DynaBlu - A Framework
for developing
Location-Aware Web
Service Applications using

Bluetooth communication

Bluetooth Authentication Mediator

ﬁ

Y

Service Provider

Group d619a, Room E4-113 Supervisor

Nikolaj Andersen Lone Leth Thomsen
Morten Vejen Nielsen

Jgrn Rasmussen

AALBORG
UNIVERS'TY

Department of Computer Science

TITLE:
DynaBlu - A Framework for
developing Location-Aware

Web Service Applications using
Bluetooth communication

SEMESTER PERIOD:
DATS,
1st of February - 11th of June
2007

PROJECT GROUP:
d619a (room E4-113)

GROUP MEMBERS:
Nikolaj Andersen, nikko@cs.aan.dk
Morten Vejen Nielsen, mvejen@cs.aau.dk
Jorn Martin Rasmussen, joern2s@cs.aau.dk

SUPERVISOR:
Lone Leth Thomsen,

lone@cs.aau.dk

NUMBER OF COPIES: 7
PAGES IN REPORT: 1- 118
PAGES IN APPENDIX: 127 - 139

TOTAL NUMBER OF PAGES: 139

ABSTRACT:

High speed data communication and in-
creasing processing power of mobile devices
makes them well suited for a range of new
applications. Combined with the potential
location-awareness of mobile devices it is
possible to bring context sensitive informa-
tion to users.

This project deals with the development
of DynaBlu, an application framework for
creating location-aware web service appli-
cations. The framework uses Bluetooth
technology for data communication and
providing location-awareness. Web ser-
vices are used to interact with the infor-
mation services. The communication is au-
thenticated and encrypted to ensure cer-
tain security requirements.

The goal of this project is to make the cre-
ation of interactive, secure and location-
aware applications for mobile devices pos-
sible with DynaBlu, and to gain essen-
tial insight into the technical foundation of

such a framework.

Preface

This report is written at the Department of Computer Science, Aalborg Uni-
versity within the Database and Programming Technology research unit, by
project group d619a/E4-113 to document the second of the two masters the-
sis semesters. The project was written in the spring semester of 2007 to be
evaluated on the 25" of June, 2007.

The project was supervised by Lone Leth Thomsen, whom we would like to
thank for her participation in supervising the development of the project.
We assume the reader to have a prior knowledge of XML, programming,
and distributed systems. When references are written after a paragraph, the
reference accounts for the entire paragraph. When references are written
after a word the reference accounts for the single word or term preceding
it. We will sometimes be using Wikipedia, blogs, etc. as sources to explain
concepts. Because of the subjective nature of these sources, we will not be
using these as argumentative sources.

Nikolaj Andersen Morten Vejen Nielsen

Jorn Martin Rasmussen

Contents

I

1

2

11

Introduction
Introduction

Preliminary Analysis

2.1 Existing Systems
2.1.1 SMS Systems
2.1.2 Bluetooth Systems

2.2 Data Connections on Mobile Phones

2.3 Summary

Problem Statement

3.1 Authenticated Web Service Invocation over Bluetooth

3.2 System Description of the DynaBlu Framework
3.3 System Requirements
3.4 System Philosophy 0
3.5 Project Goals

Analysis

Bluetooth
4.1 Bluetooth

© ~N o~ N

4.2 Bluetooth Protocol Stack

4.3 Web Service Invocation over Bluetooth
4.4 Coping with Mobility
4.5 Summary
Security
5.1 Imternet
5.1.1 Authentication
5.1.2 Encryption o
5.2 Bluetooth
5.2.1 Authentication
5.2.2 Encryption oo
5.3 Discussiono

Development Platform

6.1 J2ME
6.1.1 Configurations
6.1.2 Profiles

6.2 Web Services
6.2.1 JSR 172: J2ME Web Services Specification
6.2.2 kSOAP

6.3 JSR 82: Java APIs for Bluetooth communication

6.4 Bluetooth Connectivity with J2SE

6.5 Dynamic class loading o000

IIT Design
7 System Design

8 Bluetooth Communication Bridge

8.1 Bridge Design L

i

43
44
44
46
47
48
49
49

51
o1
52
53
54
95
56
56
o7
58

63

65

67

8.1.1 Provider Bridge 71

8.1.2 Client Bridge 75

8.2 Bridge Layers 79
8.2.1 Imtegrity Layer 79

8.2.2 Security Layer 80

9 Client 85
9.1 Design 85
9.2 Implementation L. 88
10 Provider 91
10.1 Design oL 91
10.1.1 Client-Provider Communication 92

10.2 Implementation 93
11 Mediator 97
11.1 Designo L 97
11.2 Implementation 100
IV Conclusion 103
12 Conclusion 105
12.1 Evaluation 105
12.2 Conclusion 109
13 Perspectives 111
13.1 Future Work 113
13.2 Service and Operation Mapping 113
13.3 HTML interaction 115
13.4 Final Remarks 118
Literature 119

iii

V Appendix

Project Code Samples

.1 Mediator Web Service

.2 Search Unit

Source Code

v

125

127
127
131

139

Part 1

Introduction

Chapter

Introduction

Since the invention of “The Internet” by Tim Berners-Lee in 1992, a grow-
ing number of web pages serve as an international digital platform for any
kind of information. Initially thought as a static information resource, web
pages have since begun moving towards being information-providers that
can change dynamically. Either by user-interaction like in web-logs or auto-
matically depending on its context. Googles advertising system for instance
displays commercials on a page dynamically dependent of the content of the
current page. Such context-awareness is often referred to as the new way of
the Internet with the expression Web 2.0.

WAP and the Wireless Markup Language (WML), introduced in the late
1990s, brought the static part of the Internet to mobile phones. And with
every new generation of mobile phones, the Internet as we know it from
desktop computers gets more and more pervasive in this direction. The
Opera Mobile(TM) browser [43] is an example of such a bridge between

these two worlds.

Interestingly, the word context-sensitivity attains a whole new dimension
in its meaning on mobile devices. The context for a mobile phone can be
extended to the physical location of the mobile device. What if Googles
advertising system were not only related to the content of a web page, but
also related to the actual physical location of the user requesting that web

page?

In our belief, bringing dynamicity and location-awareness together opens the
mobile device to a whole new realm of possible applications.

Our goal in this project is therefore to bring the need for location-aware
services and the possibilities of modern mobile devices together.

A framework that could provide the technical background for such applica-
tions would ease the development process. To motivate the need for such a
framework, we list a number of possible use cases.

Example 1: Walking by a movie theater, posters at the wall show upcom-
ing and currently shown films at the theater. By using a mobile device,
services provided by and within range of the theater could be discovered.
One example of such a service could be the possibility to directly download
a trailer presenting the movies shown on the posters. As the trailer ends, the
service provides possibilities to directly make a reservation or directly pay
for a ticket to see the film. Waiting in the ticket-line thus becomes obsolete.

Example 2: A city has put up a number of location-based services in the
cultural centers of the city. There are a lot of sights in this district, such as
museums and sculptures. Services located at these sights function as a sort
of a tour guide. As a tourist approach the sights, she is able to discover the
services related to the sights nearby with her mobile device. These services
could then provide background information or inform her of alternate sights
worth visiting. Background information could for instance be voice messages,
text messages, pictures or maps. Tourists thus becomes able to explore a
city in a whole new way.

Example 3: At the airport, similar services as in Example 2 could provide
the traveler with information depending on the terminal she is currently at.
Maps related to the current terminal or flight schedules could be provided.

Example 4: Many buildings today have facilities for physically disabled
persons. But ramps for wheelchairs and handicap toilets are expensive to
build and the need for these are statistically lower than for a regular toilet.
Therefore typically such facilities are limited to only a few locations in a
building. Finding these facilities can be difficult without knowing where
they are. A location-aware service accessible with a mobile device could ease
finding handicap-friendly facilities.

The examples described above show that there are indeed applications for
such “mobile systems” that provides information dependent on the physical
location of a user.

Initial Problem

Our goal in this project is to provide users of mobile devices the possibility
of getting services, that are aware of the users physical location. There-
fore, we develop an application framework, that eases the development and
deployment of such services.

For such a project, it is crucial to investigate current products on the market.

Page 4 of 139

Chapter 1: Introduction

Both current mobile systems, and what communicative capabilities modern
mobile devices have. The following chapter presents the results of our inves-
tigation.

Page 5 of 139

Chapter

Preliminary Analysis

In this chapter we present an analysis of research relevant to our initial
problem, see section 1. We investigate customer demands and real-life ex-
periences from previous and existing mobile systems. This will provide us
with insight into what criteria a mobile system should adhere to. We inves-
tigate the different technology platforms available to us when focusing on
dynamic location-aware service discovery on mobile devices. The purpose of
this examination is to identify the network technology we intend to exploit
to realize communication in our system. Having identified a network carrier
technology we then proceed to discuss the consequences of using this on a
mobile device. This chapter will provide us with valuable insight into how
our actual system should be designed to satisfy both the user demands and
the demands implied from using a mobile platform.

2.1 Existing Systems

2.1.1 SMS Systems

SMS (Short Message Service) has previously been used for making mobile
systems. In this section we will be describing some of the experiences and
customer attitudes towards mobile SMS systems. This section is based on
a mobile marketing whitepaper released by Mobilereact, a marketing firm
specializing in mobile solutions, in 2005. [38]

SMS or Texting has gained wide popularity amongst mobile phone owners,
almost 100% [38] of all teenagers having a mobile phone uses texting facilities
on their phones. This popularity is by a large part due to the non-intrusive
nature of a text message where the recipient has the possibility of reading

2.1 Existing Systems

a text message and replying to it when she finds the time to do it instead
of having to respond immediately as is the case with an ordinary telephone
call.

Experimentation has been done with SMS systems with the purpose of ex-
tending the traditional texting functionality into different application areas,
the listing, based on [38], below illustrates some of the SMS systems that
have previously been implemented.

SMS-couponing via interactive street displays - JC Decaux (Ireland).

e TV voting, game participation, chat, radio song dedications.

Mall-based permission marketing - Jurong Point (Singapore).

Mobile micro-payment systems (Paypal Mobile).

Instant win contests - Coca Cola (Australia).

However some considerations should be taken when deploying SMS systems
into the public. One important obstacle is the public’s lack of tolerance to
unsolicited information, similar to the general attitude towards SPAM e-
mails. Another limitation to consider is the limitations following from using
the SMS medium.

A relevant question to state is whether or not the users are interested in
mobile SMS systems? An answer to this question is indicated in a study
conducted in [1] for Nokia in 2001. This study showed that 88% of mobile
users (aged 16-45) would be receptive to receiving mobile SMS advertising
messages if the three following conditions are adhered to [38]:

1. Choice - Being able to decide whether or not to receive messages.

2. Control - The ability to easily opt-out if the user is not interested in
the marketing scheme anymore.

3. Mutual benefit - Getting something back in return. A reduction in
the cost of services, for example, would qualify.

Several case studies have been conducted generally showing increases in sales
after the introduction of an SMS system. A rather positive example is the
Coca Cola Summerdays campaign launched in 2003 lasting for 3 months in
Australia. The objective of this campaign was to increase attention based on
a coupon-based prize competition. Customers would get a coupon number
with their Coca Cola bottle and this number could release a prize. The
customers could submit their numbers either by SMS or by going online.

Page 8 of 139

Chapter 2: Preliminary Analysis

The results from this campaign showed that out of 2.5 million valid entries
97% of customers chose to use the SMS application form, out of these 2.5
million 120000 customers actively chose to receive future announcements
from Coca Cola. Case studies such as this shows the feasibility of creating
mobile SMS systems that are put to actual use.

When using SMS systems a number of limitations are implied. For one
SMS systems typically requires the user to actively send an SMS request
to the system in order for it to be activated. Sending this message can be
cumbersome for the user as messages for SMS systems typically requires a
specific formatting, for instance a message like “COCA-COLA Lottery #7,
that has to be sent to a specific number to enter a contest. We back this
claim by referring to the Coca Cola Summerdays campaign [38]. Where 2.5
million entries were valid out of 4 million entries in total.

Besides message formatting issues we also consider the cost of using SMS sys-
tems as a restriction. While using simple single-message advertising systems
might impose an insignificant cost on the user, consider using SMS systems
requiring more advanced user-interaction and thus requiring the user to send
multiple messages. This restriction could potentially be a hindrance to the
future success of SMS systems.

Another restriction is the implications of using the SMS medium for ad-
vertisement messages. Since SMS is a text-based medium sending images,
videos, etc. is not possible. One solution to this problem might be to use
MMS (Multimedia Messaging Service) to send multimedia content. However
using MMS only increases the cost problem as sending an MMS message is
typically more expensive than sending a text message.

2.1.2 Bluetooth Systems

This section presents a number of Bluetooth systems and projects related to
the area that this report address.

BlipNet

BLIP systems (Bluetooth Local Infotainment Point) is a company located
in Vester Hassing near Aalborg, Denmark, that specializes in Bluetooth sys-
tems. The Company has built a Bluetooth system called BlipNet. The Blip-
Net is built by using a combination of special-purpose hardware and a soft-
ware system. Figure 2.1 illustrates how the BlipNet works. The BlipServer
is the main component of the system. This entity controls all other enti-
ties and is accessible from the Internet. The BlipServer can be managed
from the BlipManager, which is a software program that lets you manage

Page 9 of 139

2.1 Existing Systems

the BlipServer through a GUI. The BlipServer is connected to a number of
BlipNodes through LAN and Internet. A BlipNode is the hardware com-
ponent of the system. This component allows the server to communicate
with Bluetooth devices in range of the BlipNode by providing a bridge be-
tween the LAN and the Bluetooth devices. When Bluetooth enabled and
discoverable devices come in range of a BlipNode the device is detected and
its presence is reported back to the BlipServer. The BlipServer now has the
option of pushing objects to the device through the BlipNode. Bluetooth en-
abled devices can be registered at the BlipServer and granted user accounts,
this way it is possible to control which objects gets pushed to which devices.
There is an API available to interface with the BlipServer in order to build
systems on top of BlipNet.|7]

BlipServer

\ Access to BlipServer via
BlipManager (GUI

frontend)
BlipNode
B0

Figure 2.1: Overview of the BlipNet architecture.

The BlipNet can be used as a platform for developing systems that can
offer information to users based on their location. It is ideal for creating
marketing systems that offer commercial content to users passing by certain
areas. It is possible to create a diverse range of Bluetooth systems by using
this framework.

From a strict marketing point-of-view the framework has great potential.
The BlipNet framework is push-based. It allows you to push information to
any device in the range of a BlipNode that has Bluetooth turned on, not
requiring any software to be installed in the target mobile device. But from
a users point of view this system also has the potential of creating a very

Page 10 of 139

Chapter 2: Preliminary Analysis

aggressive marketing system. Imagine walking into a mall where BlipNodes
have been placed in a number of shops, and the BlipNodes have all been
configured to send commercial content to anyone passing by. Now imagine
that you turn on Bluetooth on e.g. a mobile phone, this would result in
you receiving a number of messages. This scenario resembles SPAM e-mails
in an inbox. What makes this possible is the fact that it is the BlipServer
that discovers the Bluetooth enabled devices, and it is the BlipServer that
pushes objects to the devices. Also a provider might attempt to push mali-
cious content to a Bluetooth device which could potentially expose sensitive
information to a service provider.

From a users perspective it would be desirable to be able to discover services,
and then choose what information you want from which services.

The BlipNet system has been deployed in a number of cities, including
Copenhagen, Denmark, where over 400 BlipNodes have been deployed that
are operated and managed by a single BlipServer. [12]

CWhere

In [31] a location system called CWhere is proposed. CWhere allows people
at Aalborg University to find each other based on their current location and
their interests. The system relies on Bluetooth technology to discover users
and it is built on top of BlipNet 2.1.2. The system has a web service as a
front end that can be used to manage user accounts and profiles. The front
end controls the BlipServer and a database that stores user information.

A number of BlipNodes are positioned around campus, and when a user with
a Bluetooth device in discoverable mode enters an area that is in range of
one of the BlipNodes, the user will receive information about other users
that have matching interests.

BlueBlitz

A German company called BlueBlitz|21] offers a framework for Bluetooth
communication that is very similar to BlipNet. The hardware components
provided by BlueBlitz solve the same problem as BlipNodes does in BlipNet,
however they have a number of different components to choose from. The size
of these components vary from small home office to enterprise components.
BlueBlitz also provides an Internet solution that can be used to create a
mobile communication platform onto an existing web site. For the mobile
devices they offer a mobile gateway that implements security features. The
architecture of the BlueBlitz systems is very similar to the architecture of
BlipNet, and it is also a push-based system.

Page 11 of 139

2.2 Data Connections on Mobile Phones

B-MAD

B-MAD is a location-aware mobile advertising system introduced in [16],
that is based on Bluetooth and WAP. The system consists of a Bluetooth
Sensor, an Ad Server and a Push Sender. Since the system is permission-
based, the Ad Server must maintain a database of users. The database stores
information about which users it is okay to send ads to, and which ads have
already been sent to which users. When a mobile device comes in range of
the Bluetooth Sensor a message is sent from the Bluetooth Sensor to the
Ad Server. The message is sent over a WAP connection and contains the
MAC address and MSISDN, a unique identification number, of the mobile
device and a location identifier. The Ad Server then checks whether there
are any undelivered ads associated with the given location waiting to be
delivered to the mobile device. If this is the case the ads are delivered to
the mobile device through the Push Sender. The Push Sender uses WAP
Push SI (Service Indication) to deliver the ad, which means that ads are sent
through a Push Proxy Gateway and encoded into a simple SMS message.

The B-MAD system is similar to BlipNet and BlueBlitz, but B-MAD doesn’t
rely on commercial hardware products to bridge between the mobile devices
and the server. Furthermore the authors of [16] highlight that the system
is permission-based, which will outrule the possibility of sending unsolicited
content.

2.2 Data Connections on Mobile Phones

Modern mobile phones support a wide variety of different communication
channels. Some of them are suited for ad-hoc connectivity and some for
infrastructure-mode. Infrastructure-mode is characterized by the fact, that
a network provider is responsible for routing data from a point A to a point
B. The network provider also charges the user for the service. Payment can
occur on a per-data-amount or per-connection-time basis.

In this section we present the possibilities a user has to transfer data with
her mobile phone. We will not discuss obsolete communication channels
for mobile phones, nor go into great detail of each communication protocol.
Fourth generation mobile technologies are not part of this discussion either
since they are still in preliminary state.

The communication channels can be grouped by several characteristics as
figure 2.2 depicts.

Page 12 of 139

Chapter 2: Preliminary Analysis

GSM

connection-

Oth, 1th oriented

generation

Bluetooth
WiFi
Infrared IrDa

long-range

Communication

Channels short-range

GPRS

EGPRS package_
UMTS oriented

EDGE /

Figure 2.2: Map of the different communication channels available on mobile
phones and their characteristics

Long-Range Communication Channels

As the name mobile phone suggests, the main purpose of a mobile phone
is providing telephony. This service depends greatly on an infrastructure
namely the telephone network. Connection to that service is provided by
the telephone company which acts as a service provider. Since availability is
a main goal for providing telephony, also in the countryside, the communi-
cation channel used for this service is a long-range communication channel.

Usually, a mobile phone supports only a subset of those standards. Older
phones support the GSM (Global System for Mobile Communications) stan-
dard and newer, third and fourth generation mobile phones support UMTS
(Universal Mobile Telecommunications System) and UMTS RS.

Connection-Oriented Channels

Mobile telephony emerged from wired telephony. Therefore, making payment
dependent the per-connection-time basis was obvious. One of the remaining
connection-oriented communication channels is the widely used GSM stan-
dard. Working on different frequency bands, GSM is a second generation
communication standard that supports both speech and data communica-
tion.

The major drawback, that makes data-communication rather unattractive,
is that payment is independent of the amount of data that is sent through
the connection. Hence an established but idle connection still costs money.
Another mayor drawback is the slow data transmission that lies between 6
Kb/s (half-rate) and 13 Kb/s (full-rate).|51]

Page 13 of 139

2.2 Data Connections on Mobile Phones

Package-Oriented Channels

Because of the drawbacks of connection-oriented channels, the GSM stan-
dard was extended by several package-oriented protocols. The two most pop-
ular ones are GPRS (General Packet Radio Service) and EDGE (Enhanced
Data rates for GSM Evolution) also called EGPRS (Enhanced GPRS). The
main advantages of those standards are package-orientation and much higher
datarates than GSM only. The package-orientation means, that payment de-
pends on the amount of data that has been sent, and not on the duration of
the data-connection. The datarates are between 9.6 Kb/s and 80 Kb/s for
GPRS and 236.8 Kb/s for EDGE.

As third generation mobile phone technologies no longer build upon GSM
technologies, new communication channels such as UMTS and HSDPA (High-
Speed Downlink Packet Access) could be designed from scratch. They are
much faster than GSM based technologies and allow theoretical datarates of
up to 100 Mb/s download and 50 Mb/s upload. Of course, those theoretical
maxima are only achieved at locations where superior signal quality can be
guaranteed. One major drawback of third generation networks is their signal
range which is lower than GSM because of the higher frequency band.|51]

Short-range Communication Channels

Another characteristic of a mobile phone is the fact that people carry their
phone with them where ever they go. This opens the possibility of exploit-
ing short-range communication channels to provide location-awareness for
mobile phone users. In this scheme the host having the short-range com-
munication device becomes the service provider, instead of the telephone
company as is the case with long-range communication channels for mobile
phones.

A wide variety of short-range communication channels exists each having
their strengths and drawbacks.

Infrared (IrDA)

Formed in 1993, The communication standard defined by the Infrared Data
Association (IrDA) is the oldest of the mentioned short-range communica-
tion technologies. The goals of IrDA was to develop an inexpensive (less
than 5% per device), fast (115 Kb/s) cable-replacement based on infrared
signal transmission. Targeted at printer-interfaces and serial communication
replacement, IrDA was first introduced to mobile phones in late 1997. By
then, the original data-transmission-rate was raised to support 4 Mb/s.

Page 14 of 139

Chapter 2: Preliminary Analysis

As interoperability was one of the main goals of the IrDA, they also defined
application protocols to ensure interoperability. Two of the more noteworthy
protocols include IrCOMM and IrOBEX. The first protocol, IrCOMM, pro-
vides serial and parallel port emulation over the infrared link. The second
protocol, IrOBEX, provides exchange of simple data objects, hence the name
IrOBEX which stands for Infrared Object Exchange. This protocol can be
considered as the IrDA analog of the HT'TP protocol since it provides au-
thenticity, reliability and other basic services as HT'TP does.

Based on infrared light, the main disadvantage of IrDA is its short range.
A clear line-of-sight is necessary, and according to the specification in the
range of 0-1m at an angle diverging no more than 15-30 degrees.|64]

Bluetooth

In 1994, the mobile phone company Ericsson invented Bluetooth. Like IrDA,
its primary goal was to replace data cables with a wireless connection. In
contrast to IrDA, Bluetooth transmits its signals by radio frequency using
the unlicensed 2.4 GHz band. Its transmission range is 10m and can be
extended to 100m by use of amplifiers. Like IrDA, Bluetooth is designed as
a low cost device and the goal was less than 10$ per device. Data transfer
rate is at max 780 Kb/s which makes it much slower than IrDA. Bluetooth
2.0, specified in 2004 introduced EDR (Enhanced Data Rate) which makes
datarates of up to a theoretical limit of 4 Mb/s possible.

As with the IrDA standard, Bluetooth also supports standard transport pro-
tocols. In particular and analog to IrDA, Bluetooth supports REFECOMM and
OBEX which serve the same purposes as [rCOMM and I[rOBEX. It is there-
fore clear, that Bluetooth is a direct competitor to IrDA. Since a line-of-sight
between communicating parties is unnecessary and the possibility of point-
to-multipoint communication makes Bluetooth a strong competitor. [48]

Bluetooth devices in range can be discovered by use of device discovery.
Bluetooth discovery takes between 18-25 seconds on average. [58]

WiFi

Wireless Lan, WiFi and IEEE 802.11 all correspond to the same. It is the
IEEE standard 802.11 a/b/g which is referred to, that defines a set of wireless
LAN/WAN standards. The intentions with WiFi was to create a wireless
alternative to Ethernet. WiFi has a range of 100m which is ten times the
range of a standard Bluetooth connection. Power consumption is therefore
approximately 10 times higher than Bluetooth power consumption. [37]

Page 15 of 139

2.2 Data Connections on Mobile Phones

Using the same baseband as Bluetooth, 2.4GHz, WiFi faces the same inter-
ference potentials as Bluetooth does. Microwave stoves and other devices
using the unlicensed radio frequency band are known to disturb communi-
cation.

Since WiFi is designed for wireless LAN applications, it is well-suited for
any kind of Internet-protocol based application such as email, browsing and
of course web service invocation. Also the high data-rates at 11 Mb/s and
54 Mb/s respectively for the standards 802.11b and 802.11g allows a high
degree of interaction due to short round-trip-time compared to Bluetooth
and other short-range communication technologies.|37]

Other Short-Range Technologies

There are a couple of other wireless short-range technologies which could
be targeted at mobile devices. Such technologies include RFID, ZigBee,
Wibree and WUSB (Wireless USB). These technologies are partially still
under development and not widely applied to mobile phones. Furthermore
technologies like RFID are not well suited for our application since they are
not aimed at supporting transmission of larger data sets.

Bluetooth in Mobile Phones

Since Bluetooth was aimed to replace cables, the primary use-case for Blue-
tooth on mobile phones are headsets. The ability to ensure the bandwidth
required for realtime audio transfer natively by the Bluetooth specification
makes headsets practically a killer-application for Bluetooth.

With the implementation of standard transport protocols, especially the im-
plementation of IrDA protocols like IrCOMM (called RECOMM with Blue-
tooth) and IrOBEX (OBEX), synchronizing phonebooks and calendars with
the mobile phone and a computer is meant to be as simple as plugging in a
cable. It gives the user the ability to backup the data stored on the mobile
phone.

Using Bluetooth has also some notable basic advantages. First of all Blue-
tooth is cheap to use. In order to access the Internet from a mobile phone
a user needs to have an account with a phone company, and the user will
be charged for the Internet traffic. Bluetooth radio communication is totally
free of charge for the user. Although connectivity to the Internet and its ser-
vices using Bluetooth requires a bridging application to be installed, which
the phone company otherwise would provide.

Power consumption is also a quality factor for the user of a mobile phone.

Page 16 of 139

Chapter 2: Preliminary Analysis

Since Bluetooth is a short-range communication channel, its power consump-
tion is much lower than for GPRS or UMTS which are long-range channels.

The fact that Bluetooth is a short-range channel, can be regarded as a fea-
ture. Since the typical transmission range of a Bluetooth signal is about
10m, a user can only establish a connection to devices in its neighborhood,
hence providing a limited form of location-awareness in the device.

2.3 Summary

The SMS systems section of this chapter described the results of a marketing
analysis conducted in 2005. One of the key results from this analysis was the
fact that 88% of the questioned mobile users would be interested in using
these sorts of systems, if they adhere to the three conditions, Choice, Control,
and Mutual benefit. 1t is our belief that adhering to these principles can help
ensure the success of future mobile systems exhibiting a similar behavior as
an SMS system.

Also using SMS systems for more advanced user interaction can be cumber-
some and costly since the user will have to send a number of specifically for-
matted SMS messages to the SMS system to achieve interaction. Specifically
a case study of the Coca Cola Summerdays marketing campaign launched in
Australia in 2003 showed a large number of invalid SMS messages sent due
to ill-typed and ill-formatted SMS messages. From this we conclude that
using mobile systems should be free of charge, to open the possibilities of
creating more advanced applications requiring direct user interaction. Also
using a mobile system should rely on simple and easy-to-use interfaces with
the goal of eliminating or reducing the number of invalid requests sent to a
system.

We believe that push-based services is a bad approach for building location-
aware mobile systems. When push-based services are used the users have
no choice at all whether or not they want to receive a given message, and
this is not in accordance with the Choice-condition listed in section 2.1.1
that should be met in order for users to be receptive to receive content
on their mobile phone. Push-based services take away the initiative for
users to engage in interactions. This is a problem because users may be
inconvenienced or disturbed by an interaction that has been pushed upon
them. For instance, in a push-based system a user could be writing a message
on her phone and suddenly be interrupted in the process by a message from
a service provider.

Furthermore push-based services empowers the service providers to send any-
thing they want to their users. Even though content may be sent to users

Page 17 of 139

2.3 Summary

in a permission-based manner, as is the case with the B-MAD system, it is
still up to the provider to choose what content to send to the user. This
can potentially be dangerous as a malicious provider might attempt to send
corrupting data to a client.

The BlipNet and BlueBlitz solutions require that you purchase their hard-
ware together with their software in order to set up Bluetooth systems. What
these hardware components do can also be accomplished in software. There
are potentially two benefits of going with the software approach. Firstly the
providers will not need to invest funds in the hardware components. Secondly
the providers will not be constrained in their interaction by the particular
firmware that has been installed on the hardware component. The software
approach of doing the interaction is more flexible, but the software solution
will most likely execute slower than the hardware solution.

Despite of the Instant win contest discussed in section 2.1.1, most of the
application areas for mobile systems are dependent on the current location of
the customer or user. Therefore location-awareness is an important feature
for mobile systems. But location-awareness cannot be provided by long-
range communication used in SMS based mobile, since there is no possibility
to locate a user solely by long-range signals due do their imprecise nature.
GPS (Global Positioning System) is neither feasible, since it is not very
common in mobile phones today. It is also not possible to use GPS signals
inside buildings.

We suggest a Bluetooth-based mobile system because of their limited signal-
range which offers the possibility to provide limited location-awareness. It
is limited, because the signal-range depends on the hardware in the sender
and receiver and the vicinity both are in. But we are confident, that this
limitation only restricts few applications that require location-awareness.

Bluetooth is also favorable as communication channel for mobile systems.
While data transferred by SMS or any other channel that requires a carrier
(the phone company) cost money, Bluetooth is completely free. Otherwise,
customers might pay for receiving commercials. In this case, acceptance
would quickly decrease because of the lack of mutual benefit as described
in [38]. Of course WiFi is also free to use like Bluetooth. But WiFi has a
power consumption that is approximately ten times the power consumption
of Bluetooth.

The goal is to be able to build systems that allow users to discover Bluetooth
services on their own in a safe way, and let the users choose for themselves
which services they want to use. In order to build these systems securely
we need an authentication framework that establishes safe communication
between mobile devices and Bluetooth services. Establishing safe commu-
nication requires the use of a registry to store data about authenticated

Page 18 of 139

Chapter 2: Preliminary Analysis

services, and a server with access to this registry that can act as a mediator
and negotiate between the mobile devices and Bluetooth services.

This summary has provided an accumulation of important observations and
arguments, which serve as the basis for a detailed problem statement in the
following chapter.

Page 19 of 139

Chapter

Problem Statement

This chapter provides a conceptual description of the DynaBlu framework.
We introduce the term authenticated web service invocation over Bluetooth
and explain the concept of the DynaBlu framework. The conceptual overview
leads to a set of system requirements and system philosophy. Finally the
goals for this project are defined.

3.1 Authenticated Web Service Invocation over Blue-
tooth

The main task of the DynaBlu framework is to provide the user of a mobile
device with a communication gateway to location-aware information services.

To avoid potential malicious service providers we have a built-in security
mechanism providing authentication of service providers. This security mech-
anism requires the use of a third party, which we have called the Bluetooth
Authentication Mediator. This mediator is responsible for confirming the
identity of the communicating parties by exchanging their identifying data.

3.2 System Description of the DynaBlu Framework

Figure 3.1 gives an conceptual overview of the proposed framework.

Our framework consists of three collaborating entities.

e A client. In DynaBlu a service requester is a mobile client with Blue-
tooth capabilities. This client will detect a signal from a service provider

21

3.2 System Description of the DynaBlu Framework

Bluetooth Authentication Mediator

A\

Client Service Provider

Figure 8.1: Conceptual overview of the framework, allowing authenticated web
service invocation from a mobile phone using Bluetooth communication

within its range. Depending on the service being provided, the client
can choose to initiate a Bluetooth connection with the provider and
interact with its service. We will need to design and implement client
software for the mobile client in order for it to be able to interact safely
with a service provider. We have chosen to implement the Bluetooth
connectivity in a component we call the Bluetooth Communication
Bridge, which we describe in detail in chapter 8

e The service provider is responsible for publishing its services and ad-
vertising the presence of these using Bluetooth. The service provider
should provide capabilities allowing its identity to be confirmed, more-
over the service provider should be able to confirm the identity of the
client. The Bluetooth connectivity in the provider is also implemented
in the bridge component.

e The Bluetooth Authentication Mediator. This entity provides the
means for authentication between the client and the provider. It should
provide facilities allowing service providers to register their services at
this entity. This registration will make it possible for a client and
provider to securely establish the identities of each other.

The interaction between the three entities is divided into three phases.

Page 22 of 139

Chapter 3: Problem Statement

Publication phase The service provider publishes/registers information
about its identity and provided services in the Bluetooth Authenti-
cation Mediator.

Discovery phase The Client discovers a Bluetooth signal from the provider
and subsequently fetches the information needed to communicate.

Authentication phase Both client and provider authenticate each other
by communicating with the mediator. The mediator provides both
parties with an authentication and encryption key.

Communication phase Based on the authentication results received from
the mediator, the client sets up communication with the provider and
it’s web service applications.

The client can now communicate with the web services deployed in
the provider by sending/receiving Soap messages over the Bluetooth
Communication Bridge.

3.3 System Requirements

Based on the preanalysis, the use cases described in the introduction and our
experience from former projects we define requirements that the DynaBlu
framework should adhere to. The requirements are split into two groups.
The first group contains the design requirements which address aspects re-
garding the inner workings of our framework. The second group contains
requirements that are aimed at both the end users, which use the client ap-
plication to consume services in a service provider, and the developers using
our framework to implement a location-aware system.

Design Requirements

Extensibility

Our framework should be designed to be extensible. This requirement en-
sures that we will be able to update and change our framework to meet
future demands. Designing our framework to be extensible necessitates a
modular and flexible design where individual components can be changed or
added without affecting the rest of the system.

To make our framework extensible we must also provide documentation that
can aid developers in understanding the existing code. Source code com-
ments and API documentation simlifies integration and extension of existing
modules.

Page 23 of 139

3.3 System Requirements

Reliability

A goal of our framework is that it should be designed to be reliable. By
reliable we mean that error-handling facilities should be provided, ensuring
that unexpected actions are handled. In the case of an irreparable error the
system should always respond with an appropriate error message.

Efficiency

Because the client application will be running on a resource constrained
mobile device, efficiency concerns regarding memory usage and heavy calcu-
lations must be made. This improves the performance of the application and
increases compatibility with respect to memory consumption. Optimization
of the data communication between the client application and the provider
is also part of the efficiency requirement. FEfficient data communication is
important to prevent communication bottlenecks which would have direct
impact on the usability requirements.

Usability Requirements

Selectability

The results concerning customer demands for mobile systems learned in
the preanalysis chapter (see section 2.1.1 for a detailed description) dictate
three conditions that mobile systems should adhere to. Those conditions
are Choice, Control, and Mutual Benefit. To satisfy the Choice condition
a DynaBlu system must never send messages to a mobile user who has not
opted to receive a certain message. A user must have requested the message
by actively selecting a web service for invocation. This means that the client
will never receive unsolicited messages from systems based on our frame-
work. A system can only be activated when the client actively invokes a
service chosen using our client application. This method of invoking appli-
cations also implicitly satisfies the Control condition as the client can simply
remove the client application from her mobile phone if she no longer wants
to use DynaBlu systems. The Mutual Benefit condition is left in the hands
of the service provider, choosing themselves which marketing strategy they
will be adopting.

Credibility

Mobile clients should always be able to trust the service providers they en-
counter. Clients should not have to worry about service providers send-
ing malicious content. A solution to this problem is to make sure that the
client can always confirm the identity and thus good intentions of the service
provider. Also the service provider should be able to establish the identity of
the client thus making sure that potential sensitive information is delivered
to the correct recipient. Clients and service providers need not necessarily
have preceding knowledge of each other, which is the main reason for us to

Page 24 of 139

Chapter 3: Problem Statement

include a mediating entity in our framework.

Since we rely on the fact that mobile clients should see our Bluetooth Au-
thentication Mediator as a trustworthy entity in the system, we will have
to check the content of the services registered in our service registry before
they become publicly available. By check we mean we will have to manually
test the deployed web service by invoking it.

Security
Users of systems based on our framework should never have to worry about
security. Facilities to safely establish the identity of service providers should
be available. Also for sensitive applications encryption facilities has to be
available.

This requirement makes it possible for us to support a larger number of
applications like for instance the movie theatre example from chapter 1 where
we discussed the possibility for a user to make ticket payments from her
mobile device.

User Experience Our framework has two groups of users, namely client
users consuming applications in the service provider and developers making
applications available in the service provider. This requirement is aimed at
both types of users.

The client should not have to wait for unreasonable amounts of time when
using our framework. When for instance a Bluetooth device discovery is
made a user will have to wait for 18-25 seconds, discussed in section 2.2,
which can be a nuisance. Thus we will be focusing on minimizing the idle-
time that a user has to spend when using our client application to interface
with the service provider. To aid in this perspective our client application
should also be designed to minimize the manual user interaction required
by a client to use an application from a service provider. This aspect is
backed by the tendencies we found in the preanalysis chapter showing that
users often make mistakes when having to manually supply a system with
interaction data.

From a developers point-of-view it should be simple to develop applications
based on the DynaBlu framework. A developer should not have to spend a lot
of time reading documentation to be able to develop applications using our
framework. Also setting up a provider should not be costly and require the
use of special-purpose hardware, as is the case with the previously mentioned
similar systems like Blip Systems and BlueBlitz.

Page 25 of 139

3.4 System Philosophy

3.4 System Philosophy

We have stated the following system philosophies that our system should be
designed towards.

Openness Our framework for creating location-aware Bluetooth applica-
tions should be based on the use of open and vendor-neutral technologies.
This makes it possible for developers to use our framework regardless of
the development platform they are using as long as it supports these open
technologies.

Compatibility It was reported that in 2005 708 million Java-enabled mobile
devices had been shipped, in other words 7 out of 10 devices being shipped
today is Java-enabled [8]. Based on this fact and that this number is expected
to grow in the future we will be basing our system on Java technology. By
doing this we gain wide support on most modern phones.

3.5 Project Goals

In [18] a proof of concept is proposed for web service invocation over Blue-
tooth (the details of this proposal are discussed in section 4.3). In this project
we use that proof of concept as an inspiration for our own implementation.
The main goal is to develop a functional application framework that makes
it possible to develop mobile information applications using authenticated
service invocation over Bluetooth. The resulting framework is not to be re-
garded as a finished product, but as a first step towards a production stable
product.

Based on this problem statement, the preanalysis and our knowledge and
experience we identify the following areas to be investigated prior to an
implementation of the proposed framework.

Web service invocation from a mobile phone using GPRS.

e Web service invocation from a mobile phone using Bluetooth commu-
nication.

Security and authentication mechanisms for use on a lightweight plat-
form as found on mobile phones.

e Dynamic stub generation used for web service invocation.
The overall focus of this project is to gain knowledge, experience and tech-

nical insight into the difficulties of developing such a framework. The imple-
mentation should therefore be considered as an extended proof of concept,

Page 26 of 139

Chapter 3: Problem Statement

in which the technical hurdles such a framework comprises are solved or at
least discussed thorougly. The understanding and knowledge about central
aspects of this framework should yield an expertise that is fundamental for
a future successful commercial implementation of this framework.

The proposed system requirements are therefore not only valid for the cur-
rent project but also appliable to future work. The resulting implementation
of this framework is therefore not required to fulfill all of the proposed re-
quirements. But along with the mentioned project philosophies we aim to
create a solid foundation for future projects.

Page 27 of 139

Part 11

Analysis

29

Chapter

Bluetooth

This chapter presents an analysis of Bluetooth technology. This is necessary
because an implementation of the proposed system require an implementa-
tion of software that utilizes Bluetooth communication. The analysis will
provide us with valuable knowledge of Bluetooth protocols and Bluetooth
security technology.

4.1 Bluetooth

As mentioned in section 2.2 Bluetooth was designed by Ericsson in an ef-
fort to create short-range wireless connectivity for ad-hoc networking. The
project was named after 10th century Danish viking king, Harald Bluetooth.
In 1998 four other companies (IBM, Intel, Nokia and Toshiba) joined in on
the work on Bluetooth and formed a Special Interest Group (SIG) together
with Ericsson. This SIG is responsible for developing and maintaining the
Bluetooth specifications. The SIG grew very fast. In 2000 there were about
1500 member companies, and today (2007) there are over 7000, showing that
there is still interest in further developing this technology. [61]

It is not surprising that Bluetooth technology has attracted a lot of attention.
There are virtually an endless array of applications for Bluetooth technology.
For instance as a cable replacement for head-sets and MP3-players or as
cordless data transfer between phone and computer, computer and printer
or between computer and digital camera.

Bluetooth connectivity is available on a single tiny, inexpensive computer
module. For example one module in figure 4.1 is 33*¥15%1.2 mm and it is
equipped with short range transceivers. When these modules are built into

31

4.1 Bluetooth

MADE, IN USA . EmbeddedBlue e ‘

EESSESSE2SSSSE33EER

LI

1 . °
ol FEm Iy ERI. R4
C2 |

Manuf? by (- (sl 8
. www.ajeng.com Wbe . Bili-il s el d
A Gl DA C U2 *C4e DI*D2

Figure 4.1: Bluetooth module. The dimensions of the module are roughly
38%15%1.2 mm.

products such as mobile phones the price of the product is only increased
with about 53, which is only half as much as the design goal mentioned in the
introduction, which was 10$. Figure 4.1 shows one of the Bluetooth modules
with a possible theoretical data transfer rate of up to 4 Mb/s. [39]

Currently Bluetooth radios are available in three classes dependent on their
maximum permitted power usage.

Class 1 100 mW, allowing ranges up to 100 metres.
Class 2 2.5 mW, allowing ranges up to 10 metres.

Class 3 1 mW, allowing ranges up to 1 meter.

Mobile phones are typically class 2 devices allowing communication within a
10m range. Class 2 Bluetooth radios are a well-suited compromise between
having a practical application range of the Bluetooth device and a limited
power consumption. [60]

Each Bluetooth device is uniquely identified by a 48 bit MAC address, and
communication occur over a point-to-point or point-to-multipoint radio link.
As mentioned Bluetooth operates on the unlicensed 2.4 GHz part of the ra-
dio spectrum, like e.g. microwave ovens, but problems with interference are
minimized because the low level Bluetooth communication protocols uses
frequency hopping when transmitting data. Bluetooth uses 79 different fre-
quencies around the 2.4 GHz band and 1600 hops are made every second
between the 79 frequencies. The sequence of hops that will be made during
communication will be given by the master device when a connection is es-
tablished, which will be explained shortly. Besides coping with interference
frequency hopping also allows multiple Bluetooth users in the same room.

Page 32 of 139

Chapter 4: Bluetooth

Master Master
'i STl Master
"' l' I| ‘\ 1’ ‘\)
L, K B \“ /' |‘
i i i i Slave Slave i i
Slave Slave Slave Slave Slave Slave
Multi-slave piconet Scatternet

Figure 4.2: Bluetooth networks.

Bluetooth supports both circuit-switched and packet-switched communica-
tion. Circuit-switched communication is used in applications where a con-
tinuous flow of data is transmitted, and a minimum bandwidth must be
reserved. This could for instance be voice communication through head-
sets. Packet-switched communication is used for data transferal, such as
sending a picture from one Bluetooth device to another. Bluetooth supports
two different kind of links, ACL and SCO, and both can be supported at the
same time. ACL (Asynchronous Connection-Less) links are used for packet-
switched data transferal, and SCO (Synchronous Connection-Oriented) links
are used for circuit-switched voice communication.

Networks of Bluetooth devices consist of a Master device and up to seven
Slave devices. These small networks of Bluetooth devices are called piconets.
The device that initially establishes a connection is the Master. This device’s
clock and frequency hopping sequence is used by all the Slaves in the piconet
to synchronize with the Master. Bluetooth piconets can be linked together
to form a scatternet. The piconets in a scatternet are not coordinated, which
means that they use different frequency hopping sequences. Figure 4.2 shows
a multi-slave piconet and a scatternet.

Bluetooth relies on service discovery for locating services on other devices.
Service discovery is based on direct interaction between the devices. When
Bluetooth devices come in range of each other they are able to search for
services via the SDP protocol (Service Discovery Protocol). In traditional
networks like the Internet these service lookups are carried out through cen-
tral directories, like for instance a DNS server. Central directories like DNS
servers are not needed in Bluetooth networks. [39]

Page 33 of 139

4.2 Bluetooth Protocol Stack

4.2 Bluetooth Protocol Stack

The Bluetooth protocol stack is built up by a number of layers like the OSI
reference model. Figure 4.3 shows the Bluetooth stack. The Bluetooth radio
corresponds to the physical layer in the OSI reference model, which is the
lowest layer. The Baseband protocol and the Link Manager Protocol (LMP)
correspond to the data-link layer in the OSI reference model. The Baseband
protocol is responsible for establishing the physical links between Bluetooth
devices, and this involves synchronizing the clocks and hopping frequency of
the devices in a piconet. LMP is used to control links between Bluetooth
devices, which involves negotiation of Baseband packet sizes, authentication
and encryption, and controlling the power modes and transmission cycles of
the Bluetooth radio.

All upper-layer protocols and applications communicate through ACL links.
It is only possible to use SCO links for audio transmission, which runs directly
on top of the Baseband protocol. The Host Controller Interface (HCI) is an
interface between higher and lower layers of the Bluetooth stack. The HCI
is typically the interface between the Bluetooth hardware and the operating
system of the host computer. This interface makes it possible to have a
Bluetooth module with its own processor implement the lower layers of the
protocol stack, and have the host of the module implement the higher layers.
The host of a Bluetooth module could for instance be a phone or a desktop
computer. The upper-layer protocols are more interesting than the lower-
layer protocols from our point of view, because we have to chose one or more
of the upper layer protocols to interface with in order to build the proposed
software system. Therefore the four main upper-layer Bluetooth protocols
are covered in a bit more detail in the following subsections. [39]

L2CAP

Logical Link Control and Adaption Protocol (L2CAP) is a data-link-layer
protocol, and it is the protocol that all higher-level protocols interface with.
It is possible to develop applications that interface directly with L2CAP.
L2CAP provides protocol multiplexing for higher-level protocols. This means
that this protocol distinguishes between which higher-level protocol it is com-
municating with. L2CAP performs segmentation and re-assembly for higher-
level protocols that send packets that are larger than what the Baseband
supports. The maximum L2CAP packet size is 64 KB. Since the Baseband
packets are limited in size (to 341 bytes) large L2CAP packets are typically
segmented into multiple Baseband packets. This means that higher-level pro-
tocols create a large data overhead by sending large packets. L2CAP uses
simple Baseband integrity checks to provide a reliable channel, but reliability

Page 34 of 139

Chapter 4: Bluetooth

Applications and profiles | A

OBEX
| Operating System
SDP RFCOMM
I I
L2CAP v
HCI
LMP A
Baseband Hardware
Bluetooth Radio
u | v

Figure 4.3: The Bluetooth protocol stack.

is not enforced.

L2CAP is a minimalistic protocol. And when using higher-level protocols a
large percentage of the data being transmitted is header information, because
each layer in the protocol stack uses its own headers. Therefore interfacing
directly with L2CAP introduces the lowest possible overhead for applica-
tions, and because of this it provides higher bandwidth and lower battery
consumption than higher-level protocols. [39]

SDP

The Service Discovery Protocol (SDP) defines how Bluetooth devices pub-
lish and discover services. In this context a service is defined as any feature
that is usable by another device. SDP runs over a reserved L2CAP chan-
nel. A SDP database maintains a local database with information about all
the services that are available on the device. This information is stored in
Service Records. Each Service Record contains the attributes of a specific
service, including the service UUID (Universally Unique Identifier). UUIDs

Page 35 of 139

4.2 Bluetooth Protocol Stack

are global identifiers that are used to classify the type of Bluetooth services
being offered. A service client can initiate searches through SDP for services
that match a combination of UUIDs and attributes on discoverable SDP
databases in range. [39]

RFCOMM

RFCOMM is a cable replacement protocol, and it resides in the transport-
layer in the OSI-reference model. It emulates a serial RS-232 port connection
over L2CAP, and emulates RS-232 control and data signals. RFCOMM is
used as a virtual cable line between Bluetooth devices, and by some higher-
level protocols such as OBEX. RFCOMM can for instance be used to support
a direct connection between a computer and a printer. [39]

OBEX

OBEX is a session-layer protocol, and one of the adopted protocols in the
Bluetooth stack. OBEX was originally developed by the Infrared Data As-
sociation (IrDA) with the purpose of supporting easy exchange of data ob-
jects. The OBEX protocol was easy to adopt because it is designed to be
independent of the underlying transport protocol. In the Bluetooth stack
the transport protocol can for instance be RFCOMM or TCP.

OBEX is similar to the HT'TP protocol, but much lighter. It is session ori-
ented and like the HTTP protocol also based on the client/server approach.
OBEX allows OBEX clients to receive and send objects to OBEX servers,
and to change the active directory at the server. The basic operations are
connect, disconnect, put, get and setPath. The connect and disconnect oper-
ations are used to establish and close a connection to an OBEX server. When
a connection has been established data objects can be pushed or pulled from
the server via the get and put operations. OBEX has a built in header sys-
tem that allows clients to specify the kind and name of the data they wish
to receive or send.|39]

Other supported protocols

Bluetooth also supports a number of other protocols. Support for PPP,
TCP/UDP/IP offers an alternative transport-layer protocol, and interface
to the Internet. WAP is supported for sending and reading Internet content
and messages. TCS BIN is supported for setting up speech and data calls
between Bluetooth devices.[39]

Page 36 of 139

Chapter 4: Bluetooth

Discussion

The most efficient approach in terms of power consumption and network
bandwidth is to interface with the L2ZCAP protocol. However, using L2CAP
implies having to deal with low level issues such as segmenting data into
L2CAP packets on one side of the connection, and reassembling the packets
on the other side in order to reconstruct the data. Interfacing with RF-
COMM relieves us from this programming effort and allows us to work with
data streams instead. So there is a tradeoff between efficiency and program-
ming effort. We have chosen to interface with RFCOMM, because in this
respect we value programming time higher than the potential increase in
efficiency. Furthermore the software will be developed in a modular manner,
which means that the module controlling the data flow can be replaced later
if a more efficient one is needed.

4.3 Web Service Invocation over Bluetooth

It is not a trivial task to accomplish web service invocation through a Blue-
tooth channel, because web service invocation is commonly based on common
Internet protocols, which means that SOAP node implementations like JAX-
RPC (explained in 6.2.1) are based on the HTTP protocol. In order for us
to achieve web service invocation over Bluetooth we must invent a scheme
that will enable us to send SOAP messages from one Bluetooth device to
another, but fortunately existing research have been conducted in this area.
Two scientific articles present solutions to this problem [18] and [19].

The first article [18] presents a proof-of-concept of how to use Bluetooth
technology for web service invocation. It presents a “lightweight framework”
for sending SOAP messages from one Bluetooth device to another. The idea
behind the framework is to put in a proxy layer between the web service
components and the Bluetooth components on both the client side and the
server side. Figure 4.4 shows an illustration of the proposed framework.

When the client Midlet or application issues a Soap request the Soap mes-
sage is passed to the client Bluetooth proxy. The proxy serializes the Soap
message into a byte stream and sends it to the Bluetooth device that runs
the Soap server through a serial communication link (RFCOMM). On the
server side this byte stream is passed to the server Bluetooth proxy, which
then deserializes the byte stream into a Soap message. The Soap message
is forwarded to the web service container, where it is invoked, and the re-
sponse SOAP message is transferred back to the client Midlet in the same
way through the proxy layer.

The second article [19] presents a performance evaluation of their framework.

Page 37 of 139

4.4 Coping with Mobility

Midlet Jakarta Tomcat Server

 —w
]
SoapMessage 1 SoapMessage

Slave Bluetooth Proxy Master

Byte Stream 1 Byte Stream
Serial Communication
< —>

Bluetooth Device Bluetooth Device

Figure 4.4: Framework architecture, based on figures in [18] and [19].

Here the through-put of the framework, the discovery times and the overhead
introduced by the framework is investigated through experimentation. The
article concludes that the framework has a high through-put and is applicable
in real-world applications.

In our project we need a similar framework for web service invocation over
Bluetooth. Therefore we use the basic ideas presented in this section as a
starting point for designing the communication infrastructure that is needed.

4.4 Coping with Mobility

Using Bluetooth we have to take the properties of a radio connection that
can be distorted and a client in motion into account. While arbitrary discon-
nections as well as bad signal states occur, the user expects continuous data
transmission while she is moving. Solving these communication problems at

Page 38 of 139

Chapter 4: Bluetooth

a low level without much user-interaction should be taken into account in
DynaBlu.

We therefore aim to reduce the implications of reconnections and bad trans-
missions as much as possible. The first step in finding solutions, is to identify
the problems implicated by client mobility and short-range radio communi-
cation.

We identify three possible communication problems. Figure 4.5 depicts these
problems.

Provider A Provider B2

A B C

Figure 4.5: The three problems due to the mobility of the user: A The recon-
nection problem, B The continuity problem, and C The discovery problem.

A The Reconnection Problem

If the user leaves the vicinity of the provider he is currently connected to,
the connection is lost and terminated. If the user after a short period of
time enters the vicinity of the same provider again, a reconnection mecha-
nism must occur without user interaction. This mechanism should be fast
enough, so that the user is not inconvenienced by the time she must wait for
a response from the provider. Furthermore such a reconnection must occur
without having to restart the authentication procedure. Re-authentication
would be too time consuming and entail costs because of the established
GPRS-based Internet connection. Especially in the case where the user is
moving at the border of the vicinity, frequent reconnection would disturb
the seamless functionality of the web services provided by our framework.

B The Continuity Problem

The limited range of Bluetooth communication is a shortcoming that affects
use-cases, where the vicinity of one provider is smaller than the area to be
covered by a particular service. A natural solution would be to install several

Page 39 of 139

4.4 Coping with Mobility

providers that mirror the services of one provider. Figure 4.5B depicts such
a solution. Provider B1 and B2 provide exactly the same content.

Since B1 and B2 use different Bluetooth devices for communication, the
client will not recognize B2 as the same provider, resulting in loss of the
former web-service interaction state data with B1 and renegotiating authen-
tication and encryption keys for B2. This takes time and is costly because
of the communication with the mediator established over the Internet. To
solve this problem, a mirroring service may be adequate.

C The Discovery Problem

The user of the client application should not be concerned with the technical
details of Bluetooth communication. Therefore discovery of providers and
their services must occur automatically without any user interaction. The
client application must dynamically survey the vicinity for available providers
all the time to get all possible services.

The discovery of devices takes place in two steps. First all available devices
in the vicinity have to be detected. In a second step every device that has
been discovered has to be scanned for available services. If there are many
Bluetooth devices in the vicinity, the time used for the second step will
be multiplied by the number of detected devices because we have to scan
every device that may run a provider application. Because of this discovery
on Bluetooth devices can be a time consuming process. Device discovery
takes approximately 18-25 seconds depending on the mobile device and the
environment, and during this time the application that is running the device
discovery is forced to halt.[59|

Discussion and Possible Solutions

The discovery problem is the most simple to solve. Device discovery can only
take place, if the target device is in discoverable mode. 1If not, the device is
invisible for the discoverer and is hence never scanned for services. Assuming
push-based mobile systems as described in section 2.1.2 gain widespread use
in the future, people could get annoyed with the constant bombardment of
OBEX push-objects and would eventually disable the discoverable mode in
their mobile devices. Push-based mobile systems do not work if a device is
not discoverable. As more people disable discoverable mode, our discovery
problem grows smaller. Though we should not rely on this assumption, but
find a more elegant solution. A practical solution can be to improve the
steps of the discovery process as described above. In the first step devices
can be filtered according to the class of the device, for instance scanning of

Page 40 of 139

Chapter 4: Bluetooth

other mobile phones can be avoided. In the second step an optimization can
be to maintain a list of already scanned devices. This way time consuming
repetition of the scanning process can be avoided. Delaying the scanning
process in the client can also be part of the solution. This would improve
the user experience, but might reduce the number of detected services in the
vicinity.

Reconnecting to a previously connected provider without having to go through
the Authentication phase againg (see page 22) can only occur, if the client-
provider association through the encryption keys remains for some time after
a disconnection. It also requires both the client and the provider to preserve
potential stateful web service interaction to allow the client to continue where
it lost the connection. The solution here could be a keyring in the client and
the provider, that allows reconnection and transmission with the same keys
for some time. With respect to security, the keys should have an expira-
tion timeout. This keyring in combination with the preservation of the web
service interaction in the provider, would solve the reconnection problem.

Solving the continuity problem requires the provider to be identifiable despite
of using several different Bluetooth addresses.

A way to solve this problem is to let a provider define a number of “mirror
devices” that share the same services through some standard web service
in each provider. The client could then see which Bluetooth addresses are
associated with a provider and reuse existing keys with the specified mirrors.
The providers would of course need to exchange keys amongst each other.

We have now discussed a number of communication problems in our frame-
work that would potentially influence the user experience of the system,
and discussed possible solutions. This will influence the design and imple-
mentation of our framework, since a good user experience is crucial for the
acceptance of the DynaBlu framework.

4.5 Summary

To avoid dealing with low level details such as segmentation and re-assembly
of L2CAP packets we choose to interface with RFCOMM in the Bluetooth
protocol stack. This will allow us to work with a stream connections instead,
and we do not consider the overhead introduced by having to send REFCOMM
headers as significant.

The communication infrastructure will be based on web service invocation
over Bluetooth. To solve this problem we will need proxies on both sides
of the Bluetooth connections, which can translate byte streams to and from
SOAP messages.

Page 41 of 139

4.5 Summary

Connection problems must be taken into account in order for us to provide
the user with a continuous data transmission, because the communication is
based on Bluetooth technology. Device discovery can be optimized by using
black and white lists and by using different modes for scanning.

Page 42 of 139

Chapter

Security

Security aspects such as confidentiality and authenticity are of vital concern
in today’s world. Today there is an increasing number of electronic trans-
actions involving sensitive information, such as credit card numbers [50].
Potential malicious parties can misuse this information and make purchases
with stolen credit card numbers. Because of the large number of applications
that today require the ability to handle and protect sensitive information it is
important to provide support for these types of scenarios in our framework.

Addressing security aspects has been a goal from the beginning of this project
which was also stated in the our system requirements. In this section we
listed the system requirements Credibility and Security stating that a user
should always be safe when using our system. This implies that it should
not be possible to communicate with a party in our system without having
authenticated the identity of the party. We also stated that we want to
provide support for encryption schemes enabling the possibility of developing
information-sensitive applications with our framework.

In this chapter we discuss security aspects when communicating between the
three parties in our system, namely the Client, Provider and Mediator, see
figure 3.1 for an overview of the entities’ roles in our framework. The com-
munication types between these entities can be classified into the following
two types of communication.

e Client-Mediator and Provider-Mediator communication over the Inter-
net. We describe security aspects of these connection types in sec-
tion 5.1.

e Client-Provider communication over Bluetooth. Security aspects of
this type is described in section 5.2.

43

5.1 Internet

5.1 Internet

Internet communication will be used by our clients and providers to com-
municate with the Bluetooth Authentication Mediator. The purpose of the
mediator is, as previously mentioned, to authenticate the identity of the
communicating parties. Yet we have not discussed issues concerning authen-
tication of the mediator’s identity. A malicious user might impersonate this
entity and give false authentication information. We thus need to provide
mechanisms for securely establishing the identity of the mediator, and the
mediator must be able to verify that it is communicating with the correct
client and provider. Moreover we discuss methods of exchanging encryption
keys securely. In this section we outline how these mechanisms work and
how they can be used in our framework.

5.1.1 Authentication

Most Internet systems dealing with sensitive information today use the HT'TPS
protocol, which is a an encrypted version of the HI'TP protocol. HT'TPS is
today understood by most browsers and also most modern mobile devices can
communicate using HT'TPS. Support for HI'TPS was released in the Mobile
Information Device Profile (MIDP) in 2001 [30], discussed in section 6.1.2.

HTTPS describes HT'TP communication using encrypted Secure Sockets
Layer (SSL) or using its successor Transport Layer Security (TLS). SSL/TLS
initializes HTTPS communication by performing a handshake session where
information is exchanged between the two communicating parties that enable
them to encrypt and decrypt messages.

In this handshake the identities of the communicating parties are established,
and protocol versions and encryption algorithms are agreed upon. This cre-
ates the possibility of a client /server to have support for a number of security
schemes. Aslong as both parties have support for a common security scheme
they can communicate securely with each other. |23]

An identity certificate is required by the web server in order for it to support
HTTPS communication. A certificate contains a public and private key
which are used to authenticate the identity of the communicating parties and
used for the exchange of encryption keys. A public key is used to encrypt
a message. This message can only be decrypted using a private key related
to the public key. Note that in this section we only outline the workings
of public/private key-based algorithms. For a more detailed description on
how these work we refer to [35]. We outline the steps required to encrypt
messages in figure 5.1. In this example Alice sends an encrypted message to
Bob who decrypts it after receiving it.

Page 44 of 139

Chapter 5: Security

1. Alice retrieves Bob’s public key, K g
2. Alice encry&ts the message m,
yielding K g (m)

3. Alice sends K g (m) %

~

/

4. Bob decrypts the message
using his private key, K B @
yielding Kg (K g(m)) =m

N
-

Bob

Figure 5.1: Alice and Bob communicating using public/private key-based en-
cryption

This idea of using different keys to encrypt and decrypt messages is also
referred to as asymmetric encryption. The most commonly used asymmetric
encryption algorithm is RSA, which is explained further in [36]. If another
user where to intercept the message Kg(m) being sent in figure 5.1 it could
not be decrypted as they would not have access to Bob’s private key K. [35]

Signing is used to ensure that a message was indeed received from the cor-
rect sender. Signing a document requires the following steps. Illustrated in
figure 5.2. [35]. Here Bob signs a message m using his private key K. Now
Alice can verify that Bob indeed sent the message by applying Bob’s public
key K; to the received message.

However as asymmetric encryption relies on computationally heavy algo-
rithms, faster symmetric encryption schemes are often employed in combina-
tion with the asymmetric encryption schemes. In this scheme a shared secret
key to be used in the symmetric encryption is negotiated using asymmetric
encryption. This procedure is handled by the SSL/TLS security protocol in
the handshaking procedure [35]. [62]]23]

To use HT'TPS security we need to create an identity certificate in the Blue-
tooth Authentication Mediator. As it is though anybody can create a false
identity certificate claiming that they are the mediator and thus act as a
false mediator entity in our system. Thus we need to verify the validity of
the identity certificate. This is done using a Certificate Authority (CA), for
instance VeriSign [56] or Thawte [54]. A CA is responsible for providing
trustworthy certificates that binds the public key of a party to an identity.
This identity is represented in a certificate which is digitally signed by the
CA. Another advantage of having our mediator certificate signed by a CA
is that our mediator will then be able to issue certificates to providers us-
ing our framework and thus making the mediator a CA itself. [35] And due

Page 45 of 139

5.1 Internet

[y

. Bob first calculates a
digest of the message he
wants to send,
yielding H(m)

2. Bob then signs the document
by applying his private key,
yielding K g (H(m))

3. Bob now sends the message

m to Alice along with his

signature, K g (H(m))

4. Alice uses Bob’s public key
to calculate the checksum, H(m),
ap&ende_d by Bob

Kg (K g (H(m))=H(m)

5. Alice calculates the checksum
on the received message, H'(m),
and compares this to the checksum
used for signing, H(m), by comparing
these Alice can verify that the
message was indeed sent by Bob

Figure 5.2: Bob digitally signs a document using his private key and sends the
document to Alice who verifies the that Bob indeed sent the message

to our security constraints a provider must have a certificate signed by the
Bluetooth Authentication Mediator in order for it to use our system.

However one problem still remains. The client application could be changed
manually by malicious parties to skip the authentication process and thus al-
low the client to access unsafe information from non-authenticated providers.
We solve this issue by digitally signing the client application with the cer-
tificate issued to our mediator. This will ensure that our mobile client ap-
plication was indeed published by us.

5.1.2 Encryption

Data being transmitted using SSL/TLS, after the symmetric key has been
exchanged in the handshaking procedure, is typically encrypted using the
RC4 (Rivest Cipher 4) algorithm. This algorithm is not recommended for
systems requiring high levels of security such as military systems. Though
it is regarded safe to use for most Internet payment systems. RC4 is a
stream cipher encryption algorithm, which means that it operates on the
plaintext data one digit at a time. As opposed to a block cipher where
the plaintext data is encrypted block-wise [23]. RC4 has been used in a

Page 46 of 139

Chapter 5: Security

number of encryption protocols and standards including WEP and WPA for
wireless LAN security, and also SSL and TLS for HTTPS. RC4 is referred
to as a simple and fast encryption algorithm. Another issue with the RC4
algorithm is that it becomes easier, for a malicious third-party, to obtain
the shared key being used in the encryption the longer the communication
runs. This is because it will enable the third party to gather more data to be
used for reverse-engineering the shared key. Thus for longer communication
sessions, where large amounts of data are being transmitted, RC4 is not
recommended. Yet we do not consider this to be a problem considering the
application domain of our framework.

RC4 has never been officially released by RSA labs as it is trademarked.
However an unofficial reverse-engineered implementation commonly referred
to as ARC4 (Alleged RC4) was released in 1994. To avoid potential trade-
mark issues ARC4 is actually the algorithm used in most security protocols
today. The RSA labs license states that unofficial implementations of RC4
may be used freely as long as they are not referred to as RC4 implementa-
tions, thus we will henceforth in this report refer to RC4 as ARC4. We refer
to [33] for a detailed description of the ARC4 algorithm. [63]

5.2 Bluetooth

Bluetooth was originally designed as a simple cable replacement. But trans-
ferring data by a radio link instead of a cable implies a threat to the confi-
dentiality of a connection. The frequency hopping scheme used in Bluetooth
provides no real protection against eavesdropping. The hopping scheme is
derived from the master’s clock and given to clients as soon as they try to
connect to the master. A simple device discovery (by the inquiry procedure)
will provide an attacker with the needed information for an attack |26].

Therefore, one of the design goals for Bluetooth was that confidentiality of
a data link can be ensured using authentication and encryption. Thereby,
security concerns were addressed from the beginning by the Bluetooth SIG.
The Bluetooth core provides link-level authentication and encryption. This
means, that only the link between Bluetooth cores is protected. The data
flow between the application and the Bluetooth core through the mobile
phones operating system is not secured. The operating system of the mobile
phone must thus be fully trusted.

Authentication is based on user input and a challenge-response scheme. The
encryption uses a symmetric key, which is derived from a link key generated
by the authentication procedure.

Page 47 of 139

5.2 Bluetooth

5.2.1 Authentication

As mentioned before, authentication of Bluetooth devices is based on a mu-
tual challenge-response scheme. The participants of a connection encode a
random value with a shared link-key, which the counterpart sends back in
decoded form. Thereby, the authentication of one device is granted. This
challenge-response procedure must be initiated from both communicating
parties to ensure mutual authentication. The link-key that both devices use
for the challenge, is generated in the so-called pairing-procedure.

Pairing The pairing procedure consists roughly of the following phases,
which are briefly outlined below. For a detailed description of the pairing
procedure we refer to [26]

1. Generating Keys.

On mobile phones, generating initialization keys involves user input.
A common passkey entered at both mobile phones is needed. This
passkey is used to generate the keys needed to provide authentication
of messages, more specifically a Link Key is generated which is used
to encrypt and decrypt messages between the communicating parties.
Also a Combination Key is generated which we explain further in the
next bullet.

2. Link Key Exchange.
The combination keys are then exchanged. With these combination
keys, each device now uses the combination keys to calculate a common
link key. The advantage of using the combination keys to calculate a
common link key makes the key exchange secure because the actual
link key is never exchanged.

3. Authentication.

To prove that the pairing procedure was successful, each device gener-
ates a random plaintext value my.q,q and sends it to the other device.
The other device encrypts it with the link-key K 4p(m,q4nq) and sends
it to the device that sent the random value. The first device can easily
check if they have the same link-key by calculating the same encryption
ON Myqngd- This is called a challenge-response scheme, and is carried
out on both sides. Thereby, mutual authentication is established, and
the pairing was successful.

If the pairing process fails, it has to be retried. Otherwise, the link key is
stored in the memory of each mobile phone, along with the Bluetooth address
of the paired device. If a connection has to be established at a later time, a
link key already exists, which makes the user-interaction unnecessary.[26, 11]

Page 48 of 139

Chapter 5: Security

5.2.2 Encryption

If encryption is desired, an encryption key K¢ has to be generated. This
encryption key is generated from the link-key which is never used as an
encryption key directly.

All algorithms used in the Bluetooth core are based on symmetric keys.
The shared secret is thus the passkey entered by the user. For the pairing
and authentication process Bluetooth uses a 128 bit block cipher named
SAFER+. Using this particular algorithm was simply a decision made by the
Bluetooth designers based on performance and licensing concerns. SAFER+
is freely available and has been one of the contenders for the AES algorithm.

For the encryption the Bluetooth core uses a stream cipher called Ey. This
algorithm is based on work in the mid 1980’s. Neither the SAFER+ algo-
rithm nor the Ejy algorithm have known weaknesses as of the date of this
writing|26].

We will not perform any cryptoanalysis on these two algorithms, but refer to
Gehrman et al. in [26] instead. They have done exhaustive cryptoanalysis
and conclude on the most effective attack found for impersonating that “in
a practical system where encryption is activated, it is not at all easy to
make something useful of this attack beyond the point of just disrupting the
communication”. And after a exhaustive cryptoanalysis of Ey they simply
conclude that “currently there is no attack known that breaks the complete
encryption procedure with reasonable effort”.[26]

The pairing process seems to be the greatest weakness of the Bluetooth
core. If a short pass-key is entered, an attacker may have little trouble
guessing the correct key K¢ by listening in on the pairing process. The
Bluetooth specification therefore recommends long pass-keys for sensitive
applications.|26]

5.3 Discussion

Using long pass-keys, Bluetooth seems to be rather immune against security
threats like eavesdropping and impersonation. This makes Bluetooth an el-
igible candidate for many security-sensitive applications. The designers of
the Bluetooth core have been very careful in designing its security aspects.
Though Bluetooth on the mobile phone is not secure by definition. Imple-
mentation flaws in the application layer and operating system, have in the
past lead to several security breaches that could easily be exploited [26].

In our case, none of the yet known security breaches would affect us, since
they all aim at services provided by the operating system and not by any

Page 49 of 139

5.3 Discussion

J2ME applications. From this perspective, and with regards to power con-
sumption, authentication and encryption provided by the Bluetooth core
would seem to be the best way to provide proven security within our appli-
cation.

The only problem is, that the shared secret used in the pairing process
cannot automatically be set by the J2ME application. It always has to be
requested through the operating system in the mobile phone, which either
already has a link-key stored, or has to request a passkey from the user to
create a link-key. This is not feasible regarding the examples in chapter 1
which motivate our project. All of those examples motivate an automated
detection and invocation of services available at some physical location of a
user. Using pairing, the user would be forced to enter a passkey on the mobile
phone for every service that requires authentication. Besides the required
user-interaction, the passkey must be different for every user. Otherwise the
whole pairing process would be worthless since an eavesdropper, recording
the pairing process, could easily generate her own link-keys. Generating
passkeys for every user would simply be impractical in many application
domains of our project.

Therefore we have to implement authentication and encryption on the ap-
plication level. Like the Bluetooth designers, we are not going to develop
our own algorithm. In the perspective of lightweightness and confidentially,
an existing algorithm based on symmetric keys is preferable. Based on our
discussion of the ARC4 algorithm, we have chosen to use this algorithm to
provide data confidentiality on the Bluetooth channel. This choice was based
on the fact that ARC4 is a lightweight algorithm that provides a security
level that meets the requirements of most Internet based credit card systems,
which is more than adequate for most mobile applications in this domain.

We will be using the ARC4 implementation provided in the open Bouncy
Castle security API [41|. Bouncy Castle is a Java lightweight cryptography
API providing implementations of most commonly used encryption algo-
rithms.

We expect that most of the applications developed with our framework will
not be requiring data encryption security. However authentication is by our
system requirements always required in our framework. We thus need to use
secure and lightweight authentication mechanisms for use with the mobile
client. For this reason we have based our Internet communication on using
the HT'TPS protocol.

Design and implementation aspects of the security mechanisms are discussed
further in chapter 11.2.

Page 50 of 139

Chapter

Development Platform

In this chapter we investigate the development platforms that we will need
to create DynaBlu. We start by investigating the platform available to us
on most client devices, namely the Java 2 Micro Edition (J2ME). Next we
continue to describe specifications and third-party software frameworks of
interest to us. The purpose of these descriptions is to identify and discuss
the use of relevant specifications needed to implement our framework.

6.1 J2ME

Java 2 Micro Edition (J2ME) is a set of APIs targeted at small devices
having limited hardware capabilities. J2ME is a limited cut-down version of
the larger J2SE and J2EE Java versions.

Since a wide variety of devices exist with differing purposes and capabilities
it has become impossible to create a single lightweight software product to
suit all purposes. Therefore J2ME has been designed in a modular fashion.
Instead of being designed as a single bulk specification J2ME was designed
as a collection of individual specifications that can be combined to suit the
needs of a specific device’s hardware platform.

J2ME relies on configurations and profiles. Configurations are used to clas-
sify device types by their minimum hardware capabilities. Configurations
serve as a common denominator for a specific device classification. Profiles
are used to extend the configurations with specific functionality not present
in the device’s configuration, for instance Bluetooth capabilities is imple-
mented in a specific profile. [55]

To provide an overview of the J2ME platform we refer to figure 6.1. The

o1

6.1 J2ME

configuration part in this figure is illustrated with the CDC/CLDC block
explained further in section 6.1.1. The profile part in this figure is the MIDP
block explained further in section 6.1.2.

MIDlet applications built using MIDP

Applications
PP or possibly other profiles
MIDP Networking, audio/visual components,
and persistent storage
CDC/CLDC Core collection of Java classes and

virtual machine

Operating system running the Java

Operating System i _
virtual machine

Figure 6.1: Overview of the J2ME architecture.

6.1.1 Configurations

As already mentioned J2ME is a development platform targeted at hardware
constrained devices. Hardware constrained devices in this respect covers a
variety of devices having different computational power and memory. The
specifications available on a device thus should also be dependent on the
hardware limitations of the device. For instance a simple mobile phone
would probably be more constrained than a top-of-the-line PDA or smart
phone. [32]

To address this problem two configurations have been specified to distinguish
between high-end and low-end devices. A configuration here consists of a core
collection of Java classes and a Java Virtual Machine. [55].

Connected Limited Device Configuration (CLDC) As specified in the
CLDC 1.1 Java Specification Request, JSR 139 [5]. CLDC defines a
standard set of classes available for devices having the following hard-
ware capabilities.

e At least 160 KB of total memory available for the Java platform
and CPU speed of at least 8 MHz. The CPU being a 16/32-bit
processor.

e Limited power, often battery operated.

Page 52 of 139

Chapter 6: Development Platform

e Connectivity to some type of network, although with possibly
limited (9.6 Kb/s or less) bandwidth.

e High-volume manufacturing (usually millions of units).

e User interfaces with varying degrees of sophistication down to and
including none.

Connected Device Configuration (CDC) Classifies high-end devices. This
configuration addresses devices having more memory, increased CPU
capabilities and more network bandwidth than CLDC devices. This
configuration is supplied in devices being too limited to use J2SE
and too powerful to use only the class-functionality supplied with the
CLDC. CDC devices are typically PDAs or smart phones.

The CDC 1.1 specification, JSR 218 [9], defines like CLDC a stan-
dard set of classes available for devices with the following hardware
specifications.

e Anincrease over a CLDC device in the ROM size available ranging
from 128-256 KB.

512 KB minimum RAM available.

e Robust connectivity to some type of network.

e Same requirements to user interfaces as in the CLDC specification.

Mobile phones today are typically shipped with the CLDC configuration.
Yet as modern phones are becoming increasingly sophisticated we should
expect one of two future scenarios. Either more CDC configured phones will
be shipped or we should expect more sophisticated CLDC configurations to
be released.

As the client in our system will be using a mobile phone, we will focus on
the CLDC 1.1 configuration in the remainder of this project.

The virtual machine conforming to the CLDC 1.1 specification known as the
KVM (K Virtual Machine) has a number of lacking features compared to the
J2SE virtual machine. Of noteworthy restrictions in the KVM is the lack of
dynamic class loading. We discuss this restriction further in section 6.5. For
more information on the KVM we refer the reader to [5].

6.1.2 Profiles

The CLDC 1.1 configuration is limited to only supporting a minimal set
of the hardware in a device. To reach the full potential of the hardware
in a device the concept of profiles was introduced. A profile complements

Page 53 of 139

6.2 Web Services

a configuration by introducing an additional set of classes. The additional
classes serves the purpose of supporting specific hardware in devices. [55]

The Mobile Information Device Profile (MIDP 2.0) defined in JSR 118 [10]
provides a base platform extending the CLDC with more specific function-
ality. The MIDP 2.0 profile gives developers the capability of creating more
advanced audio/visual applications having advanced network capabilities.

MIDP 2.0 provides 7 packages aimed at the following:

1. Enhanced network support

2. Better user interface capabilities
3. Game development tools

4. Media tools for audio playback

5. The MIDlet framework, a MIDlet being a Java program compliant to
the J2ME virtual machine

6. Providing persistent storage for MIDlets

7. Security capabilities

For our system we will be requiring a number of the features provided by the
MIDP profile. We will be taking advantage of the enhanced network support
and security capabilities provided by MIDP to connect to and invoke ser-
vices deployed at the Bluetooth Authentication Mediator securely. Also the
enhanced Ul capabilities and media tools opens the opportunity for creating
more advanced Bluetooth services with respect to user presentation.

Today MIDP profiles have become widely spread in modern mobile phones
also MIDP have become integrated in most integrated development environ-
ments aimed at mobile devices. This makes programs conforming to MIDP
portable to other devices as long as they support the MIDP profile, for
this reason MIDP 2.0 is also backwards compatible with older MIDP pro-
files. |32] This makes MIDP profiles attractive for use in our project as one
of our stated philosophies is Compatibility, see section 3.4.

6.2 Web Services

The reader is required to have preceding knowledge of web services to read
this section. The report in [17] provides an introduction of the web services
framework.

Page 54 of 139

Chapter 6: Development Platform

To realize network connectivity in our framework we were required to use
a distributed platform that makes it possible for us to make RPC calls to
external resources using either Bluetooth or GPRS. Reflecting on our Com-
patibility and Openness philosophies a platform that is both standardized,
widely used and familiar to developers should be considered. Firstly the
platform should not be locked to a specific vendor platform but should be
accessible from several development platforms. Secondly the platform should
use open formats, which makes potential integration with external systems
easier.

Based on these philosophies and the growing interest in the web services
framework [17] we have chosen to focus on this platform to implement our
network connectivity.

Using web services though implies having to send Soap formatted messages,
which involves data overhead when sending and receiving RPC messages.
To cope with this on a mobile device we need to examine lightweight web
service frameworks. We present two web service frameworks aimed at mobile
devices in this chapter.

6.2.1 JSR 172: J2ME Web Services Specification

The JSR 172 Web Services Specification [6] released in 2004 provides the
necessary class functionality to create web service clients on mobile devices.
This specification provides a WSDL and Soap parser API, based on a subset
of the well-known SAX2 (Simple API for XML) parser. This parser can be
used to create so-called web service stubs. A stub is a local Java represen-
tation of a remote web service. Having this stub relieves the developer of
having to manually deal with the tasks usually involved with invoking a web
service, e.g. creating and sending a Soap request conforming to the web ser-
vice’s remote WSDL description. These tasks are handled by the JSR 172
runtime components.

Although JSR 172 provides easy-to-use facilities for creating web service
clients it is aimed at an abstraction level that is too high for us when dealing
with Bluetooth web services. By this we mean that when using JSR 172
we cannot manually create or manipulate the actual Soap messages, these
are instead generated by the JAX-RPC runtime. In order for us to make
web service invocation on Bluetooth available we need to create our own
Soap node in the client software. This implies building functionality for
generating, parsing, sending, and receiving Soap messages.

Page 55 of 139

6.3 JSR 82: Java APIs for Bluetooth communication

6.2.2 kSOAP

To address this issue we have investigated third-party Soap frameworks.
Based on multiple citations in related articles we found kSOAP (Kilobyte
SOAP) [34]. kSOAP is a lightweight web services framework for mobile
devices, allowing developers to create web service clients. kSOAP was de-
veloped before SUN Microsystems decided to release the JSR 172 reference
specification and thus kSOAP was not developed to conform to the this
specification. Instead kSOAP was developed independently by a smaller
development team, currently 4 persons are involved.

The kSOAP framework is based on the kXML framework which is a light-
weight XML framework providing an XML parser on a mobile device. We
have chosen the newest kSOAP 2.0 version since this provides us with needed
functionality for serialization of Soap messages. After having examined the
API for kSOAP and conducting practical experiments, by creating Soap
messages and using these to invoke a web service, it was quickly revealed
to us that kSOAP provides functionality for manually creating and parsing
Soap messages, which is exactly what we need for our Bluetooth services
because it enables us to not only invoke web services using HTTP but also
Bluetooth.

Using this framework implies having to include the kKSOAP and kXML pack-
ages in our client application. Though considering that these packages re-
quires approximately 650 KB this is a reasonable trade-off instead of having
to spend our time developing a complete Soap node (And XML parser) our-
selves.

Another advantage of using kSOAP is that we will not be requiring the
clients mobile device to have support for the JSR 172 specification, which
has not yet gained wide spread due to its recent release in 2004 [6]. This will
also further enhance the compatibility of DynaBlu.

6.3 JSR 82: Java APIs for Bluetooth communica-
tion

In 2002 JSR 82 was released by the Bluetooth SIG. This specification defines
the Java APIs for developing Bluetooth enabled applications targeted at
J2ME. This API is designed to run on the CLDC as an extension package
for a J2ME profile, like for instance the MIDP.

JSR 82 allows programmers to interface with the higher-layer Bluetooth
protocols, and to develop applications that discover and publish Bluetooth
services that can be accessed from other Bluetooth enabled devices.

Page 56 of 139

Chapter 6: Development Platform

JSR 82 defines a number of classes that makes it possible to search for nearby
Bluetooth enabled devices, and to search for services on the devices that have
been discovered. When a service have been discovered the framework returns
all necessary information about the service, such as connection strings and
service attributes.

Establishing connections to services that have been discovered is transparent
through the Generic Connection Framework (GCF). The GCF is defined in
CLDC 1.0 as a set of classes that facilitate access to resources (the profile
MIDP 1.0 extends the GCF framework). Because of the way the framework
is designed resources are accessed through the same method regardless of
what type of resource it is. A connection string can simply be passed to
the Connector.open() method and this will open a connection to the service.
JSR 82 contains a number of classes for publishing Bluetooth services at
different levels in the Bluetooth protocol stack.

Since the communication between the Client and the Provider in the pro-
posed system is based on Bluetooth, we need to develop software for the
client that interfaces with JSR 82. The client must use functionality that
enables service discovery and communication over REFECOMM. [11]

6.4 Bluetooth Connectivity with J2SE

In contrast to J2ME, there is no standard API for Bluetooth communication
in the J2SE core library. There is of course the JSR 82 API for J2ME, but
no standard implementation for any PC platform. The reason for this is
that the implementation of a Bluetooth stack is dependent on the operating
system and often also dependent on the Bluetooth hardware. This is the
reason for SUN’s decision not to implement Bluetooth in J2SE but leave
such implementations to third party developers.

We need Bluetooth connectivity in the Java application of the provider (see
figure 3.1 on page 22). Several third party libraries exists that we took into
consideration. They differ mainly in the number of supported operating
systems, communication protocols and their license of use. Table 6.1 lists
these libraries.

As we concluded in section 4.2, we use the RFCOMM protocol to commu-
nicate between the Bluetooth devices. Support for this protocol is therefore
the main criteria for the choice of a suitable Bluetooth library. The Bluecove,
Impronto and Avetana libraries all support RFCOMM.

For a potential deployment of our project, support for various operating sys-
tems is preferable, this is also in accordance with our compatibility system
philosophy. According to table 6.1, the Avetana library supports the largest

Page 57 of 139

6.5 Dynamic class loading

Name Operating Systems Protocols License
Bluecove [52] | Windows XP SP2 SDP, RFCOMM | LGPL
JBlueZ [53] Linux(BlueZ stack) HCI interaction | GPL
only
Impronto 46| | Linux SDP, L2CAP, RF- | Commercial
COMM, OBEX
Harald [25] Linux(BlueZ stack) HCI interaction | GPL
only
Avetana [20] | Linux(BlueZ stack) SDP, L2CAP, RF- | GPL
COMM, OBEX
Avetana [20] | Windows, MacOS X, | SDP, L2CAP, RF- | Commercial
Windows Mobile COMM, OBEX

Table 6.1: Third party Bluetooth libraries for J2SE and their features and lim-
itations

number of operating systems. Furthermore the Avetana library implements
the JSR 82 API partially. This is beneficial for the implementation of the
Bluetooth communication in the client and the provider, since the imple-
mentations are syntactically similar to each other.

The Linux implementation of the Avetana library is based on JBlueZ and
uses the BlueZ Bluetooth stack and driver to access Bluetooth devices. Since
Avetana extends JBlueZ and JBlueZ is released under the terms of the GPL
license, Avetana is forced to release their product under the GPL license as
well. This is comfortable for us, because the source code is thereby made
available for free download.

For a possible deployment scenario, we might decide to choose another library
because the GPL license possibly forces us to release the source code as well.
This could eventually destroy our business strategy. But for now, we use the
Avetana library which seems suitable for the first steps.

6.5 Dynamic class loading

The DynaBlu framework is based on being able to invoke web services that
have been discovered dynamically. In order to do this stub classes must be
generated at runtime that match the WSDL files describing the interface
of the web services. The standard way to do this is to download a class
file from a server and load the class file with a custom class loader. This
concept of loading new classes at runtime is called dynamic class loading.
When the class is loaded it can be instantiated as a stub class and web
service operations can be invoked with calls through this stub. This dynamic
generation of stub classes presents a problem for us, because of limitations

Page 58 of 139

Chapter 6: Development Platform

in the KVM. In the following sections we discuss this problem further and
investigate possible solutions to overcome this problem.

Dynamic class loading in the KVM

The Java Virtual Machine (JVM) supports dynamic class loading by allow-
ing custom class loaders. A custom class loader is created by subclassing
java.util.ClassLoader and can essentially be implemented to interpret any
Java class represented in a bytestream.

The KVM disallows the use of custom class loaders. There are two reasons
for this:

1. Security. The KVM and the CLDC disallows dynamic class loading to
prevent execution of malicious applications without the knowledge of
the user. This decision was made early in the CLDC 1.0[4] specification
in 2000. Although the hardware platform of mobile devices has changed
since then, CLDC 1.1[5] from 2003 still disallows dynamic class loading.
Restrictions of dynamic class loading is an implication of the so-called
sandbox model imposed on CLDC applications.

The restrictions of the sandbox model are explained as follows in the
CLDC 1.1 specification: “Java applications cannot escape from this
sandbox or access any libraries or resources that are not part of the
predefined functionality. The sandbox ensures that a malicious or pos-
sibly erroneous application cannot gain access to system resources.”|5|

In addition to the sandbox model the CLDC 1.1 has further restrictions
on the use of dynamic class loading: “by default, a Java application can
load application classes only from its own Java Archive (JAR) file. This
restriction ensures that Java applications on a device cannot interfere
with each other or steal data from each other.”|5]. This restriction
prohibits us from sending a Java Archive (jar) file containing stub
classes, to a CLDC device and then executing this jar to invoke web
services through its stubs.

2. Hardware restrictions. The low amount of memory available in mobile
devices and the slow CPU’s would make dynamic class loading imprac-
tical. The reason for this is the cost of executing the CLDC preverifier
on a mobile device. The CLDC preverifier is the component responsi-
ble for converting compiled Java class files into a file that will work in
a CLDC compatible VM. The memory costs of applying the preverifer
is discussed further in section 5.2 of the CLDC 1.1 specification |5]

Page 59 of 139

6.5 Dynamic class loading

Possible Solutions

From our perspective there are three ways to solve the problem with dynamic
class loading in the KVM.

Extending CLDC

One idea could be to extend the CLDC to include a dynamic class loader
for the KVM. In the article [44] they discuss and compare different possible
solutions for the introduction of a dynamic remote class loader in the CLDC.
However, despite of their efforts they do not provide any reference implemen-
tation. Nor have we seen any signs of an implementation of a dynamic class
loader in future CLDC specifications. A problem with a potential solution
like this is that it would require the implementation of a custom KVM in
the mobile device, and as a result of this dynamic class loading would only
work on phones using this non-standard KVM.

Hacks and Workarounds
Another idea is to attempt to facilitate dynamic class loading artificially by
using hacks and workarounds to manipulate the system of a mobile device.

In [3] a method to provide dynamic class loading in the KVM is proposed.
This method builds on the fact that the Palm implementation of the KVM
stores class information in a local database, that is accessible by client appli-
cations at runtime. By modifying this database at runtime, introduction of
new classes into the system is made possible. The problem with this solution
is that it only works with the Palm implementation of the KVM.

In [2] a workaround that allows accessing native methods from a Midlet
is explained. This workaround makes it possible to implement a kind of
“dynamic class loading”. This solution is based on interacting with native
methods through socket calls to localhost. However, platform-independence
is only given by the methodology of using socket connections to localhost.
The workaround is implemented in C++ and bound to Windows Mobile,
Linux, and Symbian OS distributions on mobile devices.

Runtime Proxy Information

A third solution is to avoid dynamic class loading altogether. Instead of
representing a web service application in a stub class and using the stub to
interact with the application it is possible to parse the information needed to
communicate with a web service directly from the service’s WSDL interface.
This parsed information can be used to create and send SOAP messages at
runtime using the kKSOAP framework. Thus instead of having to dynamically
load a stub class to invoke web service operations we can instead use the
information stored in the WSDL interface to instantiate the communication
classes needed to communicate with the web service. We call this method
runtime prozxy information.

Page 60 of 139

Chapter 6: Development Platform

The runtime proxy information required when using this workaround in-
cludes the name of the web service, its operation names and their associated
parameter signatures, and finally the XML namespace that the web service
is deployed in.

Obtaining the runtime proxy information from a WSDL interface though
obviously requires the client to know the location of a web service’s WSDL
interface.

Conclusion

The methods we investigated concerning extending the CLDC and using
hacks and workarounds proved to be inadequate for our use because they
suffer from being either hardware dependent and/or bound to a specific
mobile operating system. These constraints contradict our philosophy of
Compatibility, see 3.4.

The only viable solution we have found to solve our problem is to use the
workaround involving runtime proxy information and parse this from the
WSDL interface describing a web service application. Using this information
we can instantiate the communication classes needed to interact with the
web service by using kSOAP. Though as previously mentioned we will need
to solve the problem concerning the location of a web service applications
WSDL interface, in other words the client must be able to obtain a WSDL
file describing a web service at runtime. We discuss our solution to this
problem in chapters 9 and 10.

Page 61 of 139

Part 111

Design

63

Chapter

System Design

In this chapter the general design and interaction pattern between the main
components of the system will be discussed. The design of each of the
components in figure 3.1 from the problem statement is presented, which
includes important design decisions and interesting implementation details.
The Bluetooth communication link in the bottom of figure 3.1 from the prob-
lem statement will be implemented in a separate software module called the
Bluetooth Communication Bridge. This bridge is responsible for maintain-
ing secure and reliable connections between Bluetooth clients and providers,
and to enable transmission of Soap messages through the bridge. To improve
readability the Bluetooth Authentication Mediator in figure 3.1 is referred
to merely as the mediator in the rest of the report.

Before elaborating on the design of the individual components the remaining
part of the introduction gives an overview of the overall system interaction
design. Figure 7.1 presents a sequence diagram of the system design.

In the left side of the figure there is a legend indicating which phase the in-
teraction is part of, which are the communication phases that were presented
in the problem statement (note that the publishing phase is not part of the
interaction design, this phase is part of the installation of a new provider).

Discovery phase In this phase the client and provider communicate through
the Bluetooth channel. The client initiates service discovery and a Bluetooth
connection to the provider. Note that the provider does not immediately set
up a bridge for this client in case negotiations with the mediator fail (doing
this would make the system vulnerable to denial-of-service attacks).

Authentication phase The client and provider communicate with the me-
diator over the Internet (GPRS in the case of the client). The client and
provider attempt to authenticate each other and negotiate connection de-

65

Client Provider Mediator
Q Wait for connection Q Wait for connection

SDP - service discovery

3
>
Service record
(............................
i Setup client bridge
Discovery Phase request Bluetooth connection R
>

Connection established

Initiate Bluetooth connection

T SetupConnectionClient() >

SetupConnectionProvider()

Connection information

Authentication Phase B

Setup provider bridge

T Request list of web services

3
>
Web service list
B LR
Selection of web service
3
>
WSDL file
(............................
Communication Phase Generate runtime proxy information
(from WSDL file)

Invoke web service N

>

Invocation response

Figure 7.1: Ouverview of system interaction design. The zigzag part of the line
implies that the interactions do not happen in any particular order.

tails. If this negotiation is successful the provider sets up a provider bridge
for the client.

Communication phase Further communication between this client and
provider now proceeds through the bridge by exchanging SOAP messages.
First the client requests a list of available web services, and upon selecting one
of them a WSDL file is returned. The client uses this WSDL file to generate
runtime proxy information needed to invoke the selected web service.

Page 66 of 139

Chapter

Bluetooth Communication Bridge

As we described in chapter 3, the central aspect of our framework is to invoke
web services using an application on a mobile phone. Technically, the web
service is not invoked on the mobilephone, but on the provider. To realize
this we build a communication bridge over a Bluetooth channel that makes
this possible, hence the name Bluetooth Communication Bridge.

In this chapter we will describe this bridge and its design on both the client
side and the provider side.

8.1 Bridge Design

When web service requests and responses pass through a Bluetooth con-
nection there are certain requirements to the data transport. Reliability, in-
tegrity, authenticity and security are provided by the HT'TP and the HT'TPS
protocols when web services are invoked over the Internet. The Bluetooth
communication bridge must at least provide the same level of reliability and
security. Therefore these quality-of-service aspects have to be implemented
over the Bluetooth channel. These aspects are enforced in the communica-
tion protocol of the bridge.

An overview of the Bluetooth communication bridge is given in figure 8.1.
Inspired by the OSI reference model and [42], we chose to apply a layered
architecture for the implementation of the communication protocol. The
QoS requirements can be separated into groups, which are ideal candidates
for individual layers. This architecture eases maintenance of the sourcecode
since every layer is decoupled from each other. Also because of the similar-
ity between the provider side and the client side (see figure 8.1) parts of the

67

8.1 Bridge Design

Bluetooth communication bridge have to be implemented only once. Fur-
thermore the layered architecture makes it easy to add new functionality by
adding new layers, and to exchange existing functionality by replacing layers.
This adheres to our system requirement of extensibility. We illustrate this
shortly.

Each layer in our bridge is responsible for its own isolated functionality.
The following listing briefly characterizes each layer and their respective
responsibilities.

Bluetooth Layer Is responsible for sending and receiving the individual
bytes of a complete data stream over a Bluetooth connection.

Integrity Layer According to [22|, Bluetooth enforces reliability for the
individual bytes being sent and not for the total amount of data being
sent in a message. Therefore we have to ensure the integrity of a
complete message ourselves.

The Integrity layer is responsible for checking the integrity of an entire
message. This is achieved by embedding the byte array data being sent
with a checksum. This checksum is used on the receiving side to check
the integrity of a message. The details of this layer are explained in
section 8.2.1.

Security Layer Is responsible for the authentication and encryption of a
message. It is based on symmetric encryption and thus needs a com-
mon key between the client and the provider which is negotiated with
the mediator in the Authentication phase (see page 22). Further de-
scription of this layer is in section 8.2.2. This layer was implemented
to satisfy our Security and Credibility philosophies.

Routing Layer After a provider has received a SOAP message. This needs
to route the SOAP message to the web service application it was in-
tended for. The routing layer is responsible for transferring the required
routing information to the provider. Because of the triviality of this
layer we will not be describing it further. The implementation of this
layer can be seen in d619a.common.bridge.routing.Routinglayer
[24] .

Serialization Layer Is responsible for converting Soap objects to a byte
array and vice versa. This serialization and deserialization process is
done by converting the SOAP messages being sent to and from byte
arrays. We have derived most of the implementation in this layer from
the kSOAP framework and we will thus not be describing this layer
further. The implementation of this layer can be seen in d619a.
common.soap.serialization.SerializationLayer [24].

Page 68 of 139

Chapter 8: Bluetooth Communication Bridge

Application

Soap objects

Application

Byte data
Serialization Serialization

Routing Routing
Security Security
Integrity Integrity

A A

v v
Bluetooth < ea > Bluetooth
Client Provider

Figure 8.1: QOwverview of the layered design of our Bluetooth communication
bridge. The dashed line parts the bridge from the rest of the provider and the client
application (greyed out).

At the implementation level, we accomplish the decoupling of the layers by
using interfaces. Each layer implements the same interfaces for sending and
receiving data. The layers can then be put together by passing references to
the individual objects. Our interfaces have been implemented in the classes
Transport and TransportCallback , located in the Common Modules
component in d619a.common.bridge.interfaces [24| . The Transport
interface describes the functionality for sending data down the stack while
the TransportCallback interface describes the functionality that is used for
sending notifications to the upper layers by using callbacks.

To keep the abstraction between the application and the Bluetooth com-
munication bridge, we implement on both the client and provider side a
Bridge Manager which is responsible of instantiating and putting the layers
together. It is also responsible for providing the individual layers with addi-
tional information such as the encryption key. Setting up the bridge layers

Page 69 of 139

8.1 Bridge Design

is the same on both sides. Listing 8.1 shows how the bridge is set up by
connecting all the layers. In line 3 the integrity layer is created with the
Bluetooth layer as a parameter. This has the effect that the integrity layer
uses the Bluetooth layer to send data. Line 7 sets the callback receiver of
the Bluetooth layer, which has the effect that data received in the Bluetooth
layer will be passed to the integrity layer. This way layers are initialized and
connected to each other.

1 private void setupBridge() {

2 bluetoothLayer = new BluetoothTransport () ;

3 integrityLayer — new IntegrityLayer(bluetoothLayer);

4 serializationLayer — new SerializationLayer (
integrityLayer);

//Set up callback receiver references

bluetoothLayer.setCallbackReceiver (integrityLayer);

integrityLayer .setCallbackReceiver (serializationLayer);

serializationLayer .setCallbackReceiver (this.
dataReceiver) ;

© 00 N O o

10 }
Listing 8.1: Initialization of bridge layers.

As we stated earlier, the authentication and encryption key for the Blue-
tooth communication is negotiated with the mediator after the Bluetooth
connection has been established. Since the security layer depends on this
key, the layer is inserted in the protocol after the negotiation with the me-
diator. Listing 8.2 shows this insertion. In lines 9 through 10 the security
layer is connected to the rest of the bridge. This example demonstrates the
flexibility of the bridge design.
1 public void addAuthEncToConnection(Biglnteger authencKey ,
boolean onlyAuthentication){

//instantiate authenc layer
if (onlyAuthentication)

w N

4 securityLayer — new SecurityLayer (EncryptionMode.OFF,
authencKey) ;

5 else

6 securityLayer — new SecurityLayer (EncryptionMode.ONN,
authencKey) ;

7

8 //connect authenc layer to the rest of the protocol—

stack
9 integrityLayer.setCallbackReceiver (securityLayer);
10 serializationLayer .setLowerLayer (securityLayer);

11

Listing 8.2: Adding the security layer to the bridge.

Because of the problems implied by the mobility of the user (see section 4.4),
the bridge manager also has to take care of connecting, disconnecting and
reconnecting Bluetooth communication channels. Furthermore each side of
the bridge has individual requirements to the handling of connections. The

Page 70 of 139

Chapter 8: Bluetooth Communication Bridge

provider bridge, where many clients try to connect at the same time, must be
capable of handling many connections at the same time. The client bridge
must only handle one connection at a time, but it has to scan regularly for
new providers and monitor the signal of registered providers. Since these
requirements for the connection management are different in the provider
and in the client, we explain the design of both sides as part of the Bluetooth
Communication Bridge in the next two sections.

8.1.1 Provider Bridge

As we have discussed in section 4.4, the moving nature of our client must be
taken into account in the design of our framework. In the provider especially
with regards to the handling of multiple client-connections at the same time.

Designing a provider that is capable of dealing with only one possible client-
connection is trivial. Figure 8.2 depicts the design of such a bridge. Because
the provider knows which client connects to the provider as well as the au-
thentication and encryption key, the provider just has to wait for the client to
connect. After a successful connection establishment, the client can invoke a
web service in the provider. Since there is only one client, connecting and dis-
connecting to and from the provider frequently, requires the provider to wait
for the client to reconnect only. The web service responses from the provider
are always sent through the one and only existing bridge and communication
channel to the client. And regardless if the web-service interaction is state
full or not, since there is only one client, the web service-connector in the
provider persists.

Web Service

Web Service
Connector

Bridge (has key, knows client)

ic1

Figure 8.2: Schematic drawing of a trivial provider. This provider is only
capable of connecting to one known client (noted C1 as connection to client 1),
using the same web service and a known authentication and encryption key.

In reality, clients are not known beforehand and the assumption of only one
client connecting at the same time is not realistic. Therefore we must design
the provider to be robust for handling many concurrent connections as well
as continuous connection loss and reconnection attempts.

Page 71 of 139

8.1 Bridge Design

To ensure maximum flexibility in number and identity of the clients, the
basic idea is to let the provider to be a hub for a theoretically infinite number
of providers described in the trivial case above and depicted in figure 8.2.
Using this template of wirtualization, the implementation gains scalability
and implementation transparency.

Figure 8.3 shows the principle of this virtualization. A process inside the
provider establishes the service entry in the Bluetooth registry and waits,
until a client connection is detected. As soon as a client tries to establish a
connection using Bluetooth communication with the provider, a new com-
munication stack (named “Bridge” in figure 8.3) and a web-service connector
instance is created.

These two elements together form a provider-instance for one given connec-
tion. This technique is very scalable, since the provider can theoretically
handle an infinite number of connected clients. Each connection is also
completely separated from the other clients making the handling of several
different web service requests trivial.

Web Service Web Service Web Service
Web Service Web Service Web Service
Connector Connector Connector
Wait for connecting client

YV 7 Y 7 7

O Bridge Bridge [] Bridge

ic1 icz iCn
Figure 8.3: Schematic drawing of the virtualization of the provider. Each client

(1,2,8..n) that connects (connection C1, C2 .. Cn) to the provider over the Blue-
tooth bridge, gets a new instance of the provider.

Implementation

As figure 8.3 shows, the provider is virtualized for each connecting client.
This virtualization is the main responsibility of the class d619a.provider
.bridge.bluetooth.BridgeManager |[24| . Since the BridgeManager con-
stantly listens for incoming client connections, it is implemented as a thread.
Listing 8.3 shows the run() method which is the entry point for the thread.
As soon as a client connection is established, the method returns with the

Page 72 of 139

Chapter 8: Bluetooth Communication Bridge

Bluetooth address of the connected client. This address is then along with
the bluetoothLayer object passed to a new instance of the BridgeConnec-
tor class which is a inner class of the BridgeManager. The BridgeConnector
object is responsible for establishing the Bluetooth communication bridge
as well as connecting it with a service connector. According to the provider
virtualization principle, the combination of bridge and web service connector
has to be decoupled from the BridgeManager, Hence, the BridgeConnector
class is implemented as a Thread . That causes bridge.start() in line
14 of listing 8.3 to return immediately. The while(doRun) loop starts over
again and waits for another client connection which completes the virtual-
ization as shown in figure 8.3.

1 public void run(){

2

3 //* run the bridge manager as long

4 //*% as there is no shutdown event

5 while (doRun){

6 BluetoothTransport bluetoothLayer;

7 try {

8 bluetoothLayer — new BluetoothTransport

9 (uuid, serviceName);

11 //wait for a client to connect

12 BTAddress clientAddr = bluetoothLayer.

13 waitForClientConnection () ;

14

15 //a client has connected! —>run the bridge building
16 BridgeConnector bridgeCon — new BridgeConnector

17 (bluetoothLayer ,

clientAddr);

19 bridgeCon.start (); //build the bridge by starting it
20 } catch (TransportIOException ex) {

21 ex.printStackTrace () ;

22 // ... errorhandling

23 }

24 }

25}

Listing 8.3: The BridgeManager waits until a client attempts to connect to the
provider. As soon as that happens, the BridgeManager starts a new thread, that
becomes responsible of handling a new connection.

As the BridgeManager starts the Bridge thread in line 14 of listing 8.3, the
run() method of the BridgeConnector sets up the layers of the bridge al-
most exactly as the client application does. The only difference is that the
BluetoothLayer object is provided by the BridgeManager and already con-
nected to a client.

After the bridge is set up the BridgeConnector connects it to a web ser-
vice connector provided by an object implementing the interface d619a
.provider.service.interfaces.ServiceManager |[24] .Listing 8.4 shows

Page 73 of 139

8.1 Bridge Design

the details of connecting a bridge and a web service connector together. In
line 18 of listing 8.4 the web service connector starts to do the processing.
This method waits for incoming web service requests, processes them and
sends an answer back to the client. doProcessing() is blocking an returns
only if either the client disconnects from the provider, or the web service
connector detects that the communication has finished. When it returns,
the Bluetooth Layer is disconnected and the thread terminates. It might
look as being unnecessary complicated with a ServiceManager, but this is
a long sighted design construct that is motivated by two reasons. If the
Bluetooth connection has to be reconnected, the ServiceManager is able to
connect the reconnecting client with the same service connector that waits to
send its response. Furthermore is it possible to use the ServiceManager for
device-dependent service access and reliable connections to state full services.

1 //x get a service from the service—manager

2 //% that must be used together with

3 //*% the connected client and set them together .

4 J/x After that, let the Service handle the processing.

5 String clientId = bluetoothLayer.getClientAddress() .
toString () ;

6 theService = myServiceManager.getServiceFor (clientId);

7 theService.setBridge (serializationLayer);

s serializationLayer .setCallbackReceiver (this);

9

0 try {

11 //when everything is in place, connect the Bluetooth

layer!

12 //(connect just starts the listener thread.)

13 bluetoothLayer.connect () ;

14} catch (IOException ex) {

15 ex.printStackTrace () ;

16}

17

18 //and let the service do the processing .

19 theService.doProcessing () ;

20

21 bluetoothLayer . disconnect () ;

Listing 8.4: The Bridge object calls the ServiceManager to get a service for the
connecting client. The service is then connected to the bridge and the service can
do the processing. As soon as the service finishes, the BridgeManager disconnects
the client.

The implementation of the BridgeManager is multi threaded to allow multi-
ple clients to be connected to the provider at the same time. However, the
Avetana Bluetooth library used to communicate with the Bluetooth device
does not provide simultaneous connections to more than one client. This is
a flaw in the Avetana library that is not mentioned in its sparse documen-
tation. Therefore this problem has been observed only after the implemen-

Page 74 of 139

Chapter 8: Bluetooth Communication Bridge

tation of the provider. By making a call to LocalDevice.getLocalDevice
() .getProperty("bluetooth.connected.devices.max"); the flaw is re-
vealed.

There are possible solutions to this problem. Since the Avetana library is
open source, it can be changed and extended by anyone interested. There
is already one extension called JBluetooth, available at [45]. Changing the
library for Bluetooth communication would also be a possibility. At the cur-
rent state of the development no solution is implemented since the project
goals only define a functional implementation and no solution that could
directly be used in a production environment.

8.1.2 Client Bridge

Although the bridge in the client resembles the provider bridge, there are
big differences. While the provider bridge is designed towards the capability
of handling many connections at the same time, the client bridge adheres to
completely different design criteria.

Since the client is frequently moving, we have to take into account a changing
environment in terms of connectivity to providers. We discussed central
points of mobility and communication in section 4.4. But we have paid little
attention to the properties of discovering devices and scanning for services.
Due to the design of the Bluetooth communication, device inquiry and service
scanning takes time in the magnitude of tenths of seconds.

This is an unacceptable property for the client application if it implies that
the user has to wait while the application scans for available providers.
Therefore we designed the client bridge so that it meets the requirement of
dynamically discovering providers along with the need for smoothless user in-
teraction. A module called SearchUnit d619a.client.bridge.bluetooth
.searchunit |[24] is responsible for all scanning and discovery.

We have implemented the following features that allows us to minimize the
time spent for device discovery and scanning for available services in these
devices.

e Filtering on the Classes of Devices attribute as specified in the Blue-
tooth specification document [22] makes scanning for services on de-
vices that are not interesting unnecessary.

e To minimize the number of rediscoveries of devices and their services,
we maintain lists to keep track of the devices and services already dis-
covered. A whitelist holds the devices we know are providers while
a blacklist has all discovered devices listed that do not provide any

Page 75 of 139

8.1 Bridge Design

services of use. As soon as a known device is being rediscovered, res-
canning of its services is prevented by use of the lists.

e By monitoring devices in the whitelist for the availability of their ser-
vices we can provide the user with a preliminary list of services in the
vicinity without the need for a complete device and service discovery
every time the user requests a list.

These features are only optimizations to reduce the time consumption. But
the user still has to wait for a complete list of available providers. The
most elegant solution would be to permit concurrent communication with
a providers web service and discovery of new providers and services. But
since Bluetooth devices in mobile phones are restricted in their capabili-
ties, they do not necessarily support such a dual-mode (javax.bluetooth.
LocalDevice.getProperty() reveals these capabilities). Therefore we split
the discovery of new providers in two modes. The idle-mode which ac-
tively scans the vicinity for new devices and the interaction-mode which
only passively checks already discovered devices for their availability. The
names idle-mode and interaction-mode refer to the interaction between the
client application and a web service. While connected to a web service, the
SearchUnit is in interaction-mode. While not connected, the SearchUnit is
in idle-mode. The two modes and their tasks are depicted in figure 8.4 and
in figure 8.5.

Idle-Mode

While the client is not connected to a provider, the SearchUnit, which han-
dles the discovery of devices and services is set in idle-mode. The left side of
figure ?? depicts how the idle-mode works. The first step, where we check the
elements in the whitelist for availability is the same as in interaction-mode
and will be explained separately.

In idle-mode, the main task of the SearchUnit is to discover all devices in
the vicinity and find the devices which provide valid services for our frame-
work. Initially, all discovered devices that are not in the blacklist nor in the
whitelist are marked as “undecided”. Each of those devices is then scanned
for services. If a device does not provide any usable services, it is stored in the
blacklist and never scanned again until the list is reset. If a device provides
usable services, it is stored in the whitelist and a providerlist, which holds
all available providers. As soon as all devices are discovered and scanned,
the process starts over again.

Page 76 of 139

Chapter 8: Bluetooth Communication Bridge

check whitelist for availability
& accordingly update provider-list

v

discover all devices, mark them as "undecided" |

3yl
[«

do for each "undecided" device:

is in DeviceClass?

ignore device

scan device for available services

are there Provider-services? blacklist device

whitelist device and update providerlist |

]

Figure 8.4: Flow chart of the idle-mode in the SearchUnit of the client bridge.

reset whitelist-elements to unknown-signal state

for each whitelist-unknown-signal-element do:

scan for services

Got an
"device unreachable"
error?

mark "signal" and update
last-seen stamp in providerlist

mark element as "no-signal" and
remove element from providerlist

Figure 8.5: Flow chart of the interaction-mode in the SearchUnit of the client
bridge.

Interaction-Mode

As soon as a connection is established to a provider, the interaction-mode
as the right side of figure ?? depicts is started in the SearchUnit. In this

Page 77 of 139

8.1 Bridge Design

mode, the SearchUnit does not discover new devices but restricts itself on
monitoring already known whitelisted devices. This is done by repeatedly
scanning the known devices for its services. If a device is unreachable, the
scanning fails and the signal state of the device gets the mark “no signal”.
This causes the providerlist to be altered by removing the device which is
no longer available. It will not be removed from the whitelist, since it might
be available soon again, while the client is moving.

Implementation

Service discovery on Bluetooth devices is a complex task. There are a num-
ber of details that must in place before the Bluetooth API can successfully
be used to discover services. The following has to be specified when doing
a service search with a call to searchServices(...) in the local DiscoveryA-
gent (javaz.bluetooth. DiscoveryAgent):

UUIDs Every service is started with an array of UUIDs, which indicates the
type(s) of services that you are looking for. We must generate a random
UUID that nobody else is using, and use this to start provider services.
This UUID must be used by clients in order to discover services that
can be used in this framework.

Attributes Every Bluetooth service has a service record in a database or
service registry in the local Bluetooth device. When a search is ini-
tialized it must be specified which attributes that are to be retrieved
from the service record during the search. This works by passing an
array of hexadecimal numbers, which each correspond to a particular
attribute. These numbers are specified by the Bluetooth SIG in [27].

Remote Device Each service search is initiated on a remote device that
have been discovered by a device search. A device search can be started
by calling the method startInquiry(...) in the local DiscoveryAgent.
The search unit we have implemented uses separate modules for doing
device searches and service searches.

Discovery Listener When initiating searches for devices or services a dis-
covery listener must be specified. This is a reference to the class that
will handle call-backs when a service has been found or the search is
finished or aborted. The class that is referenced must implement the
interface DiscoveryListener located in javax.bluetooth.

When a service has been found the discovery listener will be notified with
a callback, which takes the service record of the discovered service as a

Page 78 of 139

Chapter 8: Bluetooth Communication Bridge

parameter. This way attributes can be extracted from the service record,
and compared with further search criteria, like for instance if the name of
the service is correct. The search unit module can be found in appendix V
in listing 2.

8.2 Bridge Layers

8.2.1 Integrity Layer

Since the RFCOMM protocol which we use for Bluetooth communication
emulates a serial cable connection, there is one major shortcoming. The
protocol guarantees the order of the transferred bytes and the integrity of
individual bytes. But since the nature of a serial connection is a stream
connection, there is no beginning or end of a message. Hence integrity of a
single Soap message as we send it can not be guaranteed by the RFCOMM
protocol. We thus developed the integrity layer in our bridge. This layer
ensures that an entire message has been received and that the message is
valid. We do this by adding a checksum to the message when sending a
message, and check and remove the checksum upon receiving the message.

When sending a message, we calculate a 128 bit checksum of the data using
the MD5 hashing algorithm. The MD5 algorithm is a fast and widely used
hash function that generates a 128 bit message digest using trap-door or
one-way mathematical functions. This means that it is impossible to reverse
engineer the original message from a digest (excluding brute-force meth-
ods) [23]. This checksum is inserted into the first 16 bytes of the message.

Figure 8.6 shows a message that has been embedded with integrity informa-
tion. As can be seen from the figure the message has also been embedded
with length information in the 4 bytes following the checksum. The length
information contains the length of the n bytes of data being sent. This
information is needed when receiving messages in the integrity layer.

16 bytes 4 bytes n bytes
MD5 Checksum Length Data é

Figure 8.6: Message embedded with integrity information

When receiving a message the integrity layer must first perform the integrity
check when the entire message has been received. This is handled by waiting

Page 79 of 139

8.2 Bridge Layers

until the 4 bytes representing the length information has been received. Now
having read this information we read in data until the number of bytes
dictated by the length information has been received.

The length information can be of an arbitrary length dependent on the num-
ber of data bytes n, though because we have allocated 4 bytes for length
information we limit the size of messages to of maximum 232 bytes (Approx.
the amount of data on a DVD) which should be more than adequate for any
mobile device today.

When the message data has been received we calculate a checksum on the
data and compare this to the checksum saved in the first 16 bytes in the
message. If the two checksums match we will have verified the integrity of
the message. Now we can remove the integrity information from the message
and safely signal the layer above the to continue processing the message.

8.2.2 Security Layer

The security layer implements symmetric key encryption functionality, which
is used for both encryption and signing of messages. The layer operates on
messages and each of the messages are represented in a byte array.

There are two modes of operation: Encryption and signing. The mode of
operation depends on whether encryption is turned on or off by the sur-
rounding environment. If encryption is turned off, the mode of operation is
signing. The mode is set up when the security layer is initialized along with
the encryption key, which is a 128 bit randomly generated, large integer,
which is obtained by the environment from the mediator. The security layer
is implemented in Security.java d619a.common.bridge.security |[24] .

Encryption

In this mode all traffic will be encrypted. Figure 8.7 shows how a message
is encrypted and decrypted. First an MD5 digest is generated from the data
message and appended. The digest is needed later to ensure that decryption
was successful. Next the entire data message is encrypted (including the
digest). When the message is received on the other side of the bridge the
entire message is decrypted. After decryption the MDJ5 digest that was
appended before encryption is stripped from the message. A new MD5 digest
is generated on the remaining data, and the new digest is compared to the
appended digest. If the two digests match we can be sure that the message
was decrypted successfully with a correct encryption key. If they do not
match the key was incorrect or the data was altered, and an exception is
raised.

Page 80 of 139

Chapter 8: Bluetooth Communication Bridge

Encryption
Md5() Encrypt() ¢ "TTTTTTERRTTTIETS
Data R Md5 Data —_— ! Encrypted Data '
. Md5()
Decryption
:------------------I Decrypt()
' Encrypted Data)} —03 Md5 Data Mds [= | mds | ?

Figure 8.7: Encryption and decryption of a message. Encrypted data is marked
with dashed box lines.

Because the message can only be read if it is decrypted with the correct
key both confidentiality and authentication is provided, satisfying our Secu-
rity and Credibility system requirements. If the message was altered after
encryption, the decryption would fail, therefore integrity is also provided.

Signing

In this mode of operation all messages will be signed with an encrypted digest
of the message. Figure 8.8 shows how a message is signed and authenticated.
The difference between signing and encryption is that only the attached MD5
digest is encrypted. To authenticate a message the attached MD5 digest is
stripped from the message and decrypted, and a new digest is generated on
the remaining data. A message is successfully authenticated if the decrypted
MD5 digest matches the new digest. If they do not match the key was
incorrect or the data was altered, and an exception is raised.

The message can only be authenticated with the correct key and if the data
is altered the digests will not match. Therefore authentication and integrity
is provided, satisfying our Credibility requirement.

In this process it is important that the encryption key cannot be reverse en-
gineered from looking at the data that was encrypted (since an eavesdropper
could calculate the MD5 sum and compare it with the encrypted MD5 sum).
By using large 128 bit encryption keys this risk is minimized.

Encryption engine

The encryption engine that is used in the security layer is Bouncy Castle’s
ARC4 implementation (org.bouncycastle.crypto.engines.RC4Engine

Page 81 of 139

8.2 Bridge Layers

Signing

Md5() Encrypt()

i
Data o Md5 Data —> . Md5 Data
:

Authentication Md5()

' Decrypt()
i Mds Data e Md5 Data Md5 | = | mas | ?

Figure 8.8: Signing and authentication of a message. Encrypted data is marked
with dashed box lines.

[24] |41]). This is a lightweight, open source implementation of the widely
used, stream cipher ARC4 algorithm.

Listing 8.5 shows how the encryption engine is initialized in the security layer.
The second parameter to the constructor is the 128 bit encryption key. This
key is written to a byte array in line 4, and passed to the encryption engine
as an initialization parameter in line 5. The encryptionMode parameter
denotes whether the security layer should operate in encryption mode or
signing mode.

1 public SecurityLayer (int encryptionMode , Biglnteger
encryptionKey) {

2 this.encryptionMode = encryptionMode;

3 this.encryptionEngine — new RC4Engine () ;

4 byte|[] key = Biglntegers .asUnsignedByteArray (
encryptionKey) ;

5 this . encryptionEngine. init(true, new KeyParameter (
key));

6 }

Listing 8.5: Initialization of encryption engine.

After initialization of the engine data can be encrypted by calling the method
processBytes(). Listing 8.6 shows how this works. Lines 1 through 3 creates a
new checksum on the data and adds it to a new byte array together with the
data. Line 4 creates a buffer for the encrypted data. In line 5 processBytes()
is called with the following parameters: (input data, offset into input data,
length of input data, output buffer, offset into output buffer). The data in
the input buffer is encrypted with the ARC4 algorithm and written to the
output buffer.

MD5 md5 = new MD5(data) ;

byte || checksum = md5.doFinal ();

byte [| dataToBeEncrypted = addChecksum (checksum, data);
modifiedData = new byte|[dataToBeEncrypted.length |;

_ W o

Page 82 of 139

Chapter 8: Bluetooth Communication Bridge

5 encryptionEngine. processBytes(dataToBeEncrypted , 0,
dataToBeEncrypted.length , modifiedData, 0);
Listing 8.6: Encryption of data using processBytes().

Page 83 of 139

Chapter

Client

In this chapter we present the design and implementation of our client appli-
cation running on the mobile device of the user. We first describe the overall
design of the the client GUI forms and the relationship between these forms.
Next we proceed to disuss issues concerned with the use of the web service
applications in a service provider. Finally we discuss implementation details
and issues experienced while developing the client application.

9.1 Design

The purpose of the client application is to allow a user to interact with a
service provider. We have implemented a number of user interfaces which
allow a user to do the following.

ServiceBrowserList Discover a nearby service provider and choose a Blue-
tooth service.

WebServiceBrowserList Choose a web service application exposed via
the Bluetooth service.

OperationBrowserForm Choose an operation to invoke in the selected
web service application.

Primitive/DynamicResultsForm Show the results of the operation in-
vocation in an appropriate results window.

In order for us to separate the user interaction forms into seperate compo-
nents used in the client application Midlet, a design based on what we call

85

9.1 Design

L O I]
ServiceBrowserList Selects Bluetooth device and service
A
\4
Only one web
service WebServiceBrowserList Selects Web Service app.
A
"More than one web service
i Selects and invokes
OperationBrowserForm)
an operation
h

Al

A}

A

A}

A}
\J
-) Shows the results
PrimitiveResultsForm DynamicResultsForm .
from the operation

Figure 9.1: Navigation-diagram showing the dialog flow in our user interaction.
Note that the dashed box represents a mon-visible entity.

parent-child interfaces have been created. For instance if a service browser
form opens a web service browser form, the service browser would become
the parent to the web service browser, which would become the child of the
service browser. This relationship is required because we want a user to al-
ways be able to return to a previous form by pressing a “Back” button. The
relationship between our forms is shown in figure 9.1. In this example the
parent-child relationships is represented top-down, meaning that the upper
forms are parents to the lower forms. This way of buiding the client GUI is
superior to the standard design proposed by most GUI modeling tools for
Midlet applications, where an entire applications Ul flow is modeled in a
single Midlet class, which becomes difficult to understand and maintain.

In this figure we see that if a user selects a Bluetooth service from a provider
and this service only offers a single web service application, we skip the
web service browser and directly show the user the operation browser. This
decision was made because we want to minimize the required interaction
from a user in order for her to consume a provider application.

In order for us to communicate with a service provider and find out what
applications it has to offer, we communicate with a predefined provider web
service, which we discuss in detail in chapter 10. The interaction steps taking
place between the client and this provider web service is shown in figure 9.2

Page 86 of 139

Chapter 9: Client

i Request list of web services
) g

Bluetooth
Service
Browser
List of web services Provider
|:| web service
Web Service Request web service data
>
Browser
WSDL ¢ _ WSEJr Xischeﬂs .
Parser
Runtime Proxy
Information
Operation
Browser
Soap request .
—>
Web service
application
ﬁ __ _Soapresponse __ __ _
Results
Form
Client

Figure 9.2: Example interaction between the client and the provider. The figure
shows the involvelment of the WSDLParser and SoapFactory modules.

Here we see that the client first requests a list of the available web service
applications placed in the service provider. This list is shown in the web
service browser. Now the user selects a web service from this list. Based
on this selection the framework then requests the WSDL file and associated
XSD schemas of this web service. Next this information is passed to the WS-
DLParser component (implemented in d619a.client.wsdl [24]), which
is a custom WSDL parser we have developed to parse out information to use
runtime prozy information, mentioned in section 6.5. This runtime proyx
information is stored in a WSDLContainer object, implemented in d619a
.common.wsdl.datatypes [24] . We use this information to show a list of
operations to the user in our operation browser. If any of these operations
require input from the user this is also represented in the operation browser.
Now from the data supplied by the user and the runtime proxy information
a Soap request message is generated. We generate this by using the Soap-
Factory module, implemented in d619a.common.soap [24] . This module
is used to generate kSOAP Soap messages. Now having generated an appro-
priate Soap message we send this to the chosen web service in the provider,
which in turn responds with a Soap response that we show in our client GUI.
We have included an illustration of the actual client application GUI flow in

Page 87 of 139

9.2 Implementation

table 9.1.

We discussed the restriction of not having dynamic class loading in the
CLDC, in section 6.5. Our conclusion from this analysis was to use runtime
proxy information. This conclusion was adequate for our dynamic com-
munication with web services. However another consequence of not having
dynamic class loading is that the web service applications deployed in a ser-
vice provider will not be able to return arbitrary data types. Web service
operations may only return data in a format that can be deserialized by
standard kSOAP routines, in other words the web service operations may
as a starting point only return primitive datatypes. However as we also
want to be able to represent complex data such as images we have incor-
porated a mechanism that allows an application to also return a number
of predefined datatypes, that we supply. To implement this mechanism we
were required to be able to return serialized complex data types by use of
primitives. We use a naming convention that allows a client to distinguish
between methods returning specific complex types and primitive types. Our
mechanism is based on embedding type information into the name of a web
service operation.

Now when we invoke an operation we will be able to handle a complex
response by examining the name of the operation we are invoking, and us-
ing the ClassLoader we can load an appropriate class needed to handle the
return data. For example an operation, called showlImage returning an im-
age in our framework would for instance have the following complete name
d619a_ client gui_datatypes Image showImage. Now from this name
we can parse out the path of the Custom data type to handle the return data,
load it, and use it to show the image. For test this design have included this
Image class in our framework, see d619a.client.gui.datatypes [24].
This class describes how to generate a form that can show an image re-
sponse. Note that to send binary data in web services we use a Base64
encoder to send this in a String representation. We use the kobjects Base64
encoder to accomplish this. As a convention we assume that an operation
returns a primitive type if no type information has been embedded into its
name.

9.2 Implementation

One of the restrictions of using J2ME is that you are only allowed to change
the currently displayed form from a Midlet. Meaning that we cannot change
to another form from inside one of our form classes. One solution to this
problem could be to implement each form class in a seperate Midlet. Then
instead of changing a form we would be required to simply start a new Mi-

Page 88 of 139

Chapter 9: Client

The same Hello Ser

—
oW

uffl

Hello f

(c)

Table 9.1: screenshots of the running client application

Page 89 of 139

9.2 Implementation

Oper at i onBr owser
OperationBrowserForm sends a command
to change the

current view

+set AsCur rent Vi ew(newi ew. Di spl ayabl e)
+Child of WS browser

+Parent to OperationBrowser

WebServiceBrowserList

+set AsCur rent Vi ew(newi ew. Di spl ayabl e)
+Child of MainMdl et

+Parent to WS browser

MainMidlet

+set AsCurrent Vi ew(newi ew. Di spl ayabl e)

Figure 9.3: Ezample of method call propagation to reach the top-parent or Main-
Midlet, calling setAsCurrentView to change the currently displayed form.

dlet representing the form. However using J2ME you are not allowed to
start Midlets from inside a Midlet, thus this solution is not possible. We
have used our parent-child relationship to solve this problem. The method
setAsCurrentView has been implemented to change the currently displayed
form. When making a call to this method it uses the parent-child relationship
to propagate the method call through all the defined parents until the top-
parent or the MainMidlet class is reached and the currently displayed form
is changed. Figure 9.3 illustrates the propagation of a call to this method.
Also listings 9.1 and 9.2 shows the implementation details handling the prop-
agation of calls to setAsCurrentView and the code in the MainMidlet class
where the actual form change occurs.

//Propagates view change to parent
public void setAsCurrentView (Displayable newview) {

}

Listing 9.1: A form class propagating a call to setAsCurrentView to its parent,
implemented in the form classes in the Client module d619a.client.gui [2/]

parent .setAsCurrent View (newview) ;

e

1 //Changes the actual view

2 public void setAsCurrentView (Displayable newview) {
3 getDisplay () .setCurrent (newview) ;

4}

Listing 9.2: The MainMidlet class receiving a propagated call to
setAsCurrent View, implemented in the Client module in d619a.client.gut.
MainMidlet [2/]

To implement our custom classes we have implemented a common interface
that must be implemented by all custom data types. We call this Custom-
Datatype placed in d619a.client.gui.interfaces [24|. This use of this
interface makes it possible for us to use our datatypes in a generic manner by
calling methods on the datatype solely through this interface. This means
that it becomes possible to create a GUI form to show the interaction re-
sults of a custom data type in a generic manner, this form is implemented
in d619a.client.gui.DynamicResultsForm [24] .

Page 90 of 139

e 10

Provider

In this chapter we discuss the design and implementation of the software
developed in the provider and aspects of the client-provider communication.
The provider software has been implemented as a web service called the
provider web service, not to be confused with the web service applications
deployed in the provider. The provider web service is used to inform the
client of the web services that are available in the provider and how these
can be used.

The provider web service also provides information used to generate the user
interfaces in the client application by mapping WSDL /XML names to user-
friendly textual descriptions that can be shown in the client application’s

GUL

10.1 Design

When a client wants to invoke an operation in a web service application
deployed at the provider, the client first needs to download information about
how to use that service. To retrieve this information the client first needs to
contact the provider web service which is responsible for delivering WSDL
information about the web service applications deployed in the provider.

The provider needs to save information about the mapping of service de-
scriptions to their WSDL locations, and the mapping of operation names to
their textual descriptions. We have implemented this functionality in the
following two configuration files, which by default are placed at the root of
the application server in the provider:

91

10.1 Design

e service_mapping.conf Maps service descriptions to a WSDL URL lo-
cation. Note that the service description is the data that will be shown
in the web service browser GUI (explained in chapter 9). We show an
example of a service mapping in table 10.1.

Service Description | WSDL URL
Hello World Service http://localhost:8080/HelloWS

/HelloWS?wsdl
Table 10.1: Example of a mapping. A Hello World service is mapped to the
location of its WSDL file

e operation mapping.conf Maps an operation name which refers to the
name defined in the WSDL file associated with the service, to an op-
eration description, which is a string describing the operation in user-
friendly terms. An example of an operation mapping is shown in ta-
ble 10.2.

Service Description | Operation | Operation description
name

Hello World Service sayHello Make service say Hello
to the world

Table 10.2: FExample of a service mapping mapping the operation names in the
Hello World service WSDL to user-friendly descriptions

There are other alternatives for storing this meta-data about the web services
and their operations, however as we dicovered in [17] a solution to this prob-
lem is a huge topic in itself, and not the focus of this project. Section 13.2
presents a discussion of other alternatives for representing this meta-data.

10.1.1 Client-Provider Communication

Figure 10.1 illustrates the communication taking place between the client and
the provider during a communication session. When the client has chosen
to browse a Bluetooth service at a provider a list of web services is first
downloaded to the client user interface. This constitutes the first of the
interaction steps in which the client fetches a list of the service descriptions
defined in the service mapping. In this case this list would contain the service
descriptions, contained in the service mapping, for WS App 1 and 2.

Now a service description is chosen by user input in the client application
and this service description is used as a parameter to locate and download
the WSDL file and associated XSD schemas of the selected web service ap-
plication. To spare the overhead of having to send an extra SOAP message
we also piggyback the operation mapping data to this message.

Page 92 of 139

Chapter 10: Provider

. . Provider WSDLReader
Reguest list of web services .
-~ web service
>

(List of service descriptions)

Service description

\ 4

(WSDL file content,
Client XSD Schema contents, -)
Operation mapping table) Service Mapping

% WS App 1

Figure 10.1: The communication taking place between the client and the
provider. In this case the provider has two deployed web service applications.

Operation Mapping

WS App 2

When the provider web service receives a request for a WSDL file it first
locates the location URL of the WSDL file in the service mapping. It then
downloads the WSDL file using the WSDLReader component, implemented
in the Provider web service in wsdl.WSDLReader.java [24] . Now the WS-
DLReader analyzes the WSDL file to check for any associated XSD schemas
and downloads these as well if any exists. The schema data is appended to
the WSDL data as a single string, which will later be parsed in the client
application, as explained in chapter 9.

Next the relevant operation mapping data associated with the requested
WSDL file is retrieved from the operation mapping file. This is added to the
response message and sent back to the client as an XML complex datatype
representing the WSDL and operation mapping response data.

We plan to extend our client application in the fall semester of 2007 with
an embedded browser, which makes it possible for us to use HI'ML code to
format our response messages. This opens the possibility of making more
advanced operation mappings in our provider, where an operation name
could be mapped to HTML elements such as images, buttons, etc. instead
of merely mapping these to textual descriptions.

10.2 Implementation

Implementing web service operations to return objects or in XML language,
complex data types, requires us to make sure that the data is sent and
received properly by the client. In this section we describe the implementa-
tion details regarding the sending and receiving of complex data types using
kSOAP.

Page 93 of 139

10.2 Implementation

The two operations getServices and getServiceData implemented in the provider
web service in provider.ProviderInformationWsS.java [24] each returns

a complex data type. The alternative to this would be to only use primitive
datatypes. This would require us to send several SOAP messages between
the client and provider, which could yield significant data overhead.

We have thus chosen to use complex data types. Consequently we need
to make sure that these are properly serialized and sent to the client, on
the provider side. And on the client side we need to make sure that these
responses are properly deserialized into their respective Java class representa-
tions. kSOAP [34] provides the KvmSerializable interface, included in Com-
mon Modules org.ksoap2.serialization.KvmSerializable.java [24] .
kSOAP makes it possible for us to serialize custom Java objects into SOAP
representations by implementing this interface.

To implement this we are required to first model our response messages into
two Java classes named ServicesResponse.java and ServiceDataResponse.java,
see provider.responses [24]| for implementation details of these. These
classes have to implement the KvmSerializable interface and specify the prop-
erties of the classes, properties here being the member values in the classes.
Furthermore the types of these properties must be specified. kSOAP sup-
ports by default a number of types that can be serialized, which consist of
a number of primitives (such as Strings and integers) and the Vector class
specified in Java. If a response message consists of properties that do not
map to these types kSOAP has an Object type that can be used. How-
ever using this type requires the developer to manually write more advanced
deserialization routines on the receiving end.

In our ServiceDataResponse operation mapping information is sent as a
Hashtable, where the key (operation name) maps to a value (operation de-
scription). This is an example of a case where more advanced deserialization
is needed on the receiving end. The code snippet in listing 10.1 shows the
deserialization routine that rebuilds the Hashtable after it has been received
by the client.

1 //Create an empty Hashtable that will contain the
deserialized data

2> Hashtable operationMapping = new Hashtable();

3 J/Deserialize operation mapping Hashtable

4 /x Get complex Object property named operationMapping ,
this contains a list of key—wvalue pairs */

5 SoapObject operationMappingSoapObject = (SoapObject)
response. getProperty ("operationMapping") ;

6 //Get they key—wvalue pair values from the operationMapping

SoapObject

7 for (int i—0; i<operationMappingSoapObject .
getPropertyCount (); i++) {

8 SoapObject keyValueSoapObject = (SoapObject)

Page 94 of 139

Chapter 10: Provider

operationMappingSoapObject . getProperty (i) ;

9 String key = keyValueSoapObject.getProperty (0) .
toString () ;
10 String value — keyValueSoapObject.getProperty (1) .

toString () ;
11 //Add values to operationMapping Hashtable
12 operationMapping . put (key, value) ;

13}

Listing 10.1: Deserialization of a Hashtable, implemented in the Client module
in d619a.stub.ProviderInformationStub. java [2/]

The kSOAP framework saves complex objects in SoapObjects and known
types in SoapPrimitives. Deserializing a complex object is a matter of recur-
sively decomposing each SoapObject into its SoapPrimitives and fetching the
values from these. Figure 10.2 shows a tree representation of the Hashtable
deserialized in listing 10.1

(The overall SoapObject
containing the Hashtable)

operationMappingSoapObject

keyValueSoapObject | ~ ====- List of keyValueSoapObjects

PN

keySoapPrimitive valueSoapPrimitive

Figure 10.2: kSOAP representation of a Hashtable shows the relationship be-
tween SoapObjects and Soap Primitives

Page 95 of 139

e L1

Mediator

This chapter presents the design and implementation of the mediator, which
is labeled as the Bluetooth Authentication Mediator in figure 3.1 in the
problem statement. The mediator is responsible for negotiating connections
between clients and providers, and in this process to facilitate authentication,
encryption keys and compatibility. This enitity was implemented to satisfy
the Credibility and Security requirements.

Figure 11.1 illustrates how the negotiation takes place. To begin with the
client device initiates a Bluetooth connection to a service provider (A). After
this both the client and provider sends a request to the mediator with a set
of flags signalling requirements for the communication (B), like for instance
that encryption should be turned on. When both the client and provider
has received a response from the mediator (C), the parties can continue
communicating through the Bluetooth channel (D), unless the mediator was
unable to facilitate a connection for instance if the client software is out of
date or if the provider was not authenticated.

11.1 Design

The mediator is designed as a web service. This web service has access to
a database that contains records of all service providers. It is impossible
to connect to service providers that are not in this database using our sys-
tem. For each service provider the database has a record with the following
attributes: Service name, Bluetooth address, key timeout, WSDL version,
admin password. The key timeout attribute determines how long time a
key is valid when communicating through the Bluetooth channel. When the
timeout expires a new key must be negotiated through the mediator. The

97

11.1 Design

Mediator
C C
B B
A
D R LR LT Er >
D
Client Provider

Figure 11.1: Connection negotiation.

WSDL version attribute is used to inform clients to update their stubs.

In order to be able to establish connections between clients and providers
the mediator needs a mutually exclusive shared resource that is accessible
from concurrent calls to the mediator web service. When a web service is
invoked the hosting servlet container of the web service starts a new process.
The method call to the web service will be executed in this new process.
This means that invocations of the same web service cannot directly share
Java objects. To solve this problem we use a DBMS to manage the shared
resource. Synchronization is handled by letting clients write a record in a
table that holds current connection attempts, and then by letting providers
look for this record and set a flag in the record upon discovery to inform the
client that there is a match. In this process an encryption key is generated
and written to the same record.

In order for the mediator application to scale we need a reliable DBMS that
can handle multiple connections. We use the free MySQL [40] Community
Edition, which it is one of the most widely used free DBMSs.

Figure 11.2 shows the design of the mediator component and what kind of
information that will be passed to and from the web service. The client and
provider will pass the same type of information to the mediator, and upon
receiving two matching requests the mediator generates an encryption key,
and sends it back to the client and provider.

In addition to the encryption key there are a number of other output pa-
rameters that will be returned from the mediator. Both the input message
and output message has an encryption flag. This flag is used to specify the
encryption needs of the client and provider. It may not always be necessary

Page 98 of 139

Chapter 11: Mediator

Mediator
web service

Mediator Database

Encryption key

generator
Input Message Output Message
(Service name, (Service name,
Client Bluetooth address, Client Bluetooth address,
Provider Bluetooth address, Provider Bluetooth address,
Encryption flag) Encryption key,

Encryption flag,

WSDL version number,
Response codes,

Error codes)

Figure 11.2: Mediator component.

to encrypt the traffic between the client and provider if the content that is
being sent is not sensitive, like for instance if it is a museum service providing
information about sights. Also it may sometimes be imperative to encrypt
all traffic if for instance the service provider is a bank. Based on the encryp-
tion flags encryption will be set to on or off. If encryption is set to off the
traffic between the client and provider will still be authenticated by using
the encryption key to sign messages (see chapter 5). Table 11.1 shows the
mediator encryption policy. The policy is used by the mediator to determine
whether a connection should be encrypted or not. The encryption flag in
the output message from the mediator informs the clients and providers of
whether encryption is on or off, or signals an error if the encryption needs
were incompatible (in this case the client must change the encryption mode
in order to communicate with the provider).

Encryption flag | Optional | Mandatory | None
Optional off on off
Mandatory on on error
None off error off

Table 11.1: Mediator encryption policy.

The WSDL version number output parameter is used to notify clients of the

Page 99 of 139

11.2 Implementation

version of the stub that is needed to communicate properly with the service
provider. This version number is used to notify clients to update their stubs,
and thus their client application. The response codes are used to signal
if the connection attempt was successful, and are defined in the interface
Status.java d619a.mediator [24] . The error codes contain descriptions
of potential errors.

Encryption key generator

The encryption generator is used by the mediator to retrieve keys for the
negotiated connections. It is implemented in Encryption.java d619a.
mediator.encryption [24]. The keys that are generated are 128 bit random
integers.

11.2 TImplementation

Connection requests in the mediator must be synchronized properly in the
mediator to avoid deadlock and starvation situations. Connections between
clients and providers are established by using a table in the database as a
shared resource. If client and provider requests were to go through the same
web service operation, the database would have to be locked while the op-
eration call either creates or matches a record in the database. Otherwise
deadlock situation are possible. Since the DBMS has to be able to serve
many' requests at the same time it is not desirable to lock the database.
Therefore client requests are made by calling the web service operation Se-
tup ClientConnection(), and provider requests are made by calling the web
method SetupProvider Connection(). Figure 11.3 shows a flow chart of how
the synchronization between the two web service operation calls is handled.
The implementation of the mediator web service can be seen in appendix V
in listing 1. The source file is located in d619a.mediator [24] .

!This number depends on how many service providers that are registered in the medi-
ator, and how many users they have on average.

Page 100 of 139

Chapter 11: Mediator

SetupClientConnection() SetupProviderConnection()

create connection record look for connection record

<
<

Y

No
is record matched? Timeout? found record?
Yes
get encryption key from record match record (write flag and encryption key)
Y ¢
delete connection record <€ retum response message | €—————————

v

return response message

Figure 11.3: Flow chart of connection requests.

Page 101 of 139

Part IV

Conclusion

103

e 1.2

Conclusion

After having designed and implemented our framework we reflect on the
product and evaluate it with respect to the system requirements and philoso-
phies stated in chapter 3.

We start by evaluating our framework’s adherence to the design require-
ments, namely the extensibility, reliability and efficiency requirements. We
first evaluate the system as a whole and then discuss the individual compo-
nents of the system. Secondly we evaluate whether our system adheres to
the usability requirements, namely the credibility, security, selectability and
user experience requirements. Finally we discuss our system philosophies
and their influence in the design and implementation of our system.

12.1 Evaluation

Design Requirements

Our system is generally well documented in that every class and public
method in the framework has been documented using SUN’s Javadoc tool [14],
see [13] for our documentation. The decision to use Javadoc was made from
the beginning of the project. Since work on our framework will be continued
on future semesters we made this decision in order for us to be able to quickly
understand and change implementation details in future versions of our sys-
tem. Our documentation style adheres to the documentation requirement in
our extensibility system requirement.

Our framework has been developed as a distributed system aimed at both
mobile devices and stationary platforms. This necessitates the use of two

105

12.1 Evaluation

Java editions, namely the J2ME and J2SE platforms. Based on the fact
that J2ME was designed to be a subset of J2SE, the platforms are similar in
many respects. This makes it possible to write code that is compatible for
both platforms. We have exploited this capability in creating our Common
Modules library where platform independent code has been placed. The
advantage of having this library is that maintaining code becomes easier
since we are only required to change it in one place. For instance we have
exploited this library in our bridge component where some of the layers are
platform independent and thus placed in only one place. This method of
having code in one place, where possible, adheres to our extensibility system
requirement in making our code maintainable.

As discussed in chapter 8 our Bluetooth Communication Bridge has been
designed in a modular fashion by using a layered architecture. Using a lay-
ered architecture gives an extensible design where individual layers can be
updated/inserted without affecting the other layers in the architecture. [42]
The use of common interfaces in our layers makes it possible for us to com-
municate with the layers in a generic fashion, which we exploit when using
our callback mechanisms.

To satisfy the reliability requirement in our bridge component we have im-
plemented several mechanisms to handle potential errors in the bridge com-
munication. Our use of custom exceptions makes it possible for us to further
distinguish between errors and handle these. These mechanisms aid in mak-
ing our bridge more reliable in the sense that unexpected behavior in our
bridge in minimized by either handling errors where possible or informing
the user that an error has occurred by propagating error messages to the
client application. Since errors in our system are likely to occur during com-
munication sessions we have prioritized reliability in the bridge component,
this also helps in making the client and provider reliable in that they are
both reliant on the use of the bridge.

Reflecting on our bridge component with respect to efficiency we have iden-
tified an issue that is a result of our use of the JSR 82 specification, used for
Bluetooth communication. In our current implementation it is only possible
to receive a single byte at a time in the Bluetooth layer. This impedes on
performance because every time a byte is received in the Bluetooth layer
it notifies the integrity layer, which then runs a number of checks. There-
fore data transmission rate of the Bluetooth communication bridge is not
yet good enough for a production stable solution. In future versions of our
bridge we will need to improve on the problems faced from using JSR 82,
for instance the use of buffers in the Bluetooth layer could help in reducing
the number of callbacks being made to the integrity layer. Another solution
that could improve on our Bluetooth throughput would be to use the L2CAP
protocol instead of RFCOMM, this solution would minimize the amount of

Page 106 of 139

Chapter 12: Conclusion

header information sent with the byte data. A third solution would be to
incorporate a compression layer into our bridge which would help in limiting
the number of bytes being sent though the bridge. We discuss this scenario
in more detail in chapter 13.1.

The use of callbacks in our bridge makes an efficient design where the layers
in our bridge respond to callbacks instead of having to continuously poll for
data updates between each layer.

The client application has been designed with extensibility as an important
requirement. This decision was made because the future work presented in
chapter 13.1 implies that a number of changes in the client application will
be made in the future. Because of this we designed our Midlet user interfaces
in separate classes to ease updates and insertions of forms into our applica-
tion. This design is superior to the standard design proposed by most GUI
modeling tools for Midlet applications where an entire applications UI flow is
modeled in a single Midlet class. Another aspect dealing with extensibility is
our use of class loading to represent custom data types. This feature creates
a loose coupling between our client application and the custom data types
supported by our framework making it easy to introduce new custom data

types.

Our provider component has been designed with efficiency in mind. In this
respect efficiency refers to communication-level efficiency. We optimized our
Provider web service to send as few SOAP messages as possible. This opti-
mization was implemented by piggybacking data to SOAP messages. This
communication-level efficiency also affects the time spent processing byte
data in the bridge. Because by reducing the number of SOAP messages to
be sent over the bridge we also reduce the SOAP overhead introduced in
each message.

The mediator component has been designed with reliability in mind. Our
mediator uses a DBMS which allows it to scale in the number of connections
it can handle. This is an important point since our mediator can potentially
become a bottleneck in the future use of our system if it gains success. The
ability to scale in our belief partly meets the reliability system requirement.
However an issue we have not addressed in this project is the fact that
our mediator is in effect a single-point-of-failure in our system. We have
not addressed this issue yet but we will be required to investigate methods
of dealing with this problem if our framework gains success in the future.
One solution could be replicate our mediator component in the future yet
referring to the goal of our project, in section 3.5 we have not focused on
this perspective.

Page 107 of 139

12.1 Evaluation

Usability Requirements

Since the implementation of the system uses certificates and secure connec-
tions to authenticate each other through a mediating entity, the requirement
of credibility is partly satisfied. However being able to confirm the identi-
ties of the providers using our framework does not imply that the content
of the providers is secure. Thus we need to develop a method for how the
content published by providers will be checked. Content verification could
be achieved in a number of ways including manually checking the validity of
a providers content and incorporating mechanisms for automatically check-
ing for malicious content in providers. We have chosen not to focus on this
aspect as this in itself is a large research area.

Encryption functionality has been implemented in the security layer in the
Bluetooth Communication Bridge, and encryption keys are negotiated through
the mediator using secure connections. Our current implementation uses the
ARC4 encryption algorithm, which is not recommended for systems requir-
ing high-grade/military level security. Yet reflecting on the usage examples,
we presented in chapter 1, our choice of encryption algorithm should be suf-
ficient to satisfy the security requirement. This is also based on the fact that
the ARC4 encryption algorithm is sufficiently secure to be used in Internet
payment systems, see section 5.1 for more information.

When a connection between a client and service provider has been set up,
the user interacts with the client application through a service browser and
an operation browser as explained in chapter 9. This enables users to man-
ually select the services they want to interact with, and which operations to
invoke in them. Therefore the requirement of selectability is fulfilled implic-
itly. This requirement in turn satisfies the Choice and Control requirements
stated by the marketing analysis we presented in section 2.1.1. In a future
version of our framework we expect to improve the capabilities of creating
user interaction by implementing an HTML browser into our application.
This idea is discussed further in section 13.3.

One aspect of the user experience requirement concerns the users of our
client application that interfaces with service providers. Searching for ser-
vice providers takes on average 18-25 seconds. These delays have been mini-
mized because of our optimizations in the implementation of both the search
unit, see 8.1.2, and the Bluetooth communication. Our use of whitelists and
blacklists in the search unit minimizes the time spent performing service
discoveries.

Another aspect regarding the user experience requirement is aimed at the
second group of users for our framework, namely the developers that set up
a service provider. In this respect we have found two advantages of using

Page 108 of 139

Chapter 12: Conclusion

our software compared to using the push-based systems we mentioned in
section 2.1.2. First our framework is cheap because it is implemented in
software and thus we do not require the developer to purchase any hardware
products besides a Bluetooth device. Secondly our software is simple to
install and use. The developer is only required to have an understanding
of web services and how to use these on an application server. The only
requirement stated by our framework is that the developer has to manually
map her web service applications in our mapping files, and that the developer
installs the provider web service.

System Philosophies

Our two system philosophies of openness and compatibility is in our opin-
ion intrinsically related. If using an open standard it does not imply that
this standard is actually widely adopted. This is the reason why we have
also included the compatibility philosophy. We chose to use the web ser-
vices framework based on the fact that the specifications describing the web
services framework has been developed both openly and in a vendor-neutral
platform based on XML.

Using SOAP however contradicts our system requirement of efficiency so
choosing this format was a trade-off decision preferring openness and compat-
ibility over efficiency. Yet the potential use of XML accelerators, discussed
in chapter 13.1 might help in reducing the overhead of using SOAP.

Our choice of using Java to implement our system was made to satisfy the
compatibility philosophy. Unfortunately no programming language exists
that applies to 100% of the mobile devices shipped today. Thus in lack of
such a language we chose the one that is most compatible on todays mobile
devices. As mentioned in section 3.4 Java is currently supported on 70% of
the mobile devices being shipped today.

12.2 Conclusion

In section 3.5 we defined some areas of investigation for our project. In
the analysis part of this report we covered those areas thoroughly. The
knowledge foundation gathered from this analysis has provided us with the
necessary insight and knowledge needed to implement an extended proof of
concept of the framework proposed in the problem statement.

The design of the individual components in DynaBlu reflect the insights
gained from the analysis, and many implementation issues have been resolved
during the project by revising and debating design details.

Page 109 of 139

12.2 Conclusion

The design requirements are important to ensure that future work on Dyn-
aBlu is successful. Furthermore as the requirements are meant to be long-
term requirements we apply them in order to be able to identify future
improvements that is needed for DynaBlu to enter a production-stable state.
Our bridge is an example of a component that fulfills the extensibility and
reliability requirements. Future work could improve the efficiency of the
bridge in order to raise it to a production-stable level.

The usability requirements of selectability, credibility and security are sat-
isfied in the current implementation of DynaBlu, which is a good starting
point for creating a system superior to existing similar systems. For instance
satisfying the credibility and security requirements opens the door for new
application domains, such as banking services.

Page 110 of 139

Chapter

Perspectives

It is an open question whether DynaBlu will be successful. In this context
success implies that the framework is used as a platform for implement-
ing Bluetooth systems at a number of different locations. The success of
DynaBlu depends on the attention and popularity that this project gains in
the local environment, the user acceptance of DynaBlu and the developer
acceptance of DynaBlu.

Popularity

If this project receives a lot of attention at Aalborg University and in the local
media the chances for success will increase significantly. Media attention
would for example lighten the burden of having to spend money and time
on marketing efforts.

User Acceptance

In order for a user to be able to interact with a Bluetooth system that is
based on DynaBlu she will need to obtain the client software that will run on
her phone, which could for instance be downloaded from a web page. This
is a drawback with regards to spreading the framework rapidly.

For the users to accept DynaBlu the performance of the Bluetooth communi-
cation and discovery must be fast enough to relieve the users of waiting a lot
of time to receive data or searching for services. The Bluetooth communica-
tion is not yet fast enough for a production stable solution because of imple-
mentation details with using the JSR 82, but as mentioned in the conclusion
this problem can be solved by using additional buffering and interfacing with
L2CAP instead of RFCOMM. Another way of improving the performance
of the Bluetooth communication would be to implement a compression layer
into a future version of our bridge. Such a layer could contain XML compres-
sion features as available in several commercially available XML accelerators

111

such as Intel®’s XML accelerator [29] and IBM’s WebSphere DataPower
XML Accelerator XA35 [28]. The performance of the Bluetooth discovery is
on the other hand acceptable in the current state because of the optimization
implemented in the client bridge.

The acceptance of DynaBlu also depends on how well the client application
is accepted by users. The client GUI is not very appealing in the current
state, but is simple and functional. And since it is designed to be extensible,
improvements can be made as the needs arise in the future.

Another factor that will be important for the success of the framework is
how much time it will take for it to be developed into a production stable
solution. This depends on how much is needed in order for the system to
be production stable, and to answer this question we would have to test the
system with actual users.

Developer Acceptance

For developers to accept DynaBlu it must be simple to develop and publish
services. In the current state web services are published that offer data that is
either text or pictures. There are many tools available that enable developers
to build and deploy web services, and this is an advantage. Furthermore since
services are published as web services it is possible to integrate them in other
applications. In the future we would like to be able to handle HTML data
in the provider services as well. This way dynamic content could be viewed
in a browser on the mobile device, and developers would be able to work
with a language that is straight forward for most developers. Section 13.3
discusses this option in detail.

Important Qualities

There are a number of qualities of DynaBlu that are particularly important
factors that will have an influence on its success. The selectability from
the users point-of-view is a clear advantage compared to existing systems.
Furthermore the security implemented in our framework opens the door for
new types of applications that involve sending sensitive information, such
as instance payment systems and banking services. The existing Bluetooth
systems that we have examined in the preanalysis are all based on hardware
components that have been developed by the various companies. Our frame-
work is based entirely on software and is therefore a cheap way of creating a
location-aware system.

Technological Perspectives

As the mobile hardware platform is under continuous development, and the
resources of mobile devices will increase, it is possible that dynamic class
loading will be incorporated in the mobile platform at some point. Dynamic

Page 112 of 139

Chapter 13: Perspectives

class loading would create new opportunities for us. For instance the client
software could be downloaded directly from a service provider as a class file,
and loaded directly into the memory of the mobile phone, which would make
it easy to spread the client software. Furthermore dynamic class loading
would make it possible to download and run dynamic stubs at runtime,
which would eliminate the need for parsing of WSDL files at run-time in the
client.

Another aspect of the continuing development of the mobile hardware plat-
form is increased battery capacity, which is needed to support the integration
of faster CPUs. This increased battery capacity also has the benefit of mak-
ing the integration of faster short-range communication technologies feasible.
For instance WikFi is faster than Bluetooth and covers a larger area, but also
comsumes significantly more battery. Advances in short-range communica-
tion technology on mobile devices would be a welcome an addition that could
help ensure the future success of DynaBlu.

13.1 Future Work

In this section we present a few problems that are particularly interesting to
investigate further, and discuss possible solutions to these problems.

13.2 Service and Operation Mapping

As described in chapter 10 we have implemented descriptions of web services
and operations in text files located on the same application server as the
provider web service.

It is necessary to store service mappings in the provider web service. This
way users are limited to access the services for which the provider web ser-
vice has a mapping for, and the mappings can link to web services on any
application server.

The problem with storing the operation mappings is that the rest of the web
services are not necessarily located in the same place as the provider web
service. Therefore the descriptions can be located on a different computer
than the web services that they describe. Furthermore the descriptions are
not stored in a standard format. This way the web services are not only
separated from the descriptions, but access to the descriptions is not achieved
through a standard gateway, like for instance a registry or the provider web
service. Therefore the current solution would imply possible maintenance
problems.

Page 113 of 139

13.2 Service and Operation Mapping

Web service operations that are published by service providers need to be
described in order for clients to identify which operations they want to use.
The web services are syntactically described by the use of WSDL documents,
but a semantic description is also needed to explain the meaning of an oper-
ation invocation. In this case a semantic description would contain consists
of information like service capabilities, preconditions and relations to other
services. It would be desirable for us to be able to express what a particular
service has to offer clients.

In [17] we looked into the relatively new research area semantic web (first
proposed by the creator of the Web, Tim Berners-Lee, in 2001). This area
deals with adding semantic information to web pages and services, with
the purpose of automating task that will otherwise involve user interaction.
Languages like OWL-S and SAWSDL can be used to add meta-data to web
service descriptions, and using one of these languages is a possible solution
for our problem with describing web service capabilities.

OWL-S is an XML language that can be used in conjunction with WSDL
documents to add semantic information to services and operations. The
OWL-S documents must be published in a registry, because the user must be
able to retrieve the semantic documents, and to avoid maintenance problems
the documents should be kept in one place. The OWL-S documents can for
instance be stored in an UDDI repository together with the WSDL files they
reference. In our case the obvious place to put this registry would be the
mediator. But this way clients would have to download XML documents
from the mediator over a GPRS connection, which is not free like Bluetooth
communication. As we discovered in [17] there are other disadvantages with
using an UDDI registry, for instance complexity, overhead and maintenance
problems.

SAWSDL (Semantic Annotations for WSDL)[15] is a new initiative by W3C.
SAWSDL is currently in a draft version and will build on WSDL 2.0, which
is also under development. The vision of SAWSDL is to use the new extensi-
bility features of WSDL 2.0 to add semantic information directly into WSDL
documents. This is an interesting initiative from our perspective, because it
would enable us to store the operation descriptions in the WSDL file. The
advantage of using SAWSDL from our perspective is that all the information
needed to understand and communicate with a service is contained within a
single document, which can be downloaded from the service provider. This
would eliminate the maintenance problems introduced by storing descrip-
tions in separate text files, or by having a registry with web service meta
data.

The best solution would be to use SAWSDL documents in our framework in
the future, but depending on how much time it takes for the language to be
released we may need to consider other alternatives.

Page 114 of 139

Chapter 13: Perspectives

13.3 HTML interaction

In this section we describe aspects regarding the adoption of HTML interac-
tion into our framework. This basic research will be used as a starting point
for our future work regarding the integration of this feature.

We discuss existing research and products in order for us to be able to
identify possible solutions and describe some of the potential issues involved
with using these. This section should not be regarded as a detailed design
document describing HTML interaction modules.

We have chosen to focus on HTML as a scripting language to represent the
graphical elements and structure of the GUI data in our client application.
There are a number of reasons to include HTML which we list below.

e HTML is a widely used language for representing user interfaces. HTML
is today a grounding used to show data in many applications and is
thus becoming a standard not only for representing web pages but also
in standard applications.

e HTML is today known by most developers, which makes it use straight-
forward for most developers to create interaction forms using our frame-
work.

e A number of freely available HTML parsers or browsers are available
for mobile devices.

e Web services developed using our framework would potentially be able
to access external Internet HTML resources directly and send the con-
tent of these resources to our client application. Thus creating a gate-
way to access the Internet through our Bluetooth bridge.

Existing Systems

In order to display HTML documents in the client the client application
will be required to have an embedded HTML browser available. Embedded
means a browser that runs from within our software. Several available mobile
J2ME browsers exist, for instance the Opera Mobile(TM) browser [43]| and
the Protheus J2ME Browser [49]. Though depending on how we will be
implementing the HI'ML interaction we could be faced with some potential
requirements to our browser. For instance if we need to modify the browser
we will need access to the source-code of the browser thus the browser should
be an open-source product released under a license usable by us. One of these
modifications we are faced with is that we will need to redirect all HT'TP
traffic from the browser to our Bluetooth bridge.

Page 115 of 139

13.3 HTML interaction

In [47] the design of a Bluetooth Wireless Internet Gateway (BWIG) is de-
scribed. The purpose of the BWIG is to provide seamless Internet access to
mobile devices utilizing Bluetooth as a transport medium. The design of the
BWIG architecture is depicted in figure 13.1. Here we see the interaction
between the Bluetooth clients and BWIG. Two modules have been devel-
oped that are responsible for providing seamless Internet access namely the
BWIG client and the BWIG server.

Browser
- '— BWIG server

Bluetooth Bluetooth
stack stack

TCP

BWIG client

Client Gateway

Figure 158.1: The Bluetooth Wireless Internet Gateway (BWIG) architecture

BWIG client The BWIG client is responsible for intercepting TCP/IP
packets sent from the client at the application level and redirecting
these over the local Bluetooth stack to the Bluetooth gateway.

BWIG server At the server side the BWIG server component receives the
client TCP/IP request from the gateway’s Bluetooth stack and for-
wards this to the web server intended to receive the data. The data
received from the web server is sent back from the BWIG server to the
BWIG client in the same fashion.

Integrating HTML Interaction

In this section we describe possible solution scenarios to adopt when integrat-
ing HTML interaction into our framework. By discussion we have identified
two overall integration scenarios.

The first solution is to develop our own interpreter implementing a subset of
HTML. This component should essentially interpret HTML code into GUI
elements from the Ul API available in the MIDP profile. In this scenario
HTML would be used as a markup language describing native MIDP GUI
elements and would not require us to include an embedded browser in our
client application. Unfortunately this solution will require us to limit the use
of HTML elements to those supported by our implementation. Furthermore
this solution inhibits direct access to Internet resources through a Bluetooth

Page 116 of 139

Chapter 13: Perspectives

gateway component as we cannot ensure that the markup code describing
the Internet resource will conform to our subset implementation.

The second solution is to use an already available browser and modify the
source code of this to suit our needs. The browser should be modified to
be able to show web pages from the data format we pass to it. This leads
to our provider component. A design here could be inspired by the BWIG
architecture. We have depicted a possible solution in figure 13.2 where we
have developed an Internet Gateway web service in the provider. The idea
is that web service applications deployed in the provider should be able to
use the Internet Gateway web service to access either external HT'ML pages
from the Internet or locally deployed HTML pages.

Client GUI i
Provider Provider
I Web Service Application

Browser

I /

Client Provider Internet
Bridge Bridge Gateway Internet

Client Provider

Figure 13.2: Possible design accommodating the integration of HTML interac-
tion

This Internet Gateway web service should support the downloading of an
HTML page along with all the resources referenced in the page for instance
images and stylesheets contained in separate CSS files. This data should be
bundled into a data representation that we can send to the client and show
in the embedded browser.

Another issue is that we will need to be able to emulate HT'TP transport.
This implies that we should be able to handle HIML form data, forms are
used in HTML to realize interaction by sending variables as either POST or
GET data [57]. When the user of the client application is presented with
a form in the embedded browser and sends data from the form we need to
package this into a HT'TP request data representation that can be interpreted
by the provider and passed onto the Internet Gateway web service. The
gateway would then forward the form data to the web server hosting the
HTML page using HTTP.

Page 117 of 139

13.4 Final Remarks

Our current framework implementation forces the client to open a GPRS
connection to the mediator when establishing a connection with a provider.
Mobile phone providers often charge subscribers for using this kind of com-
munication. Integrating an Internet Gateway web service opens the possi-
bility of routing the client communication with the mediator through the
provider and thus making the Internet Gateway contact the mediator on
behalf of the client. This would make it possible for clients to invoke web
service applications implemented using our framework free of charge. How-
ever implementing this would require us to develop features for being able
to send SSL encrypted data over a Bluetooth connection.

13.4 Final Remarks

These suggestions for future work provide us with a starting point for a con-
tinued project into our next semester. The extensibility of DynaBlu makes
us flexible in that we can quickly adapt to new user requirements. This gives
us a good basis for doing further user and market analysis and to respond
dynamically to changes produced by these analysis.

The long-term goals of our continued work on the DynaBlu framework is to
make it enter a production-stable state where we can market it and examine
the possibilities for creating a commercial product.

Page 118 of 139

Bibliography

1]

2]

3]

4]

1]

6]

7]

8]

19]

[10]

[11]

[12]

HPI Research Group. http://wuw.hpiresearch.com/.

Accessing Native Methods from a Midlet -> A Powerful Workaround.
Arvind Gupta. http://www.microjava.com/articles/techtalk/
dynamic?PageNo=1.

Dynamic Classloading in the KVM. MicroDevNet, 2000. http://www.
microjava.com/articles/techtalk/dynamic?PageNo=1.

JSR 30: Connected Limited Device Configuration 1.0. Java Community
Process, 2000. http://jcp.org/en/jsr/detail?id=30.

JSR 139: Connected Limited Device Configuration 1.1. Java Commu-
nity Process, 2003. http://jcp.org/en/jsr/detail?id=139.

JSR 172: J2METM Web Services Specification. Java Community Pro-
cess, 2004. http://jcp.org/en/jsr/detail?id=172.

BlipNet Technical White Paper. BLIP Systems A /S, January 2005.

JavaTM Technology in Mobility At-A-Glance. SUN Microsys-
tems, 2005. http://www.sun.com/aboutsun/media/presskits/
javaone2005/mobility_aag_final0605_v2.pdf.

JSR 218: Connected Device Configuration (CDC) 1.1. Java Community
Process, 2005. http://jcp.org/en/jsr/detail?id=218.

JSR 118: Mobile Information Device Profile 2.0. Java Community Pro-
cess, 2006. http://jcp.org/en/jsr/detail?id=118.

JSR 82: JavaTM APIs for Bluetooth. Java Community Process, 2006.
http://jcp.org/en/jsr/detail?id=82.

BlipNet. BLIP Systems, 2007. http://www.blipsystems.com/.

119

http://www.hpiresearch.com/
http://www.microjava.com/articles/techtalk/dynamic?PageNo=1
http://www.microjava.com/articles/techtalk/dynamic?PageNo=1
http://www.microjava.com/articles/techtalk/dynamic?PageNo=1
http://www.microjava.com/articles/techtalk/dynamic?PageNo=1
http://jcp.org/en/jsr/detail?id=30
http://jcp.org/en/jsr/detail?id=139
http://jcp.org/en/jsr/detail?id=172
http://www.sun.com/aboutsun/media/presskits/javaone2005/mobility_aag_final0605_v2.pdf
http://www.sun.com/aboutsun/media/presskits/javaone2005/mobility_aag_final0605_v2.pdf
http://jcp.org/en/jsr/detail?id=218
http://jcp.org/en/jsr/detail?id=118
http://jcp.org/en/jsr/detail?id=82
http://www.blipsystems.com/

BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Javadoc documentation for the DynaBlu framework. Nikolaj Andersen,
Morten Vejen Nielsen, Jgrn Martin Rasmussen, 2007. http://www.cs.
aau.dk/"mvejen/dat6/javadoc.

Javadoc Tool Home Page. SUN Microsystems, 2007. http://java.sun.
com/j2se/javadoc/.

Semantic Annotations for Web Services Description Language Working
Group. W3C, 2007. http://www.w3.org/2002/ws/sawsdl/.

L. Aalto, N. Gothlin, J. Korhonen, and T. Ojala. Bluetooth and wap
push based location-aware mobile advertising system. ACM, june 2004.

N. Andersen, T. L. Kjeldsen, C. P. Larsen, M. V. Nielsen, and J. M.
Rasmussen. A technical view on soa and related acronyms. Technical
report, Department of Computer Science, AAU, 2006.

V. Auletta, C. Blundo, E. D. Cristofaro, and G. Raimato. A lightweight
framework for web service invocation over bluetooth. IEEE, 2006.

V. Auletta, C. Blundo, E. D. Cristofaro, and G. Raimato. Performance
evaluation of web service invocation over bluetooth. ACM, 2006.

avetana GmbH. avetanaBluetooth JSR82 Implementation. 2007.
http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.
xml.

BlueBlitz. BlueBlitz. 2007. http://www.blueblitz.com/.

bluetooth.com. Specification of the Bluetooth System. http://www.
bluetooth.com/Bluetooth/Learn/Technology/Specifications/.

Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Con-
cepts and Design (4th Edition) (International Computer Science).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2005.

d619a. Sourcecode to our framework. See enclosed CD-ROM.

J. Eker. Harald - A Java Bluetooth Stack. 2007. http://www.control.
1th.se/"johane/harald/.

C. Gehrmann, J. Persson, and B. Smeets. Bluetooth Security. Artech
House, Inc., Norwood, MA, USA, 2004.

B. S. 1. Group. Bluetooth Assigned Numbers. 2007. http://wuw.
bluetooth.org/assigned-numbers/.

Page 120 of 139

http://www.cs.aau.dk/~mvejen/dat6/javadoc
http://www.cs.aau.dk/~mvejen/dat6/javadoc
http://java.sun.com/j2se/javadoc/
http://java.sun.com/j2se/javadoc/
http://www.w3.org/2002/ws/sawsdl/
http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xml
http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xml
http://www.blueblitz.com/
http://www.bluetooth.com/Bluetooth/Learn/Technology/Specifications/
http://www.bluetooth.com/Bluetooth/Learn/Technology/Specifications/
http://www.control.lth.se/~johane/harald/
http://www.control.lth.se/~johane/harald/
http://www.bluetooth.org/assigned-numbers/
http://www.bluetooth.org/assigned-numbers/

Chapter 13: BIBLIOGRAPHY

28]

[29]

[30]

31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]
[44]

IBM. WebSphere DataPower XML Accelerator XAS35. http://
www-306.1ibm.com/software/integration/datapower/xa35/
features/.

Intel®. Intel® XML Accelerator. http://www.intel.com/support/
network/xml/accelerator/.

ITworld.com. SSL and Mobile Devices. 2001. http://www.itworld.
com/nl/java_sec/04202001/.

A.S. Jensen. CWhere, Bluetooth in a Mobile Positioning Context. 2005.

M. D. Jode. Programming Java 2 Micro Edition on Symbian OS. John
Wiley & Sons, Ltd., 2004.

K.Kaukonen and R.Thayer. A Stream Cipher Encryption Algorithm
Arcfour. 1999. http://www.mozilla.org/projects/security/pki/
nss/draft-kaukonen-cipher-arcfour-03.txt.

E. kSOAP project. kSOAP 2. 2006. http://ksoap2.sourceforge.
net/.

J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down
Approach Featuring the Internet Package, 3rd International Edition.
Addison-Wesley Longman Publishing Co., Inc., 2005.

P. Landrock and K. Nissen. Kryptologi. Forlaget ABACUS, Vejle, Den-
mark, 1992.

B. A. Miller. The Phony Conflict: IEEE 802.11 and Bluetooth Wireless
Technology. november 2001. http://www.informit.com/articles/
article.asp?p=24240&seqNum=1&rl=1.

Mobilereact. Practical Mobile Marketing White Paper. 2005. http://
www.mobilereact.co.th/downloads/Eng_WP.pdf.

N. J. Muller. Bluetooth Demystified. McGraw Hill Professional, 2000.
MySQL. MySQL Community. http://www.mysql.com/.

T. L. of the Bouncy Castle. bouncycastle.ory. http://wuw.
bouncycastle.org/.

L. M. A. M-M. P. A. N. og Jan Stage. Objekt Orienteret Analyse &
Design. Marko, 2001.

Opera. Opera Mobile™ . http://www.opera.com/products/mobile/.

L. L. Petrea and D. Grigoras. Dynamic class provisioning on mobile
devices. IEEE, 2006.

Page 121 of 139

http://www-306.ibm.com/software/integration/datapower/xa35/features/
http://www-306.ibm.com/software/integration/datapower/xa35/features/
http://www-306.ibm.com/software/integration/datapower/xa35/features/
http://www.intel.com/support/network/xml/accelerator/
http://www.intel.com/support/network/xml/accelerator/
http://www.itworld.com/nl/java_sec/04202001/
http://www.itworld.com/nl/java_sec/04202001/
http://www.mozilla.org/projects/security/pki/nss/draft-kaukonen-cipher-arcfour-03.txt
http://www.mozilla.org/projects/security/pki/nss/draft-kaukonen-cipher-arcfour-03.txt
http://ksoap2.sourceforge.net/
http://ksoap2.sourceforge.net/
http://www.informit.com/articles/article.asp?p=24240&seqNum=1&rl=1
http://www.informit.com/articles/article.asp?p=24240&seqNum=1&rl=1
http://www.mobilereact.co.th/downloads/Eng_WP.pdf
http://www.mobilereact.co.th/downloads/Eng_WP.pdf
http://www.mysql.com/
http://www.bouncycastle.org/
http://www.bouncycastle.org/
http://www.opera.com/products/mobile/

BIBLIOGRAPHY

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

M. Pracucci. JBluetooth. http://download.pracucci.com/java/
jbluetooth/readme.html.

rococo software. Impronto Bluetooth Library. 2007. http://www.
rococosoft.com/java.html.

N. Rouhana and E. Horlait. Bwig: Bluetooth web internet gateway. In
ISCC ’02: Proceedings of the Seventh International Symposium on Com-
puters and Communications (ISCC’02), page 679, Washington, DC,
USA, 2002. IEEE Computer Society.

K. Sairam, N. Gunasekaran, and S. Redd. Bluetooth in wireless commu-
nication. Communications Magazine, IEEE, 40(06):90 96, june 2002.

SourceForge.net. Protheus J2ME Browser. http://sourceforge.net/
projects/protheus/.

D. Statistik. Befolkningens kgb via internettet efter hyppighed, type og
tid. 2007,. http://www.dst.dk.

S. Stemberger. Is Bluetooth Wi-Fi? april 2002. http://www-128.1ibm.
com/developerworks/wireless/library/wi-net.html.

B. D. Team. Bluecove. 2007. http://code.google.com/p/bluecove/.
J. D. Team. JBlueZ. 2007. http://jbluez.sourceforge.net/.

Thawte. SSL digital certificates with extended wvalidation from thawte
the global SSL certificate authority. http://wuw.thawte.com.

K. Topley. J2ME in a nutshell. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 2002.

VeriSign. VeriSign - Security (SSL Certificate), Communications, and
Information Services. http://verisign.com.

W3C. Forms in HTML documents. http://wuw.w3.org/TR/html4/
interact/forms.html#h-17.3.

A. 1. Wang, M. S. Norum, and C.-H. W. Lund. Issues related to de-
velopment of wireless peer-to-peer games in j2me. In AICT-ICIW ’06:
Proceedings of the Advanced Int’l Conference on Telecommunications

and Int’l Conference on Internet and Web Applications and Services,
page 115, Washington, DC, USA, 2006. IEEE Computer Society.

A. 1. Wang, M. S. Norum, and C.-H. W. Lund. Issues related to devel-
opment of wireless peer-to-peer games in j2me. IEEE, 2006.

Wikipedia.org. Bluetooth. 2007. http://en.wikipedia.org/wiki/
Bluetooth.

Page 122 of 139

http://download.pracucci.com/java/jbluetooth/readme.html
http://download.pracucci.com/java/jbluetooth/readme.html
http://www.rococosoft.com/java.html
http://www.rococosoft.com/java.html
http://sourceforge.net/projects/protheus/
http://sourceforge.net/projects/protheus/
http://www.dst.dk
http://www-128.ibm.com/developerworks/wireless/library/wi-net.html
http://www-128.ibm.com/developerworks/wireless/library/wi-net.html
http://code.google.com/p/bluecove/
http://jbluez.sourceforge.net/
http://www.thawte.com
http://verisign.com
http://www.w3.org/TR/html4/interact/forms.html#h-17.3
http://www.w3.org/TR/html4/interact/forms.html#h-17.3
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Bluetooth

Chapter : BIBLIOGRAPHY

[61] Wikipedia.org. Bluetooth Special Interest Group. 2007. http://en.
wikipedia.org/wiki/Bluetooth_sig.

[62] Wikipedia.org. HTTPS. 2007. http://en.wikipedia.org/wiki/
HTTPS.

[63] Wikipedia.org. RC/. 2007. http://en.wikipedia.org/wiki/RC4.

[64] S. Williams. Irda: past, present and future. Personal Communications,
IEEE, 7(01):11 19, february 2000.

Page 123 of 139

http://en.wikipedia.org/wiki/Bluetooth_sig
http://en.wikipedia.org/wiki/Bluetooth_sig
http://en.wikipedia.org/wiki/HTTPS
http://en.wikipedia.org/wiki/HTTPS
http://en.wikipedia.org/wiki/RC4

Part V

Appendix

125

Appendix

Project Code Samples

.1 Mediator Web Service

The following listing contains the implementation of the mediator web ser-
vice, which is responsible for negotiating connections between clients and
providers. In chapter 11 there is a flow chart (figure 11.3) that simplifies

how the web service synchronizes access to the database.

/*

* Mediator .
*

* Created on
*

*/

java

April 4, 2007, 2:21 PM

00~ OOt WK =

9 package mediator;

d619a.common. bridge. security . EncryptionMode;
d619a.mediator . database . DBMediator ;
d619a.mediator.database . DatabaseErrorException ;
java.util.Random;

javax .jws.WebService;
javax .jws . WebMethod ;
d619a.mediator .encryption .

11 import
12 import
13 import
14 import
15 import
16 import

17 import Encryption ;

18

19 /xx*

20 * This class implementes the mediator web service .
21 * @author Nikolaj Andersen

22

*/
23 @WebService ()

24 public class Mediator {

25

26 VAT

27 * Clients can call this method to attempt to set up Bluetooth
connections

28 * with service providers .

29 * @param providerName Name of the service

30 * @param BTAddressClient Bluetooth address of the client

31 * @param BTAddressProvider Bluetooth address of the service
provider

32 * @return a 'ConnectInfo .java ’ object, which contains the
information

33 * needed for further communication between client and provider.

34 * Including response codes and error codes.

35 */

36 @WebMethod

37 // this method should only be called by the client

38 public ConnectInfo setupConnectionClient (String providerName, String
BTAddressClient , String BTAddressProvider, int encryptionMode) {

39 System .out . println ("running client method...");

40 DBMediator db = new DBMediator () ;

41 int TimeOut = Integer.parselnt (System.getProperty ("timeout"));

127

.1 Mediator Web Service

42

44
45

a7
48

50
51
52
53

54
55

56

57
58
59
60
61
62
63
64
65

67
68

70
71
72

74
75
76
7
78
79
80

81

103
104

105
106
107

108

// check if it is a wvalid provider

if (!db.validProvider (providerName, BTAddressProvider)) {
ConnectInfo info = new ConnectInfo ();
info.setBTProviderAddress (BTAddressProvider) ;
info.setBTClientAddress (BTAddressClient) ;
info.setSucces (Status .PROVIDERNOTFOUND) ;
info.setErrorCode("No such provider in Database");
return info;

}
// create connection record in Connections table , and wait
for the provider to match it (with timeout)
try {
db.createConnectionRecord(BTAddressClient , BTAddressProvider ,
encryptionMode) ;
System .out . println ("created record for client: "+ providerName
+ " " + BTAddressClient + " " 4+ BTAddressProvider);
} catch (DatabaseErrorException ex) {
ConnectInfo info = new ConnectInfo ();
info.setBTProviderAddress (BTAddressProvider) ;
info.setBTClientAddress (BTAddressClient) ;
info.setSucces (Status .CONNECTIONNOTAVAILABLE) ;
info.setErrorCode("Internal database problem");
return info;
ConnectInfo info = mew ConnectInfo ();

info.setSucces (Status . CONNECTIONNOTAVAILABLE) ;
info.setErrorCode("No response from other party");
info.setBTClientAddress (BTAddressClient) ;
info.setBTProviderAddress (BTAddressProvider) ;
int counter = 0;
while (counter < TimeOut) {
if (db.isMatch(BTAddressClient, BTAddressProvider)) {
System . out. println ("match found for client: "4+ providerName
+ " " + BTAddressClient + " " 4+ BTAddressProvider) ;
String key = "";

String wsdlVersion = "";

int encMode = 0;
int keyTimeout = 0;
try {

key = db.getEncKey(BTAddressClient, BTAddressProvider);

wsdlVersion = db.getWsdlVersion (providerName,
BTAddressProvider) ;

keyTimeout = db.getKeyTimeout (providerName,
BTAddressProvider) ;

encMode = db.getEncryptionMode (BTAddressClient ,
BTAddressProvider) ;

} catch (DatabaseErrorException ex) {
info.setSucces (Status . CONNECTIONNOTAVAILABLE) ;
info.setErrorCode("Internal database error");
break ;

}

if (encMode —— EncryptionMode.INCOMPATIBLE) {
info.setSucces (Status.INCOMPATIBLEENCRYPTIONMODES) ;
info.setEncryptionMode(EncryptionMode.INCOMPATIBLE) ;
info.setErrorCode("The encryption modes were

incompatible.");

break ;

}

info.setEncKey(key);

info.setEncryptionMode(encMode) ;

info.setSucces (Status . CONNECTIONESTABLISHED) ;

info.setWsdlVersion(wsdlVersion) ;

info.setKeyTimeout(keyTimeout) ;

info.setErrorCode("No errors");

break ;

} else {

// try to sleep to wait for the provider to match the

connection "‘ECD'I‘d

try {
System .out . println ("sleeping: "4 providerName + " " +
BTAddressClient + " " 4+ BTAddressProvider) ;
Random rand = new Random(System .currentTimeMillis());
// random number between 2000 and 4000
long sleeplnterval = ((Math.abs(rand.nextLong())) %

2000) + 2000;
Thread . sleep (sleepInterval);
} catch (InterruptedException ex) {
continue ;
}

counter—+-4;

Page 128 of 139

Chapter : Project Code Samples
115
116 // delete connection record and return connection information
17 try {
118 db.removeConnectionRecord (BTAddressClient , BTAddressProvider) ;
119 } catech (DatabaseErrorException ex) {
120 // ignore, record will be cleaned up later
121 1
122 return info;
123 B
124
125 /o
126 * Service providers can call this method to attempt to set up
127 * Bluetooth connections with clients.
128 * @return a 'ConnectInfo .java ' object, which contains the
information
129 * needed for further communication between client and provider.
130 * Including response codes and error codes.
131 * @param providerName Name of the service
132 * @param BTAddressClient Bluetooth address of the client
133 * @param BTAddressProvider Bluetooth address of the service
provider .
134 */
135 @WebMethod
136 // this method should only be called by the provider
137 public ConnectInfo setupConnectionProvider(String providerName, String
BTAddressClient , String BTAddressProvider, int encryptionMode) {
138 System .out.println ("running provider method...");
139 DBMediator db = new DBMediator () ;
140 int TimeOut = Integer.parselnt (System.getProperty ("timeout"));
141
142 // check if it is a wvalid provider
143 if (!db.validProvider (providerName, BTAddressProvider)) {
144 ConnectInfo info = mew ConnectInfo ();
145 info.setBTProviderAddress (BTAddressProvider) ;
146 info.setBTClientAddress (BT AddressClient) ;
147 info.setSucces (Status.PROVIDERNOTFOUND) ;
148 info.setErrorCode("No such provider in Database");
149 return info;
150 1
151
152 // look/wait for a connection record in Connections table ,
and match it when found (with timeout)
153 ConnectInfo info = new ConnectInfo ();
154 info.setSucces (Status . CONNECTIONNOTAVAILABLE) ;
155 info.setErrorCode("No response from other party");
156 info.setBTClientAddress (BT AddressClient);
157 info.setBTProviderAddress (BTAddressProvider) ;
158 int counter = 0;
159 while (counter < TimeOut) {
160 if (db.isRecord (BTAddressClient, BTAddressProvider)) {
161 System .out.println("record found for provider: "4
providerName + " " 4+ BTAddressClient + " " +
BTAddressProvider) ;
162 // get the encryption mode, and apply encryption
policy
163 int encMode = EncryptionMode.INCOMPATIBLE;
164 try {
165 encMode = db.getEncryptionMode (BTAddressClient ,
BTAddressProvider) ;
166 } catch (DatabaseErrorException ex)
167 info.setSucces (Status . CONNECTIONNOTAVAILABLE) ;
168 info.setErrorCode("Internal database error");
169 break ;
170
171 encMode = this .getEncryptionMode (encMode, encryptionMode) ;
172 // if the encryption modes are incompatible return an
eETTOT
173 if (encMode = EncryptionMode.INCOMPATIBLE) {
174 info.setSucces (Status .INCOMPATIBLEENCRYPTIONMODES) ;
175 info.setEncryptionMode(EncryptionMode.INCOMPATIBLE) ;
176 info.setErrorCode("The encryption modes were
incompatible.");
177 try {
178 db.writeMatch (BT AddressClient , BTAddressProvider, "
", encMode) ;
179 } catch (DatabaseErrorException ex) {
180
181 i
182 break ;
183 B
184 // generate encryption key, and write match to db
185 Encryption enc = new Encryption () ;
186 String key = enc.getEncryptionKey () ;
187 String wsdlVersion = "";

Page 129 of 139

.1 Mediator Web Service

188
189
190

191

192

193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

209
210

211
212
213

214
215
216
217
218
219
220
221

223
224
225
226

227
228
229

230
231

232
233

234
235
236
237

238
239
240
241
242
243

244
245
246
247
248
249
250
251
252
253
254
255
256
257

int keyTimeout = 0;
try {
db.writeMatch (BT AddressClient, BTAddressProvider, key,
encMode) ;

wsdlVersion = db.getWsdlVersion (providerName,
BTAddressProvider) ;

keyTimeout = db.getKeyTimeout (providerName,
BTAddressProvider) ;

System .out . println ("match written for provider: "4
providerName + " " 4+ BTAddressClient + " " +
BTAddressProvider) ;

} catch (DatabaseErrorException ex) {

info.setSucces (Status . CONNECTIONNOTAVAILABLE) ;

info.setEncKey("");

info.setErrorCode("Internal database problem");

break ;

}

info.setEncKey(key) ;

info.setEncryptionMode(encMode) ;

info.setSucces (Status .CONNECTIONNOTAVAILABLE) ;

info.setWsdlVersion(wsdlVersion) ;

info.setKeyTimeout(keyTimeout) ;

info.setErrorCode("No errors");

break ;

} else {
// try sleeping to wait for the client to write a
connection record

try {

System .out . println ("sleeping: "4 providerName + " " +
BTAddressClient + " " 4+ BTAddressProvider) ;
Random rand = new Random(System.currentTimeMillis());
// random number between 2000 and 4000
long sleeplnterval = ((Math.abs (rand.nextLong())) %
2000) + 2000;

Thread . sleep (sleepInterval);

} catch (InterruptedException ex) {
continue ;

}

}

counter—+4+4;

// return connection information
return info;

}

/* %

* Service providers can call this web method to wupdate the WSDL
version

* of wsdl files for a particular service.

* @param providerName Name of the service.

* @param providerBTAddress Bluetooth address of the service
provider .

* @param version new version of the wsdl file .

* @param adminPassword the administrative password required to
perform wupdates for

* this dervice provider .

* @return returns an integer which correspondes to wvalues
defined in

* interface ’'Status.java’

*/

@WebMethod

public int updateWSDL(String providerName, String providerBTAddress ,
String version , String adminPassword) {
// try to wupdate the wsdl version
System .out . println ("running update method...");

int retur = Status.ERROR;
DBMediator db = new DBMediator () ;

if (db.checkPassword (providerName, providerBTAddress , adminPassword
)) A

try {
db.updateWSDL (providerName, providerBTAddress , version);
retur = Status. WSDLUPDATESUCCESSFUL;

} catch (DatabaseErrorException ex) {
retur = Status.ERROR;

} else {
retur = Status. WRONGPASSWORDORPROVIDERNAME;
¥

return retur;

Page 130 of 139

Chapter : Project Code Samples

258 /* This method is wused internally. It implements the encryption
policy logic
259 * @return returns an integer that signal the encryption mode,
defined in

260 * the FEncryptionMode . java interface.

261 */

262 private int getEncryptionMode (int clientFlag , int providerFlag) {

263 if (clientFlag == EncryptionMode.ONN && providerFlag ==
EncryptionMode.ONN)

264 return EncryptionMode.ONN;

265 else if (clientFlag = EncryptionMode.OFF && providerFlag ——
EncryptionMode.OFF)

266 return EncryptionMode.OFF;

267 else if (clientFlag = EncryptionMode.ONN && providerFlag ——
EncryptionMode.OFF)

268 return EncryptionMode.INCOMPATIBLE;

269 else if (clientFlag = EncryptionMode.OFF && providerFlag ——
EncryptionMode.ONN)

270 return EncryptionMode.INCOMPATIBLE;

271 else if (clientFlag == EncryptionMode.OPTIONAL && providerFlag ==
EncryptionMode.OPTIONAL)

272 return EncryptionMode.OFF;

273 else if (clientFlag == EncryptionMode.OPTIONAL && providerFlag ==
EncryptionMode.OFF)

274 return EncryptionMode.OFF;

275 else if (clientFlag == EncryptionMode.OFF && providerFlag ==
EncryptionMode.OPTIONAL)

276 return EncryptionMode.OFF;

277 else if (clientFlag — EncryptionMode.OPTIONAL && providerFlag ——
EncryptionMode.ONN)

278 return EncryptionMode.ONN;

279 else if (clientFlag = EncryptionMode.ONN && providerFlag ——
EncryptionMode.OPTIONAL)

280 return EncryptionMode.ONN;

281

282 return EncryptionMode.INCOMPATIBLE;

283 }

284}

Listing 1: Mediator.java: Implementation of the mediator web service.

.2 Search Unit

The following listing shows our implementation of a Bluetooth module that
is used for searching for Bluetooth services on nearby Bluetooth devices. The
search unit is optimized for limiting search time by using different modes of
operation and white- and blacklists for devices (see section 8.1.2).

/*

* SearchUnit . java

*

* Created on March 19, 2007, 2:14 PM
*

*/

00~ OOt WK =

9 package d619a.client .bridge.bluetooth .searchunit;

11 import d619a.client.bridge. bluetooth .exceptions. BTDisabledException;
12 import d619a.client.bridge. bluetooth .test.DebugLogger;
13 import java.io.lIOException;

14 import java.util.Date;

15 import javax.bluetooth.BluetoothStateException ;

16 import javax.bluetooth.DataElement ;

17 import javax.bluetooth . DeviceClass;

18 import javax.bluetooth . DiscoveryAgent;

19 import javax.bluetooth . DiscoveryListener;

20 import javax.bluetooth . LocalDevice;

21 import javax.bluetooth . RemoteDevice;

22 import javax.bluetooth . ServiceRecord ;

23 import javax .bluetooth UUID;

24
25 /®
26 * This class implements functionality for discovering bluetooth

devices

Page 131 of 139

.2 Search Unit

27
28

29
30

31

33

35

105

107

* and scan for the awvailability of services with a specified UUID.
* Once started , the object of this class does the discovery all by
itself
* and maintains a ProviderList which contains all the devices found
* in the wvicinity that provide one or several service—instances we
where
* looking for.
* Notification for changes in that list are realized through
* the SearchUnitCallback interface.
* @author nikko , jmr
*/
public class SearchUnit extends Thread implements DiscoveryListener {
private static int SU MODE IDLE = 1;
private static int SU MODE INTERACTION — 0;
private static int SU MODE TERMINATED = —1;
private static int ATTR SERVICENAME = 0x0100 ;
private static int ATTR SERVICERECORDHANDLE = 0x0000 ;
private static int ATTR_ SERVICECLASSIDLIST = 0x0001 ;
private static int AT"T‘R:PRO’TOCOLI')F]SCRIPTORLIST = 0x0004 ;
private UUID[] uuid;

//cache

private
private
private LocalDevice
ProviderList
DeviceList

private
private

private int

for the
private
private
private

private

int

//properties
private
private
private

int []
boolean

ServiceRecord []
serviceDiscoTransID ;
RemoteDevice
boolean blIsScanning;

SearchUnitCallback parent;
DiscoveryAgent discoveryAgent;

localDevice;

myProviderList ;

myDeviceList = new DeviceList () ;

currentMode = SU_MODE_IDLE;

ServiceSearch

serviceRecordCache;

serviceDiscoCurrentDevice;

boolean prop_ monitorReachability = true;
prop_filterDeviceClasses =
prop_filterServiceDuplicatesOnSameDevice =

null;
false ;

J/*
* Creates a new instance of SearchUn:it
* After creation , start the Thread with the start () method.
* Switch between 1dle —mode and interaction —mode with
* setlnteractionMode () and setldleMode ().
* @param wuuid the thread will search for services having this wuuid
* @param parent the receiver of callbacks when services are found.
* receiver must implement 'SearchUnitCallback’ interface.
*/
public SearchUnit (UUID uuid, SearchUnitCallback parent) {
this .uuid = new UUID|[] {uuid};
this .parent = parent;
this . myProviderList = new ProviderList (parent);
}
/* x
* terminate the SearchUnit—Thread.
* This will stop all processes. Reinvocation ts done with start()
*/
public void terminateSearch () {

currentMode = SU MODE TERMINATED ;
this .discoveryAgent.cancellnquiry (this);

this .discoveryAgent.cancelServiceSearch (this.

}

serviceDiscoTransID) ;

/®

* Starts the Thread
*/

public void run(){

while (currentMode
if (currentMode
try {

= SU_MODE_TERMINATED) {

SU_MODE_IDLE) {

//check WHITE elements , if they still are in the wvicinity
surveyKnownDevices () ;

//now, discover new devices in the wvicinity

this . startInquiry ();

} catch (BTDisabledException ex) {

can 't

//we

search .

throw

an exception , so we just terminate this

Page 132 of 139

Chapter : Project Code Samples

108 this . terminateSearch () ;

109 }

110

111 //wait for the discovery to complete

112 waitWhileScanning () ;

113

114 try {

115 //scan all UNDECIDED devices from the DevicelList for
services

116 //UNDECIDED are all those devices, that have just been
discovered .

117 //they are neither black nor white yet.

118 surveyUndecidedDevices() ;

119 } catch (BTDisabledException ex) {

120 //we can 't throw an ezception , so we just terminate this
search .

121 this . terminateSearch () ;

122 1

123

124 } else if(currentMode == SU MODE_ INTERACTION) {

125 try { N N

126

127 //if the mobile properties allows it, monitor WHITE devices

128 //—> check WHITE elements , if they still are in the
vicinity

129 //update ProviderList (remove those without signal)

130 surveyKnownDevices () ;

131 } catch (BTDisabledException ex) {

132 ex.printStackTrace () ;

133 1

134

135

136 1

137 1

138

139 }//END run

140

141 /* %

142 * get Instance to LocalDevice .

143 * If no Device is available , it ’s certainly because bluetooth

144 * 18 mnot enabled on the phone. We throw an exception .

145 *

146 * @throws d619a.client . bridge . bluetooth . exceptions .

BTDisabledExzception

147 */

148 private void getLocalDevice () throws BTDisabledException {

149 getLocalDevice (false);

150 1

151

152 o

153 * get Instance to LocalDevice .

154 * If no Device ts available , 1t ’s certainly because bluetooth

155 * 18 mnot enabled on the phone. We throw an exception .

156 * @param forcenew forces the method to retrieve a new instance of

the local device
157 * @throws d619a.client . bridge . bluetooth . exceptions .
BTDisabledEzception

158 */

159 private void getLocalDevice (boolean forcenew) throws
BTDisabledException {

160 try {

161 if (forcenew || localDevice == null)

162 localDevice = LocalDevice.getLocalDevice () ;

163 if (forcenew || discoveryAgent —— null)

164 discoveryAgent = localDevice.getDiscoveryAgent();

165 } catch (BluetoothStateException ex) {

166 //the only reason that makes it impossible to get the

localDevice
167 //and get a DiscoveryAgent , 1s that the Bluetooth Device 1is
disabled

168 //in the mobile phone. So we throw an ezception !!

169 throw (BTDisabledException) ex;

170 }

171 1

172

173

174

175 /% x

176 * Start to inquiry the wvicinity for bluetooth devices.

177 *

178 * @throws d619a.client.bridge.bluetooth.exzceptions.
BTDisabledExzception

179 */

180 private void startInquiry () throws BTDisabledException{

Page 133 of 139

.2 Search Unit

181
182
183
184
185
186
187

199
200

237
238
239

241

254

getLocalDevice () ;

try {

discoveryAgent.startInquiry (DiscoveryAgent . GIAC,

setlsScanning (true);
} catch (BluetoothStateException
// 1 assume fail on

ex) {

here we the same

throw (BTDisabledException) ex;
}
J/*
* Stop the Inquiry. (aka cancel)
*/
private void stopInquiry (){

if (discoveryAgent != null)
discoveryAgent.cancellnquiry (this);

setIsScanning (false);

}
VAx

* stop an
*/
private stopServiceSearch (){
if (discoveryAgent != null)
discoveryAgent.cancelServiceSearch (this

ongoing servicesearch

void

}

J/*
* set the SearchUnit to IdleMode.
* In IdleMode, the SearchUnit does an
* Devices and their services. This mode

* only available , if no connection is
*/
public void setldleMode(){

stopServiceSearch () ;
stopInqguiry () ;
currentMode = SU_MODE_IDLE;

echaustive

this);

cause as in getLocalDevice

.serviceDiscoTransID);

search for new

is on most mobilephones

established .

/*
* set the SearchUnit to InteractionMode .
* In interaction —mode, the SearchUnitt only checks frequently if
* already discovered devices still are in the wvicinity.
#* And this only, if the mobilephone is capable of doing this while
* a connection 1i1s established .
*/
public void setlnteractionMode () {
stopServiceSearch () ;
stopInquiry () ;
currentMode = SU_MODE_INTERACTION;
}
/®
* Start the discovery for Serwvices on a specified Device.

device to be disco
bridge . bluetooth .

* @param btDevice The

* @throws d619a.client .
BTDisabledEzception

* Bluetooth disabled

*/

private void startServiceDisco(RemoteDevice
BTDisabledException{

getLocalDevice () ;

//reset the cache
serviceRecordCache = null;
serviceDiscoCurrentDevice = btDevice ;
try {
//start the Search, which is non—bloc
int []

vered on
ezceptions .

btDevice) throws

king

attrSet = { ATTR_SERVICERECORDHANDLE, ATTR_SERVICECLASSIDLIST,

ATTR7PROTOCOLDESERIPT‘ORLIST, ATTR_SERVICENAME };

serviceDiscoTransID =
serviceDiscoCurrentDevice ,this);
setIsScanning (true);

discoveryAgent.searchServices (attrSet ,uuid,

work! :—8

} catch (BluetoothStateException ex) {
//if 1t doesn 't work, it just doesn 't
DebugLogger . getInstance () .addEntry (ex.getMessage ());

this . discoveryAgent.cancelServiceSearch (

this . serviceDiscoTransID);

Page 134 of 139

Chapter

: Project Code Samples

261
262
263
264

265
266

269
270
271
272
273
274
275
276
277
278
279
280
281

283

304
305
306
307
308
309
310
311
312
313
314

315
316
317
318
319
320

321

322

323

/

} catech (Exception e) {
DebuglLogger . getInstance () .addEntry ("disco NULLPOINTER.\n") ;

//a nullpointer exception indicates , that searchServices can
not establish a connection to

//the remote device. remove it from the list then.

//update DeviceList and ProviderList and set current Device to
"OFFLINE"

myDeviceList.changeSignalState(this .serviceDiscoCurrentDevice ,
DeviceList .OFFLINE) ;

myProviderList .removeProvider (serviceDiscoCurrentDevice.
getBluetoothAddress());

this . discoveryAgent.cancelServiceSearch (this .serviceDiscoTransID);

* %

* Callback receiver from the DiscoveryAgent

* @param btDevice The discovered Device

* @param cod Class of Device. —>see Bluetooth Specification

*/

public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {

-~

//if we have enabled the DeviceClass filtering , only
//add current device to the DeviceList, if it belongs to one of

the
//accepted Classes .
//int majorClass = cod.getMajorDeviceClass () ;

//TODO: add DeviceClass filtering capability

//update the DeviceList with the found device

myDeviceList. upsert (btDevice, DeviceList . DEV IS UNDECIDED, DeviceList .
ONLINE) ; -

/* %

* Callback from DiscoveryAgent.

* Services have been discovered by the Discovery initiated with

¥ a certain Transaction ID

* @param transID The Transaction ID that identifies the discovery

* @param serviceRecord the serviceRecord of the remote dewvice that
matches the search.

*/

public void servicesDiscovered (int transID, ServiceRecord []

}
/

serviceRecord) {

//the serviceRecord contains ONLY those services , having the UUID

//we have scanned for.

//we cache those records now, and do any updating ONLY when the
search completes.

//So we update the ProviderList and the DevicelList

//and return to the serviceDiscovery.

if (this . serviceDiscoTransID == transID)

serviceRecordCache = serviceRecord;

* %

* Callback from DiscoveryAgent.

* Search for services has been completed.

* @param transID The Transaction ID which i1dentifies the Search.
* @param respCode the Response code from the DiscoveryAgent which

tells ,
* how the discovery went.
*/
public void serviceSearchCompleted(int transID, int respCode) {
if (transID == this .serviceDiscoTransID){
if (respCode == DiscoveryListener .SERVICE_SEARCH_ DEVICE NOT_ REACHABLE)

//update DeviceList and ProviderList and set current Device
to "OFFLINE'"

myDeviceList.changeSignalState(this .serviceDiscoCurrentDevice ,
DeviceList . OFFLINE) ;

myProviderList .removeProvider(serviceDiscoCurrentDevice.
getBluetoothAddress ());

Debugl.ogger . getInstance () .addEntry ("NOT_REACHABLE: "+
serviceDiscoCurrentDevice.getBluetoothAddress () +"\n");

} else if(respCode == DiscoveryListener .SERVICE SEARCH NO RECORDS) {
//mark the current Device BLACK in the DeviceList
myDeviceList.changeState(this .serviceDiscoCurrentDevice ,

DeviceList .DEV_IS BLACK) ;

Page 135 of 139

.2 Search Unit

329
330
331
332

333
334
335
336
337

338
339

340

341
342
343

379
380
381
382
383
384
385
386
387
388
389
390

391
392
393
394
395
396
397
398

399
400
401
402
403

} else if(respCode == DiscoveryListener SERVICE SEARCH COMPLETED) {
//mark the current Device WHITE in the DeviceList
myDeviceList.changeStates(this .serviceDiscoCurrentDevice ,

DeviceList .DEV_IS WHITE, DevicelList.ONLINE) ;

update the ProviderList with the device AND the services
P
each service in a provider gets its own entry.
£ Y

for (int i = 0; i<this .serviceRecordCache.length;i+4++){

String url = serviceRecordCache[i].getConnectionURL (ServiceRecord
.NOAUTHENTICATE NOENCRYPT, false);
Date lastSeen — new Date() ;

String btAddr = serviceRecordCache|[i].getHostDevice() .
getBluetoothAddress () ;

String sname — (String)serviceRecordCache[i].getAttributeValue (
ATTR_ SERVICENAME) . getValue () ;
String devname — "unnamed";
try {
devname = serviceRecordCache[i].getHostDevice() .

getFriendlyName(false) ;
} catch (IOException ex) {
ex.printStackTrace () ;

Provider newP = new Provider(btAddr, devname, sname, url,
lastSeen) ;

//update/insert the new/updated provider entry

myProviderList . upsert (newP) ;

b
} else {

//either the serviceSearch was terminated, or there was an error.

setIsScanning (false);

/* x

* Callback from DiscoveryAgent.

* The inquiry of the wvicinity for Bluetooth Devices is completed.
* @param discType status of the inquiry.

*/

public void inquiryCompleted (int discType) {

if (discType == DiscoveryListener .INQUIRY COMPLETED)
} else if (discType —— DiscoveryListener .INQUIRY TERMINATED) {
} else if (discType —— DiscoveryListener .INQUIRY ERROR) {

}

setIsScanning (false);

}

J/*

* Check all the devices marked as WHITE in the Devicelist ,
* 1f they still are in the wvicinity .

* If necessary, update the ProviderList.

* @throws d619a.client . bridge. bluetooth . exceptions .

BTDisabledEzception Bluetooth disabled

*/

private void surveyKnownDevices () throws BTDisabledException {
//check WHITE elements , if they still are in the wvicinity
//update ProviderList (remove those without signal)
myDeviceList.setWhitesToUnknownSignalState() ;

//do a service scan on each of the white devices .

//1if a device does not respond, we change its signal state and
//delete the device from the providerlist.

RemoteDevice dev = myDeviceList.getNextWhiteUnknownSignal() ;

while (dev != null){
DebugLogger . getInstance () .addEntry ("disco "+4dev.getBluetoothAddress()
+\n") 5

this .startServiceDisco (dev);

//wait for this discovery to end
waitWhileScanning () ;

//if the SearchUnit mode has terminated, return immediately
//a change to idle —mode changes nothing , because this
surveillance
//1s a optimized pre—step for the idle—mode
if (currentMode == SU MODE TERMINATED)
return ; - -

//get the nezt device.

Page 136 of 139

Chapter

: Project Code Samples

404
405
406
407
408
409
410
411

412
413
414
415
416
417
418
419
420
421
422
423
424

425

426
427
428
429
430
431
432
433
434
435

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

}

dev = myDeviceList.getNextWhiteUnknownSignal() ;

* Do a Service discovery on each Device in the devicelist ,

* that is neither a BLACK nor a WHITE element .

* @throws d619a.client . bridge . bluetooth . exceptions .

BTDisabledExzception Bluetooth disabled
*/

private void surveyUndecidedDevices() throws BTDisabledException{

//do a service scan on each of the white devices .

//if a device does not respond, we change its signal state and
//delete the device from the providerlist.

RemoteDevice dev = myDeviceList.getNextUndecided() ;

while (dev != null){

this . startServiceDisco (dev);

//wait for this discovery to end
waitWhileScanning () ;

//if the SearchUnit mode has changed to interaction , return

immediately

if (currentMode == SU_MODE_INTERACTION || currentMode

SU_MODE_TERMINATED)

return ;

//get the nezt device.
dev = myDeviceList.getNextUndecided() ;

/%
* Wait non—blocking for the inquiry or the service
complete .

*/
private synchronized void waitWhileScanning() {
while (this .currentMode != SU MODE TERMINATED && this .
try { B B
wait () ;

} catch (InterruptedException e) {}

isScanning() ;

}
/%

#* Is a thread actively scanning or tnquirying?
* @return true i1f yes
*/
private boolean isScanning(){
return blsScanning;
}

/* %

scan to

isScanning()) {

* Set true if a thread currently is scanning or inquirying

* @param yesorno yes for true

*/

private synchronized void setlsScanning(boolean yesorno){

this . blIsScanning = yesorno;
notify All () ;
}

Listing 2: SearchUnit.java: Implementation of the client search unit.

Page 137 of 139

Appendix

Source Code

This CD-ROM contains the source code of DynaBlu. The Javadoc docu-
mentation can also be found online at [13].

The software has been tested using the following development tools. We have
included prebuilt versions of the software using these tools on the CD-ROM.
e J2SE 1.6 (For the provider software).
e MIDP 2.0, CLDC 1.1 and JSR 82 (For the client software).
e Netbeans 5.5 IDE.
e Apache Tomcat 5.5.17 (As the application server).
e MySQL Community Server 5.0 (For the mediator component).

e The Avetana Bluetooth J2SE libraries have been tested on an Ubuntu
7.0.4 Linux installation having the BlueZ libraries installed.

139

	I Introduction
	1 Introduction
	2 Preliminary Analysis
	2.1 Existing Systems
	2.1.1 SMS Systems
	2.1.2 Bluetooth Systems

	2.2 Data Connections on Mobile Phones
	2.3 Summary

	3 Problem Statement
	3.1 Authenticated Web Service Invocation over Bluetooth
	3.2 System Description of the DynaBlu Framework
	3.3 System Requirements
	3.4 System Philosophy
	3.5 Project Goals

	II Analysis
	4 Bluetooth
	4.1 Bluetooth
	4.2 Bluetooth Protocol Stack
	4.3 Web Service Invocation over Bluetooth
	4.4 Coping with Mobility
	4.5 Summary

	5 Security
	5.1 Internet
	5.1.1 Authentication
	5.1.2 Encryption

	5.2 Bluetooth
	5.2.1 Authentication
	5.2.2 Encryption

	5.3 Discussion

	6 Development Platform
	6.1 J2ME
	6.1.1 Configurations
	6.1.2 Profiles

	6.2 Web Services
	6.2.1 JSR 172: J2ME Web Services Specification
	6.2.2 kSOAP

	6.3 JSR 82: Java APIs for Bluetooth communication
	6.4 Bluetooth Connectivity with J2SE
	6.5 Dynamic class loading

	III Design
	7 System Design
	8 Bluetooth Communication Bridge
	8.1 Bridge Design
	8.1.1 Provider Bridge
	8.1.2 Client Bridge

	8.2 Bridge Layers
	8.2.1 Integrity Layer
	8.2.2 Security Layer

	9 Client
	9.1 Design
	9.2 Implementation

	10 Provider
	10.1 Design
	10.1.1 Client-Provider Communication

	10.2 Implementation

	11 Mediator
	11.1 Design
	11.2 Implementation

	IV Conclusion
	12 Conclusion
	12.1 Evaluation
	12.2 Conclusion

	13 Perspectives
	13.1 Future Work
	13.2 Service and Operation Mapping
	13.3 HTML interaction
	13.4 Final Remarks

	Literature

	V Appendix
	Project Code Samples
	.1 Mediator Web Service
	.2 Search Unit

	Source Code

