
64

25

9

41

15

3

11 11 11

0%

10%

20%

30%

40%

50%

60%

70%

80%

Agile Middle Not Agile

Agility vs. Job Function

Programmer

System Architect

Manager
25

11

8

29

10 10

2

1

3

0%

10%

20%

30%

40%

50%

60%

70%

Agile Middle Not Agile

Agility vs. Education

Bachelor degree

Master degree

Training course(s)

1

1,5

2

2,5

3

3,5

4

4,5

5

1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990

A
gi

li
ty

 S
co

re

Year of Birth

Agility vs. Age

68

24
18

16

9
7

0%

10%

20%

30%

40%

50%

60%

70%

Agile Middle Non-Agile

IT Professionals

Conflicted

Not Conflicted

27
35

52

9

8

11

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Agile Middle Non-Agile

Customer

Conflicted

Not Conflicted

121185

1

Organizational Structure

Individuals and interactions
over

processes and tools

Measuring Agility
A Quantitative Survey Among IT Professionals

Group: d614a
Rasmus Mortensen
Taregh Jasemian
Thomas Boje Nielsen

Aalborg University
Department of Computer Science, Fredrik Bajers Vej 7E, DK 9220 Aalborg Øst

Title:
Measuring Agility: A quantitative
survey among IT professionals

Research Field:
Information Systems - Systems De-
velopment

Project period:
Software Engineering 10th semester,
Feb. 1st - June 8th, 2007

Project group:
d614a, E3-113

Group members:
Taregh Jasemian
Rasmus Søren K. Mortensen
Thomas Boje-Nielsen

Supervisor:
Andreas Munk - Madsen

Circulation: 6

Page count:

Report: 118

Appendices: xiii

Total: 147

Abstract:
Several studies indicate an increase in the
use of agile methods and practices in the
software industry and that these methods
and practices bring value to development
projects. However, the few quantitative
studies which examine the extent to which
Agile Software Development is actually
used, often rely on practitioners use and
knowledge of specific agile practices and
methods. Without distinguishing true use
from hype-related use, such studies can be
questioned. This report describes how the
Agile Manifesto and its principles are op-
erationalized into an instrument for mea-
suring agility by assessing attitude and
how the instrument is used in a quantita-
tive survey among IT professionals. The
project is based on an iterative survey re-
search model and embody the design, ex-
ecution and analysis of a questionnaire in
order to answer four research questions.
These concern the agility of IT profession-
als, teams, organizations and customers,
and a software projects suitability for Ag-
ile Software Development.
The project concludes that a large part of
Information Technology (IT) professionals
and their teams are agile-minded and that
most software projects are suited for Ag-
ile Software Development. Organisations
and customers on the other hand are not
perceived as equally agile.

Taregh Jasemian

Rasmus S. K. Mortensen

Thomas Boje-Nielsen

Aalborg University, June 8th, 2007.

Preface

This report is completed on the 10th semester in Software Engineering in the period between
Feb. 1st and June 8th 2007 by group d614a at Aalborg University, Department of Computer
Science.

Report Outline

The report documents the master’s thesis Measuring Agility: A quantitative survey among
IT professionals. The report primarily centers around a survey conducted among IT pro-
fessionals in Denmark. It also explores Agile Software Development and operationalizes it
in order to construct an instrument for measuring agility by assessing attitude.

Chapter 1 - Introduction: Introduces the research questions and Agile Software Devel-
opment and presents the research model.

Chapter 2 - Related Research: Describes and presents the findings of a literature re-
view of existing surveys and articles which deal with Agile Software Development and
solutions for measuring agility is examined.

Chapter 3 - Operationalization of Agility: Takes the information drawn from the re-
view and unravels the principles and values behind Agile Software Development so
they can be used to measure agility.

Chapter 4 - Constructing the Instrument In this chapter the results from the opera-
tionalization is used to constructs the agility measurement instrument and question-
naire. The chapter also elaborate on the theory behind reliability and validity and
discusses questionnaire administration.

Chapter 5 - Analysis Concerns the reliability and validity of the survey, presents the
analysis and answers the research questions.

Chapter 6 - Discussion This chapter discusses the answers to the research questions and
reflects on the lessons learned.

Chapter 7 - Conclusion Concludes on the survey, research method and process.

Appendices Presents the resume in Danish and the questionnaire in its entirety and finally
an article published in the June edition of the magazine ProsIT.

Acknowledgments

In relation to this project we would like to give thanks to our project supervisor, Andreas
Munk-Madsen, who guided us during the project and Ivan Aaen and Clive Sanford for their
assistance in the questionnaire design process. Also special thanks to PROSA, IDA, IKT-
Forum, Teknologisk Institut and Rambol for their help with distributing the questionnaires.
Finally we would like to give thanks to the persons who helped test the questionnaire and
all the respondents who participated in the survey.

Contents

1 Introduction 1

1.1 Choice of Subject . 1

1.2 Research Questions . 3

1.3 Agile Software Development . 3

1.4 Research Method . 5

1.5 Clarification of Concepts . 11

2 Related Research 15

2.1 Literature Search . 15

2.2 Methods and Practices . 18

2.3 Values and Principles . 23

2.4 Project Context Factors . 28

2.5 Related Research Findings . 31

3 Operationalization of Agility 33

3.1 Literature Review of the Agile Manifesto Authors 33

3.2 The 12 Principles . 36

3.3 Seven Measurable Areas of Agility . 53

4 Questionnaire Design and Administration 59

4.1 Design Process . 59

4.2 Validity . 64

4.3 Reliability . 66

6 CONTENTS

4.4 Instrument for Measuring Agility . 68

4.5 Context Information . 77

5 Analysis 85

5.1 Theory . 85

5.2 Validity and Reliability . 94

5.3 Adjustments of the Measurement Instrument 99

5.4 Answering the Research Questions . 103

6 Discussion 115

6.1 Operationalizing Agility . 115

6.2 Questionnaire Design . 116

7 Conclusion 117

List of Figures 122

List of Acronyms 123

References 127

Appendices i

A Resume i

B Questionnaire iii

C Agil Forvirring ix

C.1 Studerendes Kendskab til Agil Softwareudvikling ix

C.2 Agil Softwareudvikling . x

C.3 Hvad Kan Man S̊a Bruge Det Til? . xiii

1Introduction

This chapter concerns the choice of subject and motivation behind the research. Next,
the research questions are presented, basic concepts are clarified and the applied research
method is introduced.

1.1 Choice of Subject

Agile Software Development is one of today’s hot topics within the software community.
As a software development methodology its ideas and elements are debated heavily among
practitioners, methodologists and researchers, with advocates on each side. The reason for
its (un)popularity is partly because it breaks with the tradition of controlling and planning
everything through process and instead centers on people.

1.1.1 Motivation

Since the term ”Agile Software Development” was established in 2001, the interest in the
methodology has been increasing as Figure 1.1 illustrates.

0

50

100

150

200

250

2001 2002 2003 2004 2005 2006

A
g
il
e

A
rt

ic
le

s

Publication Year

Association for Computing
Machinery (ACM)

0

10

20

30

40

50

60

70

80

2001 2002 2003 2004 2005 2006

A
g
il
e

A
rt

ic
le

s

Publication Year

Web of Science (WOS)

Figure 1.1: The increase of agile articles published in the years between 2001 and 2006,
found on two online journal databases.

2 Introduction

The figure shows the increasing number of articles published each year since 2001 on two
journal databases and containing the keywords ”Agile”, ”Software” and ”Development” in
either the title, abstract or keyword list of the article.

A study of over 23000 software projects, done by the Standish Group in 1998, listed the
most important factors leading to software project success [37]. The top of the list includes
several factors which focus on people aspects in software development such as Customer
involvement and Executive support. Agile Software Development is considered a very people-
centric methodology as it emphasizes the need for collaboration and communication. It also
specifically addresses a number of the factors on the Standish success-criteria list: Customer
involvement, Small milestones, etc. In addition, many research studies across the world have
shown that the use of Agile Software Development has indeed had a positive impact on
software projects. This is for instance seen in the form of added business value, lower defect
rates and decreased time-to-market [26] [14] [36]. Given that value in the agile practices
and ideas exists, the subject is an important and interesting research field within today’s
software community.

Despite the interest and strong indication of value in the agile approach, there has not been
any research on the current state of Agile Software Development in Denmark. A few studies
have been conducted in other parts of Europe and the United States, all of which show an
increase in the knowledge and use of agile practices and ideas [31] [36] [14].

1.1.2 Focus

This research project focuses on what Agile Software Development is and what it means
to be agile. Highsmith [4] states that it is not merely a methodology but uses the word
”Ecosystem” to communicate how Agile Software Development involves the entire organi-
zation and its surroundings. As the agile approach also brush off many of the traditional
ideas of software development, it is clearly a subject where opposing values and interests of
organizations, teams, developers and customers can appear. Williams and Cockburn [28]
note that the power structure differs from organization to organization. In some organi-
zations, developers might take many key decisions, including business related, while the
customer is more reluctant to participate. In others, control might be valued and man-
agers would be expected to exercise their control. As Agile Software Development among
other things involves a spread of decision making authority, its ideas would clearly relate
differently to different types of organizations, teams, developers and customers.

Boehm and Turner [15] explain that project characteristics matter when discussing the
applicability of agile and plan-driven methods. While some projects may receive benefits
by using agile ideas and practices, other projects would experience the opposite and hence
require a more planned approach. They state that an agile home-ground exists for Agile
Software Development and a plan-driven home-ground exists for plan-driven methodologies.

1.2 Research Questions 3

1.2 Research Questions

Based on our motivation for and focus in the subject, four research questions are formulated:

• How agile are IT professionals?

• Is there a difference in the degree of agility of IT professionals and the agility of their
team, organization and customer?

• Is there a correlation between IT professionals’ agility and their characteristics, i.e.
their age, job function, experience and education?

• Is software projects’ context suited for Agile Software Development?

The above-mentioned questions are answered in this report through a quantitative research
survey among IT professionals in Denmark.

1.3 Agile Software Development

The term ”Agile Software Development” was coined in 2001 when 17 people, now known as
the authors of the Agile Manifesto, met at a ski-resort in Snowbird, Utah.

A predecessor to Agile Software Development and a central part of agile methods is the
Iterative and Incremental Development (IID) approach. The following section looks at
some examples on IID projects through the years as described by Larman [8].

1.3.1 Iterative and Incremental Development

In the early days of software development no real development model existed, except a code
and fix approach. Later on the plan-driven or waterfall model was created, which would
dominate the approach to software development from the 1970’s and onward. The waterfall
model in essence builds on a sequential series of phases, such as requirements analysis,
design, implementation, and testing. It relies on documentation of the entire system before
any code is written and does not allow for iterations. As a contrast to this IID relies on
incremental builds along the lifespan of a project. In many ways IID is a precursor to what
we today call agile methods and consists of e.g. the evolutionary and spiral models. [8]

In his book, Agile and Iterative Development [8], Larman unravels the history of IID by
examining a number of examples on IID projects. It was first used as a method for developing
software on NASA’s Project Mercury from 1961-63, where some of the personnel later seeded
the Federal Software Devision (FSD) at IBM. One of the first major projects for FSD was
the development of a life critical system for the USA Trident submarine in 1972, where IID
was noted as one of the main success factors. Though examples of such projects continue
well into the 1980’s, the waterfall model was still the model of choice in the software industry.
[8]

4 Introduction

In the early 1980’s an official Department of Defence (DoD) standard for development was
released because of a disturbing amount of software project failures. The standard named
DOD-STD-2167 build upon the waterfall model. The shortcomings of this was soon clear
as the standard was updated in the late 1980’s to include a more IID friendly approach.
However, the new standard 2167A still had the single step diagrams of the waterfall model
and still relied on a document-driven approach. This led to a further update of the official
DoD development standard called MIL-STD-498 in 1994 and DoD 5000.1 in 2000, which
specifically describes the evolutionary and spiral models. However the 2167 and 2167A
standards have had a great deal of influence over other standards developed outside the US,
which still to this day rely on the waterfall model and a document-centric approach. [8]

1.3.2 Lightweight Methods

Some software development practitioners were dissatisfied with the burden of documenting
everything in the smallest detail and the inflexibility of the development process. They
felt that the software development methods available put too much emphasis on process as
opposed to people and product [8]. This lead to the creation of a new breed of software
development methods, dubbed ”lightweight methods” because of their simple approach to
development. These methods included eXtreme Programming (XP) and Scrum, whose
straightforward concepts of iterative planning and development, coupled with only a few
simple guidelines or practices, signaled a shift away from the heavyweight methodologies.
XP for example consists of only 12 practices to follow. The lightweight methods sought to
put people in the center of development, by strengthening the contact between developers
and customers, and by acknowledging that developers were the most important asset to any
software project. However, the methods and practices was often criticized for encouraging
cowboy coding, and just for people who wanted an excuse to start coding and not bother with
design and documentation. Nevertheless, the lightweight methods provided the software
community with a formalized alternative to the heavyweight methods.

1.3.3 The Agile Manifesto

To create a common set of values and principles that span over the different lightweight de-
velopment methods and thus bringing these together, a number of lightweight methodology
practitioners met at Snowbird, Utah. The view shared among the participants, was that
important ideas and approaches to software development ”...had been stifled and not been
treated seriously enough, particularly by people interested in software processes.” [34].

The meeting gave rise to a number of important items concerning Agile Software Develop-
ment:

• A Manifesto for Agile Software Development.

• The creation of 12 agile principles.

• The founding of The Agile Alliance.

1.4 Research Method 5

• The umbrella name ”Agile” for all the lightweight methods, following the Agile Man-
ifesto values and the 12 agile principles.

Contrary to the many methods and practices that focus on different aspects of Agile Software
Development, the Agile Manifesto and the 12 principles tries to define the entire field of
Agile Software Development. Together they describe the values and principles behind its
philosophy and what methods and practices must achieve to be considered agile.

The Manifesto states:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.[33]

Besides the four valued statements, it is important to notice the use of the word ”uncovering”
in the first sentence. As explained by the authors, the word ”uncovering” illustrates that
the ideas that Agile Software Development builds on, are neither new nor should they be
seen as the silver bullet to software development [29]. Furthermore, the last sentence is
important as it clearly states that Agile Software Development does not abandon the items
on the right, but simply values the items on the left more.

The 12 agile principles that initially was developed at the meeting and have evolved since,
are examined and discussed in more detail in Chapter 3.

1.4 Research Method

The applied research method in this project is survey research, where a questionnaire is
used as a data collection tool. Survey research is one of the most important quantitative
research methods used within in social science [41]. Therefore disciplines and techniques
within the social science field are applied to design our research method. This involves
research disciplines and techniques explained by Kumar in Research Methodology [6] and
Trochim on Web Center for Social Science Research Methods [41].

This section explains the overall research method used to answer the research questions
and describes the distribution of the 9th and 10th semester activities, which together have
resulted in this report.

6 Introduction

1.4.1 Research Process Model

Formulating a

research problem

Writing a

research report

Processing data

Collecting data

Writing a research

proposal

Selecting Sample

Constructing an

instrument

for data collection

Conceptualising

a research design

Formulating four

research questions

Constructing the

instrument and

questionnaire

Collecting data using

a questionnaire

Answering the

research questions

Discussing and

communicating

the findings

Kumar’s Generic

Research Process Model

Our Research

Process Model

Gathering IT

professionals

as respondents

Benchmarking

and evaluating the

instrument to

measure agility

Developing a

conceptual model
Literature

review

Developing

a code

book

Editing of

data

Field

test of The

research

tool

Coding

Iterative

Structured

Survey

research

theory

LR of

related

research

LR of

agile

authors

Figure 1.2: Kumar’s generic process model compared with our research process model.

Kumar notes that research methodologies may vary in their substance and content, but that
their broad approach to inquiry is similar [6]. He proposes an eight staged generic research
process model, which can be applied to a number of disciplines within social science. Kumar
emphasizes that it is not strictly necessary to follow the model in the proposed sequence.
Thus it is used as a guideline and as inspiration for the development of our own research

1.4 Research Method 7

model. In Figure 1.2 both models are paired with each other for comparison.

Kumar’s generic model is very sequential as each step is an operational task that needs to
be followed in order to conduct a research. However, some iterative measures are introduced
into the model by the intermediary steps represented by the circles. E.g. the intermediary
step ”Field test of research tool” indicates that first a prototype of the instrument is con-
structed, then a sample is selected and data is collected after which step 3 is visited again
in order to tune the instrument and so forth.

Our research process model consists of eight steps where most reflect the steps proposed
by Kumar. Though our process is much more iterative than Kumar’s generic model, the
term ”step” is still used to describe the activities. The first five steps are not carried out
in a sequential order but done in parallel. The point of no return from which the steps
are carried out sequentially is when the data from respondents are collected and processed.
In addition, step five in Kumar’s model, Writing a research proposal, concerns writing a
proposal for the study in order to have it approved by committees, which is not necessary
in this project. Each of the steps in our model will now be explained

Step One – Formulating Four Research Questions

The first step in the research process model involves acquiring knowledge of the research
problem domain and formulation of the four research questions. In order to establish reason-
able and valid research questions, existing research on Agile Software Development need to
be examined. This is indicated by the intermediary circle activity of literature review(LR)
of related research. This activity also takes place in step two and illustrates how the dif-
ferent activities involved in step one and two progress iteratively. The literature found and
reviewed helps clarify the problem domain, which again assists in finding more literature of
increasing relevance.

Step Two – Developing a Conceptual Model

The second step involves a review of existing literature and the development of a conceptual
model of the 9th and 10th semester activities. In this step, existing research is examined in
order to draw inspiration from related studies on applied methods and to establish knowledge
on research designs. This is illustrated by the intermediary circle activity of literature review
of related research. To develop a conceptual model we have to look at theory behind survey
research. The survey theory is also used in other steps as illustrated in the model. The
output of this step is the conceptual model seen in Figure 1.3.

Step three – Constructing the Instrument and Questionnaire

The third step involves the construction of an instrument to measure agility and the design of
the questionnaire which uses the instrument. The instrument should measure the agility of
four different perspectives; IT professionals, teams, organizations and customers. The first
perspective, i.e the agility of IT professionals, is the primary objective of the instrument and

8 Introduction

therefore more attention should be paid to this than the other three perspectives. The con-
struction of the instrument requires a thorough examination of Agile Software Development
in order to establish ample knowledge for operationalization of agility. The questionnaire
implements the measurement instrument and must be designed so that additional and suf-
ficient data for answering the research questions can be collected and the results can be
validated. Inspiration from related survey reports and articles assists in the design of the
questionnaire questions. Boehm and Turners five critical agility and plan-driven factors [15]
are transformed into questionnaire questions in order to answer the fourth research ques-
tion. The design of the questionnaire also involves the application of known questionnaire
design techniques described by Trochim [41] and Kumar [6]. The needed information and
knowledge to construct an instrument, a literature review of the Agile Manifesto authors are
conducted. Besides that information from the survey research theory is used to construct
and design the questionnaire. This is illustrated by the two intermediary circle activities
connected to the this step.

Step Four – Gathering IT Professionals as Respondents

Step four is crucial in order to answer the research questions. Lack of respondents will
result in an insufficient amount of data to draw valid conclusions. The different abilities of
questionnaire administration approaches as described by Kumar [6] are examined and the
most appropriate is selected. A satisfying sample of respondents must be established, either
through assistance from external organizations and companies or by contacting respondents
directly on e.g. conferences or networks. Step six in our model requires that two different
samples are set up. The first sample can be described as the main sample and should
represent the field of IT professionals as closely as possible. The second sample should
consist of respondents who can be considered to be agile, as this sample is used to benchmark
and evaluate the instrument. To address the issue of sample and gathering respondents
the information from survey research theory is used, hence the intermediary circle that is
connected to this step.

Step Five – Collecting Data Using a Questionnaire

Step five constitutes the point of no return. When the questionnaire, containing the finished
instrument for measuring agility, is constructed and the two samples of respondents are
established, the questionnaire is distributed and data is collected. Again information from
the survey research is used in this step.

Step Six – Benchmarking and Evaluating The Instrument to Measure Agility

In the sixth step, data collected from the sample of agile respondents is used for bench-
marking. The benchmark identifies a cutoff point for agility and is also used to evaluate
the reliability of the instrument. When the the cutoff point for agility is identified it is used
when processing the data for the main sample of respondents and answering the research
questions.

1.4 Research Method 9

Step Seven – Answering the research questions

Step seven in the model involves processing and analysis of the collected data in order to
answer the research questions. As electronic tools are used for data collection, the interme-
diary steps Developing a code book and Coding presented in Kumar model are not followed.
However, the data set is edited according to the procedures described by Landau et. al. [7].
The edited data set is then analyzed and its validity is examined. After these preliminary
tasks, the data is subjected to a principle components extraction and analyzed in order to
answer the research questions. In this step information from the survey research method is
also used, as indicated by the intermediary circle activity connected to this step.

Step Eight – Discussing and Communicating The Findings

The last step of Kumar’s process model is writing the research report. It is our intention to
write a large part of the research report in parallel with other the other activities. Therefore
the last step in our model is the discussion of the findings, lessons learned and communica-
tion of results to external partners and stakeholders. This involves an article for PROSIT
describing the relationship between the agile methods, practices, values and principles. This
article is seen in Appendix C.

1.4.2 Conceptual Project Design Model

Figure 1.3 depicts our conceptual model which is based on Peter Checkland’s conceptual
model building as it is described by Rose [27]. Our conceptual model depicts the activities
for both the 9th and 10th semester and the logical dependencies between the activities. An
activity is depicted as a cloud and logical dependencies as arrows between the activities.
The big arrow depicts transformation processes and the big arrow with text inside depicts
an artifact.

10 Introduction

Conduct Preliminary

Interviews

Refine project

goals and focus

Initial interest in the Agile Software

Development philosophy and the values it

brings to a software development project.

Related Research:

- Use-Case articles

- Survey articles

- Agile development textbooks

Write survey

hypotheses

Design pilot

questionnaire

survey Analyze pilot

survey

Develop key

agile concepts

Conduct literature review about agile

Principles and agile authors

Discuss and pinpoint

potential project

themes

Evaluate

activities and

process

Make adjustments

according to the

evaluation

9th Semester

10th Semester

Gather Survey

Respondents

Construct instrument

for measuring agility

Conduct survey

(Main and DAUG)

Analyse and answer

research questions

T
h
e

fr
a
m

ew
o
rk

 o
f
th

e
1
2
 a

g
il
e

p
ri
n
ci

p
le

s

Communicate

findings

1) Master thesis

2) Articles

3) Instrument for measuring agility

Construct

questionnaire

Review related

research literature

Benchmark and

evaluate instrument

for measuring agility

New research questions

that relates to

measuring agility

Figure 1.3: Conceptual model for our research project.

The 9th semester was used to obtain preliminary theoretical knowledge on survey research
and on Agile Software Development. A pilot survey among computer science students at
Aalborg University was conducted in order to achieve skills and experience with survey re-
search. Through the examination of Agile Software Development we developed a framework
for reviewing the 12 agile principles. This framework was used and developed further in the
10th semester.

The 10th semester start with the gathering of respondents, which progresses concurrently
with the review of related literature. Gathering respondents is a slow process where much
of the time is spent waiting for reply from different organizations. Therefore the review of
related literature fits well with this activity. The instrument for measuring agility is embed-
ded within the questionnaire and hence the construction of the questionnaire is depended on

1.5 Clarification of Concepts 11

the instrument. When both are developed and ready and the respondents are gathered the
survey is conducted. The survey is conducted on two different samples. One is the ”main”
sample and the second is the Danish Agile User Group (DAUG) sample of agile respondents.
The DAUG sample is used to benchmark agility and evaluate the measurement instrument
and the benchmark (cutoff point) is used to perform the analysis of the collected ”main
data” and answer the research questions. The results are then communicated in the form
of this report, an instrument for measuring agility and an article.

Dependencies in the model does not universally prohibit iterative development. E.g. parts of
the questionnaire does not depend on the instrument for measuring agility. The dependency
merely illustrates that the questionnaire can not be completed before the instrument is
completed.

1.5 Clarification of Concepts

A number of concepts used in this report can also be found in general software development
literature, but with various meaning. To avoid confusion the concepts are defined here.

1.5.1 Agility

Merriam-Webster [35] defines ”agility” as ”the quality or state of being agile”. Continuing,
Merriam-Webster defines ”agile” as:

1. ”Marked by ready ability to move with quick easy grace <an agile dancer>”

2. ”Having a quick resourceful and adaptable character <an agile mind>”

The definition fits very well with the description of agile methods and the principles of Agile
Software Development. Indeed agile methods should uphold the ability to provide quick
progress and be adaptable. Agility, however, is not only used within software development.
It is also used as a term in manufacturing and management [20]. Here it more or less is used
to refer to the same attributes as defined by Merriam-Webster and have many parallels to
Agile Software Development ideas and thinking. However, to avoid confusion, in this report
the term is strictly used in relation to Agile Software Development.

1.5.2 Methodology

Methodology is build from the Greek word ”methodos”, meaning ”following after” or ”pur-
suit”. The word ”ology” means ”the study of”. In Merriam-Webster [35] ”methodology” is
defined as ”a body of methods, rules, and postulates employed by a discipline.”.

Method and methodology are widely used as synonyms but in this report a distinction is
made. A method is seen as a specific set of actions or steps on how to build software.
Methodology is the study of one or more methods. Thus methodology is seen as a set

12 Introduction

of recommended practices that can encompass several different methods within a specific
paradigm, e.g. agile. This view on method versus methodology entails that the field of
software engineering has many methods but few methodologies. [35]

1.5.3 Method

The word ”method” stems from the Greek word ”methodos” defined by the Merriam-Webster
dictionary [35] as ”a way, technique, or process of or for doing something” [35]. The use of
”method” in this report correlates both to a research method and a software development
method.

A research method is a way of conducting research and collecting empirical data.

In the field of software engineering, a method describes a way of designing, implementing
and testing a software system. The term ”agile method” in software engineering is used in
relation to a specific development method within the Agile Software Development method-
ology, e.g. XP, Scrum, Crystal, etc. In this report an agile method should thus not be
confused with an agile practice, such as pair-programming.

1.5.4 Practice

Merriam-Webster [35] defines the term ”practice” as ”actual performance or application”,
e.g. ”ready to carry out in practice what they advocated in principle”. However, this is not
how we use the term practice.

In this report the term ”agile practices” is used to describe the underlying elements that an
agile method builds on. E.g. XP outlines a number of practices to follow, in order to use
XP as a software development method.

1.5.5 Principle

The term ”principle” is used often in the report and in the researched material. Most
noticeably are the 12 principles of Agile Software Development. The definition found in
Merriam-Webster [35] and used in this report states that a principle is: ”a comprehensive
and fundamental law, doctrine, or assumption”.

Therefore the relation between agile principles and agile practices are that an agile principle
is a fundamental and underlying law or doctrine of Agile Software Development, that agile
practices try to accomplish.

1.5.6 Conceptual Model

In Figure 1.4 the relationship between the different agile concepts used in this report is
illustrated. The figure shows that the agile methods all have the 12 agile principles as a

1.5 Clarification of Concepts 13

common base, and each of the agile methods consist of a number of agile practices.

XP Scrum

Agile

Method

X...

Pair Programming

Planning Game

Test Driven

Development

…

...
Daily Meetings

Backlogs

Sprints

...

The 12 Agile

Principles

#1, #2, #3, …, #12

Practices

Methods

Principles

Figure 1.4: A model showing the relationship between principles, methods, and practices in
the report.

2Related Research

Kumar [6] states that a review of related research is helpful as it brings clarity and focus
to the research problem, broadens ones knowledge base in the research area and improves
the methodology used. In this chapter a review of research related to the subject of Agile
Software Development is conducted. First the search for literature is described and then
the findings are explained. The knowledge obtained through the review will guide the
operationalization of Agile Software Development and assists in developing the measurement
instrument.

2.1 Literature Search

Marzyck et al. [9] explains that the value and importance of a well conducted literature
review cannot be underestimated. Therefore a structured search for related research articles
is conducted using three online journal databases; Web of Science (WOS), Institute of
Electrical and Electronics Engineers (IEEE), and Association for Computing Machinery
(ACM). WOS covers approximately 850 thousand indexed journal articles and has advanced
search tools that can be used to refine search results [39]. ACM has 1.4 million records in
their database [30]. IEEE digital library contains more than 1.2 million documents from
IEEE and IEE journals [32].

The three databases are searched for articles containing words in either the title, abstract or
keyword list, that relate to Agile Software Development and surveys. The search results are
limited to articles within the years spanning from 2001-2007, as the term ”Agile Software
Development” was created in 2001. In addition the search tool on WOS refined the search to
the following computer science subject categories; Theory & Methods, Software Engineering,
and Information Systems.

16 Related Research

2.1.1 Results

In Table 2.1 the search criteria used and the number of hits for each search on each of the
three online journal databases are shown.

Keywords WOS IEEE ACM
”agil?” 461 323 1519
”agil?” AND ”survey?” 11 28 478

Table 2.1: The number of hits for each search criteria on each journal database.

The star (?) is a wildcard, which indicates that the ending of the words agil and survey are
arbitrary. The wildcard is used to represent that words like; ”agile”, ”agility”, ”survey”,
”surveying”, etc. all are accepted keywords.

The first search using the search criteria agil? on the journal databases gives a large number
of hits. To reduce the amount of articles and to find those that related to our research area,
the keyword survey? is added to the search. The keyword survey is selected as it narrows
the hits to articles which used a research method similar to our own. This results in a
manageable amount of articles, for WOS and IEEE, however, there is still too many hits on
ACM (478). The list of articles found on ACM are sorted according to searched keyword
relevance and the first 20 articles are chosen.

The numbers in bold in Table 2.1 and the first 20 articles from ACM are manually browsed
and the most relevant are put aside for later review. Relevant refers to articles which to a
more or less extent operationalize Agile Software Development for use in their study.

2.1.2 The Literature List

After manually browsing the articles that are found on WOS, IEEE, and ACM, the list is
composed of seven articles. In addition to these, relevant articles and survey reports found
during the course of our research and not included in the structured search are added to the
literature list. These items are found through the Google Scholar search tool. The complete
list of articles is seen in Table 2.2.

The list consists of nine articles and three survey reports. The specific objectives of the
articles found and the specific type of research they conduct differs. Eight items on the
literature list relies exclusively on questionnaires to gather data. The primary objectives
in these eight include; identifying benefits and drawbacks of using Agile Software Devel-
opment, identifying the largest barriers for using or adopting Agile Software Development,
and describing how many and who are doing Agile Software Development. The case studies
are mostly concerned with the use of a specific agile method. The objectives of the case
studies are to measure the outcome and adherence to methods and in detail describes how
the specific practices of the method are implemented. One article differs from the rest as it
describes the findings of a workshop, where a group of experts and practitioners discussed

2.1 Literature Search 17

T
it

le
P

u
b
li
sh

er
S
ou

rc
e

T
y
p
e

DataCollection
Method

Methods&
Practices

Principles&
Values

ProjectContext
Factors

F
ie

ld
E

xp
er

ie
nc

es
w

it
h

eX
tr

em
e

P
ro

gr
am

-
m

in
g:

D
ev

el
op

in
g

an
E

m
er

ge
nc

y
R

e-
sp

on
se

Sy
st

em

Jo
ur

na
l

of
M

an
ag

em
en

tI
nf

or
-

m
at

io
n

Sy
st

em
s

W
O

S
A

rt
ic

le
A

ct
io

n
R

es
ea

rc
h,

qu
es

ti
on

na
ir

e
X

X
X

H
ow

A
gi

le
ar

e
In

du
st

ri
al

So
ft

w
ar

e
D

ev
el

-
op

m
en

t
P

ra
ct

ic
es

?
T

he
Jo

ur
na

l
of

Sy
st

em
s

an
d

So
ft

w
ar

e
79

,
E

ls
ev

ie
r

W
O

S
A

rt
ic

le
In

te
rv

ie
w

X
X

In
ve

st
ig

at
in

g
th

e
ex

tr
em

e
pr

og
ra

m
m

in
g

sy
st

em
-

A
n

em
pi

ri
ca

l
st

ud
y

Sp
ri

ng
er

Sc
ie

nc
e

+
B

us
in

es
s

M
ed

ia
W

O
S

A
rt

ic
le

Q
ue

st
io

nn
ai

re
X

X
X

Su
rv

ey
Sa

ys
:

A
gi

le
W

or
ks

in
P

ra
ct

ic
e

D
r.

D
ob

b’
s

Jo
ur

na
l

W
O

S
A

rt
ic

le
Q

ue
st

io
nn

ai
re

X
H

ow
G

oo
d

ar
e

A
gi

le
M

et
ho

ds
?

IE
E

E
So

ft
w

ar
e

IE
E

E
A

rt
ic

le
Q

ue
st

io
nn

ai
re

X
X

P
ro

je
ct

M
an

ag
em

en
t

in
A

gi
le

an
d

P
la

n-
dr

iv
en

C
om

pa
ni

es
IE

E
E

So
ft

w
ar

e
IE

E
E

A
rt

ic
le

Q
ue

st
io

nn
ai

re
X

M
ot

iv
at

io
ns

an
d

M
ea

su
re

m
en

ts
in

an
A

g-
ile

C
as

e
St

ud
y

Jo
ur

na
l

of
Sy

st
em

s
A

rc
hi

te
c-

tu
re

52
,
E

ls
ev

ie
r

A
C

M
A

rt
ic

le
O

bs
er

va
ti

on
,

In
te

rv
ie

w
,

Q
ue

s-
ti

on
na

ir
e

X
X

A
n

E
m

pi
ri

ca
lS

tu
dy

of
Se

le
ct

in
g

So
ft

w
ar

e
D

ev
el

op
m

en
t

L
ife

C
yc

le
M

od
el

s
IO

S
P

re
ss

G
oo

gl
e

Sc
ho

la
r

A
rt

ic
le

Q
ue

st
io

nn
ai

re
X

E
m

pi
ri

ca
l
F
in

di
ng

s
in

A
gi

le
M

et
ho

ds
Sp

ri
ng

er
-V

er
la

g
B

er
lin

H
ei

de
l-

be
rg

G
oo

gl
e

Sc
ho

la
r

A
rt

ic
le

E
xp

er
t

D
is

cu
s-

si
on

G
ro

up
X

X
X

D
ig

it
al

Fo
cu

s
-
A

gi
le

20
06

Su
rv

ey
R

es
ul

ts
D

ig
it

al
Fo

cu
s

G
oo

gl
e

Sc
ho

la
r

Su
rv

ey
R

ep
or

t
Q

ue
st

io
nn

ai
re

X
X

Sh
in

e
T
ec

hn
ol

og
ie

s
A

gi
le

M
et

ho
do

lo
gi

es
Su

rv
ey

R
es

ul
ts

Sh
in

e
T
ec

hn
ol

og
ie

s
G

oo
gl

e
Sc

ho
la

r
Su

rv
ey

R
ep

or
t

Q
ue

st
io

nn
ai

re
X

X

V
er

si
on

O
ne

-
T

he
St

at
e

of
A

gi
le

D
ev

el
op

-
m

en
t

V
er

si
on

O
ne

G
oo

gl
e

Sc
ho

la
r

Su
rv

ey
R

ep
or

t
Q

ue
st

io
nn

ai
re

X
X

T
ab

le
2.

2:
T

he
fin

al
e

lis
t

of
re

vi
ew

ed
ar

ti
cl

es
an

d
su

rv
ey

s.

18 Related Research

Agile Software Development.

The search and the review is done with respect to the needs of the project, where one
objective is to collect inspiration on how to operationalize Agile Software Development,
so that the agility of IT professionals can be measured. Another objective is to identify
important context factors which influence the applicability of agile methods. With this in
mind, the review of the nine articles and three survey reports are done and grouped into
three areas; Methods and Practices, Values and Principles and Project Context Factors.

These three areas are used as a framework to categorize each article’s use and handling of
Agile Software Development. This is shown Table 2.2 and the checkmark indicates what
the different articles and survey reports use and handle Agile Software Development.

2.2 Methods and Practices

The review of the related research indicats that especially survey reports had a tendency
towards defining Agile Software Development on the basis of agile methods and practices.
This section will examine how agile methods and practices are used in related research from
the viewpoint that adherence to agile methods and practices can be used to measure the
agility of IT professionals.

In a survey done by Digital Focus [31], one of the objectives is to find out ”Where agile
development has taken root?”. The question can be seen as two-dimensional. It involves
finding out if Agile Software Development is being used (first dimension) and finding out
what context it is being used in (second dimension). When addressing the first dimension
of the question, i.e. finding out if Agile Software Development is used, respondents are
asked ”Why are you interested in agile software development?”. The question is closed-
ended, meaning that a set of answers are provided for the respondent. Two of these answers
read: ”Adopting/using agile practices for a project” and ”Adopting/using agile practices
companywide”. Positive answers to either of these two are interpreted as confirmed adoption
of Agile Software Development.

The main problem with this assessment is that the use or adoption of a single agile practice
is treated similar to using a full-blown agile method. In Digital Foucs’ survey, respondents
who are trying out (or even thinking about trying out) the Test-first practice of XP, are
put side by side with teams following XP to the letter. There is no distinction between the
two. If the use of practices and methods are considered as indicators for the use of Agile
Software Development, using a few practices is not enough to be considered agile. Also it is
good software development practice to try out different techniques and practice occasionally
to learn about them and to decide weather they work or not. Such behavior have nothing
to do with agile taking root, but a sound software development practice.

2.2.1 Agility and Adherence Metrics

Layman et al. [23] conducts a case study on a project, that goes into a bit more detail than
Digital Focus and similar survey reports, as it attempts to measure adherence to the agile

2.2 Methods and Practices 19

method, XP. However, it still uses the agile practices as described in XP as a basis for,
what it means to do XP and thereby being agile.

For this kind of case study, the researchers have developed a certain framework; The XP-
evaluation framework. The framework contains three groups of metrics for retrieving data;
Context Factors, Adherence Metrics and Outcome Measures. The Context Factors and Out-
come Measures contains metrics for gathering the project context data (type, size, people,
etc.) and project outcome data (defect rate, Lines Of Code (LOC) / developer, etc.) re-
spectively. However, for assessing peoples agility the Adherence Metrics are interesting to
examine. The purpose of these metrics are to ”... to express concretely and comparatively
the extent to which a team follows XP” [24].

The idea of measuring conformance to agile practices or methods in order to say something
about peoples agility is illustrated in Figure 2.1.

Measure

Agility

Using Actual Use

By the Use of

Methods & Practices

Respondent

XP Scrum

Agile

Method

X...

Pair Programming

Planning Game

Test Driven

Development

…

...
Daily Meetings

Backlogs

Sprints

...

The 12 Agile

Principles

#1, #2, #3, …, #12

Practices

Methods

Principles

Applied/

Actual

Figure 2.1: Agility is measured by measuring adherence to practices and methods, i.e. what
people actually is carrying out, is compared to the descriptions of the practices and methods.

The model in Figure 2.1 extends Figure 1.4 with an Applied/Actual layer, which refers to
what respondents are actually doing. By capturing what respondents are actually carrying
out, and comparing this to the descriptions of the applied methods and practices, the level
of conformance between the two can be measured and used as an indicator of agility. XP
is rather nice in this aspect, as it describes 12 practices to follow in order to do XP. The
Adherence Metrics in the XP Evaluation Framework more or less builds on these practices.
Some of the metrics, in the XP Evaluation Framework, are objective and some are subjective,
which will be mentioned in the following.

20 Related Research

Objective Measures

The reliability of objective measures is higher than that of subjective measures as they ignore
transient constructs such as emotional states [9]. However, constructing objective metrics
in order to measure people’s use of certain practices and methods are difficult. Layman et
al. [23] examines the test first practice in XP and defines a number of metrics for measuring
adherence to the practice; code coverage, test run frequency, test class to user story ratio,
etc. Significant problems with these measures are that the data is hard to collect and very
often requires participation from developers. E.g. gathering test run frequency data require
that developers make a timestamp for each test-run executed. A possible solution would be
to automate the gathering of as many metrics data as possible.

In order for a team to adhere to the test first practice, data should not only be collected once
or twice. To ensure that tests are not written and executed in phases, but continuously, it
is necessary to collect data throughout a project. If the metrics data gathering is not fully
automated, this would impose further overhead on developers, as they are burdened with
gathering data in addition to all their project related responsibilities. Such enforcement
would clearly disrupt the value of the collected data.

There exists tools to collect data for objective metrics such as code coverage, however, others
would require the development, implementation and use of new tools. Gathering data for
measuring the test run frequency would likely be possible, whereas an adherence metric such
as test classes to user story ratio is more difficult to automate.

Given that each practice involves a number of metrics, where the data collection is very
difficult to automate and that e.g. XP has 12 practices, the task of fully automating the
metrics data gathering would require a very large and cumbersome setup. Many new tools
would have to be developed and installed in the environment under study. Also respondents
would likely be required to use new tools (e.g. to store user stories along with updates
and changes electronically instead of using hard copy index cards). Even if the obstacles
of defining metrics and automating the data collection is overcome, there still is a problem
with measuring what cannot be measured, e.g. the value of tests. code coverage, test run
frequency, etc. can be useful as they indicate that some level of testing is occurring, however,
they are superficial measures. The percentage of code covered by tests does not indicate
whether the critical parts of the code are tested or if the tests are meaningful at all. Another
example is pair programming. How can the flow and interaction of two people doing pair
programming be measured objectively? There is a big difference between putting-your-
minds-together and to sit at a screen where one is typing code and the other reads comic
books. In order to meaningfully measure such things, subjective measures such as external
reviews or observations are necessary.

Subjective Measures

In the case study carried out by Layman et al. [23], the adherence metrics also include
subjective measures. These are gathered through a questionnaire where team members are
asked to rate their adherence to each of the practices in XP. E.g. What percentage of your
work (design, analysis, coding) was done in pairs? [24]. The validity of this data is thus

2.2 Methods and Practices 21

coupled with the developers’ ability to rate themselves fairly and also on their knowledge
and understanding of the practices they rate their adherence to. The value of such metrics
highly depends on what they are used for. If, e.g. the metrics are used internally in a team
for spotting areas of potential problems with the implementation of XP, the metrics should
do fine. However, for assessing the agility of a development team or measuring a team’s
adherence to XP, it is believed that such metrics are quite vulnerable.

It is crucial that developers do not misinterpret or have different views on what each practice
actually implies. For instance, it is easy to grasp that the test first practice of XP implies
that a developer tests before he begins to code. The practice is nice and simple. However,
the purpose of the practice assumes that each test written is reasonable and that an adequate
number of tests are created. The practice is not followed, if the developer simply writes a
couple of ”naive” tests just as a means to begin writing code. Such behavior could perhaps
be expected by an individual who either disapproves of the practice or do not understand
it thoroughly. The test first practice (as all the practices of XP) calls for a fundamental
belief in and understanding of the practice. If this is not considered when measuring the
adherence to a method, such subjective metrics are pointless.

When examining the results in the case study done by Layman et al. [23], a few things are
interesting especially concerning this aspect of developers understanding of practices and
their ability to rate their adherence to them. One of the more important practices of XP
is having an in-site customer. Kent Beck explains: ”The point of customer involvement is
to reduce wasted effort by putting the people with the needs in direct contact with the people
who can fill those needs.” [2].

By working closely with the customer, developers attempt to understand and clarify require-
ments as the customer can provide quick feedback on the basis of the present system. In the
case study, Layman et al. [23] records that the project has 3 customers, all remotely based.
One is domestic and two are international of which one is overseas and multiple time zones
away. Data for the on-site customer metric is gathered by asking each respondent: ”What
percentage of the time do you get quick interaction with your customers when needed?” [23].
Surprisingly the average score to this question is 70% adherence with a 23.6 deviation. Why
(or how) does this metric score so high 70% with so remotely placed customers? A possible
answer could be that developers, when stating the adherence to the practice, are referring
to their interaction with a customer representative and not the real customer recorded by
Layman et al. [23] . However, the evaluation framework clearly state how the data for the
customer-metric is gathered:

”Record the number of customers (or customer representatives) with which the team inter-
acts. Document if the customer is located on-site, in another city, country, or time zone.
Also document if the customer is from a different culture or uses a different language.” [24].
If this is the case, the customers must either travel a great deal to meet with developers
or other forms of communication must have been used, e.g. phone, e-mail, or instant mes-
saging. Beck, as well as the rest of the Agile Manifesto authors, clearly advocates physical
involvement of customers, customer representatives or users during a project. Anything
other than face-to-face communication is not regarded as an agile approach. Bottom line is,
that there is a large possibility that developers in the case study are interpreting the on-site
customer practice differently then what, according to Beck, is considered agile.

22 Related Research

2.2.2 Room for Interpretation

The difference in developer’s knowledge and understanding of agile practices and methods
is also recorded in a survey research by Reifer [26]. Reifer uses a questionnaire to identify
What agile practices early adopters use? and collects data from 28 companies of which 14
claim that they are using agile methods. However, when it comes to the specific practices
the teams are using and which they consider agile, the list is long and diverse. Generally
the respondents disagreed on what the best agile practices are. In addition, a difference
in the actual form of process and how informal or flexible an agile process should be, are
also recorded. Reifer’s research study shows that respondents agreed that agile development
must be a cyclic process and involve builds and increments done concurrently. In addition
they agreed that agile projects ”must involve collaborative organizations that include partic-
ipation by all stakeholders during development” [26]. However, they disagreed on who the
stakeholders actually are and how involved they should be.

Another problem with using adherence to practices or methods to measure agility is illus-
trated by Poppendieck [11]. She notes the following about principles and practices:

”Principles are underlying truths that don’t change over time or space, while practices are
the application of principles to a particular situation. Practices can and should differ as you
move from one environment to the next, and they also change as a situation evolves.” [11].

But what does adherence to a method or practice actually indicate? This could be a rea-
sonable question to ask. According to Poppendieck [11] it does not mean anything per se.
Adherence to methods or practices does not indicate conformance to the underlying princi-
ples of a methodology. Conversely deviating from a method or practices does not indicate
a disagreement with or inability to carry out the underlying principles of a methodology.
Thus adherence to methods or practices is questionable as a yardstick for agility. It might
be that a team does something a bit different than what an agile practice (on-site customer,
pair programming, etc.) prescribes, and still be considered agile. The agile authors them-
selves and one of the agile principles mentions that, reflection on what is actually carried
out and how things can be optimized is important. Tailoring a method and practices can
not necessarily be seen as wrong or an indication of not being agile.

2.2.3 Metrics Gathering Through a Questionnaire

It may be possible to construct objective metrics that can be used to measure some level of
conformance to practices and methods. However, doing so through a questionnaire is very
difficult. As explained, the gathering of the many objective metrics requires the participation
of the subjects investigated and the development, installation and use of tools continuously
during a project. This is not possible with a questionnaire. Subjective metrics on the other
hand relies on peoples’ knowledge of practices, which leaves a lot of room for interpretation.
Another problem is to identify and weight the different agile practices to measure adherence
to. It is quite likely that using an iterative development approach is more important in order
to be agile then it is to do pair programming. Even if these obstacles could be overcome, the
question still remains whether conformance to methods and practices are a good yardstick
for agility.

2.3 Values and Principles 23

This implies that using adherence to methods and practices in order to measure people’s
agility and relying on developer’s knowledge and correct understanding of these, is very
difficult and problematic through a questionnaire.

2.3 Values and Principles

Values and principles are the core of Agile Software Development, thus the related research is
examined with regard to these. Four out of the nine articles and one of the survey reports,
employ the Agile Manifesto, its values and 12 principles. However, the agile values and
principles are used in different ways in the articles and the survey report. Guntamukkala
et al. [21] use the values and principles to classify three different lifecycle model groups and
place six different software development methods in each group. Lindvall et al. [25] use the
agile values and principles to establish a definition of agile methods. Hansson et al. [22],
Fruhling and De Vreede [18], and the survey report from Shine Technologies [38] all use the
values and principles in order to evaluate agility.

The reviewed articles and the survey report are presented in the following subsections in
the order mentioned above.

2.3.1 Classification of Methods

Guntamukkala et al. [21] conducts a questionnaire survey among 74 project managers and
software developers, to establish a new alternative way of selecting a software development
life cycle model from the perspective of flexibility. Their results show that there are three
naturally occurring development model groups; heavyweight, middleweight and lightweight.
The last group represents agile methods, e.g. XP, Scrum, etc. They describe the characteris-
tics of lightweight models by referring to the values and principles of the Agile Manifesto and
Highsmith [4]. Thus lightweight models are described as supporting the following values:

customer value (focusing on delivering what the customer needs), individual capability (fo-
cusing on individual skills and talent), collaboration (focusing on innovation through group
interaction), and adaptation (focusing on feedback and harnessing change) and minimalism
(focusing on simplicity).

They use these agile values to classify methods like XP, Scrum, etc. into the lightweight
models group. In the questionnaire, respondents are presented with a list of methods/models
and are asked to report the extent to which they would use a given method/model in specific
situations. The results are used to construct a canonical function which assists in selecting
a method appropriate for a given set of circumstance (e.g. requirements are constantly
changing). However, the assumption underlying this approach is that the respondents are
in fact capable of making correct choices regarding which method or model suits different
situations the best. This implies that respondents are familiar enough with all the listed
methods and models (six in total) and that they are skilled enough to make such choices.
Perhaps it would be more appropriate to examine the values and principles underlying
each of the three model groups and provide the respondents with of list of their different

24 Related Research

properties (customer collaboration, requirements specification, etc.). The respondents are
then required to state the extent to which the different properties suits different situations.
Such properties would be clearer for respondents and easier to relate to situations than
methods and models.

2.3.2 Defining Agile Software Development

Reifer [26] conducts a survey among software companies and recommends that prior to
choosing an agile method or agile approach to software development; one should clearly
define what ”agile methods” mean. The Agile Manifesto was established to describe what
agile people should value and which principles they should follow. In an eWorkshop, eighteen
agile and methodology experts gathered to discuss and debate Agile Software Development
[25]. The article presents the working definition of agile methods that the participants
agreed on:

• Iterative (Delivers a full system at the very beginning and then changes the
functionality of each subsystem with each new release.)

• Incremental (The system as specified in the requirements is partitioned into
small subsystems by functionality. New functionality is added with each
new release.

• Self-organizing (The team has the autonomy to organize itself to best com-
plete the work items.)

• Emergent (Technology and requirements are ”allowed” to emerge through
the product development cycle.)

All Agile methods follow the four values and 12 principles of the Agile Manifesto.

Besides referring to the Agile Manifesto, their definition highlights four items which char-
acterizes agile methods. They should be iterative, incremental, and emergent and teams
should be self-organizing. The definition is not discussed or argued more thoroughly in the
article, as to how and why exactly these four characteristics are more expressive of agile
methods than the values and principles in the Agile Manifesto. As a definition it is, however,
not more precise than the Manifesto values and principles.

Larman [8] states the following about defining agile methods: ”It is not possible to exactly
define agile methods, as specific practices vary ... ”. If it was possible to definitively define
agile methods, the Agile Manifesto authors would have created a definition of Agile Software
Development, instead of creating a Manifesto and the supporting principles. Creating such
a definition is not possible, because the agile methods came before the Agile Manifesto, and
the Manifesto is an umbrella that covers the common values and principles within the agile
methods. The closest thing to a definition would be the Agile Manifesto, its values and
principles.

2.3 Values and Principles 25

2.3.3 Evaluating Agility

Fruhling and De Vreede [18] did an action research study on experiences with the implemen-
tation of XP in a web-based distributed information system. The system was an emergency
response center and the objectives of the research study was to investigate how XP could be
applied in a mission critical context, even though theories suggests that agile methods are
not suited for this [15] [19]. Adherence to the XP practices are first assessed by comparing
them to what they have actually done. The agile values in the Agile Manifesto are examined
the same way and the article describes how the project applied to each of the values. E.g.
the first valued statement in the manifesto states: Working Software over Comprehensive
documentation. When addressing this value, Fruhling and De Vreede [18] states:

”Because of the reduced amount of documentation, several benefits to the project
resulted. ... This streamlined the development process. Decisions were made
verbally and the developers acted on them immediately ...”.

They focus a lot on not doing documentation and neglect to mention anything about the
working software part of the statement. How did they handle working software? What
did they mean working software was? Was it an evolutionary prototype? Did the user-
s/customers have any opinion on less documentation and more working software? These
questions are not taken into account. The other three values are handled in the same way,
where emphasis is put on specific items within each valued statement. Employing the agile
values and examining how they apply to their project is a reasonable approach. However,
they do not treat the agile values fairly and sometimes neglect to reflect and relate to them
with regard to their own experience during their project. It is easy to look at a value and
say, this is what the values say and this is what we have done. But this is not enough. One
has to examine the values in more detail to see if the value has been understood correctly.
Here, the 12 agile principles would be very useful, as they describe how the values are sup-
ported and thus provides more detail. So to be able to use the agile values and principles
as a mean of measuring agility, one has to examine the values and principles in detail to
understand them fully.

Hansson et al. [22] conduct a research study on how agile industrial software development
practices are. They interview software developers from five different companies and examine
the agility of their actual use. The values in the Agile Manifesto are used to evaluate whether
the software processes can be seen as agile and to what extent. They conclude that it all
depends on which of the different values are used to judge agility. It also depends on the
characteristics, not only of the company, but also of each single project. Digital Focus
[31] which is a leader in Agile Software Development and integration services, conducted
a survey that states the following with regard to what it entails to be agile: ”Adopting
agile is not just a process of understanding and applying different technical practices. It is
a mindset shift that must take place within the executive, business and IT communities of
that organization.”. This indicates that the researchers, Hansson et al. and Digital Focus
have different opinions on what it constitutes to be agile.

Shine Technologies [38] conduct a survey on experiences using Agile methodologies. The
questionnaire includes ten questions and 131 respondents completed it. Out the ten ques-

26 Related Research

tions, only two employ the agile values. The first question reads: ”What feature of your Agile
processes do you like the most?”. The respondent is given five possible choices; Respond to
change over following a plan, Relationships over contracts, Code over documentation, People
over process and Other. However, as these choices are modified and smaller versions of the
four valued statements in the manifesto are presented, the reliability can be questioned.
The results show that the respondents are most positive towards the feature ”Respond to
change over following a plan”. Interestingly enough, this is the only feature which is not
modified significantly. Moreover, if concrete conformance to the manifesto is pursued, it is
problematic to alter some of them for readability. E.g. ”Relationships over contracts” might
not be interpreted in the same way as ”Customer collaboration over contract negotiation”.
The Agile Manifesto statement puts emphasis on the customer, whereas the modified ver-
sion removes the customer from the sentence. Without careful examination of the valued
statement and what it implies this is a problem. It might remove valuable information and
thereby introducing a bias as the question is not interpreted the same way by the researcher
as it is by respondents. E.g. the researcher couples ”Relationships over contracts” with
the Manifesto statement and the respondent interprets it as creating personal relationships
with his team or referring to oral agreements.

The second question they ask is: ”What features of agile processes makes you most uncom-
fortable”. The possible choices are variantions of the items on the right side of the Agile
Manifesto; ”Lack of authority”, ”Lack of project structure”, ”Lack of planning”, ”Low docu-
mentation”, and ”Other”. Most of the respondents selects Other, which could indicate that
the question lacks possibility of more questions. However, the question is interesting as it
address the possible barriers to Agile Software Development.

The two questions generally lack more possible choice for the respondents to select. For
instance, in the first question it is not possible to state if none of the agile features are liked.
In the second question the same lack of extra option is present, as it is not possible to state
that no agile feature makes them uncomfortable. This limits the use and interpretation of
the results, in our opinion, and thus the validity and reliability of their findings.

2.3.4 Actual Use Versus Attitude

When using values and principles to measure agility in a questionnaire, there are two ways
to measure agility as described below and illustrated in Figure 2.2:

1. By asking the respondents about their actual use and comparing this to the agile
values and principles.

2. By asking the respondents about their attitude towards agile values and principles.

2.3 Values and Principles 27

Measure

Agility

Using Actual Use

Respondent

Measure

Agility

Using Attitude

XP Scrum

Agile

Method

X...

Pair Programming

Planning Game

Test Driven

Development

…

...
Daily Meetings

Backlogs

Sprints

...

The 12 Agile

Principles

#1, #2, #3, …, #12

Practices

Methods

Principles

Applied/

Actual

By the Use of

Agile Principles

Attitude

Figure 2.2: The two ways to measure agility using values and principles; actual use or
attitude.

Figure 2.2 is a continuation of Figure 1.4 in Section 2.2, but instead of using methods
and practices to measure agility the values and principles are used. The first way to use
values and principles is by looking at the respondents’ actual use of them. This entails
asking questions about how the respondents work and thereby gaining an overview of the
phases and tasks involved in their work. The most appropriate data collection methods for
this kind of research would be observation, in that it enables the researcher to collect the
needed information without the subjective interpretations of the respondents. However, the
data is still collected through the researchers, and thus subjective. If this approach is used
with a questionnaire as the data collection tool, many of the questions would need to be
open-ended, in order to cover the choices sufficiently and thereby avoid the ”lack of choice”
problems in the Shine Technologies survey [38]. However, open-ended question negatively
impacts the response rate, as respondents are burdened with formulating their own answers.
So the approach of looking at actual use and comparing this to values and principles may
not be the best choice for a questionnaire survey.

Ruling out using actual use and comparing it to values and principles, one option is left
and that is to ask the respondents about their attitude towards Agile Software Development
values and principles. But how can attitude be used to measure agility?

Merriam-Webster [35] defines attitude as:

1. A mental position with regard to a fact or state <a helpful attitude>.

2. A feeling or emotion toward a fact or state.

In others words, it is a specific state of mind towards a fact or state. This is also how Digital
Focus [31] interprets ”agility”: ”Adopting agile is not just a process of understanding and
applying different technical practices. It is a mindset shift that must take place within the

28 Related Research

executive, business and IT communities of that organization.”. This indicates that agility is
as much a state of mind as it is a set of technical practices. So attitude is ideal for measuring
respondents mindset and thereby their agility. Also researchers within in questionnaire
theory have developed an extensive set of tools for measuring people’s attitude.

These include various attitudinal scales such as Likert and Thurstone scales, which enables
the collection of respondents attitude towards agile values and principles.

2.4 Project Context Factors

Some of the related research articles investigate the context of a specific software project.
The reason for this is that project context matters when discussing agility. Some articles
claim that certain context factors can divide projects into agile or plan-based project home
grounds [23] [18], while others look at context factors in a more exploratory fashion [21]
[31] [25]. Nevertheless all agree that project context is very important when choosing a
software development methodology. This is not only a point concluded in these articles but
also made by Cockburn, the author of the Crystal family of agile methods, who states that
project context is all important when choosing the development method [8]. Some articles
also use context features as a way of understanding the generality and utility of the findings
[23]. The articles, however, do not entirely agree upon what context factors are the most
important and the extent to which they influence what development method to use.

2.4.1 Context Factors in the XP-EF

Layman et al. [23] uses the XP-Evaluation Framework (XP-EF) to evaluate an XP project.
The framework is composed of three parts, of which one concentrates on project context. It
takes a broad approach defining six contextual categories of interest.

1. Developmental factors (Size, criticality, dynamism, personnel, and culture; proposed
by Boehm and Turner [15])

2. Sociological factors (e.g. team size, education level, experience level, etc.)

3. Project specific factors (e.g. domain, person months, nature of project, etc.)

4. Technological factors (e.g. soft. dev. meth., project mgmt., language, etc.)

5. Ergonomic factors (e.g. physical layout, distraction of office space, customer commu-
nication)

6. Geographical factors (e.g. team location, customer cardinality and location, supplier
cardinality)

All factors are explained and discussed in detail in Layman et al. [24]. The article tries
to objectively collect all these context factors to know as much about the project and its
surroundings as possible. The collection method for all these context factors varies from

2.4 Project Context Factors 29

observation to the use of CASE tool project statistics. The primary goal of collecting these
context factors is to get a foundation for comparison among other projects and thereby learn
more about how a specific method works and performs. However, the article also states that
this level of rigor in the collection of context factors is very difficult and time consuming,
coupled with the fact that some measurements, like number of New/Changed classes, are
impossible to collect without developer participation or tool support. Furthermore as these
characteristics are not used as specific indicators for agile or plan-driven suitability, they
are not all relevant for the purposes of our survey.

2.4.2 Context Factors Proposed by Glass

Hansson et al. [22] use four context factors proposed by Glass [19] to evaluate five Swedish
software companies. The four context factors are as follows:

• Application Domain

• Project Size

• Criticality

• Innovativeness

Application domain looks at the kind of software that is developed. This is typically based
on the business type or domain the software is developed for and is subjectively evaluated.
In the case of Hansson et al. [22], the researchers categorized each of the five companies
instead of individual projects, which is difficult if the company in question has a diverse
product line. This also means that it is difficult to create a generic list of application domains
that is applicable to all projects.

The second context factor is project size. Hansson et al. [22] uses the number of developers
on a given project as the measure for project size. This is something that can be measured
objectively, which greatly benefits the accuracy of the measurements on this particular
context factor.

The third context factor that has been believed to correlate with the use of agile methods
is software criticality. Many believe that software developed to meet high criticality stan-
dards cannot be built using agile methods because of their lack of oversight, planning and
documentation [15] [22]. However, agile authors and practitioners have argued that this
is not the case if sufficient steps are taken to ensure software criticality within the agile
method. Here they refer to the emphasis on test driven development in XP [25]. Hansson
et al. citeIndustrialSoftware investigates the correlation between Agile Software Develop-
ment practices and software criticality. To categorize the software criticality they divide
criticality into three categories, high, medium and low. Their results indicate that the most
agile companies indeed are the ones that develop low criticality software. However, since
none of the companies fall within the category, ”high criticality” and only five companies
was selected the results are inconclusive and cannot be generalized to the entire field of
software development. There seems, however, to be a correlation between Agile Software

30 Related Research

Development practices and software criticality. Also the use of a classification scale ranging
from high to low is subject to personal interpretation. This means that if used in our survey
respondents could interpret the scale differently and thereby influence the result.

The last context factor by Glass [19] is innovativeness. Hansson et al. [22] takes the term
innovativeness to mean innovative use of technology and not innovation of technology. This
context factor is again evaluated on a scale of low, medium, and high and none of the five
companies fall within the high category. It is an interesting context factor in that, the use
of agile methods is often associated with innovative projects. This stems from the belief
that innovative projects are in a constant state of chance and therefore not suitable for
plan-driven development. Taking this viewpoint makes innovativeness an appealing context
factor within the scope of our survey. However, again the subjective evaluation of the scale
used introduces problems with interpretation and evaluation when used in a questionnaire.

2.4.3 Agile and Plan-Driven Home Grounds

Layman et al. [23] and Fruhling and Vreede [18] both use a framework developed by Barry
Boehm and Richard Turner [15] to categorize projects as agile or plan-driven using a number
of context factors. These context factors have been selected for their ability to divide agile
and plan-driven methodologies. Both articles use this framework to indicate if the project
under examination is best suited for an agile or a plan-driven approach. Boehm and Turner
present five context factors that define their framework:

1. Personnel: The skill level of the individual developers within the team

2. Dynamism: The number of requirements changed per month

3. Culture: The number of people thriving on chaos versus order

4. Size: The number of people on the team

5. Criticality: Criticality of the software in the development project

These five context factors can be plotted on a polar chart as illustrated in Figure 4.8. Boehm
and Turner [15] argue that these five context factors divide the suitability of a project into
agile and plan-driven domains or home grounds as they call it.

The Boehm and Turner context factors can be divided into two groups, which distinguish
themselves from each other in that one can be objectively measured while the other is mea-
sured with some degree of subjectivity. The objective group is comprised of the Criticality,
Size and Dynamism factors as they have clearly defined scales of measurement. This makes
these context factors easy to investigate quantitatively via a questionnaire. Personnel and
Culture on the other hand has to be evaluated subjectively, which always has the possibility
of varying depending on each individual doing the evaluation. Nevertheless the five context
factors are all indicators of agile or plan-driven suitability, where criticality, size and to some
extent dynamism are already adopted by Glass [19].

2.5 Related Research Findings 31

external developers must perform additional learn-
ing-curve and asset-buildup activities to ensure suc-
cess.

We advocate using the Life Cycle Architecture
anchor point milestone criterion2 to exit from
Step 4.

Step 5
No decision is ideal for all time and, as this step

indicates, the management team must constantly
monitor and evaluate the performance of its
selected processes while keeping an eye on the envi-
ronment.

This step resembles the agile practice of reflec-
tion. If a process indicates some strain, developers
must backtrack, revalidate, and perhaps adjust the
levels of the agile or plan-driven methods estab-

lished initially.
Adjustments should be made as soon as strain

arises. On a more positive note, monitoring can
also identify opportunities to improve value to the
customer, shorten time to delivery, and improve
stakeholder involvement.

The flowchart in Figure 1 summarizes these five
steps.

A SAMPLE APPLICATION FAMILY
When illustrating the practical application of our

risk-based method, we first establish a realistic con-
text by introducing a family of representative cur-
rent and future software applications. For each of
these three representative systems, the project risks
suggest using a different mix of agile and plan-dri-
ven process components.

June 2003 59

ing scale described in the “Cockburn’s Three Levels of Software
Understanding, Slightly Revised” sidebar and places it in a
framework relative to the application’s complexity. This cap-
tures the situation in which a developer might be a Level 2 in an
organization developing simple applications, but a Level 1A in
an organization developing highly complex applications. Here,
the asymmetry is that while plan-driven methods can work well
with both high and low skill levels, agile methods require a richer
mix of higher-level skills.

References
1. A. Cockburn, Agile Software Development, Addison-Wesley, 2002.
2. T. Peters, Thriving on Chaos, HarperCollins, 1991.

(Percent level 1B) (Percent level 2 and 3)
Personnel

40

30

20

10

0

15

20

25

30

35

Criticality
(Loss due to impact

of defects)

3

10

30

100

300
10

30

50

70

90

50
30

10
5

1

Size
(Number of personnel)

Culture
(Percent thriving on chaos versus order)

Dynamism
(Percent requirements-

change/month)

Comfort

Many
lives

Single
life

Essential
funds

Discretionary
funds

Agile

Plan-driven

Figure A. Polar chart. The five axes represent the factors we use to
distinguish between the lighter-weight agile methods toward the
graph’s center and the heavier-weight plan-driven methods that
appear toward the periphery.

Table B. The five critical agility and plan-driven factors.

Factor Agility discriminators Plan-driven discriminators

Size Well matched to small products and teams; reliance on Methods evolved to handle large products and teams; hard to tailor
tacit knowledge limits scalability. down to small projects.

Criticality Untested on safety-critical products; potential difficulties Methods evolved to handle highly critical products; hard to tailor down
with simple design and lack of documentation. efficiently to low-criticality products.

Dynamism Simple design and continuous refactoring are excellent Detailed plans and “big design up front” excellent for highly stable
for highly dynamic environments, but present a source of environment, but a source of expensive rework for highly dynamic
potentially expensive rework for highly stable environments. environments.

Personnel Require continuous presence of a critical mass of scarce Need a critical mass of scarce Cockburn Level 2 and 3 experts during
Cockburn Level 2 or 3 experts; risky to use nonagile project definition, but can work with fewer later in the project—unless
Level 1B people. the environment is highly dynamic. Can usually accommodate some

Level 1B people.
Culture Thrive in a culture where people feel comfortable and Thrive in a culture where people feel comfortable and empowered by

empowered by having many degrees of freedom; thrive having their roles defined by clear policies and procedures; thrive on
on chaos. order.

Figure 2.3: Polar chart displaying the five context factors developed by Boehm and Turner
[15].

2.5 Related Research Findings

The articles’ handling of agile software development differ in three main areas. These areas
are method and practices, values and principles, and project context. The first two tackle
the problem of defining a standard on, which agility can be measured, and the third looks
at potentially agile project context factors. These are the aspects that are of interest to us
in this project in order to answer our the research questions.

Measuring Agility

Some articles use the assumption that the use of an agile method or a set of agile practices
makes you agile. This is done without looking into the degree to which the method is used
or into the development teams understanding and proper use of the practices. Because
of this assumption one has to delve deeper into each team’s use of an agile method to
obtain sufficient assurance that they can in fact be categorized as agile. However, none of
the questionnaire surveys have done anything beyond asking about specific methods and
practices because an in depth inquiry into use and understanding of a method or practices is
not feasible through a questionnaire. Also the differences between the many agile methods
and practices mean that they should all be included, to get an accurate estimate of the

32 Related Research

overall agility. This in turn leads to a massive and comprehensive questionnaire because
not merely XP or Scrum can be used to measure agility. This leads to the conclusion that
adherence to methods and practices alone cannot determine agility in our survey.

Other researchers have tackled the problem of agility by using the Agile Manifesto’s valued
statements and principles. This approach is used in an attempt to straddle all the values and
principles that are deemed agile, without having to limit themselves to a specific method
or practice. This approach has significant advantages because it goes beyond methods and
practices when looking at agility and tries to se agility as a set of values. However, the Man-
ifesto’s valued statements are somewhat vague and philosophical, and leave plenty of room
for interpretation. This means that they are ill suited for a questionnaire. The principles,
while being more concrete than the valued statements, still leave room for interpretation
and the thoughts and intentions behind them are not always clear. The articles using the
Manifesto’s valued statements and principles have not tried to alleviate these shortcomings
and merely used them as is. This approach may be possible when the data collection is
done through a case study and the judges of agility are the researchers themselves, but
could prove erroneous when conducting a survey. For this reason further research on oper-
ationalizing the agile values and principles should be done before using them in our survey.
This is done in Chapter 3.

Furthermore there are two ways of looking at values and principles. One is through the
respondents’ actual use and through the respondents’ attitude towards these values and
principles. Given that the actual use approach conflict with the questionnaire data collection
method and that agility has been tied with attitude, the measure of agility should be done
using attitude.

Agile Project Context Factors

The articles looking at project context have done this for a variety of reasons. The main rea-
son we are interested in is the identification of project context factors that have a correlation
with agility. Both Glass [19], and Boehm and Turner [15] have highlighted context factors
they think should be taken into account before implementing either an agile or plan-driven
approach. At first glance they seem to have only project size and criticality in common, but
if Glass’ innovativeness factor is seen as described in section 2.4.2, it resembles Boehm and
Turner’s dynamism factor a great deal. With this in mind the Boehm and Turner factors
are somewhat more clearly defined and less subject to interpretation and therefore more
suitable in a survey. For these reasons the project context factors used in our survey are
the ones proposed by Boehm and Turner [15].

3Operationalization
of Agility

The first step towards measuring the agility of IT professionals is the operationalization
of Agile Software Development into measurable areas. This chapter first introduces the
literature review of the agile manifesto authors. Then the findings are presented in terms of
an examination of each of the 12 principles. Finally 7 areas, where agility can be measured
are identified.

3.1 Literature Review of the Agile Manifesto Authors

In Section 2.3 it was identified how the values and principles are open for interpretation
if used by themselves. The unclarity of the values and principles therefore makes further
examination necessary. However, given the huge amount of information on the subject a
structured approach is necessary. This involves a careful selection of information sources
and setting up some form of theoretical framework in order to conduct a literature review
as explained by Kumar [6].

The obvious source to use in the review is the authors who wrote the Agile Manifesto. The
12 Agile principles provides more detail than the four valued statements and would therefore
be excellent as a framework for the review.

3.1.1 Selecting Authors

Reviewing all the information from the 17 manifesto authors would be too much. However,
a handful of the authors are very dominant compared to the other authors, when it comes
to publishing books and articles about Agile Software Development. In most circumstances
selecting those who ”speak loudest” is not considered the best approach for sorting valid
sources from non-valid ones. A better approach would be to conduct a citation analysis,

34 Operationalization of Agility

where reference to agile authors are counted [6]. A manifesto author sample of 3-4 authors
should be sufficient as input for the review.

Those manifesto authors who are cited often in related literature are assumed to be good
sources. When other researchers cite a manifesto author, the author is presumably reli-
able and understandable and the specific work cited (article, book, etc.) would be fairly
accessible.

In this project the citation analysis is done in three ways.

• Citation Analysis of agile manifesto authors using Web of Science

• References to agile manifesto authors found in highly cited Agile Articles

• References to agile authors found in Textbooks

The first uses the WOS citation analysis feature and concerns only published articles written
by agile manifesto authors. The second concerns a manual review of reference made to the
Manifesto authors in highly cited articles which concerns Agile Software Development. The
third involves manually reviewing references made to the agile manifesto authors in software
development textbooks.

Citation Analysis of Agile Authors using Web of Science

Using this WOS citation analysis tool it is possible to calculate the total number of reference
made to articles that are written by each of the agile manifesto authors and published on
WOS. Using the tool it is easy to 1) distinguish authors with few published articles from
authors with many publications and 2) distinguish heavily cited authors from lightly cited
ones. The result is that 8 out of the 17 manifesto authors have published articles on the
journal database about Agile Software Development. Three of these authors are cited by
others; Alistair Cockburn, Jim Highsmith and Ron Jeffries.

It is believed that the poor result reflects that a small portion of the articles written by the
manifesto authors about Agile Software Development are published on the WOS journal
database.

3.1.2 References to Agile authors in Agile Articles

The second approach is to use the WOS journal database to find those manifesto authors who
are referenced in the most cited articles about Agile Software Development. The 10 most
cited articles about Agile Software Development found on WOS is reviewed and references
made to manifesto authors are counted. Out of the 10 articles examined, Kent Beck and
Alistair Cockburn is referenced 4 times each, i.e. by 4 articles out of the 10. Jim Highsmith
is referenced 2 times, Martin Fowler 3 times and Robert C. Martin 2 times.

3.1 Literature Review of the Agile Manifesto Authors 35

3.1.3 References to Agile authors in Textbooks

Two textbooks are used in this review of references; Roger S. Pressman’s Software Engi-
neering - A Practitioner’s Approach [12] and Craig Larman’s Agile & Iterative Development
- A Manager’s Guide [8]. The first book is concerned with software engineering processes
in general and thus provides a brief overview of Agile Software Development, whereas the
second concentrates entirely on iterative and agile methods.

In Software Engineering - A Practitioner’s Approach, Robert S. Pressman [12], refers to
books and articles by Jim Highsmith, Alistair Cockburn, Martin Fowler, Ken Schwaber and
Kent Beck when describing what Agile Software Development is.

In Agile & Iterative Development - A Manager’s Guide, by Craigh Larman [8], three books
are recommended for further reading on Agile Software Development. Two of these are
written by manifesto authors; Agile Software Development, by Alistair Cockburn [3] and
Agile Software Development Ecosystems [4], by Jim Highsmith.

3.1.4 Sources for the Review

After the citation analysis and examination of references to agile authors in different articles
and textbooks, books and articles of the following four agile authors is used in the review
of the Agile Manifesto and principles:

• Jim Highmisth

• Alistair Cockburn

• Kent Beck

• Martin Fowler

Jim Highsmith and Alistair Cockburn, clearly distinguished themselves from the rest of the
manifesto authors as their names are prevalent in the articles and textbooks. In addition,
their books on Agile Software Development, Agile Software Development Ecosystems and
Agile Software Development are recommended by Larman [8]. Further more Pressman [12]
also refers to both Jim Highsmith and Alistair Cockburn.

Kent Beck and Martin Fowler were also mentioned and referenced by Pressman [12] and in
several of the agile articles. Kent Beck is the creator of XP together with Ward Cunningham,
and Ron Jeffries.

Martin Fowler co-authored Kent Becks first book on XP. He also wrote an essay about the
agile software movement called The New Methodology [34]. After Fowler had conversations
with other people sharing similar ideas towards software development, the essay got updated
and now explores the similarities and differences between the various agile approaches.

The three books written by Highsmith, Cockburn and Beck and the essay by Fowler are the
prime source for the review of Agile Software Development.

36 Operationalization of Agility

3.1.5 Review Process

As described by Kumar [6] a literature review involves setting up a theoretical framework
and continuously maintaining it while reading the literature. Through this process, subjects
and themes are categorized in the framework and in the case of encountering new themes,
these are added to the existing framework. The review is conducted by typing the 12
principles into the top column of a 12 columned table. An item from the literature pool,
e.g. Extreme Programming Explained: Embrace Change, is then selected for review. Upon
encountering statements which relates to and clarifies one of the principles in the table, the
specific statement is entered into the column of that principle. The results of the review are
presented next, in Section 3.2.

3.2 The 12 Principles

The objectives of the operationalization is to pinpoint those areas within Agile Software
Development where agility can be measured through a questionnaire. Each of these areas
must therefore be measurable and together they must cover the main aspects of Agile
Software Development.

In this examination each principle is discussed and clarified based on the review of the four
notable agile authors. In addition the agile values that the principles support are identified.
This relation is illustrated graphically for each principle where the symbols seen in Figure 3.1
are used.

Legend

Principle 1 through 12

Valued Statement 1 through 4 Weak association

Association between

values and principles
1-12

1-4

Figure 3.1: Circles are used to describe principles where the number inside the circle refers to
the principles number (e.g. principle 1). Diamonds describes a valued statement and again
the number inside the diamond refers to the specific valued statement. A blue connection
between a value and a principle illustrates that the principle supports the valued statement.

3.2.1 Principle 1

One of the things that quickly becomes evident in the review is
the high emphasis put on the customer. More than one princi-
ple and Manifesto value address this. However, the first principle
stands out as it includes the term ”highest priority”. This word-
ing elevates the importance of the principle. It thereby places

3.2 The 12 Principles 37

customer satisfaction and iterative development at the very top
of what Agile Software Development is. The importance of satis-

fying the customer with valuable software is also described by Jim Highsmith and Martin
Fowler. Highsmith states:

In the final analysis, the critical success factor for any method - Agile or
otherwise – remains whether or not it helps deliver customer value. [4]

Highsmith presents his view on what the most important thing in software development is,
which is to deliver customer value, regardless of the approach. Fowler elaborates further on
how agile and traditional software development differs in this aspect:

”(In the traditional view) A project that’s on-time and on-cost is considered
to be a success. This measurement is nonsense to an agile environment. For
agilists the question is business value - did the customer get software that’s more
valuable to them than the cost put into it.” [34]

Here Fowler presents two different views on project success. The first view, that projects
which are on time and within budget are de facto a success, is considered questionable.
Instead a project and its success, should be measured in customer satisfaction. It might
seem trivial to state this. However, the problem and the point that Fowler is making becomes
more apparent, when e.g. looking at how a software consultant company such as the Standish
Group often cited in literature and the software community, defines project success. They
operate with three levels of project outcomes; Success, Challenged or Canceled. Challenged
projects are projects which are over-time, over budget or missing functionality. In Fowler’s
(and agilists) view this ”is nonsense”. Even a canceled project can be considered a success.
E.g. if canceled early in the project the customer can save money and move forward. The
success stems from the customers level of satisfaction, not conformance to a plan or budget.

This heavy emphasis on delivering business value in order to achieve success, is the reason
why Agile Software Development is concerned with customer collaboration and why itera-
tive development is important. At every iteration the customer decides what is valuable.
Highsmith explains the process:

”Every iteration, the customer gets to change priorities based on features
delivered, features wanted next, and changes requested from previous iterations.
The development team’s responsibility is to inform the customers what the impact
on cost and schedule will be and to present alternatives that might be faster or
lower cost, but in the end, the customers are in control.” [4]

For some developers this level of customer involvement might mean a big shift in responsi-
bility. In the agile view developers are viewed as technical consultants. The final word on
all business decisions (e.g. the specific placement of a login-panel) belongs to the customer
or someone with comprehensive business knowledge and not the developers.

The Agile Manifesto values which this principle supports are illustrated in Figure 3.2.

38 Operationalization of Agility

1

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.2: The values which principle one supports.

First of, principle one supports the second valued statement. The statement indicates that
”working software” is valued more than ”comprehensive documentation”, and by following
the first principle’s idea of satisfying the customer with valuable software, a clear emphasis
on software as opposed to documentation is achieved.

In Figure 3.2 it is also illustrated that the principle supports the third valued statement in
the Agile Manifesto. As mentioned above, the principle places delivering something valuable
to the customer at the top of Agile Software Development and this emphasis on the customer
and his needs are also expressed in the third valued statement. Instead of writing a fixed
set of requirements (a contract) from the beginning, the customer is ”made a part of the
team” (collaboration). This way the customer is in control of the project and can steer it
towards success as he defines it.

The principle also has a strong link to iterative development, as it places ”early and con-
tinuous delivery of valuable software” as a top priority. Iterative development supports the
fourth and last of the valued statements. The theme here is ”change”. Although the valued
statement does not specify a specific type of change, it indeed concerns changing require-
ments. By dividing the software process into increments and only freeze the current working
increment, requirement changes can be applied to later increments.

3.2.2 Principle 2

It is clear from the beginning that this principle is tied strongly to
the fourth valued statement, ”Responding to change over following
a plan”. This is illustrated in Figure 3.3.

The principle clarifies three things about the valued statement;
1) It describes the reason behind it (it adds business value); 2) It
identifies a specific situation where the value must be supported
(when requirements change); 3) It specifies a certain attitude and

behavior towards change (welcome change).

3.2 The 12 Principles 39

2

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.3: The values which principle two supports.

Fowler elaborates on requirements changes and their relation to the customer and business
value:

”Often the most valuable features aren’t at all obvious until the customer have
had a chance to play with the software. In today’s economy the fundamental
business forces are changing the value of software features too rapidly. Even if
the customers can fix their requirements, the business world isn’t going to stop
for them.”[34]

Most software practitioners agree with Fowler’s view on valuable features and how these
change rapidly. Pressman specifically states that no one is against agility, i.e. the ability
to adapt to the changing requirements, however, the question is how to best achieve it [12].
Cockburn provides an agilist’s answer:

”Agile processes can take on late-changing requirements exactly because of
early and frequent delivery of running software, use of iterative and timeboxing
techniques, continual attention to architecture, and willingness to update the
design.”[3]

Cockburn mentions several agile techniques which accommodate adaption to change. It
is clear that iterative development, the use of timeboxing and early and frequent delivery
of working software plays an important part. The idea of continual attention to technical
excellence is examined in the ninth principle. Other agile authors and the value supported
by principle two also stress the importance of the attitude towards change. Highsmith argues
for a need to view changes as the result of ongoing improvement in information instead of
viewing changes as the result of errors (bad planning).

3.2.3 Principle 3

Larman [8] notes that iterative development is something which
”lies at the heart of agile methods”. This process of delivering
software in small increments is an important part of Agile Software
Development and is exactly what the third principle is concerned
with. The principle addresses the timescale or size of an iteration

40 Operationalization of Agility

(a couple of weeks to a couple of months) and it also states, that
delivered increments must be ”working software”.

The review shows that the specific size of an iteration is something that the authors them-
selves argues about. Highsmith states that three to six weeks is a suitable size. Cockburn
recommends iterations of one to three months cycles, but acknowledge that even 4 months
cycles are perfectly possible. Kent Beck is most extreme on this matter. He suggest that
iterations should be no more than a single week. The reason for this dispute is pointed out
by Cockburn:

”The duration used for deliveries needs to be negotiated on a project-by-project
basis, because delivering updates on a daily or weekly basis can cause more dis-
turbance to the users than it is worth.”[3]

What Cockburn refers to here is that the people with the business knowledge, be that
customers or users of the final system, might not have time or be able to use and provide
feedback on a new system every week. However, Highsmith draws a distinction between
”delivery” and ”release”. He argues about valid reasons for business people not putting
code into production and states:

”Still, that shouldn’t stop a rapid cycle of internal deliveries that allows everyone
to see what’s happening and enables constant learning from a growing product.”
[4]

Thus it may very well be that a customer is unable or does not want to receive a release
every week or month, but this should not affect the iteration size, e.g. increasing it to 2
months.

In spite of the different viewpoints on iteration size, iterative development play a very
important part in Agile Software Development, as many activities are build into the iterative
process. Activities such as customer reviews and input, team meetings and testing can not
take place unless iterative development, to some extent is being used. The specific view on
the size of iterations does divide people between being agile or not. It is clearly believed,
that iteration size is a matter of the specific project and its context. The important parts to
focus on when addressing iterative development is that the before mentioned techniques and
properties, timeboxing and small increments are present, and that each increment delivered
this way is a subset of the final system in that it delivers the expected business value.

The agile values of the Manifesto which this principle supports are illustrated in Figure 3.4.

3.2 The 12 Principles 41

3

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.4: The values which principle three supports.

As the figure illustrates, two values are supported by the principle. The first value concerns
working software. The principle clearly argues that working software should be delivered and
not documentation. This part is discussed more thoroughly in the review of principle 7. The
third principle also supports the fourth valued statement. The point of delivering software
iteratively is precisely that a development team is able to respond quickly to changes.

3.2.4 Principle 4

In the review of principle one, it is examined how the customer
plays an important part in Agile Software Development. This is
partly because the customer is viewed as an expert in the business
domain. Developers must work closely with the customer not only
to ensure that the customer gets the system payed for, but also

to provide developers with valuable business knowledge. The fourth principle concerns the
relationship between developers and business people. It introduces a requirement, saying
that business people and developers must work together daily throughout the entire project,
which might seem a bit extreme.

Fowler states the following about developers and the business needs:

”They need guidance on the business needs. This leads to another important as-
pect of adaptive processes: they need very close contact with business expertise.”
[34].

Highsmith agrees with Fowler and provides insight to the reasons behind the principle.
Highsmith refers to the arrival of new business models such as eCommerce and eBusiness
and explains how these new and often complex business processes make it difficult for
developers to bridge the domain knowledge gap. They need access to business knowledge.
Cockburn uses empirical evidence when arguing for the need for business experts. When
addressing principle four directly, Cockburn refers to a study showing a strong correlation
between projects’ success and links to users. He writes that: ”The best links are through
on-site business expertise and daily discussions, which is what the statement calls for.”. [3]

Beck [2] use a notion of the ”Whole team”. The notion includes people with all the skills
and perspectives necessary for the project to succeed. This especially includes the customer
and Beck states:

42 Operationalization of Agility

”They are who you are trying to please. No customer at all, or a ”proxy” for
a real customer, leads to waste as you develop features that aren’t used, specify
tests that don’t reflect the real acceptance criteria, and lose the chance to build
real relationships between the people with the most diverse perspectives of the
project.” [2]

Beck clearly advocates for real customer involvement, anything else removes business value.
It would seem that the authors disagree on the importance of the actual customer. Beck
arguing for the customer and the other authors being more liberal on the subject. Highsmith
admits that although the best thing is to have users available when needed this is not always
possible and hence business and systems analysts fulfill a vital role on a team as they also
possess valuable domain knowledge.

Principle four imposes a strict view on the frequency of interaction as it uses the terms
”must” and ”daily”. Highsmith explains:

”There was debate among the Manifesto authors over whether to substitute fre-
quently for daily, and I think we kept the right word. Of course absolute ad-
herence to a daily schedule may not always work. Working together daily may
mean for a couple of hours each morning rather than all day, and it may mean
skipping days now and then. However, when daily begins slipping to every other
day, and then to once a week, results will suffer accordingly, particularly if time
to market is a driver.”[4]

Thus ”daily” is not meant as a strict requirement to be upheld what ever the cost and
situation. It is something important to strive for. Cockburn notes that ”the statement
indicates that the longer the time to get information to and from the developers, the more
damage to the project.”. Fowler states:

”Agile teams cannot exist with occasional communication . They need continu-
ous access to business expertise. Furthermore this access is not something that
is handled at a management level, it is something that is present for every devel-
oper. Since developers are capable professionals in their own discipline, they need
to be able to work as equals with other professionals in other disciplines.”[34]

The agile values of the Manifesto which this principle supports are illustrated in Figure 3.5.

4

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.5: The values which principle four supports.

3.2 The 12 Principles 43

The principle about daily collaboration does not say that developers and business people
(customers, feature analyst etc.) must attend at meetings together every day throughout
the project. It states the importance of conveying business knowledge to developers and
stresses easy (daily) access to this knowledge. As the Manifesto values indicate this involve
interaction and collaboration among the team members, business people and customer.

3.2.5 Principle 5

The principle highlights people as a very important resource in
a software development project. It states that individuals form
projects and not the other way around and introduces a manage-
ment approach based on the concept of freedom with responsibil-
ity.

Highsmith and Cockburn are the two of the agile authors who
addresses people factors the most. They clearly state that ”in-
dividuals make projects work”. Cockburn explains how he in his

early days as an employee, were given the task to find out which development method were
most successful and ended up with realizing that methods did not matter. What did mat-
ter where the people on the project. God people would always make the project succeed
regardless of the method used. However some methods would make it easier for them and
some would make it harder. [3]

Cockburn describes that the downside of this insight is that people are never linear [3]. Their
behavior is very complex and effected by many different factors. Some of these factors are
addressed in the fifth principle, namely the working environment, support and trust.

The working environment is a theme which Cockburn is especially concerned with. He
examines the working environment of the agile team, with focus on how it influences and is
able to support collaboration and communication between the team members (developers
and business people). Some of the initiatives discussed and suggested by Cockburn are
the layout of the room, which should allow face-to-face communication and the concept of
information radiators for easy and effective distribution of information. The principle also
mentions that the team should be given the ”support” they need. This refers to things such
as education, training, staff interviews, etc. However, information radiators, staff interviews,
.net certification, etc. are specific practical solutions, where the principle merely supports
the view that attention to the people on a project and their needs are important.

This kind of investment in the development team, should then be followed up with trust,
as noted in the principle. Highsmith pictures two different attitudes that the management
can have towards developers, a non-agile and an agile:

Non-Agile: ”I don’t trust you to get the job done correctly; therefore, I have
to constantly follow up, keep the pressure on or you will slack off, and micro-
measure your performance.” [4]

Agile: ”I trust you to get the job done correctly, and in order to assist in get-

44 Operationalization of Agility

ting the work done, we have to interact in order to monitor expectations and
performance.” [4]

According to Highsmith there is no middle ground. Managers either fundamentally trust
people or they do not [4]. This trust is highly coupled with decision making. Who (e.g.
management or developers) makes what kind of decisions (e.g. technical or business)?

Fowler state that developers must be able to make all technical decisions and refers to
the planning game in XP as a good example on how estimation is the responsibility of
developers. Highsmith is a bit more carefull and mentions that: ”who makes the decision
is less important than getting the right ”whos” involved in the decision.” [4]. However
Highsmith and Fowler do agree on the following:

”Decisions must be made by the people who know the most about the situation.
For managers, this means trusting in your staff to make the decisions about the
things they’re paid to know about.” [4]

Though the agile view on decision making argues a shift of responsibility from management
to developers, the sharing of responsibility must be equal, according to Fowler. ”Manage-
ment still plays a role, but recognizes the expertise of developers.[34].

It is clear that the fifth principle supports the first of the valued statements and this is
shown in Figure 3.6.

5

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.6: The values which principle five supports.

It is important to notice that principle five not only addresses developers, but the agile
team. This also includes the customer and therefore the principle touches upon the third
valued statement, regarding customer collaboration. However, as other principles address
the customer involvement more directly, it is not illustrated here. Instead the principle is
seen as being directed more towards providing teams with freedom instead of controlling
them.

3.2.6 Principle 6

3.2 The 12 Principles 45

Knowledge transferring takes place all the time, in every day life
and in the work place. When someone waves to another person or
hands a drawing, they are transferring knowledge. It is an essen-
tial part of our lives. The sixth principle concerns how knowledge
is transferred to and within a development team and declares that
the best approach is face-to-face. Hereby Agile Software Devel-
opment de-emphasizes other kinds of communication and ways to

transfer knowledge, such as different kinds of documentation, phones, electronic chat, etc.

How teams communicate on agile software projects is handled most thoroughly by Cock-
burn and Highsmith. The problem with many communication mediums such as documents,
video, audio, etc. is that it only communicates one way. Questions and answers are not
possible when e.g. watching a video or reading a document. The devaluation of documen-
tation which agile methods and principles uphold is often criticized by opponents. They see
documentation as a very important artifact in software development and the discipline of
producing it must be paid attention. Highsmith elaborates on the dispute:

”It’s enough to make one scream: ”The issue is not documentation, the issue is
understanding!” Do the developers understand what the customers want? Do the
customers understand what the developers are building? Do testers understand
what the developers intended to build? Do software maintainers understand what
the developers built? Do the users understand what the system does for them?
”[4]

What Highsmiths pinpoint here is, that the end goal for all kinds of communication, regard-
less of its shape or form, should be understanding. All authors seem to share this attitude
towards the documentation versus face-to-face communication discussion. The point seems
to be, that while documentation has certain benefits and can indeed be useful, it is not
enough. Cockburn notes that the keywords when using documentation should be ”just
enough” and ”barely sufficient” [3]. However Cockburn notes that the cost and quality of
face-to-face communication move negatively when the size of a project increases. In these
cases documentation (e.g. information radiators) serves a ”barely sufficient” purpose.

The principle can be viewed as supporting the first of the valued statements. This is
illustrated in Figure 3.7.

6

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.7: The values which principle six supports.

It should be noticed that ”documentation” is not valued ”individuals and interactions”,

46 Operationalization of Agility

but ”processes and tools”. However, having examined the sixth principle it seems that the
concept of ”tools” is wide enough to include e.g. documentation tools, e-mail, chatting-
programs, etc. Knowledge should thus be shared through collaboration and face-to-face
communication as opposed to other more explicit mediums.

3.2.7 Principle 7

The role that software plays in an agile project is mentioned in
the review of the first principle, where Fowler proclaims that when
measuring the success of projects, the yardstick is business value,
i.e. how valuable is the delivered software to the customer. This
viewpoint is carried further in the seventh principle. When mea-

suring progress, software is the prime artifact to use. To understand the principle it is
necessary to identify what ”working software” entails and what it means to place it as the
primary measure of progress.

Fowler describes the agile view on working software:

”These working systems are short on functionality, but should otherwise be faith-
ful to the demands of the final system. They should be fully integrated and as
carefully tested as a final delivery.” [34]

The concept ”Working software” seems to involve two aspects. It must be working (fully
integrated and tested) and it must uphold business value (faithful to the demands of the
final system). Highsmith [4] mentions, that at every iteration the customer decide whether
business value has been delivered or not. If value has not been delivered, the project is either
canceled or corrective action is taken. If value has been delivered the project continues [4].
Fowler explains why working software means software should be tested and integrated:

”The point of this is that there is nothing like a tested, integrated system for
bringing a forceful dose of reality into any project. Documents can hide all sorts
of flaws. Untested code can hide plenty of flaws.” [34]

The flaws hiding in documents, untested code or code that is not integrated in the full
system, means that these artifacts are poor measures of actual progress. Fowler continues
and points out that when measuring progress, it is necessary to get all the important factors
right. If anything is missing, the ”doers” will most certainly alter what they do in order to
produce the best result. E.g. if using lines of executable code as a yardstick for progress, it
will invite developers to write lots of code in order to produce the best measure. If the value
of the code is not paid any attention, this kind of measurement would produce misleading
results according to Fowler.

Agilist argue that only working software can tell anything true about the state of a project.
Progress is only made when a piece of the final system is delivered to the customer. High-
smith elaborates on the differences between delivering documentation-like artifacts and de-
livering business value:

3.2 The 12 Principles 47

”If we cant show demonstrable, tangible progress to the customer, then we dont
really know if we are making progress. Data models, UML diagrams, require-
ments documents, use cases, or test plans may be markers that indicate some
degree of progress (or at least activity), but these markers are not primary mea-
sures. Features that implement a portion of a business process, features that
demonstrate that a piece of flight avionics software actually drives the required
actuators, features that allow a doctor to extract and view a digitized CT scan –
these are primary measures. Nothing else qualifies.” [4].

Highsmith and Cockburn recognizes that other kind of measures are permitted, but ”working
code is the one to bank on.” [3].

It is clear that the seventh principle supports the second valued statement as illustrated in
Figure 3.8.

7

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.8: The values which principle seven supports.

The review firmly establishes that agile progress control relies heavily on tested and inte-
grated features, which are faithful to the final system. In the agile view, this is the only way
the truth about the project state can be expressed, as many other kinds of artifacts such as
diagrams, requirements, test plans, etc. can hide flaws.

3.2.8 Principle 8

According to Cockburn this principle concerns two dimensions.
One relates to social responsibility and the other to productivity.
Cockburn [3] explains, that not every manifesto author would
sign onto the social responsibility, but all agree on the matter
of productivity. Maintaining a sustainable pace throughout the
entire project means that individuals on a team should not work
more than able to and thereby minimizing overtime. Beck writes:

”Work only as many hours as you can be productive and only as many hours
as you can sustain. Burning yourself out unproductively today and spoiling the
next two days’ work isn’t good for you or the team.” [2]

48 Operationalization of Agility

The point of this is that developers will not be more effective in their work simply by staying
later and working more. Instead they will tire and as a result remove value from the system.
Cockburn states that long hours, should they occur, ”... are a symptom that something has
gone wrong with the project layout.” [3].

The ninth principle supports the first of the valued statements and is shown in Figure 3.9.

8

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.9: The values which principle eight supports.

In the eighth principle, people are not viewed as machines able to stay turned without
serious drawback. Though not all authors would sign on to a social responsibility, they all
agree to the more romantic perspective on people, their abilities and constraints.

3.2.9 Principle 9

The ninth principle claims that continuous attention to the values
”technical excellence” and ”good designs” improve agility. Basi-
cally this illustrates the view that good designs, which does not
introduces any unnecessary constraints, allow changes to be im-
plemented, thus being agile. The same goes for ”technical excel-

lence”. Code of high quality is easy to read, modify and find/fix bugs and is therefore
more tolerant to changes. However, opponents often criticize Agile Software Development
as an excuse for hacking or cowboy coding [16]. To some extent, this viewpoint is proper
derived directly from the Manifesto values, were process, planning and documentation is
deemphasized on behalf of people, software and adapting to change. Also, as XP advo-
cate a evolutionary design approach where simple design and just enough are keywords, the
viewpoint that Agile Software Development is equivalent to ”code and fix” is often assumed.
When discussing XP and its design activities, Fowler[17] confirms that evolutionary design
in its common usage is a disaster. Allowing the system design to emerge only as a part of
the programming process, will evidently produce a poor design and introduce code where
bugs are harder to find and kill. Designing up-front attempts to counter this by think-
ing in advance, plan the design carefully and then freeze it. However, this also introduces
headaches, as it is impossible to figure out all the issues that programmers would have to
deal with and therefore developers will often have to code around the design. The reason XP
still advocates an evolutionary design approach rather than up-front design, is, according to
Fowler, that XP includes ”enabling practices”, i.e. practices which makes the evolutionary
design approach work. These includes Test-first, Continuous Integration and Refactoring
[17].

3.2 The 12 Principles 49

Highsmith explains how the these practices makes agile methods able to maintain a high
level of technical excellence and good designs:

All Agile Software Development Ecosystem’s call for frequent testing in order to
deliver working software each iteration. XP’s frequency is near instantaneous
in its test-first mode of operation. Agile approaches call for constant integration
testing and frequent builds. Agile approaches call for acceptance testing with
customers, both with test cases (XP) and customer focus groups (ASD). Pair
programming can be viewed as the equivalent of instantaneous code inspections.
Code inspections are a key part of FDD and are advocated by other Agile ap-
proaches. [4]

Fowler, Highsmith and Cockburn agree with the necessity of many of the practices of XP
in order to pay attention to good design and maintain a high level of technical excellence.
Enhancing agility is equivalent to allowing changes to occur and in the agile view this is the
opposite of following a plan and the ninth principle therefore supports the fourth valued
statement in the Manifesto.

This is illustrated in Figure 3.10.

9

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.10: The values which principle nine supports.

3.2.10 Principle 10

The point expressed by this principle is also found in popular
phrases such as ”YAGNI” (Ya Ain’t Gonna Need It) and ”KISS!”
(Keep It Simple Stupid!). Simple designs and code are easier to
understand, debug and maintain. When discussing simplicity in
software development, Highsmith refers to three different dimen-

sions: ”Simplicity as minimalism”, ”Simple design” and ”Generative rules” [4]. The first
dimension, Highsmith argues, is directed at the tenth principle. The second refers to simple
designs as being good designs, as discussed in the review of principle nine. The third, Gen-
erative rules, apply to the idea of self-organizing teams mentioned in the review of principle
five and eleven.

Simplicity as minimalism means to do less of the activities which does not deliver business
value and focus on those which does. Higsmith explains how this relates to agility:

50 Operationalization of Agility

”Simplicity affects our ability to change, to be adaptable or responsive. Respon-
siveness relates to inertia. Heavy things have more inertia and are therefore
harder to change.”

When discussing simplicity and changeability Highsmith and Cockburn speak of embellish-
ments, i.e. activities which creep into projects because someone think that the activity
”should” be useful, but in fact is not. As time goes more of these activities are implemented
and never removed and the process grows heavy and thereby looses changeability [4]. As an
experiment Highsmith propose that one should try to eliminate activities and documenta-
tion until things begin to unravel and then stop reducing. This refers to the teams ability
to reflect and tune their process.

The principle thus supports the fourth valued statement and is illustrated in Figure 3.11.

10

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.11: The values which principle ten supports.

One of the values in Beck’s XP is Simplicity. However, Beck does not divide the value into
different concepts as Highsmith, but uses it mainly when addressing the system being build,
i.e. keeping the design simple. Beck argues, that some designing up-front is necessary, but
it should be just enough to be successful and nothing more [2].

3.2.11 Principle 11

Individuals plays an important role on an agile project, as the
first value of the Manifesto indicates and as the review of the
fifth principle illustrated. The eleventh principle clearly puts self-
organizing teams in the number one position of organizational
structures. The argument is that teams which are not locked

by numerous rules and policies and which are able to influence their own work process
will perform better than more managed teams. However, this does not entirely remove
standardization of what people should do as Highsmith states:

”... we cannot forget that emergent results live at the edge of chaos, at the
balance point between structure and flexibility. The structure, which protects
projects from chaos, rests on skills and professionalism. A generative organiza-
tion provides teams with a simple set of rules and an environment conducive to
constant interaction in order to generate innovative results.” [4]

3.2 The 12 Principles 51

Agile projects thus need to be on the edge, i.e. balancing between order and chaos. The
question is how much chaos and how much order is required to be agile? Cockburn addresses
this when he states that there is a lot of discussion in the agile community about how self-
organizing teams should be.

Beck [2] reform the managers role from being a controller to that of a facilitator. Planning
is an activity which the whole team takes part in, while the managers act as team historians
who communicate progress to the team and external stakeholders and facilitates commu-
nication to and within a team. E.g. the manager is not intended to act as a proxy, but
introduces suppliers, customers, users etc. to the right person on the team.

Fowler [34] states, that only the developers (the team) can and should decide which pro-
cess to follow. Attempts to impose a process on a team will lead to rejection. However,
management still plays a role as the sharing of responsibility must be equal.

It seems that the common ground the agile authors share on the matter of self-organizing
teams, is that teams should be allowed a high degree of freedom and be able to choose and
change their process. The eleventh principle is supporting the first of the valued statement
as the concept of self-organizing teams stems from a very people centric viewpoint contrary
to an imposed process. This is illustrated in Figure 3.12.

11

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.12: The values which principle eleven supports.

3.2.12 Principle 12

The last of the 12 principles also touches upon the idea of self-
organizing teams. This is explained by Fowler, who notes that
self-organizing teams must not only choose their process, but also
tune and optimize it as the project proceeds and experience is
gained. According to Fowler, the team not only should be allowed
adaption, but it is their responsibility to do so. The principle

touches on the diversity of software development projects. A method, agile or otherwise,
never fits perfectly with a project, its team and organization. It is necessary to change it,
in order to make it fit. Beck and Cockburn respectively notes:

”Quarters are also a good interval for team reflection, finding gnawing-but-
unconscious bottlenecks. You can also propose and evaluate long-running ex-
periments quarterly.” [2]

52 Operationalization of Agility

”Bother to reflect on what you are doing. If your team will spend one hour
together every other week reflecting on their working habits, you can evolve your
methodology to be agile, effective and fitting.” [3]

Highsmith agree on the responsibility and importance of team reflection and adjustments,
but also warns about making changes without careful thinking and experimenting:

”The 12 XP practices didn’t just pop out; they arose from considerable exper-
imentation. Equal experimentation would be necessary to change them. For
example, it might seem reasonable – since pair programming has been compared
with very short-cycle code reviews – that code reviews could be substituted for pair
programming without harm. While this may be true, there is a significant possi-
bility that this substitution would have a negative impact on group collaboration,
simplicity of design, and more.”[4]

The important part of reflection is, that it has to be done at regular intervals and not only
something, which can be done when there is a need to do so. When widening the fourth
and last of the valued statements to include the need to change (adjust) the process, the
principle can be seen as supporting it. In addition this ”need to change it” stems from a
people centered viewpoint and therefore the principle also supports the first of the valued
statement. This is illustrated in Figure 3.13

12

1

Individuals and interactions

over

processes and tools

Working software

over

comprehensive documentation

Customer collaboration

over

contract negotiation

Responding to change

over

following a plan

2 3 4

Figure 3.13: The values which principle twelve supports.

3.3 Seven Measurable Areas of Agility 53

3.3 Seven Measurable Areas of Agility

The review of the agile values and principles resulted in the identification of seven measure-
ment areas with 2 important abilities 1) each area is clear enough to measure a distinction
between what is agile and what is not, 2) together the seven areas are believed to cover the
central points of what Agile Software Development entails.

As with the principles and values, the connection between measurement areas, principles
and values is illustrated using the symbols shown in Figure 3.14

Legend

1-7 Area 1 through 7

Principle 1 through 12

Valued Statement 1 through 4 Weak association

Association between

values and principles

Association between

areas and values

Association between

areas and principles

1-12

1-4

Figure 3.14: Circles are used to describe principles where the number inside the circle refers
to the principles number (e.g. principle 1). Diamonds describes a valued statement and
the square-piece is the symbol used for the agile concepts. A connection between values
and principles indicates that the principle supports the value and a connection between
a concept and a value or principle indicates that the concept is drawn from the value or
principle respectively.

3.3.1 Organizational Structure

The structure of an organization refers to the way interrelated groups in an organization
are constructed. The agile values and principles clearly speak in favor of a non-bureaucratic
structure. The question, especially for practitioners, is be how self-organizing should teams
be? Even the agile authors does not entirely agree on this matter as mentioned in principle
eleven. Agile Software Development does not claim that total chaos is superior to order.
It all depends on the situation. What can be said with more certainty is, that the agile
view on organizational structure is that teams (i.e. developers, business people, etc.) need
a certain level of freedom. The important thing is that a team is able to choose and define
their own development process. One of the values in the Manifesto states that people is
valued over process and therefore clearly abandons a mechanistic world view. The concept
of a self-organized team should thus be seen as opposed to managed teams, where policies
are constructed by upper management and followed by the team. When measuring agility
in this area, respondents attitude towards these to opposing concepts can be assessed.

The correlation between the values and principles and how this measurement area relates
to them can be seen in Figure 3.15.

54 Operationalization of Agility

121185

1

Organizational Structure

Individuals and interactions
over

processes and tools

Figure 3.15: The correlation between the values, principles and the organizational structure
measurement area.

3.3.2 Requirements Handling

Gathering requirements and distributing them to the development team for implementation
is two very central activities in all software projects. However, the agile way of carrying
out both activities differ significantly from plan-driven development. The review of prin-
ciples one and four are connected to this area as well as the third valued statement. This
relationship is depicted in Figure 3.16

1 4

3

Requirements Handling

Customer collaboration over
contract negotiation

Figure 3.16: The correlation between the values, principles and the requirements handling
measurement area.

In the review of principle one it is established that delivering customer value is the highest
priority to agilists and therefore continuous customer collaboration is essential. The fourth

3.3 Seven Measurable Areas of Agility 55

principle further expresses the view that developers need access to people with business
knowledge in order to understand what to build. In addition, business people need to inter-
act with the developers to understand what presently have been build and decide the next
move. This view on continuous customer collaboration is a unique and central agile con-
cept. It should be seen as opposed to plan-driven requirements gathering and requirements
distribution. Here requirements might be gathered by communicating with the customer,
however, focus is on the requirements specification and not customer collaboration or in-
teraction with business people. When measuring agility in this area, respondents attitude
towards continuous customer collaboration and a requirements specification can be assessed.

3.3.3 Project Progress Control

Estimating the current status of a project is important not only in agile projects, but also
plan-driven. The agile way of measuring progress relies on software as the primary measure.
As described in the review of principle seven, this approach should especially be seen as
opposed to the use of documentation. The correlation between the values and principles
and this measurement area relates to them is seen in Figure 3.17.

1 73

2

Project Progress Control

Working software over
comprehensive documentation

Figure 3.17: The correlation between the values, principles and the project progress control
measurement area.

In the review of the principles concerning working software it is also seen that working
software refers to integrated and tested features. When measuring agility in this area,
respondents attitude towards working software and documentation can be assessed.

3.3.4 Software Development Model

The most significant concept in Agile Software Development is iterative development. All
agile processes must be iterative. It is not possible to say exactly how iterative agilists believe
is appropriate, as this depends on the situation. However, it is clear from the review that
timeboxing-techniques and small software increments are important to all agile methods.

56 Operationalization of Agility

Timeboxing and keeping increments small allows iterations to be delivered early and fre-
quently. This kind of iterative development is best illustrated when contrasted with a more
plan-driven approach to software development, where the process is divided into sequential
phases. The correlation between the values and principles and how this measurement area
relates to them can be seen in Figure 3.18.

1 32

4

Software Development

Model

Responding to change over
following a plan

Figure 3.18: The correlation between the values, principles and the software development
model area.

When measuring agility in this area, respondents attitude towards iterative development
and a plan-driven development can be assessed.

3.3.5 Project Success Factors

A thing which clearly distinguishes Agile Software Development from plan-driven, is the
viewpoint on what constitutes success in a software project. For agilists the only thing
which matters is delivering business value and thereby satisfying the customer. Principle
one is properly the best indication of this. The review of the principle makes it clear that
other factors, such as keeping budget and keeping deadline are measures which agilists
disapprove of. The correlation between the values and principles and how this measurement
area relates to them can be seen in Figure 3.19.

3.3 Seven Measurable Areas of Agility 57

1

4 3

Project Success Factor

Responding to change
over following a plan

Customer collaboration
over contract negotiation

Figure 3.19: The correlation between the values, principles and the project success factors
area.

When measuring agility in this area, respondents attitude towards delivering business value
and being on time and on budget can be assessed.

3.3.6 Design

The review of the principles shows that the design activity in Agile Software Development
can be characterized as focusing on a simple design which solves the present problems and
nothing more, as opposed to a comprehensive design approach where the future is accounted
for. This is illustrated in Figure 3.20, where the measurement area of design is connected
to principles nine and ten, and connected to the fourth value.

9 10

4

Design

Responding to change over
following a plan

Figure 3.20: The correlation between the values, principles and the design area.

When measuring agility in this area, respondents attitude towards simple design and a
comprehensive design can be assessed.

58 Operationalization of Agility

3.3.7 Knowledge Distribution

Distribution of knowledge refers to how knowledge is distributed to and among team mem-
bers. This, not only concerns gathering and distributing requirements as covered by the
requirements handling area, but how the team transfers and maintains knowledge. Agilists
prefer to use tacit knowledge, i.e. knowledge is not written down but shared among all
the team members through collaboration and face-to-face communication. The correlation
between the values and principles and how this measurement area relates to them can be
seen in Figure 3.21.

4

1 2

Knowledge

Distribution

Working software over
comprehensive documentation

Individuals and interactions
over processes and tools

6 7

Figure 3.21: The correlation between the values, principles and the knowledge distribution
area.

This does not imply that knowledge can not be written down, but that as a rule tacit
knowledge is preferred over explicit. The plan-driven approach on the other hand advocates
the use of documentation to transfer knowledge. When measuring agility in this area,
respondents attitude towards tacit knowledge distribution and explicit knowledge distribution
can be assessed.

4Questionnaire
Design and

Administration

To measure the agility of IT professionals through a questionnaire basic knowledge is re-
quired on questionnaire design and the pitfalls there might exist.

In this chapter we introduce the questionnaire design process, the theory behind validity
and reliability of measurement instruments and then we construct the instrument that is
used to measure agility in our questionnaire is constructed.

4.1 Design Process

The questionnaire design process is a very iterative process. A number of different techniques
and disciplines are applied to develop, tune and validate the final questionnaire sent to
respondents. This section provides an overview of the different activities during the design
of the questionnaire.

An iterative process involves several benefits. First of all, gathering quantitative data using
a questionnaire is not a research method the research group has much experience with.
Allowing the questionnaire to evolve over several iterations would result in the identification
of several big and small mistake that can be corrected prior to conducting the main survey.

4.1.1 Testing the questionnaires

To develop a good and understandable questionnaire, tests are conducted using external
test respondents. Using external test respondents to evaluate work products is very useful.

60 Questionnaire Design and Administration

Respondent/
Characteristics

A B C D

Age 32 27 52 27
Occupation Student Student Associate

Professor
Employee
in the
private
sector

Area Computer
Science

Humanistic
Science

Head of
Pervasive
Healthcare
Lab

Software
Develop-
ment

Table 4.1: Characteristics for the four different test persons used in the test.

People who are not a part of the research team and not involved in the daily discussions,
are able to provide a different viewpoint on issues and problems, which often leads to new
ideas and solutions. This is also known used in Usability Testing, a concept widely known
within computer science and Human-Computer Interaction (HCI). The purpose is to test
the usability of e.g. an application by using actual users. This exercise will often uncover
any difficulties that a real life user would have with e.g. understanding instructions or
interpreting feedback.

The test is also useful when constructing a questionnaire. Words or phrase may be inter-
preted differently or simply not understood by people outside the research group. Identifying
such things before actually deploying the questionnaire is crucial, because it can jeopardize
the reliability of the instrument and thus the validity of the research.

Therefore several test respondents are used to review, test and examine the different versions
of our questionnaire.

The External Test Respondents

Four different kinds of external test respondents are chosen to participate in the field test.
These specific test respondents are selected because of two main reasons: 1) They are easy
to access and use, 2) They represent different types of people, with different background
and experience levels within software development.

The second reason is important with regard to the value of the tests. It is believed that
the survey will reach respondents with very different backgrounds, experience and knowl-
edge, therefore it is crucial that questions are understood correctly, and are interpreted as
intended.

The four test respondents and their background is shown in Table 4.1

As the table shows the questionnaire is tested using two students from two different areas of
study, an associate professor and a software developer employed in the private sector. Test
respondent B studying humanistic science is not familiar with software development, but is
used to ”stress-test” the questionnaire. The student was not able to answer all the questions

4.1 Design Process 61

and some were naturally enough hard to understand. However, by conducted the test using
a person who is unfamiliar with software development means that the questionnaire is tested
under the worst possible conditions.

Test respondent C, who is an associate professor has worked with software development
before. This means, that this test respondent can relate to the topic and thus the questions.
The respondent can help clarify if the questions asked are understandable and interpreted
as intended, by people working with software development daily. Respondent C represents
the older part of the target group with many years of experience in software development.

Respondent D is employed in the private sector within the software industry and respondent
A, is used as they reflect the younger par of the target population.

Conducting the Field Test

As explained the test is conducted using an approach quite similar to that of usability testing
and using the think-out-loud protocol that is described by Rubin [5]. The test respondent
is given a brief introduction to the research project, the purpose of the test and how the
test should proceed. After this, a link to the survey is provided and the test begins.

The test respondent is first asked to read each question out loud and explain how the specific
question is understood. If a question is a multiple choice question, the test respondent is
also asked to read the different answers out loud and explain these in the same way. Upon
having read the question and possible answers, the test respondent is asked to answer the
question and explain the answer given.

The test respondents are always asked to state their opinion on the subject first. This can
lead to a discussion of questions and concepts that proves difficult to understand. Finally
the test respondent is asked to give suggestions to improve the question and the answer
choices.

Field Test Findings

The tests were very beneficial. There were many issues with the questionnaire that clearly
annoyed and confused the test respondents. This was especially during the first test, where
the ordering of questions, inconsistent layout and small textboxes annoyed the respondent.
Moreover a significant number of the concepts were clearly interpreted differently by the test
respondents. As an example the concept Process Control and Monitoring was used in the
questionnaire as a non-agile concept. It was believed that the idea of having process control
and to monitor a process was valued in the plan-driven paradigm and de-emphasized in
the agile paradigm. However, when asked more specifically about why a respondent placed
the concept as a very important factor to software success, it was discovered that the test
respondent viewed this from different perspectives. The respondent actually argued for a
more agile way to control and monitor a process, e.g. by using short iterations with quick
feedback, regular reflection meetings, customer involvement, etc. From the viewpoint of the
respondent, process control and monitoring could be done in an agile and non-agile way.

62 Questionnaire Design and Administration

The different issue that were pin-pointed by the test respondent during the tests were
identified this way and eventually lead to a more reliable questionnaire. Also it greatly
improved our confidence in the questionnaire.

4.1.2 Experts and Researchers

In addition to the test respondents, two experts were consulted for advise on the survey and
design.

Ivan Aaen is an associate professor at Aalborg University (AAU). He is professionally
interested in Agile Software Development and has been for several years and teaches soft-
ware development methodology. He has also previously conducted a questionnaire survey
concerning the use of CASE tools in software organizations. He assisted with different
suggestions to the agility measurement instrument and with suggestions on which types
of analysis procedures could be applied to our data. Aaen also pointed out some of the
possibilities with factor analysis.

Clive Sanford is also an associate professor at AAU who is familiar with using questionnaires
as a research tool. He was consulted to provide basic feedback on the design and the
questions. He helped improve the questionnaire’s understandability.

4.1.3 Gathering Respondents

Collecting useful data through a questionnaire also relies on gathering the right number of
respondents and the right kind. There are different ways to select the right respondents and
the right number of respondents. Kumar [6] calls this process sampling and he states the
following about sampling:

”Sampling .. is the process of selecting a few(a sample) from a bigger group
(the sampling population) to become the basis for estimating or predicting the
prevalence of an unknown piece of information, situation or outcome regarding
the bigger group. A sample is a subgroup of the population you are interested
in.”

This sampling process has advantages and disadvantages. The advantages are that it is
possible to save time, money and resources, because less respondents has to be contacted
and administered [9]. But this is gained by compromising the level of accuracy of the
findings, because it relies on estimation or predictions about the population. This means
that there is a possibility of errors in the estimations [6]. There are two key factors that
affects the assumptions drawn from a sample [6]:

The size of the sample: Findings based upon larger samples have more certainty, than
those based on smaller ones. As a rule, the larger the sample size, the more accurate
the findings.

4.1 Design Process 63

The extent of variation in the sampling population: If a population is homogeneous
with respect to the characteristics under study, a small sample can provide a reasonably
good estimate. However, if the population is heterogeneous, a lager sample is needed
to obtain the same level of accuracy. As a rule, the higher the variation with respect
to the characteristics under study in the study population, the greater the uncertainty
will be for a given sample size.

The fist rule is straight forward and simple to understand with regard to certainty in relation
to the sample size. However, for the second rule, if the target population is heterogeneous
and contains a large variance the sample size has to be increased in order to compensate for
the increase in uncertainty.

The importance of selecting the right respondents, sparkled a discussion on how to address
this. The target population is clear, because the research questions specifically targets
IT professionals. By IT professionals, we mean people who are involved with software
development in their organization, e.g. programmers, project managers, etc.

After identifying the target population, the right approach to selecting the respondents
has to be made. One of the approaches is to select a specific company and use their IT
employees as respondents. However, this will limit the generalizability of the results as
the results from one company cannot be directly applied to other companies. So instead
of targeting companies and use their IT employees, it is more appropriate to contact an
organization with access to a large number of IT professionals. E.g. PROSA or Dansk IT,
as they have a large list of members. By using this kind of organizations a great number of
respondents is reached. This will also remove the possibility of sample bias, as the sample
is not directly specified by us. However, to cover a broad selection of IT professionals more
than one organization has to participate.

One disadvantage with using organizations is the lose of control. It is difficult to know who
and how many respondents receives the survey, e.g. we do not know who are listed on the
members lists and we cannot prohibit respondent from sending the survey to others that
friends and collegues. These issues make it difficult to calculate the response rate precisely.
The response rate is an indicator of how reliable the results are.

4.1.4 Questionnaire Administration

Kumar [6] mentions different ways to administer questionnaires; The mailed questionnaire,
collective administration, and administration in a public place. Each way has its advantages
and disadvantages.

The mailed questionnaire: The most common approach to gather information is by
mailing the questionnaires to the respondents. The format could be a hard copy or
electronically (e.g. e-mail). The main problem with this approach is a low response
rate.

Collective administration: One of the best ways of administering questionnaires is to
obtain a captive audience, such as students in a class-room or people at a conference.

64 Questionnaire Design and Administration

This approach gives a high response rate and is inexpensive.

Administration in public place: A questionnaire administered at public places, like
malls, hospitals, schools, etc. is time-consuming, but it has the same advantages as
collective administered questionnaires. The approach and use of either depends on
the study and the respondents.

Using the collective administration approach is a good way to get a high response rate at a
low cost, however, we do not have access to conferences or class-rooms with IT professionals,
so this approach is not an viable option. Also the last approach using public places would not
be an option for us, because we specifically target IT professionals. The mailed questionnaire
approach is a good way to reach as many respondents as possible, because it is easy to
distribute and administer electronically, even though there is a problem with low response
rates. However, there is some advantages that will be mentioned later that promotes this
approach as being the best way to administer our questionnaire.

Medium

There are two different electronic mediums that can be used; e-mail or online. Based on its
advantages and the target population the online medium is selected. Some of its advantages
are that it is extremely fast, no cost is involved once the set up has been completed, it
is possible to show pictures, video and play sound, use complex logic, and other features
which are not possible with paper questionnaires or most e-mail surveys. Also it can promote
understanding by using colors, fonts and other formatting options which are also not possible
in most e-mail surveys. More importantly there is no need for manual distribution and
recollection of the questionnaires. Besides that the online questionnaire data can be collected
electronically using survey software and can be analyzed using advanced statistical software.

However, there are still some disadvantages to using online questionnaires, such as current
use of the Internet is far from universal, respondents are likely not to complete a long ques-
tionnaire, no control of who attends unless access control is applied for certain respondents,
no control over multiple responses, which can all introduce biases.

4.2 Validity

The term Validity refers to the conceptual and scientific soundness of a research study [9].
Validity is important because, as researchers we should produce valid conclusions on our
findings, and this is only achieved by eliminating or minimizing the effects of extraneous
influences that might detract from the actual findings [9]. Kumar states, that to be able
to generate some ”output”, i.e. an conclusion, there has to be some ”input”. The input
comes from the different steps that we have to take, e.i. selecting a sample, collecting data,
processing data, the application of statistical procedures and writing a report [6]. The way
this is done can effect the quality of our conclusion.

Kumar [6] states, that there are generaly two perspectives on validity:

4.2 Validity 65

• Is the research investigation providing answers to the research questions for which it
was undertaken?

• If so, is it providing these answers using an appropriate method and procedure?

Validity is the ability of an instrument to measure what it is designed to measure in terms of
measurement procedures [6]. Kumar cites Babbie (1990) which states ”validity refers to the
extent to which an empirical measure adequately reflects the real meaning of the concept un-
der consideration”. This means that we have to be able to rule out alternative explanations
of the results. There are two ways to establish validity of our research instrument; logic
and statistical evidence. The logic procedure concerns establishing a logical link between
the question and the objectives, whereas the statistical procedure concerns providing hard
evidence by calculating the coefficient of correlations between the questions and the outcome
variable [6]. The logical procedure is easy, as it is simple to see a link between the questions
and the objective, however, it lacks the statistical evidence to back the justifications made.
For instance it is possible to establish a logical link between age, sex, etc. and a question
because they are concrete. Whereas a question measuring attitude is not as concrete and it
is necessary to ask several questions in order to cover different aspects of the question [6].

4.2.1 Types of Validity

There are three types of validity [6]:

• Face and content validity

• Concurrent and predictive validity

• Construct validity

Face and Content Validity

This concerns the assessment if an instrument is measuring what it is intended to measure,
based on an logical link between the questions and the objectives of the study. This type
of validity is easy to apply, i.e. each question or scale must have a logical link with the
objective. This establishment is called a face validity. Kumar [6] states that it is equally
important that the items and questions cover the full range of the issue or attitude being
measured. Assessment of the items of an instrument is called content validity.

Even though it is easy to establish a logical link and thus a logical argument for validity,
there are certain problems that we have to take in account [6].

1. The assessment is based upon subjective logic. Hence, no definite conclusions can be
drawn and different people may have different opinions about the face and content
validity of an instrument.

66 Questionnaire Design and Administration

2. The extent to which questions reflect the objectives of a research study may differ. If
the researcher substitutes one question for another, the magnitude of the link may be
altered. Hence, the validity or its extent may vary with the questions selected for an
instrument.

Concurrent and Predictive Validity

Using a scale in a measurement instrument, the validity of it can be investigated by seeing
how good an indicator it is [6]. To validate the scale it can be compared to other assessments.
There are two types of comparisons[6]; predictive and concurrent. Predictive validity is
judged by the degree to which an instrument can forecast an outcome. Concurrent validity
is judged by how well an instrument compares with a second assessment concurrently done.
Kumar further states that the predictive validity usually can be expressed in the terms of
the correlation coefficient between the predicted status and the criterion. Such a coefficient
is called a validity coefficient.

Construct Validity

Construct validity is based upon statistical procedures and more sophisticated techniques for
establishing the validity of an instrument. Kumar states that it is determined by ascertaining
the contribution of each construct to the total variance observed in a phenomenon. In our
research project we would like to find out the agility of IT professionals. We have to find
several factors that can be used to indicate agility and construct question to ascertain
the degree to which the respondents consider each of the factors important for agility.
Kumar states that the contribution of theses factors to the total variance is an indication
of the degree of the validity of the instrument. The greater the variance attributable to the
constructs, the higher the validity of the instrument.

4.3 Reliability

The concept of reliability can be seen from two perspectives [6]:

1. How reliable is an instrument?

2. How unreliable is it?

The first question concerns the ability of the instrument to produce consistent measurements.
This means that if we use an instrument to measure agility more than once under similar
conditions and get the same or similar results, the instrument is considered to be reliable [6].
Kumar further states ”the greater the degree of consistency and stability in an instrument,
the greater its reliability is”.

The second question concerns the inconsistency of the instrument. For instance if we use
an instrument to measure agility more than once under similar condition and we get results

4.3 Reliability 67

that differs. The degree of the differences in the measurements are an indicator of the extent
of its inaccuracy. This is a reflection of the instrument’s unreliability. The less the difference
between two sets of results, the higher the reliability of the instrument [6].

4.3.1 Factors Affecting Reliability

Kumar states that it is impossible to have a research tool which is 100% accurate, because
it is impossible to control external factors that affect the reliability. Some of the factors
that affect reliability are:

The wording of questions: Unclearness in the wording of a question can effect how the
respondents interpret the question, thus affect the reliability of the instrument.

The physical setting: If any change is done to the physical setting in the case of an
interview, the respondents may give different responses and thus affect the reliability.

The respondent’s mood: The mood of the respondents can affect the reliability of an
instrument.

The nature of the interaction: The form of interaction between us as researchers and
the respondents can affect the reliability of the instrument.

The regression effect of an instrument: When a research instrument is used to mea-
sure attitudes towards an issue, some respondents tend to change their opinion if they
feel they have expressed themselves positively or negatively towards an issue, thus
affecting the reliability.

There are different methods to determine the reliability of an instrument. The various
procedure are classified into two groups [6]:

1. External consistency procedures

2. Internal consistency procedures

External Consistency Procedures

External consistency procedures concern the comparison of findings from two independent
processes of data collection. This is used as a means of verifying the reliability of the
measure. There are two methods that do this [6]:

Test/re-test: This procedure is a commonly used method to establish reliability of an
instrument. It concerns the repeated administration of the measurement instrument
under the same or similar conditions. The ratio between test and re-test scores is an
indication of the reliability of the instrument. The greater the ratio, the higher the
reliability of the instrument. The advantage in using this method is that it permits

68 Questionnaire Design and Administration

the instrument to be compared to itself. The disadvantage is that the respondents
may recall the answers they gave the first time, thus affecting the reliability of the
instrument.

Parallel forms of the same test: Two instruments are constructed that measures the
same phenomenon within two similar populations. Then the results are compared
with each other. If they are similar the instrument i reliable. However, there are
also some advantages and disadvantages in using this procedure. The advantage is
that it eliminates the problem of recall that is present in the test/re-test procedure.
The disadvantage is that we have to develop two instruments instead of one, and it is
difficult to create two instruments that measures the exact same phenomenon and it
is difficult to achieve comparability in two populations.

Internal Consistency Procedures

Internal consistency procedures concern items measuring the same phenomenon should pro-
duce similar results. The split-half technique is a commonly used method to measure reli-
ability in an instrument. The idea behind it is that it is designed to correlate half of the
items with the other half and is appropriate for instruments that measure attitude towards
issues or phenomenons. The aim is to divide questions or statements that measure the
same issue or phenomenon in two halves. The scores obtained by administrating the two
halves are correlated. Kumar states that the reliability is calculated by using the product
moment correlation between the scores obtained from the two halves. The product moment
correlation calculates the reliability on the basis of only half the instrument, thus it need to
be corrected to asses the whole instrument. This is called the stepped-up reliability and the
Spearman-Brown formula is used to calculate the reliability of the whole instrument [6].

4.4 Instrument for Measuring Agility

Measuring agility in a questionnaire depends on the instrument used for the measurement.
Our questionnaire seeks to measure agility through the use of respondents’ attitude. Chapter
3 took the term agility and operationalized this through the Manifesto’s values and prin-
ciples. The result of this operationalization is seven measurement areas that cover, what
agility entails and makes it possible to distinguish between agile and non-agile respondents.
These measurement areas are further developed into a set of questions that comprise the
instrument to measure agility.

4.4.1 Attitudinal Scales

To measure the attitude of respondents, attitudinal scales are used. These scales origi-
nate from psychology where they are used to measure abstract concepts that are otherwise
”unmeasurable”, e.g. authoritarianism and self esteem [41].

Two of the most common scales are the Likert Scale and the Thurstone Scale.

4.4 Instrument for Measuring Agility 69

The Likert Scale

The Likert scale is also known as summated rating. In contrary to e.g. the Thurstone scale
it assumes that each statement/item on the scale is of equal weight or importance. The
respondent is asked to rate each statement on a response scale. Response scales can vary in
length and can be of even or uneven length, e.g 1-5, 1-9, 0-5, etc. Using a response scale of
uneven length (e.g. 1-5), the respondent is allowed to choose a middle or neutral value (3).
However with an even response scale (0-5) the respondent is forced to make a choice.

Using a the Likert scale, the final score for each respondent is calculated by summing up
the ratings for each statement on the scale. The final score is not useful by itself, but helps
relate respondents and their scores to each other. For example, determining if respondent
A is more happy with his job than respondent B.

The Thurstone Scale

One way of calculating an overall score for e.g. respondents’ attitude towards their new job,
is to use the Thurstone scale. The scale is named after one of the first and most productive
scaling theorists, Louis Leon Thurstone [41]. The scale is developed by using a panel of
judges to determine the value or weight of each statement or item on the scale. With these
metrics it is possible to calculate an overall score of peoples attitude towards a concept or
phenomenon.

4.4.2 Question Types

To decide which types of question to use, a brainstorm was done, where different kinds of
question types were proposed. Initially four types of questions were identified in order to
asses peoples agility.

1. Criticality questions

2. Agree or disagree questions

3. Valued statements

4. Bipolar preferred questions

All four types of questions are believed to be useful for measuring peoples agility but with
different properties. The four approaches are discussed, but in order to assess them further
prototypes of all four is made and their applicability is tested. These tests are conducted
as think-out-loud sessions, where each test respondent, while answering the questionnaire,
explained what she understood by a question and what was unclear. The think-out-loud
session is explained in Section 4.1

70 Questionnaire Design and Administration

Criticality Questions

The criticality questions focus on the different concepts that the agile and traditional
paradigm relate to project success. E.g agile concepts include customer involvement, it-
erative development, etc. whereas traditional concepts include documentation, managed
teams, phase testing, etc. The respondents will have to state how important each concept is
in order to achieve success in a software project on a Likert scale. An agile respondent will
then rate the agile concepts as important and the traditional concepts as non-important.
This will give each respondent an agility score and thereby make it possible to measure the
respondents’ agility.

Agree or Disagree Statements

Using the Thurstone scale the objective is to develop a set of statements concerning peoples
attitude towards software development values and principles. Each statement will phrase
an agile or traditional value that the respondent will agree or disagree with. E.g. ”Frequent
customer contact is essential?”. The set of statements is then valued or weighted according
to how agile the statements are, by a group of individuals. In this way a score assessing
each respondents’ agility is possible to gather.

Valued Statements

The valued statements approach originate from the fact that most values only become
agile when they are weighted over another value. This is also what the Manifesto uses to
communicate the key values in Agile Software Development. When used to measure the
respondents’ agility each agile value is weighted over a non-agile value and the respondent
states if she agrees with this valued statement.

Bipolar Preferred Questions

The bipolar preferred question type takes advantage of the same duality as with the valued
statements. However, instead of phrasing it at a statement that one can agree or disagree
with, it is phrased as a question. Two opposing concepts are placed on either end of a scale,
where one concept is agile and the other is not. The respondent is then asked which of
the two concepts she prefers and rates it on the scale. Additionally a situation or context
can be introduced in the question formulation. This would give the respondent additional
background information which makes it possible to understand the question and thus making
it possible to answer. This approach makes this type of questions very effective and flexible
for our purposes.

4.4 Instrument for Measuring Agility 71

Choice of Measurement Instrument

The criticality questions is fairly easy to construct using a Likert scale, however, the value
of the answers is questionable. Some of the test persons misunderstood questions that lead
to answers that did not reflect their true attitude towards Agile Software Development. The
test persons is also confused by the fact that different concepts are important in different
situations and contexts.

The Agree or Disagree statements yielded valuable results, but was difficult to construct
without introducing biases. For the statement to reflect an agile or non-agile value it must
be phrased either positively or negatively. For example, the statement ”Short development
iterations are essential” sets the agile value of short development iterations in a positive
light. This could potentially introduce a bias to one side.

The valued statements have the advantage of being paired, which eliminates the need for a
positive or negative phrasing, and also more effectively communicates the underlying values
of each question. However, compared to the bipolar preferred questions they still lack the
flexibility of providing a context they can be valued in.

The bipolar preferred questions proved to be the most effective. The responses from the test
respondents were favorable and the questions were interpreted correctly. Also the strength
of this question type is that the respondent is forced to make a choice between an agile and
a non-agile concept.

Of the four different question types, the most effective way of measuring the respondents’
attitude towards Agile Software Development is through the use of bipolar preferred ques-
tions.

4.4.3 Four Different Perspectives

The research questions require that not only the agility of respondents is measured but also
the agility of three other groups or perspectives. The other three perspectives are team,
organization and customer.

Given that the information cannot be collected directly from a respondent’s team, orga-
nization and customer, the measurement instrument must be able to assess the agility of
these three additional perspectives indirectly. This is done by asking all the respondents to
judge what they mean their team, organization and customer prefer on each question. This
approach has the drawback of relying on the respondents’ subjective judgement and may
therefore not reflect the true nature of the team, the organization and the customer, with
regard to their attitude towards the values presented in the questionnaire. However, it will
provide a rough picture of the tendencies for the three additional perspectives.

72 Questionnaire Design and Administration

4.4.4 From Measurement Areas to Questions

Even though Agile Software Development has been operationalized to yield a respondent’s
agility, through the measurement areas introduced in Chapter 3, there are still several things
that must be taken into consideration. Specially with regard to validity and reliability
mentioned in Section 4.2 and Section 4.3.

1. Is the question understandable?

2. Does the question reflect the most important aspect within the measurement area?

3. Does the question differentiate between agile and non-agile concepts?

All these criteria must be considered for each question in order to maximize the usefulness
of the questionnaire and the instrument used to measure respondents’ agility. This also has
to be done with validity and reliability in mind. The first criteria is evaluated on the basis
of the test persons’ answers and their evaluation of the questions. This evaluation results
in a minor adjustments to enhance understandability. The two final criteria reflects the
operationalization of Agile Software Development done in Chapter 3 and is also evaluated
based on the test sessions in Section 4.1.

We identified seven measurement areas in Section 3.3. These areas will be discussed and
transformed into question in the following subsection. The entire questionnaire can be found
in Appendix B.

Organizational Structure

The measurement area organizational structure springs from the agile principle of self-
organizing teams and the values of people centric software development. This is set up
as a bipolar preferred question, with self-organizing teams at one end and managed teams
at the other. Figure 4.1 shows the question as it is presented in the questionnaire. The top
question introduces the area and asks the respondents to rate which concept they prefer on
the bipolar scale. This question is then asked for all four perspectives.

4.4 Instrument for Measuring Agility 73

Attitude related questions (holdningsrelaterede spørgsmål)

The following questions are a number of "preferred-statements" - do you prefer A over B. The
preference scale goes from 1 to 5:

1 = A is definitely preferred over B
2 = A is preferred over B
3 = Both are found of equal value
4 = B is preferred over A
5 = B is definitely preferred over A

In addition to your personal preferences, you are also asked to state what you believe your team,
organization, and customer prefers.

Which approach to organizational structure is preferred...

A
Self-organizing teams Managed teams

 B(High degree of freedom.
Team is able to choose and
change their process.)

 (Policies and procedures are
constructed by upper

management and followed by
the team.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

50% Figure 4.1: The question inferred from the measurement area Organizational Structure

Figure 4.1 also includes a brief description of the concepts at each end of the scale. This
is done to ensure that the respondents understand the questions in the same way, avoid
misinterpretations and clarify the concept. Thus increasing the reliability and validity of
the questions.

The respondents have to mark their choice for each of the four perspectives on the scale
from 1 to 5. If the respondent chooses 1 is the respondent prefers the agile concept of
self-organizing teams whereas if 5 is chosen the respondent prefers the non-agile concept of
managed teams. This is how the scale differentiates between agile and non-agile respondents.
The characters A and B are used as reference points for a generalized example that should
help the respondent understand and interpret the question in the same way through all the
bipolar preferred questions.

Requirements Handling

Requirements handling is the measurement area which centers around the agile value of
relying on continuous customer collaboration throughout the development project. This
concept is flanked by the more plan-driven approach of handling requirements through a
software requirement specification. These two concepts describe the agile and non-agile way
of handling requirements as explained in Chapter 3. This is illustrated in Figure 4.2 where
each concept takes its place at either end of the bipolar preferred scale.

74 Questionnaire Design and Administration

Which approach to requirements handling is preferred...

A
Continuous customer
collaboration

 A software requirements
specification

 B(People with business
knowledge work close and
continuously with the
development team.)

 (Requirements are gathered,
documented and distributed

to developers through a
software requirements

specification.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

When measuring project progress, which approach is preferred...

A
Working software Documentation

 B(A number of integrated and
tested features.)

 (Finished intermediate
documents such as test

reports, review documents,
UML diagrams, etc.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

58%

Figure 4.2: The question inferred from the measurement area Requirements Handling

The descriptive text beneath the agile concepts further includes the agile principle of relying
on people with business knowledge to make all business decisions, and relay this informa-
tion through close and continuous collaboration with the development team. This is the
essence of this concept and stands in good contrast to the regimented upfront requirement
specification phase of plan-driven approaches.

Project Progress Control

The project progress control measurement area includes the agile value of working software
over comprehensive documentation. The question sets of in the agile principle that the
only measurement of progress is working software. In contrast to this agile principle, the
plan-driven approach relies on documentation to control and measure project progress. The
question in Figure 4.3 clearly shows the two opposing approaches.

Which approach to requirements handling is preferred...

A
Continuous customer
collaboration

 A software requirements
specification

 B(People with business
knowledge work close and
continuously with the
development team.)

 (Requirements are gathered,
documented and distributed

to developers through a
software requirements

specification.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

When measuring project progress, which approach is preferred...

A
Working software Documentation

 B(A number of integrated and
tested features.)

 (Finished intermediate
documents such as test

reports, review documents,
UML diagrams, etc.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

58%
Figure 4.3: The question inferred from the measurement area Project Progress Control

To avoid misunderstandings a brief description states what should be interpreted as working

4.4 Instrument for Measuring Agility 75

software and documentation. To avoid negative phrasing we did not use the term comprehen-
sive before documentation. But in the text beneath it is described what ”documentation”
is covering.

Software Development Model

The software development model measurement area lies at the heart of Agile Software Devel-
opment. The area springs from the values and principles that all point towards an iterative
development approach as the best way to handle changing requirements. The iterative ap-
proach can be seen in contrast to the plan-driven development approach that relies on the
waterfall model. Figure 4.4 shows the question from the questionnaire with the bipolar
preferred question and the four perspectives.

Which software development approach is preferred...

A
Iterative development Plan-driven development

 B
(The software is developed in
small increments using
timeboxing. Each increment
delivers a subset of the final
system.)

 (The software is developed in
sequential phases:

requirements, design,
implementation, verification

and maintenance.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

When measuring project success, which approach is preferred...

A
Delivering business value On time and on budget

 B(The project is a success if
the customer gets software
that is more valuable to them
than the cost put into it.)

 (The project is a success if it
meets its deadline and is on

budget.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

66%

Figure 4.4: The question inferred from the measurement area Software Development Model

The agile concept iterative development is derived from the description of the measurement
area and covers the important techniques of timeboxing, small increments and that each
increment is a subset of the entire system.

Project Success

The project success measurement area relies on the principle of satisfying the customer. In
the principle this is achieved through continuous delivery of working software, but after a
more detailed study of the principles the concept of business value emerged. To satisfy the
customer, the customer has to get something that is of more value than what they put in.
This view does not reflect the plan-driven approach of measuring success, which is based on
deadlines and budget constraints. These two opposing approaches are shown in Figure 4.5.

76 Questionnaire Design and Administration

Which software development approach is preferred...

A
Iterative development Plan-driven development

 B
(The software is developed in
small increments using
timeboxing. Each increment
delivers a subset of the final
system.)

 (The software is developed in
sequential phases:

requirements, design,
implementation, verification

and maintenance.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

When measuring project success, which approach is preferred...

A
Delivering business value On time and on budget

 B(The project is a success if
the customer gets software
that is more valuable to them
than the cost put into it.)

 (The project is a success if it
meets its deadline and is on

budget.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

66%
Figure 4.5: The question inferred from the measurement area Project Success

Design

The design measurement area is derived from the agile principle of striving to keep things
as simple at possible. This simplicity promotes transparency, code refactoring and main-
tenance. This question focuses on design simplicity as opposed to a comprehensive design
that takes possible future features into account. These two sides reflect the agile approach
to software design and the plan-driven approach. Figure 4.6 shows the preferred question
as it is presented in the questionnaire.

When designing software systems, which approach is preferred...

A
Simple Design Comprehensive Design

 B(The design is "just enough"
and kept minimal. It solves
the present problem but
nothing more.)

 (The design is far-sighted and
takes into account possible

future features and
requirements.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

To communicate knowledge, which approach is preferred...

A
Tacit interpersonal
knowledge

 Explicit documented
knowledge B(Knowledge is shared among

people through collaboration.)
 (Knowledge is shared through

documentation.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

75%

Figure 4.6: The question inferred from the measurement area Simplicity

Knowledge Distribution

This measurement area focuses on the agile principle of Tacit face-to-face communication.
Through the process of operationalizing the agile values and principles this communication
was discovered to be essential when distributing knowledge within the project team as
a whole. On the other end of the bipolar scale the plan-driven approach to knowledge

4.5 Context Information 77

distribution is done via explicit documentation. These two opposing concepts cover the
measurement area of knowledge distribution and distinguishes between agile and non-agile
respondents.

When designing software systems, which approach is preferred...

A
Simple Design Comprehensive Design

 B(The design is "just enough"
and kept minimal. It solves
the present problem but
nothing more.)

 (The design is far-sighted and
takes into account possible

future features and
requirements.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

To communicate knowledge, which approach is preferred...

A
Tacit interpersonal
knowledge

 Explicit documented
knowledge B(Knowledge is shared among

people through collaboration.)
 (Knowledge is shared through

documentation.)

 1 2 3 4 5

By you?

By your team?

By your
organization?

By your
customer(s)?

75%
Figure 4.7: The question inferred from the measurement area Knowledge Distribution

4.5 Context Information

Beside collecting information about the respondents attitudes towards different concepts
within software development, some context information is collected. This context informa-
tion is gathered for two main reasons:

1. A required part in determining if the findings can be generalized.

2. In order to answer the research questions:

• Is there a difference in the degree of agility of IT professionals, and their team,
organization and customer?

• Is there a correlation between IT professionals’ characteristics, i.e. their age, job
function, experience, education and their agility?

• Is the context of software projects suited for Agile Software Development?

The needed context information is divided into three groups; Personal Background, Orga-
nizational Background, and Project Context. This grouping of the context information is
merely a conceptual ordering for a better overview.

4.5.1 Personal Background

Personal background concerns the respondents personal characteristics, i.e. age, job func-
tion, experience, and education. This kind of information is needed because the variation in
the sample can affect the assumptions drawn from the findings as mentioned in Section 4.1.

78 Questionnaire Design and Administration

The main factor that is relevant with regard to sample characteristics is the variation of
the sample. If the sample is homogeneous with respect to the characteristics under study,
a small sample can provide a reasonably good estimate and the opposite is the case if the
sample is heterogeneous.

Clearly not all kinds of personal background information is relevant. As an example re-
spondents Shoe Size, is not seen as very relevant. The importance of a personal background
metric should be seen in regards to its possible influence on the subject investigated. For
instance, it is not believed that the size of respondents shoes has anything to do with their
agility. However, people’s age clearly influence the choices they make, their believes and
experiences and could thus have more impact on agility.

Personal background information is also gathered in order to answer some of the research
questions. These research questions are based on the assumption that some variables, e.g.
age and professional experience, could likely be related to the agility of IT Professionals.

Personal Background Metrics

We desire to design a clean and as small a questionnaire as possible. Information about
sex and postal code is some of the metrics that are excluded from the final questionnaire.
Sex would perhaps be useful in order to determine the variation of the sample, but it is
not deemed important when examining peoples agility and thus excluded. Retrieving the
postal code of respondents can help establish the geographical relationship of respondents.
However, it is decided to ask respondents about their company name instead. Knowing the
name of the respondent’s company can not directly provide exact geographical information,
as large companies are likely to have more than one department across the country. However,
knowing the company name is seen as more important than just geographical placement, as
it would make it possible to retrieve additional information such as business area, financial
situation, company age, etc. through the company web site or annual results.

The following personal background metrics are selected:

• Age

• Educational background

• Years of professional software development experience

• Primary job function(s)

With regards to age, respondents are given the opportunity to state their year of birth by
using a dropdown option box that range from 1940-1990.

Educational background does not refer to the specific education respondents have, but to
the kind of education (Ba., Ma., Ph.D). Possible answers are given in a multiple choice set:

• Self-taught

4.5 Context Information 79

• Training course(s)

• Bachelor degree

• Master degree

• Ph.D.

• Other further education

As a multiple choice question set the respondents can choose more than one educational
background. If respondents feel that their educational background is not on the list, they
have the opportunity to specify it using the other further education option.

Further more, the respondents are asked to state how many years of professional software
development experience they have. Again a dropdown option box is used with a range from
1-30 years and above.

Finally the respondents are asked to state their primary job function(s). The information
gathered here should enable the separation of developers from the rest. Agile methods,
especially with XP as the flagship, can be seen as developer centric, because they give more
responsibility to developers (technical decisions), but also removes some (business decisions).
In order to avoid confusion in the question, ”job title” being a common term in business
today, is more appropriate than ”job function”. However, today there exist a vast number
of different job titles, which will make the effort to find and list them all more cumbersome.
Also it is believed that many job titles obscures what people actually do more than bringing
clarity to it. The information required is to know what people actually do, e.g. develop,
manage, gather requirements, etc. and therefore it is decided to use the term ”job function”.

Respondents can select between the following job functions:

• Tester (E.g. structured test, unit test, acceptance test, usability test, etc.)

• Programmer

• System Architect

• Manager (E.g. project manager, team leader, etc.)

• Feature Analyst (E.g. gather system requirements, customer contact, etc.)

• Other

4.5.2 Organizational Background

Organization background concerns the characteristics of the respondents organization, i.e.
name, size, culture, etc. Hansson et al. [22] concludes that agility not only depends on
which value is judged to assess agility but also the characteristics of the organization and
the project. Therefor this is an important part of the questionnaire.

80 Questionnaire Design and Administration

A lot of information about the respondent’s organization can be gathered, however, not all
information is relevant in the perspective of this research project. For instance information
about the organization’s annual turnover is not relevant information, but the organization’s
culture is relevant, because it could have an impact on the respondent’s agility. Some
organizational information can be gathered without the involvement of the respondents, it
only depends on which metrics is used to gather the information.

Organizational background information is also gathered in order to answer some of the
research questions.

Organizational Background Metrics

The following organizational metrics are gathered:

• Name of the organization

• Organization size

• Development culture

• Used standardized software development method(s) or model(s)?

• Adherence to the software development method(s) or model(s)?

The respondents are asked to state the name of the organization they are currently working
for. This information can be used in different ways. It is possible to collect general infor-
mation about the organization without asking the respondent about them, hence making
it a less tedious questionnaire for the respondents. But not all information are possible to
collect from an organizations web site, therefore other questions are asked with regard to
their development culture and their development method(s) they use in their organization.
With the size metric, information about the size of the organization is gathered.

The last two metrics concern the standardized software development methods and model
used, and their adherence to them. This information will give an indication of how many
organizations say they use a development method or model, and if they actually adhere to
the method and model. The information will also indicate if the organizations currently is
using agile methods or at least saying they use agile methods.

4.5.3 Project Context

Project context concerns the actual projects the respondents are currently working on, i.e.
team, duration, criticality, and the transformation of Boehm and Turners [15] context factors
into questions.

A lot of information about each respondent’s project context can be gathered, however, not
all information is relevant in the perspective of this research project. For instance informa-
tion about how much money have been spent on the project, is not relevant information.

4.5 Context Information 81

The project criticality is relevant, as it indicates if the project fits in a agile context, and is
one of Boehm and Turners factors.

Project Context Metrics

Due to the reasons found in Section 2.4, the Boehm and Turner agile and plan-driven home-
ground model [15] is used to gather project context information. The Boehm and Turner
polar chart shown in Figure 4.8 is used.

external developers must perform additional learn-
ing-curve and asset-buildup activities to ensure suc-
cess.

We advocate using the Life Cycle Architecture
anchor point milestone criterion2 to exit from
Step 4.

Step 5
No decision is ideal for all time and, as this step

indicates, the management team must constantly
monitor and evaluate the performance of its
selected processes while keeping an eye on the envi-
ronment.

This step resembles the agile practice of reflec-
tion. If a process indicates some strain, developers
must backtrack, revalidate, and perhaps adjust the
levels of the agile or plan-driven methods estab-

lished initially.
Adjustments should be made as soon as strain

arises. On a more positive note, monitoring can
also identify opportunities to improve value to the
customer, shorten time to delivery, and improve
stakeholder involvement.

The flowchart in Figure 1 summarizes these five
steps.

A SAMPLE APPLICATION FAMILY
When illustrating the practical application of our

risk-based method, we first establish a realistic con-
text by introducing a family of representative cur-
rent and future software applications. For each of
these three representative systems, the project risks
suggest using a different mix of agile and plan-dri-
ven process components.

June 2003 59

ing scale described in the “Cockburn’s Three Levels of Software
Understanding, Slightly Revised” sidebar and places it in a
framework relative to the application’s complexity. This cap-
tures the situation in which a developer might be a Level 2 in an
organization developing simple applications, but a Level 1A in
an organization developing highly complex applications. Here,
the asymmetry is that while plan-driven methods can work well
with both high and low skill levels, agile methods require a richer
mix of higher-level skills.

References
1. A. Cockburn, Agile Software Development, Addison-Wesley, 2002.
2. T. Peters, Thriving on Chaos, HarperCollins, 1991.

(Percent level 1B) (Percent level 2 and 3)
Personnel

40

30

20

10

0

15

20

25

30

35

Criticality
(Loss due to impact

of defects)

3

10

30

100

300
10

30

50

70

90

50
30

10
5

1

Size
(Number of personnel)

Culture
(Percent thriving on chaos versus order)

Dynamism
(Percent requirements-

change/month)

Comfort

Many
lives

Single
life

Essential
funds

Discretionary
funds

Agile

Plan-driven

Figure A. Polar chart. The five axes represent the factors we use to
distinguish between the lighter-weight agile methods toward the
graph’s center and the heavier-weight plan-driven methods that
appear toward the periphery.

Table B. The five critical agility and plan-driven factors.

Factor Agility discriminators Plan-driven discriminators

Size Well matched to small products and teams; reliance on Methods evolved to handle large products and teams; hard to tailor
tacit knowledge limits scalability. down to small projects.

Criticality Untested on safety-critical products; potential difficulties Methods evolved to handle highly critical products; hard to tailor down
with simple design and lack of documentation. efficiently to low-criticality products.

Dynamism Simple design and continuous refactoring are excellent Detailed plans and “big design up front” excellent for highly stable
for highly dynamic environments, but present a source of environment, but a source of expensive rework for highly dynamic
potentially expensive rework for highly stable environments. environments.

Personnel Require continuous presence of a critical mass of scarce Need a critical mass of scarce Cockburn Level 2 and 3 experts during
Cockburn Level 2 or 3 experts; risky to use nonagile project definition, but can work with fewer later in the project—unless
Level 1B people. the environment is highly dynamic. Can usually accommodate some

Level 1B people.
Culture Thrive in a culture where people feel comfortable and Thrive in a culture where people feel comfortable and empowered by

empowered by having many degrees of freedom; thrive having their roles defined by clear policies and procedures; thrive on
on chaos. order.

Figure 4.8: Polar chart displaying the five context factors developed by Boehm and Turner
[15].

The factors shown in Figure 4.8 are transformed into questions so that project context
information can be gathered from the respondents through the questionnaire. There are
five factors:

1. Personnel

2. Dynamism

3. Culture

4. Size

5. Criticality

However, only four of the five factors are used; Dynamism, Culture, Size, and Criticality.
The Boehm and Turner personnel factor, is based on Cockburns Three Levels of Software

82 Questionnaire Design and Administration

Understanding, which they have modified to contain 5 levels. This skill level and its influence
on agility is described in Section 2.4. This scale is difficult to transform into a question that
can be used in a questionnaire. It also requires that the respondent understands the scale
and the levels described to be able to state their skill level. Besides that it is a subjective
judgment from the respondent where as the other factors are rather objective.

However, some of the personal background metrics collected from the respondents, can be
used to establish some measure of skill level, e.g. by looking at the years of experience and
educational background. This is not how it is measured in the Cockburns skill scale and
should be used with caution.

The transformation of the factors is described in the following subsections.

Dynamism

Dynamism concerns the level of change rate in a project. Agile methods work well with
high and low change rates, whereas plan-driven methods works best with low level of change
rates [15]. The change rate is related to the percentage of requirement changes per. month.

This factor is transformed without any complications, as the factor is easy to understand
and the scale is quite clear and straight froward to implement. The scale goes from 1% -
Above 50%. The question is formulated as:

• How large a percentage do your current project requirements change during one
month?

This question can be objective, depending on how and if the changing requirements are
documented frequently during their project. However, if that is not the case, the answer is
rather subjective and can be subject to errors.

Culture

Culture concerns thriving on chaos or on order. The culture reflects that agile methods will
succeed better in a culture that thrives on chaos than in one that thrives on order. This
question is also rather straight forward to transform, as the values from the scale in the
polar chart (Figure 4.8) is used. The culture question is formulated as:

• How would you classify the development culture in your organization?

This question is subjective, because respondents have to evaluate how large a percentage of
their team thrives on chaos or order, e.g. 60% chaos and 40% order.

4.5 Context Information 83

Criticality

Criticality concerns the loss of life due to impacts of defects in a system. This question is
also straight forward to transform, and the scale in the polar chart (Figure 4.8) is used. The
criticality question is formulated as:

• How would you classify the criticality of the system you are currently developing?

This is a rather objective question, as it should be clear for the respondent which kind of
systems they are currently working on, and if lives depend on it or not.

Size

Size concern the number of personnel. Again this factor is straight forward to transform
into a question with an understandable scale. The scale that is used is the same as in the
polar chart (Figure 4.8), and it goes from 3 - Above 300. The size question is formulated
as:

• What is the size of your current project team?

The question is objective. However, the number really depends on whom the respondent
includes to be part of project team, i.e. only the developers or all the stakeholders.

Beside the above mentioned factors, a project duration metric is used to gather information
about project durations. This is used to see if a broad segment of the projects are covered,
hence small, medium and large projects.

5Analysis

The data collected through the questionnaire need to be processed and analyzed in order
to answer the research questions and validate the research. The following sections presents
the theory behind analysis and the results and findings of the analysis.

5.1 Theory

Analysis theory gives a introduction to the statistical methods employed to answer the
research questions. It also gives a brief description on some of the main statistical concepts
and tools.

5.1.1 Statistical Concepts

There exists a number of methods to numerically describe the characteristics of a data set.
These different methods are explained in this section along with other statistical concepts
that should be clarified.

Steven’s Classification of Variable

To distinguish different types of variables from each other a classification system is used. One
of the widely accepted classification systems is called the ”Steven’s Variable Classification
System” [1]. It consists of four different variable types and determine the kind of analysis
that can be performed on them. These are listed bellow [1]:

Nominal is when each variable belongs to one of several distinct categories. E.g. company
names, race, religion, etc.

Ordinal variables are also category variables, but there also exists a known order among
them. E.g. hardness of minerals, socioeconomic status, etc.

86 Analysis

Interval is a variable in which the differences between successive values are always the
same. E.g. temperature in degrees (Fahrenheit or Celsius), calendar dates, etc.

Ratio is the same as interval variables but with a natural zero point, meaning that the
variables have values below zero. E.g. Height, weight, etc.

As mentioned above, these classifications help determine the method of analysis which is
possible. Nominal variables are the most restrictive in that there exists no order among
the categories and therefor statistical analysis cannot be performed. The interval and ratio
variables are the most statistically useful variables as the mean, median, standard devia-
tion, etc. can be calculated. The ordinal variables are more permitting than nominal, but
researchers handle them differently. Some treat them as nominal variables where as others
interpret them as interval variables. This of course makes a great deal of difference to the
conclusions that can be drawn from the variables [1]. However, it is argued that it is up
to the researcher to balance the variable classification, validity of the conclusions, and the
usefulness of the analysis method [1].

Mean, Median and Mode

The Mean and Median is used to measure the central tendencies of a data set.

The mean of a sample is the sum of the data values divided by the number of observations.

x̄ =

n∑
i=1

xi

n
=

x1 + x2 + ... + xi

n

The median is the middle observation of a set of observations that are arranged in increasing
or decreasing order. If the sample size, n, is an odd number, the median is the middle ob-
servation. If n is an even number, the median is the average of the two middle observations.
The median is located in the 1/2(n + 1)th ordered position.[10]

The mode is the most frequently occurring value of a specific variable.

Measuring Data Dispersion

To further describe the data a number of methods are used to measure the spread or dis-
persion of the data from the mean.

Range is the difference between the largest and smallest observations. This, however, only
accounts for two of the data values. A measure that takes all the data values into account
is needed. This measure would average the total distance between each observation and the
mean. Since this number would be negative for values smaller than the mean it is squared
because a distance cannot be negative (xi − x̄)2. The average of the sum of squared terms
is called the variance.[10]

5.1 Theory 87

The sample variance s2 is defined by:

s2 =

n∑
i=1

(xi − x̄)2

n− 1

To get the data in its original measurement units the standard deviation is used. Since the
variance squared the values to account for negative distances the standard deviation takes
the square root of the variation.

s =
√

s2 =

√√√√√√
n∑

i=1

(xi − x̄)2

n− 1

Measuring Relationship Between Variables

When graphically describing the relationship between two variables a scatter plot is used.
This is done by plotting each pair of observed values from the data set into a co-ordinate
system where the variables are plotted on the x and y axis respectively.

To measure the relationship numerically covariance (Cov) and correlations are used.[10]
Covariance is a measure of the linear relationship between two variables. A positive value
indicates an increasing linear relationship, and a negative value indicates a decreasing linear
relationship. The sample covariance is defined as:

Cov(x, y) = sxy =

n∑
i=1

(xi − x̄)(yi − ȳ)

n− 1

This provides the direction of the linear relationship between the two variables x and y. To
also measure the strength of the relationship the correlation coefficient (r) is used.

r =
Cov(x, y)

sxsy

The correlation coefficient ranges from -1 to +1 and the closer r is to +1, the closer the
data points are to an increasing straight line, which indicates a positive linear relationship.
The closer r is to -1, the closer the data points are to a decreasing straight line, which
indicates a negative linear relationship. If r = 0 there exist no linear relationship between
the variables.[10]

Variable Normality

Variable normality indicates something about how the data is distributed for a single vari-
able. A standard normal distribution is when the majority of data falls within the center

88 Analysis

values and then steadily diminishes towards the edges with a mean of zero and variance of
one. The best way to describe this, is to use histograms. Figure 5.1 show a histogram of
four normal distributions. The green line is the standard normal distribution. Figure 5.1
also illustrates other normal distributions that are skewed to the left of the center changing
the mean, and varying in hight changing the variance. Samples from real world cases with
large data sets often approximate some form of normal distribution.[10]

Figure 5.1: Histogram of several normal distributions [40]

Missing Values

Missing values can come in two forms; unit nonresponse and item nonresponse. Unit non-
response is used in estimating the response rate of the survey and denotes the sample
respondents that do not answer the questionnaire. This kind of nonresponse cannot be seen
in the data set itself as no variables are available from the respondent, but it can have a
significant impact on the power of the conclusions drawn from the data.

Item nonresponse is when a respondent does not answer one or more of the questions in
the questionnaire. This manifests itself as missing values in the data set. Most statistical
analysis software packages simply delete the cases where one or more variable values are
missing. This can, however, result in an unacceptably low number of respondents. If the
missing values are randomly distributed and limited, another approach is via imputation
(substitution) of the missing values. This is an area where a great deal of statistical research
has been done and there exits many methods for doing the imputation. Each of these
methods have their own pros and cons concerning data validity and processing complexity
but these will not be discussed further in this report as they are not used in this project.[1]

Outliers

Outliers are extreme cases in the data set that are inconsistent with the rest of the data. It
is difficult to judge what constitutes an outlier but in larger data sets it can be seen as single
cases that deviate excessively from the rest. An outlier can have overly significant influence
over statistical measures such as the mean, standard deviation, covariance and correlation.
This is why outliers should be identified and removed before analysis. To identify outliers

5.1 Theory 89

scatter plots can be used to represent the data graphically. Formal tests for outliers also
exist, but they usually assume variable normality and are quite sensitive to non-normality.
So these should only be used when the assumption of variable normality is reasonable. To
test if outliers make a significant difference in the analysis, two test can be run. One with
the outliers in the set and one without.

5.1.2 The Analysis Method

The analysis method that is used to explore the collected data and assist in answering our
research questions is called ”Factor Analysis”.

Unique
Factors

Original Variables

Errors of
Measurement

Factors

Specific Factors

Common Factors
(Latent Variables)

Figure 5.2: A schematic for Factor analysis theory (The factor model).

It is an exploratory method for looking at dependencies among variables. It falls under the
category of data reduction analysis methods, because it sets out to describe the majority
of the data by creating fewer new variables called common factors. As it is an exploratory
method the results from the analysis is subject to interpretation by the researcher and should
therefore not be used as a basis for new statistical theory. Nevertheless, factor analysis is

90 Analysis

very useful when exploring possible correlations between variables and helps the researcher
gain insight into the data.[1][7]

Figure 5.2 shows two common factors that have been extracted from four original variables.
These original variables hold the data collected from respondents and should ideally all point
to or interact with very few common factors, which in turn should be known in advance. In
factor analysis not all information is explained by a set of common factors, there are also
unique factors to every single original variable, as illustrated in Figure 5.2. These unique
factors can be a subset of factors only working on one of the original variables, and an error
of measurement factor. The error of measurement factor is not an unobserved characteristic
of the individual respondent but an unsystematic transient event[13].

Figure 5.2 is a graphical representation of the mathematical factor model, which is intro-
duced later in this chapter.

Factor analysis consists of two stages called ”Initial Factor Extraction” and ”Factor Rota-
tion”. Each of these stages can be performed by different methods and some of these is
addressed in the following sections. Factor analysis is often mentioned in correlation with
”Principle Component (PC)” analysis, which also is one of the methods used in the Initial
Extraction stage. PC analysis is a data reduction analysis method in its own right, but
the math behind the calculations in the factor and PC analysis methods differ somewhat.
This is why the sections bellow start by introducing PC analysis and then discusses Factor
analysis.

5.1.3 Principle Component Analysis

PC can be described as a method of transforming the original variables into new, uncorre-
lated variables, which is called the Principle Components. These principle components are
linear combinations of the original variables. Each of the new variables conveys a measurable
amount of information on the correlation between the original variables, in the form of the
new variable’s variance. These are then arranged in order of decreasing variance so the first
principle component is the most informative variable and the last is the least informative.

As an example, two variables X1 and X2 are analyzed. Each variable contains a random
sample of N observations. First of, to ease interpretation, the sample mean is subtracted
from each observation.

x1 = X1 − X̄1

x2 = X2 − X̄2

This makes the mean of x1 and x2 zero, but does not alter the sample variances S2
1 and S2

2

or correlation r. Now two new variables C1 and C2 are crated from linear combinations of
x1 and x2. These are the principle components and written as

C1 = a11x1 + a12x2

C2 = a21x1 + a22x2

Note that for any set of values of the coefficients a11, a12, a21 and a22 the N observed x1 and
x2 can be introduced and thereby obtain N values of C1 and C2. The means and variances

5.1 Theory 91

of these are

meanC1 = meanC2 = 0

VarC1 = a2
11S

2
1 + a2

12S
2
2 + 2a11a12rS1S2

VarC2 = a2
21S

2
2 + a2

22S
2
2 + 2a21a22rS1S2

Where S2
i = VarXi

Now the coefficients are chosen within the confines of these three rules:

1. Var C1 is as large as possible.

2. The N values of C1 and C2 are uncorrelated.

3. a11 + a12 = a21 + a22 = 1

In affect C1 and C2 are rotations of the original x1 and x2 axes and the N values of C1

will have the largest variance as per rule number one. These variances are also known
as the principle components eigenvalues of the covariance matrix of X1 and X2. Also the
eigenvalues of all principle components add up to the total variance of the original variables.
All this means that the new principle components are rotated in such a way that the variance
of the original variables is distributed so the first principle components describes as much
of the information as possible.

Most researchers prefer to standardize the variables prior to analysis because it compensates
for the unit of measure of the variables and eases interpretation. This standardization
is achieved by dividing each variable by its sample standard deviation, which in turn is
equivalent to analyzing the correlation matrix instead of the covariance matrix. For the
correlation matrix the total variance is the number of variables analyzed (P), and the
proportion explained by each principal component is the corresponding eigenvalue divided
by P .

Every PC analysis on P variables produces P principle components, but since the object
is to reduce the number of variables only a subset is chosen. This subset is based on the
amount of the total variance explained by the chosen principle components. A rule of thumb
is that all principle components with eigenvalues larger than 1 is selected. However, analysis
of scree diagrams and total percent of variance explained is also used to make the decision
of how many principle components to select.

5.1.4 Factor Analysis

In PC analysis the major objective is to find a number of principle components that explain
as much of the total variance as possible. However, factor analysis is mainly used to explain
the interrelationships among the original variables. Ideally, the number of expected factors
is known in advance and they should be easily understandable and relate the information
contained in the original variables.

92 Analysis

As an example, the variables X1, X2.....XP are used. Again these variables are standard-
ized xi = (Xi − X̄i)/Si, so that their variances are equal to one and their covariances are
correlation coefficients. Now it is the objective of factor analysis to represent each of these
variables as a linear combination of a smaller set of common factors plus a factor unique
to each of the response variables. The common factors are unobserved characteristics that
have an impact on the correlation between variables. Whereas the unique factor can con-
sist of specific factors that do not influence variable correlation, or errors of measurement
factors[13].

x1 = l11F1 + l12F2 + ... + l1mFm + e1

x2 = l21F1 + l22F2 + ... + l2mFm + e2

.

.

.

xP = lP1F1 + lP2F2 + ... + lPmFm + eP

Where the following assumptions are made:

1. m is the number of common factors (typically much smaller than P)

2. F1, F2, ..., Fm are the common factors.

3. lij is the coefficient of Fj in the linear combination describing xi

4. e1, e2, ..., eP are unique factors, each relating to one of the original variables.

The above equation and the four assumptions constitute the factor model. Where each of
the response variables are composed of a common factor and its own unique factor. When
the factor model breaks the response variable xi into two parts, it also breaks the variance
of xi into two parts:

1. The communality, i.e., the part of the variance that is due to the common factors.

2. The specificity, i.e., the part of the variance that is due to the unique factor ei.

If the communality of xi is denoted by h2
i and the specificity by u2

i , the variance of xi is
Var xi = 1 = h2

i + u2
i . In other words the variance is the sum of the communality and

the specificity. Factor analysis is concerned with finding estimates of the factor loadings lij
and the communalities h2

i . One of the ways to solve this equation is through the use of PC
analysis and this is called the initial factor extraction as mentioned earlier.

Initial Factor Extraction Using Principle Components

To use the PC analysis for the factor extraction the principle component model has to be
modified to express each variable xi in terms of Fj ’s. To do this first recall the relationship

5.1 Theory 93

between the variable xi and the principal components Cj .

C1 = a11x1 + a12x2 + ... + a1P xP

C2 = a21x1 + a22x2 + ... + a2P xP

.

.

.

CP = aP1x1 + aP2x2 + ... + aPP xP

This set of equations can be inverted to express the xi’s as functions of the Cj ’s.

x1 = a11C1 + a21C2 + ... + aP1CP

x2 = a12C1 + a22C2 + ... + aP2CP

.

.

.

xP = a1P C1 + a2P C2 + ... + aPP CP

Now the first set of equations has been transposed so the rows of the first set has become
the columns of the second set of equations. Since factors are assumed to be standardized
we divide the principle component by its standard deviation, so Fj = Cj/(VarCj)1/2 and
thereby Cj = Fj(VarCj)1/2. This gives the ith equation

x1 = a1iF1(VarC1)1/2 + a2iF2(VarC2)1/2 + ... + aPiFP (VarCP)1/2

This is then modified in the following two ways:

1. The notation lji = aji(VarCj)1/2 for the first m components is used.

2. The last P −m terms are combined and denoted by ei.
ei = am+1,iFm+1(VarCm+1)1/2 + ... + aPiFP (VarCP)1/2

This results in each variable xi being expressed in the form

xi = li1F1 + li2F2 + ... + limFm + ei

For i = 1 to P . Now the principle component model has been transformed to produce the
factor model. It should also be noted that when the variables are standardized the factor
loadings lij are the same as the correlations between xi and Fj in correlation matrix also
called the pattern matrix.

As explained in the section about PC analysis this extraction tries to maximize the variance
explained by the first factors and thereby explain the majority of the data. Other factor
extraction methods exist that take a different approach. One such method is principal axis
factoring that instead of maximizing the variance explained, maximizes the communalities.
However, this method will not be described further in this report.

94 Analysis

Factor Rotation Using Verimax

The idea behind factor analysis is to find common factors that can easily be explained.
However, it is not always possible to interpret the resulting factors from the initial extraction,
so a rotation is performed. When rotating the original factors new factors called the rotated
factors are created. These rotated factors are selected so that some loadings are very large
(near ±1) and the remaining loadings are very small (near zero). Also factor loadings that
are high in one factor is minimized in the other factors. This makes the resulting factors
easier to interpret and use in further analysis.

Verimax rotation is an approach that assumes that the rotated factors are uncorrelated and
thus the axis of these factors are orthogonal (perpendicular) to each other. Other rotation
methods exist that relax this requirement, but these are not discussed any further.

5.1.5 Cronbach’s Alpha

Cronbach’s Alpha is a method of measuring the reliability of a statistical research instrument,
developed by Cronbach in 1951. This method gives the researcher a way to testing if the
variables used to measure a common factor or latent variable is reliable. Cronbach’s alpha
is defined as:

α =
N · r̄

1 + (N − 1) · r̄

Where N is the number of variables and r̄ is the average of all correlation coefficients between
the variables.

Alpha can be considered an unbiased estimator of reliability as long as the variables co-
variances are equal, which in turn means that they all have one common factor in a factor
analysis. In most research on real world data this is, however, not the case when data is
collected through questionnaires and is subject to interpretations. This means that it is
unlikely that the data follows a linear regression on one common factor and therefor Alpha
can be considered a lower bound estimator of reliability.

Alpha can assume values from negative infinity to 1. As a rule of thumb researchers hesitate
to use instruments that have an Alpha score of less than 0.70. However, the appropriate
degree of reliability depends on the use of the instrument.

It is important to note that the measure of reliability of an instrument does not say anything
about the validity. Alpha in a sense measures the degree of correlation between the variables
in the instrument and not if what they measure is the correct thing.

5.2 Validity and Reliability

Establishing the validity of our findings and the reliability of our instrumentation is very
important. In Section 4.2 and Section 4.3 the concepts of validity and reliability is explained.

5.2 Validity and Reliability 95

The importance lies in, that we as researchers produce valid conclusions based on our findings
as mentioned in Section 4.2. The results are based on 142 respondents that completed the
questionnaire and answered all questions, out of 304 respondents.

5.2.1 Sample Characteristics

With regard to sample characteristics as described in Section 4.1 it is important to gather
respondents who reflect the characteristics of the target population. Besides that we would
like to examine if the results are generalizable. Sample characteristics, such as the respon-
dents’ age, educational background, professional experience, organization and organization
size is used to establish reliability, validity and generalizability. The data gathered about
the respondents are also used when answering the research questions. This will be treated
later in this chapter. In the following subsections each of the results about the sample will
be shown and discussed.

Age

To see if a broad spectrum of the population with regard to age is covered, respondents year
of birth is gathered. 142 respondents answered the question: Year of birth? and the results
are shown in Figure 5.3. The ages are grouped into intervals of five years, i.e. from 21-25,
26-30, etc.

5

17

28

25

32

13 13

7
1 1

0%

5%

10%

15%

20%

25%

25 30 35 40 45 50 55 60 65 70

F
re
q
u
en
cy

Years

Age

Figure 5.3: The distribution of the respondent’s age.

The range is 44 years (22-66 years). The mean and median is 40 years and there is a multiple
mode, 31 and 43 years. Figure 5.3 illustrates how age is distributed among the respondents.
The figure shows that there is a broad coverage with regard to age.

96 Analysis

Educational Background

To see how many of the respondents have an academical education or are self-though, they
were asked to specify their educational background, i.e. Bs., Ms, Ph.D., etc. 142 respondents
answered the question: What is your educational background? and the results are shown in
Figure 5.4.

13

6

44

49

1

29

0%

5%

10%

15%

20%

25%

30%

35%

40%

Self-tought Training
course(s)

Bachelor
degree

Master
degree

Ph.D. Other

F
re

q
u
en

cy

Education

Figure 5.4: Showing the educational background of the respondents.

Figure 5.4 shows that the majority of the respondents 35% (49) have a Masters degree
whereas 31% has a Bachelor degree. Additionally, it shows that 9% (13) are self-taught,
nearly 4% (6) have been taking training courses, and less than 1% (1) have a Ph.D. Further
it is seen that 20% (29) responded that they have ”further education” not mentioned in the
list of choices. 52% of those said that they had a Computer Science educational background.
It was observed that some of the respondents misinterpreted the last option ”other further
education” as more than one had selected an education from the option list and also stated
that they had other further education. However, this option was intended to be used by the
respondents that do not have an education that are listed. This means that the reliability
of the questions is not strong, as the answers differ from respondent to respondent. Hence,
it is interpreted differently by the respondents. But if we abstract from the fact that some
respondents did misinterpret the last option, the results show that the respondents are from
a wide range of educational backgrounds.

Experience

To see how many years of professional experience the respondents have with software de-
velopment, the respondents were asked to state how many years of professional software
development experience they had. 142 respondents answered the question: Years of pro-
fessional software development experience? and the results can be seen in Figure 5.5. The
years of experience have been grouped into intervals of five years.

5.2 Validity and Reliability 97

28

38

23 23

16

7 7

0%

5%

10%

15%

20%

25%

30%

1-5 6-10 11-15 16-20 21-25 26-30 Above 30

F
re

q
u
en

cy

Years

Experience

Figure 5.5: Showing the years of experience the respondents have with software development.

Figure 5.5 shows that, the years of professional experience span from 1 to above 30 years.
The mean is 13 and the median is 12, whereas the mode is 10. The figure shows that we have
respondents from all levels of experience. This indicates that from those that participated,
we have covered a broad range of the respondent with different levels of experiences within
software development. There are no actual peaks in years of experience, besides in the
interval from 6-10 years, where slightly more than 25% of the respondents are.

Job Function

To assess if respondent with different job functions are represented in the data, respondents
were required to state which primary job function they have. 142 respondents answered
the question: What is your primary job function(s)? This question is a multiple-choice
question, which means that respondents could state more than one job function.

15

98

59

33

14
19

0%

10%

20%

30%

40%

50%

60%

70%

80%

Tester Programmer System
Architect

Manager Feature
Analyst

Other

F
re

q
u
en

cy

Job Function

Figure 5.6: Showing the respondents primarily job function(s).

98 Analysis

Figure 5.6 shows that most of the respondents 69% (98) of the respondents are programmers.
42% (59) respondents are system architects, 23% (33) are managers, 11% (15) testers, 10%
(14) feature analyst and 13% (19) responded that they had other job functions than those
listed. The other job functions, besides those that were listed, were: teacher, professor,
consultant, configuration manager, test manager, operations manager, product manager,
systems developer, process improvement, server admin, and network surveillance. The re-
sults show that there are different respondents with different job functions that participated.
The intent was to cover a broad part of job functions, even though most of the respondents
are programmers. Which we assume reflects the industry very well, because there are always
more programmers than e.g. managers, feature analyst, etc.

Organization and Size

To see if we have respondents from different organizations, the respondents were asked
to state the name of their organization. Not all respondents answered this question, but
those who did, come from 85 different organizations here in Denmark. The size of the
organizations also varies. The respondents were asked to state how large their organization
is by indicating how many employees the organization has. This question was asked to see if
we have respondent from different sizes of organization and not only respondents from e.g.
small organizations. 142 respondents answered the question: How large is your organization
approximately? and the results are shown in Figure 5.7.

1
7

21

17

11

24

10

14
12

25

0%

5%

10%

15%

20%

F
re

q
u
en

cy

Employees

Organization Size

Figure 5.7: The sizes of the organizations that the respondents work for.

Figure 5.7 shows that respondents come from organizations ranging from small to very
large organization. The figure shows that there are almost an equal number of respondents
from small (6-20 employees), medium (101-250 employees), and very large (above 5000
employees) organizations. However, most of the respondents come from organizations that
are very large.

To sum up, it is possible to say that our results indicate that the sample representation
does not have any significant holes. However, it is not possible to generalize our data as

5.3 Adjustments of the Measurement Instrument 99

the sample can not be confirmed as representative in relation to the target population. The
data can still be used to answer the research questions.

5.3 Adjustments of the Measurement Instrument

Before the collected data can be analyzed the measurement instrument variables has to be
tested for internal reliability. In our case the measurement instrument is comprised of the
seven bipolar preferred questions established in Section 4.4. The reliability test is done
using the Cronbach’s Alpha reliability indicator introduced in Section 5.1. Furthermore, to
measure respondents’ agility a benchmark is established that distinguish between agile and
non-agile respondents. The final adjustment is a weighting of the variables that comprise
the measurement instrument.

Danish Agile User Group and Main Survey Test Sets

The survey was conducted on a primary data collection group and on a secondary agility
test group, DAUG. The primary group consisted of IT professionals and provided the data
for answering the research questions. The respondents were gathered as explained in Section
4.1. The secondary group of respondents were members of DAUG and acted as a testbed for
the agility measurement instrument. The two groups both answered the same questionnaire
but the data collection was independent of each other. To isolate the two groups from each,
other steps were taken to minimize the chance of one respondent answering more than one
questionnaire. First of, the data collection from the two groups was done sequentially, where
the main survey was conducted first and there after the DAUG survey. Furthermore the
respondents from the main survey were asked if they were a member of DAUG and then
excluded from the DAUG survey.

The goal of the DAUG survey was to establish an agility benchmark on our measurement
instrument and test the internal reliability. This would be achieved by collecting data from
the DAUG members, which were known to be agile and then relate the agility score of these
respondents to that of the respondents from the main survey.

5.3.1 Cronbach’s Alpha Internal Reliability

One indicator of internal reliability is Cronbach’s Alpha, which is explained in detail in
Section 5.1. In short it provides a measurement of how strong the correlation between the
variables in the instrument is. This can be used as an indicator as to how well the instrument
measures a single factor, in our case agility. However, Cronbach’s Alpha can not be used as
an indicator for validity in that it does not take into account what the instrument measures
but only how well it measure something. The process of arguing that the instrument indeed
measures agility is done later in this section.

100 Analysis

If Variable Deleted Test

When using Cronbach’s Alpha to test a measurement instrument the Alpha value is often
calculated on all the variables first to establish an overall measurement. Then the Alpha
value is calculated when each variable, in turn, is removed, which gives a table of ”if variable
deleted” Alpha values. This test is used to indicate if any of the instrument variables are
pulling in the wrong direction compared to the overall Alpha.

Both the main and DAUG survey were tested with the ”if variable deleted” approach. Table
5.1 shows the overall Alpha values of the two survey groups and the ”if deleted” values for
each of the seven variables. Remembering that Alpha is an indicator for the degree of
correlation between the variables, there exist somewhat of a difference between the two
surveys. This can be caused by the fact that considerably fewer respondents participated
in the DAUG survey; only 27 compared with 142. I can also be caused by the DAUG
respondents being more familiar with general and agile software development methods and
thereby sharing a common view on the concepts involved in the questions. If this is the
reason it would indicate that the instrument indeed measures agility since agility is the
common factor shared by the DAUG respondents and not the main survey respondents.

Bipolar Preferred Questions
(Variables)

Main Survey Cron-
bach’s Alpha

DAUG Survey Cron-
bach’s Alpha

1. Organizational Structure 0,604 0,801
2. Requirements Handling 0,629 0,818
3. Project Progress Control 0,571 0,827
4. Software Development Model 0,601 0,825
5. Project Success 0,615 0,819
6. Design 0,682 0,866
7. Knowledge Distribution 0,613 0,839
Overall Cronbach’s Alpha 0,654 0,849

Table 5.1: If deleted table of Cronbach’s Alpha values for Main and DAUG surveys.

The reliability of the measurement instrument is given by the value of the Cronbach’s Alpha
and as a rule of thumb the value should preferably be above 0,7 for there to exist sufficient
correlation between the variables to consider the instrument useful. The main survey only
has an Alpha of 0,654 indicating that the correlation is below the recommended level,
however, the Alpha of the DAUG survey is 0,849 and well above the recommendation. This
could indicate that the instrument is working and measuring agility, but that respondents
with no common background in agility, disagree more than those with agile backgrounds.

The ”if deleted” test show that all except one question contribute to the reliability of the
instrument. The only variable that increase the Alpha value if deleted is variable 6. Design.
This is the case in both the main and DAUG surveys, which indicates that the question
disrupts the correlation between the variables. The design question centers around the agile
approach of simple design as opposed to comprehensive upfront design. The Cronbach’s
Alpha test indicates that the design measurement area is a poor variable for measuring

5.3 Adjustments of the Measurement Instrument 101

agility because the people who are otherwise regarded as agile by the instrument prefer,
comprehensive design and viceversa. For this reason the design variable is excluded from
the analysis and is not used to measure agility. This gives the main survey a Cronbach’s
Alpha of 0,682 just bellow the recommended 0,7 and the DAUG survey a value of 0,866,
which signify that the measurement instrument has a good internal reliability.

5.3.2 Agility Benchmark

Our instrument is constructed to measure agility, as mentioned in Chapter 4, on a scale of
1 to 5, where 1 is agile and 5 is not agile. But what is the cutoff point where respondents
go from being agile to non-agile and is there a middle ground between the two sides. The
logical choice as cutoff point for the scale would be 3 as it represents the middle of the scale.
However, this choice would be based on the assumption that respondents interpret the scale
in the same way and observe 3 as the dividing value. Also this choice would not provide
a middle ground and only divide respondents in agile and non-agile. Another approach
is to establish a benchmark for agility and thereby calibrate the scale. The benchmark is
established using the DAUG survey, which is comprised of agile respondents.

Before the DAUG data could be used it had to be edited. Only the respondents who stated
in the questionnaire that they used agile methods are included. This was necessary because
some of the respondents stated that they used non-agile methods and homemade methods,
which could not be determined as agile, and these respondents could influence the agility
rating. This elimination meant that the 27 DAUG respondents was reduced to 13 which all
used agile methods.

Each of these respondents was then plotted on a scatter plot shown in Figure 5.8. The
respondents are plotted according to their agility score on the vertical axis and their variance
on the horizontal axis.

2,29

1

1,5

2

2,5

3

3,5

4

4,5

5

0 0,2 0,4 0,6 0,8 1 1,2

A
g
il
it

y
 S

co
re

Variance

DAUG Respondents

Figure 5.8: Scatter plot of DAUG respondents.

The agility score on the vertical axis is calculated as a weighted average of the values on

102 Analysis

each of the six questions. This means that the agility score of each respondent is the mean
of the respondent’s answers to the six bipolar preferred questions where each questions have
been multiplied by a weight. This weight is explained later in this section. The equation
for calculating the agility score is shown in Equation 5.1.

Agility Score =
w1Q1 + w2Q2 + w3Q3 + w4Q4 + w5Q5 + w6Q6

6∑
i=1

wi

(5.1)

The horizontal axis in Figure 5.8 shows the variance of each respondent. This is a measure
of how varied the respondent’s answers are. So while a respondent alternating the answers
between 1 and 5, and one consistently answering 3 would both get a mean of 3, they would
not get the same variance. This means that we can measure the consistency of the answers
and thereby establish if the respondent is conflicted or confused in relation to agility.

From Figure 5.8 we can also see that all respondents are in the lower half of the scale.
This is expected as it is assumed that all the respondents are agile practitioners and should
therefore also prefer the agile concepts. If the assumption, that all these respondents are
agile is true, the cutoff line for agility can be set at the point of the highest agility score.
In this case the highest agility score is 2.29 and it would then be safe to assume that all
respondents scoring lower than 2,3 can be considered agile. Now that the benchmark for
agility has been established there also has to be a cutoff line for non-agile respondents.
However, since the survey has not been conducted on an exclusively non-agile group, this
benchmark has to be set in another way. As reasoned before the logical choice would be 3,
which divided the scale into three intervals:

Agile Middle Non-agile
[1-2,3]]2,3-3[[3-5]

Table 5.2: The three intervals of the agility scale.

5.3.3 Variable Weights

The variable weights mentioned earlier to calculated the agility score was used to further
increase the accuracy of the measurement instrument. By adding weights to each of the
questions they could differentiate between each other. This would give a sort of Thurstone
like scale.

The method for creating these weights, is the principle component analysis, which is de-
scribed in Section 5.1.

5.4 Answering the Research Questions 103

Principle Component Analysis

Principle component analysis attempts to describe as much of the information between
correlated variables as possible in as few new variables as possible. The new variables or
principle components are linear combinations of the original variables and it is this property
we take advantage of to create the weights.

When all the elements of the correlation matrix is positive the first principle component
is what is known as a size variable and is in essence a weighted average of the factor the
component describes [7]. In our case the measurement instrument measures agility and the
variables correlate in regard to this factor, so the first principle component is a weighted
average of the ”size” of agility. This manifests itself in that the component has hight loadings
on all 6 variables in the instrument [7].

Table 5.3 shows the loadings for the first principle component. Given that these are weighted
averages of the level of agility they indicate how much the correlation between the variables
are based on the individual variables. This means that the loadings from the first principle
component can be used as weights for each question in the agility score.

Bipolar Preferred Questions
(Variables)

First Principle Com-
ponent

1. Organizational Structure 0,679
2. Requirements Handling 0,562
3. Project Progress Control 0,730
4. Software Development Model 0,608
5. Project Success 0,605
6. Knowledge Distribution 0,547

Table 5.3: The first principle size component’s loadings on all 6 questions.

5.4 Answering the Research Questions

This section answers the research questions using data collected from the main survey and
according to the adjustments that have been done in the previous section. This means
that only six of the original seven bipolar preferred questions are used. Also the agility
benchmark from Table 5.2 are used and the variable weight from Table 5.3 are used in
Equation 5.1 to calculate the agility score.

5.4.1 Agility of IT Professionals

The first research question states the following:

How Agile are IT professionals?

104 Analysis

This is answered through the use of the main survey data and the 6 bipolar preferred ques-
tions from the questionnaire. Figure 5.9 shows a scatter plot of the main survey respondents’
agility score and variance. The agility score is calculated from Equation 5.1 by inserting
the values from their personal preferences and the weights from the principle component
analysis. The variance is displayed on the horizontal axis and indicates how conflicting the
answers to the 6 questions are. Figure 5.9 also shows two red horizontal and one vertical
lines. The horizontal lines denotes the agile and non-agile benchmark lines established in
the previous section. The vertical line denotes the cutoff line where the answers conflict so
much that the respondent can be categorizes as conflicted or confused. This categorization
is of course not clear-cut because there could exist a multitude of reasons why the answers
vary a great deal. However, when a respondent has a variance of more than 1,5 it clearly
impacts the level of agility regardless of the agility score and this is therefore used as a
delimiter between conflicted and non-conflicted respondents.

Conflicted
Cutoff Line

Agile
Cutoff Line

Non-Agile
Cutoff Line

1

1,5

2

2,5

3

3,5

4

4,5

5

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

A
g
il
it

y
 S

co
re

Variance

Agility vs. Conflicted

Figure 5.9: Scatter plot of the Main survey’s respondents.

The scatter plot illustrates that most respondents fall below the non-agile benchmark and
is therefore either in the middle or agile part of the chart.

Figure 5.10 shows this more clearly as each of the bars in the chart represent agile, mid-
dle and non-agile respectively. This graph shows that almost 48% of the respondents are
agile and an additional 11% are agile but categorized as conflicted. This stands in clear
contrast to the middle and non-agile categories that only have 16% and 12% of the respon-
dents respectively. The numbers on each column is the number of respondents the column
represents.

5.4 Answering the Research Questions 105

68

24
18

16

9

7

0%

10%

20%

30%

40%

50%

60%

70%

Agile Middle Non-Agile

IT Professionals

Conflicted

Not Conflicted

Figure 5.10: Column graph of the agility of IT Professionals.

Figure 5.10 clearly indicates that the majority of respondents are agile but also shows that a
considerable percentage of respondents give conflicting answers between the individual ques-
tions. This may be caused by a lack of knowledge on agile and general software development,
since this this confliction was much less prevalent among the DAUG respondents.

5.4.2 Correlation Between Personal Characteristics and Agility

This research question involves comparing the respondents agility score with that of several
personal characteristics. The question states the following:

Is there a correlation between IT professionals’ agility and their characteristics, i.e. their
age, job function, experience and education?

First the agility score is compared with the age of the respondents to see if there is a
correlation between the two. Figure 5.11 shows a scatter plot where the X-axis is the
respondents’ year of birth and the Y-axis is their agility score. The agility score for each
year is calculated as the average of the scores for respondents born in that year. As the
Figure illustrates the respondents’ age ranges from 21 to 66 years but no apparent correlation
exits in the data. The black line crossing the graph is a linear trendline and it clearly shows
that there is no correlation between age and agility. This means that both young and old
IT Professionals are equally agile and non-agile.

106 Analysis

1

1,5

2

2,5

3

3,5

4

4,5

5

1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990

A
g
il
it

y
 S

co
re

Year of Birth

Agility vs. Age

Figure 5.11: Scatter plot of respondents’ agility compared with their age.

The second personal characteristic to compare with the agility score is experience. Figure
5.12 shows a scatter plot of the correlation between the two. As years of professional
experience is closely related with the respondent’s age it is not surprising that there also is
no correlation between experience and agility. Again the trendline shows no indication that
there exist a relationship with agility and experience.

1

1,5

2

2,5

3

3,5

4

4,5

5

0 5 10 15 20 25 30 35

A
g
il
it

y
 S

co
re

Years of Professional Experience

Agility vs. Experience

Figure 5.12: Scatter plot of respondents’ agility compared with their professional experience.

The third characteristic is education. Figure 5.13 illustrates the relationship between agility
and education in a column chart. Each column color represents a different education, which
are divided into the three agility intervals. The figure indicates that there exist a difference
in the level of agility between respondents with longer educations and those with short
course based education. However, as the number on the columns show, the course based
education category is based on very few respondents, so this is likely to affect the results.

5.4 Answering the Research Questions 107

This means that our data support no correlation between education and agility. Also the
questionnaire included several other education categories, like self-taught and Ph.D., but
these were excluded to simplify the column graph and because they did not reveal anything
significant.

25

11

8

29

10 10

2

1

3

0%

10%

20%

30%

40%

50%

60%

70%

Agile Middle Not Agile

Agility vs. Education

Bachelor degree

Master degree

Training course(s)

Figure 5.13: Column graph of respondents’ agility compared with their education.

64

25

9

41

15

3

11 11 11

0%

10%

20%

30%

40%

50%

60%

70%

80%

Agile Middle Not Agile

Agility vs. Job Function

Programmer

System Architect

Manager

Figure 5.14: Column graph of respondents’ agility compared with their job function.

The final personal characteristic is job function. Figure 5.14 shows three of the six job
functions included in the questionnaire; Programmer, System Architect and Manager. These
were selected because they are based on the majority of the respondents and reveal the
most interesting results. As the figure shows there exist a great deal of difference between
programmers, system architects and managers. Both programmers and system architects
are highly agile while managers are distributed equally on the agility scale. The reason for
this difference may be that managers have closer contact with the customers, who make

108 Analysis

it difficult to adhere to the agile concepts. It may also be caused by managers having to
consider planing and administrative issues that oppose the agile values.

The data from the main survey indicate that there is a correlation between a respondent’s
job function and their level of agility. 65% of the programmers and 69% of system architects
are agile, while only 33% managers are agile.

5.4.3 IT Professionals, Their Team, Organization and Customer

This research question takes the other three perspectives of the bipolar preferred questions
and compares them with the agility of IT professionals. The question states the following:

Is there a difference in the degree of agility of IT professionals and the agility of their team,
organization and customer?

To find out if the agility of the other perspectives, team, organization or customer is different
from that of IT professionals, they are analyzed in the same way as IT professionals are
in the first research question. This means that the agility score is calculated based on the
values of each perspective and the variance is used to measure how conflicted these answers
are.

Figure 5.15 illustrates the agility of the team, which is very similar to that of IT professionals
in Figure 5.10. When comparing the two it is clear that both perspectives have the same
level of agility, where the majority of respondents reside on the agile side of the column
graph.

66

35

17

11

8

5

0%

10%

20%

30%

40%

50%

60%

Agile Middle Non-Agile

Team

Conflicted

Not Conflicted

Figure 5.15: Column graph of the agility of Teams.

Next the organization is compared with IT professionals. Figure 5.16 shows the agility of
the organization. Compared with Figure 5.10 it is clear that the majority are no longer
on the agile side but is located both in the middle and on the non-agile side of the chart.
This indicates that organizations are less agile than the IT professionals who work for them.

5.4 Answering the Research Questions 109

This being said, it is important to note that the values retrieved from the three other
perspectives are estimations by the respondents themselves. This means that biases toward
the organization and subjective answers can result in erroneous data, which in turn skews
the conclusions drawn from them. However, laking the possibility of collecting completely
objective data on each of the respondent’s team, organization and customer, the method of
allowing the respondent to estimate the three other perspectives is satisfactory. The strong
differences in Figure 5.16 compared with Figure 5.10 indicate that there is a difference in
the degree of agility between organizations and IT professionals.

29 30

47

9
11

16

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Agile Middle Non-Agile

Organizations

Conflicted

Not Conflicted

Figure 5.16: Column graph of the agility of Organizations.

The last perspective is the customer. The customer is an important part of Agile Software
Development and it is therefore very interesting to see if the customer prefers the agile
concepts over the non-agile concepts. If for example the customer requires a comprehensive
up-front contract that documents and specifies every aspect of the system, it is very difficult
for the IT professionals, the team or the organization to use the agile approach. Also agility
requires a great deal of customer contact, which in turn requires that the customer is willing
to get involved in the project.

110 Analysis

27
35

52

9

8

11

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Agile Middle Non-Agile

Customer

Conflicted

Not Conflicted

Figure 5.17: Column graph of the agility of Customers.

Figure 5.17 shows much the same trends as the organization, where the majority is located
on the non-agile side of the agility scale. This means that there exists an imbalance between
the agility of IT professionals and the customers, which in turn can lead to problems for the
reason stated above.

5.4.4 Context of Software Projects

The final research question seeks to uncover if the context of software projects in general
facilitate the use of Agile Software Development processes. This is important to know
because it indicates if it is indeed possible for the four perspective groups to be agile in
practice. If the context does not support the use of agile values and principles it will
inevitably manifest itself in the results drawn from the bipolar preferred questions. The
questions states the following:

Is the context of software projects suited for Agile Software Development?

The context factors used to determine project suitability for Agile Software Development
are the five factors developed by Boehm and Turner [15] discussed in Chapter 2. These five
factors consist of; personnel, dynamism, culture, size and criticality. First the five factors
are presented individually and then concluded upon in a polar chart.

Boehm and Turner’s personnel factor relies on a modified version of a categorization devel-
oped by Cockburn, which divides people into various skill levels. This categorization system
was difficult to communicate successfully through at questionnaire and instead substituted
with a question asking how many years of experience a respondent has. This question was
then translated into two categories, experienced and non-experienced personnel by the use
of a cutoff line. This delimiter was set to 5 years and resulted in 86% falling within the
experienced category and 14% within the non-experienced category.

Figure 5.18 shows the results for dynamism, which Boehm and Turner define to percentage

5.4 Answering the Research Questions 111

of requirement change per month. Here the top score is 10% requirement change per month
and most of the respondents fall bellow the 30% mark.

10

41

53

26

8 4
0%

5%

10%

15%

20%

25%

30%

35%

40%

1% 5% 10% 30% 50% Above 50%

Percentage of requirements-change per. month

Dynamism

Figure 5.18: Column graph of the context factor Dynamism

15

29

35

45

18

0%

5%

10%

15%

20%

25%

30%

35%

10% 30% 50% 70% 90%

Chaos

Organization Culture

Figure 5.19: Column graph of the context factor Culture.

Figure 5.19 illustrates the culture factor. This factor measures if the culture at the respon-
dents workplace thrives on chaos or order. The figure shows that the majority thrives on
70% chaos, which in turn means 30% order. The majority of respondents thrive on higher
than 50% chaos.

Figure 5.20 shows the size of the development teams. These teams are all mostly small with
less than 10 people. Non of the respondents in the survey work in teams of more than 100
people.

112 Analysis

59
57

19

7 0 0
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1-3 people 4-10 people 11-30 people 31-100
people

101-300
people

300+ people

Team Size

Figure 5.20: Column graph of the context factor Team Size.

Figure 5.21 show the last of Boehm and Turner’s context factors, which is the criticality
of the software. The five columns in the graph display what will happen if an error occurs
in the software. The majority of respondents work on software that will cost the com-
pany discretionary money but not result in loss of life or essential money that can cause
bankruptcy.

30

73

26

6 6
0%

10%

20%

30%

40%

50%

60%

Comfort Discretionary
money

Essential
money

Single life Many lives

Software Errors Will Result In:

Criticality

Figure 5.21: Column graph of the context factor criticality.

To conceptualize the five context factors Figure 5.22 shows a five axis polar chart. Each
axis on the chart represents one of the five context factors. As illustrated in Figure 4.8
each context factor has its own individual measurement unit on a scale from 1 to 5. Due
to technical reasons this could not be fitted to Figure 5.22 but each scale is present in the
column graph corresponding to the context factor. So the culture axis has a scale of 10%,
30%, 50%, 70% and 90%, and the same goes for the other four axes.

5.4 Answering the Research Questions 113

0

1

2

3

4

5
Personnel

Dynamism

CultureSize

Criticality

Context Agility Polar Chart

Mode Mean Agility Cutoff

Figure 5.22: Polar chart of the five context factors from Boehm and Turner[15].

Figure 5.22 illustrates three separate elements. The green line represents the cutoff between
agile and plan-driven home-grounds as explained by Boehm and Turner, where agility is
within the center and plan-driven is towards the edge of the chart. The line is dotted
because there exist no clear cut definition of when it is most appropriate to use agile or
plan-driven methods. It is up to the organization to decide which approach best suites the
needs they have, but the line can be used as a reference point.

The blue line represents the mode of the respondents’ answers. This indicates that the
answer most frequently given by respondents to a context factor is plotted in the chart.
This shows that the context factor of most respondents is clearly within the realm of the
agile home-ground. The only point where the mode line approaches the plan-driven home-
ground is on dynamism because most respondents have very few requirements changes.

The red line in Figure 5.22 is the mean of the respondents’ answers to the five context
question. This takes into account not only the most frequently used answer but takes an
average of them all. This makes the context considerably less suited to agile development
but it is still within the limits of the agile home-ground cutoff line.

As a conclusion to this research question the project contexts of the vast majority of re-
spondents fall within the agile home-ground and is therefor well suited for Agile Software
Development.

6Discussion

This chapter presents a discussion of our research project. It explains possibilities and
complication with future research and describes the lessons learned.

6.1 Operationalizing Agility

The examination of the Agile Manifesto and review of the four agile authors were difficult to
manage and it was difficult to present the results in a clear and understandable manner. De-
scribing a single principle, would often result in long complex explanations that overlapped
the other principles and values. This meant that presenting the results in a structured way
was difficult.

It is believed that measuring the agility of IT professionals can not be done without em-
ploying the Agile Manifesto and its values and principles in some way. However, it can be
questioned whether the seven areas identified in Chapter 3 and used in the questionnaire
are the most suitable for measuring agility. Some of the areas might be to blurry and re-
quire more refinement. The Iterative development versus Plan-driven question is a good
example on this. In the questionnaire the description of Iterative development does not
include frequent deliveries or early deliveries, which both are emphasized as important by
agile authors. Here we simply made a choice to limit the description of Iterative development
to a more readable size. A better alternative would perhaps be to split the question and
ask the respondent to choose between different properties, e.g frequent deliveries of software
versus stable requirements from the customer. The underlying assumption would be that
an agile minded person would prefer the first. He knows that deliveries of software are just
as important internally (to the development team) as to the customer. Internal deliveries
of software allow everyone on the team to watch and learn from a growing product. Stable
requirements on the other hand will not.

116 Discussion

6.2 Questionnaire Design

Our skills in questionnaire design and administration were at a novice level when beginning
the project and has improved significantly during the project. However, when looking
back, several things could have been handled more appropriately. Small mistakes include
ambiguous questions which was not caught during the field test of the questionnaire. A more
crucial error was that the bipolar preferred questions did not provide the respondent with a
”Don’t know” or ”The concepts can not be compared” option. As respondents were forced
to state their answer on the 1-5 likert scale or skip the question, this could have introduced
clear bias. E.g. respondents who felt that ”Working Software” and ”Documentation” can
not be valued over each other, would properly skip the question or select the middle option.

If a similar approach for measuring agility should be carried out or if work on the instrument
should be continued, the use of judges to weigh the agility of the seven areas would be
beneficial. A benchmark for agility was established by conducting the survey among an
agile user group. However, a more precise measurement tool could be developed if the
different measurement areas of agility were also weighted and given a score. This could be
done by invoking a discussion group of agile experts and ask them to arrive at some ranking
of and/or score for each area.

As mentioned in the Section 4.1 the method we used to gather respondents are somewhat
problematic. The problem lies in, that we do not have any control of who participates and
who many persons that receives our questionnaire. Thus we cannot precisely calculate the
response rate. As response rate is an indicator for reliability, this should be addressed if
the process should be done again. To address the problem of who participates, we included
a job function question in the questionnaire. This helped filter and use only those that
are within the target population and remove all others. However, this still do not solve
the problem with regard to how many that of the target population got the questionnaire.
Different approaches could be used to avoid this problem, e.g. by selecting a randomized
sample within the target population, thus knowing exactly how many gets the questionnaire
and how many have participated, hence it is possible to calculate the response rate more
accurately.

When we started to conduct our main survey, we observed that a lot of respondents did not
complete the questionnaire, i.e. they did not answer all the questions. We tried to identify
why, and it was noticed that most of the respondents did quit the questionnaire when they
reached the bipolar preferred questions. In the beginning we had all seven questions on
one page. This could have been very overwhelming for the respondents as, each question
contain a lot of text and information and answer options. Here, the power of using an
online questionnaire using SurveyXact survey tool, it was possible to change this, so that
each page only contained 2 questions. This actually improved the number of completed
questionnaires, however, this was noticed to late in the process. The thing we learn from
this experience was that it is very important to have a very simple and easy design, that do
not scare away the respondent. This will indeed affect the participation.

7Conclusion

This report argues that Agile Software Development is an interesting and relevant subject
within Information Systems – Software Development. Based on a review of nine articles and
three survey reports it is concluded that agile practices and methods are used throughout
the industry and that empirical evidence supporting the value of the agile methodology
exists. However, it is also identified that a clear definition of Agile Software Development
and what it entails to be agile is missing. The review established that the survey reports
focuses on the use of agile practices and methods but lacks validation of respondents’ use
and knowledge of the investigated practices and methods. Our study argues that agility,
i.e. being agile, is difficult to measure through adherence to practices or methods, and that
it is unreliable to do so. This report suggests that measuring respondents’ attitude towards
central agile values and principles using attitudinal scales from phycology provides a better
alternative. This gave inspiration to four research questions:

• How agile are IT professionals?

• Is there a difference in the degree of agility of IT professionals and the agility of their
team, organization and customer?

• Is there a correlation between IT professionals’ agility and their characteristics, i.e.
their age, job function, experience and education?

• Is software projects’ context suited for Agile Software Development?

In order to answer the research questions, a research process model proposed by Kumar
[6] inspired the development of an iterative research model consisting of eight steps. As a
consequence of the model’s iterative nature the specific content of the report and the artifacts
produced has evolved through the entire process, and only the results are presented in the
report.

In the third step of the research model, an instrument to measure agility and a questionnaire
was developed. The instruments primary purpose is to measure the agility of IT profession-
als and its secondary purpose is to measure the agility of three other perspectives; team,

118 Conclusion

organization and customer. The instrument was constructed through a literature review of
four notable agile authors, where the 12 agile principles were used as a framework. To com-
plete the operationalization, seven areas where agility can be measured were identified. The
seven measurement areas were used to construct the final instrument for measuring agility
which is designed for a quantitative research study where a questionnaire is used. In order
to ensure the validity of the research and answering the research questions the questionnaire
design was done using questionnaire design techniques described by Kumar [6] and Trochim
[41]. To answer the fourth question, four of Boehm and Turner’s five critical agility and
plan-driven factors [15] were transformed into questions in the questionnaire.

In step four, contact with external organizations was established, and an agreement for the
distribution of the questionnaire was set up.

In step five, respondents from four organizations in total participated in the survey and data
from 304 respondents was gathered of which a total of 142 could be used for analysis after
item non-response respondents was removed.

Step six consisted of a benchmark of the instrument’s primary purpose of measuring the
agility of IT professionals. It was carried out using the Danish Agile User Group as a sample
and indicated that six out of seven variables in the instrument performed satisfactory.

In step seven, the results were analyzed using factor analysis and well known statistical
concepts such as mean, median, dispersion and mode. It is concluded that a large part
(48%) of IT professionals are agile, 16% are of medium agility and 11% are not agile. The
only characteristic of IT professionals which correlates with agility is job function. The
analysis concludes that most programmers (65%) and system architects (69%) are agile,
while only few managers (33%) are equally agile. The results also concludes that most
teams are agile (46%), while a lower number of organizations (20%) and customers (19%)
are agile and thereby a difference in agility between IT professionals and their organization
and customers is established. Finally, empirical evidence supporting the fact that most
projects are suited for Agile Software Development is presented.

In step eight, the project was discussed and communicated. It is addressed how the op-
erationalization of Agile Software Development and the instrument for measuring agility
could be improved and lessons learned from the design and execution of the questionnaire is
elaborated on. In addition work done in the project concerning the relationship between the
agile values, principles, methods and practices is communicated in an article for PROSIT.

List of Figures

1.1 The increase of agile articles published in the years between 2001 and 2006,
found on two online journal databases. 1

1.2 Kumar’s generic process model compared with our research process model. . 6

1.3 Conceptual model for our research project. 10

1.4 A model showing the relationship between principles, methods, and practices
in the report. 13

2.1 Agility is measured by measuring adherence to practices and methods, i.e.
what people actually is carrying out, is compared to the descriptions of the
practices and methods. 19

2.2 The two ways to measure agility using values and principles; actual use or
attitude. 27

2.3 Polar chart displaying the five context factors developed by Boehm and
Turner [15]. 31

3.1 Circles are used to describe principles where the number inside the circle
refers to the principles number (e.g. principle 1). Diamonds describes a
valued statement and again the number inside the diamond refers to the
specific valued statement. A blue connection between a value and a principle
illustrates that the principle supports the valued statement. 36

3.2 The values which principle one supports. 38

3.3 The values which principle two supports. 39

3.4 The values which principle three supports. 41

3.5 The values which principle four supports. 42

3.6 The values which principle five supports. 44

3.7 The values which principle six supports. 45

3.8 The values which principle seven supports. 47

120 LIST OF FIGURES

3.9 The values which principle eight supports. 48

3.10 The values which principle nine supports. 49

3.11 The values which principle ten supports. 50

3.12 The values which principle eleven supports. 51

3.13 The values which principle twelve supports. 52

3.14 Circles are used to describe principles where the number inside the circle
refers to the principles number (e.g. principle 1). Diamonds describes a val-
ued statement and the square-piece is the symbol used for the agile concepts.
A connection between values and principles indicates that the principle sup-
ports the value and a connection between a concept and a value or principle
indicates that the concept is drawn from the value or principle respectively. . 53

3.15 The correlation between the values, principles and the organizational struc-
ture measurement area. 54

3.16 The correlation between the values, principles and the requirements handling
measurement area. 54

3.17 The correlation between the values, principles and the project progress control
measurement area. 55

3.18 The correlation between the values, principles and the software development
model area. 56

3.19 The correlation between the values, principles and the project success factors
area. 57

3.20 The correlation between the values, principles and the design area. 57

3.21 The correlation between the values, principles and the knowledge distribution
area. 58

4.1 The question inferred from the measurement area Organizational Structure . 73

4.2 The question inferred from the measurement area Requirements Handling . . 74

4.3 The question inferred from the measurement area Project Progress Control . 74

4.4 The question inferred from the measurement area Software Development Model 75

4.5 The question inferred from the measurement area Project Success 76

4.6 The question inferred from the measurement area Simplicity 76

4.7 The question inferred from the measurement area Knowledge Distribution . . 77

LIST OF FIGURES 121

4.8 Polar chart displaying the five context factors developed by Boehm and
Turner [15]. 81

5.1 Histogram of several normal distributions [40] 88

5.2 A schematic for Factor analysis theory (The factor model). 89

5.3 The distribution of the respondent’s age. 95

5.4 Showing the educational background of the respondents. 96

5.5 Showing the years of experience the respondents have with software develop-
ment. 97

5.6 Showing the respondents primarily job function(s). 97

5.7 The sizes of the organizations that the respondents work for. 98

5.8 Scatter plot of DAUG respondents. 101

5.9 Scatter plot of the Main survey’s respondents. 104

5.10 Column graph of the agility of IT Professionals. 105

5.11 Scatter plot of respondents’ agility compared with their age. 106

5.12 Scatter plot of respondents’ agility compared with their professional experience.106

5.13 Column graph of respondents’ agility compared with their education. 107

5.14 Column graph of respondents’ agility compared with their job function. . . . 107

5.15 Column graph of the agility of Teams. 108

5.16 Column graph of the agility of Organizations. 109

5.17 Column graph of the agility of Customers. 110

5.18 Column graph of the context factor Dynamism 111

5.19 Column graph of the context factor Culture. 111

5.20 Column graph of the context factor Team Size. 112

5.21 Column graph of the context factor criticality. 112

5.22 Polar chart of the five context factors from Boehm and Turner[15]. 113

B.1 Page 1 of the questionnaire . iii

B.2 Page 2 of the questionnaire . iv

122 LIST OF FIGURES

B.3 Page 3 of the questionnaire . iv

B.4 Page 4 of the questionnaire . v

B.5 Page 5 of the questionnaire . v

B.6 Page 6 of the questionnaire . vi

B.7 Page 7 of the questionnaire . vi

B.8 Page 8 of the questionnaire . vii

B.9 Page 9 of the questionnaire . vii

B.10 Page 10 of the questionnaire . viii

B.11 Page 11 of the questionnaire . viii

B.12 Page 12 of the questionnaire . viii

List of Acronyms

AAU Aalborg University

ACM Association for Computing Machinery

DAUG Danish Agile User Group

DoD Department of Defence

ERS Emergency Response System

FSD Federal Software Devision

HCI Human-Computer Interaction

IEEE Institute of Electrical and Electronics Engineers

IID Iterative and Incremental Development

IT Information Technology

LOC Lines Of Code

MTBF Mean Time Between Failure

PC Principle Component

XP eXtreme Programming

XP-EF XP-Evaluation Framework

WOS Web of Science

References

References from Books

[1] Afifi, Clark, and May. Computer-Aided Multivariate Analysis - Fourth Edition. Chap-
man and Hall/CRC, 2004.

[2] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change.
Addison Wesley Professional, 2004.

[3] Alistair Cockburn. Agile Software Development. Cockburn Highsmith Series Editors,
2000.

[4] James A. Highsmith. Agile Software Development Ecosystems. Pearson Education Inc,
2002.

[5] Jeffrey Rubin. Handbook of Usability Testing: How to plan, design and conduct effective
tests. 1994.

[6] Ranjit Kumar. Research Methodology - A Step-by-Step Guide for Beginners. SAGE
Publications Ltd, 2005.

[7] Sabine Landau and Brian S. Everitt. A Handbook of Statictical Analyses using SPSS.
Chapman and Hall/CRC, 2004.

[8] Craig Larman. Agile & Iterative Development - A Manager’s Guide. Addison-Wesley
- Pearson Education Inc., 2004.

[9] Geoffrey Marczyk, David DeMatteo, and David Festinger. Essentials of Research De-
sign and Methodology. John Wiley & Sons Inc. Hoboken New Jersey., 2005.

[10] Paul Newbold, William L. Carlson, and Betty Thorne. Statistics for Business and
Economics - Sixth Edition. Pearson Prentice Hall, 2006.

[11] Mary Poppendieck and Tom Poppendieck. Implementing Lean Software Development
From Concept to Cash, Chapter 2. Addison Wesley Professional, 2006.

[12] Roger S. Pressman. Software Engineering - A Practitioner’s Approach 6th Edition.
McGraw-Hill, 2006.

[13] Ledyard R. Tucker and Robert C. MacCallum. Exploratory Factor Analysis. http:
//www.unc.edu/~rcm/book/factornew.htm, 1997.

http://www.unc.edu/~rcm/book/factornew.htm
http://www.unc.edu/~rcm/book/factornew.htm

126 BIBLIOGRAPHY

References from Articles

[14] Scott W Ambler. Survey says: Agile works in practice. Dr. Dobb’s Journal, 2006.

[15] Barry Boehm and Richard Turner. Using risk to balance agile and plan-driven methods.
IEEE Computer Society, 2003.

[16] Tom DeMarco and Barry Boehm. The agile methods fray. IEEE Computer Society,
2006.

[17] Martin Fowler. Is design dead? Dr. Dobb’s Journal, 2001.

[18] Ann Fruhling and Gert-Jan De Vreede. Field experiences with extreme programming:
Developing an emergency response system. Journal of ManagementInformation Sys-
tems, 2006.

[19] R.L. Glass. Agile versus traditional: make love not war. Cutter IT Journal 14 (12)
1218., 2001.

[20] Peter Gould. What is agility? Manufacturing Engineer, 1997.

[21] Vamsidhar Guntamukkala, H. Joseph Wen, and J. Michael Tarn. An empirical study
of selecting software development life cycle models. IOS Press, 2006.

[22] Christina Hansson, Yvonne Dittrich, Bjorn Gustafsson, and Stefan Zarnak. How agile
are industrial software development practices? The Journal of Systems and Software
79 Elsevier, 2006.

[23] Lucas Layman, Laurie Williams, and Lynn Cunningham. Motivations and measure-
ments in an agile case study. Journal of Systems Architecture 52 Elsevier, 2006.

[24] Lucas Layman, Laurie Williams, and William Krebs. Extreme programming evaluation
framework for object-oriented languages version 1.3. North Carolina State University
Department of Computer Science Raleigh NC TR-2004-11, 2004.

[25] Mikael Lindvall, Vic Basili, Barry Boehm, Patricia Costa, Kathleen Dangle, Forrest
Shull, Roseanne Tesoriero, Laurie Williams, and Marvin Zelkowitz1. Empirical findings
in agile methods. Springer-Verlag Berlin Heidelberg, 2002.

[26] Donald J. Reifer. How good are agile methods? IEEE Software, 2002.

[27] Jeremy Rose. Soft systems methodology as a social science research tool. Manchester
Metropolitan University, 2005.

[28] Laurie Williams and Alistair Cockburn. Agile software development: Its about feedback
and change. Computer Volume 36 Issue 6 June 2003, 2003.

References from Homepages

[29] Alistair Cockburn. IT Conversations - Agile Software Development. http://www.
itconversations.com/transcripts/175/transcript-print175-1.html, 2004.

http://www.itconversations.com/transcripts/175/transcript-print175-1.html
http://www.itconversations.com/transcripts/175/transcript-print175-1.html

BIBLIOGRAPHY 127

[30] Association for Computing Machinery. Association for Computing Machinery. , 2007.

[31] Digital Focus. Agile 2006 survey. http://www.digitalfocus.com/, 2006.

[32] Institute of Electrical and Electronics Engineers. Institute of Electrical and Electronics
Engineers. http://www.ieee.org/web/aboutus/today/index.html#xplore, 2007.

[33] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, ... The Agile Manifesto. http://www.agilemanifesto.org/, 2001.

[34] Martin Fowler. The New Methodology. http://www.martinfowler.com/articles/
newMethodology.html, 2005.

[35] Merriam Webster. Merriam Webster. http://www.merriam-webster.com/
dictionary, 2007.

[36] Version One. The state of agile development. http://www.versionone.net/
surveyresults.asp, 2006.

[37] Standish Group. The CHAOS Report (1998). http://www.velocitystorm.com/
resources/chaos.pdf, 1998.

[38] Shine Technologies. Agile methodologies. http://www.agilealliance.org/system/
article/file/1121/file.pdf, 2003.

[39] Web of Science. Web of Science. http://scientific.thomson.com/products/wos,
2007.

[40] WikiPedia. Normal Distribution Graph. http://upload.wikimedia.org/wikipedia/
commons/1/1b/Normal_distribution_pdf.png, 2007.

[41] William M.K. Trochim. Web Center for Social Research Methods. http://www.
socialresearchmethods.net/, 2007.

All URLs are valid as of June 8th, 2007.

http://www.digitalfocus.com/
http://www.ieee.org/web/aboutus/today/index.html#xplore
http://www.agilemanifesto.org/
http://www.martinfowler.com/articles/newMethodology.html
http://www.martinfowler.com/articles/newMethodology.html
http://www.merriam-webster.com/dictionary
http://www.merriam-webster.com/dictionary
http://www.versionone.net/surveyresults.asp
http://www.versionone.net/surveyresults.asp
http://www.velocitystorm.com/resources/chaos.pdf
http://www.velocitystorm.com/resources/chaos.pdf
http://www.agilealliance.org/system/article/file/1121/file.pdf
http://www.agilealliance.org/system/article/file/1121/file.pdf
http://scientific.thomson.com/products/wos
http://upload.wikimedia.org/wikipedia/commons/1/1b/Normal_distribution_pdf.png
http://upload.wikimedia.org/wikipedia/commons/1/1b/Normal_distribution_pdf.png
http://www.socialresearchmethods.net/
http://www.socialresearchmethods.net/

AResume

Vores projekt omhandler Agil Softwareudvikling og hvad det vil sige at være agil. Der
foretages en kvantitativ undersøgelse af IT professionelle (udviklere, projektledere, sys-
temarkitekter, osv.) for at undersøge deres agilitet gennem deres holdning. Dette gøres
ud fra en detaljeret undersøgelse af værdierne og principperne bag Agil Softwareudvikling.
Målet er at udvikle et måle instrument, der gennem et spørgeskema er i stand til at svare
p̊a vores forsknings spørgsm̊al, der lyder som følger:

• Hvor agil er IT professionelle?

• Er der en forskel i graden af agilitet hos IT professionelle og agiliteten af deres ud-
viklingshold, organisation og kunde?

• Er der en correlation mellem IT professionelles agilitet og deres person karakteristika,
f.eks. deres alder, job funktion, erfaring og uddannelse?

• Er software projekters kontekst egnet til Agil Softwareudvikling?

Rapporten opstiller først en processmodel for projektet, hvor der lægges vægt p̊a dens it-
erativitet. Herefter foretages undersøgelse af relateret litteratur i form af artikler og andre
spørgeskemaundersøgelser. Her konstateres det, at agile metoder og praktikker ikke eg-
ner sig til at måle agilitet gennem et spørgeskema. Det fastl̊as ogs̊a at størsteparten af
det undersøgte litteratur og specielt spørgeskema undersøgelserne kun undersøger brugen
af enkelte metoder og praktikker eller indeholder en overfladisk gennemgang af det agile
manifest og de 12 agile principper. Det afgøres derfor at undersøge agilitet ud fra respon-
denternes holdning til agile værdier og principper, fremfor et forsøg p̊a at afdække deres
egentlige anvendelse af agile metoder og praktikker.

Ud fra en undersøgelse af de agile vædier identificerer vi syv omr̊ader, hvor agilitet kan
m̊ales og som udgøre de centrale aspekter i agile softwareudvikling. De syv omr̊ader bliver
omdannet til et instrument til m̊aling af agilitet gennem holdning, ved at benytte likert
skaler. Det udviklede instrument bliver indkluderet i et spørgeskema, som sendes ud til
respondenterne via e-mail. Spørgeskemaet er s̊aledes et online spørgeskema, hvilket gør
indsamling af data betydeligt nemmere. Det anvendte værktøj er SurveyXact.

ii Resume

Dette munder ud i en spørgeskemaundersøgelse blandt IT professionelle i Danmark fordelt
p̊a 85 virksomheder og 142 respondenter. Det indsamlede data bliver analyseret gennem
faktor og komponent analyse og anvendelse af almindelige statistiske redskaber s̊a som mid-
delværdi, median, gennemsnit. Desuden foretages en benchmarktest ved hjalp af en agil
brugergruppe. Testen bliver brugt til at finde en agilitets faktor, som anvendes i besvarelsen
af forskningsspørgsm̊alene.

Det konkluderes i rapporten at størstedelen af IT professionelle (48%) er agile og at de fleste
programmører og systemarkitekter ogs̊a er agile. Ydermere konkluderes det ogs̊a, at de fleste
udviklingshold ogs̊a er agile (46%). Derimod er blot 20% af organisationerne og 19% af deres
kunder agile. Endeligt konkluderes det at gennemsnittet af projekternes kontekst er egnet
til Agil Software Udvikling.

BQuestionnaire

Figure B.1: Page 1 of the questionnaire

iv Questionnaire

Figure B.2: Page 2 of the questionnaire

Figure B.3: Page 3 of the questionnaire

v

Figure B.4: Page 4 of the questionnaire

Figure B.5: Page 5 of the questionnaire

vi Questionnaire

Figure B.6: Page 6 of the questionnaire

Figure B.7: Page 7 of the questionnaire

vii

Figure B.8: Page 8 of the questionnaire

Figure B.9: Page 9 of the questionnaire

viii Questionnaire

Figure B.10: Page 10 of the questionnaire

Figure B.11: Page 11 of the questionnaire

Figure B.12: Page 12 of the questionnaire

CAgil Forvirring

Artikel skrevet til magasinet ProsIT’s Juni nummer.

Der hersker ofte forvirring n̊ar emnet er Agil Softwareudvikling. Hvad gemmer
der sig egentligt bag dette buzz-ord? Er det mere end bare en samling metoder
med eXtremme programming som flagskib? Denne artikel er en smutvej fra
forvirring til forst̊aelse.

C.1 Studerendes Kendskab til Agil Softwareudvikling

I en undersøgelse af datalogi- og ingeniørstuderendes kendskab til Agil Softwareudvikling,
som vi foretog p̊a Aalborg Universitet, viste det sig bl.a., at 68% havde hørt om agil soft-
wareudvikling (se Figur C.1). Mere interessant var det dog, at 88% af de studerende kendte
til den agile udviklingsmetode eXtreme Programming (XP). Det betød, at der faktisk var
20% af de studerende, som ikke havde hørt om Agil Softwareudvikling, men godt nok kendte
den agile udviklingsmetode. At XP er s̊a populær, er m̊aske ikke overraskende. I blot 12
enkle praktikker beskriver den, hvordan der indsamles krav, designes, konstrueres og testes
i et software projekt. Dette gør den utrolig tilgængelig og interessant. Men populariteten
har dog ogs̊a den sideeffekt, at mange er hurtige til at forbinde praktikker i XP med Agil
Softwareudvikling og sætter lighedstegn mellem de to. Agil Softwareudvikling er dog meget
mere end bare praktikker og metoder.

x Agil Forvirring

Figur 1 - Diagram over datalogi- og ingeniørstuderendes kendskab til
Agil Softwareudvikling og metoder. I alt deltog 50 respondenter.

34

44

21

7

3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Har hørt om agil
softwareudvikling

Kender eXtreme
Programming

Kender Scrum Kender RUP Kender Crystal

D
at

al
og

i-
og

 in
ge

ni
ør

st
ud

er
en

de

Studerendes kendskab til Agil Softwareudvikling og Agile metoder

C.2 Agil Softwareudvikling

Udtrykket ”Agil Softwareudvikling” blev dannet i 2001, da 17 software- og metodeudviklere
mødtes p̊a et skisportssted i Snowbird Utah. Til mødet deltog metodeforfattere af bl.a. XP,
Scrum og Crystal, som alle i dag g̊ar under betegnelsen agile metoder. Førhen var metoderne
kendt under betegnelsen ”letvægtsmetoder”, og blev udviklet som et led i et opgør med de
traditionelle plan-drevne metoders’ konstante fokus p̊a dokumentering og infleksible proces.
Til mødet i Snowbird blev ideerne bag disse metoder forenet under et fælles set af værdier,
som er udtrykt i det Agile Manifest. Manifestet fremsætter fire kærneværdier, som ud-
viklingsmetoder skal opn̊a for at kunne betragtes som agile. Udover manifestet fremsatte
man ogs̊a 12 agile principper, som uddyber værdierne. Agil softwareudvikling best̊ar alts̊a
ikke kun af udviklingsmetoder og praktikker, men ogs̊a af værdier og principper. Dette er
illustreret p̊a Figur C.2. Figuren viser at Agil Softwareudvikling, som koncept kan opdeles i
4 dele; værdier, principper, metoder og praktikker. Værdier er de vigtigste, men ogs̊a mest
abstrakte og dermed placeret i toppen af pyramiden. Jo længere man bevæger sig ned, jo
mere konkret bliver det.

Abstrakt

Konkret

Agile
Væ rdier

Agile
Principper

Agile
M etoder

Agile
Praktikker

F igur 2 - M odel over Agile Softwareudvikling

C.2 Agil Softwareudvikling xi

C.2.1 Agile Værdier

Manifestet er vist p̊a Figur C.2.1 og udtrykker de 4 værdier, som forfatterne blev enige om
var vigtige for dem og dermed i Agil Softwareudvikling. Værdierne er dog s̊a abstrakte, at
de er åbne for fortolkning. For eksempel kan værdi nr. 2 (”Working software over compre-
hensive documentation”) fortolkes s̊adan, at fungerende software er vigtigere for en kunde
end omfattende dokumentation. Udviklere vil m̊aske bruge værdien som undskyldning for
at kode løs og undlade at dokumentere. Alene er Manifestet alts̊a ikke specielt medgørligt
og det uddyber heller ikke, hvordan værdierne overholdes. Her kommer de agile principper
nærmere en afklaring og en realisering.

Manifesto for Agile Software Development
We are uncovering better ways of developing software by doing it

and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.

Figur 3 – Det Agile Manifest (www.agilemanifesto.org)

C.2.2 Agile Principper

De agile principper ses p̊a Figur C.2.2. Der er i alt 12 principper, og de understøtter de
4 agile værdier i manifestet. For eksempel, understøtter princip nr. 3 den agile værdi nr.
2, idet princippet bl.a. udtrykker, at software og alts̊a ikke dokumentation skal afleveres
tidligt og hyppigt. Det vil sige, at følges princip nr. 3, s̊a støttes den agile værdi nr. 2. Men
principperne er dog stadig for abstrakte til at kunne omsættes direkte til praktisk brug. Det
er her metoder og praktikker kommer ind i billedet.

xii Agil Forvirring

Principles behind the Agile Manifesto
We follow these principles:

1) Our highest priority is to satisfy
the customer through early and
continuous delivery of valuable
software.

2) Welcome changing
requirements, even late in
development. Agile processes
harness change for the customer's
competitive advantage.

3) Deliver working software
frequently, from a couple of weeks
to a couple of months, with a
preference to the shorter timescale.

4) Business people and developers
must work together daily
throughout the project.

5) Build projects around motivated
individuals. Give them the
environment and support they need,
and trust them to get the job done.

6) The most efficient and effective
method of conveying information
to and within a development team
is face-to-face conversation.

7) Working software is the primary
measure of progress.

8) Agile processes promote
sustainable development. The
sponsors, developers, and users
should be able to maintain a
constant pace indefinitely.

9) Continuous attention to technical
excellence and good design
enhances agility.

10) Simplicity--the art of
maximizing the amount of work not
done--is essential.

11) The best architectures,
requirements, and designs emerge
from self-organizing teams.

12) At regular intervals, the team
reflects on how to become more
effective, then tunes and adjusts its
behavior accordingly

Figur 4 – De 12 Agile Principper (www.agilemanifesto.org)

C.2.3 Agile Metoder

Agile metoder kan betragtes som en konkretisering af de agile værdier og principper. Dvs. at
værdier og principper operationaliseres til praktisk brug, idet de gøres specifikke. Metoder
fortæller alts̊a brugeren, hvilke skridt der skal tages for at gennemføre et princip. Disse
metoder kan ofte dekomponeres til en række praktikker, der mere uniformt og i konkrete
vendinger beskriver de enkelte skridt.

C.2.4 Agile Praktikker

Kort sagt er praktikker en detaljeret beskrivelse af, hvordan et eller flere principper realis-
eres. For eksempel, i XP gennemføres princip nr. 3 gennem praktikken ”Weekly Cycle”.
Kort sagt siger praktikken, at en iteration (identificering af krav, design, konstruktion, test
og kunde-feedback) strækker sig over en uge. Ved at følge praktikken, er man alts̊a i stand
til at aflevere sm̊a inkrementer af software til kunden tidligt og kontinuerligt (hver uge).
Derved gennemføres princip nr. 3 og værdien i manifestets 2. sætning overholdes.

C.3 Hvad Kan Man S̊a Bruge Det Til? xiii

C.3 Hvad Kan Man S̊a Bruge Det Til?

Hvis metoder og praktikker er den faktiske realisering af de agile principper og værdier,
hvorfor er det s̊a vigtigt at beskæftige sig med dem? Jo, netop fordi praktikkerne er konkrete,
vil det ofte være nødvendigt, at tilpasse dem til det miljø og den situation de skal virke i.
Som eksempel vil praktikken ”Weekly Cycle” ikke være s̊a fornuftig at følge stringent, hvis
udviklerne i forsøget p̊a at n̊a deadlines p̊a en uge, bliver overanstrengte og dermed svækker
kvaliteten af softwaren. I det tilfælde vil princip nr. 8 og 9 blive brudt. Her vil det m̊aske
være fornuftigt at øge størrelsen p̊a en iteration fra en uge til 14 eller 30 dage. Praktikken
vil stadig realisere princip 3, men udviklerne kan nu bedre følge med, hvorved princip 8 og
9 ogs̊a gennemføres. For at forst̊a Agil Softwareudvikling er man derfor nød til at forst̊a
principperne, hvordan de understøtter de 4 agile værdier og sammenhængen imellem dem.
Hermed kan man tilpasse praktikker og metoder til den p̊agældende situation og stadig
udføre Agil Softwareudvikling.

	1 Introduction
	1.1 Choice of Subject
	1.2 Research Questions
	1.3 Agile Software Development
	1.4 Research Method
	1.5 Clarification of Concepts

	2 Related Research
	2.1 Literature Search
	2.2 Methods and Practices
	2.3 Values and Principles
	2.4 Project Context Factors
	2.5 Related Research Findings

	3 Operationalization of Agility
	3.1 Literature Review of the Agile Manifesto Authors
	3.2 The 12 Principles
	3.3 Seven Measurable Areas of Agility
	4 Questionnaire Design and Administration
	4.1 Design Process
	4.2 Validity
	4.3 Reliability
	4.4 Instrument for Measuring Agility
	4.5 Context Information

	5 Analysis
	5.1 Theory
	5.2 Validity and Reliability
	5.3 Adjustments of the Measurement Instrument
	5.4 Answering the Research Questions

	6 Discussion
	6.1 Operationalizing Agility
	6.2 Questionnaire Design

	7 Conclusion
	List of Figures
	List of Acronyms
	References
	Appendices
	A Resume
	B Questionnaire
	C Agil Forvirring
	C.1 Studerendes Kendskab til Agil Softwareudvikling
	C.2 Agil Softwareudvikling
	C.3 Hvad Kan Man Så Bruge Det Til?

