
Travel-Time Estimation in Road Networks Using GPS Data

Anders Forum Jensen
Department of Computer Science

Aalborg University
Fredrik Bajers Vej 7, building E

DK-9220 Aalborg Ø

dphreak@cs.aau.dk

Troels Villy Larsen
Department of Computer Science

Aalborg University
Fredrik Bajers Vej 7, building E

DK-9220 Aalborg Ø

chucara@cs.aau.dk

SUMMARY

Billions of dollars are lost in tra�c Worldwide every year. Numerous surveys have shown that people
waste several hours a week due to congestion in tra�c. Being able to predict when congestion occurs
ahead of time would enable drivers to choose a di�erent path than originally planned, and could
potentially reduce the amount of hours lost in tra�c each day. By analyzing historic tra�c data,
patterns can be found that enable us to foresee tendencies in tra�c. Unfortunately, collecting tra�c
data is expensive and time consuming, as it requires the use of loop detectors, license plate recogni-
tion system, or other specialized hard- or software. By using consumer GPS products, we avoid this
problem. Unfortunately, these products do not directly show much about tra�c, and they are there-

Our goal in this project is to develop a method to use consumer GPS products estimate travel times
in a road network accurately. We attempt to achieve this by developing two data-based approaches
to travel-time estimating. The point-based approach collects and groups GPS observations per road
segment and calculates a travel time based on the average speed. The trip-based approach uses the
context of a series of connected observations to determine the exact travel-time for an individual car.
By splitting the route of the car into smaller pieces, it can use the route to determine travel-times for
any road segment that has been traversed by a car. Like the point-based approach, it uses an average

We discover that the trip-based approach is more accurate than the point-based approach given the
same amount of data. However, if the sampling rate of the data is too low, the point-based approach
becomes the better option. By collecting data over an extended period of time, we show that it is
possible to estimate travel times fairly accurately. In doing so, we hope to provide a tool for tra�c
planners and analysts, that could potentially help to improve the tra�c situation in large cities.

PREFACE
This article is based on previous work by the same authors [13]. The trip-based approach in this
article is an extended version of the trip-based approach presented in our previous article. When we
talk about the trip-based approach, however, we are referring to the extended trip-based approach.
Section 1 has undergone minor revisions while Section 2 is mostly untouched, as, to our knowledge,
no new material has become available. Sections 3 has been rewritten, but contains the same infor-
mation. Section 4 is based on the same data warehouse schema with minor revisions, but the section
has had major revisions. Section 5 is new material with the exception of the two small paragraphs in
Section 5.1. Sections 6, 7, 8, 9 and 10 are completely new. All algorithms and �gures are new with the

The paper version of this article contains a CD with source code. There are 368 lines of SQL, 556 lines
of PL/SQL and 7631 lines of PHP. See the readme.txt �le at the root of the system for an overview of
the contents. The code can also be obtained by contacting the authors at above e-mail addresses.

fore not as accurate as specialized equipment.

on all travel times to �nd the �nal estimate.

exception of Figure 3.

Travel-Time Estimation in Road Networks Using GPS Data

Anders Forum Jensen
Department of Computer Science

Aalborg University
Fredrik Bajers Vej 7, building E

DK-9220 Aalborg Ø

dphreak@cs.aau.dk

Troels Villy Larsen
Department of Computer Science

Aalborg University
Fredrik Bajers Vej 7, building E

DK-9220 Aalborg Ø

chucara@cs.aau.dk

ABSTRACT
Large sums of money are lost every year, as working hours
are spent waiting in traffic on congested roads. To avoid this
loss, several methods for travel-time estimation has been
developed. By determining the travel-time for a particular
piece of road ahead of time, congested roads can be avoided.

Traditionally, etimating travel times has relied on slow
and costly methods such as loop detectors, observations ve-
hicles or automatic vehicle identification. Other approaches
rely on simple calculations based on road lengths and per-
mitted speeds. These approaches are not able to predict
traffic, and therefore only give an estimate that applies out-
side rush hours. Using consumer products to gather data,
however, the process can become faster and cheaper as GPS
receivers become more abundant.

In this article we develop two approaches to travel-time
estimation, the point-based approach and the trip-based ap-
proach. Using data from two different data sources as a
starting point, we have developed a solution that is able to
use very basic data, while still utilizing additional informa-
tion. We introduce a data warehouse for storing GPS data, a
road network and additional data such as information about
drivers and vehicles.

In our experiments, we show how the two approaches per-
form in general and compared to each other. Using our
trip-based approach, we are able to provide travel-time es-
timates with an error rate of 0.3% compared to the actual
travel times, which is a major improvement over naive travel
times and a slight improvement over our point-based ap-
proach.

1. INTRODUCTION
Each day, millions of people waste time waiting in car

queues to get to or from work, resulting in money loss as
work time is wasted. As traffic volumes increase, the need
for precise travel-time estimates grow. Speed limit-based
travel times are of little use, and even with better travel-
time estimates, traffic changes over time and new travel-time
estimates are needed.

Figure 1 shows the travel time on a major road in the city
of Aalborg during the day. As can be seen in the figure,
the travel-time in one direction is stable while the afternoon
rush can easily be identified in the other direction. As a
comparison, consider the naive travel time, which is 50%
inaccurate at best.

Traffic planning and travel-time estimation has tradition-
ally relied on expensive measureing methods such as loop
detectors, vehicle identification devices or floating car ob-
servers. With the advent of mobile GPS equipment, new
possibilities have opened for cheaper travel-time estimation
[7, 19, 21, 27].

Based on standard GPS equipment in vehicles such as
taxis, cars, and busses, we can obtain a large number of
observations containing the positions and speeds of various

 0

 100

 200

 300

 400

 500

 600

 700

 800

 6 8 10 12 14 16 18 20 22 24

T
ra

ve
l t

im
e

(s
)

Hour

Vesterbro 24 hour variation

North
South
Naive

Figure 1: The travel time for Vesterbro during the
day.

vehicles. GPS data is inherently imprecise as it is currently
impossible to determine the position of a receiver without
some error. Obstacles such as overpasses, tunnels, buildings
or even trees, can cause gaps in the received data, adding
to this inaccuracy. The quality of the GPS data can also
vary depending on the GPS device and which parameters
are received from the device. Using GPS data from various
sources requires special attention to the differences in the
data formats. Some logs include information about drivers
and vehicles, which can be used to increase performance.
For example, slow vehicles can contribute to the estimation
is a different way than average cars.

While dedicated moving observer or floating car vehicle-
based methods can provide precise estimations, they require
that an instructed driver collect the data needed. This is
both time consuming and costly as the driver must be paid.
This method also provides less data as a relatively small
number of vehicles are usually used. Since road networks
are ever changing and traffic volumes fluctuate, travel-time
estimates must be recalculated occasionally or continually
using current data to reflect these changes. For this reason,
we consider faster and cheaper methods, such as GPS-based
methods, superior to the more precise, but also slow and
costly methods.

Previous approaches to travel-time estimation include al-
gorithms based solely on more or less educated guesses calcu-
lated from the permitted speed on a particular road segment,
on finding a weighted average given single observations, on
data collected using expensive moving observer methods, or
on the experience of traffic experts [7, 19, 26, 27].

In this article, we propose a method for travel-time es-

1

timation on road networks that is based primarily on trips
found by map matching GPS observations. In some cases
data is too sparse to form trips. For these cases we introduce
the point-based method, which is a simple average based
method, that imposes fewer requirements on the data foun-
dation. The methods used in travel-time estimation in this
article are designed solely for planning purposes, as such,
dynamic travel-time estimation is not considered in this ar-
ticle. The main contributions of this article are:

• We design a flexible data warehouse scheme to store
GPS observations, a road network and related infor-
mation, e.g. driver and vehicle information.

• We introduce the point-based and trip-based approaches
for travel-time estimation.

• We compare the trip-based approach to the point-
based approach.

• We study the impact of lowering sampling rates to find
a reasonable compromise between precision and data
volume.

The rest of this article is structured as follows: In Section
2, we outline existing work. In Section 3, we describe our
data foundation, requirements, and prerequisites for travel-
time estimation and in Section 4, we introduce our data
warehouse. In Sections 5 and 6, we outline our two ap-
proaches for travel-time estimation based on GPS data. In
Sections 7 and 8, we describe our validation and experi-
ments. Finally, in Section 9, we go through some of the de-
sign choices for our system before we conclude and present
future work in Section 10.

2. RELATED WORK
Related work in the domain of estimating travel times is

focused on three main topics: data collection [12, 19, 22, 24],
travel-time and congestion estimation algorithms [4, 7, 19,
21, 22, 23], and storage and retrieval [7, 12, 21]. The first
two topics are primarily the concern of industrial research
while storage and retrieval is the topic of many academic
papers.

The bulk of related work concerned with data collection
utilizes a method of collecting data through a limited num-
ber of probe vehicles [12, 19, 21, 24], loop detectors [7, 23]
or through automated vehicle identification [4]. However,
much more data is available if data from all relevant GPS
equipped vehicles is utilized. Our aim in this article is to use
any GPS data available opposed to using few, specialized,
data sources.

Pfoser et al. introduce a dynamic travel-time map based
on a spatio-temporal data warehouse in [21]. Floating car
data collected using GPS is used to enrich a map with travel
times. To maintain coverage on the road network, different
fallback methods are proposed and the efficiency of these
is studied. The paper also covers important topics such as
shortest-path navigation in the map and provides some ex-
periments, although no verification of the developed method
is provided. GPS data collected from vehicles not intended
for traffic studies is generally classified as moving observer
data. The advantage of floating car data over moving ob-
server data is that it is more likely to be accurate since the
vehicles are driven according to a strict set of rules. How-
ever, floating car data is more expensive than moving ob-
server data, and given enough data, the differences between
the results of the two methods disappears. See [24] for a
more detailed discussion.

In [12, 19, 21, 24] GPS equipped vehicles are used to col-
lect samples at regular intervals, which are then used for

estimating travel times. Many different sampling intervals
are used, one minute in [12], 30 seconds in [21] and one
second in [24]. Different systems will provide data recorded
with different sampling rates, a solution independent of sam-
pling rates has not been proposed to our knowledge. In [22]
Quiroga et al. study the impact of changing sampling rate
and road segment length using GPS. They show the rela-
tionship between sampling rate, segment length, and the re-
sulting errors. They conclude that the sampling rate should
not be any longer than six seconds for their specific segment
length of about 320 meters.

A number of papers deal with the storage of travel times
and road networks using data warehousing or databases in
general [2, 10, 14, 15, 21, 25]. In [3], Brilingaite et al. de-
scribe a basic map-matching algorithm and present a solu-
tion for intelligently enabling routes as context in mobile
services.

Güting et al. propose a method for modeling, storing
and querying (transportation) networks in databases in [9].
They describe the modeling of routes and junctions based
on the conclusion that routes are a better representation for
a transportation network than road segments. This percep-
tion is shared with (and based on) their earlier work in [16].
In a travel-time application, this assumes that details about
road characteristics such as number of lanes and surface
quality is available since an entire route cannot otherwise
be thought of as a single entity.

Several papers are concerned with actual path finding and
travel-time estimation. Kanolus et al. [17] propose a method
for finding the fastest path through a road network given the
constraints of a time interval at either the start of or des-
tination of the trip. Ku et al. [18] propose an adaptive
nearest-neighbour query based on travel time instead of Eu-
clidian or network distance. In [21] Pfoser et al. use the A*
algorithm for path finding in a setting much like ours.

In [20], Nielsen presents methods for using data recorded
by GPS devices mounted in cars to analyze congestion. It
is argued that using GPS data provides more knowledge
than traditional methods as routes can be inferred from the
stream of GPS observations. In [11], Hansen presents meth-
ods for analyzing congestion continually over extended pe-
riods of time, using GPS data.

3. DATA FOUNDATION
To be able to accurately estimate travel times, we rely on

a number of data sources. We assume that a road center line
network is provided that is accurate and complete, including
speed limits. For any given road segment, we assume that
the permitted speed is constant. We also assume that the
direction and speed limit for a road segment does not change
during the day. Our map will be stored in the database, and
can come in any format, typically a shapefile. We assume
that the map is up to date and accurate.

For the GPS data we assume that, as a minimum we are
provided with longitude, latitude, a timestamp and either a
speed or a unique identification for the recording GPS de-
vice. Depending on the GPS device and its user, a number of
additional properties may be provided. Depending of which
additional properties are provided, different approaches, the
point-based or the trip-based, can be applied to the data. If
single GPS observations can be linked to each other, either
by belonging to the same GPS log or if they are attributed
with a unique GPS device identifier, information about the
route taken can usually be inferred, depending on sampling
rate, speed and road segment length. With this additional
route information we can begin to infer which roads where
traversed and interpolate timestamps for certain positions
along the route. From this route we can create a trip which
is a list of traversed road segments attributed with times-

2

tamps.
If additional properties such as vehicle or driver informa-

tion are supplied, special considerations can be taken. Data
recorded by a bus or another heavy vehicle is naturally dif-
ferent from data recorded by a taxi or car. Factors such as
acceleration, maximum speed and inaccessible roads mean
that data from heavy vehicles is different, but not useless.
While the heavy vehicles exhibit other driving patterns than
cars or taxis, the data can still be used if special care is
taken. We do not have any heavy vehicle data available,
and as such we do not make any special measures to ensure
that we can use such data. We do, however, have data col-
lected by taxis which may be different from data collected
by cars in that taxis stop more often in order to pick up
or drop off passengers. Travel-time estimation can be opti-
mized to the vehicle type when information about the vehicle
type is available. Similarly, if information about the driver
is available, this can also be taken into consideration. Just
like vehicle type, drivers may influence the data in specific
manners. Young men tend to drive aggressively while the el-
derly generally drive slower. In general, “the average driver”
is assumed to be behind the wheel if no driver information
is provided. While we are provided with unique identifiers
for some of our drivers, we do not use them in this article.

User behaviour and GPS device precision and quality can
lead to degradation in the data quality. For example, GPS
devices that do not utilize a magnetic compass but infers
heading based on the direction between consecutive points,
are often unable to provide a steady heading at low speeds.
Furthermore, the precision of the GPS device might not be
known or the user might use the device in unexpected ways.
We do not assume anything about the quality of the data
but use the data as is, with the exception that we filter out
data that cannot be matched to the road network or data
that is clearly incorrect. For example, observations that
are physically impossible or highly unlikely are disregarded.
We also disregard observations that cannot be matched to
a road segment within 30 meters. This figure is based on
an statistical analysis of the data, maximizing the amount
of data while removing the least accurate data.

Data sampling rates are another variable. Depending on
usage, a GPS device might record data at sub-second pre-
cision or every few seconds, minutes or even hours. The
data sets available to us are provided by Bektra and Spar
p̊a farten. The Bektra data set uses a sampling rate of two
minutes which makes it practically impossible to link indi-
vidual GPS observations to each other. Driver and vehicle
information can be linked to the data set using unique iden-
tifiers present within the data. The Spar p̊a farten data set
uses a one second sampling rate and provides a unique GPS
device identifier, which makes it possible to link individual
GPS observations.

4. DATA WAREHOUSE
In this section, we introduce our data warehouse which is

used to store our GPS data and road network.
Figure 2 shows our data warehouse schema. The main

table, gps fact, contains the GPS observations, whereas the
other tables (dimensions) contain data such as dates, drivers,
vehicle types, and road conditions. These tables allow us to
apply filtering when querying the fact table. The abbrevi-
ations FK and PK are “Foreign Key” and “Primary Key”
respectively.

The gps fact table contains information about the loca-
tion of the observed vehicles (latitude, longitude, address id),
time information (date id, time id), where it is map matched
to (segment id, segment position, precision), the actual ob-
served data (speed, heading, course) and finally secondary
observations (driver id, vehicle id, source id). Also note

driver

PK id

name

record_date

PK id

oracle_date
day_of_week
day_number_in_month
day_number_in_year
week_number_in_year
month
quarter
holiday_flag
weekday_flag
day_before_day_off
season
event

vechicle

PK id

vehicle_type
record_time

PK id

hour
minute
second

source

PK id

name

address

PK id

road
house_no
zipcode
district

gps_fact

PK id

FK1 date_id
FK2 vehicle_id
FK3 driver_id
FK4 source_id
FK5 time_id
FK6 road_condition_id
FK7 address_id
FK8 segment_id

latitude
longitude
speed
segment_position
permitted_speed
precision
course
heading
update_frequency
trip_number

road_condition

PK id

state
description

connections

PK conn_id

FK1 pol_id
pol_from

polylines

PK pol_id

geom
speed
road_id

Figure 2: Data warehouse schema

that the speed limit of the road is included in the fact table.
This allows us to alter the permitted speed for individual
GPS observations, or time periods. This might be useful in
cases where the road is subject to changes in speed limit.
The table also includes update frequency, which is the num-
ber of seconds between each update. This is included to be
able to weight the observations differently in order to re-
duce the impact a single driver can have on the estimation.
As an example, imagine 120 cars driving on the same road
segment, recording an observation once every 120 seconds.
If a single car recording every second drives on the same
road segment, that car would have the same impact on the
average travel time as the other 120 cars combined.

Heading is derived from course, which is the direction of
travel in degrees. If the course of the observation is within
90 degrees of the angle, or direction, of the road segment it
has been map matched to i.e. the course runs in the same
general direction as the road segment, heading is zero. If it
runs opposite the direction of the road heading is one.

The field trip number will be explained in Section 6.2.
The vehicle dimension contains a vehicle type that could

provide information about the driving pattern of a particular
vehicle. The vehicle id has been set to “Taxi” and “Car” in
the Bektra data set and Spar p̊a farten data set, respectively.

The driver dimension provides us with the means to dis-
tinguish between the individual drivers that report to the
system. The driver id has been set to the phone number
of the driver in the Bektra data set while it has been set
to “Unknown” in the Spar p̊a farten data set, as it is not
available. There has not been attributed a specific driving

3

style to any of the phone numbers.
The time and date dimensions naturally allow us to group

the data temporally. The date dimension has fields that
allows us to group the data into categories that we expect
to have an impact on traffic density, i.e. we would expect
traffic to increase the day before a holiday.

The source dimension simply describes the source of the
GPS log. In our case, this is Bektra or Spar p̊a farten as
they are currently our only sources.

The address dimension is currently not used and is in-
cluded only for completeness, but it can be used in cases
where the points are map matched to a map that contains,
for example, location names or house numbers.

The polylines and connections tables are reused from [3]
with only a slight modification: we include a speed limit on
each segment. These two tables contain our map as con-
verted from an ESRI Shapefile [5].

5. POINT-BASED APPROACH
The point-based approach views GPS observations as a set

of independent points attributed with at least date, time,
and speed, which is provided by most GPS devices. The
point-based approach calculates a simple, per segment, av-
erage travel time and is used, as briefly discussed in Section
3, when individual GPS observations cannot be linked to
each other. Given a number of observations on a segment,
the point-based travel time is the length of the segment di-
vided by the average speed. An optional parameter is course,
which indicates the direction the car is facing. For the rest
of this article, we assume the course is provided, as it is a
part of the GPS standard. If a course is not provided, we are
forced to either dicard the data, or use it for both directions
of the road segment.

In practice, the observations would be divided not only by
segment but also by e.g. day, time and season. The point-
based approach is to prefer when observations are indepen-
dent, too far apart to unambiguously infer the intermediate
route, or when GPS logs without a vehicle or device iden-
tifier are composed in such a way that it is not possible to
impose an ad-hoc device identifier to interrelated observa-
tions. By ad-hoc device identifier, we mean one that can be
created based on the context of the data, e.g., if we receive a
log file containing a series of observations, each recorded one
second later than the preceding. While we do not have a de-
vice identifier, we can expect the log to come from the same
device and assign the data a generated identifier. Because
the point-based approach does not require a vehicle or de-
vice identifier, it is also useful in cases, where the anonymity
of the driver is important.

5.1 Map Matching
Map matching is relatively easy in the point-based ap-

proach because observations are considered to be indepen-
dent. The simplest possible way of map matching indepen-
dent points, and the one that we have chosen for the time
being, is to do a simple nearest neighbour query. It is possi-
ble to enhance the map matching slightly by instead query-
ing for road segments within a certain distance and then,
starting with the nearest segment, comparing the course of
the observation with the angle of the segment. When GPS
observations are independent, map matching can only be as
precise as the data, as the two following problems illustrate.

Intersection Matching. A problem that arises when using
independent observations is the problem of receiving obser-
vations near or at an intersection. Because of the inherent
GPS inaccuracy, it is hard to determine which of the possi-
ble road segments the observation should be attributed to.
Figure 3 shows the problem. Because of the GPS inaccu-

racy, the small white dot could in fact be anywhere within
the bigger red circle. In this case, determining which of the
four road segments within the red circle the dot belongs to
is problematic. Mapping the observation to a wrong road
segment should be avoided if possible as this imposes an
incorrect data foundation, which leads to imprecise travel
times.

Figure 3: The intersection-matching problem.

A simple way to solve this problem would be to remove
all observations that are ambiguous, meaning that they have
several possible segments to which they can be matched. We
do not consider this an option, however, as we can expect
observations near intersections to average to a lower speed
than the rest of the road segment. Simply removing them
would therefore yield an overly optimistic average speed for
the entire segment.

Another solution, which is the one we have chosen, is to
assign the observation to the single closest road segment.
There is a chance that the observation will be matched to
the wrong road segment, but the effect of this error is re-
duced by the fact that observations are within 30 metres of
their actual position 95% of the time. That is, observations
are more likely to be accurate, than very inaccurate as ob-
servations within 30-300 metres of their actual position only
account for 5% of the time [8].

Course Confusion. When stopped at an intersection, some
GPS receivers become confused about the course, that is,
the direction of travel. The problem arises in devices that
are not equipped with a magnetic compass to determine the
course. This is also due to the inherent inaccuracy of GPS.
Since the course is calculated by analysing the vector cre-
ated by the last recorded and the current point, the course
begins to “jump” from 0 to 360 degrees when stopped at an
intersection as the received points scatter around the actual
position of the GPS device.

1
2

3
4

5
6

8
7

9 10
11

12
13

14

Figure 4: Illustration of changing course at an in-
tersection.

Figure 4 illustrates the problem. The numbers besides
the observations (the red dots) indicate the receiving order,
and the lines indicate the course. As the car approaches

4

the intersection, the speed is decreased and at observation
7 the car has stopped. Because of the GPS error, observa-
tion 7 to 9 are attributed with a wrong course as described
above. Some GPS receivers solve this problem by fixating
the course when the speed drops below a certain value. In
our example this would mean setting the course of obser-
vations 7 to 9 to the value of the course at observation 6.
We can emulate this behaviour if the context enables us to
identify observations from the same GPS receiver and the
sampling rate is sufficient. However, we do not do this as
our point-based approach assumes that each observation is
independent.

5.2 Storage
While it would be obvious to query the gps fact table

during travel-time estimation, the execution time of such a
query would increase as more points were entered into the
system. In order to still be able to maintain a reasonable
response time, we have chosen to create a new table, storing
only the travel times. This means that data could be loaded
over night, and travel times calculated when execution time
is not essential.

Figure 5 shows the table, point travel time, used to store
travel times for the point-based approach. As this approach
stores travel times per segment, only two travel times must
be stored for each segment per time period, once for each
direction of the road segment.

point_travel_time

PK id

FK1 segment_id
travel_time
heading
<interval>
count

Figure 5: Table for storing point-based travel times.

In the table point travel time, the field travel time is used
to store the travel time for the road segment in segment id.
The field heading stores the heading, 0 or 1. The field
<interval> represents a compound time interval which can
be designed to fit the wanted time granularity. As an exam-
ple we could store a travel time for each hour in the day, for
each day in the week. The <interval> for this would require
two fields, hour and day.

5.3 Calculating Travel Times
Calculating travel times for the point-based approach is a

relatively simple task. The process is to calculate a travel
time for each road segment in the network at a given time
granularity, for example once per 15 minutes of each day.
Time periods of similar travel times can be clustered to-
gether as discussed in [13].

Algorithm 1 calculates the simple average used in the
point-based approach. The algorithm takes two inputs. The
first input, R, is a list of the road segments that the travel
times should be calculated for. The second input, I, is a
list of compound time intervals. Using the example from
the previous section, I would contain 168 intervals, 24 for
each of the seven days in the week. In the algorithm, on line
4, two different travel times are calculated, one for h = 0
and one for h = 1. The variable h denotes the heading of
the observations used which is either 0 or 1. On line 6 the
average for the given road segment r in the time interval
<interval> using observations with heading h is found. The

Algorithm 1: Point-Based Algorithm

input : A list of road segments, R
input : A list of intervals, I

begin1
avg = 0, len = 0, tt = 0;2
foreach r in R do3

foreach h in 0, 1 do4
foreach <interval> in I do5

avg = getAvg(r, h, <interval>);6
len = getLength(r);7
tt = (len/avg)*3.6;8
store(tt, r, h, <interval>);9

end10

function getAvg can be expressed with this SQL statement:

SELECT avg(speed)

FROM gps_fact

WHERE segment_id=r

AND heading=h

AND <interval>;

Here, <interval> represents the appropriate statement to
limit the selection the selected time interval. On line 7 the
length of the road segment is found using the following SQL
statement:

SELECT sdo_geom.sdo_length(p.geom, m.diminfo)

FROM polylines p, user_sdo_geom_metadata m

WHERE p.pol_id=r;

In the SQL statement, sdo geom.sdo length() is a function
from the SDO GEOM package in Oracle Spatial that returns
the length of a geometric object. On line 8 the travel time
is calculated using the average speed and the length of the
road segment. On line 9 the calculated travel-time is stored
in table point travel time described in Section 5.2.

6. TRIP-BASED APPROACH
As briefly discussed in Section 3, trips are a list of tra-

versed road segments along with timestamps denoting when
the transition from one road segment to the next occurred.
We are able to form trips only when we can determine that
a series of observations were recorded by the same GPS de-
vice and that those observations are not too far apart. In the
Bektra data set the sampling rate is 120 seconds, which is far
too low to be able to infer routes between the observations.
For this article, a trip is defined as follows:

Definition 1. A trip is defined as a chronologically sorted
sequence of observations from the same GPS-receiver unit,
each observation having been recorded at no more than a
specific number of seconds after the previous observation.

In this article, the maximum number of seconds between
each observation is set to 10. This number is based on an
analysis of our data, which is recorded once every second
(see Section 8.2). An interval of 10 seconds is large enough
to allow gaps in the data due to passing through a tunnel
or under a bridge, but is short enough to split trips where
the recorder has been turned off for a short period.

The trip-based approach uses a from-to style for calculat-
ing travel times as opposed to the per segment travel time
used in the point-based approach. This means that at an in-
tersection, going right, left or straight through it are stored
as three different travel times. The situation is illustrated in
Figure 6, where three different destinations are possible from
the single originating road segment. This is an improvement
over the point-based approach, which was made due to the
fact that the time it takes to make a right turn might not

5

be the same as driving straight through an intersection. As
an example, we use one of the larger intersections in the city
of Aalborg. Here, a left turn takes 39 seconds, while a right
turn takes 19 seconds. Going straight through it takes 20
seconds on average. This illustrates how different directions
can have different travel times. This can be due to both the
volume of traffic and the properties of the intersection such
as turning lanes and light timing. The above example is not
the average case, but it does illustate that the travel time
for a segment can indeed vary depending on which way you
are going.

The from-to based style of the trip-based approach can
furthermore be used by traffic experts to analyze the fre-
quencies of turning left, right, or continuing straight ahead
at an intersection.

Figure 6: 4-way intersection.

6.1 Map Matching
In order to be able to determine to which road segment

we attach observations, we use two different types of map
matching. The first and most simple approach is a sim-
ple nearest neighbour query as used in the point-based ap-
proach.

With trip-based data, we can use the context of previous
and following observations to increase map-matching accu-
racy. While we have designed and implemented our own
approach to this, it is inspired by [3].

The map matching works on a single trip at a time. For
each observation, the map-matching algorithm finds all can-
diate road segments within a certain distance. This distance
can be varied, but the accuracy of the GPS observations
should be reflected herein. When given these candidate
segments, the map-matching algorithm works by dividing
the entire trip into smaller sub-problems whenever the algo-
rithm encounters an observation with only a single candidate
segment. If an observation only has a single road segment
within the specified distance, the algorithm assumes that
there is certainty that the observation is located on that
road segment. Based on this assumption, the algorithm can
use these observations as fixpoints. Every observation be-
tween two fixpoints will have two or more candidates, or
none at all. If they have none, it is a special case, which we
will address later. Otherwise, in order to be able to exclude
some of the candidates, the algorithm runs a shortest-path
algorithm between each set of fixpoints. Given the list of
road segments returned by the shortest-path algorithm, the
map-matching algorithm removes all candidates not in that
list from each observation. If an observation still has more
than one candidate (the observation is near an intersection),
the closest road segment is chosen.

This algorithm works best with data that is recorded at

a high frequency; otherwise, the probability of the shortest
path being the actual route decreases and data would have
to be discarded.

In Algorithm 2, the map-matching algorithm for trip-
based data is listed. As mentioned above, it takes a list
of observations as input, and outputs the same list, with a
segment id attached to each observation.

On line 2, a new instance of the Redolist class is declared.
A redolist is a simple object that holds two observations,
first and last as well as a list of observations, nodes. It has
two object methods, clear and solve. The algorithm for the
solve method will be discussed shortly. The clear method
simply clears the nodes list and sets first and last to null.
The Save method saves the particular observation.

The loop in line 4 iterates through each observation. Lines
5-6 add the observation to the redolist if the number of can-
didate road segments is greater than one (i.e. there is more
than one road segment within a certain distance). If there
is only a single candidate, on lines 8-12 we can now solve
the redolist, which is done in Algorithm 3. On lines 14-15,
if there are no candidates for an observation, we call Trip-
Match recursively with the rest of the trip, effectively split-
ting the trip in two. Here, ArraySlice is a auxiliary function
that takes an array and returns the last part of it, based on
an integer value. Finally, we break the loop as the rest of
the trip will be processed by the recursive call.

Algorithm 2: Recursive function TripMatch

input : A list of observations, Trip
output : A list of map-matched observations

begin1
redolist = new Redolist ;2
count = 0;3
foreach obs in Trip do4

if sizeof(obs.candidates) > 1 then5
redolist.add(obs);6

else if sizeof(obs.candidates) = 1 then7
redolist.last = obs;8
redolist.solve();9
redolist.clear();10
redolist.first = obs;11
obs.save();12

else13
// If sizeof(obs.candidates) < 1
TripMatch (ArraySlice (Trip, count+1));14
break;15
// Rest of trip is solved in recursive call

end16

In Algorithm 3, we solve the redolist created in Algorithm
2. The first and last variables are our fixpoints, as discussed
earlier. On line 2, we find the shortest path between those
two points. The loop starting on line 3 iterates through the
nodes of the redolist (the observations with more than one
candidate segment). On line 4, we remove all candidates not
on the shortest path between first and last. Next, if we still
have more than one candidate, we chose the candidate that
is closest to the line. If we have removed all candidates, on
line 7-8, we skip saving the observation, as it cannot be used
due to the fact that it does not have a valid candidate road
segment. Finally, on line 9 we save the observation with the
new candidate.

We have chosen the above algorithm, as we believe it has
the best performance to accuracy ratio of the algorithms, we
considered. It does have one disadvantage; it requires two
fixpoints, where we are certain about their locations on the
network. However, before the first fixpoints on the trip, and
after the last, there will be observations not between two
fixpoints. Therefore, the above algorithm can only discard
those observations.

An alternative approach would be to modify the above

6

Algorithm 3: Function Redolist.Solve

input : A Redolist object, list
output : Null

begin1
path = ShortestPath(list.first, list.last);2
foreach obs in list.nodes do3

RemoveMissing(obs.candidates, path);4
if sizeof(obs.candidates) > 1 then5

obs.candidates = GetClosest(obs);6

else if sizeof(obs.candidates) < 1 then7
continue;8
// Ignore observation as no credible candidates can

be found

obs.save();9

end10

algorithm in order to enable the use of all available data.
Instead of requiring two fixpoints, we could create a vir-
tual fixpoint based on the first observation on the trip. By
running the shortest-path algorithm on every candidate seg-
ment of this observation, we would have several possible
routes between the first fixpoint and the first observation
on the trip. The set intersection of these routes would yield
a shortest path with a high likelihood of being correct. The
path variable on line 2 of Algoritm 3 is set to this value. If
the first observation does not have a candidate on the path,
it is removed. This also applies to any consecutive points
until an observation with a candidate on the path is found.
Once this observation is reached, the algorithm continues
as normal. We have opted not to implement these modifi-
cations in our project for a number of reasons: Primarily,
the number of observations discarded for each trip is very
small (less than 1% on average). Secondly, execution time is
increased as the shortest-path algorithm, which is expensive
time wise, must be run several times over as compared to
just once in Algorithm 3.

6.2 Storage

trip_fact

PK id

trip_number
FK1 date_id
FK2 vehicle_id
FK3 driver_id
FK4 source_id
FK5 time_id
FK6 segment_from
FK7 segment_to
FK8 road_condition_id

permitted_speed
update_frequency
travel_time

Figure 7: Fact table for storing trips.

To store trips we have introduced a separate fact table,
trip fact, which can be seen in Figure 7. The trip fact table
contains the same foreign keys as gps fact introduced in Sec-
tion 4, and three additional fields, segment from, segment to
and travel time. The fields segment from and segment to
replace segment id from gps fact, and store a the fraction
of the trip that covers segment from. The field travel time
stores the time, in seconds, taken to get from the beginning
of segment from to the beginning of segment to. The field
trip number corresponds to the same field in the gps fact ta-
ble. The field attributes observations and entries in trip fact
with an identifier so that trips can be extracted in their full
length after they have been stored. The field could also be

trip_travel_time

PK id

FK1 segment_from
FK2 segment_to

travel_time
heading
<interval>
count

Figure 8: Table for storing trip-based travel times.

a foreign key to an empty trip dimension.
Figure 8 shows the table used to store travel times for

the trip-based approach. In this approach, several travel
times must be stored, one for each neighbouring road seg-
ment, compared to just two in the point-based approach.
However, this solution is still more space efficient than the
point-based approach, as we only store one row per segment
per trip, whereas the point storage model stores several ob-
servations for each of those segments. In other words, the
point-based approach needs all the observations while the
trip-based approach only saves the information about how
long it took to get from one intersection to the other.

Theoretically, the space we save can be estimated as fol-
lows:

The average segment length in our network is 185 meters,
and the average speed for all observations is 29.3 km

h
. This

means that the average number of observations per segment
per trip is 0.185km

29.3 km
h

∗ 3.6 s
h
' 22.7. This means that, in our

network, there will theoretically be 22.7 rows in the gps fact
table for each row in the trip fact table. In fact, a quick
count reveals that on 6667 trips we have 1933187 rows in
gps fact versus 123189 rows in trip fact, which corresponds
to a ratio of 15.7:1. The difference between 22.7:1 and 15.7:1
can be explained by the fact that on shorter road segments
there will be fewer observations, which means that we save
less space. In the city where our trips are located, the road
segments are usually shorter.

6.3 Splitting Trips
To fit the segment-based style of both the point-based ap-

proach and the storage model, the trips found while map
matching must be split into smaller pieces. This introduces
a problem. While the sampling rate of the trip-based ap-
proach is no lower than 10 seconds, there is no guarantee
that observations are available precisely at the beginning
and end of each road segment, which is needed in order to
measure the travel time precisely.

The situation is shown in Figure 9. To find the actual
travel time between intersections, interpolation is used and
the resulting travel time is then stored in the trip fact table.
In the figure, the time at the intersection (the big circle) can
be found by interpolating between observation 2 and 3. By
finding distance A and B, the percentage of the distance
located on the road segment labelled “from” can be found
by dividing distance A by distance A + B. That percentage
can then be multiplied by the difference in time between the
two points to find the time at the intersection. Algorithm
4 calculates a per segment travel time based on the trips
found earlier using interpolation.

Algorithm 4 works by finding the last observation on a
road segment and the first observation on the next road seg-
ment and interpolating between those observations as previ-
ously described. On lines 2 and 3 the algorithm is initialized
and on line 4, it loops over all the observations. The first ob-
servation on the road segment, first, is set on line 8, this will

7

From

To

1

2

3 4

B

A

Figure 9: Interpolating times at intersections.

Algorithm 4: Trip split

input : A list of observations, O

begin1
curr = start = O[0];2
end = O[sizeof(O)-1];3
for i=1; i<count(O); i++ do4

prev = O[i-1];5
curr = O[i];6
if !isset(first) then7

first = curr;8

if prev.segment id != curr.segment id then9
last = prev;10
curr interpol = interpolate(last, curr);11
if last.segment id != start.segment id then12

store(first.segment id, curr.segment id,13
curr interpol - prev interpol);

prev interpol = curr interpol;14
first = curr;15
unset(last);16

end17

be one of the observations used in the interpolation. When
a change in segment id is detected on line 9, last, is found
by backtracking one observation. Using the last observation
on one road segment and the first observation on the next
road segment, a time can be interpolated on line 11.

If the segment of observation last, which is the first of the
two observations used in the interpolation, is not the first
road segment in the trip, stored in start, then a travel time
is stored on line 13. This is of course because the part of the
trip from the first observation to the first intersection cannot
be used since the travel time from the first observation back
to the previous intersection cannot be extrapolated without
introducing uncertainty.

On lines 14-16 the variables are changed for the next it-
eration.

The trip algorithm will work without using the above in-
terpolation algorithm, and given that our data is recorded
at one observation per second, it will not have a large im-
pact on the estimate accuracy. However, with data recorded
at a lower rate, the interpolation algorithm should improve
accuracy. We will test this claim in Section 8. If there is
an identical traffic flow on both segments involved in the es-
timation, the interpolation technique is accurate. However,
this is hardly ever the case. There are special cases, where
the interpolation will actually decrease accuracy. This oc-
curs when the traffic situation is such, that the last of the
two segments has a slower traffic flow than the first, and the
two observations used to determine the interpolated time
are recorded such that the first observation is very close to
the transition to the next segment, and the other is far from
it.

6.4 Calculating Travel Times
After interpolation, the next step is to calculate travel

times from the trips stored in the trip fact table. Algo-

rithm 5 calculates travel times in almost the same manner
as Algorithm 1 does for the point-based approach. The dif-
ference lies in that the trip-based approach uses the from-to
approach to finding travel times. For each road segment,
travel times to all its neighbours must be calculated. On
line 4 of Algorithm 5 the neighbours for the current road
segment, r, are found. The following SQL statement finds
the neighbours:

SELECT unique(pol_id)

FROM connections

WHERE conn_id IN (

SELECT conn_id

FROM connections

WHERE pol_id=r)

AND pol_id!=r;

When the neighbours are found, travel times to each neigh-
bour can be found on lines 5-10 in the same way as in
the point-based algorithm. Here the getAvg function is ex-
pressed by the following SQL statement:

SELECT avg(travel_time)

FROM trip_fact

WHERE segment_from=r

AND segment_to=n

AND <interval>;

The length of the road segment and the travel time is
calculated as in the point-based algorithm. On line 10 the
calculated travel time is stored in the database as described
in Section 6.2.

Algorithm 5: Trip-Based Algorithm

input : A list of road segments, R
input : A list of intervals, I

begin1
avg = 0, len = 0, tt = 0;2
foreach r in R do3

neighbours = getNeighbours(r);4
foreach n in neighbours do5

foreach <interval> in I do6
avg = getAvg(r, n, <interval>);7
len = getLength(r);8
tt = (len/avg)*3.6;9
store(tt, r, n, <interval>);10

end11

7. VALIDATION
In this section, we will validate the trip-based and point-

based approaches. Validation of the two approaches will
be based on data from the Spar p̊a farten data set. We
have found two separate routes, one route in the center of
the city of Aalborg, where we know that traffic jams are
frequent and one route on one of the major roads not in the
central city. The two routes are shown in Figure 10. The
red route we will refer to as “Vesterbro” and the blue route
as “Sohng̊ardsholmsvej”.

As we do not have the means to perform an extensive
data gathering operation to find the actual travel times
on the routes, for example by setting up a license plate
recognition system and recording traffic data, we will ver-
ify our estimates by using data from our data set. Based
on the Spar p̊a farten data set we have manually deter-
mined the travel time for the two routes at two different
periods of time by analyzing the data and making sure that
any outliers are not used. For the Vesterbro route we are
using Monday-Thursday 6:00-8:00 and Monday-Thursday
12:00-14:00 to maximize the volume of data while main-
taining a stable travel time within the time period. For the

8

Figure 10: The routes used in validation.

Sohng̊ardsholmsvej route the intervals are Monday-Thursday
6:00-8:00 and Monday-Thursday 14:00-16:00. These travel
times are compared to the travel times calculated for the
same routes and time periods by the point-based and trip-
based approaches. Both the trip-based approach and the
point-based approach will be based on the data from the
Spar p̊a farten data set, using the one-second sampling rate.
The results of the validation can be seen in Tables 1 and 2.
The entries labeled “Actual” are the travel times manually
determined. The entries marked with “Same” are only based
on the data used to determine the actual travel times. The
entries marked with “All” are based on the entire Spar p̊a
farten data set which should give an idea of how the two
approaches should perform in practice. All times are in sec-
onds.

Method Direction Time 6-8 Time 12-14
Actual North 150.2 210.7
Trip (Same) North 151.2 210.7
Trip (All) North 160.1 213.9
Point (Same) North 140.4 213.4
Point (All) North 158.3 253.4
Actual South 205.0 229.5
Trip (Same) South 205.0 229.6
Trip (All) South 210.7 249.3
Point (Same) South 209.0 222.4
Point (All) South 175.0 249.8

Table 1: Vesterbro

As expected the trip-based approach estimates the travel
times nearly 100% correct using the same data set while the
point-based approach is slightly off. It is important also to
note that the trip-based approach performs better than the
point-based approach using the entire data set.

Theoretically, the trip-based approach should not deviate
from the actual travel time using the same data foundation.
In Tables 1 and 2, we see that the trip-based approach devi-
ates very little from the actual travel time. The actual travel
times are determined by analyzing how long it took to get
from the beginning of the route to the end, which is the same
approach as the trip-based algorithm uses, only it does so
for each segment instead of the entire trip. The small de-
viations are due to the interpolation of observations, which

Method Direction Time 6-8 Time 14-16
Actual North 105.3 140.8
Trip (Same) North 105.3 140.8
Trip (All) North 115.5 141.7
Point (Same) North 117.5 140.7
Point (All) North 134.7 146.3
Actual South 90.8 84.7
Trip (Same) South 92.1 85.0
Trip (All) South 95.0 102.0
Point (Same) South 94.0 85.1
Point (All) South 107.6 134.8

Table 2: Sohng̊ardsholmsvej

may be slightly off, as we will show in 9. The point-based
approach treats all points as equal which means that for
the point-based approach to be 100% correct all the points
must be evenly distributed along the route, which explains
the small deviation between the actual travel time and the
travel time estimated by the point-based approach. This is
because the average speed will be based on an unevenly dis-
tributed set of observations but when converting speed to
travel time an even distribution is assumed.

Using the entire data set the point-based approach devi-
ates even more. This might have several reasons. First of
all it might be that the data in the entire data set is more
unevenly distributed. It might also be, that the small error
accumulates as more data is used. Secondly, it might be
data from single, unconnected observations; these would be
discarded in the trip-based approach. Finally, in the trip-
based approach, outlier detection is aided by the fact that
individual observations are groups together in trips. This
makes it easier to detect stops not related to traffic con-
ditions. In the point-based approach observations are con-
sidered independent which makes it much harder to detect
outliers, yielding an inferior data foundation for the point-
based approach. In our validation we manually removed
three trips from “Vesterbro 6-8, South”, where the cars had
clearly been parked on a nearby parking lot for an exten-
sive period of time. This process could be automated by
an efficient outlier detection algorithm. Such algorithms are
already well documented, and thus outside the scope of this
article. The effect of doing so clearly shows in the results,
where the difference between the actual travel time and the
travel time calculated by the point-based approach is 14.6%.

The numbers in Tables 1 and 2 seem to indicate that the
trip-based approach has an average error of 0.3% (from 0%
to 1.4%), while error of the point-based approach is 3.4%
(from 0.07% to 10.4%) using only the same data set.

8. EXPERIMENTS
In this section, we will perform a number of experiments

in order to be able to compare and evaluate the point-based
and trip-based algorithms. First, we will investigate how
fast the two algorithms become accurate if gradually fed
more data. We will also investigate the effect of lowering the
sampling rate for the Spar p̊a farten data set. The native
sampling rate of the data set is one observation every sec-
ond. In our experiment, we run a series of test on a selected
route, gradually lowering the sampling rate to one observa-
tion every two minutes. During the same experiment, we
will investigate the effects of interpolation between observa-
tions, as mentioned in Section 6.3. Finally, we will compare
the road network coverage of both approaches.

8.1 Data Quantity
In our first experiment, we will examine exactly how much

9

data is needed to provide an accurate estimate. For this pur-
pose, we will run a series of tests, each time increasing the
amount of data on which the estimate is based. We will
use the same data as in our verification, more specifically
the data from Vesterbro between 6 and 8, in the northern
direction. We chose this data due to the fact that both
algorithms provide roughly the same estimate. This is im-
portant when we want to compare how fast the algorithms
converge on the final estimate. It may not be the same as
the actual average travel time for our selected trips, but this
is due to the fact that the selected trips in this case are not
entirely representative of the entire data set.

The initial run of the algoritms will rely only on data
from the first week of the year. Each consecutive run will
add another week until we have the full 52 weeks of the year.

In Figure 8.1, we show the results of the experiment. The
horizontal axis is the number of weeks included in the es-
timate, while the vertical axis is the estimated travel time
in seconds. Notice that the horizontal axis starts at week
26. This is due to the fact that we do not have data for the
entire route for the first 25 weeks of the year. From week 9
to week 26 only a part of the route is covered by the data in
the chosen time period. The solid line is the trip algorithm,
the dashed line is the point-based algorithm.

 140

 145

 150

 155

 160

 165

 170

 175

 25 30 35 40 45 50 55

T
ra

ve
l t

im
e

(s
)

Quantity (weeks)

Quantity vs. precision

Trip
Point

Figure 11: Quantity of data: Effect on accuracy

From the graph, it can be seen that both algorithm con-
verge on 160 seconds, which is the result from the validation.
It can also be seen that the accuracies of the algorithms
improve drastically until week 47, where both lines remain
stable. From the experiment, we can see that the trip algo-
rithm is generally more accurate than the point algorithm,
with the exception of weeks 37 and 38. It can also be seen
that both algorithms follow the same tendency, which is due
to the fact that the data foundation is the same. It is inter-
esting to note that the trip algorithm performs better than
the point algorithm, even with a relatively small amount of
data.

In the experiment, we added a single week at a time. As
such, it is not entirely linear, which may skew the graph. In
Figure 12, we show the actual number of observations used
to create Figure . As the figure shows, the last observation
is in week 47. Until that point, the line is approximately
linear, the largest exception being around week 33, where
500 observations are added at once.

Figure 13 shows the same experiment including the Bektra
data set. Instead of Vesterbro between 6:00 and 8:00, we use
Vesterbro for the entire day to get enough data in the Bektra
data set. The figure shows that the trip-based and point-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Q
ua

nt
ity

 (
ob

se
rv

at
io

ns
)

Week

Data quantity

Figure 12: Data Quantity

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 5 10 15 20 25 30 35 40 45 50 55

T
ra

ve
l t

im
e

(s
)

Quantity (weeks)

Quantity vs. precision incl. Bektra data

Point
Trip

Point (Bektra)

Figure 13: Accuracy of the Bektra data set

based approaches still agree on the travel time. The Bektra
data set, however, is far from the two others; the travel time
is much higher and the shape is much more stable. The
travel time is so high that we suspect that the data is biased
because it is collected by taxis. We know that the taxis have
dedicated stopping locations along Vesterbro, which seems
to have a large impact on the travel time. The shape of
the Bektra line in the figure lacks the same general form
as the Spar p̊a farten data set. The Spar p̊a farten data
set exhibits the tendency that we would expect, so a more
thorough analysis of the Bektra data set is needed, but that
is outside the scope of this article.

8.2 Sampling Rate
For our second experiment, we investigate the effects of

lowering the sampling rate for our trip-based approach. We
vary the sampling rate from one observation per second,
which is the sampling rate of the Spar p̊a farten data set,
up to and including one observation every other minute as in
the Bektra data set. Again, we have chosen the same trips
as in the validation: Versterbro, northern direction between
6:00 and 8:00 in the morning. This experiment does not
include an estimate for the point-based approach, as it is
not dependant on sampling rate.

The average length of road segments on Vesterbro is ap-

10

proximately 82 meters. Based on the average segment length,
we can calculate a rough estimate of the sampling rate needed
to get at least one observation per segment. Since the speed
limit is 50 km

h
, an average segment will take 5.9 seconds

to traverse at the permitted speed. However, the average
speed of all our observations on Vesterbro is 20,4 km

h
. At

this speed, it will take 14.5 seconds. From this rough esti-
mate, we expect that sampling rates should be higher than
once every 14-15 seconds in order to have at least one ob-
servation per segment on average. In order to provide an
accurate estimate, it should be even higher, as many seg-
ments are shorter than the average. In the following, we
will investigate the above speculations.

Figure 14 shows the result of the experiment. The hor-
izontal axis is the sampling rate and the vertical axis is
either travel time in seconds or a percentage. There are
three completely horizontal lines. From top to bottom they
are: Travel-time estimated by the naive approach, the actual
travel-time, and a line to indicate 100 percent.

The grey dashed lines at the top of the figure are travel-
times estimated by the trip-based algorithm. The top most
line is without interpolation. Finally, the dotted grey line
at the bottom of the figure indicates how many percent of
the segments used in the estimation that had to revert to
the naive approach due to lack of data on the segment.

As can be seen in the figure, the trip algorithm performs
well with high sampling rates, but as soon as there is more
than a few seconds between the samples, the accuracy is
lowered substantially. As the naive percentage line indi-
cates, the trip algorithm quickly becomes unable to predict
travel times for many of the segments as the sampling rate
is lowered. In experiments, we lowered the sampling rate to
one observatation every 120 seconds, but after 30 seconds,
nearly all estimates uses the naive fallback method, and as
such, they are not interesting. Therefore, the figure only
ranges from 1 to 30.

The naive algorithm is actually better if the sampling rate
is lower than 6 observations per minute (10 seconds between
observations). At this point, we are forced to revert to the
naive algorithm for more than half of the segments. At 30
seconds between each observation, nearly all segments are
calculated without using the actual data. This is not sur-
prising considering that with a trip that takes 150 seconds,
and thereby consists of 150 observations, removing all but
every 30th of those leaves just 5.

During our experiments, we verified our intuition that low-
ering the sampling rate effects short segments first. This is
due to the fact that the probability of an observation being
recorded at short segments is lower than for long segments,
caused by the cars spending more time on the long seg-
ments. In our experiment, short segments are weighted the
same as long segments for the naive percentage. This means
that the percentage seems higher than if we had used the
total road length for comparision instead of segment count.
While short segments acccount for many of the naive fall-
backs, they do not have a large impact on total travel time,
as short segments per definition only make up a small part
of the total travel time, given an even distribution of traffic.

The reason that the trip-based approach becomes more
inaccurate than the naive approach lies in the problem of
determining when the trip algorithm is accurate. When we
know the actual travel time, it is very clear that the trip
algorithm is less accurate, but naturally, when estimating
the time, we do not know the actual travel time. The trip
algorithm is unable to exclude observations that are slower
than the actual time, as it is impossible to determine wheter
the long travel time is due to inaccuracies of the algorithm
or if it is caused by slow traffic.

From the experiment, it can be seen that the trip-based

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

T
ra

ve
l t

im
e

(s
)

Seconds between samples

Sampling rate

Actual
With interpolation

Without interpolation
Naive percentage

Naive estimate

Figure 14: Sampling rate: Effect on accuracy

approach requires a high sampling rate. This is a clear dis-
advantage of the trip-based approach, as any inaccuracy due
to the low sampling rate is an irreversible error, as adding
more data with the same low sampling rate will not improve
the trip-based estimate. The point-based approach does not
perform well with small amounts of data, but here, adding
more data will rectify the situation, as it is simply based on
an average.

8.3 Interpolation
In the previous experiment, aside from lowering the sam-

pling rate, we also investigated the effect of disabling inter-
polation in our trip-based algorithm. The results are also
shown in Figure 14, and clearly shows that interpolation in-
creases accuracy. As we expected, the improvement is great-
est as the sampling rate is lowered. At 30 seconds between
samples, both approaches use the naive fallback method,
and interpolation is no longer used for the vast majority of
segments. Because of this, the increase in accuracy is de-
creased to zero.

8.4 Data Coverage
The aim of our final experiment is to investigate the data

coverage of the point and trip algorithms. We simply count
the segments which are covered by enough data to provide
a reasonable estimate. For the trip-based approach, this
means that the algorithm must have been able to interpolate
a travel-time fromgq a trip with a sufficient sampling rate.
For the point-based approach, we define coverage as having
atleast 10 observations on a segment, as segments with only
a few observations cannot be accurately estimtated.

In total, there are 1773 segments with at least a single
observation in our system. Of those, 1520 have at least 10
observations for the point-based approach. The trip-based
approach covers 1481 of those segments. As the above fig-
ures show, the difference in coverage between the two ap-
proaches is roughly 3%.

9. DISCUSSION
In this section, we will discuss some of the design choices

we have made. They are mostly concerned with the algo-
rithms of the trip-based aprroach, as it is by far the most
complex algorithm.

9.1 Segmentation of Trips
One dilemma we faced during the project is the concept

of dividing the trips into segment-based travel times versus

11

using entire trips.
One argument is that the accuracy when using entire trips

would be greater, as an estimate would be based on the ex-
act same stretch of road as the trips on which it is based,
which means that the timings of the intersections are taken
into consideration. As previously mentioned, we have cho-
sen to split the trips into smaller pieces. This is done for
a number of reasons: First, we find it nearly impossible to
rely on trips with the exact same path as the estimate tar-
get for long journeys. The probability of finding a trip with
the exact same segments traversed has an inverse propor-
tional relationship with the number of segments. As such,
any reasonable algorithm would divide the trips into smaller
segments, perhaps between cities or major roads. As an ex-
ample, take Figure 15. The motorway and bridge between
Odense and Kolding is an major arterie in Danish domestic
traffic. As such, it is often traversed and should therefore
be well covered in any data set covering the region. In order
to illustrate a point, let us then assume that someone would
like to know the travel-time estimate for the route between
Kolding and Stige via Odense, the roads between Stige and
Odense being much less used than the motorway. Unless
we divide the trips into smaller parts, we would only use all
trips traveling exactly the same route, meaning that all trips
stopping in Odense or continuing south or east would not
be considered. The trips that were used in this estimation
would most likely be very accurate, but in order to have a
nuanced picture of reality, many cars would have to drive
that exact trip many times in order to be able to provide an
estimate for all hours of day, weekends etc.

Figure 15: An example trip.

If the trip was split between Kolding and Odense, and
Odense and Stige, however, all trips on both stretches of
road could be used individually. By our logic, there is no
reason to stop there, however. By dividing each trip into
segments, we get the best of both worlds. We retain the
ability to use only the trips, that traverse the exact same
segments as the target path if we want to, yet we can use all
available data as we calculate the travel time per segment.
As we have shown in our validation, our trip-based algorithm
will return the alomst exactly same travel time as one that
measure the start and end time of a trip.

Another way of looking at it is if you have 100 trips from
Kolding to Odense, and 20 trips from Odense to Stige, the
approach that splits the trips into smaller pieces would use
the union of the two sets of trips, whereas insisting on using
entire trips would result in using only the intersection.

9.2 Lowering Sampling Rate
In our experiments, we would like to have compared the

performance of the two algorithms when lowering the sam-
pling rate gradually from once per second to once every two
minutes. But in the context of the point-based algorithm,
sampling rate is irrelevant in any respect other than increas-
ing it would provide more observations. As such, it is not
the frequency of the observations, but rather the quantity.

Another related issue that stems from lowering the sam-
pling rate is the fact that any error made in the estimation

of a segment is not summed up as one would think, but
rather they cancel each other out. This is best illustrated in
Figure 16.

A B C D

Figure 16: Sources of inaccuracy of the trip algo-
rithm.

Here, the dots are observations along a road network il-
lustrated by the black lines. If we wanted to determine the
travel time for each individual segment, we would use the
time stamps of the first observation for each segment if we
choose not to use interpolation. The solid lines at the bot-
tom of the figure indicate these times. The dashed lines
indicate the actual times when the car passes from one seg-
ment to another. Had we chosen to use interpolation, the
principle would be the same, but the solid lines would be in
a different location. For the sake of simplicity, we will ignore
interpolation in this example.

In the figure, both the solid and dashed line form a con-
tinuous time period. There are no gaps or overlaps in the
travel times for either line. Take the first set of lines at A
and B. The actual travel-time interval starts earlier than the
estimated interval, but it also finishes later. Because there
is no gap leading to the next set of intervals between B and
C, any error made near B is cancelled out. The same ap-
plies to C, when we continue. In other words, the total error
made is not A+B+C+D, as one would expect, but rather,
it is simply the difference between the error made near A
and D. A more mathematical way of describing this would
be as follows:

We use the following methodology to generically describe
a point in time. AA is the time on the dotted line in Figure
16, where the first vertical line intersects the horizontal. In
other words, when the observed car actually enters the first
segment. EB is the time on the solid line where the second
vertical line intersects - or the time of the first recording on
the second segment. Ax is the actual travel time, Ex is the
estimate. Sn is segment number n.

The error per segment is:

S1 : (AB − AA) − (EB − EA)

S2 : (AC − AB) − (EC − EB)

S3 : (AD − AC) − (ED − EC)

Total:

S1 + S2 + S3 =(AB − AA) − (EB − EA) + (AC − AB)−

(EC − EB) + (AD − AC) − (ED − EC)

=AB − AA − EB + EA + AC − AB−

EC + EB + AD − AC − ED + EC

=AB − AB + EB − EB + AC − AC+

EC − EC + AD − AA + EA − ED

=AD − AA + EA − ED

Rewritten, as the error is an absolute percentage:

˛̨
(AD − AA) − (ED − EA)

˛̨
The above result means that the only possible deviance

from the actual travel time is at either end of the trip. In

12

addition, the differences will always counteract each other.
What this means in an actual environment is that while
each individual segment might be inaccurate, when estimat-
ing the travel time for several segments, there are only two
places where an error might be introduced.

9.3 Fallback Strategy
In the previous sections, we introduced two approaches

for travel-time estimation on single road segments. Both of
these methods require a certain amount of data to work, but
in a road network, data shortage can easily occur on smaller
or less used roads. Both the point-based and trip-based ap-
proach require the same amount of data to converge, but
the trip-based approach also requires a high sampling rate.
For this reason, the point-based approach is more flexible
in that it can be applied in more cases than the trip-based
approach. On the other hand, the trip-based approach is
faster, requires less storage and is more accurate. The trip-
based approach is also able to distinguish between the dif-
ferent destinations from a given road segment.

Combined, the two approaches complement each other so
that a travel-time estimate can always be calculated. The
trip-based approach is used when possible, but if the sam-
pling rate is not sufficient for the trip-based approach, the
point-based approach can be used as a fallback method.

For the solution to be feasible in practice, more fallback
methods are needed. In our previous article [13], we in-
troduced the naive approach, that was able to provide an
estimate for segments, where no data was available. This
method suffers from a greater inaccuracy than the data-
based approaches, just as it is not able predict rush hours.

However, the naive approach is a necessity, if we want to
be able to predict travel times even when little or no data
is available. For example on little used road segments or if
no data is available initially.

The solution is to use a naive approach, which defines the
travel time for a road segment as the length of the road di-
vided by the allowed speed, multiplied by a constant factor.
Either this constant factor can be determined manually, or
it can be based on an average retrieved from the database.
It is used as it is unrealistic to assume that cars can drive
at the permitted speed, as there will inevitably be intersec-
tions, lane merges or other circumstances that will reduce
the average speed. Either this factor can be completely con-
stant, that is to say, determined statically by someone with
domain knowledge, or it can be found by comparing the av-
erage speed to the permitted speed on segments where data
is available. Ideally, the map used should have an indica-
tion of to which zone each segment belongs. This is based
on the assumption that city zones opposed to the country
generally have more speed reducing obstacles in the form of
aforementioned intersections, lane merges, etc.

Other possible fallback methods include neighbourhood
approaches, where the travel time for a road segment lack-
ing GPS data is based on the travel time for neighbouring
roads of the same road type. This has the disadvantage that
although the roads are close and of the same type, it is still
impossible to know whether the road actually exhibits the
same traffic patterns. Similar to this, one might argue that
if a given segment had enough data in one direction, it would
be possible use this data in both directions.

One flaw remains in both above ideas: if there is not
enough data available on a particular segment, yet there
is a segment nearby with data available, there must be a
reason for this. The difference in data quantities could very
likely be caused by a difference in the amount of traffic. If
traffic is not the same, then the average speed is unlikely to
be the same either. The same principle applies to segments,
where data is only available in one direction of traffic.

9.4 Calculating Route Travel Times
In practice, travel times are seldom based on single road

segments but rather on entire roads or a start and destina-
tion pair. Finding the travel time for an entire road or a
route is as simple as summing up the road segment travel
times involved. For the point-based approach this can be
done by a simple SQL statement using a list of road seg-
ments, <route>, and <interval> as earlier:

SELECT sum(travel_time)

FROM point_travel_time

WHERE segment_id IN (<route>)

AND <interval>;

For the trip-based approach the from-to based style re-
quires that for each road segment in the route, its successor
is defined in order to find the corresponding travel time.
Algorithm 6 sums up the travel time for a route from the
beginning of the first road segment to the beginning of the
last road segment.

Algorithm 6: Trip-Summation Algorithm

input : A list of road segments, R
input : An interval, <interval>
output : The total travel time, total

begin1
total = 0;2
for r = 0; r ¡ sizeof(R) - 1; r++ do3

from = R[r];4
to = R[r+1];5
tt = getTT(from, to, <interval>);6
total += tt;7

end8

In Algorithm 6 the function getTT is expressed by the
SQL statement:

SELECT avg(travel_time)

FROM gps_fact

WHERE segment_from=from

AND segment_to=to

AND <interval>;

Finding the actual route between two points can be done
by using a shortest-path algorithm. We are using a variant
of the A∗ algorithm adapted for our road-network structure.
Using a timed version of the A∗ algorithm the shortest path
between two points can be found by using the travel times
stored in the point travel time and trip travel time tables
thus finding the fastest path instead of the shortest path.
This has not yet been implemented in our code, but it is a
matter of replacing the body of a single function, which now
only returns the naive estimate.

9.5 Trips or Points
While the trip-based approach has many advantages over

the point-based approach, it is not without problems. As
such, there will be circumstances that make the point-based
approach better than the trip based approach. First and
foremost of these circumstances is the sampling rate. As we
showed in Section 8.2, lowering the sampling rate has a great
impact on the accuracy of the trip-based algorithm. There-
fore, we cannot recommend using the trip-based algorithm,
if there is more than 3 or 4 seconds between observations.
As we discussed earlier, any error made by the trip-based al-
gorithm due to the low sampling rate is irreversible, whereas
the point-based approach improves as more data is added,
regardless of sampling rate.

In Section 8.1, we showed that the trip-based approach
was more accurate than the point-based approach with the
same amount of data. This is surprising, as we would assume

13

that the average value used to estimate travel times in the
point-based approach would require little data to provide
a good estimate. While this is true to some extent, if the
data is sampled once per second, the trip-based approach
is better. The point-based approach is better as soon as
the sampling rate drops. This leads to the discussion of
when to use the point-based approach instead of the trip-
based. We have already established that a high sampling
rate will provide the best estimate, but it also comes at a
cost. In several scenarios, it is imaginable that the data
costs money to transfer. For example, some GPS receiver
has rely on either UMTS or GPRS technology to transfer
the data from the receiver to a central server, as is the case
with Bektra. As such solutions come at a high bandwidth
cost, it might be more feasible to get less data from more
cars in order to be able to cover an entire road network
instead of having the same amount of observations centered
around the most often used roads of fewer drivers. In the
ideal case, drivers would upload the data using a hard line,
which is both typically faster and cheaper. Depending on the
scenario, both methods can therefore be the best option.

10. CONCLUSION AND FUTURE WORK
In this article, we have developed two approaches to travel-

time estimation, the point-based approach and the trip-
based approach, both based on our earlier work in [13]. Both
approaches estimate travel times for a road network using
GPS data provided by different sources. To store GPS data,
the road network, and the information that allows us to fil-
ter out specific GPS data, we have designed a data ware-
house flexible enough to accommodate future additions to
our travel-time system including vehicle and driver informa-
tion, road conditions and addresses. Both of our approaches
have been implemented to the extent that we need in order
to verify them. Using a number of experiments, we have ver-
ified that both the point-based and trip-based approaches
work as intended. Furthermore, we have performed a num-
ber of experiments to show how the two approaches perform.
As it turns out, the trip-based approach converges at the
same rate as the point-based approach, but oscillates less,
which means that it is more precise than the point-based
approach, even when less data is available. We have dis-
cussed how the point-based and trip-based approaches can
be combined in practice to calculate travel times and have
provided one possible strategy for doing so.

The main contribution of this article, the trip-based ap-
proach, is more space efficient, more precise and faster than
the point-based approach and certainly an improvement over
using a naive travel time. As a side benefit, the trip-based
approach can be used to examine the frequencies of turning
right, left or continuing in an intersection. This is used by
traffic experts when analyzing intersections.

The core of our travel-time system is now in a state where
we can begin to estimate travel times, but as always, much
more can be done. The following is a short list of the furture
work we would like to look into.

Storing Travel Times and Intervals. A topic we have only
briefly touched is the storage of travel times after they have
been calculated. This topic is closely related to the inter-
vals used in Section 5 and 6 as the table structure of tables
point travel time and trip travel time depends on the time
intervals chosen. For example, one might choose to store a
travel time for each road segment for each hour of the entire
year. No matter what granularity is chosen it might be pos-
sible to group periods of similar travel times together to save
space. For example, if the travel time for Mondays 8-9 and
Mondays 9-10 are similar enough, they can be combined to
a single travel time, Mondays 8-10. This topic is described

in more detail in [13].

Using Auxiliary Information. Travel times depend on a
number of factors that we have mentioned earlier but not
used in our running system. Information about drivers, ve-
hicle types, weather and road conditions may improve the
current travel-time estimate. As mentioned earlier, drivers
and vehicles drive by specific patterns, roads are periodically
under construction and periods of extreme weather (for the
season) occur, these cannot be predicted, but they can be
used to filter out any odd data at a later point.

Dynamic Map. One of the problems in dealing with road
networks is the fact that roads change slowly over time. In
order to consider this we first need a mechanism to deter-
mine when old data is no longer useful, as the road has
changed. Furthermore, the map needs to be maintained,
either manually or - preferably - automatically.

Outlier Detection. As briefly mentioned in Section 7, out-
lier detection is needed to remove trips and observations
that are not representaive for the entire data set. Such trips
include those where the car has been stopped at the side
of the road for an extensive period of time or trips where
the driver for some reason drives much slower than the rest
of the traffic. There are two options; either the observa-
tions are discarded at load time or simply not used when
estimating travel times.

ACKNOWLEDGEMENTS
We would like to thank Agne Brilingaite and Christian S.
Jensen for providing a map matching algorithm on which we
can base our system. Also, we thank Bektra [1] and the Spar
p̊a farten [6] project for providing invaluable GPS data.

14

REFERENCES
[1] BeKTra. http://www.behovstyrettrafik.dk, June 2007.

[2] Sotiris Brakatsoulas, Dieter Pfoser, and Nectaria
Tryfona. Modeling, storing, and mining moving object
databases. In IDEAS ’04: Proceedings of the
International Database Engineering and Applications
Symposium (IDEAS’04), pages 68–77, 2004.

[3] Agne Brilingaite, Christian S. Jensen, and Nora
Zokaite. Enabling routes as context in mobile services.
In GIS ’04: Proceedings of the 12th annual ACM
international workshop on Geographic information
systems (GIS’04), pages 127–136, 2004.

[4] Francois Dion and Hesham Rakha. Estimating spatial
travel times using automatic vehicle identification
data. Intelligent Transportation Systems, pages 1–30,
2003.

[5] ESRI. http://www.esri.com, June 2007.

[6] Spar Paa Farten. http://www.sparpaafarten.dk, June
2007.

[7] Barbara Frith, David Pearce, and Tom Sutch. The
highways agency journey time database. Road
Transport Information and Control, pages 98–105,
2004.

[8] GPSY.com.
http://www.gpsy.com/gpsinfo/gps-faq.txt, June 2007.

[9] Ralf Hartmut Güting, Victor Teixeira de Almeida, and
Zhiming Ding. Modeling and querying moving objects
in networks. The VLDB Journal, pages 165–190, 2006.

[10] C. Hage, C.S. Jensen, T.B. Pedersen, L. Speicys, and
I. Timko. Integrated data management for mobile
services in the real world. In VLDB 2003: Proceedings
of 29th International Conference on Very Large Data
Bases, pages 1019–1030, 2003.

[11] Christian Overgaard Hansen. Traengselsindikator for
biltrafik. Trafikdage, pages 1–10, 2004.

[12] Anthony Harrington and Vinny Cahill. Route
profiling: putting context to work. In SAC ’04:
Proceedings of the 2004 ACM symposium on Applied
computing (SAC’04), pages 1567–1573, 2004.

[13] Anders Forum Jensen and Troels Villy Larsen.
Travel-time estimation in road networks using gps
data, 2006.

[14] Christian S. Jensen, Anders Friis-Christensen,
Torben B. Pedersen, Dieter Pfoser, Simonas Šaltenis,
and Nectaria Tryfona. Location-based services: A
database perspective. In ScanGIS, pages 59–68, 2001.

[15] Christian S. Jensen, Augustas Kligys, Torben Bach
Pedersen, and Igor Timko. Multidimensional data
modeling for location-based services. The VLDB
Journal, pages 1–21, 2004.

[16] C.S. Jensen, T.B. Pedersen, L. Speicys, and I. Timko.
Data modeling for mobile services in the real world. In
Advances in Spatial and Temporal Databases, pages
1–9, 2003.

[17] Evangelos Kanoulas, Yang Du, Tian Xia, and Donghui
Zhang. Finding fastest paths on a road network with
speed patterns. In ICDE ’06: Proceedings of the 22nd
International Conference on Data Engineering
(ICDE’06), pages 1–10, 2006.

[18] Wei-Shinn Ku, Roger Zimmermann, Haojun Wang,
and Chi-Ngai Wan. Adaptive nearest neighbor queries
in travel time networks. In GIS ’05: Proceedings of the
13th annual ACM international workshop on
Geographic information systems (GIS’05), pages
210–219, 2005.

[19] Yanying Li and Mike McDonald. Link travel time
estimation using single gps equipped probe vehicle.

Intelligent Transportation Systems, pages 932–937,
2002.

[20] Otto Anker Nielsen. Analyse af traengsel og
hastigheder vha. gps-data. Trafikdage, pages 1–21,
2003.

[21] Dieter Pfoser, Nectaria Tryfona, and Agnes Voisard.
Dynamic travel time maps - enabling efficient
navigation. In SSDBM ’06: Proceedings of the 18th
International Conference on Scientific and Statistical
Database Management (SSDBM’06), pages 369–378,
2006.

[22] Cesar A. Quiroga and Darcy Bullock. Travel time
studies with global positioning and geographic
information systems: an integrated methodology.
Transportation research. Part C : Emerging
technologies, pages 101–127, 1998.

[23] J. Rice and E. van Zwet. A simple and effective
method for predicting travel times on freeways.
Intelligent Transportation Systems, pages 227–232,
2001.

[24] Michael A.P. Taylor, Jeremy E. Woolley, and Rocco
Zito. Integration of the global positioning system and
geographical information systems for traffic congestion
studies. Transportation research. Part C : Emerging
technologies, pages 257–285, 2000.

[25] Igor Timko and Torben Bach Pedersen. Capturing
complex multidimensional data in location-based data
warehouses. In GIS ’04: Proceedings of the 12th
annual ACM international workshop on Geographic
information systems (GIS’04), pages 147–156, 2004.

[26] S. Turner, R. Margiotta, and T. Lomax. Lessons
learned: Monitoring highway congestion and reliability
using archived traffic detector data. Mobility
Monitoring Program - Year 4, pages 1–36, 2004.

[27] B.S. Yoo, S.P. Kang, and C.H. Park. Travel time
estimation using mobile data. In Proceedings of the
Eastern Asia Society for Transportation Studies, Vol.
5, pages 1533–1547, 2005.

15

