulated using HNCs de jure rules.

CreateU/G: Let x,r, and users/groups be distinct vertices in a HPG G where r is the
root of the capability tree and users/groups is either users or groups as de�ned
in De�nition 6.11. Let there be an edge from x to r labelled {m,a, r, w} and an edge
from r to users/groups labelled τ . CreateU/G de�nes a new graph G′ by adding
a new vertice y and an edge from users/groups to y labelled τ . Graphically,

r

ττ

users/groupsusers/groups yr

m, a, r, w ⇒ m, a, r, w τ

rootroot

Informally: Root can create new users and groups at will. Root is also the only
user that can do this.

Mapping to HNC: To come from graph G to G′ by using HNC rewriting rules we
only use the rewriting rule CreateCap once:

G `CreateCap G′

AddGroup: Let root, r, groups, u, y be distinct vertices in a HPG G, where r, groups,
y are capabilities and root, u are principals, and let there be edges from root to
r and r to u labelled {m,a, r, w}, and let there be {τ} labelled edges from r to
groups, and from groups to y. AddGroup de�nes a new graph G′ by adding an
edge from u to y labelled {a, r, w}. Graphically,

u

y

r

τ

τ

m, a, r, w

groups

m, a, r, w
root u

y

r

τ

τ

m, a, r, w

groups

m, a, r, w
root

a, r, w⇒

Informally: Root can make any user member of any group at will.

Mapping to HNC: To come from graph G to G′ by using HNC rewriting rules we
use the rewriting rule Duplicate once:

G `Duplicate G′
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RemoveGroup: Let root, r, groups, u, y be distinct vertices in a HPG G, where r,
groups, y are capabilities and root, u are principals, and let there be edges from
root to r and r to u labelled {m,a, r, w}, from u to y labelled {a, r, w} and let
there be {τ} labelled edges from r to groups, and from groups to y. Remove-
Group de�nes a new graph G′ by removing the {a, r, w} labelled edge from u to y.
Graphically,

u

y

r

τ

τ

m, a, r, w

groups

m, a, r, w
root u

y

r

τ

τ

m, a, r, w

groups

m, a, r, w
root

⇒a, r, w

Informally: Root can remove group membership from any user at will.

Mapping to HNC: To come from graph G to G′ by using HNC rewriting rules we
use the rewriting rule RemoveOther once:

G `RemoveOther G′

Login: Let r, groups, users, other, x, y1, . . . , yn be capabilities, where n ≥ 0, and
let root be a principal in a HPG G. Let there be an edge from root to r labelled
{m, a, r, w} and let there be {τ}-labelled egdes from r to groups, r to users, users
to x, groups to other, and from groups to y1,. . . ,yn. Login de�nes a new graph
G′ by adding a principal u, and adding edges from u to other, y1, . . . , yn labelled
{a, r, w}, from u to users labelled {m,a, r, w} and from r to u labelled {m, a, r, w}.
Graphically,

usersgroups

xother

ττττ

yny1

ττ

m, a, r, w

root

r

usersgroups

xother

u

ττττ

yny1

m, a, r, w
a, r, w a, r, w

ττ

a, r, w

m, a, r, w

m, a, r, w

root

r

⇒

Informally: Root can take a user capability and a set of groups and create a process
which have these capabilities. This is what happens when a user logs in to a Unix
OS.
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Mapping to HNC: To come from graph G to G′ by using HNC rewriting rule we �rst
apply the rule CreateR/P to a new principal p along with an {m}-labelled edge
from r to p. Then we use Add to add an edge from root to p and following that we
use the rule Duplicate n times to add outgoing edges from p to other,x,y1,. . . ,yn:

G `CreateR/P `Add `Duplicaten

G′

Where `Duplicaten

means the rule Duplicate applied n times.

Fork: Let r, groups, users, other, x, y1, . . . , yn be capabilities, and let u be a principal
in a HPG G. Let there be {τ}-labelled egdes from r to groups, r to users, users
to x, groups to other, and from groups to y1,. . . ,yn, and let there be {a, r, w}-
labelled edges from u to other,y1,. . . ,yn, and {m,a, r, w}-labelled edges from r to
u and from u to x. Fork de�nes a new graph G′ by adding a new principal p with
the exact same set of of incomming and outgoing edges as u. Graphically,

ττ

r

ττ

r

m, a, r, w m, a, r, w

usersgroups

x

ττττ

yny1

m, a, r, w
a, r, w a, r, w

u

usersgroups

xother

u

ττττ

yny1

m, a, r, w
a, r, w a, r, w

a, r, w m, a, r, w

a, r, w

p

a, r, w a, r, w

⇒
other

m, a, r, w

a, r, wa, r, w

Informally: Any process can create a copy of itself. The copy having the same
capabilities as the original process.

Mapping to HNC: To come from graph G to G′ by using HNC rewriting rule we
�rst use the rule CreateR/P to add new principal p with an {m}-labelled edge
from x to p. Then using Add we add an incomming edge to p from root and using
Duplicate n times we add edges from p to other, x, y1, . . . , yn. Finally, we use
RemoveSelf to remove the {m}-labelled edge from x to p:

G `CreateR/P `Add `Add `Duplicaten `RemoveSelf G′

Kill: Let x be a principal in HPG G. Kill de�nes a new graph G′ by removing x along
with all its incomming and outgoing edges. Graphically,

⇒
x
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Informally: Any process can terminate itself at will. A process can also kill other
processes if they all have the same user capability, and root can kill any process it
wishes. However, these last two scenarious will not generate any graphs that are
not already generated by the �rst scenario were any process can terminate itself at
will.

Mapping to HNC: To come from graph G to G′ by using HNC rewriting rules we
�rst use the rule RemoveOther n times. Where n is the number of incomming edges
to x minus one. That is, we �rst remove all other capabilities from the principal
x's ACL. Then we use the rule RemoveSelf to remove the last incomming edge to
x:

G `RemoveOthern `RemoveSelf G′

CreateFile: Let r, groups, users, other, x, y1, . . . , yn be capabilities, and let u be a
principal in a HPG G. Let there be {τ}-labelled egdes from r to groups, r to users,
users to x, groups to other, and from groups to y1,. . . ,yn, where n > 0, and
let there be {a, r, w}-labelled edges from u to other,y1,. . . ,yn, and {m,a, r, w}-
labelled edges from r to u and from u to x. CreateFile de�nes a new graph G′ by
adding a new resource f and adding incomming edges to f from r, x, other, yi,
labelled {m,a, r, w}, {m,a, r, w}, αother, αi, respectively; where 0 < i ≤ n, n > 0.
Graphically,

ττ

r

ττ

r

usersgroups

x

ττττ

yny1

m, a, r, w
a, r, w a, r, w

u

usersgroups

xother

u

ττττ

yny1

m, a, r, w
a, r, w a, r, w

m, a, r, w

f

αother

αi

m, a, r, w

a, r, w

m, a, r, w

a, r, w

other

⇒

Informally: Any user can create a new �le which it becomes the owner o�, and
which belongs to one of its groups (as well as the group other).

Mapping to HNC: To come from graph G to G′ by using HNC rewriting rules we
�rst use the rule CreateR/P to create the resource f along with an {m}-labelled
edge from x to f. Then we use the rule Add four times to create edges from root,
other, and yi.

G `CreateR/P `Add4
G′
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RemoveFile: Let u be a principal, x a capability, and f a resource in a HPG G, and let
there be a {m,a, r, w} from u to x, and from x to f. RemoveFile de�nes a new
graph G′ by removing the resource f along with all its incomming and outgoing
edges. Graphically,

m, a, r, wm, a, r, w m, a, r, w
u ufx x

⇒ ττ

Informally: A user can delete any �le which it is the owner of.

Mapping to HNC: To come from graph G to G′ by using HNC rewriting rules we
�rst use the rule RemoveOther n times. Where n is the number of incomming edges
to f minus one. That is, we �rst remove all other capabilities from the resource f 's
ACL. Then we use the rule RemoveSelf to remove the last incomming edge to f :

G `RemoveOthern `RemoveSelf G′

ChangeO/G: Let root be a principal, f a resource, and r, x, y, users/groups be
capabilities in a HPG G where users/groups is either the capability users or
groups as de�ned in De�nition 6.11. Let {m,a, r, w}-labelled edges from root
to r, r to f, y to f, and let there be {τ}-labelled egdes from r to users/groups,
users/groups to x, and from users/groups to y. ChangeO/G de�nes a new
graph G′ by removing the {m,a, r, w}-labelled edge from x to f and adding a
{m,a, r, w}-labelled edge from y to f. Graphically,

τ

m, a, r, w m, a, r, w

τ

frroot

x

y

m, a, r, w

users/groups
τ

m, a, r, w m, a, r, w

m, a, r, w

τ

frroot

x

y

users/groups ⇒τ τ

Informally: Root can change the ownership of a �le. Choosing any user in the
system as the new owner. The same goes for groups.

Mapping to HNC: To come from graph G to G′ by using HNC rewriting rules we
�rst use rule Add to add an edge from y to f and then we use the RemoveSelf to
remove the edge from x to f :

G `Add `RemoveSelf G′

ChangeGroup: Let u be a principal, f a �le, and groups, x, y, z capabilities in a HPG
G. Let there be {m,a, r, w}-labelled edges from u to x, from x to f, from y to
f, {a, r, w}-labelled edges from u to y and from u to z, and let there {τ}-labelled
edges from groups to y and groups to z. ChangeGroup de�nes a new graph G′

by removing the {m,a, r, w}-labelled edge from y to f and adding a {m,a, r, w}-
labelled edge from z to f. Graphically,
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m, a, r, w m, a, r, w

m, a, r, w

τ

fu x

a, r, w

τ a, r, w
y

z
groups

⇒
m, a, r, w m, a, r, w

τ

fu x

a, r, w

τ a, r, w
y

z
groups

m, a, r, w

Informally: A user can change the group associated with a �le as long as it is owner
of the �le and a member of the group it changes it to.

Mapping to HNC: To come from graph G to G′ by using HNC rewriting rules we
�rst use the rule Add to add an edge from z to f and then we use the RemoveSelf
to remove the edge from y to f :

G `Add `RemoveSelf G′

ChangePermissions: Let u be a principal, f a resource, and groups, x, y capabilities in
a HPG G, where groups is de�ned as in De�nition 6.11. Let there be {m,a, r, w}-
labelled edges from u to x, x to f, a {τ}-labelled edge from groups to y and an
edge from y to f labelled α where α is a nonempty subset of {a, r, w}. ChangePer-
missions de�nes a new graph G′ by removing the α-labelled edge and adding a new
edge in its sted labelled β where β is a nonempty subset of {a, r, w}. Graphically,

τ

m, a, r, w m, a, r, w

groups

τ

m, a, r, w m, a, r, w

groups

α

u u

y y

ffx x

⇒ β

ττ

Informally: A user can change the access permission for owner, group, and other
on any �le it is the owner of.

Mapping to HNC: To come from graph G to G′ by using HNC rewriting rules we
�rst use the rule RemoveOther to remove the α-labelled edge from y to f and then
use Add to add the β-labelled edge from y to f :

G `RemoveOther `Add G′

Note that there are no rules for how the root user can create �les. This is not needed
as we simply can add a user to the system which represents root and then the real root
user can create �les using that. This also re�ects reality nicely as for instance on Linux
systems there is a user and group called root. Also note that the τ -paths in the rules
ensures that root can manage all principals and resources in the system and that the
τ -paths only e�ects the root user.
We have de�ned a set of de jure rules for the user-group model and showed that they

all can be mapped to HNC de jure rules. Now we need to show that HNC de jure rules
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has higher expressiveness. We do this by showing that there exist an HNC de jure rule
which cannot be mapped to the user-group de jure rules. Finding such a rule does not
take long. The rewriting rule Add permits the addition of an {m}-labelled edge to a
resource. In the Unix world this would mean that a �le could have more than one owner.
There is no user-group de jure rewriting rule, or sequence of rules, which can simulate
the HNC Add rule. One can easily see this as the only user-group rule which can add
an edge to an existing resource is the AddGroup rule and this rule can only add an edge
labelled {a, r, w}. In our user-group model, resources have two incomming edges with m
in the label, one for the owner of the �le, and one for root.

Having showed that HNCs can simulate the user-group model serves as a good example
of the models expressiveness. We have only showed how to simulate the de jure rules
as there are no information control available in the classical user-group model. In fact,
as soon as a model per default uses a construct like the user-group models other group,
information �ow becomes impossible to control.

There are many other security models which could be interesting to see simulated by
HNCs. For instance, newer models based on role-based access control. We expect it to
be possible to simulate such a model using HNCs but it is not certain, and will have to
be further looked in to.

6.6. Summary

With LINK's HNC model we can reason about both access control and information �ow,
and we can implement other security models on top of it. What really makes a HNC
model powerful is the hierarchy. Thanks to it a libOS can implement a security model
of its own, but it still has to submit to the security policies forced it from higher levels
of the hierarchy. The security model will in practice be part of a LINK OS in the form
of a system service. This system service will then be queried by the rest of the system
when access permissions needs to be checked.

7. Future Work

Obviously, we would have loved to develop a proper LINK OS, and not just a proof of
concept implementation. But as such a project goes beyond the scope of my master thesis
we did not persue it. However, a lot of ideas came to mind while developing POCLINK
and those have ended up on the �future work� list. There is also a lot more that could be
formally looked into about our security model. The research �eld of operating systems is
a wast one and there will always be new things to research. We will in this section touch
upon some of the future development plans we have for the LINK architecture and its
security model.

7.1. PXELINK

While implementing POCLINK we got many ideas on how to design a disk-less LINK
OS. The main idea was that it should initialise itself via the network using the PXE
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environment (which POCLINK also would have done if the QEMU bug had not stopped
us from doing this), but unlike POCLINK it would stay true to all the LINK principles.
We named the OS we had in mind PXELINK and we will explain the general idea of the
design now, one system service at a time.

Bootstrap The bootstrap program is the initial program sent from the TFTP server
to the client machine, once the DHCP server has given the client an IP address. The
bootstrap program should perform the following once loaded and executed at the client:

1. Verify that it has a sane environment to operate in. This means that is should
verify that system has PXE 2.0 or greater, and then continue to check the sanity
of the !PXE structure4 using the check-sums located within it[Cor99]. Older PXE
versions could be supported but another solution could be that if someone wanted to
run PXELINK on such hardware they must boot the machine with some bootable
media, like for instance an Etherboot CD as explained in Appendix B. This would
make a proper environment available for the bootstrap program run in.

2. Dump all hardware information into a �le and send it using the PXE API to the
TFTPs IP address but to another port. The port should be de�ned in advance
and at the machine hosting the TFTP server some server should be waiting for
incoming connections. After the �le has been successfully transferred to the server
the client starts waiting for incoming data. The server in the meanwhile takes the
data from the client, analyses it, and readies an ordered list of system services and
starts transmitting the system service ELF binaries to the client one by one.

3. As the client receives system services from the server it relocates them to di�erent
memory addresses, each system service address starting at a page boundary, making
it easy to turn on paging later.

4. Once all system services are received and relocated the bootstrap program sets
up the basic system structures such a the Global Descriptor Table, Task-State
Segment, etc.

5. The bootstrap program switches the system into protected mode.

6. As each of the received system services are contained in one or more ELF binaries,
all their dependencies are speci�ed in their ELF header. The bootstrap program
expects that all dependencies are met and links all the system services together.
That the dependencies are met must be guaranteed by the server.

7. Each system service has a procedure called initialise which the bootstrap program
can call and then the system service initialises itself. This is why the server sent
the services in a special order, as this is the order they must be initialised in. The
�rst system service might be the memory manager, then the task switcher, and so

4 �!PXE� is the name of the data structure containing information such as the PXE API entry point

address, and is setup on boot on any system that supports PXE 2.0 or greater.
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on. This ensures that when the next service in the list initialises itself, its critical
dependencies are met. A critical dependency for a system service is one that it
needs to initialise itself. If some cyclic critical dependencies are impossible to avoid
the problem can be resolved by sending a special �initialiser� system services which
knows how to handle the situation. This service would then remove itself once
its job was done. The speci�c details are very hardware dependant and actual
conventions and protocols will of course need to be created.

8. When all system services are initialised the bootstrap program gives control over
to the task scheduler, which as this point, as part of the systems initialization, is
ready to go to work.

Having a server side service allows us to move a lot of functionality from the client
to server. As the server obviously can be considered trusted since the system is being
booted from it. There should no problem in allowing the server to decide which system
services the client needs. The client has no way of knowing what system services are
available anyway, as PXELINK is disk-less, and therefore if any state must be saved
from boot-up to boot-up it must be saved on a server on the network.

One of the trickier parts of the bootstrap process is how to handle access rights of
the di�erent system services. Even though the initial system services are considered
trusted it would be nice, if not only from a software engineering point of view, to know
what they can and cannot do. Without this protection guarantee debugging possible
errors during initialization can become as nightmarish as it is known to be the case with
many monolithic kernels. An idea for how to solve the problem is to make the security
manager system service have two initialization phases. The �rst phase initialises the
security manager but puts it in a special �system initialization phase� mode and should
be initializid as the �rst thing on the system. In this phase all other system services
should be able to use the security manager but all it really does is keep a history of
the systems initialization and if two system services for instance try to write to the
same memory area it can spot this, send the history to some server on the network for
debugging, and halt the system. If no errors are detected it will be initialised again
and enter the second phase, it now starts behaving like a security manager in a complete
system. An even more �LINKish� way would perhaps be to create an extra system service
which only acts as an initialization monitor and which removes itself once initialization is
complete and no errors were detected. All in all, its an issue that has to be resolved but
it is clearly solvable and only a question about �nding a �tting solution which remains
simplistic and elegant.

Memory Manager The memory manager is quite typical. It presents the memory to
each task as if it was the only task on the system. All OS data is located at the same
addresses and each task's entry point address is the same. Unlike the typical virtual
memory manager it shows the global memory state to the entire system and allows tasks
to request speci�c physical memory pages as well. When a task requests a physical page
and an address in its own address that it wants it the physical page mapped to, the
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memory manager checks that both address are free. If they are the page is mapped into
the tasks address space. This functionality can for instance come in handy when working
with memory mapped I/O.

Software Task Switcher The software task switcher does very little. It is invoked with
an identi�er to the target task and when invoked it saves the state of the current task, then
loads the state of the next task, and gives control to it. The task switcher in PXELINK
will be an optimized and brushed up version of the task switcher used in POCLINK. The
task switcher might be extended such that it is possible to decide if not all task state
should be saved. The POCLINK task switcher only loads the privileged parts of the next
task as this does not compromise security and then leaves it to the task to load the rest
of its own data (functionality which normally would be supplied by a shared library).
The POCLINK task switcher does however save all task state each time (though still less
state than if hardware task switching was used). If a selective task switching mechanism
can be implemented without any signi�cant performance downgrade of the average case
full state saving task switch then it would be a great feature indeed. The selection
mechanism will of course use some CPU cycles, the question is how many.

Task Scheduler The PXELINK task scheduler uses a scheduling algorithm like the
one used for the MIT Exokernel called Xok [Eng98]. The CPU will be represented as
a vector, each element representing one quantum. The length of the vector depends on
the speed of the CPU and the wished quantum length. Each task can then allocate all
the quantums it wants and the task scheduler uses a simple round-robin algorithm for
scheduling. The idea of representing the CPU as a vector of quantums is a �exible way to
allow applications to use their own scheduling algorithms on top of it. It might seem odd
that any task can allocate quantums as insanely as it wants to but in practice this is not
a problem and not really any di�erent than what is possible in other operating systems.
Many OSes allow processes to fork copies of themselves, and this is in fact the same as
allocating more quantums. Many OSes also have a maximum number of processes it can
handle. Both of these things are for instance the case with an OS like FreeBSD. To put
some restraint on the tasks allocation of quantums, the task scheduler takes quantums
away from the most greedy task when new quantums are requested but no more are
available. Also, PXELINK must use an explicit allocation policy, so when one quantum
has �nished the currently executing task is noti�ed and then has a certain amount of
time to save its state a return control to the task scheduler. Any task which does not
meet the time limit could for instance be punished by loosing some of its quantums or
simply be killed.

As it might be hard for application programmers to guarantee revocation deadlines
are met, such functionality should be available from a shared library. Applications with
special needs can then still implement their own. An idea came to mind while developing
POCLINK that perhaps the APIC performance monitoring functionality could be used
to invoke the task scheduler instead of the APIC timer. That way, every task would be
guaranteed a certain amount of cycles each time it got its turn to execute and would make
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calculations on reaching deadlines easier. This is merely an infant idea and experiments
must be performed to �nd out if it is a good one.

ELF Loader The dynamical loading of shared libraries is handled by the ELF loader.
The ELF loader keeps track of all libraries on the system and makes a list of all available
libraries globally available. Shared libraries specify their own functions and if some
functionality requires a context switch to be performed then a shared procedure can
yield into that context. This way no extra system service is needed to keep track of the
shared libraries and their functionality. As long as tasks know where to look up the list
of available libraries, management is no di�erent than in for instance a Linux system.

Event and I/O Managers One or more system services are needed to manage inter-
rupts, exceptions, and input/output. The management of these resources can be done
using the interrupt vector table, I/O Bitmaps, and other functionality made available
by the IA-32 architecture. A driver for a hardware device will request to receive inter-
rupts from it on a certain interrupt vector and if access is granted an interrupt gate for
the drivers interrupt service routine is created in the interrupt vector table. If memory
mapped I/O is supplied by the device the driver of course also needs to be granted access
to those memory regions by the memory manager. Basically, these managers just handle
functionality available in hardware.

Device Drivers A device driver for each device will be sent to the client from the server
during bootstrapping. Device drivers should have a small shared library along with them
de�ning their interfaces. It might be more practical to distinguish device drivers from
other shared libraries, in that case a system service could handle this.

As PXELINK is a disk-less OS an ethernet driver is obviously needed, but more than a
device driver is needed in order for the network to become usable. The di�erent network
protocols must be identi�able and understood by the system such that the packets can
be directed to the right applications. This job is normally performed by what is known
as a packet �lter. The exokernels use a dynamic packet �lter (DPF) [EK96] to allow
applications to insert and remove new protocol de�nitions, and the DPF is clever enough,
due to the language the protocol de�nitions must be written in, to detect over-lapping
de�nitions. Even though dynamic package �ltering is slower than static packet �ltering, it
has the clear advantage of giving more power to the application programmer. In Internet
dominated times like these its clearly a valuable feature that applications can specify
new protocols and use them without needing to have privileged access to the system.

Summary Some of the most essential system services for PXELINK have now been
touched upon. More will of course be needed before PXELINK is done: Various kinds
of device drivers, security manager, a shell, and so on. The LINK architecture has a lot
in common with the exokernel architecture and the MIT exokernel systems can often be
used as reference when designing a speci�c LINK system service. PXELINK is a good
starting point for a proper implementation of the LINK architecture as it is disk-less.
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Multiplexing the disk is a problematic a�air, and even though a solution was made for
the exokernels, more research is still needed before multiple libOS can truly coexists
together on the same disk with their individual �le systems, like is also noted by Dawson
R. Engler in his PhD thesis [Eng98].

7.2. Security Model

There are many interesting things that still needs be looked into regarding the LINK
security model. First of all the model needs to be implemented into a LINK OS and
tested in practice. Secondly, algorithms must be created for e�ciently looking for speci�c
access control and information �ow con�gurations in the system.
A language for specifying security policies could also be developed. This could be a

convenient way for libOSes to enforce special restrictions on the applications using them.
It would also be nice to see other security models be implemented on top of the LINK

security model; for instance, the di�erent models that supported in Security Enhanced
Linux.

8. Conclusion

We have shown the LINK architecture's feasibility, and that security can be handled in a
proper and �exible manner. As mentioned, there is still research needed in order for the
multiplexing of disks to be usable in practice, and there are also a lot of other multiplexing
issues once we start bringing graphical user interface into the mix. The way to tackle all
of the things that still needs to be done, if the LINK architecture is to have a future, is
to implement a proper LINK OS. We believe PXELINK is an excellent starting point.
Implementation of PXELINK will start as soon as possible and when a version is ready
for public release it will most likely be available at http://www.cs.aau.dk/~zion1459.
PXELINK will be open source and free.
We propose the LINK architecture as a solution to problems identi�ed in Section 1.

The LINK principles are basically the same as the exokernel principles except for di�erent
interpretations needed in some cases due to LINK being kernel-less. Since the exokernels
also use hierarchically named capabilities, the formalism we have developed can also be
used on for those systems. The main usage of the formalism and the proofs we have
presented is that they show just how much security a HNC model can bring to a system.
Algorithms must, of course, be devised which are e�cient enough to be used in practice.
The LINK and exokernel architectures have many similarities, and an advance in one

architecture can probably easily be ported to the other. What in our opinion makes
the LINK architecture superior to the exokernel architecture is the improved reliability
it gets from having protected address spaces for each of its system services, and not to
forget the greater simplicity achieved by this. Simplicity is invaluable for an OS to have
as it makes it easier for programmers to write correct code, and even more importantly,
in the case of concurrency, it is actually possible to create formal concurrency models
of the system and model check these. As LINK OSes only have a handful of system
services, there will not be much extra memory usage in keeping them all in separate
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address spaces, unlike for instance component-based OSes which might have thousands
of components, the extra memory used for each of them matters.
A LINK OS might have a worse overall performance than an exokernel OS due to the

extra context switches that need to be performed when system services communicate
with each other. It is, however, quite possible that this will not be the case if the
system services are developed properly (i.e. with performance in mind). One might even
argue that in some cases a LINK OS can have better performance than an exokernel
OS as applications can access each device more directly in a LINK OS. All this will,
however, have to be proved by implementating a complete LINK OS like PXELINK, and
performing macro-scale benchmarking.
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A. Benchmark Results

While programming the small tool to perform the �HTS vs. STS� benchmarks it was
straight-forward to make the tool support a few more parameters (e.g. cache settings)
than was actually needed for the benchmarks we had in mind. They were included as
they still yield interesting information about the CPU, and even though we did not need
this extra data, others might, and if so, they hopefully stumble upon this thesis.
Four di�erent general types of benchmarks were made:

• Hardware task switching.

• SYSENTER/SYSEXIT.

• Software task switching with no task state saved.

• Software task switching with with state saved.

Each of these were benchmarked with and without paging enabled and with various
combinations of parameters (e.g. cache settings). Explainations of the four general types
of benchmarks are given in Section 5.1.
We have divided the results into those with paging disabled, and those with it enabled.

The following two sub-sections present both sets of results, respectively.

A.1. Paging Disabled

CR0.CD CR0.NW Cycles

0 0 495
1 0 6376
1 1 7861

Table 2: Hardware task switcher benchmarks with paging disabled.

CR0.CD CR0.NW Cycles

0 0 392
1 0 6878
1 1 6057

Table 3: Software task switcher benchmarks with paging disabled. The entire task state is
saved.

CR0.CD CR0.NW Cycles

0 0 275
1 0 1368
1 1 1449

Table 4: Software task switcher benchmarks with paging disabled. No task state is saved.
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CR0.CD CR0.NW Cycles

0 0 136
1 0 557
1 1 739

Table 5: SYSENTER/SYSEXIT benchmarks with paging disabled.

A.2. Paging Enabled

CR0.CD CR0.NW PWT PCD Cycles

0 0 0 0 483
0 0 0 1 1232
0 0 1 0 6425
0 0 1 1 6423

1 0 0 0 7782
1 0 0 1 7778
1 0 1 0 7781
1 0 1 1 7782

1 1 0 0 6431
1 1 0 1 6422
1 1 1 0 6425
1 1 1 1 6424

Table 6: Hardware task switcher benchmarks with paging enabled.

CR0.CD CR0.NW PWT PCD Cycles

0 0 0 0 490
0 0 0 1 1681
0 0 1 0 6500
0 0 1 1 6504

1 0 0 0 7132
1 0 0 1 7123
1 0 1 0 7130
1 0 1 1 7122

1 1 0 0 6502
1 1 0 1 6513
1 1 1 0 6514
1 1 1 1 6510

Table 7: Software task switcher benchmarks with paging enabled. The entire task state is
saved.
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CR0.CD CR0.NW PWT PCD Cycles

0 0 0 0 280
0 0 0 1 513
0 0 1 0 1577
0 0 1 1 1571

1 0 0 0 1363
1 0 0 1 1364
1 0 1 0 1361
1 0 1 1 1361

1 1 0 0 1571
1 1 0 1 1582
1 1 1 0 1573
1 1 1 1 1580

Table 8: Software task switcher benchmarks with paging enabled. No task state is saved.

CR0.CD CR0.NW PWT PCD Cycles

0 0 0 0 134
0 0 0 1 190
0 0 1 0 545
0 0 1 1 543

1 0 0 0 653
1 0 0 1 650
1 0 1 0 653
1 0 1 1 652

1 1 0 0 541
1 1 0 1 539
1 1 1 0 541
1 1 1 1 542

Table 9: SYSENTER/SYSEXIT benchmarks with paging enabled.

B. Setting Up a Test Environment

The benchmark tool and POCLINK both expect to be run in a Preboot Execution
Environment (PXE). This means that we need two machines: A server running DHCP
and TFTP services, and a client on the same Local Area Network (LAN) as the server.
We will now show how to set up a Debian GNU/Linux system to act as a server, as well
as how a QEMU virtual machine can be used as client. Using a virtual machine as a
client allows one to have a complete testing environment on a single machine and tests
can be performed much quicker than with real hardware. QEMU also has convenient
interfaces for debugging. As Debian GNU/Linux is our current OS of choice we used such
a system for development and testing. The instructions in this appendix should however
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B. Setting Up a Test Environment

be trivial to use on any Linux distribution. We assume that no DHCP server or TFTP
server is already available on the system, if however that is not the case you most likely
know how to con�gure these services already and adding the extra con�guration needed
to support PXE clients should be easy. We assume the reader knows how to operate a
GNU/Linux system and for those who do not use the Debian distribution, here is a small
note:
Debian uses a package manager called apt and it basically works by writing the com-

mand apt-get followed by the action to perform and then a package name. For instance,
the command apt-get install zsh would install the shell zsh, assuming that you are
executing the command with proper permissions.

B.1. DHCP Server

First we need to install a DHCP server.

# apt-get install dhcp

The dhcp package contains a DHCP server, the version we used was version 2.0pl5-19.5.
This was the version available in the �testing� package repository at the time of devel-
opment. Once the package is installed open the �le /etc/dhcpd.conf for editing. The
con�guration used by us looks like this:

subnet 192.168.3.0 netmask 255.255.255.0 {

option subnet-mask 255.255.255.0;

option broadcast-address 192.168.3.255;

option domain-name "fractal";

host pxeclient {

hardware ethernet 00:aa:bb:cc:dd:ee;

fixed-address 192.168.3.20;

next-server 192.168.3.1;

filename "poclink.bin";

}

host vmpxeclient {

hardware ethernet 12:34:00:00:00:01;

fixed-address 192.168.3.21;

next-server 192.168.3.1;

filename "poclink.bin";

}

}

This con�guration makes the DHCP give out IP addresses on the subnet 192.168.3.*.
It also tells the DHCP server only to give out an IP address the to clients pxeclient and
vmpxeclient, which have the burned in addressess (BIAs, also called MAC addresses),
00:aa:bb:cc:dd:ee and 12:34:00:00:00:01, respectively. Only giving addresses to
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known clients makes it easier to avoid con�icts if there are other DHCP servers on the
LAN.

The filename option supplied for each client is the relative path and �lename for
the Network Boot Program (NBP) that should be sent to the client. The next-server

option is used to specify the IP address of the TFTP server as it might be di�erent from
that of the DHCP server. The above con�guration is about as minimalistic as it can
be and is not suitable for actually running a PXE server service on a LAN. It however
su�ces for our test environment.

The �le /etc/default/dhcp contains a list of devices that the DHCP server should
service. Once everything is setup to your liking restart the DHCP deamon by executing
the command:

# /etc/init.d/dhcp restart

B.2. TFTP Server

Let us start by installing a TFTP server:

# apt-get install tftpd

The version at the time of development was 0.17-15. When the TFTP package is
installed continue to open the �le /etc/inetd.conf for editing, and add a line for starting
the TFTP service. We used the following:

tftp dgram udp wait nobody /usr/sbin/tcpd /usr/sbin/in.tftpd /srv/tftp

The last directory path given in the line above speci�es the base path for the TFTP
server to use. The �le path and name speci�ed in the DHCP con�guration for each
client are relative to this path. Restart the network services and the TFTP server will
be running.

B.3. Using Real Hardware

Simply make sure that the client machine has its �boot via network� option enabled in
its BIOS and everything should be ready. Now you can download the source code for
the benchmark tool and POCLINK from http://www.cs.aau.dk/~zion1459, compile it
using the included Make�les, and copy the binaries to your TFTP servers base path.

B.4. Using QEMU

QEMU is a free and open source CPU emulator, and it is available through the Debian
package repository, so simply install it with the command:

# apt-get install qemu
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We used version 0.8.2-4etch1 of the qemu package as the newest version did not work
with the con�guration explained below.
There are special Linux kernel modules available for QEMU which makes it run a lot

faster. If you have the need for speed then install the package called kqemu-modules-?

where ? is the version you need. Run the command apt-cache search kqemu to see
the di�erent available packages. If you have a custom built kernel you will most likely
need to compile the kqemu modules yourself. Compiling it manually can be automated a
bit my using the utility m-a, which stands for module assistant, which also is the name
of the package containing the utility (without the white space of course).
QEMU does have options for simulating a boot via the network but we had no luck

making it work and found another solution at http://tomas.andago.com/cgi-bin/

trac.cgi/wiki/QEMUPXE. This website actually has complete instructions on how to
set up a DHCP and TFTP server as well, which we actually used as a reference when
setting up our test environment.
There is an open source project called Etherboot which among other things has a

website at http://www.rom-o-magic.org which can be used to create bootable CD
images that contains a PXE environment, thus allowing systems without PXE environ-
ments to boot via the network using such an image. We can use such a CD image with
QEMU. Please refer to http://tomas.andago.com/cgi-bin/trac.cgi/wiki/QEMUPXE

for instructions on how to create such an image using the rom-o-magic website.
Once you have the Etherboot CD image �le you can continue with setting up bridging

for your network. QEMU can use a virtual ethernet device (a so-called TAP device) as
its network device. To make the DHCP work with this device another virtual device,
called a bridge is needed. A bridge can have one or more network devices associated with
it, making them behave like they are one their own LAN. Then the rest of the system
can communicate with all the bridged devices at once by using the bridge device.
Two packages are needed to make QEMU and bridging work. The two packages are

called uml-utilities and bridge-utils. Install them with the following command:

# apt-get install uml-utilities bridge-utils

The package uml-utilities gives us a utility called tunctl which we can use to create
TAP devices, and the package bridge-utils contains the utility called brctl which we
can use to create and manage bridge devices.
To setup your DHCP server to use the bridge device that we will show how to create

shortly, add the device br0 to the device line in the �le /etc/default/dhcp.
To setup bridging for the DHCP setup described above, the following commands can

be used:

# brctl addbr br0

# ifconfig br0 192.168.3.1

# tunctl -u username -t tap0

# ifconfig tap0 0.0.0.0 promisc

# brctl addif br0 tap0

# /etc/init.d/dhcp restart
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B.4. Using QEMU

The �rst command creates a new bridge device called br0. The second line gives
the br0 an IP address which becomes the IP address used by the DHCP server when
communicating with the bridged devices. The third command creates a TAP device tap0
which can be used by the user named �username�. The line after initialises tap0 with no
IP, as it will get an IP from the DHCP server. Finally, line �ve adds the tap0 device to
the bridge and line six restarts the DHCP server.
Now QEMU can be run with the command:

# qemu -cdrom qemu-pxe-boot.iso -m 256 -boot d\

-net nic,macaddr=12:34:00:00:00:01 -net tap,ifname=tap0

Where qemu-pxe-boot.iso is the CD image obtained from rom-o-magic.org and
12:34:00:00:00:01 is the BIA for the virtual ethernet device. See the QEMU manual
for more information.

81




	Introduction
	Contributions
	Related Work
	Monolithic kernels
	Micro-kernels
	Object-Oriented and Component-Based Operating Systems
	Exokernels

	LINK Architecture
	Original LINK Architecture
	New LINK Architecture

	Implementation
	The Benchmark Tool
	Benchmark Results
	Proof of Concept LINK (POCLINK)
	Summary

	Security Model
	Hierarchical Protection Graphs
	De Jure Rules
	De Facto Rules
	Combined Transfers
	Modelling User-Group Using HNCs
	Summary

	Future Work
	PXELINK
	Security Model

	Conclusion
	Benchmark Results
	Paging Disabled
	Paging Enabled

	Setting Up a Test Environment
	DHCP Server
	TFTP Server
	Using Real Hardware
	Using QEMU


