
The Faculty of Engineering, Science and Medicine
Aalborg University
Department of Computer Science

Title: Odds Assessment on
Football Matches.

Research Unit:
Machine Intelligence.

Project period: Dat6,
31st January, 2007 –
1st June, 2007

Project group: d623a

Participants:
Tobias Christensen
Rasmus Dencker Hansen

Supervisor:
Manfred Jaeger

Number of copies: 7

Number of pages: 144

Synopsis:

This report presents models for au-
tomatic assessment of probabilities
for outcomes of football matches.
The motivation is the enormous
turnover in betting, hence the fo-
cus is on creating a probability as-
sessor which has the same or a
better performance than the book-
makers’ when assessing the out-
comes of football matches.
Two datasets are used: a detailed
containing match events covering
the last three years and a results-
only covering the last six years.
The models are only based on
data available prior to the start of
the matches, hence primarily data
about the previous matches.
The probability assessors are built
using k-Nearest Neighbor, decision
trees, regression on goals and com-
binations of those made by ensem-
ble methods. The evaluation of
the probability assessors is made
both by well known absolute and
domain specific pair-wise scoring
rules.
The models are evaluated against
real-life odds. This evaluation is
primarily for bookmaking and sec-
ondarily for gambling. The results
indicate that it is difficult to make
models which are better than the
bookmakers’ but that it is possible
to almost match them.

Preface

The topic of this master thesis in the Machine Intelligence Group on the
University of Aalborg is automatic assessment of probabilities for outcomes
of football matches.
In making this project, we got help from certain individuals and companies
which we would like to thank. These are:

• Statman ApS & Kresten Buch, provided detailed match statistics
from the Danish SAS-league and expert domain knowledge.

• NordicBet, provided odds for the matches in the Danish SAS-league
and expert domain knowledge.

• Birthe Damborg, provided mathematical, primarily regarding nota-
tion, and linguistic assistance.

This project is a continuation of our previous project, [CH07], hence some
sections and chapters in this report stem from this. These are listed below
where sections marked with an * are almost directly reused while the rest
are based on experiences and partly text from the previous report.

• Section 2.1 The Prediction Market and Odds

• Sections 3.1*, 3.2*, and 3.4* Quality of Detailed Match Data,
Specification of Detailed Match Data, and Available Odds

• Sections 4.1*, 4.2*, and 4.4* Expected Value and Expected Loss,
Mean, Variance, and Standard Deviation, and Distance Measures

• Chapter 5 Data Preparation

• Section 6.1 Scoring Rules for Probability Assessors

• Chapter 8 k-Nearest Neighbor

iii

The project is made by:

Tobias Christensen Rasmus Dencker Hansen

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 3
1.3 Strategy . 3

2 Problem Setting 5
2.1 The Prediction Market and Odds 5
2.2 Related Work . 11

3 Available Data 14
3.1 Quality of Detailed Match Data 14
3.2 Specification of Detailed Match Data 18
3.3 Specification of Match Result Data 29
3.4 Available Odds . 31

4 Basic Concepts 33
4.1 Expected Value and Expected Loss 33
4.2 Mean, Variance, and Standard Deviation 34
4.3 Poisson Distribution . 35
4.4 Distance Measures . 36
4.5 Test of Hypotheses . 37

5 Data Preparation 44
5.1 Creating the Features . 44
5.2 Feature Reduction . 48
5.3 Normalisation of Features . 51
5.4 Splitting the Dataset . 51

6 Probability Assessors 53
6.1 Scoring Rules for Probability Assessors 53
6.2 Learning Probability Assessors 64
6.3 Test Plan . 66

7 Decision Trees 70
7.1 Feature Selection . 71

vi

CONTENTS

7.2 Building a Decision Tree . 72
7.3 Implementation . 73
7.4 Test Results . 75

8 k-Nearest Neighbor 80
8.1 Making Probability Assessments 80
8.2 Feature Search Algorithm . 81
8.3 Optimal k Search . 84
8.4 Test Results . 85

9 Dixon-Coles Approach 91
9.1 Dixon-Coles Probability Assessment 91
9.2 Deciding the Parameters . 93
9.3 Test Results . 100

10 Ensemble Methods 105
10.1 Motivation of Ensemble Methods 105
10.2 Creating the Ensembles . 110
10.3 Initial Test Results . 113

11 Test Results 119
11.1 Test Plan for Final Evaluation 119
11.2 Results as Bookmaker . 121
11.3 Results as Gambler . 129
11.4 Evaluation of the Different Approaches 131

12 Conclusion 135
12.1 Evaluation of Project Goals 135
12.2 Suggestions for Improvements 136

Bibliography 137

A Categories 140

vii

Chapter 1
Introduction

This section will start with the motivation behind the project, then move
on to state the goals of the project, and end with the strategy to achieve
these goals.

1.1 Motivation

In this project, gambling is defined as:

wagering money or something of value on an event with an uncertain, yet
clearly definable, outcome with the primary intent of winning additional valu-
ables.

Gambling is recognized as one of the oldest forms of entertainment. Dice-like
objects called Astragali have been found dating as far back as 40,000 years
[Geo07]. The Chinese invented a tile game called Go and playing cards while
the Greek soldiers, the Egyptians, and the Romans used dices. Furthermore
there are numerous stories of gambling throughout history: in ancient Rome,
Caligula confiscated the property of dead soldiers and prisoners to cover his
gambling debts, and lawmakers decreed that all children were to be taught
to gamble and throw dice. The first legal casino opened in 1765 in Baden,
Germany. Since then, many different types of games have been introduced,
e.g. blackjack, poker, baccarat, and roulette.

When modern sports was introduced, gambling was present. Modern sports
gambling started with horse racing in England during the 1700s. Modern
football was introduced in the late 1800s and games were played on a regular
basis which attracted the gamblers’ attention. Some gamblers took bets from
several other gamblers at a fixed price set for the individual event which is
the same as bookmaking. Since then, fixed-odds gambling has become the

1

CHAPTER 1. INTRODUCTION

standard gaming style for sports wagers. A sports wager could be on what
the outcome of an event will be but there are a large amount of different and
more detailed types of wagers. In fixed-odds gambling, the gambler knows
the odds at which the stake is put such that he can calculate the return of
the bet if he predicts correctly.

There are numerous traditional bookmakers, and they have an astonishingly
high turnover. Some examples are Bet365 with 7.8 billion DKK per year,
Sportingbet with 12 billion DKK per year, and Danske Spil with 17 bil-
lion DKK per year. Danske Spil is a Danish bookmaker whereas the others
started in the UK but have moved elsewhere. Another kind of bookmak-
ing, which has turned up in the last few years, is betting exchange. At
such a bookmaker, the gamblers play against each other and the role of the
bookmaker is to keep track of all the stakes. The largest of these betting ex-
changes is BetFair which has a weekly turnover of around 600 billion DKK
Note that the number includes both bets that have been sold (laid) and
bought (backed), and that most traditional bookmakers lay off their bets in
the betting exchange in order to decrease their own risk [nor]. This implies
that bookmakers which receive a high turnover on a particular outcome of
an event typically will sell, lay off, this bet in a betting exchange such that
their risk is reduced.

Bookmakers try to find the correct odds before a specific market is open
which is done by a domain expert. Due to the high turnover, this part
of bookmaking is crucial and small improvements can potentially be worth
billions. A few decision support systems exist like BetRadar, a tool which
keeps track of all the odds for each wager for all bookmakers, such that it
can be instantaneously spotted if the odds on a wager are different from the
market. Such a system is not useful for setting the initial odds and it is only
influenced by the market, implying that there might be a better way to set
the odds. Hence presently no decision support systems exist which help the
bookmakers set the correct odds. This implies that if the bookmaker could
obtain some help on how to set the odds before other bookmakers set their
odds, they would have a slight advantage over the market and make more
money.

Since it is possible for anybody to make a bet, a good model could also be
used as a decision support system for anyone who wants to gamble. At the
betting exchange markets, there are very high limits on how big a bet can
be so if the model is sufficiently good, a lot of money could also be earned
there.

2

http://www.betradar.com

1.2. GOALS

1.2 Goals

The main goal of the project is to establish a model which outputs probabil-
ity assessments on outcomes of football matches, i.e. a probability assessor.
In tests, it must perform so well that it can be useful for a bookmaker. This
probability assessor should be built based on historic data, implying that
nothing is known about what will happen at the event in question. The
data should be based on accurately definable quantitative measures.

A probability assessor is expected to be useful for a bookmaker as decision
support, not to set the odds directly. The probability assessor needs to be
at least as good as the bookmakers to make probability assessments which
are accurate enough, preferably it should outperform the bookmakers in
tests. This implies that a method, to calculate which probability asses-
sor produces the most accurate probability assessments, must be found such
that the accuracy of a probability assessor can be determined. Once the
best probability assessor is identified, it must be verified that it is at least
as good as some selected bookmakers, and the level of certainty that this is
not by chance must be determined too.

Furthermore, an additional and less important goal is to determine whether
the found probability assessor also performs well as a gambler. This implies
that we also need to determine a method of calculating whether a given
model performs well as a gambler.

1.3 Strategy

The problem encountered in this project is a machine learning problem,
implying that a large dataset exists from which a model has to be learned.
Firstly, the problem domain must be explored to establish which kinds of
models would be suitable. Previous work mainly focuses on prediction but
some of it also considers probability assessment, hence a solution to the
stated problem should use some of the experience from those models. Hence,
a search in the literature for previous attempts to solve this problem should
be made.

Furthermore in order to make our own models, conventional learning algo-
rithms, fitting the problem definition, must be searched for and those, which
resemble the problem domain the most, should be selected.

To use the learning algorithms, some data is required and an understanding
of the data and the data quality should be obtained. In addition to that,
the data needs to be preprocessed such that it can be used in other models
and by the selected learning algorithms. The data must be split so that the
test results are reliable.

3

CHAPTER 1. INTRODUCTION

Once a number of models have been identified, both from the literature
and from the conventional learning algorithms, these will be tested. This
requires a scoring system such that it is possible to determine which types
and settings are best and also whether any are able to perform comparable
to the bookmakers. The comparison with the bookmakers also includes
measurements of the probability of the different models being better than
the bookmakers.

Lastly, the models will be tested in order to determine whether they can
beat the bookmakers as gamblers.

4

Chapter 2
Problem Setting

The problem encountered in this project is how to automatically assess odds
or probabilities, based on historic data, for future football matches the odds
should compare favourably to bookmakers’. This implies that to understand
the problem setting, it is important to understand the odds market and how
odds are usually set. The odds market is based on people and companies
gambling or trading bets mainly over the Internet. The first section presents
an overview of odds calculations and betting in general and then presents
the odds market and how odds assessment is normally made.

A related work section is also presented. It consists of some incentives for
making a model which compares favourably with the bookmakers’. First,
it presents how sports is normally characterised, namely by using simple
statistics. Afterwards, a survey of models, similar to the one this project
wants to develop, is presented.

2.1 The Prediction Market and Odds

This section starts out by introducing the equations behind the calculation
of odds. After that, an overview of the odds market is presented and some of
the mechanisms behind the odds assessments are explained based on these
equations.

2.1.1 Odds Calculation

A given wager on a match has a number of possible outcomes and on each
outcome there are odds. A bet is a stake placed by a gambler on an outcome.
The wager will be declared settled after the match is played and the outcome
of the wager is observed. If the match is canceled or rescheduled, e.g. due

5

CHAPTER 2. PROBLEM SETTING

to weather conditions, the wager will be cancelled. If outcome = 1, . . . , n
are the possible outcomes, P (outcome = i) is the probability that outcome
i will happen. This implies that

n∑
i=1

P (outcome = i|Settled) = 1 (2.1)

All cancelled bets count as if they were never placed, implying that the
placed stake is returned, hence P (outcome = i|Settled) = P (outcome = i).

In order for the bookmakers to win over the gamblers, the bookmakers have
a pay-back-percentage. This percentage indicates how much a gambler on
average will get back per unit betted over a large amount of bets. This
percentage usually lies between 0.90–0.95.

To represent the available odds to the gamblers, the bookmakers will choose
an odds-style and calculate the odds from the probabilities. There are several
ways to represent odds. In this report, the European odds style, also known
as decimal odds, is chosen and these will be referred to simply as odds in
the remainder of this report. If an outcome is set to odds 2.5, it implies that
the gambler wins his stake times 2.5. Note that the winnings include the
stake, such that the actual profit will be the winnings minus the stake. The
odds are calculated by

Oi =
b

P (outcome = i)
(2.2)

where Oi is the odds for outcome i and b is the pay-back-percentage.

As an example of how to calculate the outcome odds on a football match,
consider a bookmaker with the probabilities for 1–X–2 as 0.5–0.3–0.2 and
a pay-back-percentage of 1. Then the odds are calculated as: 1/0.5 = 2,
1/0.3 = 3.33, 1/0.2 = 5, respectively. If the bookmaker wants to make
money, he could e.g. have a pay-back-percentage of 0.9 instead. This would
yield these other odds for the example: 0.9/0.5 = 1.8, 0.9/0.3 = 3, 0.9/0.2 =
4.5.

The bookmaker can calculate how large the pay back to the gamblers will be
based on some information about the wager. Let Si,j be the stake customer
j places on outcome i, so that

∑
j Si0,j is the sum of all stakes placed on

outcome i0 and
∑

i,j Si,j is the sum of all stakes placed on this wager. If
outcome i0 occurs, the percentage paid back, pbi0 , will be as showed in (2.3).

pbi0 = Oi0 ·
∑

j Si0,j∑
k,j Sk,j

=
b

P (outcome = i0)
·
∑

j Si0,j∑
k,j Sk,j

(2.3)

∑
j Si0,j∑
k,j Sk,j

is the same as the percentage of the stakes, measured by size, placed
on outcome i0. E.g., if the probability for an outcome is calculated to

6

2.1. THE PREDICTION MARKET AND ODDS

P (outcome = i0) = 0.3, the total stakes are
∑

k,j Sk,j = 10, 000, 000, the
stakes on the given outcome is

∑
j Si0,j = 3, 200, 000, and the pay-back-

percentage is 0.9, the percentage payed back will be:

pbi0 =
0.9
0.3
· 3, 200, 000
10, 000, 000

= 0.96

This implies that if outcome i0 occurs, the bookmaker will have to pay 0.96
of the 10, 000, 000 back to the customers.

The bookmaker will not know how the stakes are placed in advance, how-
ever, if they can be estimated (2.3) can be rewritten to find the pay-back-
percentage which should be used to ensure a profit. A profit is obtained
whenever the percentage paid back, pbi0 , is below 1, regardless of the out-
come. So for all outcomes if (2.4) holds, a gain for the bookmaker is guar-
anteed.

1 >
b

P (outcome = i0)
·
∑

j Si0,j∑
k,j Sk,j

⇔ P (outcome = i0) ·
∑

k,j Sk,j∑
j Si0,j

> b (2.4)

Using the same values as in the prior example, even though the stakes in a
real world situation would probably change when the pay-back-percentage
changes, it is possible to find the highest pay-back-percentage possible still
to achieve a profit:

0.3 · 10, 000, 000
3, 200, 000

> b⇔ 0.9375 > b

Provided that the stakes do not change, a pay-back-percentage below 0.9375
yields a profit for the bookmaker in the given scenario.

A bet, bet, on a wager is a triple bet = (A,S,O), where A is the outcome of
the event on which the gambler plays, S is the stake and O is the odds. If A
is observed, the gambler’s return is the stake times the odds, which implies
that the gambler’s net win is (O−1) ·S. The gambler loses the entire stake,
if the outcome is different from A.

For a bet to make sense, the gambler must expect a profit. E.g., if the
gambler thinks that the probability for home win is 0.5, a bookmaker thinks
the probability is 0.48, and that bookmaker has a pay-back-percentage of
0.92 on that wager, the expected payback on a one unit bet is:

1 ·Ohome · 0.5− 1 =
b

phome
· 0.5− 1 =

0.92
0.48

· 0.5− 1 ≈ 1.92 · 0.5− 1 = −0.042

This implies that the gambler will expect a loss, hence there is no reason
for him to place a bet. In contrast, if the bookmaker sets the probability to
0.44:

1 ·Ohome · 0.5− 1 =
b

phome
· 0.5− 1 =

0.92
0.44

· 0.5− 1 ≈ 2.09 · 0.5− 1 = 0.045

7

CHAPTER 2. PROBLEM SETTING

This results in an expected gain of 0.045 units per 1 unit bet, so the gambler
should place a bet.

It is always possible to calculate the pay-back-percentage from the odds,
because everything is known about the bet except the pay-back-percentage.
To illustrate this, a case with three outcomes is considered. Since exactly
one of the three outcomes must occur, the sum of the three probabilities is
1:

1 = P (outcome = 1) + P (outcome = 2) + P (outcome = 3) (2.5)

The odds of the three outcomes are known and using (2.2), these can be
rewritten:

Oi =
b

P (outcome = i)
⇔ P (outcome = i) =

b

Oi
(2.6)

Combining (2.5) and (2.6) yields (2.7):

1 =
b

O1
+

b

O2
+

b

O3
⇔ b =

O1 ·O2 ·O3

O1 ·O2 + O1 ·O3 + O2 ·O3
(2.7)

When the pay-back-percentage is known, the probabilities can easily be
calculated using (2.6).

2.1.2 Dutch Book Argument and Arbitrage Bets

A dutch book is a bet where it is possible for the gambler to place money
with a single bookmaker in a way which secures him a profit on the bet
regardless of the outcome of the bet. This also implies that the bookmaker
will lose money regardless of the outcome.

Definition 2.1 (Dutch Book Argument). Let A1, . . . , An be all possible out-
comes of the wager, and O1, . . . , On be the odds for those outcomes. If
S1, . . . , Sn exists such that

n
min
i=0

Si ·Oi −
n∑

i=0

Si > 0

the wager is called a dutch book.

Under normal circumstances, each bookmaker makes sure that this scenario
does not happen. But the gambler may still sometimes be able to make
arbitrage bets in scenarios where he places bets at more than one bookmaker.

8

2.1. THE PREDICTION MARKET AND ODDS

Consider a bet with two possible outcomes, odds 1.9-2.05 at bookmaker A,
and odds 2.05-1.9 at bookmaker B. If the gambler places the bet (2, 100, 2.05)
at bookmaker A and (1, 100, 2.05) at bookmaker B, he wins 100 · 2.05− 2 · 100 = 5
regardless of the outcome. This scenario is costly for the bookmakers be-
cause the gamblers win. However, if one of the bookmakers is sure that he
has the correct odds, he might be interested in this scenario because the
gamblers will play more on such a wager. If this scenario happens often,
some bookmakers will lose their money.

This scenario can be stopped by adjusting the odds and thus eliminating the
sure bet. The adjustment can be done in two ways: either one bookmaker
realises that his opening odds were wrong and then adjusts them towards
the market, such that bookmaker A e.g. could adjust the odds to 1.95-1.95.
Otherwise both bookmakers could adjust a little towards the middle, e.g. A
to 1.95-2.0 and B to 2.0-1.95.

2.1.3 Practical Odds Assessment

A wager has three different states in its life cycle. Before it is presented to
the gamblers, the bookmaker makes an odds assessment, based on expert
knowledge and the form of the two teams. While the wager is available
on the market, its odds change based on how the market reacts which can
be spotted by a tool like BetRadar. When the game starts, the wager is
normally taken off the market and in some cases, it is replaced by a live
version of the same wager, the wager that is taken off is denoted the closing
odds. All odds and live wagers besides the closing odds are ignored in this
project. The final part of the cycle is the resulting which happens after the
match is finished, where the winnings are paid back to the gamblers who
won.

A number of international Internet bookmakers exist and it is possible to
gamble at them from anywhere. This implies that sports betting works as a
market where the bookmaker with the best odds often gets the customers.
This further implies that the odds market could be compared to the stock
market, in the sense that everybody can buy and sell bets anywhere which
leads to the market adjusting itself. Note that this is only true for markets
with a high turnover while markets with a low turnover typically do not
adjust themselves as much. In practise, this implies that if one bookmaker
has high odds on a home victory and the markets odds are high on away
victory, the bookmaker with the different odds will not set the odds they
believe are correct. Instead, they will set the odds from which they can
obtain the highest potential profit. This will probably be setting home
victory a little higher than the market and their odds for away win a little
lower than the market. The reason being that gamblers will bet on the
highest odds no matter the margin [nor].

9

CHAPTER 2. PROBLEM SETTING

Another consideration is whether the outcome of the wager is dependent on
other types of wagers. An example could be the two types of wagers ”Who
will win the cup?” and ”Who will win the match?”, where the match is the
cup final. If the turnover of the home team being cup winners prior in the
tournament has been very large, and the turnover on the home team as the
winner of the match also is very large, the bookmaker suffers a significant
economic loss if the home team wins. To protect themselves against this
scenario, the bookmakers will deliberately set low odds on e.g. home victory,
such that the turnover decreases on this bet but increase on away victory,
and in this way the risk is distributed [nor].

Another scenario which can change the odds is if the settings change, e.g.
because of an injury on a key player. Because the information is available
to both gamblers and bookmakers at the same time, it is important for
the bookmakers to adjust their odds as quickly as possible. It may also
be necessary to adjust the odds if one outcome is played much more than
another.

Scenarios like these require a combination of domain specific expert knowl-
edge, statistics on turnovers, odds, and other bookmakers but also the possi-
bility of making real-life experiments with real bookmakers and real money.
Since this is not possible in this project, we ignore these factors and instead
focus on developing a model which is good at making probability assess-
ments on football matches.

2.1.4 Profit Improvements

Since the bookmakers are companies, their owners wish to earn as much
money as possible. This section presents ways of improving the bookmakers’
profit.

There are several ways to get more customers. Advertisements make the
customers aware of the bookmaker but at the cost of advertisement expenses.
The odds can also be raised but it will result in a larger payback to all
customers, including existing customers. More wagers on each match will
also be interesting but it costs time and money to set the odds on these
wagers and to result them.

Reducing the resulting time potentially increases the turnover because the
customers are able to reuse their money more times. Due to the pay-back-
percentage, the gamblers on average lose a little each time they play, so it
is in the interest of the bookmaker to make it possible for the gamblers to
play as often as possible.

The most difficult way of maximising profit is to assess the probabilities with
higher accuracy but if this is achieved it can be very beneficial. When the
probabilities are more accurate, the odds can be set higher which results in

10

2.2. RELATED WORK

more customers. Alternatively, odds can be lowered for some outcomes and
raised on others in order to make the gamblers play on a specific outcome.
This implies that it is very attractive to know the probability distribution
for the match as accurately as possible.

The bookmakers try to set the correct odds. The probability assessment for
the correct odds is the same as the distribution of outcomes on the bet if
a large number of identical matches were played. The odds are decided by
traders who are employed by the various bookmakers. The traders manually
look at various statistics and try to set the correct odds based on that. These
traders, although very skilled, can make mistakes due to the overwhelming
amount of information and statistics available prior to a match. For that
reason the probabilities can potentially be estimated more accurately using
machine learning which will be done in this project.

2.2 Related Work

This section first presents different statements about sports and sports bet-
ting. Afterwards, we give an overview over different previous methods for
both classification and probability assessment on sports events.

2.2.1 Motivation for Optimisations in Sports Betting

According to [nor] most probability assessments made before the market
opens are based on expert analysis which again is based on a limited amount
of statistics. Since there is no formal education, the experts are typically
partly autodidact persons who have learned from others and by themselves.
This also implies that little research has been made in the field of odds
assessment.

The book Moneyball [Lew03] focuses on how the use of statistics in baseball
has changed the game, and the reason why statistics is not just used by all
sports participants right away.

As the following quote describes, the stock market as well as the gamblers
and bookmakers in baseball are often too confident in their own abilities:

[Lew03, p.91] Many people think they are smarter than others in the stock
market – as if it’s inert. Many people think they are smarter than others in
baseball and that the game is simply what they think it is through their set
of images/beliefs. Actual data from the market implies more than individual
perception/belief. The same is true in baseball.

If the same is true for football, some odds are biased towards what the
experts believe instead of what they should be, hence there will be room for
improvements.

11

CHAPTER 2. PROBLEM SETTING

In baseball, statistics is used increasingly but as the following quote illus-
trates, practical persons often do not understand nor want to understand
statistics. Note that Paul (DePodesta) is a statistician employed by the
Oakland Athletics and Billy (Beane) is the general manager:

[Lew03, pp.33-34] It’s what he doesn’t say that is interesting. No one in big
league baseball cares how often a college players walks; Paul cares about it
more than just about anything else. He doesn’t explain why walks are impor-
tant. He doesn’t explain that he has gone back and studied which amateur
hitters made it in the big leagues, and which did not and why. He doesn’t
explain that the important traits in a baseball player were not all equally
important. That foot speed, fielding ability, even raw power tended to be
dramatically overpriced. That the ability to control the strike zone was the
greatest indicator of future success. That the number of walks a hitter drew
was the best indicator of whether he understood how to control the strike
zone. Paul doesn’t say that if a guy has a keen eye at the plate in college,
he’ll likely keep that keen eye in the pros. He doesn’t explain that plate
discipline might be an innate trait, rather than something a free-swinging
amateur can be taught in the pros. He doesn’t talk about all the other statis-
tically based insights – the overwhelming importance of on-base percentage,
the significance of pitchers seen per plate appearance – that he uses to value
a hitter’s contribution to a baseball offence. He doesn’t stress the importance
of generalising from a large body of evidence as opposed to a small one. He
doesn’t explain anything because Billy doesn’t want him to. Billy was forever
telling Paul that when you try to explain probability theory to baseball guys,
you just end up confusing them.

Very little statistics in used in football, according to [Fli02], AC Milan is
one club that uses a little data mining. They collect data from workouts
over a period of time and use this to prevent their players from obtaining
serious injuries caused by stress fractures. Besides this case, the experts we
have contacted are not aware if such statistics in being used, which in fact
they believe it is not. This implies that some of the same success statistics
has obtained in baseball might be obtainable in football as well.

2.2.2 Previous Models

[RS00] estimates the strengths of a team’s offence and defence over time.
This is done using Markov Chains Monte Carlo methods (MCMC). They
use their model to determine which bets have an expected gain, such that
it would be possible to determine which bets a gambler should take. Their
gambling model takes the variance of the model into account, implying that
a match where there is a high uncertainty on the outcome is given a large
penalty on the expected outcome. They come to the conclusion that it is
very hard to produce a working model which performs well as a gambler.

12

2.2. RELATED WORK

In [JFN06], Bayesian networks are used to model the probability that Tot-
tenham Hotspur will win a given match. The prediction is based mainly on
expert knowledge and simple facts as how good the opponent approximately
is and whether any key players are missing. The results are promising but in
order to be applied, they require expert knowledge of each individual team,
implying that the approach is very hard to do for an entire league.

[DC97] is only based on the number of goals scored in previous matches
and uses a Poisson distribution for each team to model the number of goals
scored by each team. A maximum likelihood estimate is used to model the
mean of the Poisson distributions. The article also states the following five
criteria for a probability assessor:

• The model should take into account the different abilities of both teams
in a match

• There should be allowance for the fact that teams playing at home
generally have some advantage - ”Home effect”

• The most reasonable measure of a team’s ability is likely to be based
on a summary measure of their recent performance

• The nature of football is such that a team’s ability is likely to be best
summarised in separate measures of their ability to attack (to score
goals) and their ability to defend (to not concede goals)

• In summarising a team’s performance by recent results, account should
be taken of the ability of the teams that they have played against

The results are very promising, hence this model is studied in more detail
in Chapter 9. The model is changed in [CDLR02] such that it is faster to
compute. This report, however, only focuses on the original model.

[JI03] suggests an ordered probit regression model based on the goals scored
in previous matches together with importance of game and geographical
distance. The paper also presents an overview over the odds market and
how to play against the bookmakers. The results are rather good and show
a possible profit of 0.04 if it were used on actual matches. The model is
similar to [DC97] and is not studied further.

Ensemble methods perform rather good in classification which is shown in
[Die00b]. There is reason to belive that ensemble methods for probability
assessment could be useful, hence this is studied in Chapter 10. Ensembles
of expert opinions are also used in [DMP+06] in order to make probability
assessments for American football matches.

It was not possible to find models using more advanced in-game statistics
e.g. corner kicks, crosses, or shots on goal. This indicates that little research
has been made and that there may be room for improvements in this area.

13

Chapter 3
Available Data

This chapter presents the data available for the machine learning process.
We have received three kinds of data; detailed match data from Statman,
results from Statman, and odds from NordicBet.

Detailed match data is available for the last three seasons of the top Danish
league. The detailed match data is described in general in Section 3.1,
including a description of how the quality in the data is ensured. A more
thorough analysis is presented in Section 3.2 together with queries for some
simple extractions.

The match result data contains more leagues and seasons and is described
in detail in Section 3.3.

The available odds, and how they are matched up with the correct matches,
is presented in Section 3.4.

3.1 Quality of Detailed Match Data

Accurate data for the problem domain is needed in order to get a satisfying
result. The detailed match data used in this project is made by Statman. In
this section, background information about the company, the way the data
is made, and what the data contains is reviewed.

3.1.1 About Statman

Statman is a Danish company based in Copenhagen which produces football
statistics for the Danish SAS league, the UEFA Champions League, and the
FIFA World Cup. The aim of the company is to produce accurate data
which can be used to compare players and teams. Statman uses the data for

14

3.1. QUALITY OF DETAILED MATCH DATA

a variety of products e.g. automatic graphic generation of match previews
and post match statistics for newspapers, live presentations of the scores
and other match actions on websites, and to help bookmakers with odds
setting and bet resulting. Bet resulting is the job the bookmakers do after
the end of a given match in order to calculate payouts. e.g., bookmakers
need to know the exact number of corners in order to result a wager labelled
over/under 8.5 corners.

Statman is led by Kresten Buch, whom is also our contact to the company.
There are 12 part-time analysts employed to collect the match data and one
part-time programmer who maintains the system and develops the technical
part of the various products.

Besides providing us with the match data Statman’s owner, Kresten Buch,
also provides us with expert domain knowledge, which can be used to get
ideas of which models to build and which features to use.

3.1.2 The Data Specifications

Currently, the database holds 771 matches, including matches used for train-
ing the Statman staff, the matches from the 2006 World Cup, the matches
from the 06/07 season of Champions League, some international matches,
the 04/05, 05/06, and 06/07 seasons of the Danish SAS-league, and various
other single matches. In this project, only the matches from the Danish
SAS-league are used, implying that there are currently 575 matches in the
database which is used in this project. Only the matches from the Dan-
ish SAS-league are used since it is assumed that a match from the Danish
SAS-league will differ from a match at the World Cup finals, e.g. because
of other players and different schedule constraints.

In order to be able to deliver both fast and accurate data, two rounds of
analysis of each game are made. During each game, an interface is used
to create live data about the most significant actions in the game. These
data can be shown live on a webpage and post match graphics can be made
shortly after the end of the match. This is important if the game is played
late and the statistics has to be in the newspaper the next morning. The
detailed analysis can be made at any time, either during the match or later
on. But since it is more detailed and precise, it takes about twice the time of
the live analysis to make, implying that it will be available later than the live
analysis. This data is used to make player profiles, next round previews, and
bookmaker resulting. The detailed analysis does not reuse anything from
the live analysis.

On the bottom level, the data is made up of different actions. A live action
type might be “scored a goal” and a detailed action type “finished with right
foot - goal - deflected by team mate”. There are 503 different detailed action

15

CHAPTER 3. AVAILABLE DATA

types, though only around 350 are in use. 56 of the detailed action types
are also used as live action types. An action on the pitch can both be
represented in the live and detailed analysis. A typical game is made up of
70–250 live actions and 500–1,000 detailed actions. Note that off the ball
actions, like a run by a player without the ball which is done in order to
fix one or more opponents, are not registered. These runs can be spotted
indirectly, e.g. because the finishing player is able to make a more precise
shot if some opponent pressure is removed from him by one of his team
mates who makes an off the ball move.

An action has one or two players connected with it, depending on what
is most relevant. E.g., a goal scored on penalty only includes the player
shooting but a substitution includes both players. On most actions in the
live analysis, only one player is registered since it is hard for the analyst
to accurately identify both players while the game is being played. For the
same reason, the profiles of the individual players are built using the detailed
analysis.

Each action has an attached time stamp. In the live analysis, a match
clock is responsible for the time stamp which is possible because the live
analysis and the live TV-signal by default are synchronised. The detailed
time stamps are for minor actions grouped in five minute intervals, and for
major actions, like “finished with right foot - goal - deflected by team mate”
time stamped manually.

All live actions are also linked with a coordinate set representing the position
on the pitch where the action occurred. The same is applicable for major
actions in the detailed analysis.

Since the action types are low level, different categories are built on top
of them. A category contains a number of action types, and each action
type can be in more than one category. Because of the detailed level of the
action types in the detailed data, it is possible to make a large number of
categories, e.g. “goals with left foot”, “goals scored by deflection”, and “all
goals”. The categories are less useful in the live analysis, however a category
in live analysis like “shots on target” contains both “shots on goal - saved”
and “goals”. There are 115 different detailed categories.

3.1.3 Data Quality Assurance

Since quality is of the essence, Statman has taken several measures to assure
the quality of the data. The most important is to have an easy-to-use
interface for the analysts. A screenshot of the detailed interface is shown
in Figure 3.1 on the facing page. The main part of the interface shows
the 22 starting players and the substitutes. Each player has a number of
buttons, and a click on one of those buttons either brings forward a new set

16

3.1. QUALITY OF DETAILED MATCH DATA

of buttons or resuls in an action being saved in the dataset. Shirt numbers,
player positions, and player names are shown for each player so that it is
easy to locate the correct player for the action.

Figure 3.1: The Statman interface used for detailed analysis.

Before a new analyst analyses games, he receives training from an experi-

17

CHAPTER 3. AVAILABLE DATA

enced analyst. This training includes an introduction to the system and a
number of training matches to analyse which are supervised by an experi-
enced analyst.

To make the analysis smooth, the analyst is assigned a TV and a digital
recorder such that it is possible to rewind and fast forward in the game as it
is being played. This implies that important situations, such as goals, can
be reviewed even during live analysis.

Since the live and detailed analysis are completely separated, the categories
can be used to compare the key actions registered in the live and detailed
analysis; this can e.g. be goals or corner kicks. When both the live and the
detailed analysis are finished, the counts for each of the equivalent categories
are be compared. If the number of actions is not the same, the analyst can
locate the errors and correct them.

3.1.4 Selection of Data

Since this project aims at achieving the best possible probability assess-
ments, the data with the best quality and the most details are used. This
implies that only the matches on which the detailed analysis is completed
are used, and the data from the live analysis are ignored for the remainder
of this report.

3.2 Specification of Detailed Match Data

This section contains detailed information about the relevant tables in the
dataset. Some columns are left out as they are not relevant while other
columns and tables are renamed from Danish into English.

Only tables used in the detailed analysis are presented because all data
analysis is performed on that part of the data as described in Section 3.1.4.
A diagram of the database is shown in Figure 3.2.

Throughout the remainder of this report, the font style used for tables is
table and column for columns.

This section presents the table structure and some data samples of the most
important tables.

3.2.1 The action Table

The action table contains information about all actions in all matches.
Table 3.1 on page 20 shows a sample of the table, i.e. some actions ordered
by time for a single match with id 602.

18

3.2. SPECIFICATION OF DETAILED MATCH DATA

ac
tio
n

P
K
id

F
K
ty
pe
tim
e

F
K
us
er

F
K
co
nt
ra
ct
1_
id

co
nt
ra
ct
2_
id

F
K
m
at
ch
_i
d

ac
tio
n_
de
s
cr
ip
tio
n

P
K
id de
sc
rip
tio
n

us
er

P
K
id lo
gi
n

pa
ss
w
or
d

lin
eu
p

P
F
m
at
ch
_i
d

P
F
pl
ay
e
r_
id

F
K
po
si
tio
n

su
bs
titu
te

m
at
ch

P
K
id

F
K
ro
un
d_
id

P
F
ho
m
e
_i
d

aw
ay
_i
d

da
te

en
et
_m
at
ch
id

up
da
te
d

st
at
us

ca
te
go
ry

P
F
ac
tio
n_
id

P
F
ca
te
go
ry
_i
d

ca
te
go
ry
_t
ex
t

P
K
id de
sc
rip
tio
n

cl
ub

P
K
id na
m
e

sh
irt
_c
ol
or
_1

sh
irt
_c
ol
or
_2

en
et
_c
lu
bi
d

co
nt
ra
ct

P
K
id

F
K
pl
ay
er
_i
d

sh
irt
_n
um
be
r

ac
tiv
e

F
K
cl
ub
_i
d

co
or
di
na
te

P
F
ac
tio
n_
id

x1 y1 x2 y2

le
ag
ue

P
K
id de
sc
rip
tio
n

po
s
iti
on

P
K
id po
s

de
sc
rip
tio
n

ro
un
d

P
K
id de
sc
rip
tio
n

m
at
ch
_c
ou
nt

F
K
se
as
on

s
ea
s
on

P
K
id

F
K
le
ag
ue

de
sc
rip
tio
n

pl
ay
er

P
K
id na
m
e

al
ia
s

sp
os

en
et
_p
la
ye
rid

P
F

Figure 3.2: Selected parts of the Statman database.

19

CHAPTER 3. AVAILABLE DATA

id contract1 id contract2 id match id type user time
284498 952 551 602 51 16 4347
284505 952 551 602 51 16 4364
284511 953 414 602 175 16 4378
284527 951 0 602 216 16 4481
284528 551 951 602 950 16 4481
284521 569 0 602 30 16 4500
284525 551 953 602 24 16 4500
284503 170 952 602 120 16 4500

Table 3.1: Raw sample of detailed action table.

id is the primary key and is used as a unique identifier for each action.
contract1 id is the contract id, see Section 3.2.9 on page 28, of the first
player who participates in the action. This can be the player who passes the
ball, the player who shoots, and so on. contract2 id is the contract id of the
second player in the action. This player may be the one who receives the
pass, the goalkeeper who saves the ball, and so on. Note that contract2 id
might be 0, implying no second player e.g. if the action is a finish off target.

match id is the id of the match, see Section 3.2.4 on page 23. type is the
action type, e.g. “took a throw in”. The action type corresponds to a value
in the action_description table, see Section 3.2.2. user is the id of the
analyst who registered the action, which enables evaluation of the analysts
afterwards.

time is the second where the action was made. Note that each half is 45
minutes long but may have extra time, so the use of the 46th minute is
potentially ambiguous. To resolve this problem, the second 45 · 60 = 2700
is used for all actions which happen in the extra time in the first half and
90 · 60 = 5400 is used for all actions which happen in the extra time in
the second half. As described in Section 3.1.2 on page 15, some actions are
grouped in five minute intervals. In Table 3.1 actions 284521, 284525 and
284503 are examples of such. This implies that action 284521 may have
happened before action 284498, even though it has a higher time stamp.
Recall that it is possible to rewind and forward the match, such that the
actions may not be registered in the order in which they happened.

Some actions are also linked with coordinates, however it is only the ones
considered most important. The coordinates are stored in another table,
coordinate. Even though the pitches on different stadiums have different
sizes, one single size is assumed for simplicity. The entire pitch is 105 × 68
metres and it is divided into a number of small areas each 1 × 1 meter. The
coordinates are measured according to each team, such that the coordinate
(0,0) for the home team is measured starting from the left corner in their

20

3.2. SPECIFICATION OF DETAILED MATCH DATA

end, and the coordinate (0,0) for the away team is measured from the left
corner in their end. This implies that the coordinate (0,0) for each of the two
teams is in opposite corners of the pitch. The coordinates (x1, y1) refers to
the position of the player with contract1 id when he performed his part of the
action and (x2, y2) refers to the position of the player with contract2 id when
he performed his part of the action. The coordinates (x2, y2) can be (-1,-1),
which indicates that contract2 id equals 0, implying that no second player is
connected with the action. In Table 3.2, a sample of the coordinate table
is presented.

actionid x1 y1 x2 y2
284510 80 63 97 23
284517 104 0 97 35
284511 87 27 -1 -1
284527 82 39 -1 -1
284528 84 44 82 39

Table 3.2: Raw sample of the coordinate table.

3.2.2 The action_description Table

The available actions are described in the action_description table. A
sample of the table is shown in Table 3.3.

id description
24 makes an ordinary pass to offensive zone to
30 fails an ordinary pass to offensive zone to
51 takes a throw in to

120 tackled the ball to a team mate – tackled
175 tripped
216 finished with right foot – missed target
950 made a major keypass – ordinary flat pass

Table 3.3: Raw sample of the action_description table.

id is the primary key of the table, and the value referred to in the action
table. description is a description of the action, which is both used during
analysis and later when the data is presented.

21

CHAPTER 3. AVAILABLE DATA

3.2.3 The category and category_text Tables

Categories are made as aggregations of action types, as explained in Sec-
tion 3.1.2 on page 15. Since a category may contain any number of action
types and an action type can be in any number of categories, a table for this
relationship is needed. That table is category, and a sample of the table is
shown in Table 3.4. action id is the action id, which corresponds to an id in
the action_description table and is also used in the type column in the
action table. category id is the category id which corresponds to an id in
the category_text table as explained below.

action id category id
24 6
24 33

175 41
216 2
216 84
216 95

Table 3.4: Raw sample of the category table.

A sample of the category_text table is shown in Table 3.5. id is the id of
the category and description is the description associated with it. A complete
list of all categories can be found in the Appendix in Table A.1 on page 140.

id description
1 Finished on target
2 Finished off target
6 Completed pass

33 Completed offensive short pass
41 Committed a misconduct
46 Finished on target with right foot
83 Finished on target with foot
84 Finished off target with foot
95 Finished off target with right foot in open play
97 Finished on target with right foot in open play

Table 3.5: Raw sample of the category_text table.

To illustrate the composition of categories, an example of different cate-
gories, which are subsets of each other, is shown in Table 3.6. The most

22

3.2. SPECIFICATION OF DETAILED MATCH DATA

general category is category id 1, “Finished on target”. category id 83, “Fin-
ished on target with foot”, is a subset of “Finished on target” but does not
contain finishes on target with head or other parts of the body. category id
46, “Finished on target with right foot”, contains half the actions of “Fin-
ished on target with foot” because all finishes with left foot are left out.
category id 97, “Finished on target with right foot in open play”, has the
same actions as “Finished on target with right foot” except for the finishes
on set pieces.

category id actions
1 35, 58, 200, 203, 204, 205, 206, 207, 208, 209, 210, 211,

212, 213, 223, 224, 225, 226, 227, 228, 229, 230, 231, 250,
253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 273,
274, 275, 276, 277, 278, 279, 280, 281, 300, 303, 304, 305,
306, 307, 308, 309, 310, 311, 312, 313, 323, 324, 325, 326,
327, 328, 329, 330, 331, 350, 353, 354, 355, 356, 357, 358,
359, 360, 361, 362, 363, 373, 374, 375, 376, 377, 378, 379,
380, 381, 397, 398, 399, 423, 424, 425, 427, 430, 431, 432,
433, 434, 435, 437, 440, 443, 444, 445, 446, 447, 448, 449,
450, 451, 452, 453, 459, 460, 461, 462, 463, 470, 473, 474,
475, 476, 477, 478, 479, 480, 481, 482, 483, 489, 490, 491,
492, 493, 961, 990, 991, 992, 993, 994, 995

83 35, 58, 200, 203, 204, 205, 206, 207, 208, 209, 210, 211,
212, 213, 223, 224, 225, 226, 227, 228, 229, 230, 231, 250,
253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 273,
274, 275, 276, 277, 278, 279, 280, 281, 397, 398, 399, 423,
424, 425, 427, 430, 431, 432, 433, 434, 435, 437, 440, 443,
444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 459, 460,
461, 462, 463, 470, 473, 474, 475, 476, 477, 478, 479, 480,
481, 482, 483, 489, 490, 491, 492, 493, 961, 990, 991, 992,
993, 994, 995

46 200, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
223, 224, 225, 226, 227, 228, 229, 230, 231, 397, 398, 399,
423, 424, 425, 427, 440, 443, 444, 445, 446, 447, 448, 449,
450, 451, 452, 453, 459, 460, 461, 462, 463, 990, 992, 994

97 200, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
223, 224, 225, 226, 227, 228, 229, 230, 231

Table 3.6: List of actions associated with different categories.

3.2.4 The match Table

The match table contains a row for each match which has either been analy-
sed or which will be analysed in the near future. A sample of the match

23

CHAPTER 3. AVAILABLE DATA

table is shown in Table 3.7.

id home away date round updated status enet id
602 7 16 1154268000 130 1154279320 5 159011
614 4 10 1156035600 133 1156095045 5 159027
615 11 7 1156035600 133 1156094612 5 159025
623 19 11 1156640400 136 1157912024 5 159035
626 2 9 1156651200 136 1159044687 5 159031

Table 3.7: Raw sample of the match table.

The id column is the primary key in the table, and it is referred in the action
table, see Section 3.2.1 on page 18, and the lineup table, see Section 3.2.7
on page 26.

home and away are the ids of the home team and the away team, correspond-
ing to an entry in the club table, see Section 3.2.6 on page 26.

date is the date and time where the match will or did start, depending on
whether the match has been played. The value is the number of seconds
since 1 January 1970 00:00:00, which implies that 1154268000 corresponds
to 30 July 2006 16:00:00. The updated column uses the same format and
that value indicates when the match was last updated. An update of the
match can e.g. be an added or changed action or a change in the lineup.

The round, which a match is part of, is referred by the round. The relation-
ship between rounds, seasons, and leagues is described in Section 3.2.5 on
the facing page.

status is the current status of the match. The values corresponds to:

0: Match not yet started.
1: Live analysis ongoing.
2: Live analysis interrupted (e.g. caused by a TV error).
3: Match finished.
4: Live analysis completed.
5: Detailed analysis completed. Match used in the learning data.
6: Detailed analysis completed. Match used in the test data.

Note that only matches where the detailed analysis is finished, status= 5 or
status= 6, are used as described in Section 3.1.4 on page 18. Status level 6
is added in this project and is not used by Statman.

enet id is another id for the match made by the company EnetPulse. enet id
is used to find equivalent matches from other datasets containing matches.

24

3.2. SPECIFICATION OF DETAILED MATCH DATA

3.2.5 The round, season, and league Tables

The general structure of football is that every country has its own league
system and that each league has a number of seasons. Each season consists
of a number of rounds and each round of a number of matches. This is
reflected in the database where each match is part of a round, each round
is part of a season, and each season is part of a league.

A sample of the round table is presented in Table 3.8. id is the primary key
of the table. description is the description of the round, which is typically
the round number in the league. match count is the number of matches in
the round. That number helps the person who creates matches to assure
that he did not forget any matches and that no matches are entered twice
by accident. season is the season of which the round is a part.

id description match count season
5 24 6 1

36 16 6 2
118 2 2 23
130 3 6 35
133 6 6 35
136 7 6 35
144 9 6 35
149 3 16 36

Table 3.8: Raw sample of the round table.

A sample of the season table is presented in Table 3.9. id is the primary key
of the table and referred in the round table. description is the description of
the season. league is the id of the league of which the season is a part.

id description league
1 2003-2004 1
2 2004-2005 1

23 Gruppe A 16
35 2006-2007 1
36 2006-2007 19

Table 3.9: Raw sample of the season table.

A sample of the league table is presented in Table 3.10. id is the primary key
of the table and referred in the season table. description is the description
of the league.

25

CHAPTER 3. AVAILABLE DATA

id description
1 SAS League

16 World cup
19 Champions League 06/07

Table 3.10: Raw sample of the league table.

3.2.6 The club Table

The club table has a row for each club and national team in the dataset. A
sample of the club table is shown in Table 3.11.

id name shirt color 1 shirt color 2
2 FCK 220 16777215
4 Esbjerg 16777215 6724095
7 FCN 0 16763955
9 AaB 16777215 16711680

10 FCM 16777215 0
11 OB 16777215 6724095
16 Silkeborg 16777215 16724787
19 Horsens 0 16776960

Table 3.11: Raw sample of the club table.

id is the primary key of the club referred in contract and match. name is
the name of the club.

shirt color 1 and shirt color 2 are the primary and secondary colour of the
clubs shirts, stored as 24 bit RGB colour codes for use in the analysis inter-
face.

3.2.7 The lineup and position Tables

The lineup table contains each player who participated in a given match,
whether he started in the match or as a substitute, and the starting position
of the players on the pitch. A sample of the lineup table is shown in
Table 3.12.

The match id corresponds to a match in the match table, see Section 3.2.4.
contract id is the contract id of the player in question, see Section 3.2.9.

substitute is a string which is “yes” if the player starts on the bench and “no”
if he starts on the pitch. position is the starting position on the pitch for
the player, which is a value from the position table. If the player starts

26

3.2. SPECIFICATION OF DETAILED MATCH DATA

match id contract id position substitute
615 240 6 yes
615 429 10 no
615 562 6 no
615 569 2 no
615 571 11 no
615 659 3 no
615 713 5 no

Table 3.12: Raw sample of the lineup table.

on the pitch, the position is the one the player is set to play by the analyst,
otherwise the value is the standard position of the player as set in the player
table, see Section 3.2.8.

For a sample of some of the positions, see Table 3.13. In the position
table the primary key, id, is referred in lineup as position. pos is a short-
hand notation for the position, and description is the full description of the
position.

id pos description
2 DL Left back
3 DCL Central defender left
5 CCR Center defender right
6 DR Right back

10 ML Left midfielder
11 MCL Central midfielder left

Table 3.13: Raw sample of the position table.

3.2.8 The player Table

The player table represents single individual players. A sample of the
player table is shown in Table 3.14.

id is the primary key and is used in contract to connect the player with his
contracts. name is the full name of the player. alias is the internal alias, a
shorter name, used in the analysis. spos is the standard position, the player
plays on the pitch which corresponds to a description in the positions
table, see Section 3.2.7 on the preceding page.

27

CHAPTER 3. AVAILABLE DATA

id name alias spos
130 Dennis Flinta Dennis Flinta 14
207 Michael Hansen Michael Hansen 12
237 Thomas Andreasen T. Andreasen 13
473 Morten Karlsen Karlsen 11
601 Heath Pearce Pearce 2
933 Bjarni Olafur Eiriksson Olafur Eiriksson 2
934 Hördur Sveinsson Hördur 20

Table 3.14: Raw sample of the player table.

3.2.9 The contract Table

A single player may play for multiple clubs and a national team during his
career. In order to handle this, the actions in the action table are linked
with contracts instead of players. Each contract is linked with a player,
such that the same player may have multiple contracts. A sample of the
contract table is shown in Table 3.15.

id player id club id shirt number active
63 130 1 32 -1

170 237 7 14 0
414 473 7 6 0
551 130 16 18 0
569 601 7 12 0
951 207 16 8 0
952 933 16 6 0
953 934 16 27 0

Table 3.15: Raw sample of the contract table.

id is the primary key, and the value used in the action table to link a
contract with an action. player id is the player linked with the contract and
club id is the id of the club of that contract. shirt number is the shirt number
the player has now or had when he played in the club. Note that two players
from the same club may have the same shirt number if only one of them is
currently playing for the club.

active is a value indicating whether the contract is active or not. The values
are:

-1: The contract is not active anymore.
0: The contract is a club contract and is active.

28

3.3. SPECIFICATION OF MATCH RESULT DATA

1: The contract is a national team contract and is active.

Note that a player can have any number of contracts which are not active
but only a single active club contract and a single national team contract.

3.3 Specification of Match Result Data

This section presents the structure of the match result data obtained from
Statman. The data is much simpler than the detailed match data but con-
tains data for more seasons and leagues.

A diagram of the database is shown in Figure 3.3. The rest of this section
presents the different tables and fields.

stat_game

PK id
time

FK league
FK season
FK state
FK homeid
FK awayid

stat_league

PK league_id
league_name

stat_seasons

PK season_id
season_name

stat_state

PK state_id
state_status

stat_team

PK team_id
team_name

Figure 3.3: The match result database structure.

3.3.1 The stat_game Table

The stat_game is the main table, as it holds all the results from all seasons
since the 1999/2000 season. The database holds 158,823 matches in all.

id denotes the id of the match, time holds the date and time of the match.
state shows the status of the match which is explained in more detail in
Section 3.3.4. league and season denote the league and season respectively,
these are discussed further in Section 3.3.2 and Section 3.3.3 respectively.
result stores the result, and lastly homeid and awayid are the ids of the home
and away team, these are described further in Section 3.3.5. The matches
can be matched with the detailed action data, via matching the enet id from
Table 3.7 on page 24 with id from Table 3.16. An example of the stat_game
is shown in Table 3.16.

29

CHAPTER 3. AVAILABLE DATA

id time state league season result homeid awayid
11581 2005-07-30

17:00:00
7 1 34 1-1 218 227

11579 2005-07-31
15:00:00

7 1 34 2-3 3 15

11582 2005-07-31
15:00:00

7 1 34 3-2 223 233

11583 2005-07-31
15:00:00

7 1 34 1-2 230 1

Table 3.16: Raw sample of stat_game table.

3.3.2 The stat_league Table

The stat_league table, shown in Table 3.17, holds the different leagues and
their ids. league id holds the ids and league name holds the names of the
different leagues. In this project, only the SAS league and the 1. division
are used, so that matches in the stat_game table where league equals 1 or
2 are considered.

league id league name
1 SAS League
2 1. Division
3 2. Division

Table 3.17: Raw sample of stat_league table.

3.3.3 The stat_seasons Table

The stat_seasons table holds the different seasons which are represented
in the database. season id holds the ids and season name holds the textual
name of the season. All seasons are used in this project. An example of the
stat_seasons is shown in Table 3.18.

season id season name
1 2000/2001
2 2001/2002
3 1999/2000

Table 3.18: Raw sample of stat_seasons table.

30

3.4. AVAILABLE ODDS

3.3.4 The stat_state Table

The stat_state table holds the possible values of the status of the matches,
a match can e.g. be in the first half or finished. The state id column holds
the ids of the different statuses and state status holds the textual version
of that status. Only matches with a status of seven is used, implying that
only finished matches are used. An example of the stat_status is shown
in Table 3.19.

state id state status
1 Not started
2 1. Half
3 2. Half
7 Finished

Table 3.19: Raw sample of stat_status table.

3.3.5 The stat_team Table

The stat_team table holds the teams together with their ids. team id holds
the team id and team name holds the textual name of the team. There are
293 different teams in the database. An example of the stat_team table is
shown in Table 3.20.

team id team name
1 FC København
2 OB
3 AGF

15 Viborg

Table 3.20: Raw sample of stat_team table.

4,364 matches are in the database because only matches from the two top
Danish leagues, the SAS league and the 1. division, are used.

3.4 Available Odds

To validate the model, some odds from bookmakers are needed. Nordic-
Bet has provided three sets of odds. These are their starting odds, their
closing odds, and a set of average closing odds from around 150 bookmak-
ers. Only NordicBet’s closing odds and the average closing odds are used as
NordicBet’s starting odds are incomplete.

31

http://www.nordicbet.com
http://www.nordicbet.com

CHAPTER 3. AVAILABLE DATA

NordicBet is a bookmaker company working out of Isle of Man. It is owned
by a company called BetPoint which also owns another bookmaker, TrioBet.
The difference between TrioBet and NordicBet is that NordicBet focuses on
the Scandinavian market whereas TrioBet focusses on the Baltic market.

The set of average odds is collected by a company called BetRadar, which is
a company that assists bookmakers in setting their odds. Their customers
are provided with a program, also called BetRadar, which collects odds
from all cooperating bookmakers such that an overview of the odds market
is available. Hence the bookmakers know which odds are available at the
moment, such that if a set of odds gives the gamblers the possibility of a
arbitrage bet, this can be corrected quickly.

The odds are delivered in a raw comma separated file, so they have to be
processed in order to fit with the other data. First, the comma separated
file is parsed into a data structure, then each set of odds is paired with an
existing match in the database based on team names and the starting time
of the match. After that, the probabilities are extracted from the odds, as
described in Section 2.1 on page 5, and finally the odds are added to a table
in the database with both the odds, the probabilities, and the corresponding
match id.

32

http://www.triobet.com
http://www.betradar.com

Chapter 4
Basic Concepts

This chapter defines some general statistical terms which are used in the
remainder of the report.

Section 4.1 defines expected value and expected loss followed by definitions
of arithmetic mean, variance and standard deviation. Then the Poisson dis-
tribution which is a discrete probability distribution, is defined in Section 4.3
on page 35. Finally, distance measures are defined.

The probability assessors that will be created later on can be considered
hypotheses, hence both hypotheses in general and test of them are reviewed.
This section also defines how statistical significance is tested, reviewing both
the t-test and the Wilcoxon Signed-Rank Test.

4.1 Expected Value and Expected Loss

The expected value of an instance is the sum of the probabilities of each
possible outcome multiplied by its payoff or value. Other terms for expected
value include expectation or mean. This implies that the expected value is
the value which on average can be expected from a given scenario, if the
scenario is repeated a number of times. This section is based on [DeG89].

Definition 4.1 (Expected value). The expected value for discrete outcomes
is

E~p[~x] =
∑

i

pixi

~p is the vector of probability assessments and pi is the ith entry in that vector.
~x is the vector of the scores which will be given for each possibility, such that
xi, the ith entry in that vector, is the score achieved if outcome i occurs.

33

CHAPTER 4. BASIC CONCEPTS

If a french roulette is spun a number of times with a ball and one unit is
betted on red, the expected value of the one unit bet is

18
37
· 2 +

19
37
· 0 = 0.974

A related term is expected loss, which intuitively can be described as what
is expected to be lost in a specific scenario.

Definition 4.2 (Expected loss). The expected loss for a one unit stake on
a discrete outcome is

L~p[~x] = 1−
∑

i

pixi

where ~p and ~x are defined as in Definition 4.1.

4.2 Mean, Variance, and Standard Deviation

The arithmetic mean is a special case of expected value, where all scores are
equally likely to happen. This implies that the probability for any of them
is 1

|~y| . This section is based on [DeG89].

Definition 4.3 (Arithmetic mean). The arithmetic mean is

E[~y] =
1
|~y|

|~y|∑
i

yi

where ~y is a vector consisting of different continuous values of the same
feature.

The variance can be described as a measure of how much the possible val-
ues are spread or dispersed around the mean value. The variance of the
distribution of ~y is often denoted σ2.

Definition 4.4 (Variance). The variance is

V ar(~y) = σ2
~y = E[(~y − µ)2] (4.1)

where µ = E[~y] and ~y is a vector consisting of different continuous values of
the same feature.

From this, it can be seen that the variance is never negative and a high
variance implies that the different instances of the feature have a high spread
around the mean value.

The standard deviation is defined as
√

σ2
~y . Therefore, the standard deviation

is often denoted σ. Another way of describing the standard deviation is as
the deviation of the values from their arithmetic mean.

34

4.3. POISSON DISTRIBUTION

4.3 Poisson Distribution

The Poisson distribution is a discrete probability distribution commonly
used in statistics and probability theory. This section is based on [DeG89].

Definition 4.5 (Poisson distribution). Let λ ∈ R and λ > 0 be the mean of
the Poisson distribution. Then the probability for x is

f(x|λ) =
{

e−λλx

x! for x ∈ N and x ≥ 0
0 otherwise

Note that f(x|λ) ≥ 0 because e−λ > 0, λx ≥ 0 and x! ≥ 1 given the
constraints.

An important property of a discrete probability distribution is that the com-
bined probabilities sum to one. To show that the Poisson distribution is in-
deed a discrete probability distribution the following statement must hold:

∞∑
x=0

f(x|λ) = 1

Recall from calculus that if λ ∈ R then

eλ =
∞∑

x=0

λx

x!

It is now possible to prove that the Poisson distribution is a discrete proba-
bility distribution:

∞∑
x=0

f(x|λ) =
∞∑

x=0

e−λλx

x!
= e−λ

∞∑
x=0

λx

x!
= e−λeλ = e−λ+λ = e0 = 1 (4.2)

To show that the mean, as claimed in Definition 4.5, is λ the following
statement must hold:

Ef(x|λ)[X] =
∞∑

x=0

xf(x|λ) = λ

The term where x = 0 yields 0 which is used next:

Ef(x|λ)[X] =
∞∑

x=0

xf(x|λ) =
∞∑

x=1

xf(x|λ)

=
∞∑

x=1

x
e−λλx

x!
=

∞∑
x=1

xe−λλx

x!
= λ

∞∑
x=1

e−λλ(x−1)

(x− 1)!

35

CHAPTER 4. BASIC CONCEPTS

Replace y = x − 1 and recall from (4.2) that
∑∞

x=0
e−λλx

x! = 1. It is now
possible to show Ef(x|λ)[X] = λ:

Ef(x|λ)[X] = λ
∞∑

x=1

e−λλ(x−1)

(x− 1)!
= λ

∞∑
y=0

e−λλy

y!
= λ (4.3)

Hence Ef(x|λ)[X] = λ as claimed.

4.4 Distance Measures

In order to determine how identical two instances are, a distance measure is
needed. There are several different measures but they all share the property
of being a function d(~x, ~y), where ~x and ~y are instance vectors. This section
is only concerned with distance measures for continuous features and is based
on [TSK97] and [HMS01].

The measures which are examined are all metrics which implies that they
all have the positivity, symmetry, and triangle inequality properties.

• d(~x, ~y) ≥ 0 for all ~x and ~y and d(~x, ~y) = 0 if and only if ~x = ~y

• d(~x, ~y) = d(~y, ~x) for all ~x and ~y

• d(~x, ~z) ≤ d(~x, ~y) + d(~y, ~z) for all ~x, ~y and ~z

The first property, positivity, assures that the lowest score occurs when
~x = ~y and that the score will be zero in that case. The second property,
symmetry, assures that the order of the two instances does not matter. The
third property, the triangle inequality, assures that if the distance between
two instances via a third instance is known, then an upper bound for the
distance between those two instances is known.

Distance measures build on the assumption that the different features have
some degree of commensurability, implying that they have some kind of
common measure. An example of this could be if all features were numeric
counts of the number of passes.

The measure makes less sense if the features have different scales, like for
instance number of red cards and passes. Then the number of passes will
dominate the number of red cards because the values are much larger. This
problem can be reduced if the features are normalised which is described in
Section 5.3 on page 51.

The Euclidean distance between two instances is

d(~x, ~y) =

√√√√ n∑
i=1

(xi − yi)2 (4.4)

36

4.5. TEST OF HYPOTHESES

where ~x and ~y are two vectors of the same length.

A potential problem concerning the Euclidean distance is that since each
feature contributes individually to the distance between two instances, de-
pendent features will dominate the other features.

4.5 Test of Hypotheses

A hypothesis is an idea which is not known to be either false or correct, this
implies that the hypothesis needs to be verified by a hypothesis test in order
to be either rejected or accepted. This section outlines how hypotheses are
set up and when a result is statistically significant.

4.5.1 Null Hypothesis

The null hypothesis, denoted H0, is a hypothesis about population param-
eters, i.e. two different means of a feature. On the basis of a sample from
the population, two different actions can be taken. The null hypothesis can
be rejected or accepted. In some cases the desired precision for accepting
or rejecting cannot be obtained with the available data. In that case, if
possible, more tests cases should be made and a new test should be set up.

Often an alternative hypothesis, H1, will be the desired result. Then the
target is to reject H0 and in the process accept H1.

In this context, our null hypothesis could be Bookmaker B performs on av-
erage at least as good as probability assessor a measured by some common
measure and the alternative hypothesis H1 would be Bookmaker B performs
on average no better than probability assessor a measured by the same com-
mons measure. The task would then be to reject this hypothesis which
would mean that probability assessor a is at least as good as Bookmaker B
measured by the common measure.

4.5.2 Type 1 and 2 Errors

It is important to distinguish the different kinds of errors that can be made
when accepting or rejecting a hypothesis, because some errors can be more
harmful in some scenarios than others. E.g. if an automatic test is made to
find out whether something is wrong with a product, it will most likely be
better to detect too many errors, than too few and then make a manual test
afterwards on the products in question.

In general there are two kinds of errors that can be made:

• A type 1 error is rejecting the null hypothesis even though it is true.

37

CHAPTER 4. BASIC CONCEPTS

• A type 2 error is failing to reject the null hypothesis even though it is
false.

It is easy to make a test that has no type 1 errors by always accepting the
null hypothesis, but not very useful because the type 2 error then would be
the highest possible. It is also possible to have no type 2 errors by always
rejecting the null hypothesis but then the type 1 error would be the highest
possible. A good test must have a trade-off between few type 1 and few type
2 errors, in order to be useful.

In this project the task is to make a model that performs at least as good as
the current bookmakers. In order to convince a bookmaker that he should
take another approach to assess odds, it would be important to show that
there is a very small risk that the new method is worse, hence type 1 errors
should be reduced.

4.5.3 Statistical Significance

If something is statistically significant, it informally implies that with a
high probability it did not happen by chance. More formally, an acceptable
significance level, α, should be decided before a test is performed. Common
levels are 5%, 1%, or 0.1%, implying that there is a 0.05, 0.01, or 0.001
probability that the test will commit a type 1 error by falsely rejecting the
null hypothesis. If 20 null hypotheses are rejected at the 0.05 level in 20
independent tests, one of the hypotheses is, on average, true.

When a hypothesis test is performed, a p-value is obtained. The p-value
indicates what the probability is that another test will yield a different result,
e.g. that the null hypothesis will be accepted instead of rejected. If the p-
value is lower than the α-value, the conclusion of the test is said to be
statistically significant.

Two different test methods are presented here: the t-test which is a test
based on the assumption of normal distributed data and the Wilcoxon
Signed-Rank Test which does not have the same assumption and hence is
more versatile.

4.5.4 Dependent t-test

The t-test is useful for testing whether two datasets are sufficiently different
for some hypothesis to hold. In this project, the t-test can be used to decide
whether one probability assessor is better than another. The t-test assumes
that the sample is normal distributed which can be tested by the Shapiro-
Wilk test, presented in [SW65].

38

4.5. TEST OF HYPOTHESES

The t-test can both be performed on unpaired and paired datasets. For two
datasets to be paired, they must be the same size and each item in either
dataset must have exactly one partner item in the other dataset. In this
project, a obvious way to pair up the items would be to pair each assessed
match made by the first probability assessor or bookmaker with the same
match assessed by the second probability assessor. This entails that the data
has a logical dependency, implying that the dependent t-test is considered.

Let ~A = (xA1, . . . , xAn) be the sampled elements from the first dataset
and ~B = (xB1, . . . , xBn) be the sampled elements from the second dataset.
~D = (d1 = xA1 − xB1, . . . , dn = xAn − xBn) is the differences between the
pairs. E[~D] is the average difference between the pairs and is calculated as

E[~D] =
1
n

n∑
i=1

(xAi − xBi).

Similarly σ ~D is the standard deviation between the pairs which can be cal-
culated as

σ ~D =

√√√√ 1
n

n∑
i=1

(
(xA,i − xB,i)− E[~D]

)2

=

√√√√√ 1
n

n∑
i=1

(xA,i − xB,i)−
1
n

n∑
j=1

(xA,j − xB,j)

2

Then the paired t-test is as stated in (4.5).

t =
E[~D] ·

√
n

σD

=
1
n (
∑n

i=1(xA,i − xB,i))
√

n√
1
n

∑n
i=1

(
(xA,i − xB,i)− 1

n

∑n
j=1(xA,j − xB,j)

)2

=
∑n

i=1(xA,i − xB,i)√∑n
i=1

(
(xA,i − xB,i)− 1

n

∑n
j=1(xA,j − xB,j)

)2

(4.5)

where t is the test statistic. Note that it is a requirement that the differences
between the pairs are normal distributed.

When a t-value is obtained, it has to be compared to the level of statistical
significance chosen. This can be done by an approximate method or by a
table e.g. Table B.6 in [Kee95]. If the p-value in the table is above the α
value, the null hypothesis cannot be rejected, hence the test is void. If the
p-value from the table is below the chosen α value, the null hypothesis is
rejected, in favour of an alternative hypothesis, which typically states that
two elements do differ.

39

CHAPTER 4. BASIC CONCEPTS

4.5.5 The Wilcoxon Signed-Rank Test

The Wilcoxon Signed-Rank Test [Wil45, DeG89] is a non-parametric sta-
tistical test. A non-parametric test does not require a certain distribution
as opposed to a parametric test, like the t-test which requires normal dis-
tributed data. The weaker requirements make the test useful when the
distribution is unknown or when the data is not distributed according to
any distribution. It comes, however, at a cost since less assumptions can be
made when the test is designed.

Assume that two samples, A and B, of equal size are available where each
item in either sample has exactly one corresponding item in the other sample.
The corresponding items forms pairs, and the total number of pairs, n, is
equal to the number of items in A, which is the same number as the number
of items in B. The pairs need to be independent in order for the test to work;
this is not completely true in the case of football matches but it is assumed
to be true so that the test can be used. Let ~A = (xA1, . . . , xAn) be the
sampled elements from dataset A and ~B = (xB1, . . . , xBn) be the sampled
elements from dataset B. ~D = (d1 = xA1 − xB1, . . . , dn = xAn − xBn) is the
differences between the pairs.

Let θ be the median so that it is the point where there are equally many pairs
before and after it. Then the Wilcoxon Signed-Rank Test has the following
hypotheses:

• H0 : θ ≤ 0

• H1 : θ > 0

If H0 is rejected and H1 is accepted, θ is above 0 so sample A must have
the higher median. In this case that would imply that the probability asses-
sor used to make the probability assessments in sample A is better than the
probability assessor used to make the probability assessments in sample B.

The idea is to rank all differences according to their absolute value, such
that the smallest absolute value gets rank 1 and the highest gets rank n.
If two or more differences have the same absolute value they all will get
the average of the ranks they span. E.g. if 0.5, -0.5 and 0.5 are the three
smallest values in the sample, so they should share rank 1, 2, and 3, they
all would get rank 1+3

2 = 2 because 1 is the lowest rank and 3 is the highest
rank. All rankings for positive differences are summed together forming the
test statistic and this value is used to decide whether H0 can be rejected.

To translate the sum into a probability, the mean and standard deviation
of the average rank sum must be considered. It is assumed that the pairs
are ordered by absolute size, so that index 1 refers to the smallest absolute

40

4.5. TEST OF HYPOTHESES

difference and index n the largest absolute difference. Let Wi = 1 if di > 0
and Wi = 0 otherwise. Then the sum of the ranks, Sn, can be expressed as:

Sn =
n∑

i=1

iWi

Assume that the median, θ, is 0. Since the differences on average will be
equally likely to be either above or below 0 (ignoring cases where di = 0), it
is clear that

P (Wi = 0) = P (Wi = 1) =
1
2

Hence the mean value E[Wi] = 1
2 and the variance V ar(Wi) = 1

4 . Recall
that the pairs are independent, hence W1, . . . ,Wn are also independent. It
is now possible to calculate the mean of Sn if the median, θ, is 0:

E[Sn] =
n∑

i=1

iE[Wi] =
n∑

i=1

i
1
2

=
1
2

n∑
i=1

i (4.6)

In the same way it is possible to calculate the variance:

V ar(Sn) = V ar

(
n∑

i=1

iWi

)
=

n∑
i=1

i2V ar(Wi) =
n∑

i=1

i2
1
4

=
1
4

n∑
i=1

i2 (4.7)

Note that the two sums can be rewritten to
n∑

i=0

i =
n(n + 1)

2
and

n∑
i=0

i2 =
n(n + 1)(2n + 1)

6

This implies that

E[Sn] =
n(n + 1)

4
and V ar(Sn) =

n(n + 1)(2n + 1)
24

It is now possible to calculate Zn which is Sn fitted to a standard normal
distribution:

Zn =
Sn − E[Sn]√

V ar(Sn)
(4.8)

According to [DeG89], the distribution of Zn will converge to a normal
distribution if n → ∞ and θ = 0. Zn is the point in the normal standard
distribution which indicates how likely it is that the median of the population
of the differences is 0. In other words, if Zn is much lower than zero it is
very likely that the median is below zero and if Zn is very high the median
is probably above zero. The cumulative standard normal distribution can
be used to calculate the exact probability, e.g. if Zn = 0, implying that the
median of the sample is 0, then the cumulative standard normal distribution
will yield 0.5 probability of either of the sample having the highest values.

41

CHAPTER 4. BASIC CONCEPTS

Algorithm 4.1 The Wilcoxon Signed-Rank Test.
1: function WilcoxonTest(D)
2: D ← SortIncreasingly(D) . Assure sorted in increasing order
3: i← 0 . Keep track of element currently being examined
4: rankSum← 0 . Keeps track of the positive ranks sum
5: while i < |D| do . Run until all elements are checked
6: additional← i + 1 . Keeps track of absolute equal values
7: while |D[i]| = |D[additional]| do . Next value absolute equal?
8: additional← additional + 1 . Try the next value
9: end while

10: rank ← i+additional−1
2 . Average rank for these values

11: while i < additional do . For all absolute equal values
12: if D[i] > 0 then . If the value is positive
13: rankSum← rankSum + rank . Sum with other ranks
14: end if
15: i← i + 1
16: end while
17: end while

18: n← |D|
19: µ← n(n+1)

4 . Calculate the expected mean

20: σ ←
√

n(n+1)(2n+1)
24 . Calculate the expected standard deviation

21: Zn ← rankSum−µ
σ . Translate to the standard normal distribution

22: return 1− normalCdf(Zn) . Find the tail area of the distribution
23: end function

42

4.5. TEST OF HYPOTHESES

Let D be a 1-indexed array of the differences for all pairs. Then the proba-
bility that H0 should be rejected is as stated in Algorithm 4.1.

The rank in line 10 is calculated that way because additional is 1 higher
than the index of the last absolute equal value.

Lines 18-22 is the part which translates the rank sum into a useful probability
based on the calculations prior stated. normalCdf(Z) is a function which
returns the area under the standard normal distribution up to Z.

43

Chapter 5
Data Preparation

This chapter presents an overview over how the data is prepared before they
are used for learning.

First the distance measure is presented which can be used for determining
similarity of instances. After that the process of extracting the features from
the database, how features are combined, how new features are made, and
how to determine the most useful features are presented.

Lastly, the chapter presents methods for normalising the features and for
selecting a learning and a test set.

5.1 Creating the Features

This section first introduces how the features can be extracted from the
database. Then the concept of sliding windows, and its usage, is presented.
Lastly, manipulation of the existing features to possibly filter out noise is
presented.

5.1.1 Aggregating Actions into Categories Counts

A football match is very complex in the sense that play situations differ
greatly. The play situations are registered as actions in the database which
implies that some quantification is already made by Statman. Another quan-
tification is made by using categories instead of action types since the cate-
gories are more general and hence occur more often. These steps are taken
in order to make two matches comparable. If something only appears a few
times in the database, it is not possible to tell whether it has a real impact
on the outcome or not. The same is true for players, where the teams are

44

5.1. CREATING THE FEATURES

used instead of the players themselves. Hence, a match is represented by
summing all actions by each player together at team level and then building
the category counts from those actions. This implies that a match could be
represented like for instance 35 crosses by the home team, 2 goals by the
home team, 27 crosses by the away team, and 1 goal by the away team, and
so on.

All actions in the action table, described in Section 3.2.1 on page 18, are
single events. It is important to know which team made the actions, so the
query for counts needs to be constructed such that the club of either the first
or second player of the action is a grouping criteria. Since only categories
and not action types are used, the query must also extract on category level.
The following query counts based on the first player:

SELECT category id , d e s c r i p t i on , c lub id , name ,
COUNT(action . id) AS count

FROM action , category , ca t egory text , contract , c lub
WHERE type = ac t i o n i d AND ca t ego ry id = ca t ego ry t ex t . id

AND match id IN (610) AND c on t r a c t 1 i d = cont rac t . id
AND c l ub id = club . id

GROUP BY c lub id , c a t ego ry id
ORDER BY c lub id , c a t ego ry id

Listing 5.1: The category counting query for specific teams in a match.

This query generates a result set with the category id, the category text,
the club id of the players who contributed, the name of that club, and the
number of events for that category in match 610. This query could easily
be altered so that only players from a given club are returned, by adding
AND club_id = 2 to the WHERE clause. A sample from the query is shown
in Table 5.1.

category id description count club id name
1 Finished on target 2 2 FCK
1 Finished on target 4 11 OB
2 Finished off target 15 2 FCK
2 Finished off target 4 11 OB
3 Blocked attempt 4 2 FCK
3 Blocked attempt 4 11 OB

Table 5.1: Categories summed by type and club from match 610.

5.1.2 Sliding Windows

All predictions on what happens in a match must be based on what happened
in previous matches and possibly other information surrounding the team

45

CHAPTER 5. DATA PREPARATION

prior to the match.

According to Kresten Buch, the way a team performs depends on their form
[sta]. The form of the team is reflected in the different actions which the
team made in their last matches. Hence in order to predict the performance
of a team in a match, the actions of that team in the last few matches can be
used. window is used to denote the last n matches. Note that the matches
must be in the same season because two teams are relegated from the SAS
league and two teams are promoted into it and because the players in the
squad of a team most likely change significantly in the summer break. The
result of this is that there is no data available in the first window rounds of
the season.

The strength of a team is based on both its ability to create and utilise
chances but also its ability to keep their opponents from doing the same.
Hence, actions made by a team and against it should both be considered.
This implies that for the probability assessment of a match, there are four
different values for each category; category counts for the home team in
the last window matches, category counts against the home team in the
last window matches, category counts for the away team in the last window
matches, and category counts against the away team in the last window
matches.

An example of the process, with a window size of four, is presented in Ta-
bles 5.2, 5.3, and 5.4.

Date Home Away Crosses (h) Crosses (a)
28/8 05 Horsens AaB 39 38
11/9 05 AaB FC Nordsjælland 34 40
17/9 05 AGF AaB 32 45
21/9 05 AaB Sønderjyske 41 29

Table 5.2: Number of crosses in four succeeding matches with AaB.

Date Home Away Crosses (h) Crosses (a)
27/8 05 Viborg OB 29 41
11/9 05 FCM Viborg 39 34
21/9 05 Viborg Brøndby 42 41
25/9 05 Esbjerg Viborg 37 38

Table 5.3: Number of crosses in four succeeding matches with Viborg.

Table 5.4 is made by summing the category counts for and against each
team in the last four matches and is the instance representing that match.
h/f means the count for the home team, h/a the count against the home

46

5.1. CREATING THE FEATURES

Home Away Cros. (h/f) Cros. (h/a) Cros. (a/f) Cros. (a/a)
Viborg AaB 143 158 158 140

Table 5.4: The summed crosses from Table 5.2 on the preceding page and
Table 5.3 on the facing page for Viborg-AaB.

team, a/f the count for the away team, and a/a the count against the away
team. For instance, the 143 crosses for Viborg in the last four matches, all
marked in boldface font, are calculated by summing the 29 crosses Viborg
made against OB, the 34 against FCM, the 42 against Brøndby, and the
38 against Esbjerg. Note that the construction of the instance implies that
there are four features for each category type so far.

A query for the last window matches is needed for the extraction. An
example for the last four matches is presented in Listing 5.2.

SELECT id FROM match
WHERE (home id = 2 OR away id = 2) AND s t a tu s = 5

AND date < 1155333600
ORDER BY date DESC LIMIT 0 , 4

Listing 5.2: The match selection query.

This query first selects all matches where the home or away team has id 2,
by the statement home_id = 2 OR away_id = 2. Afterwards, it is assured
that the analysis of the match is finished, implying that status = 5. In
order to get only the matches before a specific date, the time stamp for
all matches must be below 1155333600 which implies that they are played
before the 12th August 2006. The available matches are ordered decreasing
by date and the first four matches are selected. The result of the query, the
last four matches, is 587, 575, 573 and 540.

It is possible to combine the match selection query from Listing 5.2 with
the category counting query from Listings 5.1 on page 45, such that the
counting is performed on previous matches. This is done by replacing 610
in the WHERE clause of the category counting queries with the SQL query for
selecting matches.

5.1.3 Manipulation of Categories

Some actions are registered with coordinates and all of them are registered
with time stamps. Moreover, the line-up is also included in the database.
From these properties it is possible to construct additional categories.

Six categories are made from the “Finished” categories by filtering them
according to their coordinates:

47

CHAPTER 5. DATA PREPARATION

• “Finished off target in the goal area”
• “Finished off target in the penalty area except the goal area”
• “Finished off target outside the penalty area”
• “Finished on target in the goal area”
• “Finished on target in the penalty area except the goal area”
• “Finished on target outside the penalty area”

One reason, why filtered categories could perform better than the original
categories, is that the filter process could clean the categories for noise. In
the case of “Finished”, the noise could be finishes made from odd angles or
far from the goal.

The information of line-ups from the previous matches is also used as a cus-
tom category: “Players missing from last match”. All other categories are
constructed based on data from previous matches which is not necessary
in this case because the line-ups are known in advance. Hence, it can be
assumed that something known about the match gives additional informa-
tion about the match, compared to something that happened in previous
matches.

5.2 Feature Reduction

The dataset consists of a large number of overlapping features, implying that
the same information is represented more than once, e.g. some dependency
between the number of goals and finishes on goal in a match can be expected.
Another possibility is that they are unrelated to the class variable, implying
e.g. that it is plausible that the number of throw ins that the home team has
in the middle of the field is unrelated to the outcome of the match. Hence,
it is often possible to find a feature set which contains the same amount of
information but has a lower number of features.

Furthermore since the dataset has a large number of features, it has a high
dimensionality, and this affords a number of difficulties. Datasets, which
have a high dimensionality, have a higher probability of containing irrelevant
and redundant features. A further problem is the curse of dimensionality
which refers to the phenomenon that data analysis becomes significantly
harder as the dimensionality of the data increases [TSK97, p.51]. This is
caused by the fact that when the number of features increases, the number
of dimensions increases which again makes the data lie sparsely in Euclidean
space. Therefore, a larger number of training instances is needed to make a
qualified classification. As the number of training examples in this project
is limited, the number of features needs to be reduced.

Feature reduction can basically be done in two ways: either by aggregating
features or by selecting a subset of features.

48

5.2. FEATURE REDUCTION

5.2.1 Aggregation of Similar Features

Reducing the number of features can be accomplished by projecting data
from a high dimension into a lower dimension. This implies that features are
aggregated, such that the dataset contains the same amount of information
but the dimensionality is lower.

There are a number of ways to aggregate features, e.g. by linear transforma-
tion. In this case, a number of action types are combined linearly, such that
the result is the category types which are then used instead of the action
types in the linear equation.

The categories have a higher numeric value than the summed action types
because a detailed action type like “finished with right foot - goal - deflected
by team mate” rarely occurs. This implies that the numeric value for “fin-
ished with right foot - goal - deflected by team mate” is mostly 0, in some
cases 1, but very rarely higher. By creating categories, some of this detailed
information disappears, but whether a goal was scored using the right or the
left foot is potentially irrelevant.

5.2.2 Aggregation of Home and Away Features

For each category type four different values are made as described in Sec-
tion 5.1.2 on page 45. Using a distance measure like the Euclidean, described
in Section 4.4 on page 36, could easily provide the wrong distance, as illus-
trated in Table 5.5. The data in the table is assumed made using a sliding
window of size four.

Instance Homefor Homeagainst Awayfor Awayagainst

A 7 3 3 7
B 7 7 3 3
C 5 5 5 5

Table 5.5: Number of goals in last four matches for three instances.

Using a Euclidean distance measure, the distance between A and C is 4 as
is the distance between B and C, but the two instances are very different.
Consider instance C: both teams have scored and conceded equally many
goals so the instances are similar. A is different from C because the home
team has a goal difference of +4 while the away team has a goal difference
of -4. This implies that in instance A, the home team should be a huge
favourite, which differs from the scenario in C where the two teams are
about equally good. In instance B, both the home and away team has a
goal difference of 0, so they should be considered about equally good, as it
were the case in C.

49

CHAPTER 5. DATA PREPARATION

This short example shows that when the four different values are presented
for each category, the Euclidean distance could be a bad measure so other
strategies should be considered.

One approach is to shrink the four values into one, an overall value. The
idea is that events made by the home team and against the away team count
positively and that events made by the away team or against the home team
counts negatively. The formula is

overall = homefor + awayagainst − (awayfor + homeagainst) (5.1)

It is straight forward to see that if the home team made a large number
of the actions in the last few games and the away team’s opponents also
did that, the value will tend to be positive. On the other hand the value
will be negative if the away team made a lot of them in the last matches in
combination with the home team’s opponents.

Applying 5.1 to the instances in Table 5.5 would yield a value of 8 for A and
0 for both B and C which would result in C being classified based on Bs
class variable which were the intention.

5.2.3 Feature Subset Selection

If a large number of different features exist in a dataset, it is plausible that
not all of these are necessary. Hence, a subset can be selected from the
original set of features, such that the probability assessment maintains the
same level of accuracy or even increases its accuracy.

The creation of a subset can be done with three different approaches: the
embedded, the filter, and the wrapper. In the embedded approach, the
selection of features takes place as a part of the classifier algorithm, such
as in the decision tree algorithm. The filter approach takes place before
the classifier algorithm is run and is independent of the algorithm. Every
feature gets a value according to how much information it contains, for
instance using information gain [Mit97], and the best can then be selected.
The wrapper approach uses the probability assessor to test which subset is
the best. The optimal way of doing this is to use the power set of features,
but this is rarely possible as with n features the total number of possible
subsets are 2n− 1 non-empty. This implies that not all possible subsets can
be tested and an approach which only tests some of the possible subsets is
needed. Unfortunately, no polynomial time algorithm exists which guarantee
to yield the best subset [HMS01].

50

5.3. NORMALISATION OF FEATURES

5.3 Normalisation of Features

The features used in data mining can have very different ranges which has
a negative impact on the accuracy of data mining algorithms which use
distance measures. For instance, the number of passes vary from 100 to
1,000 between games which are much higher values than the numbers of
goals which vary between 0 and 10. Some algorithms produce a probability
assessor where the impact of the passes is huge. To ensure that number
of goals and passes have the same initial impact, the features should be
normalised. This is done by applying a normalisation function, f , to each
value, xi, in the dataset to create x′i so that x′i = f(xi)

One simple way to do that is by using the min-max normalisation:

x′i =
xi −min(~x)

range(~x)
=

xi −min(~x)
max(~x)−min(~x)

(5.2)

where ~x is the set of features and xi ∈ ~x. The min-max normalisation
ensures that all values in ~x be normalised to the range 0 ≤ x′i ≤ 1.

Another approach is to use Z-score normalisation [Abd06]. The Z-score
normalisation centres the distribution around 0 with a variance and standard
deviation of 1. Variance and standard deviation are described in Chapter 4
on page 33:

x′i =
xi − E[~x]

σ~x
(5.3)

The Z-score normalisation usually results in all values being within the range
−4 < x′i < 4.

5.4 Splitting the Dataset

A probability assessor first needs to be learned. The purpose of the learning
process is to enable the model to make the correct probability assessment for
a given instance.

To perform the learning, a function is needed which uses a pair of vectors:
one consisting of learning instances and one with the corresponding class
labels. This kind of learning is called supervised learning, as opposed to
unsupervised learning where no class labels are known.

The learning should work in a way such that the prediction error is min-
imised, implying that the model should perform as well as possible given the
knowledge of the learning set. There is one consideration though, namely
overfitting. Overfitting occurs when a model has been extremely well fitted
to a learning set without considering what will happen when an instance,

51

CHAPTER 5. DATA PREPARATION

which has not been observed before, is observed. The model will then per-
form badly on the test set. This is described further in Section 6.2.3 on
page 66.

When a hypothesis is found, the result must be verified. Verification is done
by testing the hypothesis on a test set which the hypothesis has not been
trained on. This implies that the probability assessor must never have seen
the test set before.

To achieve the possibility of verification, the dataset must be divided into
two sets prior to the learning: the learning set is denoted L and the validation
set is denoted V. The same data should not be used for both learning and
testing because the model would then have learned on the same data that
it uses for testing, implying that L ∩ V = ∅.
One potential problem with this approach is that the entire dataset is not
used for learning which does not utilise the full potential of the dataset. This
is especially a problem if the dataset is very limited in size. If new data is
generated from time to time, this problem is reduced since all the currently
known data can be used for learning and the final evaluation can be done
on the data which was generated while the tests and fittings were done.

52

Chapter 6
Probability Assessors

This chapter first presents scoring rules for evaluating probability assessors,
including both absolute and pair wise scoring rules. Then the basics for
learning probability assessors, including how the data should be split and
how to reduce overfitting, are presented. Finally, the test plan is presented
which includes descriptions of which learning algorithms are chosen and on
what data they learn.

6.1 Scoring Rules for Probability Assessors

Scoring rules are needed for evaluation of probability assessors such that the
best probability assessors can be used and the others avoided. A probability
assessor must make its probability assessment prior to the observation of the
outcome. After the outcome is observed, the quality of the assessments can
be determined by the use of a scoring rule. A scoring rule is a function which
from one or two probability assessments and an observed outcome, yields a
score. There are generally two types of scoring rules: absolute scoring rules
and pair wise scoring rules.

An absolute measure calculates an individual score for each probability as-
sessment depending on the observed outcome. As each probability asses-
sor has a single deterministic score on each instance in a given dataset, the
absolute measure can be used to rank the probability assessors.

A pair wise measure calculates a score for two probability assessors in com-
parison with each other. Assuming that a scoring rule is applied which can
determine which of the two probability assessors is the best with regard to a
number of observed outcomes, it is possible to determine a winner. Though
it seems trivial to determine the winner given an observed outcome, as the
probability assessor with the highest probability on the observed outcome

53

CHAPTER 6. PROBABILITY ASSESSORS

should be regarded the best, it is more complicated over a number of in-
stances. The pair wise scoring rules make it possible to make a partial
ranking of a number of probability assessors according to the number of
victories they obtain, if all possible pairs are compared.

Notation

Before the scoring rules are explained, some notation is needed. The set of
all outcomes is denoted D and is considered ordered, so that it is possible to
refer to the outcomes as outcome 1, . . . , n, where n is the number of elements
in D.

Three vectors exist ~p = 〈p1, . . . , pn〉, ~r = 〈r1, . . . , rn〉, and ~d = 〈d1, . . . , dn〉.
~p represents the output of a given probability assessor, such that

∑
i pi = 1

and 0 ≤ pi ≤ 1 e.g. 〈0.3, 0.4, 0.3〉 in a scenario with 3 potential outcomes. ~r
represents the probability assessment which a given probability assessor pro-
vides to the scoring rule, ~r is not necessarily identical to ~p. ~d represents the
outcome vector, such that

∑
i di = 1 and di ∈ {0, 1} e.g. 〈0, 1, 0〉 in a sce-

nario with 3 potential outcomes, where the 2nd possibility is the observed
outcome.

A set of vectors, h, exists in which ~h1, . . . ,~hn ∈ h. ~hk represents k vectors
of length k. For all 1 ≤ j ≤ k exists a vector hk

j where hk
j,j = 1 and hk

j,i = 0
for all i 6= j, 1 ≤ i ≤ k, e.g. ~h3

2 = 〈0, 1, 0〉. This set of vectors is used to
emulate all possible outcome vectors.

6.1.1 Absolute Scoring Rules

An absolute scoring rule is a function, S, which takes two vectors ~p, a prob-
ability assessment from probability assessor c, and ~d, the outcome vector,
as input and yields a score for c as shown in (6.1):

S : (~p, ~d)→ R (6.1)

The absolute scoring rules allow ranking to be performed easily by calcu-
lating the score for each instance, a probability assessor assesses and taking
the average of those values.

Definition 6.1 (Expected score, absolute scoring rules). The expected score
is a special case of expected value, see Section 4.1 on page 33, where ~x in
E~p[~x] is calculated from the scoring rule and the assessment, ~r, that the
probability assessor uses. xi is calculated as the score which would be given
if outcome i occurs, i.e. xi = S(~r, ~hi). The expected score for the absolute
scoring rules is shown in (6.2).

E~p[S(~r, ~hn)] =
∑

i

pi · S(~r, ~hn
i) (6.2)

54

6.1. SCORING RULES FOR PROBABILITY ASSESSORS

In some cases, it is possible for a probability assessor to achieve a better
expected score if it uses a specific strategy to make the probability assess-
ment. Hence, a desired property of a scoring rule is properness. In a proper
scoring rule, the probability assessor maximises its expected score by using
the probability assessment which it believes to be correct, rather than one
altered to fit the scoring rule. More formally Definition 6.2 must hold.

Definition 6.2 (Properness, absolute scoring rules). Let ~p denote the prob-
ability assessment made by the probability assessor, n denote the length of
~p and ~h defined as before. Then the absolute scoring rule S is proper if

E~p[S(~p, ~hn)] ≥ E~p[S(~r, ~hn)]

for all ~r ∈ [0, 1]n where
∑n

i=1 ri = 1.

An example of a scoring rule which is not proper is a scoring rule which
outputs the prediction of the outcome as the score such that

S(~p, ~d) =
∑

i

pi · di. (6.3)

If a probability assessor for a given instance with two potential outcomes
calculates and outputs ~p = 〈0.7, 0.3〉, it has the expected score

E~p[S(~p, ~h2)] =
∑

i

pi ·

∑
j

pj · h2
i,j

= 0.7 · (0.7 · 1 + 0.3 · 0) + 0.3 · (0.7 · 0 + 0.3 · 1) = 0.58

However, the expected score for this rule can be increased without any
further knowledge. Assume that the probability assessor instead outputs
~r = 〈1, 0〉 as its probability assessment, so that the expected score would be

E~p[S(~r, ~hn)] =
∑

i

pi ·

∑
j

rj · h2
i,j

= 0.7 · (1 · 1 + 0 · 0) + 0.3 · (1 · 0 + 0 · 1) = 0.7

This example shows that some scoring rules favour probability assessors which
change their probability assessment in order to achieve a higher expected
score. Though this is an extreme example, it shows that a scoring rule,
which is not proper, could encourage the probability assessors to output a
classification rather than a probability assessment. As mentioned in Sec-
tion 1.2 on page 3, the intent of this project is not to classify the actual
outcome but to make good probability assessments for the matches. Hence,
the properness property of a scoring rule is important in order to achieve
that goal.

55

CHAPTER 6. PROBABILITY ASSESSORS

There are a number of different absolute scoring rules, e.g. the quadratic
scoring rule, the logarithmic scoring rule, the spherical scoring rule, and the
zero-one scoring rule. The quadratic scoring rule and the logarithmic scoring
rule are described below, the others can be found in [WM68] and [GR04].

As an absolute scoring rule yields an absolute and deterministic score for
a probability assessment on each instance in a given dataset, the score can
be viewed as the quantitative measure for the strength or quality of the
classifier applied to that particular dataset.

Quadratic Scoring

The quadratic scoring rule is a proper scoring rule [WM68]. It sets the score
to the sum of the quadratic difference between all pairs (pi, di), so that

Q(~p, ~d) = 1−
∑

i

(pi − di)2. (6.4)

If the jth possible outcome is observed, then dj = 1 and di = 0 for all i 6= j.
This implies that (6.4) yields (6.5).

Q(~p, ~d) = 1− (pj − 1)2 −
∑
i6=j

p2
i = 2pj −

∑
i

p2
i (6.5)

Note that if the probability assessment on the outcome, pj , is 1, so that
the prediction on all the other outcomes is 0, this maximises the score.
Conversely, as pj goes towards zero, the score goes towards the sum of all
probabilities squared.

lim
pj→0

Q(~p, ~d) = −
∑
i6=j

p2
i ≥ −1

lim
pj→1

Q(~p, ~d) = 1

The fact that the differences between pairs of (pi, di) are squared results
in the score decreasing quadratically. The quadratic scoring rule takes the
entire vector of the probability assessment, ~p, into account, when the score
is calculated. Let C1 and C2 be two probability assessors which each makes
a probability assessment on a given match. The probability assessment of
C1 is 〈0.3, 0.35, 0.35〉 and the probability assessment of C2 is 〈0.35, 0.6, 0.05〉.
Let the outcome be 1, then the quadratic scoring rule gives C1 a score of
0.265, while C2 gets a score of 0.215, implying that C1 is best.

At first, this is a little surprising because C1 has a lower probability on the
outcome but it is the result of the fact that all probabilities are taken into
account. This is a property which ensures that the quadratic scoring rule

56

6.1. SCORING RULES FOR PROBABILITY ASSESSORS

penalises probability assessors which have high probabilities on outcomes
which are not observed. Since the bookmaker only pays out money if the
outcome actually occurs this property is not desired. Hence, the quadratic
scoring rule is not used for model tuning.

Logarithmic Scoring

The logarithmic scoring rule [WM68] sets the score to the natural logarithm
of the probability of the actual outcome, so that

L(~p, ~d) =
∑

i

ln(pi) · di (6.6)

where ∞ · 0 = 0. If the jth outcome is observed, then dj = 1, di = 0 for all
i 6= j and

∑
k dk = 1, and (6.6) yields

L(~p, ~d) = ln(pj)

Note that in contrast to the quadratic scoring rule, only pj is taken into
account when calculating the score. The bounds for the quadratic score can
be seen below.

lim
pj→0

L(~p, ~d) = −∞

lim
pj→1

L(~p, ~d) = 0

Because only pj is taken into account, a higher probability on the observed
outcome yields a better score. Reconsider the example from before with two
probability assessors C1 and C2 making probability assessments for a given
match. Let the outcome be 1, then the logarithmic scoring rule gives C1 a
score of −0.523 while C2 gets a score of −0.456, implying that C2 is best.

From this is seen that a significant difference between the quadratic scoring
rule and the logarithmic scoring rule is that the logarithmic scoring rule does
not take the entire probability assessment into account when it calculates the
score for the probability assessment, but only the probability on the actual
observed outcome. This also implies that the logarithmic scoring rule gives a
great penalty (−∞) to probability assessors which set the probability of the
observed outcome to 0. Actually, if the scores of all matches were averaged,
the probability assessor with the 0 probability would lose or tie no matter
how well it performs on the rest of the instances.

Theorem 6.3 (Logarithmic scoring rule is proper). The logarithmic scoring
rule is a proper scoring rule.

57

CHAPTER 6. PROBABILITY ASSESSORS

Proof. Assume that the logarithmic scoring rule is not proper. Then a better
expected score is achieved by using vector ~r instead of ~p.

The expected score, E~p[S(~r, ~hn)], using the logarithmic scoring rule is

E~p[S(~r, ~hn)] =
∑

i

pi

∑
j

ln(ri) · hn
i,j =

∑
i

pi ln(ri) (6.7)

Since
∑

i ri = 1, E~p[S(~r, ~hn)] can be maximised using a Lagrange multiplier
[Zwi03, pp.389–390]. Let n = |~p|, f(r1, . . . , rn) =

∑n
i=1 pi ln(ri) and

g(r1, . . . , rn) =
∑n

i=1 ri = 1.

For k = 1, . . . , n, it is required that d
drk

(f + λ(g − 1)) = 0.

0 =
d

drk
(f + λ(g − 1))

=
d

drk

(
n∑

i=1

pi ln(ri) + λ(
n∑

i=1

ri − 1)

)

=
d

drk

(
n∑

i=1

pi ln(ri)

)
+

d

drk

(
λ(

n∑
i=1

ri − 1)

)

= pk
1
rk

+ λ

⇔ rk =
−1
λ

pk

It is known that
∑

i ri =
∑

i pi = 1 and that ri = −1
λ pi, i = 1, . . . , n, so

λ must be −1, hence ~p will maximise the expected score. This shows that
Theorem 6.3 holds so that the logarithmic scoring rule is a proper scoring
rule.

6.1.2 Pair Wise Scoring Rules

A pair wise scoring rule involves two probability assessors. The objective is
to determine which scoring rule is the better by letting them compete. A
pair wise scoring rule is a function which takes three vectors ~p1, ~p2, ~d as input
and yields a score as shown in (6.8). ~p1 is the probability assessment yielded
by probability assessor C1 and ~p2 is the probability assessment yielded by
probability assessor C2. ~d is defined as in Section 6.1.

S : (~p1, ~p2, ~d)→ R (6.8)

A pair wise scoring rule must be antisymmetric implying that

S(~p1, ~p2, ~d) = −S(~p2, ~p1, ~d) and S(~p1, ~p1, ~d) = 0. (6.9)
(6.10)

58

6.1. SCORING RULES FOR PROBABILITY ASSESSORS

The pair wise scoring rules are different from the absolute ones, in that they
need two probability assessments in order to produce a score.

Definition 6.4 (Expected score, pair wise scoring rules). Let ~p1, a vector of
length n, be the probability assessment calculated by probability assessor C1,
~r be the probability assessment probability assessor C1 inputs in the scoring
rule, ~p2 be the probability assessment made by probability assessor C2 and
~hn defined as above. The expected score of ~r from probability assessor C1’s
point of view, is

E ~p1
[S(~r, ~p2, ~hn)] =

∑
i

p1,i · S(~r, ~p2, ~hn
i). (6.11)

Properness is a desired property of pair wise scoring rules as it is with ab-
solute scoring rules. There are two kinds of properness for pair wise scoring
rules. Strong properness, Definition 6.5, requires the expected score by us-
ing the calculated probability assessment to be better than any alteration
no matter what the opponents probability assessment is.

Definition 6.5 (Strong properness, pair wise scoring rules). Let ~p1 denote
the probability assessment made by probability assessor C1, ~p2 denote the
probability assessment made by probability assessor C2, and n denote the
length of ~p1. Then the pair wise scoring rule S is strongly proper if

E ~p1
[S(~p1, ~p2, ~hn)] ≥ E ~p1

[S(~r, ~p2, ~hn)]

for all ~r, ~p2 ∈ [0, 1]n where
∑n

i=1 ri =
∑n

i=1 p2,i = 1.

Definition 6.6, weak properness, requires the expected score by using the
calculated probability assessment to be better than any alteration under the
assumption that the opponent’s probability assessment is the same as the
calculated probability assessment. Weak properness can be used in cases
where the opponents probability assessment is unknown, in such a case the
best guess of the opponents probability assessment is the calculated proba-
bility assessment.

Definition 6.6 (Weak properness, pair wise scoring rules). Let ~p1 denote
the probability assessment made by probability assessor C1, and n denote the
length of ~p1. Then the pair wise scoring rule S is weakly proper if

E ~p1
[S(~p1, ~p1, ~hn)] ≥ E ~p1

[S(~r, ~p1, ~hn)] (6.12)

for all ~r ∈ [0, 1]n where
∑n

i=1 ri = 1.

using (6.9), (6.12) is equivalent to

0 ≥ E ~p1
[S(~r, ~p1, ~hn)]

59

CHAPTER 6. PROBABILITY ASSESSORS

Note that it is only necessary to prove that p1 cannot be changed for an
expected gain because a pair wise scoring rule must be antisymmetric.

The scores from a pair wise scoring rule cannot directly be used to rank
more than two probability assessors. This implies that if a ranking of three
or more probability assessors is needed, some way of doing so is also needed.
One obvious approach would be to let the probability assessors compete
in a round robin fashion and then rank the probability assessors according
to the number of victories they obtain against other probability assessors.
This ranking would only be partial since it is plausible that two probability
assessors obtain the same number of victories.

One example of a pair wise scoring rule, the Bookmaker-Gambler scoring
rule, is explained below.

Bookmaker-Gambler Scoring

The Bookmaker-Gambler scoring rule is a pair wise scoring rule for the
particular problem domain of this project. As this is a pair wise scoring rule,
two probability assessors are needed, C1 and C2. Furthermore, two vectors
~p1 = 〈p1,1, . . . , p1,n〉 and ~p2 = 〈p2,1, . . . , p2,n〉 are needed. ~p1 represents the
probability assessment given by probability assessor C1, and ~p2 represents
the probability assessment given by probability assessor C2.

The scoring rule is divided into two well defined parts: the first, where C1

is the bookmaker and c2 is the gambler, and the second where C2 is the
bookmaker and c1 is the gambler.

Some assumptions about betting are made: it is assumed that the gambler
only bets on outcomes on which he can achieve the highest expected gain.
If the same gain is expected in multiple cases, the stakes are distributed
evenly. In order to achieve fairness, both probability assessors must have a
pay-back-percentage of 1 when acting as bookmakers.

First, the gambler compares the odds from the bookmaker, ~obookmaker, with
the probabilities calculated by the gambler, ~pgambler, for all possible out-
comes. This is calculated by simulating a one unit bet on each outcome,
calculating the stake which would be returned, and multiplying that with
the probability that the outcome is observed. The expected return for out-
come i is named ti.

ti = (1 · obookmaker,i) · pgambler,i =
pgambler,i

pbookmaker,i

The rewriting is based on the proportional relationship between odds and
probabilities, see Section 2.1.1 on page 5, that is oi = 1

pi
.

60

6.1. SCORING RULES FOR PROBABILITY ASSESSORS

The task is now to find the i values which maximise ti. The stake vector, ~s,
is now made where

si =
{

1 if ti = maxj tj
0 if ti < maxj tj

To ensure that both probability assessors gamble for the same amount of
units, the vector is normalised into ~s′, such that

s′i =
si∑
j sj

Now any vector, ~s′, satisfies
∑

i s
′
i = 1, which implies that any gambler will

bet for exactly one unit.

When the result vector, ~d, is known, the result, R, for assessor c playing as
gambler can be found:

Rc1,gambler(~d, ~s′, ~obookmaker) =
∑

i

di · s′i · obookmaker,i − 1

⇔ Rc1,gambler(~d, ~s′, ~pbookmaker) =
∑

i

di · s′i ·
1

pbookmaker,i
− 1

If the outcome is i and the gambler has a stake on it, the gambler gets
the return of stake times odds. Recall that 1 is subtracted from the result
because it is the stake of the gambler

It is now possible to calculate the score for both probability assessors which
is done by letting them both act as a gambler and as a bookmaker. The
result for the first probability assessor, C1, is:

BG(~p1, ~p2,~h) = Rc1,gambler −Rc2,gambler

=
∑

i

di · s′c1,i ·
1

pc2,i
− 1− (

∑
i

di · s′c2,i ·
1

pc1,i
− 1)

=
∑

i

di ·
s′c1,i

pc2,i
−
∑

i

di ·
s′c2,i

pc1,i

=
∑

i

di ·
(

s′c1,i

pc2,i
−

s′c2,i

pc1,i

)

The result for the probability assessor is used as the score for the given
probability assessment, the probability assessor made. It is clear that the
expression is antisymmetric, so if the order of C1 and C2 is changed, the
score will be the negative value of C1’s result.

The complete algorithm for calculating the score, using the Bookmaker-
Gambler scoring rule, is given in Algorithm 6.1. It uses the function

61

CHAPTER 6. PROBABILITY ASSESSORS

Algorithm 6.1 The Bookmaker-Gambler scoring function.

1: function BG(~p1, ~p2, ~d)
2: ~s′1 ←CalculateStakes(~p1, ~p2) . Calculate the stakes for p1

3: ~s′2 ←CalculateStakes(~p2, ~p1) . Calculate the stakes for p2

4: score←
∑

i di · (
s′1,i

p2,i
− s′2,i

p1,i
) . Calculate the score

5: return score . Return the score
6: end function

Algorithm 6.2 The CalculateStakes function.
1: function CalculateStakes(~p1, ~p2)
2: for i← 1 to |~d| do
3: ti ← p1,i

p2,i
. Calculate the expected payback

4: end for

5: max← maxi ti . Find the maximal payback
6: for i← 1 to |~d| do
7: if ti = max then . Is the payback the largest achievable?
8: si ← 1 . If so, place a bet on that outcome
9: else

10: si ← 0 . Otherwise do not
11: end if
12: end for

13: sum←
∑

i si . Find the sum of all stakes
14: for i← 1 to |~d| do
15: s′i ←

si
sum . Normalise each stake

16: end for

17: return ~s . Return the stake vector
18: end function

62

6.1. SCORING RULES FOR PROBABILITY ASSESSORS

CalculateStakes, given in Algorithm 6.2, as a sub function to calculate the
stakes.
When BG(~p1, ~p2, ~d) has been computed, based on the probability assess-
ments made by C1 and C2, the overall winner is C1 if the score is positive,
the result is 0 if the two probability assessors are equally good or identical,
and if the result is negative C2 is the winner.
The Bookmaker-Gambler scoring rule is not strongly proper which can
be seen from the following example. Consider ~p1 = 〈0.5, 0.3, 0.2〉, ~r =
〈0.41, 0.3, 0.29〉 and ~p2 = 〈0.4, 0.3, 0.3〉. Now calculate the values in the
inequality from the definition:

E ~p1
[S(~p1, ~p2, ~h3)] =

3∑
i=1

p1,i · S(~p1, ~p2,
~h3
i) = 1.247 + 0− 0.995 = 0.252

and

E ~p1
[S(~r, ~p2, ~h3)] =

3∑
i=1

p1,i · S(~r, ~p2,
~h3
i) = 1.247 + 0− 0.687 = 0.56.

It is clear that the expected score for probability assessor 1 changed by using
~r instead of ~p1, hence the scoring rule is not strongly proper. It is, however,
weakly proper.

Theorem 6.7 (Weak properness, The Bookmaker-Gambler scoring rule).
The Bookmaker-Gambler scoring rule is weakly proper.

Proof. First consider the definition of weak properness:

0 ≥ E ~p1
[BG(~r, ~p1, ~hn)] =

n∑
i=1

p1,i ·BG(~r, ~p1, ~hn
i)

=
n∑

i=1

p1,i ·
(

sr,i

p1,i
− sp1,i

ri

)
=

n∑
i=1

(
sr,i − sp1,i

p1,i

ri

)

= 1−
n∑

i=1

sp1,i
p1,i

ri

Let j1, . . . , jk be the indices where the stakes are placed which implies that
each stake is 1

k . This means that

0 ≥ 1−
n∑

i=1

sp1,i
p1,i

ri
= 1−

k∑
i=1

1
k

p1,ji

rji

⇔

0 = 1− k

k
= 1− 1

k

k∑
i=1

1 ≥ 1− 1
k

k∑
i=1

p1,j1

rj1

⇔

k∑
i=1

1 ≤
k∑

i=1

p1,j1

rj1

63

CHAPTER 6. PROBABILITY ASSESSORS

Recall that the stakes are placed where p1,i

ri
is largest for i = j1, . . . , jk,

and because
∑

~p1 =
∑

~r = 1 then 1 ≤ p1,i

ri
for those is. Then

∑k
i=1 1 ≤∑k

i=1
p1,j1
rj1

is true which concludes Theorem 6.7.

Even though the Bookmaker-Gambler scoring rule is only weakly proper, it
still resembles the problem domain. It should, however, be used with caution
in other probability assessor evaluation domains but it fits the process of
odds assessment, hence it is still used for tests later in this report.

6.2 Learning Probability Assessors

This section presents how probability assessors are learned in general terms.
First, the true probability assessment is described. The true probability as-
sessment is important because it is the probability assessment, all probability
assessors should aim to output. How and why the dataset should be split
up in order to get the desired results is described afterwards. This section
concludes with a description of overfitting and why it should be avoided.

6.2.1 True Probability Assessment

Due to the large amount of unpredictable factors in a football match, the
odds for a given wager are considered very hard to assess exactly. The odds
are a representation of the underlying probability distribution, as described
in Section 2.1.1 on page 5.

A true, or correct, probability distribution is considered to exist. Assume
that an infinite number of matches, represented by instances, exist in the
dataset, which also implies that an infinite number of identical matches
existed. The correct probability assessment is defined as the frequency of
the outcomes over groups of identical matches. If the correct probability
is transformed into odds using a pay-back-percentage of 1, these can be
considered the odds on which a given gambler does not care whether he has
to buy or sell the wagers.

The true probability assessment can be represented as a vector ~y consisting
of the probabilities for each possible option in the wager for a given match.∑

i yi = 1 and every element in the vector is one outcome of the wager.

The true function f is a function which maps the set of features to ~y, such
that f presents the correct probability assessment for the instance. f is not
known, hence the task is to find a probability assessor C, i.e. a hypothesis
of f in the space of all possible hypothesises, such that C ∈ H. Let S
be a set of training examples {(~x1, v1), . . . , (~xm, vm)}, where ~xi is a vector
of values on the form 〈xi,1, . . . , xi,n〉, and xi,j is the jth either continous
or discrete feature in the ith training example. vi is the class variable of

64

6.2. LEARNING PROBABILITY ASSESSORS

the ith training example, indicating how the wager ended on the already
played match. C(~x) = ~z will be probability assessor C’s estimation of the
probability distribution ~y for the features ~x. Note that the probability as-
sessor C may have a higher probability on the correct outcome than f on
a given match. However, if enough matches with the same ~x values were
present, the outcome of the wagers would be distributed like f does.

6.2.2 Utilise the Training Data

When the error of a given probability assessor needs to be determined, the
dataset is usually partitioned into two sets: the learning set, L, and the
validation set, V . These sets are described in Section 5.4 on page 51. But
the learning set often has to be split again because it is used for parameter
tuning. The evaluation of the tuned settings should be performed by learning
a model using the settings on LL and testing the model on LT where LL ∩
LT = ∅.

Holdout validation is the simplest kind of validation. A given number of
instances are randomly chosen from L, these instances form the test set,
LT , and the remaining instances form the actual learning set, LL. Usually,
approximately a third of the instances are used in LT [DHS01].

A problem with the splitting is that each instance is used only for either
learning or testing, so the available instances are only used for one action
each. This implies that the precision of the error decreases compared to the
case where all instances are used for both learning and testing. To avoid
this reduction in precision, a process called cross-validation is used. There
are two common approaches to performing cross-validation, [TSK97]:

• k -fold cross-validation where the dataset is partitioned at random into
k subsets. When the score is calculated, one subset is chosen as LT and
the k − 1 remaining subsets are used as LL. This process is repeated
k times, until all the subsets have been used exactly once as LT . The
error can be found as the average score over the k subsets.

• Leave-one-out cross-validation is k -fold cross-validation with k chosen
as the number of instances in the dataset. This implies that every
instance forms its own subset.

From the above variations of validation, leave-one-out cross-validation is the
one that allows the greatest number of instances to be used when making a
probability assessment. It is the one which achieves the highest accuracy in
estimating the score. The downside of leave-one-out cross-validation is that
it is also the one which generates the most calculations.

65

CHAPTER 6. PROBABILITY ASSESSORS

6.2.3 Overfitting

This section is based on [Geu02], and [Mit97]. Overfitting occurs when the
learned model tries to fit the learning data too much, such that it becomes
extremely adept at making classifications for the instances in the learning set
but bad at making classifications for other instances. Note that the notion of
overfitting is described using a problem setting with a classification problem
as this is more intuitive to understand, but it still applies to a probability
assessment problem setting.

Definition 6.8 (Overfitting (from [Mit97])). Given a hypothesis space H, a
hypothesis h ∈ H is said to overfit the training data if there exists some hy-
pothesis h′ ∈ H, such that h has a smaller error than h′ on the training data
but h′ has a smaller error than h over the entire distribution of instances.

Another related term is underfitting which occurs when the model does not
fit the data enough. These terms can also be described in the context of bias
and variance. Intuitively, these terms can be described as when a classifier
partitions the instance space into regions where each region is assigned a
class. When a new instance needs to be classified, the model determines
which region the instance fits into and then assigns the class of the region
to the instance. When these regions are too large or general, the accuracy
of the fit generally decreases, increasing the error rate. This effect is called
bias, and is shown on the left in Figure 6.1. When the regions are too small
or the complexity of the regions is too great, the probability that the regions
are labelled with an incorrect class is increased, again increasing the error
rate. This effect is called variance, and is shown on the right in Figure 6.1.
The figure is created using k-Nearest Neighbor, hence k refers to the number
of nearest neighbours the algorithm takes into consideration before it makes
its classification.

There exists a trade-off between bias and variance, or between an instance
space with too simple regions and an instance space with too complex re-
gions. This is shown in Figure 6.2. The optimal fitting is the point where
the lowest error is measured, and also where neither over- nor underfitting
occurs. Overfitting is present to the right of the optimal fitting as the com-
plexity is increased, whereas underfitting is present to the left of the optimal
fitting as the model turns simpler.

6.3 Test Plan

This section presents the selection of algorithms and the test phases.

66

6.3. TEST PLAN

k = 25 k = 1

Figure 6.1: The intuition behind bias and variance, with bias shown left and
variance shown right.

E=bias+var

bias

var

Complexity

Error-rate
Optimal fitting

[Geu02]

Figure 6.2: The trade-off between bias and variance, with the error-rate
shown as a function of the complexity.

67

CHAPTER 6. PROBABILITY ASSESSORS

6.3.1 Selection of Algorithms

The no free lunch theorem, described in [WM97], states that no single learn-
ing algorithm fits all problem domains. For that reason, different learning
algorithms should be applied to the data.

An eager learner creates the probability assessor as soon as the training data
is available, implying that when it encounters a test instance, it is ready to
make a probability assessment based on that instance. Lazy learners do
not evaluate the training instances before a probability assessment of a test
instance is needed, so it needs to make the probability assessor before each
probability assessment, implying that the probability assessment process
takes a longer time. An advantage of the lazy learners is that after an
instance is probability assessed and the outcome is observed, the instance
can easily be a part of the learning data.

The major difference between the two classes of learners is that since a lazy
learner produces a new probability assessor for each new instance which
needs a probability assessment, the approximation is customised to the exact
instance. This implies that the approximation is local. An eager learner
must choose the approximation in advance before the instance is known,
which implies that the approximation is global [Mit97].

The first learning algorithm is a modified version of the decision tree algo-
rithm which instead of the normal classification produces a probability as-
sessment. The decision tree algorithm is an eager learning algorithm which
partitions the instance space into regions where the same probability assess-
ment is made in each region. The details are presented in Chapter 7.

The k-Nearest Neighbor algorithm is a lazy learner and is presented in Chap-
ter 8. The algorithm uses the nearest neighbours measured by Euclidean
distance to make its probability assessment which, is done at evaluation
time making it a lazy learner. An alteration of k-Nearest Neighbor, where
the best k value is found automatically, is also presented.

As described in Section 2.2 on page 11, the Dixon-Coles approach fits the
problem domain well, hence this approach is presented in Chapter 9. In
contrast to decision trees and k-Nearest Neighbor, the Dixon-Coles approach
only uses one feature, namely goals.

Ensemble methods are used to combine a number of base probability asses-
sors, like decision trees, into a stronger combination than the base proba-
bility assessors themselves. Both ensembles of base probability assessors of
one type and ensembles of different types of base probability assessors are
presented and evaluated. Ensemble methods are presented in Chapter 10.

68

6.3. TEST PLAN

6.3.2 Test Phases

The test consist of three phases. First, the learning algorithms and the
necessary alterations to fit the problem domain are explained in each of the
four chapters.

The parameter tuning and model learning is the second phase. The models
are first learned using the learning set, LL, consisting of the matches played
before the 1st of July 2006 which is 396 matches. This also includes the
individual parameters like the k value in k-Nearest Neighbor but also feature
selection which is done differently in the learning algorithms. The tuning is
based on the logarithmic score, see Section 6.1.1, obtained for the different
settings. This phase ends up in a test on the first test set, LT , consisting
of 107 matches played between the 1st of July 2006 and the 1st of January
2007. The second phase is described individually in each chapter. After
the tuning and testing, one to three different settings are chosen for each
learning algorithm.

396 matches
2004-07-24 - 2006-05-14

107 matches
2006-07-19 - 2006-11-26

72 matches
2007-03-10 - 2007-05-27

VLL TL

Figure 6.3: The entire dataset is divided into three subsets.

The final evaluation is the third phase. The evaluation is performed in
Chapter 11 and uses matches neither in LL nor in LT to evaluate each of
the different learning algorithms and settings. This dataset will be named
the validation set, V, and consist of 72 matches played after the 1st of
January 2007. The partition of the dataset into the three subsets is shown
in Figure 6.3. The evaluation is both as a bookmaker and as a gambler. The
details for the final evaluation are presented in Section 11.1 on page 119.

69

Chapter 7
Decision Trees

A decision tree is a graph or model, in which each internal node tests a
feature and each leaf node assigns a classification or probability assessment.
The decision tree can, given a test instance, make the probability assess-
ment, only by observing the most important features. It determines which
features are most important when building the tree. This section is based
on [HK01] and [Mit97].

The decision tree classifier is an eager learner, implying that it builds the
classifier before it knows anything about the instances that need to be classi-
fied. In the basic case, the decision tree algorithm is a greedy agorithm which
constructs the decision tree using a top-down recursive divide-and-conquer
approach. Most decision tree algorithms are designed for cases where the
class feature is discrete, e.g. ID3, C4.5. Decision tree algorithms for regres-
sion also exist but they are not described because they do not fit the project
needs.

The probability assessment for an instance is looked up in the tree and for
each node the split of the feature is compared to the feature in the instance.
This continues down to the next node until a leaf node is reached which
then returns the probability assessment as the probability assessment for
the instance.

Two of the main benefits by using a decision tree are:

• It is not necessary to perform feature selection before learning, as the
feature selection is part of the decision tree building.

• Once a decision tree is made, it is very easy to interpret compared to
e.g. k-Nearest Neighbor. Once a decision tree is built, a human can
easily interpret it but most importantly, classification or probability
assessment is very quick and easy.

70

7.1. FEATURE SELECTION

This chapter first introduces how feature selection can be performed fol-
lowed by how feature selection is used to build the decision tree. In this
project, a modified version of ID3 is used, this version and the implemen-
tation of it is described, and finally the test results are presented using this
implementation.

7.1 Feature Selection

Information gain is the method used for feature selection in ID3. It is a
measure used to select which feature the next split should be made on,
hence it is also called an attribute selection measure or a measure of the
goodness of split. The feature with the highest information gain is chosen,
this feature is also the feature with the greatest entropy reduction.

Entropy describes the purity of a given dataset. The lower the entropy of
a dataset, the higher the purity. The formal definition is shown in Defini-
tion 7.1.

Definition 7.1 (Entropy). Let a dataset, S = (x1, x2, . . . , xn), be a distri-
bution of the possible outcomes of the class variable and x =

∑n
i=1 xi, and

n the number of possible values of the class feature, then

Entropy(S) = −
n∑

i=1

xi

x
· log2

xi

x
(7.1)

Is should be mentioned that when the entropy is calculated, 0 · log2(0) ≡ 0.
Figure 7.1 shows how the entropy of a dataset evolves, when the dataset has
a fixed number of instances and the class feature is binary, with classes A
and B. The X-axis shows the proportion of instances that is classified as A.
Note that the proportion of instances classified as B is dependent on how
many is classified as A.

The expected entropy after the split at some feature is calculated using
Definition 7.2.

Definition 7.2 (Expected Entropy). Let S, x, and n be defined as in Def-
inition 7.1. Let Sv = (x1,v, x2,v, . . . , xn,v), xi,v be the number of instances
with the ith class variable and feature value v, and xv =

∑n
i=1 xi,v. Fur-

thermore, let Z = {v1, . . . , vm} be a feature with possible values v1, . . . , vm.
After the dataset is split at feature Z, the expected entropy can be calculated
as

ExpectedEntropy(S, Z) =
∑
v∈Z

xv

x
· Entropy(Sv) (7.2)

Information gain calculates expected reduction in entropy by splitting the
dataset at a given feature, so the difference in entropy before and after a
split is measured. Information gain is defined in Definition 7.3.

71

CHAPTER 7. DECISION TREES

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

Proportion(A)

En
tr

op
y

of
th

e
da

ta
se

t

Figure 7.1: The entropy function relative to the binary classification, (A,B),
where Proportion(A) is the proportion of instances labelled A.

Definition 7.3 (Information Gain). Let Entropy(S) be the entropy of a
dataset, S, prior to splitting it, and ExpectedEntropy(S,Z) be the expected
entropy of S, after splitting it on feature Z, then

Gain(S, Z) = Entropy(S)− ExpectedEntropy(S, Z) (7.3)

One potential problem with using information gain is that, it does not take
the number of possible values into account, implying that features with data
like dates or ids have a very high information gain as they most likely will
make a perfect split on the dataset.

7.2 Building a Decision Tree

One of the basic decision tree generation algorithms is the Iterative Di-
chotomiser 3 (ID3) algorithm. The building of a decision tree will be ex-
plained in the context of how ID3 would build a decision tree.

The ID3 uses an approach where it starts with the empty tree and incre-
mentally grows the tree more complex. The ID3 algorithm uses information
gain to determine which feature the next split should be made on. The ID3
algorithm does not backtrack, once it determines which feature to use at a
given node the decision is final. This leads to the danger of finding a local
maximum and not the global maximum.

72

7.3. IMPLEMENTATION

The ID3 algorithm has an inductive bias, that is shorter trees are preferred
over taller trees and features with a high information gain are preferred close
to the root. This is caused by the ID3 algorithm growing the tree from the
empty tree and stopping when it reaches the first tree that is consistent
with the training data. A reason why a complex tree is not necessarily
optimal is that one or several erroneous instances, noise in the data, would
render the classification or probability assessment erroneous. This can lead
to overfitting, as described in Section 6.2.3 on page 66.

If the decision tree were fully it would grow until each leaf node had an
entropy of 0 leading to a high complexity. To prevent this, either the growing
of the tree can be stopped before the tree fits the data perfectly, this is called
prepruning, or pruning can be applied after the decision tree is built, this is
called postpruning.

If the decision tree is to be postpruned the learning set, L, is spilt into two
datasets, LL and LT [Mit97]. The decision tree is then grown from LL and
can be pruned using LT . There are several ways of postpruning the decision
tree, reduced error pruning is one way of doing this. In this approach, the
complete tree is built, using LL. When the tree is built all nodes in the tree
are considered candidates for pruning. This implies that one at a time each
node is removed, implying that any subtree of that node is also removed.
The outcome frequency of any subtree is assigned to the node in question.
The accuracy on LT is calculated, when this exact node is missing from
the tree. If the accuracy is no worse than the accuracy of the original tree,
this node can be removed. The major drawback of this approach is that
it involves splitting the dataset which, given a small dataset, can make the
decision tree worse than if the entire dataset was used.

There are a number of ways of prepruning the tree: setting a lower limit on
the information gain required to make a split, setting a lower limit on the size
of the nodes that can be split, or setting a lower limit on the size of nodes.
However, choosing the optimal threshold is difficult, a high threshold yields
a very simple decision tree with high bias whereas a low threshold yields a
very complex decision tree with high variance.

7.3 Implementation

The implementation chosen for this project resembles ID3 but differs on some
points. ID3 is used in this project even though the features are continuous,
hence the features are discretised. This is done by making tertiary splits,
and then calculating the expected information gain for each possible split.
A possible split is one that splits the dataset into three non-empty datasets,
where the size of each set is above a given lower limit.

73

CHAPTER 7. DECISION TREES

Tertiary splits are assumed as there are three possible outcomes (1,X,2),
hence intuitively if a perfect split existed the dataset could be divided into
three datasets with entropy 0, by using a single feature. Another benefit
of using tertiary splits is that since all features have three possible values,
the potential problem associated with information gain, concerning features
with many different values, is removed.

When making probability assessments growing a large tree would lead to a
very low number of instances in the leaf nodes, resulting in little flexibility
in the probability assessments and increasing the variance. If a leaf node
only contained 4 instances, the lowest possible probability on a outcome,
except 0, is 0.25. Overfitting in the implementation prevented by stopping
the growth of the tree before it terminates completely.

Normalisation is not necessary as the difference in the values of the features
does not matter, due to the built-in feature selection algorithms.

The implemented ID3 algorithm is shown in Algorithm 71 on page 77. The
ID3 algorithm takes dataset, which is the learning set, features which are
the unused features, and minSize which is the minimum size any split can
have. The ID3 algorithm starts off by, creating a new node, in line 2. In
line 3, it is checked whether all instances in the dataset have the same label.
If so, the split is not performed and the algorithm continues to line 4 where
the root node is assigned the frequency of the labels of the instances in the
dataset. In line 6 and 7, Sb is initialised and bestEntropy is set to infinite.
Sb is used to keep track of the best datasets after splits and bestEntropy is
used to keep track of which split achieves the lowest expected entropy after
the split.

Lines 8-25 consist of two nested for loops which for all pairs of feature values
discretisise a given feature. This results in three new datasets, S1, S2, and
S3, with instances dictated by the new interval which is done in lines 10-12.
In line 13, the set S that consists of S1, S2, and S3 is created.

Line 14 checks whether all of the datasets contained in S are above minSize.
If they are not, the loop is finished and another set of values are extracted
in line 9. If they are above minSize, the expected entropy after this split is
calculated in line 15. If the expected entropy after this split is performed
is lower than the current best expected entropy, bestEntropy, the expected
entropy, the feature, the two values, and the datasets are recorded in lines
17-21.

Line 26 tests whether a new split was found where all subsets are larger than
minsize. If not, the root node is assigned the probability distribution of the
dataset. If on the other hand a better split was obtained, the set features
is updated in line 29 by removing the feature that had the lowest expected
entropy. The for loop in lines 30-32 adds a new child to the decision tree for
each dataset. This is done via the addChild function which takes a decision

74

7.4. TEST RESULTS

tree and adds this as a child to the current decision tree root. The addChild
function calls the ID3 function, implying that the ID3 function is recursive.

7.4 Test Results

The learning set, LL, consisted of 396 matches from the 04/05 and 05/06
season, and the test set, LT , consisted of 108 matches from the 06/07 season.
Furthermore, all features were used, implying that also the overall features,
described in Section 5.2.2 on page 49, were used.

The implemented version of ID3, described in last section, can be changed
in two ways; the minsize value and the window size.

One combined test was made to determine which values are best for minsize
and window. All values for minsize between 0 and 80 were tested in steps
of size 2. The upper limit of 80 is chosen because at every node the dataset
is split in three, this means that at least 160 matches are used in the root
for two of the splits, while the third split will have a maximum of 236
matches, leaving no room for any further splits. This causes any trees with
minsize above 80 to only use one feature. For each minsize, all window sizes
between 1 to 12 were tried. A plot for all the average logarithmic scores for
the decision trees is shown in Figure 7.2.

minsize

w
in

do
w

0 10 20 30 40 50

1

3

5

7

9

11

X ≥ -1
-1.1 ≤ X < -1
-1.25 ≤ X < -1.1
-1.25 > X

60 70 80

Figure 7.2: A plot of the the average logarithmic score as a function of the
minsize value and the window size.

75

CHAPTER 7. DECISION TREES

Algorithm 7.1 The implemented ID3 algorithm for building a decision tree.
1: function ID3(dataset, features, minSize)
2: rootNode ← new Node()
3: if dataset.isAllLabelsSameKind() then
4: rootNode.probDist ← dataset.getProbDist()
5: else
6: Sb ← ∅
7: bestEntropy ←∞
8: for all feature ∈ features do
9: for all {v1, v2 ∈ feature.allValues| v1 < v2} do

10: S1 ← {i ∈ dataset | i.getValue(feature)≤ v1}
11: S2 ← {i ∈ dataset | v1 < i.getValue(feature)≤ v2}
12: S3 ← {i ∈ dataset | v2 < i.getValue(feature)}
13: S ← {S1, S2, S3}
14: if ∀s ∈ S.|s| ≥ minSize then
15: expectedEntropy ←

∑|S|
j=1

|Sj |
|dataset| ·Entropy(Sj)

16: if expectedEntropy < bestEntropy then
17: bestEntropy ← expectedEntropy
18: rootNode.feature ← feature
19: rootNode.value1 ← v1

20: rootNode.value2 ← v2

21: Sb ← {S1, S2, S3}
22: end if
23: end if
24: end for
25: end for
26: if Sb = ∅ then
27: rootNode.probDist ← dataset.getProbDist()
28: else
29: features← features\{rootNode.feature}
30: for all s ∈ Sb do
31: rootNode.addChild(ID3(s, features, minSize))
32: end for
33: end if
34: end if
35: return rootNode
36: end function

76

7.4. TEST RESULTS

The figure shows that window sizes 4 and 6 are better than the other possible
window sizes, and that a minsize value of at least 40 is preferable. It is clear
that all decision trees with a minsize value of 20 or below are likely to be
worse than an average logarithmic score of −1.25, implying that the decision
tree is unusable in practice.

The best average log scores from the decision trees are found and shown
in Table 7.1. The best decision tree has a log score of −0.9655, a minsize
of 28 or 30, and a window size of 4. That tree is shown in Figure 7.3 on
page 79. This decision tree uses the features Overall Made a keypass, Overall
Finished with left foot in open play shot were blocked, and Overall Crossed to
team mate on corner. The category “Made a keypass” was also used by the
k-Nearest Neighbor algorithm and it is used in all the best decision trees.
Other features that are used deal with either corners or offensive passes.

Note that there are two identical decision trees performing best which is
caused by no leaf nodes in the decision tree with minsize of 28 having less
than 30 instances. This can be observed in Figure 7.3 on page 79, where
Node 7 has the least instances, 31.

Note further that due to the way the features are constructed, as described
in Section 5.2.2 on page 49, the first splits are −17 and 8.5, and the first
dataset is primarily away wins. This implies that the higher the value of
the feature Overall Made a keypass, the more likely it is that the match will
be a home win. This was also what could be expected, as a positive value
in this feature indicates that the home team has made more keypasses than
the away team over the last few matches. This pattern is not consistent
with the distributions of the datasets created by splitting Overall Finished
with left foot in open play shot were blocked but it is when splitting Overall
Crossed to team mate on corner.

From the performed tests, it can be observed that with window sizes of 4 or
6 and a minsize above 40, a log score around −1 could be expected. Such
a logarithmic score is comparable to the bookmakers logarithmic scores,
implying that a useful decision tree algorithm might be built. Though there
seems to be some instability in the probability assessors, due to the use of
decision trees, implying that ensemble methods could be useful. Ensemble
methods are further described in Chapter 10.

77

CHAPTER 7. DECISION TREES

log score minsize window features
−0.965505 28, 30 4 Overall Made a keypass,

Overall Finished with left
foot in open play shot were
blocked, Overall Crossed to
team mate on corner

−0.968601 80 7 Overall Made a keypass
−0.972528 72, 74 7 Overall Made a keypass
−0.977723 76, 78 7 Overall Made a keypass
−0.978193 78, 80 4 Overall Keypassed from set

piece
−0.982402 40, 42, 44, 46, 48,

50, 52, 54, 56, 58,
60, 62, 64, 66, 68,
70, 72, 74, 76, 78,
80

6 Overall Made a keypass

−0.98514 24 9 Overall Finished off target,
AwayFor Made a keypass,
Overall Took a corner

−0.988574 34 4 Overall Finished with left
foot in open play shot
were blocked, Overall Made
a keypass, HomeFor Com-
pleted offensive short pass

−0.989046 50 4 Overall Made a keypass,
Overall Uncompleted offen-
sive long pass

−0.992529 38, 40, 42, 44, 46 4 Overall Made a keypass,
Overall Uncompleted offen-
sive long pass

−0.992928 48 4 Overall Made a keypass,
Overall Uncompleted offen-
sive long pass

−0.99785 54, 56, 58, 60, 62,
64, 66, 68, 70, 72,
74, 76

4 Overall Made a keypass

Table 7.1: The decision trees with average logarithmic score higher than -1.

78

7.4. TEST RESULTS

N
od

e
0

C
at

eg
or

y
%

n
45

.5
33

15
8

1
29

.1
07

2
25

.3
60

 8

8
X To

ta
l

10
0.

00
0

34
7

O
ve

ra
ll

M
ad

e
a

ke
yp

as
s

O
ut

co
m

e

N
od

e
1

C
at

eg
or

y
%

n
18

.1
82

 1
4

1

28
.5

71

22
2

53
.2

46

41
X To

ta
l

22
.1

90

77

X
 <

=
-1

7

N
od

e
2

C
at

eg
or

y
%

n
44

.6
54

71

1
27

.0
44

43
2

28
.3

02
45

X To
ta

l
45

.8
21

15
9

O
ve

ra
ll

Fi
ni

sh
ed

 w
ith

 le
ft

fo
ot

 in
 o

pe
n

pl
ay

, b
lo

ck
ed

-1
7

<
X

 <
=

8.
5

N
od

e
3

C
at

eg
or

y
%

n
65

.7
66

 7

3
1

 1
8.

91
9

2
15

.3
15

X To
ta

l

8.
5

<
X

N
od

e
4

C
at

eg
or

y
%

n
1

30
.5

56
2

 8
.3

33
X To

ta
l

X
 <

=
1.

0

N
od

e
5

C
at

eg
or

y
%

n
26

.6
67

1 2
37

.7
78

X To
ta

l1.
0

<
X

 <
=

7.
5

N
od

e
6

C
at

eg
or

y
%

n
 4

7.
43

6
1 2 X To

ta
l

7.
5

<
X

N
od

e
7

C
at

eg
or

y
%

n
1

32
.2

58
2

22
.5

81
X To

ta
l

31

X
 <

=
4

N
od

e
8

C
at

eg
or

y
%

n
70

.0
00

28
1

7.
50

0
3

2
22

.5
00

X To
ta

l

4
<

X
 <

=
10

.5

N
od

e
9

C
at

eg
or

y
%

n
 7

7.
50

0
1

20
.0

00
8

2
2.

50
0

1
X To

ta
l

10
.5

 <
 X

O
ve

ra
ll

C
ro

ss
ed

 to
 te

am
 m

at
e

on
 c

or
ne

r

31
.9

88

31 40
40

22
.4

78
78

11
121 17

22
61

.1
11

11 3
12

.9
68

12 16
35

.5
56

17
37 26

33
.3

33
15

19
.2

31

14
45

.1
61

8.
93

4

10 7
11

.5
27

11
.5

27
9

10
1

10
.3

75
36

45

F
ig

ur
e

7.
3:

T
he

be
st

de
ci

si
on

tr
ee

,
w

it
h

re
ga

rd
to

lo
ga

ri
th

m
ic

sc
or

e,
fo

un
d

in
th

e
te

st
.

79

Chapter 8
k-Nearest Neighbor

This chapter first presents an overview over the k-Nearest Neighbor and how
it makes probability assessments. A feature search algorithm can be used to
reduce the number of features which is necessary when a lot of features are
available, so such an algorithm is presented. The optimal k value needs to
be determined which in this project is done by testing all different k-values
on the learning data. Lastly, the initial test results which determined the
settings used in the final test on fresh data are presented. The chapter is
based on [Mit97], [HMS01], and [Lar05].

8.1 Making Probability Assessments

The k-Nearest Neighbor algorithm is from the class of lazy learners, which
in contrast to the class of eager learners, e.g. decision trees, do not evaluate
the training instances before a probability assessment of a test instance is
needed.

k-Nearest Neighbor builds, as all classifiers, on the assumption that future
instances will be similar to previous instances. Similarity is calculated us-
ing the Euclidean distance measure as described in Section 4.4 on page 36.
When the k-Nearest Neighbor algorithm has to make a classification or a
probability assessment of a new instance, it starts by calculating the dis-
tance from the new instance to all instances in the learning set, L, and
then the k nearest instances are found. If a classification is needed, the
majority of outcomes among the neighbours is used as the final classifica-
tion. If a probability assessment is needed, it is done simply by using the
frequency of the different outcomes as the probability. E.g. in an instance
with three potential outcomes and k = 20, the probability assessment could
be 〈12

20 , 6
20 , 2

20〉. Since the k-Nearest Neighbor algorithm requires no initial

80

8.2. FEATURE SEARCH ALGORITHM

build time, obtaining a probability assessment from the k-Nearest Neigh-
bor algorithm takes longer than using the decision tree algorithm. This is
caused by the fact that the distances between the instance in question and
all instances in L are calculated.

8.2 Feature Search Algorithm

k-Nearest Neighbor uses all features in the dataset, in contrast to e.g. decision
trees which only select a few features from the dataset. Hence, the amount
of data needed increases exponentially with the dimensionality if the accu-
racy level should be maintained. This problem is the curse of dimensionality,
described in Section 5.2 on page 48.

The curse of dimensionality can be dealt with in two ways: either by reducing
features by aggregating existing features and removing the original features,
or simply by removing some of the original features from the dataset. Both
approaches are explained in Section 5.2. Another potential problem is that
irrelevant features dominate the distance between neighbours, hence those
features should be removed from the dataset. Also highly correlated features
dominate other features, so it should also be considered removing some of
the highly correlated features.

As described in Section 5.2.3, the optimal feature subset cannot be found in
polynomial time using a wrapper approach since the power set of features
must be tested. This implies that if the number of features in the feature
set is large, the algorithm will use very long time.

There are a number of different schemes which could be used to traverse the
complete lattice which is formed by all possible feature subsets: depth-first
search, breadth-first search, or best-first search. Even though there are a
very large number of features available, it is expected that a simple model
would perform best. This implies that the size of the subset of features which
needs to be selected is expected to be low. Hence, a depth-first search will
search through too many feature sets which are not expected to be useful,
as it will traverse all the way to the bottom of the complete lattice before
returning to the top. If breadth-first search is used, the search algorithm
would have to search through a huge number of small useless subsets only
consisting of features with low information. A best-first search greedily
searches through the lattice in search of the best subset. This implies that
quality models can be found more quickly with a best-first search [HMS01].
Hence, the feature search is performed with a best-first search.

Another intuitive reason for using a best-first search is that it is expected
that if a feature subset performs well, then that subset combined with an-
other feature may also perform well.

81

CHAPTER 8. K-NEAREST NEIGHBOR

Some evaluation of each feature subset must be done in order to determine
which subset is the better. This is done by building a probability asses-
sor using the feature subset and applying a scoring rule which can evaluate
its usefulness. The algorithm can stop after a number of visited subsets
have provided no gain or continue to run until all combinations are tested.
In either case, the best subset can always be extracted even though the
algorithm continues to run. The algorithm is shown in Algorithm 8.1.

Algorithm 8.1 The feature search algorithm.
1: function featureSearchAlgorithm(features, scoreF, maxWOgain)
2: rankings←new SortedSet(sort by: unvisited, best score)
3: rankings.add(−∞, ∅,unvisited)

4: woGain← 0
5: bestScore← −∞
6: while unvisited subsets in rankings and woGain < maxWOgain

do
7: bestCombi← rankings.getBestCombination()
8: woGain← woGain + 1
9: for all f ∈ features\bestCombi do

10: newCombi← {f} ∪ bestCombi
11: if newCombi 6∈ rankings then
12: score← scoreF.getScore(newCombi)
13: if score > bestScore then
14: bestScore← score
15: woGain← 0
16: end if
17: rankings.add(score, newCombi,unvisited)
18: end if
19: end for
20: rankings.setVisited(bestCombi)
21: end while

22: return best scoring combination in rankings
23: end function

The algorithm takes a set of features, features, a score function, scoreF,
and an integer indicating when the algorithm should stop searching, max-
WOgain, as parameters.

In line 2, a sorted set is created which first sorts the unvisited items at top
and then order those items by the best score. In line 3, the most simple
feature combination is added, the one without any features. This combi-
nation is marked as unvisited because the algorithm has not visited that
combination yet. The score for the combination is set to the worst possible

82

8.2. FEATURE SEARCH ALGORITHM

such that all other combinations are regarded as better.

From lines 4–21 the subsets of features are searched. First, a counter,
woGain which counts how many combinations have been visited without
gain, is initialised to 0. The best score found so far is set to −∞ such that
any other score is regarded as better.

The loop in line 6 for searching subsets will run as long as there is at least
one not yet visited subset. The loop will also end if there has been a number
of visited combinations without gain, more exactly the number specified as
a parameter to the algorithm. Note that the number of visits is counted in
terms of subsets which have been the best available at the time they were
visited.

In line 7, the best currently not visited subset is extracted, and in line 8 the
counter for nodes visited without gain is incremented by one. Note that if
a better subset is found when visiting a subset, the counter is reset.

In line 9, all features not in the current subset are extracted, such that
they in line 10 can be added to the current subset one by one to yield new
combinations. In line 11, it is checked that the combination has not already
been explored. In line 12, the evaluation rule, supplied as a parameter to
the algorithm, is used in order to evaluate the current combination. For
instance, this evaluation rule can build a k-Nearest Neighbor probability
assessor and then evaluate it to get a score for the combination. In line 13,
it is checked whether the new score is better than anyone seen before. If so,
the bestScore variable is set to the new best score and the number of visited
subsets without gain is reset. In line 17, the newly explored combination is
added to the rankings set with its score, and it is marked as unvisited so
that the algorithm can test it in combination with other features later on.

In line 20, the combination currently being visited is set to visited, such
that it is not visited again.

The algorithm ends by returning the best combination in line 22.

Note that an external application, provided that some concurrency issues are
resolved, can always find the best known feature combination in rankings.
This implies that even though the algorithm can run for a long time, it is
still able to deliver results before it terminates.

A distributed version of the algorithm can easily be made. The loop starting
in line 9 can make a thread for each combination, provided that the getScore
function can be executed in parallel. When all threads are finished running
and the score is obtained for each combination, the algorithm can continue
in line 13 by finding the best new combination and making sure that each
of the new found combinations are added to rankings like in line 17. The
distribution of the algorithm can be very useful because it usually has a long
running time if there are a large number of features in the feature set.

83

CHAPTER 8. K-NEAREST NEIGHBOR

8.3 Optimal k Search

When k is increased, the variance is reduced and the bias of the probability
assessments is increased as the output gets closer to the overall probability
distribution of the class variable in the entire training set. If k is too small,
the variance would be too great, hence the classifier would be unstable. If
k is too high, some of the instances identified as being nearest neighbours
could potentially be far from the actual instance in question. This indicates
that there exists a trade-off between bias and variance. The best method
for finding the optimal k is a data-adaptive one, implying that k needs to be
adapted to each particular dataset via a trial-and-error approach [HMS01],
[Lar05].

Optimal-k k-Nearest Neighbor is an algorithm for determining the best k
value for a dataset. It is applied to the learning data and returns the
best k value for the the data based on what score the different instances
get with different k values. By applying Optimal-k k-Nearest Neighbor to
learn the k value, the process becomes eager because the k value has to be
found before probability assessments are made for the test instances. The
normal k-Nearest Neighbor algorithm is still needed when probability as-
sessments are made for new instances. Note that the Optimal-k k-Nearest
Neighbor algorithm is only used to determine the optimal k value, implying
that once the optimal k is determined this k value is used as a setting for
the regular k-Nearest Neighbor algorithm.

Algorithm 8.2 k-Map k-Nearest Neighbor.
1: function kMapKNN(trainingData, testInstance, scoringRule)
2: dist← new SortedMap()
3: for all i ∈ trainingData do
4: dist.put(EuclideanDistance(i, testInstance), i)
5: end for

6: pam← new ProbabilityAssessment()
7: kMap← new Map()
8: for k = 1 to |trainingData| do
9: instance← dist.firstValue()

10: dist.remove(instance)
11: pam.add(instance.cv())
12: score← scoringRule.getScore(testInstance.cv(), pam)
13: kMap.put(k, score)
14: end for

15: return kMap
16: end function

84

8.4. TEST RESULTS

Optimal-k k-Nearest Neighbor uses the kMapKNN function, shown in Algo-
rithm 8.2, as part of the algorithm. In line 2 of the kMapKNN function, the
distance map, dist, is initialised. The key values of dist are the distances
between testInstance and the entries value, which is the instance currently in
question. Since the sorted map sorts its content according to the key values,
the key with the smallest value, that is the instance from the learning data
which is closest to the test instance, is always obtainable. In lines 3–5, the
learning instances are put into the map. Note that EuclideanDistance is a
function which determines the Euclidean distance between the two instances
as described in Section 4.4 on page 36.

In lines 6–14, the probability assessments are made and evaluated for each
possible value of k. The ProbabilityAssessment constructor creates a
class where a number of class variables of the same type, e.g. class variables
for outcomes, can be added. Then the probability assessment can be ob-
tained from the class. e.g., if a home win and an away win is added to a
newly constructed ProbabilityAssessment, the ProbabilityAssessment

class would return 0.5 chance for home win and 0.5 chance for away win.

Each possible k-value is iterated over in line 8. In line 9, the instance
closest to the test instance is extracted and this instance is removed from
the map in line 10, such that the next closest instance is extracted in the
next iteration. In line 11, the class variable of the just extracted instance is
added to the probability assessment which changes the probability assess-
ment accordingly, as mentioned above.

In line 12, the score is obtained from the scoring rule which was given as
parameter. The scoring rule must have a getScore function such that the
score for a given class variable and probability assessment can be obtained.
In line 13, the current k value and the score are added to the map containing
all k values and scores. The algorithm ends in line 15 by returning the map
with k values and scores.

Optimal-k k-Nearest Neighbor works by using leave-one-out cross-validation
to create a k map for each instance using the kMapKNN function, such that a
score for each instance and k value is available. Then for each k value, the
average score over all instances is calculated, and the best average score and
the best k value are returned from the Optimal-k k-Nearest Neighbor algo-
rithm. Note that this approach uses memory quadratically in the size of the
dataset, hence it will not be useable in all scenarios. However, the dataset in
this project is not very large which implies that the approach can be used.

8.4 Test Results

This section presents how the settings for the test are determined. The
test is made in several phases. The first four phases use matches from two

85

CHAPTER 8. K-NEAREST NEIGHBOR

seasons and cross-validation to find the best settings for k-Nearest Neigh-
bor and result in a selection of settings. These phases consist of a draft
selection of features, selection of window size, selection of normalisation and
a final selection of features. The four phases all use the Optimal-k k-Nearest
Neighbor algorithm presented in Algorithm 8.2 to determine the optimal k
value.

The final phase uses half a season of not previously used data to determine
whether the found model is overfitted. A simple model is also tested in that
phase for comparison and the best of the two models is used in the final
evaluation against the other types of learning algorithms.

8.4.1 Determining the Feature Subsets

First, the best features are determined. This is done using the feature search
algorithm presented in Algorithm 8.1 and the logarithmic scoring rule pre-
sented in Section 6.1.1 on page 57.

In Table 8.1 the results four tests are shown. The standard settings in all
tests are window size four, as advised in [sta], and min-max normalisation.

Id k Features Log. score
1 25 Assisted from a set piece, Finish with right foot

from set piece shot were blocked, Finished with
head but it was blocked, Free kick shot off tar-
get, Keypassed from set piece, Made an error, Re-
ceived a red or 2nd yellow, Scored with right foot
from set piece, Scored on direct free kick

−0.9983

2 25 Assisted from a set piece, Finished with other in
open play but ball was blocked, Finish with right
foot from set piece shot was blocked, Made an er-
ror, Free kick shot off target, Scored with right
foot from set piece, Finished with head but it was
blocked, Keypassed from set piece, Scored on di-
rect free kick, Received a red or 2nd yellow

−0.9995

3 23 Made a keypass, Made an error, Scored −1.0222
4 15 Intercepted the ball, Made a keypass, Made an er-

ror, Was offside, Players missing from last match,
Finished on target in penalty area

−1.0091

Table 8.1: The probability assessors made by searching for best features.

Probability assessor 1 performs best. It is made using the feature search
algorithm to select the best features among all. Probability assessor 2 is
from the same test and differs only on “Finished with other in open play

86

8.4. TEST RESULTS

but ball was blocked”. This is a rare event and results in little difference
between the two probability assessors. Unfortunately, both probability as-
sessors use very specific categories which indicates that they could be the
result of overfitting.

In order to avoid overfitting, a new probability assessor is made. Probability
assessor 3 is made by taking the more general version of the categories from
probability assessor 1 and 2. E.g., “Scored with right foot from set piece”
was translated into “Scored”. Then an exhaustive search among all subsets
of these general categories is made, and the best combination turns out to
be probability assessor 3.

Probability assessor 4 is based on expert knowledge. The subset is selected
in [sta] where 14 different categories are selected. Then an exhaustive search
for the best subset among those features is made. The score for the best
subset is better than the one using only few general categories but worse
than the two using very specific categories. Note that the k value is 15
which indicates that the probability assessor only needs a few neighbours
for prediction.

There are now four probability assessors available: two probability asses-
sors with very specific categories, one based on expert knowledge, and one
with general categories. The union of features from these four probability
assessors is used in the remainder of the settings tweaking tests.

8.4.2 Determining the Window Size

A suitable window size is determined by trying all window sizes from 1 to
12, which are the sizes which can be denoted as recent form.

The results from the test are shown in Table 8.2. Note that the score is an
average over all matches which the probability assessor makes a probability
assessment for. Hence, there are fewer matches for high window sizes so
potentially they might avoid some easy or difficult matches.

A window size of 8 has the best logarithmic score and it uses only 13 neigh-
bours which is only lower at window size 9. The scores generally form a
curve, except for 1, 4, and 12, with window size 8 as the highest value, and
hence the best score.

A window size of 4 has the second best score, but it might be due to over-
fitting since the features are selected to fit window size 4. However, 4 is a
very attractive window size because it implies that only the first four games
in the season cannot be assigned probability assessments. Furthermore, it
seems to be the lowest feasible size if the scores for window sizes from 1
to 3 are considered. 4 is also the size suggested in [sta] which makes it an
interesting value.

87

CHAPTER 8. K-NEAREST NEIGHBOR

Window k Feature count Log. score
1 64 10 −1.0326
2 55 5 −1.0410
3 23 11 −1.0334
4 25 9 −0.9982
5 23 9 −1.0236
6 42 9 −1.0158
7 17 12 −1.0030
8 13 9 −0.9915
9 12 9 −1.0065

10 15 14 −1.0148
11 74 4 −1.0163
12 18 9 −1.0016

Table 8.2: The best probability assessor for different window sizes.

An even window size is preferable because the teams typically play home
and away alternately. This implies that a team would normally have played
two home games and two away games in the last four games. A glance at
statistics indicates that it is easier to play at home, as 0.457 of the games
in the database ended with a home win and only 0.298 ended with an away
win. Hence, an even window size would level out this difference.

The rest of the tests are performed with both window sizes 4 and 8. The
reasons for this are that they perform best, they are both even, and 4 is the
suggested value in [sta].

8.4.3 Determining the Normalisation

The search for the optimal normalisation is similar to the search for window
size. Three types of normalisation are used: no normalisation, min-max
normalisation, and Z-score. For each type, the window sizes of 4 and 8
are used in combination with the feature search algorithm to search for the
best subset among the categories decided earlier. The results are shown in
Table 8.3.

The best combination is the same as in the window test but the differences
are very small and could be considered random. It is worth noting that
window size 4 performs worse than 8 in the two new tests which might
indicate that a window size of 4 is too small.

88

8.4. TEST RESULTS

Normalisation Window k Feature count Log. score
None 4 57 14 −1.0269
None 8 43 9 −0.9920
Min-max 4 25 9 −0.9982
Min-max 8 13 9 −0.9915
Z-score 4 31 13 −1.0121
Z-score 8 25 4 −0.9997

Table 8.3: The best probability assessor for different normalisation types.

8.4.4 Settings for Tests on Fresh Data

As stated previously two different settings are to be selected and tested on
previously unused data. The optimised settings, Optimised, are determined
to be min-max normalisation, and a window size of 4 or 8. A new test,
still on the learning data, is made to find the best categories in combination
with these settings. The feature search algorithm is used and all features is
available in the search.

A simple expert based probability assessor, Expert, is tested in order to
indicate whether the more optimised probability assessor is overfitted.

The two selected probability assessors and their logarithmic scores, Score1

and Score2, are shown in Table 8.4. Score1 is the average logarithmic
score obtained on the data where the settings are determined using cross-
validation, and Score2 is the average logarithmic score on previously unused
data.

This test shows that the Optimised probability assessor by far is the best of
the two on the data where the parameters are determined. Unfortunately it
performs a lot worse than the Expert probability assessor on yet untested
data. This can only be caused by overfitting in the Optimised probability
assessor which implies that only the Expert probability assessor is used for
further testing.

89

CHAPTER 8. K-NEAREST NEIGHBOR

Name Wd. k Features Score1 Score2

Expert 4 23 Made a keypass, Made an
error, Scored

−1.0222 −1.0037

Optimised 8 42 Assisted from a set piece,
Crossed to team mate on
free kick, Finished off tar-
get with head in open
play, Finished on target
with left foot from set
piece, Finished on tar-
get with other, Finished
with other in open play
but ball was blocked, Re-
ceived a red or 2nd yel-
low, Scored, Scored with
right foot

−0.9804 −1.0609

Table 8.4: Comparison of scores on cross-validated data and fresh data.

90

Chapter 9
Dixon-Coles Approach

A model is proposed in [DC97] which only considers the goals scored in
the matches. The main idea is that each team has an offensive strength
and a defensive weakness, α and β, which both must be above 0. A high
offensive strength indicates that the team is good at scoring goals and a high
defensive weakness indicates that the team is likely to concede many goals.
The number of goals in a match is assumed to be based on the offensive
strength and defensive weakness of the two teams. This chapter starts out
by first introducing the intuition behind the Dixon-Coles approach, then
it presents how the parameters and settings are determined, and lastly it
shows the initial test results.

9.1 Dixon-Coles Probability Assessment

Consider two teams, where the home team has index i and the away team
has index j, with offensive strengths, αi and αj , and defensive weaknesses,
βi and βj . The number of home goals can be estimated by αiβj , i.e. the
offensive strength of the home team multiplied with the defensive weakness
of the away team. Similarly, αjβi is the likely number of goals the away
team scores. Note that these calculations do not take home field advantage
into account which is known to be considerable. In order to do so a value,
γ, is multiplied with the approximate number of home team goals, so the
formula becomes αiβjγ.

In order to obtain probability assessments instead of the expected counts
for the number of goals scored by either of the two teams, two Poisson
distributions are made with means according to the expected number of
goals for each team. Poisson distributions are chosen because they resemble
the way goals are distributed according to [DC97]. How they are calculated

91

CHAPTER 9. DIXON-COLES APPROACH

and their properties are described in Section 4.3 on page 35. The number of
home goals, if the home teams index is i and the away teams index is j, is
Xi,j ∼ Poisson(αiβjγ) and the number of away goals is Yi,j ∼ Poisson(αjβi)
under the assumption of independence between the home and away goal
counts. Rewriting this into a probability assessment for a certain number of
goals for the home and away team yields:

P(Xi,j = x,Yi,j = y) =
λx exp(−λ)

x!
µy exp(−µ)

y!
(9.1)

Where λ = αiβjγ and µ = αjβi.

According to [DC97], the independence assumption does not hold for all
results, especially 0–0, 0–1, 1–0, and 1–1. In order to handle this, a factor
is multiplied on the probability to compensate for the dependency. This
factor, τ , is:

τλ,µ(x, y) =

1− λµρ if x = 0 and y = 0
1 + λρ if x = 0 and y = 1
1 + µρ if x = 1 and y = 0
1− ρ if x = 1 and y = 1
1 otherwise

Note that ρ is the dependency parameter so if ρ = 0 it corresponds to
independence between the results because τλ,µ(x, y) = 1 for any combination
of parameters.

The dependent probability for a given result is:

P(Xi,j = x,Yi,j = y) = τλ,µ(x, y)
λx exp(−λ)

x!
µy exp(−µ)

y!
(9.2)

In this project, the probability assessment for the outcome of a match is
needed instead of the probability assessment for the number of goals scored.
However, the outcome probability assessment can, easily be extracted by cal-
culating probability assessments for the different possible results and then
sum the results together based on the match outcome yielded by the score.
Note that, theoretically, there are infinitely many results but most are very
unlikely to happen like 9–4. In Table 9.1 selected probabilities for different
results prior to the AaB–FC Midtjylland match played in the 2005–2006
season, are shown, calculated using the Dixon-Coles approach. The summa-
tions in the bottom of the table show the probability for the three possible
outcomes. Note that the sum of the three different outcomes is 0.961 be-
cause some of the results are omitted, and no matter how many results are
included the sum would never be 1. Because of that, it is necessary to do a
normalisation of the probabilities to obtain a probability assessment.

92

9.2. DECIDING THE PARAMETERS

Home win Draw Away win
Score Prob. Score Prob. Score Prob.
1–0 0.078 0–0 0.061 0–1 0.058
2–0 0.073 1–1 0.120 0–2 0.043
3–0 0.040 2–2 0.060 0–3 0.018
4–0 0.017 3–3 0.014 0–4 0.006
2–1 0.093 4–4 0.002 1–2 0.072
3–1 0.052 1–3 0.031
4–1 0.022 1–4 0.010
3–2 0.033 2–3 0.026
4–2 0.014 2–4 0.008
4–3 0.006 3–4 0.005
Sum home 0.428 Sum draw 0.257 Sum away 0.276

Table 9.1: Converting result probabilities into outcome probabilities.

9.2 Deciding the Parameters

The offensive strength and the defensive weakness of each team together
with the dependency parameter, ρ, and the home field advantage, γ, need
to be found in order to calculate the probabilities. First note that the values
most likely change over time as a result of good and bad form, injuries,
suspensions, and traded players. The model considers the values constant,
hence they must be recalculated before the assessment of each match.

The values can be approximated by using a maximum-likelihood estimate.
In order to prevent the model from having infinite many solutions to the
equation, the following constraint is applied:

1
n

n∑
i=1

αi = 1 (9.3)

Where n is the number of teams. This constraint results in the average
offensive strength being 1. The reason why the constraint is necessary can
be seen by considering some assignment of offensive strength and defensive
weaknesses. If all offensive strengths are multiplied by 2 and all defensive
weaknesses are divided by 2, the same probability assessments would be
made, so it is impossible to decide which of them to choose.

The likelihood function is:

L(α1, . . . , αn, β1, . . . , βn, ρ, γ) =
N∏

k=1

τλk,µk
(xk, yk) exp(−λk)λ

xk
k exp(−µk)µ

yk
k

(9.4)

93

CHAPTER 9. DIXON-COLES APPROACH

N is the number of matches and λk = αi(k)βj(k)γ and µk = αj(k)βi(k) with
i(k) and j(k) denoting respectively the indices of the home and the away
team. xk and yk denote the number of goals scored by respectively the home
and away team in match k. For the parameter estimation to make sense, all
matches used in the estimation must have been played prior to the date of
the match in question.

The problem with the approach in (9.4) is that each match is weighted equal.
Form is considered a big factor in football [sta], so more recent matches
should most likely be more dominant due to squad changes, injuries, etc.. By
modifying (9.4), a pseudolikelihood at time t can be constructed as follows:

L(α1, . . . , αn, β1, . . . , βn, ρ, γ)

=
N∏

k=1

(
τλk,µk

(xk, yk) exp(−λk)λ
xk
k exp(−µk)µ

yk
k

)φ(t−tk) (9.5)

tk is the time where match k was played. φ(t) should yield a smaller value
whenever t increases such that the most recent matches have the highest
impact. This is because limx→0 ax = 1, resulting in very old matches, with
small t values, having a minimal impact because everything is multiplied
together.

There are several ways to choose the φ function and [DC97] suggest that the
following is used:

φ(t) = exp(−ξt) (9.6)

where ξ is a small value larger than 0. ξ needs to be determined empirically
because it is not possible to optimise (9.5) with respect to ξ.

9.2.1 Optimisation of the Variable Values

The values of the variables, such as offensive strength, must be optimised
by maximising the likelihood function stated in (9.5). The chosen method
to find those values is gradient descent [Avr76, chap. 10].

This section brings the details about how gradient descent is implemented.

In order to perform gradient descent, it is necessary to find the partial
derivatives of the function. This can be simplified by considering the log-
likelihood instead of the likelihood since the logarithm function is monotonic.
The log-likelihood of (9.5) is shown in (9.7).

94

9.2. DECIDING THE PARAMETERS

LL(α1, . . . , αn, β1, . . . , βn, ρ, γ)

= ln
N∏

k=1

(
τλk,µk

(xk, yk) exp(−λk)λ
xk
k exp(−µk)µ

yk
k

)φ(t−tk)

=
N∑

k=1

φ(t− tk) ln
(
τλk,µk

(xk, yk) exp(−λk)λ
xk
k exp(−µk)µ

yk
k

)
=

N∑
k=1

φ(t− tk) (ln(τλk,µk
(xk, yk))− λk + xk ln(λk)− µk + yk ln(µk))

(9.7)

The first task is to find the partial derivatives for all variables. Recall that
λ = αi(k)βj(k)γ and that µ = αj(k)βi(k) with i(k) and j(k) denoting re-
spectively the indices of the home and the away team. First, the partial
derivatives for the offensive strengths, α, are found where αi denotes the
offensive strength of the team with index i. The partial derivative of αi is:

∂LL

∂αi
=

N∑
k=1

φ(t−tk)

0 if i(k) 6= i and j(k) 6= i
−βj(k)γµkρ

1−λkµkρ − βj(k)γ + xk
αi(k)

if i(k) = i and xk = 0
and yk = 0

βj(k)γρ

1+λkρ − βj(k)γ + xk
αi(k)

if i(k) = i and xk = 0
and yk = 1

−βj(k)γ + xk
αi(k)

if i(k) = i and not
handled above

−λkβi(k)ρ

1−λkµkρ − βi(k) + yk
αj(k)

if j(k) = i and xk = 0
and yk = 0

βi(k)ρ

1+µkρ − βi(k) + yk
αj(k)

if j(k) = i and xk = 1
and yk = 0

−βi(k) + yk
αj(k)

if j(k) = i and not
handled above

Similarly βi denotes the defensive weakness of the team with index i and its

95

CHAPTER 9. DIXON-COLES APPROACH

partial derivative is:

∂LL

∂βi
=

N∑
k=1

φ(t−tk)

0 if i(k) 6= i and j(k) 6= i
−λkαj(k)ρ

1−λkµkρ − αj(k) + yk
βi(k)

if i(k) = i and xk = 0
and yk = 0

αj(k)ρ

1+µkρ − αj(k) + yk
βi(k)

if i(k) = i and xk = 1
and yk = 0

−αj(k) + yk
βi(k)

if i(k) = i and not
handled above

−αi(k)γµkρ

1−λkµkρ − αi(k)γ + xk
βj(k)

if j(k) = i and xk = 0
and yk = 0

αi(k)γρ

1+λkρ − αi(k)γ + xk
βj(k)

if j(k) = i and xk = 0
and yk = 1

−αi(k)γ + xk
βj(k)

if j(k) = i and not
handled above

The partial derivative for γ is:

∂LL

∂γ
=

N∑
k=1

φ(t− tk)

−αi(k)βj(k)µkρ

1−λkµkρ − αi(k)βj(k) + xk
γ if xk = 0

and yk = 0
αi(k)βj(k)ρ

1+λkρ − αi(k)βj(k) + xk
γ if xk = 0

and yk = 1
−αi(k)βj(k) + xk

γ otherwise

The partial derivative for ρ is:

∂LL

∂ρ
=

N∑
k=1

φ(t− tk)

−λkµk
1−λkµkρ if xk = 0 and yk = 0

λk
1+λkρ if xk = 0 and yk = 1

µk
1+µkρ if xk = 1 and yk = 0
−1
1−ρ if xk = 1 and yk = 1
0 otherwise

These derivatives can be used to find out how to alter the variable values in
order to obtain a larger likelihood in the likelihood function.
In order to keep track of the current values and the partial derivatives, the
ordering of the variables presented in (9.8) in vector form is used.

α1
...

αn

β1
...

βn

γ
ρ

(9.8)

96

9.2. DECIDING THE PARAMETERS

It is assumed that a vector class, Vector, exists which is initialised with the
length of the vector and zero in all entries. Note that the different indices in
the vector can be accessed by ~a[i] which refers to the ith element in vector
~a. The vector is 1-based so ~a[1] corresponds to α1.

Recall, from (9.3), that the average offensive strength must be 1. This can
be assured by projecting the descent vector onto a plane, where the average
offensive strength is 1, using the surface normal to that plane. The surface
normal, ~n, to the plane is a vector where the offensive strength all are set
to 1 and the defensive strength, γ, and ρ values are set to 0. The projection
of the gradient vector, ~grad, is shown in (9.9).

~grad← ~grad−
~grad · ~n
|~n|2

~n (9.9)

The variable value optimisation function is shown in Algorithm 9.2. The
algorithm has three main phases. In lines 2–11 the default values are ini-
tialised based on the recommendations in [DC97]. The vectors have the
format described in (9.8).

In lines 12–20, the gradient for the current values is found. Note that
∂LL
∂αi

(~values, matches) implies that the ∂LL
∂αi

function is called with the pa-

rameters in ~values and the matches in matches. The ξ and t values are
expected to be set implicit in the outer environment. The normalisation
of the offensive strengths is performed in line 20 which is done in order to
maintain the constraint from (9.3).

In lines 21–36, the best length of the gradient vector is decided. Lines 23–
26 find the longest useful length. In lines 28–35, that length is gradually
minimised until the interval is shorter than 0.001. When that happens the

~values vector is set to a value in that interval, and the entire process of
finding a new gradient starts over.

9.2.2 Determining the ξ Value

The ξ value indicates the impact of old matches on the parameter learning
compared to new matches. A fitting ξ value needs to be determined for
the test setup. It has to be estimated empirically independent of the other
variables due to its nature in the equation which uses a similar method, as
to find the best k-value, described in Section 8 on page 80. The algorithm
for finding the ξ value is shown in Algorithm 9.1.

The main loop of the algorithm is lines 3–15 where the different ξ values are
iterated over. If min = 0.001, max = 0.004, and stepSize = 0.001, the loop
assures that ξ values 0.001, 0.002, 0.003, and 0.004 are tested.

97

CHAPTER 9. DIXON-COLES APPROACH

Algorithm 9.1 Optimising the parameters in the likelihood function.
1: function OptimiseVariables(matches, teams, precision)
2: ~values← new Vector(|teams| · 2 + 2) . Make vector for values
3: ~grad← new Vector(|teams| · 2 + 2) . Make gradient vector
4: ~n← new Vector(|teams| · 2 + 2) . Vector for α normalisation
5: ~last← new Vector(|teams| · 2 + 2) . Vector with last values
6: for i← 1 to |teams| do . For all teams
7: ~values[i]← 1 . Initialise offensive strength
8: ~values[i + |teams|]← 1 . Initialise defensive weakness
9: ~n[i]← 1 . Initialise offensive strength normalisation

10: end for
11: ~values[2 · |teams|+ 1]← 1.4 . Initialise γ

12: while | ~last− ~values| ≥ precision do . Is the precision acceptable?
13: ~last← ~values
14: for i← 1 to |teams| do . For all teams
15: ~grad[i]← ∂LL

∂αi
(~values, matches)

16: ~grad[i + |teams|]← ∂LL
∂βi

(~values, matches)
17: end for
18: ~grad[2 · |teams|+ 1]← ∂LL

∂γ (~values, matches)

19: ~grad[2 · |teams|+ 2]← ∂LL
∂ρ (~values, matches)

20: ~grad← ~grad− ~grad·~n
|~n|2 ~n . Assure that 1

|teams|
∑

i αi = 1

21: ~x0 ← ~values . ~x0 holds first value
22: ~x1 ← ~values + ~grad . ~x1 holds second value
23: while LL(~x1) > LL(~x0) do . While better length might exist
24: ~x0 ← ~x1

25: ~x1 ← ~x1 + ~grad . Test next interval
26: end while
27: ~x0 ← ~values . Reset ~x0

28: while | ~x1 − ~x0| ≥ 0.001 do . Until interval is small enough
29: ~xm ← ~x1− ~x0

2 + ~x0 . Find middle
30: if LL(~xm− ~x0

2 + ~x0) > LL(~x1− ~xm
2 + ~xm) then . Best interval?

31: ~x1 ← ~xm . First interval best
32: else
33: ~x0 ← ~xm . Second interval best
34: end if
35: end while
36: ~values← ~x0 . Update ~values vector
37: end while

38: return ~values
39: end function

98

9.2. DECIDING THE PARAMETERS

Algorithm 9.2 Find the best ξ value.
1: function searchForξ(matches,min, max, stepSize, timePeriod)
2: bestξScore← −∞

3: for ξ = min to max stepsize stepSize do
4: score← 0
5: for all {mcur ∈ matches | mcur.time in timePeriod} do
6: matchesprev ← {mprev ∈ matches | mprev.time < mcur.time}
7: assessor ← new DixonColesAssessor(matchesprev, ξ)
8: assessment← assessor.assess(mcur)
9: score← score + logScore(assessment, mcur.outcome)

10: end for
11: if score > bestξScore then
12: bestξScore← score
13: bestξ ← ξ
14: end if
15: end for

16: return bestξ
17: end function

The loop in lines 5–10 iterates over all matches played in the time period
delivered as parameter to the function, so that the performance of the Dixon-
Coles model using the current ξ values can be measured. For each match
played in the time period, all matches played before that match is extracted
and assigned to matchesprev. Then a Dixon-Coles assessor is made using
the DixonColesAssessor class, based on the extracted previous matches
using the current ξ value. When a DixonColesAssessor object is created,
the OptimiseVariables function described in Algorithm 9.2 is used. This
function determines the settings which are used later to make the probability
assessments. That assessor is used to assess the current match in question to
get a probability assessment for it. This probability assessment is evaluated
using the logarithmic scoring rule, see Section 6.1.1 on page 57, based on
the actual outcome of the match. The sum of the scores of all matches for
the current ξ value is summed in the score variable.

When the scores for all matches in the time period have been assessed and the
scores have been summed, the summed score is compared to the previous
summed scores in lines 11–14. If the new score is better it is saved in
bestξScore and the ξ value is saved in bestξ. When all the different ξ values
have been tested, the best one is returned.

99

CHAPTER 9. DIXON-COLES APPROACH

9.3 Test Results

This section presents how the test settings are determined and describes the
tests which are performed.

In order to handle promoted and relegated teams, all matches where both
teams currently play in the Danish SAS league or the Danish first division are
included when learning the variables. The dataset used is the one specified
in Section 3.3 on page 29. The matches were played during the last 6 years
in the Danish SAS league and the Danish first division. There are a total
of 28 teams and 4,364 matches. Only the date of each match and not the
actual time of the match was considered for simplicity during calculations,
so matches played earlier on the same day cannot affect a match played
later.

A ξ value needs to be determined to perform the tests which can be done
as described in Section 9.2.2. In [DC97], ξ values between 0 and 0.02 were
tested and 0.0065 turned out as the best. All values between 0.01 and 0.02
were notable worse than 0.0065, so the search here is restricted to the span
between 0.001 and 0.009 with step size 0.001. The time period for the test
data is the autumn season of 2006. The results of that test is shown in
Figure 9.1 and indicates that the best ξ values are in the interval between
0.004 and 0.005 with this test setup. To obtain a higher precision, the ξ
values in that interval are examined with step size 0.0001 with results as
shown in Figure 9.2. 0.0043 is the best value for the chosen settings, hence
it is used throughout the rest of the report.

-0,968

-0,966

-0,964

-0,962

-0,96

-0,958

-0,956

-0,954

-0,952

0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008 0,009

ξ

A
ve

ra
ge

 lo
gs

co
re

Figure 9.1: Logscores when searching for the best ξ.

9.3.1 Parameter Values

This section analyses the different parameters and argue whether they make
sense. One of the advantages in the Dixon-Coles approach is that it is pos-
sible for humans to make sense of the output of the model. Table 9.2 shows

100

9.3. TEST RESULTS

-0,95315

-0,9531

-0,95305

-0,953

-0,95295

-0,9529

-0,95285

-0,9528

0,004 0,0041 0,0042 0,0043 0,0044 0,0045 0,0046 0,0047 0,0048 0,0049 0,005

ξ

A
ve

ra
ge

 lo
gs

co
re

Figure 9.2: Logscores when fine-tuning the ξ value.

the 12 SAS-league teams together with their offensive strengths, defensive
weaknesses, league positions, goals scored, and goals conceded. All values
are from the 27th november 2007, the day after the last game of the autumn
season were played.

It is clear that there exists a relation between the offensive strength and
the goals scored so far this season. E.g. FC Midtjylland has scored the
most goals and they have the second highest offensive strength. Vejle has
conceded the most goals and has the highest defensive weakness.

Team Offence Defence Pos. Goals For Goals Ag.
FC København 1.638 0.596 1 35 12
FC Midtjylland 1.564 0.879 2 36 20
OB 1.205 0.587 3 24 15
AaB 1.159 0.836 4 23 17
FC Nordsjælland 1.490 1.087 5 35 20
Esbjerg fB 1.353 1.121 6 31 29
Brøndby IF 1.323 0.890 7 24 21
Randers FC 1.074 1.059 8 24 26
Viborg 1.189 1.256 9 18 35
AC Horsens 0.735 0.913 10 12 23
Vejle 0.977 1.471 11 19 42
Silkeborg 0.892 1.287 12 15 36

Table 9.2: Parameters for the SAS-league teams on the 27th of November
2006.

Figure 9.3 shows how the offence of four different teams, Horsens, Silkeborg,
FC København, and Brøndby, have developed over time. Round 1 in the
graph corresponds to the first round in the 2005/2006 season and the line

101

CHAPTER 9. DIXON-COLES APPROACH

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 34

Round

O
ffe

ns
iv

e
st

re
ng

th

Horsens
Silkeborg
FCK
Brøndby

Figure 9.3: The development in offensive strengths for 1.5 seasons.

at 34 indicates the first round in the 2006/2007 season. Brøndby won the
2004/2005 league title and in the first round of the graph they are also re-
garded stronger than FC København. FC København performed better than
Brøndby in the 2005/2006 season and the graph shows that their offensive
strength gradually improves while Brøndby’s deteriorates.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 34

Round

D
ef

en
si

ve
 w

ea
kn

es
s

Horsens
Silkeborg
FCK
Brøndby

Figure 9.4: The development in defensive weaknesses for 1.5 seasons.

Figure 9.4 shows how the defences of the same four teams developed over
time. Recall that a lower value is better. Note that the same pattern as in
Figure 9.3 on the facing page is witnessed. Brøndby starts out better than

102

9.3. TEST RESULTS

FC København but gradually the roles change.

Figure 9.5 shows how the home parameter, γ, developed. There are signif-
icant changes in the parameter which might be due to some teams playing
better away and others playing worse home.

1,1

1,15

1,2

1,25

1,3

1,35

1,4

0 34

Round

H
om

e
pa

ra
m

et
er

Figure 9.5: γ, the home parameter, for 1.5 seasons.

Figure 9.6 shows how the the dependency parameter, ρ, changes over time.
There is no clear pattern in that graph.

-0,14

-0,12

-0,1

-0,08

-0,06

-0,04

-0,02

0

0,02

0 34

Round

D
ep

en
de

nc
y

va
lu

e

Figure 9.6: ρ, the dependency parameter, for 1.5 seasons.

103

CHAPTER 9. DIXON-COLES APPROACH

9.3.2 Performance of the Dixon-Coles Approach

Using a ξ value of 0.0043 the matches in the autumn season of 2006 yield
an average logarithmic score of −0.9526 and an average quadratic score of
0.4363. These scores are both very close to the available bookmakers on
the same games as shown in Table 9.3. It is also worth noting that the the
individual probability assessments are much closer to the bookmakers than
those from the other algorithms. The Dixon-Coles model is tested further
on the fresh data using a ξ value of 0.0043.

Probability Assessor Avg. Log. Score Avg. Quad. Score
DC −0.9526 0.4363
NordicBet closing odds −0.9578 0.4333
Average closing odds −0.9523 0.4370

Table 9.3: The average scores for the Dixon-Coles approach compared to
the bookmakers.

104

Chapter 10
Ensemble Methods

As described in Section 6.2.1, the information from the football matches is
extensive, and determining which features and which algorithms to use is to
some extent subjective. The performance of the decision tree algorithm os
rather unstable on a dataset with a large number of features and a significant
noise level, like the one used in this project. Intuitively, an aggregation of
different probability assessors could make more stable probability assess-
ments due to the different information used by each of them. Methods
to combine different probability assessors are known as ensemble methods
or classifier combination methods. An ensemble is created by a number of
different base probability assessors which are combined into a single ensemble
probability assessor using an aggregation method.

This chapter first motivates why ensemble methods can have better perfor-
mance than there base probability assessors. Then different approaches for
creating the base probability assessors are presented together with some im-
plementation details. Lastly, the performance of the implemented ensembles
is presented together with an analysis of the results.

Unless otherwise stated, this section is based on [TSK97], [Die00a] and
[Die00b].

10.1 Motivation of Ensemble Methods

Since classification is the typical application of ensemble methods, this sec-
tion starts by motivating ensemble methods from a classification point of
view and then continues to consider the advantages in the probability as-
sessment domain.

In [Die00a] ensemble methods are defined as:

105

CHAPTER 10. ENSEMBLE METHODS

Ensemble methods are learning algorithms that construct a set of classifiers
and then classify new data points by taking a (weighted) vote of their pre-
dictions.

This definition says that by using some given learning algorithm, e.g. the
k-Nearest Neighbor algorithm or the decision tree algorithm, it is possible to
construct a number of classifications from which a voting can be performed
in order to achieve an aggregated classification.

An ensemble classifier performs best when the different classifiers are diverse,
implying that they to some extent indeed are different. The reason why
they need to be diverse is that a classification made by an ensemble of
nearly identical classifiers would yield a classification identical to the original
classifications.

On the left-hand side of Figure 10.1, three different classification lines are
drawn, each generated by some classification algorithm. These can be com-
bined into an ensemble classifier with a complex decision boundary which
is shown in the right-hand side of the figure as an unweighted vote between
the three classifiers.

Class 1

Class 2

Class 1

Class 2

Figure 10.1: Three simple decision trees which in combination produces a
complex ensemble.

Each base classifier needs to be accurate to some extent, implying that its
error-rate, ε, must be below a given threshold. The error rate is measured by
the percentage of cases classified wrongly. Each base classifier, i, has an error
rate, εi, which is measured as the proportion of falsely classified instances.
If a number of base classifiers with error rates above 0.5 are combined, the
error rate of the ensemble classifier, εensemble, is worse than that of the base
classifiers.

In an example with two different possible outcomes of the class variable,
a number of base classifiers with a low error rate, below 0.5, would yield
an ensemble classifier with εensemble < 0.5, assuming that the errors are
independent. εensemble can be calculated using (10.1) from [TSK97], where
n is the number of classifiers in the ensemble. Since this is considered a

106

10.1. MOTIVATION OF ENSEMBLE METHODS

classification problem a majority vote is needed. Hence the number of votes
must be more than half of n, implying that dn2 e votes are needed. This can
be calculated using the cumulative frequency for a binomial distribution, see
[DeG89].

εensemble =
n∑

i=dn
2
e

(
n
i

)
εi(1− ε)n−i (10.1)

Figure 10.2 shows εensemble of an ensemble classifier as a function of 21 base
classifiers, where ε for each of these base classifiers are identical. There are
two different lines, one where the base classifiers are identical and one where
the base classifiers are independent. It can be seen that it is important that
the classifiers have ε < 0.5, in order for the ensemble classifier to be better
than the base classifiers. It should be noted that the more independent the
base classifiers are, the better the ensemble classifier performs.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.
55 0.

6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

0.
95 1

base classifier error

en
se

m
bl

e
cl

as
si

fie
r e

rr
or

dependent base classifiers
independent base classifiers

Figure 10.2: The error rate of the ensemble classifier as function of the error
rate of the base classifiers.

An ensemble probability assessor uses a number of base probability asses-
sors and combines their probability assessments into a combined probability
assessment. It is desirable to prove that an ensemble made by averaging
over n equally good independent base probability assessors, measured by
their average logarithmic score, is at least as good as the score of the n base
probability assessors on the same matches.

Before this can be proven, it must determined which methods to use for
combining the base probability assessors. The easiest and most common
way of combining different probability assessors is to use a simple unweighted
combination, as shown in (10.2). Eo is the probability the ensemble prob-
ability assessor sets on outcome o, Qo,i is the probability made by the ith

107

CHAPTER 10. ENSEMBLE METHODS

base probability assessor on outcome o, and n is the number of probability
assessors in the ensemble.

Eo =
1
n

n∑
i=1

Qo,i (10.2)

In the following theorem, several matches are interesting but only the prob-
ability on the outcome of those matches is interesting, hence a slightly differ-
ent notation is used. Let p1,1, . . . , p1,m, . . . , pn,1, . . . , pn,m be the probability
on the outcomes made by the n base probability assessors on the m matches,
such that pi,j refers to the probability on the outcome made by the ith prob-
ability assessor on the jth match. Then the probability on the outcome for
the jth match for the ensemble is

pe,j =
∑n

i=1 pi,j

n
.

Theorem 10.1 (Ensemble of multiple matches with logarithmic scoring).
Let c denote the worst average logarithmic score by any of the base probabil-
ity assessors, such that

∑m
j=1 ln(pi,j)

m ≥ c for all i.
Then ∑m

j=1 ln(pe,j)
m

≥ c, (10.3)

implying that the ensemble made by averaging over probability assessors boun-
ded by a certain value scores least as well as the worst probability asses-
sor measured by average logarithmic score.

Proof. Because of the requirements of c, the base probability assessors can
be ordered in such a way that the worst is 1 making the following statement
hold: ∑n

i=1

∑m
j=1 ln(pi,j)
nm

≥
∑m

j=1 ln(p1,j)
m

≥ c. (10.4)

If it can be proven that
∑m

j=1 ln(pe,j)

m ≥
∑n

i=1

∑m
j=1 ln(pi,j)

nm it follows from (10.4)
that (10.3) is true.∑m

j=1 ln(pe,j)
m

≥
∑n

i=1

∑m
j=1 ln(pi,j)
nm

⇔ (10.5)
m∑

j=1

ln(pe,j) ≥
m∑

j=1

∑n
i=1 ln(pi,j)

n
(10.6)

Consider that proving
∑n

i=1 ai ≥
∑n

i=1 bi can be done by proving ai ≥ bi for
all 1 ≤ i ≤ n. Then (10.6) can be proven by proving

ln pe,j ≥
∑n

i=1 ln(pi,j)
n

(10.7)

108

10.1. MOTIVATION OF ENSEMBLE METHODS

for all 1 ≤ j ≤ m. This is the same as proving that for each match, the
logarithmic score for the ensemble probability assessor is at least as high
as the average of the base probability assessors score. This is is stated in
Theorem 10.2.

Theorem 10.2 (Ensemble of a single match with logarithmic scoring). Let
p1, . . . , pn be the probabilities on the outcome made by n base probability as-
sessors which have an equally good logarithmic score. Then the probability
on the outcome is pe =

∑n
i=1 pi

n . Then define ln(0) = −∞, so that

ln(pe) ≥
∑n

i=1 ln(pi)
n

(10.8)

This is the same as stating that an average ensemble probability assessor is
at least as good at logarithmic scoring as the average of the base probability
assessors.

The proof follows after Lemma 10.3.

First consider the criteria for a concave function; suppose the function f is
twice differentiable on the open interval I. Then f is concave if f ′′(x) < 0
on I. For a concave function f (10.9) holds.

f

(∑n
i=1 xi

n

)
≥
∑n

i=1 f(xi)
n

(10.9)

Note that the only case, in which the right hand and left hand side of the
inequality are equal, is when x1 = . . . = xn.

Lemma 10.3 (The logarithmic function is concave). The natural logarithm,
ln, is concave on the interval (0,∞).

Proof. The proof follows immediately from

ln′′(x) < 0⇔ 1
−x2

< 0⇔ 1
x2

> 0

Proof. (Theorem 10.2). First consider the case where pj = 0 for one or
more js. In that case,

∑n
i=1 ln(pi)

n = −∞. Hence, the right-hand side of
(10.8) cannot be larger than the right-hand side making, the theorem true.

Now the cases where pj > 0 for all js are considered. In Lemma 10.3, it are
proved that the logarithm function is concave, hence (10.9) holds. (10.9)
can be used with f = ln and x1 = p1, . . . , xn = pn, leading to (10.10).

ln
(∑n

i=1 pi

n

)
≥

∑n
i=1 ln(pi)

n
⇔ (10.10)

ln(pe) ≥
∑n

i=1 ln(pi)
n

(10.11)

109

CHAPTER 10. ENSEMBLE METHODS

Note that pe =
∑n

i=1 pi

n as stated in (10.2). Since (10.11) and (10.8) are
identical Theorem 10.2 is proved as desired. Since Theorem 10.2 holds,
Theorem 10.1 also holds, hence the desired result is obtained.

This implies that it is now known that on a sufficiently large number of
matches, the logarithmic score of an ensemble probability assessor made by
unweighted combination is at least as high as the scores of the worst base
probability assessor, measured by their average logarithmic score. As stated
above, the score of the ensemble probability assessor only the same as the
worst score for the base probability assessors in cases where all base prob-
ability assessors calculates the same probability on the same match. If the
base probability assessors have some degree of independence, they will often
have different probabilities on the outcome, hence the ensemble probability
assessor performs better than than the worst probability assessors. A large
number of inequalities were used and some of them will in many cases be
in favour of the ensemble, hence there is reason to believe that ensemble
methods are also useful for creating a better probability assessment.

10.2 Creating the Ensembles

Given the available data, the goal is to make independent probability asses-
sors. This is not always possible but there are several methods for obtaining
at least some degree of independence. Common for these methods is that
they alter the environment in which the learning is performed, such that the
learning algorithm learns a number of different probability assessors [Die00b,
TSK97].

• Manipulation of the learning set, L; in this approach L, is ma-
nipulated such that each probability assessor is created by only using
a subset of L. This approach works best if the learning algorithm is
unstable, implying that a small changes in L have major impact on the
final probability assessor. The decision tree algorithm is an unstable
learning algorithm, whereas k-Nearest Neighbor is not. Two ways of
performing this approach are bagging and boosting, both are described
later.

• Manipulation of the input features; in this approach, only a sub-
set of the original features is used in each base probability assessor.
Generally, the subset is made randomly or by a domain expert. If this
approach is used, the input features should be highly redundant.

• Manipulation of the class feature; in cases with more than two
class feature values the number of possible outcomes of the class fea-
ture, n, can be partitioned into two disjoint aggregate classes for each

110

10.2. CREATING THE ENSEMBLES

classifier. These classes are denoted Ai and Bi, where i is the index of
the classifier. The instances are relabelled such that those which are
classified as Ai are given the derived label 0, and those which are clas-
sified as Bi are given the derived label 1. The relabelled instances are
joined in a new dataset which is given to the learning algorithm in order
to create a classifier hl. k base classifiers are made, h1, . . . , hi, . . . , hk,
each with its own unique dataset. Each new instance, x, is classified
using each h, such that if h classifies x as 0, each class in Ai receives
a vote, if it classifies x as 1, each class in Bi receives a vote corre-
sponding to its proportion of the aggregate class. This implies that if
Ai contains three classes, each of these will receive 1

3 vote. After each
h has classified x, the class with the highest number of votes is the
class-variable value of x.

• Manipulation of the learning algorithm settings; each base
probability assessor is created with different algorithm dependent set-
tings. In the decision tree algorithm, the minimum split size can be
altered, in the k-Nearest Neighbor algorithm the number of neighbours
can be changed. Moreover, there are numerous other ways of altering
these algorithms.

The remainder of this section presents different well known methods which
use some of these techniques.

10.2.1 Bagging

Bagging, short for bootstrap aggregation, creates a number of subsets the
learning set, L [TSK97]. The learning algorithm learns the base probability
assessors on these non-identical training sets, each of size n, the number of
instances in the learning set. This implies that each instance can appear
several times in the subsets. The instances are selected randomly, such
that each instance has an equal probability of being in a each subset. In
Algorithm 10.1, the subset creation process is presented. As input, it takes
the learning set, L, and the number of output subsets, k.

If n and k are sufficiently large, each instance appears in roughly 2
3 of the

subsets. This is the case since, the probability that an instance appears in
a randomly selected subset is limn→∞ 1− (1− 1

n)n = 1− 1
e ≈ 0.632.

An advantage of bagging is that it experiences less overfitting than e.g.
boosting when L contains noise because an unweighted average is used.
Unstable base probability assessors should be used in order to obtain the
best results.

111

CHAPTER 10. ENSEMBLE METHODS

Algorithm 10.1 The bagging algorithm for selecting the subsets.
1: function CreateBaggingSubsets(L, k)
2: baggingSubsets ← ∅
3: for 1 to k do
4: subset ← ∅
5: while |subset | < |L| do
6: subset ← subset ∪ L.getRandomItem()
7: end while
8: baggingSubsets ← baggingSubsets ∪ subset
9: end for

10: return baggingSubsets
11: end function

10.2.2 Boosting

Boosting is similar to bagging with the exception of subsets creation. Boost-
ing is an iterative approach which adapts the subsets to the learning algo-
rithm such that it focuses on the instances for which it is hard to make the
correct probability assessments. Boosting assigns a weight to each training
instance such that more difficult instances appear in more subsets, and in
this way are given a higher implicit weight. Boosting is not used in this
project because the complexity of the dataset would most likely result in
extreme weights on some of the instances which would lead to overfitting.

10.2.3 Random Forest

Random forests generate a large number of decision trees and combine the
probability assessments of these using unweighted combination. There are
several methods to obtain diversity in the base probability assessors, the nor-
mal method is by changing the set of input features. It is possible to combine
this method with bagging which in this project is not denoted as random
forests but as bagging, in order to keep the two approaches separated.

The randomisation of the input features is done while the tree is being built.
Each time a new node is created, only a limited randomly selected subset
of the features is available to be split on. This subset is randomly chosen
each time, such that it differs between each node. The size of this subset is
in [Bre01] suggested to be either 1 or dlog2(n)e, where n is the number of
input features. The number of decision trees built is suggested to be 100,
and each tree is built to its full height so that all leaves have entropy 0.

The implemented version is similar to Algorithm 7.1 on page 77. The only
difference is that the original ID3 function in line 8 uses the entire set of input
features where the random forest chooses a subset of these. Additionally,

112

10.3. INITIAL TEST RESULTS

random forests create not only one decision tree but a large number of
decision trees.

10.3 Initial Test Results

Three different tests are performed. The first two feature random forests
with and without bagging, where bagging is used to select the instances
for learning prior to creating each tree. The third test presents unweighted
combinations of selected combinations of the probability assessors that per-
formed best in previous tests.

10.3.1 Random Forests without Bagging

The settings for the tests are identical for all the different versions of random
forests. The learning set, LL, consists of 396 matches from the 04/05 and
05/06 seasons, and the test set, LT , consists of 108 matches from the 2006
part of the 06/07 season. All features are used which is a total of 577.

The random forests approach is tried with two different number of trees; 100
and 150. The size of the features subset tried in each node is
dlog2(577)e = 10 features.

-1.08
-1.07
-1.06
-1.05
-1.04
-1.03
-1.02
-1.01

-1
-0.99
-0.98

1 2 3 4 5 6 7 8 9 10 11 12
Window

A
ve

ra
ge

Lo
g

Sc
or

e 100
150

Figure 10.3: The average log scores for random forests created with 100 and
150 trees and feature subsets of size dlog2(n)e.

Figure 10.3 shows the performance over different window sizes of random
forests created using 100 and 150 trees and a feature subset of size dlog2(n)e.
From the figure, it can be seen that neither the random forests with a 100
trees nor the ones with 150 trees performs as well as the decision trees shown
in Figure 7.1 on page 78. The best random forests are created with 100 trees
and window sizes four, six, and eight, and 150 trees combined with window
size ten. Eight performs best with an average log score of about −0.995.

113

CHAPTER 10. ENSEMBLE METHODS

-1.08
-1.07
-1.06
-1.05
-1.04
-1.03
-1.02
-1.01

-1
-0.99
-0.98

1 2 3 4 5 6 7 8 9 10 11 12
Window

A
ve

ra
ge

Lo
g

Sc
or

e 100
150

Figure 10.4: The average log scores for random forests created with 100 and
150 trees and feature subsets of size one.

Figure 10.4 shows the performance over different window sizes of random
forests created using 100 and 150 trees and a feature subset of size one.
From the figure, it can be seen that the random forests do not perform well.
The best random forest is with 100 trees and a window size of 7 but none
of the random forests have an average logarithmic score above −1.

It is ambiguous what a good window size is but it is clear that feature subsets
of size dlog2(n)e are better than those of size one. This could be expected
since we have a large number of features, and randomly selecting one would
result in a very random result. The two best random forests using bagging
in the test have 100 decision trees, the window sizes seven and eight, and a
subset size of dlog2(n)e. These are shown in Table 10.1.

Decision Trees Subset Size Window Avg. Log Score
100 dlog2(n)e 8 −0.995646
100 dlog2(n)e 6 −0.998996

Table 10.1: The random forests with an average logarithmic score above −1.

10.3.2 Random Forests with Bagging

The settings for the test with random forests and bagging are identical to
those used for random forests described in Section 10.3.1.

Figure 10.5 shows the performance over different window sizes of random
forests created using 100 and 150 trees, bagging, and a feature subset of
size dlog2(n)e. From the figure, it can be seen that none of the random
forests performs as well as the decision trees shown in Figure 7.1 on page 78.
The best random forests are created with 100 trees and window sizes seven

114

10.3. INITIAL TEST RESULTS

-1.1
-1.09
-1.08
-1.07
-1.06
-1.05
-1.04
-1.03
-1.02
-1.01

-1
-0.99
-0.98

1 2 3 4 5 6 7 8 9 10 11 12
Window

A
ve

ra
ge

Lo
g

Sc
or

e 100
150

Figure 10.5: The average log scores for random forests created with 100 and
150 trees, bagging, and feature subsets of size dlog2(n)e.

and eight. Eight performs best with an average log score of about −0.985,
slightly better than the best random forest without bagging.

-1.1
-1.09
-1.08
-1.07
-1.06
-1.05
-1.04
-1.03
-1.02
-1.01

-1
-0.99
-0.98

1 2 3 4 5 6 7 8 9 10 11 12
Window

A
ve

ra
ge

Lo
g

Sc
or

e 100
150

Figure 10.6: The average log scores for random forests created with 100 and
150 trees, bagging, and feature subsets of size one.

Figure 10.6 shows the performance over different window sizes of random
forests created using 100 and 150 trees, bagging, and a feature subset of size
one. From the figure it can be seen that the random forests using bagging
and a feature subset of one do not perform well. None of the random forests
have an average logarithmic score above −1, making them uninteresting for
further exploration.

Again no clear good window size appears which was the same observation
as with random forests without bagging. As can be seen in Table 10.2, only
two random forest bagging probability assessors have an average logarithmic
score above −1. However, the best of them is better than the best random
forest probability assessor without bagging. Again, the best score comes

115

CHAPTER 10. ENSEMBLE METHODS

from the setting where the random forest is created with 100 decision trees,
a feature subset of size dlog2(n)e, and a window size of eight. Hence this
seems to be the optimal setting for random forests, and bagging seems to
slightly improve the logarithmic score for this setting.

Decision Trees Subset Size Window Avg. Log Score
100 dlog2(n)e 8 −0.987623
100 dlog2(n)e 7 −0.999379

Table 10.2: The random forests using bagging with an average logarithmic
score above −1.

10.3.3 Unweighted Ensembles of Probability Assessors

The third test is to shows how an ensemble of previously created proba-
bility assessors performs. This is done with an unweighted combination
using some of the top decision trees from Table 7.1 on page 78, the Expert
k-Nearest Neighbor probability assessor, the two random forest probability
assessor from Table 10.1, the two random forest probability assessor created
using bagging from Table 10.2, the Dixon-Coles probability assessor, and
the average probabilities from 50 bookmakers. This approach is, for the
decision trees, effectively randomisation, since the settings of the learning
algorithm are altered, in this case both the minsize and the window value.
Note that the number of matches varies according to the window size. The
eight combinations with the best test results can be seen in Table 10.3.

The table shows that the ensemble probability assessor that uses the best
decision tree together with the Dixon-Coles probability assessor performs
extremely well. The result is far better than the individual logarithmic
scores of the two probability assessors. The structures of the two learning
algorithms are very different, implying that the two base probability asses-
sors are more diverse than two probability assessors created with the same
algorithm. This fits with the description in Section 10.1, where it was stated
that the more diverse the base probability assessors are, the more significant
the improvement to the ensemble probability assessor is.

The ensemble created based on three of the top decision trees, also performs
extremely well along with one created by two decision trees with the Dixon-
Coles probability assessor. The other ensemble probability assessors do not
perform as well, though they still perform better than the base probability
assessors from which they are made. Note that the logarithmic scores are
calculated on the same data as the original probability assessors were tested
on. This implies that only probability assessors known to be good were used
in the ensembles, so another test on fresh data should be made.

116

10.3. INITIAL TEST RESULTS

Id
M

at
ch

es
L
ea

rn
in

g
A

lg
or

it
hm

Se
tt

in
gs

A
vg

.
L
og

Sc
or

e
A

vg
.

E
ns

em
bl

e
L
og

Sc
or

e

1
76

D
ix

on
-C

ol
es

St
an

da
rd

−
0.

95
08

1
−

0.
93

08
2

D
ec

is
io

n
T
re

e
w
in

do
w

=
4,

m
in

si
ze

=
28

−
0.

96
55

0

2
46

D
ec

is
io

n
T
re

e
w
in

do
w

=
4,

m
in

si
ze

=
28

−
0.

96
65

6
−

0.
93

89
7

D
ec

is
io

n
T
re

e
w
in

do
w

=
6,

m
in

si
ze

=
40

−
0.

96
16

4
D

ec
is

io
n

T
re

e
w
in

do
w

=
9,

m
in

si
ze

=
24

−
0.

98
51

4

3
64

D
ix

on
-C

ol
es

St
an

da
rd

−
0.

96
12

1
−

0.
93

99
0

D
ec

is
io

n
T
re

e
w
in

do
w

=
4,

m
in

si
ze

=
28

−
0.

97
30

3
D

ec
is

io
n

T
re

e
w
in

do
w

=
6,

m
in

si
ze

=
40

−
0.

98
24

0

4
76

D
ix

on
-C

ol
es

St
an

da
rd

−
0.

95
71

3
−

0.
94

08
5

D
ec

is
io

n
T
re

e
w
in

do
w

=
4,

m
in

si
ze

=
28

−
0.

96
55

0
bo

ok
m

ak
er

av
er

ag
e

fr
om

50
bo

ok
m

ak
er

s
−

0.
94

08
5

5
52

D
ix

on
-C

ol
es

St
an

da
rd

−
0.

95
08

1
−

0.
94

62
6

D
ec

is
io

n
T
re

e
w
in

do
w

=
4,

m
in

si
ze

=
28

−
0.

96
86

4
ra

nd
om

fo
re

st
s

w
in

do
w

=
8,

D
ec

is
io

n
T
re

es
=

10
0,

ba
gg

in
g
−

0.
98

76
2

6
76

D
ix

on
-C

ol
es

St
an

da
rd

−
0.

96
77

4
−

0.
94

66
3

D
ec

is
io

n
T
re

e
w
in

do
w

=
4,

m
in

si
ze

=
28

−
0.

96
55

0
k
-N

ea
re

st
N

ei
gh

bo
r

w
in

do
w

=
4,

ne
ig

hb
ou

rs
=

23
−

0.
99

74
7

7
52

D
ix

on
-C

ol
es

St
an

da
rd

−
0.

95
08

1
−

0.
94

99
3

D
ec

is
io

n
T
re

e
w
in

do
w

=
4,

m
in

si
ze

=
28

−
0.

96
86

4
ra

nd
om

fo
re

st
s

w
in

do
w

=
8,

D
ec

is
io

n
T
re

es
=

10
0

−
0.

99
56

4

8
58

D
ec

is
io

n
T
re

e
w
in

do
w

=
4,

m
in

si
ze

=
28

−
0.

99
12

4
−

0.
95

70
6

D
ec

is
io

n
T
re

e
w
in

do
w

=
6,

m
in

si
ze

=
40

−
0.

96
86

0
D

ec
is

io
n

T
re

e
w
in

do
w

=
7,

m
in

si
ze

=
80

−
0.

96
92

9

T
ab

le
10

.3
:

T
he

be
st

en
se

m
bl

es
cr

ea
te

d
us

in
g

un
w

ei
gh

te
d

co
m

bi
na

ti
on

of
pr

ev
io

us
ly

cr
ea

te
d

pr
ob

ab
ili

ty
as

se
ss

or
s.

117

CHAPTER 10. ENSEMBLE METHODS

An additional thing to notice from the table is that a combination of different
window sizes appear to work well. Ensemble 2 is a combination of three
different window sizes, and this ensemble performs better than the two other
ensembles, 4 and 5, with only decision trees. Ensemble 2 has a lower sample
size, number of matches, and it appears to be easier to make probability
assessments for these according to the average logarithmic scores but this
could still be an area to investigate further. Lastly, it can be seen that both
the ensemble probability assessor which uses random forests as well as the
one which uses the bookmaker, do not perform well compared to those who
make it to the table.

118

Chapter 11
Test Results

This chapter starts by presenting the probability assessors and the settings
used in the final test which are the best ones found in the previous chapters.
Furthermore, details of which tests are performed are described. The dif-
ferent probability assessors are evaluated as bookmakers first and gamblers
afterwards. Finally, the different approaches for probability assessor creation
are compared based on pros and cons together with the test results.

11.1 Test Plan for Final Evaluation

In Chapters 7 to 10, four different methods for making probability assess-
ments were presented and one approach for combining them. During the
selection process, overfitting might have happened, hence a test on the val-
idation set only using the top probability assessor found for each learning
algorithm is performed. This section describes the settings chosen for each
method and the tests that are performed for each probability assessor.

11.1.1 Learning Algorithms and Settings

In Table 7.1 on page 78, a number of well performing decision trees were
presented. Since a tree is a statically learned model there are two possible
ways of testing the best settings; either the original tree can be reused or
alternatively a new tree can be learned on the learning and test data used
in that section. The advantage obtained by using the same tree is that
it might fit the problem domain well partly due to luck. On the other
hand, a newly learned tree on more data uses more learning instances and
hence under normal circumstances would be considered better. Since both
approaches have advantages, they are both tested. The original tree used

119

CHAPTER 11. TEST RESULTS

the features “Overall Made a keypass”, “Overall Finished with left foot in
open play shot was blocked” and, “Overall Crossed to team mate on corner”.
It had a minsize of 28 and a window size of 4. The average logarithmic score
obtained with these settings was −0.9655.

The settings for the k-Nearest Neighbor algorithm were found in Section 8.4.4
on page 89. The k value was 23, the window size 4, and min-max normali-
sation was used. The features were “Made a keypass”, “Scored”, and “Made
an error”. The average logarithmic score was −1.0222 which is somewhat
worse than the bookmakers.

The Dixon-Coles approach provided the best result both alone and in combi-
nation with other learning algorithms. The stand alone average logarithmic
score was −0.9526. Dixon-Coles has only one setting, ξ, which decides the
weighting between old and new matches. The best ξ in the learning data
was 0.0043.

Ensemble methods were used to combine different base probability asses-
sors into more powerful combinations using two general strategies. Random
forests using at least 100 base probability assessors were build, but the best
average logarithmic score was −0.9876 based on a window size of 8 with bag-
ging so it does not seem a useful method for this problem domain. Another
approach used some of the previous probability assessors as a base and com-
bined them to obtain better results. The best one was based on the decision
tree described above in combination with Dixon-Coles so this combination
is tested. The average logarithmic score was −0.9308 for this combination
which is better than the available bookmakers on the same matches.

Furthermore, some bookmakers are considered in the tests, these were pre-
sented in Section 3.4 on page 31 as NordicBet’s closing odds and the average
closing odds, denoted Avg. BM odds.

All the probability assessors which are used in the final test are shown in
Table 11.1.

Prob. assessor Short name Avg. log score Variance
Dixon-Coles Dixon-Coles −0.9318± 0.3425 0.0200
Dixon-Coles + DT. DC + Old DT −0.9365± 0.3491 0.0207
Avg. BM odds BM Avg. −0.9831± 0.4103 0.0242
Random Forest Random Forest −0.9876± 0.3518 0.0177
NordicBet NB −0.9940± 0.4345 0.0258
Decision Tree Old DT −1.0060± 0.4636 0.0276
k-Nearest Neighbor kNN −1.0222± 0.2864 0.0128

Table 11.1: Scores for the used probability assessors in the tuning phase.

120

11.2. RESULTS AS BOOKMAKER

11.1.2 Tests to Be Performed

All learning and tuning of the probability assessors was performed on matches
played prior to the 1st of January 2007, and all of the following tests are
performed on matches played after the 1st of January 2007, as described in
Section 6.3.2 on page 69. This ensures that the learning, tuning and valida-
tion is performed on disjoint datasets which provides the most accurate test
results, as described in Section 5.4 on page 51.

In Section 1.2 on page 3, the primary goal was stated as finding a probabil-
ity assessor suitable for decision support for bookmakers and the secondary
goal as finding a probability assessor which is useful for gambling.

The different selected probability assessors was first evaluated for bookmak-
ing. This is done by comparing their logarithmic and quadratic scores with
those from bookmakers. The comparison also includes both a dependent t-
test and a Wilcoxon Signed-Rank Test to determine whether the differences
are statistically significant. The required level of significance, the α value,
is set to 0.05. After that the Bookmaker-Gambler scoring rule is applied to
each of the probability assessors against NordicBets closing odds. The most
interesting good and bad results are explored in more detail in the process,
including histograms of the probability assessments made by some of the
probability assessors.

The evaluation as a gambler is performed by calculating the expected gain
obtained by placing a stake at the different outcomes. If any of the ex-
pected gains are above a pre-set threshold value the stake is simulated as
placed. The wins and losses calculated based on the actual outcomes are
then summed and it can be determined what the return of investment would
have been.

11.2 Results as Bookmaker

To make a correct evaluation of the performance for bookmaking all the
models should participate in the odds market. This is, however, not possible.
Hence, some other way of comparison must be found. What is done is that
both the average logarithmic and quadratic scores for all probability as-
sessors and bookmakers are calculated together with statistical significance
levels for differences in the logarithmic scores. The Bookmaker-Gambler
score is also calculated between each bookmaker versus each probability as-
sessor. In this manner many different tests are performed and it is assumed
that if these test results all point in the same direction, then a probable
conclusion can be made.

The average logarithmic and quadratic score on the validation set is shown
in Table 11.2, together with their standard deviation and the variance of

121

CHAPTER 11. TEST RESULTS

the probability assessments. The table shows that both bookmakers out-
perform every automatically made probability assessor, both measured by
the logarithmic and the quadratic scoring rules. It is expected that both
the standard deviation and the variance decrease when ensembles are used
and even the simple ensemble of two probability assessors, DC + Old DT,
confirms this.

Prob. assessor Avg. log score Avg. quad score Variance
NB −0.9607 ± 0.4330 0.4326 ± 0.3014 0.0293
BM Avg. −0.9631 ± 0.3926 0.4301 ± 0.2774 0.0247
Dixon-Coles −0.9849 ± 0.4535 0.4163 ± 0.3152 0.0302
DC + Old DT −1.016 ± 0.3979 0.3954 ± 0.2714 0.0217
Random Forest −1.083 ± 0.3025 0.3453 ± 0.2084 0.0109
kNN −1.085 ± 0.3884 0.3427 ± 0.2670 0.0183
Old DT −1.090 ± 0.4834 0.3475 ± 0.3200 0.0267
New DT −1.125 ± 0.6030 0.3232 ± 0.4109 0.0426

Table 11.2: Test of the probability assessors on the validation set.

The poor results can partly be explained by a combination of several factors.
First, some overfitting occurred when the probability assessors were selected
because several thousand probability assessors were made but only a few
became part of the final test. Hence, the selected probability assessors were
slightly overfitted with regard to the test set used in the learning phase.
Furthermore, this spring season has been very surprising as teams which
won numerous games in the autumn season suddenly have started losing
many games, or losing teams have started winning. This is the case for at
least four teams.

The bookmakers have a natural edge over the probability assessors in the
first rounds, as there have been training matches, injuries, and trades prior
to the first game of the spring season which the probability assessors are
unaware of. Table 11.3 shows the average scores for the test set where
the first two rounds of the spring season are removed. It is clear that all
probability assessors improve significantly, also the bookmakers, implying
that the surprising results also had some impact on the performance of the
bookmakers. Though every probability assessor improves, Dixon-Coles is
the one which improves the most, and it nearly reaches the same level as BM
Avg

11.2.1 Significance Levels

Statistical significance tests were described in Section 4.5 on page 37 and
they can be used to determine whether the differences in the logarithmic

122

11.2. RESULTS AS BOOKMAKER

Prob. assessor Avg. log score Avg. quad score
NB −0.9048 0.4747
BM Avg. −0.9118 0.4686
Dixon-Coles −0.9203 0.4638
DC + Old DT −0.9689 0.4299
Random Forest −1.0615 0.3596
kNN −1.035 0.3759
Old DT −1.0592 0.3674
New DT −1.0909 0.3444

Table 11.3: Test of the probability assessors on the validation set without
the two first rounds.

scores occurred by chance or whether they can be expected to occur again
in another experiment, that is, on future matches.

Both the dependent t-test and the Wilcoxon signed-rank test are used here in
order to determine which probability assessors are significantly better than
other, measured by their logarithmic score. Note that the bookmakers were
found to be better than the created probability assessors, hence the test of
statistical significance is primarily focused on which probability assessors the
bookmakers are better than.

The t-test assumes normal distributions. In the case of the dependent t-test,
the differences between the pairs must be normally distributed and in the
case of the independent t-test, the sample must be normally distributed. To
illustrate why the independent t-test cannot be used consider Figure 11.1.
This figure shows the distribution of probabilities on the actual outcome
made by NordicBet on the validation set. The distribution peaks in the
interval from 0.2–0.3 and a again from 0.4–0.5 and 0.6–0.7. These peaks
indicates that the probabilities are not normally distributed. The combined
columns are grouped by outcome in Figure 11.2. The first peak is caused
by a high number of draws, predicted with a probability of 0.2–0.3, whilst
the second is a combination of away wins and home wins predicted with
a probability of 0.4–0.5. Note that NordicBet never predicts draw with a
higher probability than 0.3.

In Figure 11.3, the distribution of probabilities on the actual outcome made
by the Dixon-Coles probability assessor on the matches in the validation
set is shown. It is clear that it is not a normal distribution due to the
two separate tops in the intervals 0.2–0.3 and 0.4–0.5. Note further that the
overall distribution of probabilities is very similar to NordicBets distribution.
The explanation for the two peaks can be seen in Figure 11.4; the first peak
is caused by a high number of draws, whilst the second is caused by a
combination of away wins and home wins.

123

CHAPTER 11. TEST RESULTS

0

5

10

15

20

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0
Frequency range

C
ou

nt

Figure 11.1: Histogram for the combined probabilities on all the actual out-
comes from NordicBet.

0

5

10

15

20

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0
Frequency range

C
ou

nt

Home
Away
Draw

Figure 11.2: Histogram for the probabilities on actual outcomes from
NordicBet.

0

5

10

15

20

25

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0
Frequency range

C
ou

nt

Figure 11.3: Histogram for the combined probabilities on all the actual out-
comes made by the Dixon-Coles approach.

124

11.2. RESULTS AS BOOKMAKER

0

5

10

15

20

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0
Frequency range

C
ou

nt

Home
Away
Draw

Figure 11.4: Histogram for the probabilities on the actual outcome made by
the Dixon-Coles approach.

Neither of the graphs appear to be normally distributed and the first peak
is caused by the large number of draws predicted. Actually, the Dixon-Coles
never predicts draw with a probability larger than 0.4. Figure 11.5 shows the
probability for draw using Dixon-Coles and it is clear that the area where
probabilities are above 0.4 is very limited. The highest probabilities occur
whenever the two teams are about equally strong and when µ and λ are
close to 0, implying that neither of the teams have a high chance of scoring
any goals.

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2

0.25

0.5

0.75

1

 !

P
ro
b
a
b
il
it
y

Figure 11.5: Dixon-Coles Probability on draw given λ = 0, γ, and µ.

The peak around 0.4–0.5 in Figure 11.3 stems from predictions on away wins.
This is also reflected in Figure 11.6 which shows that as λ decreases, and
µ increases, the probability for away win increases to close to 1. Generally,

125

CHAPTER 11. TEST RESULTS

the probability for away win is large, and roughly 0.5 of the area have an
away win probability of 0.4 or more. Note, however, that λ is larger than µ
on average because the home team factor is a part of λ.

Figure 11.6: Dixon-Coles Probability on away win given λ = 0, γ, and µ.

Because the samples are clearly not normally distributed, independent t-test
is not an option. Dependent t-test, described in Section 4.5.4 on page 38
requires that the differences between the pairs fit the normal distribution.
This only is true for some of the combinations of probability assessors, more
details regarding that will be presented later.

Hypothesis test with both the Wilcoxon-Signed Rank Test and the depen-
dent t-test was applied to the probability assessors. Table 11.4 shows the
p-values for the tuning test and Table 11.5 shows the p-values for the valida-
tion test. All values written in boldface are statistical significant at the 0.05
level. Note that the dependent t-test is used regardless of the differences
between the pairs are not normally distributed.

The upper number in each grid in the table shows the p-value for the t-test.
The null hypothesis is that the normal distribution of the pairs have mean
0 or lower, the alternative hypothesis is that mean is higher than 0. The
normal distribution is made by for each common match the logarithmic score
from the probability assessor in the column header is subtracted from the
logarithmic score of the probability assessor in the row header. This implies
that if the p-value is below 0.05 the null hypothesis can be rejected and the
average logarithmic score of the probability assessor in the row header is

126

11.2. RESULTS AS BOOKMAKER

DC+DT BM
Avg.

RF NB DT kNN

DC 0.5863
0.2359

0.0148
0.0003

0.2090
0.0534

0.0125
0.0010

0.3115
0.4301

0.0723
0.0026

DC+DT 0.0638
0.2249

0.0621
0.0371

0.0398
0.1950

0.1395
0.5289

0.0102
0.0056

BM
Avg.

0.4573
0.2679

0.0294
0.9202

0.5357
0.7102

0.2110
0.0280

RF 0.4436
0.6557

0.6488
0.8504

0.6043
0.3681

NB 0.6197
0.7362

0.3276
0.0308

DT 0.1940
0.0137

Table 11.4: Hypothesis tests on probability assessors evaluated on the tun-
ing dataset, with t-test on the top and the Wilcoxon Signed-
Rank Test on the bottom.

significantly better than the probability assessor in the column header.

The Shapiro-Wilk test for normality were only performed on the test in the
validation set. The null hypothesis for the Shapiro-Wilk test is that the
sample came from a normally distributed population and the alternative
hypothesis is that it did not. In Table 11.5 the p-values from the t-test
are underlined if the Shapiro-Wilk null hypothesis holds with less than 0.05
chance, implying that underlined values are not reliable.

The lower number in each grid in the table shows the p-value for the Wilcoxon-
Signed Rank Test. The null hypothesis is that the median of the pairs is 0 or
lower, the alternative hypothesis is that median is higher than 0. The differ-
ences between the pairs is made by for each common match the logarithmic
score from the probability assessor in the column header is subtracted from
the logarithmic score of the probability assessor in the row header. This im-
plies that if the p-value is below 0.05 the null hypothesis can be rejected and
the average logarithmic score of the probability assessor in the row header
is significantly better than the probability assessor in the column header.

Table 11.4 shows that DC is significantly better than both bookmakers, both
measured by the dependent t-test and the Wilcoxon Signed-Rank Test in the
test on the tuning dataset. Furthermore DC+Old DT is significantly better
than NB using the dependent t-test. It is clear that kNN and RF do not
perform well whereas DT performs mediocre with only a single significant
result, where it is better than kNN using the Wilcoxon Signed-Rank Test.

Table 11.5 shows that both bookmakers are significantly better than most of

127

CHAPTER 11. TEST RESULTS

BM
Avg.

DC DC+Old
DT

RF kNN Old
DT

New
DT

NB 0.9705
0.0798

0.1831
0.3660

0.0605
0.0055

0.0011
0.0000

0.0019
0.0001

0.0078
0.0010

0.0053
0.0315

BM
Avg.

0.0960
0.3258

0.0403
0.0151

0.0003
0.0000

0.0007
0.0002

0.0076
0.0019

0.0061
0.0535

DC 0.1238
0.0116

0.0093
0.0003

0.0073
0.0004

0.0149
0.0018

0.0073
0.0460

DC+Old
DT

0.0210
0.0005

0.0257
0.0020

0.0011
0.0011

0.0037
0.1332

RF 0.4702
0.6972

0.4344
0.9285

0.2364
0.8851

kNN 0.4569
0.8451

0.2514
0.8242

Old
DT

0.1318
0.0052

Table 11.5: Hypothesis tests on probability assessors evaluated on the vali-
dation dataset, with t-test on the top and the Wilcoxon Signed-
Rank Test on the bottom.

the automatically made probability assessors, both measured by the depen-
dent t-test and the Wilcoxon Signed-Rank Test on the validation dataset.
Only the pure DC probability assessor is not beaten by the bookmakers at
an 0.05 significance level. Using the dependent t-test, the combination of
DC+Old DT, is not significantly worse but it is very close, hence it is consid-
ered to be worse.

If the significance test of the probability assessors on the validation dataset is
compared to that on the tuning dataset, it should be clear that the results are
noteworthy different. Both NB and BM Avg. are close to being significantly
better than DC in the new test whereas DC is better than the bookmakers in
the test on the tuning dataset. kNN is significantly worse than most other
probability assessors in both tests. Furthermore, the test on the tuning
dataset showed that neither of the bookmakers were significantly better than
any of the probability assessors with exception of kNN but the new tests
contradict this by showing that both bookmakers are significantly better
than most other probability assessors with exception of DC. As described
in Section 4.5.3 on page 38, the fact that a result is statistically significant
could have been caused by an error, in the sense that an α-value of 0.05, as
used in these tests, imply a 0.05 probability of the result being erroneous.

128

11.3. RESULTS AS GAMBLER

11.2.2 The Bookmaker-Gambler Scoring Rule

The probability assessors are also tested using the Bookmaker-Gambler scor-
ing rule, described in Section 6.1.2 on page 60. Table 11.6 shows the average
score of the probability assessors versus both NordicBet and the average
odds, respectively.

Name NordicBet Closing Avg. Odds
NB 0.0 −0.2148
BM Avg. 0.2148 0.0
DC −0.0342 −0.4215
DC + Old DT −0.5421 −0.3639
RF −0.8530 −0.9083
kNN −1.0308 −1.0120
Old DT −1.0870 −1.0739
New DT −0.9317 −1.0552

Table 11.6: The performance of the probability assessors measured by the
Bookmaker-Gambler scoring rule.

The table shows that all probability assessors lose to the bookmakers, and
that BM Avg. is the best bookmaker. DC is very close to NordicBet but
does not perform as well against the average odds. The ensemble, DC +
Old DT, performs slightly worse than DC, whereas all the other probability
assessors perform about equally bad.

The results are similar to those obtained with the logarithmic and quadratic
scoring rules which indicates it makes sense to apply the Bookmaker-Gambler
scoring rule to this problem domain.

11.3 Results as Gambler

As described in Section 2.2 on page 6, the gambler can calculate his expected
gain for a given bet if he knows the odds and he has made a probability as-
sessment on the game. The probability assessment can be made by a proba-
bility assessor, hence the probability assessor can be evaluated for gambling
use.

The main idea is to calculate the expected gain on each possible outcome
for each match. Note that the odds to choose are the highest available on
the given outcome on the given match, because it is possible to place the
bet at any bookmaker. If the expected gain is above a given threshold, a
bet is placed otherwise betting is avoided. The size of the bet can either be
determined by the size of the expected gain or be fixed to the same value on

129

CHAPTER 11. TEST RESULTS

each bet. When the bet is placed, the actual payback can be calculated based
on the outcome of the match. When the gain for each game is calculated,
the gains for all matches are summed up, such that it is possible to see how
much would have been lost or won if the scheme was actually used in real
life on all the matches.

In this test, a stake of 1 unit on each bet is chosen. The results are shown in
Table 11.7. Note that only the DC and the DC + Old DT probability asses-
sors are tested, as these are the only two not determined to be significantly
worse than the bookmakers. A threshold value of 0.2 signifies that the gain
is expected to be at least 0.2 of the stake. Stake is the total stake placed,
won is the amount paid back, and profit is won minus stake. R.O.I. is the
return of investment, i.e. how much the gambler gets in return per unit
invested. Note that it is possible to play on more than one outcome of a
match.

Name Stake Won Profit R.O.I Profit matches
Threshold 0.0

NB 21 9.25 -11.75 -0.5595 4
BM Avg. 35 41.14 6.14 0.1757 9
DC 76 65.14 -10.85 -0.1428 22
DC + Old DT 88 62.68 -25.31 -0.2877 18

Threshold 0.1
NB 1 0.0 -1.0 -1.0 0
BM Avg. 7 14.15 7.15 1.0214 2
DC 34 21.30 -12.69 -0.3735 7
DC + Old DT 50 36.80 -13.19 -0.2639 9

Threshold 0.2
NB 0 0.0 0.0 0.0 0
BM Avg. 3 0.0 -3.0 -1.0 0
DC 15 5.09 -9.90 -0.6600 2
DC + Old DT 33 30.00 -2.99 -0.0909 6

Threshold 0.3
NB 0 0.0 0.0 0.0 0
BM Avg. 1 0.0 -1.0 -1.0 0
DC 7 0.0 -7.0 -1.0 0
DC + Old DT 24 24.90 0.90 0.0375 4

Table 11.7: The performance of the probability assessors as gamblers.

The table shows that DC + Old DT has positive return of investment when
the threshold is 0.3 but only four bets of 24 made were won. Hence, the
profit could occur by chance. Furthermore, some of the losses obtained by
both DC and DC + Old DT are large, indicating that they are not useful for

130

11.4. EVALUATION OF THE DIFFERENT APPROACHES

gambling.

An interesting observation is that the BM Avg. probability assessor has a
positive return of investment with both threshold 0.0 and 0.1. Even though
the profit is obtained by playing only on few matches, it still indicates that
it might be possible to beat the bookmakers only using odds from other
bookmakers. BM Avg. is made by averaging over 150 bookmakers which is
closely related to ensemble methods and also to the approach in [DMP+06]
where the assessments from a number of experts are combined to yield very
good assessments. [PW02] presents a similar results where they are able
to beat the bookmakers by using the market average in spread betting, a
betting form where the pay-off is based on the precision of the prediction
instead of the fixed win or loss considered in this report.

11.4 Evaluation of the Different Approaches

This section evaluates the different approaches with regard to strength and
weaknesses. The different types of probability assessors have different strengths
and weaknesses, as shown in schematic form in Table 11.8. Note that this
is a discussion of the actual models constructed in this project, not of the
general application of the algorithms on other datasets or in other domains.

kNN DT Dixon-Coles
Makes probability assessments × × ×
Fine grained probability assessments ×
Data freely available ×
Luck in previous matches × ×
Handles promotion/relegation ×
Player absence (×) (×)
Handles cross division/country ×
Assessments similar to bookmaker ×
Handles game importance (×) (×)

Table 11.8: The strengths and weaknesses of the different types of probabil-
ity assessors.

Common for all types is that they make probability assessments which was
a prior requirement stated in the project goals.

11.4.1 Grain Size

One factor which could cause both the bookmaker and the gambler results
to appear worse is that the grain of the probability assessment could be

131

CHAPTER 11. TEST RESULTS

too rough. That is, the probability assessment can only have finitely many
values. One example is that the k value in k-Nearest Neighbor determines
how fine-grained the probability assessment of that k-Nearest Neighbor is,
since a small k value only allows few different probability assessment levels.
This effect only occurs in some of the probability assessors of this test, the
bookmakers are free to select the probability assessment they choose and
the Dixon-Coles approach also has an infinitely fine grain, as well as the
ensembles it is part of.

The grain size of both the k-Nearest Neighbor algorithm and the decision
tree algorithm can be calculated. For k-Nearest Neighbor the possible prob-
abilities are 0, 1

k , 2
k , . . . , k

k . The implementation of kNN uses k = 23, hence
the probability assessments can be made with an interval of 1

23 ≈ 0.0434.
E.g. if the true probability for an outcome is 0.1, kNN can only assess 0.0868
or 0.1302, as these are the closest. If kNN had been able to predict within
the entire interval, the maximum logarithmic score is −1.0181 which is con-
sidered the upper bound for the score.

This effect is even more noteworthy for Old DT, shown in Figure 7.3 on
page 79. As shown in Table 11.9, the various intervals between the possible
outcomes are of different size, some very large, and there are only seven
different sets to choose from. E.g. if the true probability for a match is
(0.35, 0.2, 0.45), the closest probability that Old DT can assign is (0.452,
0.226, 0.323). This is not particularly close. It yields a much better score if
the outcome is home win, a slightly better score if the outcome is a draw,
and a much worse score if the outcome is an away win. The upper bound
for Old DT on logarithmic score is −0.9653. The possible probabilities for
New DT are similar though there are only four possible sets of probabilities
and the upper bound for the logarithmic score is −0.8750. Note that the
upper bound is not an expression of a realistically obtainable score due to
the low number of sets, hence the intervals are very large.

Home Win Draw Away Win
0.775 0.025 0.200
0.700 0.225 0.075
0.611 0.083 0.306
0.474 0.192 0.333
0.452 0.226 0.323
0.267 0.356 0.378
0.182 0.286 0.533

Table 11.9: The possible probabilities for Old DT.

The overall effect of the probability assessments having too large intervals
between their possible probabilities is that both wins and losses tend to get

132

11.4. EVALUATION OF THE DIFFERENT APPROACHES

larger, such that scores are more extreme that they should be. Due to the
usage of proper scoring rules it also always yields an expected lower score
to change the probability assessment.

11.4.2 Dataset Issues

The advantage of the Dixon-Coles approach is that it only uses the number of
goals scored in the model, hence the dataset is freely available on the internet
for almost all leagues on all levels for the entire world. This implies that
most difficulties which arise from promotion and relegation can be avoided,
and that the strength of leagues in different countries can be compared to
each other.

The two other models use more complex datasets constructed by Statman,
hence the data is difficult to obtain. Furthermore, due to the complexity
of the dataset, it is very hard to deal with promotions because no data is
available for the promoted teams.

The Dixon-Coles probability assessor also has a built in ability to determine
how good a team is compared to a team in another league or country which
is not the case for the other two approaches.

11.4.3 Feature Issues

Both k-Nearest Neighbor and decision tree can handle matches where the
previous results were effected by luck or coincidence because they can use
features like key passes and shots on goal. They can also partly handle
player absence if features which handles this are created. Furthermore, they
can partly handle importance of matches if a feature could be constructed
which handles this.

The main disadvantage with Dixon-Coles is that it only uses the number of
goals scored from past matches. The number of goals scored is typically very
low so luck or coincidence has an influence on the total number. Further-
more, the importance of the match and information about the upcoming
match available prior to the match, e.g. the line-up, are unused by this
approach.

11.4.4 Probability Assessors Roundup

Even though the different approaches have different strengths, the results
were pretty clear: Dixon-Coles was the only approach which performed close
to the bookmakers and in the end that is by far the most important criteria.
It should be clear that no perfect solution exists but that if a model can

133

CHAPTER 11. TEST RESULTS

be constructed which combines the positive traits for the different types of
probability assessors, that is a good solution.

Unfortunately, the tests in the previous sections, where the probability as-
sessors were tested as both bookmakers and gamblers, showed that none of
probability assessors constructed from neither the k-Nearest Neighbor algo-
rithm nor the decision tree algorithm could compare with the bookmakers.
Though the ensemble constructed from the Dixon-Coles and the decision
tree approach performed better than the base decision tree probability asses-
sor, it did not perform better than the base Dixon-Coles probability assessor.
This was caused by the significant difference between the two base models,
and even though they were combined the ensemble could not improve the
score of the base decision tree enough.

In hindsight, this could be caused by numerous decision trees being learned
on the learning set, LL, including the one used in the final validation. These
were all tested in the test set, LT , and the best settings were selected before
the final test. This approach is likely to have overfitted the learned model
with respect to LT . The appropriate approach would have been to first
determine the settings using cross-validation on LL, then select a few of the
best settings, and only test those on LT such that a much smaller number
of probability assessors would have been tested on LT , hence decreasing the
chance of overfitting. This approach was used in k-Nearest Neighbor where
the overfitted model was spotted and hence a more simple model was used
in the final test.

134

Chapter 12
Conclusion

This chapter evaluates the project against the goals stated in Section 1.2 on
page 3 and suggests how better results can be obtained.

12.1 Evaluation of Project Goals

The main goal of the project was to establish a model which can output prob-
ability assessments on outcomes of football matches and which performs so
well that it can be useful for a bookmaker. The initial tests indicated that
a combination of the Dixon-Coles approach and decision trees would result
in such a model.

Unfortunately, the test on fresh data indicated that the prior result were
caused by overfitting, hence the goal was not fully achievable since no better
scores for any of the probability assessors in the tests were obtained. To
verify the result, the dependent t-test and the Wilcoxon Signed-Rank Test
were applied to the logarithmic scores, and the results showed that only
Dixon-Coles are no worse than the bookmakers at a 0.05 significance level.
Dixon-Coles is the only probability assessor with a performance nearly as
good as the bookmakers, and an ensemble between Dixon-Coles and a prob-
ability assessor based on more feature types or an alteration of it might be
what is needed to achieve improvements.

The results were the same when the different probability assessors were
evaluated as gamblers. However, Dixon-Coles did beat the bookmakers at
one specific threshold value. This result unfortunately seems to be by chance
rather than general. The results may have suffered from too few matches
because if stakes only are placed on 15 or fewer bets, small differences in
match outcomes can lead to big differences in profits.

135

CHAPTER 12. CONCLUSION

The goals stated that the probability assessors should be built on data avail-
able before the match being played. This goal was achieved by using his-
toric data, and the experiments indicated that using data from the last four
matches yields the best results in most cases. The two key events which
were used by most of the created probability assessors were deviations of
keypasses and finishes.
In order to determine the accuracy of the different probability assessors, two
absolute and a pair-wise scoring rule, the Bookmaker-Gambler scoring rule,
were used. The Bookmaker-Gambler scoring rule was developed in this
project as a domain specific scoring rule which fits the problem domain.

12.2 Suggestions for Improvements

As described in the evaluation of the project goals, Dixon-Coles is nearly as
good as the bookmakers. This section proposes some initiatives which may
improve the Dixon-Coles approach.
The most obvious one is to combine Dixon-Coles with one or more proba-
bility assessors using ensemble methods. The initial tests indicated that a
probability assessor based on decision trees in combination with Dixon-Coles
was better than the bookmakers but the particular decision tree performed
bad on the fresh data, hence the ensemble also performed bad. If a decision
tree or k-Nearest Neighbor setting can be determined which yields good
performance in general, this might be the key for improvement of Dixon-
Coles.
The reason, why an ensemble of Dixon-Coles and another type of probability
assessor is believed to be better than the individual probability assessors, is
that Dixon-Coles has problems with previous matched that were decided by
luck or absent players. This is caused by only the number of goals scored
being considered when the offensive strengths and defensive weaknesses are
calculated. If these parameters were influenced by other factors like e.g.
keypasses and absent players, the parameters might be more accurate, hence
the probability assessments would also be more accurate.
More data is also desirable, both odds from more bookmakers and detailed
data from more matches. When evaluating the models for gambling more
odds would allow the model to play at bookmakers with higher odds which
will lead to higher profits.
More detailed match data would allow more levels in the decision trees which
would result in smaller grain sizes and hence a higher level of flexibility in
the probability assessments. As shown in Section 11.4 on page 131 the upper
bound for the average logarithmic scores for the current decision trees are
better than the score of the bookmakers, implying that it should be possible
to improve the scores of the current decision trees.

136

Bibliography

[Abd06] H. Abdi. Z-scores. Encyclopedia of Measurement and Statistics,
2006.

[Avr76] M. Avriel. Nonlinear Programming: Analysis and Methods.
Prentice Hall, 1976.

[Bre01] L. Breiman. Random Forests. Machine Learning, 45(1):5–32,
2001.

[CDLR02] M. Crowder, M. Dixon, A. Ledford and M. Robinson. Dynamic
modelling and prediction of English Football League matches for
betting. Journal of the Royal Statistical Society: Series D (The
Statistican), 51(2):157–168, 2002.

[CH07] Tobias Christensen and Rasmus Dencker Hansen. Odds assess-
ment on football matches, January 2007.

[DC97] M.J. Dixon and S.G. Coles. Modelling Association Football
Scores and Inefficiencies in the Football Betting Market. Jour-
nal of the Royal Statistical Society: Series C (Applied Statistics),
46(2):265–280, 1997.

[DeG89] M.H. DeGroot. Probability and Statistics. Addison-Wesley, 2.
edition, 1989.

[DHS01] R.O. Duda, P.E. Hart and D.G. Stork. Pattern Classification.
John Wiley & Sons, Inc., 2.. edition, 2001.

[Die00a] T.G. Dietterich. An Experimental Comparison of Three Meth-
ods for Constructing Ensembles of Decision Trees: Bagging,
Boosting, and Randomization. Machine Learning, 40(2):139–
157, 2000.

137

BIBLIOGRAPHY

[Die00b] T.G. Dietterich. Ensemble methods in machine learning. Lecture
Notes in Computer Science, 1857, 2000.

[DMP+06] V. Dani, O. Madani, D. Pennock, S. Sanghai and B. Galebach.
An empirical comparison of algorithms for aggregating expert
predictions. UAI, 2006.

[Fli02] K. Flinders. Football Injuries are Rocket Science. vnunet.com,
Oct 2002.

[Geo07] B. Geoghegan. Gaming for the Gaming Generation. Hospitality
Upgrade, (1):142–143, 2007.

[Geu02] Pierre Geurts. Contributions to decision tree induction: bias/-
variance trade-off and time series classification, May 2002.

[GR04] T. Gneiting and A.E. Raftery. Strictly proper scoring rules, pre-
diction and estimation. 2004.

[HK01] J. Han and M. Kamber. Data Mining – Concepts and Tech-
niques. Morgan Kaufmann Publishers, 2001.

[HMS01] D. Hand, H. Mannila and P. Smyth. Principles of Data Mining.
MIT Press, 2001.

[JFN06] A. Joseph, NE Fenton and M. Neil. Predicting football re-
sults using Bayesian nets and other machine learning techniques.
Knowledge-Based Systems, 19(7):544–553, 2006.

[JI03] Goddard J. and Asimakopoulos I. Modelling football match re-
sults and the efficiency of fixed-odds betting. 2003.

[Kee95] E.S. Keeping. Introduction to Statistical Inference. Dover, 1995.

[Lar05] D.T. Larose. Discovering Knowledge in Data: An Introduction
to Data Mining. John-Wiley and Sons. Inc., 2005.

[Lew03] M. Lewis. Moneyball - The Art of Winning an Unfair Game.
W. W. Noton & Company, inc., 2003.

[Mit97] T.M. Mitchell. Machine learning. McGraw-Hill, 1997.

[nor] Mail correspondence with Nikolaj Juul Nielsen and Frederik Sø-
vang from NordicBet, 2006.

[PW02] D. Paton and L.V. Williams. Quarbs and Efficiency in Spread
Betting: can you beat the bookie? 2002.

138

BIBLIOGRAPHY

[RS00] H. Rue and O. Salvesen. Prediction and Retrospective Analysis
of Soccer Matches in a League. Journal of the Royal Statistical
Society: Series D (The Statistican), 49(3):399–418, 2000.

[sta] Mail correspondence with Kresten Buch from Statman ApS,
2006.

[SW65] S.S. Shapiro and M.B. Wilk. An Analysis of Variance Test for
Normality (Complete Samples). Biometrika, 52(3/4):591–611,
1965.

[TSK97] P.N. Tan, M. Steinbach and V. Kumar. Introduction to Data
Mining. Pearson Education, Inc., 1997.

[Wil45] F. Wilcoxon. Individual Comparisons by Ranking Methods. Bio-
metrics Bulletin, 1(6):80–83, 1945.

[WM68] R.L. Winkler and A.H. Murphy. Good probability assessors.
Journal of Applied Meteorology, 7(4):751–758, 1968.

[WM97] D.H. Wolpert and W.G. Macready. No free lunch theorems for
optimization. Evolutionary Computation, IEEE Transactions,
1(1):67–82, 1997.

[Zwi03] D. Zwillinger. CRC Standard Mathematical Tables and Formu-
lae. CRC Press, 31. edition, 2003.

139

Appendix A
Categories

Category k
-N

ea
re

st
N

ei
gh

bo
r

D
ec

is
io

n
T
re

e

Assisted
Assisted from a set piece ×
Assisted in open play
Assisted on a cross
Assisted on corner
Blocked attempt
Blocked free kick attempt
Blocked the ball
Cleared by head
Cleared the ball
Committed a misconduct
Completed defensive long pass
Completed defensive short pass
Completed dribbling
Completed mid zone long pass
Completed mid zone short pass
Completed offensive long pass
Completed offensive short pass ×

Table A.1: The Statman categories, A–C

140

Category k
-N

ea
re

st
N

ei
gh

bo
r

D
ec

is
io

n
T
re

e

Completed pass
Crossed to opponent
Crossed to opponent from set piece
Crossed to opponent in open play
Crossed to opponent on corner
Crossed to opponent on free kick
Crossed to team mate
Crossed to team mate form set piece
Crossed to team mate in open play
Crossed to team mate on corner ×
Crossed to team mate on free kick
Finished off target ×
Finished off target with foot
Finished off target with head
Finished off target with head in open play
Finished off target with left foot from set piece
Finished off target with left foot in open play
Finished off target with other in open play
Finished off target with right foot from set piece
Finished off target with right foot in open play
Finished on target
Finished on target on free kick
Finished on target with foot
Finished on target with head
Finished on target with head in open play
Finished on target with left foot
Finished on target with left foot from set piece
Finished on target with left foot in open play
Finished on target with other
Finished on target with other in open play
Finished on target with right foot
Finished on target with right foot from set piece
Finished on target with right foot in open play
Finished on woodwork
Finished with head in open play, blocked
Finished with head but ball was blocked ×

Table A.2: The Statman categories, C–F
141

APPENDIX A. CATEGORIES

Category k
-N

ea
re

st
N

ei
gh

bo
r

D
ec

is
io

n
T
re

e

Finished with left foot from set piece, blocked
Finished with left foot in open play, blocked ×
Finished with other in open play but ball was blocked ×
Finished with right foot from set piece shot was blocked ×
Finished with right foot in open play, blocked
Flicked the ball
Free kick shot off target ×
Intercepted the ball ×
Keypassed from set piece ×
Keypassed in open play
Keypassed on a cross
Keypassed or assisted on a cross
Lost a blocking
Lost an interception
Made a keypass × ×
Made a tackle
Made an error ×
Missed a penalty
Received 2nd yellow card
Received a red or 2nd yellow ×
Received a yellow or 2nd yellow
Received red card
Received yellow card
Saved and deflected out of play
Saved and deflected to opponent
Saved and deflected to team mate
Saved and held the ball
Scored ×
Scored an own goal
Scored in open play by other
Scored on direct free kick ×
Scored on penalty
Scored with head
Scored with head in open play
Scored with left foot
Scored with left foot from set piece

Table A.3: The Statman categories, F–S
142

Category k
-N

ea
re

st
N

ei
gh

bo
r

D
ec

is
io

n
T
re

e

Scored with left foot in open play
Scored with other
Scored with right foot
Scored with right foot from set piece ×
Scored with right foot in open play
Tackled to opponent
Tackled to team mate
Took a corner ×
Took a goal kick
Took a throw in
Uncompleted defensive long pass
Uncompleted defensive short pass
Uncompleted dribbling
Uncompleted mid zone long pass
Uncompleted mid zone short pass
Uncompleted offensive long pass ×
Uncompleted offensive short pass
Uncompleted pass
Was offside ×
Was substituted
Won a blocking
Won an interception

Table A.4: The Statman categories, S–W

143

APPENDIX A. CATEGORIES

Category k
-N

ea
re

st
N

ei
gh

bo
r

D
ec

is
io

n
T
re

e
Finished off target in the goal area
Finished off target in the penalty area except the goal area
Finished off target outside the penalty area
Finished on target in the goal area ×
Finished on target in the penalty area except the goal area ×
Finished on target outside the penalty area
Players missing from last match ×

Table A.5: The constructed categories

144

	Introduction
	Motivation
	Goals
	Strategy

	Problem Setting
	The Prediction Market and Odds
	Related Work

	Available Data
	Quality of Detailed Match Data
	Specification of Detailed Match Data
	Specification of Match Result Data
	Available Odds

	Basic Concepts
	Expected Value and Expected Loss
	Mean, Variance, and Standard Deviation
	Poisson Distribution
	Distance Measures
	Test of Hypotheses

	Data Preparation
	Creating the Features
	Feature Reduction
	Normalisation of Features
	Splitting the Dataset

	Probability Assessors
	Scoring Rules for Probability Assessors
	Learning Probability Assessors
	Test Plan

	Decision Trees
	Feature Selection
	Building a Decision Tree
	Implementation
	Test Results

	k-Nearest Neighbor
	Making Probability Assessments
	Feature Search Algorithm
	Optimal k Search
	Test Results

	Dixon-Coles Approach
	Dixon-Coles Probability Assessment
	Deciding the Parameters
	Test Results

	Ensemble Methods
	Motivation of Ensemble Methods
	Creating the Ensembles
	Initial Test Results

	Test Results
	Test Plan for Final Evaluation
	Results as Bookmaker
	Results as Gambler
	Evaluation of the Different Approaches

	Conclusion
	Evaluation of Project Goals
	Suggestions for Improvements

	Bibliography
	Categories

