
Road network travel-time calculation using GPS data

Department of Computer Science
Aalborg University



PREFACE

This article has foundation on previous work by the same author [21]. Section 1 has been rewritten, and new
information is added. Section 2 has been rewritten, and new information is added. Section 3 has been
completely rewritten. Section 4 has minor changes, added subsection 4.2.3, figures in subsection 4.1.1 are
changed, but the rest of the section contains the same information. Section 5 and 6 are completely new.
Section 7 has been completely rewritten.

I would like to thank my supervisor, Kristian Torp, for his support, guidance and useful comments during
this and previous project work.

_______________________
Nermin Mudzelet



- 1 -

ABSTRACT
The number of vehicles on the roads worldwide is
increasing each year. The consequence is that the
travel-time of the trips is changing each year. It is
very frustrating when you discover during the trip
that the travel-time gotten from the available
services on the internet or other vendors is very
unrealistic. In this paper, we propose solution
where we calculate travel-times that are more
reliable. In order to achieve this we are using a
data that is recorded with a GPS (Global Position
System) equipped vehicles. We are using this data
to discover historical speed patterns, and then
these patterns are used to determine the travel-
times. In addition, we propose several fallback
methods, which handle the cases where we do not
have enough data for some parts of a road
network. Our solution can be used in domain of
the traffic analyses and planning. We can provide
the reports with the speed patterns for the parts of
the road network. We use in our implementation
the shortest travel-time path to verify that our
solution can be also used in the navigation and the
route planning.

1. INTRODUCTION

In recent years, we are witnesses of very rapid
development of the navigation technology, and
especially in area of the satellite navigation.

The satellite navigation GPS (Global Position
System) has become very popular, and many
people are using this navigation to plan trips and
routes. With standard GPS device, we can
determine the current speed of the movement and
the geographical location. This information among
other can be stored in logs. We can later use these
logs for processing. The GPS navigation inherits
some inaccuracy when determining geographical
location. This is because of the obstacles that can
block the satellite signal that the GPS device is
receiving. In the past, the inaccuracy was about
100 meters, but in nowadays this inaccuracy is
about 10-20 meters.

Main advantage of the GPS navigation is it´s
accessibility and low cost of implementation. In
the past, if we want to collect information about
the traffic condition we need to install and
maintain expensive equipment into roads such as
loop detectors [1].

When using a GPS device for the trip or route,
the travel-time that is obtained from the GPS
device in the most cases is calculated based solely
on the speed limits of the roads. This is also case
in the most of web sites [9, 13] that are offering
services for the route and trip planning. This leads
to unrealistic travel-times, because many real
traffic conditions are not taken in consideration,
such as stops at the traffic lights and traffic jams.

In this work, we propose a method to supply
travel-time weights for the segments in the road

Road network travel-time calculation using GPS data
Nermin Mudzelet

Aalborg University Dept. of Computer Science,
Aalborg Ø. 9220, Denmark

nerminm@cs.aau.dk, nermin_m@yahoo.com
KDE4

Group d622b
Jun 2007



- 2 -

network. These weights are based on the historical
travel-times gotten from a GPS logs. We store
these weights in the data warehouse. In addition,
we are proposing fallback methods. These
methods are introduced in situations when we do
not have enough a GPS data.

Moreover, we implemented application for
finding shortest travel-time path in the road
network. Our application is based on A* [12]
algorithm. The other path finding algorithms can
be used, but we choose this algorithm because it
can be optimized to yield good performance
results.

The paper is organized as follows. In Section 2
we discuss about related work that is done in areas
considering our work. Section 3 gives overview of
our system architecture. In section 4 we introduce
data model that is used in our system. Here we
describe the input data and the data in the data
warehouse. Section 5 describes methods for the
travel-time calculation and the fallback methods.
In section 6, we evaluate our approach to others in
terms of the route average travel-time. In
addition, we provide report about the speed
fluctuation during day for given route. At the end,
in Section 7 we conclude and give the direction for
the future work.

2. RELATED WORK

In this section, we review previous work related
to our project. We will focus on the topics like
data collection, data storage and retrieval, travel
time calculation, and shortest path algorithms.
Each of these topics will be considered in context
of the traffic domain.

In order to get into any kind of the traffic
research, the very important thing is to have a data
about the traffic. The most used methods to collect
a data about the traffic are induction loops [1],
observations from air and space [2] and floating
car data [3]. Each of these methods has its
advantages and disadvantages. In our project, we

are using the floating car data method, where cars
are equipped with the GPS devices. The main
advantage of this method is its accessibility and
low cost of the implementation.

The papers [4, 5, 6 and 7] described how the
collected data and the road network data could be
stored and retrieved in a data warehouse. These
approaches take in consideration the complexityof
the data. It means that the data can have spatial-
temporal context together with simple data types.
Here by the simple data types we are thinking of
the data types like numbers, characters and
boolean. We also use the data warehouse model to
store our data.

In [8] Pfoser et al. focus their work to derive
dynamic weights from historical data that is
collect with the floating car data method. With the
dynamic-weight approach, they take into
consideration spatial and temporal aspect of the
traffic. This is a different approach then some
vendors [9, 13] that provide route-planning use.
They use a static weights approach, where the road
segment speed is associated with the road speed
limit.

The dynamic weights that are calculated for
every road segment in the network are stored in
spatial-temporal data warehouse.

In their paper, they also introduce methods to
calculate dynamic weights for places on the map
where the data coverage is not good. The main
difference between our and their approach is in
these methods. They use spatial neighboring
queries in other to compensate a missing data.
These queries can be very costly in terms of CPU
time and I/O, and they depend a lot on the size of
the network. In our approach, we use knowledge
about how the road segments are organized in the
map to handle the case where we have no data
coverage. It means that each road segment in the
road network belongs to some street. We use this
information among other to help us where we do
not have enough data.



- 3 -

In [10] Zou et al. used GPS equipped taxi
vehicles to collect data for arterial speed studies.
They showed that the accuracy of travel-time
increases with the sample size. We differ from
them in that way that they do not consider the road
segments where the data is missing.

Kanoulas et al. [11] propose a solution for
calculating a path travel-time from source node to
end node in the road network based on the A*[12]
algorithm. In their solution, they lay emphasis on
the importance of the user’s arriving or leaving
trip time. The consequence is that the path travel-
time is function of leaving or arriving time. They
used term fastest-path to describe the path that is
generated as a result of their solution. The fastest-
path is a generalization of shortest-path in the
sense that the cost measure travel-time varies over
time. In our approach, we are using an updated
version of the A*[12] algorithm, but our cost
measure travel-time do not vary over time.

3. ARCHITECTURE

In this section, we will introduce overview of
our system architecture. We will describe basic
concepts behind our system implementation.

Figure 1. System architecture

Our system architecture consists of three parts.
These parts are connected and they interact with
each other. This is shown on Figure 1. A data flow
is denoted with solid arrows, while with doted
arrows we denote choices from a user.

We called this part ETL (Extract Transform
Load) process. Main activity in the first part is to
prepare data for later processing. This part is
important, because if the data contains errors,
these errors can have a big impact on a whole
system. In addition, we have data from multiple
sources. In order to prepare data, we had to
develop for each source a different method.
Moreover, each method consists of part where we
extract data from the source. We have two types of
input data. First type is a GPS log data, and second
type is a road network data. More details about the
data model are given in Section 4.

Afterwards we have part of the method where
we transform data to a common format that we use
in our system. In addition, here we use a map-
matching algorithm to match entries from the GPS
logs to road segments in the road network map.

At the end, we have part of the method where
we load data into the data warehouse. Before the
data is loaded in the data warehouse, it is kept in a
staging area.

In the second part of the system architecture, the
data that is stored in the data warehouse is
processed. We use different algorithms to process
the data. This is described in Section 5. After the
data is processed, we get an average travel time
for each road segment in the road network. Then
the data is again stored in the data warehouse in
another table. This part of the system architecture
is called a segment time calculation.

The next part of the architecture is called a route
time calculation. In this part, we are using the
segment travel time to calculate the travel time
from point A to point B (GPS coordinate points).
In our approach, we use the A* path finding
algorithm. The result of using the path-finding
algorithm is a route or path from point A to point
B with shortest travel-time cost. In addition, we
can use this approach to calculate the travel-time
from one zone to another zone in a road network
map. Another possibility is to enter manually route



- 4 -

from point A to point B, and then calculate the
travel-time.

4. DATA MODEL

In this section, the data model that we use in our
system will be introduced. We will see how the
data model is organized and used.

4.1. Input Data

In our system, we have two types of input data:
road network data and GPS log data.

The road network data represents a digital map
of Nordjyllands Amt. It consists of a 121.463 line
elements that describe roads in the network map.
This map initially was in shape files [17].

GPS data is data that we use as input for our
system that is collected from a GPS device
equipped vehicles. The data that is collected from
the vehicles is then stored in a GPS log files.
These files are flat files.

4.1.1.Road Network Data

In this paper, the road network is defined in
terms of polylines (corresponding to a road parts
between two junctions) and connections
(corresponding to junctions) between road
segments.
The domain of polylines is defined as

Polyline = (id, streetcode, speedlimit,
geom);

idint, streetcodeint, speedlimitint,
geomspatialtype.

Hence, a polyline description consists of an
identifier id, streetcode that tells us to which street
the polyline belongs, speedlimit indicating allowed
speed on that road segment, geom describes the
polyline geometry. In practice, we can have
different types that describe the geometry. For
example, we could have the types like point, line
and rectangle. In this case, the geometry is type of
line. Each polyline consists of points that are

connected. The minimal number of the points is
two. A point is defined like (x, y, m) where x, y
number, and this represent the coordinates of a
point, mnumber, this indicates measure of the
point, or distance of the point from beginning of
the polyline. From Figure 2, we can see that S is
start point with coordinates (10, 10) and measure
equal to 0, because this is beginning of the
polyline. A point E is end of the polyline, and it
has coordinates (25.4, 18.39) and measure is 15.6.
The number ‘102’ defines polyline id.

Figure 2. Example of polyline

The domain of connections is defined as follow:
Connection = (conn_id, pol_id,

pol_from)
conn_idint, pol_idint,

pol_fromnumber

Conn_id is the identifier, pol_id is identifier of
the polylines, and pol_from is the distance from a
connection (junction) to a beginning of the
polyline. On following Figure 3, we can see an
example how the polylines are connected between
each other.



- 5 -

Figure 3. Example of connection

Each polyline has a unique identifier. This
identifier corresponds to the pol_id. On the Figure
3, it is shown in the middle of the polyline. The
connection between two or more polylines is
denoted with the black dot. Moreover, each
connection has its own identifier. This identifier
corresponds to the conn_id. In our example we
have two connections, and there are labeled with
the numbers ‘12’ and ‘72’.

The symbols ‘ ’and ‘ ’ denote start
and end of the polyline, respectively. As we said
earlier the pol_from attribute denotes distance
between the connection point and the beginning of
the polyline. For example on Figure 3, we can see
the connection point with id equal to 72. The
polylines with ids 311 and 380 are connected in
this point. The beginning of the polyline 311
corresponds to position of the connection point 72.
Therefore, the value of pol_from is equal to zero.
However, for the polyline 380 pol_from has
another value. The beginning of the polyline 380
corresponds to the position of the connection
point. Therefore, the value pol_form in this case is
equal to the distance between the connections
points 12 and 72.

4.1.2.GPS Log Data

The GPS data that we are using in this project is
defined as follows:

GpsData = (vehicles_id, driver_id, date,
time, latitude, longitude, course, speed)

vehicles_id int date date, time
time, latitude number, longitude
number, courseint, speedint.

Vehicle_id is an identifier of vehicle from which
GPS entry is collected; driver_id is identifier of a
person that has driven the vehicle; date and time
values; longitude and latitude are parts of the GPS
coordinate; course indicates direction of a
movement of the vehicle, and it is represented in
degrees; speed is the speed of the vehicle recorded
for particular date and time value.

4.2. Data Warehouse Design

The data warehouse design will be introduced in
this section. We will see how the data warehouse
is organized and we will see description of the
dimension tables and the fact table. On Figure 4,
we have the data warehouse model. ‘PK’ and ‘FK’
abbreviations stand for primary key and foreign
key, respectively. In addition, the abbreviation
‘int’ is the integer data type.

4.2.1. Dimensions

The time dimension is structured as follows.
Attribute time_id uniquely defines the time
dimension. Attributes hour (from 0 to 23), minute
and second define the time granularity. Important
thing that we can observe for the time dimension
is after we create it, then it is never changed after
that.



- 6 -

Figure 4. Data warehouse model

The date dimension structure is formed like as
follows. A date_id uniquely defines this
dimension. A year attribute determines the year
when the GPS data is recorded. A month attribute
describes months (January - December) in the
year. A week attribute describes a week number in
the year. Attribute day describes day names in the
week. A season attribute describes a year seasons
(spring – winter). A date_all attribute describes
date in the database format. Attribute working day
determines choice between working days
(Monday-Friday) and weekend days (Saturday-
Sunday). A daynumber attribute shows a day
number in the month. A dayofweekattribute shows
a day number in the week.
The time and date dimensions add temporary
context to the data in the data warehouse. With
these dimension we can choose different types of
the temporary granularity.

The segment dimension relates to a single road
link in the road network. The segment dimension
is map depended. Eachsegment has a length and a
speed limitation. There is also an attribute
streetcode in the segment dimension. This

attribute denotes to which street belongs given
segment.

The vehicle dimension has two attributes, a
vehicle_id and type. The first one uniquely defines
the vehicle dimension. The second one relates to
what kind of vehicle is used. In practice, buses or
trucks have limitation of maximal speed that they
can be driven. Moreover, it is important in some
analyses to have this kind of information. In this
project, we are using only one value for the
vehicles type. The reason is that we only have the
GPS data with one type of a vehicle. The type of
vehicles that we use is a car.

The driver dimension describes driver that is
involved in collecting the GPS data. We have
attributes driver name, address and age. In
addition, there is attribute driver_id that uniquely
identifies a driver. Information about driver can
help in situations when we want to determine why
we have some deviation in the speed patterns. In
this project, when we planed design of the data
warehouse, we had included the driver dimension.
However, in the GPS data or in any additional data
we did not receive information about drivers. For
this reason, the values of vehicles ids from the
vehicle dimension correspond to the values of
driver ids from the driver dimension.

The source dimension relates to the source of
the GPS data that is used in the data warehouse.
Therefore, we could have data that is not from the
same source. In our system, we are using the data
from the Bektra company and the project called
“Spar på farten”.

4.2.2.Facts

A fact table ‘traveltime’ is the primary table in
the data warehouse model. In this table we store a
GPS observations from the GPS data logs. The
GPS observation corresponds to an entry in the
GPS data log that is recorded witha GPS device at
a particular time and a date.

Information that we can get from a single row in
the fact table should be as follow. For some time



- 7 -

with time_id and date with date_id values, there is
a vehicle withvehicle_id and driver with driver_id
that was travelled with speed value speed on the
road segment with segment_id.

The current position of the vehicle is recorded in
latitude and longitude, and the data is supplied
from source with asource_id. In addition, we have
a two speed limits, the road speed limit road_sl
and the vehicle speed limit vehicle_sl. The road
speed limit is put in the fact table because
sometimes the speed limit can be change during
the day or week. Then it is easy to change that
attribute value for each entry in the fact table. The
vehicle speed limit is put in the fact table because
we could have different types of the vehicles
where the GPS data is recorded. For example, the
speed limit for the busses and trucks can be
different from the road speed limit.

A course attribute is providing us with a
direction of the vehicle movement. In addition, the
street segment can be one or two way directional.
In our project, we are using un-direction approach.
However, this approach can be rather easily
extended to support the bi-direction heading.

In order to design and implement the data
warehouse we used guidance from [14, 15 and
16]. We used books [14] and [15] to get
familiarized with the data warehouse concepts.
These concepts include ETL stage, fact and
dimension tables, and granularity. In Section 3 we
discus about ETL, and in this section we discuss
the fact and the dimension tables. The granularity
determines the level of the details of the data in
the data warehouse. When we specify more details
then we can say that the level of granularity is
lower. The guidance from books [14] and [15] was
very useful in the phase where we design the data
warehouse. In the phase of implementation, we
used guidance from book [16]. In our approach,
we are using a star schema data warehouse design.
Moreover, the data warehouse is implemented in
Oracle [18]. In particular, we use guidance in the

index organization of the tables in the data
warehouse and query tuning.

4.2.3.Calculation travel time table

In the data warehouse, we have a table where we
store the data from the segment travel-time
calculation process. This table is shown in Figure
5. The primary key of this table is composed of
attributes segment_id and dayperiod. The first
attribute describes for which segment we
calculated the average time. The second attribute
is a composite attribute. It contains name of the
day and time period of the day. Example of one
possible value of this attribute could be
‘Monday0730’. It means that we calculate the
average time for the Monday, and for the time
between 0730 and 0800.

Figure 5. Average time data warehouse table

Attribute average_time provides information
about the average time for the road segment. The
average time is measured in seconds.

5. TRAVEL-TIME CALCULATION

The goal of this paper is to produce a travel
times from point A to B. In order to achieve this
we are using the GPS data and road network map.
From the GPS data, we can obtain information like
speed, course, position, time and date of the
vehicles movement in the road network. Each
entry in the GPS log data is a single GPS
observation. In our approach, we do not consider
relation among GPS points, just how each GPS
point influence the average speed of the road
segment. In that context, we can call our approach



- 8 -

the point-based approach. In this section, we will
go in more details about our approach.

5.1. Introduction to five-step approach

We have a five-step approach in order to
calculate the average speed for every segment in
the road network. We use this approach because it
is very hard to get coverage of all segments in the
road network. By coverage, we mean that for
some segments we do not have any GPS
observations. If we do not have values of the
average speed for some segment, we cannot
calculate an average time. The consequence of this
is that, we cannot calculate an average time from
place A to place B, if that segment is included in a
route from A to B.

The average time for a single segment is
calculated with a simple formula: the length of the
segment divided by the segment average speed.

In our approach, we are assuming that the
segment is un-directional. It means that the
average speed is the same if you consider traveling
from the beginning of the segment to the end, and
vice versa. In addition, for the GPS observations
that are above a speed limit for that segment, they
are lowered to the speed limit. This is done
because we want to avoid that the calculated
average speed is bigger then the road segment
speed limit. We also want to lower the impact of
speedy drivers on the road segment average speed.

Figure 6 shows a road network. On the Figure 6,
we can see the road segments and the connections
between the road segments. Each road segment
has a unique id. This id corresponds to the
numbers on the figure. The blue line denotes a
street that we will call the blue street. In addition,
the red line denotes a street that we will call the
red street. The segments that belong to the blue
street are 1, 2, 3 and 7. Moreover, the segments
that belong to the red street are 9, 10 and 11. The
other segments 4, 5, 6 and 8 are single-segment

streets. These streets are denoted with the black
line.

The green dots denote the GPS observations that
are map-matched to a segment.

Figure 6. Part of the road network

Our goal is to calculate the average speed for all
segments in Figure 6. The reason is that we want
to be able to answer the question how much time
do we need to travel between any two points in the
road network. From Figure 6 we can notice that
some of the segments in the road network do not
have any GPS observations that could be map-
matched to them. These segments are 1, 5, 7, 8, 9,
10 and 11. This is problem where we do not have
the GPS data for the segments. The reasons can be
that a segment is not passed enough or the length
of the segment is small. Another problem that can
appear is that we do not have enough GPS
observations. This problem is illustrated in Figure
6, where segments 3 and 4 do not have enough
GPS observations. This problem rises when we
have less then five observations on some segment.
It means that the calculated average speed may be
biased. The number of five observations is based
on the informal studies. In our implementation,
this number can be easily changed with another
number.

In other to calculate the average speed for all
segments in the road network and to handle the
problems, we mention above, we introduce a five-
step approach.



- 9 -

1. In our first step, we are calculating the
average speed based on the speed from the GPS
observations. For example in Figure 6, we have
segment 2. We will take all GPS observations that
are map-matched to this segment. Then we will
calculate the average speed for this segment. In
addition, if we have GPS observations where its
speed is greater then the road speed limit, the
speed will be lowered to the speed limit. The same
process can be applied to segments 3, 4, 6 and 12.
In Table 1 we can see the values that are
calculated after the first step.

2. In the second step, we calculate the average
speed for segments that do not have enough GPS
observations. In Figure 6, we can see that
segments 3 and 4 have two and three GPS
observations, consequently. When we experience
this situation, we will use a simple formula to
calculate newaverage speed. More details about it
is given in Section 5.2. From the column step 2 of
the Table 1 we can see which values are computed
after the second step.

3. In the third step, we group the segments into
streets. The idea behind this step is to calculate the
average speed for a street, based on the average
speed of all street segments. Then we use the
street average speed to update values of the
segments average speed.

From Figure 6, we will select two streets, the
blue street and the red street. We can see that
segments 1 and 7 that belong to the blue street.
These segments do not have any GPS
observations, and the consequence of that is they
do not have the average speed. This can be seen in
Table 1, columns step 1 and step 2 have no values
for these segments. However, the segments 2 and
3 have the average speed values. We can use these
values and compute the average speed for the blue
street.

In addition, we assume that all segments in the
blue street have the same road speed limit. After
we compute the average speed for the blue street,

then we update values of the segments average
speed with the value of the street average speed.
This is shown in column step 3 of Table 1.

If we take in the consideration the red street, we
can see there are no GPS observations on any
segments that belong to the street. The
consequence is that we cannot calculate the
average speed for this street in this step.

4. We still have segments where we do not have
the average speed. These segments are 5, 8, 9, 10
and 11. We can see that in Table 1, these segments
do not have values after the three steps. In the
fourth step, we use the average speed of the
neighboring segments. In addition, the
neighboring segments need to have the same road
speed limit. For example, we will select the
segment 10, and this segment does not have the
average speed. In order to calculate the missing
value for this segment, we first find the
neighboring segments. These segments are 6, 8, 9,
11 and 12. From these segments, we choose only
the segments 6 and 12, because only these
segments have the average speed. We assumed
that segments 10, 6 and 12 have the same speed
limit. The average speed of the segment 10 then
becomes the average speed of the average speeds
from the segments 6 and 12.

This step can be also applied on the segments 5
and 11. On the segments 8 and 9, we cannot apply
this step because the road speed limit on these
segments is different from the road speed limit of
theirs neighboring segments. The result of this
step can be seen in column step 4 from Table 1.

5. In the step five, we are using the road speed
limit to calculate the average speed. We can see
from Table 1 that segments 8 and 9 do not have
the average speed after we use the four steps. In
order to calculate their average speed, we multiply
the road speed limit value with some threshold.
This means that we can use different threshold for
the segment in the downtown and the peripheral
parts of the city. Here, we will use the same



- 10 -

threshold for all segments, and value is 0.8. The
threshold is introduced because we want to include
situations like the traffic stops and turns.

In the third and fourth step, we can experience
situations where some group segments do not have
same speed limit. If we for example have
situation in the third step where the segments in a
street do not have the same speed limit, we will
then proceed to the fourth step, to calculate the
average speed. If this situation appears in the
fourth step, we will proceed to the step five.

In Table 1, we have shown how the average
speed is calculated throw the five-step approach.
A columns step 1 - step 5 denote steps in our
approach. The segments in Table 1 correspond to
the segments in Figure 6. The speed limit and the
average speed are denoted in kilometers per hour
(KM/h). The value of the average speed that is
calculated in a particular step is denoted with the
bolded and increased font.

segment speed limit step1 step2 step3 step4 step5
1 50 - - 48,25 48,25 48,25
2 50 50 50 50 50 50
3 50 45 46,5 46,5 46,5 46,5
4 50 30 34 34 34 34
5 50 - - - 50 50
6 60 40 40 40 40 40
7 50 - - 48,25 48,25 48,25
8 70 - - - - 56
9 70 - - - - 56

10 60 - - - 35 35
11 60 - - - 35 35
12 60 30 30 30 30 30

Table 1. Steps average speed

5.2. Five step algorithm approach

In describing an algorithm, we use a notation as
follows. Arrays, lists and sets of records are
denoted like a ‘GpsLog’ or ‘GpsAvgSpeed’. A
single instance of a record of the array or of the
list is denoted like ‘gpsEntry’ or ‘segmentId’.
Variables where we store intermediate results in
the algorithm are denoted like ‘counter’ or ‘sum’.

The field inside record is denoted like ‘gpsEntry
.timeofday’ or ‘GpsAvgSpeed.observations’.

In cases where we have input variables to the
algorithm, we use a notation like
‘parameternumber’. Another case where we need
to assign to variable a value of no value, we use
‘Null’.

The purpose of Segment Average Speed
algorithm is to calculate the average speed for
some segment for a different day period. The first
step is to calculate the average speed from an
existing data in the data warehouse. We divide
every day of the week in a 48 time segments. The
length of the time segment is 30 minutes. This
length of 30 minutes can be easily changed to
accommodate our needs. We used this length
because it provides for us optimal results. If we
used for example 15 minutes time segment, then
we get in a situation where data coverage is
getting worse, especially on the smaller road
segments. We can use 15 minutes time interval if
we have a very good coverage with the GPS data.

The input to the algorithm is following
parameters: GpsLog, Segment, Day and Time
Period. The GpsLog is array of records with
fields: segmentid, timeofday, day, speed and speed
limit. Single instance of the GpsLog is shown
below. Array Segments is an array of numbers,
and here we have segmentid from all segments in
the road network. The Days is set of string, and
here we have names of the days of the week. The
TimePeriods is a set of time intervals of 30
minutes during one day.



- 11 -

gpsEntry {
segmentid : int,
day : string,
timeofday : Time,
speed : int,
speed limit : int}

Example of instance of record from array
GpsLog

The output for the algorithm is a list
GpsAvgSpeed. That is list of records with fields:
segmentid, time interval, day, averagespeed and
observations.

The main loop in algorithm starts from line 6
and ends on line 30. Here we are looping over
segmentId from arraySegments. We are doing this
because we want to calculate the average speed for
all segments. From line 7 to line 29, we have
another loop. This loop is looping over dayName

in the set Days. The purpose of this loop is to get
all days in a week for calculation of the average
speed. On line 8, a loop loops over timeInterval in
set TimePeriods. This timeInterval represents
different parts of the day, but each timeInterval
has the same granularity represented in time. This
loop ends on a line 28.

On lines 9 and 10, we have initialization of
variables counter and sum. These variables are
used in computation of the average speed.

From a line 11 to 20, we loop over gpsEntry in
the array GpsLog. On lines 12-14, we are checking
which gpsEntry should be involved in a
calculation. Line 12 checks that correct segment
are used. Line 13 checks for correct day, and line
14 checks for correct time interval. If all parts of
the condition from lines 12-14 are true, then we
are proceeding to the line 15. Here we are
checking isa speed value of the gpsEntry from the
GpsLog more than speed limit value of the
gpsEntry. If this is true then on line 16, we assign
to variable speed value of speed limit value of
gpsEntry. Variable speed just store temporarily
value of field speed value of gpsEntry.Otherwise,
if the condition resolves false, then on line 17, we
assign to variable speed value of speed value from
the gpsEntry.

On line 18, we are adding speed value to sum
value. In addition, on line 19 we increase counter
value with value 1.

On line 21, we are checking to see, did we use
any speed value from the array GpsLog.

If we did not find any speed value for some
segmentId then we assign Null to the field
averagespeed in the list GpsAvgSpeed. This is
done on a line 22. Else, if we have value then on
line 23, we compute the average speed.

In addition, on lines 24-27 we are assigning
corresponding values in the list GpsAvgSpeed.

For every corresponding value of segmentId,
dayName and timeInterval, we are adding new
element to the list GpsAvgSpeed.



- 12 -

The output of the algorithm is the list
GpsAvgSpeed and the list is returned on line 31.

The main goal of Algorithm 2 Less
Observations is to search for segments where we
have less GPS observations then some number.
After such value is detected, then it uses a simple
formula to compute an average speed.

The inputs to the algorithm are the following
parameters: GpsAvgSpeed, SpeedWeights and
parameternumber. The GpsAvgSpeed is array of
records with the fields: segmentid, timeInterval,
day, averagespeed and observations.

The SpeedWeights is array of records with
fields: paramavg and paramspeedlimit. In this
array, we store values that we will use when
updating average speed.

The parameternumber is number where we
saying what is lower bound of the number of the
GPS observations when we consider to update the
average speed.

Output is a modified GpsAvgSpeed array of
records.

Line 5-10 loops over gpsAvgSpeedRecord in
array GpsAvgSpeed. On line 6, we have a
condition to check if the number of the GPS
observations is less then a value of parameter
number. If the value of filed observations from the
gpsAvgSpeedRecord is less, then we go to line 7.
Here we update value of the average speed in the

gpsAvgSpeedRecord. In order to update this value
we use a formula. This formula is shown on lines
7-9. With value of SpeedWeights.paramavg, we
are multiplying a value gpsAvgSpeedRecord
.averagespeed. In addition, with value of
SpeedWeights.paramspeedlimit, we multiplied
value of GpsAvgSpeedRecord.speedlimit. The
result from the first multiplied action is added to
result of the second multiplied action. Then with
this new computed value, we update the average
speed value of GpsAvgSpeed Record.

Conceptually the formula calculates the average
speed based on the different value of the number
of GPS observations. It means that more GPS
observations we have on the road segment, the
more the average speed of these observations has
impact on the new value of gpsAvgSpeedRecord
.averagespeed. This influence of the segment
average speed and the segment speed limit on the
gpsAvgSpeedRecord.averagespeed new value is
determined by values of parameters SpeedWeights.
paramspeedlimit and SpeedWeights.paramavg.
The sum of these parameters should always return
value one.

On line 11, we return a modified version of
GpsAvgSpeed array if we made some changes.
Else, returning the array will be same as the input
array GpsAvgSpeed.

Algorithm 3 Street Average Speed is needed
when we do not have enough data from the first
two algorithms to calculate average speed for
every segment. In this algorithm, we are trying to
compute the average speed for segments that we
did not compute in first two steps. We assume that
segment in the same street and the same speed
limit should experience similar behavior. Because
we calculated the average speed for some
segments in first two steps, then we can use these
values to calculate average speed for a whole
street, even if we have segments that do not have
any GPS observations.



- 13 -

The input to the algorithm is two arrays. The
first GpsAvgSpeed is an array of records with the
fields segmentid, streetcode, day, time interval,
observations and averagespeed. The second array
GpsStreetAvgSpeed has the same field attributes as
array GpsAvgSpeed.

The output of algorithm is a modified array of
records GpsAvgSpeed.

From line 4 to 23, we have the main loop. We
loop over the elements in the array GpsAvgSpeed.
When we find a record which average speed value
is missing we go to line 6, else we go to the next
record from array. A condition that decides this is
on line 5. On lines 6-8, we initialize variables
sumobservation, sum and counter.

From line 9 to line 19, we are looping over
elements in the array GpsStreetAvgSpeed.
Furthermore, from line 10 to line 14, we have the
conditions that decide which segments from the
array GpsStreetAvgSpeed will enroll in
computation of the average speed. These
conditions say that value of the street code from an
avgSpeedEntry needs to be same as streetcode

value from a gpsStreetAvgEntry. Moreover, the
average speed value of the gpsStreetAvgEntry
should not be a Null value. In addition, the day
and timeInterval should match from both
avgSpeedEntry and gpsStreetAvgEntry. In
addition, both entries should have the same speed
limit.

When all the conditions are true, then we add
the value from gpsStreetAvgEntry.averagespeed to
the variable sum on line 15. Furthermore, on line
16, we increase value of counter variable by value
1. The counter variable is used to remember how
many segments are used to calculate the average
speed. Sumobservation variable on line 17 is used
to remember the total number of observations for
the segment.

Line 20 is reserved for a condition that is
checking is sum variable different from zero. It
means when the sum is equal to zero, then the
average speed for that segment cannot be
calculated. In addition, the values of the fields’
averagespeed and observations of avgSpeedEntry
are not updated.

Line 25 is the last line of the algorithm, where
we return a modified version of the array
GpsAvgSpeed.

In the Algorithm 4 NeigboursAvg Speed, we are
trying to fill missing values that we did not
compute in the first three steps. Here we are using
a neighbor approach. It means that for example,
we have segment that do not have an average
speed, and we want to compute that value with
observing segments neighbors. We assume that
with less accuracy then third step, that neighboring
segments with same speed limit will experience
similar behavior.

The input to the algorithm is three arrays. The
first GpsAvgSpeed is an array of records with the
fields segmentid, streetcode, part of day and
averagespeed. The second array TempAvgSpeed
has the same field attributes as the array



- 14 -

GpsAvgSpeed. The third array Neighbors is array
of record with the fields segmentid and
segmentneighbourid. This is an array where each
segment and its neighboring segments are stored.
In addition, all neighboring segments have the
same speed limit value.

The output of the algorithm is a modified array
of records GpsAvgSpeed.

From line 5 to line 29, we have the main loop.
We are looping over the elements of the array
GpsAvgSpeed. We can see that on line 6 we have a
condition that is used to find records in the array
GpsAvgSpeed who is missing a value for the
average speed field. When this condition is
satisfied we go to line 7, otherwise we go to next
record from the arrayGpsAvgSpeed. On lines 7-9,
we initialize variables sumobservation, sum and
counter.

From line 10 to line 25, we are looping over
elements of array Neighbors. A condition on line
11 is telling us that we only need records from
arrayNeighbors whose value of filed segmentid is
equal to filed segmentid value from array
GpsAvgSpeed.

When the condition is satisfied, we continue to
line 12. From line 12 to line 24, we have another
loop. In this loop, we are looping over elements of
the array TempAvgSpeed. The meaning of the
conditions placed from line 13 to 18 is that only
records from the array TempAvgSpeed who have
the same segmentid filed value equal to
segmentneigbourid filed value from array
Neighbors will be selected. Moreover, day and
timeinterval values of avgSpeedEntry should be
equal to the corresponding day and timeinterval
values in tempAvgSpeedEntry.

When all the conditions are satisfied, then we
add values to variables sum, counter and
sumobservation.
When we find satisfied record from array
TempAvgSpeed then we break from the loop. This
is done on line 23.

Line 26 is reserved for the condition that is
checking is a sum variable different from zero. It
means when sum is equal to zero, then the average
speed for that segment is not calculated. In
addition, the values of the fields averagespeed and
observations of avgSpeedEntry are not updated.

On line 30, we are returning a modified array
GpsAvgSpeed



- 15 -

6. IMPLEMENTATION

In this section, we will describe details about our
project that are more technical. In addition, we
will perform several experiments to verify our
system implementation.

6.1. Technical details

In other to implement our system, we used Java
programming language [19] and PL/SQL [20].

Java is used in ETL, map-matching and A*
implementation. The number of the code lines is
around 3100.

PL/SQL is used in the map-matching, A* and in
implementation of the algorithms described in
Section 5.2. The number of the code lines in
PL/SQL is around 1550.

In Table 2, we have summarized description of
the tables in the data warehouse. In this table, we
described in a column size, the size of the tables in
terms of the storage. The size is denoted in MB. In
addition, the number of rows for the each table is
given in column nb. of rows. With ‘M’, we denote
million of rows.

table name size (MB) nb. of rows
traveltime 632 8.1M
time 2 86400
datet 0.5 7305
segment 11 121463
vehicle 0.06 401
source 0.06 2
driver 0.06 401
avg_time 310 5.84M

Table 2. Description of tables in the data warehouse

6.2. Experiment

In other to verify our system, we conducted an
experiment. In our system, we have two ways of
selecting the route for the travel-time calculation.
We can either manually select (user defined route)
the route or we can enter the start and the stop
point of the route, and then used A*(automatically
defined route) to determine the route. For the
experimental purposes, we will use both ways.

In this experiment, we take one route in the road
network. The route corresponds to the Østre Alle
street in Aalborg. We could use any route between
two points in the road network map. We choose
this route because it is very frequent and very
important route in the traffic of the Aalborg city.
We used this route to calculate the average travel-
time for day period 07:30-08:00. The route is
shown on Figure 8.

The results that we get from the experiment we
compare with several sources. Our sources of
comparison are web sites that provide services for
the travel and route planning.

The first source is the krak.dk [9]. This web site
is specialized to provide travel planning from
address to address in Denmark. The second source
is the Google maps [13]. This web site provide
among other, service for travel planning from a
point to point. These points correspond to
geographical points. They are given in form of
latitude and longitude.

Another way of comparing is to drive our
experimental route and measure travel-time, but
we did not have equipment to complete that task.

Figure 7. Krak.dk route

On Figure 7, we can see route that is taken from
the krak.dk web site. The green dot denotes the
start of the route. The red dot denotes the end of
the route. Resulting route distance is 2.8 KM.
Estimated travel-time is about three minutes.

On Figure 8, we have route that is taken from
the Google maps web site. The route is denoted



- 16 -

with the blue line. Start of the route is denoted
with the green dot. End of the route is donated
with the red dot. Resulting route distance is 2.8
KM. Estimated travel-time is about four minutes.

Figure 8. Google maps route

Input parameters for our manual approach are
the road segments of the given route. This route
corresponds to route shown on Figure 8.The route
has a 39 road segments. The least length of the
road segments in this route is three meters. The
largest length of the road segment is 290 meters.
The average length of the road segments is 74
meters. The total number of the GPS observations
for the route is 599. The length of the route is 2.8
KM. Calculated travel-time is seven minutes and
49 seconds.

We also conducted our A*approach experiment.
On Figure 9, it is shown the route of the A*
approach. The route is denoted with the blue line.
The green dot denotes the start of the route. The
red dot denotes the end of the route. Input
parameters for this approach are the same like in
the Google map approach. The resulting route has
a 49 road segments. The least length of the road
segments in this route is five meters. The largest
length is 270 meters. The average length of the
road segments is 67 meters. The total number of
the GPS observations for the route is 544. Result
distance is 3.4 KM. Calculated travel-time is five
minute and 54 seconds. Execution of A* approach
for this route is 22 seconds.

Figure 9. A* route

In Table 3, we have a summarized comparison
of different approaches.

approach distance(KM) travel-time(min:sec) average speed(KM/h)
Krak.dk 2.8 03:00 56
Google maps 2.8 04:00 42
Our manual 2.8 07:49 21.3
Our A* 3.4 05:54 34.6

Table 3. Summarized results

We can see in Table 3 that the krak.dk and the
Google maps have an optimistic solution. Their
estimation is mainly focused on the road speed
limits. Their approaches do not consider condition
in the traffic like the traffic light stops and rush
hours. In our approach, we use knowledge from
the GPS observations to take these traffic
conditions in consideration.

The A* approach cannot be directly compared to
rest of the approaches, because it is using a
different route. It is putted in Table 3 because we
want show that another route is possible with the
less travel-time. However, we can compare routes
from manual and A* approach in terms of the
traffic conditions. The A* distance is greater, but
the travel-time is lower. This is due to nature of
the traffic in that part of the city in particular time
of the day. In particular time of the day, we have a
lot of vehicle that are moving from the west part
of the city to the east part of the city. In addition,
we have many traffic lights and junctions. We can
see that the route on Figure 8 is congested in that
part of the day. With A* approach we can choose
another route even it is longer and has more turns,
but it is less congested, and the travel-time is
lower.



- 17 -

In addition, if we take the different part of the
day, for example the time-period 19:00-19:30, and
consider the same start and end point like in
Figure 9. Then we conduct another experiment
with A* approach. The resulting route is the same
as route shown on Figure 8 and includes the same
road segments like in the manual approach.
Calculated travel time is 3 minutes and 58
seconds. In this part of the day there is less
vehicles that are driving in this route. With this,
we argumented the correctness of our approach.

6.3. Traffic analyses

One of the additional purposes of our approach
can be used in the traffic analyses and planning.
We can provide reports about traffic conditions in
aspect of average speed or average time. With
these reports, we can determine rush hours or
frequency of the road segments.

On Figure 10, we have a diagram where we
show how the route speed depends on the different
day periods. In this example, a day is Monday.
The route corresponds to the route on Figure 8.
The solid line denotes the route speed. The
number of the GPS observations for whole day
period is 8889. The average speed of the whole
day sample is 36.5 KM/h. Moreover, the average
speed is denoted with the dashed line.

From Figure 10, we can see that from 0:00 to
5:00, we have that the speed is very close to the
speed limit. This is because in this period there are
a small number of vehicles that are driving on this
route. From 5:00 to 8:00, we can see that the speed
is decreasing, and around 8:00, it reaches the
lowest value during the day. This corresponds to
the traffic conditions in this part of the city,
because this route is one the major roads in the
city. During the 8:00-15:30 period, we have
fluctuations in the speed. In the period close to
17:00, we have another decrease in the speed. This
is also corresponding to the fact that many people
are driving in this route. In the period close to

20:00, we have decrease in the speed. The reason
for this is unknown to us. Nevertheless, we the
information that is provided with our approach this
period of the day can be then closely examine.

0

10

20

30

40

50

60

0.00 4.00 8.00 12.00 16.00 20.00 24.00

Hours

S
p

ee
d

[K
M

/h
]

Figure 10. Day period speed report

7. CONCLUSION AND FUTURE WORK

In this work, we introduced methods for
calculating travel-times for the road segments in
the road network and fallback methods in cases
where we do not have the GPS data coverage.
These fallback methods are important because we
want to be able to calculate the travel-time
between any two points in the road network. The
methods are described in means of algorithms and
they are practically implemented.

We used the data warehouse as basis for all our
computations. It is organized in terms of spatial-
temporal context. It means that we store the data
in the data warehouse that have spatial
characteristics, such as road network map, and
temporal characteristics, such as date and time
attributes of the GPS observations.

In the experiment that we conduct, we compare
our solution to other that are available and in use.
We show that the route travel-time in our
approach is slower than in others approaches. This
is expected, because their approaches do not
consider the traffic conditions. In the experiment,
we also showed an implementation of the shortest
travel-time path. The implementation is based the
on A* algorithm. With this implementation, we
showed that our approach could be used in the



- 18 -

navigation and the planning applications. We can
conclude that the sampling interval of the GPS
devices in our approach does not play crucial role.
We can say that distribution of the GPS data on
the road network is more important.

Focus in the future work will be on optimizing
aspect of our solution. This can be done in
execution of queries in the data warehouse. The
data warehouse will grow and the queries should
be more optimized in other to get acceptable
execution times. This is important in aspect of the
web services.

Moreover, optimization of the shortest travel-
time path implementation is needed for bigger
road networks. One of approaches could be to use
partition of the network to the smaller parts, and
then to apply the implementation on these parts.
Another approach could be in optimizing memory
resources that this implementation is using. In
practice now we have implementations of double-
sided memory bounded A* algorithm. We could
use similar approach in our solution.

We will take in to the consideration the street
segment heading. This could improve the
correctness of our approach.

ACKNOWLEDGMENTS
We would like use this chance to thank Agne
Brilingaite that gives us the guidance for the map-
matching algorithm. In addition, we want to thank
Bektra company and Spar på farten project that
provided us with the gps data.



- 19 -

REFERENCES

[1] Karl Petty, Hisham Noeimi, Kumud Sanwal,
Dan Rydzewski, Alexander Skabardonis
and Pravin Varaiya. The Freeway Service
Patrol Evaluation Project: Database,
Support Programs, and Accessibility.

[2] DLR projects: LUMOS, Eye in the Sky.
http://www.dlr.de/

[3] Ralf-Peter Schäfer, Kai-Uwe Thiessenhusen,
and Peter Wagner. A Traffic Information
System by Means of Real-TimeFloating-
car Data. In Proc. ITS World Congress,
Chicago USA, 2002.

[4] Sotiris Brakatsoulas, Dieter Pfoser and
Nectaria Tryfona. Modelling, storing and
mining moving objects databases. In
IDEAS ’04: Proceedings of the
International Database Engineering and
Applications Symposium (IDEAS’04),
pages 68-77. IEEE Computer Society,
2004.

[5] Dimitris Papadias, Jun Zhang, Nikos
Mamoulis, Yufei Tao. Query Processing
in Spatial Network Databases. In
Proceedings of the 29th VLDB
Conference, Berlin, Germany, 2003

[6 ]Elzbieta Malinowski and Esteban Zimånyi.
Representing Spatiality in a Conceptual
Multidimensional Model. In: Proceedings
of the 12th annual ACM international
workshop on Geographic information
systems, November12-13, 2004
Washington DC, USA

[7] Christian S. Jensen, Augustas Kligys, Torben
BachPedersen, and Igor Timko.
Multidimensional data modeling for
location-based services. The VLDB
Journal, 2004.

[8] Dieter Pfoser, Nectaria Tryfona and Agnes
Voisard. Dynamic Travel Time Maps –
Enabling Efficient Navigation. In
SSDBM’06 : Proceedings of the 18th
International Conference on Scientific and
Statistical Database Management.

[9] http://www.krak.dk/
[10] Liang Zou, Jian-Min Xu, and Ling-Xiang Zhu.

Arterial Speed Studies with Taxi
Equipped with Global Positioning
Receivers As Probe Vehicle. IEEE, 2005.

[11] Evangelos Kanoulas, Yang Du, Tian Xia
and Donghui Zhang. Finding Fastest Paths
on A Road Network with Speed Patterns.
In ICDE’06: Proceedings of the 18th
International Conference on Scientific and
Statistical Database Management. 2006.

[12] S. Russell and P. Norvig. Artificial
Intelligence : A Modern Approach.
Prentice Hall, Englewood Cliffs ,NJ ,2nd

edition, 2003.
[13] http://www.maps.google.com
[14] Ralph Kimball, Margy Ross. The Data

Warehouse Toolkit, Second Edition, 2002.
[15] W.H. Inmon. Building the Data Warehouse,

Third Edition, 2002.
[16] Bert Scalzo. Oracle DBA Guide to Data

Warehousing and Star Schemas, 2003.
[17] Shape files technical documentation.

http://www.esri.com/library/whitepapers/p
dfs/shapefile.pdf

[18] http://www.oracle.com/
[19] http://www.sun.com/java/
[20] http://www.oracle.com/technology/tech/

pl_sql/ index.html
[21] Nermin Mudzelet. Road network travel-

time estimation using gps data, 2007.


