
Vivid Data Objects

ii

Department of Computer Science

Fredrik Bajers Vej 7, building E

DK-9220 Aalborg

Telephone: (45) 9635 8080

Telefax: (45) 9815 9889

http://www.cs.aau.dk

Title:
Vivid Data Objects

Theme:
Programming Technology

Project period:
DAT6/CIS4, spring 2007

Project group:
d632a

Group members:

Alex Henning Johannesen

Jacob Volstrup

Supervisor:

Kurt Nørmark

Number printed: 6

Number of pages: 159

Submitted: June 6, 2007

Synopsis:

This thesis documents the process of
developing a framework for communi-
cating with an RDBMS for applications
that have a limited need for database
query capabilities are characterized of
by being “forms-over-data”.
The motivation for making this frame-
work is rooted in a subset of the
impedance mismatch problem together
with issues that are associated with us-
ing data from an RDBMS in an object-
oriented environment. This led us to
automatic code generation of a special-
ized API that implements four different
design patterns together with a syn-
chronization mechanism that enables a
lightweight concurrency model in keep-
ing local data consistent with changes
in the RDBMS.
The VDO framework is documented in
detail and an evaluation of the it is
given, where we state our achievements
together with the limitations it has.
The thesis concludes that the designed
framework assists an application de-
veloper by reducing unnecessary repro-
duction of effort, when developing ap-
plications that need to safely interact
with an RDBMS together with other
clients.

ii

Preface
Before commencing with this master thesis we would like to draw the reader’s
attention to the fact that the thesis is a result of a DAT6/CIS4-project at the
Department of Computer Science, Aalborg University. In this context we would
like to point out that we composed a report in the autumn of 2006, from which
Section 2.1 on page 7 employs some of the findings from the research of that
report.

Prerequisites

The thesis caters for readers with interest in software development in general and
especially issues that are impediment for developers, who deal with software ap-
plications that employ a relational database as a storage mechanism for accessing
and manipulating information.

With this in mind, we presuppose that the reader is conversant with object-
oriented programming and has a basic understanding of relational databases.
Furthermore, as the thesis deals with concepts from code generation it is con-
sidered to be advantageous for the reader if he has a basic knowledge of this as
well.

Reading Notes

References in the thesis are represented in the form: [27, p. 16], where p is an
abridgment for page, sl. for slide, and ch. for chapter. A list of references can be
found on page 155.

The thesis is structured into five main parts. The first part in the thesis deals
with the problems that we wish to provide a solution to, whereas the next part
follows up with background material that applies to the design of this solution.
The third part is about aspects that relate to the design and realization of the
solution. The fourth part comprises an evaluation of the implemented solution,
and finally the fifth part is the closing of the thesis.

iii

Typography

During the course of this thesis an extensive number of abbreviations are used.
When we introduce a new concept for which an abbreviation is applicable, the
full name is presented, followed up with the abbreviation of that concept in
parenthesis, e.g. Vivid Data Objects (VDO).

Moreover, when we refer to code in the text, then a special font is employed,
e.g. IEnumerable. Code examples are given in listings that have the following
structure:

1 // Comments go here..

2 Console.WriteLine("Welcome to Vivid Data Objects!");

Listing 1: Caption for the code example.

In Listing 1 there are line numbers on the left side. These numbers are used
to refer to specific code fragments.

Source Code & Tools

In the course of this project, we have made use of several tools. VDO is imple-
mented in C# 2.0 [2] and runs on the .NET 2.0 platform [8]. The integrated
development environment (IDE) used for the implementation is Microsoft Visual
Studio 2005 [6]. Furthermore, relational database management systems that we
currently provide support for in VDO is Microsoft SQL Server 2005 [5].

Additionally, it is recommended that the reader has access to these tools if
he wishes to try the implemented solution. From June 14th source code for the
VDO framework is available from our VDO web site:

• http://vdo.avanceret.dk

iv

http://vdo.avanceret.dk

Contents
I Problem 1

1 Introduction 3

2 Motivation 7

2.1 Previous Work Revisited . 7

2.1.1 Impedance Mismatch Subset 8

2.1.2 Identifying the Problems 9

2.1.3 Evaluated Solutions . 13

2.1.4 Identified Characteristics 32

2.1.5 Concluding Remarks . 33

2.2 Fields of Interest . 34

2.3 Target Audience . 37

2.4 Summary . 38

3 Objectives 39

II Background 41

4 API Design 43

4.1 Characteristics of User-Friendly API Design 44

4.2 The Process of API Design . 45

4.3 General Principles . 46

4.3.1 Class & Exception Considerations 50

4.3.2 Method Considerations . 51

4.4 Concluding Remarks . 54

5 Applied Design Patterns 55

5.1 Active Record . 56

5.2 Identity Map . 57

5.3 Lazy Load . 59

5.4 Observer . 60

5.5 Concluding Remarks . 64

v

CONTENTS CONTENTS

III Design & Realization 65

6 Specification of Requirements 67
6.1 Requirements for the Generated Classes 67

6.1.1 User Oriented Solution . 68
6.1.2 Automatic Class Generation 68
6.1.3 CRUD Operations . 69
6.1.4 Impedance Mismatch Concerns 70
6.1.5 Unique Data . 72
6.1.6 Concurrency & Synchronization Concerns 72
6.1.7 Observable Changes . 73

7 Design by Task Scenario 75
7.1 Design Example . 76
7.2 Task Scenarios . 77

7.2.1 Initialize VDO . 79
7.2.2 Create a data object . 80
7.2.3 Read a field of a data object 82
7.2.4 Change a field of a data object 86
7.2.5 Save a data object . 89
7.2.6 Delete a data object . 92
7.2.7 Synchronize a data object 94
7.2.8 Retrieve data objects by criteria 96
7.2.9 Subscribe to changes in a collection 99
7.2.10 Change the sync interval of a data object 101

7.3 Generated Classes . 103

8 Realization of the VDO framework 105
8.1 The Static API . 105

8.1.1 Data Service . 106
8.1.2 Database Specific Types 109
8.1.3 Exceptions . 113
8.1.4 Structure of Active Record 114
8.1.5 DBColumnCollection . 117
8.1.6 The VDO Collection . 118
8.1.7 Identity Map . 120

8.2 The Specialized API . 123
8.2.1 Properties . 123
8.2.2 Synchronization Agent . 125
8.2.3 The Event Pattern . 126
8.2.4 Static Methods . 127
8.2.5 Instance Methods . 129
8.2.6 Modified Database Schema 130

vi

CONTENTS CONTENTS

9 The VDO Compiler 135

IV Evaluation 137

10 Achievements 139
10.1 Design Decisions Reconsidered . 141
10.2 Limitations . 142

11 Questions Answered 145
11.1 Active Record & Safe Queries . 145
11.2 Integration of Observer & Synchronization 146
11.3 C# Influence on Design . 148

V Closure 151

12 Conclusion 153

References 155

vii

CONTENTS CONTENTS

viii

List of Figures

2.1 String longer than varchar. 10
2.2 String shorter than varchar. 10
2.3 The architecture of Hibernate. 15

5.1 The problem of uniqueness. 57
5.2 Sequence diagram for identity map. 58
5.3 Example of sequence diagram for lazy load. 59
5.4 Observer and subject relationship. 61
5.5 Observer and subject relationship. 62

7.1 Tables in WebLog. 76
7.2 Classes generated from WebLog. 102

8.1 Overview of the VDO framework. 106
8.2 The classes in DataService. 107
8.3 Sequence diagram for the VDO identity map. 121
8.4 Sequence diagram for the VDO identity map with collection. . . . 122
8.5 Diagram with a table and the corresponding generated action table.130
8.6 Sequence describing the insert SQL statement. 131
8.7 The generated view for the authors table. 132

9.1 Flow of the VDO compiler. 135

10.1 The IDE prompting the developer. 140

ix

LIST OF FIGURES LIST OF FIGURES

x

Listings
1 Caption for the code example. iv
2.1 Unsafe usage of input variables. 12
2.2 The query produced in 2.1 on page 12. 12
2.3 The query produced in 2.1 on page 12 with injection attack. . . . 13
2.4 The query produced in 2.1 on page 12 with a critical injection attack. 13
2.5 Storing an object. 15
2.6 SQL query. 16
2.7 HQL queries. 16
2.8 Criteria query. 17
2.9 Hibernate mapping file. 17
2.10 Scalar result from a simple SQL query. 18
2.11 Entity result from a simple SQL query. 18
2.12 Different types of results using HQL queries. 18
2.13 SQL injection attack. 19
2.14 SQL injection attack. 19
2.15 SQL injection attack. 20
2.16 Filtering in JDO. 22
2.17 Filtering using a safe query object. 22
2.18 The SafeQuery base class. 22
2.19 Remote execution: safe query class that invokes a metaclass. . . . 23
2.20 Remote execution: automatically generated method for PayCheck. 23
2.21 Sorting: safe query with an order method. 24
2.22 Sorting: Automatically generated remote execution. 24
2.23 Parameterized safe query object. 25
2.24 Automatically generated code. 25
2.25 Safe query using dynamic filter. 26
2.26 SQL statement with syntax error and misspelling. 28
2.27 Improved GetCustomers using SQL DOM. 29
2.28 Data type mismatch bug. 30
2.29 Prevention of an injection attack. 30
5.1 Event Pattern example. 62
6.1 A simple SQL search query. 70
7.1 Interface of the VDOEngine. 79
7.2 Initialize VDO. 79
7.3 Interface for constructor part of BlogEntry. 81

xi

LISTINGS LISTINGS

7.4 Creation of data objects. 82
7.5 Interface for properties of BlogEntry. 83
7.6 Reading properties of data objects. 84
7.7 Interface for the properties of BlogEntry. 87
7.8 Interface for event related code for the Author property. 87
7.9 Adjusting properties of a BlogEntry instance. 88
7.10 (Un)Subscribing to changes in a data object. 88
7.11 Interface for the Save instance method of Comment. 90
7.12 Interface for event related code for a data object. 90
7.13 Saving data objects. 92
7.14 Interface for the Delete instance method a Author class. 93
7.15 Deleting a row from the authors table in the RDBMS. 93
7.16 Interface for the Refresh instance method of Comment. 95
7.17 Synchronizing a data object with newest row data. 95
7.18 Interface for read class methods of BlogEntry. 97
7.19 Data objects fetched on the basis of criteria. 98
7.20 Interface for event related code of a VDOCollection. 100
7.21 Examples of subscribing to changes in a VDOCollection. 101
7.22 Interface for the sync interval property. 101
7.23 Changing the sync interval for instances of a Comment. 101
8.1 Initializing a connection to Microsoft SQL Server 2005. 106
8.2 Interface for the VDOEngine. 107
8.3 The interface for the abstract class DataProvider. 108
8.4 Interface for the DBNumberColumn class. 110
8.5 Interface for the abstract DbTypeColumn class. 110
8.6 A sample query with an identifier. 111
8.7 Usage of a DBStringColumn and a property to model the name

column from a table. 111
8.8 Implementation of the Value property on DBStringColumn. 112
8.9 The interface given access to the database connection. 115
8.10 The protected DBSave method on the AbstractRecord class. . . . 115
8.11 The MatchElements method. 116
8.12 The interface for TableName and ViewName in the AbstractRecord

class. 116
8.13 The GetHashCode on a DBColumnCollection. 117
8.14 Interface for VDOCollection. 118
8.15 An implementation of VDOCollection for the WebLog database

schema. 119
8.16 Implementation of GetEnumerator() on VDOCollection. 120
8.17 How we use the Hashtable inside the IdentityMap. 123
8.18 The public Author property on the generated BlogEntry class. . . 124
8.19 Sample SQL query for polling the RDBMS. 125
8.20 Example of how event related code is generated. 126

xii

LISTINGS LISTINGS

8.21 The ReadByTitle method on the BlogEntry class. 127
8.22 The ReadByHelper method on the BlogEntry class. 128
8.23 The generated Save method on a class in the specialized API. . . 129
8.24 The query used in the view from Figure 8.7 on page 132. 133
8.25 A sample query reading data from the view. 133

xiii

LISTINGS LISTINGS

xiv

I
Problem

1

1Introduction
Since the early days of developing software for computers there has been a huge
focus on operating with data, which ended up with the first database manage-
ment system (DBMS) in the mid 1970s with a corresponding language for data
manipulation [44, p. 21]. From the first DBMS up until now there has been great
developments in how these systems work and how they interact with program-
ming languages. Applications that use databases are an essential part of many
enterprises today since these constitute much of the information infrastructure.
These systems generally use programming languages for general-purpose compu-
tation and databases for storage and retrieval, which for instance involves control
of concurrent data access, searching for data, and updating data securely and
reliably.

These systems have, as any other group of applications, gone through an evo-
lution as programming languages have evolved. At present time most of such
systems are developed by using a combination of object-oriented programming
languages and relational database management systems (RDBMS). This approach
is popular due to several reasons. Object-oriented programming languages are
widely employed on the grounds that they, among other things, promote greater
flexibility and maintainability in programming and offer methods for encapsula-
tion and information hiding. RDBMS are by far most widely used, which also is
reflected by the fact that most discussed database solutions in the commercial
world are relational. Given this popularity, our interest is to pursue the integra-
tion of these two areas. This means that if we at a later point in the text refer
to a database, then it is a relational database unless otherwise stated.

Object-oriented programming languages and database query languages are
based on different semantic foundations as their origins are in very different
worlds. Some of these differences are imperative programs compared with de-
clarative queries, algorithms and data structures versus relations and indexes,
null pointers versus null for missing data, and different approaches used for mod-
ularity and encapsulation. Moreover, in concert with these differences there exist
points of distinction with regards to handling concurrency and referential integrity

3

1. Introduction

in these two paradigms.
Given the aforementioned it is evident that a great challenge in programming

languages is to reduce the complexity of accessing and integrating information
that is not natively defined using object-oriented technology.

The general problem of integrating databases and programming languages is
often referred to as the term impedance mismatch [30]. In the context of com-
puter science, this mismatch manifests itself in the inherent disconnect between
databases and programming languages. The term impedance mismatch is not
well-defined, but principally it encompasses the fact that the boundary between
(object-oriented) programming languages and relational databases constitutes a
range of issues that hinders a unified integration. In order to remove this bar-
rier it would be necessary to either use a programming language, which supports
the data model known from standard DBMS (like Prolog [46, 47]) or to employ
a DBMS that supports the data model known from standard object-oriented
programming languages (like Java or C#). More information about issues that
constitute the impedance mismatch can be found at [34, 51].

During the development of applications that take advantage of an underly-
ing RDBMS the developer often has to switch his mind from the object-oriented
paradigm for the application host language and the declarative paradigm for ma-
nipulating the data storage in the RDBMS. As the two paradigms are so different
in their nature the task of switching can be exhausting and distracting, which in
effect often results in errors in the developed application, thus giving a need for
extra debugging.

One of the most common mechanism employed by applications to interact with
a RDBMS is a call level interface (CLI) such as ODBC [44, ch. 4] or a derivation
of it like JDBC [11] or ADO.NET [1]. While there are many advantages in using
a CLI, for instance performance and expressiveness, there are also disadvantages
such as possibilities for bad query syntax, misspelled column and table names,
data type mismatches and security lapses.

When the CLI approach is employed it frequently entails that the developer
has to maintain database connection and query code in separate places within
the application code. The database specific code can with advantage be put into
special classes in order to ensure that hard-coded query code is not scattered
out in too many places such that most of the application is decoupled from it.
However, in this setting that developer often has to perform the tedious task
of coding and maintaining several classes with few differences with regards to
database specific code - this problem also manifests itself in the case with basic
CRUD (create, read, update and delete) applications.

The aforementioned disadvantages associated with using CLI has prompted the
software industry to provide better solutions for interacting with RDBMS seen
from an object-oriented language perspective. These solutions take different ap-
proaches in dealing with the impedance mismatch and differ in level of sophistica-
tion and complexity. This diversity can be classified into categories, which include

4

1. Introduction

language extensions [20, 26, 25], object/relational mapping [40, 33, 28, 32, 19] and
persistent object systems [12, 40, 4]. Although many of the cited solutions at-
tempt to overcome issues that constitute the impedance mismatch, some of them
address a broader range of issues than others. The various solutions also differ
in how they impact the way the developer has to implement an application, for
instance Safe Query Objects [19] (SQO) provides an API that lets a developer to
define database queries in fairly object-oriented terms, whereas DLINQ [20] brings
about a query syntax that is very similar to SQL by extending C# with new key-
words, thus forcing the developer to work in different paradigms.

Generally, we maintain that extending a general-purpose programming lan-
guage with domain specific language elements is not always the most expedient
approach. On the basis of this point of view we select to concentrate on the
application programming interface (API) approach in this thesis, which we term
Vivid Data Objects (VDO). Further argumentation for taking this approach is
given in Section 2.2 on page 34.

During our preliminary research for this thesis [27] we examined a range of
different solutions that try to overcome some of the inherent problems associated
with the impedance mismatch. In order to manifest the framework for the fol-
lowing work in this thesis we sum up the most apparent and relevant findings we
identified from the examined API-based solutions in Section 2.1 on page 7.

5

1. Introduction

6

2Motivation
In this chapter we examine those factors which motivate us in commencing with
the realization of an API solution that employs design patterns and deals with a
particular subset of the impedance mismatch.

Section 2.1 is concerned with our previous work and those results we came
upon during this research. The reader should be especially aware of the impedance
mismatch issues that have our attention, which are outlined in this section for
further reference. Our previous work is a foundation for our further interests and
work, and can be thought of as a motivational catalyst for what we are doing in
this project.

In Section 2.2 on page 34 we use our previous work in concert with new found
interests to state our fields of interest for this project and how these things relate
to each other.

2.1 Previous Work Revisited

In this section we revisit selected parts of our previous research [27] that we find
appreciable and relevant in the context of this thesis. It is not our intention
to bring about an in-depth induction to our previous findings, but rather to
establish a sufficient frame of reference for the reader that is directly applicable
to our further work. Some of our previous work that is presented in this section
has been slightly modified and edited in order to comply with the overall end of
this thesis.

Last semester we performed a detailed evaluation of a series of existing so-
lutions, which provide an interaction mechanism to a RDBMS from an object-
oriented language. The evaluation was carried out on the basis of a perspective
that comprised a subset of the impedance mismatch. An elaboration of this sub-
set is presented in Section 2.1.1 on the next page. The elaboration only comprises
and applies to those issues that we concentrate on in this thesis.

In order to frame related work we present reviews that elaborate on substantial

7

2.1 Previous Work Revisited 2. Motivation

merits and demerits of the API-based solutions that were examined in [27]. This
is done in Section 2.1.3 on page 13.

During the evaluation of the examined solutions we identified a series of char-
acteristics in order to obtain a standard of reference, which could be used as
support in future work that took our concerns with regards to the impedance
mismatch into consideration. We end this section by listing the most usable and
relevant characteristics, which were identified in the previous work in Section 2.1.4
on page 32. These characteristics are intended to serve as a foundation in the
design of our solution.

2.1.1 Impedance Mismatch Subset

Given the scope and complexity of the impedance mismatch, the focus in our
previous work was directed to a subset of the impedance mismatch. This subset
provides the basis for our current work, however in continuation of this our focus
is further confined to a smaller subset.

As stated in Section 2.1 on the preceding page our elaboration of the impedance
mismatch subset only comprises and applies to those issues that we currently
concentrate on. The issues we focus on in this work can principally be described
under the category safe queries.

During the preliminary work of this thesis our comprehension of the category
safe queries has changed since our previous work. We realized that the type
checking issues that we dealt with fit under safe queries. Thus we expand safe
queries to include type checking issues as well. In the following we put forward
a definition of the issues that we see fit under the category safe queries. In
Section 2.1.2 on the next page we provide matching examples that exemplify the
respective problems of each issue within safe queries.

With the aforementioned in view, the issues that constitute safe queries are
defined as follows:

• Query Vulnerability: This issue comprises SQL injection attacks, which
is a subset of an unverified/unsanitized user input vulnerability that can
yield security violations such as unauthorized access to a database.

• Query Correctness: This encompasses correctness checks of generated
SQL queries, which consists of validating that representations of columns
and tables that are employed in the programming languages correspond to
the database schema, as well as ensuring a sensible usage of SQL queries.

• Type Checking: Here we concentrate on checking the validity and the
correspondence between data types used in the database schema and the
data types used in the programming language. Data type correspondence
means that the types used in both ends should be compatible. An issue that
is relevant to probe into is determining whether data type correspondences

8

2. Motivation 2.1 Previous Work Revisited

are size compatible, for instance checking whether a certain type of a column
in the database has the sufficient size to accommodate the corresponding
type in the programming language or vice versa.

The reason that we focus on these particular issues is that we maintain that the
reviewed solutions are not sufficient, when the complexity of a problem constitutes
all the issues within this category combined.

2.1.2 Identifying the Problems

In following we list those problems, which we find to be in our greatest interest
and inspired us to start our research. We are aware that more problems exist
inside the problem domain, but to retain our focus we have narrowed the problems
down to five particular ones that can be associated with the category safe queries.
Together with each problem we list one or more possible problem scenarios such
the issues are exemplified to the reader.

The problems we list are a mixture of problems we have experienced by ourself
and problems we have learned about through other solutions, as well as heard
about from other developers, thus these problems are of great significance in the
everyday programming life when using a database as a back-end for storing data.

2.1.2.1 String Types

When working with strings in modern object-oriented programming languages
like Java or C# there is no explicit limit to their lengths unlike their common
predecessor C - actually there is no actual string type in C so instead the developer
has to use an array of characters, thus having a fixed maximum length of the
string. In the database world the most used string types are char and varchar

as they have fixed length in the files, where the table records are saved [44, ch.
11]. These two types have a maximum of how many characters they can hold,
which is specified in the database schema and is similar to the size of character
arrays known from C. Both char and varchar have an upper limit to the size
depending on the DBMS used, but offer a string alternative without any size limit
- the text type.

It should be obvious to realize that there is a problem with the string types
if some of the size limited types in the DBMS are used together with the regular
string types in the object-oriented programming language being employed. As
many database schema designers prefer to use either char or varchar instead of
text this is a problem that needs attention. One could argue that this problem is
nonexistent as the DBMS is expected to report an error whenever the application
is trying to update the database with unfit variables for the records, but we still
find it to be important not to create SQL query strings which do not comply with
the database schema as we would like to move as much of the fault detection as
possible away from the DBMS and into the application.

9

2.1 Previous Work Revisited 2. Motivation

................................
........”classic” ”class”pp

string varchar(5)

Figure 2.1: String longer than varchar.

As just lined up and as shown in Figure 2.1 there can be a possible problem
when updating the database if the affected column does not allow a string of the
given length. However this is not guaranteed to be a problem if the given string
is of same or lower length than allowed, as shown in Figure 2.2.

................................
........

string varchar(8)

”classic” ”classic”

Figure 2.2: String shorter than varchar.

Although some DBMS like PostgreSQL claim that there is no actual perfor-
mance difference between the different string types many database designers still
prefer to use either char or varchar [10], though text would be the type to
fit best to the string types from object-oriented programming languages as they
can hold a string of any size. One of many reason for this decision among the
database designers could be the fact that when using char or varchar the size
used for each record will be fixed, but with text there is no limit to each record,
thus being able to take up more space than the database designer would like.

When using these non-fitting string types together it is necessary to perform
some check of the string variables to ensure that the SQL queries sent to the
DBMS are not violating the database schema. Though many of these checks can
be performed at compile-time many string variables are generated at run-time
mostly as result from user input. Thus it is necessary to check some, if not all,
of the string during run-time to ensure the validity of the SQL queries.

2.1.2.2 Numeric Types

When using primitive types like the numeric types there is an upper and a lower
limit to the size of the number at hand, and this relies in both the object-oriented
and the relational world [7, 10, 3]. This upper and lower limit is a direct result
of how much storage is being used for the variables. From our experience, in
databases with many records it seems to be an ongoing tendency to save as much
disk space as possible with each column, thus selecting the numeric type that

10

2. Motivation 2.1 Previous Work Revisited

takes up as little space as possible while still being able to hold the needed values
for the variables.

For many of the numeric types used in databases there is an equivalent type
in object-oriented programming languages, like smallint in both PostgreSQL
MySQL and short in Java [7, 10, 3]. Even though this numeric type has an
equivalent in the two worlds unfortunately they are not always used together,
thus sometimes a smallint is used in the DBMS together with a int in the
programming language. This does not cause a problem when reading a value
from the database as the smallint has a more narrow range (from −32, 768
to 32, 768) than the int (with range from −231 to 231) . If trying to save an
integer from the programming language to the database a problem will occur if
the integer has a value above 32, 768 or below −32, 768 as these values do not fit
into the smallint column in the database.

If there were only used equivalent types in the DBMS and the application no
problem would occur leading us to the conclusion that it is best to disallow the
developer from using incompatible types. Even though this would solve some of
the problems it is not possible in all situations as some numeric types from the
DBMS have a different range than any of those from the application language - like
tinyint in MySQL which has no equivalent in the Java programming language
[7, 3].

Whenever some non-equivalent numeric types are used when some equivalent
types are available it would be preferable to disallow the compilation by giving the
developer errors about these incompatible types. Whenever some non-equivalent
numeric types are used and there are no compatible types the compiler should
give the developer a warning at compile-time and further check the variables
during run-time to prevent SQL queries with values outside the allowed range for
a given column.

2.1.2.3 Null Values

In object-oriented programming languages like Java any uninitialized variable for
a primitive type is assigned to some standard value, e.g. 0 for most numeric types
[3]. In contrast to this the object types are not initialized with a standard value
as they often are complex, but instead they are initialized as a pointer to null.
In DBMS it is possible for columns to allow its value not to be set, thus being a
null value.

When translating values from the DBMS to the running application it is pos-
sible to retrieve a null value. Although this is not a problem when retrieving a
value that is to be stored directly as an object in the application, like a string.
However, it is mostly values for primitive types that are retrieved from the DBMS.
As primitive types in e.g. Java are not able to hold the null value it is neces-
sary to either use the standard value for the type in the application language, let
the developer choose some standard value, or completely forbid using columns in

11

2.1 Previous Work Revisited 2. Motivation

which null values can occur.

2.1.2.4 SQL Injection Attacks

Most applications accept user input and some of this can be harmful to the DBMS
serving the SQL queries generated from the application - these queries are called
SQL injection attacks as they exploit vulnerabilities in the application to inject
erroneous code into the SQL query through the variables from the user used
directly in the SQL query. The most focus on SQL injection attacks is in regard
to web applications for the internet [24, 17], but any public available application
with input from the user (e.g. at train stations, supermarkets, etc.) is of interest
when preventing SQL injection attacks as they are all vulnerable to the inputs.
Hence, it is of general interest to include methods for preventing SQL injection
attacks in our solution.

If a person is interested in discovering vulnerabilities in a running application
it is easy to find if no counter-measures have been taken by the application
developer to prevent these attacks [22]. Basically the problem arises when there
is no verification of the variables given from the user to the program. If these
variables are used directly in the SQL query strings it is possible to modify the
query and execute the queries in ways which is not preferable. In Listing 2.1
we show a method that could exist in an application with user verification - the
method is invoked with two parameters for username and password, it passes
these directly to the SQL query string. In Listing 2.2 we see the SQL query
string produced by calling getUser with uname as the username and pass as the
password. In Listing 2.3 on the facing page we attempt to perform a SQL injection
attack by setting the username parameter to admin’ --, thus using the fact that
anything after -- is commented out by the DBMS in the query string. With this
injection there is no check against the password, which leaves the application
vulnerable.

1 public ResultSet getUser(String uname , String pass) {
2 String query = "SELECT id FROM users "
3 + " WHERE username=’" + uname + "’"
4 + " AND password=’" + pass + "’"
5 Statement stmt;
6 ResultSet rs;
7 stmt = connection.createStatement ();
8 rs = stmt.executeQuery(query);
9

10 return rs;
11 }

Listing 2.1: Unsafe usage of input variables.

1 SELECT id FROM users WHERE username=’uname’ AND password=’pass’

Listing 2.2: The query produced in 2.1.

12

2. Motivation 2.1 Previous Work Revisited

1 SELECT id FROM users WHERE username=’admin’ --’ AND password=’

pass ’

Listing 2.3: The query produced in 2.1 on the facing page with injection attack.

Although the vulnerability shown in Listing 2.3 can be considered harmful
to the running application it is possible to do severe damage to the DBMS by
adding more queries or by executing commands. Each query could be decoupled
by the SQL query separator the semicolon. By exploiting this vulnerability it is
possible for the attacker to create, alter, and drop tables which can have severe
consequences - an example of this is shown in Listing 2.4 where the username
variable has been set to ’; DROP TABLE users --. As the goal for this injection
attack is to do harm to the database the username variable in the SQL query
string has been set to be the empty string - after execution the users table has
been deleted, thus it is no longer possible to use the application.

1 SELECT id FROM users WHERE username=’’; DROP TABLE users --’ AND

password=’pass ’

Listing 2.4: The query produced in 2.1 on the facing page with a critical injection
attack.

It should be obvious that it is important to prevent any kind of injection
attack to the SQL query string during run-time as any attack that is a result of
malicious user input is not detectable during compile-time. Even though it is not
possible to do the checks during compile-time it is possible to point out those
occurrences in the source that are vulnerable due to user input.

2.1.2.5 Developer Mistyping

When creating application source code there is always the risk that the developer
mistypes or misspells parts of the program, which entails a risk of mistyping in
the parts that are responsible for communication with the DBMS.

Most compilers tell the developer about these mistypings during compile-time,
but due to the fact that SQL queries are present in the application source code
as strings they are not checked to see whether they comply with the database
schema, thus giving errors at run-time.

The mistyping done by the developer may be names for tables (e.g. user

instead of users, which can be hard to localize as an error when looking through
the application source code) or columns where some compile-time errors would
help the developer narrow down his search to locate errors.

2.1.3 Evaluated Solutions

In [27] we evaluated eight existing solutions that had different origins, some came
from academia and others were open source initiatives or commercial solutions.

13

2.1 Previous Work Revisited 2. Motivation

Although we examined eight solutions, we only choose to include three of those in
the following. This choice is based on the fact that these are most closely related
to what we wish to deal with.

The reviews are centered around describing the structure and the most distin-
guishing features of the respective solutions in concert with whether the solutions
address the concerns of the impedance mismatch subset that were outlined in Sec-
tions 2.1.1 on page 8.

2.1.3.1 Hibernate

In short, Hibernate can be described as a object/relational persistence and query
service for Java and .NET. As we find Hibernate to be a rather complex project,
we only look at those things that we find interesting and relevant.

Hibernate works as a layer that takes care of the mapping from Java classes to
database tables and from Java data types to SQL data types. Hibernate requires no
interfaces of base classes for persistent classes and makes it possible to make any
class or data structure persistent. Furthermore, it employs run-time reflection
to gain information about the persistence of objects. Class instances can be
transient or persistent, where the former state is the default for all classes.

The mapping done in Hibernate is by way of XML documents, which define the
ORM and generate table and constraint creation scripts. It supports a variety of
inheritance mapping approaches and all entity association mapping styles, which
include one-to-many, many-to-one, one-to-one and many-to-many. However, the
XML mapping files are written by hand. This leaves room for errors such as
misspellings of column names, which can be tedious to find. On the other hand,
once the mapping files are defined Hibernate offers a range of tools for assistance
in the development process. These include tools for generating Java classes (or
database tables) from existing mapping files, and also for generating mapping
files from existing database tables.

An illustration that depicts the overall architecture of Hibernate is given in
Figure 2.3 on the facing page.

As illustrated in Figure 2.3 on the next page, all communication is being done
via instances of Session, which are single-threaded, short-lived objects represent-
ing the communication between the application and the data store. A Session

holds a mandatory cache of persistent objects, which are used for navigating the
object graph or looking up objects by identifier. A SessionFactory is an im-
mutable cache that represents all compiled mappings for a single database and
configurations of Hibernate. A Session works as a factory for instances of Trans-
action that also are single-threaded, short-lived objects, which make it possible
to perform commits or rollbacks as known from databases. More elaborate details
about the architecture can be found in [39, ch. 2]. An example that shows how the
various parts in the architecture interact is given in Listing 2.5 on the facing page.

14

2. Motivation 2.1 Previous Work Revisited

Application

TransactionSession

SessionFactory

TransactionFactory ConnectionProvider

Database

Transient Objects

Persistent
Objects

JNDI JDBC JTA

Figure 2.3: The architecture of Hibernate.

In the example we create an Event object and hand it over to Hibernate, which
takes care of the SQL and executes INSERT on the database. In order to shield our
code from the actual underlying transaction system we use the Transaction API.

1 ...
2 public class EventManager {
3 public static void main(String [] args) {
4
5 EventManager mgr = new EventManager ();
6 mgr.createAndStoreEvent("New Event", new Date());
7 HibernateUtil.getSessionFactory ().close();
8 }
9

10 private void createAndStoreEvent(String title ,
11 Date date) {
12
13 Session session =
14 HibernateUtil.getSessionFactory ().getCurrentSession ();
15
16 session.beginTransaction ();
17
18 Event event = new Event();
19 event.setTitle(title);
20 event.setDate(date);
21
22 session.save(event);
23 session.getTransaction ().commit ();
24 }

15

2.1 Previous Work Revisited 2. Motivation

25 }

Listing 2.5: Storing an object.

In order to express queries, Hibernate gives you three options [39, ch. 10]. The
first is to use native SQL, which deviates a bit depending on the database. Native
SQL is useful if you want to utilize database specific features, but it has the same
pitfalls associated with CLI. An example of a SQL query is given in Listing 2.6.
Native SQL has optional support from Hibernate for result set conversion into
objects.

1 List cats = session.createSQLQuery(
2 "SELECT {cat.*} FROM CAT {cat} WHERE ROWNUM < 10",
3 "cat",
4 Cat.class
5).list();

Listing 2.6: SQL query.

The next option is Hibernate’s own query language, Hibernate Query Language
(HQL). HQL is object-oriented and understands notions like inheritance, poly-
morphism and association. HQL employs a syntax that is similar to SQL as it is
designed to resemble it. It uses many of the same keywords known from SQL and
queries may consist of clauses, subqueries, expressions and aggregate functions.
Expressions allowed in the WHERE clause include most of the kind of things you
could write in SQL, the same is true for the use of aggregate functions [39, ch.
14]. Clauses like ORDER BY and GROUP BY are also supported by HQL and work
similar as in SQL. In addition, it is also possible to perform inner, left outer, right
outer and full joins in HQL. Even though HQL queries support object-orientation
they still suffer from being strings like native SQL. An example of HQL queries
is given in Listing 2.6.

1 ...
2 List kittens = session.createQuery(
3 "from Cat as cat where cat.mother = ?")
4 .setEntity(0, pk)
5 .list();
6
7 Cat mother = (Cat) session.createQuery(
8 "select cat.mother from Cat as cat where cat = ?")
9 .setEntity(0, izi)

10 .uniqueResult ();

Listing 2.7: HQL queries.

The last option is criteria queries, which distinguish themselves from the other
two options. They make it possible to build queries dynamically, using an object-
oriented API. Hibernate provides a criteria query API, Criteria. An example of
criteria query is shown in Listing 2.8 on the next page.

16

2. Motivation 2.1 Previous Work Revisited

1 List cats = sess.createCriteria(Cat.class)
2 .add(Restrictions.like("name", "F%")
3 .addOrder(Order.asc("name"))
4 .addOrder(Order.desc("age"))
5 .setMaxResults (50)
6 .list();

Listing 2.8: Criteria query.

As can be seen in Listing 2.8 it is possible to add orderings and restrictions
using methods. Hibernate does the translation of the criteria instance into a query.

An interesting thing that we would like to point out is how data types are
handled in the mapping done by Hibernate. In some cases, a mapping element
may lack a type attribute, see line 6 in Listing 2.9.

1 <hibernate -mapping >
2 <class name="events.Event" table="EVENTS">
3 <id name="id" column="EVENT_ID">
4 <generator class="native"/>
5 </id>
6 <property name="title"/>
7 </class >
8 </hibernate -mapping >

Listing 2.9: Hibernate mapping file.

The types that are declared and employed in the mapping files are neither
Java nor SQL data types. These types are so called Hibernate mapping types,
converters which can translate from Java to SQL data types and the other way
around. Hibernate tries to determine the correct conversion and mapping type
itself if the type attribute is not present in the mapping file. This leaves room
for errors, because the correspondence between the types may be entered in the
XML document by hand. Moreover, in some cases this automatic detection done
by Hibernate might not have the default you would expect or need. An example
is the date property java.util.Date. Here Hibernate can not determine if the
property should map to a SQL date, timestamp or time column.

In order to understand the terminology in examples that are to come, we
first introduce the concept of entity and value types that are used in the context
of Hibernate. Formally an entity is any class whose instances have their own
persistence identity. A value type is a class that does not define some kind of
persistent identity. Basically this means that entity types are classes with identity
properties, and value type classes depend on an entity [39, ch. 5].

The save and delete methods of Session apply to instances of entity classes,
never to value type instances. The persistence lifecycle of a value type instance
is entirely depended on the lifecycle of the owning entity instance. Furthermore,
in Hibernate a value type may define some associations, where it is possible to

17

2.1 Previous Work Revisited 2. Motivation

navigate from a value type instance to some other entity. However, it is never
possible to navigate from the other entity back to the value type instance. Associ-
ations always point to entities, which means that value type instances are owned
by exactly one entity when they are retrieved from the database. Moreover, at
the level of the database, any table is considered to be an entity.

In the following we look at how types are handled with regards to queries. HQL
and native SQL queries are represented with an instance of org.hibernate.Query,
which offers methods for parameter binding, result set handling, and for the ex-
ecution of the actual query. A query is usually executed by invoking the list

method, the result of the query is loaded into a collection in memory. In addition,
entity instances retrieved by a query are in persistent state.

The most basic SQL query is to get a list of scalars. The query in Listing 2.10
returns a List of Object[] with scalar values for each column in the CATS table.

1 session.createQuery("SELECT * FROM CATS").list();

Listing 2.10: Scalar result from a simple SQL query.

Hibernate employs result set metadata to deduce the actual order and types of
the returned scalar values. However, even though the types may be determined
there is still a disconnect between specifying the query and the usage of the
result, e.g. if the query string is altered, no warning is given to the developer at
compile-time if he tries to access a scalar value that is not in Object[].

The example in Listing 2.10 was about returning scalar values or the “raw”
values from the result set. The code in Listing 2.11 exemplifies how to get entity
objects from a native SQL query by way of using the method addEntity.

1 session.createSQLQuery("SELECT * FROM CATS")
2 .addEntity(Cat.class);

Listing 2.11: Entity result from a simple SQL query.

Assuming that Cat is mapped as a class with the columns ID, NAME and
BIRTHDATE the query in Listing 2.11 returns a List where each element is a Cat

entity, but still we do not get static type checking.
When using HQL you are restricted to the same pitfalls as with native SQL

with regards to static type checking. However, you have some more convenient
ways of specifying what kind of result you expect from the query. This information
is specified in the query string. An example of this is given in Listing 2.12, which
contains queries that return multiple objects as an array of type Object[], as a
List or as an type-safe Java object, respectively.

1 select mother , offspr , mate.name
2 from DomesticCat as mother
3 inner join mother.mate as mate
4 left outer join mother.kittens as offspr

18

2. Motivation 2.1 Previous Work Revisited

5
6 select new list(mother , offspr , mate.name)
7 from DomesticCat as mother
8 inner join mother.mate as mate
9 left outer join mother.kittens as offspr

10
11 select new Family(mother , mate , offspr)
12 from DomesticCat as mother
13 join mother.mate as mate
14 left join mother.kittens as offspr

Listing 2.12: Different types of results using HQL queries.

We were interested in how Hibernate deals with size compatibility, so we com-
piled a small application that tries to insert a too large Java string into a column of
type varchar(5). As expected we only got a run-time error from the underlying
system. The error was an exception, com.mysql.jdbc.MysqlDataTruncation,
which informed us that the input data was too long for the column in question.
We maintain that such potential errors as this one should be informed to the
developer as a warning.

Another experiment we performed was with regards to injection attacks. Hi-
bernate provides several ways of communicating with the database and we did
not try all of them. When trying to execute the code in Listing 2.13, we did
not manage to drop the table Events. We suspect the reason that the command
drop table is not performed is because of the used database MySQL 5.0, which
does not allow more than one query in one input. We did not examine if this is
the case with other databases.

1 String ok = "\’’; DROP TABLE events; --";
2 session.createSQLQuery(
3 "SELECT * FROM Events WHERE title = ’" + ok +"’");

Listing 2.13: SQL injection attack.

However, we managed to perform another type of attack successfully, which
is given in Listing 2.14. It returned all rows that were in the table Events.

1 String ok = "’ or title is not null or title=’";
2 session.createSQLQuery(
3 SELECT * FROM Events WHERE title = ’" + ok +"’");

Listing 2.14: SQL injection attack.

The concatenation used in Listing 2.13 and 2.14 is notoriously unsafe and
the most common vector in injection attacks. There is a safer way by using pa-
rameters in Hibernate. Listing 2.15 on the following page shows code that does
the same, but is safe because it uses the method setString, which accepts po-
sitional parameters. Internally Hibernate uses prepared statements, which guard

19

2.1 Previous Work Revisited 2. Motivation

against SQL injection. In a prepared statement, arguments are bound to the
statement rather than having a plain text SQL statement being issued. The code
in Listing 2.15 is in fact the recommended approach.

1 String ok = "’ OR title IS NOT NULL OR title=’";
2 session.createSQLQuery(
3 "SELECT * FROM Events WHERE title = ?").setString(0, ok)

Listing 2.15: SQL injection attack.

However, an inconsiderate developer may well use the approach with string
concatenation and therefore we must conclude that Hibernate does not completely
protect you from injection attacks.

As for debugging HQL or SQL queries Hibernate does not assist you during
compile-time or when you write the query code. However, modern development
environments like Eclipse can assist a developer with auto-completion, but mis-
spellings of column names or bad syntax in query strings are not detected before
run-time.

20

2. Motivation 2.1 Previous Work Revisited

2.1.3.2 Safe Query Objects

Safe Query Objects (SQO) is an integrated approach to the impedance mismatch
that allows query behavior to be defined using statically typed objects and meth-
ods, which supports query shipping1 by automatically generating code to execute
queries remotely in a relational database [19].

Safe queries are Java objects that adhere to a specific programming pattern to
define the behavioral components of a query. The fact that safe queries are Java
objects implies that they are semantically integrated and type-checked statically.

The prototype of SQO employs the OpenJava [9] macro system for meta-
programming at compile-time to generate code to invoke the Java Data Objects
(JDO) persistence library [4] - in this context that is translating from safe query
classes to database access classes.

In short, macros in OpenJava are compile-time transformations on class defini-
tions and expressions that reference them, and are run after initial type analysis,
but before complete type checking has been performed. An OpenJava compile-
time transformation is specified by a metaclass. OpenJava extends the Java pro-
gramming language in a way that it is possible for a class definition to specify a
metaclass using the instantiates keyword.

JDO is used as a foundation for safe queries. It is a standard for interfacing
Java with persistent data in relational and non-relational data stores, and sup-
ports both object-relational mapping and a call level interface. JDO supports a
subset of relational query behavior that includes dynamic filters and filters that
involve joins between multiple tables, sorting, parameterization (like user input),
and existential quantification. The examined prototype inherits the capabilities
and limitations of JDO 1.0 [18], which means that it does not support multi-table
query results or general aggregation.

JDO provides access to persistent objects via PersistentManager, which is
an interface to making an object persistent, as well as to retrieving persisted
objects, and removing them from persistent storage. The method newQuery of
PersistentManager is used to create a JDO Query object, which is a call level
interface. This interface is decomposed into methods for ordering, filtering and
declarations of query parameters, imports and variables.

SQO makes extensive use of the concept of filters, since the authors main-
tain that defining a query as a filter method is natural in the sense that it is
a simple and effective Java programming pattern: it modularizes query beha-
vior into methods that have the right form to be translated for remote execution
in a relational database. Filter conditions in SQO are translated into the JDO
Query Language (JDOQL), which allows automatic conversations between types,
overloads < and > for boxed values including dates and strings.

1Query shipping refers to the practice of transferring high-level operations, like filtering and
joining, to the database.

21

2.1 Previous Work Revisited 2. Motivation

In JDO every query has a candidate type that defines the class of objects
that are returned by the query. This type is specified in the call to the method
newQuery. An example of a JDO query is depicted in Listing 2.16, where all
employees whose salary is greater than their manager’s salary is selected.

1 import javax.jdo.*;
2 Collection executePayCheck(PersistenceManager pm) {
3 Query payCheck = pm.newQuery(Employee.class);
4 payCheck.setFilter("salary > manager.salary");
5 Object result = payCheck.execute ();
6 return (Collection) result;
7 }

Listing 2.16: Filtering in JDO.

The filter specification in Listing 2.16 is evaluated for each instance of the
candidate type, Employee, which means that references to manager and salary

access the members of the instance. In order to navigate through object-valued
fields, such as manager.salary, JDO employs joins. The result of this query is
the subset of all candidate instances in the database for which the filter evaluates
to true. JDO handles the translation of database rows to Java objects. The static
return type of the method execute in Listing 2.16 is Object, but at run-time the
return value is a read-only Collection that contains instances of the candidate
type.

The simplest form of a safe query is an object that contains a boolean method
that can be employed to filter a collection of candidate objects. The example in
Listing 2.16 is shown as a safe query implementation in Listing 2.17.

1 class PayCheckQuery extends SafeQuery <Employee > {
2 boolean filter(Employee emp) {
3 return emp.salary > emp.manager.salary;
4 }
5 }

Listing 2.17: Filtering using a safe query object.

Given that the filter in Listing 2.17 is plain Java code implies that syntax and
types are checked during compile-time.

The behavior of a query object is characterized by the base class SafeQuery,
given in Listing 2.18, where the generic type T defines the candidate type of the
query. Moreover, safe query objects are instances of safe query classes, which all
must extend SafeQuery<T>. Furtermore, safe query classes must adhere to some
behavioral restrictions, which for instance includes that the filter method has to
be side-effect free - the full list of these restrictions is given in [19].

1 class SafeQuery <T> {
2 boolean filter(T item) { return true; }

22

2. Motivation 2.1 Previous Work Revisited

3 }

Listing 2.18: The SafeQuery base class.

Given the fact that safe queries are Java classes makes it possible to execute
them locally to filter any collection of objects. However, since our focus is on
interfacing with a database we only concentrate on remote execution.

In order to implement remote execution, SQO employes OpenJava to gener-
ate necessary methods and attributes that enable a query to be shipped to and
executed on a database. The behavior for compile-time metaprogramming is en-
capsulated in the metaclass RemoteQueryJDO, which is applied to the safe query
using the instantiates keyword. An example of this is given in Listing 2.19.

1 class PayCheck instantiates RemoteQueryJDO
2 extends SafeQuery <Employee > {
3
4 boolean filter(Employee emp) {
5 return emp.salary > emp.manager.salary;
6 }
7 }

Listing 2.19: Remote execution: safe query class that invokes a metaclass.

During compile-time, OpenJava runs the metaclass and supplies the definition
of PayCheck as input. At this point, the metaclass can examine the partially
compiled definition of the class and modify or extend the class. In the case with
Listing 2.19, RemoteQueryJDO gets PayCheck as input and generates the method
execute, which implements a remote version of the PayCheck filter method by
passing appropriate strings to the JDO interface. The automatically generated
execute method for PayCheck is given in Listing 2.20. Note that the generated
method is the same as the potentially unsafe code in Listing 2.16 on the facing
page, but the crucial difference is that the code in Listing 2.20 is automatically
generated from a type-checked Java method, thus the safe query version is type-
safe.

1 import javax.jdo.*;
2 ...
3 Collection <Employee > execute(PersistenceManager pm) {
4 Query q = pm.newQuery(Employee.class);
5 q.setQuery("salary > manager.salary");
6
7 return (Collection <Employee >) q.execute ();
8 }
9 ...

Listing 2.20: Remote execution: automatically generated method for PayCheck.

In addition to filters, SQO also provides means for sorting. Relational query
languages define a sort order by deriving a list of sortable values from each element
of the candidate type. This list of values can be marked to indicate whether the

23

2.1 Previous Work Revisited 2. Motivation

sort order should be ascending or descending. In SQO sorting is specified by
associating a list of sortable values with each object in the result set. In the
same manner as with the filter method, safe queries can also specify an order

method that takes a candidate class and returns a list of sortable objects. This list
is represented as a linked list of Sort objects, where each contains a comparable
value, a flag indicating the sort order, and an optional secondary Sort value. An
example of a safe query that specifies two sort orders is listed in Listing 2.21.

1 class SortQuery instantiates RemoteQueryJDO
2 extends SafeQuery <Employee > {
3
4 Sort order(Employee emp) {
5
6 return new Sort(emp.department.name ,
7 Sort.Direction.ASCENDING ,
8 new Sort(emp.salary ,
9 Sort.Direction.DESCENDING));

10 }
11 }

Listing 2.21: Sorting: safe query with an order method.

The code specified in the order method in Listing 2.21 is translated into code
that has a proper syntax, which is accepted by JDO, depicted in Listing 2.22,
after being processed by OpenJava.

1 import javax.jdo.*;
2 ...
3 Collection <Employee > execute(PersistenceManager pm) {
4 Query q = pm.newQuery(Employee.class);
5 q.setOrdering("department.name ascending , "
6 + "salary descending");
7
8 return (Collection <Employee >) q.execute ();
9 }

10 ...

Listing 2.22: Sorting: Automatically generated remote execution.

In addition to filtering and sorting, we are going to look at two other signifi-
cant query features of SQO, parameterized queries and dynamic queries, that we
find imperative with regards to our objectives.

In SQO parameterized queries are used when their behavior depends upon
input values. Query parameters are values that can have an effect on the filtering
and ordering of query results. The way that SQO makes them accessible from
the filter and order methods is to encapsulate them as instance variables in
the query object. Formal parameters on the class constructor are being used to
initialize these variables. An example of a parameterized safe query class is given

24

2. Motivation 2.1 Previous Work Revisited

in Listing 2.23. The code is used to find employees with a salary greater than a
limit.

1 class SalaryLimit instantiates RemoteQueryJDO
2 extends SafeQuery <Employee >
3 {
4 double limit; /* parameter */

5 SalaryLimit(double limit) {
6 this.limit = limit;
7 }
8
9 boolean filter(Employee emp) {

10 return emp.salary > this.limit;
11 }
12 }

Listing 2.23: Parameterized safe query object.

The parameter in Listing 2.23 is a normal Java variable, which entails that its
declaration, usage, and binding are all checked for consistency during compilation.
This is in contrast to a hand-coded parameterized JDO query, where the essential
connection between declaration, usage, and binding is broken up in disjoint API
calls, which leaves room for errors that only are discovered at run-time. The
result after translating the code in Listing 2.23 is given in Listing 2.24. The
RemoteQueryJDO metaclass translates the query parameter into corresponding
JDO calls. Given the fact that the translation is automated entails that there are
no syntax or type errors in the strings passed to the CLI. More information about
the translation mechanism involved can be found in [19, p. 9].

1 import javax.jdo.*;
2 ...
3 Collection <Employee > execute(PersistenceManager pm)
4 {
5 Query q = pm.newQuery(Employee.class);
6 q.setFilter("salary > limit");
7 q.declareParameters("double limit");
8 Map paramMap = new HashMap ();
9 paramMap.put("limit", limit); // boxed

10
11 Object result = q.executeWithMap(paramMap);
12 return (Collection <Employee >) result;
13 }
14 ...

Listing 2.24: Automatically generated code.

The last query feature of SQO we discuss in depth is dynamic queries. This
kind of query constitutes filters, parameters, or orderings that are built during
run-time. Dynamic queries are employed when different filter criteria have to
be combined to construct a complete filter. For instance, one can imagine a set

25

2.1 Previous Work Revisited 2. Motivation

of optional search criteria that has to be specified in an application. In this
scenario the filters that result from different combinations of criteria will differ,
and since the difference between filters is structural, parameterized queries are
not sufficient.

In SQO dynamic filters are implemented as a special case of filters and can
be expressed as a filter method by way of using conditionals or short-circuit
evaluation. The idea here is that parts of the overall filter are only evaluated if
certain conditions are met. An example of a dynamic filter is given in Listing 2.25.

1 class DynQuery instantiates RemoteQueryJDO
2 extends SafeQuery <Employee >
3 {
4 private String namePrefix; // may be null

5 private Double minSalary; // may be null

6
7 DynQuery (String namePrefix , Double minSalary){
8 this.namePrefix = namePrefix;
9 this.minSalary = minSalary;

10 }
11 boolean filter(Employee item){
12 return (namePrefix == null
13 item.name.startsWith(namePrefix))
14 && (minSalary == null
15 item.salary >= minSalary);
16 }
17 }

Listing 2.25: Safe query using dynamic filter.

The short-circuit evaluation of || in Listing 2.25 is necessary in order to avert
a null-pointer exception. SQO employs abstract partial evaluation to find the
cases where a null argument triggers short-circuit evaluation. The approach
for interpretation of null values is to determine whether an expression being
evaluated can be simplified given the subset of parameters that are null. If
this is possible then the original expression is replaced by its simplest form. An
example is the Java expression (emp == null) || (emp.salary > 100). This
expression simplifies to true when emp is null and emp.salary > 100 when
emp is not null. In the examined prototype of SQO this analysis only supports
dynamic queries based on tests for null arguments. More elaborate details about
the evaluation approach are in [19, p. 11].

Lastly, we would like to point out that we have not found any documenta-
tion that specifies how SQO deals with mapping from a nullable SQL type to a
corresponding primitive type in Java.

26

2. Motivation 2.1 Previous Work Revisited

2.1.3.3 SQL DOM

A solution that has some points of resemblance with SQO is SQL DOM: Compile
Time Checking of Dynamic SQL Statements (SQL DOM) [32]. This solution can
in its simplest form be described as a set of classes that are strongly-typed to a
database schema. The primary goal of SQL DOM is to provide a way to have
the full expressive power of dynamic SQL statements without inherent problems
such as bad syntax, misspelled columns and table names, data type mismatches
and SQL injection attacks.

The foundation of SQL DOM can be decomposed into two main parts. The
first part is an abstract object model and the second part is an executable, sqldom-
gen, that is used for execution against a database schema to generate a concrete
instantiation of the abstract object model.

The development of sqldomgen is done by using C# and the .NET framework.
Its task consists of three main steps. First step is to obtain the schema from
the database. The next step is to iterate through the tables and columns in the
schema and output a number of files that contain a strongly-typed instance of the
abstract object model. The last step is the actual output from sqldomgen, which
is a dynamic link library that contains the classes that are strongly-typed to a
database schema. These classes are what constitute the DOM in SQL DOM, the
SQL Domain Object Model, and which also are employed to construct dynamic
SQL statements without manipulating strings.

The approach that SQL DOM takes is to have a compiler to eliminate the
possibility of problems with SQL syntax, developer misspellings and data type
inconsistency. This elimination is feasible because names of tables and columns
are embedded into the SQL DOM via class names or enumeration members, where
data types of columns correspond with types of constructors and method param-
eters.

The object model constitutes three main types of classes, which are SQL
statements, columns and WHERE conditions. For each of the four types of SQL
statements, SELECT, INSERT, UPDATE and DELETE, a class is created for each table
in the database schema. It is these classes that are used to create SQL statements.
For instance, if you were about to create a SELECT statement for an employee
table, you would use an instance of the EmployeeTblSelectSQLStmt class. An
interesting property to note is that SELECT SQL statements are equipped with a
JoinTo<tablename> method for each table with which they have a foreign key
relationship. This alleviates the developer from remembering the names of foreign
and primary key columns.

Each class is associated with a single table, and the constructors of each class
are typed to take only parameters representing columns of the table with which
each respective class is associated.

The column classes are used as parameters to the constructers and methods
of the SQL statement class mentioned above. They specify which columns are to

27

2.1 Previous Work Revisited 2. Motivation

be selected, updated or inserted. Furthermore, it is the column classes that hold
data in instance variables of the same type as the columns in table with which
they are associated. As it is possible that tables can have columns of same name,
namespaces are used to avert name collisions.

An attractive property of SQL DOM that we find relevant to point out is
security with regards to injection attacks. The interesting part here is that SQL
DOM represents a single point of defense as all SQL statements are constructed
by the SQL DOM. All database user input passes via constructors of classes in the
SQL DOM and necessary precautions such as escaping and data type validation
is handled within the realm of these constructors.

Actually it is within the column classes that SQL injection attacks are handled.
Column classes that have a data type of string parse and possibly modify values
that are given to them. An example is a single quote in a string, which would
be escaped to two single quotes in order to avert an injection attack. Moreover,
other data types do not need escaping because of the strongly-typed nature of
the classes. For instance, a class that represents a column with the data type
int only accepts values that are valid int’s. However, we have not come across
any information about how SQL DOM handles nullable SQL types that have a
corresponding value type in C#.

The last main type of class in the object model are the WHERE condition classes.
These are used to specify conditions in WHERE conditions of SELECT, UPDATE and
DELETE SQL statements. Instances of WHERE condition classes are added to SQL
statements via the AddWhereCondition method, which is overloaded according
to the columns in the database schema. Furthermore, it is possible to group to-
gether and randomly nest WHERE condition classes in order to construct complex
conditions.

In the following we show some code examples that exemplify the benefits that
are gained by using the features of SQL DOM, mentioned above.

Problems associated with SQL strings that we are interested in are syntax
errors and misspellings. An example of this is depicted in Listing 2.26, which is a
function, GetCustomers, that employs string concatenation to dynamically filter
the result of a SELECT statement.

1 public string GetCustomers(string companyName ,
2 string contactName ,
3 string city ,
4 string region ,
5 string country)
6 {
7 bool firstCondition = true;
8 StringBuilder sql =
9 new StringBuilder("SELECT * FROM Customers ");

10
11 if((companyName != null) && (companyName.Length > 0)) {

28

2. Motivation 2.1 Previous Work Revisited

12
13 if(firstCondition) {
14
15 firstCondition = false;
16 sql.Append(" WHERE ");
17
18 } else {
19 sql.Append(" AND");
20 }
21 sql.Append("CompnyName = ’");
22 sql.Append(companyName);
23 sql.Append("’");
24 }
25
26 // similar code would be placed here for each of the

27 // other possible conditions.

28
29 return sql.ToString ();
30 }

Listing 2.26: SQL statement with syntax error and misspelling.

Two errors that are easily made are illustrated on line 19 and line 21. The
first one, line 19, is that there will not be any space between the AND and following
column name, which results in a SQL statement that is not valid. The second
error, line 21, is a misspelled column name that also will result in a run-time
error. An improved version of GetCustomers that uses SQL DOM can be seen in
Listing 2.27.

1 public string GetCustomers(string companyName ,
2 string contactName ,
3 string city ,
4 string region ,
5 string country)
6 {
7 CustomersTblSelectSQLStmt sql =
8 new CustomersTblSelectSQLStmt ();
9

10 if((companyName != null) && (companyName.Length > 0)) {
11
12 sql.AddWhereCondition(
13 new CompanyNameWhereCond(companyName));
14 }
15
16 // similar code would be placed here for each of the

17 // other possible conditions.

18
19 return sql.GetSQL ();
20 }

Listing 2.27: Improved GetCustomers using SQL DOM.

29

2.1 Previous Work Revisited 2. Motivation

The improved version of GetCustomers in Listing 2.27 on the preceding page
has several advantages over the old version. One of these is that the SQL syntax is
automatically generated by the SQL DOM and therefore mistakes like misspellings
or SQL syntax errors are eliminated.

Another example that we find relevant to point out is how SQL DOM assists
in data type correctness. Listing 2.28 contains a function, SetUnitsInStock,
which is used to update the UnitsInStock column of the Products table. The
SQL data type of the UnitsInStock column is a smallint, which corresponds to
short in C#.

1 public string SetUnitsInStock(int productID ,
2 int unitsInStock)
3 {
4 ProductsTblUpdateSQLStmt sql =
5 new ProductsTblUpdateSQLStmt ();
6
7 sql.UnitsInStock = unitsInStock;
8
9 sql.AddWhereCondition(

10 new ProductIDWhereCond(productID));
11
12 return sql.GetSQL ();
13 }

Listing 2.28: Data type mismatch bug.

As can been seen on line 7, the data type of the unitsInStock is int. This
scenario generates a compiler error message that the compiler cannot implic-
itly convert type int to short. This is possible because of sqldomgen created a
UnitsInStock property with a data type of short. Internally, the UnitsInStock
property instantiates the UnitsInStockUpdateColumn class to handle the neces-
sary work. This is interesting to us, namely because we are concerned about size
compatibility, see Section 2.1.1 on page 8.

The last example we look at is about injection attacks. Listing 2.29 shows a
function, UpdateCustomer, that is used for updating customer information.

1 public string UpdateCustomer(int customerID ,
2 string companyName)
3 {
4 CustomersTblUpdateSQLStmt sql =
5 new CustomersTblUpdateSQLStmt ();
6
7 sql.CompanyName = companyName;
8
9 return sql.GetSQL ();

10 }

Listing 2.29: Prevention of an injection attack.

30

2. Motivation 2.1 Previous Work Revisited

A malicious user could attempt to perform an injection attack by submitting a
specially constructed string like “Kevin Mitnick’; drop table Customers -”
for the companyName parameter. However, this would not work because the attack
would be prevented by the escaping done by the CompanyNameUpdateColumn class,
which is created internally by the CompanyName property, line 7.

31

2.1 Previous Work Revisited 2. Motivation

2.1.4 Identified Characteristics

During our previous research in [27] we focused on how other projects deal with
the problems in the impedance mismatch subset described in 2.1.1 on page 8.
Inspired by the classical way of developing languages and language extensions
[43, p. 8] we made a list of characteristics from these projects. In order to
support us in finding suitable characteristics we used a series of criteria [43, ch.
3] that reflected our interest and focus in regard to the impedance mismatch, thus
being able to highlight which criteria each characteristic supports.

For each of the examined projects we thoroughly compared features with our
criteria and whenever we identified something useful it was added to the list
of characteristics. After examining the projects we ended up with 11 different
characteristics.

Although we maintain that all the characteristics are of great importance when
developing any kind of language, language extension or something similar, we have
come to realize that not all of these characteristics can be unified, thus it is natural
to select those characteristics which conform mostly to a given target. Hence,
in the following we give an account of the characteristics class generation, type
mapping and run-time monitoring, which we see fit within the overall objective
in our current work.

2.1.4.1 Class generation

The reason for generating classes automatically should be obvious as it reduces
the possibility of errors in the application as the classes are generated from the
database schemas, e.g. from a document with the schema in an usable syntax.
With these classes it is possible for a standard compiler to check for type mis-
matches without introducing any new methodologies.

The database classes are generated with the knowledge of the used database
and tables, thus they are generated with the right types as parameters. The
application developer is ensured that if the application is compiling at least the
used types are correct.

Through warnings and errors the application developer gets during compila-
tion if unsupported types are used, forces him to either use the correct type or
make explicit type casting when this is not possible, thus the application devel-
oper is aware that problems can arise due to the type casting (e.g. different value
ranges with numeric types).

Lastly some security vulnerabilities can be handled by the fact that it is
possible to create precautionary measures against SQL injection attacks in the
automatically generated classes. This is for instance used in SQL DOM as a
strategy for taking measures against injection attacks.

32

2. Motivation 2.1 Previous Work Revisited

2.1.4.2 Type mapping

As covered in Section 2.1.2 on page 9 there can be problems between the used
types in the object-oriented language and the DBMS in use. By making a descrip-
tion of how to bridge between the types from the two very different worlds it is
possible for the compiler to make valid checks of whether the application source
code conforms with the database schema. Moreover, it is possible to map non-
primitive types from the object-oriented world which can be saved as a primitive
in the database, e.g. date types.

The characteristic type mapping is supporting safe queries by defining, which
types from the different worlds are compatible. With this mapping it is possible
for either the compiler or the run-time environment to make a qualified analysis
of the communication with the DBMS and thereby preventing queries with in-
compatible types. Furthermore, the compiler or the run-time environment is able
to give the application developer suitable errors and warnings based on the type
mapping.

2.1.4.3 Run-time monitoring

By analyzing the SQL queries during run-time, prior to execution by the DBMS,
it is possible to ensure that user input does not invalidate the queries compared
to the behavior intended by the application developer.

The run-time monitoring characteristic supports safe queries by checking
queries before they are sent to the DBMS for execution. By checking the query
prior to execution it is possible to ensure that the query is consistent with the
database schema with regards to the used types and the possibility of mismatch
between the used types is taken care of as covered in Section 2.1.2 on page 9,
but also that the query is correct in sense of the SQL query language. Moreover,
injection attacks concerns are handled by checking that the user input does not
invalidate the query.

2.1.5 Concluding Remarks

In this section we have gone through some subjects that influence and are relevant
to the work that is ahead of us. We introduced the impedance mismatch subset
that has our attention in our own solution, followed by a series of exemplifying
problems that put the issues within the subset into perspective.

Three of the most relevant solutions from last years work were reviewed, in
which we put forward the most prominent features along with some merits and
demerits. The findings from the reviews in 2.1.3 on page 13 is something that is
going to influence the approach and design of our own API. However, we wish to
construct a solution that addresses the issues in the impedance mismatch subset
that the other solutions do not accommodate in concert with that it should be

33

2.2 Fields of Interest 2. Motivation

characterized by our own ideas and address some additional problems. This is
what the next section is about, where we take a more overall angle on the matters
that “stamp” the more structural and design related areas of our solution.

2.2 Fields of Interest

In this project we address problems that are associated with using data from a
RDBMS in an object-oriented environment when developing applications.

Whenever using data from a database the developer has to decide how to
represent the data together with how to manipulate the data, save the data and
communicate with the database. If changes are made to the database schema,
then the developer has to edit and examine classes within the application in
order to ensure that no errors occur as a result of the changes. Moreover, if the
communication is by way of regular SQL strings and a popular CLI such as JDBC,
ODBC or ADO.NET, then this opens up for the possibility of typing errors as no
correctness check is done on SQL strings by these CLIs.

The task of creating classes for using database tables may be a repetitive
and time-consuming task for the developer. This is due to this process is often
done by creating several classes or methods that are similar in code, but still
deviate in code fragments that are adapted to the used database tables and the
communication with the database.

Further, from our experience it is a common omission to make wrong map-
pings between the data types in the database and the host language, as well as
forgetting to take measures against security breaches like injection attacks.

As stated in Section 2.1.4 on page 32, we found the three characteristics class
generation, run-time monitoring and type mapping during our previous work.
These are employed in our further work to provide a foundation for the design
of our solution, and at the same time work as a catalyst for new and supporting
ideas.

In order to supply run-time monitoring for a running program we maintain
that an application programming interface (API) is an expedient approach. With
an API it is possible to wrap any kind of communication with the database in
use. This entails that we are able to ensure safe queries by preventing the de-
veloper of being able to explicitly operate with SQL strings and instead provide
the developer with a restricted and strongly typed interface for communicating
with the database. This effectively means that we want to eliminate errors that
are connected with variable usage and perform an implicit type mapping from
data types used in the database to corresponding data types used in the object-
oriented environment. Both correct mapping of data types and prevention of
injection attacks can be taken care of by wrapping the communication.

While a run-time environment can prevent faulty SQL queries from being ex-

34

2. Motivation 2.2 Fields of Interest

ecuted it cannot reduce the workload of the developer in relation to representing
and manipulating the data from the database. To further minimize the workload
of the application developer we want to automatically generate database access
classes. The generated classes should reduce unnecessary reproduction of effort
with regards to retrieving, representing and manipulating data in the database.
Secondly, the generated classes should take advantage of a run-time environ-
ment, as we can place general functionality for communicating with a database
and manipulating data in the run-time environment, and the functionality for
communicating with specific tables in the database in the generated classes.

It is important to realize that we are trying to satisfy both the relational
and the object-oriented world, thus giving some restrictions. As foundation for
the automatic class generation we use the relational world, thus mapping the
tables from the database to classes without features that are only available in the
object-oriented world like inheritance and polymorphism as there is no pendant
in the relational world.

As the generated classes are intended to aid the application developer they
should consist of basic methods for manipulating data in the class instances, and
also in the underlying database. As the data manipulation language (DML) part
of SQL is very exhaustive we are only engaged with a small subset of the op-
erations in order to accommodate the other concerns we present in this section.
Additionally, it is not our objective to provide an API that has the same degree
of expressiveness as SQL, as the operations we are interested in are basic create,
read, update and delete (CRUD) operations that work with a database environ-
ment that has multiple clients. These are the most common operations in the
applications we are addressing with our project, cf. Section 2.3 on page 37.

When designing the classes that are to be generated some kind of guiding
principle is very useful in order to keep them from becoming too detailed and
complicated. As methods for some problems mature into best practices these
are the obvious choice for us to employ as a guiding principle when designing
our solution. In the world of programming these best practices are mentioned as
design patterns [23], and in the field of database connectivity there are several
different patterns for communicating with a database [21].

In the context of design patterns we wish to investigate how feasible it is to
automatically integrate different patterns in the generated classes while still be-
ing “faithful” to these design patterns. We also wish to explore the field of using
a design pattern, which is not normally used together with databases in order
to add functionality that may lessen the programming burden of the application
developer in some scenarios.

Database specific design patterns often have a large architectural impact on
an API. This is particularly true for the Active Record pattern that we employ,

35

2.2 Fields of Interest 2. Motivation

as it influences the structure of the generated classes. We find Active Record to
be the pattern that is most conformable with our interests in using the database
schema as foundation for our API, as we wish to map each table to a class, thus
having an object in the running application for each corresponding row in the
tables.

During run-time it is not unusual to retrieve the same row several times from a
table, which leaves room for errors as the developer may alter two different objects
that correspond to the same row. To keep objects in the running program from
being duplicated each time a specific data row is being used we further wish
to integrate the Identity Map pattern into our generated classes. This pattern
ensures that each data row is represented by at most one data object, thus an
identity map is needed to keep track of the loaded data objects.

As we wish to map the relational model onto the object-oriented model entails
that relations between tables are kept intact even when the data is represented in
objects. As a result of the fact that the tables often are related in a very extensive
manner we wish to reduce the communication load when reading an object from
the database by not reading the related objects until they are needed. This way
of only loading information when needed is the Lazy Load design pattern.

In a setting where multiple clients are using the same database it can be a
very complex operation to ensure even a lightweight version of concurrency such
that a user is always working with data that is up to date or just being able to
inform a user if the data has changed in the database.

Applications that are running simultaneously on several clients that share the
same database often have problems in keeping their state consistent with regards
to the state of data in the database. As a result of using the Identity Map we
have a list of the loaded data objects, which can be used to poll the database
for changes at a pre-defined interval. Instead of letting the developer performing
this polling we wish to integrate an automatic synchronization mechanism into
each generated class that keeps data objects in a state that is in accordance
with their corresponding rows. This implies that if a row is either deleted or
updated then this is reflected in the corresponding data object subsequent to each
synchronization. Moreover, as we wish to keep relations between tables intact
further entails that the synchronization mechanism should take into account when
a new row is added to a table. This requires that data objects that represent
rows, which share a relationship with a row that is added, updated or deleted,
are automatically updated in order to reflect this.

As mentioned in a previous paragraph we wish to explore the possibility of
using a regular design pattern together with the database to add functionality
that may be usable in some scenarios. Being able to keep data objects in an
up to date state gives rise to take this one step further, which is to provide a
means to automatically inform other parts of an application about changes in
data objects. This gives the application developer the possibility to take actions

36

2. Motivation 2.3 Target Audience

as a result of changes caused on the data objects. We have found the Observer
pattern to be a sound candidate for this particular problem as objects that are
added as observers to a data object are informed about changes in the data ob-
ject, thus giving the application developer the freedom to use this functionality
when a simulated concurrency model is needed.

For the most of the included patterns the generated classes should be im-
plemented such that the application developer can use them without any extra
programming effort. However, the Observer pattern entails that the application
developer has to implement “half” of the code, as this is very specific in regards
to how the changed data objects should be handled.

The patterns we have chosen are examined in greater detail in Section 5 on
page 55 together with a description of how we are planning on utilizing them.

Before commencing with the realization of VDO we knew that we would need
to decide on a programming language. The languages we shared an interest in
were C# and Java. Both authors have previously been exposed to both languages,
but in connection with the work in [27] it came to our attention that C# 2.0 has
some language features that we surmised could be conducive to reaching our goals.
The choice of C# was also a consequence of the fact that we were curious about
experimenting with its features. In conjunction with this choice we selected to
concentrate on providing support for MS SQL Server 2005, though in a loosely
coupled way such that we in the future are able to support other RDBMS.

2.3 Target Audience

The target audience of VDO comprises two parts. The first part is the category
of applications that we target with our API and the second part consists of the
type of users VDO is directed towards.

The type of applications we target are characterized of being “forms-over-
data” applications, which we classify as simple CRUD applications that operate
on tables that are normalized into either Boyce-Codd or third normal form [44,
ch. 7]. Furthermore the applications that we aim for only require simple queries
to the database. This implies that most industrial applications are not on our
radar as they often require advanced query functionality that is available through
SQL, sometimes referred to as Business Intelligence (BI) [50].

The target user of VDO is an application developer that is characterized by
having a minimal need of performing advanced queries on data in the database in
the applications he is developing. Conversely, he is characterized by developing
applications that continuously monitor data in a database, i.e. have a need to be
updated with data contained in tables according to actions caused of other clients
using the same database as external storage, and require basic editing facilities

37

2.4 Summary 2. Motivation

on that data. Furthermore, the targeted user does not have much knowledge of
the impedance mismatch issues that we deal with or how to solve these, thus the
requirement for solving these problems in VDO. In addition, the target user is
not required to have much experience with the data access layer, but yet has a
need to access data in tables in a manner that does not incur a steep learning
curve, thus the requirement for a user-friendly way of setting up the access to a
database by way of automatic generation of database access classes.

As we recognize and can relate to some of those needs we consider ourselves
as a constituting part of the target audience. This entails a justification for the
requirements that we later put forward with regards to the design of VDO as the
motivational factor for developing VDO is rooted in our own needs, because we
have in our experience encountered situations where this type of API is needed.

2.4 Summary

In this chapter we have outlined the motivational factors that impel us commenc-
ing with the realization of an API solution that employs design patterns and deals
with a particular subset of the impedance mismatch. In the next section we state
the overall objectives we wish to accomplish.

38

3Objectives
The objectives for this thesis are based on what motivates us, which we outlined
in the previous chapter. In the following we further concretize the overall goals
that are pursued throughout this thesis.

Our principal objective is to serve an application developer by automating
the task of both communicating with and representing data from an RDBMS
in an object-oriented host language by providing a user-friendly solution that
enhances productivity by reducing unnecessary reproduction of effort and solves
the problems associated with safe queries as described in Section 2.1.1 on page 8.

In order to implement this solution we construct a code generator that is used
for generating a specialized API that is based on the previously mentioned design
patterns together with a synchronization mechanism. The specialized API should
correspond to a provided relational database schema and its interdependent rela-
tions. Our goal for the code generation process is that it should require minimal
effort and interaction from the user.

In the context of the aforementioned objectives it is in our interest to examine
the following aspects:

• To which degree Active Record facilitates the implementation of safe queries.

• How far it is possible to integrate the observer pattern together with a
synchronization mechanism in the specialized API such that it simulates
a lightweight concurrency model that reduces the developer’s workload of
keeping local application data consistent with corresponding data, which is
employed by multiple clients in a RDBMS.

• How language features of C# influence the design of the API.

39

3. Objectives

40

II
Background

41

4API Design
This chapter serves as purpose to identify characteristics of good API design and
to list general best practices in API design that we follow in the design phase of
VDO. The reason for saying practices is that API design is more a craft than a
science.

The motivation for including subjects about API design has two primary as-
pects to it, one is to show the basis that provides the background for the design
of VDO, the second aspect is that we wish to make the API as usable and intu-
itive as possible such that the user-experience is positive, thus the inclusion of
characteristics of good API design to benchmark against.

Before commencing on presenting the subjects in this chapter we would like
to emphasize that much of the structure and content of it is influenced by the
work of Joshua Bloch, which gave a presentation on API design at Google Tech
Talk [15]. Accommodating material to his work [14, 13] also serves as basis for
the subject matter of this chapter, this material is the source from which we
draw upon example code. Moreover, when other sources are used then these are
denoted in the text.

It is important to realize that we are selective in choosing heuristics in rela-
tion to API design, thus the following subjects are by no means exhaustive, rather
they are intended to support us throughout the design phase of VDO.

There are some general circumstances that have entailed our attention towards
an incentive to comply with best practices in API design. In general, APIs can
be among the greatest assets and liabilities for an enterprise , which stems from
the fact that a good API is something that users may invest heavily in. This
investment may be done in obvious ways and less obvious ways. Obvious ways
are that they develop application that are build around the API, which means
that they write to the API. The less obvious way is that they learn it, they may
invest much time in learning it and once they have done that, it is reasonable to
conclude that they may be reluctant to learn a new one if they have to replace
their existing knowledge with something else that brings about new things to be

43

4.1 Characteristics of User-Friendly API Design 4. API Design

learned. In fact, we know from our own experience with different parts of the
Java and the .NET platform that learning an API requires both time and effort,
especially in situations where we have moved from one platform to the other and
discovered that things do not always behave as expected.

Moreover, we need to bear in mind that it is important to realize that a public
API is “forever” so to speak, because once it has a user-base you are not at liberty
to change it at will, because people rely on it. Thus, you get one chance to
get it right. In essence, this means that APIs are centered around the concept
of contracts and interfaces. They can be thought of as means for developers to
communicate intent to other developers.

Given these general reservations, we put forward some of the most apparent
and important areas that we maintain are imperative to bear in mind during the
design of VDO in the following sections.

As a final remark before getting into the deeper aspects of API design, we
would like to bring to notice that the sign � is used as an indication for the
presence of our own view or perspective in itemized lists. The � sign is used to
indicate a comment to the text associated with a previous • or − sign in a list,
which correspond to practices taken from [14, 13].

4.1 Characteristics of User-Friendly API Design

Before we set out on designing VDO it is appropriate to take some measures with
regards to user-friendliness in order to ensure that VDO is designed with usability
and positive user experience in mind. Therefore we have chosen to follow some
general guiding principles that call for user-friendliness.

• It should be easy to learn and to use, preferably with minimal reliance on
documentation.

� We understand the essence of this as being that VDO should be intuitive
and communicate its utility through structure and naming. Another way
of saying this is that we should design VDO in a way that allows the user
to know how to use it, that is giving as many clues as possible.

• It should be easy to memorize.

� When we think about tasks that are easy to remember, we often realize
that these are intuitive in nature. In the case of VDO we maintain that its
structure and naming should communicate its behavior. It boils down to
that we should design VDO such that the user should recognize rather than
recall, which is what we understand about “easy to memorize”.

44

4. API Design 4.2 The Process of API Design

• It should be hard to misuse. This in effect is the flip side of the two subjects
above, because they imply that it should be hard to misuse. Effectively,
this means that the API should “force” you to make the right thing.

• It should be easy to read and maintain code written to the API.

� Although we have no control over code written to VDO, the message that
we draw from this is if VDO is complicated to use, then code written against
it is bound to reflect this.

• It should be sufficiently powerful to do what it has to do, which means that
it should satisfy its requirements. Note, this does not mean that it should
be powerful, because it is not necessarily the case that the more powerful
it is the better it is. It should basically be powerful enough to do what is
required of it and nothing more.

• Easy to evolve. The fact that the API should be sufficiently powerful implies
that it should be easy to evolve, because there is a great chance that there
are going to be new requirements at a later point.

• It should comply with the target audience, which means that it should pro-
vide utility and functionality that are highly valued by the target audience
[42].

� This implies that what is a good API for a business analyst is presumably
not a good API for a mathematician, because they think in different prob-
lem domains and use different terminologies. Therefore the design of VDO
should be aimed at its audience. For instance, as we do not require that
the user of VDO has in-depth knowledge of databases and operations that
can be performed on them it is imperative that we do not introduce termi-
nologies that only are understood by users that program in database query
languages.

The above characteristics are what we maintain is needed to adhere to in
order to design VDO usable. In the remainder of this chapter we outline what is
needed in order to achieve these characteristics.

4.2 The Process of API Design

There are design concepts and principles from software engineering that apply
when designing an API [31] [37]. However in order to keep matters focused, we
only concentrate on best practices given by [14] that tend to lead to good API
design.

• Specify the requirements for the API.

45

4.3 General Principles 4. API Design

• Employ use cases. The requirements should take form of use cases. This
means the problems that VDO should be able to solve. These are important,
because they provide the benchmark against which we can measure any
proposed solution.

• Start out with a short specification, because in the early stage of the design
process agility trumps completeness. As you gain better confidence that
you are on the right track, then you refine it and make it more complete.
This necessarily involves coding to the API that you are defining, however
it does not mean coding to the implementation of the API.

• Code to the API definition early and often. This means that you pretend
that it has been implemented.

– Start coding before you have implemented it. It saves you from devel-
oping an implementation that you may throw away.

– Start coding before you have specified it properly. This saves you from
writing a specification you may throw away.

– Continue writing to the API as you specify it more completely. It gives
you better ability to prevent unpleasant surprises before you publish
the API.

• Code lives on as examples. This forms one of the most important code that
you write in regard to the API, because examples of API use tend to become
emulated by users – if you get the examples right, then you have seeded the
market with good uses of your API. Conversely, if you get them wrong then
that may be emulated by the user as well. In essence, example programs
should be exemplary.

• Maintain realistic expectations throughout the design process. Many API
designs are over-constrained, because people want them to do more than
they possibly can do. You have to make compromises as you cannot please
everyone, if you do then you most likely end up with something big that
is complicated and bloated. Therefore we should aim to displease everyone
equally.

4.3 General Principles

In the following we outline some general principles that have an impact on good
API design, because we are interested in stating the principles that influence our
choices during the design process.

• An API should do one thing and do it well.

46

4. API Design 4.3 General Principles

� Our opinion is that parts of the API should do one thing and do it well, but
this is dependent on how you define when something becomes an API. We
consider the whole of VDO to constitute an API, whereas Joshua Bloch for
instance refers to a single class as an API.

• Functionality should be easy to explain. This means that if it is not easy to
explain then it is probably not doing one thing and doing it well. Moreover,
if it is hard to name, then that is generally a bad sign. Good names drive
good designs, because the names are the API talking back to you, so we
should “listen” to it. Examples of this are:

– Good:

Font , Set , Vector , PrivateKey , Lock , TimeUnit , Future ,
ThreadFactory .

– Bad:

DynAnyFactoryOperations , Bind ingIterator ImplBase ,
ENCODING CDR ENCAPS, OMGVMCID.

The examples that show good names instantly communicate what they are,
which is not the case in the examples of bad naming.

• The API should be as small as possible, but no smaller. This involves:

– When in doubt, leave it out. This applies to every aspect of the API,
that is functionality, classes, methods, parameters and so on.

� The key thing that we have learned from this point is that we can
always add functionality to VDO, but it is hard to remove functional-
ity from it without imposing problems on the user. One could argue
that there are ways around this issue, for instance by using the key-
word deprecated to indicate that a method or a class is obsolete and
developers are discouraged from using it. However, we still maintain
that even though there exist opportunities for marking parts of VDO
obsolete at a later point, it does not invalidate the rationale behind
when in doubt, leave it out.

– Conceptual weight is more important than bulk, e.g. number of classes,
methods and so on. What is important is the number of concepts.
When the user is learning an API it is imperative for him to know how
many different things he has to learn about. There are number of ways
to decrease the conceptual weight of the API. The most important one
is reusing interfaces. An example of this is the collection framework
in Java, in this framework there are many different implementations

47

4.3 General Principles 4. API Design

of the Set interface. This way you do a lot without requiring the user
to learn a lot of new concepts.

� We understand this as we should strive for a low conceptual weight in
VDO. We maintain that conceptual weight is closely related to the user-
friendliness and usability of VDO, namely because too high conceptual
weight entails that the user may be required to be introduced for too
many concepts, which in effect has an negative impact on the user-
experience and learning curve. A way of decreasing the conceptual
weight of VDO is to adhere to common practices in C#.

• Implementation should not impact the API. Implementation details are un-
necessary and confuse users. Furthermore, they inhibit our freedom to
change the implementation.

– Be aware of what is an implementation detail. This encompasses that
we have to be careful to not over-specify the behavior of methods.
The specification of a method should not involve something that is an
implementation detail and we would like to change it at a later point.

An example of this is with regards to specification of hash methods.
One may be tempted to think that the exact value that is returned
by a hash code method is a proper part of a specification. In general
this is incorrect, it is an implementation detail. The specification of
the method should simply state that it returns an integer and with a
high probability this integer will differ for two different objects. You
should have the freedom to change the implementation as you learn
about flaws in your hash method and new approaches in hashing.

– Do not let implementation details “leak” into the API. One example
is if you have an API that is about phone numbers that throws SQL
exceptions. Imagine then if you want to re-implement it on top on some
proprietary data store rather than a SQL data store, then your clients
are already trying to catch SQL related exceptions. One solution to
this problem is that you can emulate those SQL exceptions, but that
is undesirable. This boils down to that we should make sure that the
exceptions that we throw are on the same layer of abstraction as the
rest of the API.

• Minimize the accessibility of everything. This comprises that we make
members of classes as private as possible. Conversely, public classes should
have no public fields. This maximizes information hiding [35, 36] as well as
minimizes coupling, which has some attractive advantages attached to it.
It allows for modules to be understood, used, built, debugged and tested
independently.

48

4. API Design 4.3 General Principles

• Names matter. An API can be thought of as a little language and users
are going to have to learn that language and speak in it, which entails the
following:

– Names should be largely self-explanatory and cryptic abbreviations
should be avoided.

– Be Consistent. The same word means the same thing throughout the
API (ideally across APIs on the platform). If two things mean the same
thing, call them the same thing, if they mean different things, then call
them something that differentiates them enough to tell them apart.

– Strive for symmetry. For instance, if you have two verbs Add and
Remove, and two nouns Key and Entry then you should have AddEntry
and RemoveEntry.

– If you get it right, then code reads like prose. An example is:

i f (car . speed () > 2 ∗ SPEED LIMIT) {
speaker . g ene ra t eA l e r t (”Watch out f o r cops ! ”) ;

}

• Documentation is important. Document every class, interface, method,
constructor, parameter and exception. The user should not be put in a
situation, where he has to guess the intent of the code or to have to read the
source code (if available), which entails that the implementation becomes
the documentation.

� Especially apparent to us is to follow the following practices with regards
to documentation:

– Class: Always specify what an instance of a class represents.

– Method: Specify the contract between the method and its client,
which involves specifying pre-conditions, post-conditions and possible
side-effects.

– Parameters: Indicate units. An example of indicating units is the
size of a block, in this case it is important to specify whether the size
is in, say, bytes or megabytes, not just stating that it is the size of
the block. Moreover, aspects like explaining the form, for instance if
it is a string then one should explain the form it is in, e.g. XML or
something else.

• Document state space for an object very carefully (if it is mutable). The
user has to know when it is legal to call which methods and what happens
after the call is made.

49

4.3 General Principles 4. API Design

• The API must coexist peacefully with the platform. This involves that you
do what is customary in the platform.

� In our case this is C# and .NET. More specifically it entails that we:

– Obey standard naming conventions.

– Avoid obsolete parameter and return types that are wrongful in the
platform.

– Mimic patterns in core APIs and language. This is important because
people are likely to already know the core API.

– Take advantage of API-friendly features, for instance generics, variable
arguments, enumerations, default arguments and so on.

– Know and avoid API traps and pitfalls.

– Never transliterate the API, which means that we should not use con-
ventions from a foreign language that do not fit or make sense in C#.

The aforementioned practices are general principles that apply to API design
on different levels. In the next two sections we put forward more specific practices
that apply to the design of classes, exceptions and methods, respectively.

4.3.1 Class & Exception Considerations

On a more specific level, there are some sound practices in class and exception
design together with issues that a designer should consider and take into ac-
count, when creating an API. The most apparent practices we have an interest in
complying with are given in the following.

• Minimize mutability. Generally, one should strive for minimizing mutability
unless there is a good reason to do otherwise. This has advantages such
as your classes get simple, thread-safe and instances of them are reusable,
because you never have to generate a new one. Among the disadvantages,
one is that you have a separate object for each value.

If you have to make your class mutable, then keep the state space small
and well-defined, which encompasses that you make clear when it is legal
to call which method.

• Subclass only where it makes sense. Subclassing implies substitutability,
which involves that subclassing is done when an is-a relationship exists.
Otherwise use composition. Public classes should not subclass other public
classes for ease of implementation. Examples of when it makes sense and
when it does not to subclass are:

50

4. API Design 4.3 General Principles

– Bad:

Stack extends Vector

When you ask yourself if every stack is a vector, then you come to
the conclusion that it is not the case. You push and pop on a stack,
which essentially is all what you do with a stack. You might also have
a peak method and a size method, but a vector allows random access
by index, which a stack does not.

– Good:

Set extends Co l l e c t i on

In this example the inheritance makes sense, because when you ask if every
set is a collection then you come to the conclusion that it is. A set is just a
special kind of a collection, a collection which does not allow for duplicate
elements.

• Design and document for inheritance, otherwise prohibit it. The reason
for this is because inheritance violates encapsulation [29]. This stems from
the fact that a subclass may be sensitive to implementation details of the
superclass. Thus, if we use subclassing, then we should document how
methods use one another.

A conservative and safe policy is to keep all concrete classes final.

As for exception design there are some things one should have in mind. Some
of these things are influenced by how the language you use deals with exceptions.
For instance, in Java you have checked exceptions, but in C# you do not have
them. As we use C# we only look at some general practices you should adhere
to, when using unchecked exceptions.

• Throw exceptions to indicate exceptional conditions. This implies that you
should not force the client to use exceptions for control flow. On the other
hand side, you should not fail silently.

• Unchecked exceptions should indicate a programming error.

• Always include failure-capture information in the exception, which allows
for diagnosis and repair. In unchecked exceptions a message is sufficient.

4.3.2 Method Considerations

Like there are best practices with regards to class design there also are some
practices that you should follow when designing methods of classes. Those that
we maintain are important to adhere to are listed in the following.

51

4.3 General Principles 4. API Design

• Do not make the user do anything that the library could do. This one
of the fundamental rule of API design. It is not recommended to have the
user doing something that the library can do, because it causes“boilerplate”
code, which often is characterized by cut-and-paste code and being error-
prone.

• Do not violate the principle of least astonishment. The user of the API
should not be surprised by its behavior. Because if you surprise them then
you may find yourself in the situation, where the users of your API think
that they are doing something correct, but in reality the application is doing
something else. An example from the Thread API in Java, where the the
principle of least astonishment is violated:

public class Thread implements Runnable {
// Tests whether current thread has been i n t e r rup t e d
// Clears the i n t e r rup t e d s t a t u s o f curren t thread
public stat ic boolean i n t e r rup t ed () ;

}

In the example there is a method called interrupted, which violates the
principle of least astonishment. If you have a thread and want to check if
it is interrupted then you call Thread.interrupted(), but what is wrong
here is that the method also clears the interrupted status of the current
thread; it has a side effect. Looking at the name, Thread.interrupted()
does not communicate that it does this. The primary thing that this call
does is to clear the interrupted status, thus it should be named clearIn-

terruptStatus and documented that it returns the old interrupted status.
The method is named based upon the second most important thing it does.
Thus, every method should do the least surprising thing it could, given its
name, and leave out unexpected behavior.

• Fail fast. The sooner you report a bug, the less damage it will do. Compile-
time reporting gives users of the API the chance to find errors before their
products are in the field. If you report errors at run-time, then report them
at the first bad method invocation, for instance if the user passes something
wrong into a method, then the user should be made aware of this as soon
as possible.

• Provide programmatic access to data, which is available in string form. In
essence, this means that whenever you have a method that returns some-
thing as a string, then always provide a corresponding method that returns
the same stuff in programmatic form. Otherwise the users will parse strings,
which is tedious. In fact, omitting this can cause the string format to be
turned into a de facto part of API, because it prohibits you to add something
to a string, because there may be user code that is parsing the string. A bad

52

4. API Design 4.3 General Principles

example of this is with regards to a stack trace of an exception in the initial
versions of Java. Before version 1.4 of Java the only way to get information
about a stack trace was through a method called printStackTrace.

• Overload with care. Method overloading can be a good thing, but it tends
to be overused. However, always avoid ambiguous overloading, which is
multiple overloading that can do different things when passed the same
values. A bad example of this is TreeSet in the Java collection framework.
The reason for this is exemplified in the following example:

// Ignores order
public TreeSet (Co l l e c t i on c) ;
// Respects order
public TreeSet (SortedSet s) ;

TreeSet has two constructors, one that takes a collection and one that takes
a sorted set. The first of these ignores the ordering, whereas the second one
respects it. The problem is that if you have a sorted set that is casted to
a collection then you get one result, and if it is not casted then you get
another result.

The point here is that just because you can does not mean that you should.
Often it is better to use a different name rather than overloading, but if
you must provide overloading, then always ensure the same behavior for
the same arguments.

• Use the right data type for the job. This implies that you use appropriate
parameters and return types. There are a couple of different important
things to remember:

– Do not use a string if a better type exists, strings are cumbersome,
error-prone and slow.

– Use consistent parameter ordering across methods. Otherwise, the
user may get it backwards. A bad example of not being consistent is
given in the following:

char ∗ s t r cpy (char ∗dest , char ∗ src , s i z e t n) ;
void bcopy (void ∗ src , void ∗dest , s i z e t n) ;

� Here we have two input/output operations. The first function, str-
cpy, takes a destination, a source and a size. Conversely, the second
function, bcopy, takes a source, a destination and a size. This is un-
favorable and inconsistent ordering of *src and *dest, because it is
possible that the user may assume a ordering where *src is a first
parameter, which can result in that he ends up with filling source data
with whatever is in the destination array.

53

4.4 Concluding Remarks 4. API Design

– Avoid long parameter lists, especially those with multiple consecutive
parameters of the same type. Long lists of identical typed parameters
are harmful, because the user may transpose parameters by mistake.
This does not hinder the application from compiling, but makes it
misbehave at run-time.

– Avoid return values that demand exceptional processing. The user
may forget to write the special-case code, leading to bugs. For exam-
ple, return zero-length arrays or collections rather than nulls.

4.4 Concluding Remarks

In this chapter we have outlined some important characteristics of good API
design together with some best practices that are required in order to achieve
those characteristics. More specifically, we set out by listing general practices
that apply to API on all levels. This was followed by some more specific sound
practices that apply to class and method design together with issues that we
should consider and take into account when designing VDO.

54

5Applied Design
Patterns

In this chapter we describe the most apparent and relevant patterns that are
applied in the design of VDO, these are those patterns that constitute and char-
acterize our solution.

The background material is aimed at our solution, therefore we chose to con-
centrate on matters that encompass relevant subjects that in some way have an
impact on our solution or provide a better understanding on what constitutes
and characterizes the design choices of VDO. The major content and structure of
this chapter is based on [21].

Design patterns have been around for a long time, therefore it is not in our
interest to give an in-depth elaboration of their history or applicability. Still,
we find it to be noteworthy how the perception of design patterns is evolved
from describing very complex operations [23] to a title for some best practice
refinements over years.

Though the early design patterns described best practices they were still more
general in their usage and not as specific as those presented by Fowler in [21].
The patterns explained by Gang of Four in [23] are by many seen as the origi-
nal patterns, but also they only specifically describe limited usage due to their
generality. As we explained in Section 2.2 on page 34 one of our main goals is to
implement some best practices, this is our view and approach to design patterns,
though not exclude the classical design patterns, just broaden the perspective.

“ A key thing about patterns is that you can never just apply the solution blindly,
which is why patterns tools have been such miserable failures. A phrase I like to
use is that patterns are “half baked” - meaning that you always have to finish them
off in the oven of your own project. (Martin Fowler) [21, p. 10] ”

With that in mind, the following three sections are about database specific

55

5.1 Active Record 5. Applied Design Patterns

patterns. The first, Active Record, is an architectural pattern that has influenced
and inspired some parts of the architecture of VDO. The two subsequent sections
are about behavioral patterns, Identity Map and Lazy Load, respectively. These
two patterns are used in VDO in concert with Active Record.

Lastly, in section we describe a “regular” behavioral pattern, Observer, which
is used in the design and architecture of VDO.

5.1 Active Record

The Active Record pattern is a data source architectural pattern [21, ch. 12] that
is used to read and manipulate data in a database. It is characterized by the fact
that an object carries data and behavior, and much of this data is persistent and
needs to be stored in a database. Active Record uses the most straightforward
approach by encapsulating the database access logic in the domain object. In this
setting we have a database table that is wrapped into a class, this consequently
means that an instance of the class is associated to a single row in the table.
After you have created an object, a new row is added to the table upon save.
Each object that is loaded from the database gets its information from there,
which means whenever an object is updated, the corresponding row in the table
is updated as well.

The essence of an Active Record is a domain model in which the classes match
very closely the table structure of an underlying database. Our approach to Active
Record is characterized by having instance properties to represent a single record,
that is one field in the class for each column in the table. Furthermore, instance
methods are used to act on specific records, whereas class methods are used to
act on several rows from the table.

The Active Record class is typically characterized by having methods that do
the following [21]:

• Construct an instance of the Active Record from a SQL result set row.

• Construct a new instance for later insertion into the table. This can also
be a constructor.

• Static lookup methods to wrap commonly used SQL queries and to return
Active Record objects.

• Update the database and insert the data in the Active Record instance into
it.

• Get and set methods for fields. E.g. properties in C#.

Furthermore, we envisage that properties can do intelligent things such as
maintaining a correspondence between an SQL data type and a host language

56

5. Applied Design Patterns 5.2 Identity Map

data type. In addition, a property could represent a related table, and if this
table is requested, the property can return the appropriate Active Record.

In this pattern the classes are convenient, but they do not hide the fact that
a relational database is present as a data store. This is not crucial in our case,
because it is not our objective to hide the database. The consequence is that you
usually see fewer of the other object-relational mapping patterns present when
Active Record is being employed [21, ch. 12].

Active Record has the primary advantage of simplicity as it is easy to under-
stand, which is something that is imperative in the context of VDO. Generally,
its primary problem is that it works well only if the Active Record classes corre-
spond directly to the database tables. This is not an issue in our case, because
we generate classes from the database schema.

Finally, Active Record is a good choice for applications that are not too com-
plex, such as creates, reads, updates, and deletes [21, ch. 12].

5.2 Identity Map

An identity map can be employed when you wish to ensure that each object is
only loaded once. This is done by keeping each loaded object in a map, whenever
you want to fetch an object, you check the identity map first to see if it is already
there [21, ch. 11]. The illustration in Figure 5.2 shows how a setup of an identity
map can look like.

Figure 5.1: The problem of uniqueness.

Our primary incentive to use an identity map is to ensure uniqueness [48],
which implies that we are always certain that we have not loaded data from the

57

5.2 Identity Map 5. Applied Design Patterns

same database record into two different objects. In general we consider uniqueness
to be a good thing, but we have to bear in mind that future requests for old, stale
data from an identity map in a given context may not be desirable. However,
the situation that we wish to avoid is illustrated in Figure 5.1. On the left side
we have two instances of the same BlogEntry fetched from the database, this is
because no uniqueness is ensured and therefore we have two instances in memory.

The rationale behind our usage of the identity map is to have a series of maps
that contain objects that are already fetched from the database. In our case we
always have an isomorphic schema, which means that we can have one map per
database table.

Figure 5.2: Sequence diagram for identity map.

A positive benefit we get by using an identity map is that we may improve the
speed of lookups by using it, because if you load the same data more than once
then you are incurring an extra cost in remote calls. However, we believe that
the identity map is about ensuring uniqueness, not performance. This view is
agreed by [21, ch. 3]. The reason that an identity map is more about uniqueness
is because it can have an negative impact on performance as well. An example is
that if you fetch a set of records, using a given search criteria, then you cannot
know if all the entities in the identity map are the ones that are going to match

58

5. Applied Design Patterns 5.3 Lazy Load

the query when you run it against the database. Discussions about this topic can
be found at [45, 16].

When implementing an identity map there are a number of things to consider,
one of these is the key for the map. An obvious choice is the primary key of the
corresponding database table, which works well if the key is a single column and
is immutable. More considerations about the identity map are in the context of
matters like inheritance, transactional cache and immutable objects. As these
considerations are not relevant to VDO we refer the reader to [21, ch. 11].

5.3 Lazy Load

Lazy load is applied where data is only obtained when it is needed, more specifi-
cally it is used with objects that do not contain all of their data you may need,
but they know how to get the data if needed.

Figure 5.3: Example of sequence diagram for lazy load.

In regard to loading data from a database into memory it is expedient to
design your API such that when you load an object of interest you also load the
objects that are related to it. This makes the loading easier on the user that
is using the object, who otherwise has to load all the objects he has interest in
explicitly. However, there is a downside taking this approach, one object can have

59

5.4 Observer 5. Applied Design Patterns

the effect of causing a large and complex object graph by loading a huge number
of related objects in chains, which is something that impairs performance when
only a few of the objects are of actual interest. A lazy load approach halts this
loading process for the moment, leaving a “marker” in the object such that if the
data is needed it can be loaded only when it is used. An example of lazy loading
is depicted in Figure 5.3.

There are four main varieties of lazy load [21, ch. 11]: lazy initialization,
virtual proxy, value holder and ghost. These approaches are somewhat similar,
but vary subtly and have various trade-offs.

However, the approach that is of relevance with regards to VDO is lazy ini-
tialization, which is the simplest of the four approaches. The basic idea is to have
a special marker value, e.g. null, to indicate that a field is not loaded. Using this
approach entails that every access to the field checks if the marker value is null,
if it is then the value of the field is calculated before returning the field. In order
to ensure this works, we have to keep the field self-encapsulated, which means
that all access to the field is done through a getting method or property.

Using null as a signal mechanism to state that a field has not been loaded
works well, unless null is a legal field value. In this scenario we need to use
something else to signal that the field has not been loaded.

The positive aspect with lazy initialization is that it is simple, however it
tends to force a dependency between the object and the database [21, ch. 11].
For that reason it works best in concert with architectural patterns like Active
Record and Table Row Gateway.

According to [21] deciding when to use a lazy load pattern is all about deciding
how much you want to fetch from the database as you load an object, and how
many database calls that requires.

5.4 Observer

The observer pattern’s intent is defined by [23, p. 273] as a one-to-many depen-
dency between objects so that when one object changes state, all its dependents
are notified and updated automatically. The motivation for using the observer
pattern stems from a common side-effect of partitioning an application into a
series of cooperating classes, which is the need to maintain consistency between
related objects without making the classes tightly coupled.

There exist many variations of the observer pattern, but the key objects in it
are subject and observer. A subject may have any number of dependent observers,
e.g. objects responsible for displaying data to a user. All observers are notified
whenever a change occurs in the subject’s state. In response, each observer queries
the subject to synchronize its own state with the subject’s new state. Figure 5.4
illustrates the logical relationship that exists between a subject and an observer.

The interaction that happens between a subject and an observer is also known

60

5. Applied Design Patterns 5.4 Observer

Figure 5.4: Observer and subject relationship.

as publish-subscribe. The subject is the publisher of notifications, without having
to know who its observers are. Moreover, any number of observers can subscribe
to receive notifications.

The observer pattern is especially applicable when the following conditions
exist in your application [23, p. 274]:

• An abstraction has two aspects, one dependent on the other. Encapsulating
these aspects in separate objects makes it possible to vary and reuse them
independently.

• A change to one object requires changing others objects, and you do not
know how many of them need to be changed.

• An object should be able to notify other objects without having to make any
assumption about who these objects are. This implies that these objects
should not be tightly coupled.

As with most solutions, the challenge is in the details, and the observer pat-
tern is no exception to this. Even though the logical relationship illustrated
in Figure 5.4 states that the subject is observed by the observer, this is a bit
misleading when you implement the pattern. More correctly, when the observer
wants to express its interest in observing, it registers with the subject. Then
whenever a change occurs in the subject’s state, it notifies the observer of the
change. Furthermore, when the observer no longer has an interest in observing the
subject, the it unregisters from the subject. These steps are known as observer
registration, notification, and unregistration, respectively [38]. Most frameworks
implement registration and notification by way of callbacks.

An example of a subject notifying observers is depicted in Figure 5.5. In order
to register with the subject, the observer invokes the Register method of the
subject, passing itself as argument. The subject receives this reference and stores
it in order to notify the observer when a change in state occurs. A common place
to store the observer instances is in a container dedicated to this purpose. When
a state change occurs (AuthorChanged), the subject retrieves all the observers
stored in its associated container by invoking the GetObservers method. The
subject then iterates through the retrieved observers, calling the Notify method,
which notifies the observer of the change.

61

5.4 Observer 5. Applied Design Patterns

Figure 5.5: Observer and subject relationship.

The approach for unregistering an observer is similar to the one used for
registering.

Many frameworks provide different ways of realizing the observer pattern.
However, as we target for C# 2.0 we concentrate on those features provided by
.NET that we employ in order to implement the observer pattern. In .NET you
can take advantage of delegates and events, which provide a new and powerful
means of implementing the observer pattern. In short, a delegate is the type-
safe object-oriented equivalent of a function pointer. A delegate instance holds
a reference to an instance or class method, and permits anonymous invocation
of the bound method. An event is a special construct that is declared on a
class in order to expose state changes to interested objects at run-time. An event
represents a formal abstraction of the registration, unregistration and notification
methods that were mentioned previously. Delegates can be used in conjunction
with events, which encompasses that delegates can be registered with specific
events at run-time. When an event is raised, all registered delegates are invoked
so that they receive notification of the event.

In .NET the observer pattern is also known as the Event Pattern. In general,
this pattern is expressed as formal naming conventions for delegates, events, and
related methods involved in the event notification process. It is recommended
that all frameworks that utilize events and delegates adopt this pattern. An
example of using the Event Pattern in C# 2.0 is given in Listing 5.1.

1 pub l i c c l a s s BlogEntry {
2
3 // Declare a d e l e g a t e f o r the event
4 pub l i c de l e ga t e void AuthorChangedHandler (ob j e c t sender ,

62

5. Applied Design Patterns 5.4 Observer

5 AuthorChangedEventArgs e) ;
6 // Declare the event us ing the d e l e g a t e
7 pub l i c event AuthorChangedHandler AuthorChanged ;
8
9 Author author ;

10 pub l i c Author Author
11 {
12 s e t
13 {
14 author = value ;
15
16 // f i r e the event
17 OnAuthorChanged () ;
18 }
19 }
20
21 // Method to f i r e event d e l e g a t e wi th a proper name
22 protec ted void OnAuthorChanged ()
23 {
24 AuthorChanged (th i s ,
25 new AuthorChangedEventArgs (author)) ;
26 }
27 }
28
29 // Sp e c i a l i z e d c l a s s f o r the AuthorChanged event
30 pub l i c c l a s s AuthorChangedEventArgs : EventArgs {
31
32 pr i va t e Author author ;
33
34 pub l i c PriceChangedEventArgs (Author author)
35 {
36 author = author ;
37 }
38 pub l i c Author Author
39 {
40 get { return author ; }
41 }
42 }

Listing 5.1: Event Pattern example.

A subject only needs to expose an event, nothing more is required. However,
the observer must create a specific delegate instance and register it with the
subject’s event. In addition, an observer has to employ a delegate instance of

63

5.5 Concluding Remarks 5. Applied Design Patterns

the type specified by the event, otherwise the registration fails – in the example
given in Listing 5.1, this type is the one specified at line 7. During the creation
of the delegate instance, the observer passes the name of the method, instance or
static, that is notified by the subject to the delegate. After the delegate is bound
to the method, it may be registered with the subject’s event. The delegate may
be unregistered from the event in the same manner. Finally, subjects provide
notification to observers by invocation of the event.

5.5 Concluding Remarks

In this chapter we have described the most apparent characteristics of the applied
patterns in our solution. We gave examples of their usefulness and applicability,
as well as their relation to VDO. The background on design patterns was given
in order to manifest what the foundation of VDO’s design is based on.

64

III
Design & Realization

65

6Specification of
Requirements

As covered in Section 2.2 on page 34 we would like to support the application de-
veloper in the communication with an RDBMS by automatically generate classes
to wrap and ease this communication. In the following section we give our re-
quirements for such a solution as seen from a user perspective. As VDO is aimed
at application developers, the requirements are established on the basis of our
understanding of that user perspective together with descriptions of how the ex-
pected programming experience should be.

At this point it should be evident that we are going to generate a specialized
API, which helps the application developer when communicating with a RDBMS.
Some of our requirements repeat parts of the definitions for the chosen design
patterns in order to clarify how we find those parts to be of relevance in the
design of VDO, thus giving a more thorough understanding of how the chosen
patterns fit into our needs.

6.1 Requirements for the Generated Classes

The requirements we have for the generated classes are sorted into the following
different categories.

1. User Oriented Solution.

2. Automatic Class Generation.

3. CRUD Operations.

4. Impedance Mismatch Concerns.

5. Unique Data.

67

6.1 Requirements for the Generated Classes 6. Specification of Requirements

6. Concurrency Concerns.

7. Observable Changes.

In the following sections we will give a thorough explanation for each of the
categories.

6.1.1 User Oriented Solution

As a first and very important requirement we find it to be crucial that VDO
is aimed at application developers as they are the users of VDO. We find that
VDO should be user oriented instead of being query oriented, thus the application
developer should not feel the need to think in both object oriented and relational
ways, but instead be able to concentrate on the object oriented world only. This
should be done without hiding the fact that used data is saved in an external data
storage, thus explicit storage operations should be implemented in an intuitive
and simple way to let the application developer control when to save or delete
data from external data storage.

It is imperative that the generated classes only have accessible methods for
needed functionality, and hide methods used internally for implementation pur-
poses in order to not revealing irrelevant details or confuse the user and to main-
tain the guidelines for API design as covered in Chapter 4 on page 43. Further,
to assist the application developer it is of significance that accessible methods
and properties are described and documented wisely to support the development
process, e.g. describing behavior and possible exceptions.

To simplify the usage of VDO and methods that communicate with the RDBMS
the handling of database connections should be taken care of by VDO, not by the
developer. Consequently, the developer should only have to define the database
connection once in a single place before using the auto-generated API, subse-
quently he should not worry about maintaining the database connection.

6.1.2 Automatic Class Generation

The process of generating the API classes should be automated in setting up the
needed classes such that the developer can focus on developing the application.
This implies that the developer should only have to define how to access the
database schema in the RDBMS, i.e. provide connection parameters such as
hostname, username and so on, and then let the generation tool take care of
everything else.

Some of our requirements result in the need of saving extra information in the
RDBMS. It is imperative that the original schema remains untouched in regard
to existing tables (and possible views, triggers, etc.) so that existing applications
can continue to use the RDBMS simultaneously with a new application using the

68

6. Specification of Requirements 6.1 Requirements for the Generated Classes

generated API. Therefore it is significant that the required information for VDO
to work is saved independently from the clients using the data.

In conclusion, this means that the procedure for class generation should both
make necessary modifications to the database schema and generate classes for
communicating with the database schema in question.

6.1.3 CRUD Operations

As the generated classes are supposed to replace the need for direct commu-
nication with the RDBMS they should make available the most common data
operations needed when using an RDBMS as a data storage - the CRUD opera-
tions. To leave no room for errors in the communication with the RDBMS it is of
importance that queries are performed implicitly through methods on the classes
and objects during run-time, thus hiding the communication.

In VDO we would like to join create and update into a logical save operation
to keep it more simple for the developer to use. This way he does not have to
think of whether the data object has been saved prior to the present state. To
ensure consistency the developer is only allowed to save if no other client has
saved a version of the data object which is newer than the one at hand, otherwise
the operation should result in an error. This is explained in greater detail in
Section 6.1.6 on page 72.

With regards to creating a new object, the user has to use a constructor which
takes all the required values as parameters. These values could be either primi-
tive values or another data object as a result of a foreign key relationship. When
the new data object is created it can be saved without the application developer
having to perform any special operation even though it is being saved as a new
row in the corresponding table.

The delete operation should remove the corresponding data row from the
RDBMS. If another client has saved a newer version of the corresponding row
in the RDBMS the delete operation should be canceled and the there should be
served an exception. If another client has deleted the row then no modification
to the database is necessary as both of the involved clients (the client which has
already deleted the row and the client trying to delete) are both agreeing that
the row should be removed from the RDBMS, thus there is no need to raise an
error.

Prior to deleting the data object at hand there should be performed a local
cascading delete with the data objects, i.e. every data object which has a ref-
erence to the data object at question should be deleted from the RDBMS first
as they cannot exist in the tables when the referential integrity is broken [44,
ch. 6]. Though this could be handled by the RDBMS we have chosen this solu-
tion to ensure that the local data objects are in fact updated according to the

69

6.1 Requirements for the Generated Classes 6. Specification of Requirements

corresponding tables.
After the data object has been deleted it behaves like a newly created object,

thus it should be possible to save the object afterwards resulting in a new row
in the corresponding table with a new identity. This is due to the fact that no
matter which data object the application developer accesses the same operations
should be available without any precautions needed to be taken.

The read operation should be implemented such that it is possible to make a
simple search on any of the columns in the table. In this context a simple search
should be perceived as an equivalent to the SQL query shown in Listing 6.1 where
there is only given one parameter which the resulting rows should conform to.
It should not be possible to combine several search criteria into one read as this
would bring an unneeded amount of complexity to the specialized API. Further,
in this context a read operation is considered complex if results should conform
to more than one search parameter.

1 SELECT * FROM authors WHERE name=’Anders Hejlsberg ’

Listing 6.1: A simple SQL search query.

The result for such a simple search should a collection of those data objects
that match a given search criteria, e.g. a collection with all data objects with a
given zip code. The read operation should take a search criteria that is used to
read those data objects with an exact match to the given value.

If the read operation is performed on a primary key column which is the only
primary key column then the result should be the one data object corresponding
to this specific primary key instead of a collection with at most one data object
matching the search criteria. If the requested primary key does not exists the
application developer should be served with an exception.

As this type of operation supports input from the end-user of the developed
applications it necessary that it is aware of injection attacks, thus implementing
prevention of injection attacks directly into the generated classes.

The CRUD operations that work on all rows in the table should be static on
the generated class (i.e. the read methods) and methods that work on a single
row in the table should be available as instance methods at each instantiated data
object (e.g. the save method).

6.1.4 Impedance Mismatch Concerns

For each table in the used database schema there should be generated exactly
one class to both wrap any communication with this table and to represent each
row in the table as a data object during run-time, cf. the Active Record design
pattern as covered in Section 5.1 on page 56.

70

6. Specification of Requirements 6.1 Requirements for the Generated Classes

To solve those problems put forward in Section 2.1.2 on page 9 we want the
accessible data on the data objects to be strongly typed in a way so the developer
can use the built-in data types in C# so the developer will not have to think about
converting the values. Through the data objects it should be possible to access
data from the row, which the data object is modeling.

The accessible data should take special care of those data types from the
RDBMS that have no direct equivalent type, e.g. nvarchar. These non-equivalent
types should be mapped to the C# type, which has the nearest fit and the cor-
responding properties should be equipped with functionality to perform checks
during run-time to ensure that restrictions like size limitations are not violated.
Furthermore, the possibility of nullable types in C# should be utilized in order to
make a correct mapping from data rows that contain null as values. As nullable is
directly supported in the C# primitive types this would further let the developer
use the built-in types without having to think in ways of the database.

The supported database types should be:

• boolean: In SQL there is no boolean primitive but instead a bit primitive
which is basically the same with 0 for false and 1 for true. This is mapped
to the boolean type in C#.

• datetime: Fortunately the datetime primitive from SQL is also found in
C# so this i just a direct mapping to datetime in C#.

• numerics: We would like to support any numeric values in SQL and map it
to its corresponding primitive in C#. Fortunately every numeric type from
SQL has an equivalent type in C#, e.g. the SQL type smallint maps to
the int16 type in C#.

• strings: String values in SQL and in C# vary as we have mentioned several
times through this thesis. Every of these string types from SQL should be
accessible as a C# string type and checked during run-time whenever
being set by the application developer to ensure that restrictions from the
SQL types are not violated.

To simplify foreign key relations from the RDBMS in the specialized API the
primitive value of any foreign key should be hidden from the application developer
and instead the user should have direct access to the data object representing the
data row in question. As a foreign key is just another way of saying that a certain
column in a table references a primary key column in another table. To translate
this into the terms of C# it would result in a direct reference to another data
object at run-time, thus we also use references to explain when one data object
has a direct reference to another data object as a result of a foreign key relation
in the corresponding table. Further, we also use referenced by to explain when a

71

6.1 Requirements for the Generated Classes 6. Specification of Requirements

data object is referenced by another data object, as referenced by is the opposite
of references.

At any given moment the application developer should have the ability of
reading a timestamp of the latest modification made to the RDBMS during run-
time as he could be interested in this particular information. As we do not want
to hide the fact that we use an external data storage we find it to be useful to
know the exact time when the current data object was saved to the used RDBMS.

6.1.5 Unique Data

In a running application there should be no duplicate data objects, i.e. any row
from the RDBMS are at most represented by one data object in the running
program, thus if the application developer requests a data object that is already
present in the identity map the data object from the identity map should be
returned instead of creating an identical copy.

This is also the case for collections with search results, which means that two
search requests with equal search criteria should result in the same collection and
not just two identical collections that contain the same data objects.

The reason for this is that we want these collections to be automatically up-
dated (described in the following section) and thus keep the amount of collections
as subject to updates as low as possible. Further, we find it unnecessary to cre-
ate a new collection if there already exists one that matches the search criteria.
A final argument for this behavior is that if we were to create a new collection
every time a search was performed we would have to poll the RDBMS instead of
returning the collection with already loaded data objects.

To ensure that the returned collections with data objects always conform to
the search criteria they should be read-only to prevent the application developer
from altering the content.

6.1.6 Concurrency & Synchronization Concerns

As we established in Section 2.2 on page 34 we want to implement a lightweight
concurrency model with considerations to the options available when using an
RDBMS for data storage. Our lightweight concurrency model has two principal
aspects to it, which we elaborate on in the following.

The first aspect is to prevent any VDO-based application from deleting or
overwriting data in the RDBMS if it was retrieved at a time prior to the time
of the most current data found in the RDBMS. This should result in a behavior
which resembles two concurrent transactions with conflict serializability [44, ch.
15].

The second aspect is that the retrieved data objects are automatically kept
at a state that represents the present state of data in the RDBMS such that
changes made by another application are reflected automatically without having

72

6. Specification of Requirements 6.1 Requirements for the Generated Classes

the application developer to manually perform these updates. This automation
should be handled by a synchronization agent, which works in concert with the
identity map to keep every loaded data object synchronized by polling the RDBMS
for changes at frequent intervals and thus updating the data objects accordingly
to the polled data.

If a data object that is subject for update has unsaved local modifications,
then these local modifications should not be overwritten but instead the data
object should be flagged so that it cannot be saved (i.e. overwrite the newer
row in the RDBMS) at a later point. If the application developer tries to save a
flagged data object then he is served with an exception and has to take action to
resolve this conflict.

If a data object gets updated to reflect changes in the RDBMS, then it should
be possible for the developer to be informed about the changes by way of events.
Moreover, the developer should have the option to adjust a synchronization in-
terval value on each generated class that controls the time interval between each
synchronization with the database.

Furthermore, collections that represent search results should always conform
to the original search criteria given and be updated whenever its contained data
objects change such that they always consist of data objects that match the search
criteria. This means that if a data object no longer matches the search criteria
for a collection, regardless whether it is modified and saved locally or updated
due to another clients modification, then it is removed from the collection, and if
a data object fulfills the search criteria for a collection then it is added if it was
not a member beforehand.

6.1.7 Observable Changes

The developer should have the ability to be informed of any changes to the data
objects, e.g. when a data object has been saved to or deleted from the database
or when a data property on the data object has changed.

In order to keep the programming burden for the developer as low as possible
it should be possible to be notified of these events as soon as they happen, i.e.
the developer should be able to subscribe to events that represent changes in the
same manner as in the event pattern, described earlier in the report.

This is in keeping with our concurrency concerns, which means that when
a local data object is updated due to modifications made by another client the
application developer is able to act upon this.

As mentioned earlier the collections that contain data objects from a read
operation should be updated automatically according to the RDBMS used as
back-end. Whenever there is a change in the count of elements, e.g. when a new
data object is added to the collection, the application developer should also have
the opportunity to act on this, thus an event should be fired from a collection
whenever a data object is added or removed.

73

6.1 Requirements for the Generated Classes 6. Specification of Requirements

74

7Design by
Task Scenario

Section 4.2 on page 45 stated that the requirements for the API should take form
of use cases and that we should code to the interface of the API definition early.
This gives rise to taking a design approach that is in keeping with those practices.

Our approach to this is to communicate the requirements specified in Chap-
ter 6 on page 67 in a tangible manner such that we achieve a sound design for
the classes that are generated and the supporting parts of VDO that the user is
exposed to. By having a design for the parts the user is exposed to entails that
we have a solid foundation, when constructing the class generator and supporting
classes in the VDO framework.

We implement our design approach by creating a set of task scenarios that
identify threads of usage for the API that we construct. A task scenario is some-
what similar to a use case known from [31], however it deviates in that it is
comprised of some other components that we hold are appropriate when design-
ing an API such as VDO. Details about the components that constitute a task
scenario are described in Section 7.2 on page 77.

The task scenarios root in the different areas of concerns laid out in the re-
quirements in Chapter 6 on page 67, which means that we define the task scenarios
accordingly. By defining scenarios of usage we are able to systematically elicit
functional and operational requirements for the generated classes together with
supporting classes in the VDO framework. Thus, the scenarios jointly constitute
the possibilities and characteristics of generated classes.

In order to design the parts the user is exposed to we make use of an existing
database schema that serves as a design example that is used in connection with
the task scenarios. This database schema is presented in Section 7.1 on the
following page. By using a design example gives us the advantage of having a
concrete guide to design classes and specify behavior from, because each task
scenario is rooted in the database schema.

75

7.1 Design Example 7. Design by Task Scenario

However, though we use a concrete design example it does not impose ob-
structions to identify general interface patterns and characteristics of the parts
that should be exposed to the user. This is due to the database schema is selected
on the grounds that it is representative and sufficiently complete to showcase the
requirements demanded in Chapter 6 on page 67 and to generalize from when
building the class generator.

The final result that originates from the design example is subject for being
generalized into patterns of interfaces that eventually constitute any generated
class’ structure.

7.1 Design Example

The design example that we employ to construct the API of generated classes
is the database schema WebLog depicted on Figure 7.1. This schema sets the
stage for the task scenarios that are being presented in the following sections.
The schema is chosen on the basis that it has the necessary composition in order
to manifest the requirements that the generated classes have to fulfill. The task
scenarios are rooted in the tables of WebLog. It is from these tables that we
continuously develop the design the part of the VDO framework that is exposed
to the user. The final result should give us a design that we can generalize from
when constructing the VDO framework.

Figure 7.1: Tables in WebLog.

The tables in Figure 7.1 are employed in connection with a simple application
that is hosted on a web server. The table authors represents persons that are
affiliated with a web site. Each of these person can publish blog entries that are

76

7. Design by Task Scenario 7.2 Task Scenarios

stored in the blog entries table. After having published a blog entry, the author
can get feedback on it as a series of remarks made by visitors of the web site,
these are stored in the comments table.

The table authors has some columns that impose restrictions on how the
corresponding generated class’ behavior and interface are defined. The column
freelance has the data type bit and is nullable. This means that the value
of the freelance column in a row may be unknown. Furthermore, the columns
name and email in authors have both the type nvarchar with a character length
restriction, which implies that the corresponding class should take measures to
ensure it complies with this. The id column of authors has the type integer

and is identity, which means that the RDBMS seeds unique id values by way of
auto-incrementation, i.e. the generated class should not provide a means to set
the value of id.

Tables blog entries and comments have some similar characteristics that re-
semble those of authors, however as indicated in Figure 7.1 they both participate
in a foreign key relationship, which implies that an appropriate modeling has
to be done in the corresponding classes in order to reflect relationships among
tables.

7.2 Task Scenarios

In the coming sections we employ task scenarios as a means to continuously
building up the interface for the parts of VDO that are exposed to the user. We
presuppose that the user has generated a DLL file from the schema in 7.1 on the
facing page, and concentrate on behavior and interfaces of generated code.

The level of abstraction we use for describing task scenarios is narrative, there-
fore the scenarios may include a fair amount of information, which gives rise to
employ a template to systematically describing scenarios in a common format.
The template is composed of a series of components that together constitute a
task scenario. The components are individually elaborated on in the following
itemized list:

• Task Scenario: A short description that explains the relevance of the
particular task scenario. It includes matters like what prompts the task
scenario.

• Classes: VDO classes involved in the task scenario that the user is exposed
to. We do not list classes from C#, even though these may appear code
examples.

• Methods: Methods, if any, involved that are relevant to the VDO classes.

• Interface: Here we specify how we find a task scenario best represented
in VDO, that is we argument for different aspects of the interface that is a

77

7.2 Task Scenarios 7. Design by Task Scenario

result of the task. This comprises parts the user is exposed to, as well as
choices we take with regards to accessibility, naming of interface components
and so on.

Moreover, we also illustrate interface code that we extract from the task
scenario in this part. The code listed resembles C#, but it is prototypical
and does not compile, nor does it strictly conform to the syntax of C#. Its
principal purpose is to illustrate and assist rather than being syntactically
correct.

• Pre-conditions: A list of conditions, if any, that have to to hold before
commencing the task. We would like emphasize that a pre-condition in
the context of a task scenario is not on the same footing as a method pre-
condition as we operate on a higher level of abstraction.

• Post-conditions: A list of conditions, if any, that have to hold after the
task.

• Exceptions: A list of exceptions, if any, that may be thrown. We do not
specify the interface for exceptions, because we find it to be sufficient to
only know the name and which type of error message is provided.

In some cases a violation of a task scenario pre-condition can cause an ex-
ception to be thrown. Idealistically one ought to assume that pre-conditions
are fulfilled, that is the user has the responsibility to ensure this. However,
in order to define when and what exceptions can be thrown entails that we
do not preclude this part.

• Code Example: Here we give a small code example that demonstrates the
interface we specify for the task scenario. The code listed in the example is
syntactically correct.

Some task scenarios involve more material if they are general enough, then
we try to avoid repeating already made statements or arguments in other task
scenarios. Furthermore, some task scenarios do not list all of the components in
the aforementioned template, which is due to that some subjects do not apply in
a given task scenario.

Before presenting task scenarios we would like to point out that we have
chosen to present code examples that exemplify a task scenario at the end of
each scenario, this is done on the grounds that code examples are based on the
design decisions that are previous to the example.

78

7. Design by Task Scenario 7.2 Task Scenarios

7.2.1 Initialize VDO

• Description: This task scenario represents a fundamental task in VDO,
which is to initialize it such that a connection to the database can be es-
tablished.

• Classes: VDOEngine, DataProvider.

• Interface: The requirement needed in order to initialize VDO involves one
task from the user’s side. The user is exposed to is a static access class
named VDOEngine, for which there exists a static property named Data-

Provider. The task required in order to initialize VDO is to set an instance
of a provider specific class that implements the interface DataProvider to
the static property. The particulars about the interface DataProvider is
deferred until Chapter 8 on page 105.

The interface that is deduced from this task scenario is depicted in Listing
7.1.

1 public static class VDOEngine
2 {
3 public static DataProvider DataProvider { set; }
4 }

Listing 7.1: Interface of the VDOEngine.

• Pre-conditions: The following conditions have to hold for all task scenar-
ios:

. Pr.1: The generated DLL and the VDO framework DLL have to be
referenced and imported in the IDE.

. Pr.2: A RDBMS to be available and running.

• Post-conditions: The following condition has to hold for all task scenarios:

. Po.1: The specified DataProvider is employed, whenever an interac-
tion is made with the RDBMS.

• Code Example: The example in Listing 7.2 showcases the necessary step
required in order to initialize VDO.

1 VDOEngine.DataProvider = new MSSQL2005DataProvider("host", "
database", "username", "password");

Listing 7.2: Initialize VDO.

79

7.2 Task Scenarios 7. Design by Task Scenario

7.2.2 Create a data object

• Description: This task scenario represents one of the most basic things
that a user can do in VDO, namely creating a new instance of a generated
class.

After generating classes from the database schema, the user should be able
to create a data object by way of a constructor that has parameters that
reflect data types and constraints of the columns in the corresponding table.

It is significant that it is as intuitive as possible for the user to carry out
the instantiation of a data object in concert with specifying a references
relationship.

In this task scenario we use the table blog entries in Figure 7.1 on page 76
as basis for interface and example code.

• Classes: BlogEntry, Author, ValueRequiredException, StringLength-
Exception.

• Methods: BlogEntry constructor.

• Interface: The reason that we employ a constructor with parameters in
order to instantiate a data object rather than using a empty constructor
and setters is that we at compile-time can ensure that all necessary values
are supplied to the insert SQL statement.

Other important parts to emphasize are that we wish to adhere to naming
conventions in the platform, which means that we transform the names
in the corresponding table schema in a way such that parameter names
in a constructor reflect the naming convention in C#, yet have a close
resemblance to the original names in the table schema. An example of this
is where a column is named User Rating, for which the parameter is named
userRating. Having meaningful names for parameters contributes to the
documentation value of the API.

Likewise, the name of a generated class should be the corresponding table
name in singular form with the initial letter in upper-case. This means that
the table blog entries is being transformed to BlogEntry.

Furthermore, as you can see in 7.3 an Author instance is the first parameter
in the constructor of BlogEntry. This choice is a consequence of the fact
that we wish to model a references relationship as a reference to the data
object modeling the referenced row.

We maintain that providing a reference to a data object in order to establish
a references relationship is more in keeping with the object-oriented mindset
than providing a value type that corresponds to the author id column in
the blog entries table. This choice gives us a significant advantage, which

80

7. Design by Task Scenario 7.2 Task Scenarios

is ensuring that the value of author id is valid, thus sparing the user from
the possibility of exceptional processing.

The interface that is extracted from the task scenario is given in Listing
7.3.

1 public BlogEntry(Author author ,string title ,string content)

Listing 7.3: Interface for constructor part of BlogEntry.

• Pre-conditions:

. Pr.1: Parameters of the constructor are in accordance with the schema
of a table the data object is modeling. That is, they reflect data types
and constraints of corresponding columns. There are two special cases
that have an impact on a parameters’ existence and type, when the
corresponding column is:

∗ Pr.1a: An identity. In this case no parameter is provided.

∗ Pr.1b: A foreign key. In this case the corresponding parameter is
a reference type as we require that the user provides a data object
that represents the references relationship as an argument in the
constructor.

. Pr.2: An argument provided in the constructor can only take the value
null if its associated column in the corresponding table is nullable.

Note: This requirement constitutes two cases that are handled differ-
ently:

1. The first case is where a SQL data type maps to a value type in
C#. This type of mapping provides the opportunity to check at
compile-time whether a provided argument is valid, as there is
a syntactical difference between nullable and non-nullable value
types, e.g. int? and int.

2. The second case is a SQL data type that is mapped to a reference
type in C#, for instance from the SQL type nvarchar to the C#
type string. This type of mapping does not allow us to determine
at compile-time whether the provided argument is valid, because
a string can reference null.
As we do not wish to introduce new types for the user implies that
the validity of the argument is determined at run-time.

. Pr.3: For any parameter in the constructor that is of type string

the provided argument’s length is not greater than the corresponding
column’s length restriction.

81

7.2 Task Scenarios 7. Design by Task Scenario

• Exceptions:

. ValueRequiredException: If Pr.2 does not hold and the constructor
argument is a reference type, then an exception is thrown at run-
time. The exception contains a string property that describes the
error message in detail.

. StringLengthException: If Pr.3 does not hold, then there is thrown
an exception at run-time indicating the error in detail by providing a
string property that describes it.

• Code Example: The following example in Listing 7.4 serves as purpose to
exemplify how a data object is created. As seen at line 1, the constructor
of an Author instance allows for taking null as argument, because the
corresponding columns email and freelance in the table authors are nullable.

Moreover, line 2 demonstrates what is required of the user in order to estab-
lish a relationship between a BlogEntry instance and an Author instance.

The data objects in Listing 7.4 are still subject to be saved in the database,
this is elaborated on in Section 7.2.5 on page 89.

1 Author author = new Author(name , null , null);
2 BlogEntry blogEntry = new BlogEntry(author , title , content);

Listing 7.4: Creation of data objects.

7.2.3 Read a field of a data object

• Description: This task scenario encompasses an important requirement,
which comprises the ability to read columns that a data object models in
a way that is lucid to the user. This implies foreign key and primary key
columns that form a part of a relationship to another table as well as regular
columns.

Once more we employ the table blog entries in Figure 7.1 on page 76 as
basis for interface and example code.

• Classes: BlogEntry, Author, VDOCollection<Comment>.

• Interface: The task required of a user in order to read a field value should
only consist of reading the value of a property in a data object that cor-
responds to the field’s column. However, there is an exception to this in
that there is no corresponding property for a foreign key column, as we con-
sider that an intuitive way of representing a references relationship is with
a property that is a reference to the data object modeling the referenced
row, as done with constructor parameters.

82

7. Design by Task Scenario 7.2 Task Scenarios

We would like to emphasize that we retain a consistency between naming
and ordering of parameter names and property names, the only difference
is that property names have their initial letter in upper-case according to
the platform convention.

As a data object can model a row that is referenced by rows in other ta-
bles, we maintain that a simple and comprehensible approach to represent
this in a manner that is object-oriented is by way of providing the user
with strongly typed collection properties, where each of these contains data
objects that associate to a specific table.

These strongly typed collections are read-only and of type VDOCollec-

tion<T>, where T is generated class from table T. It is not our intention to
get into the particulars about the interface of VDOCollection<T> other than
stating that it should implement IEnumerable<T> to support the foreach

statement, as well as providing an indexer to get an element at a specified
index, a Count property to get the number of elements contained in the
collection, the method IndexOf for determining the index of a specific el-
ement, and the method Contains to determine whether an element is in
the collection. As stated in Section 6.1.7 on page 73 it should be possible
to subscribe to changes in collections. We defer the discussion about this
until Section 7.2.9 on page 99.

The naming of a collection property should be from the name of the class
parameter of the collection in plural. For instance, a BlogEntry instance
contains a property Comments of type VDOCollection<Comment>.

The resulting interface that is extracted from the task scenario is illustrated
in Listing 7.5. The vigilant reader may have noticed that not all properties
have a set part, the reason for this is elaborated on in Section 7.2.4 on
page 86, where we discuss the particulars that come into play when assigning
values to properties.

1 public int Id { get; }
2 public string Title { get; set; }
3 public string Content { get; set; }
4 public Author Author { get; set; }
5 public VDOCollection <Comment > Comments {get;}

Listing 7.5: Interface for properties of BlogEntry.

• Pre-conditions:

. Pr.1: The data object’s Save method is invoked prior to this task
scenario.

. Pr.2: In accordance with the schema of a row’s table, which a data
object models there exist corresponding properties, apart from foreign

83

7.2 Task Scenarios 7. Design by Task Scenario

key columns that are represented as a properties that are data objects
that model referenced rows.

Additionally, for a primary key column in a row that a data object
models, which is referenced by rows in table C, there exists a strongly
typed VDOCollection<C> property, where C is a generated class from
table C, that contains data objects that model these rows.

• Post-conditions:

. Po.1a: If Pr.1 holds, then for all properties that have a corresponding
column the following applies: the value that is read from the property
reflects the last fetched value of the corresponding row’s column in the
associated table.

. Po.1b: If Pr.1 does not hold and a property’s corresponding column
is:

∗ identity, then the value that is read from the property defaults to
0.

∗ not identity, then the value that is read from the property is equiv-
alent to a value that either was assigned to the property or pro-
vided by the property’s associated constructor parameter.

. Po.3: For every property of type VDOCollection<C> where C is a class
generated from table C, the following applies:

∗ For each row in table C that has a references relationship to the
data object’s associated row there is a corresponding instantiated
data object in the strongly typed collection. If no such row exists
in C, then the strongly typed collection is empty.
The motive for having an empty collection rather than returning
null is due to the best practice in Section 4.3.2 on page 51 that
recommends that we avoid returning values that demand excep-
tional processing.

∗ VDOCollection<C> is automatically kept at a state that reflects
the present state of references relationships that data objects of
type C share with the property’s data object.

• Code Example: The example in Listing 7.6 depicts a simple scenario
that demonstrates three different kinds of reads that can be done on a data
object.

1 Console.Write("Blog entry \"{0}\" is owned by author: {1}",
2 blogEntry.Title , blogEntry.Author.Name);
3
4 // Listing row data

5 foreach(Comment c in blogEntry.Comments)

84

7. Design by Task Scenario 7.2 Task Scenarios

6 {
7 Console.WriteLine(c.Title);
8 Console.WriteLine(c.Content);
9 }

Listing 7.6: Reading properties of data objects.

The first argument to the Write method at line 1 shows how the title
column in blog entries is wrapped as the Title property of a BlogEntry.
The second argument at line 2 is a bit more interesting in that we have an
Author instance as a property instead of having the author id as a property.
The loop at line 3 demonstrates when a user wants to read all comments
that belong to a BlogEntry instance, which in effect means rows from the
table comments that have a references relationship to the row that the
BlogEntry instance represents.

85

7.2 Task Scenarios 7. Design by Task Scenario

7.2.4 Change a field of a data object

• Description: This task scenario is relevant when a user wants to change
the value of a column in a row that a data object represents, which effec-
tively is analogous to altering the value of a property and saving the data
object.

For the time being we only concentrate on changes made on properties and
defer the details about saving the data object’s state in the RDBMS until
Section 7.2.5 on page 89.

As the user may be interested in notifying other objects about changes to
the value of a property, the alteration of its value should cause an event
to be published to observers that have an interest in change notifications
of the property. This applies to changes that are made on the value of
a property locally, as well as changes made by other applications on the
associated column’s value.

For this task scenario we employ the table blog entries as the foundation
for interface and example code. This is due to the fact that blog entries
participates in two types of relationships, it references the table authors
and is referenced by the table comments. This entails special treatment of
some properties, which we discuss in the following.

• Classes: BlogEntry, Author, VDOCollection<Comment>,
ValueRequiredException, StringLengthException,
TitleChangedEventArgs, ContentChangedEventArgs,
AuthorChangedEventArgs.

• Interface: We consider that an easily understood way of accomplishing
the task of changing a column value in a row is to change it through the set
part of the matching property in the data object. By taking this approach
we ensure type-safety. Another way of changing fields could have been by
providing a update method that takes two arguments, the name of a column
and a value. However, this is considered by us to be error-prone as the user
may inadvertently misspell the column name or provide a column name
that has another data type.

Furthermore, this task scenario also encompasses the possibility for chang-
ing the value of a row’s foreign key column such that the row participates
in a new relationship with a different row in the referenced table. As we do
not expose foreign key columns as properties, the task of specifying a new
relationship is a matter of using the property that models the referenced
table as a means in order to change the relationship.

The interface that applies to properties in this task scenario is given in List-
ing 7.7. It is evident from the listing that the properties Id and Comments

86

7. Design by Task Scenario 7.2 Task Scenarios

do not have a set part.

The reason for not having a set part on Id is that its corresponding column
is a primary key that is identity, which means that we let the RDBMS take
care of ensuring the uniqueness of the identity value.

The incentive for not a having set part for Comments is because we maintain
that introducing a set part is more of an impediment than an advantage
for the user. The way we introduce a references relationship in VDO is by
passing a data object that models the referenced row in the constructor of
the data object that references the row, e.g. passing an Author instance as
an argument in the BlogEntry constructor.

1 public int Id { get; }
2 public string Title { get; set; }
3 public string Content { get; set; }
4 public Author Author { get; set; }
5 public VDOCollection <Comment > Comments { get; }

Listing 7.7: Interface for the properties of BlogEntry.

Lastly, we maintain that it is important that the naming of event arguments,
events and delegates adhere to C# naming convention. Conforming to this
should make it easier for the user to recognize the different parts of a data
object that comprise the event pattern in C#. Listing 7.8 demonstrates
event related code for the Author property of BlogEntry. It should be
noted that EventArgs at line 3 in the Listing 7.8 originates in C#.

1 public delegate void AuthorChangedHandler(object sender ,
AuthorChangedEventArgs e);

2 public event AuthorChangedHandler AuthorChanged;
3 public class AuthorChangedEventArgs : EventArgs
4 {
5 public Author Author { get; }
6 }

Listing 7.8: Interface for event related code for the Author property.

All properties in a data object with a set part have event related code that
follows the same naming and structure as the one given in Listing 7.8. This
effectively means that we preclude the possibility to subscribe to changes
on the Comments collection through an event in the BlogEntry instance.
The incentive for this choice is elaborated on in Section 7.2.9 on page 99,
where we discuss registering to changes in a VDOCollection.

• Pre-conditions:

. Pr.1: A property can only take the value null if the column in the
corresponding table is nullable.

87

7.2 Task Scenarios 7. Design by Task Scenario

. Pr.2: A property of type string leads to the requirement that the
property can only take string values of a length that is not greater
than the corresponding column’s length restriction.

• Post-conditions:

. Po.1: After changing a property <P> an event named <P>Changed

with an argument of type <P>ChangedEventArgs is published to all
observers that have subscribed on changes to the P property. The
event argument <P>ChangedEventArgs has a property that is identical
to the P property, except for missing the set part.

• Exceptions:

. ValueRequiredException: If Pr.1 does not hold, then an exception
is thrown at run-time stating that a value is required. The exception
contains a property that describes the error message.

. StringLengthException: If Pr.2 does not hold, then there is thrown
an exception at run-time indicating that the length of the string is
invalid by providing a property that has a descriptive error message.

• Code Example: The code example in Listing 7.9 demonstrates this task
scenario in its entirety.

1 Author author = new Author("Dave Matthews", "dm@vdo.tk");
2
3 BlogEntry blogEntry = BlogEntry.ReadById (4);
4 blogEntry.Author = author;
5 blogEntry.Title = "Observational Affairs in VDO are Deft!";
6 blogEntry.Content = null;

Listing 7.9: Adjusting properties of a BlogEntry instance.

As illustrated on line 4, the task of changing the references relationship
is a matter of assigning an Author instance to the Author property of
BlogEntry. Subsequent to the assignment on line 4, an event is published
to observers with an appropriate argument.

The assignment to Title at Line 5 causes a StringLengthException to
be thrown as the corresponding column imposes a restriction on the string
length of 30 characters. Moreover, the assignment at line 6 causes a Val-

ueRequiredException to be thrown as the corresponding column is not
nullable.

1 public class Observer
2 {
3 public void OnAuthorChangedHandler(object sender ,
4 BlogEntry.AuthorChangedEventArgs e)

88

7. Design by Task Scenario 7.2 Task Scenarios

5 {
6 int id = ((BlogEntry)sender).Id;
7 Console.WriteLine("Blog entry with id {0} changed author

to {1}", id, e.Author.Name);
8 bool? free = e.Author.Freelance;
9 if (free.HasValue ? free.Value : false)

10 {
11 Console.WriteLine("No interest in freelance entries.");
12 ((BlogEntry)sender).AuthorChanged -=

OnAuthorChangedHandler;
13 }
14 }
15 static void Main(string [] args)
16 {
17 VDOEngine.DataProvider = new MSSQL2005DataProvider("

localhost", "weblog", "wl", "wl");
18
19 BlogEntry blogEntry = BlogEntry.ReadById (1);
20 Observer obi = new Observer ();
21 blogEntry.AuthorChanged += obi.OnAuthorChangedHandler;
22
23 Author author = new Author("Beck", true , "beck@vdo.tk");
24 blogEntry.Author = author;
25 }
26 }

Listing 7.10: (Un)Subscribing to changes in a data object.

The code in Listing 7.10 exemplifies how the event pattern from C# is inte-
grated into a BlogEntry. An important thing to notice is how subscription
and unsubscription to an event are done at line 21 and 12, respectively.

7.2.5 Save a data object

• Description: After creating or altering a data object, the user should be
able to save it to the database. It is of paramount significance that the save
operation requires as little involvement as possible from the user’s part.
This is especially true if the save operation entails a corresponding insert
or update operation in the RDBMS.

When a data object is saved to the RDBMS it may be of great utility to be
notified subsequently to the save operation. The user may be interested in
keeping objects responsible for displaying data informed about this. Thus,
we hold that it is expedient that the user can subscribe to an event that
elucidates a save operation on a data object.

In this task scenario we employ the table comments as basis for interface
and example code.

89

7.2 Task Scenarios 7. Design by Task Scenario

• Classes: Comment, BlogEntry, OutOfSyncException, StateChangedE-

ventArgs.

• Methods: Save.

• Interface: The interface for a Save method has some important aspects to
it that sets the scene for an elaboration. The choice of the name stems from
the fact that a method should clearly communicate what it does. It saves
data to the database, which is clear given the context of VDO: an object-
oriented wrapper of a database. Thus, we omit a part of the method, which
indicates that data gets saved to a database.

Moreover, the name is chosen to be only Save regardless of the save oper-
ation causes an insert or update SQL statement in the database back-end.
We maintain that it is not necessary to provide methods for each of these
operations, Insert and Update, or having the method named SaveOrUp-

date. The user should not be worried about matters that can be handled
in the implementation.

The interface that we extract from this task scenario with regards to the
Save method is given in Listing 7.11.

1 public void Save()

Listing 7.11: Interface for the Save instance method of Comment.

The interface to event related code for a data object that originates from this
task scenario is given in Listing 7.12. We adhere to the naming convention
in C# for event arguments, events and delegates. However, as we operate
with events that apply on object level we introduce the naming prefix State

in order to emphasize a higher level of notification. The property Change

of StateChangedEventArgs is an enumeration, StateChangeEvent, that
is used as an indication for object level events. The enumeration value
Deleted at line 3 is unconnected with this task scenario, however it applies
to the task scenario in Section 7.2.6 on page 92, which employs the same
event related code given in Listing 7.12.

1 public delegate void StateChangedHandler(object sender ,
StateChangedEventArgs e);

2 public event StateChangedHandler StateChanged;
3 public enum StateChangeEvent { Deleted , Saved };
4 public class StateChangedEventArgs : EventArgs
5 {
6 public StateChangeEvent Change { get; }
7 }

Listing 7.12: Interface for event related code for a data object.

90

7. Design by Task Scenario 7.2 Task Scenarios

• Pre-conditions:

. Pr.1: If the data object associates to a row in the corresponding table,
then the row’s fields must not have been altered since the data object
was last synchronized with the row’s fields.

• Post-conditions:

. Po.1a: If the data object does not associate to a row in the cor-
responding table, then a new row with valid data is inserted in the
corresponding table.

. Po.1b: If the data object associates to a row in the corresponding
table, then the row is updated with valid data.

. Po.2: Subsequent to saving a data object, the time its associated row
was last modified is stored in the data object.

. Po.3: A property that maps to a primary key column that is identity
has a unique value that differs from the value of equivalent properties
for data objects of same type.

. Po.4: If data object Parent referenced by data object Child does not
exist in TableOfParent, then data object Parent is automatically saved
to TableOfParent prior to saving data object Child to TableOfChild.

. Po.5: After invoking Save, an event named StateChanged with an ar-
gument of type StateChangedEventArgs is published to all observers
that have subscribed on save notifications from the data object. The
argument StateChangedEventArgs has an enumerated property of
type StateChangeEvent named Change, which has the value Stat-

eChangeEvent.Saved.

• Exceptions:

. OutOfSyncException: If Pr.1 does not hold, then an instance of this
exception is thrown. The exception contains a string property, which
indicates the error message that the data object is out of sync with its
associated row.

• Code Example: The code in Listing 7.9 illustrates the task required in
order to save newly created data objects that form a part of a relationship.
The only thing required executing this task is to invoke the Save method
of the data object comment at line 5. The save operation performed on
comment propagates to its parent blogEntry, which also propagates a save
operation to its parent author.

91

7.2 Task Scenarios 7. Design by Task Scenario

1 Author author = new Author(authorName , email);
2 BlogEntry blogEntry = new BlogEntry(author , title , content);
3 Comment comment = new Comment(blogEntry , authorName , email ,
4 "Re: " + title , content);
5 comment.Save();
6 comment.Title = Regex.Replace(comment.Title ,"Re: ","FYI: ");
7 try {
8 comment.Save();
9 } catch (OutOfSyncException e) {

10 // performing exceptional processing.

11 }

Listing 7.13: Saving data objects.

The invocation of Save at line 7 may cause an OutOfSyncException to be
thrown. This entails synchronizing the state of the data object with the
corresponding row’s state. The particulars with regards to synchronizing a
data object are described in Section 7.2.7 on page 94.

7.2.6 Delete a data object

• Description: This task scenario comes about when the user wishes to
delete a data object, which analogously corresponds to deleting the data
object’s associated row.

As we integrate the observer pattern and automatic synchronization in
classes that are generated from tables, we maintain that it is of great value
to the user if he can be notified when a data object’s associated row is
deleted. Thus, this task scenario also involves delete notifications.

For this task scenario we employ the table authors as the basis for interface
and example code.

• Classes: Author, StateChangedEventArgs.

• Methods: Delete.

• Interface: There are a few naming considerations we would like to go into
details about with regards to the Delete method. Our choice of naming is
a consequence of the fact that we only perform one type of deletion, which
is to cause a row in the RDBMS to be deleted. As a data object wraps
a row, the naming Delete is preferred over the naming DeleteFromDB, as
this choice is consistent with the naming of the Save method.

Moreover, as we do not wish to render a data object useless upon a delete
operation, the naming Destroy is considered to be improper and misleading.

The interface that originates in this task scenario is given in Listing 7.14.
We omit interfaces for event related code owing to that we already presented
it in Listing 7.12 in Section 7.2.5 on page 89.

92

7. Design by Task Scenario 7.2 Task Scenarios

1 public void Delete ()

Listing 7.14: Interface for the Delete instance method a Author class.

• Pre-conditions:

. Pr.1: Prior to invoking Delete it must hold that no modification has
been performed on the row that the data object models since the last
synchronization with the row.

• Post-conditions:

. Po.1: Subsequent to invoking the Delete method, the associated row
in the corresponding table is deleted.

. Po.2: The value of the property, which maps to the primary key
column that is identity is undefined.

. Po.3: A cascading delete is performed on the data object Parent,
which effectively means that Delete is invoked on each Child data ob-
ject that references Parent, and the referenced by VDOCollection<Child>

property of Parent has zero count in elements.

. Po.4: After invoking the Delete method, an event named State-

Changed with an argument of type StateChangedEventArgs is pub-
lished to all observers that have subscribed on delete notifications from
the data object. The argument StateChangedEventArgs has an enu-
merated property of type StateChangeEvent named Change, which
has the value StateChangeEvent.Deleted.

• Exceptions:

. OutOfSyncException: If Pr.1 is violated, then a OutOfSyncExcep-

tion is thrown, containing an error message property that indicates
that the data object is out of sync with its associated row.

• Code Example: The example in Listing 7.15 demonstrates which task
is required of the user, when he wishes to delete a matching row from
the RDBMS. After having invoked Delete at line 24, all rows in the table
blog entries that reference the row author models are deleted from the
RDBMS. Furthermore, each row in the table comments that reference any
of those rows in blog entries are deleted from comments. As a result of
invoking Delete an event is published.

1 public class Observer
2 {
3 public void OnStateChangedHandler(object sender ,
4 Author.StateChangedEventArgs e)

93

7.2 Task Scenarios 7. Design by Task Scenario

5 {
6 if (e.Change.Equals(Author.StateChangeEvent.Deleted))
7 {
8 // Remove data from the GUI.

9 }
10 else if (e.Change.Equals(Author.StateChangeEvent.Saved))
11 {
12 // Inform the user that data was saved.

13 }
14 }
15
16 static void Main(string [] args)
17 {
18 VDOEngine.DataProvider = new MSSQL2005DataProvider("

localhost", "weblog", "wl", "wl");
19
20 Author author = Author.ReadById (6);
21 Observer obi = new Observer ();
22
23 author.StateChanged += obi.OnStateChangedHandler;
24 author.Delete ();
25 Console.WriteLine("No. of blog entries: {0}",
26 author.BlogEntries.Count);
27 author.Save();
28 }
29 }

Listing 7.15: Deleting a row from the authors table in the RDBMS.

Line 27 entails that a new row is inserted in the table authors and that the
property Id of author has a unique value different from 6, cf. line 20.

7.2.7 Synchronize a data object

• Description: This task scenario is due to a need from the user to manually
synchronize the state of a data object with values from the associated row
in the corresponding table.

Here we assume a setting where other users may have altered the values
in the row through other applications. In such a setting we think it is
significant that the user has the ability to adjust to the last change that
has happened to a row of his interest.

The table used for interface and example code in this task scenario is com-
ments.

• Classes: Comment.

• Methods: Refresh.

94

7. Design by Task Scenario 7.2 Task Scenarios

• Interface: A thing that we would like to emphasize is the naming of the
method. We exercised great care in selecting the name for the method in
order to have a close connection between naming and method behavior. We
maintain that the name Refresh has a stronger semantic meaning than the
name Update, given what the method does. The name Update has another
meaning in the realm of databases, which is to update data in the database.

Candidates for naming that also are strong in semantic meaning are Poll-

Newest and Synchronize. However, given that we have a method named
Save we select what we find most supplementing and lucid: Refresh. One
advantage in the name is that it somewhat communicates that the method
has to be invoked each time the user wishes to synchronize, whereas the two
other names can arguably be understood as a having a continuing effect.

The interface that stems from the task scenario is given in Listing 7.16.

1 public void Refresh ()

Listing 7.16: Interface for the Refresh instance method of Comment.

• Post-conditions:

. Po.1: After invoking the Refresh method, the state of the data object
should have the same values as the matching row at the time when
synchronization was performed. The time the row was last modified
is stored in the data object.

. Po.2: If the corresponding row has been deleted in the RDBMS since
the last synchronization, then the data object’s state is equivalent to
the state caused by invoking the Delete method of the data object,
as described in Section 7.2.6 on page 92.

• Code Example: The code in Listing 7.17 for this task scenario exemplifies
the act of manual synchronization of a Comment instance with data from its
associated row in the RDBMS.

1 comment.Refresh ();
2 comment.Title = titleInput;
3 try {
4 comment.Save();
5 } catch (OutOfSyncException e) {
6 // Alert of and adjust to changes in the RBDMS.

7 // Code to handle this goes here.

8 }

Listing 7.17: Synchronizing a data object with newest row data.

95

7.2 Task Scenarios 7. Design by Task Scenario

7.2.8 Retrieve data objects by criteria

• Description: This task scenario is of relevance when a user wants to fetch
data objects that match a given criteria.

As stated in Section 6.1.3 on page 69, the read operation should enable a
simple search on any of the columns that constitute a table on the basis
of a column value criteria, as well provide a means to fetch all rows from
a table. Furthermore, it was also stated that the read operation should
return a single data object if a search is performed on a primary key and
the corresponding table only constitutes one primary key.

This set the stage for specifying an interface for the read operation that
accommodates the requirements with regards to search criteria in concert
with our concerns about type-safety and injection attacks. Furthermore,
as consistency and simplicity should be a characterizing aspect of VDO
it necessitates some careful considerations in order to orchestrate a read
operation that accommodates its requirements while being intuitive.

The table blog entries is used as basis for interface and example code that
is connected to this use.

• Classes: BlogEntry, Author, VDOCollection<BlogEntry>.

• Methods: ReadAll, ReadById, ReadByTitle, ReadByContent.

• Interface: There are different approaches that can be taken in order to
compose the read operation for a data object.

Our first idea was to provide the user with a class method named Read-

BlogEntry that takes two parameters that correspond to a column name
and a column value. The method could then be overloaded where the first
parameter was fixed to be of type string and the second parameter var-
ied according to the data types of the columns in the table schema, e.g.
for BlogEntry we would have the method overloaded like ReadBlogEn-

try(string columnName, int fieldValue) and ReadBlogEntry(string

columnName, string fieldValue). However, taking this approach entails
that we cannot ensure the same behavior for the same arguments. The
problem arises when it comes to the column name. If we let column name’s
associated parameter be a string or an enumeration constant gives the user
the possibility to specify a column name or enumeration constant as a first
argument, for which the second argument may be of the incorrect data type.

Given the problems linked to the ReadBlogEntry method we avoid am-
biguous overloading and take a different approach by providing a series of
read methods that differ slightly in naming. The requirements for the read
operation has lead us to 3 different types of class methods.

96

7. Design by Task Scenario 7.2 Task Scenarios

The simplest of these is the class method named ReadAll that takes no
arguments. It returns all rows in a table as a strongly typed VDOCollection

of data objects. The method is named ReadAll because given that it is a
class method it should be evident for the user through its usage that it
returns all rows in a table as a collection of data objects. Furthermore, the
naming of the method also roots in the fact that all data fetched from the
RDBMS is read into memory in the application.

The second type of read method is one that involves a column value criteria,
i.e. it has a single parameter. We find the format ReadBy<X>, where <X> is
a property name that associates to a column name, to be the most easily
understood naming composition. Furthermore, the name of the method’s
parameter is rooted in the name of the associated property, apart from the
initial letter in lower-case.

The parameter of a ReadBy<X> should have a data type that is compatible
with the corresponding column’s data type. This entails that the user can
only invoke the method if its parameter is bound to an argument with
correct data type. In the case when a parameter’s corresponding column is
a foreign key a read method is not provided, because the parameter of that
method would be a reference to a data object. Having a reference to the
data object effectively means that we already have access to all the data
objects which reference to this data object.

Lastly, ReadBy<X> returns a VDOCollection of data objects that match the
column value criteria.

The third type of read method is a special case of ReadBy<X>, where <X>

associates to the only primary key in a table. In this case, the method
returns a single data object. The motive for returning a single data object
was put forward in Section 6.1.3 on page 69.

The resulting interface we deduce from the task scenario is given in Listing
7.18.

1 public static BlogEntry ReadById(int id)
2 public static VDOCollection <BlogEntry > ReadByTitle(string

title)
3 public static VDOCollection <BlogEntry > ReadByContent(string

content)
4 public static VDOCollection <BlogEntry > ReadAll ()

Listing 7.18: Interface for read class methods of BlogEntry.

• Post-conditions:

. Pr.1: If table C contains a single primary key PK, then the parameter
pk of ReadByPK is bound to a value for which there exists a row where

97

7.2 Task Scenarios 7. Design by Task Scenario

the value of PK uniquely matches the bound value.

• Post-conditions:

. Po.1: The ReadAll class method returns a strongly typed VDOCol-

lection, which contains data objects of type C. Each item in the
collection corresponds uniquely to a row in table C. If C is empty,
then the returned collection is empty.

. Po.2: If table C contains a single primary key PK, then ReadByPK

returns a data object of type C that corresponds to a row for which
the value of PK uniquely matches the argument bound to parameter
pk.

. Po.3: If table C contains more than one primary key, then ReadBy<X>

returns a strongly typed VDOCollection, which contains data objects
of type C. Each item in the collection uniquely matches a row in the C
table that satisfies the argument bound to parameter x. If no match
is found in C, then the returned collection is empty.

. Po.4: A strongly typed VDOCollection that is returned as a result of
invoking ReadBy<X> or ReadAll is automatically kept at a state that
reflects the search criteria, as described in Section 6.1.6 on page 72.
Furthermore, multiple invocations of a Read method, which return
collections, with identical search criteria results in a reference to the
same collection.

• ItemNotFoundException: If Pr.1 does not hold, then an instance of this
exception is thrown. The exception contains a error message property,
which indicates that there does not exist a row, which contains a column
value that matches the provided argument to ReadBy<X>.

• Code Example: The example in Listing 7.19 showcases some scenarios
that involve obtaining BlogEntry instances by way of read methods.

1 VDOCollection <BlogEntry > entries = BlogEntry.ReadAll ();
2 Console.WriteLine("Listing all blog entries");
3 foreach(BlogEntry be in entries)
4 {
5 Console.WriteLine(be.Title);
6 Console.WriteLine(be.Content);
7 }
8
9 BlogEntry blogEntry = BlogEntry.ReadById (4);

10 entries = BlogEntry.ReadByTitle(blogEntry.Title);
11 Console.Write("Entries with similar title as blog entry");
12 Console.WriteLine(" with id {0}:", blogEntry.Id);

98

7. Design by Task Scenario 7.2 Task Scenarios

13
14 foreach(BlogEntry be in entries)
15 {
16 Console.WriteLine(be.Id);
17 }

Listing 7.19: Data objects fetched on the basis of criteria.

7.2.9 Subscribe to changes in a collection

• Description: This task scenario is relevant when a user wishes to be noti-
fied of when a data object is either removed or added to a collection. This
is due to the requirement in Section 6.1.7, which requires that collections
provided by the VDO framework should be observable.

The user has different ways of obtaining a collection, i.e. by way of a read
method or through a referenced by property in a data object. In both
cases the collection’s content corresponds to a search criteria. In the case
where it is obtained by way of a read method the search criteria is explicit.
Conversely, if a collection is obtained through a property then the search
criteria is implicit as the collection reflects the references relationship that
other data objects share with the property’s data object.

In spite of how a user obtains a collection it is subject for changes as data
objects can be removed from or added to it as described in Section 6.1.6 on
page 72.

• Classes: VDOCollection<T> where T is generated from table T in the
RDBMS, StateChangedEventArgs.

• Interface:. The task required of the user to subscribe to changes in a
collection should be similar to subscribing to changes on save and delete
notifications on a data object.

We stated in Section 7.2.4 on page 86 that we preclude the possibility to sub-
scribe to changes in a collection that belongs to a data object, e.g. the Com-
ments collection in a BlogEntry data object. This design decision is rooted
in the fact that there is a semantic disparity between having a blogEn-

try.CommentsChanged event and a blogEntry.Comments.StateChanged

event. We hold that the latter of these two is most comprehensible, namely
because Comments is the same object though the number of elements in it
changes. If we took the first of these as our approach, then the interface
exposed to the user would signal that the Comments property can change to
reference a different collection object, which is not possible (i.e. a missing
set part) as it is the same object that only changes in the count of elements.

99

7.2 Task Scenarios 7. Design by Task Scenario

1 public delegate void StateChangedHandler(object sender ,
StateChangedEventArgs e);

2 public event StateChangedHandler StateChanged;
3 public enum StateChangeEvent { ItemAdded , ItemRemoved };
4 public class StateChangedEventArgs : EventArgs
5 {
6 public StateChangeEvent Change { get; }
7 public T Item { get; }
8 }

Listing 7.20: Interface for event related code of a VDOCollection.

Listing 7.20 illustrates the interface that we extract from this task scenario.
As stated at line 3 we employ an enumeration StateChangeEvent to indi-
cate the type of change. We follow the same naming pattern as we did for
events that apply on an object level in order to be consistent. In this set-
ting we also use an enumeration property named Change in StateChangedE-
ventArgs. However, as we operate on a collection level we introduce an
additional property in StateChangedEventArgs named Item, cf. line 7.

We let the data object of type T that is the cause of the event notification be
available as an property in order to give the user a possibility of responding
to a change in a specific manner. This assists the user with regards to
not having to search a collection for a data object that is either missing or
recently added.

Keeping a user interface updated to changes is of great importance in many
applications, which gives rise to presume that this composition is of great
utility in the context of keeping a user interface updated, because the objects
that are responsible for displaying data get a reference to a data object and
can act accordingly. Moreover, this implies that there is no need to have
logic for regularly polling for changes.

• Pre-conditions:

. Pr.1: A VDOCollection<T>, where T is a class generated from table
T, conforms to a search criteria whether this is explicit or implicit,
and is updated whenever data objects are added to or removed from
it according to the search criteria.

• Post-conditions:

. Po.1: Subsequent to registering with StateChanged the user is noti-
fied when a data object is removed from or added to a collection.

• Code Example: The code in Listing 7.21 exemplifies what is needed in
order to keep track of changes in a collection that is either obtained by way
of a Read method or through a property in a data object.

100

7. Design by Task Scenario 7.3 Generated Classes

1 VDOCollection <Author > authors = Author.ReadAll ();
2 authors.StateChanged += AuthorsChangeHandler;
3
4 BlogEntry blogEntry = BlogEntry.ReadById (4);
5 blogEntry.Comments.StateChanged += CommentsChangeHandler;

Listing 7.21: Examples of subscribing to changes in a VDOCollection.

7.2.10 Change the sync interval of a data object

• Description: This task scenario is very simple, however it is relevant due
to a possible need from the user to being able to adjust the time interval
between each synchronization of data objects with row data in the RDBMS.

• Classes: All VDO classes that are generated from tables in a RDBMS.

• Interface: The only thing required of the user in order to control the
synchronization interval value on each generated class is to assign a value to
a static property. We find the naming SyncInterval to be appropriate and
informative. We use the type double to indicate time units in milliseconds.
The interface for the property is illustrated in Listing 7.22.

1 double static SyncInterval { get; set; }

Listing 7.22: Interface for the sync interval property.

• Pre-conditions:

. Pr.1: Prior to setting the SyncInterval property of a generated class
it has a default value of 30000 milliseconds.

• Post-conditions:

. Po.1: Subsequent to setting the SyncInterval property of a gener-
ated class its value is equal to or larger than 5000 milliseconds.

• Code Example: The example in 7.23 demonstrates how a user can change
the synchronization frequency for all data objects of type Comment.

1 Comment.SyncInterval = 15000;

Listing 7.23: Changing the sync interval for instances of a Comment.

101

7.3 Generated Classes 7. Design by Task Scenario

Figure 7.2: Classes generated from WebLog.

102

7. Design by Task Scenario 7.3 Generated Classes

7.3 Generated Classes

Subsequent to generating classes from the database schema in Figure 7.1 on
page 76 the result should look like what is depicted in Figure 7.2 on the preceding
page. It is for illustrative purposes that we elude some components of a class,
this especially applies to event related code.

As illustrated in Figure 7.2 on the facing page we represent relationships by
way of reference types in C#. Likewise the database schema depicted in Figure 7.1
on page 76, an author can publish zero or more blog entries, for which each can
have zero or more comments attached.

However, the classes depicted need to have supporting classes in the VDO
framework in order to accommodate the requirements specified in Chapter 6 on
page 67 and communicate with the RDBMS. The realization of this is what we
bring about in the next chapter.

103

7.3 Generated Classes 7. Design by Task Scenario

104

8Realization of the
VDO framework

In this chapter we give an explanation of the realization of VDO with regards to
both the static API and the specialized API that is generated on the basis of a
database schema. This serves both as realization of the requirements in Chapter 6
on page 67 and the design specified in Chapter 7 on page 75.

It is noteworthy that we separate the description of the VDO class generator
from the rest of the VDO framework as the class generator is not needed during
run-time. An overview over the class generator can be found in Chapter 9 on
page 135.

8.1 The Static API

As advanced in Chapter 2.2 on page 34 it is our objective to create a run-time
environment (referred to as the static API) that takes care of the database com-
munication and serves as support for the specialized API generated by the VDO
compiler.

To reduce the amount of code that needs to be generated we put as much
functionality as possible into the static API. The static API consists of classes that
the application developer uses in applications, e.g. VDOCollection, and internal
classes with generic functionality that are used for implementation purposes and
special classes that take measures against the impedance mismatch concerns we
specified in Section 2.1.1 on page 8.

In the following sections we examine different groups of classes in the VDO
API and describe how each of these are needed in order to make our specialized
API viable.

105

8.1 The Static API 8. Realization of the VDO framework

Figure 8.1: Overview of the VDO framework.

8.1.1 Data Service

The DataService namespace of the VDO framework is comprised of classes that
are needed for direct communication with the RDBMS, intended for usage by the
classes in the generated API.

The most important class in this namespace is the VDOEngine class as this
is the foundation for causing the specialized API to require as few arguments as
possible in order to communicate with the RDBMS. VDOEngine is responsible for
maintaining connections to the RDBMS and serving these connections for the
specialized API during run-time. The VDOEngine is constructed as a static class,
which in our implementation is very similar to the singleton pattern [23], thus the
application developer only has to initialize the connection to the RDBMS once in
the application that employs the specialized API.

1 DataProvider dataProvider = new MSSQL2005DataProvider("host", "
database", "username", "password");

2 VDOEngine.DataProvider = dataProvider;

Listing 8.1: Initializing a connection to Microsoft SQL Server 2005.

To initialize an RDBMS connection the application developer has to use an im-
plementation of the abstract DataProvider class. Currently we have only made a
single implementation into the MSSQL2005DataProvider class for Microsoft SQL
Server 2005 due to the fact that our VDO compiler currently only provides sup-
port for this RDBMS. Listing 8.1 shows how the application developer is supposed
to initialize the connection with the RDBMS before using the rest of the VDO
framework and the specialized API generated by the VDO compiler. The classes
in the DataService namespace are depicted in Figure 8.2 on the facing page.

Though we only provide support for one platform at the given moment the
usage of an abstract class as the defined class for VDOEngine makes it straightfor-
ward to support other RDBMS systems in the future as long as the VDO compiler

106

8. Realization of the VDO framework 8.1 The Static API

MSSQL2005DataProvider
Save(dataObject)
Delete(dataObject, searchElements)
Read(viewName, searchElements)
PollNewest(dataObject)
HasChanged(dataObject)
Duplicate()

VDOEngine
DataProvider

DataProvider
Save(dataObject)

Read(viewName, searchElements)
PollNewest(dataObject)
HasChanged(dataObject)

Delete(dataObject)

Duplicate()

Figure 8.2: The classes in DataService.

is able to generate the specialized API from other RDBMS’.
In the following sections we describe VDOEngine and DataProvider.

8.1.1.1 VDOEngine

The VDOEngine is a very simple class due to the fact that it is only responsible
for handling connections to the RDBMS. As the each class in the specialized API
is subject to have a synchronization agent running in a thread and due to the fact
that a DbDataReader in ADO.NET cannot handle multiple queries at the same
time we have chosen to use a pool of database connections inside the VDOEngine

to prevent bottleneck situations.

1 public static class VDOEngine {
2 public static DataProvider DataProvider { internal get; set; }
3 }

Listing 8.2: Interface for the VDOEngine.

When the DataProvider property of VDOEngine is set the local pool is be
filled with the right amount of connections. This amount is hardcoded to 15
at the time of this writing, but could be set to any number reasonable to have
connections for both the synchronization agents and standard search operations.

107

8.1 The Static API 8. Realization of the VDO framework

With a local counter it is managed to iterate through this pool each time a method
inside the VDO framework requests a database connection.

8.1.1.2 DataProvider

The DataProvider is our own abstraction layer so we can prevent the VDO
framework from being hard coupled with a certain database. We have made
methods for those operations that we support in this version of the framework.

1 public abstract class DataProvider {
2 protected internal abstract DbDataReader Save(AbstractRecord

dataObject);
3 protected internal abstract void Delete(AbstractRecord

dataObject);
4 protected internal abstract DbDataReader Read(string viewName ,

DBColumnCollection searchElements);
5 protected internal abstract DbDataReader PollNewest(

AbstractRecord dataObject);
6 protected internal abstract DbDataReader PollAfter(string

viewName , DateTime timestamp);
7 protected internal abstract bool HasChanged(AbstractRecord

dataObject);
8 }

Listing 8.3: The interface for the abstract class DataProvider.

In Listing 8.3 we can see the interface of the DataProvider class, which should
be implemented in classes specialized for communicating with a certain database.
In the following list we explain the required behavior and internal usage for each
of the methods:

• Save: This method is used for saving a given data object into a corre-
sponding table in the RDBMS. If the data object is not present in the table
(i.e. if the data object has been deleted from the table or has never been
saved before) it is inserted, otherwise the corresponding row in the table
gets updated. The returning DbDataReader holds the newest timestamp
after the save operation has been executed. Moreover it also contains auto
generated identity values (in some RDBMS known as auto increment) if the
data object has just been inserted in the table.

• Delete: This method is used to delete a given data object’s corresponding
row in the RDBMS.

• Read: This method is used in every read operation performed on the spe-
cialized API. The returning DbDataReader should contain every row from
a given view (views are explained thoroughly in Section 8.2.6 on page 130,
but basically the view contains rows from a table joined together with the
timestamp of the last save operation).

108

8. Realization of the VDO framework 8.1 The Static API

• PollNewest: This method is used to get the most current data for a given
data object, thus the returning DbDataReader contains this information.
The method is used to refresh data in the data object (i.e. inside the
Refresh method on data objects).

• PollAfter: This method is used to get all information saved in a table
subsequent to the time of the given timestamp. The method is used by
the synchronization agent to read and update information for local data
objects.

For each of the methods it is important to notice that they only operate on
the RDBMS and do not alter data objects, thus the functionality for updating
data objects according to the executed operation should be implemented inside
data objects.

8.1.2 Database Specific Types

In order to take care of meta data from a database schema during run-time we
use classes made for the mapping from the primitive data types we support in
SQL to the corresponding data types in the C#. At run-time these classes are
used to wrap values and have the possibility to perform checks of values, e.g.
whether the length of a given string value is inside the allowed range according
to the corresponding column’s declaration.

In the generated classes there is a private instance of one of these type classes
for each of the columns in the corresponding table, representing values and meta
data of columns.

The Types namespace consists of several classes, which only are used internally
in the specialized API. These have a great impact on safe queries as checks and
security measures can be implemented with effect on the specialized API without
the need of performing modifications to the code generator, i.e. not changing the
generated code for a given database schema.

In the following we outline the type classes in the Types namespace:

• DBTypeColumn: This is the abstract class, which all the other type classes
inherit from. The most generic functionality for the type classes is imple-
mented on this class.

• DBBooleanColumn: The bit type in the RDBMS is represented during run-
time as a boolean with this class.

• DBDateColumn: The datetime type in the RDBMS is represented in this
class during run-time.

• DBNumberColumn: Any numeric value type in the RDBMS is represented
with this class during run-time.

109

8.1 The Static API 8. Realization of the VDO framework

• DBStringColumn: Any text type in the RDBMS is represented with this
class during run-time. If there are any restrictions to the length of the
string in the RDBMS this class ensures that the application is not able to
violate the restriction.

1 public class DBNumberColumn <T> : DBTypeColumn {
2 public DBNumberColumn(string columnName , DbType columnType ,

bool isNullable , byte? precision , int? scale , int? length ,
bool isPrimaryKey , bool isForeignKey , bool isIdentity);

3 public T Value { get; set;}
4 protected internal override string SQLValue { get; }
5 }

Listing 8.4: Interface for the DBNumberColumn class.

Instead of having one class for every supported primitive type from SQL we
have created a class for each category of supported types and used generics in
these classes. In Listing 8.4 we have shown the interface for the DBNumberColumn
where the generic T is a C# numeric type (e.g. int). It is important to observe
that the constructor parameters of type class correspond to meta data for columns
in the RDMBS.

1 public abstract class DBTypeColumn {
2 protected DBTypeColumn(string columnName , DbType columnType ,

bool isDBNullable , byte? precision , int? scale , int? length ,
bool isPrimaryKey , bool isForeignKey , bool isIdentity);

3 ...
4 protected internal string SQLIdentifier { get; }
5 protected internal SqlParameter SQLParameter { get; }
6 }

Listing 8.5: Interface for the abstract DbTypeColumn class.

The DBNumberColumn specializes the abstract DbTypeColumn class, which has
the interface illustrated in Listing 8.5. To keep focus on the most important in this
listing we have not shown trivial properties matching the constructor parameters,
which all have a get part but no set part as they model the meta information
and thus not subject to change during run-time. The two properties shown
in Listing 8.5 are used internally when creating the SQL queries for database
communication:

• SQLIdentifier: This property is used directly in the SQL query as an
identifier for the value given by the SQLParameter instead of using the
value directly. The main reason for taking this approach is to prevent SQL
injections as the values are interpreted only as values and not as a part of
the SQL query.

110

8. Realization of the VDO framework 8.1 The Static API

• SQLParameter: This property is used when creating the SQL queries as
the SQLParameter consists of a value for the SQLIdentifier. The SQLPa-

rameter is used when executing a query in the DataProvider so identifiers
can be translated into the corresponding value. Basically, the SQLParame-

ter is used by us as a wrapper for the columns type, identifier and corre-
sponding value.

To better understand how the SQLIdentifier is used in the SQL queries
we exemplify with a simple query in Listing 8.6 as it is given to the database
connection together with the SQLParameter holding the value for the identifier.
In this example the identifier is @name.

1 SELECT * FROM authors WHERE name=@name;

Listing 8.6: A sample query with an identifier.

As aforementioned, type classes are used internally in generated classes as
private variables. In Listing 8.7 we give an example of how a DBStringColumn

is used to model the name column from a table. When the private variable is
instantiated the meta data gets saved in the type object through the constructor.
The application developer can manipulate the DBStringColumn’s Value through
an encapsulating property named after the corresponding column.

1 private DBStringColumn _name = new DBStringColumn("name", DbType.
String , false , null , null , 30, false , false , false);

2 ...
3 public string Name
4 {
5 get
6 {
7 return this._name.Value;
8 }
9 set

10 {
11 if (this._name.Value != value)
12 {
13 try
14 {
15 this._name.Value = value;
16 }
17 catch (ValueRequiredException ex)
18 {
19 throw new ValueRequiredException("property", "Name");
20 }
21 catch (StringLengthException ex)
22 {
23 throw new StringLengthException(ex, "Name");
24 }
25 this.IsDirty = true;

111

8.1 The Static API 8. Realization of the VDO framework

26 OnNameChanged(new NameChangedEventArgs(this.Name));
27 }
28 }
29 }

Listing 8.7: Usage of a DBStringColumn and a property to model the name column
from a table.

The property in Listing 8.7 on the preceding page uses a property directly on
the used DbTypeColumn to both get and set the value. In the try-catch block we
can see how the value is set unless an error occurs. If this is the case then the
exception thrown from the DbTypeColumn in question is catched and re-thrown.
The reason for catching and throwing is because we want the origin of the ex-
ception to be the data object and not the DbTypeColumn used for the property
at question. This further hides the implementation details from the application
developer as he is should not know about the usage of the DbTypeColumn inside
a data object.

1 private string _value;
2 ...
3 private bool isTooLong(string value)
4 {
5 return value.Length > (int)Length;
6 }
7 public string Value
8 {
9 get { return _value; }

10 set
11 {
12 if (! IsDBNullable && value == null)
13 {
14 throw new ValueRequiredException ();
15 }
16 else if (! IsDBNullable && value != null)
17 {
18 if (isTooLong(value))
19 {
20 throw new StringLengthException ((int)Length , value.Length);
21 }
22 }
23 _value = value;
24 }
25 }

Listing 8.8: Implementation of the Value property on DBStringColumn.

In Listing 8.8 we illustrate how the Value property is implemented inside the
DBStringColumn. As depicted, we perform checks to ensure that null is only
allowed if the corresponding column allows it, and moreover, to ensure that the
given string value does not exceed length limitations.

112

8. Realization of the VDO framework 8.1 The Static API

If other types of checks would be necessary they should be implemented in
the same way as the checks shown in Listing 8.8 on the facing page.

8.1.3 Exceptions

In connection with the application developer using the specialized API our general
approach is to hide as much of the implementation details as possible. This is not
to hide the fact that the VDO framework is using an RDBMS for data storage,
but instead to avoid that the implementation has a negative impact on the API
and ease the usage of the API. Therefore we introduce specialized exceptions to
the VDO framework (either from the static or the specialized API) with a specific
error message, rather than letting the implementation“reveal itself”or using more
general exceptions thrown from the RDBMS.

Moreover, we would also like to prepare the use of the generated API with
different types of RDBMS as these can return different types of exceptions. By
handling every exception inside the VDO framework and inside the generated API
we are able to make this usage uniform regardless of which RDBMS is being used.

As important are the exceptions thrown as a result of violating restrictions
specified in the database schema, e.g. when an application tries to set a string
property on a data object with a length that is longer than the corresponding
nvarchar column allows.

The Exception namespace holds every exception that the specialized API
and the VDO framework can throw at run-time. To give a better overview of the
possible errors the following list is compiled:

• ItemNotFoundException: This exception is thrown if a read operation that
returns a single data object from the RDBMS is not able to find it in the
corresponding table.

• OutOfSyncException: This exception is thrown if a data object is older
than the most recently saved corresponding row in the RDBMS. This ex-
ception can be thrown both when trying to save or delete the data object
from the RDBMS.

• StringLengthException: This exception is thrown if a string property is
set with a string longer than the allowed length in the associated column.

• ValueRequiredException: This exception is thrown if the developer tries
to assign null when the corresponding column in the RDBMS does not
allow null.

• NotConnectedException: Exception thrown when trying to use database
related operations in the VDO framework, for instance ReadAll, before the
DataProvider property of VDOEngine has been set.

113

8.1 The Static API 8. Realization of the VDO framework

8.1.4 Structure of Active Record

As previously stated we would like to generate classes based on the Active Record
design pattern. To let the class generator focus on generating the part of the
classes that are schema specific we put the most generic functionality in the
abstract class AbstractRecord, which all generated classes inherit. Thus, the
abstract class can be viewed as a shell for the classes are generated.

In the following sections we give a walk-through of the functionality imple-
mented in the AbstractRecord class and explain what underlying cause we have
for the different functionality of our realization of the pattern.

8.1.4.1 State Properties

During run-time we need to keep track of the state of data objects to ensure
that we do not need to save a data object to the RDBMS if no modifications are
made on it, or to use an SQL insert query if the data object has not been saved
previously, and likewise an SQL update query if it has been saved before.

• IsNew: This property informs the VDO framework whether the data object
has been saved to the RDBMS yet, thus the DataProvider is able to use
either an insert or an update query inside the Save method. When cre-
ating a new data object this property is set to true. When a data object
is deleted from the RDBMS this property is set to true such that it signals
that it is possible to save the data object as a new row.

• IsDirty: Whenever the value of a public property is changed then this
property is set to true as it is no longer equal to the row it is modeling.
When the data object is saved or refreshed the property is set to false as
it is once again equal to the row it is modeling. Further, if this property is
set to true then the data object is not be updated by the synchronization
agent as this would overwrite local modifications.

• IsOutOfSync: This property is set to true by the synchronization agent
if the data object is subject for update, but has local modifications that
have not yet been saved to the RDBMS, i.e. the IsDirty property is true.
The property is set to false by the Refresh method as it overwrites local
modifications with the most recent data in the mapped row.

• ModifiedTime: This property is at all time holding a timestamp telling
when the current data object was last saved to the RDBMS. When a data
object is saved to the database it is updated according to the time of saving.

Of these four state properties only the ModifiedTime property is available to
the developer as we do not find it necessary for the developer to know about these
internal stages for the data object, as they are only present for implementation
purposes.

114

8. Realization of the VDO framework 8.1 The Static API

8.1.4.2 Database connectivity

In order to hide implementation details from the application developer we have
chosen not to expose the interface of the DataProvider. This is possible as C#
allows for giving internal access for certain assemblies. This is possible when using
internal in combination with the attribute InternalsVisibleTo with a strong-
named assembly, which is the name of our framework, i.e. “VDO”. However, as
we cannot know what the name of a generated assembly is going to be, as it is
named after the database schema it is generated upon, we have solved this in
another way.

1 protected static DbDataReader DBRead(string viewName ,
DBColumnCollection searchElements);

2 protected static DbDataReader DBPollAfter(string viewName ,
DateTime timestamp);

3 protected DbDataReader DBSave ();
4 protected void DBDelete ();

Listing 8.9: The interface given access to the database connection.

As the specialized API consists of classes specializing the AbstractRecord

class and due to the fact that inheriting classes can use protected methods
without the application developer having access to these methods we have made
methods to wrap the functionality from DataProvider which should be used
by the specialized API. As the AbstractRecord class resides in a well known
assembly space we can give access to the internal DataProvider on the VDOEngine
without exposing it to the application developer.

The different wrapper methods on the AbstractRecord class are shown in
Listing 8.9. In Listing 8.10 we have shown how the DBSave method is imple-
mented on the AbstractRecord class in order to wrap the communication with
the RDBMS. The rest of the protected methods shown in Listing 8.10 are imple-
mented a similar way.

1 protected DbDataReader DBSave () {
2 DataProvider dataProvider = VDOEngine.DataProvider;
3 return dataProvider.Save(this);
4 }

Listing 8.10: The protected DBSave method on the AbstractRecord class.

8.1.4.3 Match Elements

When a local data object is being saved we would like to be able to check if it
matches the search criteria for any of the collections with search results held by
the identity map. As this should be done automatically and without the need for
database communication a method is implemented on the AbstractRecord class
to check if a data object conforms to some given criteria.

115

8.1 The Static API 8. Realization of the VDO framework

1 internal bool MatchElements(DBColumnCollection searchElements) {
2 bool result = false;
3 bool equals = false;
4
5 foreach (DBTypeColumn searchElement in searchElements)
6 {
7 equals = false;
8 foreach (DBTypeColumn column in ColumnElements)
9 {

10 if (column.GetHashCode () == searchElement.GetHashCode ())
11 {
12 equals = true;
13 break;
14 }
15 }
16 if (! equals)
17 {
18 result = false;
19 break;
20 }
21 result = true;
22 }
23 return result;
24 }

Listing 8.11: The MatchElements method.

Thus, when a data object is being added to a collection it is possible to ensure
that the data object is in fact satisfying the search criteria. Listing 8.11 depicts
how the MatchElements method is implemented. Further, when the state of a
data object changes as a result of being saved to the database the collection is able
to check whether it still complies to the search criteria by calling this method.

8.1.4.4 Meta data

At run-time we need to be able to access the meta data for the row modeled
by the data object. As explained in Section 8.1.2 on page 109 some of this is
represented during run-time in the various instances of DBTypeColumn, but we
also require to know the name of the corresponding table (for insert and updates)
and view (for reading the timestamp together with the data for the row) when
interacting with the RDBMS.

1 protected internal abstract String TableName { get; }
2 protected internal abstract String ViewName { get; }

Listing 8.12: The interface for TableName and ViewName in the AbstractRecord

class.

To enable this information we have defined two abstract properties to be
implemented in the generated classes. Listing 8.12 shows the interface for these

116

8. Realization of the VDO framework 8.1 The Static API

two properties. The properties are used from the DataProvider to identify which
tables to use in the SQL queries.

8.1.4.5 Events

On the AbstractRecord class we provide a StateChanged event, which resembles
changes made to the data object, i.e. when the object is saved to or deleted from
the RDBMS or when the synchronization agent updates it according to changes
in the RDBMS. This is done in the same manner as specified in Chapter 7.2.5 on
page 89.

8.1.5 DBColumnCollection

The DBColumnCollection is used for implementation purposes in the VDO frame-
work to group the database specific types. This grouping is used both to group
the DbTypeColumn instances which form the primary key and the rest of the
columns from the table. Further, we use DBColumnCollection internally in the
VDOCollection to manage the ancillary search criteria as this gives us the ability
to reuse the different specializations of DbTypeColumn and thus the functional-
ity of SQLParameter and SQLIdentifier to keep the executed queries at a safe
state.

1 public override int GetHashCode () {
2 string result = "";
3
4 if (_elements.Count == 0)
5 {
6 result = "++empty++";
7 }
8 else
9 {

10 foreach (DBTypeColumn element in _elements)
11 {
12 result += "+" + element.ColumnName + "=" + element.SQLValue

;
13 }
14 }
15 return result.GetHashCode ();
16 }

Listing 8.13: The GetHashCode on a DBColumnCollection.

As we use the DBColumnCollection in both VDOCollection to keep track
of search criteria and in the data objects to group the primary keys, and they
both have to be managed in the identity map, we found it to be most evident to
implement functionality into this class that applies for both. In the identity map
both the data objects and the VDOCollection holding search results are saved in

117

8.1 The Static API 8. Realization of the VDO framework

two hash tables as they both need to generate a unique hash value according to
the primary keys and search criteria, respectively.

The method for getting a hash value is shown in Listing 8.13 on the preceding
page, in which we see that we iterate through each DbTypeColumn element in
the DBColumnCollection and concatenate both the name of the corresponding
column and the value. Finally we return the hash value for the generated string
and as the GetHashCode method on a string is guaranteed to be unique by C#
we have guarantee that we return a unique hash code for both data objects and
collections with search results.

8.1.6 The VDO Collection

Whenever the specialized API returns a collection with search results, either di-
rectly from a search method or as a property on a data object it is a strongly typed
collection such that the application developer has knowledge about the content
type of the collection. As this collection should also deal with the search criteria
initially used when retrieving the data objects from the RDBMS we cannot use
a standard collection from the C# library. Instead we have created a specialized
VDOCollection with the functionality we need to take care of the search criteria
together with the data objects fulfilling the search criteria.

To the application developer the VDOCollection works similar to any other
collection except that it is read-only together with the fact that it is possible to
subscribe to events when data objects are added to or removed from the collection
by the synchronization agent due to changes in the corresponding table.

1 public abstract class VDOCollection <T> : IEnumerable <T>
2 where T : AbstractRecord
3 {
4 protected List <T> _elements = new List <T>();
5 protected DBColumnCollection _searchElements = new

DBColumnCollection ();
6 ...
7 protected internal void Add(T element);
8
9 // Read -only collection specific functionality

10 public int Count;
11 public int IndexOf(T dataObject);
12 public bool Contains(T dataObject);
13 public T this[int i];
14 IEnumerator <T> IEnumerable <T>. GetEnumerator ();
15 IEnumerator IEnumerable.GetEnumerator ();
16 }

Listing 8.14: Interface for VDOCollection.

Listing 8.14 shows the interface for the VDOCollection. The reason for show-
ing two of the internal variables in this listing and the reason why they are

118

8. Realization of the VDO framework 8.1 The Static API

protected instead of private is fully intentional as we once again would like to
hide as many implementation details as possible, but need to do it in a way quite
unusual. As we need to be able to set the DBColumnCollection containing the
search criteria, but do not want the developer to be exposed to this implementa-
tion detail we have made the VDOCollection abstract. We see two purposes for
making the VDOCollection abstract:

1. We do not want the application developer to create instances of the VDO-

Collection as they should only consist of data objects fulfilling some given
search criteria. By making the class abstract we cannot prevent the appli-
cation developer from implementing this class, but we have made it difficult
to do so, thus the application developer will probably not use an implemen-
tation of VDOCollection.

2. Giving the internal part of the specialized API access to alter the elements
in the collection. Though it is possible in C# to give access for a certain
namespace or assembly we cannot know what the name of the generated
assembly is as it is named after the database schema it is generated from.
By generating an internal implementation of the VDOCollection we have
bypassed these possible restrictions.

We have shown a generated implementation of VDOCollection in Listing 8.15.
It should be evident that this implementation gives internal access to create an in-
stance with a DBColumnCollection consisting of the search criteria, as well as to
adding elements to the collection. Further, the internal hiding of the Add method
ensures that the VDOCollection is read-only for the application developer.

1 internal class WebLogVDOCollection <T> : VDOCollection <T>
2 where T : AbstractRecord
3 {
4 internal WebLogVDOCollection(DBColumnCollection searchElements)
5 {
6 this._searchElements = searchElements;
7 }
8 protected internal void Add(T element)
9 {

10 base.Add(element);
11 }
12 }

Listing 8.15: An implementation of VDOCollection for the WebLog database
schema.

If we look back at the last part of the code shown in Listing 8.14 on the
preceding page, then we see some collection specific details. These enable VDO-

Collection to be usable as a collection for the application developer. The most

119

8.1 The Static API 8. Realization of the VDO framework

important feature is the ability to use a foreach statement. To use this mech-
anism VDOCollection implements the IEnumerable interface, which basically
ensures that the class implements the method GetEnumerator. As generics are
used in our collection we had to implement it two times as shown in Listing 8.16.
As there is an internal _elements list with data objects we use the GetEnumer-

ator it implements as there is no difference in the elements inside this list and
the elements visible to the application developer.

1 IEnumerator <T> IEnumerable <T>. GetEnumerator ()
2 {
3 return _elements.GetEnumerator ();
4 }
5 IEnumerator IEnumerable.GetEnumerator ()
6 {
7 return _elements.GetEnumerator ();
8 }

Listing 8.16: Implementation of GetEnumerator() on VDOCollection.

Of other collection specific features we have implemented a Code property, an
IndexOf and a IndexOf method, and an indexer (this[int i]), all known from
most other collections in C# to let the application developer use the VDOCollec-
tion in a manner he is accustomed to, apart from that it is read-only.

When a data object is added to the collection through Add a check is made
to determine if it fulfills the search criteria for the collection and is only added to
the internal list if the criteria are fulfilled. When the data object gets added the
VDOCollection subscribes to the event fired whenever the data object changes
state (i.e. when the object gets saved or removed from the RDBMS). Whenever
the state changes for a object the collection checks if it does still fulfill the search
criteria and removes it if it does not.

When the content of the VDOCollection changes (i.e. a data object is added
or removed) it uses the StateChanged event to inform subscribers about this
change with an appropriate enumeration value for the Change property in the
StateChangedEventArgs.

8.1.7 Identity Map

As covered in Section 5.2 on page 57 we find identity map to be of great usefulness
in VDO. Both to ensure that we do not have two data objects modeling the same
row in the RDBMS, but also to return the requested data object without having to
communicate with the database. Furthermore, the collections with search results
are also handled by the identity map so that already loaded search results are
returned without communicating with the RDBMS.

When a new object is created or read from the RDBMS it is added to the
local identity map, and removed when it is deleted. Figure 8.3 on the facing page
demonstrates how a class method and identity map in concert load a data object

120

8. Realization of the VDO framework 8.1 The Static API

Figure 8.3: Sequence diagram for the VDO identity map.

121

8.1 The Static API 8. Realization of the VDO framework

from either the identity map or the database. Internally in the identity map
the data objects and collections are saved in two separate Hashtable instances
according to their primary keys and search criteria respectively.

When a new data object is added to the identity map it is also added to
collections in the identity map for which the data object fulfills a search criteria.
Furthermore, the identity map subscribes to an event that is raised whenever the
data object changes state and removes it from the identity map if the data object
is deleted from the RDBMS.

Figure 8.4: Sequence diagram for the VDO identity map with collection.

Figure 8.5 on page 130 depicts how the identity map is involved when searching
for data objects fulfilling a certain search criteria. Due to the fact that the search
criteria get grouped in a DBColumnCollection instance we can employ the hash
code from this class in order to check whether there exists a VDOCollection for
a particular search criteria.

Due to the nature of the Hashtable used for organization of the objects
and collections inside the identity map, the hash value for a saved object in the
Hashtable (both data objects and collections) cannot be directly available on
the data objects and collections as the key when adding them to the lists. This is
because when we check whether a collection for some given search criteria exists

122

8. Realization of the VDO framework 8.2 The Specialized API

we only give a DBColumnCollection containing these search criteria.
When checking the Hashtable not only does the hash value have to be the

same, but also the object from which the hash value has its origin. Thus, when
checking the Hashtable whether a collection for a given search criteria exists
would return false if we had just checked directly with the DBColumnCollection
even though the collection would exist and the collection in question returns the
exact same hash value.

To work around this problem we have chosen to use the hash value generated
from the hash value from DBColumnCollection (which also is what generated the
hash value for both the data objects and the collections) as shown in Listing 8.17.
We can do this as everything in C# is objects, thus we use the hash value as our
index key and not the object itself. This way every object in the Hashtable is
indexed according to a integer’s hash value, which entails the ability to find the
right data object or collection according to this hash value. The behavior we have
strived to fulfill is very similar to the behavior of HashMap known from Java.

1 public void addCollection(VDOCollection <T> collection)
2 {
3 objectCollections.Add(collection.GetHashCode (), collection);
4 }
5 public bool hasCollection(DBColumnCollection searchElements)
6 {
7 bool result = objectCollections.ContainsKey(searchElements.

GetHashCode ());
8 return result;
9 }

Listing 8.17: How we use the Hashtable inside the IdentityMap.

8.2 The Specialized API

With the knowledge of how our the static VDO works we are set commencing the
description of the specialized API that the VDO compiler outputs.

In the following sections we outline the basics of the specialized API and how
it interacts with the static API, described in the previous sections. For ease of
exposition we describe the specialized API by way of examples of code from classes
in the generated API.

8.2.1 Properties

As established in Chapter 7.2 on page 77 there should be properties on the gen-
erated classes to get and set certain values. For every column in the modeled
table there should be a corresponding public property to let the developer alter
this in an intuitive way. If the property is modeling a foreign key column then it
should use the class modeling the referencing foreign key’s table.

123

8.2 The Specialized API 8. Realization of the VDO framework

For any property reflecting an identity column (also known as auto-increment
in some RDBMS) there is no set part as the value for this column is seeded by
the RDBMS upon insertion.

1 private DBNumberColumn <int > _authorId = new DBNumberColumn <int >("
author_id", DbType.Int32 , false , 10, 0, null , false , true ,
false);

2 private Author _author;
3 ...
4 public Author Author
5 {
6 get
7 {
8 if (_author == null)
9 {

10 _author = Author.ReadById(_authorId.Value);
11 }
12 return this._author;
13 }
14 set
15 {
16 if (value == null)
17 {
18 throw new ValueRequiredException("property", "Author");
19 }
20 if (_author != value)
21 {
22 _author = value;
23 this._authorId.Value = value.Id;
24 this.IsDirty = true;
25 OnAuthorChanged(new AuthorChangedEventArgs(this.Author));
26 }
27 }
28 }

Listing 8.18: The public Author property on the generated BlogEntry class.

The most important feature of the public properties is the fact that they
are lazy loaded, as covered in Section 5.3. Listing 8.18 illustrates how this is
implemented as a check at line 8 through 11. If it is the first time the current
property is being requested, then it is loaded through the appropriate method
on the referencing class, i.e. Author.ReadById in the given example. Collections
modeling referenced by are implemented in the same way, i.e. with a check to
see if it has already been loaded and if not, then its loaded before returning the
corresponding result.

In the set part of the property in Listing 8.18 we can further see how the
value to be set is first checking whether it is null before actually setting the
private variable. Next the IsDirty property is set to true to prevent it from
being overwritten with updated data by the synchronization agent. Finally an
event is raised to inform subscribers that this property has changed.

124

8. Realization of the VDO framework 8.2 The Specialized API

8.2.2 Synchronization Agent

The synchronization agent is one of the central parts of the VDO framework as it
is responsible for polling the RDBMS for changes made by other clients at regular
intervals. The synchronization agent starts to run as a static thread as soon as
the first data object is put into the identity map, i.e. when either a newly created
data object is saved to the RDBMS or when a data object is read from it.

To lower the data processing involved only rows altered since the last time of
reading are read from the database by saving the latest read timestamp and use
this when polling. Listing 8.19 exemplifies a sample query of how a SQL query
for polling looks like. The reason for using the view and not reading directly
from a table is the fact that we do not have access to time of modifications nor
information of whether any rows have been deleted in the table. This is explained
in more detail in Section 8.2.6 on page 130.

1 SELECT * FROM vdo_authors_actions_view
2 WHERE modified_time > @lastReadTimestamp

Listing 8.19: Sample SQL query for polling the RDBMS.

When the synchronization agent has got rows altered since the last polling it
does the following for each of them:

• Checks if the corresponding data object is loaded locally. If so then it is
updated with the newly read data. If the data object has local modifications
the IsDirty property is set to true and no update takes place. If the row
has been deleted the local data object is set to deleted too despite of if it
has local modifications.

• Checks if the corresponding data object conforms with the search criteria
for any of the collections in the identity map. If this is the case the data
object is added to both the identity map (if not present already) and the
collections it conforms with.

It is important to observe that only data objects already present in the iden-
tity map are updated. A row from the RDBMS is only created as a new local data
object if it conforms with the search criteria for collections in the identity map,
thus only modifications that have impact on the local data objects and search
results are taken into account.

In order for the application developer to be able to change the interval between
these synchronization executions we have a public property on the generated
classes to set this interval.

125

8.2 The Specialized API 8. Realization of the VDO framework

8.2.3 The Event Pattern

A central part of VDO is the integration of the observer pattern in order to enable
a notification mechanism of changes in the database.

In order to enable the application developer to observe changes made to the
data object we take advantage of the event pattern, which is implemented in
the generated classes. Listing 8.20 illustrates code that we generate for handling
events for a property, in this example the Freelance property of the Author

class.

1 public delegate void FreelanceChangedHandler(object sender ,
FreelanceChangedEventArgs e);

2 public event FreelanceChangedHandler FreelanceChanged;
3 protected void OnFreelanceChanged(FreelanceChangedEventArgs e)
4 {
5 FreelanceChangedHandler handler = FreelanceChanged;
6 if (handler != null)
7 {
8 handler(this , e);
9 }

10 }
11 public class FreelanceChangedEventArgs : EventArgs
12 {
13 private bool? _freelance;
14 public FreelanceChangedEventArgs(bool? freelance)
15 {
16 _freelance = freelance;
17 }
18 public bool? Freelance { get { return _freelance; } }
19 }

Listing 8.20: Example of how event related code is generated.

For each of the public properties that have a set part in the generated classes
there is created a public event, which is used for subscription on changes. When a
property is being set the last thing to be done is to call the corresponding method
for handling the right event.

In the example in Listing 8.20 this is a call to OnFreelanceChanged inside the
Freelance property. Inside this method we employ the FreelanceChanged event
and serve the data object itself and the new value of the property in question.

With this construction inside the body of the properties the application de-
veloper can subscribe to changes made in only those properties of interest to
him. These events are raised no matter if the change is made locally or by the
synchronization agent due to changes in the RDBMS.

It should be noted that inside OnFreelanceChanged we make a temporary
copy of an event in order to avoid the possibility of a race condition if the last
subscriber performs an unsubscription subsequently after the null check and
prior to the event is raised.

126

8. Realization of the VDO framework 8.2 The Specialized API

8.2.4 Static Methods

As previously covered in Section 7.2 on page 77 the generated API should feature
functionality for retrieving data objects based on criteria defined by the developer.
This is elaborated in Section 7.2.8 on page 96.

This functionality should be available as static methods on the generated
classes as they are not coupled with a instances.

For each of the columns in the table being modeled there should be generated
a method for searching according to this particular column, though not if the
column is a foreign key column. Further, there should be a method for fetching
every row from the corresponding table. Each of these read methods should
return a strongly typed VDOCollection consisting of data objects conforming
with a given search criteria.

1 public static VDOCollection <BlogEntry > ReadByTitle(string title)
2 {
3 DBColumnCollection searchElements = new DBColumnCollection ();
4 VDOCollection <BlogEntry > searchResult;
5
6 DBStringColumn _title = new DBStringColumn("title", DbType.

String , false , null , null , 50, false , false , false);
7 _title.Value = title;
8 searchElements.AddElement(_title);
9

10 if (_identityMap.hasCollection(searchElements))
11 {
12 searchResult = _identityMap.getCollection(searchElements);
13 }
14 else
15 {
16 searchResult = BlogEntry.ReadByHelper(searchElements);
17 _identityMap.addCollection(searchResult);
18 }
19 return searchResult;
20 }

Listing 8.21: The ReadByTitle method on the BlogEntry class.

As the only real difference in the behavior of these methods for reading in the
data objects is the composition of search criteria they resemble the example code
in Listing 8.21, which is the generated method for reading in BlogEntry data
objects according to their title in the RDBMS. The searchElements variable is
holding the search criteria and is used to first check if there exists a collection in
the local identity map, which resembles the criteria and secondly, if no collection
is found in the identity map, then the helper method ReadByHelper fetches the
data objects from the RDBMS. For the ReadAll method the searchElements

variable is an empty collection of search criteria as every data object (and thus
the corresponding row) conforms with a non-existing criteria which should be

127

8.2 The Specialized API 8. Realization of the VDO framework

met, i.e. no SQL WHERE clause.

The ReadByHelper method for the BlogEntry class is shown in Listing 8.22
where we can see how this method takes care of the specific details of first commu-
nicating with the RDBMS through the AbstractRecord wrapper method DBRead

and further how the data objects are being constructed and put into the special-
ized VDOCollection to be returned. Moreover, we can see how the specialized
VDOCollection is getting its search criteria as a constructor parameter at line 4.

1 private static WebLogVDOCollection <BlogEntry > ReadByHelper(
DBColumnCollection searchElements)

2 {
3 DbDataReader dataReader = AbstractRecord.DBRead(_viewName ,

searchElements);
4 WebLogVDOCollection <BlogEntry > elements = new

WebLogVDOCollection <BlogEntry >(searchElements);
5 while (dataReader.Read())
6 {
7 BlogEntry element = new BlogEntry(
8 (int)dataReader["id"],
9 (int)dataReader["author_id"],

10 (string)dataReader["title"],
11 (dataReader["content"] == System.DBNull.Value) ? null :
12 (string)dataReader["content"],
13 (dataReader["modified_time"] == System.DBNull.Value) ? null

: (DateTime ?) dataReader["modified_time"]);
14 if (! _identityMap.hasDataObject(element))
15 {
16 _identityMap.addDataObject(element);
17 elements.Add(element);
18 }
19 else
20 {
21 elements.Add(_identityMap.getDataObject(element.

PrimaryKeyElements));
22 }
23 }
24 dataReader.Close ();
25 return elements;
26 }

Listing 8.22: The ReadByHelper method on the BlogEntry class.

As each generated class differs with regards to the columns in the correspond-
ing table and thereby also in the parameters for the constructor the ReadByHelper
method cannot be implemented in a generic way. The vigilant reader may have
noticed that the possible null values from the RDBMS are handled in a spe-
cial way to convert from the way the null is represented in the result from the
database into how null is treated in C#. Of course, this check is only performed
for columns that are nullable in the RDBMS.

128

8. Realization of the VDO framework 8.2 The Specialized API

As a final stage for the ReadByHelper method the newly constructed data
objects are put into the collection and the local identity map.

8.2.5 Instance Methods

According to the Active Record design pattern each data object should have
methods for altering the RDBMS according to the data object in question, i.e.
methods for saving and deleting. In VDO we have also chosen to have a Refresh

method as covered in Section 7.2.7 on page 94, which is also placed as an instance
method on the data objects.

1 public new void Save() {
2 base.Save();
3 if (IsDirty IsNew)
4 {
5 DbDataReader dataReader = base.DBSave ();
6 if (dataReader.Read())
7 {
8 if (IsNew)
9 {

10 Id = (int)dataReader["id"];
11 _identityMap.addDataObject(this);
12 }
13 ModifiedTime = (DateTime)dataReader["modified_time"];
14 IsNew = IsOutOfSync = IsDirty = false;
15 }
16 dataReader.Close ();
17 OnStateChanged(new StateChangedEventArgs(StateChangeEvent.

Saved));
18 }
19 }

Listing 8.23: The generated Save method on a class in the specialized API.

It is inside these instance methods that the state properties are mostly used
and set according to the state of the object. Listing 8.23 shows the Save method
that is generated for the BlogEntry class. As shown in the listing the data object
is only saved to the RDBMS if it is either new (i.e. it has not been saved to the
database) or if it is dirty (i.e. if any of the properties of the data object has been
altered since the last time it was saved). If none of these two properties are true
then there is no need for saving the data object to the RDBMS, because it does
not change the content of the matching row.

Conversely, if the data object is new then the generated identity is extracted
(if any) from the returned DbDataReader and the data object is added to the
identity map prior to extracting and setting the timestamp of the data object.
Next, the three state variables are set to false as the data object after a save is
neither new, out of sync, or dirty. Lastly, the save method raises an event such

129

8.2 The Specialized API 8. Realization of the VDO framework

that those objects, which have subscribed to changes in the data object are able
to react upon it.

Basically these instance methods alter the data object according to the database
communication in those manners like setting the modified timestamp and control-
ling the state properties. The reason that the generated Save starts by calling the
base.Save method is because in this way we could implement general functional-
ity in the AbstractRecord class instead of generating the same code repeatedly.

The only thing happening in the AbstractRecord.Save method is to make
a cascading save, i.e. first saving those objects which are used as references and
translated into foreign keys in the table, as it is needed that they have a explicit
identity in the RDBMS in order to be able to use them as foreign keys.

8.2.6 Modified Database Schema

In order for the VDO framework to be able to discover changes made by other
clients without having to read every row from the table at question it is necessary
to extend the database schema such that extra information can be saved for every
row. This technique is often referred to as RIP tables, as they most frequently
are used for keeping track of those rows being removed from the tables.

In VDO we do not settle with information about removed rows as it is just as
important to be able to check if a row has been changed in the table since the
last time of reading. This leads us to generate what we call an action table as it
holds information about the latest modifications (i.e. actions) performed on the
table at question. Figure 8.5 demonstrates the authors table together with the
corresponding action table; vdo authors actions.

Figure 8.5: Diagram with a table and the corresponding generated action table.

The reason for not having a foreign key to the original table is because of the
fact that we would like to be able to get information about deleted rows, thus a
foreign key would not be a possibility. In the generated action table there is a
column named deleted for setting whether an action is a delete action, a column
named modified_time with the timestamp for the action and a column for each
of the primary keys from the original table to make it possible to map the action
to the proper row.

130

8. Realization of the VDO framework 8.2 The Specialized API

As one of our key criteria is to be able to use the VDO framework together
with existing clients it is important that the action table is kept updated without
interaction from the user, thus it is updated by the RDBMS. For VDO we have
chosen to use triggers for this updating as shown in Figure 8.6 where a sequence
diagram illustrates what is performed in order to update the action table when
a row is inserted into the authors table.

Figure 8.6: Sequence describing the insert SQL statement.

Whenever an insert, update, or delete is performed a trigger is executed
to insert information about the operation into the action table. In the example
in Figure 8.6 the action parameter is false as it should inform whether the row
has been deleted. When a row gets inserted into the action table a trigger on
this table will cleanup the action table by deleting any rows older than the just
inserted. The reason for the cleanup in the action table is due to the fact that
we are not interested in any history for the actions, but only want to know about
the most current action and to counteract a overfilled table.

In order to be able to search in the action table we add an index to the
columns, which is equivalent to the primary key columns from the original table
as we have to search based on these columns. By adding indexes we are ensured
that the RDBMS is able to search according to these columns in a more efficient
way than if we have not added the keys, which is important as there can be
performed many requests due to the integrated synchronization agent that polls
the RDBMS for changes.

It should be evident that the action table is kept updated no matter which
client is modifying the table, thus an application using the VDO framework is
able to coexist with an application using another way of communicating with the
RDBMS.

When polling the RDBMS for data we have to receive information from both
the table in question and the action table in order to both read the actions that
were performed most recently and to read the data from the rows. The most

131

8.2 The Specialized API 8. Realization of the VDO framework

Figure 8.7: The generated view for the authors table.

132

8. Realization of the VDO framework 8.2 The Specialized API

straightforward way to do this is by joining the tables and as we request this
information frequently a view is generated, from which we can select the rows
of relevance. When the synchronization agent needs to get information from the
RDBMS it only needs to request those rows from the view with a timestamp later
than the one most recently read at the last sync.

Figure 8.7 depicts the view for the authors table and its corresponding action
table. Listing 8.24 shows the SQL query employed to generate the view as the
figure does not explain every aspect of the join operation.

1 SELECT authors.email AS email , vdo_authors_actions.id AS a_id ,
authors.id AS id , authors.name AS name , vdo_authors_actions.
modified_time , vdo_authors_actions.deleted

2 FROM (authors FULL OUTER JOIN vdo_authors_actions ON authors.id =
vdo_authors_actions.id)

3 WHERE (authors.id = vdo_authors_actions.id) OR (authors.id IS
NULL OR vdo_authors_actions.id IS NULL);

Listing 8.24: The query used in the view from Figure 8.7 on the facing page.

The reason for including the id column from both the table in question and
the corresponding action table is due to the fact that when a row is removed from
a table it results in a null value when joining the two tables. Furthermore, if a
row has not been saved subsequent to creation of the VDO triggers, then there
is no equivalent row in the action table, thus resulting in a null value in the id

column in the action table. Therefore we have to use both of the included id

columns when polling the RDBMS for data as shown in Listing 8.25 to ensure
that we get the data for the rows in question.

1 SELECT * FROM vdo_authors_actions_view WHERE a_id=1 OR id=1;

Listing 8.25: A sample query reading data from the view.

133

8.2 The Specialized API 8. Realization of the VDO framework

134

9The VDO Compiler
During the previous Chapter we have covered what is generated into the spe-
cialized API and how it interacts with the static API, together named the VDO
framework. In this chapter we describe in short how the VDO compiler works
from input to end result.

The VDO compiler is a class generator, which generates the classes for a
specialized API reflecting a given database schema. In Chapter 6 on page 67 we
stated that this compilation process should work automatically such that the user
has to supply the connection information for the VDO compiler to be able to read
a database schema.

Figure 9.1: Flow of the VDO compiler.

Figure 9.1 illustrates the flow of the VDO compiler. In the following list
we describe the main steps involved when generating code. It is important to

135

9. The VDO Compiler

understand that as our focus has not been on the architecture of the compiler
means that we do not go in detail about the compilation process, but only provide
an overall description of the process. If the reader is interested in the internal
structure of the compiler, then we refer him to the released source code on the
VDO web site mentioned in the preface of this paper.

1. The VDO compiler starts by cleaning up the database schema for previous
modifications (the modifications made are described in item 4). As every
modification to the database schema has the prefix vdo we can use this to
detect what to cleanup from the database schema.

2. When the database schema in question has been cleaned we gather the
database schema information, i.e. for every table, column, and type. Along-
side this information gathering we ensure that the database schema con-
forms with our requirements, e.g. that no unsupported SQL types are used
in the table.

3. From the gathered information about the database schema we create an
internal representation to use in the rest of the compilation process. This in-
ternal representation includes meta data available from the database schema.

4. To make preparations for the database schema to work in cooperation with
the VDO framework the compiler generates the action tables, necessary
triggers, and views for the framework described in Section 8.2.6 on page 130.
Every modification is generated with the prefix vdo to ease a later removal
of these modifications.

5. The final stage of the VDO compiler is the part which generates the classed
to model the database schema for the specialized API and compiles these
classes by way of the CodeDOM library in .NET. This procedure is done
through templates and uses the previously gathered meta data.

After this 5-step process the VDO compiler ends by outputting the compiled
API into a usable DLL file.

As we can see the needed input from the user is very limited as everything is
taken care of by the VDO compiler.

136

IV
Evaluation

137

10Achievements
This chapter serves as purpose to provide an overview of accomplishments that
we have achieved with VDO. This encompasses solutions to the problems outlined
in Section 2.2 on page 34 and objectives put forward in Chapter 3 on page 39.

The principal characteristic of VDO is that it addresses a range of problems
in a combined way that, to our knowledge and overview, is not accomplished by
any other solution we have encountered.

Using VDO as an interface to a database entails a series of qualitative ben-
efits. Our principal goal was to serve an application developer by enhancing
productivity by reducing unnecessary reproduction of effort. This is realized by
constructing a code generator that outputs a specialized API according to a pro-
vided database schema and its interdependent relations.

Our realization of this approach eliminates problems that are connected with
safe queries, i.e. malformed SQL syntax, misspellings, SQL injection attacks and
data type mismatch problems. Furthermore, this approach increases maintain-
ability, because as a database schema changes throughout the lifetime of an appli-
cation the developer can accommodate this by running the VDO code generator
and produce a modified domain model of the database schema. The task of run-
ning the code generator only consists of providing connection parameters, because
our goal in this regard was minimal effort and interaction from the user.

When the application is rebuilt with the modified DLL, compile-time errors
such as the following are generated:

• Cannot resolve symbol “X” in the case when column x or table x is removed.

• Cannot convert source type “int” to target type “smallint” in the case of
changing the data type of a column from int to smallint.

• Constructor “Customer” has 3 parameters but is invoked with 2 arguments
in the case when a new column is added to a table.

This means that the specialized API gives compile-time support for the devel-
oper that ensures that database access code and database schema are consistent.

139

10. Achievements

Figure 10.1: The IDE prompting the developer.

Secondly, as the VDO encapsulates a database schema entails that the IDE
has information about the correspondence with the database schema. This gives
opportunity for the developer to rely on IDE assistance in remembering things
like names or data types of columns. An example of this is depicted in Figure 10.1.

The specialized API that is generated from the database schema combines dif-
ferent design patterns. Our realization of Observer in concert with Identity Map
and Synchronization Agent has proven to be a beneficial composition, because
this also has an impact on reducing unnecessary reproduction of effort.

Given the fact that the specialized API is automatically generated entails that
the application developer does not have to implement three things that work in
concert. We solved the uniqueness problem of representing a row as a unique data
object in the programming environment. By exploiting this fact made it possible
to employ a synchronization agent for each generated class in order to keep data
objects and collections (search results as well as properties) of these consistent
with changes in the database. In extension to this we automatically integrated
the event pattern as means of informing about local changes and changes in the
database.

This is maintained by us to contribute substantially in reducing coding efforts,
because the developer is served with a solution that frees him of implementing
a polling mechanism together with observer functionality as well as ensuring
uniqueness. Furthermore, our integration of these components means that if
structural changes such as adding new columns and tables are performed on the
database schema, then the developer is not required to implement additional
observer functionality and adapt the polling mechanism. It is just a matter of
regenerating the domain model.

140

10. Achievements 10.1 Design Decisions Reconsidered

We hold that any application from our target audience that is currently op-
erating with SQL strings could benefit from VDO.

Furthermore, we envisage that VDO may fit well in with applications that are
being developed using the extreme programming methodology (XP) [49] as these
are characterized of being subject to constant changes during the development
process. Iterative customer feedback is reflected in iterative changes to the ap-
plication and database schema, which in effect can cause a large amount of time
being spent on keeping existing SQL code consistent with the changes. Using
VDO in a setting such as XP may also result in that developers become more
ready to perform changes to the database schema in order to comply with the
needs of the customer.

A part of our objectives was to provide a solution that is user-friendly. Using
the best practices outlined in Chapter 4 on page 43 during the design phase had
a positive effect on us as designers, because it gave us a reference to frame our
discussions. We exercised great care and thought in designing the parts of VDO
that are exposed to a developer in a user-friendly and intuitive way by applying
best practices from Section 4 on page 43 and drawing on own experience from
usability theory. This does not replace a usability test in the field, but as we see
ourselves as a constituting part of the target audience gives some justification to
design choices that are based on own reasoning and experience with regards to
usability.

In the next section we discuss some perhaps questionable design choices that
have come to our attention after having designed VDO.

10.1 Design Decisions Reconsidered

In this section we examine selected parts of VDO that are subject to a reconsid-
eration with regards to design.

In Section 6.1.3 of Chapter 6 on page 67 we stated that a read operation
performed on a primary key that does not exist should result in serving an ex-
ception to the developer. Furthermore, the same read operation should return a
single data object. This requirement gives rise to questioning the consistency of
ReadBy<X> methods.

The design choice was rooted in the relational world, because a primary rep-
resents something that is unique, thus the incentive for returning a single data
object. This is a consequence of bringing an entity from the relational world into
the object-oriented world. If we weigh the pros and cons of returning a single
object against a collection, then we have the following:

• Single Data Object: This signals uniqueness and is in accordance with the
definition of a primary key. However it entails that we bring an exception

141

10.2 Limitations 10. Achievements

into existence as well as being inconsistent with regards to the interface of
the other read methods.

• Collection: Here we do not require an exception because we could return
an empty list and be in accordance with the interface of the other types of
read methods. But taking this approach signals multiplicity and thus not
in keeping with the relational view.

Basically this means that we have violated the best practice in Chapter 4
on page 43 that recommends that you should avoid return values that demand
exceptional processing. The approach that we have taken forces the developer to
use exceptions for control flow as a consequence of being “faithful” towards the
relational world.

Another design issue worth emphasizing is that the read methods in VDO do
not scale in the number and type of search criteria. Complex read operations was
not an objective that we had when designing VDO. However, as a higher level of
expressiveness with regards to search criteria in VDO is desirable in the future
makes it relevant to mention the scalability of read methods.

If we were to implement the SQL logical connectives and, or and not together
with comparison operators would incur a large amount of methods together with
decreased readability to mention a few issues. A simple example that shows two
possible ways of fetching persons with the same name and age by way of read
methods is:

... ReadByNameAndAge(name , age);

... ReadByNameAge(name , age , Conjunction.And);

It is evident that this is not a good approach in order to enable a higher degree
of expressiveness. Matters get worse when there is a need for a read method that
is equivalent to the SQL statement of the form depicted in Listing 10.1.

SELECT ... WHERE name=@name OR (age < @age AND ...);

Therefore read methods are not subject for an extension in this way. They
work in regard to simple searches with a single parameter.

10.2 Limitations

As satisfied as we are with our VDO solution we are aware that it has some
flaws, which we cover in this section. It is noteworthy that some of the outlined
problems are not specific for the VDO framework but more general problems with
interacting with an RDBMS

As previously described in Section 8.1.5 on page 117 the DBColumnCollection
is used to group the primary keys inside the data objects and is further responsible

142

10. Achievements 10.2 Limitations

for generating a hash code based on these primary keys. Unfortunately this
behavior results in a non-constant hash value for a data object as it is generated
upon the column name and the value for the column. As the value for identity
columns are delivered by the RDBMS upon insertions and reset when deleted the
value can be changing for this particular property throughout the lifetime of a
data object as it can first be created, saved, and then deleted.

If the application developer puts the data object into a local hash table prior
to and subsequent to saving he is able to insert the same data object twice. Fur-
ther, any data object which has not yet been saved will have the same hash value,
thus it is no longer unique for the particular data object as expected. Unfortu-
nately this is a result of the implementation, thus we have not been able to hide
our implementation details as good as we should with regards to the hash value.

When we generate the specialized API we do not allow foreign keys to a table
that has more than one primary key column as this would be very difficult to
interpret into object-oriented semantics as we see it.

In relation to database communication there are some issues as well. If any
SqlException is thrown by the database connection during run-time, then these
are not caught and re-thrown at the moment. As we see it there could be two
reasons for getting an SqlException together with VDO:

• If the used username for the RDBMS does not has the required privileges,
e.g. to execute insert queries.

• If the database schema has been altered since the time of generating the
specialized API.

We have not taken any precautions against these two problems, which entails
that the application developer is not provided with any safety, because the VDO
framework does not produce exceptions if any of these two scenarios occurs.

When reading in data objects from the RDBMS it is not possible to specify
more than one search criteria, which is a large restriction compared to using SQL
directly for reading in data from the database. Neither is it possible to use joins
between the tables to search by more criteria, thus VDO is not able to fill the
needs when anything else than a very basic search feature is necessary.

As we have only implemented and tested Microsoft SQL Server 2005 we do not
have a full outline whether we are tightly coupled with this implemented RDBMS,
though we are certain that there are areas of the VDO framework that are based
on functionality only available in conjunction with this database. Though, we
believe that the functionality needed in an implementation of the DataProvider

143

10.2 Limitations 10. Achievements

is possible with most popular RDBMS available, thus it is possible to remove the
coupling between VDO and Microsoft SQL Server 2005.

144

11Questions
Answered

In Chapter 3 on page 39 we expressed an interest in examining a series of as-
pects that are in relation to the design and realization of VDO. These aspects
constituted a part of our overall objectives as they were engendered by a curiosity
about applicability and consequences of our chosen API approach.

11.1 Active Record & Safe Queries

We defined safe queries as being comprised of the three constituents query vul-
nerability, query correctness and type checking in Section 2.1.1 on page 8. In the
following we evaluate how well the chosen design pattern Active Record accom-
modates the concerns that we associate with safe queries.

Query vulnerabilities in applications that employ a database as back-end
are often caused by weak input validation and dynamic construction of SQL state-
ments that do not use type-safe parameters. A malicious user may exploit this
security breach in order to execute SQL injection attacks that for instance grant
access to sensitive information or erase data in tables. Our integration of Active
Record into VDO has in this regard proven to be good design choice, because
the pattern works well in concert with taking measures against injection attacks.
The interface of a data object that a developer is exposed to is strongly typed,
thus constrains input to prevent SQL injection. This narrows the possibilities of
performing SQL injections on input that has type string. Input to a data object
that is subject to be shipped to the database is bound to a type-safe SqlParam-

eter, which causes input to be treated as a literal value and not as executable
code by the database.

Query correctness consists of ensuring that generated SQL queries are valid
in regard to representations of columns and tables that are used in the program-

145

11.2 Integration of Observer & Synchronization 11. Questions Answered

ming language correspond to the database schema and that queries shipped to
the database have correct syntax. Our approach to Active Record is based on
mapping strategy where a table corresponds to a class, and columns correspond
to constructor parameters and properties. This combined with the fact that
the corresponding names used in the schema are encapsulated in a data object
makes it possible to ensure query correctness. However, query correctness is not
a consequence of using Active Record, but rather the result of design and imple-
mentation techniques. Automatic class generation and the fact that the interface
of a data object does not allow for SQL strings is the combination that ensures
query correctness.

Type checking was defined by us to ensure validity and correspondence
between data types used in the database schema and data types used in the pro-
gramming language. In this connection Active Record has proven to support us
in ensuring type checking, namely because properties and method parameters of
generated classes encapsulate private type classes, e.g. DBNumberColumn<byte?>.
This setting makes it possible perform type checking on data types that the de-
veloper is accustomed with, while retaining the possibility of enforcing that the
developer adheres to SQL data type declarations, for instance a column of type
nvarchar(50) that is nullable.

In conclusion, the integration of Active Record into VDO has facilitated us in
accomplishing safe queries. However it should be noted that it does not enforce
safe queries by definition according to what we have learned from [21]. The reader
may recall from Section 5.1 on page 56 that the description of Active Record stated
that the pattern was typically characterized of having methods that did different
things. This engenders a certain scope of freedom to influence the realization of
the pattern by our own design preferences.

11.2 Integration of Observer & Synchronization

We wanted to investigate how far it would be possible to integrate the observer
pattern together with a mechanism for automatic synchronization to serve a
lightweight concurrency model and to reduce the workload for the developer as to
keeping the local data consistent with the RDBMS in a multi client environment.

To be able to read changes from the RDBMS without having a huge overhead
we needed to make it possible only to read in data which have been changed by
other clients of the database schema since our last reading. In order to do that we
needed to introduce a timestamp that should tell the time of the last modification
made to the row at question. We also had to keep track of which rows are removed
from the RDBMS to be able to update the data objects modeling these rows as the
only alternative would be to read in every row from the table and check whether

146

11. Questions Answered 11.2 Integration of Observer & Synchronization

any rows are missing according to the local data objects.
As we wanted our VDO framework to work together with other clients entailed

that we could not alter the database schema with regards to the original tables
as this could possibly break those other clients. Thus, we would have to place
both the timestamp and the tracking of deleted rows outside the original table.
Further, as VDO should be able to know if a non-VDO client updated the tables
this information should be saved without special interaction from the client.

For our solution to be able to keep track of changes and especially deleted rows
we introduced an action table for each of the original tables to hold timestamp
information and whether the row at question were deleted or just altered. As this
information should be saved independently of the client we chose to use triggers
in the RDBMS to keep the action table updated automatically.

With the modified database schema we could implement a synchronization
agent that continuously polls the RDBMS for changes and updates the corre-
sponding local data objects accordingly to changes performed by other clients.
Though, for the synchronization agent to be able to update the local objects
required access to the loaded data objects, i.e. some sort of cache containing
these data objects. In VDO this local cache is our Identity Map which also
ensures uniqueness for the data objects such that the synchronization agent at
most should update one local data object according to a changed row in the table.

As covered in Section 5.4 on page 60 we have chosen to use the Event Pattern
which is an integrated part of C# which is similar the Observer Pattern, yet more
flexible to use and integrate.

Whenever a data object is updated by the synchronization agent it uses the
event pattern to inform objects that have subscribed to changes. The application
developer can both subscribe to changes for specific properties or more generally
as to when the data object gets updated, thus he is automatically informed when
the data object gets updated by the synchronization agent.

Further, if any search results are present in the running application these are
updated as well by the synchronization agent to reflect changes made to the data
in the RDBMS both in regards to if data objects should be added or removed
respective to the alterations done by the other clients of the database schema. As
with the data objects the application developer has the possibility to subscribe
to these changes and be informed when the content of search results changes.

With these findings in mind we can say that it is to a high degree possible
to reduce the workload for keeping local data consistent with corresponding data
in an RDBMS by taking advantage of a synchronization agent together with the
Event Pattern in automatic code generation from a database schema. Though,
for the synchronization agent to be able to detect every alteration of the data in
the RDBMS with a minimum overhead modifications to the database schema are
deemed necessary.

147

11.3 C# Influence on Design 11. Questions Answered

11.3 C# Influence on Design

In the development of VDO there are some language features of C# that have
influenced the design of the specialized API in a positive way with regards to
reaching some of our goals. The most apparent and important of these features
have been:

• Internals: The fact that it is possible to make internal parts visible
by way of the attribute InternalsVisibleTo in conjunction with a strong-
named assembly has had a great impact on VDO as whole. This has enabled
us in hiding parts of the API that are not relevant for the application devel-
oper, such as direct access to the database and implementation techniques
like DBTypeColumn. If this was not possible then we either had to expose
the developer for parts of the static API or include the static part in the
generated DLL file, which would increase the file size. More importantly,
by separating the static part from the generated part entails that if you
wish to distribute a new version of a specialized API then you only have to
distribute just what is changed.

Furthermore, using internals makes it possible for us to eliminate errors in
the static part without requiring the application developer to regenerate
the specialized API.

• Nullables: This language feature has proven to be particularly useful,
because it resulted in that we were able to map SQL data types that allow
null to primitive types in C#. In Java this would only have worked if all
SQL data types were mapped to reference types, because as of now Java
does not support nullable primitive types.

• Event Pattern: Our integration of the observer pattern in C# has enabled
us in designing the interface exposed to the user in a a non-intrusive manner
by de-coupling the observer from the subject. Furthermore, a great benefit
of using the event pattern is that delegates have the ability to refer any
method that conforms to the same signature. Effectively this entails that
any class can act as observer on a data object despite of the interfaces it
implements or classes it specializes.

We could have employed interfaces like IObserver and IObservable to ac-
complish a publish/subscribe mechanism, but the event pattern completely
eliminates the coupling between the involved parts.

• Properties: We maintain that properties have contributed by adding a
certain degree of elegance and intuitiveness to the design of the specialized
part of VDO. This especially applies to our way of modeling foreign key
relationships. Our requirement was that the specialized part of VDO should

148

11. Questions Answered 11.3 C# Influence on Design

correspond to a provided database schema and its interdependent relations.
Properties that are references and referenced by effectively model implicit
joins.

However, we could have accomplished the same functionality by using get
and set methods known from Java, but in our view it makes more structural
sense in mapping from columns to properties than mapping to methods.

149

11.3 C# Influence on Design 11. Questions Answered

150

V
Closure

151

12Conclusion
In this thesis we set out to create an API that should assist an application devel-
oper by automating the task of both communicating with an RDBMS in a manner
that accommodates safe queries and represents data from the RDBMS for easy
manipulation.

The automation part was prompted by a series of issues that are connected
with database access from an object-oriented environment, which we outlined in
Section 2 on page 7.

The principal incentive for the automation was to enhance productivity by
reducing unnecessary reproduction of effort and to provide a user-friendly way of
representing data contained in an RDBMS.

We have shown that by using well-known design patterns and good practices
for developing APIs it is possible to reduce the workload of the application devel-
oper while maintaining an intuitive framework which wraps the communication
with an RDBMS and at the same time keeping the loaded data automatically
updated.

Conclusively we maintain that even though the VDO framework has got some
limitations with regard to the searching ability the overall result of our solution
shows that it is possible to keep loaded data and search results updated according
to changes made to the RDBMS by other clients.

153

12. Conclusion

154

References
[1] ADO.NET. http://msdn.microsoft.com/data/learning/adonet/.

[cited at p. 4]

[2] C#. http://msdn2.microsoft.com/en-us/vcsharp/aa336809.aspx.
[cited at p. iv]

[3] Java API specifications. http://java.sun.com/reference/api/.
[cited at p. 10, 11]

[4] Java Data Objects. http://java.sun.com/products/jdo/.
[cited at p. 5, 21]

[5] Microsoft SQL Server 2005. http://www.microsoft.com/sql/default.

mspx.
[cited at p. iv]

[6] Microsoft Visual Studio 2005. http://www.microsoft.com/sql/default.

mspx.
[cited at p. iv]

[7] MySQL database manual. http://www.mysql.org/doc/.
[cited at p. 10, 11]

[8] .NET Framework. http://msdn2.microsoft.com/en-us/library/

x9t6k3aa(VS.80).aspx.
[cited at p. iv]

[9] OpenJava. http://www.csg.is.titech.ac.jp/openjava/.
[cited at p. 21]

[10] PostgreSQL database manual. http://www.postgresql.org/docs/

manuals/.
[cited at p. 10, 11]

[11] Sun’s Java Database Connectivity (JDBC) interface. http://java.sun.

com/products/jdbc/.
[cited at p. 4]

155

http://msdn.microsoft.com/data/learning/adonet/
http://msdn2.microsoft.com/en-us/vcsharp/aa336809.aspx
http://java.sun.com/reference/api/
http://java.sun.com/products/jdo/
http://www.microsoft.com/sql/default.mspx
http://www.microsoft.com/sql/default.mspx
http://www.microsoft.com/sql/default.mspx
http://www.microsoft.com/sql/default.mspx
http://www.mysql.org/doc/
http://msdn2.microsoft.com/en-us/library/x9t6k3aa(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/x9t6k3aa(VS.80).aspx
http://www.csg.is.titech.ac.jp/openjava/
http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/manuals/
http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/

REFERENCES REFERENCES

[12] M. P. Atkinson and R. Morrison. Orthogonally Persistent Object Systems.
VLDB Journal, 4(3):319–401, 1995.
[cited at p. 5]

[13] Joshua Bloch. How to design a good api and why it matters. In OOPSLA ’06:
Companion to the 21st ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applications, pages 506–507, New York,
NY, USA, 2006. ACM Press.
[cited at p. 43, 44]

[14] Joshua Bloch. How To Design A Good API and Why it Matters - Slides.
http://lcsd05.cs.tamu.edu/slides/keynote.pdf, February 2007.
[cited at p. 43, 44, 45]

[15] Joshua Bloch. How To Design A Good API and Why it Matters - Video.
http://video.google.com/videoplay?docid=-3733345136856180693,
February 2007.
[cited at p. 43]

[16] Frans Bouma. Why a cache in an O/R mapper doesn’t make it fetch data
faster. http://csharpfeeds.com/post.aspx?id=1593, August 2006.
[cited at p. 59]

[17] Gregory T. Buehrer, Bruce W. Weide, and Paolo A. G. Silvilotti. Using Parse
Tree Validation to Prevent SQL Injection Attacks. ACM, SEM, september
2005.
[cited at p. 12]

[18] William R. Cook and Siddhartha Rai. Safe query objects: statically typed
objects as remotely executable queries. http://webcourse.cs.technion.

ac.il/236800/Winter2006-2007/ho/WCFiles/SafeQueryObjects.ppt.
PowerPoint slides.
[cited at p. 21]

[19] William R. Cook and Siddhartha Rai. Safe query objects: statically typed
objects as remotely executable queries. [41], pages 97–106.
[cited at p. 5, 21, 22, 25, 26]

[20] Microsoft Corporation. The LINQ Project. http://msdn.microsoft.com/

data/ref/linq/, November 2006.
[cited at p. 5]

[21] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 1th. edition, 2002.
[cited at p. 35, 55, 56, 57, 58, 59, 60, 146]

156

http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://video.google.com/videoplay?docid=-3733345136856180693
http://csharpfeeds.com/post.aspx?id=1593
http://webcourse.cs.technion.ac.il/236800/Winter2006-2007/ho/WCFiles/SafeQueryObjects.ppt
http://webcourse.cs.technion.ac.il/236800/Winter2006-2007/ho/WCFiles/SafeQueryObjects.ppt
http://msdn.microsoft.com/data/ref/linq/
http://msdn.microsoft.com/data/ref/linq/

REFERENCES REFERENCES

[22] Steve Friedl. SQL Injection Attacks by Example. http://www.unixwiz.

net/techtips/sql-injection.html.
[cited at p. 12]

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns - Elements of Reusable Object Oriented Software. Addison-Wesley,
1st. edition, 1995.
[cited at p. 35, 55, 60, 61, 106]

[24] William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. Using
Positive Tainting and Syntax-Aware Evaluation to Counter SQL Injection
Attacks. In ICSE, pages 175–185. ACM, 2006.
[cited at p. 12]

[25] Rune Hammerskov, Jakob Andersen, and Lars Nielsen. Amigo - An Object
Relational Query Language. http://www.cs.aau.dk/library, June 2006.
Report is unpublished but available through AAU.
[cited at p. 5]

[26] Rune Hammerskov, Jakob Andersen, and Lars Nielsen. Language Integrated
Persistence. http://www.cs.aau.dk/library, January 2006. Report is un-
published but available through AAU.
[cited at p. 5]

[27] Alex Henning Johannesen and Jacob Volstrup Pedersen. An Exploration of
the Impedance Mismatch. http://www.cs.aau.dk/library, January 2007.
Report is unpublished but available through AAU.
[cited at p. iii, 5, 7, 8, 13, 32, 37]

[28] W. Keller. Mapping Objects to Tables – A Pattern Language, 1997.
[cited at p. 5]

[29] Günter Kniesel. Encapsulation = Visibility + Accessibility. http://

citeseer.ist.psu.edu/kniesel96encapsulation.html.
[cited at p. 51]

[30] David Maier. Representing Database Programs as Objects. In François
Bancilhon and Peter Buneman, editors, DBPL, pages 377–386. ACM Press
/ Addison-Wesley, 1987.
[cited at p. 4]

[31] Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen, and Jan Stage.
Object Oriented Analysis & Design. Marko, 2000.
[cited at p. 45, 75]

157

http://www.unixwiz.net/techtips/sql-injection.html
http://www.unixwiz.net/techtips/sql-injection.html
http://www.cs.aau.dk/library
http://www.cs.aau.dk/library
http://www.cs.aau.dk/library
http://citeseer.ist.psu.edu/kniesel96encapsulation.html
http://citeseer.ist.psu.edu/kniesel96encapsulation.html

REFERENCES REFERENCES

[32] Russell A. McClure and Ingolf H. Krüger. SQL DOM: compile time checking
of dynamic SQL statements. [41], pages 88–96.
[cited at p. 5, 27]

[33] Oracle. Oracle Toplink. http://www.oracle.com/technology/products/

ias/toplink/index.html, November 2006.
[cited at p. 5]

[34] Agile Data Home Page. Techniques for Successful Evolutionary/Agile
Database Development. http://www.agiledata.org/, April 2007.
[cited at p. 4]

[35] D. L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Commun. ACM, 15(12):1053–1058, 1972.
[cited at p. 48]

[36] D. L. Parnas. A technique for software module specification with examples.
Commun. ACM, 15(5):330–336, 1972.
[cited at p. 48]

[37] Roger S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Higher Education, 2000.
[cited at p. 45]

[38] Doug Purdy and Jeffrey Ricther. Exploring the Observer Design Pattern.
http://msdn2.microsoft.com/en-us/library/ms954621.aspx, January
2002.
[cited at p. 61]

[39] LLC Red Hat Middleware. Hibernate Reference Documentation, version
3.2.0ga. http://www.hibernate.org/hib_docs/v3/reference/en/html/,
November 2006.
[cited at p. 14, 16, 17]

[40] LLC Red Hat Middleware. Relational Persistence for Java and .NET. http:
//www.hibernate.org/, November 2006.
[cited at p. 5]

[41] Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh, editors.
27th International Conference on Software Engineering (ICSE 2005), 15-21
May 2005, St. Louis, Missouri, USA. ACM, 2005.
[cited at p. 156, 158]

[42] Jeff Rubin. Handbook of Usability Testing. Wiley, 1994.
[cited at p. 45]

158

http://www.oracle.com/technology/products/ias/toplink/index.html
http://www.oracle.com/technology/products/ias/toplink/index.html
http://www.agiledata.org/
http://msdn2.microsoft.com/en-us/library/ms954621.aspx
http://www.hibernate.org/hib_docs/v3/reference/en/html/
http://www.hibernate.org/
http://www.hibernate.org/

REFERENCES REFERENCES

[43] Robert W. Sebesta. Concepts of Programming Languages. Addison Wesley,
6th. edition, 2004.
[cited at p. 32]

[44] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System
Concepts. McGraw-Hill Book Company, 5th. edition, 2006.
[cited at p. 3, 4, 9, 37, 69, 72]

[45] Steven Smith. Caching in O/R Mappers and Data Layers. http:

//aspadvice.com/blogs/ssmith/archive/2006/09/01/Caching-in-O_

2F00_R-Mappers-and-Data-Layers.aspx#22311, September 2006.
[cited at p. 59]

[46] Michael Spivey. An Introduction to Logic Programming through Prolog. Pren-
tice Hall, 1996. Available for free through http://spivey.oriel.ox.ac.

uk/mike/logic/index.html.
[cited at p. 4]

[47] Leon Sterling and Ehud Shapiro. The Art of Prolog. Advanced Programming
Techniques. The MIT Press, 2nd edition edition, march 1994.
[cited at p. 4]

[48] Michael Thomsen. Persistent Storage of OO-models in Relational Databases.
1998.
[cited at p. 57]

[49] Don Wells. Extreme Programming: A gentle introduction. http://www.

extremeprogramming.org/, February 2006.
[cited at p. 141]

[50] Wikipedia. Business intelligence. http://en.wikipedia.org/wiki/

Business_intelligence.
[cited at p. 37]

[51] Wikipedia. Object-relational Impedance Mismatch. http://en.wikipedia.
org/wiki/Object-Relational_impedance_mismatch, April 2007.
[cited at p. 4]

159

http://aspadvice.com/blogs/ssmith/archive/2006/09/01/Caching-in-O_2F00_R-Mappers-and-Data-Layers.aspx#22311
http://aspadvice.com/blogs/ssmith/archive/2006/09/01/Caching-in-O_2F00_R-Mappers-and-Data-Layers.aspx#22311
http://aspadvice.com/blogs/ssmith/archive/2006/09/01/Caching-in-O_2F00_R-Mappers-and-Data-Layers.aspx#22311
http://spivey.oriel.ox.ac.uk/mike/logic/index.html
http://spivey.oriel.ox.ac.uk/mike/logic/index.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
http://en.wikipedia.org/wiki/Business_intelligence
http://en.wikipedia.org/wiki/Business_intelligence
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch

	I Problem
	Introduction
	Motivation
	Previous Work Revisited
	Impedance Mismatch Subset
	Identifying the Problems
	Evaluated Solutions
	Identified Characteristics
	Concluding Remarks

	Fields of Interest
	Target Audience
	Summary

	Objectives

	II Background
	API Design
	Characteristics of User-Friendly API Design
	The Process of API Design
	General Principles
	Class & Exception Considerations
	Method Considerations

	Concluding Remarks

	Applied Design Patterns
	Active Record
	Identity Map
	Lazy Load
	Observer
	Concluding Remarks

	III Design & Realization
	Specification of Requirements
	Requirements for the Generated Classes
	User Oriented Solution
	Automatic Class Generation
	CRUD Operations
	Impedance Mismatch Concerns
	Unique Data
	Concurrency & Synchronization Concerns
	Observable Changes

	Design by Task Scenario
	Design Example
	Task Scenarios
	Initialize VDO
	Create a data object
	Read a field of a data object
	Change a field of a data object
	Save a data object
	Delete a data object
	Synchronize a data object
	Retrieve data objects by criteria
	Subscribe to changes in a collection
	Change the sync interval of a data object

	Generated Classes

	Realization of the VDO framework
	The Static API
	Data Service
	Database Specific Types
	Exceptions
	Structure of Active Record
	DBColumnCollection
	The VDO Collection
	Identity Map

	The Specialized API
	Properties
	Synchronization Agent
	The Event Pattern
	Static Methods
	Instance Methods
	Modified Database Schema

	The VDO Compiler

	IV Evaluation
	Achievements
	Design Decisions Reconsidered
	Limitations

	Questions Answered
	Active Record & Safe Queries
	Integration of Observer & Synchronization
	C# Influence on Design

	V Closure
	Conclusion
	References

