
DynaBlu - A Frameworkfor developingLocation-Aware WebService Applications usingBluetooth communication

InternetInternet

Bluetooth Authentication Mediator

Client Service ProviderGroup d619a, Room E4-113 SupervisorNikolaj Andersen Lone Leth ThomsenMorten Vejen NielsenJørn Rasmussen

TITLE:DynaBlu - A Framework fordeveloping Location-AwareWeb Service Applications usingBluetooth communicationSEMESTER PERIOD:DAT6,1st of February - 11th of June2007PROJECT GROUP:d619a (room E4-113)GROUP MEMBERS:Nikolaj Andersen, nikko@cs.aau.dkMorten Vejen Nielsen, mvejen@cs.aau.dkJørn Martin Rasmussen, joern25@cs.aau.dkSUPERVISOR:Lone Leth Thomsen,lone@cs.aau.dkNUMBER OF COPIES: 7PAGES IN REPORT: 1 - 118PAGES IN APPENDIX: 127 - 139TOTAL NUMBER OF PAGES: 139

ABSTRACT:High speed data communication and in-creasing processing power of mobile devicesmakes them well suited for a range of newapplications. Combined with the potentiallocation-awareness of mobile devices it ispossible to bring context sensitive informa-tion to users.This project deals with the developmentof DynaBlu, an application framework forcreating location-aware web service appli-cations. The framework uses Bluetoothtechnology for data communication andproviding location-awareness. Web ser-vices are used to interact with the infor-mation services. The communication is au-thenticated and encrypted to ensure cer-tain security requirements.The goal of this project is to make the cre-ation of interactive, secure and location-aware applications for mobile devices pos-sible with DynaBlu, and to gain essen-tial insight into the technical foundation ofsuch a framework.

Preface
This report is written at the Department of Computer Science, Aalborg Uni-versity within the Database and Programming Technology research unit, byproject group d619a/E4-113 to document the second of the two masters the-sis semesters. The project was written in the spring semester of 2007 to beevaluated on the 25th of June, 2007.The project was supervised by Lone Leth Thomsen, whom we would like tothank for her participation in supervising the development of the project.We assume the reader to have a prior knowledge of XML, programming,and distributed systems. When references are written after a paragraph, thereference accounts for the entire paragraph. When references are writtenafter a word the reference accounts for the single word or term precedingit. We will sometimes be using Wikipedia, blogs, etc. as sources to explainconcepts. Because of the subjective nature of these sources, we will not beusing these as argumentative sources.

Nikolaj Andersen Morten Vejen NielsenJørn Martin Rasmussen

Contents
I Introduction 11 Introduction 32 Preliminary Analysis 72.1 Existing Systems . 72.1.1 SMS Systems . 72.1.2 Bluetooth Systems . 92.2 Data Connections on Mobile Phones 122.3 Summary . 173 Problem Statement 213.1 Authenticated Web Service Invocation over Bluetooth 213.2 System Description of the DynaBlu Framework 213.3 System Requirements . 233.4 System Philosophy . 263.5 Project Goals . 26II Analysis 294 Bluetooth 314.1 Bluetooth . 31i

4.2 Bluetooth Protocol Stack . 344.3 Web Service Invocation over Bluetooth 374.4 Coping with Mobility . 384.5 Summary . 415 Security 435.1 Internet . 445.1.1 Authentication . 445.1.2 Encryption . 465.2 Bluetooth . 475.2.1 Authentication . 485.2.2 Encryption . 495.3 Discussion . 496 Development Platform 516.1 J2ME . 516.1.1 Con�gurations . 526.1.2 Pro�les . 536.2 Web Services . 546.2.1 JSR 172: J2ME Web Services Speci�cation 556.2.2 kSOAP . 566.3 JSR 82: Java APIs for Bluetooth communication 566.4 Bluetooth Connectivity with J2SE 576.5 Dynamic class loading . 58III Design 637 System Design 658 Bluetooth Communication Bridge 678.1 Bridge Design . 67ii

8.1.1 Provider Bridge . 718.1.2 Client Bridge . 758.2 Bridge Layers . 798.2.1 Integrity Layer . 798.2.2 Security Layer . 809 Client 859.1 Design . 859.2 Implementation . 8810 Provider 9110.1 Design . 9110.1.1 Client-Provider Communication 9210.2 Implementation . 9311 Mediator 9711.1 Design . 9711.2 Implementation . 100IV Conclusion 10312 Conclusion 10512.1 Evaluation . 10512.2 Conclusion . 10913 Perspectives 11113.1 Future Work . 11313.2 Service and Operation Mapping 11313.3 HTML interaction . 11513.4 Final Remarks . 118Literature 119iii

V Appendix 125Project Code Samples 127.1 Mediator Web Service . 127.2 Search Unit . 131Source Code 139

iv

Part IIntroduction

1

Chapter 1Introduction
Since the invention of �The Internet� by Tim Berners-Lee in 1992, a grow-ing number of web pages serve as an international digital platform for anykind of information. Initially thought as a static information resource, webpages have since begun moving towards being information-providers thatcan change dynamically. Either by user-interaction like in web-logs or auto-matically depending on its context. Googles advertising system for instancedisplays commercials on a page dynamically dependent of the content of thecurrent page. Such context-awareness is often referred to as the new way ofthe Internet with the expression Web 2.0.WAP and the Wireless Markup Language (WML), introduced in the late1990s, brought the static part of the Internet to mobile phones. And withevery new generation of mobile phones, the Internet as we know it fromdesktop computers gets more and more pervasive in this direction. TheOpera Mobile(TM) browser [43] is an example of such a bridge betweenthese two worlds.Interestingly, the word context-sensitivity attains a whole new dimensionin its meaning on mobile devices. The context for a mobile phone can beextended to the physical location of the mobile device. What if Googlesadvertising system were not only related to the content of a web page, butalso related to the actual physical location of the user requesting that webpage?In our belief, bringing dynamicity and location-awareness together opens themobile device to a whole new realm of possible applications.Our goal in this project is therefore to bring the need for location-awareservices and the possibilities of modern mobile devices together.3

A framework that could provide the technical background for such applica-tions would ease the development process. To motivate the need for such aframework, we list a number of possible use cases.Example 1: Walking by a movie theater, posters at the wall show upcom-ing and currently shown �lms at the theater. By using a mobile device,services provided by and within range of the theater could be discovered.One example of such a service could be the possibility to directly downloada trailer presenting the movies shown on the posters. As the trailer ends, theservice provides possibilities to directly make a reservation or directly payfor a ticket to see the �lm. Waiting in the ticket-line thus becomes obsolete.Example 2: A city has put up a number of location-based services in thecultural centers of the city. There are a lot of sights in this district, such asmuseums and sculptures. Services located at these sights function as a sortof a tour guide. As a tourist approach the sights, she is able to discover theservices related to the sights nearby with her mobile device. These servicescould then provide background information or inform her of alternate sightsworth visiting. Background information could for instance be voice messages,text messages, pictures or maps. Tourists thus becomes able to explore acity in a whole new way.Example 3: At the airport, similar services as in Example 2 could providethe traveler with information depending on the terminal she is currently at.Maps related to the current terminal or �ight schedules could be provided.Example 4: Many buildings today have facilities for physically disabledpersons. But ramps for wheelchairs and handicap toilets are expensive tobuild and the need for these are statistically lower than for a regular toilet.Therefore typically such facilities are limited to only a few locations in abuilding. Finding these facilities can be di�cult without knowing wherethey are. A location-aware service accessible with a mobile device could ease�nding handicap-friendly facilities.The examples described above show that there are indeed applications forsuch �mobile systems� that provides information dependent on the physicallocation of a user.Initial ProblemOur goal in this project is to provide users of mobile devices the possibilityof getting services, that are aware of the users physical location. There-fore, we develop an application framework, that eases the development anddeployment of such services.For such a project, it is crucial to investigate current products on the market.Page 4 of 139

Chapter 1: IntroductionBoth current mobile systems, and what communicative capabilities modernmobile devices have. The following chapter presents the results of our inves-tigation.

Page 5 of 139

Chapter 2Preliminary Analysis
In this chapter we present an analysis of research relevant to our initialproblem, see section 1. We investigate customer demands and real-life ex-periences from previous and existing mobile systems. This will provide uswith insight into what criteria a mobile system should adhere to. We inves-tigate the di�erent technology platforms available to us when focusing ondynamic location-aware service discovery on mobile devices. The purpose ofthis examination is to identify the network technology we intend to exploitto realize communication in our system. Having identi�ed a network carriertechnology we then proceed to discuss the consequences of using this on amobile device. This chapter will provide us with valuable insight into howour actual system should be designed to satisfy both the user demands andthe demands implied from using a mobile platform.2.1 Existing Systems2.1.1 SMS SystemsSMS (Short Message Service) has previously been used for making mobilesystems. In this section we will be describing some of the experiences andcustomer attitudes towards mobile SMS systems. This section is based ona mobile marketing whitepaper released by Mobilereact, a marketing �rmspecializing in mobile solutions, in 2005. [38]SMS or Texting has gained wide popularity amongst mobile phone owners,almost 100% [38] of all teenagers having a mobile phone uses texting facilitieson their phones. This popularity is by a large part due to the non-intrusivenature of a text message where the recipient has the possibility of reading7

2.1 Existing Systemsa text message and replying to it when she �nds the time to do it insteadof having to respond immediately as is the case with an ordinary telephonecall.Experimentation has been done with SMS systems with the purpose of ex-tending the traditional texting functionality into di�erent application areas,the listing, based on [38], below illustrates some of the SMS systems thathave previously been implemented.
• SMS-couponing via interactive street displays - JC Decaux (Ireland).
• TV voting, game participation, chat, radio song dedications.
• Mall-based permission marketing - Jurong Point (Singapore).
• Mobile micro-payment systems (Paypal Mobile).
• Instant win contests - Coca Cola (Australia).However some considerations should be taken when deploying SMS systemsinto the public. One important obstacle is the public's lack of tolerance tounsolicited information, similar to the general attitude towards SPAM e-mails. Another limitation to consider is the limitations following from usingthe SMS medium.A relevant question to state is whether or not the users are interested inmobile SMS systems? An answer to this question is indicated in a studyconducted in [1] for Nokia in 2001. This study showed that 88% of mobileusers (aged 16-45) would be receptive to receiving mobile SMS advertisingmessages if the three following conditions are adhered to [38]:1. Choice - Being able to decide whether or not to receive messages.2. Control - The ability to easily opt-out if the user is not interested inthe marketing scheme anymore.3. Mutual bene�t - Getting something back in return. A reduction inthe cost of services, for example, would qualify.Several case studies have been conducted generally showing increases in salesafter the introduction of an SMS system. A rather positive example is theCoca Cola Summerdays campaign launched in 2003 lasting for 3 months inAustralia. The objective of this campaign was to increase attention based ona coupon-based prize competition. Customers would get a coupon numberwith their Coca Cola bottle and this number could release a prize. Thecustomers could submit their numbers either by SMS or by going online.Page 8 of 139

Chapter 2: Preliminary AnalysisThe results from this campaign showed that out of 2.5 million valid entries97% of customers chose to use the SMS application form, out of these 2.5million 120000 customers actively chose to receive future announcementsfrom Coca Cola. Case studies such as this shows the feasibility of creatingmobile SMS systems that are put to actual use.When using SMS systems a number of limitations are implied. For oneSMS systems typically requires the user to actively send an SMS requestto the system in order for it to be activated. Sending this message can becumbersome for the user as messages for SMS systems typically requires aspeci�c formatting, for instance a message like �COCA-COLA Lottery #�,that has to be sent to a speci�c number to enter a contest. We back thisclaim by referring to the Coca Cola Summerdays campaign [38]. Where 2.5million entries were valid out of 4 million entries in total.Besides message formatting issues we also consider the cost of using SMS sys-tems as a restriction. While using simple single-message advertising systemsmight impose an insigni�cant cost on the user, consider using SMS systemsrequiring more advanced user-interaction and thus requiring the user to sendmultiple messages. This restriction could potentially be a hindrance to thefuture success of SMS systems.Another restriction is the implications of using the SMS medium for ad-vertisement messages. Since SMS is a text-based medium sending images,videos, etc. is not possible. One solution to this problem might be to useMMS (Multimedia Messaging Service) to send multimedia content. Howeverusing MMS only increases the cost problem as sending an MMS message istypically more expensive than sending a text message.2.1.2 Bluetooth SystemsThis section presents a number of Bluetooth systems and projects related tothe area that this report address.BlipNetBLIP systems (Bluetooth Local Infotainment Point) is a company locatedin Vester Hassing near Aalborg, Denmark, that specializes in Bluetooth sys-tems. The Company has built a Bluetooth system called BlipNet. The Blip-Net is built by using a combination of special-purpose hardware and a soft-ware system. Figure 2.1 illustrates how the BlipNet works. The BlipServeris the main component of the system. This entity controls all other enti-ties and is accessible from the Internet. The BlipServer can be managedfrom the BlipManager, which is a software program that lets you managePage 9 of 139

2.1 Existing Systemsthe BlipServer through a GUI. The BlipServer is connected to a number ofBlipNodes through LAN and Internet. A BlipNode is the hardware com-ponent of the system. This component allows the server to communicatewith Bluetooth devices in range of the BlipNode by providing a bridge be-tween the LAN and the Bluetooth devices. When Bluetooth enabled anddiscoverable devices come in range of a BlipNode the device is detected andits presence is reported back to the BlipServer. The BlipServer now has theoption of pushing objects to the device through the BlipNode. Bluetooth en-abled devices can be registered at the BlipServer and granted user accounts,this way it is possible to control which objects gets pushed to which devices.There is an API available to interface with the BlipServer in order to buildsystems on top of BlipNet.[7]
Internet

BlipServer

BlipNode

Access to BlipServer via
BlipManager (GUI
frontend)

Figure 2.1: Overview of the BlipNet architecture.The BlipNet can be used as a platform for developing systems that cano�er information to users based on their location. It is ideal for creatingmarketing systems that o�er commercial content to users passing by certainareas. It is possible to create a diverse range of Bluetooth systems by usingthis framework.From a strict marketing point-of-view the framework has great potential.The BlipNet framework is push-based. It allows you to push information toany device in the range of a BlipNode that has Bluetooth turned on, notrequiring any software to be installed in the target mobile device. But froma users point of view this system also has the potential of creating a veryPage 10 of 139

Chapter 2: Preliminary Analysisaggressive marketing system. Imagine walking into a mall where BlipNodeshave been placed in a number of shops, and the BlipNodes have all beencon�gured to send commercial content to anyone passing by. Now imaginethat you turn on Bluetooth on e.g. a mobile phone, this would result inyou receiving a number of messages. This scenario resembles SPAM e-mailsin an inbox. What makes this possible is the fact that it is the BlipServerthat discovers the Bluetooth enabled devices, and it is the BlipServer thatpushes objects to the devices. Also a provider might attempt to push mali-cious content to a Bluetooth device which could potentially expose sensitiveinformation to a service provider.From a users perspective it would be desirable to be able to discover services,and then choose what information you want from which services.The BlipNet system has been deployed in a number of cities, includingCopenhagen, Denmark, where over 400 BlipNodes have been deployed thatare operated and managed by a single BlipServer. [12]CWhereIn [31] a location system called CWhere is proposed. CWhere allows peopleat Aalborg University to �nd each other based on their current location andtheir interests. The system relies on Bluetooth technology to discover usersand it is built on top of BlipNet 2.1.2. The system has a web service as afront end that can be used to manage user accounts and pro�les. The frontend controls the BlipServer and a database that stores user information.A number of BlipNodes are positioned around campus, and when a user witha Bluetooth device in discoverable mode enters an area that is in range ofone of the BlipNodes, the user will receive information about other usersthat have matching interests.BlueBlitzA German company called BlueBlitz[21] o�ers a framework for Bluetoothcommunication that is very similar to BlipNet. The hardware componentsprovided by BlueBlitz solve the same problem as BlipNodes does in BlipNet,however they have a number of di�erent components to choose from. The sizeof these components vary from small home o�ce to enterprise components.BlueBlitz also provides an Internet solution that can be used to create amobile communication platform onto an existing web site. For the mobiledevices they o�er a mobile gateway that implements security features. Thearchitecture of the BlueBlitz systems is very similar to the architecture ofBlipNet, and it is also a push-based system.Page 11 of 139

2.2 Data Connections on Mobile PhonesB-MADB-MAD is a location-aware mobile advertising system introduced in [16],that is based on Bluetooth and WAP. The system consists of a BluetoothSensor, an Ad Server and a Push Sender. Since the system is permission-based, the Ad Server must maintain a database of users. The database storesinformation about which users it is okay to send ads to, and which ads havealready been sent to which users. When a mobile device comes in range ofthe Bluetooth Sensor a message is sent from the Bluetooth Sensor to theAd Server. The message is sent over a WAP connection and contains theMAC address and MSISDN, a unique identi�cation number, of the mobiledevice and a location identi�er. The Ad Server then checks whether thereare any undelivered ads associated with the given location waiting to bedelivered to the mobile device. If this is the case the ads are delivered tothe mobile device through the Push Sender. The Push Sender uses WAPPush SI (Service Indication) to deliver the ad, which means that ads are sentthrough a Push Proxy Gateway and encoded into a simple SMS message.The B-MAD system is similar to BlipNet and BlueBlitz, but B-MAD doesn'trely on commercial hardware products to bridge between the mobile devicesand the server. Furthermore the authors of [16] highlight that the systemis permission-based, which will outrule the possibility of sending unsolicitedcontent.
2.2 Data Connections on Mobile PhonesModern mobile phones support a wide variety of di�erent communicationchannels. Some of them are suited for ad-hoc connectivity and some forinfrastructure-mode. Infrastructure-mode is characterized by the fact, thata network provider is responsible for routing data from a point A to a pointB. The network provider also charges the user for the service. Payment canoccur on a per-data-amount or per-connection-time basis.In this section we present the possibilities a user has to transfer data withher mobile phone. We will not discuss obsolete communication channelsfor mobile phones, nor go into great detail of each communication protocol.Fourth generation mobile technologies are not part of this discussion eithersince they are still in preliminary state.The communication channels can be grouped by several characteristics as�gure 2.2 depicts. Page 12 of 139

Chapter 2: Preliminary Analysis

Figure 2.2: Map of the di�erent communication channels available on mobilephones and their characteristicsLong-Range Communication ChannelsAs the name mobile phone suggests, the main purpose of a mobile phoneis providing telephony. This service depends greatly on an infrastructurenamely the telephone network. Connection to that service is provided bythe telephone company which acts as a service provider. Since availability isa main goal for providing telephony, also in the countryside, the communi-cation channel used for this service is a long-range communication channel.Usually, a mobile phone supports only a subset of those standards. Olderphones support the GSM (Global System for Mobile Communications) stan-dard and newer, third and fourth generation mobile phones support UMTS(Universal Mobile Telecommunications System) and UMTS R8.Connection-Oriented ChannelsMobile telephony emerged from wired telephony. Therefore, making paymentdependent the per-connection-time basis was obvious. One of the remainingconnection-oriented communication channels is the widely used GSM stan-dard. Working on di�erent frequency bands, GSM is a second generationcommunication standard that supports both speech and data communica-tion.The major drawback, that makes data-communication rather unattractive,is that payment is independent of the amount of data that is sent throughthe connection. Hence an established but idle connection still costs money.Another mayor drawback is the slow data transmission that lies between 6Kb/s (half-rate) and 13 Kb/s (full-rate).[51]Page 13 of 139

2.2 Data Connections on Mobile PhonesPackage-Oriented ChannelsBecause of the drawbacks of connection-oriented channels, the GSM stan-dard was extended by several package-oriented protocols. The two most pop-ular ones are GPRS (General Packet Radio Service) and EDGE (EnhancedData rates for GSM Evolution) also called EGPRS (Enhanced GPRS). Themain advantages of those standards are package-orientation and much higherdatarates than GSM only. The package-orientation means, that payment de-pends on the amount of data that has been sent, and not on the duration ofthe data-connection. The datarates are between 9.6 Kb/s and 80 Kb/s forGPRS and 236.8 Kb/s for EDGE.As third generation mobile phone technologies no longer build upon GSMtechnologies, new communication channels such as UMTS and HSDPA (High-Speed Downlink Packet Access) could be designed from scratch. They aremuch faster than GSM based technologies and allow theoretical datarates ofup to 100 Mb/s download and 50 Mb/s upload. Of course, those theoreticalmaxima are only achieved at locations where superior signal quality can beguaranteed. One major drawback of third generation networks is their signalrange which is lower than GSM because of the higher frequency band.[51]Short-range Communication ChannelsAnother characteristic of a mobile phone is the fact that people carry theirphone with them where ever they go. This opens the possibility of exploit-ing short-range communication channels to provide location-awareness formobile phone users. In this scheme the host having the short-range com-munication device becomes the service provider, instead of the telephonecompany as is the case with long-range communication channels for mobilephones.A wide variety of short-range communication channels exists each havingtheir strengths and drawbacks.Infrared (IrDA)Formed in 1993, The communication standard de�ned by the Infrared DataAssociation (IrDA) is the oldest of the mentioned short-range communica-tion technologies. The goals of IrDA was to develop an inexpensive (lessthan 5$ per device), fast (115 Kb/s) cable-replacement based on infraredsignal transmission. Targeted at printer-interfaces and serial communicationreplacement, IrDA was �rst introduced to mobile phones in late 1997. Bythen, the original data-transmission-rate was raised to support 4 Mb/s.Page 14 of 139

Chapter 2: Preliminary AnalysisAs interoperability was one of the main goals of the IrDA, they also de�nedapplication protocols to ensure interoperability. Two of the more noteworthyprotocols include IrCOMM and IrOBEX. The �rst protocol, IrCOMM, pro-vides serial and parallel port emulation over the infrared link. The secondprotocol, IrOBEX, provides exchange of simple data objects, hence the nameIrOBEX which stands for Infrared Object Exchange. This protocol can beconsidered as the IrDA analog of the HTTP protocol since it provides au-thenticity, reliability and other basic services as HTTP does.Based on infrared light, the main disadvantage of IrDA is its short range.A clear line-of-sight is necessary, and according to the speci�cation in therange of 0-1m at an angle diverging no more than 15-30 degrees.[64]BluetoothIn 1994, the mobile phone company Ericsson invented Bluetooth. Like IrDA,its primary goal was to replace data cables with a wireless connection. Incontrast to IrDA, Bluetooth transmits its signals by radio frequency usingthe unlicensed 2.4 GHz band. Its transmission range is 10m and can beextended to 100m by use of ampli�ers. Like IrDA, Bluetooth is designed asa low cost device and the goal was less than 10$ per device. Data transferrate is at max 780 Kb/s which makes it much slower than IrDA. Bluetooth2.0, speci�ed in 2004 introduced EDR (Enhanced Data Rate) which makesdatarates of up to a theoretical limit of 4 Mb/s possible.As with the IrDA standard, Bluetooth also supports standard transport pro-tocols. In particular and analog to IrDA, Bluetooth supports RFCOMM andOBEX which serve the same purposes as IrCOMM and IrOBEX. It is there-fore clear, that Bluetooth is a direct competitor to IrDA. Since a line-of-sightbetween communicating parties is unnecessary and the possibility of point-to-multipoint communication makes Bluetooth a strong competitor. [48]Bluetooth devices in range can be discovered by use of device discovery.Bluetooth discovery takes between 18-25 seconds on average. [58]WiFiWireless Lan, WiFi and IEEE 802.11 all correspond to the same. It is theIEEE standard 802.11 a/b/g which is referred to, that de�nes a set of wirelessLAN/WAN standards. The intentions with WiFi was to create a wirelessalternative to Ethernet. WiFi has a range of 100m which is ten times therange of a standard Bluetooth connection. Power consumption is thereforeapproximately 10 times higher than Bluetooth power consumption. [37]Page 15 of 139

2.2 Data Connections on Mobile PhonesUsing the same baseband as Bluetooth, 2.4GHz, WiFi faces the same inter-ference potentials as Bluetooth does. Microwave stoves and other devicesusing the unlicensed radio frequency band are known to disturb communi-cation.Since WiFi is designed for wireless LAN applications, it is well-suited forany kind of Internet-protocol based application such as email, browsing andof course web service invocation. Also the high data-rates at 11 Mb/s and54 Mb/s respectively for the standards 802.11b and 802.11g allows a highdegree of interaction due to short round-trip-time compared to Bluetoothand other short-range communication technologies.[37]Other Short-Range TechnologiesThere are a couple of other wireless short-range technologies which couldbe targeted at mobile devices. Such technologies include RFID, ZigBee,Wibree and WUSB (Wireless USB). These technologies are partially stillunder development and not widely applied to mobile phones. Furthermoretechnologies like RFID are not well suited for our application since they arenot aimed at supporting transmission of larger data sets.Bluetooth in Mobile PhonesSince Bluetooth was aimed to replace cables, the primary use-case for Blue-tooth on mobile phones are headsets. The ability to ensure the bandwidthrequired for realtime audio transfer natively by the Bluetooth speci�cationmakes headsets practically a killer-application for Bluetooth.With the implementation of standard transport protocols, especially the im-plementation of IrDA protocols like IrCOMM (called RFCOMM with Blue-tooth) and IrOBEX (OBEX), synchronizing phonebooks and calendars withthe mobile phone and a computer is meant to be as simple as plugging in acable. It gives the user the ability to backup the data stored on the mobilephone.Using Bluetooth has also some notable basic advantages. First of all Blue-tooth is cheap to use. In order to access the Internet from a mobile phonea user needs to have an account with a phone company, and the user willbe charged for the Internet tra�c. Bluetooth radio communication is totallyfree of charge for the user. Although connectivity to the Internet and its ser-vices using Bluetooth requires a bridging application to be installed, whichthe phone company otherwise would provide.Power consumption is also a quality factor for the user of a mobile phone.Page 16 of 139

Chapter 2: Preliminary AnalysisSince Bluetooth is a short-range communication channel, its power consump-tion is much lower than for GPRS or UMTS which are long-range channels.The fact that Bluetooth is a short-range channel, can be regarded as a fea-ture. Since the typical transmission range of a Bluetooth signal is about10m, a user can only establish a connection to devices in its neighborhood,hence providing a limited form of location-awareness in the device.2.3 SummaryThe SMS systems section of this chapter described the results of a marketinganalysis conducted in 2005. One of the key results from this analysis was thefact that 88% of the questioned mobile users would be interested in usingthese sorts of systems, if they adhere to the three conditions, Choice, Control,and Mutual bene�t. It is our belief that adhering to these principles can helpensure the success of future mobile systems exhibiting a similar behavior asan SMS system.Also using SMS systems for more advanced user interaction can be cumber-some and costly since the user will have to send a number of speci�cally for-matted SMS messages to the SMS system to achieve interaction. Speci�callya case study of the Coca Cola Summerdays marketing campaign launched inAustralia in 2003 showed a large number of invalid SMS messages sent dueto ill-typed and ill-formatted SMS messages. From this we conclude thatusing mobile systems should be free of charge, to open the possibilities ofcreating more advanced applications requiring direct user interaction. Alsousing a mobile system should rely on simple and easy-to-use interfaces withthe goal of eliminating or reducing the number of invalid requests sent to asystem.We believe that push-based services is a bad approach for building location-aware mobile systems. When push-based services are used the users haveno choice at all whether or not they want to receive a given message, andthis is not in accordance with the Choice-condition listed in section 2.1.1that should be met in order for users to be receptive to receive contenton their mobile phone. Push-based services take away the initiative forusers to engage in interactions. This is a problem because users may beinconvenienced or disturbed by an interaction that has been pushed uponthem. For instance, in a push-based system a user could be writing a messageon her phone and suddenly be interrupted in the process by a message froma service provider.Furthermore push-based services empowers the service providers to send any-thing they want to their users. Even though content may be sent to usersPage 17 of 139

2.3 Summaryin a permission-based manner, as is the case with the B-MAD system, it isstill up to the provider to choose what content to send to the user. Thiscan potentially be dangerous as a malicious provider might attempt to sendcorrupting data to a client.The BlipNet and BlueBlitz solutions require that you purchase their hard-ware together with their software in order to set up Bluetooth systems. Whatthese hardware components do can also be accomplished in software. Thereare potentially two bene�ts of going with the software approach. Firstly theproviders will not need to invest funds in the hardware components. Secondlythe providers will not be constrained in their interaction by the particular�rmware that has been installed on the hardware component. The softwareapproach of doing the interaction is more �exible, but the software solutionwill most likely execute slower than the hardware solution.Despite of the Instant win contest discussed in section 2.1.1, most of theapplication areas for mobile systems are dependent on the current location ofthe customer or user. Therefore location-awareness is an important featurefor mobile systems. But location-awareness cannot be provided by long-range communication used in SMS based mobile, since there is no possibilityto locate a user solely by long-range signals due do their imprecise nature.GPS (Global Positioning System) is neither feasible, since it is not verycommon in mobile phones today. It is also not possible to use GPS signalsinside buildings.We suggest a Bluetooth-based mobile system because of their limited signal-range which o�ers the possibility to provide limited location-awareness. Itis limited, because the signal-range depends on the hardware in the senderand receiver and the vicinity both are in. But we are con�dent, that thislimitation only restricts few applications that require location-awareness.Bluetooth is also favorable as communication channel for mobile systems.While data transferred by SMS or any other channel that requires a carrier(the phone company) cost money, Bluetooth is completely free. Otherwise,customers might pay for receiving commercials. In this case, acceptancewould quickly decrease because of the lack of mutual bene�t as describedin [38]. Of course WiFi is also free to use like Bluetooth. But WiFi has apower consumption that is approximately ten times the power consumptionof Bluetooth.The goal is to be able to build systems that allow users to discover Bluetoothservices on their own in a safe way, and let the users choose for themselveswhich services they want to use. In order to build these systems securelywe need an authentication framework that establishes safe communicationbetween mobile devices and Bluetooth services. Establishing safe commu-nication requires the use of a registry to store data about authenticatedPage 18 of 139

Chapter 2: Preliminary Analysisservices, and a server with access to this registry that can act as a mediatorand negotiate between the mobile devices and Bluetooth services.This summary has provided an accumulation of important observations andarguments, which serve as the basis for a detailed problem statement in thefollowing chapter.

Page 19 of 139

Chapter 3Problem Statement
This chapter provides a conceptual description of the DynaBlu framework.We introduce the term authenticated web service invocation over Bluetoothand explain the concept of the DynaBlu framework. The conceptual overviewleads to a set of system requirements and system philosophy. Finally thegoals for this project are de�ned.3.1 Authenticated Web Service Invocation over Blue-toothThe main task of the DynaBlu framework is to provide the user of a mobiledevice with a communication gateway to location-aware information services.To avoid potential malicious service providers we have a built-in securitymechanism providing authentication of service providers. This security mech-anism requires the use of a third party, which we have called the BluetoothAuthentication Mediator. This mediator is responsible for con�rming theidentity of the communicating parties by exchanging their identifying data.3.2 System Description of the DynaBlu FrameworkFigure 3.1 gives an conceptual overview of the proposed framework.Our framework consists of three collaborating entities.

• A client. In DynaBlu a service requester is a mobile client with Blue-tooth capabilities. This client will detect a signal from a service provider21

3.2 System Description of the DynaBlu Framework
InternetInternet

Bluetooth Authentication Mediator

Client Service ProviderFigure 3.1: Conceptual overview of the framework, allowing authenticated webservice invocation from a mobile phone using Bluetooth communicationwithin its range. Depending on the service being provided, the clientcan choose to initiate a Bluetooth connection with the provider andinteract with its service. We will need to design and implement clientsoftware for the mobile client in order for it to be able to interact safelywith a service provider. We have chosen to implement the Bluetoothconnectivity in a component we call the Bluetooth CommunicationBridge, which we describe in detail in chapter 8
• The service provider is responsible for publishing its services and ad-vertising the presence of these using Bluetooth. The service providershould provide capabilities allowing its identity to be con�rmed, more-over the service provider should be able to con�rm the identity of theclient. The Bluetooth connectivity in the provider is also implementedin the bridge component.
• The Bluetooth Authentication Mediator. This entity provides themeans for authentication between the client and the provider. It shouldprovide facilities allowing service providers to register their services atthis entity. This registration will make it possible for a client andprovider to securely establish the identities of each other.The interaction between the three entities is divided into three phases.Page 22 of 139

Chapter 3: Problem StatementPublication phase The service provider publishes/registers informationabout its identity and provided services in the Bluetooth Authenti-cation Mediator.Discovery phase The Client discovers a Bluetooth signal from the providerand subsequently fetches the information needed to communicate.Authentication phase Both client and provider authenticate each otherby communicating with the mediator. The mediator provides bothparties with an authentication and encryption key.Communication phase Based on the authentication results received fromthe mediator, the client sets up communication with the provider andit's web service applications.The client can now communicate with the web services deployed inthe provider by sending/receiving Soap messages over the BluetoothCommunication Bridge.3.3 System RequirementsBased on the preanalysis, the use cases described in the introduction and ourexperience from former projects we de�ne requirements that the DynaBluframework should adhere to. The requirements are split into two groups.The �rst group contains the design requirements which address aspects re-garding the inner workings of our framework. The second group containsrequirements that are aimed at both the end users, which use the client ap-plication to consume services in a service provider, and the developers usingour framework to implement a location-aware system.Design RequirementsExtensibilityOur framework should be designed to be extensible. This requirement en-sures that we will be able to update and change our framework to meetfuture demands. Designing our framework to be extensible necessitates amodular and �exible design where individual components can be changed oradded without a�ecting the rest of the system.To make our framework extensible we must also provide documentation thatcan aid developers in understanding the existing code. Source code com-ments and API documentation simli�es integration and extension of existingmodules. Page 23 of 139

3.3 System RequirementsReliabilityA goal of our framework is that it should be designed to be reliable. Byreliable we mean that error-handling facilities should be provided, ensuringthat unexpected actions are handled. In the case of an irreparable error thesystem should always respond with an appropriate error message.E�ciencyBecause the client application will be running on a resource constrainedmobile device, e�ciency concerns regarding memory usage and heavy calcu-lations must be made. This improves the performance of the application andincreases compatibility with respect to memory consumption. Optimizationof the data communication between the client application and the provideris also part of the e�ciency requirement. E�cient data communication isimportant to prevent communication bottlenecks which would have directimpact on the usability requirements.Usability RequirementsSelectabilityThe results concerning customer demands for mobile systems learned inthe preanalysis chapter (see section 2.1.1 for a detailed description) dictatethree conditions that mobile systems should adhere to. Those conditionsare Choice, Control, and Mutual Bene�t. To satisfy the Choice conditiona DynaBlu system must never send messages to a mobile user who has notopted to receive a certain message. A user must have requested the messageby actively selecting a web service for invocation. This means that the clientwill never receive unsolicited messages from systems based on our frame-work. A system can only be activated when the client actively invokes aservice chosen using our client application. This method of invoking appli-cations also implicitly satis�es the Control condition as the client can simplyremove the client application from her mobile phone if she no longer wantsto use DynaBlu systems. The Mutual Bene�t condition is left in the handsof the service provider, choosing themselves which marketing strategy theywill be adopting.CredibilityMobile clients should always be able to trust the service providers they en-counter. Clients should not have to worry about service providers send-ing malicious content. A solution to this problem is to make sure that theclient can always con�rm the identity and thus good intentions of the serviceprovider. Also the service provider should be able to establish the identity ofthe client thus making sure that potential sensitive information is deliveredto the correct recipient. Clients and service providers need not necessarilyhave preceding knowledge of each other, which is the main reason for us toPage 24 of 139

Chapter 3: Problem Statementinclude a mediating entity in our framework.Since we rely on the fact that mobile clients should see our Bluetooth Au-thentication Mediator as a trustworthy entity in the system, we will haveto check the content of the services registered in our service registry beforethey become publicly available. By check we mean we will have to manuallytest the deployed web service by invoking it.SecurityUsers of systems based on our framework should never have to worry aboutsecurity. Facilities to safely establish the identity of service providers shouldbe available. Also for sensitive applications encryption facilities has to beavailable.This requirement makes it possible for us to support a larger number ofapplications like for instance the movie theatre example from chapter 1 wherewe discussed the possibility for a user to make ticket payments from hermobile device.User Experience Our framework has two groups of users, namely clientusers consuming applications in the service provider and developers makingapplications available in the service provider. This requirement is aimed atboth types of users.The client should not have to wait for unreasonable amounts of time whenusing our framework. When for instance a Bluetooth device discovery ismade a user will have to wait for 18-25 seconds, discussed in section 2.2,which can be a nuisance. Thus we will be focusing on minimizing the idle-time that a user has to spend when using our client application to interfacewith the service provider. To aid in this perspective our client applicationshould also be designed to minimize the manual user interaction requiredby a client to use an application from a service provider. This aspect isbacked by the tendencies we found in the preanalysis chapter showing thatusers often make mistakes when having to manually supply a system withinteraction data.From a developers point-of-view it should be simple to develop applicationsbased on the DynaBlu framework. A developer should not have to spend a lotof time reading documentation to be able to develop applications using ourframework. Also setting up a provider should not be costly and require theuse of special-purpose hardware, as is the case with the previously mentionedsimilar systems like Blip Systems and BlueBlitz.Page 25 of 139

3.4 System Philosophy3.4 System PhilosophyWe have stated the following system philosophies that our system should bedesigned towards.Openness Our framework for creating location-aware Bluetooth applica-tions should be based on the use of open and vendor-neutral technologies.This makes it possible for developers to use our framework regardless ofthe development platform they are using as long as it supports these opentechnologies.Compatibility It was reported that in 2005 708 million Java-enabled mobiledevices had been shipped, in other words 7 out of 10 devices being shippedtoday is Java-enabled [8]. Based on this fact and that this number is expectedto grow in the future we will be basing our system on Java technology. Bydoing this we gain wide support on most modern phones.3.5 Project GoalsIn [18] a proof of concept is proposed for web service invocation over Blue-tooth (the details of this proposal are discussed in section 4.3). In this projectwe use that proof of concept as an inspiration for our own implementation.The main goal is to develop a functional application framework that makesit possible to develop mobile information applications using authenticatedservice invocation over Bluetooth. The resulting framework is not to be re-garded as a �nished product, but as a �rst step towards a production stableproduct.Based on this problem statement, the preanalysis and our knowledge andexperience we identify the following areas to be investigated prior to animplementation of the proposed framework.
• Web service invocation from a mobile phone using GPRS.
• Web service invocation from a mobile phone using Bluetooth commu-nication.
• Security and authentication mechanisms for use on a lightweight plat-form as found on mobile phones.
• Dynamic stub generation used for web service invocation.The overall focus of this project is to gain knowledge, experience and tech-nical insight into the di�culties of developing such a framework. The imple-mentation should therefore be considered as an extended proof of concept,Page 26 of 139

Chapter 3: Problem Statementin which the technical hurdles such a framework comprises are solved or atleast discussed thorougly. The understanding and knowledge about centralaspects of this framework should yield an expertise that is fundamental fora future successful commercial implementation of this framework.The proposed system requirements are therefore not only valid for the cur-rent project but also appliable to future work. The resulting implementationof this framework is therefore not required to ful�ll all of the proposed re-quirements. But along with the mentioned project philosophies we aim tocreate a solid foundation for future projects.

Page 27 of 139

Part IIAnalysis

29

Chapter 4Bluetooth
This chapter presents an analysis of Bluetooth technology. This is necessarybecause an implementation of the proposed system require an implementa-tion of software that utilizes Bluetooth communication. The analysis willprovide us with valuable knowledge of Bluetooth protocols and Bluetoothsecurity technology.4.1 BluetoothAs mentioned in section 2.2 Bluetooth was designed by Ericsson in an ef-fort to create short-range wireless connectivity for ad-hoc networking. Theproject was named after 10th century Danish viking king, Harald Bluetooth.In 1998 four other companies (IBM, Intel, Nokia and Toshiba) joined in onthe work on Bluetooth and formed a Special Interest Group (SIG) togetherwith Ericsson. This SIG is responsible for developing and maintaining theBluetooth speci�cations. The SIG grew very fast. In 2000 there were about1500 member companies, and today (2007) there are over 7000, showing thatthere is still interest in further developing this technology. [61]It is not surprising that Bluetooth technology has attracted a lot of attention.There are virtually an endless array of applications for Bluetooth technology.For instance as a cable replacement for head-sets and MP3-players or ascordless data transfer between phone and computer, computer and printeror between computer and digital camera.Bluetooth connectivity is available on a single tiny, inexpensive computermodule. For example one module in �gure 4.1 is 33*15*1.2 mm and it isequipped with short range transceivers. When these modules are built into31

4.1 Bluetooth

Figure 4.1: Bluetooth module. The dimensions of the module are roughly33*15*1.2 mm.products such as mobile phones the price of the product is only increasedwith about 5$, which is only half as much as the design goal mentioned in theintroduction, which was 10$. Figure 4.1 shows one of the Bluetooth moduleswith a possible theoretical data transfer rate of up to 4 Mb/s. [39]Currently Bluetooth radios are available in three classes dependent on theirmaximum permitted power usage.Class 1 100 mW, allowing ranges up to 100 metres.Class 2 2.5 mW, allowing ranges up to 10 metres.Class 3 1 mW, allowing ranges up to 1 meter.Mobile phones are typically class 2 devices allowing communication within a10m range. Class 2 Bluetooth radios are a well-suited compromise betweenhaving a practical application range of the Bluetooth device and a limitedpower consumption. [60]Each Bluetooth device is uniquely identi�ed by a 48 bit MAC address, andcommunication occur over a point-to-point or point-to-multipoint radio link.As mentioned Bluetooth operates on the unlicensed 2.4 GHz part of the ra-dio spectrum, like e.g. microwave ovens, but problems with interference areminimized because the low level Bluetooth communication protocols usesfrequency hopping when transmitting data. Bluetooth uses 79 di�erent fre-quencies around the 2.4 GHz band and 1600 hops are made every secondbetween the 79 frequencies. The sequence of hops that will be made duringcommunication will be given by the master device when a connection is es-tablished, which will be explained shortly. Besides coping with interferencefrequency hopping also allows multiple Bluetooth users in the same room.Page 32 of 139

Chapter 4: Bluetooth

Figure 4.2: Bluetooth networks.Bluetooth supports both circuit-switched and packet-switched communica-tion. Circuit-switched communication is used in applications where a con-tinuous �ow of data is transmitted, and a minimum bandwidth must bereserved. This could for instance be voice communication through head-sets. Packet-switched communication is used for data transferal, such assending a picture from one Bluetooth device to another. Bluetooth supportstwo di�erent kind of links, ACL and SCO, and both can be supported at thesame time. ACL (Asynchronous Connection-Less) links are used for packet-switched data transferal, and SCO (Synchronous Connection-Oriented) linksare used for circuit-switched voice communication.Networks of Bluetooth devices consist of a Master device and up to sevenSlave devices. These small networks of Bluetooth devices are called piconets.The device that initially establishes a connection is the Master. This device'sclock and frequency hopping sequence is used by all the Slaves in the piconetto synchronize with the Master. Bluetooth piconets can be linked togetherto form a scatternet. The piconets in a scatternet are not coordinated, whichmeans that they use di�erent frequency hopping sequences. Figure 4.2 showsa multi-slave piconet and a scatternet.Bluetooth relies on service discovery for locating services on other devices.Service discovery is based on direct interaction between the devices. WhenBluetooth devices come in range of each other they are able to search forservices via the SDP protocol (Service Discovery Protocol). In traditionalnetworks like the Internet these service lookups are carried out through cen-tral directories, like for instance a DNS server. Central directories like DNSservers are not needed in Bluetooth networks. [39]Page 33 of 139

4.2 Bluetooth Protocol Stack4.2 Bluetooth Protocol StackThe Bluetooth protocol stack is built up by a number of layers like the OSIreference model. Figure 4.3 shows the Bluetooth stack. The Bluetooth radiocorresponds to the physical layer in the OSI reference model, which is thelowest layer. The Baseband protocol and the Link Manager Protocol (LMP)correspond to the data-link layer in the OSI reference model. The Basebandprotocol is responsible for establishing the physical links between Bluetoothdevices, and this involves synchronizing the clocks and hopping frequency ofthe devices in a piconet. LMP is used to control links between Bluetoothdevices, which involves negotiation of Baseband packet sizes, authenticationand encryption, and controlling the power modes and transmission cycles ofthe Bluetooth radio.All upper-layer protocols and applications communicate through ACL links.It is only possible to use SCO links for audio transmission, which runs directlyon top of the Baseband protocol. The Host Controller Interface (HCI) is aninterface between higher and lower layers of the Bluetooth stack. The HCIis typically the interface between the Bluetooth hardware and the operatingsystem of the host computer. This interface makes it possible to have aBluetooth module with its own processor implement the lower layers of theprotocol stack, and have the host of the module implement the higher layers.The host of a Bluetooth module could for instance be a phone or a desktopcomputer. The upper-layer protocols are more interesting than the lower-layer protocols from our point of view, because we have to chose one or moreof the upper layer protocols to interface with in order to build the proposedsoftware system. Therefore the four main upper-layer Bluetooth protocolsare covered in a bit more detail in the following subsections. [39]L2CAPLogical Link Control and Adaption Protocol (L2CAP) is a data-link-layerprotocol, and it is the protocol that all higher-level protocols interface with.It is possible to develop applications that interface directly with L2CAP.L2CAP provides protocol multiplexing for higher-level protocols. This meansthat this protocol distinguishes between which higher-level protocol it is com-municating with. L2CAP performs segmentation and re-assembly for higher-level protocols that send packets that are larger than what the Basebandsupports. The maximum L2CAP packet size is 64 KB. Since the Basebandpackets are limited in size (to 341 bytes) large L2CAP packets are typicallysegmented into multiple Baseband packets. This means that higher-level pro-tocols create a large data overhead by sending large packets. L2CAP usessimple Baseband integrity checks to provide a reliable channel, but reliabilityPage 34 of 139

Chapter 4: Bluetooth

Figure 4.3: The Bluetooth protocol stack.is not enforced.L2CAP is a minimalistic protocol. And when using higher-level protocols alarge percentage of the data being transmitted is header information, becauseeach layer in the protocol stack uses its own headers. Therefore interfacingdirectly with L2CAP introduces the lowest possible overhead for applica-tions, and because of this it provides higher bandwidth and lower batteryconsumption than higher-level protocols. [39]SDPThe Service Discovery Protocol (SDP) de�nes how Bluetooth devices pub-lish and discover services. In this context a service is de�ned as any featurethat is usable by another device. SDP runs over a reserved L2CAP chan-nel. A SDP database maintains a local database with information about allthe services that are available on the device. This information is stored inService Records. Each Service Record contains the attributes of a speci�cservice, including the service UUID (Universally Unique Identi�er). UUIDsPage 35 of 139

4.2 Bluetooth Protocol Stackare global identi�ers that are used to classify the type of Bluetooth servicesbeing o�ered. A service client can initiate searches through SDP for servicesthat match a combination of UUIDs and attributes on discoverable SDPdatabases in range. [39]RFCOMMRFCOMM is a cable replacement protocol, and it resides in the transport-layer in the OSI-reference model. It emulates a serial RS-232 port connectionover L2CAP, and emulates RS-232 control and data signals. RFCOMM isused as a virtual cable line between Bluetooth devices, and by some higher-level protocols such as OBEX. RFCOMM can for instance be used to supporta direct connection between a computer and a printer. [39]OBEXOBEX is a session-layer protocol, and one of the adopted protocols in theBluetooth stack. OBEX was originally developed by the Infrared Data As-sociation (IrDA) with the purpose of supporting easy exchange of data ob-jects. The OBEX protocol was easy to adopt because it is designed to beindependent of the underlying transport protocol. In the Bluetooth stackthe transport protocol can for instance be RFCOMM or TCP.OBEX is similar to the HTTP protocol, but much lighter. It is session ori-ented and like the HTTP protocol also based on the client/server approach.OBEX allows OBEX clients to receive and send objects to OBEX servers,and to change the active directory at the server. The basic operations areconnect, disconnect, put, get and setPath. The connect and disconnect oper-ations are used to establish and close a connection to an OBEX server. Whena connection has been established data objects can be pushed or pulled fromthe server via the get and put operations. OBEX has a built in header sys-tem that allows clients to specify the kind and name of the data they wishto receive or send.[39]Other supported protocolsBluetooth also supports a number of other protocols. Support for PPP,TCP/UDP/IP o�ers an alternative transport-layer protocol, and interfaceto the Internet. WAP is supported for sending and reading Internet contentand messages. TCS BIN is supported for setting up speech and data callsbetween Bluetooth devices.[39]Page 36 of 139

Chapter 4: BluetoothDiscussionThe most e�cient approach in terms of power consumption and networkbandwidth is to interface with the L2CAP protocol. However, using L2CAPimplies having to deal with low level issues such as segmenting data intoL2CAP packets on one side of the connection, and reassembling the packetson the other side in order to reconstruct the data. Interfacing with RF-COMM relieves us from this programming e�ort and allows us to work withdata streams instead. So there is a tradeo� between e�ciency and program-ming e�ort. We have chosen to interface with RFCOMM, because in thisrespect we value programming time higher than the potential increase ine�ciency. Furthermore the software will be developed in a modular manner,which means that the module controlling the data �ow can be replaced laterif a more e�cient one is needed.4.3 Web Service Invocation over BluetoothIt is not a trivial task to accomplish web service invocation through a Blue-tooth channel, because web service invocation is commonly based on commonInternet protocols, which means that SOAP node implementations like JAX-RPC (explained in 6.2.1) are based on the HTTP protocol. In order for usto achieve web service invocation over Bluetooth we must invent a schemethat will enable us to send SOAP messages from one Bluetooth device toanother, but fortunately existing research have been conducted in this area.Two scienti�c articles present solutions to this problem [18] and [19].The �rst article [18] presents a proof-of-concept of how to use Bluetoothtechnology for web service invocation. It presents a �lightweight framework�for sending SOAP messages from one Bluetooth device to another. The ideabehind the framework is to put in a proxy layer between the web servicecomponents and the Bluetooth components on both the client side and theserver side. Figure 4.4 shows an illustration of the proposed framework.When the client Midlet or application issues a Soap request the Soap mes-sage is passed to the client Bluetooth proxy. The proxy serializes the Soapmessage into a byte stream and sends it to the Bluetooth device that runsthe Soap server through a serial communication link (RFCOMM). On theserver side this byte stream is passed to the server Bluetooth proxy, whichthen deserializes the byte stream into a Soap message. The Soap messageis forwarded to the web service container, where it is invoked, and the re-sponse SOAP message is transferred back to the client Midlet in the sameway through the proxy layer.The second article [19] presents a performance evaluation of their framework.Page 37 of 139

4.4 Coping with Mobility

Figure 4.4: Framework architecture, based on �gures in [18] and [19].Here the through-put of the framework, the discovery times and the overheadintroduced by the framework is investigated through experimentation. Thearticle concludes that the framework has a high through-put and is applicablein real-world applications.In our project we need a similar framework for web service invocation overBluetooth. Therefore we use the basic ideas presented in this section as astarting point for designing the communication infrastructure that is needed.4.4 Coping with MobilityUsing Bluetooth we have to take the properties of a radio connection thatcan be distorted and a client in motion into account. While arbitrary discon-nections as well as bad signal states occur, the user expects continuous datatransmission while she is moving. Solving these communication problems atPage 38 of 139

Chapter 4: Bluetootha low level without much user-interaction should be taken into account inDynaBlu.We therefore aim to reduce the implications of reconnections and bad trans-missions as much as possible. The �rst step in �nding solutions, is to identifythe problems implicated by client mobility and short-range radio communi-cation.We identify three possible communication problems. Figure 4.5 depicts theseproblems.
Figure 4.5: The three problems due to the mobility of the user: A The recon-nection problem, B The continuity problem, and C The discovery problem.A The Reconnection ProblemIf the user leaves the vicinity of the provider he is currently connected to,the connection is lost and terminated. If the user after a short period oftime enters the vicinity of the same provider again, a reconnection mecha-nism must occur without user interaction. This mechanism should be fastenough, so that the user is not inconvenienced by the time she must wait fora response from the provider. Furthermore such a reconnection must occurwithout having to restart the authentication procedure. Re-authenticationwould be too time consuming and entail costs because of the establishedGPRS-based Internet connection. Especially in the case where the user ismoving at the border of the vicinity, frequent reconnection would disturbthe seamless functionality of the web services provided by our framework.B The Continuity ProblemThe limited range of Bluetooth communication is a shortcoming that a�ectsuse-cases, where the vicinity of one provider is smaller than the area to becovered by a particular service. A natural solution would be to install severalPage 39 of 139

4.4 Coping with Mobilityproviders that mirror the services of one provider. Figure 4.5B depicts sucha solution. Provider B1 and B2 provide exactly the same content.Since B1 and B2 use di�erent Bluetooth devices for communication, theclient will not recognize B2 as the same provider, resulting in loss of theformer web-service interaction state data with B1 and renegotiating authen-tication and encryption keys for B2. This takes time and is costly becauseof the communication with the mediator established over the Internet. Tosolve this problem, a mirroring service may be adequate.C The Discovery ProblemThe user of the client application should not be concerned with the technicaldetails of Bluetooth communication. Therefore discovery of providers andtheir services must occur automatically without any user interaction. Theclient application must dynamically survey the vicinity for available providersall the time to get all possible services.The discovery of devices takes place in two steps. First all available devicesin the vicinity have to be detected. In a second step every device that hasbeen discovered has to be scanned for available services. If there are manyBluetooth devices in the vicinity, the time used for the second step willbe multiplied by the number of detected devices because we have to scanevery device that may run a provider application. Because of this discoveryon Bluetooth devices can be a time consuming process. Device discoverytakes approximately 18-25 seconds depending on the mobile device and theenvironment, and during this time the application that is running the devicediscovery is forced to halt.[59]Discussion and Possible SolutionsThe discovery problem is the most simple to solve. Device discovery can onlytake place, if the target device is in discoverable mode. If not, the device isinvisible for the discoverer and is hence never scanned for services. Assumingpush-based mobile systems as described in section 2.1.2 gain widespread usein the future, people could get annoyed with the constant bombardment ofOBEX push-objects and would eventually disable the discoverable mode intheir mobile devices. Push-based mobile systems do not work if a device isnot discoverable. As more people disable discoverable mode, our discoveryproblem grows smaller. Though we should not rely on this assumption, but�nd a more elegant solution. A practical solution can be to improve thesteps of the discovery process as described above. In the �rst step devicescan be �ltered according to the class of the device, for instance scanning ofPage 40 of 139

Chapter 4: Bluetoothother mobile phones can be avoided. In the second step an optimization canbe to maintain a list of already scanned devices. This way time consumingrepetition of the scanning process can be avoided. Delaying the scanningprocess in the client can also be part of the solution. This would improvethe user experience, but might reduce the number of detected services in thevicinity.Reconnecting to a previously connected provider without having to go throughthe Authentication phase againg (see page 22) can only occur, if the client-provider association through the encryption keys remains for some time aftera disconnection. It also requires both the client and the provider to preservepotential stateful web service interaction to allow the client to continue whereit lost the connection. The solution here could be a keyring in the client andthe provider, that allows reconnection and transmission with the same keysfor some time. With respect to security, the keys should have an expira-tion timeout. This keyring in combination with the preservation of the webservice interaction in the provider, would solve the reconnection problem.Solving the continuity problem requires the provider to be identi�able despiteof using several di�erent Bluetooth addresses.A way to solve this problem is to let a provider de�ne a number of �mirrordevices� that share the same services through some standard web servicein each provider. The client could then see which Bluetooth addresses areassociated with a provider and reuse existing keys with the speci�ed mirrors.The providers would of course need to exchange keys amongst each other.We have now discussed a number of communication problems in our frame-work that would potentially in�uence the user experience of the system,and discussed possible solutions. This will in�uence the design and imple-mentation of our framework, since a good user experience is crucial for theacceptance of the DynaBlu framework.4.5 SummaryTo avoid dealing with low level details such as segmentation and re-assemblyof L2CAP packets we choose to interface with RFCOMM in the Bluetoothprotocol stack. This will allow us to work with a stream connections instead,and we do not consider the overhead introduced by having to send RFCOMMheaders as signi�cant.The communication infrastructure will be based on web service invocationover Bluetooth. To solve this problem we will need proxies on both sidesof the Bluetooth connections, which can translate byte streams to and fromSOAP messages. Page 41 of 139

4.5 SummaryConnection problems must be taken into account in order for us to providethe user with a continuous data transmission, because the communication isbased on Bluetooth technology. Device discovery can be optimized by usingblack and white lists and by using di�erent modes for scanning.

Page 42 of 139

Chapter 5Security
Security aspects such as con�dentiality and authenticity are of vital concernin today's world. Today there is an increasing number of electronic trans-actions involving sensitive information, such as credit card numbers [50].Potential malicious parties can misuse this information and make purchaseswith stolen credit card numbers. Because of the large number of applicationsthat today require the ability to handle and protect sensitive information it isimportant to provide support for these types of scenarios in our framework.Addressing security aspects has been a goal from the beginning of this projectwhich was also stated in the our system requirements. In this section welisted the system requirements Credibility and Security stating that a usershould always be safe when using our system. This implies that it shouldnot be possible to communicate with a party in our system without havingauthenticated the identity of the party. We also stated that we want toprovide support for encryption schemes enabling the possibility of developinginformation-sensitive applications with our framework.In this chapter we discuss security aspects when communicating between thethree parties in our system, namely the Client, Provider and Mediator, see�gure 3.1 for an overview of the entities' roles in our framework. The com-munication types between these entities can be classi�ed into the followingtwo types of communication.

• Client-Mediator and Provider-Mediator communication over the Inter-net. We describe security aspects of these connection types in sec-tion 5.1.
• Client-Provider communication over Bluetooth. Security aspects ofthis type is described in section 5.2.43

5.1 Internet5.1 InternetInternet communication will be used by our clients and providers to com-municate with the Bluetooth Authentication Mediator. The purpose of themediator is, as previously mentioned, to authenticate the identity of thecommunicating parties. Yet we have not discussed issues concerning authen-tication of the mediator's identity. A malicious user might impersonate thisentity and give false authentication information. We thus need to providemechanisms for securely establishing the identity of the mediator, and themediator must be able to verify that it is communicating with the correctclient and provider. Moreover we discuss methods of exchanging encryptionkeys securely. In this section we outline how these mechanisms work andhow they can be used in our framework.5.1.1 AuthenticationMost Internet systems dealing with sensitive information today use the HTTPSprotocol, which is a an encrypted version of the HTTP protocol. HTTPS istoday understood by most browsers and also most modern mobile devices cancommunicate using HTTPS. Support for HTTPS was released in the MobileInformation Device Pro�le (MIDP) in 2001 [30], discussed in section 6.1.2.HTTPS describes HTTP communication using encrypted Secure SocketsLayer (SSL) or using its successor Transport Layer Security (TLS). SSL/TLSinitializes HTTPS communication by performing a handshake session whereinformation is exchanged between the two communicating parties that enablethem to encrypt and decrypt messages.In this handshake the identities of the communicating parties are established,and protocol versions and encryption algorithms are agreed upon. This cre-ates the possibility of a client/server to have support for a number of securityschemes. As long as both parties have support for a common security schemethey can communicate securely with each other. [23]An identity certi�cate is required by the web server in order for it to supportHTTPS communication. A certi�cate contains a public and private keywhich are used to authenticate the identity of the communicating parties andused for the exchange of encryption keys. A public key is used to encrypta message. This message can only be decrypted using a private key relatedto the public key. Note that in this section we only outline the workingsof public/private key-based algorithms. For a more detailed description onhow these work we refer to [35]. We outline the steps required to encryptmessages in �gure 5.1. In this example Alice sends an encrypted message toBob who decrypts it after receiving it.Page 44 of 139

Chapter 5: Security
Alice Bob

+
BK (m)

2. Alice encrypts the message m,
 yielding

1. Alice retrieves Bob’s public key,
+
BK

3. Alice sends
+
BK (m)

-
BK

4. Bob decrypts the message
 using his private key,
 yielding

-
BK (+

BK (m)) = mFigure 5.1: Alice and Bob communicating using public/private key-based en-cryptionThis idea of using di�erent keys to encrypt and decrypt messages is alsoreferred to as asymmetric encryption. The most commonly used asymmetricencryption algorithm is RSA, which is explained further in [36]. If anotheruser where to intercept the message K
+

B
(m) being sent in �gure 5.1 it couldnot be decrypted as they would not have access to Bob's private key K

−
B
. [35]Signing is used to ensure that a message was indeed received from the cor-rect sender. Signing a document requires the following steps. Illustrated in�gure 5.2. [35]. Here Bob signs a message m using his private key K

−
B
. NowAlice can verify that Bob indeed sent the message by applying Bob's publickey K

+

B
to the received message.However as asymmetric encryption relies on computationally heavy algo-rithms, faster symmetric encryption schemes are often employed in combina-tion with the asymmetric encryption schemes. In this scheme a shared secretkey to be used in the symmetric encryption is negotiated using asymmetricencryption. This procedure is handled by the SSL/TLS security protocol inthe handshaking procedure [35]. [62][23]To use HTTPS security we need to create an identity certi�cate in the Blue-tooth Authentication Mediator. As it is though anybody can create a falseidentity certi�cate claiming that they are the mediator and thus act as afalse mediator entity in our system. Thus we need to verify the validity ofthe identity certi�cate. This is done using a Certi�cate Authority (CA), forinstance VeriSign [56] or Thawte [54]. A CA is responsible for providingtrustworthy certi�cates that binds the public key of a party to an identity.This identity is represented in a certi�cate which is digitally signed by theCA. Another advantage of having our mediator certi�cate signed by a CAis that our mediator will then be able to issue certi�cates to providers us-ing our framework and thus making the mediator a CA itself. [35] And duePage 45 of 139

5.1 Internet

Alice Bob

5. Alice calculates the checksum
 on the received message, H’(m),
 and compares this to the checksum
 used for signing, H(m), by comparing
 these Alice can verify that the
 message was indeed sent by Bob

1. Bob first calculates a
 digest of the message he
 wants to send,
 yielding H(m)

2. Bob then signs the document
 by applying his private key,
 yielding

-
BK (H(m))

3. Bob now sends the message
 m to Alice along with his
 signature,

-
BK (H(m))

4. Alice uses Bob’s public key
 to calculate the checksum, H(m),
 appended by Bob

+
BK

-
B(K (H(m)))= H(m)

Figure 5.2: Bob digitally signs a document using his private key and sends thedocument to Alice who veri�es the that Bob indeed sent the messageto our security constraints a provider must have a certi�cate signed by theBluetooth Authentication Mediator in order for it to use our system.However one problem still remains. The client application could be changedmanually by malicious parties to skip the authentication process and thus al-low the client to access unsafe information from non-authenticated providers.We solve this issue by digitally signing the client application with the cer-ti�cate issued to our mediator. This will ensure that our mobile client ap-plication was indeed published by us.5.1.2 EncryptionData being transmitted using SSL/TLS, after the symmetric key has beenexchanged in the handshaking procedure, is typically encrypted using theRC4 (Rivest Cipher 4) algorithm. This algorithm is not recommended forsystems requiring high levels of security such as military systems. Thoughit is regarded safe to use for most Internet payment systems. RC4 is astream cipher encryption algorithm, which means that it operates on theplaintext data one digit at a time. As opposed to a block cipher wherethe plaintext data is encrypted block-wise [23]. RC4 has been used in aPage 46 of 139

Chapter 5: Securitynumber of encryption protocols and standards including WEP and WPA forwireless LAN security, and also SSL and TLS for HTTPS. RC4 is referredto as a simple and fast encryption algorithm. Another issue with the RC4algorithm is that it becomes easier, for a malicious third-party, to obtainthe shared key being used in the encryption the longer the communicationruns. This is because it will enable the third party to gather more data to beused for reverse-engineering the shared key. Thus for longer communicationsessions, where large amounts of data are being transmitted, RC4 is notrecommended. Yet we do not consider this to be a problem considering theapplication domain of our framework.RC4 has never been o�cially released by RSA labs as it is trademarked.However an uno�cial reverse-engineered implementation commonly referredto as ARC4 (Alleged RC4) was released in 1994. To avoid potential trade-mark issues ARC4 is actually the algorithm used in most security protocolstoday. The RSA labs license states that uno�cial implementations of RC4may be used freely as long as they are not referred to as RC4 implementa-tions, thus we will henceforth in this report refer to RC4 as ARC4. We referto [33] for a detailed description of the ARC4 algorithm. [63]5.2 BluetoothBluetooth was originally designed as a simple cable replacement. But trans-ferring data by a radio link instead of a cable implies a threat to the con�-dentiality of a connection. The frequency hopping scheme used in Bluetoothprovides no real protection against eavesdropping. The hopping scheme isderived from the master's clock and given to clients as soon as they try toconnect to the master. A simple device discovery (by the inquiry procedure)will provide an attacker with the needed information for an attack [26].Therefore, one of the design goals for Bluetooth was that con�dentiality ofa data link can be ensured using authentication and encryption. Thereby,security concerns were addressed from the beginning by the Bluetooth SIG.The Bluetooth core provides link-level authentication and encryption. Thismeans, that only the link between Bluetooth cores is protected. The data�ow between the application and the Bluetooth core through the mobilephones operating system is not secured. The operating system of the mobilephone must thus be fully trusted.Authentication is based on user input and a challenge-response scheme. Theencryption uses a symmetric key, which is derived from a link key generatedby the authentication procedure.Page 47 of 139

5.2 Bluetooth5.2.1 AuthenticationAs mentioned before, authentication of Bluetooth devices is based on a mu-tual challenge-response scheme. The participants of a connection encode arandom value with a shared link-key, which the counterpart sends back indecoded form. Thereby, the authentication of one device is granted. Thischallenge-response procedure must be initiated from both communicatingparties to ensure mutual authentication. The link-key that both devices usefor the challenge, is generated in the so-called pairing-procedure.Pairing The pairing procedure consists roughly of the following phases,which are brie�y outlined below. For a detailed description of the pairingprocedure we refer to [26]1. Generating Keys.On mobile phones, generating initialization keys involves user input.A common passkey entered at both mobile phones is needed. Thispasskey is used to generate the keys needed to provide authenticationof messages, more speci�cally a Link Key is generated which is usedto encrypt and decrypt messages between the communicating parties.Also a Combination Key is generated which we explain further in thenext bullet.2. Link Key Exchange.The combination keys are then exchanged. With these combinationkeys, each device now uses the combination keys to calculate a commonlink key. The advantage of using the combination keys to calculate acommon link key makes the key exchange secure because the actuallink key is never exchanged.3. Authentication.To prove that the pairing procedure was successful, each device gener-ates a random plaintext value mrand and sends it to the other device.The other device encrypts it with the link-key KAB(mrand) and sendsit to the device that sent the random value. The �rst device can easilycheck if they have the same link-key by calculating the same encryptionon mrand. This is called a challenge-response scheme, and is carriedout on both sides. Thereby, mutual authentication is established, andthe pairing was successful.If the pairing process fails, it has to be retried. Otherwise, the link key isstored in the memory of each mobile phone, along with the Bluetooth addressof the paired device. If a connection has to be established at a later time, alink key already exists, which makes the user-interaction unnecessary.[26, 11]Page 48 of 139

Chapter 5: Security5.2.2 EncryptionIf encryption is desired, an encryption key KC has to be generated. Thisencryption key is generated from the link-key which is never used as anencryption key directly.All algorithms used in the Bluetooth core are based on symmetric keys.The shared secret is thus the passkey entered by the user. For the pairingand authentication process Bluetooth uses a 128 bit block cipher namedSAFER+. Using this particular algorithm was simply a decision made by theBluetooth designers based on performance and licensing concerns. SAFER+is freely available and has been one of the contenders for the AES algorithm.For the encryption the Bluetooth core uses a stream cipher called E0. Thisalgorithm is based on work in the mid 1980's. Neither the SAFER+ algo-rithm nor the E0 algorithm have known weaknesses as of the date of thiswriting[26].We will not perform any cryptoanalysis on these two algorithms, but refer toGehrman et al. in [26] instead. They have done exhaustive cryptoanalysisand conclude on the most e�ective attack found for impersonating that �ina practical system where encryption is activated, it is not at all easy tomake something useful of this attack beyond the point of just disrupting thecommunication�. And after a exhaustive cryptoanalysis of E0 they simplyconclude that �currently there is no attack known that breaks the completeencryption procedure with reasonable e�ort�.[26]The pairing process seems to be the greatest weakness of the Bluetoothcore. If a short pass-key is entered, an attacker may have little troubleguessing the correct key KC by listening in on the pairing process. TheBluetooth speci�cation therefore recommends long pass-keys for sensitiveapplications.[26]5.3 DiscussionUsing long pass-keys, Bluetooth seems to be rather immune against securitythreats like eavesdropping and impersonation. This makes Bluetooth an el-igible candidate for many security-sensitive applications. The designers ofthe Bluetooth core have been very careful in designing its security aspects.Though Bluetooth on the mobile phone is not secure by de�nition. Imple-mentation �aws in the application layer and operating system, have in thepast lead to several security breaches that could easily be exploited [26].In our case, none of the yet known security breaches would a�ect us, sincethey all aim at services provided by the operating system and not by anyPage 49 of 139

5.3 DiscussionJ2ME applications. From this perspective, and with regards to power con-sumption, authentication and encryption provided by the Bluetooth corewould seem to be the best way to provide proven security within our appli-cation.The only problem is, that the shared secret used in the pairing processcannot automatically be set by the J2ME application. It always has to berequested through the operating system in the mobile phone, which eitheralready has a link-key stored, or has to request a passkey from the user tocreate a link-key. This is not feasible regarding the examples in chapter 1which motivate our project. All of those examples motivate an automateddetection and invocation of services available at some physical location of auser. Using pairing, the user would be forced to enter a passkey on the mobilephone for every service that requires authentication. Besides the requireduser-interaction, the passkey must be di�erent for every user. Otherwise thewhole pairing process would be worthless since an eavesdropper, recordingthe pairing process, could easily generate her own link-keys. Generatingpasskeys for every user would simply be impractical in many applicationdomains of our project.Therefore we have to implement authentication and encryption on the ap-plication level. Like the Bluetooth designers, we are not going to developour own algorithm. In the perspective of lightweightness and con�dentially,an existing algorithm based on symmetric keys is preferable. Based on ourdiscussion of the ARC4 algorithm, we have chosen to use this algorithm toprovide data con�dentiality on the Bluetooth channel. This choice was basedon the fact that ARC4 is a lightweight algorithm that provides a securitylevel that meets the requirements of most Internet based credit card systems,which is more than adequate for most mobile applications in this domain.We will be using the ARC4 implementation provided in the open BouncyCastle security API [41]. Bouncy Castle is a Java lightweight cryptographyAPI providing implementations of most commonly used encryption algo-rithms.We expect that most of the applications developed with our framework willnot be requiring data encryption security. However authentication is by oursystem requirements always required in our framework. We thus need to usesecure and lightweight authentication mechanisms for use with the mobileclient. For this reason we have based our Internet communication on usingthe HTTPS protocol.Design and implementation aspects of the security mechanisms are discussedfurther in chapter 11.2.
Page 50 of 139

Chapter 6Development Platform
In this chapter we investigate the development platforms that we will needto create DynaBlu. We start by investigating the platform available to uson most client devices, namely the Java 2 Micro Edition (J2ME). Next wecontinue to describe speci�cations and third-party software frameworks ofinterest to us. The purpose of these descriptions is to identify and discussthe use of relevant speci�cations needed to implement our framework.6.1 J2MEJava 2 Micro Edition (J2ME) is a set of APIs targeted at small deviceshaving limited hardware capabilities. J2ME is a limited cut-down version ofthe larger J2SE and J2EE Java versions.Since a wide variety of devices exist with di�ering purposes and capabilitiesit has become impossible to create a single lightweight software product tosuit all purposes. Therefore J2ME has been designed in a modular fashion.Instead of being designed as a single bulk speci�cation J2ME was designedas a collection of individual speci�cations that can be combined to suit theneeds of a speci�c device's hardware platform.J2ME relies on con�gurations and pro�les. Con�gurations are used to clas-sify device types by their minimum hardware capabilities. Con�gurationsserve as a common denominator for a speci�c device classi�cation. Pro�lesare used to extend the con�gurations with speci�c functionality not presentin the device's con�guration, for instance Bluetooth capabilities is imple-mented in a speci�c pro�le. [55]To provide an overview of the J2ME platform we refer to �gure 6.1. The51

6.1 J2MEcon�guration part in this �gure is illustrated with the CDC/CLDC blockexplained further in section 6.1.1. The pro�le part in this �gure is the MIDPblock explained further in section 6.1.2.

Operating System

CDC/CLDC

MIDP

Applications

Core collection of Java classes and
virtual machine

Networking, audio/visual components,
and persistent storage

MIDlet applications built using MIDP
or possibly other profiles

Operating system running the Java
virtual machineFigure 6.1: Overview of the J2ME architecture.

6.1.1 Con�gurationsAs already mentioned J2ME is a development platform targeted at hardwareconstrained devices. Hardware constrained devices in this respect covers avariety of devices having di�erent computational power and memory. Thespeci�cations available on a device thus should also be dependent on thehardware limitations of the device. For instance a simple mobile phonewould probably be more constrained than a top-of-the-line PDA or smartphone. [32]To address this problem two con�gurations have been speci�ed to distinguishbetween high-end and low-end devices. A con�guration here consists of a corecollection of Java classes and a Java Virtual Machine. [55].Connected Limited Device Con�guration (CLDC) As speci�ed in theCLDC 1.1 Java Speci�cation Request, JSR 139 [5]. CLDC de�nes astandard set of classes available for devices having the following hard-ware capabilities.
• At least 160 KB of total memory available for the Java platformand CPU speed of at least 8 MHz. The CPU being a 16/32-bitprocessor.
• Limited power, often battery operated.Page 52 of 139

Chapter 6: Development Platform
• Connectivity to some type of network, although with possiblylimited (9.6 Kb/s or less) bandwidth.
• High-volume manufacturing (usually millions of units).
• User interfaces with varying degrees of sophistication down to andincluding none.Connected Device Con�guration (CDC) Classi�es high-end devices. Thiscon�guration addresses devices having more memory, increased CPUcapabilities and more network bandwidth than CLDC devices. Thiscon�guration is supplied in devices being too limited to use J2SEand too powerful to use only the class-functionality supplied with theCLDC. CDC devices are typically PDAs or smart phones.The CDC 1.1 speci�cation, JSR 218 [9], de�nes like CLDC a stan-dard set of classes available for devices with the following hardwarespeci�cations.
• An increase over a CLDC device in the ROM size available rangingfrom 128-256 KB.
• 512 KB minimum RAM available.
• Robust connectivity to some type of network.
• Same requirements to user interfaces as in the CLDC speci�cation.Mobile phones today are typically shipped with the CLDC con�guration.Yet as modern phones are becoming increasingly sophisticated we shouldexpect one of two future scenarios. Either more CDC con�gured phones willbe shipped or we should expect more sophisticated CLDC con�gurations tobe released.As the client in our system will be using a mobile phone, we will focus onthe CLDC 1.1 con�guration in the remainder of this project.The virtual machine conforming to the CLDC 1.1 speci�cation known as theKVM (K Virtual Machine) has a number of lacking features compared to theJ2SE virtual machine. Of noteworthy restrictions in the KVM is the lack ofdynamic class loading. We discuss this restriction further in section 6.5. Formore information on the KVM we refer the reader to [5].6.1.2 Pro�lesThe CLDC 1.1 con�guration is limited to only supporting a minimal setof the hardware in a device. To reach the full potential of the hardwarein a device the concept of pro�les was introduced. A pro�le complementsPage 53 of 139

6.2 Web Servicesa con�guration by introducing an additional set of classes. The additionalclasses serves the purpose of supporting speci�c hardware in devices. [55]The Mobile Information Device Pro�le (MIDP 2.0) de�ned in JSR 118 [10]provides a base platform extending the CLDC with more speci�c function-ality. The MIDP 2.0 pro�le gives developers the capability of creating moreadvanced audio/visual applications having advanced network capabilities.MIDP 2.0 provides 7 packages aimed at the following:1. Enhanced network support2. Better user interface capabilities3. Game development tools4. Media tools for audio playback5. The MIDlet framework, a MIDlet being a Java program compliant tothe J2ME virtual machine6. Providing persistent storage for MIDlets7. Security capabilitiesFor our system we will be requiring a number of the features provided by theMIDP pro�le. We will be taking advantage of the enhanced network supportand security capabilities provided by MIDP to connect to and invoke ser-vices deployed at the Bluetooth Authentication Mediator securely. Also theenhanced UI capabilities and media tools opens the opportunity for creatingmore advanced Bluetooth services with respect to user presentation.Today MIDP pro�les have become widely spread in modern mobile phonesalso MIDP have become integrated in most integrated development environ-ments aimed at mobile devices. This makes programs conforming to MIDPportable to other devices as long as they support the MIDP pro�le, forthis reason MIDP 2.0 is also backwards compatible with older MIDP pro-�les. [32] This makes MIDP pro�les attractive for use in our project as oneof our stated philosophies is Compatibility, see section 3.4.6.2 Web ServicesThe reader is required to have preceding knowledge of web services to readthis section. The report in [17] provides an introduction of the web servicesframework. Page 54 of 139

Chapter 6: Development PlatformTo realize network connectivity in our framework we were required to usea distributed platform that makes it possible for us to make RPC calls toexternal resources using either Bluetooth or GPRS. Re�ecting on our Com-patibility and Openness philosophies a platform that is both standardized,widely used and familiar to developers should be considered. Firstly theplatform should not be locked to a speci�c vendor platform but should beaccessible from several development platforms. Secondly the platform shoulduse open formats, which makes potential integration with external systemseasier.Based on these philosophies and the growing interest in the web servicesframework [17] we have chosen to focus on this platform to implement ournetwork connectivity.Using web services though implies having to send Soap formatted messages,which involves data overhead when sending and receiving RPC messages.To cope with this on a mobile device we need to examine lightweight webservice frameworks. We present two web service frameworks aimed at mobiledevices in this chapter.
6.2.1 JSR 172: J2ME Web Services Speci�cationThe JSR 172 Web Services Speci�cation [6] released in 2004 provides thenecessary class functionality to create web service clients on mobile devices.This speci�cation provides a WSDL and Soap parser API, based on a subsetof the well-known SAX2 (Simple API for XML) parser. This parser can beused to create so-called web service stubs. A stub is a local Java represen-tation of a remote web service. Having this stub relieves the developer ofhaving to manually deal with the tasks usually involved with invoking a webservice, e.g. creating and sending a Soap request conforming to the web ser-vice's remote WSDL description. These tasks are handled by the JSR 172runtime components.Although JSR 172 provides easy-to-use facilities for creating web serviceclients it is aimed at an abstraction level that is too high for us when dealingwith Bluetooth web services. By this we mean that when using JSR 172we cannot manually create or manipulate the actual Soap messages, theseare instead generated by the JAX-RPC runtime. In order for us to makeweb service invocation on Bluetooth available we need to create our ownSoap node in the client software. This implies building functionality forgenerating, parsing, sending, and receiving Soap messages.Page 55 of 139

6.3 JSR 82: Java APIs for Bluetooth communication6.2.2 kSOAPTo address this issue we have investigated third-party Soap frameworks.Based on multiple citations in related articles we found kSOAP (KilobyteSOAP) [34]. kSOAP is a lightweight web services framework for mobiledevices, allowing developers to create web service clients. kSOAP was de-veloped before SUN Microsystems decided to release the JSR 172 referencespeci�cation and thus kSOAP was not developed to conform to the thisspeci�cation. Instead kSOAP was developed independently by a smallerdevelopment team, currently 4 persons are involved.The kSOAP framework is based on the kXML framework which is a light-weight XML framework providing an XML parser on a mobile device. Wehave chosen the newest kSOAP 2.0 version since this provides us with neededfunctionality for serialization of Soap messages. After having examined theAPI for kSOAP and conducting practical experiments, by creating Soapmessages and using these to invoke a web service, it was quickly revealedto us that kSOAP provides functionality for manually creating and parsingSoap messages, which is exactly what we need for our Bluetooth servicesbecause it enables us to not only invoke web services using HTTP but alsoBluetooth.Using this framework implies having to include the kSOAP and kXML pack-ages in our client application. Though considering that these packages re-quires approximately 650 KB this is a reasonable trade-o� instead of havingto spend our time developing a complete Soap node (And XML parser) our-selves.Another advantage of using kSOAP is that we will not be requiring theclients mobile device to have support for the JSR 172 speci�cation, whichhas not yet gained wide spread due to its recent release in 2004 [6]. This willalso further enhance the compatibility of DynaBlu.6.3 JSR 82: Java APIs for Bluetooth communica-tionIn 2002 JSR 82 was released by the Bluetooth SIG. This speci�cation de�nesthe Java APIs for developing Bluetooth enabled applications targeted atJ2ME. This API is designed to run on the CLDC as an extension packagefor a J2ME pro�le, like for instance the MIDP.JSR 82 allows programmers to interface with the higher-layer Bluetoothprotocols, and to develop applications that discover and publish Bluetoothservices that can be accessed from other Bluetooth enabled devices.Page 56 of 139

Chapter 6: Development PlatformJSR 82 de�nes a number of classes that makes it possible to search for nearbyBluetooth enabled devices, and to search for services on the devices that havebeen discovered. When a service have been discovered the framework returnsall necessary information about the service, such as connection strings andservice attributes.Establishing connections to services that have been discovered is transparentthrough the Generic Connection Framework (GCF). The GCF is de�ned inCLDC 1.0 as a set of classes that facilitate access to resources (the pro�leMIDP 1.0 extends the GCF framework). Because of the way the frameworkis designed resources are accessed through the same method regardless ofwhat type of resource it is. A connection string can simply be passed tothe Connector.open() method and this will open a connection to the service.JSR 82 contains a number of classes for publishing Bluetooth services atdi�erent levels in the Bluetooth protocol stack.Since the communication between the Client and the Provider in the pro-posed system is based on Bluetooth, we need to develop software for theclient that interfaces with JSR 82. The client must use functionality thatenables service discovery and communication over RFCOMM. [11]6.4 Bluetooth Connectivity with J2SEIn contrast to J2ME, there is no standard API for Bluetooth communicationin the J2SE core library. There is of course the JSR 82 API for J2ME, butno standard implementation for any PC platform. The reason for this isthat the implementation of a Bluetooth stack is dependent on the operatingsystem and often also dependent on the Bluetooth hardware. This is thereason for SUN's decision not to implement Bluetooth in J2SE but leavesuch implementations to third party developers.We need Bluetooth connectivity in the Java application of the provider (see�gure 3.1 on page 22). Several third party libraries exists that we took intoconsideration. They di�er mainly in the number of supported operatingsystems, communication protocols and their license of use. Table 6.1 liststhese libraries.As we concluded in section 4.2, we use the RFCOMM protocol to commu-nicate between the Bluetooth devices. Support for this protocol is thereforethe main criteria for the choice of a suitable Bluetooth library. The Bluecove,Impronto and Avetana libraries all support RFCOMM.For a potential deployment of our project, support for various operating sys-tems is preferable, this is also in accordance with our compatibility systemphilosophy. According to table 6.1, the Avetana library supports the largestPage 57 of 139

6.5 Dynamic class loadingName Operating Systems Protocols LicenseBluecove [52] Windows XP SP2 SDP, RFCOMM LGPLJBlueZ [53] Linux(BlueZ stack) HCI interactiononly GPLImpronto [46] Linux SDP, L2CAP, RF-COMM, OBEX CommercialHarald [25] Linux(BlueZ stack) HCI interactiononly GPLAvetana [20] Linux(BlueZ stack) SDP, L2CAP, RF-COMM, OBEX GPLAvetana [20] Windows, MacOS X,Windows Mobile SDP, L2CAP, RF-COMM, OBEX CommercialTable 6.1: Third party Bluetooth libraries for J2SE and their features and lim-itationsnumber of operating systems. Furthermore the Avetana library implementsthe JSR 82 API partially. This is bene�cial for the implementation of theBluetooth communication in the client and the provider, since the imple-mentations are syntactically similar to each other.The Linux implementation of the Avetana library is based on JBlueZ anduses the BlueZ Bluetooth stack and driver to access Bluetooth devices. SinceAvetana extends JBlueZ and JBlueZ is released under the terms of the GPLlicense, Avetana is forced to release their product under the GPL license aswell. This is comfortable for us, because the source code is thereby madeavailable for free download.For a possible deployment scenario, we might decide to choose another librarybecause the GPL license possibly forces us to release the source code as well.This could eventually destroy our business strategy. But for now, we use theAvetana library which seems suitable for the �rst steps.6.5 Dynamic class loadingThe DynaBlu framework is based on being able to invoke web services thathave been discovered dynamically. In order to do this stub classes must begenerated at runtime that match the WSDL �les describing the interfaceof the web services. The standard way to do this is to download a class�le from a server and load the class �le with a custom class loader. Thisconcept of loading new classes at runtime is called dynamic class loading.When the class is loaded it can be instantiated as a stub class and webservice operations can be invoked with calls through this stub. This dynamicgeneration of stub classes presents a problem for us, because of limitationsPage 58 of 139

Chapter 6: Development Platformin the KVM. In the following sections we discuss this problem further andinvestigate possible solutions to overcome this problem.Dynamic class loading in the KVMThe Java Virtual Machine (JVM) supports dynamic class loading by allow-ing custom class loaders. A custom class loader is created by subclassingjava.util.ClassLoader and can essentially be implemented to interpret anyJava class represented in a bytestream.The KVM disallows the use of custom class loaders. There are two reasonsfor this:1. Security. The KVM and the CLDC disallows dynamic class loading toprevent execution of malicious applications without the knowledge ofthe user. This decision was made early in the CLDC 1.0[4] speci�cationin 2000. Although the hardware platform of mobile devices has changedsince then, CLDC 1.1[5] from 2003 still disallows dynamic class loading.Restrictions of dynamic class loading is an implication of the so-calledsandbox model imposed on CLDC applications.The restrictions of the sandbox model are explained as follows in theCLDC 1.1 speci�cation: �Java applications cannot escape from thissandbox or access any libraries or resources that are not part of theprede�ned functionality. The sandbox ensures that a malicious or pos-sibly erroneous application cannot gain access to system resources.�[5]In addition to the sandbox model the CLDC 1.1 has further restrictionson the use of dynamic class loading: �by default, a Java application canload application classes only from its own Java Archive (JAR) �le. Thisrestriction ensures that Java applications on a device cannot interferewith each other or steal data from each other.�[5]. This restrictionprohibits us from sending a Java Archive (jar) �le containing stubclasses, to a CLDC device and then executing this jar to invoke webservices through its stubs.2. Hardware restrictions. The low amount of memory available in mobiledevices and the slow CPU's would make dynamic class loading imprac-tical. The reason for this is the cost of executing the CLDC preveri�eron a mobile device. The CLDC preveri�er is the component responsi-ble for converting compiled Java class �les into a �le that will work ina CLDC compatible VM. The memory costs of applying the preveriferis discussed further in section 5.2 of the CLDC 1.1 speci�cation [5]Page 59 of 139

6.5 Dynamic class loadingPossible SolutionsFrom our perspective there are three ways to solve the problem with dynamicclass loading in the KVM.Extending CLDCOne idea could be to extend the CLDC to include a dynamic class loaderfor the KVM. In the article [44] they discuss and compare di�erent possiblesolutions for the introduction of a dynamic remote class loader in the CLDC.However, despite of their e�orts they do not provide any reference implemen-tation. Nor have we seen any signs of an implementation of a dynamic classloader in future CLDC speci�cations. A problem with a potential solutionlike this is that it would require the implementation of a custom KVM inthe mobile device, and as a result of this dynamic class loading would onlywork on phones using this non-standard KVM.Hacks and WorkaroundsAnother idea is to attempt to facilitate dynamic class loading arti�cially byusing hacks and workarounds to manipulate the system of a mobile device.In [3] a method to provide dynamic class loading in the KVM is proposed.This method builds on the fact that the Palm implementation of the KVMstores class information in a local database, that is accessible by client appli-cations at runtime. By modifying this database at runtime, introduction ofnew classes into the system is made possible. The problem with this solutionis that it only works with the Palm implementation of the KVM.In [2] a workaround that allows accessing native methods from a Midletis explained. This workaround makes it possible to implement a kind of�dynamic class loading�. This solution is based on interacting with nativemethods through socket calls to localhost. However, platform-independenceis only given by the methodology of using socket connections to localhost.The workaround is implemented in C++ and bound to Windows Mobile,Linux, and Symbian OS distributions on mobile devices.Runtime Proxy InformationA third solution is to avoid dynamic class loading altogether. Instead ofrepresenting a web service application in a stub class and using the stub tointeract with the application it is possible to parse the information needed tocommunicate with a web service directly from the service's WSDL interface.This parsed information can be used to create and send SOAP messages atruntime using the kSOAP framework. Thus instead of having to dynamicallyload a stub class to invoke web service operations we can instead use theinformation stored in the WSDL interface to instantiate the communicationclasses needed to communicate with the web service. We call this methodruntime proxy information. Page 60 of 139

Chapter 6: Development PlatformThe runtime proxy information required when using this workaround in-cludes the name of the web service, its operation names and their associatedparameter signatures, and �nally the XML namespace that the web serviceis deployed in.Obtaining the runtime proxy information from a WSDL interface thoughobviously requires the client to know the location of a web service's WSDLinterface.ConclusionThe methods we investigated concerning extending the CLDC and usinghacks and workarounds proved to be inadequate for our use because theysu�er from being either hardware dependent and/or bound to a speci�cmobile operating system. These constraints contradict our philosophy ofCompatibility, see 3.4.The only viable solution we have found to solve our problem is to use theworkaround involving runtime proxy information and parse this from theWSDL interface describing a web service application. Using this informationwe can instantiate the communication classes needed to interact with theweb service by using kSOAP. Though as previously mentioned we will needto solve the problem concerning the location of a web service applicationsWSDL interface, in other words the client must be able to obtain a WSDL�le describing a web service at runtime. We discuss our solution to thisproblem in chapters 9 and 10.

Page 61 of 139

Part IIIDesign

63

Chapter 7System Design
In this chapter the general design and interaction pattern between the maincomponents of the system will be discussed. The design of each of thecomponents in �gure 3.1 from the problem statement is presented, whichincludes important design decisions and interesting implementation details.The Bluetooth communication link in the bottom of �gure 3.1 from the prob-lem statement will be implemented in a separate software module called theBluetooth Communication Bridge. This bridge is responsible for maintain-ing secure and reliable connections between Bluetooth clients and providers,and to enable transmission of Soap messages through the bridge. To improvereadability the Bluetooth Authentication Mediator in �gure 3.1 is referredto merely as the mediator in the rest of the report.Before elaborating on the design of the individual components the remainingpart of the introduction gives an overview of the overall system interactiondesign. Figure 7.1 presents a sequence diagram of the system design.In the left side of the �gure there is a legend indicating which phase the in-teraction is part of, which are the communication phases that were presentedin the problem statement (note that the publishing phase is not part of theinteraction design, this phase is part of the installation of a new provider).Discovery phase In this phase the client and provider communicate throughthe Bluetooth channel. The client initiates service discovery and a Bluetoothconnection to the provider. Note that the provider does not immediately setup a bridge for this client in case negotiations with the mediator fail (doingthis would make the system vulnerable to denial-of-service attacks).Authentication phase The client and provider communicate with the me-diator over the Internet (GPRS in the case of the client). The client andprovider attempt to authenticate each other and negotiate connection de-65

Figure 7.1: Overview of system interaction design. The zigzag part of the lineimplies that the interactions do not happen in any particular order.tails. If this negotiation is successful the provider sets up a provider bridgefor the client.Communication phase Further communication between this client andprovider now proceeds through the bridge by exchanging SOAP messages.First the client requests a list of available web services, and upon selecting oneof them a WSDL �le is returned. The client uses this WSDL �le to generateruntime proxy information needed to invoke the selected web service.
Page 66 of 139

Chapter 8Bluetooth Communication Bridge
As we described in chapter 3, the central aspect of our framework is to invokeweb services using an application on a mobile phone. Technically, the webservice is not invoked on the mobilephone, but on the provider. To realizethis we build a communication bridge over a Bluetooth channel that makesthis possible, hence the name Bluetooth Communication Bridge.In this chapter we will describe this bridge and its design on both the clientside and the provider side.8.1 Bridge DesignWhen web service requests and responses pass through a Bluetooth con-nection there are certain requirements to the data transport. Reliability, in-tegrity, authenticity and security are provided by the HTTP and the HTTPSprotocols when web services are invoked over the Internet. The Bluetoothcommunication bridge must at least provide the same level of reliability andsecurity. Therefore these quality-of-service aspects have to be implementedover the Bluetooth channel. These aspects are enforced in the communica-tion protocol of the bridge.An overview of the Bluetooth communication bridge is given in �gure 8.1.Inspired by the OSI reference model and [42], we chose to apply a layeredarchitecture for the implementation of the communication protocol. TheQoS requirements can be separated into groups, which are ideal candidatesfor individual layers. This architecture eases maintenance of the sourcecodesince every layer is decoupled from each other. Also because of the similar-ity between the provider side and the client side (see �gure 8.1) parts of the67

8.1 Bridge DesignBluetooth communication bridge have to be implemented only once. Fur-thermore the layered architecture makes it easy to add new functionality byadding new layers, and to exchange existing functionality by replacing layers.This adheres to our system requirement of extensibility. We illustrate thisshortly.Each layer in our bridge is responsible for its own isolated functionality.The following listing brie�y characterizes each layer and their respectiveresponsibilities.Bluetooth Layer Is responsible for sending and receiving the individualbytes of a complete data stream over a Bluetooth connection.Integrity Layer According to [22], Bluetooth enforces reliability for theindividual bytes being sent and not for the total amount of data beingsent in a message. Therefore we have to ensure the integrity of acomplete message ourselves.The Integrity layer is responsible for checking the integrity of an entiremessage. This is achieved by embedding the byte array data being sentwith a checksum. This checksum is used on the receiving side to checkthe integrity of a message. The details of this layer are explained insection 8.2.1.Security Layer Is responsible for the authentication and encryption of amessage. It is based on symmetric encryption and thus needs a com-mon key between the client and the provider which is negotiated withthe mediator in the Authentication phase (see page 22). Further de-scription of this layer is in section 8.2.2. This layer was implementedto satisfy our Security and Credibility philosophies.Routing Layer After a provider has received a SOAP message. This needsto route the SOAP message to the web service application it was in-tended for. The routing layer is responsible for transferring the requiredrouting information to the provider. Because of the triviality of thislayer we will not be describing it further. The implementation of thislayer can be seen in d619a.common.bridge.routing.RoutingLayer[24] .Serialization Layer Is responsible for converting Soap objects to a bytearray and vice versa. This serialization and deserialization process isdone by converting the SOAP messages being sent to and from bytearrays. We have derived most of the implementation in this layer fromthe kSOAP framework and we will thus not be describing this layerfurther. The implementation of this layer can be seen in d619a.common.soap.serialization.SerializationLayer [24] .Page 68 of 139

Chapter 8: Bluetooth Communication Bridge

Routing

Integrity

Bluetooth

Routing

Integrity

Bluetooth

Security

Byte data

Soap objects

Client Provider

Security

Serialization Serialization

Application Application

Figure 8.1: Overview of the layered design of our Bluetooth communicationbridge. The dashed line parts the bridge from the rest of the provider and the clientapplication (greyed out).At the implementation level, we accomplish the decoupling of the layers byusing interfaces. Each layer implements the same interfaces for sending andreceiving data. The layers can then be put together by passing references tothe individual objects. Our interfaces have been implemented in the classesTransport and TransportCallback , located in the Common Modulescomponent in d619a.common.bridge.interfaces [24] . The Transportinterface describes the functionality for sending data down the stack whilethe TransportCallback interface describes the functionality that is used forsending noti�cations to the upper layers by using callbacks.To keep the abstraction between the application and the Bluetooth com-munication bridge, we implement on both the client and provider side aBridge Manager which is responsible of instantiating and putting the layerstogether. It is also responsible for providing the individual layers with addi-tional information such as the encryption key. Setting up the bridge layersPage 69 of 139

8.1 Bridge Designis the same on both sides. Listing 8.1 shows how the bridge is set up byconnecting all the layers. In line 3 the integrity layer is created with theBluetooth layer as a parameter. This has the e�ect that the integrity layeruses the Bluetooth layer to send data. Line 7 sets the callback receiver ofthe Bluetooth layer, which has the e�ect that data received in the Bluetoothlayer will be passed to the integrity layer. This way layers are initialized andconnected to each other.1 pr iva t e void setupBr idge () {2 bluetoothLayer = new BluetoothTransport () ;3 i n t e g r i t yLaye r = new I n t e g r i t yLaye r (b luetoothLayer) ;4 s e r i a l i z a t i o nL a y e r = new S e r i a l i z a t i o nLay e r (i n t e g r i t yLaye r) ;56 // Set up c a l l b a c k r e c e i v e r r e f e r e n c e s7 bluetoothLayer . s e tCa l lbackRece ive r (i n t e g r i t yLaye r) ;8 i n t e g r i t yLaye r . s e tCa l lbackRece ive r (s e r i a l i z a t i o nLa y e r) ;9 s e r i a l i z a t i o nL a y e r . s e tCa l lbackRece ive r (t h i s .dataRece iver) ;10 }Listing 8.1: Initialization of bridge layers.As we stated earlier, the authentication and encryption key for the Blue-tooth communication is negotiated with the mediator after the Bluetoothconnection has been established. Since the security layer depends on thiskey, the layer is inserted in the protocol after the negotiation with the me-diator. Listing 8.2 shows this insertion. In lines 9 through 10 the securitylayer is connected to the rest of the bridge. This example demonstrates the�exibility of the bridge design.1 pub l i c vo id addAuthEncToConnection (B ig Intege r authencKey ,boolean on lyAuthent i cat i on) {2 // i n s t a n t i a t e authenc l a y e r3 i f (on lyAuthent i ca t i on)4 s e cur i tyLayer = new Secur i tyLayer (EncryptionMode .OFF,authencKey) ;5 e l s e6 s e cur i tyLayer = new Secur i tyLayer (EncryptionMode .ONN,authencKey) ;78 // connect authenc l a y e r to the r e s t o f t he p r o t o co l−s t a c k9 i n t e g r i t yLaye r . s e tCa l lbackRece ive r (s e cur i tyLayer) ;10 s e r i a l i z a t i o nL a y e r . setLowerLayer (s e cur i tyLayer) ;11 }Listing 8.2: Adding the security layer to the bridge.Because of the problems implied by the mobility of the user (see section 4.4),the bridge manager also has to take care of connecting, disconnecting andreconnecting Bluetooth communication channels. Furthermore each side ofthe bridge has individual requirements to the handling of connections. ThePage 70 of 139

Chapter 8: Bluetooth Communication Bridgeprovider bridge, where many clients try to connect at the same time, must becapable of handling many connections at the same time. The client bridgemust only handle one connection at a time, but it has to scan regularly fornew providers and monitor the signal of registered providers. Since theserequirements for the connection management are di�erent in the providerand in the client, we explain the design of both sides as part of the BluetoothCommunication Bridge in the next two sections.8.1.1 Provider BridgeAs we have discussed in section 4.4, the moving nature of our client must betaken into account in the design of our framework. In the provider especiallywith regards to the handling of multiple client-connections at the same time.Designing a provider that is capable of dealing with only one possible client-connection is trivial. Figure 8.2 depicts the design of such a bridge. Becausethe provider knows which client connects to the provider as well as the au-thentication and encryption key, the provider just has to wait for the client toconnect. After a successful connection establishment, the client can invoke aweb service in the provider. Since there is only one client, connecting and dis-connecting to and from the provider frequently, requires the provider to waitfor the client to reconnect only. The web service responses from the providerare always sent through the one and only existing bridge and communicationchannel to the client. And regardless if the web-service interaction is statefull or not, since there is only one client, the web service-connector in theprovider persists.
Figure 8.2: Schematic drawing of a trivial provider. This provider is onlycapable of connecting to one known client (noted C1 as connection to client 1),using the same web service and a known authentication and encryption key.In reality, clients are not known beforehand and the assumption of only oneclient connecting at the same time is not realistic. Therefore we must designthe provider to be robust for handling many concurrent connections as wellas continuous connection loss and reconnection attempts.Page 71 of 139

8.1 Bridge DesignTo ensure maximum �exibility in number and identity of the clients, thebasic idea is to let the provider to be a hub for a theoretically in�nite numberof providers described in the trivial case above and depicted in �gure 8.2.Using this template of virtualization, the implementation gains scalabilityand implementation transparency.Figure 8.3 shows the principle of this virtualization. A process inside theprovider establishes the service entry in the Bluetooth registry and waits,until a client connection is detected. As soon as a client tries to establish aconnection using Bluetooth communication with the provider, a new com-munication stack (named �Bridge� in �gure 8.3) and a web-service connectorinstance is created.These two elements together form a provider-instance for one given connec-tion. This technique is very scalable, since the provider can theoreticallyhandle an in�nite number of connected clients. Each connection is alsocompletely separated from the other clients making the handling of severaldi�erent web service requests trivial.

Figure 8.3: Schematic drawing of the virtualization of the provider. Each client(1,2,3..n) that connects (connection C1, C2 .. Cn) to the provider over the Blue-tooth bridge, gets a new instance of the provider.ImplementationAs �gure 8.3 shows, the provider is virtualized for each connecting client.This virtualization is the main responsibility of the class d619a.provider.bridge.bluetooth.BridgeManager [24] . Since the BridgeManager con-stantly listens for incoming client connections, it is implemented as a thread.Listing 8.3 shows the run() method which is the entry point for the thread.As soon as a client connection is established, the method returns with thePage 72 of 139

Chapter 8: Bluetooth Communication BridgeBluetooth address of the connected client. This address is then along withthe bluetoothLayer object passed to a new instance of the BridgeConnec-tor class which is a inner class of the BridgeManager. The BridgeConnectorobject is responsible for establishing the Bluetooth communication bridgeas well as connecting it with a service connector. According to the providervirtualization principle, the combination of bridge and web service connectorhas to be decoupled from the BridgeManager, Hence, the BridgeConnectorclass is implemented as a Thread . That causes bridge.start() in line14 of listing 8.3 to return immediately. The while(doRun) loop starts overagain and waits for another client connection which completes the virtual-ization as shown in �gure 8.3.1 pub l i c vo id run () {23 //∗ run the b r i d g e manager as l ong4 //∗ as t h e r e i s no shutdown even t5 whi le (doRun){6 BluetoothTransport b luetoothLayer ;7 try {8 bluetoothLayer = new BluetoothTransport9 (uuid , serviceName) ;1011 // wa i t f o r a c l i e n t to connect12 BTAddress c l i entAddr = bluetoothLayer .13 waitForCl ientConnect ion () ;1415 //a c l i e n t has connected ! −>run the b r i d g e b u i l d i n g16 BridgeConnector bridgeCon = new BridgeConnector17 (bluetoothLayer ,c l i entAddr) ;1819 bridgeCon . s t a r t () ; // b u i l d the b r i d g e by s t a r t i n g i t20 } catch (TransportIOException ex) {21 ex . pr intStackTrace () ;22 // . . . e r r o r hand l i n g23 }24 }25 }Listing 8.3: The BridgeManager waits until a client attempts to connect to theprovider. As soon as that happens, the BridgeManager starts a new thread, thatbecomes responsible of handling a new connection.As the BridgeManager starts the Bridge thread in line 14 of listing 8.3, therun() method of the BridgeConnector sets up the layers of the bridge al-most exactly as the client application does. The only di�erence is that theBluetoothLayer object is provided by the BridgeManager and already con-nected to a client.After the bridge is set up the BridgeConnector connects it to a web ser-vice connector provided by an object implementing the interface d619a.provider.service.interfaces.ServiceManager [24] .Listing 8.4 showsPage 73 of 139

8.1 Bridge Designthe details of connecting a bridge and a web service connector together. Inline 18 of listing 8.4 the web service connector starts to do the processing.This method waits for incoming web service requests, processes them andsends an answer back to the client. doProcessing() is blocking an returnsonly if either the client disconnects from the provider, or the web serviceconnector detects that the communication has �nished. When it returns,the Bluetooth Layer is disconnected and the thread terminates. It mightlook as being unnecessary complicated with a ServiceManager, but this isa long sighted design construct that is motivated by two reasons. If theBluetooth connection has to be reconnected, the ServiceManager is able toconnect the reconnecting client with the same service connector that waits tosend its response. Furthermore is it possible to use the ServiceManager fordevice-dependent service access and reliable connections to state full services.1 //∗ g e t a s e r v i c e from the s e r v i c e −manager2 //∗ t h a t must be used t o g e t h e r w i th3 //∗ t he connected c l i e n t and s e t them t o g e t h e r .4 //∗ Af te r tha t , l e t t he Se r v i c e hand l e the p ro c e s s i n g .5 St r ing c l i e n t I d = bluetoothLayer . g e tC l i en tAddre s s () .t oS t r i n g () ;6 t h eS e rv i c e = myServiceManager . g e tSe rv i c eFor (c l i e n t I d) ;7 t h eS e rv i c e . s e tBr idge (s e r i a l i z a t i o nL a y e r) ;8 s e r i a l i z a t i o nL ay e r . s e tCa l lbackRece ive r (t h i s) ;910 try {11 //when e v e r y t h i n g i s in p lace , connect the B lue too thl a y e r !12 // (connect j u s t s t a r t s t he l i s t e n e r th read .)13 bluetoothLayer . connect () ;14 } catch (IOException ex) {15 ex . pr intStackTrace () ;16 }1718 //and l e t t he s e r v i c e do the p ro c e s s i n g .19 t h eS e rv i c e . doProcess ing () ;2021 bluetoothLayer . d i s connec t () ;Listing 8.4: The Bridge object calls the ServiceManager to get a service for theconnecting client. The service is then connected to the bridge and the service cando the processing. As soon as the service �nishes, the BridgeManager disconnectsthe client.The implementation of the BridgeManager is multi threaded to allow multi-ple clients to be connected to the provider at the same time. However, theAvetana Bluetooth library used to communicate with the Bluetooth devicedoes not provide simultaneous connections to more than one client. This isa �aw in the Avetana library that is not mentioned in its sparse documen-tation. Therefore this problem has been observed only after the implemen-Page 74 of 139

Chapter 8: Bluetooth Communication Bridgetation of the provider. By making a call to LocalDevice.getLocalDevice().getProperty("bluetooth.connected.devices.max"); the �aw is re-vealed.There are possible solutions to this problem. Since the Avetana library isopen source, it can be changed and extended by anyone interested. Thereis already one extension called JBluetooth, available at [45]. Changing thelibrary for Bluetooth communication would also be a possibility. At the cur-rent state of the development no solution is implemented since the projectgoals only de�ne a functional implementation and no solution that coulddirectly be used in a production environment.8.1.2 Client BridgeAlthough the bridge in the client resembles the provider bridge, there arebig di�erences. While the provider bridge is designed towards the capabilityof handling many connections at the same time, the client bridge adheres tocompletely di�erent design criteria.Since the client is frequently moving, we have to take into account a changingenvironment in terms of connectivity to providers. We discussed centralpoints of mobility and communication in section 4.4. But we have paid littleattention to the properties of discovering devices and scanning for services.Due to the design of the Bluetooth communication, device inquiry and servicescanning takes time in the magnitude of tenths of seconds.This is an unacceptable property for the client application if it implies thatthe user has to wait while the application scans for available providers.Therefore we designed the client bridge so that it meets the requirement ofdynamically discovering providers along with the need for smoothless user in-teraction. A module called SearchUnit d619a.client.bridge.bluetooth.searchunit [24] is responsible for all scanning and discovery.We have implemented the following features that allows us to minimize thetime spent for device discovery and scanning for available services in thesedevices.
• Filtering on the Classes of Devices attribute as speci�ed in the Blue-tooth speci�cation document [22] makes scanning for services on de-vices that are not interesting unnecessary.
• To minimize the number of rediscoveries of devices and their services,we maintain lists to keep track of the devices and services already dis-covered. A whitelist holds the devices we know are providers whilea blacklist has all discovered devices listed that do not provide anyPage 75 of 139

8.1 Bridge Designservices of use. As soon as a known device is being rediscovered, res-canning of its services is prevented by use of the lists.
• By monitoring devices in the whitelist for the availability of their ser-vices we can provide the user with a preliminary list of services in thevicinity without the need for a complete device and service discoveryevery time the user requests a list.These features are only optimizations to reduce the time consumption. Butthe user still has to wait for a complete list of available providers. Themost elegant solution would be to permit concurrent communication witha providers web service and discovery of new providers and services. Butsince Bluetooth devices in mobile phones are restricted in their capabili-ties, they do not necessarily support such a dual-mode (javax.bluetooth.LocalDevice.getProperty() reveals these capabilities). Therefore we splitthe discovery of new providers in two modes. The idle-mode which ac-tively scans the vicinity for new devices and the interaction-mode whichonly passively checks already discovered devices for their availability. Thenames idle-mode and interaction-mode refer to the interaction between theclient application and a web service. While connected to a web service, theSearchUnit is in interaction-mode. While not connected, the SearchUnit isin idle-mode. The two modes and their tasks are depicted in �gure 8.4 andin �gure 8.5.Idle-ModeWhile the client is not connected to a provider, the SearchUnit, which han-dles the discovery of devices and services is set in idle-mode. The left side of�gure ?? depicts how the idle-mode works. The �rst step, where we check theelements in the whitelist for availability is the same as in interaction-modeand will be explained separately.In idle-mode, the main task of the SearchUnit is to discover all devices inthe vicinity and �nd the devices which provide valid services for our frame-work. Initially, all discovered devices that are not in the blacklist nor in thewhitelist are marked as �undecided�. Each of those devices is then scannedfor services. If a device does not provide any usable services, it is stored in theblacklist and never scanned again until the list is reset. If a device providesusable services, it is stored in the whitelist and a providerlist, which holdsall available providers. As soon as all devices are discovered and scanned,the process starts over again. Page 76 of 139

Chapter 8: Bluetooth Communication Bridge

Figure 8.4: Flow chart of the idle-mode in the SearchUnit of the client bridge.

Figure 8.5: Flow chart of the interaction-mode in the SearchUnit of the clientbridge.Interaction-ModeAs soon as a connection is established to a provider, the interaction-modeas the right side of �gure ?? depicts is started in the SearchUnit. In thisPage 77 of 139

8.1 Bridge Designmode, the SearchUnit does not discover new devices but restricts itself onmonitoring already known whitelisted devices. This is done by repeatedlyscanning the known devices for its services. If a device is unreachable, thescanning fails and the signal state of the device gets the mark �no signal�.This causes the providerlist to be altered by removing the device which isno longer available. It will not be removed from the whitelist, since it mightbe available soon again, while the client is moving.ImplementationService discovery on Bluetooth devices is a complex task. There are a num-ber of details that must in place before the Bluetooth API can successfullybe used to discover services. The following has to be speci�ed when doinga service search with a call to searchServices(...) in the local DiscoveryA-gent(javax.bluetooth.DiscoveryAgent):UUIDs Every service is started with an array of UUIDs, which indicates thetype(s) of services that you are looking for. We must generate a randomUUID that nobody else is using, and use this to start provider services.This UUID must be used by clients in order to discover services thatcan be used in this framework.Attributes Every Bluetooth service has a service record in a database orservice registry in the local Bluetooth device. When a search is ini-tialized it must be speci�ed which attributes that are to be retrievedfrom the service record during the search. This works by passing anarray of hexadecimal numbers, which each correspond to a particularattribute. These numbers are speci�ed by the Bluetooth SIG in [27].Remote Device Each service search is initiated on a remote device thathave been discovered by a device search. A device search can be startedby calling the method startInquiry(...) in the local DiscoveryAgent.The search unit we have implemented uses separate modules for doingdevice searches and service searches.Discovery Listener When initiating searches for devices or services a dis-covery listener must be speci�ed. This is a reference to the class thatwill handle call-backs when a service has been found or the search is�nished or aborted. The class that is referenced must implement theinterface DiscoveryListener located in javax.bluetooth.When a service has been found the discovery listener will be noti�ed witha callback, which takes the service record of the discovered service as aPage 78 of 139

Chapter 8: Bluetooth Communication Bridgeparameter. This way attributes can be extracted from the service record,and compared with further search criteria, like for instance if the name ofthe service is correct. The search unit module can be found in appendix Vin listing 2.8.2 Bridge Layers8.2.1 Integrity LayerSince the RFCOMM protocol which we use for Bluetooth communicationemulates a serial cable connection, there is one major shortcoming. Theprotocol guarantees the order of the transferred bytes and the integrity ofindividual bytes. But since the nature of a serial connection is a streamconnection, there is no beginning or end of a message. Hence integrity of asingle Soap message as we send it can not be guaranteed by the RFCOMMprotocol. We thus developed the integrity layer in our bridge. This layerensures that an entire message has been received and that the message isvalid. We do this by adding a checksum to the message when sending amessage, and check and remove the checksum upon receiving the message.When sending a message, we calculate a 128 bit checksum of the data usingthe MD5 hashing algorithm. The MD5 algorithm is a fast and widely usedhash function that generates a 128 bit message digest using trap-door orone-way mathematical functions. This means that it is impossible to reverseengineer the original message from a digest (excluding brute-force meth-ods) [23]. This checksum is inserted into the �rst 16 bytes of the message.Figure 8.6 shows a message that has been embedded with integrity informa-tion. As can be seen from the �gure the message has also been embeddedwith length information in the 4 bytes following the checksum. The lengthinformation contains the length of the n bytes of data being sent. Thisinformation is needed when receiving messages in the integrity layer.
MD5 Checksum Length Data

16 bytes n bytes4 bytes

Figure 8.6: Message embedded with integrity informationWhen receiving a message the integrity layer must �rst perform the integritycheck when the entire message has been received. This is handled by waitingPage 79 of 139

8.2 Bridge Layersuntil the 4 bytes representing the length information has been received. Nowhaving read this information we read in data until the number of bytesdictated by the length information has been received.The length information can be of an arbitrary length dependent on the num-ber of data bytes n, though because we have allocated 4 bytes for lengthinformation we limit the size of messages to of maximum 232 bytes (Approx.the amount of data on a DVD) which should be more than adequate for anymobile device today.When the message data has been received we calculate a checksum on thedata and compare this to the checksum saved in the �rst 16 bytes in themessage. If the two checksums match we will have veri�ed the integrity ofthe message. Now we can remove the integrity information from the messageand safely signal the layer above the to continue processing the message.8.2.2 Security LayerThe security layer implements symmetric key encryption functionality, whichis used for both encryption and signing of messages. The layer operates onmessages and each of the messages are represented in a byte array.There are two modes of operation: Encryption and signing. The mode ofoperation depends on whether encryption is turned on or o� by the sur-rounding environment. If encryption is turned o�, the mode of operation issigning. The mode is set up when the security layer is initialized along withthe encryption key, which is a 128 bit randomly generated, large integer,which is obtained by the environment from the mediator. The security layeris implemented in Security.java d619a.common.bridge.security [24] .EncryptionIn this mode all tra�c will be encrypted. Figure 8.7 shows how a messageis encrypted and decrypted. First an MD5 digest is generated from the datamessage and appended. The digest is needed later to ensure that decryptionwas successful. Next the entire data message is encrypted (including thedigest). When the message is received on the other side of the bridge theentire message is decrypted. After decryption the MD5 digest that wasappended before encryption is stripped from the message. A new MD5 digestis generated on the remaining data, and the new digest is compared to theappended digest. If the two digests match we can be sure that the messagewas decrypted successfully with a correct encryption key. If they do notmatch the key was incorrect or the data was altered, and an exception israised. Page 80 of 139

Chapter 8: Bluetooth Communication Bridge

Figure 8.7: Encryption and decryption of a message. Encrypted data is markedwith dashed box lines.Because the message can only be read if it is decrypted with the correctkey both con�dentiality and authentication is provided, satisfying our Secu-rity and Credibility system requirements. If the message was altered afterencryption, the decryption would fail, therefore integrity is also provided.SigningIn this mode of operation all messages will be signed with an encrypted digestof the message. Figure 8.8 shows how a message is signed and authenticated.The di�erence between signing and encryption is that only the attached MD5digest is encrypted. To authenticate a message the attached MD5 digest isstripped from the message and decrypted, and a new digest is generated onthe remaining data. A message is successfully authenticated if the decryptedMD5 digest matches the new digest. If they do not match the key wasincorrect or the data was altered, and an exception is raised.The message can only be authenticated with the correct key and if the datais altered the digests will not match. Therefore authentication and integrityis provided, satisfying our Credibility requirement.In this process it is important that the encryption key cannot be reverse en-gineered from looking at the data that was encrypted (since an eavesdroppercould calculate the MD5 sum and compare it with the encrypted MD5 sum).By using large 128 bit encryption keys this risk is minimized.Encryption engineThe encryption engine that is used in the security layer is Bouncy Castle'sARC4 implementation (org.bouncycastle.crypto.engines.RC4EnginePage 81 of 139

8.2 Bridge Layers

Figure 8.8: Signing and authentication of a message. Encrypted data is markedwith dashed box lines.[24] [41]). This is a lightweight, open source implementation of the widelyused, stream cipher ARC4 algorithm.Listing 8.5 shows how the encryption engine is initialized in the security layer.The second parameter to the constructor is the 128 bit encryption key. Thiskey is written to a byte array in line 4, and passed to the encryption engineas an initialization parameter in line 5. The encryptionMode parameterdenotes whether the security layer should operate in encryption mode orsigning mode.1 pub l i c Secur i tyLayer (i n t encryptionMode , B ig Intege rencryptionKey) {2 t h i s . encryptionMode = encryptionMode ;3 t h i s . encrypt ionEngine = new RC4Engine () ;4 byte [] key = Big Intege r s . asUnsignedByteArray (encryptionKey) ;5 t h i s . encrypt ionEngine . i n i t (true , new KeyParameter (key)) ;6 }Listing 8.5: Initialization of encryption engine.After initialization of the engine data can be encrypted by calling the methodprocessBytes(). Listing 8.6 shows how this works. Lines 1 through 3 creates anew checksum on the data and adds it to a new byte array together with thedata. Line 4 creates a bu�er for the encrypted data. In line 5 processBytes()is called with the following parameters: (input data, o�set into input data,length of input data, output bu�er, o�set into output bu�er). The data inthe input bu�er is encrypted with the ARC4 algorithm and written to theoutput bu�er.1 MD5 md5 = new MD5(data) ;2 byte [] checksum = md5 . doFinal () ;3 byte [] dataToBeEncrypted = addChecksum (checksum , data) ;4 modif iedData = new byte [dataToBeEncrypted . l ength] ;Page 82 of 139

Chapter 8: Bluetooth Communication Bridge5 encrypt ionEngine . p roce s sByte s (dataToBeEncrypted , 0 ,dataToBeEncrypted . length , modifiedData , 0) ;Listing 8.6: Encryption of data using processBytes().

Page 83 of 139

Chapter 9Client
In this chapter we present the design and implementation of our client appli-cation running on the mobile device of the user. We �rst describe the overalldesign of the the client GUI forms and the relationship between these forms.Next we proceed to disuss issues concerned with the use of the web serviceapplications in a service provider. Finally we discuss implementation detailsand issues experienced while developing the client application.9.1 DesignThe purpose of the client application is to allow a user to interact with aservice provider. We have implemented a number of user interfaces whichallow a user to do the following.ServiceBrowserList Discover a nearby service provider and choose a Blue-tooth service.WebServiceBrowserList Choose a web service application exposed viathe Bluetooth service.OperationBrowserForm Choose an operation to invoke in the selectedweb service application.Primitive/DynamicResultsForm Show the results of the operation in-vocation in an appropriate results window.In order for us to separate the user interaction forms into seperate compo-nents used in the client application Midlet, a design based on what we call85

9.1 Design
MainMidlet

WebServiceBrowserList

ServiceBrowserList

OperationBrowserForm

PrimitiveResultsForm DynamicResultsForm

Selects Bluetooth device and service

Selects Web Service app.

Selects and invokes
an operation

Shows the results
from the operation

Only one web
service

More than one web service

Figure 9.1: Navigation-diagram showing the dialog �ow in our user interaction.Note that the dashed box represents a non-visible entity.parent-child interfaces have been created. For instance if a service browserform opens a web service browser form, the service browser would becomethe parent to the web service browser, which would become the child of theservice browser. This relationship is required because we want a user to al-ways be able to return to a previous form by pressing a �Back� button. Therelationship between our forms is shown in �gure 9.1. In this example theparent-child relationships is represented top-down, meaning that the upperforms are parents to the lower forms. This way of buiding the client GUI issuperior to the standard design proposed by most GUI modeling tools forMidlet applications, where an entire applications UI �ow is modeled in asingle Midlet class, which becomes di�cult to understand and maintain.In this �gure we see that if a user selects a Bluetooth service from a providerand this service only o�ers a single web service application, we skip theweb service browser and directly show the user the operation browser. Thisdecision was made because we want to minimize the required interactionfrom a user in order for her to consume a provider application.In order for us to communicate with a service provider and �nd out whatapplications it has to o�er, we communicate with a prede�ned provider webservice, which we discuss in detail in chapter 10. The interaction steps takingplace between the client and this provider web service is shown in �gure 9.2Page 86 of 139

Chapter 9: Client
Request list of web services

List of web services

Request web service data

WSDL + XSD schemas

Soap request

Soap response

Provider
web service

WSDL
Parser

Client

Runtime Proxy
Information

Bluetooth
Service
Browser

Web Service
Browser

Soap
Factory

Operation
Browser

Results
Form

Web service
application

Figure 9.2: Example interaction between the client and the provider. The �gureshows the involvelment of the WSDLParser and SoapFactory modules.Here we see that the client �rst requests a list of the available web serviceapplications placed in the service provider. This list is shown in the webservice browser. Now the user selects a web service from this list. Basedon this selection the framework then requests the WSDL �le and associatedXSD schemas of this web service. Next this information is passed to the WS-DLParser component (implemented in d619a.client.wsdl [24]), whichis a custom WSDL parser we have developed to parse out information to useruntime proxy information, mentioned in section 6.5. This runtime proyxinformation is stored in a WSDLContainer object, implemented in d619a.common.wsdl.datatypes [24] . We use this information to show a list ofoperations to the user in our operation browser. If any of these operationsrequire input from the user this is also represented in the operation browser.Now from the data supplied by the user and the runtime proxy informationa Soap request message is generated. We generate this by using the Soap-Factory module, implemented in d619a.common.soap [24] . This moduleis used to generate kSOAP Soap messages. Now having generated an appro-priate Soap message we send this to the chosen web service in the provider,which in turn responds with a Soap response that we show in our client GUI.We have included an illustration of the actual client application GUI �ow inPage 87 of 139

9.2 Implementationtable 9.1.We discussed the restriction of not having dynamic class loading in theCLDC, in section 6.5. Our conclusion from this analysis was to use runtimeproxy information. This conclusion was adequate for our dynamic com-munication with web services. However another consequence of not havingdynamic class loading is that the web service applications deployed in a ser-vice provider will not be able to return arbitrary data types. Web serviceoperations may only return data in a format that can be deserialized bystandard kSOAP routines, in other words the web service operations mayas a starting point only return primitive datatypes. However as we alsowant to be able to represent complex data such as images we have incor-porated a mechanism that allows an application to also return a numberof prede�ned datatypes, that we supply. To implement this mechanism wewere required to be able to return serialized complex data types by use ofprimitives. We use a naming convention that allows a client to distinguishbetween methods returning speci�c complex types and primitive types. Ourmechanism is based on embedding type information into the name of a webservice operation.Now when we invoke an operation we will be able to handle a complexresponse by examining the name of the operation we are invoking, and us-ing the ClassLoader we can load an appropriate class needed to handle thereturn data. For example an operation, called showImage returning an im-age in our framework would for instance have the following complete named619a_client_gui_datatypes_Image___showImage. Now from this namewe can parse out the path of the Custom data type to handle the return data,load it, and use it to show the image. For test this design have included thisImage class in our framework, see d619a.client.gui.datatypes [24] .This class describes how to generate a form that can show an image re-sponse. Note that to send binary data in web services we use a Base64encoder to send this in a String representation. We use the kobjects Base64encoder to accomplish this. As a convention we assume that an operationreturns a primitive type if no type information has been embedded into itsname.9.2 ImplementationOne of the restrictions of using J2ME is that you are only allowed to changethe currently displayed form from a Midlet. Meaning that we cannot changeto another form from inside one of our form classes. One solution to thisproblem could be to implement each form class in a seperate Midlet. Theninstead of changing a form we would be required to simply start a new Mi-Page 88 of 139

Chapter 9: Client

(a) (b)

(c) (d)Table 9.1: screenshots of the running client applicationPage 89 of 139

9.2 Implementation
MainMidlet

+setAsCurrentView(newview:Displayable)

WebServiceBrowserList

+setAsCurrentView(newview:Displayable)

OperationBrowserForm

+setAsCurrentView(newview:Displayable)

OperationBrowser

sends a command

to change the

current view

+Child of MainMidlet

+Parent to WS browser

+Parent to OperationBrowser

+Child of WS browser

Figure 9.3: Example of method call propagation to reach the top-parent or Main-Midlet, calling setAsCurrentView to change the currently displayed form.dlet representing the form. However using J2ME you are not allowed tostart Midlets from inside a Midlet, thus this solution is not possible. Wehave used our parent-child relationship to solve this problem. The methodsetAsCurrentView has been implemented to change the currently displayedform. When making a call to this method it uses the parent-child relationshipto propagate the method call through all the de�ned parents until the top-parent or the MainMidlet class is reached and the currently displayed formis changed. Figure 9.3 illustrates the propagation of a call to this method.Also listings 9.1 and 9.2 shows the implementation details handling the prop-agation of calls to setAsCurrentView and the code in the MainMidlet classwhere the actual form change occurs.1 // Propagates v iew change to paren t2 pub l i c vo id setAsCurrentView (Di sp layab l e newview) {3 parent . setAsCurrentView (newview) ;4 }Listing 9.1: A form class propagating a call to setAsCurrentView to its parent,implemented in the form classes in the Client module d619a.client.gui [24]1 //Changes the a c t u a l v iew2 pub l i c vo id setAsCurrentView (Di sp layab l e newview) {3 ge tDi sp lay () . setCurrent (newview) ;4 }Listing 9.2: The MainMidlet class receiving a propagated call tosetAsCurrentView, implemented in the Client module in d619a.client.gui.MainMidlet [24]To implement our custom classes we have implemented a common interfacethat must be implemented by all custom data types. We call this Custom-Datatype placed in d619a.client.gui.interfaces [24] . This use of thisinterface makes it possible for us to use our datatypes in a generic manner bycalling methods on the datatype solely through this interface. This meansthat it becomes possible to create a GUI form to show the interaction re-sults of a custom data type in a generic manner, this form is implementedin d619a.client.gui.DynamicResultsForm [24] .Page 90 of 139

Chapter 10Provider
In this chapter we discuss the design and implementation of the softwaredeveloped in the provider and aspects of the client-provider communication.The provider software has been implemented as a web service called theprovider web service, not to be confused with the web service applicationsdeployed in the provider. The provider web service is used to inform theclient of the web services that are available in the provider and how thesecan be used.The provider web service also provides information used to generate the userinterfaces in the client application by mapping WSDL/XML names to user-friendly textual descriptions that can be shown in the client application'sGUI.10.1 DesignWhen a client wants to invoke an operation in a web service applicationdeployed at the provider, the client �rst needs to download information abouthow to use that service. To retrieve this information the client �rst needs tocontact the provider web service which is responsible for delivering WSDLinformation about the web service applications deployed in the provider.The provider needs to save information about the mapping of service de-scriptions to their WSDL locations, and the mapping of operation names totheir textual descriptions. We have implemented this functionality in thefollowing two con�guration �les, which by default are placed at the root ofthe application server in the provider:91

10.1 Design
• service_mapping.conf Maps service descriptions to a WSDL URL lo-cation. Note that the service description is the data that will be shownin the web service browser GUI (explained in chapter 9). We show anexample of a service mapping in table 10.1.Service Description WSDL URLHello World Service http://localhost:8080/HelloWS/HelloWS?wsdlTable 10.1: Example of a mapping. A Hello World service is mapped to thelocation of its WSDL �le
• operation_mapping.conf Maps an operation name which refers to thename de�ned in the WSDL �le associated with the service, to an op-eration description, which is a string describing the operation in user-friendly terms. An example of an operation mapping is shown in ta-ble 10.2.Service Description Operationname Operation descriptionHello World Service sayHello Make service say Helloto the worldTable 10.2: Example of a service mapping mapping the operation names in theHello World service WSDL to user-friendly descriptionsThere are other alternatives for storing this meta-data about the web servicesand their operations, however as we dicovered in [17] a solution to this prob-lem is a huge topic in itself, and not the focus of this project. Section 13.2presents a discussion of other alternatives for representing this meta-data.10.1.1 Client-Provider CommunicationFigure 10.1 illustrates the communication taking place between the client andthe provider during a communication session. When the client has chosento browse a Bluetooth service at a provider a list of web services is �rstdownloaded to the client user interface. This constitutes the �rst of theinteraction steps in which the client fetches a list of the service descriptionsde�ned in the service mapping. In this case this list would contain the servicedescriptions, contained in the service mapping, for WS App 1 and 2.Now a service description is chosen by user input in the client applicationand this service description is used as a parameter to locate and downloadthe WSDL �le and associated XSD schemas of the selected web service ap-plication. To spare the overhead of having to send an extra SOAP messagewe also piggyback the operation mapping data to this message.Page 92 of 139

Chapter 10: Provider
Reguest list of web services

(List of service descriptions)

Service description

(WSDL file content,
XSD Schema contents,
Operation mapping table)

Provider
web service

Service Mapping Operation Mapping

WS App 1 WS App 2

WSDLReader

Client

Figure 10.1: The communication taking place between the client and theprovider. In this case the provider has two deployed web service applications.When the provider web service receives a request for a WSDL �le it �rstlocates the location URL of the WSDL �le in the service mapping. It thendownloads the WSDL �le using the WSDLReader component, implementedin the Provider web service in wsdl.WSDLReader.java [24] . Now the WS-DLReader analyzes the WSDL �le to check for any associated XSD schemasand downloads these as well if any exists. The schema data is appended tothe WSDL data as a single string, which will later be parsed in the clientapplication, as explained in chapter 9.Next the relevant operation mapping data associated with the requestedWSDL �le is retrieved from the operation mapping �le. This is added to theresponse message and sent back to the client as an XML complex datatyperepresenting the WSDL and operation mapping response data.We plan to extend our client application in the fall semester of 2007 withan embedded browser, which makes it possible for us to use HTML code toformat our response messages. This opens the possibility of making moreadvanced operation mappings in our provider, where an operation namecould be mapped to HTML elements such as images, buttons, etc. insteadof merely mapping these to textual descriptions.10.2 ImplementationImplementing web service operations to return objects or in XML language,complex data types, requires us to make sure that the data is sent andreceived properly by the client. In this section we describe the implementa-tion details regarding the sending and receiving of complex data types usingkSOAP. Page 93 of 139

10.2 ImplementationThe two operations getServices and getServiceData implemented in the providerweb service in provider.ProviderInformationWS.java [24] each returnsa complex data type. The alternative to this would be to only use primitivedatatypes. This would require us to send several SOAP messages betweenthe client and provider, which could yield signi�cant data overhead.We have thus chosen to use complex data types. Consequently we needto make sure that these are properly serialized and sent to the client, onthe provider side. And on the client side we need to make sure that theseresponses are properly deserialized into their respective Java class representa-tions. kSOAP [34] provides the KvmSerializable interface, included in Com-mon Modules org.ksoap2.serialization.KvmSerializable.java [24] .kSOAP makes it possible for us to serialize custom Java objects into SOAPrepresentations by implementing this interface.To implement this we are required to �rst model our response messages intotwo Java classes named ServicesResponse.java and ServiceDataResponse.java,see provider.responses [24] for implementation details of these. Theseclasses have to implement the KvmSerializable interface and specify the prop-erties of the classes, properties here being the member values in the classes.Furthermore the types of these properties must be speci�ed. kSOAP sup-ports by default a number of types that can be serialized, which consist ofa number of primitives (such as Strings and integers) and the Vector classspeci�ed in Java. If a response message consists of properties that do notmap to these types kSOAP has an Object type that can be used. How-ever using this type requires the developer to manually write more advanceddeserialization routines on the receiving end.In our ServiceDataResponse operation mapping information is sent as aHashtable, where the key (operation name) maps to a value (operation de-scription). This is an example of a case where more advanced deserializationis needed on the receiving end. The code snippet in listing 10.1 shows thedeserialization routine that rebuilds the Hashtable after it has been receivedby the client.1 // Create an empty Hash tab l e t h a t w i l l con ta in thed e s e r i a l i z e d data2 Hashtable operationMapping = new Hashtable () ;3 // D e s e r i a l i z e op e r a t i on mapping Hash tab l e4 /∗ Get complex Ob jec t p r op e r t y named operationMapping ,t h i s c on t a i n s a l i s t o f key−va l u e p a i r s ∗/5 SoapObject operationMappingSoapObject = (SoapObject)r e sponse . getProperty (" operationMapping ") ;6 //Get they key−va l u e pa i r v a l u e s from the operat ionMappingSoapObjec t7 f o r (i n t i =0; i<operationMappingSoapObject .getPropertyCount () ; i++) {8 SoapObject keyValueSoapObject = (SoapObject)Page 94 of 139

Chapter 10: ProvideroperationMappingSoapObject . getProperty (i) ;9 St r ing key = keyValueSoapObject . getProperty (0) .t oS t r i n g () ;10 St r ing va lue = keyValueSoapObject . getProperty (1) .t oS t r i n g () ;11 //Add va l u e s to operat ionMapping Hash tab l e12 operationMapping . put (key , va lue) ;13 }Listing 10.1: Deserialization of a Hashtable, implemented in the Client modulein d619a.stub.ProviderInformationStub.java [24]The kSOAP framework saves complex objects in SoapObjects and knowntypes in SoapPrimitives. Deserializing a complex object is a matter of recur-sively decomposing each SoapObject into its SoapPrimitives and fetching thevalues from these. Figure 10.2 shows a tree representation of the Hashtabledeserialized in listing 10.1
(The overall SoapObject
 containing the Hashtable)

operationMappingSoapObject

keyValueSoapObject

keySoapPrimitive valueSoapPrimitive

..... List of keyValueSoapObjects

Figure 10.2: kSOAP representation of a Hashtable shows the relationship be-tween SoapObjects and SoapPrimitives

Page 95 of 139

Chapter 11Mediator
This chapter presents the design and implementation of the mediator, whichis labeled as the Bluetooth Authentication Mediator in �gure 3.1 in theproblem statement. The mediator is responsible for negotiating connectionsbetween clients and providers, and in this process to facilitate authentication,encryption keys and compatibility. This enitity was implemented to satisfythe Credibility and Security requirements.Figure 11.1 illustrates how the negotiation takes place. To begin with theclient device initiates a Bluetooth connection to a service provider (A). Afterthis both the client and provider sends a request to the mediator with a setof �ags signalling requirements for the communication (B), like for instancethat encryption should be turned on. When both the client and providerhas received a response from the mediator (C), the parties can continuecommunicating through the Bluetooth channel (D), unless the mediator wasunable to facilitate a connection for instance if the client software is out ofdate or if the provider was not authenticated.11.1 DesignThe mediator is designed as a web service. This web service has access toa database that contains records of all service providers. It is impossibleto connect to service providers that are not in this database using our sys-tem. For each service provider the database has a record with the followingattributes: Service name, Bluetooth address, key timeout, WSDL version,admin password. The key timeout attribute determines how long time akey is valid when communicating through the Bluetooth channel. When thetimeout expires a new key must be negotiated through the mediator. The97

11.1 Design

Figure 11.1: Connection negotiation.WSDL version attribute is used to inform clients to update their stubs.In order to be able to establish connections between clients and providersthe mediator needs a mutually exclusive shared resource that is accessiblefrom concurrent calls to the mediator web service. When a web service isinvoked the hosting servlet container of the web service starts a new process.The method call to the web service will be executed in this new process.This means that invocations of the same web service cannot directly shareJava objects. To solve this problem we use a DBMS to manage the sharedresource. Synchronization is handled by letting clients write a record in atable that holds current connection attempts, and then by letting providerslook for this record and set a �ag in the record upon discovery to inform theclient that there is a match. In this process an encryption key is generatedand written to the same record.In order for the mediator application to scale we need a reliable DBMS thatcan handle multiple connections. We use the free MySQL [40] CommunityEdition, which it is one of the most widely used free DBMSs.Figure 11.2 shows the design of the mediator component and what kind ofinformation that will be passed to and from the web service. The client andprovider will pass the same type of information to the mediator, and uponreceiving two matching requests the mediator generates an encryption key,and sends it back to the client and provider.In addition to the encryption key there are a number of other output pa-rameters that will be returned from the mediator. Both the input messageand output message has an encryption �ag. This �ag is used to specify theencryption needs of the client and provider. It may not always be necessaryPage 98 of 139

Chapter 11: Mediator

Figure 11.2: Mediator component.to encrypt the tra�c between the client and provider if the content that isbeing sent is not sensitive, like for instance if it is a museum service providinginformation about sights. Also it may sometimes be imperative to encryptall tra�c if for instance the service provider is a bank. Based on the encryp-tion �ags encryption will be set to on or o�. If encryption is set to o� thetra�c between the client and provider will still be authenticated by usingthe encryption key to sign messages (see chapter 5). Table 11.1 shows themediator encryption policy. The policy is used by the mediator to determinewhether a connection should be encrypted or not. The encryption �ag inthe output message from the mediator informs the clients and providers ofwhether encryption is on or o�, or signals an error if the encryption needswere incompatible (in this case the client must change the encryption modein order to communicate with the provider).Encryption �ag Optional Mandatory NoneOptional o� on o�Mandatory on on errorNone o� error o�Table 11.1: Mediator encryption policy.The WSDL version number output parameter is used to notify clients of thePage 99 of 139

11.2 Implementationversion of the stub that is needed to communicate properly with the serviceprovider. This version number is used to notify clients to update their stubs,and thus their client application. The response codes are used to signalif the connection attempt was successful, and are de�ned in the interfaceStatus.java d619a.mediator [24] . The error codes contain descriptionsof potential errors.Encryption key generatorThe encryption generator is used by the mediator to retrieve keys for thenegotiated connections. It is implemented in Encryption.java d619a.mediator.encryption [24] . The keys that are generated are 128 bit randomintegers.11.2 ImplementationConnection requests in the mediator must be synchronized properly in themediator to avoid deadlock and starvation situations. Connections betweenclients and providers are established by using a table in the database as ashared resource. If client and provider requests were to go through the sameweb service operation, the database would have to be locked while the op-eration call either creates or matches a record in the database. Otherwisedeadlock situation are possible. Since the DBMS has to be able to servemany1 requests at the same time it is not desirable to lock the database.Therefore client requests are made by calling the web service operation Se-tupClientConnection(), and provider requests are made by calling the webmethod SetupProviderConnection(). Figure 11.3 shows a �ow chart of howthe synchronization between the two web service operation calls is handled.The implementation of the mediator web service can be seen in appendix Vin listing 1. The source �le is located in d619a.mediator [24] .
1This number depends on how many service providers that are registered in the medi-ator, and how many users they have on average.Page 100 of 139

Chapter 11: Mediator

Figure 11.3: Flow chart of connection requests.

Page 101 of 139

Part IVConclusion

103

Chapter 12Conclusion
After having designed and implemented our framework we re�ect on theproduct and evaluate it with respect to the system requirements and philoso-phies stated in chapter 3.We start by evaluating our framework's adherence to the design require-ments, namely the extensibility, reliability and e�ciency requirements. We�rst evaluate the system as a whole and then discuss the individual compo-nents of the system. Secondly we evaluate whether our system adheres tothe usability requirements, namely the credibility, security, selectability anduser experience requirements. Finally we discuss our system philosophiesand their in�uence in the design and implementation of our system.12.1 EvaluationDesign RequirementsOur system is generally well documented in that every class and publicmethod in the framework has been documented using SUN's Javadoc tool [14],see [13] for our documentation. The decision to use Javadoc was made fromthe beginning of the project. Since work on our framework will be continuedon future semesters we made this decision in order for us to be able to quicklyunderstand and change implementation details in future versions of our sys-tem. Our documentation style adheres to the documentation requirement inour extensibility system requirement.Our framework has been developed as a distributed system aimed at bothmobile devices and stationary platforms. This necessitates the use of two105

12.1 EvaluationJava editions, namely the J2ME and J2SE platforms. Based on the factthat J2ME was designed to be a subset of J2SE, the platforms are similar inmany respects. This makes it possible to write code that is compatible forboth platforms. We have exploited this capability in creating our CommonModules library where platform independent code has been placed. Theadvantage of having this library is that maintaining code becomes easiersince we are only required to change it in one place. For instance we haveexploited this library in our bridge component where some of the layers areplatform independent and thus placed in only one place. This method ofhaving code in one place, where possible, adheres to our extensibility systemrequirement in making our code maintainable.As discussed in chapter 8 our Bluetooth Communication Bridge has beendesigned in a modular fashion by using a layered architecture. Using a lay-ered architecture gives an extensible design where individual layers can beupdated/inserted without a�ecting the other layers in the architecture. [42]The use of common interfaces in our layers makes it possible for us to com-municate with the layers in a generic fashion, which we exploit when usingour callback mechanisms.To satisfy the reliability requirement in our bridge component we have im-plemented several mechanisms to handle potential errors in the bridge com-munication. Our use of custom exceptions makes it possible for us to furtherdistinguish between errors and handle these. These mechanisms aid in mak-ing our bridge more reliable in the sense that unexpected behavior in ourbridge in minimized by either handling errors where possible or informingthe user that an error has occurred by propagating error messages to theclient application. Since errors in our system are likely to occur during com-munication sessions we have prioritized reliability in the bridge component,this also helps in making the client and provider reliable in that they areboth reliant on the use of the bridge.Re�ecting on our bridge component with respect to e�ciency we have iden-ti�ed an issue that is a result of our use of the JSR 82 speci�cation, used forBluetooth communication. In our current implementation it is only possibleto receive a single byte at a time in the Bluetooth layer. This impedes onperformance because every time a byte is received in the Bluetooth layerit noti�es the integrity layer, which then runs a number of checks. There-fore data transmission rate of the Bluetooth communication bridge is notyet good enough for a production stable solution. In future versions of ourbridge we will need to improve on the problems faced from using JSR 82,for instance the use of bu�ers in the Bluetooth layer could help in reducingthe number of callbacks being made to the integrity layer. Another solutionthat could improve on our Bluetooth throughput would be to use the L2CAPprotocol instead of RFCOMM, this solution would minimize the amount ofPage 106 of 139

Chapter 12: Conclusionheader information sent with the byte data. A third solution would be toincorporate a compression layer into our bridge which would help in limitingthe number of bytes being sent though the bridge. We discuss this scenarioin more detail in chapter 13.1.The use of callbacks in our bridge makes an e�cient design where the layersin our bridge respond to callbacks instead of having to continuously poll fordata updates between each layer.The client application has been designed with extensibility as an importantrequirement. This decision was made because the future work presented inchapter 13.1 implies that a number of changes in the client application willbe made in the future. Because of this we designed our Midlet user interfacesin separate classes to ease updates and insertions of forms into our applica-tion. This design is superior to the standard design proposed by most GUImodeling tools for Midlet applications where an entire applications UI �ow ismodeled in a single Midlet class. Another aspect dealing with extensibility isour use of class loading to represent custom data types. This feature createsa loose coupling between our client application and the custom data typessupported by our framework making it easy to introduce new custom datatypes.Our provider component has been designed with e�ciency in mind. In thisrespect e�ciency refers to communication-level e�ciency. We optimized ourProvider web service to send as few SOAP messages as possible. This opti-mization was implemented by piggybacking data to SOAP messages. Thiscommunication-level e�ciency also a�ects the time spent processing bytedata in the bridge. Because by reducing the number of SOAP messages tobe sent over the bridge we also reduce the SOAP overhead introduced ineach message.The mediator component has been designed with reliability in mind. Ourmediator uses a DBMS which allows it to scale in the number of connectionsit can handle. This is an important point since our mediator can potentiallybecome a bottleneck in the future use of our system if it gains success. Theability to scale in our belief partly meets the reliability system requirement.However an issue we have not addressed in this project is the fact thatour mediator is in e�ect a single-point-of-failure in our system. We havenot addressed this issue yet but we will be required to investigate methodsof dealing with this problem if our framework gains success in the future.One solution could be replicate our mediator component in the future yetreferring to the goal of our project, in section 3.5 we have not focused onthis perspective. Page 107 of 139

12.1 EvaluationUsability RequirementsSince the implementation of the system uses certi�cates and secure connec-tions to authenticate each other through a mediating entity, the requirementof credibility is partly satis�ed. However being able to con�rm the identi-ties of the providers using our framework does not imply that the contentof the providers is secure. Thus we need to develop a method for how thecontent published by providers will be checked. Content veri�cation couldbe achieved in a number of ways including manually checking the validity ofa providers content and incorporating mechanisms for automatically check-ing for malicious content in providers. We have chosen not to focus on thisaspect as this in itself is a large research area.Encryption functionality has been implemented in the security layer in theBluetooth Communication Bridge, and encryption keys are negotiated throughthe mediator using secure connections. Our current implementation uses theARC4 encryption algorithm, which is not recommended for systems requir-ing high-grade/military level security. Yet re�ecting on the usage examples,we presented in chapter 1, our choice of encryption algorithm should be suf-�cient to satisfy the security requirement. This is also based on the fact thatthe ARC4 encryption algorithm is su�ciently secure to be used in Internetpayment systems, see section 5.1 for more information.When a connection between a client and service provider has been set up,the user interacts with the client application through a service browser andan operation browser as explained in chapter 9. This enables users to man-ually select the services they want to interact with, and which operations toinvoke in them. Therefore the requirement of selectability is ful�lled implic-itly. This requirement in turn satis�es the Choice and Control requirementsstated by the marketing analysis we presented in section 2.1.1. In a futureversion of our framework we expect to improve the capabilities of creatinguser interaction by implementing an HTML browser into our application.This idea is discussed further in section 13.3.One aspect of the user experience requirement concerns the users of ourclient application that interfaces with service providers. Searching for ser-vice providers takes on average 18-25 seconds. These delays have been mini-mized because of our optimizations in the implementation of both the searchunit, see 8.1.2, and the Bluetooth communication. Our use of whitelists andblacklists in the search unit minimizes the time spent performing servicediscoveries.Another aspect regarding the user experience requirement is aimed at thesecond group of users for our framework, namely the developers that set upa service provider. In this respect we have found two advantages of usingPage 108 of 139

Chapter 12: Conclusionour software compared to using the push-based systems we mentioned insection 2.1.2. First our framework is cheap because it is implemented insoftware and thus we do not require the developer to purchase any hardwareproducts besides a Bluetooth device. Secondly our software is simple toinstall and use. The developer is only required to have an understandingof web services and how to use these on an application server. The onlyrequirement stated by our framework is that the developer has to manuallymap her web service applications in our mapping �les, and that the developerinstalls the provider web service.System PhilosophiesOur two system philosophies of openness and compatibility is in our opin-ion intrinsically related. If using an open standard it does not imply thatthis standard is actually widely adopted. This is the reason why we havealso included the compatibility philosophy. We chose to use the web ser-vices framework based on the fact that the speci�cations describing the webservices framework has been developed both openly and in a vendor-neutralplatform based on XML.Using SOAP however contradicts our system requirement of e�ciency sochoosing this format was a trade-o� decision preferring openness and compat-ibility over e�ciency. Yet the potential use of XML accelerators, discussedin chapter 13.1 might help in reducing the overhead of using SOAP.Our choice of using Java to implement our system was made to satisfy thecompatibility philosophy. Unfortunately no programming language existsthat applies to 100% of the mobile devices shipped today. Thus in lack ofsuch a language we chose the one that is most compatible on todays mobiledevices. As mentioned in section 3.4 Java is currently supported on 70% ofthe mobile devices being shipped today.12.2 ConclusionIn section 3.5 we de�ned some areas of investigation for our project. Inthe analysis part of this report we covered those areas thoroughly. Theknowledge foundation gathered from this analysis has provided us with thenecessary insight and knowledge needed to implement an extended proof ofconcept of the framework proposed in the problem statement.The design of the individual components in DynaBlu re�ect the insightsgained from the analysis, and many implementation issues have been resolvedduring the project by revising and debating design details.Page 109 of 139

12.2 ConclusionThe design requirements are important to ensure that future work on Dyn-aBlu is successful. Furthermore as the requirements are meant to be long-term requirements we apply them in order to be able to identify futureimprovements that is needed for DynaBlu to enter a production-stable state.Our bridge is an example of a component that ful�lls the extensibility andreliability requirements. Future work could improve the e�ciency of thebridge in order to raise it to a production-stable level.The usability requirements of selectability, credibility and security are sat-is�ed in the current implementation of DynaBlu, which is a good startingpoint for creating a system superior to existing similar systems. For instancesatisfying the credibility and security requirements opens the door for newapplication domains, such as banking services.

Page 110 of 139

Chapter 13Perspectives
It is an open question whether DynaBlu will be successful. In this contextsuccess implies that the framework is used as a platform for implement-ing Bluetooth systems at a number of di�erent locations. The success ofDynaBlu depends on the attention and popularity that this project gains inthe local environment, the user acceptance of DynaBlu and the developeracceptance of DynaBlu.PopularityIf this project receives a lot of attention at Aalborg University and in the localmedia the chances for success will increase signi�cantly. Media attentionwould for example lighten the burden of having to spend money and timeon marketing e�orts.User AcceptanceIn order for a user to be able to interact with a Bluetooth system that isbased on DynaBlu she will need to obtain the client software that will run onher phone, which could for instance be downloaded from a web page. Thisis a drawback with regards to spreading the framework rapidly.For the users to accept DynaBlu the performance of the Bluetooth communi-cation and discovery must be fast enough to relieve the users of waiting a lotof time to receive data or searching for services. The Bluetooth communica-tion is not yet fast enough for a production stable solution because of imple-mentation details with using the JSR 82, but as mentioned in the conclusionthis problem can be solved by using additional bu�ering and interfacing withL2CAP instead of RFCOMM. Another way of improving the performanceof the Bluetooth communication would be to implement a compression layerinto a future version of our bridge. Such a layer could contain XML compres-sion features as available in several commercially available XML accelerators111

such as IntelR©'s XML accelerator [29] and IBM's WebSphere DataPowerXML Accelerator XA35 [28]. The performance of the Bluetooth discovery ison the other hand acceptable in the current state because of the optimizationimplemented in the client bridge.The acceptance of DynaBlu also depends on how well the client applicationis accepted by users. The client GUI is not very appealing in the currentstate, but is simple and functional. And since it is designed to be extensible,improvements can be made as the needs arise in the future.Another factor that will be important for the success of the framework ishow much time it will take for it to be developed into a production stablesolution. This depends on how much is needed in order for the system tobe production stable, and to answer this question we would have to test thesystem with actual users.Developer AcceptanceFor developers to accept DynaBlu it must be simple to develop and publishservices. In the current state web services are published that o�er data that iseither text or pictures. There are many tools available that enable developersto build and deploy web services, and this is an advantage. Furthermore sinceservices are published as web services it is possible to integrate them in otherapplications. In the future we would like to be able to handle HTML datain the provider services as well. This way dynamic content could be viewedin a browser on the mobile device, and developers would be able to workwith a language that is straight forward for most developers. Section 13.3discusses this option in detail.Important QualitiesThere are a number of qualities of DynaBlu that are particularly importantfactors that will have an in�uence on its success. The selectability fromthe users point-of-view is a clear advantage compared to existing systems.Furthermore the security implemented in our framework opens the door fornew types of applications that involve sending sensitive information, suchas instance payment systems and banking services. The existing Bluetoothsystems that we have examined in the preanalysis are all based on hardwarecomponents that have been developed by the various companies. Our frame-work is based entirely on software and is therefore a cheap way of creating alocation-aware system.Technological PerspectivesAs the mobile hardware platform is under continuous development, and theresources of mobile devices will increase, it is possible that dynamic classloading will be incorporated in the mobile platform at some point. DynamicPage 112 of 139

Chapter 13: Perspectivesclass loading would create new opportunities for us. For instance the clientsoftware could be downloaded directly from a service provider as a class �le,and loaded directly into the memory of the mobile phone, which would makeit easy to spread the client software. Furthermore dynamic class loadingwould make it possible to download and run dynamic stubs at runtime,which would eliminate the need for parsing of WSDL �les at run-time in theclient.Another aspect of the continuing development of the mobile hardware plat-form is increased battery capacity, which is needed to support the integrationof faster CPUs. This increased battery capacity also has the bene�t of mak-ing the integration of faster short-range communication technologies feasible.For instance WiFi is faster than Bluetooth and covers a larger area, but alsocomsumes signi�cantly more battery. Advances in short-range communica-tion technology on mobile devices would be a welcome an addition that couldhelp ensure the future success of DynaBlu.13.1 Future WorkIn this section we present a few problems that are particularly interesting toinvestigate further, and discuss possible solutions to these problems.13.2 Service and Operation MappingAs described in chapter 10 we have implemented descriptions of web servicesand operations in text �les located on the same application server as theprovider web service.It is necessary to store service mappings in the provider web service. Thisway users are limited to access the services for which the provider web ser-vice has a mapping for, and the mappings can link to web services on anyapplication server.The problem with storing the operation mappings is that the rest of the webservices are not necessarily located in the same place as the provider webservice. Therefore the descriptions can be located on a di�erent computerthan the web services that they describe. Furthermore the descriptions arenot stored in a standard format. This way the web services are not onlyseparated from the descriptions, but access to the descriptions is not achievedthrough a standard gateway, like for instance a registry or the provider webservice. Therefore the current solution would imply possible maintenanceproblems. Page 113 of 139

13.2 Service and Operation MappingWeb service operations that are published by service providers need to bedescribed in order for clients to identify which operations they want to use.The web services are syntactically described by the use of WSDL documents,but a semantic description is also needed to explain the meaning of an oper-ation invocation. In this case a semantic description would contain consistsof information like service capabilities, preconditions and relations to otherservices. It would be desirable for us to be able to express what a particularservice has to o�er clients.In [17] we looked into the relatively new research area semantic web (�rstproposed by the creator of the Web, Tim Berners-Lee, in 2001). This areadeals with adding semantic information to web pages and services, withthe purpose of automating task that will otherwise involve user interaction.Languages like OWL-S and SAWSDL can be used to add meta-data to webservice descriptions, and using one of these languages is a possible solutionfor our problem with describing web service capabilities.OWL-S is an XML language that can be used in conjunction with WSDLdocuments to add semantic information to services and operations. TheOWL-S documents must be published in a registry, because the user must beable to retrieve the semantic documents, and to avoid maintenance problemsthe documents should be kept in one place. The OWL-S documents can forinstance be stored in an UDDI repository together with the WSDL �les theyreference. In our case the obvious place to put this registry would be themediator. But this way clients would have to download XML documentsfrom the mediator over a GPRS connection, which is not free like Bluetoothcommunication. As we discovered in [17] there are other disadvantages withusing an UDDI registry, for instance complexity, overhead and maintenanceproblems.SAWSDL (Semantic Annotations for WSDL)[15] is a new initiative by W3C.SAWSDL is currently in a draft version and will build on WSDL 2.0, whichis also under development. The vision of SAWSDL is to use the new extensi-bility features of WSDL 2.0 to add semantic information directly into WSDLdocuments. This is an interesting initiative from our perspective, because itwould enable us to store the operation descriptions in the WSDL �le. Theadvantage of using SAWSDL from our perspective is that all the informationneeded to understand and communicate with a service is contained within asingle document, which can be downloaded from the service provider. Thiswould eliminate the maintenance problems introduced by storing descrip-tions in separate text �les, or by having a registry with web service metadata.The best solution would be to use SAWSDL documents in our framework inthe future, but depending on how much time it takes for the language to bereleased we may need to consider other alternatives.Page 114 of 139

Chapter 13: Perspectives13.3 HTML interactionIn this section we describe aspects regarding the adoption of HTML interac-tion into our framework. This basic research will be used as a starting pointfor our future work regarding the integration of this feature.We discuss existing research and products in order for us to be able toidentify possible solutions and describe some of the potential issues involvedwith using these. This section should not be regarded as a detailed designdocument describing HTML interaction modules.We have chosen to focus on HTML as a scripting language to represent thegraphical elements and structure of the GUI data in our client application.There are a number of reasons to include HTML which we list below.
• HTML is a widely used language for representing user interfaces. HTMLis today a grounding used to show data in many applications and isthus becoming a standard not only for representing web pages but alsoin standard applications.
• HTML is today known by most developers, which makes it use straight-forward for most developers to create interaction forms using our frame-work.
• A number of freely available HTML parsers or browsers are availablefor mobile devices.
• Web services developed using our framework would potentially be ableto access external Internet HTML resources directly and send the con-tent of these resources to our client application. Thus creating a gate-way to access the Internet through our Bluetooth bridge.Existing SystemsIn order to display HTML documents in the client the client applicationwill be required to have an embedded HTML browser available. Embeddedmeans a browser that runs from within our software. Several available mobileJ2ME browsers exist, for instance the Opera Mobile(TM) browser [43] andthe Protheus J2ME Browser [49]. Though depending on how we will beimplementing the HTML interaction we could be faced with some potentialrequirements to our browser. For instance if we need to modify the browserwe will need access to the source-code of the browser thus the browser shouldbe an open-source product released under a license usable by us. One of thesemodi�cations we are faced with is that we will need to redirect all HTTPtra�c from the browser to our Bluetooth bridge.Page 115 of 139

13.3 HTML interactionIn [47] the design of a Bluetooth Wireless Internet Gateway (BWIG) is de-scribed. The purpose of the BWIG is to provide seamless Internet access tomobile devices utilizing Bluetooth as a transport medium. The design of theBWIG architecture is depicted in �gure 13.1. Here we see the interactionbetween the Bluetooth clients and BWIG. Two modules have been devel-oped that are responsible for providing seamless Internet access namely theBWIG client and the BWIG server.
Figure 13.1: The Bluetooth Wireless Internet Gateway (BWIG) architectureBWIG client The BWIG client is responsible for intercepting TCP/IPpackets sent from the client at the application level and redirectingthese over the local Bluetooth stack to the Bluetooth gateway.BWIG server At the server side the BWIG server component receives theclient TCP/IP request from the gateway's Bluetooth stack and for-wards this to the web server intended to receive the data. The datareceived from the web server is sent back from the BWIG server to theBWIG client in the same fashion.Integrating HTML InteractionIn this section we describe possible solution scenarios to adopt when integrat-ing HTML interaction into our framework. By discussion we have identi�edtwo overall integration scenarios.The �rst solution is to develop our own interpreter implementing a subset ofHTML. This component should essentially interpret HTML code into GUIelements from the UI API available in the MIDP pro�le. In this scenarioHTML would be used as a markup language describing native MIDP GUIelements and would not require us to include an embedded browser in ourclient application. Unfortunately this solution will require us to limit the useof HTML elements to those supported by our implementation. Furthermorethis solution inhibits direct access to Internet resources through a BluetoothPage 116 of 139

Chapter 13: Perspectivesgateway component as we cannot ensure that the markup code describingthe Internet resource will conform to our subset implementation.The second solution is to use an already available browser and modify thesource code of this to suit our needs. The browser should be modi�ed tobe able to show web pages from the data format we pass to it. This leadsto our provider component. A design here could be inspired by the BWIGarchitecture. We have depicted a possible solution in �gure 13.2 where wehave developed an Internet Gateway web service in the provider. The ideais that web service applications deployed in the provider should be able touse the Internet Gateway web service to access either external HTML pagesfrom the Internet or locally deployed HTML pages.
Browser

Client
Bridge

Client

Internet

Client GUI

Provider
 Bridge

 Internet
Gateway

 Provider
Application

 Provider
Web Service

ProviderFigure 13.2: Possible design accommodating the integration of HTML interac-tionThis Internet Gateway web service should support the downloading of anHTML page along with all the resources referenced in the page for instanceimages and stylesheets contained in separate CSS �les. This data should bebundled into a data representation that we can send to the client and showin the embedded browser.Another issue is that we will need to be able to emulate HTTP transport.This implies that we should be able to handle HTML form data, forms areused in HTML to realize interaction by sending variables as either POST orGET data [57]. When the user of the client application is presented witha form in the embedded browser and sends data from the form we need topackage this into a HTTP request data representation that can be interpretedby the provider and passed onto the Internet Gateway web service. Thegateway would then forward the form data to the web server hosting theHTML page using HTTP. Page 117 of 139

13.4 Final RemarksOur current framework implementation forces the client to open a GPRSconnection to the mediator when establishing a connection with a provider.Mobile phone providers often charge subscribers for using this kind of com-munication. Integrating an Internet Gateway web service opens the possi-bility of routing the client communication with the mediator through theprovider and thus making the Internet Gateway contact the mediator onbehalf of the client. This would make it possible for clients to invoke webservice applications implemented using our framework free of charge. How-ever implementing this would require us to develop features for being ableto send SSL encrypted data over a Bluetooth connection.13.4 Final RemarksThese suggestions for future work provide us with a starting point for a con-tinued project into our next semester. The extensibility of DynaBlu makesus �exible in that we can quickly adapt to new user requirements. This givesus a good basis for doing further user and market analysis and to responddynamically to changes produced by these analysis.The long-term goals of our continued work on the DynaBlu framework is tomake it enter a production-stable state where we can market it and examinethe possibilities for creating a commercial product.

Page 118 of 139

Bibliography
[1] HPI Research Group. http://www.hpiresearch.com/.[2] Accessing Native Methods from a Midlet -> A Powerful Workaround.Arvind Gupta. http://www.microjava.com/articles/techtalk/dynamic?PageNo=1.[3] Dynamic Classloading in the KVM. MicroDevNet, 2000. http://www.microjava.com/articles/techtalk/dynamic?PageNo=1.[4] JSR 30: Connected Limited Device Con�guration 1.0. Java CommunityProcess, 2000. http://jcp.org/en/jsr/detail?id=30.[5] JSR 139: Connected Limited Device Con�guration 1.1. Java Commu-nity Process, 2003. http://jcp.org/en/jsr/detail?id=139.[6] JSR 172: J2METM Web Services Speci�cation. Java Community Pro-cess, 2004. http://jcp.org/en/jsr/detail?id=172.[7] BlipNet Technical White Paper. BLIP Systems A/S, January 2005.[8] JavaTM Technology in Mobility At-A-Glance. SUN Microsys-tems, 2005. http://www.sun.com/aboutsun/media/presskits/javaone2005/mobility_aag_final0605_v2.pdf.[9] JSR 218: Connected Device Con�guration (CDC) 1.1. Java CommunityProcess, 2005. http://jcp.org/en/jsr/detail?id=218.[10] JSR 118: Mobile Information Device Pro�le 2.0. Java Community Pro-cess, 2006. http://jcp.org/en/jsr/detail?id=118.[11] JSR 82: JavaTM APIs for Bluetooth. Java Community Process, 2006.http://jcp.org/en/jsr/detail?id=82.[12] BlipNet. BLIP Systems, 2007. http://www.blipsystems.com/.119

http://www.hpiresearch.com/
http://www.microjava.com/articles/techtalk/dynamic?PageNo=1
http://www.microjava.com/articles/techtalk/dynamic?PageNo=1
http://www.microjava.com/articles/techtalk/dynamic?PageNo=1
http://www.microjava.com/articles/techtalk/dynamic?PageNo=1
http://jcp.org/en/jsr/detail?id=30
http://jcp.org/en/jsr/detail?id=139
http://jcp.org/en/jsr/detail?id=172
http://www.sun.com/aboutsun/media/presskits/javaone2005/mobility_aag_final0605_v2.pdf
http://www.sun.com/aboutsun/media/presskits/javaone2005/mobility_aag_final0605_v2.pdf
http://jcp.org/en/jsr/detail?id=218
http://jcp.org/en/jsr/detail?id=118
http://jcp.org/en/jsr/detail?id=82
http://www.blipsystems.com/

BIBLIOGRAPHY[13] Javadoc documentation for the DynaBlu framework. Nikolaj Andersen,Morten Vejen Nielsen, Jørn Martin Rasmussen, 2007. http://www.cs.aau.dk/~mvejen/dat6/javadoc.[14] Javadoc Tool Home Page. SUN Microsystems, 2007. http://java.sun.com/j2se/javadoc/.[15] Semantic Annotations for Web Services Description Language WorkingGroup. W3C, 2007. http://www.w3.org/2002/ws/sawsdl/.[16] L. Aalto, N. Göthlin, J. Korhonen, and T. Ojala. Bluetooth and wappush based location-aware mobile advertising system. ACM, june 2004.[17] N. Andersen, T. L. Kjeldsen, C. P. Larsen, M. V. Nielsen, and J. M.Rasmussen. A technical view on soa and related acronyms. Technicalreport, Department of Computer Science, AAU, 2006.[18] V. Auletta, C. Blundo, E. D. Cristofaro, and G. Raimato. A lightweightframework for web service invocation over bluetooth. IEEE, 2006.[19] V. Auletta, C. Blundo, E. D. Cristofaro, and G. Raimato. Performanceevaluation of web service invocation over bluetooth. ACM, 2006.[20] avetana GmbH. avetanaBluetooth JSR82 Implementation. 2007.http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xml.[21] BlueBlitz. BlueBlitz. 2007. http://www.blueblitz.com/.[22] bluetooth.com. Speci�cation of the Bluetooth System. http://www.bluetooth.com/Bluetooth/Learn/Technology/Specifications/.[23] Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Con-cepts and Design (4th Edition) (International Computer Science).Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,2005.[24] d619a. Sourcecode to our framework. See enclosed CD-ROM.[25] J. Eker. Harald - A Java Bluetooth Stack. 2007. http://www.control.lth.se/~johane/harald/.[26] C. Gehrmann, J. Persson, and B. Smeets. Bluetooth Security. ArtechHouse, Inc., Norwood, MA, USA, 2004.[27] B. S. I. Group. Bluetooth Assigned Numbers. 2007. http://www.bluetooth.org/assigned-numbers/.Page 120 of 139

http://www.cs.aau.dk/~mvejen/dat6/javadoc
http://www.cs.aau.dk/~mvejen/dat6/javadoc
http://java.sun.com/j2se/javadoc/
http://java.sun.com/j2se/javadoc/
http://www.w3.org/2002/ws/sawsdl/
http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xml
http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xml
http://www.blueblitz.com/
http://www.bluetooth.com/Bluetooth/Learn/Technology/Specifications/
http://www.bluetooth.com/Bluetooth/Learn/Technology/Specifications/
http://www.control.lth.se/~johane/harald/
http://www.control.lth.se/~johane/harald/
http://www.bluetooth.org/assigned-numbers/
http://www.bluetooth.org/assigned-numbers/

Chapter 13: BIBLIOGRAPHY[28] IBM. WebSphere DataPower XML Accelerator XA35. http://www-306.ibm.com/software/integration/datapower/xa35/features/.[29] IntelR©. IntelR© XML Accelerator. http://www.intel.com/support/network/xml/accelerator/.[30] ITworld.com. SSL and Mobile Devices. 2001. http://www.itworld.com/nl/java_sec/04202001/.[31] A. S. Jensen. CWhere, Bluetooth in a Mobile Positioning Context. 2005.[32] M. D. Jode. Programming Java 2 Micro Edition on Symbian OS. JohnWiley & Sons, Ltd., 2004.[33] K.Kaukonen and R.Thayer. A Stream Cipher Encryption AlgorithmArcfour. 1999. http://www.mozilla.org/projects/security/pki/nss/draft-kaukonen-cipher-arcfour-03.txt.[34] E. kSOAP project. kSOAP 2. 2006. http://ksoap2.sourceforge.net/.[35] J. F. Kurose and K. W. Ross. Computer Networking: A Top-DownApproach Featuring the Internet Package, 3rd International Edition.Addison-Wesley Longman Publishing Co., Inc., 2005.[36] P. Landrock and K. Nissen. Kryptologi. Forlaget ABACUS, Vejle, Den-mark, 1992.[37] B. A. Miller. The Phony Con�ict: IEEE 802.11 and Bluetooth WirelessTechnology. november 2001. http://www.informit.com/articles/article.asp?p=24240&seqNum=1&rl=1.[38] Mobilereact. Practical Mobile Marketing White Paper. 2005. http://www.mobilereact.co.th/downloads/Eng_WP.pdf.[39] N. J. Muller. Bluetooth Demysti�ed. McGraw Hill Professional, 2000.[40] MySQL. MySQL Community. http://www.mysql.com/.[41] T. L. of the Bouncy Castle. bouncycastle.org. http://www.bouncycastle.org/.[42] L. M. A. M.-M. P. A. N. og Jan Stage. Objekt Orienteret Analyse &Design. Marko, 2001.[43] Opera. Opera MobileTM. http://www.opera.com/products/mobile/.[44] L. L. Petrea and D. Grigoras. Dynamic class provisioning on mobiledevices. IEEE, 2006. Page 121 of 139

http://www-306.ibm.com/software/integration/datapower/xa35/features/
http://www-306.ibm.com/software/integration/datapower/xa35/features/
http://www-306.ibm.com/software/integration/datapower/xa35/features/
http://www.intel.com/support/network/xml/accelerator/
http://www.intel.com/support/network/xml/accelerator/
http://www.itworld.com/nl/java_sec/04202001/
http://www.itworld.com/nl/java_sec/04202001/
http://www.mozilla.org/projects/security/pki/nss/draft-kaukonen-cipher-arcfour-03.txt
http://www.mozilla.org/projects/security/pki/nss/draft-kaukonen-cipher-arcfour-03.txt
http://ksoap2.sourceforge.net/
http://ksoap2.sourceforge.net/
http://www.informit.com/articles/article.asp?p=24240&seqNum=1&rl=1
http://www.informit.com/articles/article.asp?p=24240&seqNum=1&rl=1
http://www.mobilereact.co.th/downloads/Eng_WP.pdf
http://www.mobilereact.co.th/downloads/Eng_WP.pdf
http://www.mysql.com/
http://www.bouncycastle.org/
http://www.bouncycastle.org/
http://www.opera.com/products/mobile/

BIBLIOGRAPHY[45] M. Pracucci. JBluetooth. http://download.pracucci.com/java/jbluetooth/readme.html.[46] rococo software. Impronto Bluetooth Library. 2007. http://www.rococosoft.com/java.html.[47] N. Rouhana and E. Horlait. Bwig: Bluetooth web internet gateway. InISCC '02: Proceedings of the Seventh International Symposium on Com-puters and Communications (ISCC'02), page 679, Washington, DC,USA, 2002. IEEE Computer Society.[48] K. Sairam, N. Gunasekaran, and S. Redd. Bluetooth in wireless commu-nication. Communications Magazine, IEEE, 40(06):90�96, june 2002.[49] SourceForge.net. Protheus J2ME Browser. http://sourceforge.net/projects/protheus/.[50] D. Statistik. Befolkningens køb via internettet efter hyppighed, type ogtid. 2007,. http://www.dst.dk.[51] S. Stemberger. Is Bluetooth Wi-Fi? april 2002. http://www-128.ibm.com/developerworks/wireless/library/wi-net.html.[52] B. D. Team. Bluecove. 2007. http://code.google.com/p/bluecove/.[53] J. D. Team. JBlueZ. 2007. http://jbluez.sourceforge.net/.[54] Thawte. SSL digital certi�cates with extended validation from thawtethe global SSL certi�cate authority. http://www.thawte.com.[55] K. Topley. J2ME in a nutshell. O'Reilly & Associates, Inc., Sebastopol,CA, USA, 2002.[56] VeriSign. VeriSign - Security (SSL Certi�cate), Communications, andInformation Services. http://verisign.com.[57] W3C. Forms in HTML documents. http://www.w3.org/TR/html4/interact/forms.html#h-17.3.[58] A. I. Wang, M. S. Norum, and C.-H. W. Lund. Issues related to de-velopment of wireless peer-to-peer games in j2me. In AICT-ICIW '06:Proceedings of the Advanced Int'l Conference on Telecommunicationsand Int'l Conference on Internet and Web Applications and Services,page 115, Washington, DC, USA, 2006. IEEE Computer Society.[59] A. I. Wang, M. S. Norum, and C.-H. W. Lund. Issues related to devel-opment of wireless peer-to-peer games in j2me. IEEE, 2006.[60] Wikipedia.org. Bluetooth. 2007. http://en.wikipedia.org/wiki/Bluetooth. Page 122 of 139

http://download.pracucci.com/java/jbluetooth/readme.html
http://download.pracucci.com/java/jbluetooth/readme.html
http://www.rococosoft.com/java.html
http://www.rococosoft.com/java.html
http://sourceforge.net/projects/protheus/
http://sourceforge.net/projects/protheus/
http://www.dst.dk
http://www-128.ibm.com/developerworks/wireless/library/wi-net.html
http://www-128.ibm.com/developerworks/wireless/library/wi-net.html
http://code.google.com/p/bluecove/
http://jbluez.sourceforge.net/
http://www.thawte.com
http://verisign.com
http://www.w3.org/TR/html4/interact/forms.html#h-17.3
http://www.w3.org/TR/html4/interact/forms.html#h-17.3
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Bluetooth

Chapter : BIBLIOGRAPHY[61] Wikipedia.org. Bluetooth Special Interest Group. 2007. http://en.wikipedia.org/wiki/Bluetooth_sig.[62] Wikipedia.org. HTTPS. 2007. http://en.wikipedia.org/wiki/HTTPS.[63] Wikipedia.org. RC4. 2007. http://en.wikipedia.org/wiki/RC4.[64] S. Williams. Irda: past, present and future. Personal Communications,IEEE, 7(01):11�19, february 2000.

Page 123 of 139

http://en.wikipedia.org/wiki/Bluetooth_sig
http://en.wikipedia.org/wiki/Bluetooth_sig
http://en.wikipedia.org/wiki/HTTPS
http://en.wikipedia.org/wiki/HTTPS
http://en.wikipedia.org/wiki/RC4

Part VAppendix

125

AppendixProject Code Samples
.1 Mediator Web ServiceThe following listing contains the implementation of the mediator web ser-vice, which is responsible for negotiating connections between clients andproviders. In chapter 11 there is a �ow chart (�gure 11.3) that simpli�eshow the web service synchronizes access to the database.12 /∗3 ∗ Mediator . ja va4 ∗5 ∗ Created on Apr i l 4 , 2007 , 2 :21 PM6 ∗7 ∗/89 package mediator ;1011 import d619a . common. br idge . s e c ur i t y . EncryptionMode ;12 import d619a . mediator . database . DBMediator ;13 import d619a . mediator . database . DatabaseErrorException ;14 import java . u t i l .Random;15 import javax . jws . WebService ;16 import javax . jws .WebMethod ;17 import d619a . mediator . encrypt ion . Encryption ;1819 /∗∗20 ∗ This c l a s s implementes t h e mediator web s e r v i c e .21 ∗ @author N i k o l a j Andersen22 ∗/23 @WebService ()24 pub l i c c l a s s Mediator {2526 /∗∗27 ∗ C l i e n t s can c a l l t h i s method to at tempt to s e t up B lue t oo t hconnec t i on s28 ∗ with s e r v i c e p ro v i d e r s .29 ∗ @param providerName Name o f t h e s e r v i c e30 ∗ @param BTAddressClient B lue t o o t h addre ss o f t h e c l i e n t31 ∗ @param BTAddressProvider B lue t o o t h addre ss o f t h e s e r v i c ep ro v i d e r32 ∗ @return a ' ConnectInfo . j ava ' o b j e c t , which con ta in s t h ein fo rma t ion33 ∗ needed f o r f u r t h e r communication between c l i e n t and pro v i d e r .34 ∗ I n c l u d i n g r esponse codes and e rro r codes .35 ∗/36 @WebMethod37 // t h i s method shou l d on ly be c a l l e d by t he c l i e n t38 pub l i c ConnectInfo setupConnect ionCl ient (St r ing providerName , St r ingBTAddressClient , S t r ing BTAddressProvider , i n t encryptionMode) {39 System . out . p r i n t l n (" running c l i e n t method . . . ") ;40 DBMediator db = new DBMediator () ;41 i n t TimeOut = Inte g e r . pa r s e In t (System . getProperty (" timeout ")) ;127

.1 Mediator Web Service4243 // check i f i t i s a v a l i d p rov i d e r44 i f (! db . va l idProv ide r (providerName , BTAddressProvider)) {45 ConnectInfo in f o = new ConnectInfo () ;46 in f o . setBTProviderAddress (BTAddressProvider) ;47 in f o . setBTClientAddress (BTAddressClient) ;48 in f o . s e tSucce s (Status .PROVIDERNOTFOUND) ;49 in f o . setErrorCode ("No such prov ide r in Database ") ;50 return i n f o ;51 }5253 // c r ea t e connec t ion record in Connections t a b l e , and wai tf o r t h e p ro v i d e r to match i t (wi th t imeout)54 try {55 db . createConnect ionRecord (BTAddressClient , BTAddressProvider ,encryptionMode) ;56 System . out . p r in t ln (" c r ea t ed reco rd f o r c l i e n t : "+ providerName+ " " + BTAddressClient + " " + BTAddressProvider) ;57 } catch (DatabaseErrorException ex) {58 ConnectInfo in f o = new ConnectInfo () ;59 in f o . setBTProviderAddress (BTAddressProvider) ;60 in f o . setBTClientAddress (BTAddressClient) ;61 in f o . s e tSucce s (Status .CONNECTIONNOTAVAILABLE) ;62 in f o . setErrorCode (" I n te rn a l database problem") ;63 return i n f o ;64 }65 ConnectInfo in f o = new ConnectInfo () ;66 i n f o . s e tSucce s (Status .CONNECTIONNOTAVAILABLE) ;67 i n f o . setErrorCode ("No response from other party ") ;68 i n f o . setBTClientAddress (BTAddressClient) ;69 i n f o . setBTProviderAddress (BTAddressProvider) ;70 i n t counter = 0 ;71 whi le (counter < TimeOut) {72 i f (db . isMatch (BTAddressClient , BTAddressProvider)) {73 System . out . p r in t ln ("match found f o r c l i e n t : "+ providerName+ " " + BTAddressClient + " " + BTAddressProvider) ;74 St r ing key = "" ;75 St r ing wsdlVers ion = "" ;76 i n t encMode = 0 ;77 i n t keyTimeout = 0 ;78 try {79 key = db . getEncKey (BTAddressClient , BTAddressProvider) ;80 wsdlVers ion = db . getWsdlVersion (providerName ,BTAddressProvider) ;81 keyTimeout = db . getKeyTimeout (providerName ,BTAddressProvider) ;82 encMode = db . getEncryptionMode (BTAddressClient ,BTAddressProvider) ;83 } catch (DatabaseErrorException ex) {84 in f o . s e tSucce s (Status .CONNECTIONNOTAVAILABLE) ;85 in f o . setErrorCode (" I n t e r na l database e r ro r ") ;86 break ;87 }88 i f (encMode == EncryptionMode .INCOMPATIBLE) {89 in f o . s e tSucce s (Status .INCOMPATIBLEENCRYPTIONMODES) ;90 in f o . setEncryptionMode(EncryptionMode .INCOMPATIBLE) ;91 in f o . setErrorCode ("The encrypt ion modes wereincompatible . ") ;92 break ;93 }94 in f o . setEncKey(key) ;95 in f o . setEncryptionMode(encMode) ;96 in f o . s e tSucce s (Status .CONNECTIONESTABLISHED) ;97 in f o . setWsdlVers ion(wsdlVers ion) ;98 in f o . setKeyTimeout (keyTimeout) ;99 in f o . setErrorCode ("No e r r o r s ") ;100 break ;101 } e l s e {102 // t r y to s l e e p to wai t f o r th e p ro v i d e r to match t h econnec t ion record103 try {104 System . out . p r in t ln (" s l e e p in g : "+ providerName + " " +BTAddressClient + " " + BTAddressProvider) ;105 Random rand = new Random(System . cur r entT imeMi l l i s ()) ;106 // random number between 2000 and 4000107 long s l e e p I n t e r v a l = ((Math . abs (rand . nextLong ())) %2000) + 2000;108 Thread . s l e e p (s l e e p I n t e r v a l) ;109 } catch (InterruptedExcept ion ex) {110 cont inue ;111 }112 }113 counter++;114 } Page 128 of 139

Chapter : Project Code Samples115116 // d e l e t e connec t ion record and re tu rn connec t ion in fo rma t ion117 try {118 db . removeConnectionRecord (BTAddressClient , BTAddressProvider) ;119 } catch (DatabaseErrorExcept ion ex) {120 // ignore , record w i l l be c l e aned up l a t e r121 }122 return i n f o ;123 }124125 /∗∗126 ∗ Se rv i c e p ro v i d e r s can c a l l t h i s method to at tempt to s e t up127 ∗ Blue t oo t h connec t ion s wi th c l i e n t s .128 ∗ @return a ' ConnectInfo . j ava ' o b j e c t , which con ta in s t h ein fo rma t ion129 ∗ needed f o r f u r t h e r communication between c l i e n t and pro v i d e r .130 ∗ I n c l u d i n g r esponse codes and e rro r codes .131 ∗ @param providerName Name o f t h e s e r v i c e132 ∗ @param BTAddressClient B lue t o o t h addre ss o f t h e c l i e n t133 ∗ @param BTAddressProvider B lue t o o t h addre ss o f t h e s e r v i c ep ro v i d e r .134 ∗/135 @WebMethod136 // t h i s method shou l d on ly be c a l l e d by t he p ro v i d e r137 pub l i c ConnectInfo setupConnect ionProvider (St r ing providerName , St r ingBTAddressClient , S t r ing BTAddressProvider , i n t encryptionMode) {138 System . out . p r i n t l n (" running prov ide r method . . . ") ;139 DBMediator db = new DBMediator () ;140 i n t TimeOut = Inte g e r . pa r s e In t (System . getProperty (" timeout ")) ;141142 // check i f i t i s a v a l i d p ro v i d e r143 i f (! db . va l idProv ide r (providerName , BTAddressProvider)) {144 ConnectInfo i n f o = new ConnectInfo () ;145 i n f o . setBTProviderAddress (BTAddressProvider) ;146 i n f o . setBTClientAddress (BTAddressClient) ;147 i n f o . s e tSucce s (Status .PROVIDERNOTFOUND) ;148 i n f o . setErrorCode ("No such prov ide r in Database ") ;149 return i n f o ;150 }151152 // l oo k / wai t f o r a connec t ion record in Connections t a b l e ,and match i t when found (wi th t imeout)153 ConnectInfo i n f o = new ConnectInfo () ;154 i n f o . s e tSucce s (Status .CONNECTIONNOTAVAILABLE) ;155 i n f o . setErrorCode ("No response from other party ") ;156 i n f o . setBTClientAddress (BTAddressClient) ;157 i n f o . setBTProviderAddress (BTAddressProvider) ;158 i n t counter = 0 ;159 whi le (counter < TimeOut) {160 i f (db . i sRecord (BTAddressClient , BTAddressProvider)) {161 System . out . p r i n t l n (" r eco rd found f o r prov ide r : "+providerName + " " + BTAddressClient + " " +BTAddressProvider) ;162 // g e t th e enc ryp t ion mode , and app l y en c ryp t i onp o l i c y163 i n t encMode = EncryptionMode .INCOMPATIBLE;164 try {165 encMode = db . getEncryptionMode (BTAddressClient ,BTAddressProvider) ;166 } catch (DatabaseErrorException ex) {167 i n f o . s e tSucce s (Status .CONNECTIONNOTAVAILABLE) ;168 i n f o . setErrorCode (" I nt e r n a l database e r r o r ") ;169 break ;170 }171 encMode = t h i s . getEncryptionMode (encMode , encryptionMode) ;172 // i f th e enc ryp t ion modes are inc ompa t i b l e re tu rn aner ro r173 i f (encMode == EncryptionMode .INCOMPATIBLE) {174 i n f o . s e tSucce s (Status .INCOMPATIBLEENCRYPTIONMODES) ;175 i n f o . setEncryptionMode(EncryptionMode .INCOMPATIBLE) ;176 i n f o . setErrorCode ("The encrypt ion modes wereincompatible . ") ;177 try {178 db . writeMatch (BTAddressClient , BTAddressProvider , "" , encMode) ;179 } catch (DatabaseErrorException ex) {180181 }182 break ;183 }184 // gene ra t e enc ryp t ion key , and wr i t e match to db185 Encryption enc = new Encryption () ;186 St r ing key = enc . getEncryptionKey () ;187 St r ing wsdlVers ion = "" ;Page 129 of 139

.1 Mediator Web Service188 i n t keyTimeout = 0 ;189 try {190 db . writeMatch (BTAddressClient , BTAddressProvider , key ,encMode) ;191 wsdlVers ion = db . getWsdlVersion (providerName ,BTAddressProvider) ;192 keyTimeout = db . getKeyTimeout (providerName ,BTAddressProvider) ;193 System . out . p r in t ln ("match wr i t t en f o r prov ide r : "+providerName + " " + BTAddressClient + " " +BTAddressProvider) ;194 } catch (DatabaseErrorException ex) {195 in f o . s e tSucce s (Status .CONNECTIONNOTAVAILABLE) ;196 in f o . setEncKey("") ;197 in f o . setErrorCode (" I n t e r na l database problem") ;198 break ;199 }200 in f o . setEncKey(key) ;201 in f o . setEncryptionMode(encMode) ;202 in f o . s e tSucce s (Status .CONNECTIONNOTAVAILABLE) ;203 in f o . setWsdlVers ion(wsdlVers ion) ;204 in f o . setKeyTimeout (keyTimeout) ;205 in f o . setErrorCode ("No e r r o r s ") ;206 break ;207 } e l s e {208 // t r y s l e e p i n g to wai t f o r th e c l i e n t to wr i t e aconnec t ion record209 try {210 System . out . p r in t ln (" s l e e p in g : "+ providerName + " " +BTAddressClient + " " + BTAddressProvider) ;211 Random rand = new Random(System . cur r entT imeMi l l i s ()) ;212 // random number between 2000 and 4000213 long s l e e p I n t e r v a l = ((Math . abs (rand . nextLong ())) %2000) + 2000;214 Thread . s l e e p (s l e e p I n t e r v a l) ;215 } catch (InterruptedExcept ion ex) {216 cont inue ;217 }218 }219 counter++;220 }221 // re tu rn connec t ion in fo rma t ion222 return i n f o ;223 }224225 /∗∗226 ∗ S erv i c e p r o v i d e r s can c a l l t h i s web method to update t h e WSDLv er s i o n227 ∗ o f wsd l f i l e s f o r a p a r t i c u l a r s e r v i c e .228 ∗ @param providerName Name o f t h e s e r v i c e .229 ∗ @param providerBTAddress B lue t oo t h addre s s o f th e s e r v i c ep rov i d e r .230 ∗ @param ve r s i o n new ve r s i o n o f t h e wsd l f i l e .231 ∗ @param adminPassword the a dm in i s t r a t i v e password r eq u i r e d toperform updates f o r232 ∗ t h i s d e r v i c e p ro v i d e r .233 ∗ @return re t u rn s an i n t e g e r which co rr esponde s to va l u e sd e f i n e d in234 ∗ i n t e r f a c e ' S t a tu s . ja va '235 ∗/236 @WebMethod237 pub l i c i n t updateWSDL(St r ing providerName , St r ing providerBTAddress ,S t r ing vers ion , S t r ing adminPassword) {238 // t r y to update th e wsd l v e r s i o n239 System . out . p r in t ln (" running update method . . . ") ;240 i n t r e tur = Status .ERROR;241 DBMediator db = new DBMediator () ;242243 i f (db . checkPassword (providerName , providerBTAddress , adminPassword)) {244 try {245 db . updateWSDL(providerName , providerBTAddress , v e r s i o n) ;246 re tur = Status .WSDLUPDATESUCCESSFUL;247 } catch (DatabaseErrorException ex) {248 re tur = Status .ERROR;249 }250251 } e l s e {252 re tur = Status .WRONGPASSWORDORPROVIDERNAME;253 }254255 return r e tur ;256 }257 Page 130 of 139

Chapter : Project Code Samples258 /∗ This method i s used i n t e r n a l l y . I t implements th e enc ryp t ionp o l i c y l o g i c259 ∗ @return re tu rn s an i n t e g e r t h a t s i g n a l t h e en c ryp t i on mode ,d e f i n e d in260 ∗ t h e EncryptionMode . java i n t e r f a c e .261 ∗/262 p r i v a te i n t getEncryptionMode (i n t c l i e n tF la g , i n t prov ide rF lag) {263 i f (c l i e n tF l a g == EncryptionMode .ONN && prov ide rF lag ==EncryptionMode .ONN)264 return EncryptionMode .ONN;265 e l s e i f (c l i e n tF la g == EncryptionMode .OFF && prov ide rF lag ==EncryptionMode .OFF)266 return EncryptionMode .OFF;267 e l s e i f (c l i e n tF la g == EncryptionMode .ONN && prov ide rF lag ==EncryptionMode .OFF)268 return EncryptionMode .INCOMPATIBLE;269 e l s e i f (c l i e n tF la g == EncryptionMode .OFF && prov ide rF lag ==EncryptionMode .ONN)270 return EncryptionMode .INCOMPATIBLE;271 e l s e i f (c l i e n tF la g == EncryptionMode .OPTIONAL && prov ide rF lag ==EncryptionMode .OPTIONAL)272 return EncryptionMode .OFF;273 e l s e i f (c l i e n tF la g == EncryptionMode .OPTIONAL && prov ide rF lag ==EncryptionMode .OFF)274 return EncryptionMode .OFF;275 e l s e i f (c l i e n tF la g == EncryptionMode .OFF && prov ide rF lag ==EncryptionMode .OPTIONAL)276 return EncryptionMode .OFF;277 e l s e i f (c l i e n tF la g == EncryptionMode .OPTIONAL && prov ide rF lag ==EncryptionMode .ONN)278 return EncryptionMode .ONN;279 e l s e i f (c l i e n tF la g == EncryptionMode .ONN && prov ide rF lag ==EncryptionMode .OPTIONAL)280 return EncryptionMode .ONN;281282 return EncryptionMode .INCOMPATIBLE;283 }284 }Listing 1: Mediator.java: Implementation of the mediator web service..2 Search UnitThe following listing shows our implementation of a Bluetooth module thatis used for searching for Bluetooth services on nearby Bluetooth devices. Thesearch unit is optimized for limiting search time by using di�erent modes ofoperation and white- and blacklists for devices (see section 8.1.2).12 /∗3 ∗ SearchUnit . ja va4 ∗5 ∗ Created on March 19 , 2007 , 2 :14 PM6 ∗7 ∗/89 package d619a . c l i e n t . b r idge . b luetooth . s ea r chun i t ;1011 import d619a . c l i e n t . b r idge . b luetooth . except i ons . BTDisabledException ;12 import d619a . c l i e n t . b r idge . b luetooth . t e s t . DebugLogger ;13 import java . i o . IOException ;14 import java . u t i l . Date ;15 import javax . bluetooth . BluetoothStateExcept ion ;16 import javax . bluetooth . DataElement ;17 import javax . bluetooth . DeviceClass ;18 import javax . bluetooth . DiscoveryAgent ;19 import javax . bluetooth . D i s cove ryL i s t ene r ;20 import javax . bluetooth . LocalDevice ;21 import javax . bluetooth . RemoteDevice ;22 import javax . bluetooth . ServiceRecord ;23 import javax . bluetooth .UUID;2425 /∗∗26 ∗ This c l a s s implements f u n c t i o n a l i t y f o r d i s c o v e r i n g b l u e t o o t hd e v i c e s Page 131 of 139

.2 Search Unit27 ∗ and scan fo r t h e a v a i l a b i l i t y o f s e r v i c e s wi th a s p e c i f i e d UUID .28 ∗ Once s t a r t e d , t h e o b j e c t o f t h i s c l a s s does th e d i s c o ve ry a l l byi t s e l f29 ∗ and mainta ins a Pro v i d e rL i s t which con ta in s a l l t h e d e v i c e s found30 ∗ in t h e v i c i n i t y t h a t p rov i d e one or s e v e r a l s e r v i c e −i n s t a n c e s wewhere31 ∗ l o o k in g f o r .32 ∗ No t i f i c a t i o n f o r changes in t h a t l i s t are r e a l i z e d through33 ∗ t h e SearchUn i tCa l l b a c k i n t e r f a c e .34 ∗ @author nikko , jmr35 ∗/36 pub l i c c l a s s SearchUnit extends Thread implements Discove ryL i s t ene r {37 pr i v a te s t a t i c i n t SU_MODE_IDLE = 1 ;38 pr i v a te s t a t i c i n t SU_MODE_INTERACTION = 0 ;39 pr i v a te s t a t i c i n t SU_MODE_TERMINATED = −1;4041 pr i v a te s t a t i c i n t ATTR_SERVICENAME = 0x0100 ;42 pr i v a te s t a t i c i n t ATTR_SERVICERECORDHANDLE = 0x0000 ;43 pr i v a te s t a t i c i n t ATTR_SERVICECLASSIDLIST = 0x0001 ;44 pr i v a te s t a t i c i n t ATTR_PROTOCOLDESCRIPTORLIST = 0x0004 ;4546 pr i v a te UUID [] uuid ;47 pr i v a te SearchUnitCal lback parent ;48 pr i v a te DiscoveryAgent discoveryAgent ;49 pr i v a te LocalDevice l o ca lDev i c e ;5051 pr i v a te Prov ide rL i s t myProviderList ;52 pr i v a te Dev i ceL i s t myDeviceList = new Dev i ceL i s t () ;5354 pr i v a te i n t currentMode = SU_MODE_IDLE;555657 // cache f o r th e Se r v i c eSearch58 pr i v a te ServiceRecord [] serv iceRecordCache ;59 pr i v a te i n t serv iceDiscoTransID ;60 pr i v a te RemoteDevice s e rv i c eDi s coCurrentDev i c e ;61 pr i v a te boolean bIsScanning ;6263 // p r o p e r t i e s64 pr i v a te boolean prop_monitorReachabil ity = true ;65 pr i v a te i n t [] p r op_f i l t e rDev i c eC la s s e s = nu l l ;66 pr i v a te boolean prop_fi l terServiceDupl icatesOnSameDevice = f a l s e ;676869 /∗∗70 ∗ Creates a new in s t a n ce o f SearchUnit71 ∗ Af te r c rea t ion , s t a r t t h e Thread wi th th e s t a r t () method .72 ∗ Swi tch between i d l e −mode and in t e r a c t i o n −mode wi th73 ∗ se t In t e rac t i onMode () and se t I d l eMode () .74 ∗ @param uuid t h e t h read w i l l sea rch f o r s e r v i c e s hav ing t h i s uuid75 ∗ @param parent t h e r e c e i v e r o f c a l l b a c k s when s e r v i c e s are found .76 ∗ r e c e i v e r must implement ' Sea rchUn i tCa l l b ac k ' i n t e r f a c e .77 ∗/78 pub l i c SearchUnit (UUID uuid , SearchUnitCal lback parent) {79 t h i s . uuid = new UUID [] {uuid } ;80 t h i s . parent = parent ;81 t h i s . myProviderList = new Prov ide rL i s t (parent) ;82 }8384 /∗∗85 ∗ t erminat e t h e SearchUnit−Thread .86 ∗ This w i l l s t op a l l p roc e s s e s . Reinvocat ion i s done wi th s t a r t ()87 ∗/88 pub l i c void terminateSearch () {89 currentMode = SU_MODE_TERMINATED;90 t h i s . d i scoveryAgent . canc e l Inqu i ry (t h i s) ;91 t h i s . d i scoveryAgent . cance lSe rv i c eSea rch (t h i s . serv iceDiscoTrans ID) ;92 }9394 /∗∗95 ∗ S t a r t s t h e Thread96 ∗/97 pub l i c void run () {9899 whi le (currentMode != SU_MODE_TERMINATED){100 i f (currentMode == SU_MODE_IDLE){101 try {102 // check WHITE elements , i f t h ey s t i l l are in t h e v i c i n i t y103 surveyKnownDevices () ;104 //now , d i s c o v e r new d e v i c e s in t h e v i c i n i t y105 t h i s . s t a r t I nqu i r y () ;106 } catch (BTDisabledException ex) {107 //we can ' t throw an excep t ion , so we j u s t t erminat e t h i ssearch . Page 132 of 139

Chapter : Project Code Samples108 t h i s . terminateSearch () ;109 }110111 // wai t f o r t h e d i s c ov e ry to comple te112 waitWhileScanning () ;113114 try {115 // scan a l l UNDECIDED d ev i c e s from the Dev i c eL i s t f o rs e r v i c e s116 //UNDECIDED are a l l t ho s e dev ic e s , t h a t have j u s t beend i s co v e r e d .117 // they are n e i t h e r b l a c k nor wh i t e y e t .118 surveyUndecidedDevices () ;119 } catch (BTDisabledException ex) {120 //we can ' t throw an except ion , so we j u s t te rmina t e t h i ss ea rch .121 t h i s . terminateSearch () ;122 }123124 } e l s e i f (currentMode == SU_MODE_INTERACTION){125 try {126127 // i f t h e mobi l e p r o p e r t i e s a l l ow s i t , monitor WHITE de v i c e s128 //−> check WHITE elements , i f t h ey s t i l l are in t hev i c i n i t y129 // update Pro v i d e rL i s t (remove t ho s e w i t ho ut s i g n a l)130 surveyKnownDevices () ;131 } catch (BTDisabledException ex) {132 ex . pr intStackTrace () ;133 }134135136 }137 }138139 }//END run140141 /∗∗142 ∗ g e t In s t ance to Loca lDev ice .143 ∗ I f no Device i s a v a i l a b l e , i t ' s c e r t a i n l y because b l u e t o o t h144 ∗ i s not enab l ed on the phone . We throw an ex ce p t i o n .145 ∗146 ∗ @throws d619a . c l i e n t . b r i d g e . b l u e t o o t h . e x c e p t i o n s .BTDisabledException147 ∗/148 p r i v a te void getLocalDevice () throws BTDisabledException {149 getLocalDevice (f a l s e) ;150 }151152 /∗∗153 ∗ g e t In s t ance to Loca lDev ice .154 ∗ I f no Device i s a v a i l a b l e , i t ' s c e r t a i n l y because b l u e t o o t h155 ∗ i s not enab l ed on the phone . We throw an ex ce p t i o n .156 ∗ @param forcenew f o r c e s t h e method to r e t r i e v e a new in s t a nc e o ft h e l o c a l d e v i c e157 ∗ @throws d619a . c l i e n t . b r i d g e . b l u e t o o t h . e x c e p t i o n s .BTDisabledException158 ∗/159 p r i v a te void getLocalDevice (boolean forcenew) throwsBTDisabledException {160 try {161 i f (forcenew | | l o c a lDev i c e == nu l l)162 lo c a lDev i c e = LocalDevice . getLocalDevice () ;163 i f (forcenew | | d iscoveryAgent == nu l l)164 discoveryAgent = lo c a lDev i c e . getDiscoveryAgent () ;165 } catch (BluetoothStateExcept ion ex) {166 // the on ly reason t h a t makes i t impo s s i b l e to g e t th el o c a lD e v i c e167 // and g e t a DiscoveryAgent , i s t h a t t h e B lue t oo t h Device i sd i s a b l e d168 // in t h e mobi l e phone . So we throw an ex cep t i on ! !169 throw (BTDisabledException) ex ;170 }171 }172173174175 /∗∗176 ∗ S t a r t to in q u i r y th e v i c i n i t y f o r b l u e t o o t h d e v i c e s .177 ∗178 ∗ @throws d619a . c l i e n t . b r i d g e . b l u e t o o t h . e x c e p t i o n s .BTDisabledException179 ∗/180 p r i v a te void s t a r t I nqu i r y () throws BTDisabledException{Page 133 of 139

.2 Search Unit181182 getLocalDevice () ;183184 try {185 discoveryAgent . s t a r t I nqu i r y (DiscoveryAgent .GIAC, t h i s) ;186 se t I sScann ing (true) ;187 } catch (BluetoothStateExcept ion ex) {188 // I assume , here we f a i l on t h e same cause as in ge t Loca lDev ic e189 throw (BTDisabledException) ex ;190 }191 }192193 /∗∗194 ∗ Stop the In qu i r y . (aka can ce l)195 ∗/196 pr i v a te void s top Inqu i ry () {197 i f (discoveryAgent != nu l l)198 discoveryAgent . c ance l Inqu i r y (t h i s) ;199200 se t I sScann ing (f a l s e) ;201 }202203 /∗∗204 ∗ s t o p an ongoing s e r v i c e s e a r c h205 ∗/206 pr i v a te void s topServ i c eSea rch () {207 i f (discoveryAgent != nu l l)208 discoveryAgent . cance lSe rv i c eSea rch (t h i s . serv iceDiscoTrans ID) ;209 }210211 /∗∗212 ∗ s e t t h e SearchUnit to IdleMode .213 ∗ In IdleMode , t h e SearchUnit does an e x h au s t i v e s ea rch f o r new214 ∗ Devices and t h e i r s e r v i c e s . This mode i s on most mobi l ephones215 ∗ on ly a v a i l a b l e , i f no connec t ion i s e s t a b l i s h e d .216 ∗/217 pub l i c void setIdleMode () {218 s topServ i c eSea rch () ;219 s top Inqu i ry () ;220 currentMode = SU_MODE_IDLE;221 }222223 /∗∗224 ∗ s e t t h e SearchUnit to Interac t ionMode .225 ∗ In i n t e ra c t i o n −mode , t h e SearchUnit on ly check s f r e q u e n t l y i f226 ∗ a l r ead y d i s c o ve r e d d e v i c e s s t i l l are in th e v i c i n i t y .227 ∗ And t h i s only , i f t h e mobi lephone i s ca pab l e o f do ing t h i s wh i l e228 ∗ a connec t ion i s e s t a b l i s h e d .229 ∗/230 pub l i c void setInteract ionMode () {231 s topServ i c eSea rch () ;232 s top Inqu i ry () ;233 currentMode = SU_MODE_INTERACTION;234 }235236237238 /∗∗239 ∗ S ta r t t h e d i s co v e ry f o r S e r v i c e s on a s p e c i f i e d Device .240 ∗ @param b tDev ic e The de v i c e to be d i s co v e r ed on241 ∗ @throws d619a . c l i e n t . b r i d g e . b l u e t o o t h . e x c e p t i o n s .BTDisabledExcept ion242 ∗ Bl ue t oo t h d i s a b l e d243 ∗/244 pr i v a te void s t a r t S e r v i c eD i s c o (RemoteDevice btDevice) throwsBTDisabledException{245246 getLocalDevice () ;247248 // r e s e t t he cache249 serviceRecordCache = nu l l ;250 s e rv i c eDi s coCurrentDev i c e = btDevice ;251 try {252253 // s t a r t t he Search , which i s non−b l o c k i n g254 i n t [] a t t rS e t = { ATTR_SERVICERECORDHANDLE, ATTR_SERVICECLASSIDLIST,ATTR_PROTOCOLDESCRIPTORLIST, ATTR_SERVICENAME } ;255 serviceDiscoTransID = discoveryAgent . s e a r chSe r v i c e s (a t t rSe t , uuid ,serv iceDiscoCurrentDev ice , t h i s) ;256 se t I sScann ing (true) ;257 } catch (BluetoothStateExcept ion ex) {258 // i f i t doesn ' t work , i t j u s t doesn ' t work ! :−S259 DebugLogger . g e t In s tance () . addEntry (ex . getMessage ()) ;260 t h i s . d i scoveryAgent . cance lSe rv i c eSea rch (t h i s . serv iceDiscoTrans ID) ;Page 134 of 139

Chapter : Project Code Samples261262 } catch (Exception e) {263 DebugLogger . g e t In s tance () . addEntry (" d i s co NULLPOINTER.\ n") ;264 //a n u l l p o i n t e r e x c e p t i o n in d i ca t e s , t h a t s ea r c hS e r v i c e s cannot e s t a b l i s h a connec t ion to265 // the remote d ev i c e . remove i t from the l i s t then .266 // update Dev ic eL i s t and Pro v i d e rL i s t and s e t cu rr en t Device to"OFFLINE"267 myDeviceList . changeS igna lS ta t e (t h i s . serv iceDiscoCurrentDev ice ,Dev i c eL i s t .OFFLINE) ;268 myProviderList . removeProvider (s e rv i c eDi s coCurrentDev i c e .getBluetoothAddress ()) ;269 t h i s . d i scoveryAgent . cance lSe rv i c eSea rch (t h i s . serv iceDiscoTransID) ;270 }271 }272273274275276 /∗∗277 ∗ Ca l l b a c k r e c e i v e r from the DiscoveryAgent278 ∗ @param b tDev ic e The d i s co v e r e d Device279 ∗ @param cod Class o f Device . −>see Bl ue t oo t h S p e c i f i c a t i o n280 ∗/281 pub l i c void dev i c eDi s cove r ed (RemoteDevice btDevice , DeviceClass cod) {282 // i f we have enab l ed t h e Dev iceClass f i l t e r i n g , on ly283 // add cur ren t d ev i c e to t h e Dev ic eL is t , i f i t b e l o n g s to one o ft h e284 // accep t ed C la s s e s .285 // i n t majorClass = cod . ge tMajorDev iceClass () ;286 //TODO: add DeviceClass f i l t e r i n g c a p a b i l i t y287 // update t h e Dev ic eL i s t wi th t h e found de v i c e288 myDeviceList . upsert (btDevice , Dev i c eL i s t .DEV_IS_UNDECIDED, Dev i c eL i s t .ONLINE) ;289290 }291292 /∗∗293 ∗ Ca l l b a c k from DiscoveryAgent .294 ∗ S e r v i c e s have been d i s co v e r e d by t h e Discovery i n i t i a t e d wi th295 ∗ a c e r t a i n Transac t ion ID296 ∗ @param transID The Transac t ion ID t h a t i d e n t i f i e s t h e d i s co v e ry297 ∗ @param serv ic eRecord th e se r v ic eRecord o f t h e remote de v i c e t h a tmatches t he s ea rch .298 ∗/299 pub l i c void s e rv i c e sDi s c ov e r ed (i n t transID , ServiceRecord []s e rv i c eRecord) {300301 // the s e r v ic eRecord con ta in s ONLY th ose s e r v i c e s , hav ing t h e UUID302 //we have scanned f o r .303 //we cache t ho s e r e co rd s now , and do any upda t ing ONLY when thes ea rch comp l e t es .304 //So we update t h e Pro v i d e rL i s t and the Dev i c eL i s t305 // and re turn to t h e s e r v i c eD i s c o v e r y .306 i f (t h i s . serv iceDiscoTransID == transID)307 serviceRecordCache = se rv i c eRecord ;308 }309310 /∗∗311 ∗ Ca l l b a c k from DiscoveryAgent .312 ∗ Search f o r s e r v i c e s has been comple ted .313 ∗ @param transID The Transac t ion ID which i d e n t i f i e s t h e Search .314 ∗ @param respCode the Response code from the DiscoveryAgent whicht e l l s ,315 ∗ how the d i s c o v e r y went .316 ∗/317 pub l i c void serv iceSearchCompleted (i n t transID , i n t respCode) {318 i f (transID == t h i s . serv iceDiscoTransID) {319320 i f (respCode == Discove ryL i s t ene r .SERVICE_SEARCH_DEVICE_NOT_REACHABLE){321 // update Dev i c eL i s t and Pr ov i d e rL i s t and s e t cu r ren t Deviceto "OFFLINE"322 myDeviceList . changeS igna lS ta t e (t h i s . serv iceDiscoCurrentDev ice ,Dev i c eL i s t .OFFLINE) ;323 myProviderList . removeProvider (s e rv i c eDi s coCurrentDev i c e .getBluetoothAddress ()) ;324 DebugLogger . g e t In s tance () . addEntry ("NOT_REACHABLE: "+se rv i c eDi s coCurrentDev i c e . getBluetoothAddress () +"\n") ;325326 } e l s e i f (respCode == Discove ryL i s t ene r .SERVICE_SEARCH_NO_RECORDS){327 //mark t h e cur ren t Device BLACK in the Dev i c eL i s t328 myDeviceList . changeState (t h i s . serv iceDiscoCurrentDevic e ,Dev i c eL i s t .DEV_IS_BLACK) ;Page 135 of 139

.2 Search Unit329330 } e l s e i f (respCode == Discove ryL i s t ene r .SERVICE_SEARCH_COMPLETED){331 //mark t h e curr en t Device WHITE in the Dev ic eL i s t332 myDeviceList . changeStates (t h i s . serv iceDiscoCurrentDevic e ,Dev i c eL i s t .DEV_IS_WHITE, Dev i c eL i s t .ONLINE) ;333334 // update t he Pro v i d e rL i s t wi th t h e d ev i c e AND the s e r v i c e s335 // each s e r v i c e in a p ro v i d e r g e t s i t s own en t ry .336 f o r (i n t i = 0 ; i<t h i s . serv iceRecordCache . l ength ; i++){337 St r ing ur l = serviceRecordCache [i] . getConnectionURL (ServiceRecord.NOAUTHENTICATE_NOENCRYPT, f a l s e) ;338 Date l a s tSeen = new Date () ;339 St r ing btAddr = serviceRecordCache [i] . getHostDevice () .getBluetoothAddress () ;340 St r ing sname = (St r ing) serv iceRecordCache [i] . getAttr ibuteValue (ATTR_SERVICENAME) . getValue () ;341 St r ing devname = "unnamed" ;342 try {343 devname = serviceRecordCache [i] . getHostDevice () .getFriendlyName(f a l s e) ;344 } catch (IOException ex) {345 ex . pr intStackTrace () ;346 }347 Provider newP = new Provider (btAddr , devname , sname , ur l ,l a s tSeen) ;348 // update / i n s e r t t he new/ updated p rov i d e r en t ry349 myProviderList . upsert (newP) ;350 }351352 } e l s e {353 // e i t h e r th e s e r v i c e S ea rc h was terminated , or t h e r e was an e r ro r .354 }355 }356 se t I sScann ing (f a l s e) ;357 }358359 /∗∗360 ∗ Ca l l b a c k from DiscoveryAgent .361 ∗ The i n q u i r y o f t h e v i c i n i t y f o r B lue t oo t h Dev ices i s comple ted .362 ∗ @param discType s t a t u s o f t h e in q u i r y .363 ∗/364 pub l i c void inquiryCompleted (i n t discType) {365366 i f (discType == Discove ryL i s t ene r .INQUIRY_COMPLETED) {367 } e l s e i f (discType == Discove ryL i s t ene r .INQUIRY_TERMINATED) {368 } e l s e i f (discType == Discove ryL i s t ene r .INQUIRY_ERROR) {369 }370371 se t I sScann ing (f a l s e) ;372 }373374 /∗∗375 ∗ Check a l l t h e d e v i c e s marked as WHITE in the D e v i c e l i s t ,376 ∗ i f t h ey s t i l l are in t h e v i c i n i t y .377 ∗ I f necessary , update t h e Pro v i d e rL i s t .378 ∗ @throws d619a . c l i e n t . b r i d g e . b l u e t o o t h . e x c e p t i o n s .BTDisabledExcept ion B lue t oo t h d i s a b l e d379 ∗/380 pr i v a te void surveyKnownDevices () throws BTDisabledException {381 // check WHITE elements , i f t h ey s t i l l are in t h e v i c i n i t y382 // update Pro v i d e rL i s t (remove t ho s e w i t hou t s i g n a l)383 myDeviceList . setWhitesToUnknownSignalState () ;384385 // do a s e r v i c e scan on each o f t h e wh i t e d ev i c e s .386 // i f a de v i c e does not respond , we change i t s s i g n a l s t a t e and387 // d e l e t e th e d e v i c e from the p r o v i d e r l i s t .388 RemoteDevice dev = myDeviceList . getNextWhiteUnknownSignal() ;389 whi le (dev != nu l l) {390 DebugLogger . g e t In s tance () . addEntry (" d i s co "+dev . getBluetoothAddress ()+"\n") ;391392 t h i s . s t a r t Se r v i c eDi s c o (dev) ;393394 // wai t f o r t h i s d i s c o v e r y to end395 waitWhileScanning () ;396397 // i f t he SearchUnit mode has terminated , r e tu rn immedia te ly398 //a change to i d l e −mode changes nothing , because t h i ss u r v e i l l a n c e399 // i s a op t im i zed pre−s t ep f o r t h e i d l e −mode400 i f (currentMode == SU_MODE_TERMINATED)401 return ;402403 // ge t t he nex t d e v i c e .Page 136 of 139

Chapter : Project Code Samples404 dev = myDeviceList . getNextWhiteUnknownSignal() ;405 }406 }407408 /∗∗409 ∗ Do a Se rv i c e d i s c o v e r y on each Device in t h e d e v i c e l i s t ,410 ∗ t h a t i s n e i t h e r a BLACK nor a WHITE e lement .411 ∗ @throws d619a . c l i e n t . b r i d g e . b l u e t o o t h . e x c e p t i o n s .BTDisabledException B lue t oo t h d i s a b l e d412 ∗/413 p r i v a te void surveyUndecidedDevices () throws BTDisabledException{414 // do a s e r v i c e scan on each o f t h e wh i t e d e v i c e s .415 // i f a d ev i c e does not respond , we change i t s s i g n a l s t a t e and416 // d e l e t e t h e d ev i c e from the p r o v i d e r l i s t .417 RemoteDevice dev = myDeviceList . getNextUndecided() ;418 whi le (dev != nu l l) {419 t h i s . s t a r t S e r v i c eD i s c o (dev) ;420421 // wai t f o r t h i s d i s c ov e ry to end422 waitWhileScanning () ;423424 // i f t h e SearchUnit mode has changed to in t e r a c t i o n , re turnimmedia te ly425 i f (currentMode == SU_MODE_INTERACTION | | currentMode ==SU_MODE_TERMINATED)426 return ;427428 // g e t t h e nex t d e v i c e .429 dev = myDeviceList . getNextUndecided() ;430 }431 }432433434 /∗∗435 ∗ Wait non−b l o c k i n g f o r t h e in q u i r y or t h e s e r v i c e scan tocomple te .436 ∗/437 p r i v a te synchronized void waitWhileScanning () {438 whi le (t h i s . currentMode != SU_MODE_TERMINATED && t h i s . i sScann ing ()) {439 try {440 wait () ;441 } catch (InterruptedExcept ion e) {}442 }443 i sScann ing () ;444 }445446 /∗∗447 ∗ I s a t hr ead a c t i v e l y scanning or in q u i r y i n g ?448 ∗ @return t rue i f yes449 ∗/450 p r i v a te boolean i sScann ing () {451 return bIsScanning ;452 }453454 /∗∗455 ∗ Set t rue i f a th r ead c u r r e n t l y i s scanning or in q u i r y i n g456 ∗ @param yesorno yes f o r t rue457 ∗/458 p r i v a te synchronized void s e t I sScann ing (boolean yesorno) {459 t h i s . bIsScanning = yesorno ;460 no t i f yA l l () ;461 }462 }Listing 2: SearchUnit.java: Implementation of the client search unit.

Page 137 of 139

AppendixSource Code
This CD-ROM contains the source code of DynaBlu. The Javadoc docu-mentation can also be found online at [13].The software has been tested using the following development tools. We haveincluded prebuilt versions of the software using these tools on the CD-ROM.

• J2SE 1.6 (For the provider software).
• MIDP 2.0, CLDC 1.1 and JSR 82 (For the client software).
• Netbeans 5.5 IDE.
• Apache Tomcat 5.5.17 (As the application server).
• MySQL Community Server 5.0 (For the mediator component).
• The Avetana Bluetooth J2SE libraries have been tested on an Ubuntu7.0.4 Linux installation having the BlueZ libraries installed.

139

	I Introduction
	1 Introduction
	2 Preliminary Analysis
	2.1 Existing Systems
	2.1.1 SMS Systems
	2.1.2 Bluetooth Systems

	2.2 Data Connections on Mobile Phones
	2.3 Summary

	3 Problem Statement
	3.1 Authenticated Web Service Invocation over Bluetooth
	3.2 System Description of the DynaBlu Framework
	3.3 System Requirements
	3.4 System Philosophy
	3.5 Project Goals

	II Analysis
	4 Bluetooth
	4.1 Bluetooth
	4.2 Bluetooth Protocol Stack
	4.3 Web Service Invocation over Bluetooth
	4.4 Coping with Mobility
	4.5 Summary

	5 Security
	5.1 Internet
	5.1.1 Authentication
	5.1.2 Encryption

	5.2 Bluetooth
	5.2.1 Authentication
	5.2.2 Encryption

	5.3 Discussion

	6 Development Platform
	6.1 J2ME
	6.1.1 Configurations
	6.1.2 Profiles

	6.2 Web Services
	6.2.1 JSR 172: J2ME Web Services Specification
	6.2.2 kSOAP

	6.3 JSR 82: Java APIs for Bluetooth communication
	6.4 Bluetooth Connectivity with J2SE
	6.5 Dynamic class loading

	III Design
	7 System Design
	8 Bluetooth Communication Bridge
	8.1 Bridge Design
	8.1.1 Provider Bridge
	8.1.2 Client Bridge

	8.2 Bridge Layers
	8.2.1 Integrity Layer
	8.2.2 Security Layer

	9 Client
	9.1 Design
	9.2 Implementation

	10 Provider
	10.1 Design
	10.1.1 Client-Provider Communication

	10.2 Implementation

	11 Mediator
	11.1 Design
	11.2 Implementation

	IV Conclusion
	12 Conclusion
	12.1 Evaluation
	12.2 Conclusion

	13 Perspectives
	13.1 Future Work
	13.2 Service and Operation Mapping
	13.3 HTML interaction
	13.4 Final Remarks

	Literature

	V Appendix
	Project Code Samples
	.1 Mediator Web Service
	.2 Search Unit

	Source Code

