
Merlin
A Simple Actor-Based Language

Department of Computer Science
Aalborg University
Fredrik Bajers Vej 7E, DK-9220 Aalborg Øst
Phone +45 96 35 80 80
Fax +45 98 15 98 89
http://www.cs.aau.dk/

Title:
Merlin: A Simple Actor-Based
Language

Topic:
Programming Language Design,
Concurrent Programming Models

Project Group:
d634a (room E4-117)

Members of Project Group:
Simon Kongshøj

Supervisor:
Thomas Vestdam

Semester:
DAT6

Project Period:
Feb 1st 2007 to Jun 15th 2007

Number of Copies: 4 (1 online)

Number of Pages: 108

Synopsis:

This project is primarily a study of the
actor model of concurrent computation,
structured around the design of Merlin, a
simple actor-based programming language
intended primarily to explore aspects of
actor-based language design.
The report gives an introduction to the
basic concepts of concurrency, concurrent
computation models, and the actor model
in particular. An extensive documenta-
tion of the design process of Merlin is
given, with the main focus on analyzing
the different language design options avail-
able within the actor-based programming
paradigm. Each of the design decisions
taken during the Merlin design process is
justified and put into perspective, by con-
trasting them with a selection of other ac-
tor languages. Finally, a simple abstract-
syntax interpreter for the Merlin lan-
guage is developed and documented.
This work highlights some of the design
issues of actor-based programming lan-
guages, including concurrency issues, lan-
guage design and implementation chal-
lenges.

http://www.cs.aau.dk/

Preface

In the last decades, concurrency has become an increasingly important facet of the art of
programming. While it sometimes seems that concurrency only adds more frustration to
our programming lives, our programs ultimately exist in a universe that is characterized
by a truly massive scale of concurrency. Whether we want to or not, we have to deal
with concurrency.

However, many common programming languages are still, at their hearts, character-
ized by the assumption of a neat, orderly universe where everything happens one step
at a time. In these languages, concurrency is regarded as the exception, rather than
the rule. This report explores the language design space around a particular niche of
concurrent programming theory, the actor model, in which the situation is quite the
opposite: Programs in the actor-based view of programming consist entirely of commu-
nicating, concurrent entities. In this report, I show the basic theory behind concurrency
and actors, and develop the simple, academic toy language Merlin as an example of
how programming languages can be structured around actors.

Intended Readers

While an obvious readership for a master’s thesis is the examiners who will be responsible
for grading it, the main reason I chose to work on this particular subject was because I
believe it is both important and intellectually fascinating. In this spirit, I have chosen
to write the report for a somewhat wider audience, in the hope of providing inspiration
to others. Thus, this thesis is targeted at the programming language design community
as a whole.

Since one of my main points in this work is that we as programming language designers
need to pay more attention to the concurrency abstractions we use in our languages, I
have chosen to assume that the reader does not necessarily know a lot about concurrency.
The second chapter of the thesis gives an introduction to concurrency, with a special
focus on the actor model, working up from a very basic level. I do assume, however,
that the reader can reason logically, knows the terminology, concepts and methods of
programming language design, and has at his command a basic set of mathematical
tools. These assumptions seem to be quite fair to make about programming language
designers at large.

ii Preface

Acknowledgements

First and foremost, I’d like to thank my thesis supervisor, Thomas Vestdam, for his
competent and useful advice throughout the process. While I suppose an argument
could be made that thesis supervisors don’t need acknowledgments since they get paid
for what they do, I’m fairly convinced that Thomas spent more hours working with me
than what is reflected in his paycheck.

Throughout the process of developing this thesis, I had many enlightening discussions
about its finer points with some of my fellow students of computer science. I’d especially
like to thank Arild Haugstad, Willard Rafnsson, Anders Terkelsen and Robert Olesen
for providing me with a good surface to bounce ideas off of.

Finally, I’d like to thank Freja Grandjean for her patience and her very appreciated
moral support throughout the whole process, even though I sometimes think the only
thing that can possibly be more dangerous to one’s sanity than being a computer scientist
is dating one.

Contents

Preface i

1 Introduction 1
1.1 Why Yet Another Programming Language? . 1
1.2 Problem and Method . 2

1.2.1 Problem Statement . 3
1.2.2 Method Overview . 3

1.3 Contributions . 4
1.4 Scope . 4
1.5 Related Work . 5

2 Actor-Based Concurrency 7
2.1 Overview of Concurrency Concepts . 9

2.1.1 Interleaving and Parallelism . 10
2.1.2 Interaction . 11

2.2 Models of Concurrency . 16
2.2.1 Deterministic Concurrency Models . 17
2.2.2 Shared-Memory Concurrency Models . 18
2.2.3 Distributed-Memory Concurrency Models 21
2.2.4 Evalution of Concurrency Models . 24

2.3 The Actor Model . 28
2.3.1 Basic Concepts . 28
2.3.2 History of the Actor Model . 34

2.4 Summary . 35

3 The Merlin Language 37
3.1 From Model to Language . 38

3.1.1 Design Philosophy . 39
3.1.2 Language Requirements . 41

3.2 Introduction to Merlin . 43
3.2.1 Inspirations . 43
3.2.2 Introductory Examples . 43
3.2.3 Pattern Matching . 45
3.2.4 Concurrency . 46
3.2.5 Parameters . 48
3.2.6 Changing Behaviour . 49
3.2.7 Recursion . 50
3.2.8 Merlin Overview . 51

iv Contents

3.3 The Design of Merlin . 52
3.3.1 The Core Precepts . 52
3.3.2 Pure Actor Languages . 53
3.3.3 Actors and Pattern Matching . 55
3.3.4 The Representation of Actors . 56
3.3.5 Event Atomicity . 59
3.3.6 On Bidirectional Asynchronous Communication 60

3.4 Evaluation of the Merlin Language Design . 62
3.4.1 Merlin and Other Modern Actor-Based Languages 62
3.4.2 Revisiting the Requirements . 64
3.4.3 Final Remarks on the Merlin Design . 66

3.5 Summary . 66

4 A Simple Merlin Interpreter 69
4.1 Overview of the Interpreter . 70
4.2 The Actor Directory . 71
4.3 The Actor Loop . 72

4.3.1 Environments . 73
4.3.2 The Pattern Matcher . 74
4.3.3 The Script Processor . 77

4.4 Built-in Actors . 82
4.5 Evaluation of the Interpreter . 83

4.5.1 Limitations . 83
4.6 Summary . 84

5 Conclusion 85

6 Future Work 89
6.1 Further Evolution of the Merlin Language . 89

6.1.1 Efficient Implementation . 89
6.1.2 Expressive Sequential Sublanguage . 90
6.1.3 Error Handling and Recovery . 91

6.2 Further Work with the Actor Model . 91
6.2.1 Bidirectional Actor Communication . 91
6.2.2 Handling Deadlock in Actor Systems . 92

Bibliography 93

Appendix A: Merlin Grammar 97

Appendix B: Interpreter Source 99

1. Introduction

The path to our destination is not always a straight one. We go down the wrong road, we get
lost, we turn back. Maybe it doesn’t matter which road we embark on. Maybe what matters is
that we embark.
– Barbara Hall

Everything should be built top-down, except the first time.
– Alan J. Perlis (1922 - 1990)

This thesis is about the design of concurrent programming languages, and the programs
written in them. It documents an exploration of a particular area of the concurrent
programming language design space, through which the language Merlin is developed.
Like other high-level languages, Merlin represents a conscious effort to make a complex
phenomenon simpler to grasp. The most important tool used by any language to achieve
this purpose is abstraction: Allowing complex, compound entities to be named and
treated as simpler units. A controversial design decision in Merlin is the decision to
discard the currently dominant abstraction for concurrency in programming languages:
The thread.

1.1 Why Yet Another Programming Language?

It is almost a truism that concurrent programming is difficult. And yet, our programs
exist in a universe that is characterized by concurrency at a massive scale, in which a
mind-boggling number of events all take place at the same time. Humans evolved in a
massively concurrent environment, and for the entire history of our species, an under-
standing of concurrent phenomena has spelled the difference between life and death. A
deep-seated understanding of concurrency is hard-wired into our brains – which, in fact,
are massively concurrent systems themselves. In this light, it seems almost unthink-
able that we should be incapable of thinking clearly about concurrent phenomena in our
computer programs. And yet, concurrent programming is notoriously error-prone (see
the introduction of chapter 2 for a well-known and catastrophic example), and the diffi-
culty of understanding concurrent programs is significant enough that many introductory
programming textbooks leave concurrency out entirely, or treat it as an advanced topic.

A central theme of this thesis is the stance that a significant part of the well-documented
difficulty of concurrent programming is a consequence of our concurrency tools, not the

2 1 Introduction

inherent complexity of concurrent phenomena. The fundamental concurrency abstraction
used by most mainstream programming languages is the thread, a sequence of operations
carried out in parallel with other threads, all accessing a shared memory. Threads do
not resemble any natural phenomenon often observed by humans. The thread paradigm
does, however, convey a fairly accurate image of how concurrent processing is carried out
by a single-memory multiprocessor computer.

Thus, thread-based concurrency mechanisms are low-level abstractions. While threads
may make a useful abstraction for low-level and medium-level programming languages,
high-level application programming and scripting languages based on threads compromise
their high-level nature when used to write concurrent programs: They provide high-level
abstractions for sequential programs, but rely on low-level abstractions for concurrent
ones. This is especially problematic for application programming and scripting languages,
since the programs written in such languages are often centered around their interaction
with the vastly concurrent world surrounding them.

There is a historical parallel: In the not too distant history of computer science, many
high-level programming languages featured a memory abstraction which required manual
management of heap-allocated memory. Pointers served as an abstraction over memory
locations, and programmers manually allocated and freed heap memory. An entire class
of programming errors represents faulty logic in dealing with manually-controlled heap
memory: Buffer overflows, memory leaks and dangling pointers are examples. When the
Java language was introduced in the early 1990s, the design choice to rely exclusively on
automatic heap memory allocation was viewed as highly controversial1. Today, nearly
all new high-level languages provide automatic heap memory allocation. It is not un-
thinkable that in the future, manual management of low-level concurrency mechanisms
will be viewed in a similar light.

1.2 Problem and Method

If thread-based concurrency mechanisms are at the wrong level of abstraction for high-
level languages, then what is the right level, and how can we get there? Over the years,
several models of concurrency have been proposed as the answer to that question.

One such model is the actor model. Originally developed in the MIT artificial intel-
ligence research community in the early 1970s, the actor model has the very appealing
quality of conceptual simplicity : Its basic semantics are based on only two fundamental
concepts, the actor and the message. From these, a full model of concurrent computation
follows, complete with a set of “natural laws” for actor programs, allowing programmers
to reason in a structured manner about their concurrent programs.

1Languages outside the programming mainstream had used automatic memory management for
decades. The first language to rely on automatic memory management was Lisp, developed in
the 1950s.

1.2 Problem and Method 3

1.2.1 Problem Statement

Is the actor model what we need for our concurrent programs? Certainly, the promises
of conceptual simplicity and improved capacity for structured, methodical reasoning on
programs are appealing qualities. However, it is also generally the case in computer
science that there are no silver bullets, no perfect solutions to all our problems. It there-
fore seems appropriate to study the actor model, and its applicability to programming
language design. This leads to the following problem statement:

Core Problem: Which benefits and challenges does the actor model present as a basis
for concurrent programming language design?

1.2.2 Method Overview

In order to study this problem and propose answers to it, this thesis demonstrates the
design and implementation of Merlin, a small, academic “toy language” based on actor
semantics. This method has two quite appealing qualities:

• An actual programming language, although very restricted in scope and not suitable
for actual software development, will be developed. By documenting the design
process of the language, and the challenges and issues that arise during this process,
the computer science community as a whole will have access to the experiences
gained in the process.

• By implementing the language, even with a very simple implementation, it is possi-
ble to get a good impression of which aspects of actor semantics can potentially pose
implementation problems. Even if the implementation itself is not a production-
quality language processor, a documentation of its development will highlight such
issues.

Thus, the method used is process-oriented, rather than product-oriented : While the
Merlin language itself is certainly of some interest in its own right, it is not intended
as the main contribution of this thesis. The main contribution is the documentation of
the process that led to the Merlin language.

The ideal method would be to develop a “real” language, give a high-quality implemen-
tation of it, and write a collection of non-trivial applications in it. However, programming
language design is difficult and time-consuming work, and the time frame allotted for
a master’s thesis does not realistically allow adopting such an approach. The “toy lan-
guage” method adopted in this thesis is an attempt to work from an approximation of
this approach.

4 1 Introduction

1.3 Contributions

This thesis documents a research project in the field of concurrent programming language
design, focused on the design, implementation and application of Merlin, a simple
programming language based on the actor model of concurrent computation. The specific
contributions given by this research can be summarized as follows:

• The fundamentals of concurrency theory have been investigated and presented.
As part of this presentation, various aspects of different concurrency models are
compared and contrasted. An introduction to the actor model of concurrent com-
putation is given (see chapter 2).

• As part of the investigation of the actor model, the actor-based programming lan-
guage Merlin is developed. The design process is extensively documented, and
the many design choices and tradeoffs are justified and put in a philosophical and
technical context (see chapter 3).

• A simple, proof-of-concept Merlin interpreter has been designed, and implemented
as a Scheme program. Although the interpreter is kept deliberately simple and
unoptimized, it illustrates several of the technical challenges of implementing an
actor language (see chapter 4).

1.4 Scope

The development of concurrent programming languages is an active research subject,
with numerous interesting open problems. While there are many possible perspectives
on the problems faced within the design and implementation of an actor language, it
is unfortunately not realistic to do justice to all of them here. This ultimately means
that several important and interesting topics within the field are only given a somewhat
superficial treatment within this thesis:

Sequential programming : Merlin is first and foremost a concurrent language. Only
very little attention is paid to the sequential component of Merlin, except for the
situations in which decisions about the representation and capabilities of sequential
subprograms directly affect the concurrent semantics of Merlin.
Rationale: This project is primarily a study of concurrent programming language
design. Although there are many interesting problems in sequential programming
language design, addressing these would distract from the overall goals of this
project.

1.5 Related Work 5

Performance optimization : The Merlin implementation is not fast. It is written as
an interpreter running on top of another interpreter, which greatly limits its pos-
sible performance. Furthermore, the Merlin interpreter does not attempt to use
the most efficient algorithms in its implementation. The implementation is thus
inefficient in both time and space.
Rationale: The implementation is designed first and foremost to illustrate the
semantics of Merlin, rather than being an efficient programming language imple-
mentation. Performance optimization could make the interpreter considerably less
clear, and make it more difficult to understand its internals.

Garbage collection : The initial Merlin implementation does not implement garbage
collection beyond that of the implementation language, making it very memory-
inefficient. This is obviously completely unacceptable in programming language
implementations meant for “real-world” usage. Garbage collection of actor-based
languages is known to be possible[Bak78].
Rationale: Developing a garbage collector for the Merlin implementation could
be quite time-consuming, and therefore require de-emphasizing other considerations
that are more in tune with the general focus of the project.

Distributed programming : The actor model is very well-suited for distributed program-
ming, since many of the concepts provided by the model are conceptually close to
distributed programming concepts. In fact, the characteristic that actors can be
concurrent in time implies that they can also be distributed in space. However,
Merlin does not implement any distributed programming facilities.
Rationale: This project primarily deals with concurrent programming, not dis-
tributed programming. A later implementation of Merlin could include dis-
tributed programming facilities.

1.5 Related Work

The Erlang programming language[AWV93], developed at the Ericsson Computer Sci-
ence Laboratory, is a concurrent functional language designed specifically for developing
highly reliable telecommunication applications. The entities responsible for concurrent
computation in Erlang are called processes, and can be viewed as recursive functions
augmented with communication ports and message buffers. While Erlang is not ex-
plicitly based on the actor model, its processes share many important characteristics
with actors. It has several concepts in common with Merlin: Both languages use a
message-passing concurrency mechanism, neither language has any form of shared mem-
ory, and both languages emphasize abstraction mechanisms with roots in the higher-order
functions of functional programming.

6 1 Introduction

Another programming language which takes an actor-oriented view of concurrency
is the embeddable scripting language Io [Dek05], developed by Steve Dekorte. The Io
language is designed to fit in the same linguistic niche as the more well-known procedural
language Lua: Both are small, embeddable high-level languages meant for application
logic scripting. Io is a prototype-based object-oriented language following the tradition
of the Self language, and includes an integrated actor-based concurrency mechanism.
In Io, method calls can be either synchronous, future-based or asynchronous, and using
either of the two latter possibilities yields actor-like concurrency semantics. Like Merlin,
Io uses message-passing actors to implement concurrency, but takes a much more object-
centered view of the actor concept.

Recently, the Scala language has adopted an actor-based concurrency mechanism,
implemented as a library[HO07]. The Scala actor library was inspired by the Erlang
concurrency model, and takes a similar basic form: Scala actors are lightweight se-
quential processes extended with a communication system. Scala extends the Erlang
communication model by including, among other things, a mechanism for bidirectional
asynchronous communication. Scala actors and their Merlin counterparts share the
same fundamental characteristics: They exist in parallel, and interact using asynchronous
message passing.

A similar project, bringing the actor model closer to the linguistic mainstream, is
Salsa [VA01]: A library-based actor implementation, with many of the same character-
istics as the Scala actor library, for the Java language.

2. Actor-Based Concurrency

All the world is a stage, all the men and women merely players.
– William Shakespeare (1564 - 1616)

The only thing that makes life possible is permanent, intolerable uncertainty; not knowing
what comes next.
– Ursula K. LeGuin

Concurrent programming brings many benefits to computer science, and there are nu-
merous reasons to study concurrency from a programming language design perspective.
A frequently cited reason why the programming language design community should pay
more attention to concurrency is the performance gains that can be reaped by exploit-
ing the parallelism available in modern multi-core processor architectures. Although
supercomputers have relied on massively parallel architectures for decades, multi-core
processors are now beginning to enter the computing mainstream. The Intel Core and
AMD Athlon processors are currently introducing multi-core processing into personal
computers, and the IBM Cell processor featured in the current generation of Sony con-
sumer gaming consoles is based on a multi-core architecture.

One method of improving the performance of programs on modern multi-core proces-
sors is by using automatically parallelizing compilers, some of which have been developed
for several sequential programming languages. While it has been speculated[SL05] that
such compilers are reaching the limits of extracting parallelism from programs in non-
concurrent languages, they nevertheless show that it is possible to view parallelism as a
performance optimization that can be optionally applied to a program.

A more compelling reason to study concurrency in programming language design is
that a firm conceptual grasp on concurrency can increase our programming fluency: With
concurrent programming languages, we gain the ability to express programs as systems of
concurrent entities, rather than as strictly sequential processes. Some problem domains
appear to lend themselves “naturally” to concurrent programming solutions[RH04], much
like how recursive algorithms allow fluent and natural solutions of certain problems. Ex-
amples of application domains in which concurrency plays a critical role include network
servers, embedded systems, simulations, video games and graphical user interfaces. These
classes of programs necessarily involve concurrency, since they must interact with exter-
nal entities that exist in parallel with the programs themselves.

With concurrency, we thus get another conceptual tool with which to design our pro-

8 2 Actor-Based Concurrency

grams. However, concurrent programming is notoriously difficult and prone to errors.
A particularly infamous case of a concurrent programming error leading to disastrous
consequences is the example of the Therac-25 computer-controlled radiation therapy
machine[LT93]. In the late 1980s, this machine caused six known cases of massive ra-
diation overdoses, resulting in severe injuries and deaths. An important cause of the
Therac-25 accidents was improper synchronization between the operator interface and
the equipment control – a directly concurrency-related error.

The Therac-25 control software was developed entirely in assembly language, and thus
relied exclusively on low-level concurrency mechanisms. While assembly language is
rarely used for applications programming today, the dominant concurrency mechanism in
modern languages is still fundamentally a low-level abstraction, inspired by the nature of
computing machinery rather than by principles of mathematics or by natural metaphors.
Because of the complexity and awkwardness of low-level programming, it appears unlikely
that the full potential of concurrent programming will be realized before the programming
language design community adopts a higher level of abstraction for concurrency.

Chapter Overview

To develop concurrent programming languages, we must first understand the nature of
concurrency itself. Therefore, the purpose of this chapter is to describe the theoretical
foundation for the further development of the Merlin language. Since concurrent pro-
gramming is generally not a particularly accessible subject, this chapter introduces all
the terminology and theoretical fundamentals used throughout the rest of the report.

• Overview of Concurrency Concepts: This section gives an introduction to the basic
concepts of concurrent programming. It introduces most of the concurrency ter-
minology used throughout the rest of the thesis, and gives definitions of various
important concepts. Furthermore, it describes some of the well-known issues and
pitfalls that arise in concurrent programming.

• Models of Concurrency : This section investigates some of the basic concepts un-
derlying the different models of concurrent computation that have been proposed.
It gives a basic taxonomy of concurrent computation models, and describes the
distinctions between deterministic and nondeterministic concurrency, shared- and
distributed-memory concurrency, as well as various models for synchronization and
communication in these models. This allows us to put later parts of the thesis into
a wider context.

• The Actor Model : The final section of this chapter gives an introduction to the
theory and history of the actor model, a nondeterministic, asynchronous, message-
passing model of concurrent computation. Important concepts of the actor model
are introduced and defined in this section.

2.1 Overview of Concurrency Concepts 9

2.1 Overview of Concurrency Concepts

We can naïvely define the concept of concurrency as the property that more than one
computational process may be executing simultaneously. However, this definition dodges
the issue, since it does not explain the exact meaning of the term “simultaneous”. Let us
therefore pause to consider the exact implications of simultaneous execution.

At a very fundamental level, we can view the execution of any computer program in
terms of executions, which are ordered sets of computational steps. We can understand
the nature of concurrency and sequentiality by investigating the orderings of the com-
putational steps within executions. For this purpose, we consider two distinct orderings
which can occur in executions:

Definition 1 (Total ordering) A relation→ is a total ordering if and only if it satisfies
the following properties:

• Asymmetry : If a → b and b → a, then a = b.

• Transitivity : If a → b and b → c, then a → c.

• Completeness: For all a and b, it must be the case that a → b or b → a. 2

Definition 2 (Partial ordering) A relation → is a partial ordering if and only if it
satisfies the following properties:

• Asymmetry : If a → b and b → a, then a = b.

• Transitivity : If a → b and b → c, then a → c.

Thus, every total ordering is also a partial ordering. 2

If an execution is totally ordered, then we say that it is sequential. Because of the
completeness property of totally ordered sets, an ordering is defined between every com-
putational step in such an execution. This means that there can be no “overlaps” in time
between computational steps within a totally ordered execution. Therefore, the notion
of a totally ordered execution corresponds to the intuitive notion of sequential program
execution. A programming language is sequential if all executions of programs written
in it are sequential.

Conversely, if the ordering of computational steps within an execution is a partial
order, then the execution may contain steps between which no ordering is defined. We
say that such steps are concurrent, since the lack of defined ordering between them implies
that they may “overlap” in time. This corresponds to the intuitive notion of simultaneous
execution. An execution is concurrent if it contains concurrent steps, and a programming
language is concurrent if programs written in it can have concurrent executions.

10 2 Actor-Based Concurrency

(Sequential Execution)
Total Ordering

(Concurrent Execution)
Partial Ordering

P

P1

P2

P3

P4

Figure 2.1: Total and partial orderings between computational steps

Individual sub-executions within a concurrent execution can be totally ordered. With-
out the ability to have non-overlapping steps, many important concepts, such as causal-
ity, could not be represented in a concurrent program1. We call a totally ordered sub-
execution within a concurrent execution a process, not to be confused with the operating
system concept of the same name.

Both sequential and concurrent executions are assumed to be causally ordered : Causes
must always precede effects.

2.1.1 Interleaving and Parallelism

What does it mean for two computational steps to overlap in time? By the above
definitions, it simply means that there is no defined ordering between them. This implies
that for two concurrent computational steps s1 and s2, both s1 → s2 and s2 → s1

constitute valid orderings. Therefore, concurrent processes may be interleaved, such
that the execution has a single global sequence of computational steps, in which the
actual computational steps each belong to independent, concurrent processes. If each
computational step takes little physical time to complete, then this technique can give an
illusion of simultaneous execution. Conceptually, this corresponds to the implementation
of multitasking used in operating systems on single-processor computers.

If more than one processor is available, concurrent computational steps can be carried
out in parallel. Thus, we can view parallelism as a physical phenomenon corresponding
to the logical phenomenon of concurrency. In this view, parallelism is the implementation
technique of exploiting logical concurrency in executions to improve the performance of
programs. It is common practice in concurrency literature [RH04, MK99] to assume inter-
leaving semantics, so that for any parallel execution, there exists at least one interleaving
that is observationally equivalent to it.

1In fact, concurrency between computational steps arises when there is no causal relation between
them[RH04].

2.1 Overview of Concurrency Concepts 11

A1, A2, A3, A4, B1, B2

A1, A2, A3, B1, A4, B2

A1, A2, A3, B1, B2, A4

A1, A2, B1, A3, A4, B2

A1, A2, B1, B2, A3, A4

A1, B1, A2, A3, A4, B2

A1, B1, A2, A3, B2, A4

A1, B1, A2, B2, A3, A4

A1, B1, B2, A2, A3, A4

A1, A2, B1, A3, B2, A4
A1 A2 A3 A4

B1 B2

Figure 2.2: A concurrent execution and its possible interleavings

The interleaving semantics of a concurrent system allows us to understand the phe-
nomenon of nondeterminism, which is key to understanding why concurrent programming
is difficult. Nondeterminism in concurrent executions occurs precisely because of the par-
tially ordered nature of concurrent steps: Since there is no defined ordering between these,
some ordering must be chosen in order to interleave them.

The problem of choosing orderings between concurrent steps is known as scheduling.
When several processes execute in parallel, or when a scheduler is required to consider
timing factors external to the execution, then various environmental interferences (such
as other active executions) may cause the actual interleaving of computational steps
to differ between individual executions of the same program. An example of this phe-
nomenon arises when a concurrent execution relies on the operating system scheduler
to interleave its processes: Since the operating system scheduler is also responsible for
scheduling processes in other programs running on the system, its scheduling decisions
can be affected by external factors.

2.1.2 Interaction

For concurrency to be useful for actual problem-solving, it is a necessary precondition
that processes are capable of affecting each other – otherwise, having more than one of
them would serve no purpose. We say that two processes interact when a computational
step within one process causally precedes a computational step within another process.
For example, if a process P1 needs to access a resource which another process P2 controls,
then an access request by P1 causally precedes the action P2 takes in response to that
request.

12 2 Actor-Based Concurrency

Race Conditions

We are now able to understand some of the fundamental problems that arise in concurrent
programs, since these problems ultimately stem from the combination of nondeterminism
and interaction.

Consider two concurrent processes P1 = P2 = {v := v + 21}, and assume that the
variable v, which they both access, is initialized to the value 0. Intuitively, an execution
of P1 and P2 should terminate such that v = 42 – but does it? Let us investigate the
situation by breaking down the definition of P1 and P2 down into primitive computational
steps, as they might be realized on a physical computer:

1. Fetch the value v into a register r.

2. Add 21 to the contents of r.

3. Store the contents of r into v.

Since P1 and P2 are concurrent, their computational steps may be interleaved in any
order. Unfortunately, some interleavings can lead to results that violate our intuition of
correctness – and, usually, the intention behind a program. For example, consider the
following interleaving of P1 and P2:

1. P1 fetches v = 0 into register r1.

2. P2 fetches v = 0 into register r2.

3. P1 adds 21 to the contents of register r1 = 0, yielding r1 = 21.

4. P1 stores 21 into v.

5. P2 adds 21 to the contents of register r2 = 0, yielding r2 = 21.

6. P2 stores 21 into v.

When this execution terminates, v is set to 21. A situation like this, where the correct
outcome of an execution is dependent on a precise order of events, is referred to as a race
condition. Program errors resulting from race conditions can be very difficult to track
down, precisely because of the nondeterminism inherent in concurrent systems: Since the
scheduler may choose different interleavings for each execution, a harmful result of a race
condition may arise only under specific circumstances that can be difficult to reproduce.
The Therac-25 malfunction mentioned in the introduction of this chapter was due to a
race condition[LT93].

We say that an execution is safe if it is defined such that all possible interleavings of
its processes yield correct results – in other words, if it is free from race conditions. To
program reliable concurrent systems, we require a mechanism to enforce safety.

2.1 Overview of Concurrency Concepts 13

We can use our notion of implicit causal ordering to ensure the safety of processes. In
the example above, the only correct interleavings of P1 and P2 are the two where one
process completely precedes the other: P1 → P2 and P2 → P1. We require a mechanism
which ensures that the completion of one process causes the beginning the other. Such
a mechanism is called a synchronization between the two processes. A program segment
is synchronized if it can only be executed by a specific number of processes at any one
point in time. When one process executes a synchronized program segment, then the
scheduler ensures that no other process may execute that segment until the first process
has finished. We refer to entering and leaving synchronized program segments as locking
and unlocking them, respectively.

Deadlock and Livelock

A synchronization mechanism is necessary to ensure safety, but also introduces new haz-
ards. Synchronized resources allow a process to lock a resource, forcing other processes
to wait until it is unlocked. Unfortunately, this allows processes to effectively monopo-
lize resources by locking them indefinitely, preventing other processes from making any
further progress. The classic dining philosophers problem (figure 2.1.2) [Dij71] illustrates
this class of error.

Five philosophers are seated at a round table, sharing a delicious meal of instant ramen
noodles. Each philosopher can be in one of two states, Eating his noodles and Thinking
great thoughts. A philosopher requires two chopsticks to enter the Eating state, and will
put his chopsticks back on the table upon re-entering the Thinking state. Unfortunately,
a philosopher has no Working state, so the five philosophers can only afford a single
chopstick each (this also accounts for their choice of meal). They have arranged the
chopsticks so that there is one chopstick between each pair of philosophers. Assume that
all hungry philosophers have the following, rather single-minded behaviour:

• When a philosopher feels hungry, he first picks up the chopstick to his right. If
there is no chopstick to his right, he waits until his neighbour has dropped it.

• When a philosopher is holding a chopstick in his right hand, he picks up the chop-
stick to his left. If there is no chopstick to his left, he waits until his neighbour has
dropped it.

• The philosopher then proceeds to eat, and drops the chopsticks when he is no longer
hungry.

By this behaviour, a hungry philosopher will never put down a chopstick before he has
eaten. If all five philosophers simultaneously pick up the chopsticks to their right, they
will have picked up all chopsticks. In that case, no philosopher can pick up a left-hand
chopstick, which in turn means that no philosopher will ever eat, and no philosopher will
ever put down a chopstick.

14 2 Actor-Based Concurrency

Plato

Kant

MarxLao−Tse

Hobbes

Figure 2.3: Dining Philosophers

We refer to this situation, where each involved process is waiting for the others to
finish, while also preventing the other processes from finishing, as a deadlock. There are
four necessary and sufficient conditions for deadlocks to arise[Eng04]:

No Preemption : Once a process has locked a synchronized resource, it cannot be pre-
empted by another process. The process must voluntarily release the resource. In
the dining philosophers example, this condition is satisfied because once a philoso-
pher has taken a chopstick, he will hold on to it until he has eaten. If it was
possible for another philosopher to steal a chopstick from his neighbour, then an
unscrupulous philosopher will eventually finish eating and put down his chopsticks,
breaking the deadlock.

Circular Waiting : The processes involved in the deadlock must form a cycle. This means
that ultimately, deadlock is a “chicken-and-egg” paradox, in which any process in
the set is dependent on its own completion before it can complete. In the example,
this condition is satisfied because the philosophers are seated around a circular
table with only five chopsticks. If the philosophers were seated in a row, with an
extra chopstick at one side, then it is guaranteed that two chopsticks will always be
available for a philosopher seated at one of the far ends, thus breaking the deadlock.

Hold-and-Wait : Once a process in the deadlock has locked a resource, it will not
release the resource before it has completed its task. In the example, this condition

2.1 Overview of Concurrency Concepts 15

is satisfied by the definition of a hungry philosopher’s behaviour: He will not put
down a chopstick before he has eaten. It would be possible to break the deadlock if
a philosopher could put down a chopstick when he realizes that the other chopstick
is not available.

Mutual Exclusion : Only one process may keep a lock on a resource at any given instant.
In the example, this condition is satisfied because two philosophers cannot eat with
the same chopstick simultaneously. If the philosophers know a technique allowing
two people to share a chopstick in use, then the deadlock could be broken.

A related problem is livelock, in which a set of processes are active, but in such a
way that the activity of each process prevents the other processes from making progress.
A commonly-used metaphor for livelock is the “hallway dance”: Two people meet in a
narrow hallway, and to avoid an unpleasant collision, both people step aside to allow the
other to pass. When both keep stepping to the same side at the same time, they are
livelocked. Livelock is generally not as severe a problem as deadlock, since even small
differences in timing between the processes will eventually break a livelock.

Unfortunately, it is the mechanism that prevents race conditions that also introduces
the possibility of deadlock and livelock. This means that deadlock and livelock can only
be universally eliminated by also eliminating synchronization – and in that case, it is
impossible to guard against race conditions. These, in turn, are made possible because
of the inherent nondeterminism of concurrent processes. Thus, concurrent programming
will frequently require the programmer to consciously balance considerations of safety
(freedom from race conditions) with considerations of liveness (freedom from deadlock).

Therefore, practical concurrent programming languages are necessarily subject to some
complications that do not arise in sequential programming languages. This makes it in-
herently more difficult to write correct concurrent programs: A concurrent program must
be correct for all possible interleavings of its computational steps, whereas a sequential
program by definition only has one possible interleaving. To cope with this additional
difficulty, it is useful to introduce constraints on the set of possible interleavings, bringing
down the total number of possible interleavings and making it easier for programmers to
understand the concurrent execution of their programs.

Such constraints can be introduced into a concurrent language by choosing a particular
set of concurrency abstractions, ideally a set which allows a programmer to easily under-
stand and conceptualize the interactions and synchronizations taking place. In high-level
languages, this is done by basing the concurrent semantics of the language on a specific
concurrency model, allowing the programmer to understand the interleaving possibilities
in terms of higher-level abstractions. Because concurrency models are such an important
component of concurrent programming language design, we turn our attention to the
design of concurrency models.

16 2 Actor-Based Concurrency

2.2 Models of Concurrency

A model of computation is an abstract, formal system which defines a programming
language and its semantics. By definition, a model is a representation of some object
being modelled. A computation model is thus an abstract representation of computation,
reather than a concrete computation mechanism.

Computation models are useful to practicing programmers precisely because they allow
a programmer to disregard the finer details of how computations are realized. The
mechanism used to accomplish this is by providing a set of abstractions, allowing the
programmer to make some simplifying assumptions about the programs written within
a particular model. For example, a programmer working with a model which supports
recursion can assume the existence of a call stack to handle the parameters and return
values of each level in a recursive procedure, and a programmer working within a pure
functional model can assume that no program element has side effects. It does not matter
if the concrete realization of recursion uses a continuation chain rather than a stack, or
if the implementation of a functional language uses assignment statements “behind the
scenes”, as long as there is no observable difference between the model and its realization.

A concurrency model is thus a computation model which provides a set of abstractions
about the nature of concurrent computation. Models of concurrency can help reduce the
difficulty of writing and understanding concurrent programs, just like the aforementioned
examples showed how sequential computation models can ease the understanding of
sequential programs. We can understand concurrency models in terms of their answers
to three fundamental questions:

• Does the model have observable nondeterminism?

• Which memory model does the model use?

• Which synchronization model does the model use?

The answers to these three questions have profound implications on the basic anatomy
of the languages based on them, and the programs written in those languages. The
universe of concurrency models can be understood as a hierarchical taxonomy, divided
on the lines of these three, fundamental questions (see figure 2.2). The rest of this
treatment of concurrency models will be based around this taxonomy, and the following
discussion should make the structure of the taxonomy clear.

2.2 Models of Concurrency 17

Asynchronous Messages

DeterministicNondeterministic

Shared Memory

Synchronous Messages

Distributed Memory

Locks

Concurrent Computation Models

Actor Model occam
CSP

Python
C / C++Erlang

Sync. Object FieldsMonitors

Java

Declarative Concurrency (Oz)

Concurrent Pascal

Figure 2.4: Taxonomy of Concurrent Computation Models

2.2.1 Deterministic Concurrency Models

Arguably the most important characteristic of a concurrency model is whether or not
it is observationally deterministic. Observationally deterministic models have some very
compelling advantages over nondeterministic models, but are also subject to severe lim-
itations.

A concurrency model is observationally deterministic if any nondeterminism that arises
in a concurrent execution is not observable by the programmer. This property has pro-
found implications for programs written in an observationally deterministic concurrent
language, an important one being that race conditions are impossible in such a language.
This follows trivially from the definition of race conditions: Race conditions arise when
the nondeterministic ordering of computational steps in an execution can lead to observ-
ably different results.

Observationally deterministic concurrency can be modelled with processes operating
on dataflow variables[RH04]. A dataflow variable is a data abstraction which has the
property of implicit, data-driven synchronization, and which can be in either a bound or
unbound state. Here is an informal semantics of dataflow variables:

• When a process attempts to read a bound dataflow variable, it obtains the value
and proceeds normally.

• When a process attempts to read an unbound dataflow variable, it silently blocks
until the variable becomes bound.

• Assigning a value to an unbound dataflow variable causes it to become bound, which
implicitly reactivates all processes blocked on it.

• Attempting to assign a value to a bound dataflow variable is an error.

18 2 Actor-Based Concurrency

Programming languages based on multiple processes operating on such variables have
observationally deterministic concurrency because of the single-assignment semantics of
dataflow variables, and because of the silent, implicit blocking. Due to the combination
of these two factors, assigning a value to a variable causally precedes reading it, which
imposes an ordering on the computational steps in the execution of a program in this
model. This ordering has the property that only the intermediate steps between assign-
ments and reads are subject to nondeterminism, the sequence of assignments and reads
will be identical for each execution of the program, given the same input.

It is important to note that because of the blocking semantics of dataflow variables, ob-
servationally deterministic concurrent programs can enter deadlocked states. Deadlocks
do not affect the observational determinism of a program: If a given set of inputs to
an observationally deterministic program leads an execution to a deadlocked state, then
that set of inputs will lead all executions of the program to a deadlocked state. This
makes deadlocks considerably easier to debug in observationally deterministic programs.
This model is presented in Concepts, Techniques and Models of Computer Program-
ming [RH04], in which it is implemented as a subset of the Oz language.

However, many application domains are naturally characterized by observable non-
determinism, and this appears to be especially true for application domains in which
concurrency plays an important role. For example, consider a client-server application,
in which a server process maintains ongoing communications with a set of client pro-
cesses. If the client processes are independent (for example, if they are running on
different physical machines), then they can send commands to the server process in an
unpredictable order. However, this unpredictable order is in fact an instance of ob-
servable nondeterminism! Unless the server can precisely predict the exact sequence of
incoming commands, then such an application is impossible to model without introducing
observable nondeterminism[RH04].

This greatly limits the relative expressive power of observationally deterministic con-
currency models, and explains why the determinism question is placed at the root of our
taxonomy: Programs exist that can be modelled in nondeterministic concurrency mod-
els, but not in deterministic ones[RH04]. Conversely, as we shall see, nondeterministic
concurrency models are equal in expressive power: It is possible to implement one of
those models in terms of another.

2.2.2 Shared-Memory Concurrency Models

In shared-memory concurrency, programs are represented as a single, shared set of mem-
ory cells, which a number of concurrent processes operate upon. Any process may read
and modify the shared memory. Conceptually, processes in a shared state model are
active entities, which may make decisions and perform activities based on both their
local concerns and their observations of the store. The store itself is entirely passive, and
only changes when some process modifies it. Because a process can only affect another

2.2 Models of Concurrency 19

P

M

P

P

P

P

P | M
P | M

P | M

P | M
P | M

Figure 2.5: Shared (left) vs. Distributed Memory (right) Concurrency Models

process by modifying the shared store, the interaction between processes in this model
is indirect.

In part because the shared state model closely mimics the actual operation of a single-
memory multi-processor computer, it is often used to implement concurrent, “multi-
tasking” processes in operating systems [Eng04, Lov05]. Note that in operating system
terminology, a process denotes an independent execution which has its own memory
space, whereas an operating system thread more closely resembles the usage of the word
“process” adopted in this chapter. Threads in operating systems are “lightweight pro-
cesses”, which share the memory space of all other threads in the program that spawned
them. Different operating systems provide different thread APIs, with the two in most
widespread use being POSIX pthreads and the Windows thread API. Since most shared-
memory concurrency implementations are based on operating system concepts, and thus
adopt a similar terminology, we will refer to processes within shared-memory concurrent
models as “threads”.

The shared-memory model is very common in programming practice. The two afore-
mentioned thread APIs are often used to develop concurrent programs in C and C++.
Furthermore, the shared-memory model is the default mechanism of concurrency in both
Java and C#, and is also used in the scripting languages Python, Perl and Ruby,
among others. A shared-memory concurrency model for the Scheme language is given
in SRFI-18.

The key synchronization problem in shared-memory concurrency models is maintaining
the consistency of the memory while multiple, unpredictable processes are accessing it.
Several mechanisms for this have been proposed, including (among others) lock variables,
monitors and synchronized object fields.

20 2 Actor-Based Concurrency

Lock Variables

The most common mechanism for coordinating access to the shared store in shared-
memory concurrency models is by using various forms of lock variables. The simplest
lock variable is the mutex, which ensures mutual exclusion. A mutex can be in the states
Locked or Unlocked. The informal semantics of a mutex can be summarized as follows:

• If a mutex is Unlocked, and a thread attempts to lock it, then it becomes Locked.

• If a mutex is Locked, and a thread attempts to lock it, then the attempt to lock it
blocks, preventing the thread from progressing.

• If a mutex is Locked, and the thread holding the lock unlocks it, then it becomes
Unlocked, unless any threads are blocking on lock attempts. In that case, one of
them is reactivated, and the mutex remains Locked.

Mutexes can be used by threads to guard against race conditions by locking a mutex
before entering a potentially unsafe state, and unlocking it again upon leaving that
state. This guarantees that at most one thread will ever be in that state at any point in
time. A somewhat more flexible generalization of the mutex concept is the semaphore,
which is based on an integer counter rather than a binary Locked/Unlocked state.

Unfortunately, lock variables are very prone to deadlock. When any thread requires
multiple locks, then all threads that require those locks must lock and unlock them in
the same order, or a deadlock will result[Eng04]. This has several unfortunate impli-
cations for programming with lock variables. One is that lock-based subprograms are
not composable: It is not possible to combine two correct lock-based subprograms and
assume that the result is also correct. Another is that locks cause an abstraction leak :
Programmers who use a lock-based procedure must be aware of the order in which that
procedure acquires the locks, if another part of their program requires those locks as well.

Monitors

Monitors[Hoa74] represent an attempt to combine shared-memory concurrency with
structured programming methods. A monitor consists of a set of protected memory
cells, as well as a set of procedures which can operate on those cells. Like a module in
some programming languages, a monitor exports a set of procedures for use by other
parts of the program, and enables synchronization by keeping an implicit mutex lock.
Whenever one of the exported procedures is called by the outside world, the mutex is
implicitly locked, and when the procedure finishes, the mutex is implicitly unlocked. This
guarantees mutual exclusion between the exported procedures of a monitor.

As is evident from this description, it is possible (and quite straightforward) to imple-
ment monitors in terms of lower-level lock variables. The reason for linguistic support for
monitors follows the general rationale of the structured programming movement: Like

2.2 Models of Concurrency 21

structured sequential programming constructs leave less room for programmer error than
unstructured ones (such as the infamous GOTO statement[Dij68]), so too do monitors leave
less room open for error than explicit mutexes or semaphores.

Monitors enjoyed some popularity in the concurrent language design community in the
late 1970s and early 1980s, and some notable examples of monitor-based languages from
this era include Concurrent Pascal and Mesa. Since then, there has been a general trend
in the language design community to move away from monitors and back to explicit lock
variables[Rep92], because monitors mix the otherwise separate concerns of modularity
and synchronization.

Synchronized Object Fields

In object-oriented languages, it is possible to use a concept similar to that of monitors
to achieve synchronized access to the fields of an object. In this model, every object
keeps an internal mutex variable, which is implicitly locked when a method is called, and
unlocked when the call returns.

An important difference between monitors and synchronized object fields is that the
object in this model may have publicly accessible methods that are not synchronized – in
other words, the programmer must explicitly choose which of the methods of an object
should be synchronized and which shouldn’t. The act of balancing liveness and safety in
such languages is largely a matter of deciding which elements of the public interface of
an object should be synchronized. Like monitors, these mechanisms can be (and usually
are) implemented in terms of low-level lock variables, but linguistic support for them is
meant to reduce the likelihood of programmer error.

The Java language is a notable example of a language which provides synchronized
object fields[Eck98], as well as low-level lock mechanisms.

2.2.3 Distributed-Memory Concurrency Models

In contrast to the shared-memory approach, a distributed-memory concurrency model re-
lies on completely independent processes, which have no shared memory between them.
In such a model, every process has its own local memory, which is not directly visible
to any other process. This implies that all data in the system is managed by processes.
Instead of interacting indirectly through a shared store, processes in such models in-
teract by communication, which is why this model is often known as message-passing
concurrency2. Unlike threads in a shared-memory concurrency model, message-passing
processes are reactive entities, which only perform activities in response to stimuli.

As is implied by the name, distributed-memory concurrency models are especially
well-suited for distributed systems, since a distributed system is defined precisely as a

2Throughout the rest of this thesis, the terms “distributed-memory concurrency” and “message-passing
concurrency” are used interchangeably.

22 2 Actor-Based Concurrency

system composed of independent entities which interact only using messages[CDK94].
Therefore, many of the theoretical results of the distributed programming field apply to
any purely message-passing concurrent system, regardless of whether it is running on a
single physical machine or if it is distributed in space across multiple machines.

However, distributed-memory concurrency is relatively rare in programming practice,
and is typically provided by languages that are designed explicitly for concurrent or dis-
tributed programming. For example, Erlang, E and occam provide message-passing
concurrency primitives. In the scripting language community, distributed-memory con-
currency is also comparatively rare, but some examples do exist. Notably, the Io language
uses a purely message-based concurrency model, and the Stackless dialect of Python
extends stock Python with communication channels and “lightweight threads”. Many
theoretical models of concurrency are based on communicating, distributed processes;
examples include Csp, the π-calculus and the actor model.

Synchronization in distributed-memory models can be understood in terms of the syn-
chronization semantics of the communication primitives in the model. In nearly all cases,
the message reception primitive blocks, although a few message-passing concurrent lan-
guages provide timeouts or polling reception primitives. However, the synchronization
semantics of sending primitives is a central choice in the development of a message-passing
concurrency model. We will consider both synchronous and asynchronous message send-
ing primitives, assuming blocking reception primitives for both.

Synchronous Communication

A synchronous message send will block the sending process until the receiver is ready
to process the message. In this case, the message sending operation functions as an
implicit synchronization mechanism. Formal concurrency models based on synchronous
communication include CSP and the π-calculus, and concurrent programming languages
which implement synchronous communication models include occam and Pict.

Informally, the semantics of synchronous messaging can be described as follows:

• Send m, P: Send the message m to target process P . This call blocks until P issues
a corresponding Receive.

• v = Receive: Receive a message from the communication port and bind the contents
to the name v. If no message is available, this call blocks until another process Sends
a message to this process.

Recall that all data objects in a message-passing system are kept in the local stores
of processes. This means that for any other process to access data kept in the store of
another process, it has to explicitly request the data by sending a request message to
that process. Message-passing programs can use synchronous messages to ensure against

2.2 Models of Concurrency 23

race conditions by simply having each process only accept incoming messages when it is
in a safe and consistent state.

This has a considerable benefit over lock variables: It does not suffer from leaky
abstraction. A programmer can write processes that send synchronous messages to other
processes without any knowledge of the internals of the receiving process, except that it
will eventually Receive the sent message.

However, synchronous messaging suffers from two problems: Excessive blocking and
recursion deadlock. Both problems stem from the semantics of Send. First, when a
process Sends a message to another process, it is unable to do any more work before
the receiving process issues the corresponding Receive. This is a parallelism bottleneck,
and considerably lowers the degree of concurrency in a program. Secondly and more
importantly, any recursive message pattern leads to an instant deadlock. This follows
from the semantics of Send: When a process Sends a message to itself, it will block and
wait for the corresponding Receive, and therefore, it never proceeds to call Receive.

Asynchronous Communication

An alternative communication mechanism for message-passing concurrency models is
asynchronous messaging. Asynchronous messaging assumes the existence of message
buffers in processes, and most concurrency models assume that message buffers are of
unbounded size. Message buffers may be queues with strictly First-In-First-Out (FIFO)
semantics, or they may use a more sophisticated selection algorithm to choose which of
the messages in the buffer to process next. Formal concurrency models based on asyn-
chronous messaging include the Asynchronous π-calculus, as well as the actor model (see
section 2.3). Practical programming languages which implement asynchronous message-
passing concurrency include Erlang, Scala and Io.

As with the preceding examples, we give informal semantics of asynchronous messaging:

• Send m, P: Place the message m in the message buffer of the process P .

• v = Receive: Receive a message from the message buffer and bind the contents to
the name v. If the buffer is empty, this call blocks until a message arrives in the
buffer.

Observe that in the asynchronous model, only the Receive operation blocks. This has
major implications for programs in the model. Notably, both the excessive blocking
and the recursion deadlock problems of the synchronous model no longer exist. The
parallelism bottleneck is eliminated because a sending process may continue working
after issuing a send. This increases the total concurrency in the system, at the cost of
message buffer overhead. Recursion deadlock is eliminated because a process can place
a message in its own buffer and immediately move on, thus eventually reaching the next
Receive.

24 2 Actor-Based Concurrency

Unfortunately, asynchronous messaging introduces the risk that a process can propa-
gate stale information to other processes, which can lead to incorrect results, similar to
those that arise from race conditions in shared-memory concurrent systems. Consider a
process P1 which changes its internal state (say, the value of the variable v) upon receiv-
ing a message m, but before it can change state, it must consult another process, P2.
It Sends a message to P2 and then calls Receive, awaiting the response from P2. What
happens if a third process, P3, requests the value of v? Then P1 will reply with a value
of v which will be changed very soon afterwards, and the system enters an inconsistent
state.

This problem can be alleviated using insensitivity. Insensitivity means that after send-
ing a request message, a message-passing process can partially disable message reception
so that the only message it will receive is the reply. This prevents it from propagat-
ing stale information, but unfortunately, it reintroduces the problems inherent to syn-
chronous messaging – essentially, insensitivity is a mechanism which allows asynchronous
communication systems to simulate synchronous ones.

2.2.4 Evalution of Concurrency Models

The core problem of this thesis stated that the purpose of this work is a study of a par-
ticular concurrency model, the actor model. Having investigated some of the important
properties of concurrency models, we are now in a position to describe exactly why the
actor model is interesting to study, compared to all the other concurrency models.

Which model of concurrency is “right” for a programming language is a controversial
question, and while there is no academic consensus about its answer, it is important to
consider the question in context. Before choosing a concurrency model for a language,
it is thus important to briefly reflect on the purpose of that language. While a full dis-
cussion of programming language requirements is postponed to section 3.1.2, we already
touched upon the purpose of studying concurrency in the introduction of this chapter.
We motivated the study of concurrency was motivated with the following factors:

• Better utilization of parallelism.

• Improving programming fluency.

• The “natural” need for concurrency in certain problem and application domains.

• Using higher-level programming abstractions to reduce programming errors.

We will concentrate on models suitable for a general-purpose language, useful to con-
ceptualize concurrent solutions to many different problems. Because we have observed
that concurrent programming is inherently more complex than sequential programming,
this language should aim for simplicity, to avoid introducing any more complexity into

2.2 Models of Concurrency 25

Shared Distributed
Memory Single global store Multiple local stores
Processes Active Reactive
Process interaction Indirect Direct
Synchronization Memory locking Message synchronization

Table 2.1: The shared and distributed memory models

an already complex subject. Finally, the language should have a high abstraction level,
because of the observation that the currently dominant paradigm for working with con-
currency works at a too low level.

Deterministic vs. Nondeterministic Concurrency

We have seen that while deterministic concurrency models have many desirable proper-
ties, they are also strictly less powerful than nondeterministic ones: There are programs
that can be expressed in nondeterministic models that are impossible to express in deter-
ministic ones, precisely because certain programs require the ability to express observable
nondeterminism due to their problem or application domain. This indicates that a lan-
guage based upon an observationally deterministic concurrency model cannot be truly
general-purpose.

It is still possible to make some use of deterministic concurrency in a general-purpose
language: Both the E and Oz languages include deterministic subsets. These languages
are based on layered language designs[Roy06], in which several concurrency models are
available, and where the programmer can choose between deterministic and nondeter-
ministic concurrency depending on context and need. However, a layering of multiple
models increases the overall complexity of the language, since the language has to include
several linguistic concepts for accomplishing the same task. This conflicts with our goal
of simplicity. We therefore conclude that a nondeterministic model is most suitable.

Shared vs. Distributed Memory

Having chosen a nondeterministic model, we now have to consider whether the language
should be based on a shared or distributed memory model. Table 2.2.4 reviews the
identifying properties of both models.

It is important to note that the two memory models are equivalent in expressive power.
This follows from the fact that a message-passing communication system can be devel-
oped in terms of shared memory primitives, and vice versa. For example, the Scala
message-passing concurrency system is implemented in terms of the shared memory
model provided by the Java Virtual Machine[HO07], and the paper Actors and Continu-

26 2 Actor-Based Concurrency

ous Functionals[HB77] gives an implementation of shared memory cells as message-based,
distributed-memory actors.

Despite this equivalence, the different abstractions provided by the two models give
them distinct sets of strengths and weaknesses, both because of implementation factors
and because of the quite different styles of programming they encourage. This means
that one model may conceptually “fit” a particular problem domain better than the other.
We have already noted that the message-passing model lends itself well to distributed
programming applications, and that the shared-memory model is well-suited for giving
a conceptual model of operating systems on single-memory computers. We can con-
trast some of the relative strengths and weaknesses of the two models relative to the
motivations of concurrency we identified in the introduction.

We consider the implementation efficiency (and the related memory usage) of the
models, which is important for the goal of improving program efficiency using parallelism.
We consider the abstraction level, which is important for the goal of programming fluency.
Finally, we consider the facilities for reasoning about programs, which is important for
understanding their correctness.

Efficiency : Shared-memory concurrency is often implemented directly in terms of low-
level operating system primitives. This means that shared-memory concurrency
implementations can often be implemented with very low overhead, and the con-
currency primitives of shared-memory concurrency implementations can thus be
very fast. Message-passing concurrency implementations are often implemented
as compound procedures abstracting over shared-memory primitives, reducing the
efficiency of message-passing primitives.

Memory Usage : A shared-memory concurrency implementation can be very light on
memory resources, precisely because of the memory sharing. Each process needs
only store pointers or references to the shared state, and shared data values do not
need to be copied. The lack of copying further improves the speed of the model.
In contrast, message-passing concurrency implementations must perform copies of
data values when these are sent in messages.

Abstraction Level : The shared-memory model has been criticized[SL05] for having a
too low level of abstraction, since it relies on a set of abstractions that are very
machine-oriented in nature. This means that shared-memory concurrent programs
often suffer from excessive clutter of low-level concurrency management code. In
contrast, message-passing models are often founded in mathematics[Mil75], or in
abstractions designed to resemble physically observable phenomena[HB77].

Reasoning : Causal relations in message-passing systems have been studied intensely,
and are reasonably well-understood[HB77]. For example, it is necessarily the case
that sending a message causally precedes the reception of that message. Such

2.2 Models of Concurrency 27

“natural laws” for message-passing systems allows reasoning on them by reasoning
on causality chains. There are no similar reasoning methods for shared-memory
concurrency models[RH04]. This makes message-passing systems simpler to reason
about than shared-memory systems.

We can make some observations based on the above. When processor and memory
efficiency are of high importance, shared-memory concurrency is most applicable. When
it is important to conceptualize programs at a high level of abstraction, or to reason about
the correctness of programs, then message-passing concurrency is most suitable. The
introduction identified the goal of improving programming fluency as more important for
this project than that of improving program performance, so we choose message-passing
concurrency for our concurrency model.

Synchronous vs. Asynchronous Communication

Having identified that our model will be based on distributed memory and message-
passing, the final question to address is whether we should use synchronous or asyn-
chronous communication. This is a hotly debated topic in the message-passing concur-
rency community, but it is important to note that just like with the memory models,
the two models are in fact equivalent in formal expressive power. As discussed in section
2.2.3, an asynchronous system can model a synchronous one by using a combination of
acknowledgement messages and insensitivity. Likewise, a synchronous system can model
an asynchronous one by using a synchronous process to model message buffers, and make
sure that such buffer processes will always enter a state where they will Receive the next
message[Rep92].

However, synchronization is rarely an “all or nothing” consideration. Some activities
must be synchronized, whereas others should be performed asynchronously3. The syn-
chronous model performs synchronizations implicitly, but has the drawback that the pro-
grammer must resort to modelling a message buffer when he doesn’t want a synchroniza-
tion. Likewise, the asynchronous model requires the programmer to model synchronicity
using insensitivity when he does want a synchronization. This means that an important
stylistic difference between programs in the two models is whether or not controlling the
degree of synchronization is viewed subtractively or additively. It appears at this point
that the mechanism for simulating asynchronous semantics within a synchronous model
is more cumbersome than vice versa, so we choose asynchronous communication for our
model.

In summary, we have found that what we require is a non-deterministic, asynchronous
message-passing model. One model that meets these criteria is the actor model, and
thus, we now turn our attention to a deeper study of that model.

3This corresponds somewhat to the balancing act between safety and liveness.

28 2 Actor-Based Concurrency

2.3 The Actor Model

The actor model is a concurrent computation model, originally developed in the 1970s
for artificial intelligence applications. Apart from its early artificial intelligence roots, the
actor model has been used as a tool to explore programming issues within distributed,
concurrent and parallel systems. The universal unit of computation in the model, from
which it gets its name, is the actor. While individual actors are simple entities with
a very limited repertoire of actions, a community of actors can perform sophisticated
computational tasks through cooperation and coordination. The actor model is a non-
deterministic, purely message-passing model based on buffered, asynchronous messages.

2.3.1 Basic Concepts

The core idea of the actor model is the philosophy of representing programs as societies of
actors, which coordinate their actions using a pure asynchronous message-passing com-
munication system. Actor-based systems have several important, defining characteristics:

Locality : An actor system has no concept of global state. In other words, there are no
data values that exist independently of the actors that make up the system.

Opacity : Individual actors can have local state, but this state is completely concealed
from the outside world. There is no way for any actor to directly read or modify
the state of another actor; actors must transmit data to one another in messages.

Independence : Actors are concurrent entities which exist independently of each other.
Thus, they may carry out actions in parallel, and can exist distributed on several
physical computers.

The actor model unifies some of the concepts from the object-oriented and func-
tional programming paradigms. Like objects in object-oriented programming, actors
are independent entities with identity that encapsulate an internal state, and like func-
tions in functional programming, actor computation does not use destructive memory
update[HA86].

Actors

The fundamental primitive of the actor model is the actor. An actor is a reactive object
which consists of an address and a behaviour. The address is a globally unique identifier,
and serves as the actor’s identity. Addresses in the actor model are first-class values, and
may be freely communicated to other actors[Agh86].

A behaviour, in turn, consists of a set of acquaintances, which are addresses of other
known actors, as well as a script, which is a piece of code the actor executes when

2.3 The Actor Model 29

Communication System

Script

Message

Buffer

A
cq

u
ain

tan
ce S

et

Behaviour

Actor

Figure 2.6: Internal Anatomy of an Actor

it receives a message. The acquaintance set is fundamental to how the actor model
represents state: Rather than having a set of local, assignable variables, an actor has a
set of other actors it can communicate with. The members of this set may be completely
unknown to other actors in the system. Since actors are reactive objects, their behaviour
scripts are only ever invoked in response to received messages. Scripts are combinations
composed of the following primitive actions[Man88]:

Conditional Decision : The actor may make simple conditional decisions, based only on
information in its acquaintance set, or the message it received.

Message Transmission : The actor may send a finite number of messages to actors that
are either in its acquaintance set, or referred to in the message it received.

Actor Creation : The actor may create a finite number of new actors. The addresses of
these actors may be communicated to other actors.

Behaviour Replacement : The actor must specify a replacement behaviour, which is
then used when it receives the next message. This is how the actor model represents
state: The set of local values of an actor is its acquaintance set, and the actor may
replace its acquaintance set (as well as its script) when changing behaviour.

30 2 Actor-Based Concurrency

There is no implied ordering between the above types of action[Agh86].
An important observation to make here is that the set of possible actions for a be-

haviour script, when not taking further communication into consideration, is very com-
putationally weak. It is not even Turing-complete4. The model achieves full compu-
tational power only through communication within communities of actors, and it has
been shown that patterns of actor message passing can be used to model the traditional
control structures of sequential programming languages[Hew76].

Communication

The fundamental communication mechanism of the actor model is asynchronous buffered
message-passing, similar to the asynchronous communication primitives described in sec-
tion 2.2.3. The actor communication system is sometimes metaphorically referred to as
the “mail system”, a metaphor coined in part to distinguish the asynchronous actor com-
munication model from the synchronous communication models used by Csp and process
calculi such as CCS and the π-calculus: In a similar spirit as the “mail system” of the
actor model, one could liken the communication systems of these models to a “telephone
network”. The communication semantics of the actor model has the following defining
characteristics[HRAA84]:

Asynchrony : Messages are not guaranteed to arrive in the order in which they were
sent. This also implies that a sender does not need to pause execution to wait for
an acknowledgment, but may proceed immediately.

Fairness : The actor model assumes weak fairness: When a message is sent, it will arrive
in finite time. The model makes no other assumptions about the order in which
messages arrive.

Directness : The sender of a message must have an explicit reference to the address of
the message target5.

The only mechanism for both control flow and data transfer in the actor model is
message passing. Similar to how the Lisp family of languages blurs the distinction
between code and data[AS96], the actor model further blurs the distinction between
control flow and data flow[Hew76]. Because of these characteristics, the actor model
is able to model many different forms of data and control structures, ranging from the
well-known concepts of recursion and iteration, to more esoteric forms of control and
data structures, such as races6[Lie81b].

4In particular, the lack of primitive recursion and iteration makes a single actor incapable of simulating
a looping Turing machine without resorting to communication with other actors, or with itself.

5The directness characteristic is not mentioned as an explicit characteristic in actor literature, it is
assumed. Directness follows from the fact that an actor may only send messages to its acquaintances,
or to actors named in a message it has received.

6A race is a sequence ordered by the time each element took to compute.

2.3 The Actor Model 31

Events and their Orderings

Fundamental to understanding concurrency and sequentiality in the actor model is the
concept of events, and how events are ordered. In shared-memory concurrency models,
the fundamental construct used to reason about the sequence of computational steps
is the global state. In such models, computation can be understood as a sequence of
transitions from one “state of the universe” to another. This view, however, is not suitable
for message-passing models such as the actor model, which do not have a concept of global
state. Instead, the implied sequences of actions in the actor model can be reasoned about
using event orderings.

Events are the fundamental interactions in the actor model, each comprising the arrival
of a message at a target actor. Since message passing is the only means of interaction
in the actor model, events provide a useful mechanism to reason about the sequence of
actions in an actor system. A set of foundational laws about event orderings are given in
the seminal paper Actors and Continuous Functionals [HB77], the most important one
of which being the observation that causes always strictly precede effects, just as in the
physical universe. In other words, when event E1 is the cause of E2, then the progression
of events E1 → E2 must be strictly sequential. As in our view of concurrency presented
in section 2.1, a set of events are concurrent when there are no causal relations between
them, and they may be interleaved or parallelized arbitrarily.

Thus, there are many concurrent events in actor programs, and they are easy to rec-
ognize. For instance, if an event E is initiated by the reception of message min and,
the affected actor responds by transmitting a set of messages Mout, then no message in
Mout can be the cause of any other message in Mout[HB77]. The events caused by these
messages are thus concurrent, and an implementation is free to parallelize or interleave
them.

Order Dependence

A behaviour is said to be order-independent or parallel if its behaviour never changes.
This means that no message received by an actor with such a behaviour can ever affect
its response to any other message it receives. The class of order-independent actors thus
includes functions, in the sense of mathematics or pure functional programming: For any
application on the same input, a function always returns the same output. Because of
this characteristic, when an order-independent actor receives several incoming messages,
an actor implementation can process them all in parallel, instead of buffering them.

Conversely, a behaviour is order-dependent or serial if receiving one message can affect
how it will respond to subsequent messages – in other words, if it has local side effects.
When receiving multiple messages, an actor with an order-dependent behaviour has to
process them in a strict sequence. Many objects in the object-oriented programming
style fall into this category. For example, the behaviour of a bank account is strictly

32 2 Actor-Based Concurrency

Figure 2.7: Control flow in order-independent (top) and order-dependent (bottom) actors

dependent on the order of withdrawal and deposit messages it receives. Actors that
have order-dependent behaviours implicitly serialize their incoming messages, providing
a means of coordination in actor programs.

Composition of Actors

The lack of Turing-completeness in a single actor has major implications for the com-
positionality of actor systems: It means that a composition of several actors cannot
necessarily itself be an actor. For this reason, the currently accepted interpretation of
the actor model[Agh85] includes the notion of actor configurations. An actor configura-
tion represents a specific “community” of actors at a specific instant in time, and consists
of the following components:

• A population of actors.

• A set of currently pending messages, which have not been delivered to any actor
yet.

• A set of receptionists. The receptionists of an actor configuration is the set of all
actors that are capable of receiving messages from actors outside of the configura-
tion. In other words, the addresses of receptionists are known to actors outside the
configuration.

• A set of external actors. These are actors which are not members of the configu-
ration, but to which actors within the configuration can send messages. In other
words, the addresses of external actors are known to actors within the configuration.

2.3 The Actor Model 33

While actors do not compose, actor configurations do. Furthermore, since an actor
configuration can effectively “hide” non-receptionist actors from the rest of the system,
they can be used as a means of abstraction in actor programs, without introducing further
constructs into the model. An actor within a program can abstract over a particular actor
configuration through the address of one of the receptionists of that configuration.

Deadlock in Actor Systems

Because of the asynchronous message model, the classical form of “low-level” deadlock,
in which a cyclic chain of blocking calls are dependent on each other finishing, does not
occur in actor systems. This is true precisely because the act of sending a message does
not block. However, the fact that actors are purely reactive entities implies that message
reception does block. This means that actor systems can exhibit a behaviour similar
to classical deadlocks, a phenomenon which is sometimes called datalock or semantic
deadlock [Agh85]. In this thesis, we will refer to this phenomenon as actor deadlock.

In section 2.1.2, we saw four necessary and sufficient preconditions for deadlock to
occur. However, the phrasing of these preconditions were heavily oriented towards shared-
memory concurrency, and thus it can be difficult to apply them to actor systems. To give
an example of using reasoning on actor semantics to understand concurrency phenomena,
we therefore now develop an analogous set of preconditions for actor deadlock to occur.

Definition 3 (Actor deadlock) A configuration of actors A is in a state of actor dead-
lock when it has entered a state where all communication within the population has ceased
permanently. 2

Theorem 1 Given a configuration of actors A, for A to be in a state of actor deadlock,
the following conditions must hold:

• Passivity: Every actor in A is awaiting incoming messages.

• Insensitivity: Every actor in A only accepts messages from actors in A.

• Silence: A has no currently pending messages.

Proof If every actor a in A is in a waiting state, then it follows from the reactivity
property of actors that a will not initiate further communication, unless it receives a
message from some actor first.

Furthermore, if every actor a in A only accepts messages from other actors in A, then
it follows that a will not initiate further communication if it receives a message from an
actor outside A.

However, since there are no pending messages in A at the time of observation t, then
no actor a in A will receive any messages from any actor in A, unless that message is sent
after t. Since all actors are in a waiting state, then no actor in A will send any messages
after t. Therefore, all communication in A has ceased. �

34 2 Actor-Based Concurrency

This suggests a general strategy for handling datalock in actor systems: Avoiding the
insensitivity condition. However, as discussed in section 2.2.3, there are some situations
in which insensitivity is the desired behaviour in actors. For example, if an actor is
awaiting a response from another actor before it can compute its own future behaviour,
it should generally not accept other messages than the response. However, depending
on the situation, it may be safe to respond to specific messages from the outside world.
For example, the actors could enter “mostly insensitive” states, in which they still accept
messages from some external actor – for example, a periodic timer. When such a message
arrives, the actors can take appropriate action to recover from the datalock. In the dining
philosophers example, this would mean that after a philosopher has waited for some time,
holding one chopstick, he could politely put it down, or try to talk another philosopher
into dropping his.

2.3.2 History of the Actor Model

The actor model originated in the MIT Artificial Intelligence research community in the
early 1970s. Unlike most other computational models from that era, it was explicitly
designed to allow for concurrency and parallelism, because of the philosophical view that
complex systems are best modelled as societies of cooperating simple individuals[GH75],
rather than as a single, complex individual. A distinctive trait of the early research in the
model was that actor research methodology drew inspiration from the laws of physics,
as much as from mathematical logic: Early actor model researchers made observations
on the nature of parallel and concurrent computing systems, and formulated universal
laws based on these observations[HB77]. Throughout its history, the model has seen
significant coevolution with both process calculi and early object-oriented programming
languages.

The first usage of the term “actor” in the literature is in Carl Hewitt’s 1971 Ph.D
thesis[Hew71], detailing the development of the Planner programming language. Here,
the term denoted active program elements which were triggered by the presence of spe-
cific patterns in a knowledge base. In Actor Induction and Meta-Evaluation, published
in 1973, the term had evolved to mean something more akin to the term “agents” in
distributed artificial intelligence.

The first major theoretical milestone in the formal development of actor theory came
with Irene Greif’s 1975 Ph.D thesis[Gre75], which introduced the event diagram formal-
ism for actors, and gave a formal operational semantics for the model. In one of the
seminal papers on the actor model, the 1976 article Viewing Control Structures as Pat-
terns of Passing Messages[Hew76], Hewitt demonstrated that by applying an actor-based
variant of the continuation-passing style of programming, all the familiar sequential pro-
gramming control structures could be encoded as message communication patterns in
actor systems. As part of his work with the model, Hewitt developed the programming
language Plasma [HS75], a Lisp-based interpreter meant for practical experimentation

2.4 Summary 35

with the semantics of actor programs.
Following up on Greif’s thesis work, Hewitt and his student Henry Baker formalized

a set of universal laws for concurrent computation in Actors and Continuous Function-
als[HB77], published in 1977. Many of these laws deal with the orderings and causal
relations of events, formalizing the conditions which guarantee that causes must always
strictly precede effects.

Another major milestone was the introduction of guardians and serializers[AH78,
HA79], to address the need for a means of coordination when modelling order-dependent
actors. Both of these notions were inspired by C.A.R. Hoare’s work on monitors [Hoa74],
a construct for selective suspension and resumption of processes in shared-memory con-
currency models. In 1981, Will Clinger developed a denotational semantics for the ac-
tor model, based on power domains[Cli81]. This work showed the consistency of the
axiomatic laws previously identified by Hewitt and Baker. Throughout most of the
early 1980’s, the primary implementations of the actor model was the Act family of
languages[Lie81a, The83, HA86], which included many novel (but also quite complicated)
language features.

The currently accepted formulation of the actor model was developed in Gul Agha’s
1987 Ph.D thesis[Agh85]. In this thesis, Agha developed a transition-based semantics
for actors, and introduced composability into actor computation through the develop-
ment of the concepts of configurations, receptionists and external actors. In 1987, Carl
Manning developed Acore [Man88], which was the first actor implementation based on
Agha’s formulation of the model. The model itself has remained reasonably stable since
then, although some work has been done in integrating it with sequential computation
models. For example, in Foundations of Actor Semantics[Cli81], Agha et.al developed a
theoretical actor language based on a combination of the actor model with the λ-calculus.

Relatively little actor-related work was done in the 1990s, although the advent of multi-
core processing as well as massively distributed systems sparked some renewed interest
in the model. In the late 1980s and throughout the 1990s, a group at Ericsson Computer
Science Laboratory, led by Ulf Wiger and Joe Armstrong, developed the Erlang language
for robust telecommunication applications[Arm03]. While Erlang is not explicitly based
on the actor model, its notion of processes is very similar to actors. Other actor imple-
mentations of the 1990s and early 21st century include the E language[ELa], the Scala
actor library[HO07], as well as concurrency model of the Io scripting language[Dek05].

2.4 Summary

Although concurrency is useful in many problem domains, concurrent programming is
fundamentally more difficult than sequential programming. This additional difficulty
stems from the fact that a concurrent program can have several possible interleavings,
and that a concurrent program is correct only if it is correct for all possible interleavings.

36 2 Actor-Based Concurrency

Concurrent computation models help reduce this additional difficulty by placing con-
straints on the ordering of computational steps in concurrent program executions, thus
reducing the number of possible interleavings. The universe of concurrent computation
models is very diverse, and covers both deterministic, nondeterministic, shared- and
distributed-memory models, as well as many different mechanisms of expressing synchro-
nization. We saw that a nondeterministic, message-passing, asynchronous model fit well
with our goal of designing a simple, general-purpose, high-level concurrent language.

We investigated one example of such a model: The actor model. The actor model is
conceptually a quite simple model, and can serve as the theoretical basis of a high-level
concurrent programming language. Because of the few and relatively simple concepts
in the model, it appears to be a good way for programmers to conceptualize concurrent
programs, in no small part because it promotes some of the classical concurrency problems
to the program design level, rather than leaving them as implementation details.

Having investigated some of the underlying theoretical issues of concurrent program-
ming, we now turn our attention to the practical issues in the development of such a
language.

Recommended Literature

One of the first fields within computer science to consider the problems of concurrency
was that of operating systems research, because this field has historically always had
to consider the situation of several processes sharing a single machine. Many operating
systems textbooks give good treatments to concurrency, John English’s Introduction to
Operating Systems: Behind the Desktop[Eng04] is a good example. Two seminal papers
on concurrency in this context are Hoare’s Monitors: An Operating System Structuring
Concept [Hoa74], as well as Dijkstra’s Hierarchical ordering of sequential processes[Dij71].

In Concepts, Techniques and Models of Computer Programming [RH04], Peter Van Roy
and Seif Haridi give an excellent introduction to concurrency models, using the multi-
paradigm Oz language to illustrate the concepts. This book demonstrates both determin-
istic, message-passing and shared-memory models of concurrency. It also demonstrates
several sequential computation models, and gives good examples of their use.

Gul Agha’s Ph.D thesis Actors: A Model of Concurrent Computation in Distributed
Systems[Agh85] gives a very solid treatment of the foundations of the actor model – and is
a quite enjoyable, accessible read as well. The two seminal actor papers Viewing Control
Structures as Patterns of Passing Messages[Hew76] and Actors and Continuous Func-
tionals[HB77], while somewhat dated, are also particularly enlightening reads, and invite
the reader to consider a new angle on the nature of some of the programming constructs
most practicing programmers have come to take for granted. For a somewhat lighter
introduction to actor programming, Agha’s An Overview of Actor Languages[Agh86] is
highly recommended.

3. The Merlin Language
Human beings do not live in the objective world alone, nor alone in the world of social activity
as ordinarily understood, but are very much at the mercy of the particular language which has
become the medium of expression for their society.
– Edward Sapir (1884–1939)

Language is the source of all misunderstandings.
– Antoine de Saint-Exupery (1900–1944)

In his 1972 Turing Award lecture, The Humble Programmer [Dij72], Edsger Dijkstra
gave an eloquent argument that it was of vital importance for the programming commu-
nity to pay closer attention to intellectual manageability in programs. He criticized the
excessive complexity of programming languages, not for technical or mathematical rea-
sons, but for psychological reasons: The human mind has a limited capacity to manage
complexity, and competent programmers are aware of their own limitations. He argued in
favour of “modest and elegant programming languages”, and near the end of his lecture,
he made an observation that was considered highly controversial at the time:

I observe a cultural tradition, which in all probability has its roots in the Renais-
sance, to ignore this influence, to regard the human mind as the supreme and au-
tonomous master of its artefacts. But if I start to analyse the thinking habits of
myself and of my fellow human beings, I come, whether I like it or not, to a com-
pletely different conclusion; that the tools we are trying to use and the language
or notation we are using to express or record our thoughts, are the major factors
determining what we can think or express at all.

Programming languages are tools for creating programs. But they are tools which
profoundly shape even our thoughts about programs, and the successful design of such
a tool is not, by any means, a simple task. Because of the influence of programming
languages on the thinking habits of the programmers who use them, the programming
language designer must himself be acutely aware of the limited human ability to manage
complexity. This especially holds true for designers of concurrent languages – as we have
seen in section 2.1, concurrent programming is inherently more complex than sequential
programming. The central challenge underlying the design of concurrent high-level lan-
guages is the development of linguistic abstractions for intellectually managing programs
which are subject to nondeterminism.

38 3 The Merlin Language

Chapter Structure

This chapter consists of three sections:

• From Model to Language: The first section of the chapter gives an overview of the
philosophy and background for the Merlin language. It introduces the overall
design goals of the language, chief of which is simplicity. The section gives a brief
exploration of the meaning and value of simplicity in programming languages, and
concludes with a set of design principles, which can be used to select proposed
language features later in the process.

• Introduction to Merlin : This section gives an introduction to the Merlin pro-
gramming language, with a focus on demonstrating all the linguistic concepts used
in the language through illustrative examples. Linguistic concepts are explained
and rationalized as they are introduced.

• The Design of Merlin : This section of this chapter discusses the design process of
the Merlin language. It describes some of the challenges in developing an actor-
based language, and discusses the most important design decisions made during
the development process. This chapter takes a look at some of the roads not taken.

• Evaluation of the Merlin Language Design: This section considers the Merlin
language design, contrasted with the design goals. It also discusses the relationships
between Merlin and other actor-based programming systems.

3.1 From Model to Language

As we have seen, one of the appealing qualities of the actor model is its conceptual
simplicity. There is one fundamental type of concurrent computing entity (the actor),
and one universal means of communication (the asynchronous message). However, the
actor model is a computational model, not a programming language. As such, it leaves
many questions unanswered. For example, it lacks a name binding mechanism, a means
of abstraction, a means of combination, and a representation for behaviour scripts. Thus,
even after making the decision to base a concurrent language on the actor model, the
language designer faces many open questions.

Because programming languages are tools of thought, the language design process
must pay some attention to the nature and process of thought. This necessarily involves
considering some subjects which are sometimes considered outside the domain of com-
puter science, and within the domain of philosophy. However, in programming language
design, there is a strong link between these two domains precisely because the language
designer must be aware of the thinking habits the language promotes.

3.1 From Model to Language 39

3.1.1 Design Philosophy

The Merlin language represents an attempt to develop a simple concurrent program-
ming language, based on the actor model. As with all languages based on a formal
computational model, the design of Merlin involves a process of balancing two con-
cerns which are often in direct conflict: Conceptual purity and practical applicability. For
all the desirable qualities we have identified in the actor model, it is a computational
model, not a programming language. A straightforward implementation of the model
would be a very low-level language, lacking many facilities a modern programmer ex-
pects from an expressive, high-level programming language. Therefore, Merlin is more
correctly described as a concurrent language based on the actor model, as opposed to
an implementation of the actor model. One of the most important tasks in the design
process of Merlin is to effectively bridge the gap between abstract model and concrete
programming language.

Simplicity: Economy of Thought

Simplicity is frequently mentioned as a particularly desirable quality in programming
languages[Seb03, Dij72], although relatively little attention has traditionally been paid
to what it means for a programming language to be simple. Since we have observed that
concurrent programming has a higher inherent complexity than sequential programming,
it seems especially important for a concurrent language to avoid introducing any unnec-
essary complexity.

A useful guiding principle regarding simplicity is the philosophical principle of Occam’s
Razor, a principle originally developed in the 14th century by the logician and Franciscan
monk William of Ockham. This principle simply states:

It is vain to do with more what can be done with less.

In most contemporary interpretations of Occam’s Razor, it is taken to mean that when
all else is equal, it is rational to prefer a formulation involving few entities than one involv-
ing many. Indeed, many modern paraphrases of the principle use the alternate wording
“entities should not be multiplied beyond necessity”. Because of the wide acceptance of
the Razor within philosophy and scientific methodology, it seems reasonable to adopt its
underlying idea as a basis for judging simplicity in a programming language. But which
entities should we avoid multiplying beyond necessity?

According to Dijkstra[Dij72], the scarcest resource in programming projects has long
been the brainpower of programmers – not because programmers are unintelligent, but
because they are often working on very difficult problems. This perspective leads to a
view of simplicity as a principle of economy of thought : Thought is a valuable resource,
and should be used as efficiently as possible. Furthermore, because programmers often
work on difficult problems, it stands to reason that they should be able to devote as much

40 3 The Merlin Language

thought as possible to solving those problems, rather than dealing with the intricacies of
their programming tools. Therefore, we seek a language with a light mental footprint.

The economy of thought principle can be applied to the programming language design
itself, yielding a derived principle of economy of concepts. Since each individual funda-
mental concept within a language adds to the overall mental footprint of a language,
linguistic concepts themselves should be regarded as a scarce resource, and thus should
be used sparingly. However, it is not enough to have few of them: They must have high
expressive power as well1.

Consistency: The Principle of Least Surprise

An important method of reducing the mental footprint of a programming language is by
paying very close attention to the overall consistency of the language design. Consistency
lightens the mental footprint of a programming language by allowing a programmer to
remember a set of fundamental rules, which the rest of the language follows. Thus,
inconsistencies are linguistic elements, whether syntactic or semantic, which violate such
fundamental rules. As an example of a syntactic inconsistency, the standard library
of the PHP language includes several search facilities, but the positions of the needle
and haystack arguments in these functions follow no rule, forcing the programmer to
memorize the positions for each individual function – or be prepared to consult the
documentation frequently. Consistency in programming languages can also encourage a
uniqueness principle[Mey00]: A consistent language should provide one, and only one,
good way to perform any action of interest. Adhering to this principle further lightens
the mental footprint.

Abstraction: Scaling Simplicity

As programs grow in size, they inevitably and naturally grow in complexity. Thus, the
economy of thought principle must be made scalable. Most programming languages do
this by providing linguistic support for the fundamental mechanism the human mind
uses to cope with increasing complexity: Abstraction. The use of abstraction allows
programmers to design his program as a hierarchy of conceptual layers, such that elements
in each layer is defined in terms of the elements of the layers below it. The lower

1An extreme example of a language with few concepts is the Brainf*ck language, developed in 1994
by Urban Müller. Brainf*ck has only one datatype (the byte) and only eight commands – two for
incrementing and decrementing, two for I/O, two for pointer arithmetic and two for loops. Even with
this extremely small set of concepts, Brainf*ck has been proven to be Turing-complete. Whether
or not Brainf*ck can be said to have a light mental footprint is left for the reader to decide, while
pondering the Brainf*ck version of the classic Hello World example:
++++++++++
[>+++++++>++++++++++>+++>+<<<<-]
>++.>+.+++++++..+++.
>++.<<+++++++++++++++.>.+++.–––.––––.>+.>.

3.1 From Model to Language 41

levels in such an architecture have more detail, whereas the upper levels have higher
expressiveness: They allow more to be done with less entities, since the programmer can
ignore the internal details of elements in lower levels. Essentially, abstraction mechanisms
introduce Occam’s razor into the programmer’s tool set. Good abstraction mechanisms
allow programs to maintain a light mental footprint even as they increase in size.

Thus, the fundamental ideal Merlin strives for is, above all, maintaining a light
mental footprint. This, and the three means (simplicity, consistency and abstraction)
proposed for achieving this goal, makes up a statement of philosophy for the Merlin
language: They give a high-level, conceptual vision for the language design. We now
turn our attention to developing a more concrete formulation of language requirements
based on this vision.

3.1.2 Language Requirements

Above all, a programming language is a tool for reading, writing, and thinking about
programs. Therefore, the requirements of a programming language can be viewed in
terms of the qualities it should encourage in the programs expressed in it. The list given
here is inspired by an almost similar list in Robert W. Sebesta’s textbook Concepts of
Programming Languages[Seb03]. The efficiency quality has been added to Sebesta’s list.

Readability : The readability of a program determines how easily it can be read and
understood by someone who is reasonably well-versed in the language it was written
in. Language qualities that foster readability include simplicity, expressivity and
consistency.

Writability : The writability of programs is a measure of how quickly and “painlessly” a
programmer who is reasonably well-versed in the language can write programs in it.
Language features that improve writability include all readability characteristics,
since writing programs involves reading the program as it is written. An additional
characteristic that specifically improves writability is composability.

Reliability : The reliability of a program indicates which guarantees it can provide that
it will perform to specification, without execution errors. Language features that
improve reliability include all the readability and writability qualities, since clear
programs conceal less errors than incomprehensible ones, and programs that are
difficult to write will leave more room open for programmer error. Furthermore,
reliability is improved by facilities for static analysis.

Efficiency : The efficiency of a program determines its ability to minimize its use of
system and hardware resources. Language qualities that improve efficiency include
all the readability and writability qualities, since it is easier to implement high-
performance algorithms in a language that allows such algorithms to be written

42 3 The Merlin Language

clearly. The reliability-related capacity for static analysis can also improve effi-
ciency, since static analysis can be used by compilers to perform code optimizations.
Finally, low overhead language elements improve program efficiency.

A list of language requirements can be assembled from the characteristics that foster
the desired qualities in programs written in the language. Because of the ideal of keeping
a light mental footprint, the Merlin project focuses on readability and writability. A
convincing case can be made that reliability lightens the mental footprint as well, since
static analysis facilities simplifies the debugging process. However, the integration of
static analysis facilities into a language implies a static type system to place constraints
on the dynamic behaviour of programs. The actor model strongly emphasizes dynamicity
and flexibility, which means that by introducing a static type system, we risk introducing
inconsistencies with the model. Whether static or dynamic type systems have the light-
est mental footprint is a frequently debated topic in the programming language design
community, which appears to have no simple answer.

The desired qualities of the language can be gathered in an ordered list, to assist
in evaluating proposed linguistic concepts. However, programming language design is
fundamentally a balancing act: All the requirements for programming languages repre-
sent desirable qualities, but they are also often in direct conflict with each other[Seb03].
Furthermore, because any design process involves a certain degree of aesthetics, require-
ments for programming languages are by nature a controversial topic. The following
design requirements for Merlin primarily follow from the language philosophy, but also
necessarily reflect the author’s subjective sense of programming aesthetics.

1. Simplicity: A language construct is simple if its description and comprehension
involves few concepts.

2. Consistency: A language construct is consistent if it does not cause any unpre-
dictable interactions with other language constructs.

3. Expressivity: A language construct is expressive if it allows expressing complex
concepts with a minimum of syntactic entities.

4. Composability: A language construct is composable if it can be freely combined
with other language constructs, to form complex structures.

5. Static Analysis: A language construct supports static analysis if it is possible to
guarantee, prior to executing the program, that the construct will not be used in
error.

6. Low Overhead: A language construct has low overhead if it can be mapped to
underlying system primitives with only a minor increase in complexity.

3.2 Introduction to Merlin 43

Simplicity, consistency and expressivity are given the highest priorities, because these
qualities follow directly from the design philosophy. Composability is given medium pri-
ority because a language based on the composition of simple, consistent units, combined
with a good abstraction mechanism, scales well: The same basic linguistic means that
can be used to express simple structures can also be used to describe complex systems
composed of those structures[AS96]. Static analysis is given low priority, for the reasons
given above. Finally, low overhead is given the lowest priority: Merlin is allowed to
waste computer time, in order to save programmer time.

This concludes the conceptual design considerations for Merlin. The following section
gives an introduction to the Merlin language, while section 3.3 describes issues and
decisions that arose during the design process.

3.2 Introduction to Merlin

Merlin is a concurrent, actor-based programming language. It is in many respects an
unusual language, mostly due to its strong emphasis on concurrency. The purpose of this
section is to introduce the syntax and semantics of Merlin programs, by showing and
describing a collection of Merlin programs. The small programs in this section were
not chosen to be efficient or even particularly useful, they are intended merely to show
the essence of programming in Merlin. The syntax of Merlin, given as an EBNF
grammar, can be found in Appendix A, and an extensive discussion of the rationales
behind the language design choices is given in section 3.3.

3.2.1 Inspirations

No programming language was developed in a vacuum. Apart from getting most of
its theoretical foundation from the actor model, two languages that had a significant
influence on the design of Merlin are Erlang and Scheme. Like Scheme, Merlin
emphasizes the use of dynamic, first-class entities, and uses only a single namespace. Like
Erlang, Merlin is heavily oriented towards message-passing concurrency, and uses a
message reception scheme based on pattern matching.

3.2.2 Introductory Examples

Honouring a very long computer science tradition, our first Merlin program has a simple
and not too surprising purpose:

tell console "Hello World!"

This small, traditional example nevertheless shows an important concept of Merlin:
Actor communication. The entity console in the example is the address of a built-in

44 3 The Merlin Language

actor, which will display any message sent to it on the console. Messages are sent using
the tell statement, the first argument of which must be a valid actor address, and any
subsequent arguments are sent to that actor as a message. Messages are a very important
concept in Merlin, because actors in Merlin only carry out any activity in response to
receiving a message. We refer to the interval of time between the reception of a message,
and the completion of its processing by the receiving actor, as an event.

Actors are defined by their behaviours, which are said to be instantiated when an actor
is created from that behaviour. We can demonstrate how to define behaviours and create
actors by implementing a very simple actor, which functions as a proxy for console:

con-proxy : [[msg | tell console msg]]
cproxy : spawn con-proxy ()
tell cproxy "Hello World!"
tell cproxy 42

The con-proxy behaviour is a very simple one. Its script, [[msg | tell console
msg]], should be read: For any message msg, tell the console msg. The expression spawn
con-proxy () creates a new actor from the behaviour given in con-proxy.

The : operator is used to bind names to values. This has the interesting implication
that behaviour specifications and actor addresses are values, just like numbers and strings.
Therefore, if the con-proxy behaviour will not be needed later in the program, the first
two lines could have been written thus:

cproxy : spawn [[msg | tell console msg]] ()

Similarly, if the cproxy actor was only needed once, then the example could have been
written in a single statement:

tell spawn [[msg | tell console msg]] () "Goodbye Cruel World!"

This style can lead to more concise programs, but is not always particularly readable.

Data Types in Merlin

In the console proxy example, we spawned the actor cproxy and sent it two messages,
the string Hello World! and the number 42. Both were temporarily bound to the name
msg when they were received by cproxy, before being sent off to console. This shows
another important characteristic of Merlin programs: They are dynamically typed. This
means that type information is not associated with names, but with values, and that the
types of Merlin values can only be known at run time. We can make a variant of the
proxy which only forwards strings:

3.2 Introduction to Merlin 45

Data Type Type Predicate Operations
Number number? is + - * / = > < >= <=
Boolean boolean? is and or not
String string? is {a:b} .
Tuple tuple? is {a:b} .
Address address? is
Behaviour behaviour? is spawn

Table 3.1: Data Types and Operations in the Merlin language

str-proxy : [[msg, string? msg | tell console msg]
[msg | tell console "Type error in str-proxy!"]]

sproxy : spawn str-proxy ()
tell sproxy "Hello World!"
tell sproxy 42

The sproxy actor behaves just like the cproxy of the previous example when sent the
string "Hello World!". When sent the number 42, however, it instead causes an error
message to be displayed.

The expression string? msg is an example of a run-time type check in Merlin. The
unary operator string? is a type predicate, which returns true only in the case where its
argument belongs to the specific type it checks for. Each of the Merlin built-in types
have a type predicate, as well as a set of operators defined on them. Table 3.2.2 gives
the full set of Merlin data types, their type predicates, and their operators.

3.2.3 Pattern Matching

An important detail in the type-checking console proxy is that unlike the con-proxy
behaviour, the str-proxy behaviour is defined so that it responds to two different kinds
of messages. Each of the two blocks [msg, string? msg | ...] and [msg | ...] is
called a receptor. The left-hand side of the vertical bar | is called the pattern, and the
right-hand side is the reaction.

Behaviours may define as many receptors as they require. When an actor receives a
message, the message is tested against the patterns of the receptors sequentially, and the
first receptor to generate a match will be selected for execution. The following program
gives a somewhat more detailed example of pattern matching.

46 3 The Merlin Language

v : 42
patterns : [[(v, n) | tell console "Match 1: " . n]

[(666, n) | tell console "Match 2: " . n]
[(n, n, 10) | tell console "Match 3: " . n]
[("curry", (v, v) | tell console "Match 4."]
[n | tell console "Match 5: " . n]]

pats : spawn patterns ()
tell pats (42, 10) -- displays "Match 1: 10"
tell pats (666, v) -- displays "Match 2: 42"
tell pats (5, 5, 10) -- displays "Match 3: 5"
tell pats ("curry",(42,42)) -- displays "Match 4."
tell pats ("curry",42,42) -- displays "Match 5: ("curry", 42, 42))"
tell pats 200 -- displays "Match 5: 200"

As this example shows, patterns consist of tuples of names and literals, and may also
contain sub-tuples (the tuple delimited by parentheses in the fourth pattern, (v, v),
was an example of a tuple). Notice that names in patterns may be bound (as v is in the
example), in which case their values are substituted into the pattern, or free, in which
case they will become bound within the code of the reaction if a pattern matches.

Patterns may optionally include a guard expression, which is delimited by a comma.
We have already seen an example of a guard expression in the type-checking console
proxy, in its receptor [msg, string? msg | ...]. If a guard expression in an otherwise
matching pattern evaluates to false, then the pattern is considered non-matching and the
reaction is not executed.

3.2.4 Concurrency

Actors in Merlin are fully concurrent and autonomous. Consider the following program:

ping : [["go" | tell console "ping"; tell self "go"]]
pong : [["go" | tell console "pong"; tell self "go"]]

ping-actor : spawn ping ()
pong-actor : spawn pong ()

tell ping-actor "go"
tell pong-actor "go"

The self reserved word is simply a mechanism for actors to refer to their own address.
So, as expected, the two actors will send a furiously fast, infinite stream of pings and
pongs to the console. However, because of the inherently nondeterministic nature of tim-
ing in concurrent programs, the console output is not an ordered stream of alternating

3.2 Introduction to Merlin 47

pings and pongs, but the chaotic jumble we would expect from two completely indepen-
dent, uncoordinated entities simultaneously trying to communicate with the console.

Asynchrony

Consider the previous program, but with the two first lines changed to this:

ping : [["go" | tell self "go"; tell console "ping"]]
pong : [["go" | tell self "go"; tell console "pong"]]

With this behaviour, the actors tell themselves to go immediately after receiving their
initial messages, and send their messages to the console afterwards. It seems reasonable
to ask if the actors will ever get around to sending anything to the console.

The answer, in fact, is yes: The modified version will exhibit a behaviour observably
similar to that of the original. This is because of an important characteristic of the Mer-
lin tell statement: It is asynchronous2. A tell does not wait for an acknowledgment,
it merely sends a message and continues.

Because of the asynchrony, Merlin actors buffer incoming messages. In fact, the
concrete action taken by tell can be viewed as placing a message in the buffer of the
target actor. Thus, what goes on in both versions of the ping-pong example is that the
actors place a new go message in their own buffers, place a ping/pong message in the
buffer of console, and continue.

We can also make another observation: Actors in Merlin receive messages implicitly.
When a reaction has finished, the actor enters a waiting state, awaiting the next message.
In the case of the ping-pong example, it will already have placed a message there itself,
which it immediately begins processing.

Coordination

We observed that the two actors in the ping-pong example caused an unordered stream
of pings and pongs to be sent to the console, and that this lack of order was because
the two actors are concurrent, independent entities. However, what if we wanted them
to display their output in an alternating order? We could write a version in which the
two actors coordinate their activities by passing messages between each other. In this
version, rather than each actor causing itself to send another message to the console, the
two actors will cause each other to do so. We thus create a causal relation between them,
such that a sequence will occur between their actions.

2In fact, had tell been synchronous, then the previous version of the ping-pong program would only
send one ping and one pong to the console. Then it would enter a deadlock, as discussed in section
2.2.3.

48 3 The Merlin Language

This program implements that idea:

ping: [[("go", other) |
tell console "ping"; tell other ("go", self)]]

pong: [[("go", other) |
tell console "pong"; tell other ("go", self)]]

ping-actor: spawn ping ()
pong-actor: spawn pong ()

tell ping-actor ("go", pong-actor)

These two actors now synchronize their activities, with the exchange of “go” messages
serving as acknowledgments. However, while this program gives the desired output in
the Merlin implementation described in chapter 4, this is in fact incidental to an im-
plementation detail in that interpreter, and should not be assumed. In actor semantics,
we cannot assume that messages arrive in the same order as they are sent, so while the
desired, alternating sequence exists at the sending side of the messages, it is not guar-
anteed that the receiving side will observe this sequence too. We revisit this problem in
section 3.2.6.

3.2.5 Parameters

Many readers will probably have observed that the definitions of the actors in the preced-
ing ping-pong examples were completely identical, except only for the word they passed
to the console. More complex programs would quickly grow to unmanageable heaps of
text if it was not possible to abstract over common trends in program elements. For
Merlin actors, this form of abstraction can be achieved using parameters:

ping-pong : [(word)
[("go", other) | tell console word

tell other ("go", self)]]

ping: spawn ping-pong ("ping")
pong: spawn ping-pong ("pong")

tell ping ("go", pong)

The parameter mechanism allows actors to store persistent values. Parameters exist
across events, and in the above program, the two actors’ word names will remain set to
"ping" and "pong" respectively, for the entire lifetime of the actors.

3.2 Introduction to Merlin 49

3.2.6 Changing Behaviour

All the actors we have seen so far have been unchanging in time, forever doing the same
actions when given the same input. In this respect, these actors have been similar to
mathematical functions: They map domains of messages to ranges of reactions. Many
useful programs can be written using only actors with such a behaviour, and it is generally
good practice to use such actors when possible: They are easy to reason about, precisely
because their outputs are predictable given their inputs.

However, some problems are more fluently solved using actors that can change state
over time. For example, consider an actor which counts the number of messages it has
received:

counter : [(count)
[msg | tell console "Messages Received: " . count + 1;

become counter (count + 1)]]

count-actor : spawn counter (0)
tell count "Hello!" -- displays "Messages Received: 1"
tell count 42 -- displays "Messages Received: 2"

This actor introduces the become statement, which does exactly what we needed: It
provides actors with a mechanism for modelling state changes over time. In this example,
the counter essentially becomes a new counter, bound to the same address, with its count
parameter set to a new value. The become mechanism allows actors to instantiate new
behaviours for themselves to use for subsequent messages.

The become mechanism is quite powerful, since it allows an actor to change its parame-
ters and its behaviour scripts. If the counter in the example executed become con-proxy
instead, all subsequent messages would be processed using the con-proxy behaviour.
While this particular construction might make little sense, the ability to change behaviour
more radically than merely changing parameters can be very useful in practice. For ex-
ample, an actor which “dies” can change its behaviour to one that silently drops all mes-
sages. A working-computer-scientist can become a sleeping-computer-scientist
if he receives too many write-paper messages, and not enough drink-coffee messages.

The Message Buffer, Revisited

Now that we have introduced become, we can take a more in-depth look at the message
buffer mentioned in section 3.2.4, and how it can be used as a receiver-side synchroniza-
tion mechanism. Consider the following program:

50 3 The Merlin Language

seq : [[(1, msg) | tell console "First step"
become

[[(2, msg) | tell console "Second step"]] ()]]

seq-actor : spawn seq ()

tell seq-actor (2, "hello")
tell seq-actor (1, "hello again")

This program will cause the messages First step and Second step to appear on the
console – in that order. This may at first seem strange, because of the order it was
sent its messages in. However, when the actor receives the message (2, "hello"), it
has no matching receptor for the message. It places the message in its buffer. When it
subsequently receives the message (1, "hello again"), it changes its behaviour to one
which does have a receptor for the buffered message. At this point, all buffered messages
are checked if they match any receptors in the new behaviour, and processed if they do.

This can be useful for maintaining an order of actions in the face of incoming messages
arriving in an unpredictable order. Since we have seen that Merlin actors are inde-
pendent, concurrent entities with asynchronous communication facilities, unpredictable
message arrival can be a reasonably common situation (the uncoordinated ping-pong
program gave an example). The combination of become and the message buffer provides
a means to cope with it.

3.2.7 Recursion

We have already seen an example of recursive communication patterns, in the first ping-
pong example. This was a quite simple example of recursion, in which the actors merely
continually told themselves to continue. We can also model other recursive programs:

fac : [[(1,t) | tell t 1]
[(n,t) | tell self (n - 1, spawn [[m | tell t (m * n)]])]]

factorial : spawn fac ()

tell factorial (10, console)
tell factorial (20, console)

This small program computes 10! and 20!, and sends both to the console. Its somewhat
strange appearance is due to the lack of functions and call stacks in Merlin. Because
of this important omission, Merlin programs must explicitly maintain the data across
the levels of the recursion. The program above is written in a form somewhat similar
to continuation-passing style, which is sometimes used as an intermediate representation

3.2 Introduction to Merlin 51

for compilers in functional languages. The factorial actor simulates a function call
stack by spawning a chain of new actors, each of which will carry out the “rest of the
computation” after the tell.

Another characteristic of Merlin programs demonstrated in the factorial actor is
static scope: When the continuation actor behaviour is defined by the factorial actor,
it refers to the names t and n. The values of these names are bound to their values in
the lexically enclosing block – in this case, factorial itself.

Event Atomicity

An important observation to make at this point is that events in Merlin are atomic.
Once an actor accepts a message, it is guaranteed that at some point in the future, it
will finish processing it. This guarantee stems from the fact that all actions of Merlin
behaviour scripts block for only a bounded span of time, and the fact that any single re-
action may carry out only a finite number of actions. This guarantee is possible because
there are no recursion or iteration constructs built into Merlin, and because of the asyn-
chronous communication. This means that without the communication system, Merlin
is not Turing-complete, since iteration and recursion is only possible using messages.

3.2.8 Merlin Overview

We have seen a selection of examples, demonstrating the important concepts of the
Merlin language. We can sum up what we have seen in a set of eight core precepts,
describing the defining points of Merlin:

• Actor-Based: Programs are structured as communities of autonomous actors.

• Message Passing: Actors can only interact by message passing.

• Asynchrony: Message sending does not block.

• Concurrency: Multiple actors may carry out activities simultaneously.

• Reactivity: All activity is triggered by events, at message reception.

• Event Atomicity: All events are guaranteed to eventually terminate.

• Pattern Matching: Message responses are selected by pattern.

• Buffering: Received messages are buffered until recognized.

These precepts concisely sum up the Merlin “view of the world”. They were a central
principle in the design process of Merlin, and are discussed in greater detail in the
following section.

52 3 The Merlin Language

3.3 The Design of Merlin

The Merlin language represents an attempt to realize the goal of developing a concurrent
language with a light mental footprint. Several issues and challenges came up during the
development of Merlin, and this section discusses how and why these were met.

3.3.1 The Core Precepts

One of the first design decisions in the Merlin design process was to develop a concise
summary of the “view of the world” the language should represent. The primary reason for
this step is maintaining consistency : By having a set of concrete precepts to represent the
vision behind the language, each linguistic concept can be contrasted with the precepts.
Taking this view, an inconsistency is simply a linguistic concept that violates one or more
of the precepts. Let us investigate each of the precepts.

• Actor-Based: Programs are structured as communities of autonomous actors.
Rationale: This precept largely follows from the choice of basing the language on
the actor model. There are elements in Merlin programs which are not actors (see
section 3.3.2), but these are all passive entities which cannot carry out computation
or send messages.

• Message Passing: Actors can only interact by message passing.
Rationale: This precept implies that there can be no observable shared memory.
We discussed the strengths and weaknesses of message-passing and shared-memory
concurrency in section 2.2. Mixing the two models could be quite confusing, and
would violate the uniqueness principle discussed in 3.1.1.

• Asynchrony: Message sending does not block.
Rationale: We discussed the respective benefits and drawbacks of asynchronous
and synchronous communication in section 2.2. The primary benefits of non-
blocking, asynchronous message sending are increased concurrency, and that re-
cursive communication patterns are possible.

• Concurrency: Multiple actors may carry out activities simultaneously.
Rationale: This follows from the nature of Merlin as a concurrent language.

• Reactivity: All activity is triggered by events, at message reception.
Rationale: It is possible to make an active variant of actors, which may also per-
form activities apart from message reactions. However, these would be significantly
more difficult to reason about. The definition of actor deadlock in 2.3 would not
hold for such entities, and it would also be more difficult to determine whether or
not such an actor has become garbage.

3.3 The Design of Merlin 53

• Event Atomicity: All events are guaranteed to eventually terminate.
Rationale: Combined with the reactivity precept, this makes Merlin actors
considerably more easy to reason about. If an actor could take infinite time pro-
cessing a single event, then other actors awaiting messages from that actor could
also be held up for infinite time.

• Pattern Matching: Message responses are selected by pattern.
Rationale: Combined with message queues for unrecognized messages, pattern
matching provides a powerful means of enforcing an order in received messages.
Such an order cannot necessarily be assumed in a system with concurrent, inde-
pendent entities, and the semantics of the actor model specifically state that such
an order cannot be assumed.

• Buffering: Received messages are buffered until recognized.
Rationale: See above. Furthermore, some form of buffering is required in asyn-
chronous communication, or messages received while an actor is busy would be
lost.

As already mentioned, the purpose of the core precepts is to ensure against inconsis-
tencies: Any proposed language element which violates one of the precepts should be
considered an inconsistency, and not allowed in the language.

3.3.2 Pure Actor Languages

Merlin is an impure actor language, in the sense that it supports primitive data types
which are not actors. There are several reasons for this choice, some of them of a
philosophical nature, others more pragmatic.

It is clearly possible to design a pure actor language, in which everything, right down
to the humblest integer, is modelled as message-passing actors. In such a model, even
messages can be modelled as actors – in fact, in older actor literature[HB77], mes-
sages are referred to as messengers, for precisely this reason. This variant of the ac-
tor model is sometimes referred to as the universe of actors model[Agh85]. Several
pure actor languages have historically been implemented, notably the Act family of
languages[Lie81a, The83, HA86], which long served as the “reference” implementations
of the actor model. Since pure actor languages represent many phenomena with just
a single basic type of entity, should they not be considered conceptually simpler than
impure languages? Let us consider the exact implications of actor purity.

Infinite Regress

A fundamental problem pure actor languages have to deal with is that of infinite regress:
If everything is an actor, and actors are limited to the four simple actions given in

54 3 The Merlin Language

the formal definition of actors (conditional expressions, spawning new actors, sending
messages and changing behaviour – see section 2.3), then how can a program ever perform
any actual computation?

In particular, consider the situation if messages are actors. The only defined means of
interaction in the actor model is message passing, so when a message actor arrives at its
target, the only way it can interact with the target is by sending messages to it. And
when these messages arrive, the only way they can interact with the target is by sending
messages to it. And when . . .

This problem can be solved by introducing a notion of primitive actors[Hew76], some-
times referred to as rock-bottom actors[Lie81a]. These actors have the special ability
to perform work without sending further messages into the system. In particular, they
can obtain the acquaintances of any messenger actors they receive without any message
interaction. This solves the infinite regress problem by ensuring that at some point, the
regress will “bottom out” at a primitive actor.

However, the introduction of primitive actors means that a pure actor language is
not necessarily more conceptually economical than an impure actor language: Primitive
actors have special properties which distinguish them from other actors, so instead of
having a single concept of actors, this model requires two separate concepts: Primitive
actors, and all other actors. Furthermore, the infinite regress problem means that the
concept of message passing in pure actor languages can be somewhat hard to understand,
and to explain.

Everything is Not an Actor

However, there is a more fundamental, philosophical problem with pure actor languages:
Everything is not an actor. Like objects in pure object-oriented languages, actors are
entities that have identity and behaviour. However, not all phenomena lend themselves
well to being modelled in terms of identity and behaviour. For instance, consider integer
arithmetic. In a purely actor-based view of the world, we can view an integer as an actor
(possibly a primitive actor) which has defined reactions to the +, -, * and / messages
it receives. However, the concept of identity brings forth major philosophical problems.
An actor retains its identity over time, despite any behaviour changes. This is a powerful
concept for modelling real-world, physical phenomena in both object-oriented and actor-
based programming: Because of identity, a car that has one of its tires changed is still
considered the same car. However, abstract entities such as integers break the model:
There is no way to change the behaviour of the number 42 and still have it retain its
“42-ness”. Its identity is its value3.

Thus, it may be the case that a pure actor language necessarily has to seriously violate
our understanding of some phenomena, such as integers. We generally don’t think of

3A similar criticism of pure object-oriented languages has been put forth in Everything is Not an
Object [Pai98].

3.3 The Design of Merlin 55

integers as autonomous entities which react to messages, or entities that have existence
in time. They are abstract, mathematical concepts which can be used to reason about
the physical universe, but they do not themselves exist as physical entities. An impure
actor language is able to reflect that philosophy directly, whereas a pure actor language
must model abstract, non-physical concepts in terms of actors.

For these two reasons, and because of the emphasis on simplicity, Merlin is an impure
actor language.

3.3.3 Actors and Pattern Matching

A concept in Merlin that is much easier to understand because messages are not actors
is pattern matching. Pattern matching is a mechanism most often seen in functional and
logic languages, and can often be used to express programs in a very concise style. In
Merlin, actors perform pattern matching on their message queues, such that the actor
will respond to any message in the queue that matches any of the patterns specified in
the current script of the actor4. It is important to point out that pattern matching is
applied to the entire queue, not just the last message received. This means that when an
actor changes behaviour, it may react to any number of “old” messages that the patterns
of the new behaviour can match. In section 3.2.6, we saw an example of how this can be
very useful to enforce an ordering in messages.

Limitations of Guard Expressions

Merlin pattern matching allows the use of guard expressions to refine matches – but as
briefly mentioned in section 3.2, guard expressions are composed of only a limited subset
of Merlin expressions.

The reason for this limitation is because of the concern that if guards could execute
arbitrary statements, they would violate the reactivity precept. This is because of the
separation of message delivery and message acceptance in the actor model, and in Mer-
lin: When matching a particular message against a set of patterns, many guards are
potentially invoked before the message is either accepted or buffered. Since guard expres-
sions are evaluated before the message is accepted, they are also carried out before an
event is initiated. Without the aforementioned limitiations in guard expressions, an actor
would thus be able to change behaviour or interact with other actors without accepting
a message. This violates the reactivity precept, and would make Merlin programs very
difficult to understand. Furthermore, fully expressive guards could produce errors that
would be very difficult to locate5

4This use of pattern matching is inspired by the concurrent functional language Erlang, which uses
pattern matching for a similar purpose.

5In fact, all operations with observable side effects are hazardous in guard expressions, for precisely
this reason. However, since all primitive data values in Merlin are immutable, this is only an issue
with actors.

56 3 The Merlin Language

Thus, guard expressions are limited to only performing actions that are not directly
observable – they may not interact with any other actors, and they may not cause
behaviour changes.

Tuples

Pattern matching is also why Merlin has tuples as a primitive datatype. Although it is
possible to represent any data structure using actors[HB77], the combination of pattern
matching and actor-based data structures has several problems. If there is no primitive
for representing collections, then all messages either consist of a single primitive data
value, or a single actor. This reduces the utility of pattern matching, and since the
aforementioned limitations on guard expressions imply that guard expressions cannot
send messages to actors, it would be impossible to match against any kind of data
structure. For this reason, Merlin provides tuples as a primitive datatype.

3.3.4 The Representation of Actors

Since actors are a fundamental concept in Merlin, their representation warrants some
attention. Two major questions came up while developing the Merlin actor concept:
How messages are received, and how the local state is represented.

Explicit vs. Implicit Receive

One issue, which may at first seem rather trivial, is whether or not message reception is
implicit, or if there is an explicit receive construct. In Merlin, message reception is
entirely implicit: An actor begins receiving messages after it has finished processing the
last message it received. In other message-passing languages, such as Erlang and the
Scala actor system, an explicit receive command is used to place an actor in a receiving
state. In this model, the control dispatch on message reception is given in the receive
construct. For example, consider the Merlin actor given in the buffering example:

seq : [[(1, msg) | tell console "First step"
become [[(2, msg) | tell console "Second step"

become seq ()]]]]

In a language with explicit reception, this somewhat convoluted program can be written
in a style which more clearly shows the sequence between the two distinct behaviours of
that actor. In the explicit reception language Erlang, this program could be written
thus:

3.3 The Design of Merlin 57

seq() ->
receive

{1, msg} -> console ! "First step"
end
receive

{2, msg} -> console ! "Second step"
end
seq();

Explicit reception can thus allow some protocols for actor communication to be spec-
ified more clearly. This example also shows another important implication of explicit
reception: In the explicit reception model, behaviour change becomes partially or fully
implicit. An actor can change behaviour inline, simply by “falling through” one receive
to another. It is possible to entirely remove the become construct from such a language.

However, the approach also increases the overall complexity of the programming model.
The main contributing factor to this increase in complexity is that it requires some form
of explicit control flow. In languages with explicit reception, some method needs to be in
place to allow the actor to enclose its receive mechanism in some form of loop. In Scala,
this is usually handled using traditional imperative looping mechanisms such as while
loops, whereas Erlang, a functional language, uses tail recursion. From a simplicity
perspective, there are drawbacks to both approaches.

The Scala approach requires the language to include more concepts. First, the lan-
guage needs to provide some form of explicit iteration constructs. Second, if actors need
to support complex protocols, then constructs to break out of loops (possibly even multi-
ple nested loops) are required. In Merlin, this situation is handled simply with become
and implicit reception.

The Erlang-style approach requires the programmer to make sure that all actor pro-
cess specifications are properly tail-recursive, or risk having actors which monotonically
increase in memory usage over time6. Having to guarantee tail-recursiveness adds some
“conceptual overhead” to the model, however, since the programmer needs to be aware
of another possible source of error.

Thus, both of these approaches require that some form of iteration or recursion facility
is available. However, if it is possible to specify iteration or recursion which does not
contain a receive, then the event atomicity precept is violated. Restricting iteration
or recursion to only work with receives within them may appear just as “strange” as
simply not having any built-in iteration or recursion mechanisms. Merlin is thus based
on implicit reception, due to the consideration of concept economy.

6It is possible to detect this error statically. The same mechanisms that are used to optimize tail calls
in functional language compilers[App98] can be used to detect non-tail-recursive actor specifications.

58 3 The Merlin Language

Actor State

Another important consideration about the representation of actors concerns their local
memories. There are two basic ways to represent memory in actors: They can use
parameters (which is how memory is represented in Merlin), or they can have persistent
local variables. There are benefits and drawbacks to both models.

With parameters, all local memory in actors is explicit and syntactically evident. Every
behaviour change includes a specification of all replacement parameter values. This
makes it easy to spot specific memory modifications in the code of a program. However,
this also means that there is no way for any individual actor to maintain memory outside
of the parameters for its behaviour. This means that if an actor has to retain memory
over a behaviour change from a script of arity n to one of arity m < n, then it must
either package some of its old parameters into a tuple, or send them to another actor for
storage (in which case it must still be aware of the address of the storage actor). This
may seem quite cumbersome.

The parameter-based view of local actor memory is based on a basically function-
oriented view of actors. From this perspective, an actor is viewed as a function which
maps pairs of behaviours and incoming messages to triples of new behaviours, sets of
outgoing messages, and sets of new actors[Agh85]. However, we could also have taken a
more object-oriented view of actors. In this view, an actor is not a function, but a data
structure which has been augmented with a thread, and which may contain executable
code in its fields. This view of actors is implemented in the Io language, a prototype-
based object-oriented language with actor-based concurrency. In this perspective, local
memory is simply contained in slots of the actor data structure.

This leads to an actor memory model based on persistent local variables. The data
structure works as an environment, in which bindings of field names to values can be
stored. In such a model, behaviour changes can have a finer granularity than in the
parameter-based model: A behaviour change consists of replacing a set of bindings in
the data structure, using assignment. However, this model also raises a number of new
issues. For one, when behaviour changes are used to model complex protocols, the coarser
granularity implied by become and parameters may actually lead to clearer programs,
because an entire set of receptors and parameters can be exchanged for another. Fur-
thermore, the data structure model allows actors to have stale memory, slots which are
left over from earlier behaviours, but which will never be used again. Since the binding
is still stored in a slot within the actor, and since actors may change behaviour, there
will often be no way to prove whether it will ever be useful again, and thus it cannot be
garbage collected. Finally, memory modifications may be scattered all over the text of a
program, which may reduce the readability of programs in this model

Neither model conflicts with any of the core precepts, so both could have been used.
The parameter-based mechanism was chosen primarily because it appears that the draw-
backs of that model are less severe than those of the variable-based mechanism, but good

3.3 The Design of Merlin 59

implementations of both models exist (Merlin and Erlang are examples of the for-
mer model, Io and Scala are examples of the latter), and it is a matter of controversy
whether one model can be said to be universally “better”.

3.3.5 Event Atomicity

An interesting and conceptually appealing property of Merlin programs is that individ-
ual events are atomic, and are processed in finite time. When an actor accepts a message,
it is guaranteed that at some point in the future, that actor will finish processing it, and
enter a state in which it awaits more messages.

The event atomicity property of Merlin implies that classical deadlocks, in which
a set of blocking calls prevent each other from ever finishing, do not occur in Merlin
programs. Like in the pure actor model, the analogous situation of actor deadlock can
arise – and, precisely because of event atomicity, we can understand this phenomenon in
Merlin using the same means as those described for pure actors in section 2.3.

This would not be possible in a language which did not guarantee event atomicity,
because the two properties of passivity and insensitivity would no longer be necessary
and sufficient for the deadlock behaviour to occur. Specifically, the lack of event atomicity
would imply that a deadlock situation can occur even in sets of actors in which one or
more of the actors are not passive: If an actor is stuck in an infinite event, then it is
possible that that actor never sends out more messages, even though it is not passive.

Thus, the property of event atomicity makes the phenomenon of actor deadlock much
less complicated to reason about.

The Price of Event Atomicity

A concept that is nearly ubiquitous in sequential programming languages is the pro-
cedure. Procedures are abstractions over sequences of computational steps, and they
are powerful, expressive concepts: Recursive procedures allow very concise solutions to
many computational problems[AS96]. It would seem desirable for an actor language like
Merlin to have a similar concept: With procedures, individual Merlin actors could
abstract away sequences of primitive operations, which could make for shorter, more
concise programs.

Unfortunately, recursive procedures necessarily violate the event atomicity precept.
If recursive procedures are allowed, then it is possible for an actor to enter an infinite
recursion. In that case, the actor will never finish the event that initiated the recursion,
and it will never enter a state where it awaits more messages.

Non-recursive procedures do not have this problem. However, using only non-recursive
procedures means that a procedure could not call any other procedure, since event atom-
icity is violated by any form of infinite recursion, including infinite mutual recursion.
Thus, for event atomicity to be preserved, only an extremely limited form of procedures

60 3 The Merlin Language

could be used. However, such limited procedures would not add substantially to the
expressivity of Merlin.

Therefore, to allow event atomicity, Merlin has no concept of procedures. Whether or
not this tradeoff is “worth it” is debatable, but it was made due to the focus of Merlin:
First and foremost, Merlin is a language meant for studying the linguistic implications
of the actor model, and the property of event atomicity is a distinguishing characteristic
of the actor model.

3.3.6 On Bidirectional Asynchronous Communication

A very common pattern of communication in many computer programs is bidirectional
communication. Familiar examples of bidirectional communication flow in sequential
programming languages include method calls in object-oriented programming languages,
as well as function calls in functional languages.

Unfortunately, the asynchronous communication mechanism of the actor model does
not, and cannot, support bidirectionality as a primitive, atomic operation. By definition,
sending an asynchronous message does not cause the sender to wait for a reply or even
an acknowledgement. As such, bidirectional communication in asynchronous messaging
systems is necessarily a compound action, consisting of at least two separate asynchronous
message transmissions.

One abstraction over such a message pattern is ask expressions[Agh85, Man88, HA92],
which have been used in the Acore and Hal languages7. Ask expressions allow a
programmer to write expressions which evaluate to the reply of some other actor, similar
to how method calls in object-oriented programming languages work. This can increase
the succinctness and clarity of some programs, compared to explicitly writing the two
steps of the communication.

However, ask has some quite unfortunate properties as well. Firstly, ask, as described
in Acore: The Design of a Core Actor Language and its Compiler [Man88], has context-
sensitive semantics which is not entirely straightforward to understand. There are two
distinct contexts in which an ask can occur:

Behaviour-independent : If no become statement is executed after an ask, then a new,
anonymous actor is spawned to handle the actor’s actions after the ask – similar,
in fact, to how the factorial example in section 3.2.7 worked. This new actor is
instantiated with an automatically generated behaviour, which awaits the reply
from the target of the ask, and carries out everything the original actor would
have done with the reply. Such actors are frequently called customers[Agh85], or
continuation actors[Hew76].

7In Hal, this mechanism is referred to as a “RPC Send”, although it is similar to the ask expressions
of the older language Acore.

3.3 The Design of Merlin 61

Behaviour-dependent : On the other hand, when there is a subsequent become state-
ment, the above mechanism will not work – it would be the customer that changed
behaviour at the end, not the original actor. In this case, a new behaviour is gen-
erated like in the behaviour-independent scenario, but instead of spawning a new
actor with that behaviour, the original actor becomes the continuation behaviour.
Provided that the target of the ask sends a reply, this is safe, since the subsequent
become guarantees that the actor will eventually change state away from the con-
tinuation behaviour. While in the continuation behaviour, the actor only awaits
the reply, and will not react to any other messages.

The only one of the two possible ask variants which could, in theory, be used in all
cases is the behaviour-dependent one. Unfortunately, this would effectively remove all
advantages of asynchronous communication when ask is used: After issuing an ask, an
actor changes to the insensitive behaviour and awaits a reply. One problem with this is
that it reduces concurrency in the system, but worse, because of the insensitivity, it also
introduces the possibility for deadlock.

The behaviour-insensitive ask variant addresses this problem. When the behaviour
of the actor cannot change during the processing of the event that issues the ask, then
it is safe to accept another message while the ask is being processed. This situation is
handled by spawning a continuation actor, which processes the rest of the event after the
ask.

Recursion Datalock

One form of datalock that can arise in behaviour-dependent ask expressions is recur-
sion deadlock. A similar phenomenon is known in synchronous communication systems,
and has been described in section 2.2 of this report. A recursive, behaviour-dependent
ask satisfies the preconditions for actor deadlock, where the defining characteristic for
recursion deadlock is that the configuration A consists of only a single actor. Recall
that an actor behaviour change affects how it accepts subsequent messages. This means
that the change to the insensitive behaviour happens before the actor can process its
recursive ask, which then means that the message issued by the ask will be buffered.
Once the message is buffered, our configuration of one is silent. Because it changed to
the insensitive behaviour, it is also insensitive. And because it is awaiting its own reply,
it is passive.
Ask expressions can maintain event atomicity, but their introduction into Merlin

would mean that events are no longer syntactically evident: Any ask terminates the cur-
rent event, either by creating a new actor and awaiting more messages, or by changing
behaviour into an actor which awaits the reply message. For this reason, and because of
the high emphasis placed on simplicity, Merlin does not include a bidirectional com-
munication primitive.

62 3 The Merlin Language

Merlin Erlang Scala Io
Event Atomicity Yes No No No
Reception Model Implicit Explicit Explicit Implicit

Pattern Matching Yes Yes Optional No
Unrecognized Messages Buffered Buffered Buffered Unbuffered

Memory Model Behaviours Func. Parameters Variables Slots
Bidirectional Messages No No !? Operator Futures
Sequential Component Limited Imperative Functional Multiparadigm OO

Table 3.2: Comparison of Modern Actor Programming Systems

3.4 Evaluation of the Merlin Language Design

As mentioned in the introduction, the purpose of the Merlin language design was to
undertake an exploration of the language design space around the actor model, with an
emphasis of investigating whether the actor paradigm could be used to enable a simpler,
more comprehensible style of programming for concurrent programs. For this purpose,
the Merlin language was developed. In this section, we will see how Merlin relates to
other actor-based programming systems, and consider whether or not Merlin meets its
own requirements.

3.4.1 Merlin and Other Modern Actor-Based Languages

In recent years, actor-based programming has seen a new rise in popularity, possibly be-
cause of the increasing importance of concurrent, parallel and distributed programming
systems. Several actor-based programming systems have been developed in recent years,
by a very varied group of developers, and for many different purposes. Table 3.2 summa-
rizes some of the differences and similarities between Merlin and three other modern
actor systems: Erlang, Scala and Io.

In section 3.3, we saw the rationales for how the Merlin design considered each of
the language design decisions represented in Table 3.2. Many of the Merlin design
choices stemmed from the guiding requirement of simplicity, and the fact that Merlin is
intended as an exploratory “toy language”, rather than as a true application development
language. It seems appropriate to consider the Merlin design in poerspective, so we
briefly outline which design considerations affected the other modern actor languages,
and how the actor model has been used to meet those considerations. We will consider
the Erlang and Scala languages, since no literature about the design process of Io
was available at the time this thesis was written8.

8Most of the information about Io in this report comes from the language website, and from experi-
menting with programming in the language

3.4 Evaluation of the Merlin Language Design 63

Erlang

Erlang is possibly the most famous language which uses actor-based concurrency se-
mantics. Furthermore, the Erlang language has an impressive body of industrial appli-
cation experience behind it. It was designed primarily for high-availability telecommuni-
cations applications, and is used in some of the telecommunication switches manufactured
by Ericsson[Arm03]. Erlang is conceptually a layered design[Roy06]: The sequential
layer implements a small functional language, and the concurrent layer implements an
actor-like message-passing concurrent language.

The primary concern in the design of Erlang [Arm03] was high availability, mani-
fested in the ability to introduce new code at runtime (“hot loading”), and the ability to
gracefully cope with errors. Actor-based programming provides a number of important
benefits in these two areas. Hot loading benefits greatly from the memory and program
encapsulation of actors, as well as the message buffering: In terms of the actor model
itself, we can understand the phenomenon of hot loading simply as an actor changing its
behaviour. While that actor is being reconfigured, it can buffer its incoming messages
until it has had its new script installed and is ready to process them.

Error handling in actor systems can also be understood in terms of the model itself.
In the application domain of Erlang, many of the errors that arise are typical of the
distributed computing field[CDK94], such as messages arriving out of order, or individual
nodes in a system crashing. We have already seen how the combination of behaviour
changes and buffering can be used to handle messages arriving in a wrong order. However,
crashes violate the finite nature of events in the pure actor model, since an actor can
crash during the processing of a message. When an actor is known to have crashed, we
can model a crashed node to have become a sink, which drops all further messages.

In Erlang, crash situations can be handled using timeouts: When other actors do not
get any observable reaction from the crashed node for some span of time, they consider
it crashed, and may notify other actors of the crash. This allows Erlang systems to
reconfigure themselves to work around crashed nodes. Merlin would not be particularly
applicable for this application domain, because it does not support timeouts, and because
the event atomicity precept prevents it from modelling crashed nodes.

Scala

The Scala language was designed primarily for scalability[HO07]. Therefore, for a
concurrency model to be consistent with the purposes of Scala, it must be able to
scale in both directions: It should be possible to model both very large-scale concurrent
programs running on powerful networked computers, as well as small-scale concurrency
suitable for embedded devices. Since Scala is implemented on the Java Virtual Machine,
it must implement its concurrency support in terms of the primitives provided by that
platform.

64 3 The Merlin Language

Unfortunately, spawning threads is somewhat expensive on the JVM[HO07], and large-
scale concurrency on JVM-based systems thus often have to rely on other programming
models. A common pattern is event-driven programming, which unfortunately suffers
from a phenomenon called “control inversion”, which means that event-based systems
model control flow in a producer-centric manner: It is not the component which needs
information that initiates communication, it is the one which can provide it. This can give
event-based programs a quite convoluted control flow[Fuc95]. However, actors provide
a mechanism for encapsulating event loops in a linguistic construct that is much easier
to understand, and the Scala actor system uses actors for precisely this purpose: To
provide an abstraction over event loops and thus allow concurrent programs to scale to
larger sizes than thread-based ones.

However, Scala actors are not “pure” actors: For instance, they can access shared
memory[Hal06], even if that programming practice is not encouraged. Because the Scala
runtime does not enforce pure message-passing semantics, its actor implementation can
be very lightweight and efficient. Chapter 4 demonstrates an implementation of Merlin,
which highlights some of the implementation problems in enforcing pure message-passing
semantics.

3.4.2 Revisiting the Requirements

In the beginning of this chapter, we identified simplicity as a very important property
of concurrent languages: Because of the inherent complexity of concurrency, it is of
vital importance that a concurrent programming language adds only minimally to the
complexity of programs. We identified the property of simplicity as one of economy of
thought, and saw two perspectives on achieving simplicity in a programming language:
The principle of consistency, and the principle of abstraction.

One method for achieving consistency in a programming language is by developing a
set of “natural laws” for programs in the language[Mey00], and assuring that no language
construct is in violation of these laws. In Merlin, we gave eight fundamental precepts,
and took care to exclude constructs which would violate them. If we define an incon-
sistency as a language construct which violates one of the fundamental precepts, then
we can indeed say that Merlin is a consistent language. However, it is reasonable to
ask whether the precepts themselves follow the design philosophy and requirements we
developed. Table 3.4.2 summarizes the interactions between the precepts and the design
requirements.

Simplicity

The programming model of Merlin is quite conceptually simple, in the sense that it
provides only a few simple constructs to build programs from. Although Merlin is
not a pure actor language, we saw in section 3.3.2) that pure actor languages are not

3.4 Evaluation of the Merlin Language Design 65

Simplicity Expressivity Composability Static Analysis Low Overhead
Actor-Based + +
Message Passing + + + + -
Asynchrony + + -
Concurrency - +
Reactivity + +
Event Atomicity + - +
Pattern Matching + -
Buffering + -

Table 3.3: Conceptual Design Tradeoffs in Merlin

necessarily simpler than impure ones: They have to introduce different kinds of actors,
and understanding message passing is somewhat complicated in such languages. Merlin
solved this problem by simply introducing primitive, non-actor-based values. Apart
from the primitive data types, all of Merlin can be understood in terms of actors and
messages. Merlin simplifies reasoning about programs because of two assumptions that
can be made about Merlin programs: Actors are purely reactive, with atomic events.

Expressivity

If there is one barrier to truly high expressivity in Merlin, it is the combination of
event atomicity and the lack of a bidirectional communication mechanism. Even in
the simple factorial example in section 3.2.7, we saw that a Merlin programmer has to
explicitly manage the control and data otherwise implemented by call stacks in more con-
ventional languages. A bidirectional communication primitive could remove some of this
extra, explicit information from programs, but unfortunately, bidirectional communica-
tion mechanisms in concurrent programming are anything but simple. However, Merlin
is not a decidedly inexpressive language: Message-passing concurrency can generally be
quite concise, at least compared to the syntactic clutter often introduced by lock vari-
ables. The asynchronous messaging system allows some programs to be expressed using
recursive communication. Finally, pattern matching proved quite expressive: expressive:
In all the small examples, not a single explicit if statement had to be written.

Composability

In several of the simple examples, we saw how Merlin actors can be proxies for each
other. This provides a quite elegant composition mechanism, since an actor in a chain of
proxies does not need to know anything about any other actor than its own immediate
successor. If such actors designed such that they can be instructed by other actors to
change their target, then this form of composition can even evolve dynamically in a
running system.

66 3 The Merlin Language

Static Analysis

Because Merlin uses dynamic types, it is not particularly amenable to static analysis.
However, we noted in section 2.2 that reasoning on causality chains in message-passing
systems is generally easier than reasoning in shared-memory concurrent systems. The re-
activity and event atomicity precepts further assists in the analysis of Merlin programs.
However, it should be noted that static analysis was not a concern in this project.

Low Overhead

We investigate some of the implementation challenges of Merlin further in chapter 4.
However, at this point it is possible to make a few statements about the efficiency of a
Merlin interpreter in both time and space: Purely message passing interaction will be
expensive, since it implies that name bindings must be implemented using copying, rather
than referencing, in some cases. Pattern matching is more complicated and less efficient
than simple conditional statements. Finally, buffering (including the buffering implied
by asynchronous messaging) will increase the memory load of a Merlin interpreter. As
above, it is worth noting that this project did not consider efficiency a high priority.

3.4.3 Final Remarks on the Merlin Design

One of the language precepts in particular, that of event atomicity, proved to be quite
conceptually costly. While Merlin programs have the conceptually appealing property
that deadlock-like behaviour only occurs when the two preconditions defined in sectction
2.3 are present, it is worth asking whether this property is worth the price. And precisely
because all language features are consistent with that property, Merlin does not have
any recursive procedures, or iteration constructs. While Merlin programs can still
perform recursive computations (as we saw in the factorial example), they have to do
so in a quite strange style. It is not clear to which degree this “strangeness” seriously
hampers the comprehensibility of Merlin programs, and to which degree it is just an
aspect of programming in an unfamiliar programming paradigm.

The concurrency and coordination examples in the Merlin introduction showed an
interesting aspect of Merlin: Rather than being details of implementation (such as
acquiring and releasing locks in order), proper synchronization in Merlin programs is
promoted to the program design level. This implies that Merlin does, in fact, enable a
higher level of abstraction when thinking about concurrency-related problems.

3.5 Summary

This chapter documented the design process of the Merlin language, and gave a brief
introduction to the language itself. We can summarize the design process in the following
four steps:

3.5 Summary 67

1. A general statement of philosophy for Merlin was developed.

2. The qualities that should be encouraged in programs were considered, and from the
combination of these and the aforementioned statment of philosophy, a prioritized
list of design requirements was assembled.

3. A set of guiding “natural laws” for Merlin programs were developed, in the form
of eight core precepts.

4. Several language constructs were proposed, and judged in terms of the philosophy,
the requirements, and an analysis of whether they would violate any of the core
precepts.

We showed how this process led to a quite simple actor-based language, and contrasted
its development with two other actor-based languages, Erlang and Scala. However,
one of the eight core precepts, that of event atomicity, proved to be very conceptually
costly, in that it required us to discard some linguistic concepts that could improve the
expressivity and applicability of the Merlin language.

Recommended Literature

Programming language design is an active and exciting area of computer science research,
dealing with a broad range of philosophical, theoretical and practical problems. Examples
of good textbooks dealing with this subject include Programming Language Pragmatics,
Essentials of Programming Languages and Concepts of Programming Languages.

A very good article dealing with the philosophical principles of programming language
design is Bertrand Meyer’s Principles of Language Design and Evolution, which in turn
is inspired by C.A.R. Hoare’s classic Hints on Programming Language Design. The Next
700 Programming Languages, by Peter Landin, is also a quite enlightening read.

4. A Simple Merlin Interpreter
“When I use a word,” Humpty Dumpty said, in a rather scornful tone,“ it means just what I
choose it to mean, neither more nor less.”
– “Through the Looking Glass”, Lewis Carroll (1832 - 1898)

There is an evil tendency underlying all our technology - the tendency to do what is reasonable
even when it isn’t any good.
– Robert M. Pirsig

We will now study the semantics of Merlin, through the development of a simple
Merlin interpreter. As such, the primary purpose of the interpreter developed in this
chapter is not to give an efficient Merlin implementation, it is intended as a simple
proof-of-concept implementation with two main purposes: Showing the semantics of
Merlin on a form understandable to programmers1, and demonstrating a reference
implementation from which more sophisticated implementations can be built.

For this reason, the Merlin interpreter demonstrated here is not optimized for perfor-
mance in neither space nor time. It is quite slow, and has a high memory consumption.
It does not attempt to parallelize Merlin programs maximally. These omissions have
been made to ensure that the interpreter is clearer and more comprehensible. Some
possibilities for future improvements are discussed in the text of this chapter, as the
interpreter is developed.

Only a subset of the full interpreter is described in detail. In particular, the small
sequential sublanguage of Merlin is given little attention. We do not describe the
intricacies of conditional statements, Boolean operators and other “standard fare” com-
ponents of the interpreter. Readers interested in a complete implementation of Merlin
can turn to Appendix B, which reproduces the full Scheme source code of the Merlin
interpreter.

Chapter Structure

This chapter is divided into five parts, of which three are relatively small.
1In this case, a working knowledge of the PLT Scheme implementation is helpful. Scheme was chosen

as the implementation language for this Merlin interpreter because Scheme is very well-suited
for constructing, manipulating and processing abstract syntax trees, which greatly simplifies the
development of interpreters. The semantics of Scheme itself has sometimes been given in the form
of a metacircular interpreter, that is, an interpreter for Scheme in Scheme.

70 4 A Simple Merlin Interpreter

• Overview of the Interpreter : This section gives an introduction to the basic struc-
ture of the interpreter, and the components it consists of.

• The Actor Directory : The first of three sections which describe the internals of the
interpreter, this chapter describes the central data structure used to keep track of
the actors in the system.

• The Actor Loop: The largest section of this chapter, this introduces the main op-
erating concepts used by all actors. It describes the implementation of the pattern
matcher, the script execution engine, as well as some of the fundamental concepts
of Merlin.

• Built-In Actors: This small section describes the implementation of built-in actors.

• Evaluation of the Interpreter : The final section of this chapter describes some of the
challenges and problems of the interpreter, and outlines some of the opportunities
for improvement.

4.1 Overview of the Interpreter

The concurrent execution of Merlin programs can be understood in terms of the in-
teractions between actors, and as such, this introduction to the interpreter will mainly
be concerned with the realization of actors. There are two primary components to the
Merlin actor engine: The actor directory and the actor loop. The actor directory is
a global data structure which maintains information about all actors in the system, in
particular a mapping of addresses to actual communication channels. The actor loop
contains the kernel of behaviour shared universally by all actors: It accepts messages,
executes actor scripts, keeps track of parameters and handles behaviour changes.

The actor loop, in turn, makes use of a range of procedures to implement the function-
ality of Merlin actors. In particular, it depends on a pattern matcher, a script processor
and an environment model for its work. The script processor gives implementations of the
statements and operators which make up the text of Merlin programs. The interpreter
is completed by a set of built-in actors.

An important point about the interpreter is that it executes Merlin programs in an
abstract syntax form, given in a fully parenthesized prefix notation called S-expressions.
The use of an abstract notation greatly simplifies the internal workings of the interpreter,
and S-expressions are the natural form of data structuring in Scheme, the implemen-
tation language of the interpreter. While a lexer and parser transforming the concrete
Merlin syntax used in the rest of this thesis could have been written, it was felt that
this would not contribute substantially to the focus of this project.

4.2 The Actor Directory 71

4.2 The Actor Directory

The actor directory is a global data structure which keeps track of all actors in a running
Merlin program. It defines a mapping between unique actor addresses and their asso-
ciated communication channels, and supports two basic operations: Directory-lookup
and directory-register.

There are two important aspects to the identity of an actor: It must be unique, and it
must serve as a reference to the actor. For the purposes of the reference implementation,
we can ensure these two properties by representing the address of an actor as a key into
a global hash table.

Here is the definition of the actor directory:

(define directory (make-hash-table))
(define (directory-lookup address) (hash-table-get directory address))
(define (actor-port addr) (car (directory-lookup addr)))
(define (directory-register address port control)

(hash-table-put! directory address (list port control)))

The addresses are simply represented as integers. The runtime keeps track of the
maximum address registered, and registering a new address increments the maximum
address. This address generator is protected by a mutex, to prevent race conditions
when multiple actors spawn new actors concurrently:

(define max-address 0)
(define address-sema (make-semaphore 1))
(define (make-unique-address)

(semaphore-wait address-sema)
(set! max-address (+ max-address 1))
(semaphore-post address-sema)
max-address)

This scheme works for demonstration purposes, but is not very suitable for use in a
more sophisticated implementation, since the address integer of the last registered actor
is monotonically increasing. This means that in a long-running system, such as a program
running as a server, it will eventually become a very large number. In a Scheme-based
implementation, this means that the memory consumption of addresses increases over
time. However, in an implementation in a language like C which has bounded integer
sizes, it will eventually cause a system crash. These problems can be remedied by using
some other type than integers for representing addresses, and by reusing addresses from
actors that have been reclaimed by a garbage collector.

72 4 A Simple Merlin Interpreter

4.3 The Actor Loop

The core of any individual actor in a Merlin program2 is the actor loop. The general
behaviour of the actor loop is quite straightforward:

1. The first action of the actor loop is to wait for messages, on the asynchronous
communication channel of the actor. As described in our overview of asynchronous
communication, message reception in this model is a blocking operation.

2. Once a message arrives, it is tested against the set of receptors defined for the actor.

3. If a match is found, the associated reaction is executed. The actor keeps track of
its state throughout the execution of the reaction, in order to detect whether it
should change behaviour, after control returns to the actor loop.

4. The actor uses any information obtained during the execution to determine the
behaviour script and local values to use for its next execution.

5. If the actor changes behaviour, then it resends all its buffered messages to itself, in
case one of them can be recognized with the new behaviour.

6. If no match was found in step 3, then the message is appended to the buffer.

7. Finally, the actor loops back to step 1.

The actor loop itself is a recursive function with the following definition:

(define (actor-loop addr chan script locals buffer)
(let* ((msg (async-channel-get chan))

(receptor (select-receptor msg script locals))
(state (cons addr #f))
(result (if receptor (script-exec (recept-reaction receptor)

(recept-env receptor)
state)))

(next (next-behaviour state locals))
(new-script (if next (next-script next) script))
(new-locals (if next (next-env next) locals))
(new-buffer (cond ((and receptor next) (retry-buffer chan buffer) ’())

(receptor buffer)
(else (cons msg buffer)))))

(actor-loop addr chan new-script new-locals new-buffer)))

2The built-in actors are an exception. As we will see, Merlin built-in actors use a different internal
definition than the standard actor loop. This is because the built-in actors, by their nature, are
written in Scheme, not Merlin.

4.3 The Actor Loop 73

As is evident, the actor loop makes use of a significant number of non-trivial components
during its operation. We will describe each of the major components of the actor loop
in turn.

4.3.1 Environments

The locals parameter of the actor loop contains its local memory, represented as an
environment. Environments in the Merlin interpreter are represented as lists of frames,
each of which contains a list of names and a corresponding list of values. This rep-
resentation allows environments to be easily extended, simply by augmenting the list
with another frame. Performing a name lookup in an environment is done through re-
cursive lookups in each frame. This implementation of environments is inspired from
the environment model of the metacircular Scheme interpreter given in Structure and
Interpretation of Computer Programs[AS96]. The most important differences between
Merlin environments and the environment model of Scheme interpreters are twofold:
For one, because of the behaviour change model of state, Merlin has no assignment
statement, and thus does not need an analogy to set! in Scheme, and secondly, there
are situations in which Merlin needs to perform deep copies of environments. We will
return to the copying of environments later in this section.

Three fundamental operations are defined on environments: Name lookups, which
return the value bound to some name in the environment, definitions, which create
new bindings in the environment, and extensions, which generate a new environment,
extended with another frame containing bindings.

As mentioned, environments are represented as lists of frames. The following proce-
dures define the frame data structure:

(define (make-frame vars vals) (cons vars vals))
(define (frame-names frame) (car frame))
(define (frame-values frame) (cdr frame))
(define (add-binding-to-frame! var val frame)

(set-car! frame (cons var (car frame)))
(set-cdr! frame (cons val (cdr frame))))

Similarly, these procedures define the composition of environment data structures:

(define (enclosing-environment env) (cdr env))
(define (first-frame env) (car env))
(define empty-environment ’())

Using these data structures, we can now define the three fundamental operations on
Merlin environments. First, the name lookup procedure recursively scans an environ-
ment for a specified name. Unlike its Scheme counterpart as described in [AS96], it
does not signal an error if it encounters an unbound name – it just returns false. This is

74 4 A Simple Merlin Interpreter

because it is used extensively by the pattern matcher, and in this context is expected to
encounter many unbound names.

(define (name-lookup name env)
(define (env-loop env)

(define (scan vars vals)
(cond ((null? vars) (env-loop (enclosing-environment env)))

((eq? name (car vars)) (car vals))
(else (scan (cdr vars) (cdr vals)))))

(if (eq? env empty-environment)
#f
(let ((frame (first-frame env)))

(scan (frame-names frame) (frame-values frame)))))
(env-loop env))

The procedure to make a new definition scans through the environment, and changes a
name binding if it already exists. If it doesn’t, then the binding is placed in the first
frame.

(define (define-name! var val env)
(let ((frame (first-frame env)))

(define (scan vars vals)
(cond ((null? vars) (add-binding! var val frame))

((eq? var (car vars)) (set-car! vals val))
(else (scan (cdr vars) (cdr vals)))))

(scan (frame-names frame) (frame-values frame)))
env)

Finally, extending an environment adds a new frame to it, with its own name list and
value list.

(define (extend-environment vars vals base)
(if (= (length vars) (length vals))

(cons (make-frame vars vals) base)))

4.3.2 The Pattern Matcher

The pattern matcher is an integral part of the Merlin interpreter, due to the central
role of pattern matching in message reception. It takes a pattern and a message, and
recursively matches each element of the pattern against each element of the message.
When the matcher successfully matches an element against the pattern, it creates an
extended environment, in which the name of the pattern element is bound to the value
of the message element. If the entire match succeeds, then the response script to the
message is executed in the environment generated by the matcher.

4.3 The Actor Loop 75

Since the pattern matcher uses patterns defined in behaviours, it is illustrative to see
an example of a Merlin behaviour in abstract representation before going through the
workings of the pattern matcher. Here is a translation of the type-checking console proxy
from section:

(define str-proxy
(behaviour ()

((msg (where (string? msg))) (tell console msg))
(msg (tell alert "Type error in str-proxy!"))))

The pattern matcher will attempt each pattern the list of receptors sequentially, until
either finding a match or reaching the end of the list.

The two following procedures can be used to extract the pattern and reaction elements
from the first receptor in a list:

(define (script-pattern script) (caar script))
(define (script-reaction script) (cadar script))

The pattern matcher itself is defined through two procedures, one responsible for scanning
through the receptors and handling guard expressions, the other for doing the actual
structural matching. We call these functions select-receptor and match. The intuition
behind receptor selection can be described informally as follows:

1. Given a message, a script and an environment, select-receptor will first attempt
to determine if there is a structural match, by calling match. It strips an eventual
guard expression from the pattern first.

2. If a match can be made, then the resulting environment returned from match is used
to evaluate the guard expression. A full match occurs when there is a structural
match and the guard expression evaluates to anything other than false.

3. In case of a full match, select-receptor returns the environment generated by
match. Otherwise, it calls itself with the rest of its receptor list.

Correspondingly, here is an informal description of the structural matching:

1. Given a pattern, an expression and an environment, the behaviour of match depends
on the type of the pattern.

• If the pattern is a symbol, and that symbol corresponds to a name defined
in the environment, then return the current environment if the value of that
name is equal to the value of the expression. Otherwise, return the special
symbol no-match.

76 4 A Simple Merlin Interpreter

• If the pattern is a symbol, and that symbol is not defined in the environment,
then return an extended environment with that name bound to the value of
the expression.

• If both the pattern and the expression are pairs, recursively call match into
those pairs.

Finally, here are the Scheme definitions of these two procedures:

(define (select-receptor msg script env)
(if (null? script) #f

(let* ((matching (match (strip-guard (script-pattern script)) msg env))
(guard-accept? (check-guard (script-pattern script) matching))
(match? (and guard-accept? (not (eq? matching ’no-match)))))

(if match?
(cons (script-reaction script) matching)
(select-receptor msg (cdr script) env)))))

(define (match pattern exp env)
(cond ((eq? env ’no-match) ’no-match)

((equal? pattern exp) env)
((symbol? pattern)
(if (name-lookup pattern env)

(if (equal? (name-exp pattern env) exp) env ’no-match)
(extend-environment (list pattern) (list exp) env)))

((and (pair? pattern) (pair? exp))
(match (cdr pattern) (cdr exp)

(match (car pattern) (car exp) env)))
(else ’no-match)))

Guard Expressions

Some patterns may have guard expressions, which specify additional constraints for the
match. Guard expressions follow the semantics of Boolean expressions shared by both
Merlin and Scheme: Everything that is not explicitly false is considered true. The
pattern matcher is designed such that guard evalution is performed by the receptor
selector rather than the structural matcher, to avoid overly complicating the structural
matcher.

The receptor selector uses four procedures to handle guard expressions. Has-guard?
is a simple predicate which determines if a pattern has a guard expression or not, guard
returns the guard expression of a pattern which has one, strip-guard removes a guard
expression from a pattern, and check-guard evaluates a guard expression within an
environment given by the structural matcher:

4.3 The Actor Loop 77

(define (has-guard? pattern)
(and (pair? (last pattern)) (eq? (car (last pattern)) ’where)))

(define (guard pattern) (cadr (last pattern)))
(define (strip-guard pattern)

(if (has-guard? pattern)
(take pattern (- (length pattern) 1))
pattern))

(define (check-guard pattern env)
(if (has-guard? pattern)

(guard-eval (guard pattern) env)
#t))

Guard-eval evaluates a side-effect-free subset of Merlin expressions.

4.3.3 The Script Processor

The script processor is an important component in the Merlin interpreter. It is similar
in concept to the eval function in Scheme interpreters, with the important distinction
that Merlin scripts are always evaluated in the context of an actor. The Merlin script
processor takes an expression, an environment, and a special state variable as parameters:

(define (script-exec exp env state)
(cond ((self-evaluating? exp) exp)

((and-exp? exp) (eval-and (vals (operands exp) env state) env))
((or-exp? exp) (eval-or (vals (operands exp) env state) env))
((self-reference? exp) (cons ’address (car state)))
((name? exp) (name-exp exp env))
((definition? exp) (eval-definition exp env state))
((if? exp) (eval-if exp env state))
((tell? exp) (eval-tell exp env state))
((spawn? exp) (eval-spawn exp env state))
((become? exp) (eval-become exp env state))
((behaviour-definition? exp)
(make-behaviour (behaviour-parameters exp) (behaviour-body exp) env))

((begin? exp) (eval-sequence (begin-actions exp) env state))
((operation? exp)
(apply-operation (script-exec (operator exp) env state)

(vals (operands exp) env state)))
(else (error "SCRIPT-EXEC ERROR: " exp))))

The Merlin script processor is a recursive procedure which performs a case analysis on
the input expression given the input environment. Like a Scheme evaluator, the script
processor contains all the “special forms” of the language – in the case of Merlin, all
the statements3.

3To simplify the interpreter, statements are considered expressions that have undefined return values.
If a statement occurs in an expression context, where the value is required, the underlying Scheme
interpreter will signal a type error.

78 4 A Simple Merlin Interpreter

Expressions and Operators

Unlike Scheme evaluators, the corresponding apply procedure (apply-operation in
Merlin) is very simple:

(define (apply-operation operator operands) (apply (car operator) operands))

This is because, unlike Scheme, Merlin does not have a notion of functions or user-
definable operators.

All the operators for Merlin expressions are defined in an association list, operators,
which is installed into the environment of the top-level actor during the initialization of
the interpreter. This association list maps operator names to their implementations,
many of which are taken directly from the underlying Scheme interpreter:

(list
(list ’+ +)
(list ’- -)
(list ’* *)
(list ’/ /)
...
(list ’tuple? tuple?)
(list ’behaviour? behaviour?)
(list ’address? address?)
(list ’is equal?)))

Only a subset of the operator list is reproduced here; the full list can be seen in Appendix
B.

The Representation of Behaviours

The representation of behaviours is a rather complicated and somewhat tricky part of
the Merlin interpreter, because of the combination of static scope and pure message-
passing concurrency semantics. Because of the static scope, behaviours need to contain a
representation of the environment in which the behaviour was defined, and because of the
purely message-passing concurrency semantics, it cannot simply use a reference to that
environment, like Scheme interpreters do. If a reference was used, then the actor that
defined the behaviour could engage in a degenerate form of shared-state concurrency with
all the actors spawned from that behaviour, by redefining values in its environment. This
problem is solved by performing a deep copy of the environment in which a behaviour is
created. The following procedures give a definition of the representation of behaviours
in Merlin programs:

(define (make-behaviour params script env)
(list ’behaviour params script (deep-copy env)))

4.3 The Actor Loop 79

(define (behaviour-params bhv) (cadr bhv))
(define (behaviour-script bhv) (caddr bhv))
(define (behaviour-env bhv) (cadddr bhv))

The make-behaviour procedure works well when defining anonymous behaviours, but
unfortunately, it does not allow self-references in behaviours. This is because the be-
haviour is (obviously) not yet defined at the time when it is defined, and thus the copied
environment does not contain a reference to it. Since self-referential behaviours are a
very common construct in Merlin programs, occurring whenever an actor changes only
the parameters of its current behaviour, some workaround for this problem is needed.

Since this is only a problem in the case of named behaviours, we solve this by intro-
ducing a special case in the procedure for name definitions. Although this is somewhat
inelegant, it does solve the problem for simple self-reference:

(define (eval-definition exp env state)
(if (and (pair? (definition-value exp))

(eq? (car (definition-value exp)) ’behaviour))
(begin

(let ((new-env (deep-copy env)))
(define-name! (definition-name exp)

(list ’behaviour
(behaviour-parameters (definition-value exp))
(behaviour-body (definition-value exp))
’this-environment)

new-env)
(define-name! (definition-name exp)

(list ’behaviour
(behaviour-parameters (definition-value exp))
(behaviour-body (definition-value exp))
new-env)

env)))
(begin

(define-name! (definition-name exp)
(script-exec (definition-value exp) env state)
env))))

The environment copy stored in the behaviour is augmented with a reference to the be-
haviour itself, in which the environment is represented by the symbol this-environment.
This is necessary to avoid introducing a cycle in the environment, which would otherwise
cause an infinite loop in the next deep copy. The this-environment symbol is handled
and expanded to the proper environment by the which is used by the main actor loop.
This mechanism is described below, in the description of the behaviour change process.

80 4 A Simple Merlin Interpreter

Communication

As we have seen in the previous chapters, a defining trait of the actor model is its asyn-
chronous communication model. In Merlin, this is modelled using the tell primitive,
defined in the interpreter by the following Scheme procedure:

(define (eval-tell exp env state)
(let* ((values (vals (operands exp) env state))

(addr (cdar values))
(msg (cadr values)))

(async-channel-put (actor-port addr) msg)))

The async-channel-put procedure is defined in the PLT Scheme async-channel mod-
ule, which provides buffered, asynchronous communication channels similar to those used
in the actor model. Recall that the actor-port procedure is used in the interface to the
actor directory.

We already saw the receiving side of the communication, in the actor loop. The built-in
buffers of the PLT Scheme channels provide part of the functionality of Merlin buffers:
They ensure that an actor will receive messages, even when it is busy doing something
else. The explicit buffer implemented by the actor loop is used to handle the remaining
part of the buffer functionality defined by Merlin: Buffering unrecognized messages.

Spawning New Actors

Another important aspect of actor semantics is that actors can create new actors. The
spawn statement of Merlin is used to create new actors, and is given by the following
procedure:

(define (eval-spawn exp env state)
(let* ((values (vals (operands exp) env state))

(bhv (car values))
(actuals (cadr values)))

(cons ’address (new-actor bhv actuals))))

Like tell, this procedure needs to interact with the actor directory. This interaction is
handled through the new-actor procedure, which is responsible for creating an address,
channel and thread for the actor. It is given here, together with its helper procedures
actor-thread and initial-env:

(define (initial-env bhv actuals)
(extend-environment (behaviour-params bhv) actuals (behaviour-env bhv)))

(define (actor-thread addr port bhv actuals)
(thread (lambda ()

(actor-loop
addr port (behaviour-script bhv) (initial-env bhv actuals) ’()))))

4.3 The Actor Loop 81

(define (new-actor behaviour actuals)
(let* ((addr (make-unique-address))

(port (make-async-channel))
(control (actor-thread addr port behaviour actuals)))

(directory-register addr port control)
addr))

Changing Behaviour

We have already seen some of the challenges of implementing the behaviour change model
of state, in the description of the representation of behaviours in the Merlin interpreter.

The behaviour-change interaction between the actor loop and the script processor in
the Merlin interpreter is done through a state variable, called state in both the actor
loop, the script processor, and in all the procedures called by the script processor that
require it. As we saw in the definition of the actor loop, it is a pair in which the first field
contains the actor address (which is used for another purpose in the interpreter, namely
allowing actors to access their own addresses using the self expression), and in which
the second field is initialized to simply contain the Boolean false value. It is this second
field which is used to contain behaviour change information.

The eval-become procedure implements behaviour changes in terms of the state vari-
able:

(define (eval-become exp env state)
(set-cdr! state (list (script-exec (become-params exp) env state)

(script-exec (become-script exp) env state))))

When the call from the actor loop to script-eval finishes, the formal parameters and
behaviour definition (including the environment copy) will be stored in the state variable4.

When control has returned to the actor loop, the actor uses the next-behaviour and
calculate-next-environment procedures to determine its next script and local values,
along with two data abstraction functions to access the state variable:

(define (next-behaviour state locals)
(if (cdr state)

(let* ((specified-env (behaviour-env (state-behaviour state)))
(next-env (calculate-next-environment state locals))
(next-script (behaviour-script (state-behaviour state))))

(cons next-script next-env))
#f))

4While programming by side effect is generally considered bad practice in Scheme, the interpreter
would be unnecessarily complicated if this was done without side effects, by passing the state along
with the return value.

82 4 A Simple Merlin Interpreter

(define (calculate-next-environment state locals)
(let* ((specified (behaviour-env (state-behaviour state)))

(next-env (if (eq? specified ’this-environment) locals specified)))
(extend-environment

(behaviour-params (state-behaviour state))
(state-actual-params state)
(enclosing-environment next-env))))

(define (state-behaviour statevar) (caddr statevar))
(define (state-actual-params statevar) (cadr statevar))

The calculate-next-environment procedure handles the this-environment symbols,
which we introduced earlier, by simply keeping the current environment. Also note that
the parameters are installed in the first frame of the environment, allowing the parameter
set to be changed simply by extending the enclosing environment with the new parameter
bindings.

4.4 Built-in Actors

Finally, a Merlin interpreter needs to provide implementations of the two built-in ac-
tors void and console. To install primitive actors, the interpreter uses the following
procedure, analogous to the one used to spawn normal actors:

(define (register-primitive-actor func)
(let* ((addr (make-unique-address))

(chan (make-async-channel))
(control (thread (lambda () (func chan)))))

(directory-register addr chan control)
addr))

This procedure simply generates the address, channel and control thread for an actor.
Its single input parameter must be a recursive function of one argument, where the one
argument will be used for the channel. The void and console functions themselves are
quite straightforward:

(define (console-proc chan)
(let* ((msg (async-channel-get chan)))

(write msg) (newline)
(console-proc chan)))

(define (void-proc chan)
(let* ((msg (async-channel-get chan))) (void-proc chan)))

(define console-actor (register-primitive-actor console-proc))
(define void-actor (register-primitive-actor void-proc))

4.5 Evaluation of the Interpreter 83

4.5 Evaluation of the Interpreter

The interpreter given here is very inefficient, in both space and time. However, it does
give a fairly clear description of the semantics of the Merlin language, and reveals some
of the challenges in developing a higher-quality implementation of Merlin.

In particular, there are obvious problems with the handling of the behaviour-change
model of state in this interpreter. The deep copy of the entire environment in all
behaviour definitions is extremely inefficient, and also introduces problems with self-
referencing behaviours – problems which have rather complicated solutions. This is
especially problematic because Merlin programs treat behaviours as a first-class value,
and allows them to be defined inline. This encourages defining many of them, which will
drastically reduce program performance unless an optimization strategy for this prob-
lem is developed. For example, it may be feasible to only copy bindings of names that
actually appear within the definition of a behaviour.

Another problem stems from the handling of message buffers. In Merlin, buffered
messages should be kept around indefinitely, because an actor may later change behaviour
into one which may be capable of receiving the message. This presents two problems: For
one, the interpreter given here takes the simplest route of handling this by simply having
actors re-send their entire message buffers to themselves when changing behaviour, which
is quite inefficient. Second, it is possible for an actor to cause an unbounded memory
leak by sending masses of unrecognizable messages to itself, or to some other actor. This
problem can be remedied in some cases: If an implementation can prove that a particular
actor will never be able to assume a behaviour in which it can accept some message, then
it is allowed to delete that message. However, this is not possible in all cases, so a
Merlin programmer should probably make it a habit to include a catch-all “receive and
do nothing” receptor for behaviours that do not require the unlimited buffering facility.

4.5.1 Limitations

A notable omission of this interpreter is garbage collection. Because actors are never
removed from the actor directory, the underlying Scheme interpreter will always have a
reference to them. This prevents them from being garbage collected by the underlying
Scheme interpreter. Since the Merlin interpreter itself has no garbage collection, this
means that programs in this interpreter have monotonically growing memory usage, and
will eventually consume the memory of any host.

Due to the same problems that mandated the introduction of the this-environment
construct in the representation of behaviours, this implementation of the Merlin inter-
preter does not support forward references in behaviours. In other words, if behaviour A
lexically precedes behaviour B in a Merlin program text, then an actor with behaviour
A cannot refer directly to behaviour B. It is still possible for an actor with behaviour

84 4 A Simple Merlin Interpreter

A to change to behaviour B, however. Because behaviours are first-class values, it is
possible for some actor to send B to that actor, allowing it to change to it. This is quite
cumbersome, though, and would not be acceptable in a production implementation.

This problem is analogous to the problem of supporting mutual recursion in procedures,
and one solution proposal to this problem is given in Andrew Appel’s Modern Compiler
Implementation in C [App98]: The parser can translate lexically adjacent procedure defi-
nitions to a list of procedure definitions, in which forward references and mutual recursion
is allowed. This method could be adapted to Merlin behaviour definitions.

Another limitation is that this interpreter has very poor error reporting facilities,
and generally falls back on the error reporting mechanisms of the underlying Scheme
interpreter when it encounters type and arity errors.

4.6 Summary

This chapter described the development of a simple, although limited and inefficient,
abstract syntax interpreter for Merlin. The interpreter highlighted some principles
behind the operational realization of the semantics of Merlin, defined as a collection
of procedures in the Scheme language. We saw some of the points where the Merlin
language presents implementation challenges, particularly in the behaviour-change model
of state, and in the enforcement of pure message-passing semantics.

Recommended Literature

A textbook which, among many other things, gives a good treatment of interpreter
construction is the excellent Structure and Interpretation of Computer Programs, by
Harold Abelson, Gerald Sussman and Julie Sussman. This book introduces the art of
interpreter construction through the development of a set of interpreters for variants
of the Scheme language, themselves written in Scheme. This book had a large part
in my decision to write the demonstration interpreter for Merlin in Scheme. Two
other very good books on the subtler points of writing interpreters include Essentials of
Programming Languages[FWH92] and Lisp in Small Pieces[Que96], both of which also
use Scheme as their implementation language.

Interpreters are not the only way to implement programming languages, of course.
Efficient implementations of programming languages are generally written as compilers,
either to machine code or to various bytecode-based virtual machines. A good intro-
duction to compiler construction is given in Andrew Appel’s famous “tiger book” series,
Modern Compiler Implementation[App98], which is available in different versions with
code given for C, ML and Java. Furthermore, no compiler bookshelf is complete with-
out the “dragon book”, Compilers: Principles, Techniques and Tools[ASU86], by Jeffrey
Ullman, Alfred Aho and Ravi Sethi.

5. Conclusion
That is what learning is. You suddenly understand something you’ve understood all your life,
but in a new way.
– Doris Lessing

In the introduction, we identified the core problem of this thesis as the question of
which benefits and challenges the actor model presents as a basis for concurrent pro-
gramming language design. We adopted the approach of developing a small, academic
“toy language” to investigate this problem. The preceding chapters focused on the devel-
opment of Merlin, a small concurrent language based on the actor model.

The first question we addressed was whether concurrent programming is inherently
more complex and difficult than sequential programming. We used a small conceptual
framework, consisting of computational steps, executions, processes and the orderings and
interleavings between computational steps, to investigate the intuition that concurrent
programming is naturally difficult. We found that the fundamental problem underly-
ing this difficulty is that while a sequential program must only be correct for a single
interleaving, a concurrent program must be correct for all possible interleavings.

Following this result, we investigated the concepts of concurrent programming models,
which reduce the total set of possible interleavings, and which allow programmers to
reason about the possible interleavings of executions. We reviewed several concurrency
models, ranging from a very restrictive observationally deterministic model, in which
only non-observable differences in interleavings between executions are possible, to fully
expressive models based on two widely different core abstractions. We developed a tax-
onomy of concurrency models, allowing us to consider why the actor model is designed
the way it is, with asynchrony, message-passing and nondeterminism at its core.

This put us in a position to undertake a more complete investigation of the actor
model itself. We saw that one of the defining characteristics of actor systems is the
very important point that individual actors are strictly limited in computational power –
an individual actor, without use of the communication system, is not Turing-complete.
We saw that this property has the quite interesting implication that deadlock in actor
systems can be understood in terms of the two preconditions of passivity and insensitivity.
This allows a general strategy for avoiding actor deadlock by avoiding, or restricting, the
insensitivity condition. In general, a very appealing property of the actor-based paradigm
is that many concurrency concerns are promoted to the program design level, rather than
being viewed as matters of implementation detail.

86 5 Conclusion

Partial Conclusion: At this point, we can conclude that the actor model does,
in fact, have two very desirable benefits for programming language design: It simplifies
reasoning about concurrency problems, exemplified by the two simple preconditions for
actor deadlock, and it allows a high level of abstraction for concurrency, which is precisely
what is implied in the promotion of concurrency concerns to matters of program design.

The next part of the report concerned the design process of the Merlin programming
language. We gave an overall design philosophy for the Merlin language, based on the
guiding concepts of simplicity, consistency and abstraction, with the final goal of produc-
ing a language which has a light mental footprint. It was argued that careful attention
to simplicity is especially important in concurrent languages, due to the higher inherent
complexity of concurrent progamming. The design process of the Merlin language at-
tempted to take this into consideration, by giving a set of eight core precepts, which were
used to exclude proposed language features that would be inconsistent with the language
as a whole.

An important core precept is event atomicity, which captures the aspect of actor com-
putation that any event (defined as the interval between accepting a message and finishing
its processing) may last for only a bounded interval of time. Unfortunately, while this
precept allows the same simple reasoning about actor deadlock and similar phenomena
as the pure actor model, it also places quite severe restrictions on which linguistic con-
structs can be supported within Merlin: Recursive procedures, for example, cannot
be supported by actors in a language which guarantees event atomicity. It is unclear
whether this tradeoff can be considered reasonable.

Another linguistic construct which was sacrificed for the reason of simplicity was bidi-
rectional communication. We saw that bidirectional communication is necessarily a com-
pound action in actor programs, and that some patterns of bidirectional communication
(particularly recursion) satisfy both of the preconditions for actor deadlock. This ap-
pears to be a general problem for message-passing concurrency systems, since we have
also seen that recursive communication leads to deadlock in synchronous message-passing
systems. The asynchronous communication system of the actor model can remove the
risk of deadlock in certain cases – but that this comes at the price of a highly context-
sensitive semantics for bidirectional communication, which introduces a significant degree
of additional complexity into actor programs. In particular, while it is possible to have
bidirectional communication that does not violate event atomicity, such a communication
scheme makes it difficult to read from a program what actually constitutes an event.

Unfortunately, the lack of recursive procedures and bidirectional communication prim-
itives means that certain Merlin programs (particularly those that implement recursive
computations) must be written in a somewhat “odd” style, reminiscent of Continuation-
Passing Style, an intermediate representation used by some functional language compil-
ers.

87

Partial Conclusion: Linguistic benefits of actor-based programming is that the de-
sirable properties of the actor model itself can carry over to concrete computer programs,
allowing programmers to reason at a high level about concurrency in their programs. This
requires the programming model to be conceptually close to the actor model itself. The
two primary problems include the necessarily complicated (and deadlock-prone) nature
of bidirectional communication in actor programs, and the fact that useful linguistic con-
structs, like recursive procedures cannot be supported in actor languages without giving
up some of the ability to reason about programs.

Finally, we studied the semantics of Merlin by implementing an interpreter for it.
This interpreter highlighted some of the implementation challenges facing actor lan-
guages. One that stood out was that the interpreter copies all bindings of environments
in some cases, to prevent a degenerate form of shared-state concurrency from occurring.
This copying is not only highly inefficient, it also complicates the implementation of cer-
tain language features, such as first-class behaviour values and self-referential behaviours.
Unfortunately, the presence of first-class behaviour values encourages their use, which
only adds to the problem of inefficiency.

Final Conclusion: Actor-based programming languages have the very important
benefits that their concurrent semantics is simpler to reason about, and that concur-
rency concerns are matters of high-level design in actor programs. This means that they
can be very powerful tools for conceptualizing and thinking about concurrent programs.
Unfortunately, the actor model also has its own drawbacks and challenges: Bidirectional
communication is a complicated and possibly deadlock-prone action, and some of the lin-
guistic constructs many programmers take for granted conflict with the nature of actors.
Furthermore, the efficient implementation of actor languages entails some challenges, due
to the combination of pure message passing and the behaviour-based model of state.

The abstractions provided by the actor model are very useful, however, in a world
where the need for good concurrent programming practices is steadily increasing, and
where it becomes ever more urgent for programmers to be able to think clearly about
concurrency in programs. Despite its age and the implementation challenges, the actor
model still has much to offer. However, to develop a concrete, practical programming
paradigm from the model, more research is clearly needed.

6. Future Work
Prediction is very difficult, especially about the future.
– Niels Bohr (1885 - 1962)

The best way to predict the future is to invent it.
– Alan Kay

This, the final chapter of this thesis, gives some brief outlines of possibilities for future
work with the Merlin language and the actor model.

6.1 Further Evolution of the Merlin Language

The Merlin language, as it is presented here, is an example of what is often called –
affectionately or perjoratively – an academic toy language. These are languages which are
useful for performing computer science experiments, such as exploring linguistic concepts
and programming paradigms, but generally not suitable for production use. While this
is well within the intentions and scope of this project, it is nonetheless interesting to
consider whether and how Merlin can be adapted into a more productive, expressive
language, which could be used in actual software projects.

6.1.1 Efficient Implementation

One of the main failings of the Merlin interpreter presented in this work is that it is
very slow and memory-inefficient. There are several reasons for its poor performance:

• It is implemented as an interpreter running on top of another interpreter – which,
itself, is not among the faster Scheme interpreters.

• It performs much needless work. For example, it performs unnecessary copying of
environment frames.

• It does not implement garbage collection. The garbage collector of the underly-
ing Scheme implementation does not work, since the actor directory maintains
references to even garbage actors.

• It works by directly traversing and interpreting the abstract syntax trees of Merlin
programs. This is not a particularly efficient method of interpretation; generally,

90 6 Future Work

fast interpreters translate programs into more efficient representations before inter-
pretation.

A major part of the inefficiency can be addressed by rewriting the interpreter in an
efficient, compiled language, such as C or ML. Furthermore, rather than using a simple
tree interpreter, a more efficient implementation can be implemented as a virtual ma-
chine and bytecode compiler. Developing an actor-based virtual machine presents an
interesting and challenging future project.

Actor languages are not entirely straightforward to garbage collect, since a full actor
garbage collector will essentially have to garbage collect processes as well as data. Some
formal work in actor garbage collection has been done: In Actor Systems for Real-Time
Computation[Bak78], Henry G. Baker develops an incremental, real-time garbage col-
lector for an actor language. Implementing an actor garbage collection scheme can be
another quite interesting and challenging future development for Merlin.

6.1.2 Expressive Sequential Sublanguage

While Merlin presents a useful model for writing concurrent, interacting and coordi-
nating actors, its means for actually specifying the internal behaviour of these actors is
quite weak. This weakness is partially deliberate, since much of it stems from the lack of
procedures and functions. The lack of procedures and functions is intended to prevent
recursion, which can be potentially infinite. In the case of infinite recursions, the event
atomicity property is violated, which means that the normals means for reasoning about
the phenomenon of deadlock in actor systems will no longer work. There are two basic
options for further developing the sequential sublanguage of Merlin: Exploring how far
we can go without sacrificing event atomicity, or giving up event atomicity in the name
of pragmatism. Both ideas have some merit.

In the first scenario, the task is to make the sequential sublanguage reasonably ex-
pressive using only constructs which are guaranteed to terminate. For example, various
forms of bounded iterations could be included, such as list comprehensions. The exclusive
use of bounded constructs means that the sequential sublanguage will remain Turing-
incomplete, which in turn implies that many programs in such a language will have to
use actors and communication to work. This is not necessarily a bad thing: Actors are,
after all, a distinguishing characteristic of the Merlin language.

Alternately, we can give up event atomicity and use a Turing-complete sequential sub-
language. In this model, some errors are possible that do not exist in the current Merlin
implementation, namely the error of actor unresponsiveness. An actor is unresponsive
when it enters a state where it will never await further messages. It is impossible to de-
tect this error, since successfully detecting it in the general case is equivalent to solving
the Turing Halting Problem. In a Merlin version with a Turing-complete sequential
sublanguage, infinite loops would most likely be considered a programmer error just like

6.2 Further Work with the Actor Model 91

they often are in sequential languages. A Turing-complete sequential sublanguage could
take the form of any functional or imperative programming language.

The programming language design pattern of using several layers of language, in which
one language layer implements a reasonably expressive sequential language and another
provides concurrency, turns out to be quite successful. The E, Erlang and Oz languages
are all based on this design, which has been investigated further in Peter Van Roy’s
Convergence in Language Design: A Case of Lightning Striking Four Times In The
Same Place[Roy06].

6.1.3 Error Handling and Recovery

One particularly attractive trait of message-passing concurrent models is that they can
be very resilient to error, because of the independence of the message-passing entities.
If a message-passing component in a properly designed system fails, others can either
reorganize themselves to take over its responsibility, or spawn a working replacement
for it. This aspect of message-passing programs has been explored extensively in Joe
Armstrong’s Ph.D thesis Making Reliable Distributed Systems in the Presence of Software
Error [Arm03], which demonstrates how the Erlang language realizes these advanced
error handling mechanisms.

Merlin has almost completely ignored the issue of error management, but since it
is a message-passing language in which actors are independent, it should be possible to
implement advanced error management facilities in Merlin.

6.2 Further Work with the Actor Model

The actor model itself rests on a solid theoretical foundation, but theoretical work with
the model is still being performed. Its founders are still active in the computer science
research community, and still actively contribute to the model. However, as we have seen,
the model is not without its problems. More research into the actor model can prove
quite fruitful in the future, as the need for concurrent and parallel software is likely to
keep increasing.

6.2.1 Bidirectional Actor Communication

A shortcoming of the actor model is the relative difficulty of implementing bidirectional
communication between actors. The most common mechanism, the ask expression, has
the somewhat confusing property of having heavily context-dependent semantics – a
problem which is only compounded by the fact that careless use of ask may lead to
deadlocks. Because of the context-dependent semantics, investigating a program which
deadlocks due to a faulty ask is not straightforward, since the context of each ask must
also be taken into consideration.

92 6 Future Work

While bidirectional communication must necessarily be a composite action in an asyn-
chronous communication model such as the one used by the actor model, it may be the
case that less error-prone and semantically complicated means of bidirectional commu-
nication can be developed.

6.2.2 Handling Deadlock in Actor Systems

Because the actor model uses purely asynchronous communication, classic deadlock can-
not occur in actor programs. However, we have seen that a similar situation can arise,
in which an actor configuration is passive and insensitive , and that this situation can be
detected.

Some means of preventing this situation have been developed, such as the enabled-sets
of the Rosette language. These allow actors to selectively disable responses to particular
messages, which can be used to prevent deadlock by removing the insensitivity condition.
However, enabled-sets can be somewhat complicated to work with. This complexity may
or may not be due to the inherent complexity of dealing with deadlock, but at any
rate, it may prove interesting to further study the phenomenon of actor deadlocks, and
mechanisms for avoiding, preventing, detecting and recovering from them.

Bibliography

[Agh85] Gul Agha. Actors: A model of concurrent computation in distributed systems.
1985.

[Agh86] Gul Agha. An overview of actor languages. SIGPLAN Notices, 1986.

[AH78] Giuseppe Attardi and Carl Hewitt. Specifying and proving properties of
guardians for distributed systems. 1978.

[App98] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge Uni-
versity Press, 1998.

[Arm03] Joe Armstrong. Making reliable distributed systems in the presence of software
errors. PhD thesis, The Royal Institute of Technology Stockholm, 2003.

[AS96] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of
Computer Programs. The MIT Press, 1996.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques
and Tools. Addison Wesley, 1986.

[AWV93] J. Armstrong, D. Williams, and R. Virding. Concurrent Programming in
Erlang. Prentice Hall, 1993.

[Bak78] Henry G. Baker. Actor Systems for Real-Time Computation. PhD thesis,
1978.

[CDK94] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems
Concepts and Design. Addison Wesley, 1994.

[Cli81] William Clinger. Foundation of Actor Semantics. PhD thesis, 1981.

[Dek05] Steve Dekorte. Io: a small programming language. In Ralph Johnson and
Richard P. Gabriel, editors, Companion to the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2005, October 16-20, 2004, San Diego, CA, USA, pages
166–167. ACM, 2005.

[Dij68] Edsger W. Dijkstra. Go to statement considered harmful. Communications
of the ACM, 11(3):147–148, March 1968.

94 Bibliography

[Dij71] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta In-
formatica, 1:1115–138, 1971.

[Dij72] Edsger W. Dijkstra. The humble programmer. Commun. ACM, 15(10):859–
866, 1972.

[Eck98] Bruce Eckel. Thinking in Java. Prentice Hall, London, 1998.

[ELa] The E Language. http://www.erights.org/.

[Eng04] John English. Introduction to Operating Systems: Behind the Desktop. Pal-
grave, 2004.

[Fuc95] M. Fuchs. Escaping the event loop: an alternative control structure for
multi-threaded GUIs. In Leonard J. Bass and Claus Unger, editors, EHCI,
volume 45 of IFIP Conference Proceedings, pages 69–87. Chapman & Hall,
1995.

[FWH92] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages. McGraw Hill, 1992.

[GH75] Irene Greif and Carl Hewitt. Actor semantics of planner-73. 1975.

[Gre75] Irene Greif. Semantics of Communicating Parallel Processes. PhD thesis,
1975.

[HA79] Carl Hewitt and Russell Atkinson. Specifications and proof techniques for
serializers. 1979.

[HA86] Carl Hewitt and Gul Agha. Concurrent programming using actors: Exploiting
large-scale parallelism. 1986.

[HA92] Christopher R. Houck and Gul Agha. HAL: A high-level actor language and
its distributed implementation. In ICPP (2), pages 158–165, 1992.

[Hal06] Philipp Haller. An object-oriented programming model for event-based ac-
tors. Master’s thesis, 2006.

[HB77] Carl Hewitt and Henry Baker. Actors and continuous functionals. 1977.

[Hew71] Carl Hewitt. Description and Theoretical Analysis (Using Schemata) of
Planner: A Language for Proving Theorems and Manipulating Model in
a Robot. PhD thesis, 1971.

[Hew76] Carl Hewitt. Viewing control structures as patterns of passing messages.
1976.

Bibliography 95

[HO07] Philipp Haller and Martin Odersky. Actors that Unify Threads and Events.
Technical report, 2007.

[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring concept. Com-
munications of the ACM, 17(10):549–557, October 1974.

[HRAA84] Carl Hewitt, Tom Reinhardt, Gul Agha, and Giuseppe Attardi. Linguistic
support of receptionists for shared resources. 1984.

[HS75] Carl Hewitt and Brian Smith. A Plasma primer. 1975.

[Lie81a] Henry Lieberman. A preview of act 1. 1981.

[Lie81b] Henry Lieberman. Thinking about lots of things at once without getting
confused. 1981.

[Lov05] Robert Love. Linux kernel development. Novell Press, Indianapolis, IN, USA,
second edition, 2005.

[LT93] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.
Computer, 26(7):18–41, 1993.

[Man88] Carl Manning. Acore: The design of an actor core language and its compiler.
1988.

[Mey00] Bertrand Meyer. Principles of language design and evolution, May 12 2000.

[Mil75] Robin Milner. Processes, a mathematical model of computing agents. In
Logic Colloquium, Bristol 1973, pages 157–174. North-Holland, 1975.

[MK99] Jeff Magee and Jeffrey Kramer. Concurrency: State Models & Java Programs.
Wiley, 1999.

[Pai98] Jocelyn Paine. Everything is not an object, 1998.

[Que96] Christian Queinnec. Lisp in Small Pieces. Cambridge University Press, 1996.

[Rep92] John H. Reppy. Higher-Order Concurrency. PhD thesis, Cornell University,
1992.

[RH04] Peter Van Roy and Seif Haridi. Concepts, Techniques and Models of Computer
Programming. The MIT Press, 2004.

[Roy06] Peter Van Roy. Convergence in language design: A case of lightning striking
four times in the same place. 2006.

96 Bibliography

[Seb03] Robert W. Sebesta. Concepts of Programming Languages. Benjamin/Cum-
mings, sixth edition, 2003.

[SL05] Herb Sutter and James R. Larus. Software and the concurrency revolution.
ACM Queue, 3(7):54–62, 2005.

[The83] Daniel G. Theriault. Issues in the design and implementation of act2. 1983.

[VA01] Carlos A. Varela and Gul Agha. Programming dynamically reconfigurable
open systems with SALSA. SIGPLAN Notices, 36(12):20–34, 2001.

Appendix A: Merlin Grammar

Here is the complete grammar of Merlin in extended BNF notation.

〈program〉 ::= 〈statement〉
〈statement〉 ::= 〈name_binding〉

| 〈tell〉
| 〈become_statement〉
| 〈conditional〉
| 〈statement〉 ; 〈statement〉

〈expression〉 ::= ”(”〈expression〉”)”
| 〈expression〉 〈binary_op〉 〈expression〉
| 〈behaviour_expression〉
| 〈spawn_expression〉
| 〈unary_op〉 〈expression〉
| 〈expression〉 〈slice〉
| 〈tuple〉
| 〈self_reference〉
| 〈name〉
| 〈literal〉

〈self_reference〉 ::= self
〈unary_op〉 ::= not | number? | boolean? | string? | tuple? | behaviour? | address?
〈binary_op〉 ::= + | − | ∗ | / | and | or | is | < | > | = | >= | <= | ! =
〈become_statement〉 ::= become 〈expression〉 〈tuple〉
〈conditional〉 ::= if 〈expression〉 ”[” 〈statement〉”]” [else ”[”〈statement〉”]”]
〈tuple〉 ::= () | (〈expression〉[, 〈expression〉]∗)
〈slice〉 ::= {〈expression〉 .. 〈expression〉}
〈concatenation〉 ::= 〈expression〉 . 〈expression〉
〈tell〉 ::= tell 〈expression〉 〈expression〉
〈name_binding〉 ::= 〈name〉 : 〈expression〉
〈spawn_expression〉 ::= spawn 〈expression〉 〈tuple〉
〈behaviour_expression〉 ::= ”[” [〈formal_parameters〉] 〈receptor_list〉”]”
〈formal_parameters〉 ::= () | (〈name〉[, 〈name〉]∗)
〈receptor_list〉 ::= 〈receptor〉∗
〈receptor〉 ::= ”[”〈pattern〉 ”|” 〈reaction〉”]”
〈pattern〉 ::= 〈pattern_element_list〉[, 〈expression〉]
〈reaction〉 ::= 〈statement〉
〈pattern_element_list〉 ::= () | (〈pattern_element〉[, 〈pattern_element〉]∗)
〈pattern_element〉 ::= 〈name〉 | 〈literal〉
〈literal〉 ::= String | Number | Boolean

Semicolons between statements are optional when only one statement occupies a line.
Note that this grammar is ambiguous. Disambiguation rules are given on the next page.

98 Appendix A: Merlin Grammar

Since several expression types can have multiple parse trees. The grammar is disam-
biguated using an operator precedence hierarchy, which is given here in a highest-to-
lowest precedence order:

* /
+ -
number? boolean? string? tuple? behaviour? address?
> < = >= <= !=
is
or
and
not

Appendix B: Interpreter Source

This appendix gives the full source of the Merlin interpreter described in chapter 4.
The interpreter is written for PLT Scheme, and will not work on other Scheme imple-
mentations.

; Merlin interpreter
; Author: Simon Kongshoj
;
; Written for PLT-Scheme. Most of this code should be fairly straightforward to
; translate into another R5RS-compliant Scheme. The threads, hash tables and
; asynchronous communication are PLT-specific.
;
; NOTE: This implementation is intended purely for demonstration purposes. It
; is deliberately kept as brief and simple as possible, in order to make it
; easier for the reader to understand the semantics of the Merlin language. It
; is not intended as an industrial tool, and leaves out many safety features
; and performance optimizations.

(require (lib "async-channel.ss"))
(require (lib "list.ss" "srfi" "1"))
(require (lib "string.ss" "srfi" "13"))

; Actor Directory ==========================
(define max-address 0)
(define address-sema (make-semaphore 1))

(define (make-unique-address)
(semaphore-wait address-sema)
(set! max-address (+ max-address 1))
(semaphore-post address-sema)
max-address)

(define directory (make-hash-table))
(define (directory-lookup address) (hash-table-get directory address))
(define (actor-port addr) (car (directory-lookup addr)))
(define (directory-register address port control)

(hash-table-put! directory address (list port control)))

; Core Actor Loop ==========================

100 Appendix B: Interpreter Source

(define (actor-loop addr chan script locals buffer)
(let* ((msg (async-channel-get chan))

(receptor (select-receptor msg script locals))
(state (cons addr #f))
(result (if receptor (script-exec (recept-reaction receptor)

(recept-env receptor)
state)))

(next (next-behaviour state locals))
(new-script (if next (next-script next) script))
(new-locals (if next (next-env next) locals))
(new-buffer (cond ((and receptor next) (retry-buffer chan buffer) ’())

(receptor buffer)
(else (cons msg buffer)))))

(actor-loop addr chan new-script new-locals new-buffer)))

(define (next-behaviour state locals)
(if (cdr state)

(let* ((specified-env (behaviour-env (state-behaviour state)))
(next-env (calculate-next-environment state locals))
(next-script (behaviour-script (state-behaviour state))))

(cons next-script next-env))
#f))

(define (calculate-next-environment state locals)
(let* ((specified (behaviour-env (state-behaviour state)))

(next-env (if (eq? specified ’this-environment) locals specified)))
(extend-environment

(behaviour-params (state-behaviour state))
(state-actual-params state)
(enclosing-environment next-env))))

(define (state-behaviour statevar) (caddr statevar))
(define (state-actual-params statevar) (cadr statevar))

(define (next-script nextbhv) (car nextbhv))
(define (next-env nextbhv) (cdr nextbhv))

(define (retry-buffer chan buf)
(for-each (lambda (msg) (async-channel-put chan msg)) buf))

; Pattern-Matched Message Reception ========
(define (recept-reaction receptor) (car receptor))
(define (recept-env receptor) (cdr receptor))

(define (script-pattern script) (caar script))
(define (script-reaction script) (cadar script))

101

(define (has-guard? pattern)
(and (pair? (last pattern)) (eq? (car (last pattern)) ’where)))

(define (guard pattern) (cadr (last pattern)))

(define (strip-guard pattern)
(if (has-guard? pattern)

(take pattern (- (length pattern) 1))
pattern))

(define (check-guard pattern env)
(if (has-guard? pattern)

(guard-eval (guard pattern) env)
#t))

(define (select-receptor msg script env)
(if (null? script) #f

(let* ((matching (match (strip-guard (script-pattern script)) msg env))
(guard-accept? (check-guard (script-pattern script) matching))
(match? (and guard-accept? (not (eq? matching ’no-match)))))

(if match?
(cons (script-reaction script) matching)
(select-receptor msg (cdr script) env)))))

(define (match pattern exp env)
(cond ((eq? env ’no-match) ’no-match)

((equal? pattern exp) env)
((symbol? pattern)
(if (name-lookup pattern env)

(if (equal? (name-exp pattern env) exp) env ’no-match)
(extend-environment (list pattern) (list exp) env)))

((and (pair? pattern) (pair? exp))
(match (cdr pattern) (cdr exp)

(match (car pattern) (car exp) env)))
(else ’no-match)))

; Actor Creation ===========================
(define (initial-env bhv actuals)

(extend-environment (behaviour-params bhv) actuals (behaviour-env bhv)))

(define (actor-thread addr port bhv actuals)
(thread (lambda ()

(actor-loop
addr port (behaviour-script bhv) (initial-env bhv actuals) ’()))))

102 Appendix B: Interpreter Source

(define (new-actor behaviour actuals)
(let* ((addr (make-unique-address))

(port (make-async-channel))
(control (actor-thread addr port behaviour actuals)))

(directory-register addr port control)
addr))

; Built-In Actors ==========================
(define (register-primitive-actor func)

(let* ((addr (make-unique-address))
(chan (make-async-channel))
(control (thread (lambda () (func chan)))))

(directory-register addr chan control)
addr))

(define (console-proc chan)
(let* ((msg (async-channel-get chan)))

(write msg) (newline)
(console-proc chan)))

(define (void-proc chan)
(let* ((msg (async-channel-get chan))) (void-proc chan)))

(define console-actor (register-primitive-actor console-proc))
(define void-actor (register-primitive-actor void-proc))

; Script Processor =========================
(define (script-exec exp env state)

(cond ((self-evaluating? exp) exp)
((and-exp? exp) (eval-and (vals (operands exp) env state) env))
((or-exp? exp) (eval-or (vals (operands exp) env state) env))
((self-reference? exp) (cons ’address (car state)))
((name? exp) (name-exp exp env))
((definition? exp) (eval-definition exp env state))
((if? exp) (eval-if exp env state))
((tell? exp) (eval-tell exp env state))
((spawn? exp) (eval-spawn exp env state))
((become? exp) (eval-become exp env state))
((behaviour-definition? exp)
(make-behaviour (behaviour-parameters exp) (behaviour-body exp) env))

((begin? exp) (eval-sequence (begin-actions exp) env state))
((operation? exp)
(apply-operation (script-exec (operator exp) env state)

(vals (operands exp) env state)))
(else (error "ERROR in script-exec! Unknown expression: " exp))))

103

(define (guard-eval exp env)
(let ((state ’()))

(cond ((self-evaluating? exp) exp)
((and-exp? exp) (eval-and (vals (operands exp) env state) env))
((or-exp? exp) (eval-or (vals (operands exp) env state) env))
((name? exp) (name-exp exp env))
((operation? exp)
(apply-operation (script-exec (operator exp) env state)

(vals (operands exp) env state)))
(else (error "ERROR in guard-eval! Unknown expression: " exp)))))

(define (apply-operation rator rands) (apply (car rator) rands))

(define (vals exps env state)
(if (no-operands? exps)

’()
(cons (script-exec (first-rand exps) env state)

(vals (rest-rands exps) env state))))

; Statements ===============================
(define (eval-tell exp env state)

(let* ((values (vals (operands exp) env state))
(addr (cdar values))
(msg (cadr values)))

(async-channel-put (actor-port addr) msg)))

(define (eval-sequence exps env state)
(cond ((last-exp? exps) (script-exec (first-exp exps) env state))

(else (script-exec (first-exp exps) env state)
(eval-sequence (rest-exps exps) env state))))

(define (eval-if exp env)
(if (script-exec (if-predicate exp) env state)

(script-exec (if-consequent exp) env state)
(script-exec (if-alternative exp) env state)))

(define (eval-spawn exp env state)
(let* ((values (vals (operands exp) env state))

(bhv (car values))
(actuals (cadr values)))

(cons ’address (new-actor bhv actuals))))

(define (eval-become exp env state)
(set-cdr! state (list (script-exec (become-params exp) env state)

(script-exec (become-script exp) env state))))

104 Appendix B: Interpreter Source

(define (eval-definition exp env state)
(if (and

(pair? (definition-value exp))
(eq? (car (definition-value exp)) ’behaviour))

(begin
(let ((new-env (deep-copy env)))

(define-name! (definition-name exp)
(list ’behaviour

(behaviour-parameters (definition-value exp))
(behaviour-body (definition-value exp))
’this-environment)

new-env)
(define-name! (definition-name exp)

(list ’behaviour
(behaviour-parameters (definition-value exp))
(behaviour-body (definition-value exp))
new-env)

env)))
(begin

(define-name! (definition-name exp)
(script-exec (definition-value exp) env state)
env))))

; Expressions ==============================
(define (name-exp var env)

(let ((val (name-lookup var env)))
(if val val (error "Unbound name" var))))

; Abstract Syntax ==========================
(define (tagged-list? exp tag) (if (pair? exp) (eq? (car exp) tag) #f))

(define (operator exp) (car exp))
(define (operands exp) (cdr exp))
(define (first-rand ops) (car ops))
(define (rest-rands ops) (cdr ops))

(define (self-reference? exp) (eq? exp ’self))

(define (tell? exp) (tagged-list? exp ’tell))
(define (spawn? exp) (tagged-list? exp ’spawn))

(define (definition? exp) (tagged-list? exp ’define))
(define (definition-name exp) (cadr exp))
(define (definition-value exp) (caddr exp))

(define (become? exp) (tagged-list? exp ’become))

105

(define (become-script exp) (cadr exp))
(define (become-params exp) (caddr exp))

(define (behaviour-definition? exp) (tagged-list? exp ’behaviour))
(define (behaviour-parameters exp) (cadr exp))
(define (behaviour-body exp) (cddr exp))

(define (begin? exp) (tagged-list? exp ’begin))
(define (begin-actions exp) (cdr exp))

(define (last-exp? seq) (null? (cdr seq)))
(define (first-exp seq) (car seq))
(define (rest-exps seq) (cdr seq))

(define (if? exp) (tagged-list? exp ’if))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp) (if (not (null? (cdddr exp))) (cadddr exp) #f))

(define (or-exp? exp) (tagged-list? exp ’or))
(define (and-exp? exp) (tagged-list? exp ’and))

(define (name? exp) (symbol? exp))

(define (operation? exp) (pair? exp))
(define (no-operands? ops) (null? ops))

(define (self-evaluating? exp)
(cond ((number? exp) #t) ((string? exp) #t) (else #f)))

; Behaviours ===============================
(define (make-behaviour params script env)

(list ’behaviour params script (deep-copy env)))

(define (behaviour-params bhv) (cadr bhv))
(define (behaviour-script bhv) (caddr bhv))
(define (behaviour-env bhv) (cadddr bhv))

; Boolean operators ========================
(define (eval-or exps env)

(cond
((car exps) #t)
((null? (cdr exps)) #f)
(else (eval-or (cdr exps) env))))

(define (eval-and exps env)

106 Appendix B: Interpreter Source

(cond
((not (car exps)) #f)
((null? (cdr exps)) #t)
(else (eval-and (cdr exps) env))))

; Type Predicates ==========================
(define (tuple? datum)

(and
(pair? datum)
(not (eq? (car datum) ’address))
(not (eq? (car datum) ’behaviour))))

(define (behaviour? datum)
(and

(pair? datum)
(eq? (car datum) ’behaviour)))

(define (address? datum)
(and

(pair? datum)
(eq? (car datum) ’address)))

; Various Operations =======================
(define (merlin-length object)

(cond
((string? object) (string-length object))
((tuple? object) (length object))))

(define (join obj1 obj2)
(cond

((and (string? obj1) (string? obj2)) (string-append obj1 obj2))
((and (tuple? obj1) (tuple? obj2)) (append obj1 obj2))))

(define (slice obj start end)
(cond

((string? obj) (substring start end))
((tuple? obj) (take (drop obj start) (- end start)))))

; Primitives and Operators =================
(define (primitive-actor-names) (map car primitive-actors))
(define (primitive-actor-addrs) (map cadr primitive-actors))
(define primitive-actors

(list
(list ’console (cons ’address console-actor))
(list ’void (cons ’address void-actor))))

107

(define (operator-names) (map car operators))
(define (operator-objects) (map cdr operators))

(define operators
(list

(list ’+ +)
(list ’- -)
(list ’* *)
(list ’/ /)
(list ’= =)
(list ’> >)
(list ’< <)
(list ’>= >=)
(list ’<= <=)
(list ’not not)
(list ’length merlin-length)
(list ’slice slice)
(list ’join join)
(list ’tuple list)
(list ’boolean? boolean?)
(list ’number? number?)
(list ’string? string?)
(list ’tuple? tuple?)
(list ’behaviour? behaviour?)
(list ’address? address?)
(list ’is equal?)))

; Environments =============================
(define (enclosing-environment env) (cdr env))
(define (first-frame env) (car env))
(define empty-environment ’())

(define (make-frame vars vals) (cons vars vals))
(define (frame-names frame) (car frame))
(define (frame-values frame) (cdr frame))
(define (add-binding! var val frame)

(set-car! frame (cons var (car frame)))
(set-cdr! frame (cons val (cdr frame))))

(define (deep-copy data)
(if (not (pair? data))

data
(cons (deep-copy (car data))

(deep-copy (cdr data)))))

108 Appendix B: Interpreter Source

(define (name-lookup name env)
(define (env-loop env)

(define (scan vars vals)
(cond ((null? vars) (env-loop (enclosing-environment env)))

((eq? name (car vars)) (car vals))
(else (scan (cdr vars) (cdr vals)))))

(if (eq? env empty-environment)
#f
(let ((frame (first-frame env)))

(scan (frame-names frame) (frame-values frame)))))
(env-loop env))

(define (define-name! var val env)
(let ((frame (first-frame env)))

(define (scan vars vals)
(cond ((null? vars) (add-binding! var val frame))

((eq? var (car vars)) (set-car! vals val))
(else (scan (cdr vars) (cdr vals)))))

(scan (frame-names frame) (frame-values frame)))
env)

(define (extend-environment vars vals base)
(if (= (length vars) (length vals))

(cons (make-frame vars vals) base)))

(define (make-environment)
(extend-environment (append (primitive-actor-names)

(operator-names))
(append (primitive-actor-addrs)

(operator-objects))
empty-environment))

(define universe-environment (make-environment))

(define (merlin-exec exp) (script-exec exp universe-environment #f))

	Preface
	Introduction
	Why Yet Another Programming Language?
	Problem and Method
	Problem Statement
	Method Overview

	Contributions
	Scope
	Related Work

	Actor-Based Concurrency
	Overview of Concurrency Concepts
	Interleaving and Parallelism
	Interaction

	Models of Concurrency
	Deterministic Concurrency Models
	Shared-Memory Concurrency Models
	Distributed-Memory Concurrency Models
	Evalution of Concurrency Models

	The Actor Model
	Basic Concepts
	History of the Actor Model

	Summary

	The Merlin Language
	From Model to Language
	Design Philosophy
	Language Requirements

	Introduction to Merlin
	Inspirations
	Introductory Examples
	Pattern Matching
	Concurrency
	Parameters
	Changing Behaviour
	Recursion
	Merlin Overview

	The Design of Merlin
	The Core Precepts
	Pure Actor Languages
	Actors and Pattern Matching
	The Representation of Actors
	Event Atomicity
	On Bidirectional Asynchronous Communication

	Evaluation of the Merlin Language Design
	Merlin and Other Modern Actor-Based Languages
	Revisiting the Requirements
	Final Remarks on the Merlin Design

	Summary

	A Simple Merlin Interpreter
	Overview of the Interpreter
	The Actor Directory
	The Actor Loop
	Environments
	The Pattern Matcher
	The Script Processor

	Built-in Actors
	Evaluation of the Interpreter
	Limitations

	Summary

	Conclusion
	Future Work
	Further Evolution of the Merlin Language
	Efficient Implementation
	Expressive Sequential Sublanguage
	Error Handling and Recovery

	Further Work with the Actor Model
	Bidirectional Actor Communication
	Handling Deadlock in Actor Systems

	Bibliography
	Appendix A: Merlin Grammar
	Appendix B: Interpreter Source

