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Abstract

This master’s thesis documents Ecstatic
– a type inference tool for the Ruby pro-
gramming language. Ecstatic is based on
the Cartesian Product Algorithm (CPA),
which was originally developed for use
in the Self language.

The major contributions of this thesis are:
the Ecstatic tool that can infer precise
and accurate types of arbitrary Ruby pro-
grams. By implementing CPA we con-
firm that the algorithm can be retrofitted
for a new language. Utilizing RDoc we
devise a method for handling Ruby core
and foreign code both implemented in C.
Using Ecstatic a number of experiments
were performed that gained insights into
the degree of polymorphism employed
in Ruby programs. We present an ap-
proach for unit testing a type inference
system. We compare Ruby to Smalltalk
and Self, and conclude that their seman-
tics are similar.
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CHAPTER 1
Introduction

Ruby is a dynamic programming language, and therefore defers as many deci-
sions as possible to runtime. Dynamic programming languages tend to have a
high degree of flexibility and expressiveness. These factors makes a language
like Ruby preferred by some programmers.
Although Ruby has existed since 1995, it is still relatively new to the Western
world and almost unknown to the academic world. The language comes from
Japan and most of the early documentation was in Japanese. Since then En-
glish resources have slowly emerged. With the release of the Ruby on Rails web
framework in 2004 the language have gained more attention, and subsequently
many books have been published. O ’Reilly (a publisher of technical books)
publishes a book sales list every quarter. Sales of Ruby books have increased in
the last years, and surpasses the sales of languages like Perl and Python.

TIOBE Software [55] publishes a list once a month of the most popular program-
ming languages. Their list from June 2007 places Ruby on a 10th place. They have
statistics from June 2002, and Ruby has featured growth since then.
Sun Microsystems support a project called JRuby [49] and Microsoft’s has pre-
released IronRuby [50]. The projects implement the Ruby language on the Java
Virtual Machine (JVM) and the Common Language Runtime (CLR), respectively.
These two announcements illustrate the increasing momentum behind Ruby.
After visiting RailsConf 2007, Thorup [54] notes his impression of the adoption
of Ruby. By his observation, Ruby is primarily used in start-up shops and in
PHP shops wanting to switch to Ruby on Rails Hansson [28]. He believes that
the reason is primarily, that developers in these companies are more free to make
technology choices compared to big companies.

The nature of dynamic programming languages often require their programs
to be type checked dynamically. A dynamic type check happens at runtime.
This implies that a programmer must run a program to get any feedback about
its behaviour and possible errors. The need to constantly run the program while
programming is undesired for several reasons. Furthermore, feedback from run-
ning a program is often limited and only covers part of the code.

Additional and possibly better feedback can often be provided by analysing the
code statically. One aspect of static code analysis is type inference, in which
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Chapter 1. Introduction

types are ascribed to variables, expressions, etc. in the code. Utilizing type
inference, the programmer can get valuable feedback on how types flow through
the program and, thus, discover errors or wrong behaviour before runtime.

This thesis couples the field of type inference and the Ruby programming lan-
guage to create tool that does type inference. The developed tool is called Ec-
static and it uses the Cartesian Product Algorithm (CPA) to analyze the types
and their flow through a Ruby program. Ecstatic is used to conduct a number
of experiments on real life Ruby programs. These experiments form the basis of
a discussion of the value of type inference on Ruby and our developed tool.

In the following two sections we present the contributions of this thesis.

Major Contributions

Ecstatic: We have implemented a tool that performs type inference on Ruby
programs using the Cartesian Product Algorithm (CPA).

CPA Works on Ruby: We have implemented CPA to work on Ruby programs.
The CPA was developed for use on the Self programming language, so it
was not immediately apparent that it would work on Ruby.

Experiences in Implementing CPA: We have gained a number of insights and
considerable experience in implementing CPA on Ruby. Some of these
details and concepts are not readily available in Agesen [1]’s work on CPA.

Foreign Code Inclusion: We present a method for extracting type information
from the Ruby Core’s RDoc. This enables us to perform more precise type
inference, because we are aware of the types of the built-in libraries.

Experiments on Ruby Code: With Ecstatic we have conducted a number of
experiments on Ruby programs found at the Ruby Application Archive
(RAA). This enables us to collect a set of statistics on how Ruby programs
are written, including statistics on data and parametric polymorphism.

Testing a Type Inference (TI) System: Based on compiler validation, we present
a method for testing the type inference system. The tests are based on
Ruby source code samples and unit tests based on an extension to JUnit.

Comparing Ruby, Self, and Smalltalk: We perform a language comparison be-
tween Ruby, Self, and Smalltalk. We conclude that the three languages are
very similar on a semantic level. Although the similarities between Ruby,
Self, and Smalltalk are often presented, a more thorough comparison has
not been done before.
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Minor Contributions

Ideas for Future Research: We present four hypotheses regarding Ruby pro-
grams and programmers. Three of these are considerably broad, and are
hence not confirmed or rejected in this thesis. However, they can be con-
sidered ideas for future work and research.

Types in Ruby: We present a suggestion on how to understand types in Ruby.
There are different views on this, and we compare these views from a type
inference angle.

Outline

Chapter 2 gives an overview of Ruby as a programming language. The purpose
is to give the reader an intuitive understanding of Ruby. Furthermore a com-
parison between Smalltalk, Self, and Ruby is performed. Focus is placed on the
semantic similarities and differences between the three languages.
Chapter 3 presents the field of type inference. This includes a definition and
discussion of types and how they are understood, as well as a description of
two type inference algorithms: the Hindley-Milner algorithm and the Cartesian
Product Algorithm (CPA).
Chapter 4 establishes a set of hypotheses that constitute the motivation for this
project. This is supplemented by a list of requirements for the development of a
type inference tool for Ruby called Ecstatic.
Chapter 5 describes the implementation of the tool using CPA as algorithm. Fo-
cus is placed on conveying the experiences gained in implementing CPA and
retrofitting it from the Self language to Ruby.
Chapter 6 discusses the relation between compiler validation and testing a type
inference system. It also documents the development of a validation suite for
Ecstatic, and the results obtained from testing Ecstatic using the suite.
Chapter 7 performs a set of experiments offset in the hypotheses described in
Chapter 4. The experiments are conducted using Ecstatic.
Chapter 8 discusses the obtained experiment results, experiences gained in im-
plementing CPA, contributions from this thesis, and finally confirms or rejects
the hypotheses.
Chapter 9 concludes the thesis.
Acronyms are listed in Appendix A.
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CHAPTER 2
Ruby and Dynamic Object Oriented Languages

At a panel discussion hosted by MIT’s Dynamic Languages Group in 2001 Steele
[51] stated,

A dynamic language is one that defers as many decisions as possible
to runtime.

In a colloquial way this quote summarizes what dynamic languages are about.
The following elaborate on what it means in practice. Ultimately languages are
called dynamic because they perform many operations at runtime that other
languages perform at compilation time. An example of the dynamic nature of
these languages is that programs can evolve and change as they are running. In
a dynamic object oriented language this can imply the ability to extend objects
and class definitions during program execution. E.g., they can be extended by
adding new methods, changing methods, or changing the superclass of a class.
Some of these capabilities are available in other non-dynamic languages as well,
but the dynamic languages have direct support for it built-in.

Since a program written in a dynamic language can change at runtime, the types
(or classes) can change too. This can require the language to be dynamically type
checked. Dynamic type checking is discussed further in Chapter 3.

This remainder of this chapter describes Ruby – an object oriented language
– via code examples. Following this discussion Section 2.2 describes how Ruby
relates to more academically well-established languages like Smalltalk, Self, and
Python. This comparison is performed, because previous work done in the type
inference field was based on these languages. The comparison will be based on
the semantics of the languages and not on the syntactical constructions they use.

2.1 Ruby

In this section we describe the parts of the Ruby programming language that we
find most relevant in a type inference context. Furthermore, some basic Ruby
is explained to enable the reader unfamiliar with Ruby to understand the code
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examples presented throughout the report. For a more thorough documentation
we refer to Thomas et al. [53].

The description will follow a “Show, don’t tell”-approach popularized in the
Ruby world by David Heinemeier Hansson – the author of the Ruby on Rails
framework. Hence, emphasis will be placed on code examples, instead of more
theoretical explanations. The overall purpose is to give the reader an intuitive
understanding of the Ruby programming language.

Ruby is a dynamic object-oriented programming language. Its type system is
commonly referred to as Duck Typing the concept of which is summarized in
the following quote known as the duck test:

If a bird looks like a duck, swims like a duck and quacks like a duck,
then it is indeed a duck [64].

This implies that in Ruby, classes are not the way to distinguish one object from
another, i.e. the class is not the type in Ruby as it is in languages like Java.
Instead, if a Ruby object possess the characteristics required by a caller, then for
all intents and purposes it is what the caller wants it to be. A more theoretical
definition of duck typing is provided in Section 3.1.1.

A table presenting the Ruby variable naming scheme is seen in Table 2.1. It
utilizes the code example seen in Listing 2.1. In general, the first two characters
of a name help Ruby and developers distinguish its use.

Variable Type Characteristics
Local variables Start with a lower case letter or an underscore

(line 1 and 2)
Instance variables Start with an “at” sign (@) (line 3)
Class variables Start with two “at” signs (@@) (line 4)
Global variables Start with a dollar sign “$” (line 5)
Constants Start with an uppercase letter (line 6). Names

of classes and modules are constants (line 8-
10)

Table 2.1: Ruby’s naming scheme with complementary code example in List-
ing 2.1.� �

1 local_var
2 _local_var
3 @instance_var
4 @@class_var
5 $global_var
6 MyConstant
7
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2.1 Ruby

8 class MyClass
9 # class body

10 end� �
Listing 2.1: Ruby’s naming scheme. The different variables are explained in
Table 2.1

Variables in Ruby does not need to be defined before used. If you need a variable
you start using it. Often variables are defined assigning to them using an equal
sign.

2.1.1 Classes and Objects

In Ruby almost everything is modelled as objects. For example a class definition
is an object being an instance of the core class Class.

A class definition in Ruby is shown in Listing 2.2.� �
1 class NewClass < SuperClass
2 def initialize
3 # constructor body
4 end
5
6 # class body
7 end
8
9 obj = NewClass.new� �

Listing 2.2: A class definition. NewClass inherits from SuperClass.

The SuperClass definition is optional and defaults to the core class Object de-
scribed later. The class constructor is named initialize and is optional. In line
9 an instance of the class is created and assigned to the local variable obj.

In Ruby class definitions are executed, and Listing 2.3 gives an example of this.
This examples also demonstrates some of the dynamic characteristics of Ruby.� �

1 a = -8
2
3 class NewClass
4 if a < 0 then
5 def my_method
6 # do one thing
7 end
8 else
9 def my_method

10 # do another thing
11 end
12 end
13 end
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14
15 obj = NewClass.new
16 obj.my_method
17
18 class NewClass
19 def my_method
20 # redefinition of my_method to do something else
21 end
22
23 def my_second_method
24 # this method is added to NewClass
25 end
26 end
27
28 obj.my_method
29 obj.my_second_method� �

Listing 2.3: Definitions are executed, which make for interesting use cases.

If the value of a is less than 0 at the time NewClass is defined, my_method will be
defined as in lines 5-7. If the value of a is more than or equal to 0, my_method will
be defined as in lines 9-11.

In line 18 the definition of NewClass is reopened. my_method is redefined in lines
19-21, and a new method is added to the class in line 23-25.

The object obj, which was instantiated in line 15, now features a new definition
of my_method in line 28 and the newly added my_second_method in line 29. This is
because calling methods uses dynamic dispatch (the method to invoke is located
at runtime based on the receiver) and is implemented as messages in Ruby.

2.1.2 Methods and Messages

What looks like a regular method call in the code above is actually a message be-
ing sent to that object. The syntax is receiver.message or receiver.message()
or just message. The part before the dot (.) is the receiver of the message, and the
part after the dot is the name of the message. The parenthesis after the message
are optional. If the receiver part is omitted, and only a message name is present
the message is sent to self.

When sending a message to an object, the object checks if it has a method match-
ing the name of the message. If it does that method is invoked and the result is
returned. If it does not the message is forwarded to the class of the object. The
same check goes on at the class level, and if not implemented here, the message
will be forwarded to any ancestors of the class. If no ancestor of the receiver im-
plements a method with the name of the message, the exception NoMethodError
is raised. This process is known as duck typing.
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2.1 Ruby

A method returns the value of the last expression evaluated in the method body.
This is often just the last line of code. One can also use an explicit return.

Methods can be defined in three different ways as displayed in Listing 2.4.� �
1 class NewClass
2 def instance_method
3 # method body
4 end
5
6 def NewClass.class_method
7 # method body
8 end
9 end

10
11 obj = NewClass.new
12
13 def obj.singleton_method1
14 # method body
15 end
16
17 class << obj
18 def singleton_method2
19 # method body
20 end
21 end� �

Listing 2.4: Defining methods.

Line 2 defines a normal instance method on a class, which is accessible after the
class is instantiated.
Line 6 defines a class method by prepending the name of the class being defined
(in this case NewClass) to the method name. A class method is accessible directly
from the class just like static methods in Java.
Line 13-15 and 17-21 shows how singleton methods can be defined. The two
singleton methods exist only on the object obj and do not affect NewClass. If
a second object was instantiated from NewClass it would not have the methods
singleton_method1 and singleton_method2. The singleton method definition
in line 13 prepends the name of the object it is created on, which resembles the
syntax of the class method definition in line 6.
The syntax in line 17-18 is different. In line 17 a special virtual class (called a
singleton class, see Section 2.2.2) of obj is opened and in line 18 a method is
inserted into that class, which makes the method a singleton method of obj.

2.1.3 Modules and Mixins

Modules are classes that cannot be instantiated. A module definition basically
resembles a class and can contain the same elements as a class definition. As
the name “module” indicates it is a wrapper for grouping functionality. This
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functionality can be used directly from the module or by mixing it into a class.
Listing 2.5 shows an example.� �

1 module NewModule
2 def method1
3 # method body
4 end
5 end
6
7 class NewClass
8 include NewModule
9

10 def method2
11 method1
12 end
13 end
14
15 obj = NewClass.new
16
17 obj.method1
18 obj.method2� �

Listing 2.5: Modules and mixins

Line 1-5 defines a module with an instance method method1 in line 2. method1
is similar to an instance method, and is not yet accessible in any way, because
modules cannot be instantiated. In line 8 the NewModule is mixed into the class
NewClass by calling include. The method of NewModule is now available in
NewClass. NewClass can therefore define a method2 in line 10 that calls method1
in line 11. Both methods can be called from an instance of NewClass in line 17-18.

2.1.4 Core Classes and Modules

The core of Ruby is implemented in C and has 34 classes and 14 modules. Most
of the classes include one or more modules as mixins. The base class Object
includes the module Kernel and this class and module provide much of the
built-in functionality of Ruby.

Basic functions in Ruby are implemented as methods. For example, the function
puts that prints to standard output is a method defined on Kernel. The “hello
world” example looks like this in Ruby:

puts "Hello World!"

puts is a message sent to self. self in global space is an object called main,
which is an instance of Object. The message puts is thus sent to main, which

10
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forwards it to its class Object, which forwards it to its included module Kernel.
The general order of method lookup is:

1. The class of the receiver

2. Any included modules of the receiver class

3. The superclass of the receiver class

4. Any included modules of the superclass

5. The superclass’s superclass

6. And so on. . .

If an object gets singleton methods these lookup rules are still valid. How-
ever, the immediate class of the receiver may change, which is described in Sec-
tion 2.2.2.

In Ruby, primitive types are classes. A string literal is an instance of the core
class String. A small integer literal is an instance of Fixnum, and a big integer
literal is an instance of Bignum. Both Fixnum and Bignum inherit from the core
class Integer. Likewise a float literal is an instance of Float. Both Integer and
Float inherit from the class Numeric. In this way every kind of data in Ruby is
an instance of a class.

2.1.5 Attributes and Dynamic Programming

In Ruby instance variables of a class are always private to that class. To access
them from outside the class, you must make attributes for them. An example of
attributes is shown in Listing 2.6.� �

1 class NewClass
2 attr_reader :readonly_var
3 attr_writer :writeonly_var
4 attr_accessor :readwrite_var
5
6 def initialize
7 @readonly_var = 1
8 @writeonly_var = 2
9 @readwrite_var = 3

10 end
11 end
12
13 obj = NewClass.new
14
15 puts obj.readonly_var
16 obj.writeonly_var = 5
17 obj.readwrite_var = 10
18 puts obj.readwrite_var

11
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� �
Listing 2.6: Attributes in Ruby

NewClass has a constructor that initializes three instance variables in lines 7-9.
Attributes for these variables are created in lines 2-4. In many other program-
ming languages, attr_reader, attr_writer, and attr_accessor would be lan-
guage keywords. In Ruby they are methods defined on the Module class, and
thereby accessible to all classes. In line 2, a message attr_reader with the ar-
gument :readonly_var is sent to self. :readonly_var is an instance of the core
class Symbol. attr_reader creates a read-only method on NewClass with the
name of the Symbol argument, which makes the instance variable with the name
of the Symbol available for access in line 15. attr_writer correspondingly cre-
ates a write-only method. attr_accessor creates both a read-only and a write-
only method.

The three attribute methods (attr_reader, attr_writer, and attr_accessor)
utilizes Ruby’s dynamic programing features to create the methods that wraps
the instance variables on the class. This concept is also referred to as meta pro-
gramming because you program the language.� �

1 class MyClass
2 def initialize
3 end
4
5 def my_reader(name)
6 MyClass.class_eval <<-INJECTED_CODE
7 def #{name}()
8 return "you called #{name}"
9 end

10 INJECTED_CODE
11 end
12 end
13
14 x = MyClass.new
15 x.my_reader(:hello)
16 puts x.hello()
17 # outputs: you called hello� �

Listing 2.7: Adding a method to a class dynamically using class_eval

Listing 2.7 shows an example that uses the meta programming features of Ruby
to create something similar to attr_reader. The example declares a method
named my_reader, an instance method defined on MyClass, which takes a single
parameter name. Calling my_reader adds a method to the class MyClass with
name as the method name. This method returns “you called” and the name of
the method.
Line 6 calls class_eval on MyClass with a HERE document (basically a string) as
parameter delimited with INJECTED_CODE. The string contains a normal method
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definition and uses #{name} to access the method name. class_eval evaluates
its given parameter in the context of a class. So the result of calling this method
is that MyClass and all instances of it will have a newly declared method. Line 15
calls my_reader with a symbol :hello. Line 16 calls the newly defined method
and outputs the return value, resulting in you called hello to be printed to the
console.

There are four different eval methods in Ruby, and the difference between them
are basically in what environment they are evaluated, i.e. what self is. The four
methods are, eval, class_eval, module_eval, and instance_eval. class_eval
and module_eval are synomynous and evaluate with respect to a class or mod-
ule, and are often used to add methods to these. instance_eval sets self to the
receiver, which means you have access to everything in the instance including
private variables. eval evaluates its given string in the current context, and is as
such not restricted to a specific module, class, or instance.

2.1.6 Code Blocks

Code blocks in Ruby are similar to lambda expressions, in that they are treated
as anonymous methods. Blocks are used extensively in Ruby, and a common
pattern of use is seen in Listing 2.8.� �

1 a = [1, 2, 3]
2 a.each {|x| puts x}� �

Listing 2.8: Using a block to print the values of an array in Ruby

Line 1 declares an array of integers. The Array class has a method called each
that takes a block as a parameter. This block will be executed for each element in
the array. Hence, Listing 2.8 will print out 1, 2, and 3. The each method is called
an iterator, because it repeatedly executes the same code block for each element.

Ruby also supports generators, which are used to feed an iterator. This is sup-
ported via the yield keyword. An example of this is shown in Listing 2.9.� �

1 def method_123
2 yield 1
3 yield 2
4 yield 3
5 end
6
7 method_123 {|x| puts x}� �

Listing 2.9: Generators and iterators in Ruby
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In line 7, a code block is passed as an argument to method_123. The code block
has a parameter x, which it prints to the screen. method_123 calls the code block
by the message yield. In line 2-4 the code block is called three times with the
arguments 1, 2, and 3. These arguments are passed to the code block and 1, 2, 3
is printed to the screen.

Ruby supports closures as well and have a number of syntactical constructs for
using them. We briefly discuss two of these, lambda and Proc.new. Their basic
difference is the way they handle the return statement. Listing 2.10 shows a
code example that illustrates this difference. The call to Proc in line 3 results in
control being handed over to the closure created in line 2. Upon returning, it
will return to the original call site in line 13. lambda works differently as seen
in line 8-10 and line 14. Executing a lambda and returning from it yields control
back to the call site that called the closure.
Proc.new does non-local returns and works as a LIFO block, i.e. it does not work
after its declaring context disappears [4, 9]. lambda does local returns and works
as a non-LIFO block, i.e. it works even after its defining context has disappeared
[9].

Cantrell [9] discusses by example the different ways to create closures in Ruby.
We refer the reader to him for further details.� �

1 def foo
2 f = Proc.new { return "return from foo from inside proc" }
3 f.call # control leaves foo here
4 return "return from foo"
5 end
6
7 def bar
8 f = lambda { return "return from lambda" }
9 f.call # control does not leave bar here

10 return "return from bar"
11 end
12
13 puts foo # prints "return from foo from inside proc"
14 puts bar # prints "return from bar"� �

Listing 2.10: Closures in Ruby, lambda and Proc.new [63].

2.2 Programming Languages Similar to Ruby

Most new programming languages are a mix of old and new ideas, or at least old
ideas mixed in a new way. Ruby is no exception. Being a dynamic and object-
oriented language it joins a family of languages with the same basic premises.
In this section we describe and discuss Ruby as a programming language, and
compares it to other similar languages. We will primarily compare Ruby to Self
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and Smalltalk; Python will be touched upon briefly. These languages were cho-
sen, because they have been the target of dynamic language type inference. The
comparison will indicate how the language similarities render type inference for
the languages similar.
For a more detailed and feature by feature comparison we refer to Voegele [60].

2.2.1 Historical Background and Language Relations

The historical background of the creation of the languages is interesting because
it shows how the languages are related to each other.

Smalltalk is the oldest language of the four. It was invented by Alay Kay, Dan
Ingalls and Adele Goldberg and developed by a team of researchers at Xerox
PARC during the 70ties and 80ties. The main development of the language was
done during the 70ties with the release of Smalltalk-80 in 1980. Smalltalk-80 is
the language specification normally referred to as Smalltalk today.

The development of Self was started in 1986 at Xerox PARC by David Ungar and
Randall Smith. At that time and place Smalltalk was the big thing, and Self is
very much an offspring from that. Most of the semantics of Smalltalk are reused
in Self except the new prototype-based object system of Self.

Python appeared first in 1991 as a version 0.9 release and reached version 1.0 in
1994. It was developed by Guido van Rossum at CWI in the Netherlands. Even
though the design choices of Python place the language in the same family as
Smalltalk, Van Rossum does not mention Smalltalk as a source of inspiration
when asked in a couple of interviews [58, 32].

The development of Ruby started in 1993 with the first release in 1995. It is
slightly later than Python, which have allowed the creator, Yukihiro Matsumoto,
to find inspiration in both Python and Smalltalk together with Perl.

2.2.2 Language Similarities and Discussion

The semantics of Smalltalk and Self are very similar except for their object sys-
tem. They are both entirely based on objects but differ in their way of defining,
creating and relating objects. Likewise Smalltalk, Self, and Ruby all treat values
(primitive as well as complex) as objects.

The object system of Smalltalk is class-based. Classes are used to define the
structure of objects, and objects are made by creating instances of classes. The
class used to instantiate an object is called the class of that object. Classes are
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related through inheritance where each class has one superclass, except the top
level class Object. The structure of instances are defined by its class and ances-
tors. A class is itself an object with a class (called the metaclass). Classes define
named instance variables and methods, that are available to their instantiated
objects. Class variables and class methods are defined as instance methods of a
class’s metaclass [69]. The class of the metaclass is an instance of Metaclass and
thus ends the instance-of chain.

Figure 2.1 illustrates the way objects, classes, and metaclasses are connected in
Smalltalk. It illustrates a simple hierarchy with an Employee inheriting from a
Person. It shows the correspondence between the class of an object and its asso-
ciated metaclasses. The class and metaclass hierarchy are equal in structure. An
interesting thing to note is that vieweing the instance, class and metaclass hier-
archy in a left to right fashion makes the entity to the right describe the entity to
the left. I.e. the class describes the instance (instance methods), and the meta-
class describes the class (class methods). Furthermore the figure illustrates how
the MetaClass’s class is an instance of MetaClass thereby ending the instance-of
chain.

Variables are private to an object. They are accessed through methods, and
methods are invoked by sending messages to objects. When an object receives a
message it searches for a method in it self, and then its super classes if defined. If
no method is found that matches the method, a "method not understood" error
occurs.
In Smalltalk lingo the object receiving the message is called the receiver and the
method name is called the selector.

Self is a prototype-based language and does not have classes. Objects are de-
fined directly instead of being instantiated from a class. If several identical ob-
jects are needed, a prototype object is created and then cloned into several ob-
jects. Inheritance exists between objects by an object having a parent pointer.
The class/instance relationship is typically simulated by objects (the instances)
having a shared parent called a traits object (the class)[57].

In "self includes: Smalltalk", Wolczko [69] describes how he implemented Smalltalk
on top of Self. The purpose of this implementation was to demonstrate the flex-
ibility of a prototype based language like Self. Wolczko [69] explains how he
maps the Smalltalk constructs of classes, metaclasses, and instances to an object
structure in Self. He concludes that it bodes well for the quality of Self and the
prototype based paradigm that you can implement and emulate a class based
language like Smalltalk. We would like to expand this conclusion by stating
that it exemplifies the similarities between the semantics of Self and Smalltalk.

In Ruby every object has an associated class, which is an object of class Class.
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Figure 2.1: An example Smalltalk class diagram. Double ended arrows sig-
nify "instance-of" relationships, single ended arrows inheritance. Adapted from
Nierstrasz [36].

This class describes the instance methods of the object, and holds a reference to
the super class. Every class object has an associated class as well, which con-
tains the class methods of the object. This class is sometimes called the singleton
class or metaclass, but it is in fact just an object of Class. If singleton methods
are added to an object an extra class will be inserted between the object instance
and the class object. This extra class is also called a singleton class.
Mixins are equivalent to module inclusion. Effectively they incorporate the def-
initions in the module with the classes definitions. Mixins are implemented
using a special proxy class, which is inserted between the object instance and its
class. This proxy class holds a reference to the instance methods of the module
and contains the modules instance variables. That means two classes including
the same module does not share the modules instance variables. If more mod-
ules are included more proxy objects are created and chained together. This also
forms the lookup chain, because the order of module inclusion signifies in what
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order the modules will be searched.

Figure 2.2 illustrates a class diagram in Ruby. It uses the same example as the
Smalltalk version above (Figure 2.1).

Thomas et al. [53] describes how Ruby deals with objects, classes, etc. However,
the view presented in Thomas et al. [53] is challenged by DeNatale [17, 18].
DeNatale [17] explains with reference to the current Ruby implementation how
objects, classes, and singleton classes are dealt with. Figure 2.2 incorporates the
most precise illustration of how objects and classes are represented in the current
Ruby implementation.

Figure 2.2: An example Ruby class diagram. Double ended arrows signify
"instance-of" relationships, single ended arrows inheritance.

Ruby’s way of dealing with classes is similar to that of Smalltalks, however,
there are differences. In Smalltalk the class of a class is of type MetaClass (see
Figure 2.1), where in Ruby it is of type Class (see Figure 2.2). So the singleton
class of a Ruby class is equivalent to Smalltalk’s metaclass. Ruby allows the
creation of singleton methods, i.e. methods that only exist on a single object
instance. This is not supported in Smalltalk.

The nature of Figure 2.2 is similar to Figure 2.1. They both utilize the concept
of an object’s class being an instance of an object. Likewise the class of a class is
also a class. However, they differ in the way this hierarchy of classes is built.

All classes, even the class of a class, in Ruby are represented by instances of
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the core class Class. This is different to Smalltalk in which a classes class is of
MetaClass. For Ruby this means that classes can be chained together, because
ultimately classes always look like a Class. This is exploited in singleton classes,
which are used when a singleton method is added to a class. This new class is
pushed between the object instance and the original class. The singleton class
thus contains the singleton methods, i.e. the methods that are only defined on
this object instance. Method lookup will continue to function as before, because
if the message is not understood at the immediate class (the singleton class) it
is delegated to the original class and so on until the method is found or a “No
method error” occurs.

This is not possible in Smalltalk because of the way the class diagram is con-
structed. However, a disadvantage with the Ruby version is that diagrams often
get very complex and it is not as intuitive as the Smalltalk version.
Another difference is that most of the classes seen in Figure 2.2 do not exist or
are at least not accessible. They are created virtually in the interpreter during
execution.

Mixins can be thought of as a kind of Multiple Inheritance (MI). The difference
between Mixins and interfaces found in languages like Java and C#, is that the
latter does not support implementation of code and the former does. Coupling
mixins with “duck typing” you get a similar effect to MI. Chambers et al. [13]
describes how inheritance works in Self and references previous approaches to
MI. We refer the reader to this work for a more thorough discussion of MI in
Self. Mixins and Duck Typing make Ruby similar to Self, which allows an object
to have multiple parents. This is accomplished by delegation in which an ob-
ject can delegate any message it does not understand to a parent object. Parent
objects are declared by adding an asterisk to the slot holding the reference.

Smalltalk, Self, and Ruby are all dynamic object oriented languages. Further-
more they all adhere to “duck typing”, because objects respond to messages.
Each language utilizes garbage collection: Smalltalk’s algorithm depends on
implementation, Self uses a Generational algorithm[66, 65], and Ruby uses a
mark-and-sweep algorithm[53, 65].

A key differentiator for Smalltalk and Self compared to Ruby is that the former
utilize an image metaphor. Using Smalltalk and Self means starting the image
like an application and then develop your program within the image. When
done the image is saved, and the next time you can continue where you left off.
The systems are thus not based around source code placed in text files, but rather
in a binary environment that contains everything needed to program Smalltalk
or Self. Ruby is an example of a language that uses text files to structure source
code. In this respect it mimics contemporary and popular languages like Java,
C#, C++, etc.
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The Smalltalk and Self systems are based around a lightweight core implemented
in C. The basic features of the language are implemented here, and everything
else is programmed in the language itself. This means that the libraries, etc. are
available for modification to the programmer. In Ruby the basic language fea-
tures as well as the core libraries are implemented in C. The standard library
builds upon this and is programmed in Ruby.
Smalltalk and Self are highly reflective, meaning they can inspect and change
everything at runtime. This means you can traverse the heap and for example
use it as the basis of analysis. Coupling this reflection with the image based de-
velopment and distribution, means that you can change the entire environment.
Ruby supports some kinds of reflection aswell, and these capabilities are called
introspection. However, it is not as extensive as its Smalltalk and Self counter-
parts. Primarily because some part of the Ruby environment are unavailable
or at least difficult to change and reflect. The core coded in C is an example of
this. Yegge [70] lists three problems with the dynamic programming features
of Ruby: the group of eval methods1 are atomic, calls to injected methods are
atomic, no access to injected code. The first two points implies that external tools
like a debugger does not work properly. All three indicate that the reflective ca-
pabilities on injected methods are limited. Hence, although Ruby supports meta
programming it appears to not be a first class citizen.

Blocks or closures are dealt with differently in Self and Smalltalk; Ruby incorpo-
rates both ways. Wolczko [69] states that Self and Smalltalk differs in their way
of dealing with blocks. Smalltalk blocks can be executed any time after they are
defined, even after their defining context has disappeared; they are non-LIFO
blocks. Self blocks cannot execute if their defining context has exited, i.e. they
are LIFO blocks. Ruby supports both ways of block definition as described in
Section 2.1.6. Proc.new mimics Self blocks (even for non-local returns [4, page
7]), and lambda mimics Smalltalk blocks except for return where Ruby does local
returns and Smalltalk non-local.
All three languages support treating functions as first-class values. They can be
passed to methods as parameters and returned as well.

Figure 2.3 illustrates the differences and similarities between Ruby, Self, and
Smalltalk as exemplified through the discussion above.

Colin Steele in quoted for saying, “Ruby is two parts Perl, one part Python, and
one part Smalltalk” [52]. We want to challenge that statement and say, “Ruby
is half Smalltalk, half Perl, and no Python.” This does not mean that Ruby and
Python has nothing in common. But when Matsumoto talks about Python, he
only talks about how Ruby differs from Python [34, 59]. He obviously knew
about Python, but did not want to copy any of it. Instead, Matsumoto has taken
the semantics of Smalltalk. The Ruby FAQ declares that “If you like Perl, you

1See Section 2.1.5
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Figure 2.3: A summary of the differences and similarities between Ruby, Self,
and Smalltalk.
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will like Ruby and be right at home with its syntax. If you like Smalltalk, you
will like Ruby and be right at home with its semantics” [20]. The question is then
how you weigh syntax against semantics. In this view, Steele weighs syntax
2:1 over semantics. We suggest weighing the two more evenly. Furthermore,
when it comes to working with a language like when making type inference, the
syntax is almost negligible and only the semantics matter. That is why Ruby is
so much like Smalltalk and why type inference algorithms for the one language
can be used for the other.

2.3 Summary

This chapter has had two purposes: first to introduce Ruby as a programming
language, second to compare it to Smalltalk and Self. On a semantic level Ruby
is very similar to these two languages and is clearly inspired from them. How-
ever, there are differences and Ruby does bring something new to the table.
Ruby may not look as clear and concise as Smalltalk and Self, and the corners
of the language are not necessarily sharp. Ultimately coming from a Smalltalk
or Self background makes Ruby easier to grasp, and such knowledge can be
immediately put to good use in a Ruby world.

This thesis will utilize the results presented in this chapter. This will especially
be evident in the many code examples used to illustrate concepts and issues.
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CHAPTER 3
Understanding Types and Type Inference Algorithms

This chapter gives a description of types and related concepts in programming
languages. Focus is placed on providing an understanding of types and how
they are used in this thesis. This understanding will be used in subsequent
chapters to develop a type inference tool for Ruby. We will also present an
overview of the type inference field, and presents two type inference algorithms:
the Hindley-Milner algorithm and the Cartesian Product Algorithm (CPA).

3.1 Definition of Types and Related Concepts

Programmers compose terms into expressions and statements, which are com-
bined into programs. Almost any part of a program has restrictions on it, and
some of these are domain ranges. Like functions in mathematics can be defined
for a set of values, so can terms, expressions, etc. have a range of values. We
refer to such a domain range as a type. Examples of types in an object oriented
language like Ruby are the system defined types Fixnum and String, and user
defined types such as Employee and Person.

Types restrict what variables can contain. The type of a variable restricts the
range of objects to a specific kind of data, e.g. Float or Fixnum. An expression
of type Fixnum means to ensure that the expression will be used correctly. “Cor-
rectly” means that an expression object of type Fixnum is never used in a way
that conflicts with for example a Person object.

Even though we state that types are used to restrict the contents of variables
they can be used for other purposes as well. Consider an expression used in
an assignment as seen in Listing 3.1. The expression in line 2 on the right hand
side of the equal sign has a type too even though it is not defined in terms of a
variable. Likewise the individual parts of the expression has types too. a has the
type Fixnum obtained from line 1, 2 and 3 are Fixnum’s as well.
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� �
1 a = 5
2 b = (a * 2) + 3� �

Listing 3.1: Assignment in Ruby. All parts have an assigned type even if that
part is not directly referenced by a variable. Hence, 2 and 3 have types too
(Fixnum) even though they are used as sub parts in an expression.

3.1.1 Types in Ruby

Borning and Ingalls [7] define the type of an object in terms of what messages
the object understands. This understanding of types correspond to using classes
as types and thereby limit the messages an object understands. However, it can
also resemble duck typing, where the class of the object does not matter only the
messages available. Ruby uses a definition of types along the lines of Borning
and Ingalls [7], and explicitly refers to it as duck typing (see Section 2.1).

However, there is a problem with using classes as types in Ruby. This stems from
Ruby’s dynamic nature that allows the behaviour of objects to be modified after
they are created. As explained in Section 2.1.2, singleton methods can be added
to an object without affecting the class that the object was initially instantiated
from. That is why the type of a Ruby object must be defined in terms of what
messages the object understands.

To illustrate this, let us assume that we have two object instances, alice and bob,
instantiated from a Person class (see Listing 3.2).� �

1 class Person
2 def initialize(name)
3 @name = name
4 end
5
6 def name
7 return @name
8 end
9 end

10
11 alice = Person.new("Alice")
12 bob = Person.new("Bob")
13
14 def alice.weight
15 return "Do not ask a girl about her weight"
16 end� �
Listing 3.2: Defining a Person class and instantiating two object instances from
it. A singleton method weight is defined on alice in line 14-16.

In line 14 a singleton method named weight is added to alice. The method
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weight is not accessible on the object instance bob only on alice. Now alice
and bob understand different messages even though they were originally in-
stantiated from the same class.
As described in Section 2.2.2 defining a singleton method on an instance injects
a new class (called a singleton class) between the object instance and its orig-
inal class.

There is another way to view types in Ruby. Instead of defining types as the list
of messages they understand, types can be based on their immediate class. This
definition of types is not a complete departure from the previous definition. As
described in Chapter 2 the class of an object contains the methods for that object.
When a singleton method is added to an object, a singleton class containing the
method is inserted as the new class of that object. The old class then becomes
the super class of the singleton class, so the old methods are still available to the
object. This means that modifying an object, i.e. by adding a new method, ef-
fectively changes its type, because the class is changed. In the above example of
alice and bob, when alice gets a singleton method it gets a new class, Person’
instead of Person.

Adding a singleton method to a Ruby object corresponds to creating a new sub-
type in a traditional class based language like Java. The new class will be a
subclass of the old, and the new method added to new class. Likewise in Ruby
the inserted singleton class for singleton methods becomes a subclass of the old
class, whereby the subtype relationship is preserved.
Mixins change the signature of a class or object as well. Recall from Chapter 2
that mixing in a module sparks the creation of a proxy class that sits between
the original class of the object and this class’ superclass. Such a proxy class is
equal to the singleton class created when introducing singleton methods on ob-
ject instances (only its place in the hierarchy is different). Following the same
argument for singleton classes regarding the subtype relationship, we see that
mixins do not change the way one should view a type in Ruby.

The understanding of types influences how and when two types are equivalent.
Cardelli [11] uses the following definitions of type equivalence:

Structural Equivalence: two types are the same if they have the same struc-
ture.

Nominative Equivalence: two types are the same if they have the same name.

Ruby uses a structural equivalence relation also known as duck typing. In the
example above this has the implication that the two object instances alice and
bob are considered to have different types. Adding a method to the object alice
changes its structure, and therefore bob and alice are objects of two different
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types.

3.1.2 Polymorphism

Figure 3.1: A sample class hierarchy for a generic object oriented language.

Figure 3.1 shows a simple class diagram in a generic object oriented language. It
defines a Person class which is the parent of a Employee and Customer. Person is
a more abstract type than Employee, likewise the latter is more concrete than the
former. This class hierarchy can be used to illustrate polymorphism. A context
could require the use of an instance of Person, which would enable both the use
of Employee and Customer instances. This context is polymorphic because it can
assume many forms. Polymorphism facilitates reuse and promotes the use of
abstract types. Monomorphism denotes the opposite, namely that a context can
contain one and only one type.

There is a connection between monomorphic variables and runtime and poly-
morphic variables and analysis time. At a given time during execution all vari-
ables are monomorphic, i.e. they contain only one type and this type is known.
Consider the example of performing a method call, which at runtime implies
the allocation of an activation record. The parameters to the method call are
monomorphic at the activation records creation time, because at this time the
exact and most precise type is known. Conversely variables are polymorphic at
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analysis time. The discussion on monomorphic and polymorphic variables and
their relation to activation records is continued in Section 3.3.

In the context of this thesis we will refer to two types of polymorphism [1]:

Parametric Polymorphism: Refers to the ability of a method to work on pa-
rameters of different types. Continuing the example from above a method
with a parameter of type Person demonstrates parametric polymorphism
because the parameter can assume both an Employee, Customer beside a
Person object.

Data Polymorphism: Refers to the ability of variables to hold objects of differ-
ent types. For example an instance variable might exhibit data polymor-
phism if it can contain objects of varying type.

3.1.3 Type Checking

Programming languages are called explicitly typed if types are explicitly re-
quired to be stated. Examples of explicitly typed languages are Java, C#, C, and
C++. Other languages do not require the programmer to add type information
to his program; these are called implicitly typed. Examples of such languages
are Python, Perl, Ruby, and Java Script.

When types are known, either stated or inferred, a type checker can check that
the types adhere to the rules of how types are to be understood in the program-
ming language. The type checker can, if the types of the language is defined in
terms of methods, check that a message sent to an object can be answered by
that object. A type error depends on the typing rules and type system of the
language, and are reported by the type checker. An example type error in an ex-
plicit statically typed language like Java could be to put a string into a variable
declared as an integer. In Ruby a type error in Ruby would result in a Method-
Missing error.

Type checking can be done in two ways:

Statically: type checking is done on compile time.

Dynamically: type checking is done during the execution of the program. As
an example consider v = e where v is a variable and e is an expression. The
type of the value of the computed expression will be check against the type
of the variable.

Type checking differs depending on how types are represented in the language.
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For explicitly typed languages the check can be performed at compile time. Nat-
urally the check can be skipped at compile time and use a dynamic check at
runtime instead.

For implicitly typed languages it is also possible to perform both forms of checks.
Performing a static check on an implicitly typed language implies that the types
must first be found. Discovering the types is the job of a type inference algo-
rithm. The inferred types can then be checked like for an explicitly typed lan-
guage. However, the natural choice for implicitly typed languages is to type
check at runtime. As explained previously at a given time during execution all
objects and variables are monomorphic. It is because of executions monomor-
phic nature that implicitly typed languages are typically checked at runtime.

3.1.4 Type Inference

The process of analysing and discovering the types of a program is called type
inference. Type feedback[2] and type inference are opposites in a world of type
discovery. Although this chapter primarily discusses type inference, we have
included a discussion on type feedback to give an understanding of the similar-
ities between runtime and analysis time and what this means for type discovery.

The most specific types that can be obtained for a program are the types that
result from executing the program. These types are monomorphic, because (as
stated previously) there are no polymorphic variables or expressions during an
execution. Being monomorphic these types are the most concrete types. Execut-
ing a program to obtain type information is known as type feedback.

Looking back at Figure 3.1 it illustrates a type hierarchy for a programming lan-
guage. Actually this hierarchy is how classes are related in Ruby. The diagram
show the super and sub-type relationship between types. The further up in the
hierarchy the more abstract the type. In Ruby the most abstract or general type
is Object.

An algorithm that uses type feedback as the method for discovering types could
be specified as:

1. Run the program.

2. During execution collect type information on variables and expressions.

(a) If a type error occurs report this.

3. Annotate the type information collected.
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4. Use the annotated information during further development of the pro-
gram.

There are a number of flaws with this method. First, if the program is in a state
where it can not be executed, no type information is available. This could occur
if there are syntactical errors in the program. Second, if the program operates on
critical data or somehow changes the environment or state in which it is running
it is a bad idea to have the incomplete program access and possibly modify or
delete this data. However, the biggest problem is that in executing a program
you are not certain that all parts of the program will be executed. Therefore,
executing a program is not a sure way to obtain types.
A type inference algorithm will try to infer the same types as if the program had
been executed without having the flaws listed above. It does so by analysing the
program without executing it.

In the remainder of this chapter we will discuss two algorithms for type infer-
ence. The Hindley-Milner algorithm commonly used in functional program-
ming languages, and the Cartesian Product Algorithm (CPA) used for the Self
programming language.

3.2 The Hindley-Milner Algorithm

The algorithm was first described in the context of combinatory logic by Robert
Hindley. Later and independently it was described by Damas and Milner [16] in
the context of the ML programming language. Damas and Milner [16] show that
the algorithm is sound and complete. The algorithm set out by introducing a set
of type inference rules for the core language of ML. The algorithm described by
Damas and Milner [16] requires the unification algorithm developed by Robin-
son [44].

The algorithm is part of the type inference system of many functional program-
ming languages. It is an integral part of the ML programming language and
many of its variants. Furthermore it forms the foundation for the type system of
Haskell, and is used in many functional programming languages.

In the following sections we will give the examples in ML rather than in Ruby.
We make the switch because the Hindley-Milner algorithm is primarily con-
cerned with functional languages.
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The Algorithms Process

To explain the workings of the Hindley-Milner algorithm we will use an exam-
ple map function as seen in Listing 3.3 [27]. This function applies a function to
every element of a single-type list� �

1 fun map f [] = []
2 | map f (h::t) = f h :: map f t� �

Listing 3.3: The map function in ML [27].

This function has the following signature:

(α→ β)→ (αlist)→ (βlist) (3.1)

From the signature we deduce that map takes a function and applies it to all
elements of a list. The function f must have the signature α→ β. The second
parameter is a list containing elements of type α. The result of applying a the
map function with argument f and a list is a list whose elements will be given a
type of β.

The algorithm proceeds by setting up a set of type equations and then solving
them with respect to the desired type variable [10]. Solving the set of equations is
the job of the unification algorithm. Using the example from above the algorithm
would create a list of equations to satisfy map. The following list gives examples
of facts that can be extracted from the function:

1. map f [] = [] – the return value of map is a list.

2. (h::t) – h represents the type of the list. h’s type will be assigned the type
variable α. t is th tail of the list and is therefore of type α list.

3. f h – f can be applied on h. The return type of f is assigned the type vari-
able β.

4. map f t – the return type of map.

5. f h :: map f t – the return type of map. Composite of f’s return type (β) and
map’s (a list).

Line 1 states that the return type of map must be a list. Line 2 assign a type
variable to h. Line 3 applying f on h yields a return type of β. From line 4 we
know the return type of map is a list. Line 5 gives the final clue. map must return
a list of β, because line 3 states that the left hand side of the list concatenation is
β and ML lists can only contain one type therefore map f t must be β or a list of β

as well.
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The deduced function signature of the map function is polymorphic, i.e. it can
contain many different types as long as they satisfy the equations. This is exem-
plified by α and β. Upon actual application of the function the type variables
will be replaced with actual types, and checked.

Cardelli [10] describes an interesting feature of the Hindley-Milner algorithm,
namely that it “finds the most best (most abstract) type for programs”[10, page 4].
However, in some cases this is also a limitation as Jones [30] writes. The problem
is that types are either too broad or too specific, i.e. either monomorphic or
polymorphic, and the types need a relation between them. Hence a type cannot
be a set of types, but must be a type in a hierarchy.

3.3 The Cartesian Product Algorithm (CPA)

This section describes and discusses the Cartesian Product Algorithm (CPA)
developed by Agesen [1]. His algorithm is built upon the results from others
[38, 40, 3]. We recognize the importance and necessity of the work of Palsberg
and Schwartzbach [38], Plevyak and Chien [40], Agesen et al. [3], Phillips and
Shepard [39], however, this section will mainly deal with CPA [1]. We refer the
reader to their original work or the overview presented in Agesen [1], chapter 2
and 3.
The following discussion will focus on conveying an intuitive understanding
of the algorithm. Therefore specific details and theory will be disregarded and
concepts and fundamental ideas will be given preference.

Although we refrain from discussing the work preceding CPA, a short history
will help understand the context of the algorithm. Palsberg and Schwartzbach
[38] conceived the idea to model a program as a set of constraints and to model
types as sets. This algorithm was applied on a subset of the Smalltalk language.
Agesen [1] calls this algorithm the Basic Algorithm. Agesen, working with
Palsberg and Schwartzbach, developed the algorithm and converted it from a
mini Smalltalk language to Self [3]. Independent of CPA’s development Plevyak
and Chien [40] adapted the Basic Algorithm to another programming language
called Concurrent Aggregates1. Agesen [1] further developed the Basic Algo-
rithm for use in the Self language. His modified algorithm is called the Cartesian
Product Algorithm (CPA).

The algorithm has three steps of which the first two can be thought of as ini-
tialization. It proceeds by creating type variables for all parts of a program
and defining constraints between them. The constraints define subset relation-
ships between type variables and thus model the flow of type information in the

1“A dynamically typed, single inheritance, Scheme-based, concurrent language” [1, page 25]
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program. The result of the algorithm is a graph, where the type variables are
modelled as nodes and the constraints as directed edges. The graph is called a
constraint graph and effectively models the data flow of the analyzed program.

CPA has three steps:

Step 1 – Allocate type variables: For each variable and expression in the pro-
gram a type variable is allocated. This means creating a node in the graph
for each. Initially, these nodes are empty, i.e. containing no types.

Step 2 – Seed type variables: The type variables are seeded with their initial
type. This step ensures that the initial state of the program – before execu-
tion – is included.
Examples are variables that are defined with no value (they will be given
their default value of nil), or variables that are declared to contain literals
such as strings, integers, etc. A Ruby code example illustrating this is seen
in Listing 3.4.� �

1 defaultValue # my node will contain the type of nil
2 str = "I am seeded as a string" # my node will contain the type

String
3 number = 5 # my node will contain the type Fixnum� �

Listing 3.4: Ruby example illustrating what type each type variable for each line
will contain.

Step 3 – Establish constraints and propagate: The last step is where the actual
types are inferred.

Figure 3.2: A constraint graph showing a = 1 + 2. The type sets of 1 and 2 have
flowed into a’s type set.

1. First add constraints (edges) to the graph to model the data flow. An
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example is to declare a variable a that holds the expression 1 + 2, i.e.
an assignment. Figure 3.2 shows the resulting constraint graph. The
graph contains an edge between the node of a and the expression,
because there is a flow from the result of the expression to the value
of a. Because of the flow the type set of a will contain the type Fixnum.

2. Second, propagate type information along the edges in the graph.
Whenever types are added to the type set of a node, the added types
will flow along the outgoing edges of the node. Suppose we have the
program fragment seen in Listing 3.5:

� �
1 a = 1 + 2
2 b = a
3 a = 7.5� �

Listing 3.5: Sample Ruby code for the flow graph in Figure 3.6

Figure 3.3: After line 2 in Listing 3.5, the type set of a have flown into b.

Line 1 would result in a constraint graph as seen in Figure 3.2. After
analyzing line 2, the graph would have an added edge between node
a and b as seen in Figure 3.3. The b’s node would contain Fixnum in
its type set, because the type of a propagate along its outgoing edges
into b.
Following line 3, the graph would get an added edge from the literal
node containing 7.5 as seen in Figure 3.4. This will propagate the
Float type to node a, and in turn propagate to node b. Since b does
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not have any outgoing edges, the propagation will stop.
This example also illustrates a flow insensitive algorithm, which will
be discussed later in this chapter.

Figure 3.4: After line 3 in Listing 3.5 the added Float to a’s type set have flowed
into b.

Propagation ensures that whenever a type is added to a node, it will flow
to all dependent nodes thereby ensuring type soundness. It also implies
that types are monotonically growing. Types are never removed from a
type set, only added.

It is quite possible that the constraint graph will contain cycles. Therefore
propagation needs to accommodate this. A simple example illustrating
how a cycle might be created is seen in Listing 3.6.

Figure 3.5: A constraint graph generated from Listing 3.6, which includes a cycle
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� �
1 a = 5
2 b = a
3 a = b� �

Listing 3.6: Example Ruby code that would generate a cycle in the constraint
graph.

The added edge from b to a could introduce problems for propagation.
However, CPA accommodates for this by guarding the propagation pro-
cess. It will continue as long as the type set of the visited nodes does not
contain the types currently being propagated. I.e. if a type is added to a’s
type set it will flow to b, then flow along all outgoing edges of b returning
to a. Entering a it will stop, because a’s type set already includes the new
type being propagated. Hence, the type will have flown along all outgo-
ing edges, and the graph will be sound and complete. Following this rule
it is guaranteed that when propagation stabilizes all nodes will have the
correct types in their type set.

Figure 3.6: A template for a method with two formal arguments.

A program of reasonable utility would generate a large graph. Adding method
calls, etc. would further increase the size of the graph. Hence, splitting the
graph into different subgraphs makes it easier to comprehend and deal with.
This is the purpose of Templates. Agesen [1] defines a template for a method
M as the sub graph containing the nodes belonging to the definition of M and
the edges originating from these nodes. Figure 3.6 illustrates a template for a
method with two formal arguments. The cloud in Figure 3.6 illustrates the sub
graph containing the nodes and edges of the code’s method body. The Ruby
code seen in Listing 3.7 could be the base of Figure 3.6.
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� �
1 def method(arg1 , arg2)
2 #do something with arg1 and arg1
3 return arg1 + arg2
4 end� �

Listing 3.7: Sample Ruby code which could be the base of Figure 3.6

Figure 3.7: Connecting the formal arguments of a template with the actual argu-
ments and connecting the return node.

In calling a method four steps occur:

1. Connect the actual arguments to the nodes representing the formal argu-
ments in the template.

2. Connect the self (this reference) node.

3. Connect the result node in the template to the application of the methods
result.

4. Propagate throughout the template.

Figure 3.7 illustrates the process of method calling. An edge is added between
the nodes of the actual and formal arguments, likewise an edge is added be-
tween the templates return node and its use.

There is a relation between templates and methods but it is not necessarily one
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(a) Initial call to a method results
in actual arguments with type
int to be propagated through the
template

(b) Second call to the method,
but now the actual arguments
contain floats

Figure 3.8: Different calls to the same method will use a different template. This
is guided by the types of the actual arguments.

to one. One method may have several templates associated. The number of
templates for a method depends on how polymorphic the arguments are. With
higher polymorphism comes more templates. Each template will be used to
analyze a tuple of monomorphic types, i.e. a tuple with exactly one type from
each of the polymorphic arguments.
The template repository contains all the templates used for type inference. The
repository contains a list of templates used for each method in the program.
Hence it contains templates for all methods in the program.
When the algorithm finds a method call it computes the cartesian product of the
actual arguments types. This product contains tuples of monomorphic types.
For each tuple a lookup is made in the repository for the method and a template
that matches the tuples types. If none is found a new template is created, and the
types are propagated. After propagation the template is saved in the repository.
The next time a tuple with the same types needs a template it will reuse the one
analyzed first. This reduces analysis time, and increases efficiency.
There are trade offs between how templates and methods are connected. Using
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one template per method is very fast and does not require a lot of memory.
However, it is also very imprecise, because types are mixed and contaminated.
The other extreme with a template per method call is slow, and requires a lot of
memory. It is however very precise, because types are never mixed. This implies
that doing type inference using CPA is also a matter of weighing the number of
templates thereby adjusting for the precision and efficiency desired.

Figure 3.8 illustrates this process on the concept of one method with two tem-
plates. First the actual arguments types are ints (Figure 3.8(a)), which results in
a return node with type int. Later the method is called again but this time with
floats as the types of the actual arguments (Figure 3.8(b)). This application re-
sults in a return node of float. Both templates are contained in the template
repository for the method.

There is an analogy between concepts used in execution and type inference.
Types are for type inference what values and objects are for execution. Like-
wise templates are comparable to activation records used during execution. This
analogy helps present and understanding of the concepts in use, however, it is
not universally true.
Taking the extreme presented above with using a template per method call, tem-
plates would be equivalent to activation records. This is due to the fact that the
latter are used once and then thrown away. However, an efficient use of CPA
would limit the number of templates per method. This would result in using
one template per monomorphic set of types for the arguments. In this sense
templates are reused where activation records are not. This also entails that
templates are equivalent to a set of activation records, because during execution
an unlimited amount might be created whereas during type inference only a
limited number of templates would exist.

Besides the central algorithm presented above, Agesen [1] discusses the follow-
ing aspects.

Dynamic dispatch resolution is the process of finding the possible methods that
a given call may invoke. This is important because object oriented languages
uses late binding and dynamism to achieve its characteristics.
Agesen [1] states that customizing CPA to work on another language requires a
modification of the lookup rules for method calls. We will discuss this further in
Chapter 5.

Dynamic Inheritance is a feature that allows an objects base class to change over
time. This has implications for the object, because changing the base class may
introduce different attributes, methods, etc. Likewise it has implications for the
type inference algorithm. We will not discuss this part of the algorithm further,
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since Ruby does not feature dynamic inheritance2 [41]. We refer to Agesen [1],
page 75 for a thorough discussion.

Inheritance is an important part of object oriented languages. It enables the
creation type relations in the form of a hierarchy. Hence, it is important that
CPA works for inheritance. Agesen [1], page 82 states that inheritance works
out of the box in CPA because when analyzing methods the receiver is always in
the context of a single class. Therefore if the method called is changed to a super
class the receiver will change to resemble that class context.

Data Polymorphism means a variable can contain different types. Such exam-
ples are instance and class variables in Ruby. CPA does not deal with Data Poly-
morphism but Agesen [1] discusses different algorithms for achieving it.
How we deal with data polymorphism will be discussed later (see Section 5.4).
Basically we let instance variables share types across class instances. So adding
a type to an instance variable means it will be visible across all instances.

Blocks need special treatment because they capture the lexical scope in which
the block was created and because they can perform non-local returns.

Blocks in CPA at type inference time are treated similarly to blocks at execution
time. Therefore it is beneficial to remember these concepts during the following
description.

CPA deals with blocks in two phases:

Phase 1 – Definition: When the type inferer encounters a block it creates a clo-
sure object type that binds the block with a lexical pointer to the template
in which it is defined. This lexical pointer is important because it governs
what is available when the block is executed, i.e. it encompasses the lexical
scope of the block.
This is similar to the way blocks are implemented in programming lan-
guages. In this context it is necessary to keep the local variables coupled
with the block, because they define the blocks world view when it is exe-
cuted.

Phase 2 – Application: Invoking a block involves creating a new template for
the block called, and copying the lexical pointer from the closure object
to the newly allocated template. This way the template has access to the
correct environment for the block; the environment as it was at the block
definition time.

2Mimicking Dynamic Inheritance is possible through the use of Ruby delegation. Fulton [24],
page 438 mentions it, but notes that Ruby classes can only have on parent.
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Analyzing variable access in a type inference context can happen in two ways:
flow sensitive or flow insensitive. The first takes into account the different
types assigned to the variable and the type of the last assignment is the prevalent
type. This is in contrast to the insensitive method, which takes the set of all the
types of assignments made to the variable. Looking at Listing 3.8 illustrates the
difference between the two methods. Using a flow sensitive method the type set
of x in line 4 will be Float. Only the last assignment to x is preserved. Using a
flow insensitive method the type set will contain Fixnum, String, and Float.� �

1 x = 4
2 x = "hello world"
3 x = 4.0
4 # What are the types of x?� �

Listing 3.8: Using a flow sensitive method the type set of x in line 4 will be Float.
Only the last assignment to x is preserved. Using a flow insensitive method the
type set will contain Fixnum, String, and Float.

Intuitively, a flow sensitive method improves precision, because at a given place
only the last assigned type of the variable is preserved. However, it is also more
complex than a flow insensitive method. Agesen [1] presents and discusses dif-
ferent methods of accomplishing a flow sensitive analysis, and we refer to his
work for a further explanation.

In a prototype based language like Self there is no easy way of stating that one
object is the same as another object. This is in contrast to a class based language
like Ruby in which the class of an object works as a classifier3Working on the Self
system Agesen [1] needed to analyze a large amount of objects. Therefore being
able to divide the large amount of objects into smaller chunks is advantageous,
because it can reduce analysis time. This division of objects is called grouping.

Agesen [1], page 105 presents six rules that govern into which group an object
should be placed. As we focus on Ruby – a class based language – we will not
discuss the grouping rules for Self. Instead we focus our attention on the rules
for a class based language. Agesen [1] states that “...classes may simplify grouping,
in general they cannot fully replace grouping”.
For a class based language Agesen [1] presents the following rules:

• Two objects belong to the same group if they are direct instances of the
same class.

• Two objects belong to the same group if their contents [instance variables,
ed.] pair wise belong to the same group.

3With respect to Ruby there are other issues as well pertaining to duck typing, however, for
this discussion it is sufficient to note that the class does function as a classifier.
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• Two list objects are in the same group if the sets of groups of their elements
are equal.

Ultimately one aspect governs the grouping rules for a programming language:
the type system’s semantics. This stems from the fact that the type system states
what constitutes equivalence on a meta level. For a discussion of how types are
understood in Ruby see Section 3.1.1. Furthermore this aspect will be covered in
a later chapter with an emphasis on how we have accomplished grouping (see
Section 5.4).

A program may change an object significantly, which during type inference
would require it to be placed in another group. This process is called regroup-
ing. Agesen [1] does not present a method for doing so, but notes that it should
be possible.
We will continue the talk on regrouping in a later chapter (see Section 5.4. How-
ever for now we can summarize that we do not add anything significantly to
Agesen [1]’s discussions.

Recursion requires special treatment in CPA, because in the worst case it can
cause non-termination. The problem is that a function calling itself recursively
may require the creation of new templates for the function. The creation of a new
template will be required if the lexical environment is different for the inside
call. This can occur when calling the function with a block i.e. a closure. Agesen
[1] calls this recursive customization, because of the continuing customization
of the inside closure’s lexical environment that sparks the creation of new tem-
plates.
Eliminating this requires the introduction of a cycle, so the inside call refers to
the outside function, thereby breaking the recursive creation of new templates.
Agesen [1] uses heuristics to discover a potential recursion and then introducing
a cycle. We refer the reader to Agesen [1], chapter 5 where recursive customiza-
tion is extensively discussed.

The type information discovered after running CPA can be used in a number
of ways. Agesen [1] describes the process of “Sifting out the gold”, which has its
background in the Self system. The purpose is to extract the objects required for
an application, and leave the rest. In a sense it is like compacting the Self image,
so only the application required is left.
Another application is a static checker that checks for flaws in the program. A
part of this is checking for message not understood errors, an equally important
aspect in Ruby programs. The second deals with browsing source code of ob-
ject oriented systems, thereby increasing understandability and maintainability.
The last application is for an optimizing compiler.
These are suggestions made by Agesen [1] of which some are implemented.
However, this list is far from complete. The following chapters will elaborate
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on our use of the discovered type information.

Related Work

This section briefly discusses projects that use CPA.

Starkiller [48]: The overall goal is to make Python programs run faster. Salib
[48] uses CPA to create an optimizing compiler for Python. He lists a num-
ber of contributions he has made to CPA, which are:

Recursive Customization: Starkiller adds a number of silent arguments
(out of scope variables) to the template. This helps CPA in choosing
the right template.

Extension Type Description Language (ETDL): Allows type inference on
foreign code written in C, C++, and Fortran. The ETDL is code writ-
ten in Python that with respect to types mimicks what the foreign
code does.

Tainted Containers: Given an initialized array containing ("abc", 1, 2.0),
the type inference system knows that the element with index 0 is a
String. When it encounters a use of this element it will return this
single type instead of the collective type set 〈 String, Fixnum, Float
〉. However if the container gets sorted the system is no longer aware
of this. The container becomes tainted and the collective type set is
returned.

Data Polymorphism: Starkiller deals with data polymorphism by split-
ting types of classes when different types are assigned to its instance
variables. This was not part of Agesen [1]’s work.

Closures: Python does not allow non-local returns in closures, and there-
fore Starkiller handles closures differently.

Ultimately benchmarks show that StarKiller – although not complete –
compiles code that performs almost as good as C code and significantly
better than other Python compilers.

AnalyseJ[6]: A Java project for doing type analysis using the CPA. The last
Concurrent Version System (CVS) commit for the project was in 2002.

Perl Request For Comments (RFC)[21]: describes an RFC for the Perl 6 lan-
guage. Its premise is that “types should be inferred whenever possible”[21].
The preliminary idea is to use CPA as algorithmic method.
The RFC seems inactive as of late 2000. Further research into the RFC has
not yielded an update on its current status.
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Python TI[8]: A master thesis by Cannon [8] about an extension he developed
to the Python compiler. His idea is to emit type specific information into
the compiled byte-code, thereby gaining a performance increase. How-
ever, his goal of a 5% performance increase is not met, instead he achieves
1%. His system uses CPA coupled with iterative type analysis as described
by Chambers and Ungar [12].

TI Ruby[33]: This project is a predecessor to the current report. It modifies
CPA to work for Ruby. However, some parts of the Ruby language are
missing (arrays, switch expressions, loops, singleton methods, exceptions,
importing libraries, and Ruby core). TI Ruby states that building a type
inference system for Ruby is possible.

In summary CPA has been used for TI on the following languages: Java, Python,
Perl (envisioned), Ruby, besides Self for which it was developed.

3.4 Summary

This chapter laid the ground for an understanding of types and type inference.
Important concepts which will be used throughout the report was defined by
example. This included a discussion of how types can and are understood in
Ruby. We defined the difference between data and parametric polymorphism,
and explained type checking and general type inference. The chapter ended
with a presentation of two algorithms for type inference: The Hindley-Milner
algorithm and the Cartesian Product Algorithm (CPA). Understanding CPA is a
prerequisite for this thesis, and the rest of the report documents the development
of a type inference tool for Ruby using CPA.

43



Chapter 3. Understanding Types and Type Inference Algorithms

44



CHAPTER 4
Problem Statement

This project has two purposes: first to develop a code analysis tool for Ruby, sec-
ond to perform experiments on public Ruby code using the developed tool. This
chapter sets the ground for the second part. To guide the development and help
establish the types of experiments to be performed a set of hypotheses will be
given. During the course of this thesis we will try to confirm these hypotheses,
and the tool developed is a key factor in this.

Furthermore a set of design goals are presented that puts perspective and con-
text on the first part of the purpose of the project.

4.1 Hypotheses

Hypothesis 1: Ruby programmers do not make type errors.

In “The Development of Erlang” Armstrong [5] writes about his and a col-
leagues findings on performing a type check of the standard libraries in
Erlang; they found no type errors. Preliminary he concludes that “good
programmers don’t make type errors”. Furthermore he writes that their
intuition on the types of certain libraries were proved correct. This illus-
trates that dynamic programmers may have a good understanding of the
types in their programs.

Cronqvist [15] writes about his experiences in developing a large indus-
trial application (> 2 million Lines of Code (LOC)) using Erlang. He de-
scribes the three parts of an Erlang development testing cycle. First, the
programmers does Block Testing, which detects “most run-time errors”.
Furthermore it uncovers bugs that “in many cases would be found by
the compiler of a statically typed language”. Second, Function and Sys-
tem Testing is performed, during which all “corrections to code are docu-
mented in Trouble Reports (TR)”. Analyzing these reports yielded 4 groups
of errors of which the following 2 are of interest1: API mismatches and Ty-
pos.

1The remaining two deals with concurrency (race condition and wrong context errors), which
is relevant for Erlang programmers and the articles context but not for a type inference system.
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Interestingly Armstrong [5] notes, “Many programs behave correctly despite
the fact they are not well-typed.” This suggests that in some respects lan-
guages with implicit types are able to express concepts that are not easily
expressed in a language with explicit types.

Hypothesis 2: Industry does not believe in Ruby. Can we help drive adoption
of Ruby into industry by providing tool that can infer types for Ruby pro-
grams?

Traditionally industry uses statically typed languages. One of the reasons
is that they help find typing errors, and the reasoning is that therefore they
are safer. Because there is no concept of compile time type checks of most
dynamically typed languages, industry is reluctant to adopt Ruby.

Erlang is a dynamically typed language used by the telecommunication
equipment manufacturer Ericsson. Armstrong [5] writes about Ericsson’s
experiences with using such a language, and they are very positive. This
leads to the conclusion that dynamically typed languages do have a place
in industry. But does Ruby?

A tool that could perform a type check on Ruby code might help adoption
of the Ruby language in industry. Therefore it would be interesting to see
if a tool like this could help adoption in the longer run.

TIOBE Software [55] publishes a list once a month of the most popular
programming languages. On the top ten list, of June 2007, 4 languages
are statically typed and 6 languages dynamically typed. The top three
languages are Java, C, and C++. Ruby comes in at number ten for June
2007.

Our assumption is that if a tool is available for inferring types, industry is
more likely to adopt a dynamic language typed like Ruby.

Hypothesis 3: Programmers using Ruby are more productive.

Prechelt [42] performs a comparison between 7 different programming
languages divided into scripting and conventional languages. The com-
parison showed that for a specific programming problem scripting lan-
guages were more productive than conventional languages. Conventional
langauges are comparable to statically typed languages and Prechelt com-
pares Java, C and C++. Scripting languages are comparable to dynamically
typed languages, where he uses Python, Perl, Rexx and Tcl. Ruby belongs
to the latter category.
Prechelt [42] writes, “Designing and writing the program in Perl, Python, Rexx,
or Tcl takes no more than half as much time as writing in C, C++, or Java and the
resulting program is only half as long”.
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Cronqvist [15] writes about his results in developing large systems using
Erlang. He notes that after the “initial code-debug cycle” the errors remain-
ing are largely due to logical or algorithmic errors”. He suggests that this is
due to the programmer not having to deal with low level issues but rather
that he can focus on the problem to solve. This further increases produc-
tivity.

Hypothesis 4: Real life Ruby programs uses polymorphism restrictively.

Our assumption is that there is a correlation between how polymorphic a
program is and how likely that the program contains type-errors. Answer-
ing this hypothesis will help answer hypothesis 1 if Ruby programmers
make type errors. This hypothesis can be divided into the following two
sub-hypothesis:

Hypothesis 4.1: Data polymorphic variables are used sparingly.

Ruby facilitates the use of variables to store different values. It is our
hypothesis that even though it is possible, Ruby programmers uses
this sparingly. Programmers do not use data-polymorphic variables,
because they increase the complexity of the program, and obscure
what value a variable store at a given time.

Hypothesis 4.2: Method calls exhibit limited polymorphism.

Even though Ruby programmers may define methods with paramet-
ric polymorphism, method calls often exhibit limited polymorphism.
This hypothesis follows the pattern of Hypothesis 4.1 in that a high
degree of polymorphism in method calls increases the complexity of
the program.

Hypothesis 5: CPA can be retrofitted and used on the Ruby language.

CPA was developed for the Self system (see Section 3.3). Chapter 2 com-
pared Ruby to the Self language and concluded that the two languages are
similar in many ways. Their semantics (inherited from Smalltalk) are suf-
ficiently similar to warrant the hypothesis that CPA can be used for Ruby.
Furthermore, CPA has previously been used for Starkiller [48] – a static
type inference for Python code (see Section 3.3). This suggests that mod-
ifying CPA to run in another language context is possible, i.e. CPA is not
completely tied to the Self language.

The hypotheses presented above have varying scope, i.e. some are easier to
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confirm than others. Some of the hypothesis have a scope that do not make it
realistically that we can confirm them through the work presented in this the-
sis, they are demanding in both data collection and time. Other hypothesis are
more limited in scope and can be confirmed or rejected with metrics of Ruby
Programs that, given a type inference tool could be collected for a Ruby pro-
gram. A discussion of our success of confirming each hypothesis is presented in
Chapter 8

The primary aim for this thesis is to answer the hypothesis stated above. An-
swering these hypothesis will help put Ruby into a larger perspective. A number
of secondary objectives will be presented in the coming section. The secondary
objectives give a different perspective on the hypothesis, and help formulate
specific goals, challenges, and requirements for this thesis and the developed
tool. Furthermore these objectives will complement the hypothesis in convey-
ing an understanding of the premise for this thesis.

4.2 Goals

Agesen [1] gives an implementation of a method for inferring types in a dy-
namic object oriented languages. We are interested in exploring this method, to
examine if this method is a general approach or may only be used in the context
of the original language, Self.

We wish to convey the experiences we have gained from implementing CPA for
Ruby. Related to this we wish to validate that CPA works for Ruby and where it
should be modified to work in a Ruby context.

Another goal is to extract metrics from the analysis of Ruby programs. These
metrics will serve to confirm or reject the hypotheses presented above. The hy-
pothesis will be discussed further in Chapter 8.

4.3 Challenges

We have identified three areas that we believe will prove a challenge for the type
inference tool. The three areas are:

Conditional Control Flow: Conditional Control Flow constructs represent a chal-
lenge as the method developed by Agesen [1] is flow insensitive. As CPA
is flow insensitive we do not know which of a conditionals branches we
have to evaluate.
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Continuations: Ruby has support for continuations with the use of the callcc
method. What is of special interest here is that the execution state of a
program is preserved. To infer the most concrete types the CPA must be
aware of the call stack for methods and take this information into account.

Dynamic Programming: Ruby facilitates dynamic programming. Ruby’s dy-
namic language features include the ability to add or update methods of
instantiated objects. From Agesen [1] it is not immediately clear how this
is to be handled. Another aspect is how the dynamic nature influence how
types are to be understood.

4.4 Requirements

The following presents a set of requirements for the developed type inference
tool. As per the goals these requirements have been chosen to support the hy-
potheses presented above.

Coverage: The tool must work on real life applications and not just constructed
toy examples. This requirement stems from the second hypothesis, be-
cause if the tool does not work on real life application industry will never
utilize it. Second, to be of use in answering if Ruby programmers make
type errors (hypothesis 1) and the degree of polymorphism (hypothesis 4),
the tool must work on real Ruby programs.

It also follows from the above that the tool must work on Ruby’s Core and
Standard Library to be of use.

Robust: The tool must not crash even if languages construct not implemented
by the type inference tool are encountered. A tool that is not robust can
not be expected to be adopted by industry. This is a second requirement in
making industry adopt Ruby.

Precision: The inferred types must be as meaningful/specific as possible in a
given context (see Chapter 3). The two algorithms discussed, Hindley-
Milner and CPA, are different in the kind of types inferred for a program.
In Hindley-Milner the most general types are inferred, whereas the most
specific types are inferred using CPA. The more specific a type is the larger
a set of errors can be caught by a type checker.
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4.5 Quality Requirements

The following quality requirement definitions are from Firesmith [22]. The Qual-
ity Requirements provide a different view of the tool’s goals as presented above.
Therefore the individual goals presented above will be used in defining the
meaning of the individual requirement.

Robustness: representing the degree to which essential mission-critical services con-
tinue to be provided in spite of potentially harm-causing events or conditions [22].

Given a piece of valid Ruby code – valid meaning parsable by the offi-
cial Ruby interpreter – the tool must complete without errors. If language
constructs are not supported is encountered, the tool should recover from
it and complete and provide meaningful output.

Performance: a timing characteristic [22].

We do not have any specific time constraints on the developed program,
but acknowledge that for it to be usable the running time must be coupled
with the size of the project. This means that for small programs we want
a running time in at most a few seconds. By a small program we mean a
program with a few hundred lines of code.

Efficiency: the degree to which something effectively uses (i.e., minimizes its con-
sumption of) its computing and personnel resources [22].

The tool should be efficient with respect to time and space, however, it
should favor running in less time rather than using less space/memory.

Correctness: specifies a minimum required amount of the quality factor correctness
[22].

Correctness of the developed tool can be divided into the following two
sub-requirements.

Precision: the dispersion of quantitative data [22].

To be able to use the inferred types, the types must be as precise a
possible. As a measure for the precision of an inferred type the size
of the resulting typesets is used. The smaller the size of the typeset
the more precise the is the inferred type.

Accuracy: the magnitude of defects (i.e., the deviation of the actual or average
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measurements from their true value) in quantitative data [22].

We will require that the types inferred by the tool are the most spe-
cific types possible in the given context. If a variable of a program
only is use as an Integer, the accuracy of the inferred type should be
Integer.

4.6 Usage Scenarios

With a developed tool that can infer types for Ruby code, the following list con-
tains examples of what the type information can be used for, or how it can be
used.

Type Checker: With types available for a program it is natural to check if the
types are used correctly through the program. Having type available en-
ables catching potential NoMethodError exceptions. As it is discussed in
Chapter 3 NoMethodError’s are the only type errors reported by the Ruby
interpreter.

Integration with IDE: The developed type inference tool will make the type
information available to a program but does not present this information
to a user. There are different approaches to present the type information.
Below are the different approaches that are under consideration listed.

Type Annotation in Source Code: Type information can be annotated di-
rectly in the source code and presented in an IDE. This approach re-
semble the experience that users of explicitly typed languages have
while retaining the capabilities of a dynamically typed language.

Tree View With Annotated Types: Presenting the type information in a
hierarchy closely mirroring the syntactic structure of the program, i.e.
an Abstract Syntax Tree (AST) representation of the program.

Documentation: A benefit of presenting the type information at a source code
level is that the types function as documentation. This effect could make
the code’s intentions clearer and help catch logical errors earlier in the de-
velopment process.
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4.7 Summary

This chapter established the formal requirements to this thesis. This was for-
mulated as a set of hypotheses, which will help guide the development and
experiments performed. Furthermore a set of requirements and goals for the
thesis and tool was presented. This included quality requirements and usage
scenarios for the tool.
The requirements formulated in this chapter will form the basis of the experi-
ments described in Chapter 7 and the discussion in Chapter 8.
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CHAPTER 5
Implementation of Ecstatic

This chapter describes our implementation of CPA called Ecstatic. It operates on
and performs type inference off Ruby programs. The implementation is based
on the presentation made in Chapter 3. The description serves to explain the
experiences gained in implementing CPA and provide and implementation per-
spective on the work of Agesen [1].
We conclude the chapter by listing the capabilities and deficiencies of Ecstatic.

5.1 The Type Inference System

Ruby programs are executed by a Ruby interpreter. An interpreter typically has
a built-in environment resembling a virtual machine that facilitates the execu-
tion of the program and a parser/code generator that converts the code into
instructions that carry out the program. The environment of a Ruby interpreter
contains the built-in features of the language and a symbol table to register and
lookup defined classes, modules, methods, variables and so on. The parser typ-
ically parses the source code into an AST representation, and the code generator
traverse this tree while generating instructions.

When doing type inference we do not want to execute Ruby programs, only an-
alyze them. To do this, we have created a system similar to a Ruby interpreter
that builds a constraint graph for type inference instead of generating instruc-
tions for execution. In analogy to an interpreter, the system has a “virtual ma-
chine” called RubySim (Section 5.1.2), a parser borrowed from a real interpreter
(Section 5.1.3), and a Controller instead of a code generator (Section 5.1.4). Be-
fore going into a detailed description of these three central parts, we give an
overview of the entire system in Section 5.1.1.

5.1.1 System Overview

This section presents a brief overview of the Ecstatic type inference system,
which is shown in Figure 5.1. We do not expect the reader to fully understand
the figure or the following description at this point, but we present it here to put
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the different parts of the system into perspective. The reader may benefit from
returning to this figure later on when the individual parts have been described
in detail.

Figure 5.1: Overview of the Ecstatic type inference system.

Starting in the upper left corner, a Ruby program of one or more source files is
fed to the JRuby parser. The parser produces an AST for each source file. These
are passed on to the Controller, where the type inference process starts. The
system creates one Controller per AST (or per source file).

Before the Controller starts traversing the AST, Rubysim is initialized. This
is done by the Core Loader, which parses a number of XML files generated
from RDoc (Ruby’s documentation format). Based on these XML files, the Core
Loader generates a simulation of the Ruby core consisting of both simple and
special methods. The workings of the Core Loader is described in Section 5.1.2.

When Rubysim is initialized, the Controller begins to parse the AST. While do-
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ing so, it uses RubySim to define and lookup classes, modules, methods, and
variables. To do type inference, the Controller builds a Constraint Graph by
adding vertices and edges to it. The vertices represent CPA’s type variables and
the edges represent constraints.

When the Controller encounters method definitions, it creates these methods
on the constraint graph. These methods are described in detail in Section 5.2,
but basically a method consists of one master template, one template repository,
and a number of template clones. All templates are subgraphs on the constraint
graph.

5.1.2 RubySim

RubySim is short for Ruby Simulator. The name comes from the idea that in-
stead of executing Ruby programs, it only simulates the behaviour of programs.
It is responsible for modelling the semantics of Ruby regarding objects, classes,
modules, methods, scopes, variables and constants.

RubySim works like a virtual machine with a set of instructions for:

• Opening and closing class, module, method, and block definitions. These defi-
nitions require opening a new scope in which subsequent definitions and
lookups are rooted. Closing a definition returns to the enclosing scope. It
works like pushing and popping things on and off a stack.

• Creating objects. Objects are created by instantiating a previously defined
class.

• Defining variables and arguments. Different types of variables are created
differently. Local variables are added to the current local scope, while in-
stance and class variables are added to the currently opened class or mod-
ule definition. Arguments are added to the currently opened method or
block definition.

• Find previously defined variables. Variables are found according to the scop-
ing rules of Ruby.

• Finding the target methods for messages (dynamic dispatch resolution). When
an object receives a message, a lookup is performed to find a method that
matches the message.

• Aliasing methods. Ruby features the possibility of aliasing a method with a
new name.
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• Including modules. Modules can be included as mixins into a class or mod-
ule definition.

These instructions are used by the Controller while analyzing a program, but
also by the Core Loader to inject the core functionality into the system.

The Ruby Core

The core functionality of Ruby is implemented in C as a number of classes and
modules. When programming Ruby, these classes and modules are available
and treated the same way as classes and modules defined in Ruby code. There-
fore they have to be incorporated into the type inference system in a way, so that
classes and modules, whether implemented in C or Ruby, integrate seamlessly.
Even though the source code of the core classes and modules is freely available,
it cannot be parsed through the type inference system. The type inference sys-
tem can only handle Ruby code and not C code. Instead we have implemented
these core classes and modules directly in Java code.

The core contains 34 classes and 14 modules that together implement 1312 meth-
ods. All of these methods must be available in RubySim when type inference
starts. Else, the type inference process will break if one of these methods are
called. Implementing a simulation of all these methods in Java by hand is a
huge task. We therefore face a dilemma: on the one hand, we need the methods;
on the other hand, we have no desire to spend the time it takes to implement
all 1312 methods manually. We would prefer to only spend a minimum of time
on these core methods and then focus our effort on the rest of the type inference
system. However, we realize that some of the core methods require an accu-
rate simulation in RubySim, and therefore will require some effort. Based on
these thoughts, we decided to create a solution that automatically generates an
approximated implementation of the core, while simultaneously allowing for
accurate simulation of selected parts.

Before explaining how we did this, we take a closer look at the methods in the
core. From a type inference perspective, they can be divided into three groups:

1. Fixed type methods (without side effects). This group includes all methods
with the following two properties: they have no side effects, and they al-
ways return a fixed type no matter the input they are given. Examples are,
to_s that always returns a String, to_a that always returns an Array, and
length that always returns an Integer.

2. Variable type methods (without side effects). This group includes all meth-
ods with the following two properties: they have no side effects, and their
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return type depends on the type of the input they are given. For example,
the return type of + implemented on Fixnum depends on the other part of
the addition. 4 + 5 (Fixnum + Fixnum) yields a Fixnum, whereas 2 + 4.3
(Fixnum + Float) yields a Float.

3. Side effect methods. This group includes all methods that have side effects.
Their return type may either be fixed or variable. Methods with side ef-
fect are important in Ruby, because they are responsible for implementing
much of Ruby’s semantics. Many of them modify objects or alter the exe-
cution environment in some way. For example, mixins are included by the
method include. Class attributes are created by the methods attr_reader
and attr_writer. In Section 5.1.4, we show how the method require is
used to load additional source files.

From browsing through the core documentation, it seems that a vast majority
of the methods belong to the first group. Fortunately, we have found a way to
autogenerate the methods in the first group, which we will explain later.

The principle of importing the entire core into RubySim is as follows: All meth-
ods are autogenerated as if they were fixed type methods, except those methods
for which we provide a special implementation. In this way, we ensure that
all methods are available in RubySim. Having all the methods, we are able to
run type inference on any program without it breaking because of a missing
method. However, the result of the type inference at this point may be wrong if
some special implementations are missing.

Because we can autogenerate the methods in group one correctly, we only need
to provide special implementations for the methods in group two and three.
Even though group two and three constitute a minority of the core methods,
they still represent maybe hundreds of methods. The only way to be sure on
this number is to manually check the behaviour of all 1312 methods. We do not
want to do that, either. Instead, we have chosen a kind of stepwise refinement
approach. By having dealt with Ruby for some time, we are naturally aware of
some of the methods that definitely need a special implementation. We therefore
started by creating special implementations for these methods. Apart from that,
we made the system in such a way that it is easy to add more special methods
when necessary.

The process of creating special implementations can happen incrementally as
follows. Initially, we start out with special implementations for a few methods,
while the rest of the core methods are treated as fixed type methods. We then
run the type inferencer on a program and observe the result. If we identify a
wrong behaviour, it might be because one or more side effect methods need a
special implementation. We then create these implementations and run the type
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inferencer again. If the behaviour is still not right, we repeat the process. When
the code starts to behave correctly, we might instead identify some wrong type
information. If one or more variable type methods seem to be the cause of this,
we can create special implementations for those too.

By proceeding incrementally like described above, we can focus our effort on
only creating special implementations for the most essential and most often used
methods. Thereby, we avoid spending time on implementing methods that are
unimportant or never used, which is a great advantage over having to imple-
ment all of them. Ideally, all methods in group two and three should have a spe-
cial implementation to behave correctly. But since the developed type inference
system is not yet complete, the stepwise refinement approach described above
was considered the optimal compromise. Having said this, we now return to
the discussion on how we autogenerate fixed type methods.

Ruby has a documentation format called RDoc [43] with which the core classes
and modules are documented. Amongst other things, the documentation speci-
fies the return type of all methods. This means that the documentation contains
all the details needed to implement the fixed type methods in the type inference
system. By this observation, we came up with the idea of autogenerating these
methods based on the documentation. To do that, we have processed the docu-
mentation into an XML-format (see Appendix B) and by parsing this format we
can import the core into RubySim. The documentation also describes all classes
and modules together with their superclasses and mixins. This information is
used to automatically build Ruby’s class hierarchy into RubySim.

The process of importing the core into RubySim is as follows:

1. The XML documentation is parsed by the Core Loader.

2. For each class or module found, it creates this class or module in RubySim.
If mixins are defined, these are also included.

3. For each method found, it does the following:
By use of Java’s reflection mechanisms, it checks if the Java package
tiruby.rubysim.core contains a class with the same name as the method.

(a) If it does, an instance of the class is created and stored in RubySim.

(b) If not, an instance of the class FixedTypeMethod is created. The in-
stance is initialized with the return type of the method and then stored
in RubySim.

To summarize, all methods that have a special implementation become instances
of their respective Java classes, while all other methods become instances of
FixedTypeMethod. In this way, the Core Loader loads the entire Ruby core into
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RubySim by autogenerating classes, modules and methods from RDoc docu-
mentation. At the same time, it allows for stepwise refinement of the core be-
haviour by implementing selected methods explicitly. This concludes the dis-
cussion of the Ruby core except from a couple of notes.

For some core methods, RDoc also indicates the types of the formal arguments.
However, this type information is too inconsistent and inaccurate to be used as
a basis for type inference and checking. Therefore, we do not check if the core
methods are used with the correct types for parameters.

The Ruby core is not the only place where C code classes and modules are found.
Programmers can create their own C implemented extensions for Ruby, for ex-
ample to speed up performance or integrate with certain hardware. In theory,
this user defined C code could be imported into the type inference system in a
similar way as the core. We do not provide an API for that.

5.1.3 Parsing Ruby

Before talking about how Ruby programs are parsed and represented in the type
inference system, we want to take a closer look at what defines a program. In
this area, Ruby is radically different from Self. Self is an image-based system,
whereas Ruby is source code-based. A Self image contains a heap of objects.
Agesen explains that type inference in Self is done by analyzing these objects
directly, but he is silent about how this is done. He defines a program as a chosen
main method on a chosen object, and program execution as the computations
that results from invoking this main method.

A Ruby program consists of one or more source files. Ruby programs are nor-
mally organized by having one of the source files recursively includes the rest.
This means, that one source file includes other files that again include other
files. This continues until all source files of the program have been included.
The source file that starts the inclusion is called the main source file. We discuss
how file inclusion is handled in Section 5.1.4.

Execution of a program is done by passing the main source file to a Ruby in-
terpreter. The interpretation of a Ruby program starts in the body of a class
definition—more specifically, the definition of a singleton class for an object
called main, which is an instance of the core class Object. Because class defi-
nitions in Ruby are executed, the content of the main source file is processed
procedurally line by line.

The first step in doing type inference for Ruby is to parse the source code. This
process builds an AST from the code, which is a good representation of the code

59



Chapter 5. Implementation of Ecstatic

to base the type inference system on.

Instead of writing a parser ourselves, we have chosen to use the one built into
JRuby [14]. As cited from their website: “JRuby is an 100% pure-Java implemen-
tation of the Ruby programming language.” It implements an interpreter for Ruby
currently compatible to version 1.8.5 of the language. The JRuby project is open
source and gives a good look into the inner workings of a Ruby interpreter.
More importantly, the AST it produces is a Java data structure, and can easily be
imported into a new Java project for the type inference system.

Parsing the Ruby code in Listing 5.1 gives the AST in Figure 5.2. The figure is
a screen shot from a small tool we have created called AstBrowser. The names
of the nodes in the AST are the same as the names of the corresponding Java
classes.

A depth-first walkthrough of the AST is as follows: The BlockNode is an im-
plicit container for the rest of the program. The LocalAsgnNode represents the
assignment to s in line 1, which assigns the StrNode with the text "World". The
NewlineNode separates the expression in line 1 from the expression in line 2.
The FCallNode represents a message with an implicit receiver, which means that
the receiver is the Ruby self. In this case the receiver is an instance of Ruby’s
Object class, and the message sent is puts from line 2. The ArrayNode works
as a list of arguments to the message. In this case there is one argument, the
CallNode, which represents a message with explicit receiver. The receiver is
StrNode, which has the text "Hello ". The message is named + and has one
argument, LocalVarNode, which refers to the local variable s defined in line 1.
When executed, Listing 5.1 results in concatenating "World" to "Hello " and
printing it to the screen.

� �
1 s = "World"
2 puts "Hello " + s

� �
Listing 5.1: Ruby code Figure 5.2: AST
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5.1.4 The Controller

When the main source code file has been parsed, the control is left to the Con-
troller for the rest of the type inference process. The Controller is handed the
generated AST and is responsible for applying the CPA algorithm on it. It does
that by traversing the AST and performing the three basic steps of CPA for each
expression and variable found in the AST. Before the three steps are described
in detail, we will investigate how the AST is traversed.

JRuby internally implements a visitor pattern to traverse the AST. Their im-
plementation is naturally geared towards generating instructions for execution,
and cannot as such be used directly for type inference. However, the visitor
pattern is based on a Java interface that allows us to implement the visitor pat-
tern differently. This is what the Controller does. The visitor pattern interface
defines 107 methods, one for visiting each kind of AST node. The Controller im-
plements these methods to perform type inference on the Ruby program instead
of creating instructions for execution. The actions performed by the Controller
will become clear as we go through the three basic steps of the CPA.

The first step of the CPA is to allocate type variables to all variables and expres-
sions of a program. Basically, this is done by traversing the AST representation
of the program to locate variables and expressions and allocate a type variable
for each. For each AST node representing a variable or an expression, it would
be natural to allocate the type variable directly on the AST node. However, be-
cause the AST nodes are generated by the JRuby parser (see Section 5.1.3), they
cannot be modified without changing the parser. Instead, we create what we
call a vertex object that has a reference to the AST node and contains a type vari-
able. In this way, a type variable is associated with a variable or an expression
through an object that references both of them (see Figure 5.3). The type vari-
able is represented as a set and is initially empty. Vertex objects also serve as
nodes on the constraint graph (actually, we use the word vertex for nodes on the
constraint graph).

Figure 5.3: The structure of a vertex object. A vertex references both a type
variable and an AST node, and thus associates a type variable with the variable
or expression represented by the AST node.
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In terms of the Controller as a visitor, it starts by visiting the root node of the
program. The method for visiting the root node then specifies what other nodes
to visit (typically, the child nodes of the root node). The Controller continues
in this way until all nodes have been visited and the entire program have been
analyzed. For each variable or expression it visits, it creates a vertex object as
described above.

Step two of the CPA is to initialize the type variables. Most variables and expres-
sions do not have an initial type, so most type variables remain empty after this
step. The only ones affected are literals such as strings, integers, floats, arrays.
This step is carried out simultaneously with step one. While traversing the AST
as in step one, all nodes representing literals are located. When the Controller
visits a literal, it first creates a vertex (step one) and then adds the type of the
literal to the vertex’s type variable.

The third step is the most complex of the three. As mentioned in Section 3.3,
the step can be divided into two: creation of constraints, and propagation of
type information. Constraints represent the flow of type information from one
type variable to another. The question of which constraints should be added
was touched upon in Section 3.3 and will not be further investigated here. In-
stead, we will show an example of how the Controller creates a constraint for an
assignment expression. After the example, we will discuss how propagation is
done.

Figure 5.4: This figure shows how the Controller handles a local assignment in
three steps.

In Listing 5.1, line 1, a string is assigned to a local variable. The corresponding
AST in Figure 5.2 models this as a LocalAsgnNode that has a StrNode as child.
The Controller handles this assignment in three steps as illustrated in Figure 5.4.
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1. The Controller starts by visiting the BlockNode and then the LocalAsgnNode.
In the LocalAsgnNode, the Controller creates a vertex for the local variable
s (CPA step one). The type variable is left empty because the variable s
has no initial type (CPA step two).

2. Knowing that an assignment expression has a value node, the Controller
now visits the value node. Visiting the StrNode, the Controller now creates
a vertex for the string (CPA step one) and initializes the type variable with
the type String (CPA step two). No constraints need to be added here
(CPA step three).

3. The method visiting StrNode exits by returning the string vertex back to
the LocalAsgnNode. All visitor methods have the possibility of returning
a vertex, otherwise they return null. The Controller is now back in the
LocalAsgnNode where a directed edge (representing a constraint) is added
from the returned vertex to the vertex of s (CPA step three). It is now time
for the second part of step three: propagation.

Propagation

Agesen suggests propagating types eagerly to ensure type soundness. Eager
propagation means, that as soon as an edge is added, type information should
be propagated along it. When more and more edges are added to the constraint
graph, the type information flows further and further through the graph. Type
propagation continues until the graph stabilizes and no more types need to be
propagated. In this section, we discuss how this is done in the Controller and
the complications that arose.

In any single propagation step there is a source vertex and a target vertex. Type
propagation is started when an edge is added between them. The type infor-
mation is then propagated from the source vertex to the target vertex. If the
type variable of the target vertex already contains the type information from
the source vertex, propagation stops. No more needs to be done before another
edge is added. If, however, the type variable of the target vertex changes, the
new type information must be propagated further to the children of the target
vertex. The children of a vertex are the vertices that have an incoming edge
from that vertex. The type information is then propagated to each of the child
vertices. If the type variables of any of the child vertices change, the process
continues for their children until the situation stabilizes. Cycles in the constraint
will naturally stop because the type variables eventually stop changing.

There is one problem with eager propagation when it comes to message-sends.
Suppose we have created a call vertex representing a message that has two argu-
ments. After that, the Controller goes on to visit the receiver and the arguments
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and add edges from them to the call vertex. If it first visits the receiver, then
after returning from the receiver, an edge is added from that to the call vertex
and type information is propagated. When a call vertex receives new type in-
formation, its normal behaviour is to lookup targets for the message, propagate
type information through the found templates, and add the result of the tem-
plates to its type variable. At this point, however, the edges from the arguments
to the call vertex have not yet been added. The situation would therefore end
in a missing arguments error when trying to invoke the method (i.e., propagate
through the template). To avoid this, a call vertex has a ready-switch that can be
switched off until all arguments are connected. As long as the ready-switch is
off, the call vertex will not perform its normal action.

There is a second point in time during type inference where propagation is dis-
abled. The establishment of constraints and propagation is the analysis-time
equivalent of runtime execution. In this sense, it is important that eager prop-
agation only occurs on parts of the code that should be executed immediately.
As mentioned earlier, the body of a Ruby class is executed while the class is
being defined, but the body of a method definition is not. Therefore, during
method definition, the eager propagation is disabled. In this way, we can build
a template that captures the initial state of a method before it is called. Sec-
tion 5.2 explains how this template can be cloned to provide additional tem-
plates for analyzing message-sends monomorphically. The discussion of propa-
gation through templates is continued in that section.

Handling require

As mentioned in Section 5.1.3, a Ruby program may consist of more than one
source code file. Typically, a program is split up into small files containing some
chunk of self-contained functionality. This is also the case with the Ruby stan-
dard library. To make use of these external files, the main source file must load
them by sending the message require with the filename as argument. The corre-
sponding require method is implemented in the core class Module. The method
includes the external file into the current scope, except for local variables in the
external file that are not propagated to the current scope. The require message
can be sent at any point in the code, but typically it is sent at the beginning of
a file. If an included file contains further require messages, additional files are
included. However, a file already included once will not be included again.

To perform type inference on anything but the smallest Ruby programs, it is
essential to facilitate the inclusion of additional files. The require method is
implemented in the C core, but as mentioned in Section 5.1.2, the Core Loader
makes it possible to create special implementations for selected methods. This is
what we have done with the require method on class Module. When the method
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is invoked, it first checks if the file to be included has been included previously.
If not, the file is parsed by the JRuby parser and a new Controller is spawned
to traverse the resulting AST. The old Controller hands the control over to the
new Controller and waits until the new Controller is done. Then the control is
handed back and the old Controller resumes the process.

During the switch between Controllers, the constraint graph and RubySim re-
mains the same. Because all Controllers work on the same constraint graph
and use the same RubySim, the state and context of the type inference process
is preserved from one Controller to another. In other words, under the entire
type inference process there is only one constraint graph and one instance of
RubySim, and these are shared between controllers.

5.2 Methods and Templates

In Section 3.3, we explained how the CPA analyzes polymorphic message-sends
monomorphically. It does so by computing the Cartesian product of the receiver
type and all argument types. This generates a set of monomorphic tuples, each
representing a monomorphic message-send.

Suppose that the lookup of a given message has resulted in the target method
m. Agesen [1, page 58] now instructs that each monomorphic tuple must be
propagated through a separate m template (a template for the method m). If an
m template already exists for a given monomorphic tuple, it should be reused;
if no such template exists, a new one should be created and used. Any newly
created templates should then be stored in the template repository of m for later
reuse. However, Agesen [1] does not explain how this should be done.

There are two things we do not know: how Agesen represents methods and how
he creates templates. Our educated guess is, that methods are not represented in
any other way than their raw form as objects in the Self image. How a template
repository gets associated with a method remains unclear. If methods are “raw”
objects, then these objects must be analyzed each time a template is created.

In Ecstatic we wanted to avoid re-analyzing the AST each time a new template
is needed for a method. To do that, we use the concept of master templates
and template clones. The two kinds are basically the same, both being sub-
graphs on the constraint graph, but they play different roles. When the type
inferece system encounters a method definition, it builds a master template for
that method. The master template then works as an intermediate representation
of that method, and that method definition is never analyzed again. A mas-
ter template captures the initial state of a method before being called, and type
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information is never propagated through it.

As mentioned above, a new template is needed for each monomorphic use of a
method. Because a method’s master template is already on template form, it can
easily be cloned into a new template, thus creating a template clone. A template
clone is used for a single monomorphic send, and a method’s template repos-
itory contains a clone for each monomorphic use of the method. In summary,
a method has one master template, one template repository, and a number of
template clones.

By cloning templates we avoid re-analyzing the AST each time a new template
is needed. Instead, we represent methods as master templates, which must be
clonable. A master template is a subgraph with a set of vertices (type variables)
and edges (constraints). Cloning is done by first creating a new template as an
empty subgraph. Then each vertex on the master template is cloned and added
to the template clone. While doing this, we maintain a vertex map between all the
original vertices and their corresponding clones. When a vertex is cloned, the
clone is initialized with the same type variable and AST node reference as the
original. In this way, the template clone holds the same initial state of a method
as the master template does.

When all vertices are processed, the template clone contains the same number
of vertices as the master template, but no edges. An edge connects a source
vertex to a target vertex. For each edge in the master template, the source and
target vertices are looked up in the previously created vertex map to find the
two corresponding vertex clones. An edge is then added between the vertex
clones. When all edges have been copied, the template clone contains the same
number of edges as the master template.

So far, the process of cloning a template has been uncomplicated; it is done by
cloning each vertex one by one and adding the corresponding edges. However,
the process is complicated by vertices that are nontrivial to clone. For example,
a call vertex, representing a message-send, internally maintains a call context of
which other vertices are the receiver and the arguments of the message. After
cloning a call vertex, the call context of the clone still references the uncloned
vertices. As a consequence, we now have a vertex in the template clone that
references vertices in the master template. To fix this, the vertices of a call context
must be swapped with the corresponding cloned vertices using the vertex map.
This process is illustrated in Figure 5.5.
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Figure 5.5: This figure shows the situation before and after swapping the vertices
of a cloned call context.
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5.2.1 Optional Arguments

Ruby offers the possibility of supplying default values to the formal arguments
of a method definition. If a formal argument has a default value, it is optional
for the caller of the method to supply this argument and thereby override the
default value. Hence the name, optional arguments, which is something Self
does not have.

We handle optional arguments through the use of master templates and tem-
plate clones. If a method has an optional argument, the default value of the
argument is naturally included in the master template. More specifically, an
edge is added from the default value to the optional argument. At this moment,
we do not know whether any later clones of the master template will use the
default value or override it. As mentioned, type information is not propagated
through master templates, and therefore, the default value does not “pollute”
the type information in the template. When the method is called and a template
clone is created, the clone is only used for that specific call of the method. If the
caller supplies a value for the optional argument, the following occurs: The de-
fault value of the optional argument is simply removed from the template clone
and so is the edge that connected it to the optional argument. Instead, the value
specified by the caller is connected to the optional argument, just as with non-
optional arguments. This process is illustrated in Figure 5.6. If the caller does
not supply a value for the optional argument, no special action is taken because
the default value is already connected. When the type information eventually
is propagated through the template clone, it works correctly in either of the two
cases.

5.2.2 Propagation Through Templates

When the Controller analyzes a method definition, it builds a master template
for that method. Types are not propagated through master templates because
they capture the initial state of a method before it is called. When a method
is called, template clones are created, and the types of the method arguments
must be propagated through the template clones. The challenge is then how to
propagate type information through a template. Agesen does not explain how
this is done in CPA; he just instructs that it must be done.

In Section 5.1.4, we explained the approach of eager propagation, where types
are propagated immediately as edges are added. But in a template clone, edges
are already added and propagation can therefore not follow the order in which
edges are added. As a basis for discussing how propagation can be done, we
present an example in Listing 5.2. The example shows the definition of a method
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Figure 5.6: To the left is a method definition of sum with two optional arguments.
This method is called with both arguments supplied. The middle part shows
the master template of sum with the default values of the optional arguments
connected. To the right is the template clone showing sum when called. The
default values are deleted from the template. Instead, the actual arguments of
the call are added, and the types are propagated.

method1 and a message-send that targets the method in line 7. When the Con-
troller processes the code, it starts by creating a master template for method1.
When the method is invoked in line 7, the master template is cloned and the
actual arguments 3 and 4 are connected to the formal arguments x and y of the
template clone.. Furthermore, the return vertex of the template is connected to
the variable c. Figure 5.7 shows the template clone of method1 with the proper
edges added. The type variables have been seeded with their initial types, but
the type information has not yet been propagated. We have experimented with
three different ways of propagating types through templates, which we will dis-
cuss here.� �

1 def method1(x, y)
2 $a = x + y
3 $b = "b"
4 return 3.3
5 end
6
7 c = method1(3, 4)� �

Listing 5.2: Definition and call of method1

1. Propagate from the arguments and down. The idea of this approach is to prop-
agate types in the same order as the method would be executed at runtime.
Propagation will start in the vertices 3 and 4. The Fixnum types will flow
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Figure 5.7: Template clone for method1 in Listing 5.2 just before propagation.

into x and y and down to the addition in +. When the addition message has
been processed, the resulting type will flow into $a. Then the propagation
will stop, because $a is not connected to the rest of the vertices. As a conse-
quence, the String type will not be propagated into $b, and the Float type
will not be propagated into return and from there to c. The type variable
of c will thus remain empty, which is wrong because the method should
return the type Float. Yielding a wrong result, we had to discard this ap-
proach to propagation. Furthermore, if a method has no arguments, this
approach is not a valid solution.

2. Reverse propagation from the return vertex and up. We tested this approach
as a way of ensuring that the result of a method is resolved correctly, thus
solving the problem of the former approach. It proceeds as follows: Start-
ing in vertex c, it resolves the “parents” of c – that is, the vertices that
influence c. In this case, the only parent is result. It then continues by re-
solving the parents of the parents, and in this way crawling backwards up
the graph. When it reaches a vertex that has no parents, it starts a normal
propagation from this vertex, which then propagates all the way down to
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the result. In our example, this happens in the vertex 3.3, which has no
parents. The Float type is then propagated down through return and into
c. The propagation then stops with c having the correct type. However,
no types have been propagated into the two global variables $a and $b.
Because globals variables can be used in other contexts as well, this be-
haviour is wrong. We could try to apply the former approach also, which
in our example would ensure that types are propagated into $a, but $b is
still untouched by both approaches.

3. Start propagation in all vertices. This last approach is a kind of brute force
approach that does not pay attention to the order of propagation. It iterates
through the set of all vertices in the template and starts propagation in
each vertex. In this way, we ensure that all types are propagated – even the
String type into $b, which was not reached by the two former approaches.

Apparently, the third approach seems to work correctly, but a brute force ap-
proach is never a satisfying solution. There must be a more elegant way. At
least, we believe that Agesen has solved the problem more elegantly. Or maybe
he did not even experience this problem in the first place. . . Pondering this ques-
tion, we realize that we might have misunderstood how Agesen handles tem-
plates. In the following, we discuss what we believe went wrong and how to fix
it.

Agesen [1, page 42] writes as follows:

The inference algorithm determines the send’s type by propagating
its actual argument types through the template(s) of the method(s)
that the send may invoke.

Here, and a number of other places, he uses the wording: to propagate types
“through” a template. Other places, he uses the word “into” instead of “through”.
His descriptions paint a picture of first having a complete template, and sec-
ondly propagating types through it. If this is the case, we do not know, but
maybe the picture should be painted differently. We believe, we have found a
different and very simple solution to this templates and propagation problem.

As mentioned in the beginning of Section 5.2, Agesen probably builds new tem-
plates directly from the method objects in the Self image. At the time when a
new template needs to be created, the Cartesian product of the message argu-
ments has already been computed. For the template to be created, we already
know the monomorphic argument types that must be connected to it. Instead
of first creating the template and then connecting the argument types, it could
be done the other way around. To explain this, we switch to a Ruby context and
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use the Controller as an example. Because the template is created at the time
when the method is invoked (or executed), eager propagation can still be used
and does not have to be disabled as we do during the creation of master tem-
plates. The Controller could start by creating vertices for the formal arguments
of the method. It could then add edges from the actual arguments to the for-
mal arguments and propagate the types immediately (eager propagation). The
Controller should then continue through the method body and create the rest of
the template while eagerly propagating types. When it reaches a return point in
the method, the type of the return is already known (by eager propagation) and
can be propagated back to the caller of the method. Summarizing this approach,
the types are propagated through a template while it is created, instead of first
creating the template and then propagating the types.

The approach described above does not incorporate the use of master template,
because templates are created directly instead of being cloned. However, be-
cause of the problems with handling references when cloning templates, we rec-
ommend skipping the use of master templates in future work and instead use
the approach described above.

5.3 Keeping Track of self

When a method is invoked and types are propagated through a template, it is
often necessary to know the type of self. For example, if a template contains a
message-send without an explicit receiver, the receiver of the message is self.
Intuitively, one could say that the type of self in a method body is just the
class that the method is defined on. But because of subtyping, this is not always
the case. Let us say that the class Sub is a subclass of class Super, and Super
implements the method m. If an object of type Sub receives the message m, the
message is forwarded to Super because Sub does not implement a method with
the name m. When the message reaches Super, the method m is invoked. The
type of self inside the body of m is now Sub, the receiver of the message, instead
of Super, the class of the method. As a consequence of this, we need some way
of determining the type of self in the template of a method.

To keep track of the type of self, we initially tried to maintain a stack of the
type of self inside RubySim. RubySim was then responsible for at any given
moment during type inference to provide the correct type of self. This was
quite a challenge, and just as we thought we had gotten a hold of it, some ob-
scure call sequence proved us wrong. Eventually, we decided to try another
approach.

We realized that self can be viewed as an extra formal argument of a method.
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Correspondingly, the receiver of a message is an extra actual argument that
should be connected to self on the invoked method. With this insight, we cre-
ated an extra vertex on the templates as a “formal” self argument. The receiver
as well as the actual arguments of a message can be polymorphic, and therefore
the receiver must be included in the computation of the Cartesian product. In
this way, the first argument in a monomorphic tuple is connected to self and
the rest are connected as usual. When self is stored on the graph like this, we
no longer have to lookup its type in RubySim and source of the problem with
keeping track of self is removed.

5.4 Types and Grouping

In Section 3.3, we presented the following grouping rules for objects from Age-
sen [1]:

1. Two objects belong to the same group if they are direct instances of the
same class.

2. Two objects belong to the same group if their contents [instance variables,
ed.] pair-wise belong to the same group.

Based on the discussion of types in Ruby in Section 3.1.1, we use the immediate
class of an object as its type. Coupling this with the first of the two rules, we do
not distinguish between groups in types. In other words, we group objects by
their type.

If two objects of the same type have pair-wise different types in their instance
variables, Agesen suggests by the second rule above to put them in separate
groups. We have chosen not to do this by the assumption that instance vari-
ables are rarely used polymorphically. I.e., we assume that two objects of the
same type will rarely put objects of different types in the instance variables they
have in common. In this way, we treat instance variables in the same way as
class variables, which made the implementation much easier. In Section 7.2.2,
we follow up on this assumption based on a number of experiments we have
conducted.

5.5 The State of Ecstatic

Even though Ecstatic can handle a major part of the Ruby language, a few areas
are left for future work. In this section, we list the capabilities and incapabilities
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of Ecstatic.

Ecstatic can currently handle classes and inheritance, modules and mixins, meth-
ods (singleton, instance, and class methods), optional arguments, array argu-
ments, parallel assignment, local variables, class variables, instance variables
(treated as class variables), global variables, constants, conditional expressions,
loop expressions, inclusion of additional source files (require), attribute cre-
ation, and import of the Ruby core. The entire Ruby core is automatically gen-
erated, and 42 core methods are provided with special implementations that
simulate them correctly according to Ruby’s semantics.

Ecstatic does not currently support:

• Recursion. When a method calls itself, the propagation mechanism enters
an infinite loop. This should be trivial to fix by detecting the loop and
breaking it. However, the related problem of recursive customization is
non-trivial to fix. But based on Agesen [1] implementing it should be pos-
sible.

• Most kinds of blocks. In Chapter 8, we present a discussion of blocks in
Ruby. There are four semantics for blocks, and only one of them is cur-
rently supported. The rest of the blocks are not trivial to implement. The
lack of proper block support is a serious issue with Ecstatic because blocks
are used very often in Ruby.

• Block arguments. A method may specify a special block argument as one
of its formal arguments. When a block is passed to such a method, it is
automatically converted to a Proc object, which can be accessed inside the
method by the block argument. If all kinds of blocks were supported, this
feature would be trivial to implement.

• Some side effect methods in the Ruby core. We have identified 42 core meth-
ods that needed special implementation, but there are probably more. By
our stepwise refinement approach, it is easy to add more implementations
when the need arises.

Finally, a few of the language constructs supported by Ecstatic are still buggy.
Fixing this requires further testing and debugging.

A preliminary edition of the Ecstatic tool can be seen in Figure 5.8. The screen-
shot shows the source code of a small Ruby program called SimpleMethod. To
the right, the program’s AST generated by JRuby is seen. Figure 5.9 shows the
same program, but with the types infered by Ecstatic annotated in the program
code.
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Figure 5.8: Ecstatic showing the source code and AST of a small Ruby program
called SimpleMethod

Figure 5.9: Ecstatic showing the source code of the SimpleMethod program with
annotated types.
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5.6 Summary

This chapter described the implementation of Ecstatic – a tool for type inference
for Ruby. Ecstatic is based on CPA. A primary part of the implementation story
has been to gather experience on how CPA can be implemented.
Ecstatic features the Ruby Simulator RubySim and a Controller implementing
CPA and the constraint graph. We present a simple way to inject the Ruby core
into the system to increase the precision of the type inference process.
In summary, Ecstatic supports a substantial portion of the Ruby language, how-
ever, work remains to be done.
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CHAPTER 6
Testing Ecstatic

Testing is an important part of developing software. As size and complexity of a
software system increases the need for automatisation of the testing process also
increases. Having an automated testing system can help during development,
by checking that a positive change does not mean that another previously fixed
defect reoccurs.
The project on SW9 illustrated the need for a formalized testing process. It was
often found that as development of the type inference system proceeded and
more and more language features became supported previously supported con-
structs stopped working[33]. One of the purposes of the testing process is to
remedy this, and ensure that changes made during development does not break
previously implemented features.

A software system similar to the type inference system developed is a compiler.
Both take source code, parse it, and produces an output. For a compiler this is
executable code, for the type inference system it is type information.
Two groupings of compiler testing is validation and verification. The former
checks that given an input the correct output is computed. The latter formally
verifies that the software adheres to a specification, i.e. a language definition[68].
The two methods are similar to the difference between black and white box testing
respectively. Using a validation based method you test the system as an opaque
unit in which you cannot see the details of the implementation nor use this to
your testing advantage. Verification is similar to a transparent box in which
you know the details of the implementation and use this to formally prove the
systems correctness.

From formal verification it follows that a formal apparatus for the system needs
to be in place. This implies that the language needs to be specified in a rigid
manner suitable for proofs. This is not the case for Ruby, which is solely speci-
fied in the compiler created by Yukihiro Matsumoto [19]. The Ruby community
is working on creating a specification for the language [62], and Yukihiro Mat-
sumoto has started the process of documenting Ruby in the context of the Design
Game[26].
Ultimately, however, it means that formally verifying the type inference soft-
ware system is currently infeasible. Therefore focus will be placed on validation.

This chapter documents the testing performed on the type inference system.
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First a discussion and survey of methods for compiler validation and how it
relates to type inference software will be performed. This presentation is largely
based on Ada’s and Pascal’s compiler validation suites. This will form the basis
for the testing effort, process and system in place for Ecstatic.

6.1 Research on Compiler Validation

In “The Ada Compiler Validation Capability” Goodenough [25] explains the
compiler validation suite created for Ada. It is in essence a black box testing
style, and hence cannot “detect all programming errors”[25, page 1]. Goode-
nough [25] poses a set of questions as to how and what should be tested, and
the conclusion is to use “many small tests” that supports an “evolutionary develop-
ment of a test set”[25, page 4]. A classification of tests is presented that divides
the individual tests into groups; these are:

Class A: Tests that should compile, but the result may not be executable

Class B: Illegal programs that should be rejected by the compiler

Class C: Programs that compiles and runs

Class L: Illegal problems, but the illegality is detected at link time

Class D: Capacity tests, for example how many identifiers can a program use.
Vendor specific and there is no specified lower limit defined in the stan-
dard.

Class E: Ambiguities in the standard. Each vendor creates a test that illustrates
how they treat the ambiguity.

The process for running the tests is also described. It is emphasized that this
must be specified and be tailored to automatic runs.

Tonndorf [56] presents the status of Ada’s Conformity Assessments, which is
an updated term for the validation suite presented in Goodenough [25]. Fur-
thermore he discusses how the assessments can serve as a model for other con-
temporary programming languages (C/C++ and Java). He explains the history
of the assessments and the roles of various standardization organizations. The
test suites from two vendors for C and C++ is briefly analyzed and the differ-
ence between their and Ada’s purpose is noted. Ada places “increased emphasis
on negative tests (Class B tests)”[56, page 94], and the reason is that Ada has a
strong focus on a formal testing procedure. Compiler vendors focus is primarily
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on performing self tests1 on their individual compilers. The survey of one ven-
dors test suites for different languages follow a common pattern: each suite has
a conforming and a testing part[56, page 95]. The first deals with how well the
implementation conforms to the programming languages standard as defined
by some party. The latter with actual testing of the compiler and defect finding.

In “Pascal Compiler Validation” a collection of articles is assembled from a con-
ference in February 1982 [61]. It deals with the validation suite for Pascal, which
is based on the work done on the Ada programming language. This includes
articles on structure of the suite, test classification, and the validation process.

In summary the results of the research on compiler validation made above are:

Black Box: Validation as a testing practice for compilers is useful and practical.
However, viewing the compiler as a black box, and hence not know any-
thing about the implementation details, makes it difficult if not impossible
to catch all errors. Thus, validation as such is not a 100% solution. [25]

Test Types: Properly testing using validation requires the use of both positive
and negative tests. This implies that testing needs to focus both on what
should work, but also on what should not work.

Classification: It is helpful to divide tests into a predefined classification. Ada
does this, and this practice has been modified in the Pascal compiler val-
idation suite. It helps in defining and narrowing the focus of a particular
test. Furthermore it provides an overview of the test suite.

Small Test: The evaluated validation suites uses many small tests in favor of
few big tests.

Automatic and Process: The validation suites all emphasize the value of a de-
fined validation process and automatic execution of tests. This is especially
important in their context since the tests are used in validation laborato-
ries. Nevertheless, having a defined process and automization is benefi-
cial.

This list of recommendations will serve as a guideline for the performed testing
effort described in later sections.

1Tests used during development to ensure that the compiler continues to function and adheres
to the vendors interpretation of the standard.
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6.2 Relation to Type Inference

To use the results of the compiler validation discussion presented above, the re-
lation between a compiler and a type inference system must be established. Both
systems can act as a black box, and they both use source code as input and yield
a specific output. A compiler outputs executable code, whereas the type infer-
ence system generates type information based on the input. In some respects
the type inferer is a special case of a compiler.
The type inference software uses parts of a compiler (JRuby) to accomplish its
tasks. Specifically the lexer and parser used to generate an AST. JRuby is exten-
sively tested by its maintainers, so we assume it is correct. Therefore care must
be exercised to avoid testing the lexing and parsing part of JRuby and instead
focus on validating the type inference algorithm.

A key difference between compiler validation and its relation to type inference
is the starting point. The compiler validation efforts start with a standard of
the compilers target programming language. Based on this common standard
a validation suite is created. For the Ruby type inference software this is differ-
ent, simply because there is no standard for Ruby (at least not a described one).
The validation suite created for the type inference software must therefore be
based on intricacies in the CPA algorithm and the available information on the
semantics of Ruby (see Thomas et al. [53], Ruby Community [47]).

6.3 Validation Suite

The validation suites goals are based on those recommended in Section 6.1.

Test Types: A wide range of tests will be created, this includes both code and
type definitions that should work and code and type flows that shouldn’t
work.

Classification: A classification of tests will be defined and used to categorize
each test. This will also help focus on a tests main purpose.

Small Tests: Focus will be put on creating many small tests each testing a spe-
cific part or feature, compared to creating few big tests.

Regression: The suite must support being used as a regression test tool during
development. This will help ensure that newly implemented features does
not break previously supported aspects.
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The tests are grouped in two major groups each containing a number of sub
groups:

Language or Library Features: These tests deal with specific language constructs
or libraries. Examples are blocks and arrays respectively.
The purpose is to test singular aspects of the language or library.

This group has tests within the following sub-categories:

Instance Variables: Tests language constructs related to instance variables.
Including attribute accessors (see Section 2.1.5).

Ranges: Tests language constructs related to ranges.

Blocks: Tests language constructs related to blocks.

CPA: Tests CPA intricacies such as propagation.

Sample Programs: This group’s tests programs that utilize several of the fea-
tures tested in the “Language or Library Features” group.
The purpose is to test the interaction between different elements of the
language.

This group currently contains samples created during development. They
are our exploratory tests of how Ruby works, and were used to get a better
understanding of Ruby.

6.3.1 Test Suite Framework

Creating and executing the tests needs to be simple and quick, and preferably
utilize an existing unit test framework. JUnit[37] fits the bar, and was hence
chosen as the base.

In general a method is required that enables the possibility to check that certain
parts of the tested program get the correct types. To accomplish this the assert
pattern in JUnit was expanded. The desired functionality is to assert that certain
identifiers has a type set that includes, exactly is, or excludes a specified set of
types. Furthermore, it is convenient to assert that a typeset is empty.

The overall pattern of executing a unit test (represented by a class) is this (illus-
trated in Figure 6.1):

1. Given a Ruby file as input, run CPA on it.

2. Run a number of tests on the resulting constraint graph
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(a) Each test executes a number of asserts to verify that identifiers have
the correct type set.

Figure 6.1: The process of executing a unit test. The shaded with horizontal
lines gray boxes are supplied by the tester: a Ruby program and a unit test.
The dark gray boxes are supplied by the tool: the Ecstatic tool and the test suite
framework built on JUnit. The white box is the outcome of the test.

The assertions added are listed in Table 6.1. For each assertion a number of
overloads exist, but they all include the ability to reference an identifier in the
Ruby source code file. This is done on a line-and- column number basis, i.e. “the
identifier at line number 5, and column 7”. The reason for this is based on the work
flow of creating tests. First a Ruby program is written that utilizes some aspect
of the language. Based on this a complimentary unit test is written. The unit
test will have to reference points in the Ruby program to validate an aspect. The
easiest way to do this is on an identifier basis, i.e. “the identifier ’a’ has this type”.
In order to unambiguously identify identifiers we use line and column numbers,
because an identifier a might exist at several places in a Ruby program.

Assertion Description
typeSetIncludes() Asserts that the typeset includes the types

supplied as an argument.
typeSetExcludes() Asserts that the typeset excludes the types

supplied as an argument.
typeSetIsEmpty() Asserts that the typeset is empty.
typeSetIs() Assets that the typeset is exactly the typeset

supplied as an argument.

Table 6.1: The assertions added to JUnit to enable typeset testing. Each method
takes a line and column number to identity the identifier in the Ruby source
code file to test.

Figure 6.2 shows how the test suite is related to JUnit and the individual unit
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Figure 6.2: The relationship between the test suite, JUnit and the individual unit
tests.

tests. A unit test takes a Ruby source file as input and outputs the test results.

Figure 6.3 shows a class diagram of the test suite. The TypeInferenceTest class
executes the Ruby source file that includes code that should be tested. The
Assert class contains the methods described above in Table 6.1, a reference to
an instance of TypeInferenceTest used when executing the assertion methods.
The RubyFileTestBase is the base class for all tests. It contains the static method
initTestForFile(), which sets up the system for test by running TypeInferenceTest.
It also includes instance methods to the assertion methods. Basically these dele-
gate the call to the same method defined on the Assert class of which RubyFileTestBase
holds a reference. This makes it easier for the test developer.
Creating a new test is as simple as subclassing RubyFileTestBase, and supply-
ing a method (by convention called setup()), which calls initTestForFile()
with the file path to the Ruby file under test. This method is decorated with the
@BeforeClass JUnit annotation. This annotation ensures that this method will
always be called before the individual test cases are run. Henceforth the devel-
oper creates individual test cases as per the usual JUnit way but utilizing the
assertion methods defined in the Assert class.

An example unit test is seen in Appendix C. It is placed in the “instance variables”-
group and it checks that attribute accessor methods work correctly.
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Figure 6.3: Diagram showing the individual parts of the test suite.

6.3.2 Results

Table 6.2 shows the results from running all the unit tests. It also gives an
overview of the individual unit tests in each group. Each unit test has a number
of singular tests inside. To increase readability these are omitted from the table,
however, the full set of tests are available on the accompanying CD.

The following list reviews the tests in Table 6.2 that failed.

1. Recursion fails because it is not implemented (see Chapter 5, Section 5.5).

6.3.3 Reflection

Having a testing tool available has proved beneficial on many occasions. The
issue discovered during SW9, which sparked the creation of the testing tool,
has to some degree been remedied. During the development a test was cre-
ated when a feature was found not working. This helped limit the possibility of
re-introducing this defect later on. Furthermore, tests were created to support
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Group Test Pass/Fail
Blocks

Blocks X
CPA

Template Propagation X
Method Calling Method X
Recursion ÷

Instance Variables
Attributes X
Identifier Definition X

Ranges
Ranges Definition X

Samples
Example 1 X
Example 2 X
Module Definition X
Simple Method X
Arguments X
Identity Function X

Total unit tests 13
Total tests 36
Passed 35
Failed 1

Table 6.2: Results from running the unit tests.

the development of a feature in a Test Driven way [67]. An example of this is
the “Ranges”-tests. These were created before support for Ruby’s Ranges was
implemented. As such the tests helped guide the development, and served to
validate when the feature was working correctly.
During development one person was responsible for creating tests. These tests
were created from the documentation available on how Ruby works. This meant
that tests were generally created with “no knowledge” of the developed tool. It
is our belief that this helped increase the quality of the tests, because more in-
tricate details were captured in tests. Contrast this with having the developers
creating the tool also create the tests. In this scenario there is a risk of the de-
velopers creating tests that validate exactly what they have developed. Simply
because they have knowledge of how it should work.

The following list reviews the issues presented in Section 6.3. Where appropri-
ate we will present out opinion and suggest ideas for future work and improve-
ments to the test suite.
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Test Types: The tests created are primarily positive tests, i.e. does identifiers
get the correct types. However, this is only one part of the required testing
story. A desired extension to the tool is the ability to test for NoMethodError’s.
This would enable testing of whether or not methods are defined, and
hence enable both positive and negative tests of Ruby source code. Cur-
rently it is only possible to test for positive method calls, i.e. you can
only test methods that are actually defined. Calling a non-defined method
breaks a test. Implementing this assertion is analogous to the JUnit feature
of checking that a specific exception is thrown. Hence, a better ability to
create negative tests should be devised.

Classification: The classification used on the tests could have been better. A
classification scheme more similar to that of Ada could be preferable. Our
classification scheme could then be used as a sub categorization within
these general classifications.

Small Tests: Focusing on creating small tests made it easier to produce a larger
set of tests. It also helped limit the responsibility of each test. We were
thereby able to locate and catch more focused defects.

Regression: The test suite and tests were used as a regression test tool. During
implementation the tests were continuously executed to verify that every-
thing still worked as supposed to. This proved very valuable and helped
catch errors that might otherwise have crept in to the tool.

The current set of tests primarily exercise language and library features in smaller
scale. However, there are few tests that deliberately and directly test aspects of
CPA. Future work should remedy this to ensure a correct implementation of
CPA and to alleviate that implemented features stop working.
Furthermore it would be desirable to increase the number of tests. 36 tests di-
vided on 13 units is a low number. Especially for such a large and complex
system.

6.4 Summary

This chapter investigated compiler validation and how that relates to type in-
ference testing. The results formed the starting point for the testing effort per-
formed on the Ecstatic tool. A framework for performing unit tests based on
Ruby code was developed, and unit tests within different categories were de-
veloped. The results from running the tests are positive (only one test failed),
but we need more tests to be more exhaustive.

In summary having a formalized testing process has proved very beneficial
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through out the project’s development.
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CHAPTER 7
Experiments

This chapter examines Ecstatic by performing a number of experiments with
it. To test Ecstatic 19 Ruby projects of varying complexity were chosen. The
projects have all been found through the Ruby Application Archive (RAA) [45].
The experiments were performed to collect data for use in the next chapter. They
will also help confirm or reject the hypotheses proposed in Chapter 4.

Table 7.1 lists the projects that Ecstatic have been tested with. The projects cho-
sen are representative for the projects available through the RAA and in that
respect represent real life programs.

The projects were selected on the premise that they do not depend on anything
other than a standard Ruby environment (Ruby Core and the Standard Library).
This requirement was imposed, because some projects in RAA depend on other
programs and libraries that are not written in Ruby, and Ecstatic cannot handle
that. The only notable exception to this requirement is Ruby Core, which is
implemented in C.

The projects in RAA are somewhat limited in number. Most of the projects are
best described as hobby projects. We found a limited amount of large scale Ruby
programs in RAA. However, we still believe that running Ecstatic on the se-
lected projects will yield valid information. This information will give an indi-
cation as to how large scale programs are composed.

89



Chapter 7. Experiments

Pr
oj

ec
tN

am
e

D
es

cr
ip

ti
on

LO
C

a

BM
co

nv
er

te
r

C
on

ve
rt

bo
ok

m
ar

ks
fr

om
di

ff
er

en
tb

ro
w

se
rs

of
va

ri
ou

s
fo

rm
at

s
12

07
C

an
na

2s
kk

A
tr

an
sl

at
or

pr
og

ra
m

fr
om

a
di

ct
io

na
ry

in
C

an
na

fo
rm

at
to

a
di

ct
io

na
ry

in
SK

K
fo

rm
at

.
25

4
C

lw
ik

i
Si

m
pl

e
W

ik
iw

ri
tt

en
in

R
ub

y
33

86
D

ep
en

ds
A

to
ol

to
de

te
rm

in
e

th
e

re
ve

rs
e

de
pe

nd
en

ci
es

of
a

D
eb

ia
n

pa
ck

ag
e

25
3

e
Ex

tr
ac

tA
ny

A
rc

hi
ve

12
2

Fr
ee

R
ID

E.
rb

Fr
ee

R
ID

E
is

a
R

ub
y

In
te

gr
at

ed
D

ev
el

op
m

en
tE

nv
ir

on
m

en
t

27
51

FT
P_

sy
nc

Sy
nc

hr
on

iz
e

fil
es

on
m

ul
ti

pl
e

m
ac

hi
ne

s
vi

a
FT

P
se

rv
er

49
2

IC
al

c
Si

m
pl

e
IP

C
al

cu
la

to
r

fo
r

su
b/

su
p

ne
tw

or
ki

ng
15

0
M

ar
ko

vn
am

es
G

iv
en

a
lis

to
fn

am
es

as
in

pu
t,

pr
od

uc
es

ne
w

ra
nd

om
va

ri
at

io
ns

in
th

e
sa

m
e

st
yl

e
17

8
N

an
in

H
tt

pd
Si

m
pl

e
H

TT
P

da
em

on
49

1
N

ew
ss

ta
ts

C
om

pu
te

s
st

at
is

ti
cs

fo
r

U
se

ne
tn

ew
sg

ro
up

s
64

0
Q

an
t

Q
A

nt
is

a
pr

ep
ro

ce
ss

or
of

A
nt

bu
ild

fil
es

33
8

Q
ui

ck
ey

Q
ui

ck
ey

is
a

lit
tl

e
ap

pl
ic

at
io

n
fo

r
qu

ic
k

ke
yw

or
d

en
tr

y
87

3
R

om
an

A
te

st
of

a
lib

ra
ry

th
at

co
nv

er
ts

in
te

ge
rs

to
ro

m
an

nu
m

er
al

s
10

4
R

O
O

F
A

si
m

pl
e

ob
je

ct
-o

ri
en

te
d

fil
e

sy
st

em
12

75
Se

tu
p

A
ge

ne
ri

c
in

st
al

le
r

fo
r

R
ub

y
pr

og
ra

m
s

15
85

Sl
id

er
A

n
ap

pl
ic

at
io

n
la

un
ch

ba
r

61
8

Ti
dd

y
Ti

dd
y

is
a

so
ur

ce
co

de
fo

rm
at

ti
ng

an
d,

or
be

au
ti

fic
at

io
n

so
ft

w
ar

e
68

2
Ya

w
ee

A
W

in
do

w
s

en
vi

ro
nm

en
tv

ar
ia

bl
e

ed
it

or
12

6

Ta
bl

e
7.

1:
Th

e
pr

oj
ec

ts
us

ed
in

th
e

ex
pe

ri
m

en
ts

w
it

h
a

sh
or

td
es

cr
ip

ti
on

an
d

LO
C

.

a Th
e

Li
ne

s
of

C
od

e
(L

O
C

)m
ea

su
re

is
ba

se
d

on
th

e
fil

es
in

th
e

pr
oj

ec
ta

nd
ex

cl
ud

es
an

y
ex

te
rn

al
lib

ra
ri

es
.L

O
C

in
cl

ud
es

bl
an

k
lin

es
an

d
co

m
m

en
ts

.

90



7.1 Data Collection

7.1 Data Collection

Ecstatic can provide statistics about the Ruby source code it is executed on. The
data collected by the tool includes the following:

The Number of Files that the project is comprised of excluding external libraries.

The Number of Vertices on the constraint graph.

The Number of Edges on the constraint graph.

Number of Classes in the project.

Number of Methods in the project.

Vertices with an Empty Type Set on the constraint graph. The empty vertices
of the templates are not counted because there are nodes on a template
that are supposed to be empty. An example of this are the vertices that
represent the formal arguments of a method. The empty vertices on the
constraint graph can be used as a measure for the precision of the inferred
types. However, empty vertices can also indicate that propagation on the
constraint graph for some reason stops prematurely.

Methods: We collect the following list of information on methods.

Class and Method Name The method’s class name and name.

The Number of Vertices on the method.

The Number of Edges on the method.

Number of Clones of the method. A methods number of clones can be
used as a measure of how polymorphic message sends are. This is
possible because a clone corresponds to a message send with monomor-
phic arguments. See Section 5.2 for a detailed discussion of the rela-
tionship between methods and clones.

Size of Type Sets the size of the vertices type set’s. The type sets sizes can be
used as a measure of how polymorphic Ruby programs are. The more
polymorphism they exhibit the greater the size of the type sets. We have
chosen a cutoff value of 5 for the size of the type sets. With more than 5
different types stored in a variable its use becomes increasingly confusing.

Running Time Ecstatic’s total running time in seconds on the project.

Error Condition if the tool exits prematurely.

The individual output from running Ecstatic on each of the projects is listed in
Appendix D.
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7.2 Results

The projects have been divided into two different categories depending on the
result of running Ecstatic on them.

Successful: Contains the projects that have types successfully inferred. The
projects in this group are: BMConverter, Canna2skk, e, FreeRIDE, ICalc,
Markovnames, Quickey, and Roman. The remainder of this chapter will
only deal with projects in this category.

Fail: Contains the projects where the tool exits before any type information is
obtained. Category 2 can be further subdivided into:

Fail.Tool: The error condition originates from the type inference tool. The
projects of sub-category Fail.Tool is shown in Table 7.2 This sub-category
represents shortcomings in the tool itself.

We further divide Fail.Tool into:

Fail.Tool.NotImplemented The projects in this category encountered
a language construct that was not implemented.
CLWiki, FTP_Sync, Newsstats, QAnt, Setup, Tiddy, and Yawee
belong in this category. They failed, because of an implicit con-
version from a block to a Proc object. This use of blocks is not
implemented in Ecstatic.

Fail.Tool.LogicError Projects in this category exit because of an un-
known logical error in the tool. The reason for this exception
needs to be examined further before a precise explanation for the
error condition can be given.
The projects in this category are: Depends, ROOF, and Slider.

Fail.Subsystem: Projects with errors that originate from a subsystem of
Ecstatic. For example errors that originate from JRuby.
Of the tested projects only a single one exhibited this error condition:
NaninHttpd where JRuby throws a syntax exception.

7.2.1 Use of Variables

We collected the sizes of type sets of the vertices that are used to hold data. This
means vertices that represent message sends are not counted.

It is reasonable to use the size of the type set as a measure for the degree of data
polymorphism of a program. This is is illustrated in Listing 7.1.
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Project Name Error
CLWiki RunTimeException -> Method not understood

(ProcBlock)
Depends NullPointerException -> null
FTP_Sync RunTimeException -> Method not understood

(ProcBlock)
Newsstats RunTimeException -> Method not understood

(ProcBlock)
QAnt RunTimeException -> Method not understood

(ProcBlock)
ROOF ClassCastException -> Master cannot be cast to Con-

straintGraph
Setup RunTimeException -> Method not understood

(ProcBlock)
Slider ClassCastException -> Colon2Node cannot be cast to

ConstNode
Tiddy RunTimeException -> Method not understood

(ProcBlock)
Yawee RunTimeException -> Method not understood

(ProcBlock)

Table 7.2: The projects of category Fail.Tool

� �
1 a = 1
2 b = 1.0
3 b = a
4 c = "string"
5 c = b� �

Listing 7.1: Data polymorphic Ruby example

The sizes of the type sets of the variables are as follows: The variable a has a type
set consisting of a single type Integer. Variable b has a type set of size two as it
is given both a Float directly and the types that the variable a contains. Finally
the variable c’s type set has size three as it is given both the types from the type
set of variable b and the type String. We see that as the data polymorphic use
of a variable increases the size of the type set does too.

The degree of data polymorphism for each project is shown in Table 7.3. A
vertex may have an empty type set if the following conditions are met. Suppose
we have an assignment of the form variable = expression. If the expression
contains a message send, and this message send for some reason fails to have
a type set inferred for it, both the expression and the variable will have empty
type sets. Another probable cause of empty type sets is that propagation fails or
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stops prematurely.

Project Name 0 1 2 3 4 >5
BMconverter 528 10597 1853 48 0 0
Canna2kk 71 524 30 15 0 0
e 9 189 6 30 0 0
FreeRIDE 191 645 25 4 0 0
ICalc 54 182 15 8 1 0
Markovnames 87 236 8 0 0 1
Quickey 23 39 0 0 0 0
Roman 32 582 12 0 0 0

Table 7.3: Data showing the distribution of the sizes of the typesets of the
projects of the Successful category.

Table 7.4 lists the distribution of the sizes of the type sets of the projects vertices.
It is worth noting that only a single project (e) uses data polymorphism to a
greater extend.

7.2.2 Use of Instance Variables

Only three projects from the successful category uses instance variables. The
three are: BMConverter, FreeRIDE, and Markovnames. Table 7.5 shows the
number of instance variables in the three projects. Only BMConverter uses in-
stance variables in a polymorphic way. All three instance variables of BMCon-
verter has a type set of size two.

Project Name <= 2 > 2
BMConverter 99.63% 0.37%
Canna2skk 97.66% 2.34%
e 87.18% 12.82%
FreeRIDE 99.54% 0.46%
ICalc 96.54% 3.46%
Markovnames 99.70% 0.3%
Quickey 100% -
Roman 100% -

Table 7.4: The projects percentages of vertices on the constraint graph that have
a type set below and over size 2.
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Project Name
Number of In-
stance Variables

Number of Instance Vari-
able used Polymorphic

BMConverter 30 3
FreeRIDE 9 0
Markovnames 6 0

Table 7.5: The distribution of instance variables in the projects.

7.2.3 Degree of Parametric Polymorphism

Information about parametric polymorphism is collected by counting the num-
ber of clones for each method. A clone for a method corresponds to a monomor-
phic application of the method’s arguments. This makes it a reasonable measure
for the parametric polymorphism of message sends. If a method only has a sin-
gle clone the method is not used in a polymorphic way. Table 7.6 shows the
distribution between the number of methods and how many of them exhibit
parametric polymorphism.

Project Name Number of Methods Number of Methods used Polymorphic
BMconverter 54 5
Canna2kk 2 0
e 0 0
FreeRIDE 10 0
ICalc 4 0
Markovnames 7 0
Quickey 1 0
Roman 5 1

Table 7.6: Data that shows the distribution of the number of clones per method.

7.2.4 Running Time

The running time of executing Ecstatic on each project is listed in Table 7.7.

7.2.5 NoMethodErrors

Further investigation of the NoMethodErrors that occurred showed that they
were caused by a missing type in a variables type set. The primary reason for
the missing type is a lack of special implementation for methods in Ruby Core.
For a discussion of this see Section 5.1.2.
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Project Name Average Running Time in Seconds
BMconverter 7.48
Canna2kk 1.62
e 1.57
FreeRIDE 1.68
ICalc 1.50
Markovnames 1.50
Quickey 1.37
Roman 1.48

Table 7.7: Running time of executing Ecstatic on each project. It is listed as an
average of five consecutive runs.

The following projects contain NoMethodErrors: BMConverter, Cann2skk, freeRIDE,
and ICalc.
The errors all follow the same pattern, so we will only discuss it in the context
of one project.

BMConverter: Has a NoMethodError in one of its required files parsearg.rb.
An Integer type is missing from a typeset of a variable. This is due to the
fact that a special implementation of the method String.split is missing.

7.3 Data Critique

This section performs a critique of the projects we have used in our experiments.

As mentioned the projects used in the experiments are characterized by being
hobby projects. They are not real life and large applications per se. Furthermore,
in some ways they illustrate the duality between Ruby as a scripting and object-
oriented language. The projects uses instance variables sparingly if at all. This
is an indication of the hobby nature and of using Ruby as a scripting language.
Furthermore, the number of methods is quite small for all projects.
Although both applications and uses are perfectly valid use of Ruby, it is not
necessarily an indication of large scale applications.

The projects were chosen from RAA. Their inclusion in the experiments were
based on the reasons presented in the beginning of this chapter. We have not
been able to find projects that were both large in size and did not utilize external
libraries, which Ecstatic is unable to handle. We would therefore recommend
that future work either find larger projects or remedy the issues involved in
having Ecstatic run on them. This might entail the addition of capabilities for
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handling external libraries.

7.4 Summary

This chapter described a number of experiments performed using Ecstatic. A
number of projects were selected from the Ruby Application Archive (RAA) and
a set of metrics were collected from running Ecstatic on each. The data collected
will form the basis of a discussion in the next chapter.
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CHAPTER 8
Discussion

Through the course of this thesis we have investigated and presented a number
of themes. This shaped the definition of hypotheses and goals for the thesis in
Chapter 4. Furthermore, we have discovered a number of issues that we wish
to discuss further. This chapter discusses possible answers to the hypotheses,
goals, and problems presented in Chapter 4.
In essence, this chapter contains our reflection on this thesis’s work.

8.1 Experiences With the Ruby Language

During the course of this thesis we have gained a deeper understanding of the
Ruby programming language. This section discusses our experiences gained
with respect to Ruby as a language.

Ruby Community [46] describes Ruby as, “A dynamic, open source programming
language with a focus on simplicity and productivity. It has an elegant syntax that is
natural to read and easy to write.”. On the surface Ruby is a very elegant, con-
cise and natural language. This perception is conveyed initially in Chapter 2.
However, when you dig into the language and approach the corners of it, the
image becomes a bit blurry. In fact Yukihiro Matsumoto – the author of – says
it concisely, “Ruby is simple in appearance, but is very complex inside, just like our
human body” [29]. Ruby does truly look good on the surface, but underneath it
is complex and conflicting.

We believe part of the issue is the lack of a specification for the language. Ruby
is effectively what CRuby (the original interpreter written in C) accepts. There
is no official written syntax or semantics. As mentioned in Chapter 6, there is an
interest in the Ruby Community and from Yukihiro Matsumoto himself in stan-
dardizing the language, in being more transparent in what the language con-
tains [62, 26]. However, the current situation continues to remain: what CRuby
accepts, Ruby is.
The main problem with a lack of language specification is that issues with the
language does not present themselves until they are implemented and in use.
Conflicting semantics are not discovered until someone uses the language and
finds the inconsistency. With an official specification and an official process for
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changing or adding to the language, issues can be discovered and remedied be-
fore implementation. A prime example of these issues are blocks or closures.
Cantrell [9] has a lengthy discussion by example on how blocks work in Ruby.
From this discussion it is evident that blocks are far from simple and orthogo-
nal in the language. Section 2.1.6 presents one such difference, namely between
Proc.new and lambda, how they deal with return and whether their defining
context needs to exist when called. Section 2.2.2 presented an issue with dy-
namic programming, namely that it appears to not be a first class citizen of the
language. Even though Ruby allows programmers do almost anything at run-
time (because any Ruby code can be evaluated dynamically), the evaluated code
is not treated in the same way as code written directly in Ruby before runtime.
Yegge [70] states that calls to injected methods are atomic, i.e. their inside work-
ings are not exposed. Furthermore, the injected code is evaluated and then for-
gotten in the sense that the result of the evaluation is saved, but the actual code
is not. So you cannot at a later time retrieve it, work with it and test and debug
it.

Reading the above discussion, you might reach the conclusion that Ruby is com-
plex, illogical, and inconsistent. However, in spite of its quirks it works. Pro-
grammers use it and love it. In fact they often become Ruby advocates telling
everyone how delightful Ruby is. Martin Fowler, employed at Thoughtworks,
announced at RailsConf 2007 that “40% of our new business this year in the US is
Ruby work” [23]. O ’Reilly – a publisher of technical books – publishes a book
sales list each quarter. Their statistics state that Ruby books outsell those of
Python and Perl; Javascript and PHP outsell Ruby.
Both O ’Reilly’s sales statistics and Fowler [23] indicate the popularity of Ruby.
We do not have conclusive evidence as to why Ruby programmers love their
language despite its quirks. Maybe even with the quirks programmers still feel
more productive and comfortable compared to other languages.

8.1.1 Implementing Blocks

Blocks are an integral part of programming Ruby. They are used in a plethora of
ways through out the Core and Standard Libraries, and their use is indeed con-
sidered a Ruby idiom. We described blocks briefly in Chapter 2. In the following
we will discuss issues with blocks from an implementation point of view.

There are four types of blocks and closures in Ruby, and they can be expressed
in seven ways [9]. The semantic difference between them are substantial. We
already described how Proc.new and lambda differ with respect to return and
existence of their defining context (Section 2.1.6). Furthermore, the semantics
of a block construct in Ruby changes between version 1.8 and version 1.9, only
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adding to the complexity1.

Ruby blocks differ from Smalltalk and Self counterparts by their complexity. In
Smalltalk and Self there are one block syntax and one block semantics. In con-
trast Ruby has seven block syntaxes and four block semantics. Obviously, the
more complex the problem, the more implementation effort is required. Fur-
thermore, this adds to the complexity of Ecstatic.

Ecstatic supports blocks passed via { and } with one parameter, and the use of
the yield keyword. Two examples are presented in Section 2.1.6 in Listing 2.8
and Listing 2.9. This use of blocks is similar to method calls, and indeed this is
how it is implemented. However, this practice does not readily apply itself to
closures. Future work needs to remedy this, and treat closures correctly.

8.1.2 Dynamic Programming

In Chapter 4, we proposed an issue that we thought would pose a challenge for
the tool, namely the concept of dynamic programming. Ecstatic does not sup-
port dynamic programming. Simply we do not handle it; they are effectively
No Operation (NOP). In the following, we will discuss the issues involved in
supporting dynamic programming. This discussion is based on the experiences
gained during research of Ruby and implementing the tool.
The problem with dynamic programming is that it performs runtime modifi-
cations on the environment. Examples of this are the addition of methods to
classes, or evaluating the contents of a string as valid and parseable Ruby code.
In the following, we will restrict our discussion of dynamic programming to
that of dynamically adding methods. There are three issues involved in sup-
porting dynamic method programming: flow insensitivy, parsing a string, and
adding methods to a context. We will examine each of these issues in detail in
the following.

Flow Insensitivity: In Ruby, methods can be added at any place and time in the
code. However, CPA works in a flow insensitive way, and hence would not
be able to accommodate this. The issue deals with the point of definition
and application. Before the method is added, calls to it should result in
a NoMethodError. After it is added calls should of course work and no
NoMethodError should occur . However, the distinction between when the
call is made and how this is related to the point of method addition is not
available when using a flow insensitive algorithm.

Parsing a String: class_eval, module_eval, and instance_eval differs from

1In v. 1.8 proc refers to lambda, in v. 1.9 it refers to Proc.new [9].
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eval in one way: they support being called with a block instead of with
a string. Because a block is readily available for parsing, we will initially
refrain from including this in the discussion. We will refer to class_eval,
module_eval, and instance_eval as context-eval’s. Looking at the four
eval methods that takes a string, and remembering the example from Sec-
tion 2.1.5 in Listing 2.7, we see the difficulty: the new code is supplied
in a string. First, this string may be difficult to parse and retrieve code
from. Second, it may use concatenation to dynamically create the code. A
sample use for this would be to decide at runtime what the name of the
method should be as is the case in Listing 2.7. Therefore, extracting the
code supplied to an eval method is potentially difficult.

If we turn our attention to the context-eval methods that take a block as pa-
rameter, the issue becomes simpler. Ultimately, because the block is readily
parseable and therefore can be used directly in type inference.

Adding a Method to a Context: Adding a method to a class or an object is an
integral part of a system that analyses or executes Ruby code. As described
in Section 2.1, class definitions in Ruby are executed, and at any time you
can open a definition and add methods to it. This is for example how
singleton methods work. Therefore, an application analyzing Ruby code
must support adding new methods to classes, modules, and instances to
be of any use. Exemplified by singleton methods Ecstatic already sup-
ports adding methods to classes, modules, and instances. However, the
code adding the method must be directly parseable and part of the code
at analysis time. An example of this is seen in Listing 2.3. Ultimately, the
issue of adding a method to a context is a minor one. This depends, how-
ever, on the method being readily available to add, i.e. not be in the form
of a string.

Reviewing the issues presented above we see that the biggest issues in support-
ing dynamic addition of methods is: flow insensitivity and parsing a string.
Adding a method to a class or instance is already supported by the Ecstatic.
Parsing a string and extracting the information in a read and usable form is dif-
ficult. Overcoming the issue with flow insensitivity remains unclear.

Adding methods is not the only use of the eval methods. They can be used
to evaluate a variable in another context, and thus be used to return instance
variables. Still, the same considerations and issues exist as presented above.
Especially the lack of ability to parse a string is paramount, because it severely
limits what can be extracted from an eval call.

Salib [48] in the context of Python also have problems with handling dynamic
code. His type inferencer does not handle it at all. He analysed the standard
library of Python and found that eval constructs were used sparingly and its
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use could often be rewritten with no loss of functionality.
We have not investigated how often eval is used in Ruby.

8.2 Discussion of the Hypotheses

This section will follow up on the hypotheses, goals, challenge, and require-
ments from Chapter 4, and the experiments in Chapter 7.

Hypothesis 1

The first hypothesis is the assumption that Ruby programmers do not make type
errors.

In order to confirm or reject this hypothesis, we would need a type checking tool
for Ruby that is 100% reliable. Furthermore, it requires running experiments on
a vast number of real life Ruby projects of varying sizes. Because of the imma-
ture state of the Ecstatic tool and because of the nature of the experiments made,
we cannot conclude definitely on this topic. However, based on the experience
we have gained while working on type inference in Ruby and based on the ex-
periments we have made, it seems that type errors in Ruby programs are few
or none existing. The NoMethodErrors reported by Ecstatic during the experi-
ments are caused by the tool’s incomplete state rather than the quality of the
experiment projects. If the Ecstatic tool is completed and more experiments are
conducted, we believe that this hypothesis is more likely to be confirmed than
to be rejected.

This hypothesis can also be viewed as a mission statement for creating a tool
like Ecstatic. The purpose of Ecstatic could be to help Ruby programmers avoid
making type errors in the future by using the tool. Programmers could use the
tool to check their program for errors before release or deployment.

Hypothesis 2

Hypothesis 2 examines if the presence of a type inference tool can help drive
industry into accepting Ruby.

For a tool to help in this direction, it would be required to fully support all parts
of the Ruby language, including the advanced and the inconsistent elements
discussed earlier in this chapter (dynamic programming and blocks). And even
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with the presence of a complete tool, only time would tell how the industry will
respond. Since Ecstatic is not complete, we have not come closer to confirming
this hypothesis. However, the experience we have gained working with Ruby
tells us that the language would indeed benefit from tool support. Because Ruby
has no language specification apart from the CRuby implementation, any addi-
tional support to help understand the language and the programs written in the
language would be appreciated.

Hypothesis 3

Hypothesis 3 explore if Ruby programmers are more productive than program-
mers using other languages.

This is an aspect of Ruby that we have not looked into, and we leave it open for
further research.

Hypothesis 4

This hypothesis is concerned with how polymorphic Ruby programmers write
their programs. Our hypothesis is that polymorphism is only used very restric-
tively both in terms of data polymorphism and parametric polymorphism.

Hypothesis 4.1

This sub-hypothesis explores data polymorphism in Ruby programs. Our as-
sumption is that even though data polymorphism is possible in Ruby programs,
programmers restrict how polymorphic they write their programs.

In Section 7.2.1 and Section 7.2.2, we have examined the use of data polymor-
phism in Ruby programs.

Variables: We define that a variable is used sparingly with regards to poly-
morphism if the size of the variable’s typeset do not exceed a size of two. This
size is chosen from the subjective viewpoint that if variables are used to store
more than two kind of values it limits the comprehensibility of the program.

Table 7.4 lists the distribution of type set sizes of the constraint graph. Our find-
ings are that of all the examined projects, only the project e has a considerably
high use of polymorphic variables.
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Our assumption about the use of data polymorphism is thereby confirmed for
ordinary variables in Ruby Programs. Next we will examine the usage of in-
stance variables.

Instance Variables Three of the examined projects uses instance variables, the
three are: BMConverter, FreeRIDE, and Markovnames. Of these, only the project
BMConverter uses polymorphic instance variables. The BMConverter project
defines 30 instance variable of which only 3 are used polymorphic. As it is the
case with ordinary variables, it also the case that instance variables are only used
in a polymorphic manner very sparingly. In Section 5.4 we made the assump-
tion, that instance variables are rarely used polymorphically. This assumption
has now been confirmed, which indicates that treating instance variables the
same way as class variables only slighty lowers the precision of type inference.

Hypothesis 4.2

In Section 7.2.3, we examined the use of parametric polymorphism in Ruby pro-
grams. Of the 83 methods in the projects, only 7% have more than a single clone.
A clone represents one monomorphic use of a method. Having more than one
clone therefore means, that the method is used polymorphically. The method
SetExpression from the BMConverter project is the method with the highest
polymorphic use; it has 12 clones in total.

As a side-note, it is interesting to note that the methods used polymorphically
are of modest complexity, i.e. they have a low number of vertices. The setExpression
of the BMConverter only has 24 vertices and 29 edges. All methods that have
more than a single clone are of very limited complexity.

Hypothesis 5

As it is explored in this thesis and with the development of Ecstatic, it is possible
to use CPA for the Ruby Programming language. There are differences between
the Self and Ruby as explored in Chapter 2, but these differences have not hin-
dered the retrofitting of CPA to Ruby. Ruby presents a few new challenges, that
Agesen [1] does not deal with. These include classes, modules and mixins, op-
tional arguments and array arguments on methods, dynamic programming, and
several semantics for blocks. The implementation of Ecstatic proves, that most
of these challenges can also be handled by CPA. The only challenges open for
future work is the implementation of blocks and dynamic programming.
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8.3 Experiences Gained

In the second part of Chapter 4 we listed a series of goals, challenges, require-
ments, quality requirements, and usage scenarios for the developed tool and the
thesis as a whole.

The purpose of these secondary objectives was to help put a perspective on the
hypotheses and the thesis. The idea was that these objectives would help convey
a better understanding of the premises of the thesis. In the following sections
we will discuss if the secondary objectives were accomplished or not.

8.3.1 Goals

One of the goals for the project was to explore if it would be possible to take a
type inference approach developed in Self and use it for Ruby. This have been
positively accomplished. We have shown that it is possible to retrofit CPA to
work in a Ruby context and make it work with reasonable success. This is fur-
ther addressed in Section 8.2. However, there are still some quirks that needs
ironing out. A problem that needs addressing is the vertices with empty type-
sets. An empty typeset of a vertex may as stated in Chapter 7 be the result of
the propagation not proceeding as it should. Eliminating vertices with empty
typesets would further strengthen our belief in the tool.

One of the concerns with adopting CPA was the differences between its orig-
inal language Self and Ruby. As there are differences these would have to be
addressed. We wanted to be as true to the original specification as possible, but
recognized that some retrofitting would have to take place. If we have deviated
from the original specification we have been explicit about it. One of these ar-
eas is in the handling of methods and templates. See Section 5.2 for an in-depth
discussion about this.

We have succeeded with the goal of extracting metrics from type inferred pro-
grams. These metrics include how variables and methods are used. The col-
lected metrics have been used in confirming or rejecting the hypotheses of Chap-
ter 4.

8.3.2 Challenges

In the work with CPA we identified a set of challenges that we believed to be a
concern in adapting CPA into a Ruby context. The challenges were conditional
control flow, continuations, and dynamic programming.
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Conditional control flow did not prove to be a challenge. Our concern was that
as Self does not have traditional control structures this could present a problem
in relation to Ruby. Even though Self does not have conditional control struc-
tures in a traditional sense, it has structures that are comparable to them. The
solution was not to try and find out which branch should be evaluated. But
rather evaluate all branches. Evaluating all the branches of a conditional may
introduce imprecision in the inferred types. The problem is that a conditional
has branches, which, when executed, is never evaluated. However, types will
still be inferred for this branch. This means that types that are never present in
the running program will be included in the inferred types.

Handling continuations have proved to be very difficult. The biggest problem is
that Ecstatic needs to be aware of how the call stack was when the continuation
was created. Ecstatic has no understanding of this and therefore continuations
are not implemented. One possibility that could be explored in making Ecstatic
aware of the call stack is to take a “snapshot” of RubySim when a continuation
is created. When a call messages is sent to the continuation it must switch the
current RubySim with the stored “snapshot”.

Perhaps the biggest problem to overcome in providing a full type inference tool
for the Ruby language is also one of the features that make Ruby an attractive
language. This feature is Dynamic programming, which enables the program-
mer to add methods to classes or modules as a program is running. Ecstatic
does not handle dynamic programming in any way and it must be considered
an open question as to how this should be handled in the context of CPA. We
have, however, discussed this issue in Section 8.1.2.

8.3.3 Requirements

One of the requirements for the developed tool was that it should run, not only
on toy examples, but on real life programs. We have fulfilled this requirement
as all the projects in consideration in Chapter 7 are real life programs. But as it
is noted in Chapter 7 they are of limited complexity.

We have chosen not to fulfill the requirement that the developed tool should be
robust. This deviation was performed, because as we consider the tool a work
in progress and the lack of robustness helps us identify the areas that needs
addressing to complete the tool.
The AST nodes that are currently not handled in the Controller, (see Chapter 5)
throws an exception. It is, however, a relatively simple matter to make the tool
more robust: instead of throwing an exception we could make an empty vertex
and just add it to the constraint graph.
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The types that the tool infers is as precise as we hoped they would be. We see
from the experiments presented in Section 7.2.1 that the type sets of variables
that represent data have a limited number of types. For most of the projects that
have types inferred over 90% have at most two types in their typeset.

8.3.4 Quality Requirements

One of the quality requirements is robustness. As explained above we have
chosen to deviate from this.

Section 7.2.4 lists the running times of a set of real life Ruby programs. The re-
quirement placed on the running time was that it should be in seconds. This
goal was achieved. There is of course a correlation between the running time
and both the size and complexity of the program that the tool is inferring types
for. The larger the program the more vertices need to be handled, which re-
sults in a longer running time. For ordinary Ruby programs we experience an
asymptotic running time in the number of vertices times the number of edges on
the constraint graph. For complex Ruby program the asymptotic running time
approaches the number of vertices squared.

Efficiency is a quality requirement that we have not addressed. We assume that
we have as much space available as is needed. For the time being no constraints
have been put on the program neither time nor space wise.

The correctness quality requirement of the developed program is sub divided
into a precision and an accuracy requirement. The precision of the inferred types
is measured in the size of the typesets. The precision of the inferred types is
discussed under Section 8.3.3. We had the requirement for the tool concerning
the accuracy of the inferred types, that they should be as accurate as possible,
i.e. having only a single type in a typeset is more accurate that having more.

8.3.5 Usage Scenarios

With a developed type inference tool in hand we have explored a number of
areas of application for which the inferred types could be used.

One area of use for the inferred types is in a type checker that will examine
the inferred types for say a variable and check it for consistent use through-
out a program. The developed tool has some limited capabilities in this area
and support some type checks. The type checks are limited to reporting about
NoMethodErrors.
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Different approaches have been discussed as to how the inferred types for a
program could be presented to a user of the tool. One of the things that was
discussed early on was integrating the type inference tool with an Integrated
Development Environment (IDE). This was considered but rejected at the time,
since we wanted the focus of the project to be on the development of the tool
and not on integrating with an IDE. Integrating in an IDE may be an important
step in helping Ruby being adopted by industry.

A relation to the discussion about the integration with an IDE was how the in-
ferred types for a program could be presented. Two different approaches was
discussed: one approach was to annotate the types directly in the source code,
presenting the user of a tool with a view that is similar in appearance to that of
an explicitly typed languages. The other approach was to annotate the types in
a structure that resembles the syntactic structure of the program. The approach
that we have chosen for the tool is to annotate it directly in the source code. We
have chosen this approaches as we believe that this is a view potential users of
the program will be more familiar with.

8.4 Summary

This chapter discussed Ruby, its lack of an official specification and what this
implies for language implementors, the problem with dynamic programming
and preliminary issues to investigate, and the problems with Ruby blocks. We
follow up on the hypotheses presented in Chapter 4 and present the current
status of obtaining an answer for them. Finally, we discuss experiences gained
and future usage scenarios for Ecstatic.
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CHAPTER 9
Conclusion

To examine the field of type inference in relation to Ruby, we have developed
a static code analysis tool called Ecstatic. It employs the Cartesian Product
Algorithm (CPA) originally developed for use in the Self language. By com-
parison between Ruby and Self we conclude that they are sufficiently similar on
a semantic level to warrant employing CPA on Ruby.

To motivate this thesis we presented five hypotheses, which we wanted to in-
vestigate by conducting experiments on Ruby programs.
The Ecstatic tool has enabled us to conduct experiments on several arbitrary
Ruby programs found at the Ruby Application Archive (RAA). The purpose
was to gain insights into how programmers use Ruby. The immaturity of Ec-
static coupled with a low complexity in the tested programs means, that we did
not yield a definitive answer to the proposed hypotheses. However, through the
experiments we gained more knowledge on two of the hypotheses. Our findings
indicate a low degree of polymorphism being used in Ruby programs.

We end this conclusion by listing the major and minor contributions of this mas-
ter’s thesis.
The major contributions of this thesis are:

Ecstatic: We have implemented a tool that performs type inference on Ruby
programs using the Cartesian Product Algorithm (CPA).

CPA Works on Ruby: We have implemented CPA to work on Ruby programs.
The CPA was developed for use on the Self programming language, so it
was not immediately apparent that it would work on Ruby.

Experiences in Implementing CPA: We have gained a number of insights and
considerable experience in implementing CPA on Ruby. Some of these
details and concepts are not readily available in Agesen [1]’s work on CPA.

Foreign Code Inclusion: We present a method for extracting type information
from the Ruby Core’s RDoc. This enables us to perform more precise type
inference, because we are aware of the types of the built-in libraries.

Experiments on Ruby Code: With Ecstatic we have conducted a number of ex-
periments on Ruby programs found at the RAA. This enables us to collect
a set of statistics on how Ruby programs are written, including statistics
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on data and parametric polymorphism.

Testing a TI System: Based on compiler validation, we present a method for
testing the type inference system. The tests are based on Ruby source code
samples and unit tests based on an extension to JUnit.

Comparing Ruby, Self, and Smalltalk: We perform a language comparison be-
tween Ruby, Self, and Smalltalk. We conclude that the three languages are
very similar on a semantic level. Although the similarities between Ruby,
Self, and Smalltalk are often presented, a more thorough comparison has
not been done before.

The minor contributions of this thesis are:

Ideas for Future Research: We present four hypotheses regarding Ruby pro-
grams and programmers. Three of these are considerably broad, and are
hence not confirmed or rejected in this thesis. However, they can be con-
sidered ideas for future work and research.

Types in Ruby: We present a suggestion on how to understand types in Ruby.
There are different views on this, and we compare these views from a type
inference angle.
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APPENDIX A
Acronyms

IDE Integrated Development Environment

LOC Lines of Code

CPA Cartesian Product Algorithm

AST Abstract Syntax Tree

XML eXtended Markup Language

MI Multiple Inheritance

HTML Hyper Text Markup Language

TI Type Inference

CVS Concurrent Version System

RFC Request For Comments

ETDL Extension Type Description Language

RAA Ruby Application Archive

LIFO Last In, First Out

MIT Massachusetts Institute of Technology

NOP No Operation

JVM Java Virtual Machine

CLR Common Language Runtime
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APPENDIX B
RDoc Extractor

RDoc is the tool used to document Ruby code. It is for Ruby what JavaDoc
is for Java. It supports the extraction of comments and information from the
code and the generation of files that includes this information (such as Hyper
Text Markup Language (HTML), eXtended Markup Language (XML), etc.). The
RDoc distributed with Ruby includes an XML generator, however, it has prob-
lems generating the methods of classes and modules. A post to comp.lang.ruby
did not yield any results [31], so a modified template was created. This template
is based on the multi-file HTML template. It is called xml_from_html.rb and is in-
cluded in the tools-folder. Running RDoc with this template selected yields the
same folder structure as running it with the unmodified HTML template, how-
ever, the individual HTML pages contains our XML instead. Each of these files
is run through a pre-processor written in Ruby called rdoc_xml.rb. It rearranges
and formats the XML making it more usable for the Java implementation.

Each file includes where applicable the name of a Ruby class, its included mod-
ules, its parent(s) and a list of methods. Each method definition includes its type
(class or instance), visibility (public, private), and a list of valid call sequences.
This last bit is important for the type inferer, because it yields the arguments
types. In some cases these types are straight-forward (int or nil, in other cases
they require more processing. An example of the generated XML is seen in List-
ing B.1.� �

1 <tiruby>
2 <class -module -list>
3 <Class name=’Fixnum’>
4 <classmod -info>
5 <infiles>
6 <infile>numeric.c</infile>
7 </infiles>
8 <superclass>Integer</superclass>
9 </classmod -info>

10 </Class>
11 </class -module -list>
12 <included -module -list>
13 <included -module name=’Precision’ href=’Precision.html’/>
14 </included -module -list>
15 <method -list>
16 <method name=’%’ id=’#M000713’>
17 <Instance -method visibility=’Public’ id=’#M000713’>
18
19 <call -seq-list>
20 <call -seq>
21 <left>fix % other</left>
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22 <right>Numeric</right>
23 </call -seq>
24 <call -seq>
25 <left>fix.modulo(other)</left>
26 <right>Numeric</right>
27 </call -seq>
28 </call -seq-list>
29 </Instance -method>
30 </method>
31 <method name=’+’ id=’#M000708’>
32 <Instance -method visibility=’Public’ id=’#M000708’>
33
34 <call -seq-list>
35 <call -seq>
36 <left>fix + numeric</left>
37 <right>numeric_result</right>
38 </call -seq>
39 </call -seq-list>
40 </Instance -method>
41 </method>
42 <method name=’&lt;’ id=’#M000723’>
43 <Instance -method visibility=’Public’ id=’#M000723’>
44
45 <call -seq-list>
46 <call -seq>
47 <left>fix &lt; other</left>
48 <right>true or false</right>
49 </call -seq>
50 </call -seq-list>
51 </Instance -method>
52 </method>
53 <method name=’&lt;=&gt;’ id=’#M000720’>
54 <Instance -method visibility=’Public’ id=’#M000720’>
55
56 <call -seq-list>
57 <call -seq>
58 <left>fix &lt;=&gt; numeric</left>
59 <right>-1, 0, +1</right>
60 </call -seq>
61 </call -seq-list>
62 </Instance -method>
63 </method>
64 </method -list>
65 </tiruby>� �
Listing B.1: Our generated XML from RDoc of the Fixnum class. This is fed to
the Core Loader.

Running the Scripts

The following script fragment illustrates how to run the scripts using Power-
Shell [35]:� �

1 rdoc --fmt html --all -T xml_from_html --op <OUTPUT_DIR >
2 cd <OUTPUT_DIR >/classes
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3 dir *.html | rename -item -NewName {$_.Name.replace(".html", ".xml")}
4 dir *.xml| foreach { ruby -w <PATH_TO_SCRIPT >/rdoc_xml.rb $_.Name ("tiruby

-" + $_.Name)}� �
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APPENDIX C
Sample Unit Test

This appendix shows an example unit test from the “instance variable”-group.
It tests that the attribute accessor methods works properly. Listing C.1 shows
the Ruby program used as input for the test. Listing C.2 shows the unit test that
tests the types in the Ruby program.� �

1 class Test
2 attr_writer :write
3 attr_reader :read
4 attr_accessor :both
5
6 def initialize
7 @write = "hej"
8 @read = 5
9 @both = 1.0

10 end
11
12 end
13 x = Test.new
14 initRead = x.read # should be Fixnum
15 initWrite = x.write # MethodMissing error
16 initBoth = x.both #should be Float
17
18 x.write = 5 # @write should now be (String, Fixnum)
19 x.read = "hep" # Methodmissing
20 x.both = "test" # @both should now be (String, Float)
21
22 postRead = x.read # should be Fixnum
23 postWrite = x.write # MethodMissing error
24 postBoth = x.both #should be (String, Float)
25
26 puts "Done"� �
Listing C.1: A Ruby program using instance variables. Used as input for the
unit test in Listing C.2.� �

1 package instancevars;
2
3 import org.junit.BeforeClass;
4 import org.junit.Test;
5
6 import testsuite.RubyFileTestBase;
7
8 public class AttributesTest extends RubyFileTestBase {
9

10 @BeforeClass
11 public static void setup()
12 {
13 initTestForFile("test/instancevars/AttributesTest.rb");
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14 }
15
16 @Test
17 public void initialReadHaveCorrectTypeSet()
18 {
19 typeSetIs(14, 1, new String[] {"Fixnum"});
20 typeSetIs(16, 1, new String[] {"Float"});
21 }
22
23 @Test
24 public void readAfterChangeHaveCorrectTypeSet()
25 {
26 typeSetIs(22, 1, new String[] {"Fixnum"});
27 typeSetIs(24, 1, new String[] {"String", "Float"});
28 }
29
30 @Test
31 public void missingMethodsGetNilClass()
32 {
33 typeSetIs(15, 1, new String[] {"NilClass"});
34 typeSetIs(19, 1, new String[] {"NilClass"});
35 typeSetIs(23, 1, new String[] {"NilClass"});
36 }
37
38 }� �
Listing C.2: A sample unit test that uses Listing C.1 as input. It validates the
types of the instance variables.
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APPENDIX D
Experiments

D.1 BMConverter

Number of Files 4
Number of Vertices 16280
Number of Edges 18455
Number of Classes 13
Number of Methods 54
Number of Vertices with Empty TypeSets 991

Table D.1: Generel information about BMConverter
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Method name Number of Vertic
es

Number of Edges

Number of Clones

<null>::getopts 108 118 1
<null>::printUsageAndExit 7 6 1
<null>::setParenthesis 13 16 8
<null>::setOrAnd 13 16 8
<null>::setExpression 24 29 12
<null>::parseArgs 56 60 1
<null>::usage 18 17 0
<null>::htoutformat 3 2 0
<null>::htinformat 3 2 0
<Formatter>::addindentation 16 15 0
<Formatter>::formatUrl 4 2 0
<Formatter>::formatFolder 4 2 0
<Formatter>::formatSeperator 4 2 0
<Formatter>::formatFolderend 4 2 0
<Formatter>::getHeader 3 2 0
<Parser>::initialize 5 2 0
<Parser>::parse 4 2 0
<FireFox08Formatter>::formatUrl 70 77 0
<FireFox08Formatter>::formatFolder 37 41 0
<FireFox08Formatter>::formatFolderend 5 4 0
<FireFox08Formatter>::formatSeperator 5 4 0
<FireFox08Formatter>::getHeader 9 7 0
<OperaHotlist2Formatter>::formatUrl 76 83 0
<OperaHotlist2Formatter>::formatFolder 59 64 0
<OperaHotlist2Formatter>::formatFolderend 4 1 0
<OperaHotlist2Formatter>::formatSeperator 3 0 0
<OperaHotlist2Formatter>::getHeader 3 1 0
<FireFox08Parser>::initialize 8 4 4
<FireFox08Parser>::parse 10 7 0
<OperaHotlist2Parser>::initialize 8 4 0
<OperaHotlist2Parser>::parse 10 7 0
<Bookmarkstack>::initialize 17 9 4
<Bookmarkstack>::size 3 1 0
<Bookmarkstack>::empty? 3 1 0
<Bookmarkstack>::top 4 2 0
<Bookmarkstack>::push 54 53 0
<Bookmarkstack>::pop 47 49 0

Table D.3: Data about the methods of BMConverter
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Method name Number of Vertic
es

Number of Edges

Number of Clones

<Bookmarkstack>::debugstate 9 7 0
<Folder>::initialize 22 11 0
<Url>::initialize 30 15 0
<Folderend>::initialize 3 1 0
<Headerend>::initialize 2 0 0
<Seperator>::initialize 3 1 0
<Outputwriter>::initialize 6 4 0
<Outputwriter>::println 18 15 0
<Outputwriter>::screen 11 10 1
<Outputwriter>::debug 11 10 0
<Statistics>::initialize 8 4 1
<Statistics>::incUrl 4 3 0
<Statistics>::incFolder 8 7 0
<Statistics>::decFolder 4 3 0
<Status>::initialize 3 1 1
<Status>::set 14 12 0
<Status>::get 3 1 0

Table D.5: Data about the methods of BMConverter
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Instance Variable Name Typeset size
@stack 2
@linenumber 1
@elements 1
@max_size 1
@statistics 2
@formatter 1
@output 1
@firsturl 1
@state 2
@size 0
@name 0
@depth 0
@id 0
@createdtimestamp 0
@lastmodifiedtimestamp 0
@ispersonalfolder 0
@expanded 0
@description 0
@inpersonalfolder 0
@personalfolderposition 0
@url 0
@shortcuturl 0
@nickname 0
@createdtimestamp 0
@lastvisitedtimestamp 0
@lastmodifiedtimestamp 0
@icon 0
@charset 0
@personalfolderposition 0
@numoffolders 1

Table D.6: Data about the instance variables of BMConverter

Typeset size Number of Vertices with Size
0 528
1 10597
2 1853
3 48
4 0
>5 0

Table D.7: Sizes of the typesets of BMConverter vertices that represent data, call
vertices not counted
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D.1 BMConverter

Run Runnig Time (in seconds)
1 7.36
2 7.44
3 7.42
4 7.67
5 7.51

Average 7.48

Table D.8: Running times for the tool, inferring types for the program BMCon-
verter
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D.2 Canna2Skk

Number of Files 3
Number of Vertices 1002
Number of Edges 1137
Number of Classes 0
Number of Methods 2
Number of Vertices with Empty TypeSets 132

Table D.9: Generel information about Canna2Skk

Method name Number of Vertic
es

Number of Edges

Number of Clones

<null>::getopts 108 118 1
<null>::hiragana? 13 10 0

Table D.11: Data about the methods of Canna2Skk

Typeset size Number of Vertices with Size
0 71
1 524
2 30
3 15
4 0
>5 0

Table D.12: Sizes of the typesets of Canna2Skk vertices that represent data, call
vertices not counted
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D.2 Canna2Skk

Run Runnig Time (in seconds)
1 1.68
2 1.72
3 1.52
4 1.61
5 1.57

Average 1.62

Table D.13: Running times for the tool, inferring types for the program
Canna2Skk
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Number of Files 2
Number of Vertices 283
Number of Edges 245
Number of Classes 0
Number of Methods 0
Number of Vertices with Empty TypeSets 10

Table D.14: Generel information about e

D.3 e

Typeset size Number of Vertices with Size
0 9
1 189
2 6
3 30
4 0
>5 0

Table D.15: Sizes of the typesets of e vertices that represent data, call vertices
not counted

Run Runnig Time (in seconds)
1 1.49
2 1.49
3 1.79
4 1.58
5 1.48

Average 1.57

Table D.16: Running times for the tool, inferring types for the program e
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D.4 FreeRIDE

Number of Files 4
Number of Vertices 1219
Number of Edges 1218
Number of Classes 8
Number of Methods 6
Number of Vertices with Empty TypeSets 321

Table D.17: Generel information about FreeRIDE

D.4 FreeRIDE

Method name Number of Vertic
es

Number of Edges

Number of Clones

<GetoptLong>::initialize 34 24 1
<GetoptLong>::ordering= 30 28 0
<GetoptLong>::set_options 17 12 0
<GetoptLong>::terminate 27 20 0
<GetoptLong>::terminated? 5 3 0
<GetoptLong>::set_error 20 14 0
<GetoptLong>::error_message 3 1 0
<GetoptLong>::get 206 224 0
<GetoptLong>::each 2 1 1
<null>::usage 14 13 1

Table D.19: Data about the methods of FreeRIDE

Instance Variable Name Typeset size
@ordering 1
@canonical_names 1
@argument_flags 1
@quiet 0
@status 1
@error 1
@error_message 1
@rest_singles 1
@non_option_arguments 1

Table D.20: Data about the instance variables of FreeRIDE
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Typeset size Number of Vertices with Size
0 191
1 645
2 25
3 4
4 0
>5 0

Table D.21: Sizes of the typesets of FreeRIDE vertices that represent data, call
vertices not counted

Run Runnig Time (in seconds)
1 1.64
2 1.58
3 1.65
4 1.76
5 1.76

Average 1.68

Table D.22: Running times for the tool, inferring types for the program FreeRIDE
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D.5 ICalc

Number of Files 2
Number of Vertices 424
Number of Edges 493
Number of Classes 0
Number of Methods 4
Number of Vertices with Empty TypeSets 122

Table D.23: Generel information about ICalc

D.5 ICalc

Method name Number of Vertic
es

Number of Edges

Number of Clones

<ICALC>::to_b 38 41 0
<ICALC>::to_d 43 45 0
<ICALC>::to_i 51 56 0
<ICALC>::to_p 46 52 0

Table D.25: Data about the methods of ICalc

Typeset size Number of Vertices with Size
0 54
1 182
2 15
3 8
4 1
>5 0

Table D.26: Sizes of the typesets of ICalc vertices that represent data, call vertices
not counted
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Run Runnig Time (in seconds)
1 1.51
2 1.53
3 1.46
4 1.55
5 1.45

Average 1.50

Table D.27: Running times for the tool, inferring types for the program ICalc
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D.6 Markovnames

Number of Files 2
Number of Vertices 515
Number of Edges 524
Number of Classes 3
Number of Methods 7
Number of Vertices with Empty TypeSets 160

Table D.28: Generel information about Markovnames

D.6 Markovnames

Method name Number of Vertic
es

Number of Edges

Number of Clones

<Array>::random 5 6 1
<String>::wrap 33 34 1
<MarkovNameGenerator>::initialize 13 7 1
<MarkovNameGenerator>::read 6 3 0
<MarkovNameGenerator>::input 10 8 0
<MarkovNameGenerator>::name 13 9 1
<null>::usage 24 23 1

Table D.30: Data about the methods of Markovnames

Instance Variable Name Typeset size
@chains 1
@input_set 1
@randomness 1
@ngram_size 1
@progress 1
@chains 1

Table D.31: Data about the instance variables of Markovnames
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Typeset size Number of Vertices with Size
0 87
1 236
2 8
3 0
4 0
>5 1

Table D.32: Sizes of the typesets of Markovnames vertices that represent data,
call vertices not counted

Run Runnig Time (in seconds)
1 1.52
2 1.46
3 1.52
4 1.57
5 1.44

Average 1.50

Table D.33: Running times for the tool, inferring types for the program Markov-
names
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D.7 Quickey

Number of Files 2
Number of Vertices 85
Number of Edges 69
Number of Classes 0
Number of Methods 1
Number of Vertices with Empty TypeSets 36

Table D.34: Generel information about Quickey

D.7 Quickey

Method name Number of Vertic
es

Number of Edges

Number of Clones

<null>::main 21 17 1

Table D.36: Data about the methods of Quickey

Typeset size Number of Vertices with Size
0 23
1 39
2 0
3 0
4 0
>5 0

Table D.37: Sizes of the typesets of Quickey vertices that represent data, call
vertices not counted
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Run Runnig Time (in seconds)
1 1.35
2 1.50
3 1.40
4 1.30
5 1.30

Average 1.37

Table D.38: Running times for the tool, inferring types for the program Quickey
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D.8 Roman

Number of Files 3
Number of Vertices 788
Number of Edges 567
Number of Classes 2
Number of Methods 5
Number of Vertices with Empty TypeSets 56

Table D.39: Generel information about Roman

D.8 Roman

Method name Number of Vertic
es

Number of Edges

Number of Clones

<Roman>::to_int 20 16 0
<Roman>::to_roman 30 26 1
<Roman>::reverse_hash 6 3 2
<Roman>::method_missing 4 3 0
<Integer>::to_roman 6 5 1

Table D.41: Data about the methods of Roman

Typeset size Number of Vertices with Size
0 32
1 582
2 12
3 0
4 0
>5 0

Table D.42: Sizes of the typesets of Roman vertices that represent data, call
vertices not counted
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Run Runnig Time (in seconds)
1 1.47
2 1.45
3 1.51
4 1.44
5 1.52

Average 1.48

Table D.43: Running times for the tool, inferring types for the program Roman
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D.9 Projects with Error Conditions
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