
Framework for on-demand
delivery of data and automatic
patching of code and content.

June 2007

Aalborg University

Aalborg Universitet
Department of Computer Science, Frederik Bajers Vej 7E, DK 9220 Aalborg Øst

Title: Framework for on-demand delivery
of content and automatic patching of
code and content.

Project period:
Speciale (Dat6)
February 1th 2007 - June 11th 2007

Project group:
E4-117

Group members:

Kammersgaard, Marc

Melsvik, Jasper

Nielsen, Rasmus

Supervisor:
Vestdam, Thomas

Copies: 7

Page count: 131

Abstrakt:

The rapid development of mobile

phones has increased the use of mo-

bile phones as gaming devices. In this

project we will focus on easier develop-

ment of mobile games, with regards to

content and patching of code. To help

mobile game developers we have cre-

ated a framework called FoDa which

handles on-demand delivery of data

and automatic patching of code and

contents. Handling this developers do

not have to think about were game

content comes from, how it should be

saved and processed. The developer

only has to request the data needed

and FoDa will provide the data. As

mobile development have a short time-

to-market requirement, changes in the

design of a development project require

the framework to be highly flexible. To

make FoDa as flexible as possible we

have produced the framework by using

a pure plugin architecture. This gives

the developers the possibility to tailor

FoDa to the specific needs of a project.

This report will describe the process

from an idea of the framework to the

implementation and evaluation of the

framework.

Table of Contents

1 Introduction 5
1.1 Problem . 6
1.2 Report structure . 7

I Research 8

2 Use Cases 9
2.1 Digital Photo Album . 9
2.2 Indoor Navigation . 11
2.3 Massive Multiplayer Online Game 15
2.4 Patching . 18
2.5 Feature list . 20

3 Exsisting Systems 22
3.1 GameOD . 22
3.2 MOCA . 23
3.3 CAPNET . 24
3.4 M-commerce . 25
3.5 SCaLaDE . 26
3.6 PnPAP . 27
3.7 Conclusion . 28

II Developing the System 29

4 Requirements 30
4.1 Specification . 32

4.1.1 Client . 34
4.1.2 Server . 35

5 Architecture 36
5.1 Framework . 36
5.2 Layering . 37

2

TABLE OF CONTENTS 3

5.3 Plugin systems . 39

5.3.1 Monolithic Architecture 39

5.3.2 Traditional Plugin Architecture 40

5.3.3 Pure Plugin Architecture 40

5.4 Conclusion . 41

6 Design 43

6.1 Architecture Overview . 43

6.2 The Application . 45

6.3 The Middleware . 45

6.3.1 Request Manager . 45

6.3.2 Data Manager . 45

6.3.3 Security Manager . 47

6.3.4 Connection Manager . 48

6.4 The Plugin Engine . 49

6.4.1 Architecture . 49

6.4.2 Plugin Structure . 50

6.4.3 Interfaces . 51

6.4.4 Plugin XML Language . 52

6.4.5 Events . 54

6.4.6 Dependency Handling . 56

7 Implementation 58

7.1 Platform Choice . 58

7.2 Plugin Overview . 59

7.2.1 Application . 62

7.2.2 RequestManager . 63

7.2.3 DataManager . 65

7.2.4 PatchProcessing . 68

7.2.5 Cache . 69

7.2.6 SecurityManager . 71

7.2.7 Encryption . 73

7.2.8 ConnectionManager . 74

7.2.9 Http . 75

7.2.10 Socket . 76

7.2.11 Implementation status . 77

7.3 Platform Limitations . 78

7.3.1 Unloading of DLLs . 78

7.3.2 Automatic Restart of Applications 79

7.3.3 Dynamic Instantiation of Classes 79

4 Table of Contents

III Framework Evaluation 82

8 Evaluation 83
8.1 Ease of use . 84

8.1.1 Plugin Tutorial . 84
8.1.2 Photoalbum . 85
8.1.3 Jump Game . 89
8.1.4 Indoor Maps . 92
8.1.5 Porting a Game: Pocket 1945 96
8.1.6 Massive Multiplayer Online Game 99

8.2 Benchmark . 101
8.2.1 Memory Usage . 102
8.2.2 System Size . 103
8.2.3 Startup Time . 103
8.2.4 Execution Time . 109

8.3 Comparing the Eclipse eRCP . 110
8.3.1 The Eclipse eRCP . 110
8.3.2 Feature coverage of eRCP 111
8.3.3 Results . 113

8.4 Conclusion . 114

9 Conclusion 116

IV Appendix 118

Appendix 119

A Simulation Thread 119

B Startup log 121

C eRCP: Hello World 123

D FoDa: Hello World 124

E Report Summary 126

Chapter 1

Introduction

Recent years mobile devices and in particular mobile phones have become wide
spread. Statistics from the National IT and Telecom Agency in Denmark shows
that mobile phone subscriptions in Denmark in the year 2005 exceed the number
of people living in the country [1]. Not only Danes are fond of mobile devices,
according to the article “500 million Chinese have a mobile before summer” [2]
featured in Computerworld. The number of phone subscriptions increase with
13.5 million from February to March 2007. The majority of these phones are
multimedia enabled, able to use images, sounds and videos, which make ideal
gaming devices.

Devices are rapidly becoming smaller, faster and more powerful in terms of
their capabilities. This has the effect that devices vary greatly making production
of software, which supports a large range of devices, a hazel.

Demand and supply of mobile games are rapidly increasing as more people
use the devices for causal gaming.

According to the Mobile Game Conference 2006, did the revenue in the US
from mobile downloads increase from $40 million per month to $100 million per
month from November 2005 to May 2006 [3]. In the US games downloaded
represent about 6% of the mobile data revenues, where it in Japan is 15-20%.
Mobile application companies are starting to see business in developing games for
mobile devices, but game development on mobile devices often suffer from short
time to market requirements which implicates short development cycles. This
causes the side effect of cutting innovation corners by copying existing concepts
from games which has proven themselves in the early arcade games or porting of
console and PC games. This is more thoroughly described in the report“Problems
related to massive multiplayer online game development for mobile phones” [?].
Even the most attractive game genre within the PC market is starting to rub
of on the mobile devices game concepts, as the all famous Massive Multiplayer
Online games starts to surface. Firstly with the mobile Roleplay game Tibia [4].

Solutions to remedy the diversity of hardware platforms exist in form of virtual
machine layers among others: Java Micro Edition and Microsoft .Net Compact

5

6 Chapter 1. Introduction

Framework. These frameworks state to ease development of application across
devices by the code once, run everywhere philosophy. They also provide easy
access to features such as display devices, input devices, network capability and
other hardware feature. The problem that still remains when using these frame-
works is that a large amount of work needs to be done to practically support
features in the application. For example network connections still require work-
ing with sockets if one is to support a particular services not running the HTTP
protocol. Nor do they provide features as cache or security, which are needed in
many application which regular communicate through the Internet.

Another problem with mobile devices is the maintenance of software. Appli-
cations for mobile devices are rarely maintained, as it is quite troublesome to
maintain mobile software, either the user have to receive a new version of the
softwareand update the application himself or send the device to the company
which sold it and have them update it, spending weeks without the device. Many
online games do not have a clear end, Game Over or Game Completed, but is
meant to be played forever, users will expect updates on a regular interval or they
will become bored and stop playing the game. It is definitely not a practically
solution to spend weeks without the device, every time an update arrive.

Most mobile application is distribute as one complete package, which do not
allow updates of certain parts of the system, but demands that the complete
package is reinstalled every time an update is released. This is particularly a
problem with small changes and updates, such as bug fixes or modification of
application content.

Content handling is also a problem the developers have to deal with in par-
ticular when doing game development. Mobile devices have limited disk space so
strategies for optimizing its use are required.

A solution to make mobile applications and in particular mobile game de-
velopment easier and faster is to create a system that simplifies tasks such as
network connections and content handling. Automates the process of content de-
livery and automates the maintenance of applications by the use of an automated
patching system. All which are intended to make it easier for the developers to
develop and maintain application as well as benefit the users with more diverse
and feature rich applications that are always up to date.

1.1 Problem

The problem we aim to solve with this report is outlined in the introduction.
A system for increasing the ease and efficiency of developing and maintaining
applications and in particular games for mobile devices is needed.

To increase efficiency of development, the system must be highly flexible and
modular to support reuse as well as making complex features which require many
lines of code as transparent to the developer as possible. An example of complex

1.2 Report structure 7

code is the use of network traffic; this should not have to be a concern for the
developer at all.

To ease development simple interfaces from the system to the developer is
required. All types of data content stored locally or not, should be reachable
from a simple interface which is easy to use.

The system must support ongoing development of the applications trough
automatic patching of code and content. To give mobile devices with limited disk
space the same opportunity to use the system as big devices, on-demand delivery
of data will also be a necessary feature.

Important to the system is that it takes into consideration that it is to run on
a mobile device with limited resources, so the footprint and resource use of the
system should be as small as possible. The system should also be able to handle
the characteristics of mobile application; that they are on the move, which could
result in temporary inability to access services and resources.

In short we will be focusing on developing a system for mobile devices which
handle on-demand delivery of data as well as automatic patching of code and
content. We will implement the system as proof of concept as well.

1.2 Report structure

Section 1.1 on the facing page defined the problem which we aim to solve, but
before it is possible to develop a system for mobile devices we have to be sure
what features our system should contain. To make a feature list which the system
should handle and requirements to the system, we will in the next chapter describe
different mobile application which all have different demands to a system like ours.

After we have reviewed the different mobile application and come up with a
feature list, we will compare this feature list with other existence systems to see
if any system meet the demands we seek, this part is described in Chapter 3.

Chapter 4 describe our requirements to the system, which areas we will focus
on and which areas we will rate as a low priority. With our feature list and focus
areas in mind, Chapter 5 describe the architecture of the system. Knowing which
our requirements and the architecture we should use it will then be possible to
design our system to support the feature described in our feature list, Chapter
6 will describe how we will design the system. After describing all parts needed
for the system; architecture, design and the engine we will in Chapter 7 describe
how we have implemented the different parts of the system. After we have im-
plemented the system we will in Chapter 8 evaluate the system, to see if it meets
our requirements. Finally in Chapter 9 we will conclude upon our system and
the work we have done, describing what we have achieved. Code and binaries of
the project can be found on the website: http://www.cs.aau.dk/~r10/System/
until July 2007.

http://www.cs.aau.dk/~r10/System/

Part I

Research

8

Chapter 2

Use Cases

In the previous chapter, we described the problem we wish to solve, but before
it is possible we have to know what the system should be able to do. To find a
list of features our system should provide a user; we will in this chapter present a
selection of use case scenarios of applications. The application will cover a range
a range of applications we predict will become more popular on mobile devices
as faster and cheaper networks take hold of the market.

Each use case describes the general idea of the system in question. Since the
system we are developing primarily deals with delivering of data, each use case
will in details describe the data flow of the system in question. After describing
the use case and their dataflow, we will describe which features the use case could
make use of from our system.

2.1 Digital Photo Album

This section describes the use case covering a digital photography album running
on a mobile device.

Idea

A digital photo album is an application with the main purpose to display digital
photos. The idea is that digital photos are stored in an archive and the user
can then use the application to browse and view the photos. An example of a
layout for a mobile photo album is shown in Figure 2.1 on the next page. The
application displays one photo at a time and the two buttons back and next are
used for navigating back and forth in the whole photo series.

The name of the photo is displayed beneath the photo and between the two
navigation buttons.

The above application can easily be expanded to retrieve the images over the
air. This results in a request protocol where the application will request the next

9

10 Chapter 2. Use Cases

���������������
���������������
���������������

���������������
���������������
������������������������������
���������������
���������������

���������������
���������������
���������������

Back Next

3 / 42

Figure 2.1: Layout of the simple image viewer.

picture from the server, if it is not already stored on the mobile device, and then
store it using a cache. Concerns about security must be considered when dealing
with data delivered over the air. Since users might not want others to see their
personal photos, a password is required to access the photo album.

This simple application is one of the applications that our system must be
able to support. To describe the data flow we first describe a common usage
scenario for this application.

Usage

The user starts the application and browses from photo one trough three, using
few seconds to look at each photo. Since it is not the first time the user use the
application, photos one and two are already locally stored on the mobile device,
but the rest are not. Due to disk space restrictions the mobile device, limits the
number of locally stored photos to five.

The next section describes the data flow involved in the operation of the
application.

Data Flow

Figure 2.2 shows the data flow of the usage scenario described above.

The user starts the application and the first photo is requested from the
cache which hits and returns the photo for displaying. The user presses the next
button and the application request photo two for displaying, which is also found
in the cache and returned to the display. Next is pressed again by the user
and the application requests photo three from the cache. However, photo three
is not resident in the cache and the cache therefore requests the server for the
photo, using the predetermined identification and password. The server validates
and returns photo three to the cache which stores it and send the photo to the
application for displaying.

2.2 Indoor Navigation 11

(photo 2)

(request photo 2)

(photo 3)

(request photo 3)

(photo 3)

(request photo 3, pass)

System ServerApplication

(request photo 1)

(photo 1)

Figure 2.2: The data flow of the usage illustrated.

Requirements

This section summarizes the requirements of the digital photo album in relation
to a system facilitating easy development of this type of application.

A system must be able to support network connections and the ability to
deliver data fetched from the network to the application above as well as caching
of images when downloaded for faster browsing. User identification is also needed.

1. Managing connection to a network

2. Delivery of image data to the application

3. Managing data cache

4. Handle user identification and security

2.2 Indoor Navigation

Today we have lots of navigation tools that help users find their way around cities.
Often these systems utilize the Global Positioning System (GPS). These systems
are often accurate to within a few meters. This is however not good enough for
indoor navigation, like navigating in buildings with rooms and hallways, where a
meter is often a large percentage of the overall area you are trying to navigate.

12 Chapter 2. Use Cases

One of the alternative ways of indoor navigation utilize the still increasing number
of Wi-Fi spots in buildings to determine location.

As oppose to GPS that make use of signal from three or more satellites to
triangulate positions, indoor Wi-Fi navigation works by mapping out the Wi-Fi
spots and measuring there signal strengths in different parts of the building and
storing this data in a database. This mean the more measurements the more
accurate the positioning will be. If users need to know their position, they have
to measure the Wi-Fi signal strength and compare it to the data in the database.
From this it is possible to extrapolate their position.

Idea

The idea is that an application running on the mobile device will measure Wi-Fi
signal strength continuous and keep a map on the mobile device with the users
location up-to-date.

The application will get map data and measurements data relevant to the
user’s current position from the server. The data will be streamed to the appli-
cation on-demand. Zone techniques to determine what maps to deliver to the
application can be used, as seen in FPS games and MMO games where the con-
tent of adjacent zones are delivered and loaded to increase response times of the
application.

To further minimize the response time, the application could try to anticipate
what will be updated next. An example would be to create a grid of the building
map and determine which blocks of the grid the user is likely to enter and load
those before the user enters.

As storage space is assumed to be limited on the mobile device only the
portions of the map of the buildings relevant to the user are stored on the device
together with signal strength data relevant to the maps stored.

This should make the mobile device capable of doing the extrapolations re-
quired itself. Speeding up the process of determining the locations of the user.

Figure 2.3 show an example layout of this type of application.

Location: Meeting Room

Figure 2.3: Layout of indoor navigation application

2.2 Indoor Navigation 13

The application display the users current location on the map using a red dot.
The user can enter the name of a location of interest. The application will then
calculate a route to the location and display it on the map as dotted lines.

The navigation application must be supported by our system. To describe
the data flow we first describe a usage scenario for the application.

Usage

The user start the application and enters a location named Meeting Room. The
user navigates the building following the path depicted on Figure 2.4 with dotted
lines. The mobile device will not contain any data before start up.

The route taken by the users takes the user from the current location to the
location of interest marked with an x. During which the user will pass trough
zones A trough D. When the user nears the locations marked by 1, 2 and 3. The
application will load the portions of the map the user is likely to enter.

Meeting
Room

B

A

x

C

D

1

2

3

Figure 2.4: The route the user follows.

The next section will describe the data flow involved in the operation of the
application.

Data Flow

Figure 2.5 on the following page shows the data flow of how the interaction
between the application and the server works.

When the user starts the mobile device it do not contain any map data,
because of this the application request map data for zone A, from the server
which is retrieved and displayed to the user. As the user slowly moves towards
the border of zone A and get closer to zone B the application will ask the server
for map data for zone B. When the map data for zone B is done downloading
it will be stored in the cache till the application needs the data. When the user
crosses the zone A-B border the application will request the map data for zone

14 Chapter 2. Use Cases

B, which at this point is stored locally in the cache, the cache will then provide
the application with the data. When the user move towards the next border, the
cycle will start over. Until the user reaches the destination point.

(request map A) (request map A)

(map A)(map A)

(near B)
(request map B)

(map B)
(request map B)

(map B)

(near C)
(request map C)

(map C)
(request map C)

(map C)

(near D)
(request map D)

(map D)

Application System Server

Figure 2.5: The data flow generated by the usage described above.

Requirements

Summarizing the requirements of the Indoor navigation application in relation to
our system which is to facilitate easy development of this type of application.

This application requires much of the same features from our system as the
digital photo album. To support this application must our system support net-
work connections and the ability to download specific data to the cache them for
later use. To support the data flow described in this use case our system also
have to be able to prefetch data so it is ready when the user ask for the data.

1. Managing connection to a network

2. Delivery of image and locations data to the application

2.3 Massive Multiplayer Online Game 15

3. Managing data cache

4. Prefetching of content

2.3 Massive Multiplayer Online Game

Massive Multiplayer Online Game (MMOG) are a success on the game market
and the tendency of games are to integrate more with the internet. Providing a
richer game environment. MMOGs for mobile devices are still in early stages of
development, but starting to surface such as the game Tibia [4].

Mobile devices have limited storage space compared to the normal computers.
The internet can be used as a means to provide external data for mobile games
giving the illusion of a larger storage space on the device.

Idea

Imagine a car racing game for mobile devices. The player of the game have to
drive a car from the start line to the finish line, and of course be the first to cross
the finish line. During the race the player will compete against other players
trying to win the race as well. The player who wins the race will receive a money
bonus which he can use to buy new vehicles or upgrade his existence vehicle,
before the next race. Every time the player wins a race a new racing tracks will
be unlocked so the player can race at this new track for an even higher bonus.
Figure 2.6 display how this game could look like, the challenge for the user is to
stay on the road and avoid any obstacle.

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Figure 2.6: Car racing game.

Usage

The game starts with a default car the user use to compete against other players
of the game. After the first race is over and the player is the winner of the race,

16 Chapter 2. Use Cases

he decides to use his bonus to buy a new engine for his car. For the next race
the user decides to play on a new race track, which has been unlocked because he
won the previous run. The users on this new race track is better than the player,
so he do not win the race this time and decide to exit the game.

Data Flow

Figure 2.7 show the data flow of the usage scenario described above.

Application ServerSystem

(request Race track)

(Race track)

(spare part list)(spare part list)

(request default car list)

(request opponent cars)

(new track)

(request new track)

(request opponent cars)

(opponent cars)

(request spare part
list for car X)

(request new track)

(new track)

(request opponent cars)

(opponent cars)

(request spare part
list for car X)

(default car list)

(opponent cars)

Figure 2.7: The data flow of the usage described.

At first the user have to pick the vehicle for the first race, the user have only
a limited number of cars to choose from as it is his first race. To display a list of
the cars possible to choose the application ask the cache for pictures of the cars.

2.3 Massive Multiplayer Online Game 17

As it is only possible to choose a few cars the application has been shipped with
these cars and therefore the pictures are stored locally.

To start the race the application need to load the race track, as only one
race track is possible to use at beginners, this track is also locally stored and
the cache can return it after the application request it. After the race starts the
graphic for the cars chosen by the other race opponent need to be downloaded to
be displayed. As this is still only the first race the graphic needed to display the
other cars is locally stored so the cache can reply with the needed data. After the
race is over and the player has won a money bonus, he decides to buy some new
spare parts for his car. To decide which parts to buy the user need a list of spare
parts which would fit the car. The application then asks the cache for this list,
but this list is not stored in the cache, so the cache dispatch a request for this list
from the server. After the cache has received the data from the server it send the
list to the application which then display the list (with pictures of all the spare
parts) for the user. As the user now have unlocked a new track, the programmer
of the application have decided this new track should be downloaded as soon
as possible, so it will be ready when the user need it. The prefetch part of the
application therefore request this track the system will then starts to download
the track from the server, as it is not locally stored. After the user have bought
the new car and upgraded it with a new engine he decides to start a new race on
the new race track. As this track has already been downloaded it is ready for use.
The user starts the run the graphic for the other vehicle need to be downloaded
as they are not stored in the cache.

Requirements

The MMOG use case requires that our system supports network connection and
the ability to deliver game content, over the network. It also has to support
a locale store, where the MMOG can save game content to be uses later. To
minimize the time the player needs to wait for game content to be downloaded, the
MMOG also requires prefetching from our system. To make sure that the players
keep there progress in the game, the system also needs to facilitate identification
and security. This ensures that the player using an account also is the owner of
the account and is not cheating.

1. Managing connection to a network

2. Delivery of games content to the application

3. Managing data cache

4. Handle user identification

5. Handle security

18 Chapter 2. Use Cases

6. Prefetching of game content

2.4 Patching

Software development is a continuous process which is never done; there are
always bugs which need to be fixed. Hence a need exist for being able to update
software, often this is done by releasing patches for the consumers to download
and install. New trends are moving towards automatic updating of software
without user interference over the internet. By being able to change the software
it is possible to ship products which is finished but still contain small errors. After
the deadline it is then still possible to continue the development of the product
and updating it at the users at a later time.

There exist many examples of automatic patch systems, one of the largest
is the Microsoft Windows Update [5], others systems are often seen in online
games where not only code but also content is patched. Other than fix errors,
patch system can also be used to expand existing products with new functionality
which benefits the users. This type of system is a vital part of many Massive
Multiplayer Online Games where the game never ends.

Idea

Imagine a karate game for mobile devices. Figure 2.8 illustrate how such a game
could look. The idea with the game is that the player is in control of a karate
avatar, which has to compete against computer controlled ninjas. The more
ninjas the player beat the more experience the player gets. After the player has
collected a certain amount of experience the player receives a new belt (Starting
with a white belt, and end up at a black belt when fully experienced). As the
player receive a new belt, new combat moves are unlocked and can be used.

Figure 2.8: Karate game.

To describe the usefulness of patching lets imagine two scenarios; one scenario
with a content update of the game in form of a patch, and the other a security

2.4 Patching 19

patch prevent users to exploit a bug in the game.

Usage

The content update could be introduced as the majority of players have received
the black belt. To keep these players playing new content is added in the form of
magic combat moves which can be learned once the black belt is obtained along
with new enemies to battle.

A security update could be released as exploits are discovered. A certain
combination of key presses at the right time might give players an advantage not
anticipated in the game design, cause imbalances in the game. A patch for the
exploit could be released and propagated to the players fixing the problem.

Dataflow

Figur 2.9 shows how the data flow for a content patch look. As the new data
first will be needed when the player get the black belt, only clients who have
come so far get this new content. As the server does not know which clients are
using the game, the clients themselves have to ask for a new update of the game.
Therefore the developer have made the game in such a way that after receiving
the maximum experience points and the black belt, the game ask a server for
new material for the game. If new materials exist the client starts downloading
it, and when done it patch the game with the new content.

(Max experience) (Max experience)

(New content)(New content)

ServerApplication System

Figure 2.9: The data flow of new content.

Figure 2.10 on the next page illustrate the data flow for a security patch.
The data flow for the security update looks much like the content update. The
different is when the client asks for a patch. With the content patch only certain
players could use the new material for the game. However with the security
update all clients using the game should be updated. To make sure all clients
get the security updates, the game always check if the game is up-to-date. When
the game starts it connect to a remote server and check if new patches for the
game are available. If this is the case, the new patch has to be downloaded and
installed before the game will continue.

20 Chapter 2. Use Cases

ServerApplication System

(Patch 1.01)

(Up−to−date check) (Up−to−date check)

(Patch 1.01)

Figure 2.10: The data flow of receiving a bug fix patch.

Requirements

To facilitate the patch use case our system needs to be able to use networks
communications, for downloading new patches for the system.

1. Managing connection to a network

2. Managing system updates

2.5 Feature list

This section summarizes the requirements extracted from the use cases. Addi-
tional functionality not discovered by the use cases, but deemed necessary by us
is added to the feature list as well.

1. Managing connection to a network
Our system must be able to establish a connection with remote servers to
make use of functionality they provide.

2. Delivery of data to the application
The system must be able to provide the application, with the data the
application need. The origin of the data should not be a concern for the
application programmer.

3. Handle user identification
To make sure that the only authorized application is able to retrieve private
and confidential data, the system must be able to handle identification with
remote servers.

4. Handle security
As some application require a secure was to send and receive data, must
the system must be able to receive and send data, using secure protocols.

2.5 Feature list 21

5. Managing data cache
To save bandwidth the system should be able to locally store data for later
use. As data might change over time and the mobile device has limited
amount of space, the system have to be able to delete or refresh data if
needed.

6. Prefetching of application content
As it takes time to download data some applications might be able to pre-
define what data might be needed at a later time, if this is the case the
system must be able to prefetch this data before the application needs it,
so it will be ready when the application request the data.

7. Managing of system updates
The system should support the possibility to update parts of the system.
These updates could for instance be bug fixes or updating of application
content.

8. Automatic conversion of predefined data
This requirement is not from a use case. To save the application program-
mer the work of converting data to the correct format, the system should
be able to recognize certain data types and automatic convert the data to
the format before the application receive the data.

9. Automatic use of the best available network and protocol
This requirement is not from a use case. Mobile devices might be able
to use many different networks to communicate, Bluetooth, WIFI, GPRS,
UMTS, etc. Some of the networks might be more costly to use than others,
the system must be able to use the best network available which support
the functionality needed. Beside the network the system also have to be
able to use the correct protocols for specific tasks.

10. Cache security
This requirement is not from a use case. The cache should be able to protect
the stored data form tampering.

11. Cache compression
This requirement is not from a use case. As disk space is limited on mobile
devices, the cache should be able to compress the data stored.

12. Modular design
This requirement is not from a use case. But as every extra feature uses
both memory and disk space it should be possible to tailor the system to
the individual application developers needs.

Chapter 3

Exsisting Systems

Traditional mobile software development utilizes the frameworks provided by the
mobile device system platform to develop applications. On Symbian developers
use the Symbian SDK, on Java enabled phones the JVM and the J2ME frame-
work and on Windows Smart Phone and PocketPC devices the .NET Compact
Framework. Although these frameworks ease the development of applications for
mobile devices, users still develop higher level frameworks tailored for specific
application domains to make development of applications within these domains
even easier.

This chapter discusses a number of these higher level frameworks which in
some form is related to the problem outlined in section 1.1 on page 6 and point
out weaknesses and strengths of the frameworks. The primary purpose of the
chapter is to determine if any existing systems are able to fulfil all the features
identified in Section 2.5 on page 20 and defined by the problem of Section 1.1 on
page 6. Failure to find such as system would mean that there is room for a new
one.

3.1 GameOD

GameOD is a framework for easing the development of on-demand 3D games.
The framework is developed by Frederick W.B. Li, Rynson W.H. Lau and Danny
Kiis. GameOD is described in the article “GameOD: An Internet Based Game-
On-Demand Framework”[6] by its developers.

In this framework all graphic elements are sent to the client when needed.
Furthermore the framework is able to smoothly change between low polygon
models and high polygon models depending on the avatars distance to the object.
The framework is also able to synchronize animation and movement for all clients.
All of the models and animations information is converted to a format, so it can
be used either by the server or the clients. To minimize communication with the
server the framework use caching to store date often used. To prevent high load

22

3.2 MOCA 23

times for the user the framework tries to predict what data the player soon might
need and starts to download this before it is needed.

The GameOD framework is specialized for 3D games, and the ability to extend
the framework with new features, such as new communication protocols or secu-
rity, is not an option. Again because the framework is designed for 3D games it is
not possible to change some of the build-in-features, like the prefetching module.
Should the prefetching be based on other criteria than the avatars view angel this
framework would not be useful. The system does not facilitate any functionality
to patch the framework or the 3D game running on top of it. GameOD supports
the following features identified by Section 2.5 on page 20:

• Managing connection to a network

• Delivery of data to the application

• Automatic conversion of predefined data

• Prefetching of application content

• Managing data cache

GameOD support 5
12

of the features described in Section 2.5 on page 20.
The seven features lacking from GameOD are: Modular design, managing of

system updates, handle security, cache security, cache compression, handle user
identification and automatic use of the best available network and protocol.

3.2 MOCA

MOCA is a framework for providing services. MOCA is presented in the arti-
cle “MOCA: A Service Framework for Mobile Computing Devices” [7] written
by James Beck, Alain Gefflaut and Nayeem Islam. MOCA support static and
dynamic discovering of new services.

The MOCA framework consist of two parts: A registry where services are
registered for later use and a notion of essential services which are services used
to load other services. Examples of essential services are: Cache services, service
to execute applications in a private namespace. Making it possible to run more
than one application on the virtual machine. A service can also be static content
used by other services, such as information or graphic elements.

MOCA only provide the basic services, all other services need to provide some
sort of contents management, for the system to be able to register this service.
Dynamic discovering of new services slow this system down as the framework
constantly has to look for new services. Since MOCA has dynamic discovering of
services, then it can change a service at run time, making it possible to update
the system.

To summarize the essential functionality:

24 Chapter 3. Exsisting Systems

• Managing connection to a network

• Delivery of data to the application

• Managing of system updates

• Managing data cache

MOCA support 4
12

of the features we deem needed by a general purpose frame-
work. The 8 features MOCA lack is: Modular design, Automatic conversion of
predefined data, Automatic use of the best available network and protocol, Han-
dle user identification, Handle security, Cache security, Cache compression and
Prefetching of application content.

3.3 CAPNET

CAPNET is a context aware middleware system for mobile multimedia appli-
cations. CAPNET is described in the article “Context-Aware Middleware for
Mobile Multimedia Applications” [8] written by Oleg Davidyuk, Jukka Riekki,
Ville-Mikko Rautio and Junzhao Sun.

The CAPNET middleware provides the ability to dynamically detect services
which are located online or locally and move them online if the service requires
resources not present on the mobile device. An example is processing power.

A special feature in CAPNET is the ability to automatic find the most suitable
connection for the requirements, and seamless switch to another network type if
necessary.

To support multimedia the CAPNET offer a media component, which facil-
itate capturing and processing of media data such as video and pictures. This
component is also able to use media alarms (where speech and movement can be
detected) and finally have a media storage which make the component able to
store media data received from a remote server, or produced by the mobile device
itself.

The CAPNET middelware is build on top of some core-components and can
not be change, the core-components supports features such as media alarms,
media storage, media processing and component migration. It is impossible to
remove or add new core-components; it is only possible to add services. The mid-
delware support online detection of services and remote execution of components,
which contribute to the overall communication. It also uses proxies for all of it
components, which make it possible to seamless move the components around.
The system constantly need to be in communication with the service provider,
to discover services and content that is available in the area where the mobile
device is located.

To summarize the essential functionality:

3.4 M-commerce 25

• Managing connection to a network

• Automatic use of the best available network and protocol

• Delivery of data to the application

• Managing data cache

• Managing of system updates

CAPNET support 5
12

of the features we have found needed. As it in CAPNET
is possible to add new services but not update the core functionality, managing
of system updates is only partially supported by CAPNET. CAPNET is missing
the following features: Modular design, automatic conversion of predefined data,
handle user identification, handle security, cache security, cache compression and
prefetching of application content.

3.4 M-commerce

M-commerce is a framework which enabled automatic distributed service discov-
ery for M-commerce applications. The framework is presented in the article “A
Service Management Framework for M-Commerce Applications” [9] by Gary Shih
and Simon S.Y. Shim.

A service could be associated to the companies ERP system, where a sale
can be reported and handled. A service is provided via JINI (Java Intelligent
Network Infrastructure). JINI allow for distribution of services, and also allow
services to communicate individual when needed. The framework is composed
of three components: A wireless service client, a service management engine and
wireless services. The individual devices and interfaces to the user is handled
via the wireless service client component and can be implemented trough WAP
or other protocols which the mobile device supports. The wireless service client
component communicate with the service management engine component, which
handle security, validation of users, log events, storing of local data and guarantee
atomicity of all transactions. The wireless services component is a different service
the client use.

The framework purpose is primary for M-communication, and there is a great
deal of security, which cannot be changed or removed completely. The framework
only allow for changes by adding and removing of services. It does not allow
changes to the service management engine or the wireless services component.

To summarize the essential functionality:

• Managing connection to a network

• Delivery of data to the application

26 Chapter 3. Exsisting Systems

• Managing data cache

• Cache security

• Handle user identification

• Handle security

• Managing of system updates

M-commerce feature 7
12

of the features we have found of importance. Like
CAPNET this framework only support managing of system updates in the form
of addition and removal of services, but changes to the framework itself is not
possible. M-commerce lack the following features: Modular design, Automatic
use of the best available network and protocol, Automatic conversion of predefined
data, Cache compression and Prefetching of application content.

3.5 SCaLaDE

SCaLaDE is a context aware middelware architecture offering information’s of
the users locations to other applications, which then can provide functionali-
ty/information based on the users location. It is described in the article “A
mobile computing middelware for location- and context-aware internet data ser-
vices” [10] written by Paolo Bellavista, Antonio Corradi, Rebecca Montanari, and
Cesare Stefanelli.

The system is divided into two parts: A meta data part and a service part.
Meta data is composed of profiles and policies. Profiles describe the preferences
of the device, such as memory, screen size and other resources the device has
access to. The policies describe what has priority over other. Policies describe
how the services behave, and which services have access to what. SCaLaDE also
has authorization policies to make sure that only the right person can access
specific services.

Services are composed of an upper level and a lower level. The upper level
manages: data retrieval dependent on location and context, caching of services,
so the system can run in offline mode and transaction recovery when the system
losses connection.

The lower level handle the tracking of the mobile devices and trigger events
like low battery, it also process the data received or send and convert it to the
correct format. The low level components coordinate their operation with the
policies.

To summarize the essential functionality:

• Managing connection to a network

3.6 PnPAP 27

• Delivery of data to the application

• Automatic conversion of predefined data

• Managing data cache

• Handle user identification

• Managing of system updates

SCaLaDE support 6
12

of the features we find important. As the previous sys-
tems SCaLaDE also only support adding and removing of services but not changes
to the middleware itself. SCaLaDE lack the following features: Modular design,
automatic use of the best available network and protocol, cache compression,
prefetching of application content, cache security and handle security.

3.6 PnPAP

Erkki Harjula, Mika Ylianttila, Jussi Ala-Kurikka, Jukka Riekki and Jaakko
Sauvola describe in “Plug-and-play application platform: towards mobile peer-
to-peer” [11] the PnPAP middelware. The PnPAP middelware is used to handle
all communication with other mobile devices, by use of different P2P protocols.
PnPAP is primary used for easy exchanging of P2P protocols, which is indicated
by the ability to change the communications protocols at run time. This is done
by using a state machine description.

To summarize the essential functionality:

• Managing connection to a network

• Automatic use of the best available network and protocol

• Delivery of data to the application

• Managing of system updates

PnPAP feature 4
12

of the feature we have found importaint, PnPAP do not sup-
port updates of the system but only update of the protocols used for the commu-
nication. PnPAP lack the following feature: Modular design, Cache compression,
Prefetching of application content, Cache security, Handle security, Managing
data cache, Automatic conversion of predefined data and Handle user identifica-
tion.

28 Chapter 3. Exsisting Systems

3.7 Conclusion

Section 2.5 on page 20 describe twelve features derived from our use cases which
a system for mobile device application development should be able to support.
It turns out that none of the existing system supports all the features. Although
most of the systems support the major features such as: Managing connections to
a network and delivery of data to the application. None of the system supports the
modularity and flexibility we are looking for. Most system are service oriented and
support modularity to some degree, but none of the system give the opportunity
to alter the already existing parts of the system only modifications in the form
of new services are supported.

Features such as compression of data and the use of a cache are also not
supported by any system. We find this to be a serious flaw as we are dealing with
mobile devices which have limited resources.

Looking at the system which has the highest fit to the feature list is the M-
commerce system with coverage of almost 60%. The reason for the high coverage
is due to the focus on security of the M-commerce system. The system is however
still missing some vital features such as automatic conversion of predefined data
which shall make development easier for the developer.

The systems which has the best coverage of the vital features is the GameOD
and CAPNET system as their focus is on the data transfer of media content as
well as a focus on development of multimedia applications such as games. None
of these two frameworks support any form of security to prevent tampering which
is important in online games or protect sensitive information.

To conclude this chapter we see a need for a new system that handle all the
described features of Section 2.5 on page 20 as none of the existing systems are
able to handle the task. The next chapter will introduce the design of solution
to a new system we have come up with.

Part II

Developing the System

29

Chapter 4

Requirements

This chapter outlines the parameters and requirements for the system developed
throughout this report. We will from now on refer to the system: Framework for
On-demand Delivery of Data and Automatic Patching of Code and Content as
FoDa.

On a broad scale FoDa is suppose to help mobile application developers main-
tain the software they sell to customers. In terms of offering valuable services
such as patching of code on the mobile devices and the delivery of updated con-
tent as well as new content. All this is done over the air and totally transparent
to the mobile user, meaning no user interaction required.

The system will act as a middleware layer between the mobile devices pro-
gramming platform (operating system and virtual machine layers) and the appli-
cations the developers create. A lot of research has gone into the development of
middleware services and what is to be understood by the term middleware. Philip
A. Bernstein describes it in the article: “Middleware: A Model for Distributed
System Services” [12]. He outline criteria’s for middleware services one of which
is that it must have implementation on multiple platforms and a transparent API
meaning the API can be accessed without modification. He distinguish between
middleware services and middleware, in that middleware services must be acces-
sible remotely and middleware is the term he use for frameworks that include
an API a user interface and tools to support them. Another article covering
middleware services is “Dynamically Programmable and Reconfigurable Middle-
ware Services” [13] written by Manuel Roman and Nayeem Islam. This article
encourages the development of middleware services for mobile platforms to assist
the development of advanced applications. Their focus is that the middleware
should be dynamically upgradeable allowing application programmers to config-
ure and upgrading the middleware with out interrupting the execution of the
applications on top. Another article “Middleware Challenges Ahead” [14] written
by Kurt Geihs support the idea that current middleware applications on mobile
devices are to monolithic and more flexibility is needed. The ideas presented in
the articles will be reflected in the design of the architecture of the system we are

30

31

to develop.
Using the feature list described in Section 2.5 on page 20 covering all the

use cases. We setup the requirements for FoDa adding requirements not directly
outlined in the feature list to complete the requirements.

1. Modular design for adapting to various mobile devices and easy extending
and modification of the framework

2. On demand delivery of data

3. Automatic conversion of data to useable objects

4. Prefetching of application content

5. A data cache to lower bandwidth usage and optimize performance of appli-
cations

6. Automatic content and patch updates

7. Automatic detection of available network protocols

8. Automatic selection of the best network protocol

9. Automatic manage all network connections

10. Security including user identification

11. Encryption to prevent tampering of content and application data

12. Compression to conserved limited storage space

13. Low footprint, including memory consumption, CPU usage and storage
space usage.

14. Platform independent architecture

The addition of the requirement for a low footprint is derived from the fact
that most mobile devices have limited resources and that the system should be
able to take this into consideration leaving as many resources for the application
developer as possible.

The platform independence requirement stems from the idea that we want
to create an architecture for as many mobile devices as possible as described by
Philip A. Bernstein [12]. This means that the architecture cannot limit it self
to specific platform features of the devices, although some common features are
expected such as the ability to use network connections.

FoDa is intended to be used by mobile application developers with a need to
maintain the applications they distribute to clients, here referring to customers

32 Chapter 4. Requirements

acquiring mobile software and running it on their mobile devices. The term
“maintain”is not limited to the updating of the software code but also the software
content used by the applications such as graphics in games etc.

The report describes a diverse set of use case scenarios (see Chapter 2 on
page 9) ranging from applications which determine your position on a map based
on wireless signals to massive multiplayer online games as known from the PC
game industry. FoDa supports all scenarios described.

4.1 Specification

This Section describes the specification for FoDa. This is done by defining a
set of criteria’s which is rated by importance according to the system. The
importance rating is divided into three degrees of importance: Critical, important
and neutral. The importance criteria’s are defined in definitions 4.1, 4.2 and 4.3.
Table 4.1 on page 34 displays all the criterias and their rating. The criteria’s
are not meant to be measureable, although some might be, but more system
philosophical criteria’s intended to guide the design and planning of FoDa in
terms of what functionality to give focus.

FoDa developed in this report will consist of architecture and an example
implementation of the architecture.

Definition 4.1. (Critical)
A critical importance rating is given to criteria’s that are crucial
to the systems operability and functionality. This includes core
functionality without which the system cannot function properly.

Definition 4.2. (Important)
An important importance rating is given to criteria’s that are of im-
portance to the system. Functionality which is not directly related
to the core of the system, but still provides useful functionality is
rated important.

Definition 4.3. (Neutral)
A neutral importance rating is given to criteria’s of lesser or no
importance to the system.

We consider the following criteria’s for the system: Modularity, scalability,
security and stability.

Definition 4.4. (Modularity)
The idea that parts of a system is viewed as independent modules
which can be replaced or removed entirely without affecting other
parts of the system.

4.1 Specification 33

Examples of systems where modularity is important are integrated developer
environments like Eclipse that uses a plugin system. Often scripting languages
provide a form of runtime modularity to games and applications.

In relation to our system this criteria is to make sure that the system is flexible
enough. We require high modularity for reasons of limited resources on the client.
Modularity can make the system compact in that unnecessary functionality is
removed.

Definition 4.5. (Stability)
The systems ability to perform its operations flawlessly and without
crashes or malfunctions.

Examples of systems where stability is important are operating systems, em-
bedded systems, real-time systems, medical care systems etc.

In relation to our system architecture this criteria is tied to the modularity
in that removing or adding modules should not compromise the stability of the
system. One could argue that stability is a critical criterion for any software
system and especially backbone system. Stability becomes even more important
if the software is to be sold to customers. As we are creating a system as a
proof of concept our main focus will be to create as much of the architecture as
possible. Stability of systems is often an iterative process of fixing errors and
running the system again. Development time available to us is also a factor to
consider; therefore we deem this criterion important only, where as a production
environment would deem this criterion to be critical.

Definition 4.6. (Security)
The systems ability to handle integrity of data as well as the veri-
fication of data and determine that the data is actually send from
valid sources.

Examples of security are found in banking systems as well as most company
infrastructure systems. Most people have tried to use a username and a password
to gain access to some system.

In our system this criteria translates to the integrity of the data that is deliv-
ered to the client and way to make sure the data originates from valid sources.
Also the ability to make sure that no one gets hold of data they are not suppose
to hold. We deem this criteria neutral as it will not be the focus of the project
as it is merely proof of concept.

Definition 4.7. (Scalability)
The systems ability to expand and contract as the demands on the
system resources vary.

34 Chapter 4. Requirements

Examples of scalability is found in various distributed systems where clusters
of computers can be added to expand the resources in a grid as need arises, and
when no longer needed they can be removed again. The internet and DNS are
both good examples.

In relation to our system architecture this criteria will add architectural con-
straints that enforce modularity.

Definition 4.8. (Usability)
Simple and easy to use interfaces and constructs, that limit the
amount of work required by the programmer.

Example systems where usability is of importance is system interfacing with
users like word processor, finance applications. Basically any system where hu-
mans are supports to interact with the system. In our case usability refers to the
interaction between the system and the application developer. Meaning focus is
on easy to use interfaces and construct and limiting the amounts of work required
by the developer to produce an application. We deem this criteria important.

Criteria Critical Important Neutral
Modularity X

Security X

Scalability X

Stability X

Usability X

Table 4.1: System criteria’s rated by importance.

The system consist of a server/client configuration. Where the client is located
on the mobile devices and the server is an application running on server systems
providing data to the client in someway. Access to the internet is required for
both the server and the client.

4.1.1 Client

The client must serve as a middleware layer for mobile device applications that
need the features of the system.

The client part of the application must provide an easy to use interface for
the mobile application programmers from which they are given access to the
functionality provided by the middleware application in a transparent manner.

The middleware system should take into account the nature of the mobile
devices, meaning accommodate and compensate for the loss of connection and
consider the resources available on the client.

4.1 Specification 35

The footprint of the middleware should be as small as possible. As to not
waste client resources that may be need for the applications developed.

The middleware must provide means of upgrading or patching applications
running on top of it without client user interaction. Upgrades are delivered by
the server over the air.

4.1.2 Server

The server must be able to deliver on demand data to the client. Examples of
data are graphics, sounds and code.

Using a game as the example application running the system, the server could
be designed to handle fitting of game content to the devices requesting the data.
The server should be able to handle peak periods of high load as new patches
for the game is released. The design of the server to handles these various tasks
are beyond the scope of this report as the priority of the project is the client.
Therefore the server will only be designed in the minimal scope needed to support
the example applications of the client.

Chapter 5

Architecture

This chapter describe the architecture of the system. To start of we discuss the
concept of frameworks, and what framework technology can do for the system we
are developing. After this we will describe the various layering schemes which are
relevant for the system and introduce the different plugin architectures relevant
to FoDa.

5.1 Framework

Frameworks is a proven software technology to reduce cost and improve quality
of software, their primary strength are modularity, reusability and extensibil-
ity according to the article “Object-oriented application frameworks” written by
Mohamed Fayad and Douglas C. Schmidt [15].

Frameworks are designed to solve domain specific problems, it is then the
application developers task to decide if a specific framework is suitable for an
application. In the article Choosing an object-oriented domain framework [16]
written by Garry Froehlich, H. James Hoover and Paul G. Sorenson, the decision
process is divided into three steps:

1. Determinant if the framework is to be immediately rejected
If the framework do not support any of the needed features the framework
is immediately be rejected.

2. Determine if the framework is clearly suitable
This is done by comparing the framework functionality with the require-
ments of the application.

3. Assess the level of uncertainty
Determine how many of the applications requirements there is no function-
ality for in the framework. Many missing features result in a high level of
uncertainty as the developer will have to implement the required features
that are missing, which is likely to make the development time longer.

36

5.2 Layering 37

The domain of FoDa is derived from the number of use cases described in Sec-
tion 2 on page 9, which resulted in a feature list. FoDa must provide functionality
to cover all the features identified.

A framework works by providing specific hook methods (framework function-
ality) which provide a interface to the application developer. Via these hook
methods the application developer can use the functionality provided by the
framework. The hooks can be facilitated in a number of ways. Frameworks
are classified on how they facilitate these hooks. In general two classifications for
frameworks exist: White-box and Black-box frameworks.

White-box frameworks facilitate hooks by object-oriented languages features
like inheritances and dynamic binding. The application developer inherits from
the frameworks classes and overrides predefined hook methods.

Black-box frameworks use predefined interfaces for components, which can be
plugged into the framework using patterns. Black-box framework does not require
any insight into the inner workings of the framework, and usage often occur
trough the use of compositions and delegations instead of inheritance. The black-
box frameworks are more difficult for the developer to develop, as a very clear
interface of hooks needs to be defined. This means that the framework developer
must anticipate the way the users are to use the framework in a higher degree
that in white-box frameworks, where the users easily can extend the framework.

Based on the requirements (see Chapter 4 on page 30) we chose to create
FoDa as a black-box framework to support the usability criteria. To anticipate
the needs of the user we have derived functionality from the use cases of Chapter 2
on page 9. Furthermore we give the users the possibility to add and remove hooks
trough the use of a plugin architecture.

In the article Object-oriented framework-based software development: prob-
lems and experiences [17] written by Jan Bosch, Peter Molin, Michael Mattsson
and Per Olof Bengtsson, it is encouraged to choose a maintenance strategy when
designing the framework. This is due to the fact that once applications are written
using the framework, changing the framework can be difficult as it might break
already existing application bindings to the framework rendering the applications
inoperable.

Section 5.3 on page 39 describe our choice of plugin architecture and at the
same time the maintenance strategy of the framework. The next section will
cover the layering of the framework architecture.

5.2 Layering

Figure 5.1 on the next page display two versions of layering we have considered
for the architecture. Common for the two is that there are four layers. First layer
is the operating system on which the system is suppose to run. On top of that
is the programming platform layer. This layer represents any sandbox layer that

38 Chapter 5. Architecture

might be present on a mobile device. Examples include among others Microsoft
.NET Compact Framework and Java 2 Platform, Micro Edition. On top of this
programming platform lies the system itself as a middleware system and on top
of this is the client applications that utilize the system.

Figure 5.1(a) display the simplest form of layering. Layers are only dependent
on the ones below themselves. Specific for this type of layering is that it starts
an instance of the middleware system for each application. This gives some
advantages as tings are kept simple and the sandbox idea is respected in that
applications are not aware of other applications running the middleware and
can therefore not access data from these applications. This in turn strengthens
security, which is not without importance on embedded devices. One problem
with this form of layering is that resources of the devices might be consumed faster
if multiple applications are running, as multiple instances of the middleware will
be running with each application.

Figure 5.1(b) take a different approach to the layering. This uses shared
layering. Which basically means that the middleware will only have one instance
and that will service all applications. This minimizes resource usage, but it
also gives the problem of handling security and separation of applications within
the middleware layer, which complicates things. This form of layering is also less
portable than the previous, since one cannot move an application without moving
the middleware layer and all other applications using the layer.

Middleware
System

Middleware
System

Middleware
System

Operating System

Programming Platform

ApplicationApplicationApplication

(a) Solo layering

Operating System

Programming Platform

ApplicationApplicationApplication

Middleware System

(b) Shared layering

Figure 5.1: Architecture overview

Both of these layering scheme could be used for FoDa. We have however
chosen to use the simplest layering scheme, shown at Figure 5.1(a). The cause of
this decision is mainly because of two reasons; Security is a “build-in-feature” in
this scheme as oppose to the other where applications share a common platform.
In the simple layering scheme applications are not aware of the existence of other
applications running on the same device, where it in the shared layering scheme
might be possible to changes public variables of other applications unless some
security measures is used.

The other main reason for choosing the simple layering scheme is that by
using this scheme it will be possible to run different versions of the framework for

5.3 Plugin systems 39

different kind of applications, thereby make it possible to optimize our framework
to the need of each application.

5.3 Plugin systems

To have the ability to change components we have chosen to base our system on
a plugin architecture, where the alternative was simple monolithic architecture.
Dorian Birsan describes in “On Plug-ins and Extensible Architectures” [18] two
plugins systems, the traditional plugin based architecture as we know it from most
applications and the pure plugin system architecture as seen by applications such
as Eclipse.

Figure 5.3 conceptualise these three kinds of architectures.

Host application

(a) Monolithic Architecture

Plugin PluginPlugin

Host application

(b) Traditional Plugin Based
Architecture

Plugin

Plugin

Plugin

Plugin

Plugin Plugin

Plugin engine

(c) Pure Plugin Based Archi-
tecture

Figure 5.2: Architecture overview

5.3.1 Monolithic Architecture

The monolithic architecture is actually not a plugin system but a standard ap-
plication with no extendability at all. There by represented as a square box in
Figure 5.2(a).

Systems using this architecture are normally designed to a specific purpose.
When using this system it is often possible to describe the users needs quite
precise, the user know what they need, and the needs of the user is not likely
to change over time. A system using this type of architecture could for instance
be an inventory management system. In this system it might be possible to add
new inventory items but to add extra functionality to the system a revamp of the
system is necessary. The advantages and disadvantages of this system are listed
below:

Advantages

1. No dependencies - This system has no external dependencies as every-
thing is contained in the same application. Therefore there is no need for
dependency handling.

40 Chapter 5. Architecture

Disadvantages

1. Unextendable - It is not possible to extend the system with new func-
tionality without redesigning the system.

5.3.2 Traditional Plugin Architecture

The traditional plugin based architecture is the extension of the monolithic archi-
tecture to support plugins. This is the type of plugin system most often seen in
applications. It is possible to add new functionality within specified parameters.
The architecture is illustrated in Figure 5.2(b) on the preceding page.

Most modern web browsers implement this plugin architecture. Two of the
major browsers: Firefox and Internet Explorer implement it. The plugins are
linked to the application trough well defined interfaces and not compiled into the
application. Most plugins are only activated when the host needs them as well.

Development of applications is an ongoing process. Often as an application
is released to the users, response from the usage leads to new functionality. The
plugin based architecture is one way to handle this by having a core applica-
tion which satisfy most needs of the users and at the same time allow users to
make changes to the application as they see fit. Applications using this type of
architecture often only allow for extendibility in certain areas of the application
limiting the functionalty extending the application to be with in the application
domain.

Advantages

1. Extendable - Allows for new functionality to be added within the appli-
cation domain. Without redesign the application.

Disadvantages

1. Resource usage - The core of the application is large and unused func-
tionality is taking up resources.

2. Limited extendibility - Only certain functionality is possible to add to
the system without redesign of the architecture.

5.3.3 Pure Plugin Architecture

Figure 5.2(c) on the previous page display how a pure plugin architecture (dy-
namic architecture) could look like. The key in this architecture is the small
engine which modules (plugins) can be hooked up to. This architecture is highly
dynamic as it is the modules used in the system which make up the architecture.

5.4 Conclusion 41

Making a system of only modules it is possible to tailor a specific product to
the needs of the costumers, even if the costumers need to use the product for
different purposes.

The Eclipse Framework [19] is an example of an implementation of the pure
plugin architecture.

A system using this kind of architecture could for instance be a game engine.
By making the game engine of small replaceable parts it is possible to modify the
engine to support different kinds of games without the need to redesign all of the
architecture. If one game needs a special kind of physics it is easy to replace the
physics with another and still keep all the other modules intact.

Advantages

1. Extendable - Possible to add new functionality to the system without the
need to redesign the architecture.

2. Meet changing requirements - Easy to modify the system to meet
changing requirements.

3. Tailored resource usage - Tailor the system to only use the plugins that
are needed thereby saving resources.

Disadvantage

1. Dependencies - Dependencies among plugins can lead to complex depen-
dency structures in the architecture.

2. Complexity - Lots of plugins can increase the complexity of the applica-
tion.

5.4 Conclusion

Mobile software development is often characterised by its short time to market
pressure. Meaning development of applications for mobile devices has a very
limited time frame. This in term with the heterogeneity of the mobile devices
scream for flexibility, modularity and reuse of the tools and code used to develop
the mobile applications.

That is why the use of plugin architecture for the base of mobile applications
is fitting as plugin architectures can facilitate flexibility, modularity and reuse to
a degree not present in monolithic architectures.

Dorian Birsan describe the pure plugin architecture in contrast to the tradi-
tional plugin architecture in the article “On Plug-ins and Extensible Architec-
tures” [18]. Here Dorian Birsan concludes that the pure plugin architecture is
a powerful tool but has just recently emerged as a robust and enterprise-level

42 Chapter 5. Architecture

quality architecture. But there is still a number of issues which have to be dealt
with in future research. This includes security, performance and support for a
range of platforms, which are relevant to FoDa.

The system we are developing is a multi purpose system. This means the
system has to support a wide range of applications. The use cases described
in Chapter 2 in particular. To support these application an architecture which
makes it easy to modify the system to the developers needs are appropriate.

The monolithic architecture does not facilitate the degree of flexibility and
modularity needed by the system, so that architecture is not an option.

The plugin architecture supports to some degree the level of flexibility and
modularity needed. The problem with the architecture however is that the system
must support all the functionality the developer could require, which leads to a
big and complex model, where in most cases application would only use a small
part of the functionality provided by the system. The size of unused functionality
is an argument against this architecture as mobile devices often have very limited
resources such as memory and storage.

The pure plugin architecture remedy the problem with the size of the tra-
ditional plugin architecture as features unwanted or unneeded can simply be
removed while keeping the flexibility and modularity at a high. The simplicity
of the architecture is also a plus in that core engine only needs to contain plugin
registration functions, load and unload functions. All other functionality can be
added at will using plugins, making the system very receptive to developers needs.
This is why our choice of architecture falls on the pure plugin architecture.

Chapter 6

Design

The previous chapter described various plugin architectures. We decided to use
the pure plugin architecture for the system we are to develop during this report.
In “Assessing the complexity of software architecture”[20]describes Mohsen Al-
Sharif, Walter P. Bond and Turky Al-Otaiby how a central activity of designing
a software architecture is decomposing the system into subsystems. They also
describe how sharing of data among systems components, has influence on the
complexity of the system. They conclude that the least complex way to share
data is to send it directly from one component to another. In this chapter will we
describe how we have divided the system into subsystems, which communicate
directly with each other.

6.1 Architecture Overview

Figure 6.1 on the following page show an overview of the system architecture. To
simplify the figure only the plugins that make up the backbone of the system are
displayed. A more detailed description of each part of the backbone follows in
their respective sections below.

The architecture is layered and consists of two layers: The application layer
and the middleware layer.

The Application: The application layer is where the application using the
system is running. This could for instance be one of the systems described in the
use case Chapter 2.

The Middleware: Middleware usually refers to software lying in between other
parts of software. In our case the middleware layer occupies a place between the
underlying platform and the application layer. The middleware layer is where
the developed system is running. It process requests from the application layer
and replies data accordingly.

43

44 Chapter 6. Design

Cache

Plugin Engine

Request Manager

Data Manager

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

Middleware System

Application

Request HandlerResponse HandlerData

Security Manager

Connection Manager

Figure 6.1: Architecture overview

The main reason for developing the system is proof of concept as described
in the requirements chapter 4 on page 30. This means that commercial concerns
which would normally require a great deal of attention are scaled down or even
omitted. This will also be reflected in the implementation, where only the parts
important to the overall function of the system according to the requirements
will be implemented. The greyed out parts of the figure are parts which will not
be implemented or only be implemented as a shell, meaning no real functionality
is present.

6.2 The Application 45

6.2 The Application

For the application to make use of the middleware systems functionalities, a re-
quest for data will be needed. A request is represented on Figure 6.1 on the
facing page in the form of the Request Manager which serve the purpose of relay-
ing requests from the application layer to the middleware layer. Upon receiving a
request the system in the middleware layer will process the request and forward a
response containing the data satisfying the request to the response handler. The
application will receive the data from the response handler and be able to use the
newly received data.

6.3 The Middleware

The middleware system consists of several plugins each of which is responsible
for a specific domain. Using the pure plugin architecture fulfils the requirement
of modularity as each plugin can be replaced and new ones can be added. The
following sections design each backbone plugin in detail specifying responsibilities
for each plugin.

6.3.1 Request Manager

The Request Manager serves as the interface between the application layer and the
middleware layer. It is tasked with handling requests coming from the application
and relay them to the system in the middleware layer as well as replying responses
to the application from the middleware system. The Request Manager is there
after the only plugin in the system which the application communicates directly
with, thereby encapsulating an interface for the application to the middleware
system.

6.3.2 Data Manager

The Data Manager is responsible for the actual data retrieval that satisfies the
request comming from the Request Manager. Connected to the Data Manager
are a cache plugin and the security plugin.

Upon receiving a request from the Request Manager the Data Manager will
enquire the cache plugin to satisfiy the request. If the request is satisfied the data
found will be return to the Request Manager. If the data is not found the Data
Manager will request the data to be downloaded by forwarding the request to the
Security Manager which is described in detail in Section 6.3.3 on page 47. Upon
receiving data from the Security Manager that satisfies the request. A response
is forwarded to the Request Manager.

46 Chapter 6. Design

Omitted from Figure 6.1 on page 44 are the plugins associated with the Data
Manager. Each of these plugins handles specific tasks related to data processing
within the domain of the Data Manager. The detailed Figure of the Data Manager
and all the plugins associated with it are displayed in Figure 6.3.2.

������������������������������
������������������������������

Cache Policy��������������
�������������� ��������������

�������������� ��������������
��������������	�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

������������������������������
������������������������������

������
��������������

Prefetching

StaticDynamic

Data Maintenance

Zip Arj Policy

Patch Processing

Data Manager

Date Location

Compression

Figure 6.2: Data Manager overview

Prefetching: Sometimes it might be a good idea to prefetch certain data.
For instance if a user request data element X1 the chances that data element
X2 will be needed a little later might be high. In this case it would be
possible to prefetch data element X2 so the user do not have to wait when
he is done with data element X1 and need the next data element. Different
applications might need different prefetch policies, which is why the prefecth
plugin has two other plugins associated with it.

The Prefetching: Date plugin prefetch data based on the date of the
requested data (This might be needed by a financial application, or
maybe a digital photo album).

The Prefetching: location plugin will prefetch data based on location
(the location of the avatar in a game, or the location of the user who
might need map data).

Compression: By storring compressed data on the mobile client it will
be possible to store more data than if the data would be uncompressed.
Different approach for compressing data exist, the module associated to
the compression describe which approach the user wish to use.

The Compression: Zip plugin knows how to compress and uncompress
data by using the zip compression algorithm.

The Compression: Arj plugin knows how to compress and uncompress
data by using the arj compression algorithm.

Data Maintenace: Some data is likely to change often (Like the shares
of different companies stock exchange) while some other data will change

6.3 The Middleware 47

less often or never change at all (For instance the pictures in a digital photo
album). Some data stored in the Cache should therefore be updated often
to make sure the data is up-to-date while other data do not have to be
updated.

The Data Maintenace:Cache Policy describe how long data of different
kind can be stored in the Cache before it should be updated.

Patch processing: This plugin is responsible for the patching of the sys-
tem. This means that if some code should be updated it is done by the
patch processing plugin according to the update policy handled by the as-
sociated policy plugin. We divide updates into two different categories each
of which are handled by separate plugins. The two categories are: Static
and dynamic updates.

The Patch processing:Dynamic plugin is responsible for handling dy-
namic updates, meaning updating the application with out the need
to reboot the application. This allow for updating functionality of the
application while it is running. Using a game as an example dynamic
updates could be useful for updating the game with new items like
weapons and armor as the user encounters them.

The Patch processing:Static plugin is responsible for handling static
updates, meaning updates that require a reboot of the application
being updated. Using a game as an example, static updates are often
required for updating parts of the game that is directly related to the
core of the game such as the engine.

The Patch processing:Policy plugin is responsible for handling the poli-
cies for updates. This could be the policy describing how often a check
for updates should be made by the patch processing plugin.

6.3.3 Security Manager

The Security Manager is responsible for handling security in the system. Pri-
marily it is to ensure data integrity as data arrives from the data provider as well
as guarantee origin of the data and verify that the data providers are who they
claim to be. A detailed figure of the Security Manager and the plugins associated
with it is shown on Figure 6.3.3 on the following page.

Data Integrity: During the transmission of data, some data might be
corrupt or have been altered by an outsider. To make sure it is the right
data the middleware provide the application with, this plugin have some
data integrity plugin associated.

48 Chapter 6. Design

� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �

� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �

� � � � �� � � � �
� � � � �� � � � � � � � �� � � �

	 	 	 		 	 	 	

� � � �� � � �� � � � �� � � � �

Data Integrity Authentication

Password KerberosMd5 Sha

Security Manager

Figure 6.3: Security Manager overview

The Data Integrity:Md5 plugin use the Md5 algorithm to check if the
data recieved is the same data which have been transmitted my the
server.

The Data Integrity:Sha plugin works in the same way as the Md5
plugin did. The only different is that this plugin uses another algorithm
to check if the data is the correct data.

Authentication: The task for this plugin is to verify that the data provider
is the right data provider and not some harmful data provider. To verify the
data provider is the right provider this plugin have different authentication
plugin associated.

The Authentication:Password plugin verify that the data provider is
the right provider by use of a password only known to the client and
the server.

The Authentication:Kerberos plugin uses the Kerberos protocol [21] to
authentication the connection between the client and the server.

6.3.4 Connection Manager

Before it is possible to establish a connection with a remote server it is necessary
that the server and the client understand the same language. It is the respon-
sibility of the Connection Manager to establish a connection between the client
and the server using an appropriate protocol. Associated with the Connection
Manager are numerous protocol plugins. A detailed figure of this is displayed on
Figure 6.3.4 on the next page.

Connection Types: The responsibility of this plugin is to make sure the
appropriate protocol is used to communicate with the server.

6.4 The Plugin Engine 49

� � � �
� � � �
� � � �
� � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

Socket SSL

Connection Types

HTTP

Connection Manager

Encryption

Figure 6.4: Connection Manager overview

The Connection Types:Socket plugin is able to establish a connection
with a remote server using sockets as the communication channel. Af-
ter the socket connection is establised it is possible to communicate
with a remote server by sending messages over the shared socket con-
nection.

The Connection Types:HTTP plugin is able to make a HTTP connec-
tion with a remote server. Communicating with the server should then
be transmitted by use of the HTTP protocol.

Encryption The responsibility of the encryption plugin is to provide a
means of secure communication.

The Encryption:SSL plugin use the Secure Socket Layer (SSL) protocol
to establish a secure connection with a remote server.

This is all the plugins used in the design of FoDa, but before it is possible to
implement these, it is necessary to design the plugin engine which loads all the
plugins.

6.4 The Plugin Engine

This chapter describes the design of the plugin engine as it is the fundamental
building block of the system developed throughout this report.

The plugin engine architecture and ideas are highly inspired by the pure plugin
system described in Section 5.3 on page 39 and the Eclipse plugin architecture
as described by Azad Bolour in Notes on the Eclipse Plug-in Architecture [22].

6.4.1 Architecture

Figure 6.5 on the next page display the class diagram of the engine.

50 Chapter 6. Design

Engine

PluginRegistry

IEngineIPlugin

Plugin

1
1

1*

Figure 6.5: Class diagram of the plugin engine.

6.4.2 Plugin Structure

Before we describe how the engine handle plugins we will first describe what a
plugin is and how it works in our system.

Basically a plugin in FoDa is just an executable program, which recive input
and then is able to produce some output. Figure 6.6 shows the different parts a
plugin in FoDa is made of.

Plugin

E
xtends

(Input)

(O
utput)

E
xtension point

Code

Plugin

Require
(Dependent)

Figure 6.6: Overview of a plugin for FoDa.

Extends
To receive input from other parts of the system a plugin is able to define
an extension to another plugin. By describing that plugin X should ex-
tend plugin Y, plugin X will receive input from plugin Y every time plugin
Y produce the specific event plugin X extends. Section 6.4.4 on page 53
describe how to define that a plugin extends another plugin.

6.4 The Plugin Engine 51

Extension point
If a plugin need to produce some output, this have to be done in the form
of an extension point. If the developer of plugin X wants to give other
developers the possibility to respond to certain output from plugin X, the
developer have to make an extension point in plugin X, describing that
plugin X produce output, other plugins can use. How a extension point is
defined is desccribed in Section 6.4.4 on page 53.

Require
As some plugins might need a more direct communication to other plugin,
it is possible to require another plugin. If the developer of plugin X require
plugin Y, it is possible to make a direct reference from X to Y. Doing this
gives the developer of plugin X the possibility to use methods and variables
in plugin Y. Section 6.4.4 on page 53 describe how a plugin should describe
a requirement to another plugin.

Code
This is where all the plugin executable code should be written. This code
will only be executed if the plugin receive input from another part of the
system, in form of an extension point.

Every plugin in FoDa is build by use of these input and output methods. The
next section will describe how the engine handles the plugins.

6.4.3 Interfaces

Interfaces provide an entry point to the engine for the plugins. The engine con-
tains two interfaces which are exposed to the plugin developers: IEngine and
IPlugin.

IEngine

The IEngine interface exposes engine functionality to the plugin developer. Two
functions are available: GetPlugin and GetExtensions as shown in Figure 6.7.

GetPlugin(id)

GetExtensions(IPlugin plugin, extensionId)

IEngine

Figure 6.7: The IEngine interface.

52 Chapter 6. Design

The GetPlugin function can be used to direct access functionality in other
plugins. Use of this function effectively creates a dependency to the plugin which
is retrieved.

The GetExtensions are used by plugins that have extension points to retrieve
all plugins which extend a certain extension point denoted by the name parameter.

IPlugin

Figure 6.8 shows the IPlugin interface, it is the interface which all plugins must
implement since it identifies them as plugins to the engine. It contains one
method, called run, which is only run by the engine if the plugin is a core plugin.

run(IEngine engine)

IPlugin

Figure 6.8: The IPlugin interface.

6.4.4 Plugin XML Language

The Plugin XML language is the language used to describe plugins enabling the
engine to load them. The syntax consists of five element keywords: Plugins,
Plugin, Requires, Extensionpoint and Extends.

� �
1
2 <Plugins >

3 <Plugin filename ="Plugin .dll" classname ="Plugin " core="no">

4 <Requires filename ="AnotherPlugin.dll" />

5 <Extensionpoint name="ExtensionOne" />

6 <Extends host=" ThirdPlugin.dll" name="ExtensionThree" />

7 </Plugin >

8 </Plugins >
� �

Listing 6.1: Example of the use of the Plugin XML language.

Figure 6.1 shows an example of the Plugin XML language. All plugins used
in the system must be described in the engine plugins.xml file. This file is parsed
by the engine upon start-up and plugins are loaded according to the descriptions
contained in the file.

Plugin

The first element in the file is the Plugins element. This element only serves as
a containment root for all plugins since a root element is required by the XML
specifications [23].

6.4 The Plugin Engine 53

The next element is the Plugin element, which constitute a plugin. It has
three attributes: filename, classname and core.

The classname attribute is the class which implements the IPlugin interface,
meaning it is the plugin in the dll.

The filename attribute is the name of the plugin dll file. This and the class-
name are also used as the unique identifier for the plugin. Uniqueness is guarantee
by the underlying file system.

The core attribute is a boolean attribute which determines whether the plu-
gin is a core plugin, meaning that the plugin will be started by the engine when
loaded. More specifically it means that the engine executes the plugins run
method when the engine loads the plugin.

Requires

The require element is used to describe dependencies among plugins. The element
contains one attribute: filename.

The filename attribute is the unique identifier of the plugin on which the
plugin is dependent. A plugin is dependent of another plugin if it calls methods
directly on the other plugin. Listing 6.1 on the facing page shows that the plugin
Plugin.dll is dependent on the plugin AnotherPlugin.dll.

Extension point

The extension point element is used to describe a point in the plugin which can be
extended by other plugins. When a plugin contain an extension point it effectivley
becomes a host plugin. Host plugins are responsible for calling extensions in other
plugins. The extension point element has only one attribute: name.

The name attribute denotes the name of the extension point which serves as
an identifier for other plugins.

In Listing 6.1 on the preceding page the Plugin.dll contains one extension
point named ExtensionpointOne.

Extends

The extends element is used to extend other plugins functionality. The element
has two attributes: host and name.

The host attribute denotes the plugin which is extended. This is the unique
identifier for the plugin.

The name attribute denotes the extension point in the plugin which is ex-
tended.

In Figure 6.1 on the facing page the Plugin.dll extends the extension point
ExtensionThree in the plugin ThirdPlugin.dll.

54 Chapter 6. Design

6.4.5 Events

Events can be used to pass information between plugins without creating depen-
dencies, thus making events an effective tool that strengthens modularity and
flexibility of the system. Generally events are broadcast to all subscribers re-
sulting in a receive and react pattern. Subscribers receive an event optionally
including data associated with the event and react to the event. This has the
advantage of not leaving dependencies in the system, except from subscribers
that are dependent on a specific event occurring. Figure 6.9 displays a broadcast
event system.

Subscriber

Subscriber

Subscriber

Broadcaster

Event

Figure 6.9: The broadcast event system.

Event systems can be made so that only events relevant to each subscriber
is passed to the subscriber as shown in Figure 6.10 on the facing page. This
is achieved using runtime subscription. An event filter will sort out which sub-
scribers are to receive the event based on the runtime subscriptions.

A disadvantage of the broadcast event system and the subscription based event
broadcast system, is that the dataflow is only running from the event trigger
to the subscriber of the event. This means that the dataflow path cannot be
manipulated by subscribers of the event. So, if one subscriber wishes to alter
data from an event before it reaches the other subscribers this cannot be done.
The subscriber will have to retrigger the event with the manipulated data, but
at that point other subscribers would already have received the unmanipulated
event data.

A system where the dataflow can be manipulated is shown on Figure 6.11 on
the next page. Each subscriber now manages the subscription of other subscribers
to their events and they do the task of broadcasting events themselves. This cre-
ates dependencies among subscribers for the events they need. However removing
a subscriber in the middle of an event flow will disable the event for all subscribers

6.4 The Plugin Engine 55

Subscriber

Subscriber

Subscriber

Broadcaster

Event filterEvent

Figure 6.10: Subscription based event broadcast system

dependent on that event. An advantage of this system is that it is possible to
manipulate event data, before it is passed on to subscribers above the subscriber
which do the manipulation, so the data and its flow can be manipulated trough
this system.

Subscriber

Subscriber

Subscriber

Subscriber

Event
Event

Event

Figure 6.11: Subscription based dataflow event system.

Simulating The Event Systems

This section shows that all above event systems can be simulated by the extension
point system.

The broadcast system can be simulated by letting one plugin act as the broad-
caster with an event extension point which all other plugins (subscribers) must
extend. Plugins can then call a trigger event function directly on the broadcaster.

56 Chapter 6. Design

The subscription based event broadcast system can be simulated by extending
the broadcaster with a subscribe function which plugins can use to subscribe to
specific events, making the broadcaster plugin both broadcaster and event filter
in one.

The subscription based dataflow event system can be quite easily simulated
by extension points. Subscribers just need to extend extension points of events
they want to receive and implement the same extension point for others to ex-
tend thereby making it possible to forward events altered or not. This is the
way we implement events in our system. Subscribers being the plugins, statically
subscribing to events through the plugin XML file. This has the advantage of
keeping the engine and plugins smaller since no code is required for keeping track
of runtime subscriptions. However the event system becomes a little less flexible
since subscribers cannot runtime decide whether to reveive an event or not. Nev-
ertheless, the speed is increased since everything is only initialized once during
start-up of the application as well as lowering complexity. This is preferable since
we are dealing with mobile devices.

It is important to notice that the dependencies among plugins subscribing to
events are not strong. This means that the plugin triggering events subscribed by
another plugin can be removed without affecting the subscriber other than it will
never receive the event. The subscriber plugin will still run due to the extension
point system.

6.4.6 Dependency Handling

As one might have noticed in the event section above, different types of depen-
dencies are described. In this section we describe how we handle dependencies.

The engine interface exposes the plugins that are loaded to the plugins them-
selves through the engine call GetPlugin. Using this call effectively results in
a dependency in the calling plugin to the plugin it is requesting from the en-
gine. This can result in circular dependencies. For example if plugin A calls
engine.GetPlugin(B) and plugin B calls engine.GetPlugin(A), it will result in a
circular reference between A and B as shown in Figure 6.12 on the facing page.

Using Microsoft Visual Studio as the IDE the plugin A would have to have a
reference to B and B would have to have a reference to A, which is not possible.
The solution to the problem is to extract the interfaces of both A and B into
separate dll files. Thus A implements the interface IA and B implements the
interface IB. Futhermore A should have a reference to IB and B to IA. This
solves the circular dependency problem, but the cost is a higher load time on
applications since more dll files have to be loaded. Another way to solve the
problem is to use a form of forward declaration which is possible in the .NET
framework in the form of type forwarding, but it is not implemented in the
Compact Framework version [24].

Using the XML file to specify dependencies means that the circular reference

6.4 The Plugin Engine 57

BA

A B

Circular dependency

IA IB

Interface solution

Figure 6.12: Circular reference and the interface solution.

problem is moved to the XML. In order to solve the circular problem one could
make a two pass of the XML and detect the circular requires, then warn the
developer that it is not allowed. Another problem is that a load order will have
to be established. We do this by specifying that the plugins to be loaded first
should be in the top of the XML file.

Chapter 7

Implementation

In the previous chapter we described the design of FoDa. Continuing the devel-
opment process this chapter describes the implementation of FoDa. Focus of the
implementation has been prioritized according to Table 4.1 on page 34. Basically
this means that main focus was on getting he modularity of FoDa to work as
intended and give it ability to scale. Stability of core components has also been
prioritized leaving security for later. Meaning when all other features have been
implemented focus will go to security.

The chapter firstly describe the choice of platform for the proof of concept
implementation of FoDa. This will be followed by an overview of the system.
The core of the chapter evolves around a detail description of each plugin of the
system. The chapter is rounded of by an implementation status.

7.1 Platform Choice

The requirements to the system as described in Section 4 on page 30 one require-
ment dictates platform independence of the architecture. In this section we will
decide upon a platform to implement the prototype of the system on.

Developing mobile applications, two dominant framework platforms exist:
The J2ME framework and the .NET Compact framework. Both frameworks
support many of the same features. But due to Microsoft strict requirements to
devices running their framework applications and certification required [25]. Ap-
plications written on .Net Compact Framework are easier moved from one device
to another as the framework guarantee homogeneity between devices.

The .NET Compact Framework is divided into two subsets: Pocket PC Phone
Edition for PDA’s with phone capabilities and Windows Mobile Smartphone for
phones with PDA capabilities. This division is done to make the framework
support as many capabilities as possible.

The J2ME Framework is based on the Java philosophy of write once, run
everywhere. The J2ME Framework is in contrast to .NET Compact Framework

58

7.2 Plugin Overview 59

supported by a wide range of operating systems like Motorola iDEN [26], Symbian
OS [27], Qualcomm Brew [28], Nokia Seris 40 [29], Palm OS [30], Wind River’s
VxWorks [31], Windows Mobile [32] and differt versions of Linux.

J2ME enables phones are divided into two subsets: Connected Device Con-
figuation (CDC) and Connected Limited Device Configuration (CLDC). This is
done to utilize all the capabilities of the many different devices supporting J2ME.
These two versions have different J2ME implementations which are not compat-
ible. Furthermore profiles have been introduced into J2ME which enable new
features of the framework. The most widespread is the Mobile Information De-
vice Profile (MIDP). Independent phone vendors have the possibility to introduce
their own profiles with new features making devices more heterogeneous.

In practice many features of the J2ME framework is optional to implement
and implementation often differ from operating system to operating system. This
makes it a hazzle to get application working on the wider range of devices.

In FoDa we need to be able to load and unload classes at runtime. In J2ME
this is possible by using a class loader. A custom class loader is only supported in
the CDC version of J2ME, which is not as widely used as the CLDC version. The
.NET Compact Framework enables the possibilities to dynamiclly load assemblies
which is the equivalent of the class loader.

The choice of platform fall on .NET Compact Framework as this gives the
possibility to move applications from one device to another with minimum im-
plementation hazzle.

7.2 Plugin Overview

This section will give an overview of the implementation of FoDa. Figure 7.1
on page 61 display an overview of the system. Described in Section 6.4.4 on
page 53 there are two ways of associating plugins with the framework making
them part of the system. Extension points are represented as dotted arrows in
the system overview figure. Requires are represented by solid arrows from one
plugin to another. The plugin from which the require arrow originate is the plugin
requiring the plugin the arrow points to.

Extension points can be extended with any number of extensions. A plugin is
even allowed to extend its own extension point, an example of this is the Cache
plugin.

Plugins can extend one another allowing for a call-back mechanism which is
used to simulate events. This is widely used in FoDa. One example is the Http
plugin and ConnectionManager plugin. An event is triggered in Http plugin
by the ConnectionManager when the ConnectionManager requests data and an
event is triggered in the ConectionManager by the Http plugin when the request
is downloaded and ready for use.

The require pattern is only used in one place of the system and that is from

60 Chapter 7. Implementation

the Application to the RequestManager. The reason for this is that the Request-
Manager acts as the interface to the rest of the framework and all communication
between the framework and the application pass trough here. The application
plugin shown on the figure represents the application that is using the framework
and it may consist of several plugins. Examples of application plugins are the
Photo album, the MMO game and the Indoor Navigation application all which
are described in the use cases of Chapter 2 on page 9.

The Engine is also shown to have one extension point. This extension point is
somewhat special in that it has its own keyword named core in the plugin XML
file. Using this plugin will tell the engine to execute the run method of the plugin
upon start-up of the system. This is more thoroughly explained in Section 6.4.4
on page 52.

7.2 Plugin Overview 61

Figure 7.1: Overview of FoDa

62 Chapter 7. Implementation

7.2.1 Application

Figure 7.2: Application plugin

Figure 7.2 shows the Application plugin. The Application plugin is all the
code and plugins written by the application developer using the FoDa system.

To use the system and request data the application programmer can use the
interface provided by the RequestManager:

getData(filename) Use this to request data of any format. When the data
is done an event will be triggered according to the type of data requested.
If the data request was an image the ImageDownloaded event is triggered
etc. If the data type is not recognized by the system the DataDownloaded
event is triggered.

getRawData(filename) Use this if raw data is wanted. This will not be
converted by the type recognition mechanism in the system, but just pass
the data as it is. When the data is ready the DataDownloaded event is
triggered.

Terminate() The application developer should call this when the applica-
tion shut down, to notify the system that data should be persistently stored
and do cleanup.

Requires: RequestManager

Applications must require the RequestManager to use the system and gain access
to the interfaces.

Extends: RequestManager.ImageDownloaded

The RequestManager.ImageDownloaded extension is triggered when a request for
an image has been satified by the system and is ready for use.

ImageDownloaded(filename, image) The filename of the ready image
and the image object.

7.2 Plugin Overview 63

Extends: RequestManager.SoundDownloaded

The RequestManager.SoundDownloaded extension is triggered when a sound data
has been downloaded an is ready for use.

SoundDownloaded(filename, sound) The filename of the ready sound
and the sound object.

Extends: RequestManager.DataDownloaded

The RequestManager.DataDownloaded extension is triggered when a data request
has been satisfied by the system, but the system could not recognize the data or
the request came from using the getRawData function of the RequestManager.

DataDownloaded(filename, data) The filename of the ready data and
the data object.

Extends: RequestManager.UpdateReady

The RequestManager.UpdateReady extension is triggered when an update has
been downloaded and is ready for installation. This will notify the application
developer in order for him or her to act accordingly. An example would be to
display an update notification to the user of the application. The system must
also be restarted for the installation to proceed this might be helpful to notify
the users of whether or not to restart the application.

UpdateReady(filename) Triggered when an update is ready with the
filename of the update.

7.2.2 RequestManager

Figure 7.3: RequestManager plugin

Figure 7.3 shows the RequestManager plugin. The RequestManager plugin
serve as the interface to the rest of the system. All communication between the
application and the system goes trough this plugin.

64 Chapter 7. Implementation

Requesting data is done using the function GetData(filename) or GetRaw-
Data(filename) of the RequestManager. When the data is downloaded and ready
for use an event will be triggered according to the data type. If the data is an
image the ImageDownloaded event will trigger if data is sound then SoundDown-
loaded will trigger etc. If the system does not recognize the data format the
general event DataDownloaded will be triggered and the application developer
can handle the raw data.

Extension Point: ImageDownloaded

Application developers extend this extension point to receive image downloaded
events.

ImageDownloaded(filename, image) The filename of the image down-
loaded as well as the image object ready for use by the application developer.

Extension Point: SoundDownloaded

Application developers extend this extension point to receive sound downloaded
events.

SoundDownloaded(filename, sound) The filename of the sound down-
loaded as well as the sound object ready for use.

Extension Point: DataDownloaded

Application developers extend this extension point to receive unrecognized raw
data downloaded events.

DataDownloaded(filename, data) The filename of the data downloaded
as well as the raw data.

Extension Point: UpdateReady

Application developers extend this extension point to receive notification of up-
dates to the system and application that has been downloaded and are ready for
instalment.

UpdateReady(filename) The filename of the update that is ready to be
installed.

Extension Point: GetData

The GetData extension point is activated when the RequestManager recieve a
request from the application.

GetData(filename) The filename of the data requested.

7.2 Plugin Overview 65

Extension Point: Close

The Close extension point is activated when the system is about to shutdown.
So plugins can extends this if they need to do some clean up before shutdown,
such as writing data to local disk storage etc.

Close() Called when the framework is shutting down operation.

Extends: DataManager.UpdateDownloaded

The DataManager.UpdateDownloaded is activated when the DataManager has
downloaded an update. The RequestManager use this event to trigger its own
UpdateReady extension point.

UpdateReady(filename) The filename of update downloaded.

Extends: DataManager.DataDownloaded

The DataManager.DataDownloaded is activated when data request is downloaded
and ready for conversion, to the correct object type based on file format, by the
RequestManager. When data is converted the extension point corresponding to
the type format is triggered.

DataDownloaded(filename, data) The filename of data downloaded
and the data.

7.2.3 DataManager

Figure 7.4: DataManager plugin

Figure 7.4 shows the DataManager plugin.
The DataManager is an administrator plugin. It is responsible for directing

data requests and replies to the right places. It is the job of the data manager to
first try and retrieve data from the cache and if this fails try retrieve it from the
internet and make sure the cache stores the data when downloaded.

66 Chapter 7. Implementation

Core plugins have their run method executed upon system start-up. This
means that this plugin, as the only core plugin in the system, is the central
point of failure of the system and cannot be removed without making a proper
replacement.

Upon receiving data from a plugin the DataManager activates its DataDown-
loaded extension point, which acts as an event in the parts of the system (The
RequestManager) extending the extension point.

An option exist to extend the DataManager with a Prefetch plugin which are
activated every time data is requested. Giving the opportunity to ask for more
data than originally in the request. Effectively precaching data before it is to be
used.

Extension Point: GetData

Plugins should extend this extension point if they in some ways provide a service
of fetching data either from local storage or over network connections.

GetPriority() Determine the priority of the plugin based on the storage
the plugin use to retrieve data. Two priorities exist: Local for use when
fetching from local storage or Internet for when fetching data from the
internet.

GetData(filename) The filename of the requested data.

Extension Point: SetData

The SetData extension points is activated when the DataManager has received
data retrieved from an Internet priority plugin. Invocation of this extension point
signals a desire to get the data stored persistently.

SetData(filename, data) The filename and data to be stored.

Close() Called when the system shutsdown, signalling to save data not yet
persistently stored.

Extension Point: Prefetch

The Prefetch extension point is activated when a request for data is made, giving
the opportunity to request supplemental data with the request.

PrefetchData(filename) The filename of the request made.

7.2 Plugin Overview 67

Extension Point: DataDownloaded

The DataDownloaded extension point is activated when data is ready to be for-
wareded from the DataManager to plugins which extend this extension point.

DataDownloaded(filename, data) The filename of the data which has
been downloaded and the data itself.

Extension Point: Update

The Update extension point is used by plugins which handle updating of the
system. In our case the PatchProcessing plugin.

UpdateCheck() This will get activated every time a request for data is
made. It is then up to the policy of the plugin extending the Update
extension point to determine if a check for updates should be made or not.

IsUpdate(filename) This will get activated every time date is received to
determine if the data is an update which should trigger an update notifi-
cation for the user or is application data which should be forwarded to the
request manager.

Extends: RequestManager.GetData

The RequestManager.GetData extension is triggered by the RequestManager,
when the application using the RequestManager request data.

GetData(filename) The filename of the requested data.

Extends: PatchProcessing.GetData

The PatchProcessing.GetData extension is triggered by the PatchProcessing plu-
gin when it requests updates.

GetData(filename) The filename of the requested update.

Extends: SecurityManager.DataDownloaded

The SecurityManager.DataDownloaded extension is triggered by the Security-
Manager when data is ready that satisfies the DataManagers data request. The
DataManager will forward the data received to the RequestManager by activating
its own DataDownloaded extension point.

DataDownloaded(filename, data) The filename of the data downloaded
and the data itself.

68 Chapter 7. Implementation

Extends: Cache.DataDownloaded

The Cache.DataDownloaded extension is triggered by the Cache when data that
satisfies the DataManagers data requests. If the Cache could not satify the data
request it will trigger this event with parameters set to null, telling the Data-
Manager to get the data from some other plugin.

DataDownloaded(filename, data) The filename of the data and the
data that satisfies the request.

Extends: RequestManager.Close

The RequestManager.Close extension is triggered by the RequestManager when
the application running on top of the system is shutting down. This event will
activate the plugins extending the SetData extension point to save data properly
before complete shutdown of the system.

Close() Tells the plugin to shutdown.

7.2.4 PatchProcessing

Figure 7.5: PatchProcessing plugin

Figure 7.5 shows the PatchProcessing plugin. The responsibility of the Patch-
Processing plugin is to administrate the updating of the system.

The plugin initializes by reading an XML file containing entries for the parts
of the system that can be updated. The entries contain information about where
the parts are stored and when they were last check for a newer version available.
The information is parsed into a hashtable for fast and easy access.

When the UpdateCheck extension is activated it will trigger the Policy ex-
tension point. The policy plugin will then check the hashtable for entries which
according to policy require an update. This is the case if an entry is more than
two days old.

Extension Point: Policy

The Policy extension point is activated when an update check is needed.

7.2 Plugin Overview 69

Policy(hashtable) The hashtable containing the entries that can be up-
dated. The policy plugin should maintain the hashtable according to policy
and request updates.

Extension Point: GetData

The GetData extension point is activated

Extends: DataManager.Update

The DataManager.Update extension is activated every time the DataManager
receive a request for data or when data that satisfies a request is retrieved.

UpdateCheck() Activated when a request for data is received by the
DataManager.

IsUpdated(filename) The filename to check if it is an update. Activated
when data that satisfies a request is received by the DataManager.

7.2.5 Cache

Figure 7.6: Cache plugin

Figure 7.6 shows the Cache plugin. The Cache plugin saves the data it receives
locally on the device, so it can be retrieved later without the need to use the
Internet. It also makes sure that data saved locally is up to date with the data
on the Internet.

On initialization of the Cache an XML file containing the entries currently in
the cache is read. An entry contains information about name of the data stored
in the entry, the age of the data and a last read timestamp. Entries in the XML
file are parsed to a hashtable, which is maintained by the Cache plugin. Upon
termination of the Cache plugin the Close methods need to be executed as this
will save the updated entries of the hashtable to the XML file on the local disk.

On new data received the Cache stores the data on the local disk and updates
the hashtable accordingly.

On data requested the cache looks up the name of the requested data in the
hashtable if the name does not exist the Cache returns an empty reply to the one

70 Chapter 7. Implementation

requesting data. If the data do exist it is read from the disk and the hashtable
entry has its last read timestamp updated and returns the data to the requester.

Purging the cache is controlled by policies. A policy describes when data
is too old and must be updated or deleted. The Cache plugin implements an
extension point named Policy for this purpose. A default policy is provided with
the framework. The policy simply deletes all data with an age of more than five
days. The policy is implemented within the Cache plugin itself as an extension
to the Policy extension point.

Extension Point: Data

This extension point gives the possibility to change data before it is saved to the
local storage. This extension point could be extended to encrypt and compress
data before it is stored. The following interface functions are associated with the
extension point:

DataTo(data) Before data is saved to the local disk, this function is called.

DataFrom(data) After data is read from the disk, this function os called.

Extension Point: Policy

This extension point gives the possibility to add and remove policies for maintain-
ing the cache. The following interface functions are associated with the extension
point:

Policy(hashtable) The hashtable containing data entries in the cache.
Apply the policy by altering the hashtable accordingly.

Extension Point: DataDownloaded

The data downloaded extension point is used to signal that the cache has retrieved
data. This extension point is basically an event that is triggered every time the
cache has fetched data requested.

DataDownloaded(filename, data) Event function called whenever data
is ready, meaning a request has been fetched by the cache. The filename of
the data and the data is passed with the event. If the data requested was
not in the cache null is passed as filename and data.

Extends: DataManager.SetData

The DataManager.SetData describe the interface which the Cache must imple-
ment to extend the DataManager.SetData extension point. The following func-
tions are contained in the interface and must be implemented by the Cache:

7.2 Plugin Overview 71

SetData(filename, data) The DataManager calls SetData with the file-
name and data to be stored. The plugin should store the data using the
filename as an index.

Close() DataManager calls Close when about to shutdown at which point
the Cache run all the extensions to its Policy extension point on the main-
tained hashtable and upon completion stores the hashtable in the XML
file.

Extends: DataManager.GetData

The DataManager.GetData descibe the interface which the Cache must imple-
ment to extend the DataManager.GetData extension point. Functions of the
interface are described below:

GetPriority() Determine the priority of the extension to the DataMan-
ager. The lower the number, the higher priority.

GetFile(filename) Called by the DataManager to request data from the
cache. The filename specifies the file requested. This should update the
Cache entry hashtable accordingly, modifying last read timestamp.

Extends: Cache.Policy

To implement a default cache policy the Cache extends its own Policy extension
point. Default policy being anything with an age above five days is deleted from
the cache.

Policy(hashtable) Modifies the hashtable by removing entries older than
five days.

7.2.6 SecurityManager

Figure 7.7: SecurityManager plugin

Figure 7.7 shows the SecurityManager plugin. The SecurityManager plugin
acts as an administrator for plugins handling security, covering topics ranging

72 Chapter 7. Implementation

from encryption, decryption to ensuring data integrity by the use of MD5, SHA
or other protocols. It also handles the order of applying the plugins to the data
as the order is important. An example is doing an MD5 check on encrypted data
does not yield the same result as doing an MD5 check on unencrypted data. To
decide the order the SecurityManager uses the GetPriority function.

The SecurityManager receive data requests from the DataManager and pro-
cess these requests to become secure, before forwarding the request to the Con-
nectionManager. When the data is received by the ConnectionManager the Secu-
rityManager is notified and security plugins gets to process the downloaded data
before it is passed to the DataManager and the rest of the system.

Extension Point: GetData

The GetData extension point is activated when the SecurityManager receives a
request for data and has validated the request according to security policies.

GetData(filename) The filename of the data to be downloaded.

Extension Point: ProcessData

The ProcessData extension point is invoked when the SecurityManager receive
a request for some data or the SecurityManager has been notified of data down-
loaded and ready. This extension point gives all security plugins the opportunity
to process the data before it is released to the rest of the system.

GetPriority() Determine the order of execution of security plugins.

InputData(filename, data) Invoked when data is downloaded and ready
to be processed. The filename of the data and the downloaded data is the
parameters.

Outputdata(filename) Invoked before a request for data is relayed to the
ConnectionManager. The parameter is the filename of the data requested.
Enables security pluings to process the request before it is relayed.

Extension Point: DataDownloaded

The DataDownloaded extension point is activated when data has been down-
loaded and all security plugins are done processing the data.

DataDownloaded(filename, data) The filename of the downloaded data
as well as the processed data.

7.2 Plugin Overview 73

Extends: DataManager. GetData

The DataManager.GetData extension allows the SecurityManager to receive re-
quests from the DataManager which is processed before invoking the Security-
Managers own GetData extension point.

GetPriority() Determines the priority of the plugin.

GetData(filename) The filename of the data requested by the DataMan-
ager.

Extends: ConnectionManager.DataDownloaded

The ConnectionManager.DataDownloaded extension is used to receive data down-
loaded event notifications from the ConnectionManager. Upon receiving an event
the SecurityManager will lets security plugins process the data before invoking
its own DataDownloaded extension point.

DataDownloaded(filename, data) When the SecurityManager receive
a “DataDownloaded()” event from the ConnectionManager it will translate
the data into usable data and invoke its own “DataDownloaded” extension
point.

7.2.7 Encryption

Figure 7.8: Encryption plugin

Figure 7.8 shows the Encryption plugin. The purpose of the Encryption plugin
is to provide for encryption and decryption of data to and from the cache. The
plugin use a simple XOR encryption scheme. The reason for encryption data in
the cache is to prevent the user from tampering with the data in the cache.

Every time the Cache plugin write data to the local disk the Encryption plugin
will encrypt the data before it is stored. When data is retrieved from the local
disk the Encryption plugin will decrypt the data before it will be used by the
system.

Extends: Cache.Data

The Cache.Data extension is triggered when data is read or written to and from
the cache.

74 Chapter 7. Implementation

DataTo(data) The data to be stored in the cache. The XOR encryption
scheme is applied here.

DataFrom(data) The data read from the cache. The XOE decryption
scheme is applied here.

7.2.8 ConnectionManager

Figure 7.9: ConnectionManager plugin

Figure 7.9 shows the ConnectionManager plugin. The ConnectionManager
plugin is an administrator for Internet connections. This means that several plu-
gins can extend the ConnectionManager to enable support for multiple connection
protocols in the system.

The task of the ConnectionManager is to find the best suited protocol plugin.
This is done by checking the priority of the plugin as well as testing if the plugin
actually establishes a connection. The ConnectionManager will then use the
plugin with the lowest priority that have passed the connection test to download
requested data.

Extension Point: GetData

The GetData extension points are activated every time the ConnectionManager
receive a request for data from the SecurityManager. Forwarding the request to
the plugin, chosen as the best suited, for downloading of data.

GetPriority() Determine the priority of the plugin. The lower number
the higher priority.

GetData(filename) The filename of the data requested to be downloaded.

TestConnection() Determines if the plugin can establish a connection.

Extension Point: DataDownloaded

The DataDownloaded extension point is activated when the ConnectionManager
receives DataDownloaded events from the protocol plugins which have down-
loaded requested data.

7.2 Plugin Overview 75

DataDownloaded(filename, data) The filename of the data downloaded
and the data itself. Invoked when data is ready to be used.

Extends: SecurityManager.GetData

Extension to the SecurityManager.GetData extension point. Called by the Secu-
rityMangager to request data for download. The Interface of the extension point
is described below:

GetData(filename) Called by the SecurityManager to request the data
of the filename specified.

Extends: Socket.DataDownloaded

The Socket.DataDownloaded extension works as an event that is triggeret when
the Socket plugin has downloaded data. Upon receiving the event the Connection-
Manager will activate all plugins extending its own DataDownloaded extension
point.

DataDownloaded(filename, data) Upon data downloaded by the Socket
plugin it will trigger this function. With the filename of the data down-
loaded and the data.

Extends: Http.DataDownloaded

The Http.DataDownloaded extension works as an event that is triggeret when
the Http plugin has downloaded data. Upon receiving the event the Connection-
Manager will activate all plugins extending its own DataDownloaded extension
point.

DataDownloaded(filename, data) Upon data downloaded by the Http
plugin it will trigger this function. With the filename of the data down-
loaded and the data.

7.2.9 Http

Figure 7.10 on the next page shows the Http plugin. The Http plugin is an
extension to the ConnectionManager providing the capability to retrieve data by
use of the HTTP protocol.

Upon receiving a request for data from the ConnectionManager the Http
plugin establish a http connection to a specific server and request the data. When
the data is downloaded the extension point DataDownloaded is invoked to notify
all plugins extending this extension point of the new data.

All connections are none blocking as request could time out or fail or simply
be slow. To achieve this, the Http plugin starts a new tread which handles the
downloading, and messages the plugin when data is ready.

76 Chapter 7. Implementation

Figure 7.10: Http plugin

Extension Point: DataDownloaded

The DataDownloaded extension point is triggered when data downloaded is com-
pleted.

DataDownloaded(filename, data) The filename of the data downloaded
and the data object. the data.

Extends: ConnectionManager.GetData

The ConnectionManager.GetData extension is activated when a request for data
is made by the ConnectionManager.

GetPriority() Determine the priority of the plugin

GetFile(filename) The filename of the data requested.

TestConnection() Test if the plugin can establish a connection and there-
fore can be used to download data.

7.2.10 Socket

Figure 7.11: Socket plugin

Figure 7.11 shows the Socket plugin. The Socket plugin work in the same way
as the Http plugin (See Section 7.2.9 on the previous page). The difference being
that the Socket plugin establish pure socket connections. All connections are
handled in a separate thread as in the Http plugins as well effectively making this
plugin non blocking as well. The protocol used by the plugin is the TCP protocol.

7.2 Plugin Overview 77

This is to ensure reliable data transfer as mobile connection has a tendency to
disappear. Using TCP gives a form of failure tolerance as it is guaranteed that
the traffic will reach the socket at some point unless the connection is completely
broken.

Extension Point: DataDownloaded

The DataDownloaded extension point is activated when a request for data is
satisfied and the data is completely downloaded and ready for use.

DataDownloaded(filename, data) The filename of the downloaded data
and the data object.

Extends: ConnectionManager.GetData

The ConnectionManager.GetData extension is triggered when the Connection-
Manager receives requests for data.

GetPriority() Determine the priority of the plugin.

GetData(filename) The filename of the requested data. This will start
the downloading of the data in a separate tread.

TestConnection() Test if a connection can be established enabling the
plugin as a candidate for downloading data.

7.2.11 Implementation status

This section describes the implementation status of FoDa as described in the
design section 6 on page 43.

Implementation decisions of what to implement is based on the criteria rat-
ing of table 4.1 on page 34. As modularity was of critical importance we have
implemented the entire engine. Making it possible to create plugins that use the
full feature set of extension points, requires and extends.

The DataManager is fully implemented as well as a simple cache, the Con-
nectionManager, PatchProcessing and the HTTP plugin.

The RequestManager only the basic interface functions needed for the use
case applications to function have been implemented.

Security was of neutral importance, but we have implemented the Security-
Manager with the basic features needed for example security plugins to function.

The parts of the implementation which is only partially implementet or en-
tirely omitted is described below:

78 Chapter 7. Implementation

Encryption in the Cache
The Cache is encrypted, but it is with the very simple XOR encryption
algorithm. This should be changed to a more advanced algorithm if FoDa
were to be used commercially, but for proof of concept purpose XOR will
suffice.

Security in connections
Security on communication is not implemented but support for security is
present. To test if the support worked we hooked the encryption plugin to
the SecurityManager and XOR’ed all communication which works.

Support for Socket communication
The Socket protocol is implemented but suffer from problems of unreliability
during data transfer.

Application initiated updates
It is not possible for the application developer to initiate a specific update
trough the use of a method call. An example of an application which
could make use of this feature is the karate game describe in Section 2.4
on page 18. The only way to update the system is trough the automated
PatchProcessing plugin.

Advanced features of RequestManager
Only the basic features of the RequestManager have been implemented. Re-
sulting in features like convert received data to sound objects, and sending
and receiving of raw data are not implemented.

Selection of best network protocol
The implementation of network handling does not choose the best protocol
depending on actual measurements of the networks. Currently HTTP is
prefered.

7.3 Platform Limitations

This section describes some of the limitations with choosing the .NET Compact
Framework as the platform for our implementation of the system.

7.3.1 Unloading of DLLs

Unloading of DLLs or assemblies cannot be done in the .NET Compact Frame-
work. The decision not to support this is done by the .NET Compact Framework
team at Microsoft. The reason is noted on Jason Zander’s Weblog [33]. Ja-
son Zander is General Manager for the .NET Framework (DevFX) team in the
Developer Division at Microsoft.

7.3 Platform Limitations 79

The reason stated is that the amount of administration required by the frame-
work to support this would take up to much of the device resources and be to
expensive.

“(...) tracking is handled today around an app domain boundary.
Tracking it at the assembly level becomes quite expensive.” - Jason
Zander

This decision effectively limits the dynamic unloading of pluins from the en-
gine. Resulting in a situation where runtime automatic dynamic code patching
is impossible. The solution to the problem is to restart the application thereby
unloading and loading the dlls again. But as we shall see in the next section this
is not easy to do in the .NET Compact Framework either.

7.3.2 Automatic Restart of Applications

Restarting applications is not directly supported in the .NET Compact Frame-
work 1.0, but will be introduced in 2.0. To work around a call to the unmanaged
CreateProcess function can be used. Listing 7.1 display the declaration of the
CreateProcess function.

� �
1 [DllImport ("coredll.dll")]

2 extern static int CreateProcess(

3 String imageName ,

4 String cmdLine ,

5 IntPtr lpProcessAttributes ,

6 IntPtr lpThreadAttributes ,

7 Int32 boolInheritHandles ,

8 Int32 dwCreationFlags ,

9 IntPtr lpEnvironment ,

10 IntPtr lpszCurrentDir ,

11 byte[] si ,

12 ProcessInfo pi);
� �

Listing 7.1: Importing CreateProcess from coredll.dll.

To make it easier to use the CreateProcess function a wrapper can be made
as displayed on Listing 7.2 on the following page.

The code that calls the CreateProcess wrapper to restart the application is
displayed on Listing 7.3 on the next page.

The reboot code works in the emulator but unfortunately not on either of the
devices we had access to.

7.3.3 Dynamic Instantiation of Classes

Loading plugins dynamically means that we have to instantiate the plugins at
runtime. This can be done in the .NET Compact Framework using the Activator

80 Chapter 7. Implementation

� �
1 public class ProcessInfo {

2 public int Process ;

3 public int Thread ;

4 public int ProcessID ;

5 public int ThreadID ;

6 }

7
8 private bool CreateProcess(String ExeName , String CmdLine , ProcessInfo

pi) {

9 if (pi == null) pi = new ProcessInfo ();

10
11 byte [] si = new byte [128];

12 return CreateProcess(ExeName , CmdLine , IntPtr .Zero , IntPtr .Zero , 0, 0,

IntPtr .Zero , IntPtr .Zero , si , pi) != 0;

13 }
� �

Listing 7.2: CreateProcess wrapper

� �
1 public void Reboot () {

2 String path = Path.GetDirectoryName(Assembly . GetExecutingAssembly ().

GetName ().CodeBase);

3 CreateProcess(path + "\\ engine .exe", "", null);

4 }
� �

Listing 7.3: Reboot method for restarting the application.

class. This class has a static method called CreateInstance(Type) which in term
will instantiate a class of Type using the default constructor.

Problem with this is that the normal way of coding applications often involves
allocating resources in the constructor, but when using our system, coding pat-
tern has changed to become event based. This means there is one call to the
request manager which asks for content and when the content is ready an event
is triggered. Now it would make sense to make the call to the request manager in
the constructor keeping the coding pattern as close to normal as possible. This
is however not possible as a reference to the engine is needed which cannot be
passed to the constructor as only the default constructor is called by the Activa-
tor.CreateInstance method. Listing 7.4 on the facing page illustrate the problem
in code.

Looking at the reference API manual for the .NET Compact Framework only
the default constructor is available where as in .NET Framework constructors
which takes an array of parameters are available.

7.3 Platform Limitations 81

� �
1 public class APlugin : IPlugin

2 {

3 IEngine engine = null;

4 IRequestManager manager = null;

5
6 public APlugin ()

7 {

8 // We cannot initialize engine or manager variables here

9 // as we have no engine reference yet . Hence we cannot

10 // request content at this point.

11 }

12
13 public void run (IEngine engine)

14 {

15 this.engine = engine ;

16 manager = (IRequestManager)engine .GetPlugin (‘‘RequestManager ’’);

17
18 // Now we can request content .

19 manager .GetImage (‘‘image .png ’’);

20
21 }

22
23 public void IImageDownloaded(String filename , Image image)

24 {

25 // Initialize the image variables used in the project here.

26 }

27
28 }

� �

Listing 7.4: Plugins are initialized using the default constructor.

Part III

Framework Evaluation

82

Chapter 8

Evaluation

This chapter focus on two requirements from the requirements described in Sec-
tion 4 on page 30: Ease of use and performance.

The reason we focus on these is because the rest of the requirements are ful-
filled by the design of FoDa. Ease of use stems from the usability requirement,
defined in Section 4.1 on page 32. Performance is a combination of scalability,
stability criterias and the requirement: Low footprint, including memory con-
sumption, CPU usage and storage space usage.

We have rated security neutral, which is the reason the security of the system
will not be tested. Evaluation of ease of use is done by implementing three use
case applications using FoDa and record the number of code lines required by the
developer to write, comparing them with the features gained from using FoDa.

One could argue that lines of code are not equivalent with ease of use. To
remedy this, a tutorial is written, which illustrate the simplicity of the use of
FoDa in a few simple steps. Another point is that implementations only make
use of simple code construct often only one command at each line.

To further illustrate the ease of use, we port an existing game not written by
us to use FoDa and record the code modifications required. We then compare
these lines with the features gained.

The applications we implement are: A Photoalbum, Indoor Navigation, Jump-
ing Game and the Port of Pocket 1945. These applications are equivalent with the
use case applications, described in Chapter 2, with the exception of the massive
multiplayer online game which we do not have the time to create. The Jumping
game is a replacement.

The performance part of the evaluation focuses on the following criteria:

Memory usage: The amount of memory used when running FoDa the
application on top.

Memory peak: The amount of memory used at peak performance.

Sytem size: Storage space occupied.

83

84 Chapter 8. Evaluation

Startup time: Time it takes to start up the framework and the application
on top.

Execution time: Time from when data is requested until it is ready for
use.

8.1 Ease of use

Each application described in the Ease of use section follows the following pat-
tern: Introduction of the application, relevant code related to use of FoDa for
implementation of the application and comparison of code lines are used to in-
teract with FoDa compared to the rest of the code of the application.

Before we describe how the application uses FoDa we outline the steps which
an application developer has to follow to make use of FoDa.

8.1.1 Plugin Tutorial

This section describes how FoDa should be used to function in an application.
Since FoDa is highly event driven it has not been possible to make the system
100% transparent to the user (the programmers who use FoDa for their system).
This is why of this the user has to follow a few guidelines.

Listing 8.1 shows how an empty project, using the features provided by FoDa,
look like.

� �
1 public class Photoalbum : IPlugin , IImageDownloaded , IUpdateDownloaded

2 {

3 private IEngine .IEngine engine ;

4 private RequestManager. IRequestManager manager ;

5
6 public void run (IEngine .IEngine engine)

7 {

8 this.engine = engine ;

9 this.manager = (RequestManager.IRequestManager)engine .GetPlugin ("

RequestManager.dll");

10 }

11
12 public void ImageDownloaded(String fileName , Bitmap data)

13 {

14
15 }

16
17 public void UpdateReady (String update)

18 {

19
20 }

21 }
� �

Listing 8.1: An empty project

Describing the empty project at Listing 8.1, the first thing to notice is the
interfaces which a project using FoDa should implement.

8.1 Ease of use 85

1. Implement the “IPlugin” interface
The first interface, “IPlugin”, should always be implemented, this interface
contain one method. This method is the “public void run(IEngine.IEngine
engine)” implemented at line 6, which provides the application with a main
activation point. This is comparable to the “public static void Main()”.

2. Implement the “IImageDownloaded” interface
The next interface which the empty project at Listing 8.1 implements is
the “IImageDownloaded”, this interface should be implemented if the user
will be requesting images. When the user request an image by use of the
“getData()” function (located in the RequestManager) the method “pub-
lic void ImageDownloaded(String fileName, Bitmap data)” will be invoked
when the data is ready to be used. If the user needs to request non image
data, another interface should be implemented as well.

3. Implement the “ISoundDownloaded” interface
If the user needs to request sound data the interface “ISoundDownloaded”
should be used.

4. Implement the “IDataDownloaded” interface
If any other data is needed the interface “IDataDownloaded” has to be
implemented.

5. Implement the “IUpdateDownloaded” interface
The last interface the empty project implement is the“IUpdateDownloaded”
which have to be implemented if the programmer wants to inform the user
of new application updates. The function which will be invoked when new
updates have been downloaded is the “public void UpdateReady(String up-
date)”, which describes which modules that have been updated.

6. Make a reference to the “RequestManager”
The last thing to notice about the code at Listing 8.1 is the 9th line, which
makes a reference to the “RequestManager” thereby providing the function-
ality to request data. This reference call has to be requested through an
engine call since it is only the engine which has a reference to all plugins
loaded in the system. An example of a data request in this project could
be:“manager.getData(”Intro-image.png”)”.

8.1.2 Photoalbum

The Photoalbum application is described in the use case chapter. We implement
a digital photoalbum using FoDa as the base of the application. Figure 8.1 on
the following page displays a screenshot of the application in action.

86 Chapter 8. Evaluation

The photoalbum consists of two buttons: Previous and next. These are used
to browse through images. In the top of the screen a label displays the name of
the image currently being viewed.

Images are located on a remote server and by using the navigation buttons
FoDa will download a requested image and the application will display it to the
user.

Figure 8.1: Screenshot of the photoalbum application

The Application Code

To illustrate the workload when implementing a Photoalbum with FoDa, this
section displays the code which the programmer needs to make a photoalbum.
This section omits the GUI code, to setup buttons and the theme since this is
normally written by the IDE which uses drag’n’drop components. To implement
the photoalbum we follow steps 1, 2, 5 and 6 from the tutorial described in
section 8.1.1 on page 84. Since the photoalbum only need to request images and
no other kinds of data it is not necessary to implement points 3 and 4 from the
tutorial.

Photos displayed in the photoalbum have to comply with the naming conven-
tion which the photoalbum uses. Thus, the photos have to be called“photoX.png”
where X (“imageNumber” in the code) is an integer value. This is described using
three global variables in the photoalbum, as displayed in Listing 8.2.

� �
1 private const String imageName = "photo ";

2 private int imageNumber = 0;

3 private const String imageExtension = ".png";
� �

Listing 8.2: Variables used for the naming convention

The main entry point for the photoalbum plugin is called Run which is exe-
cuted at start-up.

8.1 Ease of use 87

� �
1 private RequestManager.IRequestManager manager ;

2
3 public void run(IEngine .IEngine engine)

4 {

5 this.manager = (RequestManager.IRequestManager)engine .GetPlugin ("

RequestManager.dll");

6 lblName .Text = imageName + imageNumber + imageExtension;

7 manager .GetData (imageName + imageNumber + imageExtension);

8 Application .Run (this);

9 }
� �

Listing 8.3: The run() function of the photoalbum

The first line in the run method establish a reference to the RequestManager
which is the interface to FoDa. The second line simply changes the name of the
label to the first image to be displayed. The third line uses the request manager
to request the first image from the remote server. The last code line initializes a
thread which starts the windows message loop used by the GUI components and
input components of the application.

Upon receiving the requested images from the server and converting it to an
image object, FoDa triggers the ImageDownloaded event. Listing 8.4 displays the
code that is executed when the image downloaded event occurs.

� �
1 public void ImageDownloaded(String fileName , Bitmap data)

2 {

3 if (lblName .Text.CompareTo (fileName) == 0)

4 {

5 imgView .Location = new Point (0,0);

6 imgView .Image = data;

7 }

8 }
� �

Listing 8.4: Implementation of the ImageDownloaded() function

Line one of the ImageDownloaded event is a check to see whether the image
currently displayed is the one received. This check is necessary since all down-
loading of data in FoDa is none blocking. This means that there is no way to
guarantee that the events occur in the same order as the images are requested.
The advantage of this is that the application is able to download multiple images
while browsing one image. Thus, it is necessary to check whether the image being
viewed is the one that was embedded with the event.

The code inside the check serves to place the image at the right location and
of course sets the image data itself to be displayed (to the user).

The code for the navigation buttons are displayed in Listing 8.5. The code is
fairly simple since the image number is increased and the new image is requested.
An equivalent code exists for the previous button, the only difference from next
is that the image number is decreased. Therefore we have omitted displaying the
code for the previous button.

88 Chapter 8. Evaluation

� �
1 private void Next_Click (object sender , EventArgs e)

2 {

3 imageNumber ++;

4 manager .getImage (imageName + imageNumber + imageExtension);

5 }
� �

Listing 8.5: Implementation of the “next” button

To allow the user to pan the image, code for reacting to key input is required.
The code is displayed in Listing 8.6. The code is fairly simple, by pressing the
left, right, up or down key the image is moved 10 pixels in the direction of the
key. If numeric key five is pressed the application will exit. But before it does
this a call to FoDa is made to shutdown graciously and saving data to a local
storage if needed.

� �
1 private void Photoalbum_KeyDown(object sender , KeyEventArgs e)

2 {

3 if(e.KeyCode == Keys.Left) imgView .Left += 10;

4 if(e.KeyCode == Keys.Right) imgView .Left -= 10;

5 if(e.KeyCode == Keys.Up) imgView .Top += 10;

6 if(e.KeyCode == Keys.Down) imgView .Top -= 10;

7 if(e.KeyCode == Keys.D5)

8 {

9 manager .Terminate ();

10 Application .Exit();

11 }

12 }
� �

Listing 8.6: The code used to register which keys the user press

Upon receiving an update to parts of FoDa or the application itself, the Up-
dateReady event will be triggered. The code to react to an update event is
displayed in Listing 8.7. The code simply displays a message box to the user
indicating that there is an update ready for the system and that a restart of the
application is needed. It is then up to the user to actually restart the application
upon which the updates will be installed. The update event will trigger for each
update downloaded. To make sure the user is only notified once a boolean is set.

This concludes the code required by the programmer to create a Photoalbum
that uses a remote server to receive images.

Conclusion

The code that has to be written (that is related to FoDa) is the sum of the
code lines displayed in the listings above which totals to 50 code lines. The
programmer does of course have to write some GUI code as well, but most of
this is auto generated by the IDE such as Microsoft Visual Studio by dragging
control elements.

8.1 Ease of use 89

� �
1 private bool notificationShown = false ;

2
3 public void UpdateReady (String update)

4 {

5 if (notificationShown == false)

6 {

7 notificationShown = true;

8 DialogResult ret = MessageBox .Show("An update is ready. The

9 application have to be restartet for the update to take effect ",

10 MessageBoxButtons.OK, MessageBoxIcon.Asterisk ,

MessageBoxDefaultButton .Button1);

11 }

12 }
� �

Listing 8.7: When updates is ready to be used the“UpdateReady()”function in the Photoalbum
plugin is executed

One might think that 50 lines for writing a simple application like a photoal-
bum is a lot. But remember the extra features this application now contains
as a direct result of using FoDa. The complete feature list of the photoalbum
application is displayed below:

1. Browse images from remote server storage.

2. Pan images to view images larger than the screen.

3. On demand delivery of data

4. Automatic conversion of data to useable objects

5. A data cache to lower bandwidth usage and optimize performance of appli-
cations

6. Automatic content and patch updates

7. Automatic detection of available network protocols

8. Automatic selection of the best network protocol

9. Automatic manage all network connections

10. Encryption to prevent tampering of content and application

8.1.3 Jump Game

This section describes the implementation of a simple one button jump game using
the FoDa framework. The game consists of a set of obstacles and a jumping man.
The purpose of the game is to jump over as many obstacles as possible. Figure
8.2 displays a screenshot of the game in action.

90 Chapter 8. Evaluation

Figure 8.2: Screenshot of the jump game

The Application Code

To implement this game we follow steps: 1,2 and 6 from the tutorial described
in section 8.1.1 on page 84. Since this application will not request sound or data
objects we do not use steps 3 and 4. We also omit using step 5 which means that
the user will not be informed about new updates to the code, but will first notice
the change the next time the application is started.

The first snippet of code we show is the run method as shown in Listing 8.8.
As described in Section 8.1.1 on page 84 this method is the main entry point for
the application and it is responsible for setting up the connection to the engine
and the interface to the framework using the RequestManager. The method also
makes the call that starts the windows message processing for the application.

� �
1 private IEngine .IEngine engine ;

2 private RequestManager.IRequestManager manager ;

3
4 public void run(IEngine .IEngine engine)

5 {

6 this.engine = engine ;

7 this.manager = (RequestManager.IRequestManager)engine .GetPlugin ("

RequestManager.dll");

8
9 Application .Run (this);

10 }
� �

Listing 8.8: The run method

The Jumper Load method at Listings 8.9 is called by the windows message
processing loop when the application is loaded. Here we use the framework to load
images used in the game and start the game processing loop which is responsible
for executing the game logic and painting the screen.

The last method related to our framework in the game code is the Image-
Downloaded event method seen in Listing 8.10 on the next page. This method

8.1 Ease of use 91

� �
1 private void Jumper_Load (object sender , EventArgs e)

2 {

3 WindowState = FormWindowState.Maximized ; // Use fullscreen mode.

4
5 bmpBackBuffer = new Bitmap (this. ClientRectangle.Width , this.

ClientRectangle.Height);

6 gxBackBuffer = Graphics .FromImage (bmpBackBuffer);

7
8 manager .getImage ("background.png");

9 manager .getImage ("cloud1 .png");

10 manager .getImage ("cloud2 .png");

11 manager .getImage ("jumper .png");

12 manager .getImage ("crate .png");

13
14 // Start Game Loop

15 DoGameLoop ();

16 }
� �

Listing 8.9: The jumper load method.

is responsible for initializing images as they arrive. The images are initialized
with the image data received as well as their stating position which is outside the
screen area on the right.

� �
1 public void ImageDownloaded(String fileName , Bitmap data)

2 {

3 if (fileName .Equals ("background.png")) {

4 imgBackground = data;

5 }

6 else if (fileName .Equals ("cloud1 .png")) {

7 clouds [0] = new Cloud (data , ClientRectangle.Width , 0,

transparentColor);

8 }

9 else if (fileName .Equals ("cloud2 .png")) {

10 clouds [1] = new Cloud (data , ClientRectangle.Width + data.Width + 42,

data.Height , transparentColor);

11 }

12 else if (fileName .Equals ("jumper .png")) {

13 player = new Player (data , ClientRectangle.Width / 2, ClientRectangle

.Height - 38 - data.Height , transparentColor);

14 }

15 else if (fileName .Equals ("crate.png")) {

16 for (int i = 0; i < NumberOfCrates; i++)

17 {

18 crates [i] = new Crate(data , ClientRectangle.Width + (2* i * data.

Width), ClientRectangle.Height / 2, transparentColor);

19 }

20 }

21 }
� �

Listing 8.10: Image downloaded event method

This concludes the lines of code that are directly related to the use of FoDa.

92 Chapter 8. Evaluation

Conclusion

The code for the jump game consists of 554 numbers of lines in total. 47 of the
lines relate to the use of FoDa and the code described in the previous section is
made by these 47 lines. The rest of the code is pure game related such as game
logic, input handling, collision detection etc.

1. Simple one button jumping game

2. On demand delivery of data

3. Automatic conversion of data to useable objects

4. A data cache to lower bandwidth usage and optimize performance of appli-
cations

5. Automatic content and patch updates

6. Automatic detection of available network protocols

7. Automatic selection of the best network protocol

8. Automatic manage all network connections

9. Encryption to prevent tampering of content and application

8.1.4 Indoor Maps

The next implementation we describe is that of a simple Map application. Figure
8.3 illustrates how this application looks like. The purpose with this application
is to navigate a user through a building which is unknown by the user. The idea of
this application comes from Rene Hansen, a PhD student, who at the moment is
researching in how to navigate by use of Wi-Fi spots instead of GPS. The reason
for this is that GPS is not accurate enough to work indoor. This is described more
in the use cases, Section 2.2 on page 11. Since Rene Hansen was not far enough
in the research process, it was not possible to use his Wi-Fi measurements and
transmit it to a database for translating the Wi-Fi measurement into map data.
So, instead of using actual Wi-Fi data we simulate a person moving around in the
computer scientist department of Aalborg University. The simulation thread used
for this application can be seen in Appendix A The application basically works
by “measuring” the location of the user, then transmits the data to a server which
then provides the map data needed for the user’s current location. When the user
moves too far away from the last position he received data for, the system asks
for new map data for the user’s new location.

8.1 Ease of use 93

Figure 8.3: Screenshot of the photoalbum application

The Application Code

The code for this application only consists of two functions and one thread. For
the same reason as described concerning the Jump Game we only make use of
steps 1, 2 and 6 from the tutorial in this application. However, to optimize
the performance of this application a new Prefetch plugin have to be made.
Furthermore, a few changes to the cache will also speed up the performance
of the application.

Besides all the GUI setup only the following codes in Listing 8.11, 8.12 and
8.13 are used to implement the Indoor Map application.

� �
1 private IEngine .IEngine engine ;

2 private RequestManager.IRequestManager manager ;

3
4 public void run(IEngine .IEngine engine)

5 {

6 this.engine = engine ;

7 this.manager = (RequestManager.IRequestManager)engine .GetPlugin ("

RequestManager.dll");

8 manager .getImage ("dot.png");

9
10 DT = new DataThread ();

11 Thread DataT = new Thread (new ThreadStart (DT.run));

12 DataT .Start ();

13
14 Request request = new Request (manager , DT);

15 Thread getlocation = new Thread (new ThreadStart (request .StartRequest))

;

16 getlocation .Start ();

17
18 Application .Run (this);

19 }
� �

Listing 8.11: The run method

Line 8 in Listing 8.11 request the image “dot.png” which is a red dot used to
illustrate where the user is located. Lines 10 to 12 are used to start the simulation

94 Chapter 8. Evaluation

thread which simulates the user’s location. In a real map application this should
not be here. Lines 14-16 start a new thread which updates the user’s location
based on the Wi-Fi measurement (in this example the simulated data).

� �
1 public void ImageDownloaded(String fileName , Bitmap data)

2 {

3 if (fileName == "dot.png")

4 {

5 pictureBox2 .Image = data;

6 }

7 else

8 {

9 Vector Location = new Vector (fileName);

10 Vector CurrentLoc = DT.getXY ();

11
12 pictureBox1 .Left += Location .X - CurrentLoc .X;

13 pictureBox1 .Top += Location .Y - CurrentLoc .Y;

14 pictureBox1 .Image = data;

15 }

16 }
� �

Listing 8.12: Image downloaded event method

In the ImageDownloaded method in Listing 8.12 it is necessary to check
whether the image downloaded is the “dot.png” or map data. Since the user
might have changed location at the point in time when the new map data is
received, it is necessary to calculate how much the user has moved, in order to
display the map data correct in relation to the user’s current location. This is
done in lines 9-13 in Listing 8.12.

The last code needed in the Application plugin is a thread which asks for
data. The code for this thread can be seen in Listing 8.13. The only purpose of
this thread is to request data every 1

4
second.

Optimizations

If the application described in the previous section is used with FoDa as described
in Chapter 7 on page 58 it will run very slowly because the application requests
new images every 1

4
second. When “getData()” is used, FoDa will check in the

cache whether the data for the user’s specific location is already stored. Most of
these checks will return false since the user has probably moved to a new location
when the data has been downloaded and is ready to be used. Thus, to optimize
the performance it is necessary to change the Cache plugin in order to make the
cache return the data which is closest to the user’s location instead of the data
at the user’s exact location.

By using this performance optimization trick the Cache plugin thinks that
it has the data needed, and therefore just returns the data closest to the user’s
location, even if it is too far away from the user to be relevant. So to be sure
the cache receives new data it is necessary to make a new Prefetch plugin. Every

8.1 Ease of use 95

� �
1 public class Request

2 {

3 RequestManager.IRequestManager manager ;

4 DataThread DT;

5
6 public Request (RequestManager.IRequestManager manager , DataThread DT)

7 {

8 this.manager = manager ;

9 this.DT = DT;

10 }

11
12 public void StartRequest()

13 {

14 Vector location ;

15 while (true)

16 {

17 location = DT.getXY ();

18 manager .getData (location .ToString ());

19 System .Threading .Thread .Sleep (250);

20 }

21 }

22 }
� �

Listing 8.13: Image downloaded event method.

time the application requests new data this is transmitted to the Prefetch plugin
as well. When the Prefetch receives the first request from the application it has
to request the data from the Internet. Every time the Prefetch plugin receives a
request for data it checks whether the location of the user is too far away from
the last internet request made by the Prefetch plugin. If the user has moved too
far away from the last internet request, the Prefetch knows that the user will
soon need new data and therefore makes a new Internet request for data.

Conclusion

As described only two functions and one thread have to be made for this appli-
cation to work, though one new Prefetch plugin and some modifications to the
Cache plugin are needed to gain optimal performance. The feature the Indoor
Map application uses from FoDa is displayed below:

1. Modular design for adapting to various mobile devices and easy extending
and modification of the framework

2. On demand delivery of data

3. Automatic conversion of data to useable objects

4. Prefetching of application content

5. A data cache to lower bandwidth usage and optimize performance of appli-
cations

96 Chapter 8. Evaluation

6. Automatic content and patch updates

7. Automatic detection of available network protocols

8. Automatic selection of the best network protocol

9. Automatic manage all network connections

10. Encryption to prevent tampering of content and application

8.1.5 Porting a Game: Pocket 1945

The three latter sections have described how we have implemented three different
applications by use of FoDa. As described in the introduction of this chapter one
might find the three applications too simple to give a general impression of the
usefulness of FoDa. Because of this fact this section describes how we have
converted a standalone application to use our system, and thereby provide the
application with all the features of FoDa. One might argue that this application
is simple as well, but we think it very well represents the type of games one see
on mobile devices in the sense of gameplay and simplicity.

The Application we convert is the game Pocket 1945 written by a Norwegian
citizen Jonas Follesø. The game is available with full source codes from the
Code Project [34]. The game is written for Pocket PCs using the .Net Compact
Framework.

The game is a flight shooter set around 1945. A screenshot from the game is
shown in Figure 8.4.

Figure 8.4: Screenshot from Pocket 1945

8.1 Ease of use 97

The Application Code

Since this application only uses images we will make use of only steps 1,2 and 6
from the tutorial described in Section 8.1.1 on page 84.

Porting of the game starts by including the references to the engine and the
RequestManager. Then the application entry point is changed from the main
method to the run method of the plugin interface. Basically only two classes of
the game is modified, the GameForm which contains game constructor and entry
point as well as the class SpriteList which handle the image resources.

We start by looking at the changes to the GameForm class. Listings 8.14, 8.15
and 8.16 display modifications to this class. The new signature for the GameForm
class is shown in Listing 8.14.

� �
1 public class GameForm : Form , IEngine .IPlugin , RequestManager.

IImageDownloaded
� �

Listing 8.14: Modification to the Main method

We no longer require the Main method as the entry point. The Plugin run
method will take its place.

� �
1 public static void Main() {

2 // Application .Run (new GameForm ());

3 }

4
5 private IEngine .IEngine engine ;

6 private RequestManager.IRequestManager manager ;

7
8 public void run(IEngine .IEngine engine)

9 {

10 this.engine = engine ;

11 this.manager = (RequestManager.IRequestManager)engine .GetPlugin ("

RequestManager.dll");

12
13 SpriteList .Instance .LoadSprites (manager);

14
15 levelFiles = GetLevels ();

16
17 DoGameLoop ();

18
19 Application .Run (this);

20 }
� �

Listing 8.15: Modification to the Main method and the plugin run method

Note the change in the Application.Run statement to use this instead of new.
This is due to the fact that the engine will instantiate the plugin and then call
the run method. Another change which is needed is the loading of contents from
loading in the constructor to loading in the run method. The game loop must
also be started from the run method.

98 Chapter 8. Evaluation

� �
1 public void ImageDownloaded(string fileName , Bitmap image)

2 {

3 SpriteList .Instance . ImageDownloaded(fileName , image);

4 }
� �

Listing 8.16: Implementation of the ImageDownloaded event

The ImageDownloaded event is forwarded to the SpriteList class which han-
dles all images. The SpriteList is a singleton pattern holding a list of all the
images for the game. The SpriteList modifications are displayed in Listings 8.17
and 8.18.

� �
1 public void LoadSprites (RequestManager.IRequestManager manager)

2 {

3 if(! doneLoading)

4 {

5 manager .getImage ("Tiles.bmp");

6 manager .getImage (" Bonuses.bmp");

7 manager .getImage (" Bullets.bmp");

8 manager .getImage (" SmallPlanes.bmp");

9 manager .getImage (" SmallExplotion.bmp");

10 manager .getImage (" BigBackgroundElements.bmp");

11 manager .getImage (" BigExplotion.bmp");

12 manager .getImage (" BigPlanes.bmp");

13 }

14 }
� �

Listing 8.17: Modifications to the LoadSprites method.

The LoadSprites method calls the RequestManager with image requests. This
will cause a ImageDownloaded events to trigger when the images are downloaded.

Conclusion

Comparing the original game with the new and modified version using Visual
Studio Line Counter add-in [35], we note that the original game consists of 2065
code lines whereas the new modified version consists of 2105 code lines. This
means that the developer needs only to add 40 code lines to get the full feature
set of our system as described in Section 2.5 on page 20. Most of the code
modifications are present in the ImageDownloaded method.

It might have been a stroke of luck that the ported game is so well written
that all contents is handled in one specific class making it fairly easy to convert.
If the use of images had been spread out in the code it would have been far
more difficult to convert due to the fact that all image contents has to come
through the ImageDownloaded event. Basically, we are converting an application
not designed from the scratch to use events. The obvious solution is to make an
image class container similar to the one used in the game and replace all uses of
images to go through this class. This would require us to make one more class

8.1 Ease of use 99

� �
1 private int NumberOfImages = 0;

2
3 public void ImageDownloaded(string fileName , Bitmap image)

4 {

5 if (fileName .Equals ("Tiles .bmp")) {

6 Tiles = ParseSpriteStrip(image);

7 }

8 else if (fileName .Equals (" Bonuses.bmp")) {

9 Bonuses = ParseSpriteStrip(image);

10 }

11 else if (fileName .Equals (" Bullets.bmp")) {

12 Bullets = ParseSpriteStrip(image);

13 }

14 else if (fileName .Equals (" SmallPlanes.bmp")) {

15 SmallPlanes = ParseSpriteStrip(image);

16 }

17 else if (fileName .Equals (" SmallExplotion.bmp")) {

18 SmallExplotion = ParseSpriteStrip(image);

19 }

20 else if (fileName .Equals (" BigBackgroundElements.bmp")) {

21 BigBackgroundElements = ParseSpriteStrip(image);

22 }

23 else if (fileName .Equals (" BigExplotion.bmp")) {

24 BigExplotion = ParseSpriteStrip(image);

25 }

26 else if (fileName .Equals (" BigPlanes.bmp")) {

27 BigPlanes = ParseSpriteStrip(image);

28 }

29
30 NumberOfImages++;

31
32 if (NumberOfImages == 8) {

33 doneLoading = true;

34 }

35 }
� �

Listing 8.18: The ImageDownloaded event handler in the SpriteList class.

and the modifications to the image usage code need to be spread out in the game.
Most of these modifications could probably be made using refactoring.

8.1.6 Massive Multiplayer Online Game

As described in the introduction of Chapter 8 we did not have time to implement
a massive multiplayer online game by use of FoDa, instead we implemented a
single player game as described in Section 8.1.3 on page 89. The single player
game is in many ways similar to how a massive multiplayer online game should
be implemented by use of FoDa, only in a smaller scale. In this section we
describe what kind of extra work is needed to turn the Jump Game into a massive
multiplayer online game.

100 Chapter 8. Evaluation

The Application Code

Since we have no implementation code for a massive multiplayer online game,
we will not show any code in this section, but will describe how the code should
work.

First of all, the developer of the game needs to follow each step as described in
Section 8.1.1 on page 84. Following steps 1-6 will give the developer the possibility
to download both images sound and game relevant data.

When comparing the Jump game with a massive multiplayer online game one
notices the size of the virtual world. If the Jump game should work as a massive
multiplayer online game, the virtual world in which the avatar is moving should
be much bigger to make space for a number of avatars. A virtual world of this
size would probably be too much for a mobile device to handle, but by splitting
the world up in small zones it would be possible for each mobile device only to
store a small part of the world at a time. Another approach, which we already
have implemented and described in a previous section, would be to send out
world data in relation to the avatars’ current position in the virtual world. This
could be implemented in the same way as we have implemented the Indoor Map
application as described in Section 8.1.4 on page 92.

Another change which is needed to make the Jump game work as a massive
multiplayer online game is the communication with other clients to receive their
location in the virtual world. Since this communication is not in the form of a
picture or image the developer has to use the method described in the IDataD-
ownloaded interface. To receive the locations of other avatars each client would
have to request the location of nearby avatars frequently, a request which there-
fore should be part of the game loop. Listing 8.19 on the next page shows some
pseudo code for how this request could be made and how the data received should
be handled.

The pseudo code in Listing 8.19 on the facing page asks for other players’
location every second. This means that if another player gets close to the client
the server will send the location of the other player to the client. When the
client receives a DataDownloaded event the client first asks for an image of the
other player, after which other relations to that player can be set. When the
ImageDownloaded event receives the image of the other player close to the avatar
it simply displays the image for the other player at the correct location.

FoDa is made with the purpose to handle context and updates it will be
a little tricky to handle all kinds of communication with other clients in the
current implementation of FoDa. For instance, if the client wants to be able
to communicate with other players in the game the getData(”User message”)
should be used. Furthermore to receive messages from other players the client
has to check for messages from time to time. A message will be received by the
DataDownloaded method and will then be displayed to the user.

8.2 Benchmark 101

� �
1 public void GameLoop ()

2 {

3 while (true)

4 {

5 // Request data for players nearby to the client

6 manager .getData (PlayerLocation.X, PlayerLocation.Y);

7 // wait 1 second till the next request

8 sleep (1000) ;

9 }

10 }

11
12 //The response to the request is received by the DataDownloaded

13 //as it is not a image or a sound

14 public void DataDownloaded(String fileName , byte[] data)

15 {

16 //The developer have to convert this data himself

17 List PlayerLocationNearBy = ByteToList (data);

18 for (int i=0; i<PlayerLocationNearBy .size;i++)

19 {

20 // Request the image of player ‘‘i’’

21 //And tag the data as a location of another player

22 getData ("PlayerLocation:" + PlayerLocationNearBy[i]. Location);

23
24 //If other relation should be set it should be done here

25 if(PlayerLocationNearBy.group != Avatar .group)

26 {

27 //Warn the player of a nearby enemy

28 }

29 }

30 }

31
32 public void ImageDownloaded(String fileName , Bitmap data)

33 {

34 if(fileName .Contain ("PlayerLocation:")

35 {

36 Location [] = fileName .split (’:’);

37 Display the Bitmap image at Location [1];

38 }

39 }
� �

Listing 8.19: Pseudo code for requesting and handling of player locations

Conclusion

By using FoDa aspects related to retrieving contents for a massive multiplayer
online game should be as simple as with the Jump game as described in Sec-
tion 8.1.3 on page 89. However, if the client has to send data to other clients the
implementation of FoDa as described in Chapter 7 would make it possible though
somewhat tricky because the client has to use the method getData() to actually
send data to other clients.

8.2 Benchmark

The Benchmark section focuses on the performance of FoDa. This section is
intended to give application programmers an insight into how much resources

102 Chapter 8. Evaluation

and overhead FoDa introduce to an application.
In most cases benchmark results will be compared to a version of the ap-

plication not using FoDa. An example is that we have produced a copy of the
Photoalbum which do not use FoDa, but still keeping the code as close to the
original as possible. This version will be compared to the one using FoDa. We
also test the version of Pocket 1945 with and without FoDa.

Throughout this chapter we use FoDa in front of applications to refer to those
using FoDa. An example would be the Photoalbum using FoDa is refereed to as:
FoDa Photoalbum.

8.2.1 Memory Usage

To see how much memory FoDa use during execution we have executed the Pho-
toalbum and compared it to FoDa Photoalbum and we executed the Pocket 1945
and compared it to the FoDa Pocket 1945 version. To generate the memory
statistics we have used .Net CFs built-in ability [36]. The statistics produced by
running the tests can be seen in Table 8.1 and Table 8.2.

Photoalbum FoDa Photoalbum Difference
Peak memory used 275.6KB 562KB 286.4KB
Memory used 99.7KB 271.6KB 171.9KB
Object allocated 1,486 3,662 2,176

Table 8.1: Memory statistics from the Photoalbum and the FoDa Photoalbum applications

Pocket 1945 FoDa Pocket 1945 Difference
Peak memory used 776.2KB 1,151.6KB 375.4 KB
Memory used 499.2KB 1,044.75KB 545 KB
Object allocated 6,504 13,903 7,399

Table 8.2: Memory statistics from the Pocket 1945 and the FoDa Pocket 1945 games

Table 8.1 shows that FoDa Photoalbum uses more memory than the Pho-
toalbum application. FoDa Photoalbum increases the memory use with 171.9KB
while running and with 286.4KB at peak memory. Some of the increased memory
use is due to fact that FoDa Photoalbum is loaded through plugins. In addition
Table 8.1 shows that the device needs to manage 2,176 more objects, which will
slow down the overall performance of the Photoalbum.

Table 8.2 shows that the Peak memory used is higher with the FoDa Pocket
1945 application compared to the FoDa Photoalbum application. The reason for
this is that the FoDa Pocket 1945 requests 8 pictures during the start-up, whereas
the FoDa Photoalbum requests only 1 image. This results in more memory used,
both comparing Peak memory and when the application is just running. Like in

8.2 Benchmark 103

the Photoalbum the use of FoDa also results in more objects which need to be
managed.

If we compare the Pocket 1945 and Photoalbum application, we see that
the memory use increases with the complexity of the application using FoDa.
Furthermore we find that the device needs to manage more objects when FoDa
is used which will slow down the system. This is however to be expected since
FoDa introduces a number of extra features compared to the application not using
FoDa. These are features like Cache, Security manager and ability to add and
remove plugins.

8.2.2 System Size

In this section we describe how much extra disk space the use of FoDa needs.
To measure the disk space used we compare the Photoalbum with the FoDa
Photoalbum as well as the Pocket 1945 with the FoDa Pocket 1945 game.

Photoalbum FoDa Photoalbum Difference
Application size 12.8KB 124.7KB 111.9KB

Table 8.3: Disk space statistics for applications of the Photoalbum

Table 8.3 shows that FoDa roughly increases the disk space with 112KB which
might seem a lot for a simple application as the Photoalbum is. However, since
FoDa is modular by design, the application developer should tailor FoDa to his
own needs if he finds the 112KB to be too much for his application. Looking at a
less simple application Table 8.4 displays statistics of the two Pocket 1945 games,
both with and without FoDa.

Pocket 1945 FoDa Pocket 1945 Difference
Application size 360 KB 157.5KB 202.5KB

Table 8.4: Disk space statistics for the Pocket 1945’s games

As Table 8.4 shows the size of the application has been reduced by use of
FoDa. The reason for this is that the Pocket 1945 application uses graphic which
have been bundled up with the application, thereby increasing the application
size. By using FoDa it is possible to download the data when it is needed.

8.2.3 Startup Time

To measure how much longer the start-up time is by using FoDa we have imple-
mented a timer into the Photoalbum and FoDa Photoalbum applications. The
first thing the two applications do is to start a timer, which stopped when the
applications are done painting their graphics on the screen.

104 Chapter 8. Evaluation

Photoalbum FoDa Photoalbum Difference
Start-up Time 417ms 5,799ms 5,382ms

Table 8.5: Start-up time

Table 8.5 shows that FoDa Photoalbum takes more than five seconds more
to start than the Photoalbum application do. This is because almost all of the
components of the FoDa Photoalbum are loaded at start-up time, and all of them
have their own dll files, which might increase the load time.

To test whether the long start-up time is caused by the division of the system
into many plugin, which all have their own dll files, we have collected all plugins
in one dll file, the engine in another and the application plugin in a third dll file.
This should reduce the start-up time, as only a few plugins has to be loaded.
The collection of plugins in one dll file has removed the possibility to completely
remove a plugin. It is only possible to tell the engine not to load it or load another
one instead, but the plugin will still be in the combined dll file, and therefore still
contributing to the overall size of the system.

Combined Photoalbum FoDa Photoalbum Difference
Start-up Time 5,113ms 5,799ms 686ms

Table 8.6: Start-up time for combined plugins

Figure 8.6 shows that the start-up time has been reduced with 686ms, but
the start-up time still exceeds 5.1 seconds, which is 4.7 seconds slower than the
application without the use of FoDa (see Figure 8.5 start-up time without FoDa).
Therefore, we can conclude that collecting all plugins in one plugin does not per-
form much better during start-up. Furthermore, the collection of dlls removes the
possibility to completely remove plugins from the system; we do not recommend
to combine plugins in one dll file.

Start-up Time Details

To give a more detailed picture of why our system use over 5 seconds to start-
up we will in this section time trace the start-up of FoDa. To time trace the
start-up of FoDa we have implemented a log feature in FoDa and used the FoDa
Photoalbum as a test application. Tabel 8.7 on the next page shows a small part
of the time trace log. The full log can be seen in Appendix B. The log shows
that FoDa use about 1.78 seconds right at the start. Looking at the code from
entrance two and entrance three in Table 8.7 on the facing page we have found
that the large time gab comes between two simple instructions.

The code from this part of the time trace can be seen at Listings 8.20
We have at this point in the code not started any threads, so we assume that

the time gab comes from outside of FoDa and must be a thread started by the

8.2 Benchmark 105

Time in ms Log
10 Engine start
141 Check for updates (Starting)
1921 UpdateDLLs (Starting)
1967 UpdateDLLs (Done)
1967 Check for updates (Done)
1969 initialize plugins (Starting)
1987 ParsePluginXML (Starting)
3212 ParsePluginXML (Done)
3231 Load requires (Starting)
3250 LoadPlugin:RequestManager.dll (Starting)
4046 LoadPlugin:RequestManager.dll (Done)
4046 Load requires (Done)
4047 Load core

4049 - 4078 Load the Datamanager and RequestManager
4078 LoadPlugin:Photoalbum.exe (Starting)
5272 LoadPlugin:Photoalbum.exe (Done)
5273 Load core (Done)
5273 initialize plugins (Done)
5274 Engine done, starting application
5279 RunCore

5290 - 5691 Load the UpdatePolici, Cache, SecurityManager,
ConnectionManager, Http and the Prefetch plugin

5742 Show GUI
7413 LoadPlugin:Encryption.dll (Starting)
7472 LoadPlugin:Encryption.dll (Done)

Table 8.7: A segment of the time trace log of FoDa Photoalbum start-up time. All of the time
trace be seen at Appendix B

.net CF, probably because of some earlier instructions in FoDa, it have however
not been possible for us to find the instruction which spawn the thread. The next
large time gab in the time trace is the parsing of XML which roughly takes 1.2
seconds; this part will vary depending on how many plugin is used. This will be
described in the next section.

The first plugin is then loaded through loading of requirements, this plugin
takes about 800ms, where the rest of the core plugins takes about 20ms to load.
The long load time of the first plugin is proberly due to initializing of the mechan-
ics used for loading plugins. Section 8.2.3 on page 107 describe more thoroughly
how much extra time the introduction of extra core plugin takes to load. As seen
in the time trace log the Photoalbum takes roughly 1.2 seconds to load, most
of this time is probably due to initializing of all the GUI elements used in the

106 Chapter 8. Evaluation

� �
1 public void initialize ()

2 {

3 engine .Log ("Check for updates (Starting)");

4 UpdateDLLs (XML_UPDATE); // Check if there are files to update .

5 engine .Log ("Check for updates (Done)");

6
7 engine .Log ("initialize plugins(Starting)");

8 ParsePluginXML(xmlfile);

9 engine .Log ("initialize plugins(Done)");

10 }

11
12 private void UpdateDLLs (String xmlfile)

13 {

14 engine .Log ("UpdateDLLs (Starting)");

15 if(System .IO.File.Exists (XML_PATH + xmlfile))

16 {

17 Code for Updating of code

18 }

19 engine .Log ("UpdateDLLs (Done)");

20 }
� �

Listing 8.20: The run method.

application. Most of the plugins in FoDa is not core plugins, and is therefore
loaded outside of the core section. These plugins is loaded when the application
needs them. As seen in Table 8.7 FoDa uses most of the plugins right away as the
FoDa Photoalbum request a image right away after it have been started. After
roughly 5.7 seconds all plugins have been loaded and the GUI is shown at the
mobile device. The reason the Encryption plugin first is loaded 1.6 seconds after
the GUI have been shown is because FoDa at this point have retrieved the image
the FoDa photoalbum requested and have to encrypt the image before it is stored
in the cache.

Additional plugins

Since one purpose of FoDa’s is to be able to use it as part of a bigger system,
it is relevant to see how FoDa performs when more than only a few plugins
are added to the system. To test this we have added a number of plugins to
the system. These plugins have only been added to the system, and are never
executed (Executing the plugins would involve overhead from the user’s code).
We therefore only measure the overhead in extra plugins added to FoDa. This
has been done by adding plugins to the engine XML file and not having set them
to Core (see section 6.4.4 on page 52 for the engine XML file).

Figure 8.5 shows the start-up times when we add extra plugins to the system.
We have drawn two trend lines, the first 0.00021x2 + 5.2x + 5382.95 shows the
best fit to our measurements, and it will fit with an even larger number of plugins
(10,000 and 15,000). The second trend line 5.2x + 5382.95, shows a linear devel-
opment. This line illustrates that the first factor (0.00021x2) is so small that it
is not noticeable if the user use less than 800-1000 extra plugins. So, if the user

8.2 Benchmark 107

Figure 8.5: Graph over number of extra plugins and start-up time

uses below 800-1000 extra plugins the extra time each plugin introduce to the
start-up time is roughly 5.2ms. This extra time is 0.09% of the time to start-up
FoDa without extra plugins. Looking at our code for handling plugins there is no
construct which should increase the time with a polynomial factor. But, as we
do get a polynomial time evolution instead of a linear evolution, our guess is that
some of the .Net CF construct we use have a time complexity of O(n2) which we
thereby inherit.

Additional core plugins

In the test described in the previous section, we added more plugins to FoDa,
which was not core plugins. the effect of that is that the effect that the plugins
were never activated or read into the memory. To test how FoDa performs when
the plugins are activated and read into the memory we performed the same test,
only now with core plugins.

When a plugin is activated, its run method is executed, and since the developer

108 Chapter 8. Evaluation

is not restricted in adding codes in the run method, it is not possible to test how
FoDa will perform when random plugins are added. Instead we have tested how
FoDa performs when the smallest plugins possible are added and activated at
start-up.

Figure 8.6: The extra startup time for adding new core plugins. Since the Garbage Collector
“kicks in” about 130 core plugins we have made 2 trend lines. One trend line for less than 130
core plugins and one for more.

Figure 8.6 shows how much the start-up time increases by adding more core
plugins to the system.

The graph shows an extra high start-up time when going from 125 core plugins
to 135 core plugins. This big difference is because the Garbage Collector has to
start-up simultaneous with the start-up phase. Until the Garbage Collector starts
the trend line is y = 0.0938x2 + 19.07x + 5562.31. Roughly 19 ms extra start-up
time is introduced per extra core plugin which is used in FoDa (as long as not
more than 130 core plugin are used). This is 13.87ms more than when using non
core plugins. Figure 8.6 also shows that when the Garbage Collector starts to
run the trend line changes to y = 0.8896x2

− 137.95x + 1.5 · 104. The effect is

8.2 Benchmark 109

that the start-up time of FoDa is increased by 19ms for each new core plugin.

8.2.4 Execution Time

One of the most important features in FoDa is the ability to download data from
the internet. To test how much overhead FoDa introduces to applications using
the system, we have tested how much extra time is used for downloading data
through our system compared to an application implementing the download of
data itself.

Internet performance

To measure how much overhead FoDa introduces to the internet performance of
an application we have compared the Photoalbum and the FoDa Photoalbum to
measure the delay of downloads.

To measure the download delay we start a timer when a request is made and
stop the timer when the picture has been downloaded and is ready to be used.
Since the data is provided by use of the internet, a little variation in the time
from the request is made to the data is ready have to be expected. To compensate
for this and validate the test result we have used a statistical sample size formula
to find the amount of tests needed. The formula we have used to calculate the
sample size is displayed in Equation 8.1. Equation 8.1 should be used if the
population is large or unknown. The population size is only likely to be a factor
when working with a relatively small and known population. If this is the case
Equation 8.2 should be used.

Sample Size =
Confidence Level2 · Percentage · (1 − Percentage)

Confidence Interval
(8.1)

Sample Size(Population) =
Sample Size

1 + Sample Size−1
Population

(8.2)

Confidence Level: Determines how confident you need to be that the
results are representative.

Confidence Interval: Describes the amount of error which can be toler-
ated.

Percentage: Describes how large the percentage of a particular answer is.

Population: Describes the population size.

Since it is always possible to retrieve extra data for this test the population
size should be considered large, for this reason we have used Equation 8.1. We
have chosen to use a confidence level of 95% which are used in modern applied
practice [37] and a Confidence Interval of 5% which we find as reasonable margin

110 Chapter 8. Evaluation

of error. This means that we are within 5% of the true answer in 95% of the tests
we run. Using these data gives us a Sample Size of 384. Table 8.8 display the
average of 384 test of downloading image 1 to 10.

Image Photoalbum FoDa Photoalbum Difference
1 - 919B 190.3ms 178.3ms 6.7%
2 - 3.2KB 342.7ms 337.9ms 1.4%
3 - 6.3KB 295.2ms 306.5ms 3.6%
4 - 4.3KB 1009.3ms 1009.1ms 0%
5 - 144KB 1239.3ms 1068.1ms 6.6%
6 - 18.4KB 280.7ms 262.1ms 7%
7 - 58.9KB 630.4ms 614.1ms 2.6%
8 - 237.7KB 1474.0ms 1351.7ms 9%
9 - 99.1KB 792.6ms 826.2ms 4%
10 - 153.4KB 1272.1ms 1231.4ms 3.2%
Average 752.7ms 718.5ms 4.7%

Table 8.8: Internet communication statistics, each value in the table is the average value of 384
tests

Table 8.8 shows that there is only a 4.7% difference between the overall average
of using FoDa and not using FoDa, which is lower than the margin of error.
From this we can conclude that there is practically no overhead on the Internet
communication using FoDa compared to a similar application not using FoDa.

8.3 Comparing the Eclipse eRCP

The last sections described the performance of FoDa. This section we will describe
how well the Eclipse eRCP framework covers the features needed to handle the
use cases of Section 2 on page 9 and compare FoDa with the features of the eRCP.

8.3.1 The Eclipse eRCP

Eclipse is a pure plugin system for desktop computers [19]. The most known
project build on top of the Eclipse platform, is a IDE for developing Java appli-
cations by the same name.

To support other language than Java different plugins have been developed,
such as plugins for C++, Cobol, AspectJ and many more. Eclipse has also
been used in the development in several other projects, such as BIRT (Business
Intelligence and Reporting Tools), DTP (Data Tools Platform), EMF (Eclipse
Modelling Framework), and many more.

8.3 Comparing the Eclipse eRCP 111

The most interesting project in mobile device context is the eRCP (Embedded
Rich Client Platform), which attempts to move the Eclipse plugin system to
mobile devices. eRCP have now arrived in version 1.0.2, and includes:

Core Runtime Eclipse The core which provides OSGI [38] and extension
point support

eSWT The Standard Widget Toolkit which is a subset of the desktop
version, and enable the use of normal GUI elements such as Labels, Tables,
Tree, Dialogs, and Web browser. It also contains a set of device specific
elements.

eWorkbench A UI framework supporting multiple eRCP applications at
the same time, and start-up of new eRCP applications.

eJFace A set of classes which extend eSWT with more complex widgets,
and enables eRCP applications to integrate with eWorkbench.

eUpdate An interface for dynamic updating of software.

microXML An XML interface supporting SAX and DOM parsing.

To support difference devices and more complex capabilities of new devices,
eRCP is divided into two different profiles, a Core Profile which contain: Core
Runtime, Core eSWT, SWT mobile Extensions, eJFace and eWorkbench. This
is the small profile, and is meant to be used on low end devices. More advance
devices should use the Expanded Profile which features an Expanded eSWT and
eUpdate.

8.3.2 Feature coverage of eRCP

This Section compare eRCP with the features list of FoDa as described in Sec-
tion 2.5 on page 20. Table 8.9 on the next page summarize the features supported
by the eRCP in relation to the feature list from Section 2.5 on page 20.

The eRCP is a plugin framework and does not concern it self with with man-
aging connections to networks as well as delivery of content or prefetching of
content, this can only be supported if pluings are made that handle this.

The conversion of data is partially covered as it is possible to define content
types which enable the engine to convert automatically when detecting the new
types but no types are predefined.

Security is partially covered in that it is possible to put restriction os what
plugins are able to do, meaning blocking of resources etc. However security in
relation to data and its flow is not present aswell as user identification.

A cache is not present in eRCP, but can be made as a plugin. Therefore
security and compression of the cache is also not present.

112 Chapter 8. Evaluation

Feature Supported
Managing connection to a network no
Delivery of data no
Automatic conversion of data yes
Automatic use of best network protocol no
Handle user identification no
Handle security yes
Manage data cache no
Cache security no
Cache compression no
Prefetching of application content no
Manage system updates yes
Modular design yes

Table 8.9: Features supported by the eRCP in relation FoDa

The eRCP does support update features and is modular as everything can
be extended or removed in the form of plugins even more than FoDa, because of
plugins being handled truly dynamically meaning plugins can be loaded and un-
loaded at will, which is not possible in the FoDa implementation due to platform
restrictions.

The reason the eRCP is such a large framework (byte wise) is that it supports
lots of features which we do not require. Table 8.10 list some of the major features.

Feature
Graphics library
Logging
Dynamic events and extensions
Thread scheduling
XML support

Table 8.10: Some of the major features of eRCP

The graphics library enable eRCP to run plugins written for Eclipse directly
without modification. This feature is not needed in FoDa as all graphics is handled
by the platform (.NET). The logging feature is extensive and enables logging of
events and easy debugging. Simple logging is possible in FoDa as used during
test to create a trace of execution.

eRCP enable plugins to dynamically subscribe to events and extend extension
points. This is not possible in FoDa due to platform restrictions. Dynamic adding
plugins are also possible in eRCP, which is not possible in FoDa as all plugins
must be registered in the plugin XML file.

eRCP has its own thread scheduler enabling the framework to use the schedul-

8.3 Comparing the Eclipse eRCP 113

ing needed for a certain task, meaning the scheduling can be tailored to specific
needs. FoDa is bound to the scheduling of the .NET Compact Framework plat-
form.

Included with eRCP is an XML interpreter which can be used and modified
at will. FoDa is merely using .NET Compact Framework XML interpreter as it
covers the needs.

Other features are present to make the engine more flexible, such as tracking
abilities, possibility to implement ones owns extension registry and the option to
undo and redo operations. Theses features are not present in FoDa as they are
not needed.

8.3.3 Results

To test the usability of eRCP compared to FoDa, we have produced a simple
Hello World application which use the frameworks. The code for the Hello World
applications can be found in appendix C and appendix D. To level the playing
field we have reduced the FoDa framework to only include the core plugins needed
to run a simple Hello World application the same is done for eRCP. Examples of
plugins removed cover: DataManager and the Cache from FoDa and from eRCP
plugins that contain advanced functionality like the parts of the graphics libraries
not needed to display the Hello World has been removed.

The statistics are recorded using the .NET Memory Profiler [39] for FoDa and
AppPerfect DevTest4J [40] for eRCP. Both system are profiled on a desktop PC
to try and level the base for comparison. The primary reason for the choice of a
desktop is due to the fact that the size of the profilers are to large to fit on the
mobile devices and made to run on those.

Measurements of memory used do not take into account the memory used by
the JVM or CLR to maintain their operation. To get a better comparison of
core size, it is measured from the version of eRCP that runs on Windows 2003
Mobile Edition and not the one that run on a desktop PC. Table 8.11 display the
gathered statistics of the test.

eRCP FoDa Difference
Peak memory used 7.98MB 342.4KB 7.8MB
Memory used 1.5MB 194.8KB 1.3MB
Garbage collection time 60ms 1ms 59ms
Peak objects allocated 49,504 2,072 47,432
Core size 336.7KB∗ 16.6KB 320.1KB
Total size 2.74MB 43.6KB 2.6MB

Table 8.11: Statistics of the Hello World applications. *Data acquired from the Windows
2003 Mobile Edition

114 Chapter 8. Evaluation

The statistics show that eRCP use 7.98MB of memory during peak loads and
use a memory pool of 1.5MB during normal idle operation, when the application
is up and running in comparison FoDa only use 342.4KB during peak loads and
194.8KB during normal idle operation. This indicates that FoDa is less resource
intensive than eRCP. This is also clearly reflected in the peak object allocated
where eRCP use about 50 times the number of object FoDa use.

The core size of the two systems also differs. FoDa in its reduced state only
uses 16.6KB of storage where as eRCP in its reduced state use 336.7KB. This is
roughly a factor 20 in difference.

The most notable difference in size is on the total size, which include core,
application, xml files etc. Here eRCP requires 2.78MB of storage and FoDa only
require 43.6KB. The primary cause of the difference size stems from the graphics
library that is required to display the hello world in eRCP.

Conclusion to the test is that FoDa is less resource intensive than eRCP, while
still providing the basic features needed to create applications.

8.4 Conclusion

In this Chapter we have performed benchmark of FoDa. We began in Section 8.1
on page 84 by illustrating how much extra work is needed to make use of the
functionalities FoDa provide. With the four applications we have used; the “Pho-
toalbum”, the“Jump Game”, the“Indoor Map”application and the“Pocket 1945”
game, we have illustrated that it is possible to make use of the features from
FoDa without much extra work. In the application we have tested we had to add
roughly 40-50 extra code lines, depending on the simplicity of the application.

After testing how easy FoDa is to use, we have in Section 8.2 on page 101
performed benchmark testing of FoDa to see how much overhead our system will
introduce to an application using the system. During the benchmark test we
have found that the most significant overhead FoDa introduces is the extra time
it takes to start-up an application. Section 8.2.3 on page 103 shows that FoDa will
increase the start-up time of an application with roughly 5 seconds. Each extra
plugin will increase the overall start-up time with 5.2 millisecond. Section 8.2.3
on page 107 showed that the introduction of new core plugins increase the start-
up time even further. If adding less than 130 extra core plugins to FoDa the extra
start-up time will roughly be 19 milliseconds extra per plugin added depending
on how much code in the plugins that must be executed at start-up. If more
than 130 extra core plugins are added to FoDa the formula g(x) = 0.8896x2

−

137.95x + 1.5 · 104 should be used instead to calculate the extra start-up time.
The memory tests in section 8.2.1 on page 102 do not explicit show how much

memory FoDa introduces to a system. This is because the system uses more
memory when it is used, and pictures are shown on the screen. This memory
consumption will increase until the Garbage Collector are started, and frees up

8.4 Conclusion 115

memory from pictures which are not shown anymore. This has the result that it
will look like FoDa uses more memory when it is used, as seen in section 8.2.1 on
page 102 where the difference between Pocket 1945 with and with out FoDa, are
greater then the Photoalbum application with and without FoDa. This is because
there have been transferred more images in the Pocket 1945 application, then in
the Photoalbum application, and the Garbage Collector has not run yet. When
we run the Photoalbum application in the profiler .NET Memory Profiler [39],
we can see that after each time the Garbage Collector has run, it uses the same
amount of memory, as it did when it was started. Since there is never at time in
the Pocket 1945 application where it do nothing, and therefore never a time where
the used memory amount are stable, do we think the most true answer for the
memory overhead of FoDa, is what are introduces on the photoalbum application
when using FoDa, therefore is memory overhead of using FoDa 286.4Kb.

Section 8.2.2 on page 103 showed that FoDa consume 112 Kb extra disk space
if used in a simple application. However, if used in a larger application the use of
FoDa decreases the application size since it is not necessary to bundle graphics
and sound with the code, which can be downloaded when needed.

The last benchmark test, described in Section 8.2.4 on page 109, showed that
FoDa do not introduce any noticeable overhead in the usage of FoDa features.

Chapter 9

Conclusion

The introduction of this report outlines the focus of this report to develop a sys-
tem to ease the development of mobile applications for mobile devices. Research
showed that this should be attained trough the development of a highly modular
and flexible system. To obtain this, selection of technology fell on frameworks and
pure plugin architectures technology to support the modularity and flexibility.

Section 8.2.4 on page 109 showed that the developed system is very extendable
and modular. Only an overhead of 5.2ms is introduced to the application start-up
time with each addition of a new plugin (roughly 19ms if modules are loaded into
memory and run upon start-up). Furthermore we tests showed that introduction
of more than 130 plugins which are read into memory and run at start-up will
cause the garbage collector to start collecting, increasing the start-up time. So
number of plugin run at start-up should be limited.

One criterion to consider when developing mobile applications is the limited
resources available. The developed framework consider this and Section 8.2.1 on
page 102 showed that the use of the FoDa introduces and overhead on memory
consumption of 171.9KB when the application is running idle. During usage of
the application memory will increase until the garbage collector is awoken at
which point memory consumption will return to the level of the idle state.

The primary objective of FoDa is to ease development of mobile applications
for the application programmer. Section 2.5 on page 20 presents a list of features
which the framework must support as these features will help the development
of applications. The features are the result of a number of usecases we find cover
a broad spectre of mobile applications. Section 8.1 on page 84 shows the ease
with which applications can be written using FoDa. Approximately 50 lines of
code are required to use FoDa. For these 50 lines all the features presented in
Section 2.5 on page 20 are available to the application. Even porting an already
existing application is achieved using no more than 40 lines of modifications most
of which are present in two class files. Furthermore the porting of the application
resulted in a footprint that was 202.5KB smaller than the original application.
This was due to the fact that all content is retrieved from a server and not bundled

116

117

with the application.
FoDa even help in the maintenance part of the application an area often

neglected by applications as mobile applications are hard to maintain once dis-
tributed to the users. FoDa achieves this by supporting patch and content updates
delivered from a server, although some limitations to the runtime updating are
imposed on the implementation due to restriction of the .NET Compact Frame-
work.

To round of the report we conclude that we have successfully created a frame-
work that makes development of mobile applications easier. We have created
a system that fulfils the criteria we set up as well as a system that deliver on-
demand content as well as automatic pating of code and content in accordance
with the problem defined in the introduction.

Part IV

Appendix

118

Appendix A

Simulation Thread
� �

1 public class DataThread

2 {

3 Vector CurrentLocation = new Vector (0 ,450) ;

4 public void run ()

5 {

6 WalkTo (20, 453, 2000);

7 while (true)

8 {

9 WalkTo (90, 453, 2000);

10 WalkTo (90, 88, 30000) ;

11 WalkTo (822, 92, 60000) ;

12 WalkTo (822, 727, 60000) ;

13 WalkTo (724, 727, 5000);

14 WalkTo (724, 813, 5000);

15 WalkTo (325, 813, 45000) ;

16 WalkTo (325, 563, 30000) ;

17 WalkTo (90, 563, 30000) ;

18 WalkTo (90, 451, 10000) ;

19 }

20 }

21
22 private void WalkTo (double ToX , double ToY , double Time)

23 {

24 double StartX = (double) CurrentLocation.X;

25 double StartY = (double) CurrentLocation.Y;

26 for (int i = 0; i < Time; i++)

27 {

28 CurrentLocation.X = Convert .ToInt32 (StartX + (i / Time) * (ToX -

StartX));

29 CurrentLocation.Y = Convert .ToInt32 (StartY + (i / Time) * (ToY -

StartY));

30 if (i \% 100 == 0)

31 {

32 System .Threading .Thread .Sleep (100);

33 }

34 }

35 }

36
37 public Vector getXY ()

38 {

39 return CurrentLocation;

40 }

41 }
� �

Listing 9.1: “Simulation Thread” for walking around in the computer science department of
Aalborg university

119

120

� �
1 public class Vector

2 {

3 public int X;

4 public int Y;

5
6 public Vector (int x, int y)

7 {

8 X = x;

9 Y = y;

10 }

11
12 public override String ToString ()

13 {

14 return (Convert .ToString (X) + "," + Convert .ToString (Y));

15 }

16 }
� �

Listing 9.2: Vector class used for the Simulation Thread

Appendix B

Startup log

Time in ms Log
10 Engine start
141 Check for updates (Starting)
1921 UpdateDLLs (Starting)
1967 UpdateDLLs (Done)
1967 Check for updates (Done)
1969 Initialize ParseXML (Starting)
1987 ParsePluginXML (Starting)
3212 ParsePluginXML (Done)
3212 AssignExtensions (Starting)
3230 AssignExtensions (Done)
3231 Load requires (Starting)
3250 LoadPlugin:RequestManager.dll (Starting)
4046 LoadPlugin:RequestManager.dll (Done)
4046 Load requires (Done)
4047 Load core
4049 LoadPlugin:DataManager.dll (Starting)
4076 LoadPlugin:DataManager.dll (Done)
4077 LoadPlugin:RequestManager.dll (Starting)
4078 LoadPlugin:RequestManager.dll (Done)
4078 LoadPlugin:Photoalbum.exe (Starting)
5272 LoadPlugin:Photoalbum.exe (Done)
5273 Load core (Done)
5273 Initialize ParseXML (Done)
5274 Engine done, starting application
5279 RunCore
5290 LoadPlugin:UpdatePolici.dll (Starting)
5356 LoadPlugin:UpdatePolici.dll (Done)
5361 LoadPlugin:Cache.dll (Starting)
5387 LoadPlugin:Cache.dll (Done)
5387 LoadPlugin:SecurityManager.dll (Starting)
5409 LoadPlugin:SecurityManager.dll (Done)
5550 LoadPlugin:ConnectionManager.dll (Starting)
5580 LoadPlugin:ConnectionManager.dll (Done)

Continued on next page

121

122

Table 9.1 – continued from previous page
Time in ms Log

5585 LoadPlugin:Http.dll (Starting)
5613 LoadPlugin:Http.dll (Done)
5662 LoadPlugin:Prefetch.dll (Starting)
5691 LoadPlugin:Prefetch.dll (Done)
5742 Show GUI
7413 LoadPlugin:Encryption.dll (Starting)
7472 LoadPlugin:Encryption.dll (Done)
Table 9.1: Timetrace log of FoDa Photoalbum startup time

Appendix C

eRCP: Hello World
� �

1 package org . ecl ipse . testercp ;
2 import org . ecl ipse . core . runtime . IPlatformRunnable ;
3 import org . ecl ipse . swt .SWT;
4 import org . ecl ipse . swt . widgets . Display ;
5 import org . ecl ipse . swt . widgets . Label ;
6 import org . ecl ipse . swt . widgets . Shell ;
7 import org . ecl ipse . ui .PlatformUI ;
8
9 public class Hello world implements IPlatformRunnable {

10
11 public Object run(Object args) throws Exception {
12 Display display = PlatformUI . createDisplay () ;
13 Shell shel l = new Shell (display , SWT.CLOSE) ;
14 Label label = new Label (shell , SWT.NORMAL) ;
15 label . setText (”He l l o Wordl ”) ;
16 label . setBounds (10 , 8 , 60 , 20) ;
17 shel l .open () ;
18 while (! shel l . isDisposed ()) {
19 i f (! display . readAndDispatch())
20 display . sleep () ;
21 }
22 display . dispose () ;
23 return IPlatformRunnable .EXITOK;
24
25 }
26 }

� �

Listing 9.3: “Hello World” plugin eRCP, The “Hello world” class

123

� �
1 package org . ecl ipse . testercp ;
2 import org . ecl ipse . j face . resource . ImageDescriptor ;
3 import org . ecl ipse . ui . plugin . AbstractUIPlugin ;
4 import org . osgi . framework .BundleContext ;
5
6 /∗∗

7 ∗ The ac t i v a t o r c l a s s c o n t r o l s the plug−i n l i f e c y c l e
8 ∗/
9 public class Activator extends AbstractUIPlugin {

10
11 public stat ic f inal String PLUGIN ID = ”org . e c l i p s e . t e s t e r c p ” ;
12
13 private stat ic Activator plugin ;
14
15 public Activator () {
16 plugin = this ;
17 }
18
19 public void start (BundleContext context) throws Exception {
20 super . start (context) ;
21 }
22
23 public void stop (BundleContext context) throws Exception {
24 plugin = null ;
25 super . stop (context) ;
26 }
27
28 public stat ic Activator getDefault () {
29 return plugin ;
30 }
31
32 public stat ic ImageDescriptor getImageDescriptor (String path) {
33 return imageDescriptorFromPlugin(PLUGIN ID, path) ;
34 }
35 }

� �

Listing 9.4: “Hello World” plugin eRCP, The “Activator” class

� �
1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <?eclipse version ="3.2"?>

3 <plugin >

4 <extension

5 id="application"

6 point="org.eclipse.core.runtime.applications">

7 <application >

8 <run

9 class ="org.eclipse. testercp.Application">

10 </run >

11 </application >

12 </extension >

13 </plugin >
� �

Listing 9.5: “Hello World” plugin eRCP, XML file

Appendix D

FoDa: Hello World
124

D FoDa: Hello World 125

� �
1 using System ;

2 using System .Drawing ;

3 using System .Collections ;

4 using System .Windows .Forms ;

5 using System .Data;

6 using IEngine ;

7 using RequestManager;

8 using System .IO;

9
10 public class Photoalbum : System .Windows .Forms.Form , IPlugin

11 {

12 private Label lblName ;

13 private IEngine .IEngine engine ;

14 private RequestManager.IRequestManager manager ;

15 private System .Windows .Forms .MainMenu menuMain ;

16
17 public Photoalbum ()

18 {

19 InitializeComponent ();

20 }

21
22 private void InitializeComponent ()

23 {

24 this.lblName = new System .Windows .Forms .Label ();

25 this.lblName .Location = new System .Drawing .Point (0, 0);

26 this.lblName .Size = new System .Drawing .Size(176, 22);

27 this.ClientSize = new System .Drawing .Size(176, 180);

28 this.Controls .Add (this.lblName);

29 }

30
31 static void Main()

32 {

33
34 }

35
36 public void run (IEngine .IEngine engine)

37 {

38 this.engine = engine ;

39 this.manager = (RequestManager.IRequestManager)engine .GetPlugin (

" RequestManager.dll");

40 lblName .Text = "Hello World ";

41 Application .Run (this);

42 }

43 }
� �

Listing 9.6: “Hello World” plugin eRCP, XML file

� �
1 <?xml version ="1.0"?>

2 <Plugins >

3 <Plugin filename ="RequestManager.dll" classname ="RequestManager.

RequestManager" core="yes">

4 </Plugin >

5 <Plugin filename ="Photoalbum.exe" classname =" Photoalbum" core="yes">

6 <Requires filename ="RequestManager.dll" />

7 </Plugin >

8 </Plugins >
� �

Listing 9.7: “Hello World” plugin FoDa, XML file

Appendix E

Report Summary
The focus of this report is on the development of a framework for mobile

devices which handle on-demand delivery of data as well as automatic patching
of code and content. We call the implementing of this framework FoDa.

The report begins with a description of the requirements for the framework
derived from a series of use case applications representing the applications most
likely to enter the mobile world. The use case applications cover the applications:
A Photoalbum, an Indoor Navigation system, a massive multiplayer online game
and a karate game with focus on patching the game. The resulting requirements
are:

1. Managing connection to a network

2. Delivery of data to the application

3. Handle user identification

4. Handle security

5. Managing data cache

6. Prefetching of application content

7. Managing of system updates

8. Automatic conversion of predefined data

9. Automatic use of the best available network and protocol

10. Cache security

11. Cache compression

12. Modular design

13. Low footprint

14. Platform independent

Using these features we examine six existing system for the ability to support
all features. The existing system are:

GameOD
A framework for easing the development of on-demand 3D games.

126

E Report Summary 127

MOCA
A framework for providing different services.

CAPNET
A context aware middleware system for mobile multimedia applications.

M-commerce
A framework for enabling automatic distributed service discovery for M-
commerce applications.

SCaLaDE
A context aware middleware architecture offering informations of the users
locations to other applications

PnPAP
A middelware system used to handle all communication with other mobile
devices, by use of different P2P protocols.

Most of the requirements are found in atleast one of the system, but not one
system covers the entire set of requirements. This indicates that a new system
which covers all features are needed.

The design of our system find that the system should be a framework based
on a pure plugin architecture as this will allow for high flexibility and modularity
of the framework. The design for an engine as well as plugins which cover the
features described in the requirements are developed.

An proof of concept implementation of the framework is created and evalu-
ated. The evaluation covers usability as well as performance tests. The usability
tests conclude that approximately 50 lines of code is needed for a project to make
use of the framework and benefit from the features. One aspect of mobile appli-
cation development is resource usage, this is tested under the performance tests.
Important results of the performance tests are shown below:

Memory use The .NET Compact Framework uses a garbage collector to
clean the memory when needed it have not been possible to find FoDa’s
precise memory footprint due the use of a garbage collector.

Application Size The storage space footprint of FoDa is roughly 112KB

Startup time FoDa adds roughly 5,382ms to the startup of an application
and for each plugin an extra 5ms.

Execution Time Result of execution time show that the framework does
not slow performance of applications or add to the time it takes to download
content.

Bibliography

[1] National IT and Denmark Telecom Agency. Telecom statistics - second half
of 2006. 2006.

[2] Sumner Lemon. 500 millioner kinesere har en mobil inden sommer.
Computerworld, 2007. Last visited: May 2007.

[3] Chetan Sharma. Mobile game conference. 2006.

[4] CipSoft GmbH. Tibia micro edition. http://www.tibiame.com/home/?
language=en. Last visited: 06/10/2007.

[5] Microsoft. Microsoft windows update. http://windowsupdate.
microsoft.com/. Last visited: 06/10/2007.

[6] Frederick W. B. Li, Rynson W. H. Lau, and Danny Kilis. Gameod: an
internet based game-on-demand framework. In VRST ’04: Proceedings of
the ACM symposium on Virtual reality software and technology, pages
129–136, New York, NY, USA, 2004. ACM Press.

[7] James Beck, Alain Gefflaut, and Nayeem Islam. Moca: a service framework
for mobile computing devices. In MobiDe ’99: Proceedings of the 1st ACM
international workshop on Data engineering for wireless and mobile access,
pages 62–68, New York, NY, USA, 1999. ACM Press.

[8] Oleg Davidyuk, Jukka Riekki, Ville-Mikko Rautio, and Junzhao Sun.
Context-aware middleware for mobile multimedia applications. In MUM
’04: Proceedings of the 3rd international conference on Mobile and
ubiquitous multimedia, pages 213–220, New York, NY, USA, 2004. ACM
Press.

[9] Gary Shih and Simon S. Y. Shim. A service management framework for
m-commerce applications. Mob. Netw. Appl., 7(3):199–212, 2002.

[10] Paolo Bellavista, Antonio Corradi, Rebecca Montanari, and Cesare
Stefanelli. A mobile computing middleware for location- and context-aware
internet data services. ACM Trans. Inter. Tech., 6(4):356–380, 2006.

128

http://www.tibiame.com/home/?language=en
http://www.tibiame.com/home/?language=en
http://windowsupdate.microsoft.com/
http://windowsupdate.microsoft.com/

BIBLIOGRAPHY 129

[11] Erkki Harjula, Mika Ylianttila, Jussi Ala-Kurikka, Jukka Riekki, and
Jaakko Sauvola. Plug-and-play application platform: towards mobile
peer-to-peer. In MUM ’04: Proceedings of the 3rd international conference
on Mobile and ubiquitous multimedia, pages 63–69, New York, NY, USA,
2004. ACM Press.

[12] Philip A. Bernstein. Middleware: a model for distributed system services.
Commun. ACM, 39(2):86–98, 1996.

[13] Manuel Roman and Nayeem Islam. Dynamically programmable and
reconfigurable middleware services. In Middleware ’04: Proceedings of the
5th ACM/IFIP/USENIX international conference on Middleware, pages
372–396, New York, NY, USA, 2004. Springer-Verlag New York, Inc.

[14] Kurt Geihs. Middleware challenges ahead. Computer, 34(6):24–31, June
2001.

[15] Mohamed Fayad and Douglas C. Schmidt. Object-oriented application
frameworks. Commun. ACM, 40(10):32–38, 1997.

[16] Garry Froehlich, H. James Hoover, and Paul G. Sorenson. Choosing an
object-oriented domain framework. ACM Comput. Surv., 32(1es):17, 2000.

[17] Jan Bosch, Peter Molin, Michael Mattsson, and Per Olof Bengtsson.
Object-oriented framework-based software development: problems and
experiences. ACM Comput. Surv., 32(1es):3, 2000.

[18] Dorian Birsan. On plug-ins and extensible architectures. 2005.

[19] Eclipse. Eclipse. http://www.eclipse.org. Last visited: 06/10/2007.

[20] Mohsen AlSharif, Walter P. Bond, and Turky Al-Otaiby. Assessing the
complexity of software architecture. In ACM-SE 42: Proceedings of the
42nd annual Southeast regional conference, pages 98–103, New York, NY,
USA, 2004. ACM Press.

[21] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. Kerberos: An
authentication service for open network systems. Proceedings of the Winter
1988 Usenix Conference, 1988.

[22] Azad Bolour. Notes on the eclipse plug-in architecture. Bolour Computing,
page 27, 2003.

[23] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible markup language (xml) 1.0 (fourth edition). W3C,
2006.

http://www.eclipse.org

130 Bibliography

[24] MSDN. Typeforwardedtoattribute members. http://msdn2.microsoft.

com/en-us/library/system.runtime.compilerservices.

typeforwardedtoattribute_members(VS.80).aspx. Last seen:
06/10/2007.

[25] Microsoft. Designed for windows mobile software application handbook for
smartphone. http://download.microsoft.com/download/5/6/8/
568a922b-b62c-46d3-a745-0172c2638686/sp_handbook_may2004_

final.pdf, 2004. Last visited: April 2007.

[26] Motorola. iden mobile devices. http://www.goteamspeak.com/. Last
visited: 06/10/2007.

[27] Symbian. Symbian phones. http://www.symbian.com/phones/index.
html. Last visited: 06/10/2007.

[28] Brew. Brew. http://brew.qualcomm.com/brew/en/. Last visited:
06/10/2007.

[29] Nokia. Series 40 platform. http://forum.nokia.com/main/platforms/
s40/. Last visited: 06/10/2007.

[30] Plam. Welcome to palm. http://www.palm.com/. Last visited:
06/10/2007.

[31] Wind River. Wind river. http://www.windriver.com/. Last visited:
06/10/2007.

[32] Microsoft. Windows mobile. http://www.microsoft.com/danmark/
windowsmobile/default.mspx. Last visited: 06/10/2007.

[33] Jason Zander. Why isn’t there an assembly.unload method? http://

blogs.msdn.com/jasonz/archive/2004/05/31/145105.aspx. Last seen:
06/10/2007.

[34] Jonas Follesø. Pocket 1945 - a c# .net cf shooter. http://www.
codeproject.com/netcf/CfPocket1945.asp. Last seen: 06/10/2007.

[35] Jon Rista. Line counter - writing a visual studio 2005 add-in. http://www.
codeproject.com/useritems/LineCounterAddin.asp. Last seen:
06/10/2007.

[36] Dan Fox and Jon Box. Developing well performing .net compact framework
applications. http://msdn2.microsoft.com/en-us/library/aa446542.
aspx#netcfperf_topic100. Last seen: 06/10/2007.

[37] Jerrold H. Zar. Biostatistical Analysis. Prentice Hall International, 1984.

http://msdn2.microsoft.com/en-us/library/system.runtime.compilerservices.typeforwardedtoattribute_members(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/system.runtime.compilerservices.typeforwardedtoattribute_members(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/system.runtime.compilerservices.typeforwardedtoattribute_members(VS.80).aspx
http://download.microsoft.com/download/5/6/8/568a922b-b62c-46d3-a745-0172c2638686/sp_handbook_may2004_final.pdf
http://download.microsoft.com/download/5/6/8/568a922b-b62c-46d3-a745-0172c2638686/sp_handbook_may2004_final.pdf
http://download.microsoft.com/download/5/6/8/568a922b-b62c-46d3-a745-0172c2638686/sp_handbook_may2004_final.pdf
http://www.goteamspeak.com/
http://www.symbian.com/phones/index.html
http://www.symbian.com/phones/index.html
http://brew.qualcomm.com/brew/en/
http://forum.nokia.com/main/platforms/s40/
http://forum.nokia.com/main/platforms/s40/
http://www.palm.com/
http://www.windriver.com/
http://www.microsoft.com/danmark/windowsmobile/default.mspx
http://www.microsoft.com/danmark/windowsmobile/default.mspx
http://blogs.msdn.com/jasonz/archive/2004/05/31/145105.aspx
http://blogs.msdn.com/jasonz/archive/2004/05/31/145105.aspx
http://www.codeproject.com/netcf/CfPocket1945.asp
http://www.codeproject.com/netcf/CfPocket1945.asp
http://www.codeproject.com/useritems/LineCounterAddin.asp
http://www.codeproject.com/useritems/LineCounterAddin.asp
http://msdn2.microsoft.com/en-us/library/aa446542.aspx#netcfperf_topic100
http://msdn2.microsoft.com/en-us/library/aa446542.aspx#netcfperf_topic100

BIBLIOGRAPHY 131

[38] OSGi Alliance. Osgi - the dynamic module system for java. http://www.
osgi.org/. Last seen: 06/10/2007.

[39] Scitech Software. .net memory profiler. http://memprofiler.com/. Last
visited: 06/10/2007.

[40] AppPerfect. Appperfect devtest4j. http://www.appperfect.com/

products/devtest.html. Last visited: 06/10/2007.

http://www.osgi.org/
http://www.osgi.org/
http://memprofiler.com/
http://www.appperfect.com/products/devtest.html
http://www.appperfect.com/products/devtest.html

	Introduction
	Problem
	Report structure

	I Research
	Use Cases
	Digital Photo Album
	Indoor Navigation
	Massive Multiplayer Online Game
	Patching
	Feature list

	Exsisting Systems
	GameOD
	MOCA
	CAPNET
	M-commerce
	SCaLaDE
	PnPAP
	Conclusion

	II Developing the System
	Requirements
	Specification
	Client
	Server

	Architecture
	Framework
	Layering
	Plugin systems
	Monolithic Architecture
	Traditional Plugin Architecture
	Pure Plugin Architecture

	Conclusion

	Design
	Architecture Overview
	The Application
	The Middleware
	Request Manager
	Data Manager
	Security Manager
	Connection Manager

	The Plugin Engine
	Architecture
	Plugin Structure
	Interfaces
	Plugin XML Language
	Events
	Dependency Handling

	Implementation
	Platform Choice
	Plugin Overview
	Application
	RequestManager
	DataManager
	PatchProcessing
	Cache
	SecurityManager
	Encryption
	ConnectionManager
	Http
	Socket
	Implementation status

	Platform Limitations
	Unloading of DLLs
	Automatic Restart of Applications
	Dynamic Instantiation of Classes

	III Framework Evaluation
	Evaluation
	Ease of use
	Plugin Tutorial
	Photoalbum
	Jump Game
	Indoor Maps
	Porting a Game: Pocket 1945
	Massive Multiplayer Online Game

	Benchmark
	Memory Usage
	System Size
	Startup Time
	Execution Time

	Comparing the Eclipse eRCP
	The Eclipse eRCP
	Feature coverage of eRCP
	Results

	Conclusion

	Conclusion

	IV Appendix
	Appendix
	 Simulation Thread
	 Startup log
	 eRCP: Hello World
	 FoDa: Hello World
	 Report Summary

