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ABSTRACT:

This report documents the attempt
to raise security for clients against
a threat model, with these three at-
tacks; Man In The Middle (MITM),
phishing, and tampering attacks.
The analysis describes security
mechanisms and existing technology
to prevent the three attacks in the
threat model. It was discovered in
the analysis that there exists tech-
nology to prevent MITM and phish-
ing attacks, but no security mecha-
nism exist to prevent tampering of
Java client programs.
Instead of designing and implement-
ing existing technology as secu-
rity mechanisms to prevent MITM
and phishing attacks, the project
should be, to design and imple-
ment a possible tamper-proofing se-
curity mechanism for Java client
programs. In the design and imple-
mentation chapters, documentation
of the prototype tamper-proofing se-
curity mechanism is found.
The test shows that the security
mechanism is not sufficient, to en-
sure that the client was actual
tamper-proof. However, when the
prototype was tested, a nice prop-
erty was found in the embedding
of an illegal byte array operation,
which could make it possible to al-
low one to trust the client for a small
period of time.





Preface

This report is the master’s thesis written by Dan Lund Christensen from the SW10
semester at the Department of Computer Science, Aalborg University.

The goal of the project is to analyze, which security mechanisms a client implemented in
Java will require to provide security against the attacks defined in the threat model. As
no security mechanism existed against the tampering attack, the project then changed
to design and implementation project of the security mechanism to prevent this attack.
Finally the designed and implemented tamper-proofing security mechanism has been
tested, to observe whether it actual was secure against the tampering attack.

The report is split into six parts arranged as chapters.

The first chapter is the introduction of the problem. The introduction contains the
requirements to the client, the threat model of the attacks to prevent, and a summary of
what the client should be secure against.

The second chapter is an analysis of the security mechanisms, that can prevent the attacks
from the threat model.

The third chapter is the design of the tamper-proofing security mechanism, where the
design decisions are documented.

The fourth chapter is the implementation of the tamper-proofing security mechanism,
where the implementation decisions are documented and which problem have been en-
countered and how they were solved.

The fifth chapter contains the test-case and test results of the tamper-proofing security
mechanism, which is used for concluding whether the tamper-proofing security mechanism
is secure against the tampering attack.

The sixth chapter is the conclusion of the entire Java Applet Client Security project.

Reading Instructions

The report can be read by other students from computer science with basic knowledge of
data security. Bibliography references are marked with [x], where the x is the reference
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that can be looked up in the bibliography at the end of the report before appendix. Just
after the bibliography is a list of acronyms used. The first time an acronym appears
in the report it has this structure Secure Socket Layer (SSL), and later when used the
acronym will appear like this SSL.
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Chapter 1

Introduction

The topic of this master thesis is Java applet client security. The problem to research
is the fact that clients function, in what shall be considered a hostile environment. The
goal is then to implement security mechanisms in a client prototype, which makes it
less prone to specific attacks. The question whether it is possible to implement a set of
security mechanisms that makes the client function securely in hostile environments? The
function of the client is to input data into a database and know the user that did. These
requirements to the solution are first written down. The requirements to the solution are
followed by a discussion of the security the solution shall provide.

1.1 The Solution

Before selecting specific security mechanisms, the actual requirements to the solution are
formalized. The solution that consists of a client and a server is to support the list of
requirements below. Each entry on the list has parentheses at the end. In the parentheses
is a guess of the security mechanism or functionality to use for fulfilling the requirement.

Requirement 1: The user authenticate the server and authenticate herself to the server.
(User authentication)

Requirement 2: The user can submit data to a server using an input form, after com-
pleting the authentication successfully.(Server receives data from input forms)

Requirement 3: Communication between client and server is confidential.(Communica-
tion encryption)

Requirement 4: Communication between client and server is authentic.(Transaction
validation)

Requirement 5: It is easy to deploy new input forms.(Java applets)

1



2 Chapter 1. Introduction

Requirement 6: The server authenticate the client program running on the client.(Tam-
per-proofing and client validation)

Requirement 7: The security mechanisms are hard to circumvent.(Security through
obscurity)

These requirements support the following scenario. The user authenticates herself and the
server while the server authenticates the client program. The client type in the relevant
data and sends it to the server. The server sends a confirmation that data has been
received.

By observing the list of requirements with regards to security mechanisms, one would
come up with the following list of security mechanisms; security through obscurity, user
authentication, communication encryption, transaction validation, tamper-proofing, and
client validation.

1.2 Security

To discuss security, one should first find the relevant attacks to be in the threat model.
To do this one can use the list of security mechanisms that the solution description
introduces. The attacks to select for the threat model will be; MITM attacks, phishing
and tampering, these attacks are afterward put into the categories; External, Insider,
Network, Off-line, and On-line (EINOO) where relevant. The EINOO categories were
introduced in the data security course at DAIMI, Århus University, and no literature
exists that describes these categories in greater detail.

1.2.1 Threat Model

This section defines the threat model with the relevant attacks. Each attack has a short
description.

• Man In The Middle:
The passive MITM attack uses sniffing to obtain network packages, afterward an-
alyzing the network packages to obtain information, about what have been sent
between the client and server. However, there are active MITM attacks, where
the attackers have the intent of interrupting or change the information that flow
between server and client. The attacker can do it by altering the data send to the
server or client.

• Phishing:
This attack is for obtaining personal information[DTH06]. The attacker mimics the
official web server and its content, in order to trick the user into trust the website
and use it to input personal information.
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• Tampering:
This is when the re-engineer change the client to circumvent the security mecha-
nisms. It is possible because the client executable should be assumed public acces-
sible.

1.2.2 EINOO Categories

The attacks from the threat model are sorted into the EINOO categories below.

• External:
The attack is possible without use of insider privileges.

• Insider:
The attack is possible with insider privileges.

• Network:
The attacks that are possible against the network.

• Off-line attack:
The attack is possible without real-time access to the system.

• On-line attack:
The attack is possible with real-time access to the system.

The goal is to place the attacks within the relevant categories to clarify the attack; who
can perform the attack, do it target the network, or is it an attack that requires on-line
access to the system.

It is possible to place one attack within one or more attack categories. Where to place
each attack is shown in Table 1.1.

Categories Attacks

External MITM, phishing, tampering
Insider MITM, phishing, tampering
Network MITM
Off-line phishing, tampering
On-line MITM

Table 1.1: In this table the attacks are put into the relevant categories.

The MITM attack is an attack, that either an external or insider party can perform on the
network, but require the system to be on-line for the attack to be successful. The phishing
attack is an attack done by either an external or insider party, where the attacker trick
an insider into leak personal using a phony Graphical User Interface (GUI), the phishing
attack does not require the system to be on-line for success. The last attack from the
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threat model is the tampering attack. The attacker using this attack can either be an
external or insider party, and the attack does not require on-line access to the system.

The conclusion is to consider both the external and insider parties as hostile. Only the
MITM attack requires access to the network and that the system is on-line. The phishing
and tampering attack can be completed without access to an on-line system, as long they
have a version of the client program. To be resistant against tampering attacks it will
require the re-engineer to restart the attack with each new client release. Re-engineering
of programs is always possible because computers have to interpret the program.

1.3 Summary

The policies for the security mechanisms to enforce are the requirements listed in Sec-
tion 1.1, and the security mechanisms are; security through obscurity, user authentication,
communication encryption, transaction validation, tamper-proofing and client validation.
The security mechanisms chosen shall in theory make previous listed attacks hard to de-
ploy against the system. The argumentation for the security is done with a foundation
in theory, from the perspective of each security mechanism. To handle it practically
would require implementation errors being in the scope of this project which it is not,
because even a good programmer cannot promise no implementation errors, which is also
stated in [Vir91]. However, no architectural flaws should be present in the design and
implementation.



Chapter 2

Analysis

This chapter contains an analysis of these necessary security mechanisms; security through
security, user authentication, communication encryption, transaction validation, tamper-
proofing and client validation, to fulfill the requirements and scenario in Section 1.1.
The idea is to describe the security mechanisms, and compare the security mechanisms
against already existing technology. In the analysis of each security mechanism is a dis-
cussion of which security the security mechanism offer. The two security mechanisms
communication encryption and transaction validation is sub-security mechanisms to the
secure channel security mechanism. The tamper-proofing and client validation security
mechanisms should be understood as one security mechanism, because the two security
mechanisms possible will rely on the same technology or idea.

2.1 Security through Obscurity

The problem with security through obscurity is that the re-engineer can un-cover all the
information present in the program because computers are deterministic. In this section
one can view the re-engineering of an example program, to observe if it is possible for a
security mechanism to rely on hiding information in programs, because if re-engineering
can reveal the hidden information, the attacker can use the information to compromise
the system. The analysis is done with a practical perspective, which is to test the tools
available for re-engineering and obfuscation. Obfuscation is interesting because of its use
as protection against re-engineering. The conclusion of the analysis should be a process
or tool to hide information in programs.

The tool to use for disassembling is javap program released with The SUN Java Developer
Kit (JDK) and the tool to use for obfuscation is the ProGuard1 program.

1http://proguard.sourceforge.net
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6 Chapter 2. Analysis

2.1.1 Disassembling

Disassemblers are a program that requires a program file as input, and then output a
file containing program instructions. The important thing in this project is that the step
of translating a program file to some understandable file format is impossible, however,
because it cannot be impossible it should be difficult.

In this project the Java programming language is the programming chosen for imple-
menting the prototype, and then it is important to know what information the Java class
file stores. This states what information can be deduced from class files in the disas-
sembling process. In the programming language C the binaries that correspond to class
files contain instructions and memory addresses, compared to Java everything from Java
source code is present in class files except comments.

As a result of the information the class file stores, the disassemblers can output an
instruction file with variable names, this are seen in the following two code listings, the
Java source file for the program is in Appendix B Listing B.1 and the disassembling
output of the Java class file is in Appendix B Listing B.2.

2.1.2 Run-Time Analysis

Re-engineers often use debuggers to do run-time analysis which consist of monitoring
program memory and printing stack-traces, with the result that attackers can see program
flow and data in program memory. An example where monitoring of program memory
can be useful is when a security mechanism is hidden within class object, and the creation
of that object happen when the program starts, then if the garbage collector do no collect
this object while the program is running. The attacker knows that a security mechanism
protecting the program from start to end and that this object is a likely candidate of
objects that contain the security mechanism. To avoid this problem the disposing and
creation of objects that contain security mechanisms shall be done several times while the
program is running. The solution of creating and disposing of objects is still vulnerable
to another attack, because the creation of objects of the same type will resolve in objects
with the same structure in program memory. The attack would then be to search the heap
for objects with a specific structure. Stack-traces have the same property that allows to
search for specific call stack-trace patterns.

2.1.3 Obfuscation

The obfuscation process is to decrease the readability of byte-code, the evaluation of read-
ability of byte-code is done with a comparison on readability between two instances of the
same example program and then obfuscate one of the instances. After the disassembling
of the two program instances one have two results to compare.

ProGuard obfuscation program consist of these three steps:
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1. Shrinking byte-code.(dead code removal)

2. Optimizing byte-code.(analyzes and optimizes the byte-code of methods)

3. Obfuscating byte-code.(renames variables, methods, classes, etc.)

The disassembling of the obfuscation program instance is shown in Appendix B List-
ing B.3, and a comparison is done with the disassembling of the normal program instance
shown in Appendix B Listing B.2. The comparison of the two listings show similar
instruction sequences, but renaming is done on variable and method names with the ex-
ception of the program entry point, which ProGuard require set with the -keep option
in the ProGuard configuration file shown in Appendix B Listing B.4. The only decrease
of readability this offer is that the variables and methods names are less meaningful.
One should also set the option -allowaccessmodification which is done in this trial
obfuscation of the example program. It allow modifications to the access modifiers which
has the result that the protected field variable in Appendix B Listing B.2 line 5 is the
public field variable in Appendix B Listing B.3 line 4. By allowing the access modifiers
to change do decrease readability, because it makes writing search patterns for searching
tools difficult, while the search patterns cannot rely on a non-changing access modifier.

The use of ProGuard on bigger programs like the Ant project’s ant.jar the obfuscation
process remove 117 classes, and the new size of ant.jar was 149.658 bytes instead of the
original size of 1.289.806 bytes. The conclusion is that the obfuscation process done on
bigger projects can output smaller programs that use fewer resources for running.

2.1.4 Security

It can be observed on the disassembling listings Appendix B Listing B.2 and Listing B.3
that code obfuscation makes readability decrease. The byte-code obfuscation only gives
limited security, because the security is still rests on an obscurity problem that is solvable.
However, our goal of the obfuscation process is that hidden information cannot be found
and decrease the readability to make circumvention of security mechanisms hard. It can
be concluded that the obfuscation offered by ProGuard will not be enough to obtain
these properties. The next step would then be to change the key and its position with
each client release, which makes a believed to be a harder re-engineering problem. This
re-engineering problem is believed to be harder, because new key information has to be
found in each client release, compared to non-changing key information. The conclusion is
that re-engineering problems are solvable, but using a tool such as ProGuard can help on
performance. The final conclusion is that the project cannot only rely on an obfuscation
tool like ProGuard for security.

The result is then to establish trust on the obfuscation of key information in programs,
can only be successful for short periods of time starting after the program is made public.
The time period have to be less than the time it takes to re-engineer the key information.
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2.2 User Authentication

The process of validating the authenticity of a user is a requirement of most client soft-
ware. The goal is to implement a user authentication mechanism, which make it prob-
lematic to deploy a successful phishing attack. Both the user authentication form and the
data input forms can be vulnerable to phishing attacks. In [DT05] it is claimed that the
solution described makes phishing attacks hard. This is why an analysis of the Trusted
Path solution is done.

2.2.1 Trusted Path

The idea described in [DT05] is that authentication data, sent between client and server
does not reveal any personal information. This is combined with dynamic security skins
that ensure the client of the server’s identity and vice versa. Dynamic security skins work
as follows. Each user selects a specific image from a collection of images, the image is
laid over the authentication form with a per session generated visual hash, a visual hash
is an auto-generated picture using a regular hash value as input. The client compute
a visual hash laid over the authentication form, and the server compute a visual hash
laid over the input form. The visual hash is laid over the authentication form and the
input form, the user then compare whether the two visual hashes are the same. If the
visual hashes are not the same, it is likely a phishing attack taking place. The result is
that phishing attacks becomes hard to perform, because to make the look-a-like input
form, the attacker has to know the user selected image and the computed visual hash.
Figure 2.1 is an example of how this solution could look, observe how the authentication
form is a separate program from the data input form.

Phishing attacks are easy to perform within the content frame of the browser, but hard
outside the content frame of the browser. This is because the content frame of the
browser, is controlled by web-server providing the web-page. The authentication security
mechanism makes use of a program outside the content frame of the browser to make the
deployment of phishing attacks hard. The security the outside authentication program
offer is then appended to the data input form in the browser’s content frame using visual
comparison.

The prototype in [DT05] consists of the two components Secure Remote Password protocol
(SRP) and dynamic security skins. The SRP is the underlying authentication protocol
that handles the user validation, which Section 2.2.2 describes SRP in greater detail. The
dynamic security skins are the use of visual hashes on the authentication and data input
form that create a trusted path, because each user has a unique selected picture and
session generated visual hash laid over the authentication form, which it can compare
with the visual hash of server provided data input form. The goal of using dynamic skins
is to prevent phishing attacks, by making it hard for an attacker to make copies of the
forms, because the attacker has to imitate each user’s unique image and visual hash on
the forms.
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Figure 2.1: This shows two programs and how they are connected through visual graphics,
which are the solution [DT05] propose.

Dynamic Security Skins

The client using the developed security mechanism should not be vulnerable to automated
attacks. The user authentication scheme should be able to obtain this property, because
each user personalizes her client with dynamic security skins. However, the client using
the developed security mechanism would still be vulnerable to personal attacks. This is
stated in the stories in [MS05]. One possible personal attack would be to spy on the user,
and observe which image she uses for personalization. The attacker can just compile a
client with that image, and replace the user’s client software with the newly compiled
version that has the same visual hash computation function.

In theory the dynamic security skins makes automated attacks hard, which targets clients
using the proposed security mechanism. If dynamic security skins are not implemented
properly, the attackers would be able to make an automatic attack that gives her knowl-
edge of which personal image each user use.

The idea of the solution in [DT05] uses a trusted login form to assign trust to browsers
content frame. This can be either a separate program or a plug-in to a browser. The
solution in [DT05] uses a plug-in to a Firefox, because that browser’s plug-in window is
independent of the hostile content frame.

2.2.2 Authentication Protocols

There are multiple protocols for authentication and [DT05] use SRP which is relative
new protocol. Comparing SRP with SSL would the most obvious choice, because SSL
is widely used for internet commerce. Next are the descriptions of SRP and the SSL
protocol.
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Secure Remote Password protocol

The development of the SRP has happened in four versions, which have been called SRP-
1, SRP-2, SRP-3, and SRP-6. The version to be implemented in the security mechanism
is SRP-6[Wu02]. The fundamental literature for SRP is [Wu98].

SRP authentication is secure against sniffing[Wu98], because the information revealed,
cannot be used to make a new authentication. The client and server uses a mutual shared
secret, which is made by the client the first time it communicates with the server. The
mutual shared secret is a password, which is used with user identity and a random salt
to compute the verifier. The server can then use the verifier to authenticate the user.

SRP is an authentication and key-exchange protocol, which is designed to resist both
passive and active MITM attacks.

The description of the SRP-6 user validation handshake is also found in[Wu02]. The
description is an explanation of Figure 2.2.

Figure 2.2: The SRP-6 authentication handshake. The figure can be found in
[Wu02](page. 5)

In Figure 2.2 numerous variables needs to be introduced:

I: Identity, the user name.

P: Password, the users password.

s: Random salt, a random numeric value.

v: Verifier, the verifier is the computed on the server with the using this equation v =
gH(s,I,P ).

H(): Hash function, in this case one should use Secure Hash Algorithm-1 (SHA-1).

a,b,u: Random values.

K: The computed session key.
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The group under which SRP operates is defined by a large safe prime N and a primitive
root g, because SRP uses arithmetic operations and the data submitted are bytes. A
function that converts byte arrays into integers is necessary. The verification of M1 and
M2 are a check if M1 is equal to M2. A result from the authentication process is, that
both the client and the server computes the same session key K. One can then use the
session key to encrypt every transaction between client and server.

When initializing the SRP identity of a user at the server, the user selects a random salt
s and computes a verifier v = gH(s,I,P ) and sends both values to the server. The server
can then later on identify the user using the random salt and the verifier. The security
in SRP is that the verifier and random salt are sent once with the first authentication.
If the attacker obtains the random salt and the verifier, it would require an expensive
dictionary attack to obtain the password.

Secure Socket Layer

SSL is a widely used protocol for secure communication, because most web browsers are
programmed with SSL support[Tan03, pages 956-960], when used in web browsers it is
called HyperText Transmission Protocol, Secure (HTTPS). It is developed by Netscape
and SSL is in version 3.0 which is from about 1996. It is used for authentication, negoti-
ation of encryption algorithms and cryptographic keys. Its architecture enables it for use
in other applications that do not use HTTPS to communicate, because the architecture
is such that a layer is added between the application layer and the Transmission Control
Protocol (TCP) layer. The SSL layer then encrypts data from the application layer to
the TCP layer, and decrypts data from the TCP layer to the application layer. The SSL
layer also starts the SSL handshake used for authentication, when a client requests a
secure socket. SSL is a layer consisting of multiple protocols, it support multiple crypto-
graphic algorithms. The SSL handshake protocol is the important part when it comes to
this project, because is can handle the client and server authentication and key exchange
for the encryption of application data. The abstraction level is higher compared to the
abstraction level of the SRP description, because SSL supports multiple cryptographic
algorithms and SRP is one cryptographic algorithm.

The SSL handshake can be seen in Figure 2.3 which is also described here. The client
starts setting up the secure socket to a server by sending a ClientHello message to the
server in question. The server then reply with a ServerHello message that can be ap-
pended some optional information: Certificate, CertificateRequest, and ServerKey-

Exchange. When the client receives the ServerHello message depending on which infor-
mation is in the message, it can do one or more of the following options: Certificate,
ClientKeyExchange, CertificateVerify, changecipherspec, and Finished. In the
ClientHello and ServerHello messages contains protocol relevant information used to
negotiate SSL version, cryptographic algorithms, and compression algorithms. The re-
sult of the negotiation is set by the changecipherspec action. The negotiation result
is then send to the server, so the client and server has the same cipher specification,
followed by the client being Finished, and the server set the cipher specification with
changecipherspec then the server is Finished. Now application data can be transmit-
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ted between authenticated client and server, and at the same time the application data
is encrypted with the session key.

Figure 2.3: The SSL authentication handshake. The figure can be found in [FKK96].
The star indicate optional or situation dependent messages.

The normal use of SSL is the following. The clients initiate by requesting a secure
socket from a server with a ClientHello message. The ServerHello message is deliv-
ered with the server certificate and completes ServerKeyExchange. The Client then do
CertificateVerify, complete ClientKeyExchange, call changecipherspec and send
Finished to the server. The server then calls changecipherspec and send Finished.
However, in this scheme the client is not validated, because many application do not
rely on people having certificates generated by a Certificate Authority (CA). Additional
program in then often introduced that require a login and password from the user, that
is sent over the established secure socket to the server for authentication.

2.2.3 Comparison of SRP and SSL

SRP and SSL are two protocols that are very similar, they both support authentication
and key-exchange functionality. However, the authentication is done in two different
ways. SSL relies on both parties having certificates issued by a CA, where the SRP relies
on the client having a user-name and password and the server having a random salt and
password verifier. The password verifier is issued by the client and stored on the server
when the user is created. Both SSL and SRP has a weakness, SSL relies on that each
client has a certificate issued by a CA, or extra software that use the secure socket to
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make a user-name and password authentication. SRP has to rely on that it communicates
with the right server, when the verifier is first send to the server.

At one point there is a big difference, which are the maturity and use of SSL compared
to SRP. SSL is a well tested communication layer that consists of multiple protocols
that use Internet Protocol (IP) and TCP. Most browsers and programming libraries
offer SSL functionality, here is a list of just a few products that support SSL: Internet
Information Services (IIS), Apache, Internet Explore, Firefox, Netscape, and Payment
Systems. SRP has been test implemented with a couple of programs such as a version
of telnet and JBoss. SRP is in the draft phase of being made a ciphersuite in Trans-
port Layer Security protocol (TLS) and SSL[Wu98][TWMP06], to add user-name and
password authentication supported in TLS and SSL.

2.2.4 Security

The security for this security mechanism should be the same as stated in [DT05], which
states that a phishing attack is hard to complete successfully. The first login information
send in the user authentication security are not send encrypted, however, the use of the
SRP protocol for this ensure no information leak besides user-name. The use of SRP does
not reveal any more information than the user-name, the attacker is only then given the
option of on-line dictionary or brute-force attacks on the verifier the server store. This is
easy to detect by the server and take appropriate measures, which could be to ban the
IP address of the attacker.

2.3 Secure Channel

The communication between the client and server shall be done over a secure channel.
The definition of a secure channel, is a communication media where the attacker watches
the traffic between two parties and do not learn any information about the content of the
conversation. At the same time they validate the integrity of the traffic the other party
sends, and then if the attacker alters any traffic the receiver will detect it.

The secure channel then consist of two security mechanisms, the first security mechanism
is communication encryption, the second security mechanism is transaction validation
for validating the integrity of the traffic. Security arguments for both communication
encryption and transaction validation are the final section.

2.3.1 Communication Encryption

The requirement to the client software is that it is not vulnerable to the following attacks:
MITM, phishing, and re-engineering. To make the software solution resistant against
passive MITM, one has to encrypt the data send between client and server. To encrypt
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communication securely a secure crypto-system is necessary, multiple of assumed secure
crypto-systems exists Advanced Encryption Standard (AES) and Rivest, Shamir, and
Adleman (RSA) are just a couple of them.

2.3.2 Possible Techniques to Use

This security mechanism is trivial to implement, because the Java Collections Framework
(JCF) contain packages with name java.security and javax.crypto that offer complete
implementations of AES, RSA, and other cryptographic functionalities. Additional these
packages is widely used and well documented.

It is even more trivial to implement communication encryption because the standards
such as SSL and TLS offer communication encryption, and the JCF contain packages
that supports SSL and TLS.

2.3.3 Transaction Validation

The transaction validation is solutions that do a check for changes on each transaction
between client and server.

The idea is to validate each transaction from client to server with a check of a message
digest. It increases security against the active MITM attacks, by ensuring no bits are
flipped in the transaction. However, it is important to use a key for generating the
signature or Message Authentication Code (MAC), because then security of the scheme
would rely on the security of the key. The input to the validation function is the data,
the key and the digest, and then it detects alterations between data and the digest. For
calculating a signature or MAC one will use a cryptographic key, in one scheme a secret
key is shared among the client and the server to generate the MAC, and the other scheme
use a public key digital signature.

In this project two possible methods for obtaining such cryptographic keys are considered,
1) to use the session key computed in user authentication see Section 2.2.2, 2) to hide
the key within client code. The first method is similar to the one used in SSL to generate
MACs. The quality of the second method is questionable when hiding cryptographic keys
within client code. In accordance to the possibility of re-engineering and tampering, the
SSL approach will be the most secure. And the same could be done with the digital
signature scheme.

2.3.4 Possible Techniques to Use

The following is a discussion of MAC and Digital Signature. Argumentation for which
technique to use will be presented. First requirements are stated for the client validation
process.
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1. A check is done on each transaction.
The check is deemed necessary on each transaction, because there is a risk that any
transaction can be attacked.

2. Low usage of bandwidth.
Is a requirement that bandwidth usage and computational resources are minimized,
because each client has to submit a check value with each transaction. An example
if the bandwidth usage is not low, the solution would scale badly with consideration
to server bandwidth load.

MAC[Sti06, pages 140-152] and digital signing[Sti06, chapter Digital Signature] are two
quite similar methods. First MAC is discussed. A MAC is attached to each transaction
and is a hash computed from the transaction content. The method that creates the MAC
has to use a key, because if no key is used, one only has to re-engineer the hash function.

Signing each transaction with a digital signature is equal to the hash function used for
MACs. The function for digital signing and the hash function for MACs should both be
public. And the security of the schemes is stated by the security of the key.

The decision of using MAC or Digital Signatures can based on performance, it is faster
to compute a MAC than a signature. This is why MAC is to be used for the transac-
tion validation security mechanism. When implementing a MAC scheme one should use
standards, the standard to use is Keyed-Hash Message Authentication Code (HMAC)
described in [Sti06, page 143], which is a MAC algorithm that takes transaction and 512
bit key as input, it was adopted by Federal Information Procession Standards (FIPS) as
a standard in March, 2002.

The conclusion is to use HMAC for doing transaction validation, because HMACs are
faster to compute than digital signatures. Both SSL and TLS use HMAC for transaction
validation, then makes sense to use SSL for secure channels from the transaction validation
perspective.

2.3.5 Security

The security of this security mechanism relies on the HMAC scheme being secure and that
the session key generated is secure. The security is good with regards to active MITM
attacks, because the receiving party can detect changes to the transaction. Because
SSL offers both communication encryption and transaction validation, it would be an
obvious choice for managing secure channels. The user authentication security mechanism
requires SRP, and SSL is being made to support SRP.
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2.4 Tamper-Proofing and Client Validation

The security mechanisms to place in the client software handles specific tasks, however,
there should be a security mechanism to protect them against tampering. This security
mechanism is to make the client software tamper-proof, which allow the server to detect
if there have been tampering with the client software, and at the same time make sure
that it only accepts input from official client releases.

The digital watermarking method found in [PKK+00] has promising properties. The
method inserts a dynamic data structure into the program code, which is not easy to
extract without leaving residues of the data structure behind. The dynamic data structure
is the watermark. The watermark or residues in the program can the owner use to check
ownership of the program in question. The problem is to check this property, a dump
of the program running is necessary, which the client should send to the verifying party
in this case the server. However, this dump of the running program can leak personal
information to the server, because the dump could contain a password, private variables,
and etc. the server should not have access to. The result is techniques that require
program dumps are of no use.

Another solution would be trusted computing which is a solution where the computers
contain trusted hardware or is added a dongle with trusted hardware. The trusted hard-
ware contains small programs to make integrity checks or store parts of the program itself.
These hardware solutions are outside the project scope, because focus of this project is
on a strictly software solutions.

2.4.1 Possible Techniques to Use

The following is a discussion of these software techniques checksum, MAC, and Digital
Signature for tamper-proofing and client validation. Argumentation for which technique
to use will be presented. First one should state the requirements for the tamper-proofing
and client validation security mechanism, which are the same requirements listed in Sec-
tion 2.3.3.

1. A check is done on each transaction.
The check is deemed necessary on each transaction, because there is a risk that any
transaction can be send from an un-official client.

2. Low usage of bandwidth.
The requirement that bandwidth usage should be low is, because each client has to
submit a check value with each transaction. If the bandwidth usage is not low, the
solution would scale badly with consideration to server bandwidth load.

MAC[Sti06, pages 140-152] and digital signing[Sti06, chapter Digital Signature] are two
quite similar methods that was first introduced in Section 2.3.3 for transaction validation.
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The difference is to use the second method for obtaining the key. The second method
is where the key is stored in the client program, which is then unique with each client
release. Then instead of being called MAC it should be called Client Authentication
Code.

Signing each transaction to the server with a digital signature is the other possibility.
The function for digital signing and the hash function for MACs should both be public.
The security of the scheme then relies on the security of the key, and then it has the same
problem with consideration to key handling.

The problem is, that re-engineering is relative easy, if the key is kept in the same position
in each release of the client. One thing would then be, to change the position of the key,
or better, divide the key and store it at multiple positions.

To make the re-engineering problem harder, one could inject the security mechanisms into
existing classes/objects of the client program, to avoid that the information is hidden in
an Easter egg[NM03], then using the existing program control flow to produce the key
information. Each puzzle piece is a function call and calls to all functions are necessary
to complete the puzzle. The key is never to be assembled in memory. Two schemes are
explained in the following two sections that use the idea of splitting keys for either digital
signatures or Client Authentication Code (CAC)s. One more scheme is explained in the
third section, which use checksum computation of the program for both integrity and
client release identity.

Digital Signing

As stated prior, the private key should never be allowed to be in one class/object. An
idea is to use secret sharing do split the key into pieces, afterward hiding each piece of the
secret key in existing code. The public key is (n,e) and the encryption is f(x) = xe modn,
then using the exponential math rules (xs)t = xs∗t and xsxt = xs+t. The exponent e is
split in multiple calculations to get f(x).

Addition Split of Exponent equation 1.1 xemodn = xe1 +xe2 +xei modn, wheree =
e1 + e2 + ei

Multiplication Split of Exponent equation 1.2 xemodn = ((xe1)e2)eimodn, wheree =
e1 ∗ e2 ∗ ei

This is computational harder than performing the Addition Split of exponents.

Exponent Disruption The exponent e value can also be split into one or more of the
following arithmetic operations e = t + v,e = t− v,e = t ∗ v,e = t/v, and e = t mod v.
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Where i < 0 and s values have to be more than 1 for a change to happen, because as the
equation state s ∗ 1 = s nothing happens and 0 is an illegal value of s.

Required Functions This now gives two different groups of functions:

1. Encryption functions

2. Compute exponent functions

One could make decoy functions, which make it harder to the re-engineer, however decoy
functions has to be called. So the attacker cannot use a dead code removal tool to remove
decoy functions. How these encryption and decoy functions can appear in Java is seen in
Appendix A.

CAC

Here the idea is that the key is a block of pseudo-random generated bytes, that following
array of bytes is split up into the wanted number of key blocks, each block is placed in
the program. The CAC is computed on the input data that are sent from the client to
the server. The HMAC algorithm seen in Algorithm 1 is an obvious choice for computing
CACs, because it is designed for the purpose of computing MACs using keys.

Algorithm 1 HMAC algorithm from [Sti06].

HMACKey(x)
ipad = 0x360x36 · · · 0x36
opad = 0x5C0x5C · · · 0x5C
return HashFunction((Key ⊕ opad)‖SHA − 1((Key ⊕ ipad)‖x))

The hash function can be any secure one-way hash function. SHA-1 is a good candidate
of such a one-way hash function, because current it is a very used hash function.

2.4.2 Checksum

Compared to the other two solutions the checksum solution have one advantage, which is
the checksum is calculated from the program, and if changes are made to the program the
checksum will reveal it. In the other two solutions altering the program is not detected.
However, there is no guarantee that the no changes are made to the checksum function
within the program, a solution on how to implement a checksum function is presented
in [SLS+05] and its name is Pioneer. In the Pioneer solution the checksum is calculated
such that the checksum function cannot be altered without detection. The problem with
Pioneer is that it is actual a rootkit, users do not like having rootkits installed, this was
observed with the Sony’s copyright solution that relied on Sony installing a rootkit, which
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was used for copyright protection[Woe05]. Because of the argumentation following in the
section Security, further analysis of [SLS+05] is done in Chapter 3

2.4.3 Security

The problem with digital signatures and CAC is that even though one handles the key
carefully, which is splitting up the key and placing key parts in different positions. It
would still be possible to decompile the client, the security then relies on the security
through obscurity.

The attacker can decompile the client and then add malicious code where she wants and
re-compile the client, which results in a client that correctly signs or compute CACs and
invokes the attacker’s malicious code as specified. This attack is not detectable with
the digital signatures and CAC tamper-proofing security mechanisms, it would require
additional tamper-proofing mechanisms to prevent the described attack. The attack has
two different applications, the first application is for the attacker to replace the original
client with the re-engineered client, to trick users into submit personal data with the
re-engineered client that then could leak the personal data. The second application is for
the attacker to force illegal input to the server.

The checksum scheme is very different from the digital signature and CAC schemes. The
computing the checksum from the program and the checksum will deviate if changes have
been made to the program. This property is not in the digital signature or CAC schemes.
The problem is that the client can compute the hash once, and then each time the server
request the checksum the client can send the precomputed checksum.

The use of the checksum method is the only way to ensure client identity and tamper
resistance if designed correctly. An example of such a design is the Pioneer solution
described in [SLS+05]. The tamper-proofing security mechanism should then be able
to obtain security, such that attackers both external and insiders cannot change the
program without detection. The goal is then to design it such that no circumvention of
the tamper-proofing mechanism is possible.

2.5 Summary

The security mechanisms suggested for client security are; security through obscurity,
secure channel, user authentication, tamper-proofing and client validation. From the
descriptions of the security mechanisms in the analysis, the following can be concluded
about the security they offer. The user authentication security mechanism makes phish-
ing attacks hard for any attacker and only allows users of the system in. The SRP
protocol allow only dictionary and brute-force attacks on user-names and passwords to
be done on-line. The secure channel security mechanism makes it hard to attack the net-
work. Security cannot be argued for the tamper-proofing and client validation security
mechanism, because the design of the security mechanism controls the security. However,
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if the design of the tamper-proofing and client validation only rely on security through
obscurity, the client program will only be secure against off-line re-engineering attacks
for small periods of time.

The security mechanisms security through obscurity, secure channel and user authentica-
tion are more or less trivial to implement, because solutions already exists that do this.
The security mechanism tamper-proofing and client validation is selected for design, im-
plementation and test, because the solution that exists uses very low-level programming
to ensure trust in the client. The tamper-proofing and client validation security mech-
anism is to be based on checksums as used the related work [SLS+05] and [SPvDK04],
which is described further in Chapter 3. In the rest of the report, when one read tamper-
proofing security mechanism, one should understand it as being the tamper-proofing and
client validation security mechanism.
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Related Work

The related works are solutions that bootstrap trust using software and no hardware.
The bootstrapping of trust is how to initiate trust on an un-trusted machine. The two
solutions Pioneer[SLS+05] and SoftWare-based ATTestation (SWATT)[SPvDK04] use the
same method to bootstrap trust. The method is explained using the Pioneer solution as
an example. The summary is a description of, what to use from these two solutions in
the design of a new tamper-proofing security mechanism.

3.1 Pioneer

The method used in Pioneer to bootstrap trust is where the client is an un-trusted system
that uses a trusted server system to attest the software running on the client. The
following terminology is defined, the trusted server is called a verifier and the un-trusted
client is called a prover.

Figure 3.1: This shows challenge/response protocol that Pioneer and SWATT uses.

The data flow between the verifier and the prover can be seen on Figure 3.1. The prover
request a challenge from the verifier, the verifier then respond with a challenge. The
prover use the challenge to compute the checksum of the verification function running and
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the software to attest, the checksum is then sent to the verifier. When the verifier receives
the checksum, it checks that it can compute the same checksum using a copy of the
verification function and the software to attest. If then the verifier accepts the checksum,
the verification function on the client can stop and start the attested software. The
attested software then runs un-interrupted, because while it is running system interrupts
are disabled. The above data flow between the verifier and the prover ensure that a valid
checksum can only be returned with negligible probability, before the prover has obtained
the challenge from the verifier.

This challenge/response protocol does not itself bootstrap trust to the verification func-
tion or the software to attest. To obtain trust more measures are necessary, which boot-
strap trust in the verification function. The idea is to optimize the verification function
to smallest possible running-time so no faster verification functions exist. By knowing
the computer hardware specification and most importantly the clock cycle of the Central
Processing Unit (CPU), and that the verification function is implemented in assembler.
Make it possible calculate estimated running-time for the program instructions. If the
prover execute the verification function and send the computed checksum to the veri-
fier within the estimated running-time, the verification function can be trusted and used
to attest the software. This is because any changes to the verification function would
increase the running-time.

The challenge/response protocol combined with Pseudorandom Memory Traversal (PRMT)
forces the client to request a challenge from the verifier, before starting the computation
of the checksum, making it hard to do precomputation. If precomputations where possi-
ble a cheating prover could return a valid checksum within estimated running-time and
resulting in a failure of the bootstrapping of trust.

The challenge is a seed for the PRMT function, which actual uses the seed to seed
a Pseudorandom Bit Generator (PRBG). The PRBG generate on the fly a memory
address to one data block of all the data blocks storing the verification function and the
software to attest. The data block is then input to a nested hash function, this process is
then repeated until a hash has been computed on all data blocks. When a hash has been
computed of the last data block, the outputted hash value is the checksum responded to
the verifier. However, because the memory addresses for the data blocks are generated
using a PRBG, there is problem, which is to ensure that all data blocks are touched
at-least once. Coupon Collector’s Problem solve this problem of touching all data blocks
with high probability, by stepping through n ∗ ln(n) number of data blocks, where n is
the number of blocks used for storing the verification function and the software to attest.

The verification function has to compute different checksums when the order of the data
blocks are different, requiring a strongly ordered nested hash function. This is done
by changing between the two Boolean operators AND and XOR, where the new hash
function result are merged with the result of previously merged hash function results.

The Pioneer solution makes use of three things to bootstrap trust, which are a chal-
lenge/response protocol, timeout and knowledge of hardware platform.
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3.2 Summary

The method of bootstrapping trust used in Pioneer and SWATT, require the knowledge
of the hardware specification of the client computer or embedded device. This is not valid
assumption in the tamper-proofing security mechanism to design in this project, because
the client/user cannot be relied upon not to lie about her hardware specification. The
assumption is valid in Pioneer and SWATT, because the client is the one who gains from
providing a correct hardware specification.

The idea of using a challenge/response protocol to make precomputations hard is a good
property to adopt into the design of the tamper-proofing security mechanism. The reason
is that it does not build upon an assumption wrong for this project.
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Design

This is the proposal to a design of a tamper-proofing security mechanism that bootstrap
trust to client software.

The tamper-proofing security mechanism is to use a checksum for client software verifi-
cation, because the key hiding tamper-proofing schemes in Section 2.3.3 also requires a
checksum to ensure client software integrity. The checksum can be used for both client
software identity and integrity. The related work uses checksum functionality to make
precomputations hard.

The design of the tamper-proofing security mechanism has similarities with the related
work described in Chapter 3. The similarity is the problem area and the difference is
the environment in which they work, this solution has to run on a Java Virtual Machine
(JVM) and the Pioneer and SWATT are programmed in assembler. The JVM is a
requirement because the client should be able to input data using Java applets.

4.1 The Tamper-Proofing Prototype

This section describes the prototype and what requirements there are to the prototype
besides being developed in Java.

The challenge/response protocol described in Chapter 3 is in the prototype design so
precomputations are hard

The prototype is to use the challenge/response protocol described in Chapter 3 for making
the task of doing precomputations hard. The challenge/response protocol uses the clien-
t/server topology. This topology is a widely used architecture that enables other applets
to embed the tamper-proofing security mechanism without additions to the topology.

The selected topology requires the prototype to consist a client and a server with the
following security mechanism interaction:
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1. Client:
The client is an applet that contains the tamper-proofing security mechanism, which
receives a challenge and computes a checksum that it sends to the server.

2. Server:
The server program is to service the tamper-proofing security mechanism in the
client applet, by sending a challenge and receive a checksum that it verifies.

The tamper-proofing security mechanism should be such that no obvious attack patterns
are present for copy and replay attacks. The copy attack is where the invalid client stores a
copy of the valid client in memory for checksum computations, then it can answer correctly
to validation requests, even through it is actual an invalid client program running on the
client machine. The replay attack is where the attacker can replay a previous validation,
and then convince the server that she is actual running a valid client. If the below listed
properties cannot be broken with re-engineering, a successful re-engineering attack is
classified as hard to do:

1. Re-engineering attempts has to be restarted with each release of the client.

2. The tamper-proofing security mechanism cannot be circumvented within the stated
time-frame.

It is not possible to bootstrap trust using the same method from Chapter 3, because of
the requirement of implementing the client in Java. Another argument is that the server
cannot be sure of the hardware specification of the client. Because no other solution
implemented in software is known to bootstrap trust. Trust is assumed if the two listed
re-engineering requirements are enforced and if no obvious copy or replay attacks exist.
The challenge/response protocol, the byte array operations and the client validation
checksum are measures to put trust into the client. The byte array operations are byte
operations on the memory storing the client program. The goal of adding byte array
operations to the client program is, then if the program flow change from the intended
program flow, the checksum computed on the client program would be invalid. This
should ensure that the program runs as intended. This should give the client program
the initial trust, but this checksum cannot be send with the input data also, this would
leave the server open to accept input from any one who knows a just computed checksum.
It will then require the input submission to use another mechanism to authenticate that
input comes from a previous validated client. The security mechanism for this is going to
be the CAC scheme analyzed in Section 2.4, even through it is known that the security
would rely strictly on a security through obscurity problem. Right now its assumed that
the time-frame for the initial client validation to be 20 seconds and the time-frame for
accepting input data is 10 minutes, these time-frames is thought of as the maximum time-
frames where it should be possible for a legal user to do the scenario of authenticating
and inputting data successfully.

The challenge/response protocol for the prototype can be seen in Figure 4.1. This is the
modified version of the protocol described in Chapter 3, which are to make it hard to do
precomputations before the client receives the challenge.
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Figure 4.1: This shows the challenge/response protocol to use in the prototype.

The compilation and deployment of the client is shown in Figure 4.2A. The merge of
tamper-proofing and client code, the adding of byte array operations to the merged code
is done once per user. The compilation of the tamper-proofing and client code is done
per user in the following order, first compile it with the javac compiler next obfuscate it
with ProGuard, now all the client programs one per user are ready for deployment on the
web-server. The process of obtaining and running the client is shown in Figure 4.2B. The
client computer downloads the client from the server and starts the program just after
having downloaded it, this is necessary because the re-engineer can start when she has
received the client program. The client is then run until it is terminated, what happen
while it runs is shown on Figure 4.3.

The obfuscation of the client is done to reduce readability of the client program. When the
tamper-proofing mechanism is embedded into the client applet and have been compiled
once, it should be re-compiled using an obfuscator. In this project the obfuscator to use
is ProGuard.

4.2 Checksum Computation

The design of client software validation is described here. The client software validation
process is the computation of a checksum a server is to verify. The PRMT generate a
pseudo-random ordered data block of the verification function and the client software.
The checksum is then the result from an HMAC computation with the seed as key and
pseudo-random ordered data block as input. The one-way hash function to use in HMAC
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Figure 4.2: This figure shows the compilation and loading of the client.

is in this project SHA-1, however, the one-way hash function have to be easy to replace
with another one-way hash function, when the security the one-way hash function offer
is not sufficient.
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4.2.1 Hash Function

The hash function to use in HMAC is SHA-1. There exist attacks against SHA-1, however,
it is not relevant when SHA-1 is used in HMAC as is stated in [Bel05].

The one-way hash function can be changed with each client release, if this is enforced, it
would require analysis by the re-engineer to discover the hash function being used.

The HMAC algorithm can be seen in Algorithm 2, the algorithm requires the following
input data(x) and a key. The HMAC algorithm allow changing the value of ipad and
opad. The key to use is the challenge obtained from the server, which the PRMT function
uses as seed. The server is to use the class java.security.SecureRandom for generating
pseudo-random challenges. The input data is the pseudo-random ordered data block
generated using PRMT.

The SHA-1 implementation to use is the one provided by java.security.MessageDigest.

Algorithm 2 HMAC algorithm from [Sti06].

HMACKey(x)
ipad = 0x360x36 · · · 0x36
opad = 0x5C0x5C · · · 0x5C
return SHA − 1((Key ⊕ opad)‖SHA − 1((Key ⊕ ipad)‖x))

4.2.2 Pseudorandom Memory Traversal

PRMT is an idea from Pioneer[SLS+05] and SWATT[SPvDK04] explained in Chapter 3.
The idea is to use a challenge/response protocol to limit possible precomputations of the
checksum. Using the challenge to seed the PRMT algorithm that then selects data for the
pseudo-random ordered data block. In Figure 4.4 is seen how, the client program is split
into blocks and added to one pseudo-random ordered data block, through three steps.
The checksum computations on the pseudo-random ordered data block then influence the
checksum, which is the response in the challenge/response protocol. Precomputations of
the checksum are limited, because it requires the seed to know the order of the data block
for the checksum computation.

In Pioneer[SLS+05] and SWATT[SPvDK04] the order in which to read data blocks are
decided by a PRBG, it generates the memory addresses that points to data blocks to
read, and the order is dependent of the seeding of the PRBG. The challenge/response
protocol and PRMT ensures that possible precomputations of the checksum are limited.

In this project the memory addresses that point to data blocks are replaced with indexes
to a byte array. On the client the PRBG to use is java.security.SecureRandom and
challenge obtained from the server is the seed. The seed to request from the server
consist of 20 bytes, which is the same length as the checksum returned from the SHA-1
hash function. The client uses the same seed as the key for the HMAC algorithm. The
reason to use the seed for both is, that it do not reduce security with consideration to
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Figure 4.4: This figure describes how the byte array containing the static program data,
is split into pieces of the same size and are pseudo-random ordered.

the limited precomputation property, but do reduce running-time, because less time is
spend on sending one seed instead of two.

4.3 Byte Array Operations

The idea of the tamper-proofing security mechanism is that the byte array of loaded
classes can be subject to legal and illegal operations. If the program is initialized as
intended, the byte array is subject to only legal operations, and then the checksum of the
byte array is valid. The byte array is subject to illegal operations when the program flow
is altered. The re-engineer cannot tell the difference between legal and illegal operations
unless she knows the legal program flow, which is the program flow of intended client use.

The operations on the byte array are on one or more bytes. There are two types of
operations, type one seen on Figure 4.5 and type two seen on Figure 4.6.

There are three phases when using operations on the byte array for checksum verification,
which are the three descriptions below:
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Figure 4.5: The operation type one is a swapping of byte values. The byte value at index
2 is swapped with the byte value at index 9.

Figure 4.6: The operation type two is an insertion of a byte value. The byte value at
index 3 is changed from 65 to 95.

Generating operations: It is important how the operations input are generated, if
the input can be anticipated the effect is limited. However, when each input is
generated with a pseudo-random source, the input is then hard for an attacker to
find. An operation is defined to be when one byte is altered to a new value. The
operations are generated using a PRBG for generating the indexes and new byte
values. The generation of indexes shall not be larger than the size of the client
program. Generating the operations with the use of PRBG makes it possible that
the same index is generated more than once. The result is that the operations
are strongly ordered, which make alterations of the program flow influence the
outputted checksum, even if only legal operation was done. The source of pseudo-
random bits will be the Java class java.security.SecureRandom.

Placing byte array operations in code: Operations can be placed anywhere in client
program source code, where it is legal to insert a statement. The important thing
is to know, which operations to use for the valid checksum. It is the placement
of the operations that divides them into the two groups of legal and illegal oper-
ations. The illegal operations of the byte array have the purpose of confusing the
re-engineer, which should be tricked to believe that an illegal operation is actual
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a legal operation. The re-engineer would then do the illegal operation on the byte
array before computing the checksum. If illegal operations are done on the byte
array, the result should be an invalid checksum. In this project the placement of
operations is done manually, though an automatic placement program would be
relevant for production use.

Verify byte array subjected to byte array operations: It is important the server
knows all legal operations, and the order they are performed on the client. If this
is not the case, the server cannot verify the checksum it receives from the client, to
be valid.

The verification function and the software to attest are embedded with the operations,
and the operations perform byte operations on the byte array storing loaded client pro-
gram, which makes up the verification function and the software to attest. The operations
embedded into the client program are to make sure the client program runs as intended.
The verification function and the software to attest contain both legal an illegal opera-
tions, it is then not enough for the re-engineer to find all operations, this requires her to
know which operations are legal and which are illegal. A successful re-engineering attack
of the tamper-proofing security mechanism is that it is possible to find all legal byte array
operations.

4.4 CAC on Input Data

The byte array operations are to validate the client at initialization, but the tamper-
proofing security mechanism requires a check with each input, to authenticate that the
input is send from a valid client. This security mechanism design will be of the CAC
scheme described in Section 2.4.

The CAC scheme uses the HMAC algorithm with a key and data. The key is static data
to place at different positions in the code, and the data are the input data the user enter
into the client. The CAC is then sent with the input data, where the server then verify
the CAC knowing the key and the input data.

The three phases with regards to byte array operations are also necessary when designing
the CAC scheme.

Generating key data: The generation of the key data is important, because the at-
tacker should not be able to guess key data. Using java.security.SecureRandom

for generating the key data will make it hard for the attacker to guess key data.
The key can have a maximum length of 512 bits(64 bytes). The CAC scheme uses
multiple keys, and the order in which the CAC is computed influence the output.

Placing key data: The key parts can be located anywhere in the client source code,
which the client send input data function can access. This can be field values or
methods, if it uses methods these can then call other methods that contain parts of
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a key part. This can make a very large and complex data structure to re-engineer,
but then running-time of the client is affected. The complexity of the structure
for storing the key parts, is set by an acceptable ratio between complexity and
running-time.

Verify the CAC: Any complex structure for storing key parts the server has to model,
for it to be possible for the server to verify the CAC.

4.5 Design for Java

The prototype targets the Java programming environment, which enables the client pro-
gram being a Java Applet that is easy to deploy. This imposes Java sandboxing used by
browsers to run applets. The other problem is the JVM do not allow making dumps of
memory or access memory direct, which the checksum is computed from. The solution
to the memory access problem is a custom class loader, which is a subclass of the original
bootstrap class loader. The browsers running the applet over network do not allow the
creation of a custom class loader. The bootstrap class loader is only allowed to run byte-
code placed within the classpath. This allow applets within the classpath and viewed
with the Applet Viewer released by Sun[Gon02] to load a custom class loader.

The idea is then to implement a client that can run in the Applet Viewer, which allow
the creation of a custom class loader as long it is in the classpath. The argument is that
the functionality required of the class loader does not reduce the security of the JVM and
the browser, the required functionality could then be added to the existing class loaders
that browsers use. The only problem about adding the extra functionality to the current
applet class loader is that it uses double memory for each class loaded. This is not a
good property, but it is either this or a re-design of Java to allow direct memory access.
And even through it is not a good property, it do not allow for the applet sandboxing to
be broken, which terminate the applet in case a memory bound is tried broken.

The creation of the custom class loader and how the loaded classes are stored in memory
is done with regards to make copy attacks hard.

Custom Class Loader

The class loader’s call chain is added the custom class loader, then when the bootstrap
class loader cannot find a specific class, it then delegate the loading of the specific class
to the custom class loader. To force that loading of all client classes is done by the
custom class loader. Explicit calls to the overloaded method findClass(String name)

is performed. The method is such that while loading class information from the class
files, it stores a copy of the class information for the checksum computation. The design
of the custom class loader is such that even if an attacker replace or alter the custom
class loader with a malicious class loader, the attacker is not able to cheat the checksum
computation, because the requirement of the custom class loader is it outputs a byte
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array of the classes loaded into the JVM. Then if any new malicious class is loaded it
can only be access from classes where the checksum is computed, it would resolve in an
invalid checksum.

Storing Classes

For storing the loaded classes a singleton class is selected that contain a byte array. A
class is added to the byte array when the CustomClassLoader loads the class in question.
The idea for using a singleton class is to make it easy to do byte array operations on one
or more bytes in the array, because the singleton class is loaded with the first call to the
method getInstance(). The same method enables classes to easy get the reference to
the object containing the array. The singleton class is named MemStorage.

Design of the how the array is handled should be with consideration to the copy memory
attacks described in [SLS+05]. This document [LY99] show how the classes are loaded in
the JVM, and this document [Tra] shows how the class loader is overloaded.

4.6 Prototype Class Design

The client design has the following components Applet, MemoryManagement, Checksum,
and Communication under which is a description of each of the necessary classes:

Applet

The design of the applet consist of two components the LoadApplet class with a descrip-
tion below, and the GUI to input data to the server.

LoadApplet: In Figure 4.8 is seen the class to load the GUI. It creates an instance of the
CustomClassLoader class and uses that to load the GUI classes. The LoadApplet

class then creates an instance of the GUI and starts it. This class is an obvious point
of attack, because this class is not loaded by the CustomClassLoader. However,
the class LoadApplet could be removed if the CustomClassLoader functionality was
added to the current applet class loader. The reason that this class can be removed
from the prototype is that its function is to create the CustomClassLoader.

Figure 4.7: LoadApplet class diagram.
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MemoryManagement

The memory management component is what loads and stores classes in the byte array, it
is why these two classes are the exception of classes to store in the byte array. Meaning the
MemStorage and CustomClassLoader cannot be in the byte array to use for the checksum
computation. The result is that changes to these two classes will go un-detected.

CustomClassLoader: In Figure 4.8 is seen the class to use for loading classes into
the JVM while storing them in the MemStorage class. The CustomClassLoader

should be constructed with a reference to the parent class loader, and a string that
contains the name of the client archive file. The private field value jarfile is for
storing the name of the client jar file. The private field integer offset is the current
offset for where to insert the next loaded class into the MemStorage byte array.
The protected method findClass(String name) is the overloading method of the
corresponding class java.system.ClassLoader . The method findClass(Sting

name) use the protected method findClassBytes(String name) to load the class
file to the name of that class.

Figure 4.8: CustomClassLoader class diagram.

MemStorage: In Figure 4.9 is seen the singleton class for storing the byte array of
loaded classes. The singleton class requires the private constructor, the private
object reference, and the getInstance() method. The important thing about this
object is that the byte array for storing the loaded classes is public. The reason is
that byte array operations are done directly on the byte array. It is also easy to get
the object reference using the getInstance() method.

Figure 4.9: MemStorage class diagram.

Checksum

These are the class designs to use for the checksum computation and server verification.
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Verifier: In Figure 4.10 is seen the class to place on the server, to use for verifying
the checksum the client computes. When the Verifier is instantiated a seed
is generated and it computes a corresponding reference checksum. The verify

method then check its parameter checksum against the reference checksum, then
the Verifier changes state if the two checksums match. The fields that represent
the state of the Verifier instance are dataReceived, softwareValid and time.
The softwareValid Boolean is set to true if the client has sent a matching check-
sum to the server. The dataReceived Boolean stores the status whether the client
has sent data to the server, if true data has been received else false. The time

stores the time from when the Verifier instance was created, the instantiation of
Verifier is done when a client request a seed. The time field is for controlling the
expiration of the Verifier instance.

Figure 4.10: Verifier class diagram.

Hashing: In Figure 4.11 is seen the class to place on both the server and the client,
and its use is for computing checksums. The only methods for users of the class to
remember is the public methods computeChecksum and computeHMAC, the compute-
Checksum method use the three other methods for the client validation checksum
computation. The method computeHMAC computes the HMAC using the one-way
hash function in the method computeHash. This only requires the computeHash

method to be reprogrammed if another one-way hash function should be necessary.
The computeHMAC method calls the computePRMTBlock method to get a pseudo-
random ordered byte array data blocks. To make the order of the blocks pseudo-
random, it uses the java.security.SecureRandom PRBG. The CAC computation
uses the computeHMAC method.

Figure 4.11: Hashing class diagram.
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Communication

For communication between client and server the challenge/response protocol design uses
Remote Method Invocation (RMI).

Client: In Figure 4.12 is seen the class that provides the client applet with an Ap-
plication Programming Interface (API) to the challenge/response protocol. The
software design of the tamper-proofing mechanism uses these methods as API for
communicating with the server.

Figure 4.12: Client class diagram.

Server: In Figure 4.13 is seen the class design for the server, which should provide a
service to the clients. The server is to answer seed requests, receive checksums and
receive data from clients. The server class creates an instance of the Verifier for
each seed request. The server also has to store a valid copy of the client program and
the byte array operations done on the client program, which then makes it possible
to compute a reference checksum for matching with checksums from clients. The
server also has the list of CAC key parts to validate that input data originates from
a valid client.

Figure 4.13: Server class diagram.

ChallengeResponse: In Figure 4.14 is seen the interface that list of the RMI commu-
nication methods.

Figure 4.14: ChallengeResponse interface class diagram.
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4.7 Summary

The design proposed for the tamper-proofing security mechanism uses a challenge/re-
sponse protocol between the client and server. The challenge is a seed that the server
sends to the client, which then computes the response checksum that it sends to the
server. The checksum computation uses the HMAC algorithm. The HMAC algorithm
use PRMT to generate input data which consist of pseudo-random ordered data blocks.
The HMAC algorithm is keyed with the challenge and uses the SHA-1 hash function.

The input is an array of pseudo-random ordered blocks of the verification function and the
software to attest. However, because the design of Java do not allow accessing memory
directly, it is necessary to overload the class loader with a custom made class loader. The
custom class loader then stores the classes it loads, in a byte array, while the actual class
is loaded into the JVM. Byte array operations are done on the stored classes and these
operations are embedded in the classes’ methods to ensure, that loaded classes actually
run. The use of byte array operations are to bootstrap trust into the verification function
and software to attest, because it is assumed the re-engineer cannot find the set of legal
byte array operations within the given time-frame.

The checksum verification is done before data is send from the client to the server. To
make sure that the data originate from valid client software, the server verifies the CAC
computed using the input data and is keyed with static data stored in the client program.
The re-engineer is then forced to find all legal byte array operations and the static key
data for the CAC computation.
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Implementation

This chapter documents the implementation of the previous described design. The doc-
umentation also contains what implementation problems have been encountered, the
mechanism used, and how the final program is structured.

The client implemented is an input form that validates against the server before allowing
the user to input data. The prototype uses an integer value to symbolize input data,
the client compute a CAC on the input data and the key parts are stored in the client
program. The CAC then accompanies the input data to the server, where the server then
validates the CAC before accepting the input data.

The tamper-proofing security mechanism consists of two actual security mechanisms,
which are the byte arrays operations with initial client validation check and the CAC
scheme for checking that a valid client was the origin of the input data.

5.1 Pseudorandom Bit Generator

It was the plan to use java.security.SecureRandom for PRBG where pseudo-random
bits was necessary. A problem occurred while implementing the verification of the ini-
tial checksum, because the checksum computed on the client and the server have to
be the, same and was not. The Cryptographic Secure Pseudorandom Bit Generator
(CSPRBG) used, has to output the same pseudo-random bits using the same seed, which
the SecureRandom class did not. Because of this problem, a new CSPRBG was imple-
mented. The new implemented CSPRBG class is also called CSPRBG, the constructor
take the seed as an argument. The method used for generating a pseudo-random byte is
shown in Listing 5.1. It uses the SHA-1 hash function with the seed as input, the least
significant byte of the hash, is the pseudo-random byte returned by the method. The
computed hash is then assigned to be the seed, it then uses as input with the next call
of the method.� �
1 public byte generateByte ()
2 {

39
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3 md.update(seed);
4 seed = md.digest ();
5 md.reset();
6 return seed [0];
7 }� �

Listing 5.1: The method generateByte.

5.2 Byte Array Operations

The two types of byte array operations added to the client code can be seen in Listing 5.2
and Listing 5.3. It is only the values and indexes that changes, and the location in the
client controls whether it is an illegal byte array operation or legal.� �
1 ...
2 MemStorage.getInstance ().loadedClasses [5436] = -85;
3 ...� �

Listing 5.2: The type one byte array operation as seen in the source code.� �
1 ...
2 byte b = MemStorage.getInstance ().loadedClasses [3436];
3 MemStorage.getInstance ().loadedClasses [3436] = MemStorage.

getInstance ().loadedClasses [6783];
4 MemStorage.getInstance ().loadedClasses [6783] = b;
5 ...� �

Listing 5.3: The type two byte array operation as seen in the source code.

The client code is added the following legal and illegal byte array operations and the
location is described with class names.

Legal Byte Array Operations

Type Index Index/Value
ByteArray.java:
0 3353 58
0 7013 -26
InputForm.java:
1 3436 6783
0 5436 -85
0 387 100
Client.java:
0 4814 -59
Hashing.java:
0 142 -29
0 5055 119
CSPRBG.java

0 4980 120

Illegal Byte Array Operations
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InputForm.java:
0 3354 78
Hashing.java:

1 4452 7529

In total there are 11 byte array operations and of those 2 are illegal.

5.3 Client Authentication Code

After validating the client to be authentic, the server use the CAC scheme to verify that
the input data, that clients sends, comes from valid clients. The CAC is an HMAC
computed with a key stored in the client. How the key is stored in the client code can be
seen in these two examples Listing 5.4 and Listing 5.5. The server validates the CAC by
reading the CAC key from a file with the name cackey.txt.� �
1 ...
2 private byte[] b = {52};
3 ...
4 public byte[] getB() {
5 return b;
6 }
7 ...� �
Listing 5.4: An example snippet where the CAC key part is stored in a field variable.� �
1 private byte[] value() {
2 byte[] g = {69};
3 return g;
4 }� �

Listing 5.5: An example snippet where the CAC key part is retrieved with a method call.

5.4 The Implementation of Classes

This section describes the classes as they have been implemented. These new classes have
been added since the design; ByteArray, InputForm, CSPRBG, and a server MemStorage.
The reason to add these classes are, because the design required additional classes for the
prototype to function as intended. Class diagrams, of the classes that does not deviate
from the design, are left out of the implementation description. To see the class diagrams,
one can look them up in the design. The description of all the classes is split into three
groups with these package names; common, client, and server. The common package
contain classes, that both the client and the server use. All the classes the client requires,
which are not in the common package are in the client package. All the classes the server
requires, which are not in the common package are in the server package. The three pack-
ages; common, client, and server are within the package dk.phiber.tamperproofing.
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Common

Here is the description of the classes in the package dk.phiber.tamperproofing.common.

ByteArray: In Figure 5.1 the class that provides operators for manipulating byte arrays
is seen. The following operators are supported append, and and xor, the and and
xor are Boolean operators that can operate with byte arrays. The append operation
return a byte array where the input1 byte array is appended the input2 byte array.

Figure 5.1: ByteArray class diagram.

ChallengeResponse: The ChallengeResponse interface defines the RMI methods for
communication. No changes have been made to its class structure since the design.

CSPRBG: The CSPRBG provide the method computePRMTBlock in the Hashing class
with a CSPRBG that output the same pseudo-random bits inputted the same seed.
The structure of the class can be seen on Figure 5.2.

Figure 5.2: CSPRBG class diagram.

Hashing: The Hashing class is used for computing the checksum, the changes from the
design to implementation is, that it do not use the java.security.SecureRandom

but instead uses CSPRBG and the computeHMAC method has been made public. It
uses CSPRBG instead because it produces the same pseudo-random bits with the same
seed, and the computeHMAC has been made public because the CAC computation
uses it. No changes have been made to its class structure since the design.

Client

Here is the description of the classes in the package dk.phiber.tamperproofing.client.

Client: The Client class that provides the API for RMI communication to the client
and it structures is the same as in the design. No changes have been made to its
class structure since the design.
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CustomClassLoader: In Figure 5.3 is seen the custom class loader used for loading the
classes not in the JCF, and at the same time stores class files in the MemStorage

class shown in Figure 4.9. The access modifiers are changed from protected to public
on the findClass method and from protected to private on the findClassBytes

method.

Figure 5.3: CustomClassLoader class diagram.

InputForm: In Figure 5.4 is shown the class to use for drawing and controlling the GUI.
The class LoadApplet loads the class InputForm. The GUI consists of one input
field and two buttons, the action listeners for these two buttons are subclasses. The
SubmitButtonListener class contain the actions to perform when the user push
the submit button, which are to compute a CAC of the input, and send the CAC
and the data to the server. The ClearButtonListener class contains the action of
clearing the content of the input field.

Figure 5.4: InputForm class diagram.

LoadApplet: The LoadApplet class is used for loading the GUI class InputForm. No
changes have been made to its class structure since the design.

MemStorage: The MemStorage class is used for storing loaded classes. No changes have
been made to its class structure since the design.

Server

Here is the description of the classes in the package dk.phiber.tamperproofing.server.

MemStorage: In Figure 5.5 is seen the MemStorage class to use on the server. The class
is added so each verifier object does not need its own byte array of the program to
validate. This is why this class is not a singleton class, because more instances of
the class could be necessary in the future.
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Figure 5.5: MemStorage class diagram.

Server: In Figure 5.6 is seen the class providing the RMI methods that the client invokes.
It implements the methods in the ChallengeResponse interface, which stores the
definitions of the RMI methods, the client/server communication requires. No
changes have been made to its class structure since the design. Since the design
a field variable of type server was added MemStorage, then client program is only
loaded once even through there is multiple verifiers.

Figure 5.6: Server class diagram.

Verifier: The Verifier class is used for storing the state of a specific client validation.
The server create and instance of the verifier for each seed request from a client.
Then if a valid checksum is returned using the defined seed, the state is changed to
software being valid and the client is now allowed to send data to the server. No
changes have been made to its class structure since the design.

5.5 Running the Prototype

This section explains what configurations that are within the prototype source code, and
how to start the server and the client programs.

5.5.1 Configurations in the Prototype

This implementation of the tamper-proofing prototype, requires properties being set man-
ually in the source code. This section is to explain where these configurations exists in
the source code. Some of these configurations are important if program obfuscation is
done, this is because the ProGuard does not interpret string references to classes. Each
description below represents a class where one or more configurations are set:
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MemStorage: The class stored in dk.phiber.tamperproofing.client.MemStorage

and the one stored in dk.phiber.tamperproofing.server.MemStorage are both
constructed with the knowledge of what the required number of bytes is for storing
the client. This is set in the constructor seen in Listing 5.5.1, the size assigned shall
be a multiplication of data block size of 512 bytes.� �
1 MemStorage () {
2 loadedClasses = new byte [10240]; // 10240 = 21 * 512
3 }� �

Server: The order in which the classes are loaded into MemStorage is important. The
order the class names are stored in the string array names, are the order the classes
are loaded into the server MemStorage class. The order the class names are assigned
the string array names have to be the same order the classes are loaded on the client.
In Listing 5.5.1 the assignment of the string array names can be seen. In case of
obfuscation, it is necessary to translate class names to the obfuscated class names,
because the obfuscation program cannot detect that these strings actually are class
names.� �
1 ...
2 String [] names = new String [8];
3 names [0] = "dk.phiber.tamperproofing.client.InputForm";
4 names [1] = "dk.phiber.tamperproofing.client.

InputForm$ClearButtonListener";
5 names [2] = "dk.phiber.tamperproofing.client.

InputForm$SubmitButtonListener";
6 names [3] = "dk.phiber.tamperproofing.client.Client";
7 names [4] = "dk.phiber.tamperproofing.common.Hashing";
8 names [5] = "dk.phiber.tamperproofing.common.CSPRBG";
9 names [6] = "dk.phiber.tamperproofing.common.ChallengeResponse";

10 names [7] = "dk.phiber.tamperproofing.common.ByteArray";
11 ...� �
If the client jar file has another name than client.jar it is important that file
name is renamed to that. The line where the file name can be altered is seen in
Listing 5.5.1, it is placed in the loadClasses method, where it is possible to alter
the file name.� �
1 ...
2 File jar = new File("client.jar");
3 ...� �

If the byte array operation file has another name than operations.txt it is im-
portant to rename the file name. See Listing 5.5.1 to see how the line looks within
the method permuteArray, where it is possible to alter the file name.� �
1 ...
2 fi = new FileInputStream("operations.txt");
3 ...� �

The time-frame where the server accepts the initial client validation checksum is
20 seconds from when the seed is requested. It is possible to change this value of
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20000 milliseconds to some other value. See Listing 5.5.1 to see how the line looks
within the method putChecksum, where it is possible to chane the client validation
time-frame.� �
1 ...
2 if(d.getTime () < (verifier.getTime () + 20000)) {
3 ...
4 }� �

The time-frame where the server accepts one input with CAC is 10 minutes from
when the seed is requested. It is possible to change this value of 600000 milliseconds
to some other value. See Listing 5.5.1 to see how the line looks within the method
putData, where it is possible to change the input time-frame.� �
1 ...
2 if(verifier.verifyCAC(cackey , value , checksum) && d.getTime () <

(verifier.getTime () + 600000)) {
3 ...
4 }� �

The two time-frames of 20 seconds for client validation and 10 minutes for input
submission are two guesses of the minimal time-frames, where it is possible for users
that behave as intended with high probability to successful validate the client and
send input data with a valid CAC to the server.

Client: ChallengeResponse interface is defined by a string that can be necessary to
change if obfuscation is used. See Listing 5.5.1 to see how the line looks within
the constructor method Client, where it is possible to change the name to the
obfuscated name.� �
1 ...
2 stub = (ChallengeResponse)registry.lookup("ChallengeResponse");
3 ...� �

InputForm: The input form loads the rest of the class definitions into the JVM in
the right order. These strings of class names would also be necessary to change if
obfuscation is used. See Listing 5.5.1 to see how the lines look within the method
run, where it is possible to change the order and the class names to the obfuscated
class names.� �
1 ...
2 CustomClassLoader ccl = (CustomClassLoader)this.getClass ().

getClassLoader ();
3 ccl.findClass("dk.phiber.tamperproofing.client.

InputForm$ClearButtonListener");
4 ccl.findClass("dk.phiber.tamperproofing.client.

InputForm$SubmitButtonListener");
5 ccl.findClass("dk.phiber.tamperproofing.client.Client");
6 ccl.findClass("dk.phiber.tamperproofing.common.Hashing");
7 ccl.findClass("dk.phiber.tamperproofing.common.CSPRBG");
8 ccl.findClass("dk.phiber.tamperproofing.common.

ChallengeResponse");
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9 ccl.findClass("dk.phiber.tamperproofing.common.ByteArray");
10 ...� �
The client is constructed with the IP of the server to connect to. See Listing 5.5.1
to see how the line looks within the Client constructor, where it is possible to
change to another server IP.� �
1 ...
2 c = new Client("127.0.0.1");
3 ...� �

LoadApplet: Remember to rename the class to load in the HyperText Markup Language
(HTML) file in case of obfuscation, or when the client program is stored in a archive
file with another name. This is only necessary if one manually obfuscate the class
name of the ProGuard entry point. See Listing 5.5.1 to see how the line looks,
where one can change the class name of the class to load or the name of the client
archive file.� �
1 ...
2 <applet code=dk.phiber.tamperproofing.client.LoadApplet.class

archive="client.jar" width="200" height="200" >
3 ...� �

The custom class loader is constructed using a string containing the name of the
client archive file, if the name of the archive changes this shall be renamed. See
Listing 5.5.1 to see how the line looks within the method init, where it is possible
to rename the name of the archive file.� �
1 ...
2 ccl = new CustomClassLoader(CustomClassLoader.class.

getClassLoader (), "client.jar");
3 ...� �

The loading of the input form is done through a string definition. If obfuscation
is used it can be necessary to rename both the class name and the method name
run. See Listing 5.5.1 to see how the lines looks within the method init, where it
is possible to rename the class name and method name.� �
1 ...
2 Class <?> c0 = ccl.findClass("dk.phiber.tamperproofing.client.

InputForm");
3 Method m = null;
4 Object cl = c0.newInstance ();
5 m = c0.getMethod("run", new Class [] {JApplet.class });
6 m.invoke(cl, new Object [] {this});
7 ...� �

5.5.2 Starting the Server

The function of the server is to validate the client and receive input from the client. A
requirement is then, that the server is running before the client is started. The server



48 Chapter 5. Implementation

require that these two files are present operations.txt seen in Appendix E Listing E.1
and cackey.txt seen in Appendix E Listing E.2, which are the two files that contains
byte array operations and the CAC key parts. The server use RMI for communication
so the rmiregistry service has to be started manually before starting the server.

To start the server use the Ant build file in Appendix C, then to start the server enter
this command ant run.server.

5.5.3 Starting the Client

The function of the client is to compute a checksum and send it to the server with the use
of a challenge requested from the server. When the client checksum has been validated,
the user is allowed to submit data onte to the server. The data is accompanied with a
CAC that has the purpose, that the server can validate the CAC to come form a valid
client.

To start the client use the Ant build file in Appendix C, then to start the client enter this
command ant run.client. What this command does is to start the Sun AppletViewer

with this policy in Appendix D Listing D.2 running the Appendix D Listing D.1. However,
one shall make sure that the server is running or the client will output an error.

5.6 Summary

The server does not allow the user to submit data(an integer) to the server, before the
client has to send a valid client validation checksum. The server afterward accepts input
when the client sends an input with a valid CAC. The implementations of the client
validation checksum and the CAC scheme store the key information in the client program.

It will be possible to extract the information for computing the client validation checksum
and the CAC, because the information is stored in the client program. The goal of the
security mechanisms is to ensure trust for a small period of time, where the server can
assume that the data are send from a valid client.
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Testing

This chapter documents the security test of the tamper-proofing security mechanism
that are proposed in Chapter 4. To test the security of the tamper-proofing security
mechanism, the following two scripted attacks should fail for the security to be successful.
The scripted attack has the goal of retrieving all legal byte array operations, and the
attack requires a running-time within the time-frame of 20 seconds, where the server still
accepts software validation checksums or the attack is unsuccessful. The second scripted
attack has the goal of locating all CAC key parts from the client, and the attack require
a running-time within the time-frame of 10 minutes, where the server still accepts input
data.

In this project no financial resources are present for employing external parties to do
the test. Only a project biased person is available to perform the test, however, the
knowledge of the implementation of the security mechanism can compensate for being
project biased. For the same reason the attacks are deployed against a client program
that is not obfuscated with ProGuard, because the knowledge of the implementation
would make the effect of the obfuscation limited. It is also a stronger attack, because is
should be faster to perform when no interpretation of the obfuscated code is required.

6.1 Test-case

This is the test-case for testing the security of the tamper-proofing security mechanism.
For the test to be unsuccessful the secrets hidden in the client program can be found
within the time-frames, and then it is possible to mount an attack where the attacker
can convince the server that the client is valid or that the input is sent from a valid
client. The test-case is then to extract the hidden information within the time-frames
and without running the client, and if this is possible the test is unsuccessful.

The goals of the attacks are on the list below:

• Extract all legal byte array operations and the class loading order.
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• Extract all CAC key parts.

To mount a successful attack against the checksum validation process is to convince the
server that the client is valid. The attacker has to obtain the order in which the classes
are loaded into the byte array and all the legal byte array operations.

To mount a successful analysis attack against the CAC scheme is to convince the server
that the input is sent from a valid client. The attacker has to obtain the CAC key parts,
and the order in which they are used to compute the CAC.

To mount a successful combination attack against the server, is possible if only the CAC
information can be extracted successfully. The attack consist of two steps: 1) to run the
original client normally to convince the server it is valid, 2) to stop the client and compute
the CAC with the extracted CAC key parts and the chosen user input without using the
official client. The input will appear to come from a valid client when it actually does
not.

To extract the hidden information the scripts found in Appendix F have been created to
extract static method call information, byte array operation accesses to the MemStorage

class, and the class loading order done by the CustomClassLoader. The script uses
the three programs javap, awk and sed, to compose the three extraction processes byte
array operations, method call lists, and class loading order. The byte array operations
extraction process extracts all byte array operations both legal and illegal. To conclude
which byte array operations are illegal, one uses the method calls, to observe which
byte array operation is present in methods not being called or being called after the
checksum has been computed. The class loading process extracts the order in which the
CustomClassLoader loads classes, which controls the order of the data stored in the byte
array, that byte array operations uses. The extraction processes of extracting the CAC
key parts can be done observing the method calls, because all method calls within the
action listener for the submit button shows, how many key parts there are, and where to
find the key parts.

If one of the three attacks above can be done successful within the time-frames for client
checksum validation or for input data submission, the tamper-proofing security mecha-
nism is un-successful.

To run the test, do the following: Open an Linux terminal in the source directory and
type the command ant client to build the client and afterward type the command
./combinedextract.sh, which then output two log files named search.log, classload-
ing.log and calllists.log. The file search.log contains the byte array operations
found in the client program. The file classloading.log contains a list of the loading
order of the client classes. The file calllists.log contains a list of all methods in the
client, and with each method is a list of the methods it calls.
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6.2 Test Results

The test has been performed as specified, and the three log files can be seen in Appendix G
Listing G.1, Listing G.2 and Listing G.3. The test result section is split into two sub-
sections. The first subsection contains the conclusion on the extraction of byte array
operations and client class loading order. The second subsection contains the conclusion
on the extraction of CAC key parts.

The running-times from five runs of the test script combinedextract.sh are the following
numbers in seconds: 2.251, 2.304, 2.222, 2.182, and 2.232, which gives an average running-
time of 2.2382 seconds. The tool used for timing the running-time is the Linux command
time, the command is invoked like this time ./combinedextract.sh.

The following hardware and software configuration was used. The hardware specifica-
tion is an IBM R40 laptop with 1.2 GHz Pentium 4 Mobile processor, 512 MB PC-133
Random-Access Memory (RAM), and HD with 4800 RPM. The operating system is
Xubuntu version 7.04 and JDK version 1.6.0 01.

6.2.1 Extraction of Byte Array Operations

It is easy to extract all byte array operations present in the code. This can be seen in
search.log shown in Appendix G Listing G.2, where all 11 byte array operations are
present. There are two type one byte array operations and nine type two byte array
operations. To recognize the difference between the two byte array operations use these
two patterns. The type one pattern is the sequence of four sipush instructions. The type
two pattern is the sequence of a sipush instruction followed by a bipush instruction.

To make the attack of finding the set of legal byte array operations, one has to know
the order in which the classes are loaded. By analyzing the classloading.log in Ap-
pendix G Listing G.3. In the analysis the only line excluded from the log file is loading
of InputForm, because we know that this is the first class loaded. The first class in the
MemStorage byte array is then InputForm and the rest of the classes are loaded as shown
in Listing 6.2.1 from top to bottom.� �
1 #8; // String dk.phiber.tamperproofing.client.

InputForm$ClearButtonListener
2 #10; // String dk.phiber.tamperproofing.client.

InputForm$SubmitButtonListener
3 #11; // String dk.phiber.tamperproofing.client.Client
4 #12; // String dk.phiber.tamperproofing.common.Hashing
5 #13; // String dk.phiber.tamperproofing.common.CSPRBG
6 #14; // String dk.phiber.tamperproofing.common.ChallengeResponse
7 #15; // String dk.phiber.tamperproofing.common.ByteArray
8 ...� �

The next step is to recognize the difference between legal and illegal byte array operations.
Only one illegal byte array operation can be found analyzing Appendix G Listing G.2,
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that byte array operation is a type two byte array operation present in Listing 6.2.1.
The byte array operation is illegal with no effect, because it is done after the checksum
computation. Because two illegal byte array operations are present in the code, there is
still one byte operation to find. The illegal byte array operation not found is the type
one byte array operation where array index 4452 is switched with index 7529. The illegal
byte array operation can been seen in Listing 6.2.1. Analyzing the listings Appendix G
there are no means to separate this byte array operations out from the legal ones, unless
the re-engineer analyze the context of where byte array operations are placed. To enforce
security one could now add so many byte array operations to the client that the right byte
array combination can only be guessed with negligible probability within the time period
where software validation is allowed. This will require many byte array operations to be
added to the client, to assume that analyzing the context of each byte array operations
would be more time consuming, because analysis of the program context will require more
manual work by the re-engineer.� �
1 ...
2 587: sipush 3354
3 590: bipush 78
4 ...� �� �
1 ...
2 23: sipush 4452
3 35: sipush 4452
4 44: sipush 7529
5 55: sipush 7529
6 ...� �

It is then important to find how this property is obtained by the illegal byte array opera-
tion. This is done by analyzing the implementation. From the byte array operation’s po-
sition in Listing G.2 it can be concluded that the permutation is in the class Hashing and
the method computeChecksum. The class InputForm calls the method computeChecksum

with input, so the computeChecksum does the type one byte array operations twice. The
effect of the type one byte array operation is then cancelled out. This is a difficult prob-
lem to find without context analysis of the client program. The attackers best option is
to run the program to get a valid client validation checksum.

6.2.2 Extraction of CAC Key Parts

To find the CAC key parts a different method is used than the one for finding byte array
operations. To find byte array operations one could observe accesses to the MemStorage

class. This method is not possible with the CAC scheme, but a method that does work
is finding where the input data is send from in the client, because that will be close to
where the CAC computation is. When one has found the CAC computation, references
to the different key parts will be there. The location of the CAC computation in the
disassembled class files Listing G.1 can be seen in Listing 6.2.2.� �
1 ...
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2 InputForm$SubmitButtonListener.dis
3 5: invokespecial #3; // Method value :()[B
4 common/Hashing."<init >":()V
5 common/Hashing.getB :()[B
6 common/Hashing.computeHMAC :([B[B)[B
7 common/Hashing.computeHMAC :([B[B)[B
8 client/InputForm ;)[B
9 common/ByteArray.xor :([B[B)[B

10 client/Client;
11 client/Client.putData :(I[B)Z
12 ...� �
If one observes the lines, one can assume that the two calls to the method computeHMAC

is the actual computation of the CAC. The two calls will then allow the assumption
that there are two CAC key parts, and that the attacker can obtain these two key parts
before the CAC computation. The only method calls from client code in question is the
creation of a Hashing object, and two methods getB and value, then these two methods
would be likely key part holders. At the same time it can be concluded that the two
methods return values are of type byte array, which is the same type as the key for the
computeHMAC method should be. A safe assumption is that this CAC scheme cannot be
assumed secure, because it is possible to do manually within the time-frame of 10 minutes
with few key parts.

6.3 Summary

In general it can be concluded that the security does not hold, because the CAC scheme
cannot sufficiently hide its key parts. This will leave the client susceptible to the combined
attack in the test-case. Where the attacker uses a valid client for the client validation
checksum, and then uses an invalid client to send input to the server. Another important
thing to notice is that the byte array operations scheme is successful in hiding one illegal
byte array operation within the set of legal byte array operations. It can be a possibility
to use the same method for hiding CAC key parts, the method is to make the key parts
dependant on how the program runs. One possibility could be to add methods that
access and change the key part, but these methods have no direct relation to the CAC
computation, except a common interest in one or more key parts. This new method
requires the attacker to analyze all accesses to CAC key parts. It will resolve in a similar
problem that gives the illegal byte array operation its hiding property, which is that the
re-engineer have to observe how many times the program call each method. Because a
method that change the CAC key part with one call, can change the key part to something
else after multiple calls.
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Conclusion

The initial goal of this thesis was to develop a suite of security mechanisms to prevent
the following attacks; MITM, phishing and tampering attacks. This suite should then be
easy to embed into the client software making it resistant against these attacks.

It was then found that good security mechanisms existed against MITM and phishing
attacks. The goal of the project was then changed from developing a suite of security
mechanisms, to instead design and implement a tamper-proofing security mechanism for
Java client software.

The tamper-proofing security mechanism design and implementation was in the test
discarded as being a qualified solution for allowing servers to trust that data comes from
un-tampered client. While testing it, it was found that an illegal byte array operation
had the property, which enforces the attacker to analyze the context where the byte array
operation is placed, or to guess the correct combination of the byte array operations. The
attacker is only allowed one guess using a one-time passwords mechanism, and because
a uniquely keyed client is compiled to each user. The attacker will not be more powerful
even if she has more than one user’s client release, because the task of extracting byte
array operations will result in different outputs. The most obvious way to validate the
client will be to run the un-tampered client. This then pushes the client validation
from the program initialization phase to the data input phase, and the data input phase
security is handled by the CAC scheme.

The design of the CAC scheme was not sufficient, because it is possible to manually to
find the CAC key parts by analyzing the output of the test script. The property obtained
by the illegal byte array operation is possible to extend to the design of a new secure
CAC scheme. This will make it possible to design a tamper-proofing security mechanism,
which actual can offer security and trust within a stated period of time.

The final conclusion is that it should be possible to make a tamper-proofing security
mechanism that provides trust in clients for small periods of time.
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Chapter 8

Acronyms

AAU AAlborg University

AES Advanced Encryption Standard

API Application Programming Interface

CA Certificate Authority

CAC Client Authentication Code

CPU Central Processing Unit

CSPRBG Cryptographic Secure Pseudorandom Bit Generator

EINOO External, Insider, Network, Off-line, and On-line

FIPS Federal Information Procession Standards

GUI Graphical User Interface

HMAC Keyed-Hash Message Authentication Code

HTML HyperText Markup Language

HTTPS HyperText Transmission Protocol, Secure

IIS Internet Information Services

IP Internet Protocol

JDK Java Developer Kit

JCF Java Collections Framework

JVM Java Virtual Machine

MAC Message Authentication Code
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MITM Man In The Middle

PRBG Pseudorandom Bit Generator

PRMT Pseudorandom Memory Traversal

RAM Random-Access Memory

RMI Remote Method Invocation

RSA Rivest, Shamir, and Adleman

SHA-1 Secure Hash Algorithm-1

SRP Secure Remote Password protocol

SSL Secure Socket Layer

SWATT SoftWare-based ATTestation

TCP Transmission Control Protocol

TLS Transport Layer Security protocol



Appendix A

Functions

An example of how encryption and decoy functions can appear in Java.� �
1 // Addition in Exponent

2 // Variant One

3 public int addSign(int toSign){

4 int kp = 4; // Keypart

5 BigInteger n = ; // Declare modulus

6 return toSign.pow(kp).mod(n);

7 }

8 // Variant Two

9 public int addSign(int toSign , BigInteger n){

10 int kp = 4; // Keypart

11 return toSign.pow(kp).mod(n);

12 }

13 // Variant Three

14 int kp = 4; // Keypart

15 public int addSign(int toSign , BigInteger n){

16 return toSign.pow(kp).mod(n);

17 }

18 // Variant Four

19 int kp = 4; // Keypart

20 BigInteger n = ; // Declare modulus

21 public int addSign(int toSign , BigInteger n){

22 return toSign.pow(kp).mod(n);

23 }

24 // Multiplication in Exponent

25 // Variant One

26 public int mulSign(int toSign){

27 int kp = 4; // Keypart

28 BigInteger n = ; // Declare modulus

29 return toSign.pow(kp).mod(n);

30 }

31 // Variant Two

32 public int mulSign(int toSign , BigInteger n){

33 int kp = 4; // Keypart

34 return toSign.pow(kp).mod(n);

35 }

36 // Variant Three

37 int kp = 4; // Keypart

38 public int mulSign(int toSign , BigInteger n){

39 return toSign.pow(kp).mod(n);

40 }

41 // Variant Four

42 int kp = 4; // Keypart

43 BigInteger n = ; // Declare modulus

44 public int mulSign(int toSign , BigInteger n){

45 return toSign.pow(kp).mod(n);

46 }
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47 // Arithmetic Functions

48 public int add(int number1 , int number2){

49 return (number1 + number2)

50 }

51 public int sup(int number1 , int number2){

52 return (number1 - number2)

53 }

54 public int mul(int number1 , int number2){

55 return (number1 * number2)

56 }

57 public int div(int number1 , int number2){

58 return (number1 / number2)

59 }

60 public int mod(int number1 , int number2){

61 return (number1 % number2)

62 }� �
Listing A.1: An example of how encryption and decoy functions can appear in Java.
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Obfuscation Example

This appendix show disassembling of a small Java program which source is in Listing B.1.
The disassembling result of the un-obfuscated Java program is in Listing B.2. The disas-
sembling result of the obfuscated Java program is in Listing B.3. The configuration file
for obfuscating the Java program with ProGuard is in Listing B.4.� �

1 package dk.phiber;

2
3 public class Disassemble {

4
5 public int Public = 0;

6 protected int Protected = 0;

7 private int Private = 1000000;

8 /**

9 * @param args

10 */

11 public static void main(String [] args) {

12 // TODO Auto -generated method stub

13 Disassemble disassemble = new Disassemble ();

14 disassemble.Public = disassemble.Private - disassemble.Protected;

15 disassemble.pub (1000000);

16 disassemble.pro("Fisk is good");

17 disassemble.pri (5);

18
19 }

20 public void pub(int i) {

21 String s = "Fishing";

22 System.out.println("Addition: " + i + Public);

23 this.pro(s);

24 }

25 protected void pro(String str) {

26 System.out.println(str + Private);

27 }

28 private int pri(int i) {

29 return Protected + 5 + i;

30 }

31 }� �
Listing B.1: The Java source for the small Java program.� �

1 Compiled from "Disassemble.java"

2 public class dk.phiber.Disassemble extends java.lang.Object{

3 public int Public;

4
5 protected int Protected;

6
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7 public dk.phiber.Disassemble ();

8 Code:

9 0: aload_0

10 1: invokespecial #12; // Method java/lang/Object."<init >":()V

11 4: aload_0

12 5: iconst_0

13 6: putfield #14; // Field Public:I

14 9: aload_0

15 10: iconst_0

16 11: putfield #16; // Field Protected:I

17 14: aload_0

18 15: ldc #18; //int 1000000

19 17: putfield #19; // Field Private:I

20 20: return

21
22 public static void main(java.lang.String []);

23 Code:

24 0: new #1; // class dk/phiber/Disassemble

25 3: dup

26 4: invokespecial #27; // Method "<init >":()V

27 7: astore_1

28 8: aload_1

29 9: aload_1

30 10: getfield #19; // Field Private:I

31 13: aload_1

32 14: getfield #16; // Field Protected:I

33 17: isub

34 18: putfield #14; // Field Public:I

35 21: aload_1

36 22: ldc #18; //int 1000000

37 24: invokevirtual #28; // Method pub:(I)V

38 27: aload_1

39 28: ldc #32; // String Fisk is good

40 30: invokevirtual #34; // Method pro:( Ljava/lang/String ;)V

41 33: aload_1

42 34: iconst_5

43 35: invokespecial #38; // Method pri:(I)I

44 38: pop

45 39: return

46
47 public void pub(int);

48 Code:

49 0: ldc #45; // String Fishing

50 2: astore_2

51 3: getstatic #47; // Field java/lang/System.out:Ljava/io/PrintStream;

52 6: new #53; // class java/lang/StringBuilder

53 9: dup

54 10: ldc #55; // String Addition:

55 12: invokespecial #57; // Method java/lang/StringBuilder ."<init >":( Ljava/lang/

String ;)V

56 15: iload_1

57 16: invokevirtual #59; // Method java/lang/StringBuilder.append :(I)Ljava/lang/

StringBuilder;

58 19: aload_0

59 20: getfield #14; // Field Public:I

60 23: invokevirtual #59; // Method java/lang/StringBuilder.append :(I)Ljava/lang/

StringBuilder;

61 26: invokevirtual #63; // Method java/lang/StringBuilder.toString :() Ljava/lang/

String;

62 29: invokevirtual #67; // Method java/io/PrintStream.println :( Ljava/lang/String

;)V

63 32: aload_0

64 33: aload_2

65 34: invokevirtual #34; // Method pro:( Ljava/lang/String ;)V

66 37: return

67
68 protected void pro(java.lang.String);

69 Code:

70 0: getstatic #47; // Field java/lang/System.out:Ljava/io/PrintStream;

71 3: new #53; // class java/lang/StringBuilder
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72 6: dup

73 7: aload_1

74 8: invokestatic #75; // Method java/lang/String.valueOf :( Ljava/lang/Object ;)

Ljava/lang/String;

75 11: invokespecial #57; // Method java/lang/StringBuilder ."<init >":( Ljava/lang/

String ;)V

76 14: aload_0

77 15: getfield #19; // Field Private:I

78 18: invokevirtual #59; // Method java/lang/StringBuilder.append :(I)Ljava/lang/

StringBuilder;

79 21: invokevirtual #63; // Method java/lang/StringBuilder.toString :() Ljava/lang/

String;

80 24: invokevirtual #67; // Method java/io/PrintStream.println :( Ljava/lang/String

;)V

81 27: return

82
83 }� �

Listing B.2: The disassembling result of the small un-obfuscated Java program.� �
1 public class dk.phiber.Disassemble extends java.lang.Object{

2 public int a;

3
4 public int b;

5
6 public dk.phiber.Disassemble ();

7 Code:

8 0: aload_0

9 1: invokespecial #11; // Method java/lang/Object."<init >":()V

10 4: aload_0

11 5: iconst_0

12 6: putfield #7; // Field a:I

13 9: aload_0

14 10: iconst_0

15 11: putfield #8; // Field b:I

16 14: aload_0

17 15: ldc #23; //int 1000000

18 17: putfield #9; // Field c:I

19 20: return

20
21 public static void main(java.lang.String []);

22 Code:

23 0: new #1; // class dk/phiber/Disassemble

24 3: dup

25 4: invokespecial #12; // Method "<init >":()V

26 7: dup

27 8: astore_1

28 9: aload_1

29 10: getfield #9; // Field c:I

30 13: aload_1

31 14: getfield #8; // Field b:I

32 17: isub

33 18: putfield #7; // Field a:I

34 21: aload_1

35 22: ldc #23; //int 1000000

36 24: invokevirtual #14; // Method a:(I)V

37 27: aload_1

38 28: ldc #22; // String Fisk is good

39 30: invokevirtual #15; // Method a:( Ljava/lang/String ;)V

40 33: return

41
42 public final void a(int);

43 Code:

44 0: ldc #21; // String Fishing

45 2: astore_2

46 3: getstatic #10; // Field java/lang/System.out:Ljava/io/PrintStream;

47 6: new #5; // class java/lang/StringBuilder

48 9: dup

49 10: ldc #20; // String Addition:
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50 12: invokespecial #13; // Method java/lang/StringBuilder ."<init >":( Ljava/lang/

String ;)V

51 15: iload_1

52 16: invokevirtual #16; // Method java/lang/StringBuilder.append :(I)Ljava/lang/

StringBuilder;

53 19: aload_0

54 20: getfield #7; // Field a:I

55 23: invokevirtual #16; // Method java/lang/StringBuilder.append :(I)Ljava/lang/

StringBuilder;

56 26: invokevirtual #18; // Method java/lang/StringBuilder.toString :() Ljava/lang/

String;

57 29: invokevirtual #17; // Method java/io/PrintStream.println :( Ljava/lang/String

;)V

58 32: aload_0

59 33: aload_2

60 34: invokevirtual #15; // Method a:( Ljava/lang/String ;)V

61 37: return

62
63 public final void a(java.lang.String);

64 Code:

65 0: getstatic #10; // Field java/lang/System.out:Ljava/io/PrintStream;

66 3: new #5; // class java/lang/StringBuilder

67 6: dup

68 7: aload_1

69 8: invokestatic #19; // Method java/lang/String.valueOf :( Ljava/lang/Object ;)

Ljava/lang/String;

70 11: invokespecial #13; // Method java/lang/StringBuilder ."<init >":( Ljava/lang/

String ;)V

71 14: aload_0

72 15: getfield #9; // Field c:I

73 18: invokevirtual #16; // Method java/lang/StringBuilder.append :(I)Ljava/lang/

StringBuilder;

74 21: invokevirtual #18; // Method java/lang/StringBuilder.toString :() Ljava/lang/

String;

75 24: invokevirtual #17; // Method java/io/PrintStream.println :( Ljava/lang/String

;)V

76 27: return

77
78 }� �

Listing B.3: The disassembling result of the small obfuscated Java program.� �
1 -injars disassemble.jar

2 -outjars odisassemble.jar

3 -libraryjars java/jre/lib/rt.jar

4 -printmapping proguard.map

5 -overloadaggressively

6 -defaultpackage ’’

7 -allowaccessmodification

8
9 -keep public class dk.phiber.Disassemble {

10 public static void main(java.lang.String []);

11 }� �
Listing B.4: The ProGuard configuration file.
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The Ant Build File

The Ant build file used for building and running the prototype can be seen in Listing C.1.� �
1 <project name="ClientSecurity" default="default" basedir=".">

2 <description >The first build file.</description >

3 <property name="build" location="build"/>

4 <property name="dist" location="dist"/>

5 <property name="src" location=""/>

6 <property name="package" location="${build }/dk/phiber/tamperproofing"/>

7 <property name="build.client" location="${package }/ client"/>

8 <property name="build.common" location="${package }/ common"/>

9 <property name="build.impclasses" location="${package }/ impclasses"/>

10 <property name="build.permutation" location="${package }/ permutation"/>

11 <property name="build.server" location="${package }/ server"/>

12 <property name="jar.client" location="${dist}/ client"/>

13 <property name="jar.common" location="${dist}/ common"/>

14 <property name="jar.impclasses" location="${dist}/ impclasses"/>

15 <property name="jar.permutation" location="${dist}/ permutation"/>

16 <property name="jar.server" location="${dist}/ server"/>

17 <target name="default" depends="compile ,server ,client"/>

18 <target name="compile">

19 <mkdir dir="${build}"/>

20 <javac srcdir="${src}/" destdir="${build}"/>

21 </target >

22 <target name="clean">

23 <delete dir="${build}"/>

24 <delete dir="${dist}"/>

25 </target >

26 <target name="server" depends="compile">

27 <mkdir dir="${dist}"/>

28 <copy file="operations.txt" todir="${dist}" overwrite="true"/>

29 <copy file="cackey.txt" todir="${dist}" overwrite="true"/>

30 <jar destfile="${jar.server }.jar" basedir="${build}"

31 includes="**/ server /*.class ,**/ common /*.class ,**/ client /*. class">

32 <manifest >

33 <attribute name="Main -Class"

34 value="dk.phiber.tamperproofing.server.Server"/>

35 </manifest >

36 </jar >

37 </target >

38 <target name="client" depends="compile">

39 <mkdir dir="${dist}"/>

40 <jar destfile="${jar.client }.jar" basedir="${build}" includes="**/ client /*.

class ,**/ common /*. class"/>

41 <copy file="applet.html" todir="${dist}" overwrite="true"/>

42 <copy file="java.policy.applet" todir="${dist}"

43 overwrite="true"/>

44 </target >

45 <target name="permutation" depends="compile">
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46 <mkdir dir="${dist}"/>

47 <jar destfile="${jar.permutation }.jar" basedir="${build}"

48 includes="**/ permutation /*. class">

49 <manifest >

50 <attribute name="Main -Class"

51 value="dk.phiber.tamperproofing.permutation.PermutationFile"/>

52 </manifest >

53 </jar >

54 </target >

55 <target name="run.server" depends="compile ,server">

56 <!-- <exec dir="${dist}" executable="rmiregistry" os="Linux"/> -->

57 <java dir="${dist}" jar="${jar.server }.jar" fork="true">

58 <jvmarg line="-Djava.rmi.server.codebase=file:${jar.server }.jar"/>

59 </java >

60 </target >

61 <target name="run.permutation" depends="compile ,permutation">

62 <!-- <exec dir="${dist}" executable="rmiregistry" os="Linux"/> -->

63 <java dir="${dist}" jar="${jar.permutation }.jar" fork="true">

64 <arg line="20 8422"/>

65 </java >

66 </target >

67 <target name="run.client" depends="compile ,client">

68 <exec dir="${dist}" executable="appletviewer" os="Linux">

69 <arg line="applet.html -J-Djava.security.policy=${dist}/java.policy.applet"/>

70 </exec >

71 </target >

72 <target name="javadoc">

73 <javadoc destdir="doc" defaultexcludes="yes" author="true" use="true"

windowtitle="Java security mechanism">

74 <fileset dir="." defaultexcludes="yes">

75 <include name="dk/phiber/tamperproofing /**"/>

76 </fileset >

77 <link href="http :// java.sun.com/javase /6/ docs/api/"/>

78 </javadoc >

79 </target >

80 </project >� �
Listing C.1: The Ant build file used for building and running the prototype.
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Applet Viewing

The HTML file used to load applet into Sun AppletViewer can be seen in Listing D.1.� �
1 <html >

2 <body >

3 <applet code=dk.phiber.tamperproofing.client.LoadApplet.class

4 archive="client.jar" width="200" height="200" >

5 </applet >

6 </body >

7 </html >� �
Listing D.1: The HTML file that is used to load the applet into Sun AppletViewer.

The policy file used by Sun AppletViewer to load the client can be seen in Listing D.2.
The reason this policy file is used is to allow the client to overload the applet class loader
with the custom class loader.� �

1 /* AUTOMATICALLY GENERATED ON Tue Apr 16 17:20:59 EDT 2002*/

2 /* DO NOT EDIT */

3
4 grant {

5 permission java.security.AllPermission;

6 };� �
Listing D.2: The policy file used by Sun AppletViewer to load the client.
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Server Key Files

The byte array operations file used in the prototype is seen in Listing E.1.� �
1 0 3353 58

2 0 7013 -26

3 1 3436 6783

4 0 5436 -85

5 0 387 100

6 0 4814 -59

7 0 142 -29

8 0 5055 119

9 0 4980 120� �
Listing E.1: The byte array operations file used in the prototype.

The CAC key file used in the prototype is seen in Listing E.2.� �
1 52

2 69� �
Listing E.2: The CAC key file used in the prototype.

68



Appendix F

The Test Extraction Scripts

This script Listing F.1 is responsible for calling all the other scripts listed below:

• disassembler.sh shown in Listing F.2

• searchdisassembledfiles.sh shown in Listing F.3

• cleanlog.sh shown in Listing F.5

• constructcalllists.sh shown in Listing F.6

• cleancalllists.sh shown in Listing F.7

• classload.sh shown in Listing F.4� �
1 #!/bin/sh

2
3 ./ disassembler.sh

4
5 ./ searchdisassembledfiles.sh > search.log

6 ./ cleanlog.sh search.log

7
8 ./ constructcalllists.sh > calllists.log

9 ./ cleancalllists.sh calllists.log

10
11 ./ classload.sh classloading.log� �

Listing F.1: The script that combine all the other scripts.� �
1 #!/bin/sh

2
3 CLASS="dist/"

4 DIRECTORY="disassembler"

5 mkdir -p $DIRECTORY

6 for i in Client CustomClassLoader InputForm InputForm\$ClearButtonListener

InputForm\$SubmitButtonListener LoadApplet

7 do

8 javap -c -classpath $CLASS dk.phiber.tamperproofing.client.$i > $DIRECTORY/$i.dis

9 done

10 for i in ByteArray ChallengeResponse CSPRBG Hashing

11 do

12 javap -c -classpath $CLASS dk.phiber.tamperproofing.common.$i > $DIRECTORY/$i.dis
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13 done� �
Listing F.2: The script that disassembles all class files.� �

1 #!/bin/sh

2
3 cd disassembler

4
5 for i in Client.dis CustomClassLoader.dis InputForm.dis InputForm\

$ClearButtonListener.dis InputForm\$SubmitButtonListener.dis LoadApplet.dis

ByteArray.dis ChallengeResponse.dis CSPRBG.dis Hashing.dis

6 do

7 echo ##############################################

8 echo $i

9 echo ##############################################

10 awk ’/( MemStorage .? loadedClasses)|(( public)|( private)|( protected))/,/( bipush|baload

|iload)|(Code:)/ {print $0}’ $i

11 done� �
Listing F.3: The script that searches all disassembled class files for byte array operations.� �

1 #!/bin/sh

2
3 cd disassembler

4
5 for i in Client.dis CustomClassLoader.dis InputForm.dis InputForm\

$ClearButtonListener.dis InputForm\$SubmitButtonListener.dis LoadApplet.dis

ByteArray.dis ChallengeResponse.dis CSPRBG.dis Hashing.dis

6 do

7 echo $i >> ../ tmp.txt

8 sed ’s/^[0 -9]*.* ldc \(.*dk\. phiber \. tamperproofing \..*\..*\)$/hhhhhhh \1 hhhhhhh/’ <

$i >> ../tmp.txt

9 done

10
11 awk ’/hhhhhhh/,/hhhhhhh/ {print $0}’ ../ tmp.txt > ../$1

12 sed ’s/hhhhhhh \(.*\) hhhhhhh$ /\1/’ < ../$1 > ../tmp.txt

13
14 cat ../ tmp.txt > ../$1� �
Listing F.4: The scripts that extracts the class loading order done by
CustomClassLoader.� �

1 #!/bin/sh

2
3 sed ’s/^[0 -9]*.* getfield .*//’ < $1 > clean.tmp

4 sed ’s/^[0 -9]*.* invoke .*//’ < clean.tmp > $1

5 sed ’s/^[0 -9]*.* baload .*//’ < $1 > clean.tmp

6 sed ’s/^[0 -9]*.* iload .*//’ < clean.tmp > $1

7 sed ’/^$/d’ < $1 > clean.tmp

8 sed ’s/^[0 -9]*.* aload .*//’ < clean.tmp > $1

9
10 #cat clean.tmp > $1

11 rm clean.tmp� �
Listing F.5: The script that clean the output from the searchdisassembledfiles.sh script
for garbage information.� �

1 #!/bin/sh

2
3 cd disassembler

4
5 for i in Client.dis CustomClassLoader.dis InputForm.dis InputForm\

$ClearButtonListener.dis InputForm\$SubmitButtonListener.dis LoadApplet.dis

ByteArray.dis ChallengeResponse.dis CSPRBG.dis Hashing.dis

6 do
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7 echo $i

8 awk ’/(( public)|( private)|( protected))|(\/\/ Method)/,/($)/ {print $0}’ $i

9 done� �
Listing F.6: The script that construct method call lists foreach method.� �

1 #!/bin/sh

2
3 sed ’s/^[0 -9]*.* java .*//’ < $1 > clean.tmp

4 sed ’/^$/d’ < clean.tmp > $1

5 sed ’s/\(^[0 -9]*.* dk\/ phiber \/ tamperproofing \/\) \(.*\) /\2/’ < $1 > clean.tmp

6
7 cat clean.tmp > $1

8 rm clean.tmp� �
Listing F.7: The scripts that clean the output from the constructcalllists script for garbage
information.
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Test Results

These are the log files calllists.log Listing G.1, search.log Listing G.2, and classloading.log
Listing G.3 that the test script produces.� �

1 Client.dis

2 client/MemStorage;

3 public byte[] getSeed ();

4 public boolean putChecksum(byte []);

5 public boolean putData(int , byte []);

6 CustomClassLoader.dis

7 client/MemStorage;

8 InputForm.dis

9 public dk.phiber.tamperproofing.client.InputForm ();

10 client/Client.getSeed :()[B

11 client/MemStorage;

12 client/InputForm ;)V

13 client/InputForm ;)V

14 client/MemStorage;

15 client/MemStorage;

16 client/MemStorage;

17 client/MemStorage;

18 client/MemStorage;

19 common/Hashing."<init >":()V

20 common/Hashing.computeChecksum :([B[B)[B

21 common/Hashing."<init >":()V

22 client/MemStorage;

23 common/Hashing.computeChecksum :([B[B)[B

24 client/Client.putChecksum :([B)Z

25 client/MemStorage;

26 InputForm$ClearButtonListener.dis

27 InputForm$SubmitButtonListener.dis

28 5: invokespecial #3; // Method value :()[B

29 common/Hashing."<init >":()V

30 common/Hashing.getB :()[B

31 common/Hashing.computeHMAC :([B[B)[B

32 common/Hashing.computeHMAC :([B[B)[B

33 client/InputForm ;)[B

34 common/ByteArray.xor :([B[B)[B

35 client/Client;

36 client/Client.putData :(I[B)Z

37 LoadApplet.dis

38 public dk.phiber.tamperproofing.client.LoadApplet ();

39 public void init();

40 public void stop();

41 public void destroy ();

42 ByteArray.dis

43 public dk.phiber.tamperproofing.common.ByteArray ();

44 public static byte[] and(byte[], byte []);
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45 public static byte[] xor(byte[], byte []);

46 client/MemStorage;

47 client/MemStorage;

48 public static byte[] append(byte[], byte []);

49 ChallengeResponse.dis

50 CSPRBG.dis

51 public dk.phiber.tamperproofing.common.CSPRBG(byte []);

52 client/MemStorage;

53 public byte generateByte ();

54 Hashing.dis

55 public dk.phiber.tamperproofing.common.Hashing ();

56 public byte[] computeHMAC(byte[], byte []);

57 client/MemStorage;

58 common/ByteArray.xor :([B[B)[B

59 65: invokespecial #12; // Method computeHash :([B)[B

60 common/ByteArray.xor :([B[B)[B

61 74: invokespecial #12; // Method computeHash :([B)[B

62 common/ByteArray.append :([B[B)[B

63 common/ByteArray.append :([B[B)[B

64 84: invokespecial #12; // Method computeHash :([B)[B

65 public byte[] computeChecksum(byte[], byte []);

66 client/MemStorage;

67 client/MemStorage;

68 client/MemStorage;

69 client/MemStorage;

70 client/MemStorage;

71 80: invokespecial #21; // Method computePRMTBlock :([B[BI)[B

72 103: invokespecial #21; // Method computePRMTBlock :([B[BI)[B

73 common/ByteArray.append :([B[B)[B

74 121: invokevirtual #22; // Method computeHMAC :([B[B)[B

75 public byte[] getB();� �
Listing G.1: This is the extracted method call lists.� �

1 Client.dis

2 public class dk.phiber.tamperproofing.client.Client extends java.lang.Object{

3 dk.phiber.tamperproofing.common.ChallengeResponse stub;

4 public dk.phiber.tamperproofing.client.Client(java.lang.String);

5 Code:

6 15: sipush 4814

7 18: bipush -59

8 public byte[] getSeed ();

9 Code:

10 public boolean putChecksum(byte []);

11 Code:

12 public boolean putData(int , byte []);

13 Code:

14 CustomClassLoader.dis

15 public class dk.phiber.tamperproofing.client.CustomClassLoader extends java.lang.

ClassLoader{

16 public dk.phiber.tamperproofing.client.CustomClassLoader () throws java.io.

FileNotFoundException;

17 Code:

18 public dk.phiber.tamperproofing.client.CustomClassLoader(java.lang.ClassLoader ,

java.lang.String) throws java.io.FileNotFoundException;

19 Code:

20 public java.lang.Class findClass(java.lang.String) throws java.lang.

ClassNotFoundException;

21 Code:

22 public byte[] findClassBytes(java.lang.String);

23 Code:

24
25
26 InputForm.dis

27 public class dk.phiber.tamperproofing.client.InputForm extends java.lang.Object{

28 public dk.phiber.tamperproofing.client.InputForm ();

29 Code:

30 public void run(javax.swing.JApplet);

31 Code:
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32 117: sipush 5436

33 120: bipush -85

34 277: sipush 387

35 280: bipush 100

36 451: sipush 3436

37 463: sipush 3436

38 472: sipush 6783

39 483: sipush 6783

40 566: putfield #2; // Field checksum :[B

41
42
43 580: pop

44 587: sipush 3354

45 590: bipush 78

46 InputForm$ClearButtonListener.dis

47 public void actionPerformed(java.awt.event.ActionEvent);

48 Code:

49 InputForm$SubmitButtonListener.dis

50 public void actionPerformed(java.awt.event.ActionEvent);

51 Code:

52 LoadApplet.dis

53 public class dk.phiber.tamperproofing.client.LoadApplet extends javax.swing.JApplet

{

54 public dk.phiber.tamperproofing.client.LoadApplet ();

55 Code:

56 public void init();

57 Code:

58 public void stop();

59 Code:

60 public void destroy ();

61 Code:

62 ByteArray.dis

63 public class dk.phiber.tamperproofing.common.ByteArray extends java.lang.Object{

64 public dk.phiber.tamperproofing.common.ByteArray ();

65 Code:

66 public static byte[] and(byte[], byte []);

67 Code:

68 public static byte[] xor(byte[], byte []);

69 Code:

70 8: sipush 3353

71 11: bipush 58

72 167: sipush 7013

73 170: bipush -26

74 public static byte[] append(byte[], byte []);

75 Code:

76 ChallengeResponse.dis

77 public interface dk.phiber.tamperproofing.common.ChallengeResponse extends java.rmi

.Remote{

78 public abstract byte[] getSeed () throws java.rmi.RemoteException;

79 public abstract boolean putChecksum(byte []) throws java.rmi.RemoteException;

80 public abstract boolean putData(int , byte []) throws java.rmi.RemoteException;

81 }

82 CSPRBG.dis

83 public class dk.phiber.tamperproofing.common.CSPRBG extends java.lang.Object{

84 public dk.phiber.tamperproofing.common.CSPRBG(byte []);

85 Code:

86 25: sipush 4980

87 28: bipush 120

88 public byte generateByte ();

89 Code:

90 Hashing.dis

91 public class dk.phiber.tamperproofing.common.Hashing extends java.lang.Object{

92 public dk.phiber.tamperproofing.common.Hashing ();

93 Code:

94 public byte[] computeHMAC(byte[], byte []);

95 Code:

96 19: sipush 5055

97 22: bipush 119

98 public byte[] computeChecksum(byte[], byte []);

99 Code:
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100 23: sipush 4452

101 35: sipush 4452

102 44: sipush 7529

103 55: sipush 7529

104 70: sipush 142

105 73: bipush -29

106 public byte[] getB();

107 Code:� �
Listing G.2: This is the extracted byte array operations from the client program.� �

1 #8; // String dk.phiber.tamperproofing.client.InputForm$ClearButtonListener

2 #10; // String dk.phiber.tamperproofing.client.InputForm$SubmitButtonListener

3 #11; // String dk.phiber.tamperproofing.client.Client

4 #12; // String dk.phiber.tamperproofing.common.Hashing

5 #13; // String dk.phiber.tamperproofing.common.CSPRBG

6 #14; // String dk.phiber.tamperproofing.common.ChallengeResponse

7 #15; // String dk.phiber.tamperproofing.common.ByteArray

8 #9; // String dk.phiber.tamperproofing.client.InputForm� �
Listing G.3: This is the extracted client classes loading order.


