




The Faculty of Engineering and Science

Department of Computer Science

TITLE:
Combinatory Tests of AI Techniques for
Common Tasks in Computer Games

THEME:
Master Thesis E06 - Machine Intelli-
gence Group

PROJECT PERIOD:
February - June, 2006

TERM:
DAT6

PROJECT GROUP:
d642a

GROUP MEMBERS:
Coltau, Pelle
Jacobsen, Jens Juul
Jensen, Brian

ADVISOR:
Bangsø, Olav

NUMBER OF COPIES: 7

NUMBER OF PAGES: 108

APPENDIX PAGES: 30

TOTAL NUMBER OF PAGES: 138

ABSTRACT:

In this project we empirically test various
learning AI techniques for their appliance in
computer games. This is done through a self-
developed modular framework for solving the
board game Risk. The framework covers tasks
commonly needed in computer games such as
analysis of the AIs environment, movement
planning, etc.
The AI techniques tested in this project are
scripting, decision trees, neural networks,
Bayesian networks, and naive Bayes classifiers.
We have implemented a scripted AI for Risk
which is used to construct training data for the
learning techniques.
We discuss different aspects of training the var-
ious techniques and the problems we encoun-
tered while doing so.
We present a way to test the importance of each
module in the framework and discuss differ-
ent ways of planning tests with a high number
of AI participants. We come up with a testing
scheme that will eventually present the best AI
for playing Risk without having to play all pos-
sible AI compositions against each other.
The result of the tests is an AI composed of dif-
ferent AI techniques that each is the best at its
task.
The tests show that learning AI techniques can
learn how to solve different tasks involved in
computer games. In some cases they even out-
perform their teachers.
Finally we reflect upon the test results, what
most the likely appliance of each AI technique
should be in computer games.





Aalborg, June 6, 2006

COLTAU, PELLE

JACOBSEN, JENS JUUL

JENSEN, BRIAN

iii



iv

Foreword

This project was developed by students on the 10th semester in the Machine
Intelligence Group at the Department of Computer Science, Aalborg Univer-
sity, Denmark.

This master thesis documents the continued work of “Artificial Intelligence in
Computer Games” [CJJ06]. This project empirically tests the ability of learn-
ing algorithms to learn common tasks in computer games. The performance is
tested against a non-learning implementation of each task.

We would like to thank Frank Jensen from Hugin Expert in support concern-
ing the Hugin API. We would also like to thank Atle C. Pedersen for kindly
lending computational power when testing.

A summary of this report is found in Appendix H.

A digital version of the report can be found through the link below.
URL: http://www.cs.aau.dk/library/

This report also contains an enclosed CD. The content of this CD can be seen in
Appendix G. If the CD is not included or the report is a digital version, a web
link to the content of the CD can be seen in the same Appendix.

http://www.cs.aau.dk/library/


Contents

1 Introduction 1
1.1 Project Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Report Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 The Board Game Risk . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 A Few Definitions . . . . . . . . . . . . . . . . . . . . . . 2
1.4 JRisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Previous Work 5
2.1 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Information Givers . . . . . . . . . . . . . . . . . . . 6
2.1.2 The Master Prioritizer . . . . . . . . . . . . . . . . . . . . 7
2.1.3 The Round Planner . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Applied AI Techniques . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Naive Bayes Classifiers . . . . . . . . . . . . . . . . . . . 23

2.3 Additions to the Framework . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 New Modules . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Framework Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Class Structure Overview . . . . . . . . . . . . . . . . . . 29

2.5 Assumptions in Previous Work . . . . . . . . . . . . . . . . . . . 33
2.6 Combining AI Techniques with Modules . . . . . . . . . . . . . 35
2.7 Bayesian Network Redesign . . . . . . . . . . . . . . . . . . . . . 37

2.7.1 IG: Close to Continent . . . . . . . . . . . . . . . . . . . . 37
2.7.2 IG: Close to Winning . . . . . . . . . . . . . . . . . . . . . 38

3 Training 41
3.1 The Scripted AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 What Should Be Stored? . . . . . . . . . . . . . . . . . . . 42
3.2 The Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Making Continuous Values Discrete . . . . . . . . . . . . 43
3.2.2 Constructing the Training Data . . . . . . . . . . . . . . . 44
3.2.3 Two Approaches for Learning from Losers . . . . . . . . 45

v



vi CONTENTS

3.2.4 Choosing an Approach . . . . . . . . . . . . . . . . . . . . 46
3.2.5 Training with Winners Only . . . . . . . . . . . . . . . . . 47
3.2.6 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 The Trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Training Tools . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Training Data Set Size . . . . . . . . . . . . . . . . . . . . 51
3.3.3 Training Iterations . . . . . . . . . . . . . . . . . . . . . . 52

4 Testing 55
4.1 Finding the Best Combination of Modules . . . . . . . . . . . . . 55

4.1.1 Limiting The Number Of Games To Play . . . . . . . . . 55
4.1.2 Limiting the Number of AIs . . . . . . . . . . . . . . . . . 57

4.2 Most Important Modules . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Time Used In Each Module . . . . . . . . . . . . . . . . . . . . . 60
4.4 Model Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 User Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Miscellaneous Recordings . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Number of Games Played . . . . . . . . . . . . . . . . . . . . . . 63
4.8 Summary of the Tests . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8.1 Building the Best AI From Test Results . . . . . . . . . . 63
4.9 Performing the Tests . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9.1 Scheduling Module Performance Test . . . . . . . . . . . 64

5 Implementation 67
5.1 Script Implementation . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Training Data Converter . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Training The AI Models . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Limitations in Training . . . . . . . . . . . . . . . . . . . . 68
5.3.2 Techniques Implemented on Modules . . . . . . . . . . . 68
5.3.3 Dividing Into Ranges . . . . . . . . . . . . . . . . . . . . . 70
5.3.4 Training Bayesian Networks . . . . . . . . . . . . . . . . 70
5.3.5 Training Decision Trees and Naive Bayes Classifiers . . . 71

5.4 Training Neural Networks . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Implementing the Tests . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Results 75
6.1 Training Amount . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Module Importance . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Module Performance . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4.1 Initial Army Placement . . . . . . . . . . . . . . . . . . . 79
6.4.2 Estimate opponents’ mission . . . . . . . . . . . . . . . . 80
6.4.3 How Close an Opponent is to Winning . . . . . . . . . . 80
6.4.4 The Opponents’ Next Moves . . . . . . . . . . . . . . . . 81
6.4.5 How Close an Opponent is to Owning a Continent . . . 81
6.4.6 MP Goal Weighting . . . . . . . . . . . . . . . . . . . . . . 81
6.4.7 Prioritize Attack Plan . . . . . . . . . . . . . . . . . . . . 82
6.4.8 Score Attack Plan . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.9 Calculate Defense Cost . . . . . . . . . . . . . . . . . . . . 83
6.4.10 Score Merged Plan . . . . . . . . . . . . . . . . . . . . . . 83



CONTENTS vii

6.4.11 Prioritize Territory Needing Defense . . . . . . . . . . . . 83
6.5 Building the Best AI . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5.1 The Best AI . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5.2 The Challenger AIs . . . . . . . . . . . . . . . . . . . . . . 84

7 Reflection 89
7.1 Generalization of Risk . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1.1 Risk vs. Counter-Strike . . . . . . . . . . . . . . . . . . . 90
7.1.2 Risk vs. The Sims . . . . . . . . . . . . . . . . . . . . . . . 90
7.1.3 Risk vs. Command & Conquer . . . . . . . . . . . . . . . 91
7.1.4 The Generality of Risk . . . . . . . . . . . . . . . . . . . . 92

7.2 Generalization of the Framework . . . . . . . . . . . . . . . . . . 92
7.2.1 Our Framework in Counter-Strike . . . . . . . . . . . . . 92
7.2.2 Our Framework in The Sims . . . . . . . . . . . . . . . . 93
7.2.3 Our Framework in Command & Conquer . . . . . . . . . 94
7.2.4 Summary on the Generality of Our Framework . . . . . 94

7.3 Generality of the Applied Techniques . . . . . . . . . . . . . . . 95
7.3.1 Generality of Neural Networks . . . . . . . . . . . . . . . 95
7.3.2 Generality of Decision Trees . . . . . . . . . . . . . . . . . 96
7.3.3 Generality of Naive Bayes Classifiers . . . . . . . . . . . 97
7.3.4 Generality of Bayesian Networks . . . . . . . . . . . . . . 97
7.3.5 Generality of Scripts . . . . . . . . . . . . . . . . . . . . . 98

8 Conclusion 101
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 107

A Changes in the Scripted AI 109
A.1 IG: How Close The Opponent Is To Owning a Continent . . . . 109
A.2 IG: Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.3 IG: How Close The Opponent Is to Winning . . . . . . . . . . . . 109
A.4 Master Prioritizer . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.5 RP: Calculate Attack Plan Cost . . . . . . . . . . . . . . . . . . . 112
A.6 RP: Make Attack Plan . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.7 RP: Place Armies . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.8 RP: Prioritize Attack Plan . . . . . . . . . . . . . . . . . . . . . . 112
A.9 RP: Prioritize Territory Needing Defense . . . . . . . . . . . . . . 114
A.10 RP: Transfer Armies . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B Rules of Risk 115
B.1 Cashing in RISK Cards Phase . . . . . . . . . . . . . . . . . . . . 117
B.2 Defend Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.3 Attack Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.4 Fortify Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.5 RISK Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . 118

C The Goals from the Master Prioritizier 121



viii CONTENTS

D Trainer Data 125
D.1 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
D.2 Decision Trees and Naive Bayes . . . . . . . . . . . . . . . . . . . 125
D.3 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 127

E Testing Algorithm 129
E.1 Algorithm for Generating a Test Schedule . . . . . . . . . . . . . 129

F Test Suite 131

G Enclosed CD 133
G.1 JRisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
G.2 Training Data Converter . . . . . . . . . . . . . . . . . . . . . . . 134
G.3 Trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

H Summary 137



Chapter 1
Introduction

In commercial games released today the majority of AI opponents are designed
and implemented using scripts. This leaves a lot of design choices to the de-
signer, but it also means that as the size and complexity of game increases, so
does the chance that the AI designer overlooks some detail in the aspects of
the game. An obvious solution for this would be using learning AIs to handle
different tasks within a game, and thereby relieve the AI designer, since the
learning AI would learn the details by itself.

Left is now to choose which learning AI techniques to choose for the vari-
ous tasks commonly used in computer games. There are a lot of possible tech-
niques to choose from, but which ones suit which tasks the best?

1.1 Project Goal

The goal of this project is to examine how well different AI techniques perform
compared to each other at various tasks in computer games. Some of the tech-
niques are trained learning algorithms and others are not.
The AI performance is measured in terms of time spent solving its task, and
its success rate. These terms have been chosen since they cover both the AI’s
system requirements as well as its usability in solving a given task. The test is
done through the use of an AI framework for which the full design is covered
in [CJJ06]. The design is modular and covers the different tasks involved in
both estimating uncertainties and planning.

1.2 Report Overview

A brief description of this framework will be given in the following section
along with descriptions of some interesting and necessary changes that have
been made during its implementation. Furthermore, we will make a brief repe-
tition of some important points made in the previous report which also applies
to this project.

1



2 CHAPTER 1. INTRODUCTION

Followed by this, there will be a discussion of how the training of the learn-
ing algorithms are performed, and how the non-learning (scripted) will gener-
ate training data for the learning algorithms.

When the tests have been performed, we will use gathered results to find
the best AI based on its performance.

We will argue that the tasks in our framework are general enough to apply
to most computer games and therefore the best performing techniques will
prove better in other games too.

1.3 The Board Game Risk

Before going into a description of the work done in [CJJ06], an introduction
to the board game Risk is needed. This game was in [CJJ06] selected as the
environment in which our AI should act. Risk is a turn-based strategy game
in with three to six players. The board consists of 42 territories. Each territory
belongs to one of 6 continents. Each territory is owned by a player and is
occupied by a number of armies belonging to that player. The object of the
game is to fulfill your mission. A mission can for instance be “Conquer Asia
and South America”. A turn in the game consist of four phases:

1. Cashing in RISK cards: Risk cards are earned through attacking territo-
ries and can be cashed in to gain extra armies (reinforcements).

2. Defend: This phase is for placing the reinforcements on the board.

3. Attack: A player can attack with a number of armies from a territory
occupied by himself to a neighboring territory occupied by an opponent.

4. Fortify: The last phase is where a number of armies are transfered be-
tween two neighboring territories both occupied by the player.

When a player has fortified his turn is done and it is the next player’s turn.

There exist many different rules for the game of RISK. Different rules have
both been published by the developers of the original game, but also many
“house-rules” have over the years become widely used.

A detailed description of the rules of RISK used in this project can be found
in Appendix B.

1.3.1 A Few Definitions

Throughout this report we will use a few terms that needs to be defined here.
When we use the word turn, it means what happens when a player holds the
dice. A players turn is what goes on within the four phases mentioned earlier.
A round goes from when a player ends his turn until he gets the turn again.
This means that the statement ”an opponents wins 0 rounds from now” means
that the opponent will win before the player gets his next turn.



1.4. JRISK 3

When a player occupies a territory it means that the player owns it, and will
be the one defending it from attacks. When a player attacks a territory he tries
to conquer it.

When refering to “an occupied territory”, it generally means that the terri-
tory is occupied by the AI. And “an opponent territory” is the opposite.

1.4 JRisk

There are quite a few different implementations of the RISK game available on
the Internet, both commercial versions and some free. We found a game called
JRisk on the Internet that seemed suitable. It is written in Java [jav] and im-
plements a design that will let us, somewhat easily, replace the AI part. The
game is open source and all source code is available. JRisk can be found at
[jri]. There are a few differences between the rules in JRisk and the rules in this
project. Our rules has been implemented in JRisk without any problems. In
JRisk there was implemented two different AIs called the “Easy AI” and the
“Hard AI”. Their behavior is undocumented and it has been decided that it is
unnecessary to analyze it any deeper.

The JRisk used in this project is version 1.0.7.6.



4 CHAPTER 1. INTRODUCTION



Chapter 2
Previous Work

This chapter will contain a brief description of the AI framework that was pre-
sented in [CJJ06]. Each of the AI techniques used in this and the previous
project will also briefly be presented. Some changes had to be made to the
framework in order to accommodate improved behavior and create a better
interface for the different AI techniques. These changes are described in a bit
more detail. Some interesting points made during the previous project will be
repeated and elaborated upon. Lastly, each technique will be combined with
the framework.

2.1 The Framework

The AI framework is a highly modular framework which is designed for the
game RISK. To obtain the specific modules, we have analyzed RISK and have
designed a layered AI architecture. Each module has some input and produce
an output. The reason for this, is that this makes it easier to implement the
behavior of the modules using different AI techniques. The input where found
by analyzing what information should be available to the given module, for
it to produce its output, but without losing the modularity. Having a limited
number of inputs was also a goal, to avoid the learning AI techniques having
to deal with too much information.

Compared to the original design, some of the input and output have changed.
The reason for the changes is partly to accommodate new behavior, in order to
make the scripted AI better, and partly to make the modules more compatible
with the different AI techniques. The original design included a full design
of the scripted implementation of each module. As the input and output has
changes, the script design has also changed. These changes can be seen in Ap-
pendix A. This section will only contain a description of the modules in the
framework — their behavior, input and output.

The framework is a layered model which consists of three layers: The set of
“Information Givers”, the “Master Prioritizer”, and the “Round Planner”. The

5



6 CHAPTER 2. PREVIOUS WORK

layered model can be seen in Figure 2.1.

Information

Action

RP

Goals

MP

Estimates

IGPast
Information

Figure 2.1: A modular design of the AI divided into IG, MP and RP.

2.1.1 The Information Givers

The top layer is the set of ”Information Givers” (IGs). Their task is to gather in-
formation concerning the board and other players. They share this information
with the lower levels in the architecture and, if needed, amongst each other.
The following will describe the IG modules in the framework, their behvavior,
input and output.

IG: Estimating Opponents’ Missions (IG Mission)

This IG is used to estimate what mission the opponents have. To calculate
this information, the IG has access to a list of which actions each player has
performed throughout the game, called the past. The estimate has a attached
certainty, which reflects how certain the IG is on its estimate. The more past
actions that points towards a specific mission, the higher the certainty of the
mission is.

IG: How Close an Opponent is to Winning (IG Winning)

This IG is used to estimate how close each player is to fulfilling his mission
within a fixed number of rounds. This fixed number was chosen to be 5, since
beyond 5 rounds from now, the precision gets too small. This information is
calculated through the use of the estimate of each opponents’ missions and the
certainty of these, the current board state, and knowledge of how many RISK
cards the opponents have available.

A change from the original design is, that this IG also uses information on
whether it is run in the begining of a turn or not. If it is not the beginning of a
turn, the AI has already received his reinforcements and this naturally change
the behavior of the module.

The output from this IG is how close each opponent is to winning within a
number of rounds.



2.1. THE FRAMEWORK 7

IG: How Close an Opponent is to Conquering a Continent (IG Continent)

This IG is used to estimate how close each player is to conquering an entire
continent within 5 rounds. To make this estimate, it takes the current board
state and the number of RISK cards owned by the players as input.

A change from the original design is that the IG, for the same reason as
above, also gets information on whether or not it is the beginning of a round.

IG: The Opponents’ Next Moves (IG NextMove)

This IG takes the estimates from all the other IGs, the current board state, and
the opponents’ RISK cards as input and outputs an estimated list of territories
each opponent player will attack in his next turn. This information is obtained
by having the AI look at the game from an opponent’s point of view and de-
termine what it would do itself given that it had the mission it has estimated
the opponent to have.

IG: Ownership

This IG is not a part of the original design. It states whether or not a continent
is fully occupied by a player. It takes the board as input and the output states
which continent is owned by which player. The output may also state that a
given continent is not owned by any player.

2.1.2 The Master Prioritizer

The second layer in the AI framework is the Master Prioritizer (MP). The task
of the MP is to determine what the AI’s tasks in the current round are. It uses
all information gathered by the IGs to prioritize these tasks. This results in a
list of prioritized goals. The goals vary from conquering a specific continent
to defending another, or attacking players. Basically, the job of the MP is to
determine when in the game it is useful to work towards the AI’s own mission
and when it is nessesary to prevent other players from fulfilling their missions.
This is done by prioritizing the player’s own mission goals higher whenever
none of the other players are close to winning, and prioritizing other players’
estimated mission goals higher when they are getting close to winning. The
output from the MP is a list of goals with an attached priority. The list of goals
can be seen in Appendix C.

2.1.3 The Round Planner

The Round Planner(RP) is the third layer in the AI architecture. It is responsible
of carrying out the goals prioritized by the MP. The idea behind the RP is that
it should consider the goal distribution given by the MP and see what goals are
possible to carry out in the current round.

The RP is responsible for the four phases that makes up a turn in the RISK
game. These are decribed in the Section 1.3 and more detailed in Appendix B.
These are called The Planner, which is responsible for making attack plans and
defense lists that the Reinforce AI, the Attack AI, and the Fortrify AI will use to
place armies, attack territories, and fortify territories accordingly.



8 CHAPTER 2. PREVIOUS WORK

Each of these AI parts together makes up the RP. The parts themselves are
divided into a set of smaller modules that each handle specific tasks needed by
that part.

RP Planner: Make Attack Plan

Attack plans are very important structures in the framework. They are lists go-
ing from an occupied territory to an opponent’s territory and are paths the AI
will use in conquering territories. This RP module handles the creation of these
plans. To do so, it gets an input stating what the starting occupied territory is,
what the target territory is, the MP goal distribution, and the current board
state. The output is an attack plan going from one occupied territory through
a series of opponent-occupied territories and ending in a opponent-occupied
territory.

Apart from this, we redesigned this RP module to also state a number of
armies to leave in a specific territory or continent. This calculation was meant
to be elsewhere, but put here as it seems more fitting.

RP Planner: Calculate Attack Plan Cost

This RP Planner module is responsible for estimating how high the cost of
performing an attack plan is. This is measured in number of armies. The cost
is split into two seperate estimates. One which is an optimistic minimal cost,
and one which is a bit more realistic: the estimated cost. To calculate these
costs, the module gets an attack plan as input.

This input is slightly different than in the original design where the mod-
ule apart from the attack plan also got the current board state and the MP goal
distribution. These were removed through a redesign of the module. The in-
formation needed from the board was how many opponent armies that were
placed in the opponent territories in the attack plan. However, this informa-
tion was already possible to obtain through the attack plan itself, being a list
of enemy territories. The MP goals were used to determine how many armies
that were needed to leave behind at each territory. If a player had the mission
”18 territories with two armies on each” and may need to leave two armies
behind, this would be reflected through the MP goals. We decided to let this
information be reflected directly on the attack plan instead.

RP Planner: Prioritize Attack Plan

This module is used to give an attack plan a priority. This priority is a measure
for how much closer an attack plan is to satisfy the different MP prioritized
goals. Generally, the more MP goals an attack plan satisfies, the higher priority
it should get. If the goals are also given high priority by the MP, then the attack
plan that fulfills them should score even higher. To give a priority, the module
takes an attack plan, the current board state, and the MP goal distribution as
input. The output is a priority which is attached to the attack plan.



2.1. THE FRAMEWORK 9

RP Planner: Discard Attack Plan

This module’s task is to remove attack plans that are far too expensive to fulfill,
by outputting “yes” or “no” to discarding of the plan. To decide this, it uses an
attack plan priority, the minimum army cost, estimated army cost, reinforce-
ments received, and the number of RISK cards each player owns.

To this RP Planner module, information whether or not it is run in the be-
ginning of the turn has been added to the original design. The reason for this
is, that the number of reinforcements from RISK cards should only be used if
the module is actually run in the beginning of a turn.

RP Planner: Calculate Defense Cost

This module is used to calculate how much it costs to defend a specific territory
from the opponents’ armies. To calculate this, the module takes the territory
in question and the current board state as input. It also takes an influence
map [Rab02] as input. This influence map states the influence of enemy armies
on each territory on the board. Only influence on the territory in question is
needed. The module outputs a cost as the number of armies required to defend
the territory.

RP Planner: Prioritize Territory Needing Defense

This RP Planner module puts a priority on defending occupied territories. This
is done by looking at the territory compared to the MP goals, the board, and
the opponents’ next moves.

In the original design, this module also used information on how many
RISK cards each opponent had. This input was removed since this information
is already indirectly encapsulated in the opponents’ next moves.

RP Planner: Remove Goals

This module has been added. The conquering of a territory might have ful-
filled one or more of the goals from the MP, and therefore the goal distribution
should be revised. This module has been added, to avoid calling the IGs and
the MP again, every time a territory has been conquered. This module takes a
goal distribution as input and produce a new goal distribution. This module
will be described in detail in Section 2.3.

RP Reinforce

The Planner modules have now been described. These modules have together
created a list of attack plans with priority and costs. A priority and cost of
defending each occupied territory on the board has also been calculated. This
results in two lists: an attack plan list and a defense plan list. These two lists
are combined to a Merged plan list, which is used by the modules in Reinforce
AI and Fortify AI. A description of the modules in these parts of the Round
Planner now follows.



10 CHAPTER 2. PREVIOUS WORK

RP Reinforce: Cash Cards

This RP Reinforce module judges whether or not the player should cash his
RISK cards in the following round by outputting “yes” or “no” to cash cards.

This is done through looking at the priorities of attack plans in the merged
plan, and the minimum and estimated number of armies needed to fulfill the
plans. These are evaluated against the number of armies gained from occu-
pying territories and continents, and the number of possible armies gained
through cashing RISK cards.

In the original design both the priorities and the minimum and estimated
costs are used as seperate inputs. However, this information is now attached
directly to an attack plan. Therefore the merged plan is used as input instead
of the seperate values.

RP Reinforce: Score Merged Plan

In the original design, defense plans and attack plans were sorted by their pri-
ority whenever the most important plan should be selected. But the most im-
portant plan is not always the wisest choice. Sometimes, also the cost of a plan
is in many cases usable as a factor. So, some priority versus cost ratio is needed.
The result is this module. The module takes a priority and a cost as input, and
output a score. In Section 2.3 the module is described in detail.

RP Reinforce: Place Armies

This module’s task is to select where to place the received reinforcements on
the board.

As with Cash Cards it no longer uses seperate lists as input but rather a
Merged Plan List to decide where to place armies. Furthermore the module
takes the board as input to recognize which territories are better to place in
over others. This may for example be border territories.

RP Attack: Score Attack Plan

In the original design, there were no actual modules in the Attack AI — the At-
tack AI just performed the attack plan. However, two module has been added,
namely the Score Attack Plan module and the Do Attack Plan module. This
module is used to put a score on an attack plan. The reasoning behind this
module is that it is not always best to simply perform the highest prioritized
attack plan. There is some ratio between the plans importance and its cost. This
is what this module is used to evaluate. Therefore the input to it is a priority
and cost, and the output is a score. This module will be described further in
Section 2.3.

RP Attack: Do Attack

This module performs the selected attack plan, and it also aborts the attack
plan is it becomes too expensive to continue. This module takes an attack plan
as input. It outputs where to attack (from and to) and how many armies should
be used in the attack. This module will be described in detail in Section 2.3.



2.2. APPLIED AI TECHNIQUES 11

RP Fortify: Transfer Armies

This module moves armies from one occupied territory to a neighboring occu-
pied territory. To find out which territories to move between, the module has
the defense list, the goal distribution and the current board state available as
input. The output from this module is a starting territory, an ending territory,
and a number of armies.

Initial Army Placement

The Initial Army Placement module (IAP) is only run in the beginning of the
game. It is used to place armies in the territories given to the player as the
game starts. To do so, it uses the output from the IG: Estimating Opponents’
Missions, the current board state, and an influence map stating how much in-
fluence each opponent army has on each territory on the board. The mentioned
output from the IG is what corresponds to the ”Mission” input in the original
design. However, this estimate is better to use since it gives the module access
to what the IG believes the other players’ missions are. This allows the AI to
place armies not only due to its own mission, but also consider the opponents’
mission while doing it. The output from this module is a territory to place an
army in.

The framework has now been presented, inluding a brief introduction to
some new modules. These modules will be described in detail, but first each if
the AI techniques used in this project will be presented.

2.2 Applied AI Techniques

There exist many different techniques to implement an AI. In [CJJ06] a set of AI
techniques were selected to be used. The reason for selecting exactly those, is
that their are either used commonly in computer games, or because they seem
useful. The following sections are based upon Section 2.8 in [CJJ06]. In this
report, a discussion on the time and space complexity of each technique has
been added to each section. This is useful when discussing the training of the
techniques later in the report.

2.2.1 Scripting

Scripting is a very intuitive way of creating an AI. By analysing what situations
that can emerge in the game, the AI designer designs different behavior into
the AI to handle these situations. Even though this may sound very simple, it
might be a rather complicated task since in most games the number of possible
scenarios to handle can get very numerous. Hard coding scripts for an AI is
one type of scripting. We define hard coding as designing the AI to work in one
specific environment. The downside of hard coding the AI is that you cannot
change anything in its working environment.

In Figure 2.2, an AI has a hard coded representation of a path from 1 to 4.
If it is told to move from 1 to 4, it has been hard coded to know that it needs to
go from 1 to 2, from 2 to 3 and from 3 to 4 to get to the destination. However,



12 CHAPTER 2. PREVIOUS WORK

if the environment was changed with the one in Figure 2.3, the hard coded
AI would not see the connection from 1 to 4 with the old code. Therefore, if
anything is changed in the environment the hard coded AI needs to be changed
too. This little example was used to show that it is not a good idea to hard
code everything. Rather it is a good idea to examine more dynamic ways of
designing the AI so it can be used in different environments.

11 22

3344

Figure 2.2: A graph representing how the AI can move from 1 to 4.

11 22

3344

Figure 2.3: Another graph representing how the AI can move from 1 to 4.

Simple Scripting

A script is build up by having some conditions which needs to be met for the
script to be run, and some actions which is the actual output of the script. This is
illustrated in Figure 2.4. As seen, scripting is merely a set of if-then statements
where the state of the AI and observations of the world determines what needs
to be done.

if
CONDITIONS_HERE_ARE_MET

then
DO_THESE_ACTIONS

else
DO_THESE_ACTIONS

Figure 2.4: A basic script it divided into conditions and actions.



2.2. APPLIED AI TECHNIQUES 13

Advantages and Disadvantages of Scripting

The major benefit of scripting is also one of its drawback. This is that the AI de-
signer has full control over how the AI behaves in every situation in the game.
This is also a drawback because the designer must make sure that the AI can
in fact handle every situation. If some situations are overlooked, the AI might
behave irrationally or even badly when the situation occurs.

Another drawback with the scripted AI is that it is not adaptive. It will
never get better than its designer made it. This means that once a player has
learned how to beat it in the game, he will most likely beat it every time since it
does not change. Of course this last statement may not always be true since in
most games luck plays a certain role, but in general when you figure out how
an AI works, beating it becomes relatively easy. There are some measures that
can be taken to avoid the AI becoming too predictable such as letting the AI
choose randomly from more actions in different situations.

One major advantage concerning scripted AIs is that they are quite easy to
understand and design. This is of course dependent of the size of the game,
but in general this is true. Also a scripted AI does not need any training data
to work and is therefore not dependent of the trustworthiness of such training
data nor the effort needed to generate such.

2.2.2 Decision Trees

A decision tree (which is also known as a classification tree) is used for making
decisions based on a set of training data. There are two types of decision trees.
One which is learned through training data and one which is manually build.
We will first cover the learned trees and later we will describe the second type
of tree.

The tree structure is learned from training data. The tree can then be used
to tell what to do when the world looks in a certain way. A decision tree can
be used to classify instances. An instance would in this context then be the state
of the world at a certain point in time. The world can then be classified as be-
ing in a different discrete amount of states. The world is represented through
attributes having different values. Basically the final result of building the de-
cision tree is a set of if-then statements used to decide on a specific state.

The Training Data

The training data required for building the tree is a range of attributes with
associated values that describe certain observations in the world. The number
of different values that an attribute can have needs to be discrete and finite,
meaning that they cannot just be e.g. integers. One of the attributes is the target
attribute which is the attribute that the tree outputs, being the decision taken
by the tree. In the decision tree, each attribute will be a node with a number
of edges leaving it. This number is determined by the number of values the
attribute can have.



14 CHAPTER 2. PREVIOUS WORK

Building the Decision Tree

An approach to building the decision trees is using the ID3 algorithm [Mit97].
In the ID3 algorithm all attributes are tested to see which one gives the high-
est information gain on the target attribute. The information gain is a measure
stating how much information there is gained on the target attribute from the
attribute being examined. Calculating the information gain requires calcula-
tion of the entropy for the attributes. The entropy is a measure of how “dirty”
the training data is. If all examples of a certain attribute in a specific state re-
sults in the target attribute being in only one specific state, the entropy is zero.
The further the entropy moves from zero the dirtier the data is. The link be-
tween entropy and information gain is that the lower the entropy, the higher
the information gain.

Calculating the information gain is the main part of the ID3 algorithm. The
attribute with the highest information gain on the target attribute, is used as
the root node of the decision tree. This node has a number of children corre-
sponding to the number of possible values the attribute has. Which node is
placed on a branch is determined by re-calculating entropy and gain based on
the value of the edge. This is done for all edges going from the parent.

This procedure continues until all examples has zero entropy or all attributes
have been entered into the tree from the root and down. Attributes are only
considered once in any branch of the tree meaning that going from a leaf to the
root, any attribute will only be met once. This makes sense since an attribute al-
ready entered into the tree cannot supply any more information further down
the tree that it has already done once. A more concrete example with training
data can be found in [Mit97] from page 59.

The result is a tree based on classification examples where every attribute
node branches into the number of values possible for that attribute, until the
target attribute is reached as the bottom leaf. The leaf is the decision the tree
decides. This corresponds to the action output from for example a script. An
example of a tree is seen in Figure 2.5.

Attribute A1

Attribute A2 Attribute A3

A1_Variable1 A1_Variable2

A2_Variable1 A2_Variable2 A3_Variable2A3_Variable1

Target_Variable1 Target_Variable1 Target_Variable1 Target_Variable1

Figure 2.5: An example of a decision tree with three attributes and a target attribute(the decision
that is output). Each have attribute has two different values.

At the nodes of the decision trees, we keep track of how many observations
there are of a specific path. This ensures that the tree can be used for making
decisions on events that have not previously been observed. If a new unknown



2.2. APPLIED AI TECHNIQUES 15

event is observed, it is tracked through the tree until the unhandled event oc-
curs. The tree is then traversed further through the “most likely” events, mean-
ing the ones that has occurred most frequently.

Converting the Tree to Rules

After the tree has been built, it can be converted to a set of rules. This is done
by tracing each possible path from the root node to the leafs.

These rules are simple if-then statements and are therefore both easy to
grasp and fast to work with.

Time and Space Complexity

As found in [Wu95] the time complexity of training a decision tree is as follows:
In the trained decision tree, the maximum number of leaf nodes n is equal to
the total number of training examples. The maximum length from the root
to each leaf node a is equal to the number of attributes. So the total number
of nodes in a decision tree will always be less than na. At the root, ID3 must
for each example calculate the information gain for each attribute. If b is the
maximum number of possible values for an attribute, the time complexity for
this is O(bna). Time complexity at other nodes in the tree is always less than
that at the root. Therefore, the worst time complexity for ID3 is O(bna× na) =
O(bn2a2).

ID3’s total computational requirement per iteration is thus proportional to
the product of the size of the training set, the number of attributes and the
number of non-leaf nodes in the decision tree. The same relationship appears
to extend to the entire process, even when several iterations are performed.
No exponential growth in time or space has been observed as the dimensions
of the induction task increase, so the technique can be applied to large tasks,
claims [Qui86]. But because ID3 potentially will need to keep the whole set of
training data in memory while training, the combination of available computer
memory and the size of the training data will set the limit.

The time complexity for classifying an instance with the trained decision
tree is O(a), since it in worst case will be needed to travel through a nodes
starting at the root before reaching a leaf node. Looking at the space complexity
in worst case, the decision tree will for each attribute node need b children at
every level in the tree. An since the worst number of levels is a, the worst case
space complexity is O(a2b2).

2.2.3 Neural Networks

An artificial neural network (ANN) is a rough way of simulating the human
brain electronically.

Generally speaking ANNs are used to derive a meaning from a complicated
or noisy set of data, such as character and face recognition. It is also applicable
to problems for which symbolic representations are often used, such as differ-
ent elements (e.g. the board) in a RISK game. A trained ANN can be seen as
an “expert” giving his opinion on a given dataset.

An ANN takes some input (e.g. real numbers) and produces some output
(e.g. real numbers again). Whether the network produces the correct output is



16 CHAPTER 2. PREVIOUS WORK

determined by the modeler or some other benchmark. If the output is incor-
rect, the network is adjusted and an output is produced again. If the network
produces a correct output the network is not adjusted. This is called training
the network. Training is repeated until the modeler thinks the network performs
satisfactory. However, repeated training on an ANN may result in overfitting.
Overfitting is where the network is adjusted to respond to the training data
only, and not to the general case as it was intended to do. Overfitting ANNs is
also discussed in Section 4.6.5 in [Mit97].

Generally speaking, ANNs are networks made of artificial neurons con-
nected to each other. Such networks can be connected in many different ways
to form an ANN, but this section will only cover the feedforward type of net-
work.

But before discussing artificial neural network architecture, it is useful to
discuss these artificial neurons.

The Sigmoid Unit

An artificial neuron (also called a neurode) can be modeled in different ways,
depending on its usage. The most used neurode is called the sigmoid unit. The
unit receives an arbitrary number of inputs and produces a real numbered out-
put. Each input has an associated weight which determines the contribution of
that input.

The input to a sigmoid unit is multiplied by each weight and summed re-
sulting in the net input to the unit:

net =
n

∑
i=0

wixi > 0 (2.1)

where n is the number of inputs and wi is the weight for input xi.

The output is then calculated as follows:

o(net) =
1

1 + e−net (2.2)

The output ranges from 0 to 1, and it maps a very large input domain to a
small range of outputs and is therefore often called a squashing function of the
unit. Figure 2.6 shows the sigmoid function.

Neural Network Architecture

The architecture of neural networks deals with how neurodes are combined to
form a neural network. This section will only cover the multilayer feedforward
type of network, as it is the only type used in this project. Other types are ex-
plored in [ED90].



2.2. APPLIED AI TECHNIQUES 17

1.0

0.5

0.0

output

net input

Figure 2.6: The S-shaped sigmoid function takes a large input domain and outputs a real num-
ber between 0 and 1.

The multilayer feedforward1 network has three types of layers (see also
Figure 2.7):

1. Input layer: Each input node is connected to each node in the hidden
layer. The number of input nodes entirely depends on the application for
which the network is intended. The input layer has no weights associ-
ated.

2. Hidden layer: There can be an arbitrary number of hidden layers. Each
neurode in a hidden layer is connected to each neurode in the next hidden
layer. The number of hidden layers and the number of neurodes in each
hidden layer also entirely depends on the applications. Too few hidden
neurodes and the network will not be able to learn the training data, but
too many neurodes and the network will take forever to train and also
overfitting may occur.

3. Output layer: The output neurodes take the output from neurodes in the
last hidden layer and calculates an output. This is the output from the
network. Again, the number of output neurodes depends on the applica-
tion.

Training Neural Networks

Training neural networks is simply a matter of tweaking the weights in the
network in order to get a satisfactory output. The most common method is
called the back-propagation algorithm.

The Back-propagation Algorithm

Essentially, the back-propagation algorithm (BPA) learns the weights for a mul-
tilayer network with a fixed set of neurodes and interconnections. BPA at-
tempts to minimize the difference between the actual output of the ANN and
the expected output given by a set of training examples. With many different
training examples, the ANN should hopefully conform to the general case that
the training examples in combination describe. It should not conform to each

1In some literature called a back-propagation model, since the back-propagation algorithm is often
used on this type of network. But to avoid confusion, we will only refer to this type of network as
a feedforward network.



18 CHAPTER 2. PREVIOUS WORK

1

2

i

1

1

1

1

2

l

b b

output1

output2

output l

input1

input2

inputi

input layer hidden layer(s) output layer

connections
(weights)

connections
(weights)

n

n

n

b

1

2

j

1

2

k

Figure 2.7: The multilayer feedforward model. Each circle is a neurode and each square is an
input node. The network has i input nodes, n hidden layers and l output nodes. Hidden layer 1
has j neurodes and hidden layer n has k neurodes.

training example separately, since there in some cases could exist two training
examples with the same input, but with different output. The ANN should in
such a case produce some average between the two.

In this relation, it is useful to have some measurement of how well an ANN
has been trained, this is called the error measure. The error measure (E) can be
viewed as the difference between the output of the network and the training
examples.

In Figure 2.8 one can see a visualization of the hypothesis space H of possible
weights and their associated error E. In this context the hypothesis space is
the set of all possible weight values in a ANN, and the resulting error E for
each combination of weight values. This produces a hypothesis space with n
number of dimensions, where n is the number of weights in the network plus
1. The extra dimension is the resulting error E. In Figure 2.8 there are only two
weights, which results in a 3-dimensional hypothesis space H.

Minimizing E is a matter of finding the point on H with minimum error. It
has been compared with letting a small ball roll down H and where it comes
to rest, is the point of minimum error. But H might have a local minimum
where the ball also could come the rest - a small dent in H. The BPA is unfortu-
nately only guarantied to converge to such a local minimum, but in practice, it
has shown to produce excellent results. Testing whether a local minimum has
been reached, one could perform the BPA again from a new starting point and
see if any lower error is reached.

The arrows in Figure 2.8 shows the direction in which the weights should
be tweaked to produce a smaller E. Finding such a direction is a matter of
calculating the derivation of E(~w). This is also called the gradient of E with
respect to ~w (later in this report also called the error vector). An elaboration on
this can be seen in [CJJ06], Section 2.8.4.

Before applying the BPA, a network should of course be constructed with
nin input nodes, nout output neurodes and nhidden hidden neurodes. All weights
in the network should be initialized to a small random number2 (e.g. between -
.05 and .05), but any value is permitted, which correspond to starting a random

2Finding the initial values of weights should be done intuitively. In [ED90], it is recommended
to use random values between -.3 and .3 for the initial weights.



2.2. APPLIED AI TECHNIQUES 19

0

-1

-2

-3

-4

1

2

3

0
1

2
3

-1
-2

-3

4

0

5

10

15

20

25

30

35

40

45
E(

w
)

w0

w1

Figure 2.8: For a linear neurode with two weights, the hypothesis space H is the w0, w1 plane.
The vertical axis indicate the error E for a given weight vector hypothesis. The arrows shows the
negated gradient in a particular point, indicating which direction produce the steepest descent
along the error surface.

place in the weight space.
The BPA then starts out by calculating the output of the network given the

input from the first training example. It then calculated the error in all outputs
of each neurode for this example. The weights are then updated using the error
in each neurode. The updating of weights is slowed by a learning rate, which is
multiplied on the error, before it is used in the updating of the weights.

The algorithm then starts over again with a new training example. The set
of training examples are repeated again, unless some termination condition is
met. This could for instance be when the error measurement E has become
sufficiently close to zero. But one should also be aware of any overfitting with
repeated training. Overfitting could be continuously monitored by calculating
a generalization accuracy which states how well the network conforms to a given
generalization example.

Time and Space Complexity

The time complexity of the BPA was in [SL94] compared to another neural net-
work training algorithm. The time complexity of BPA was empirically found
to O(N4) for the N2N encoder problem. The N2N encoder problem deals with
successfully training a neural network with N input units, 2 hidden units and
N output units connected in a standard feedforward network. The neural net-
works used in this project does not necessarily compare to the N2N encoder
problem, but it can set a worst-case standard for the complexity of the BPA.

The space complexity of the training of neural networks is linear. The
only information needed to store between training iterations is the weights in



20 CHAPTER 2. PREVIOUS WORK

the network, which are calculated as #weights = #hidden(#input + #output),
where #input, #hidden, and #output are the number of input, hidden and out-
put units respectively. It is obvious to see that the space complexity is linear
with respect to the number of units in the network. With respect to the amount
of training data, the space complexity is constant. Except the weights in the
network, no data needs to be stored between each training example.

Querying the neural network is just a matter of calculating the output for
each neurode, and can obviously be done in linear time with respect to the
number of weights.

2.2.4 Bayesian Networks

A Bayesian network (BN) is a model of the relations between different events
in a real world situation. It is useful for supplying information on a specific
event based on observations on other events. This information is expressed in
certainties. As an example, take a car that will not start. You see two possible
causes for this: you are out off gas or the spark plugs are dirty. Both causes
influences whether or not the car will start. If you know that the car is out of
gas, you believe this is the cause of the car not starting. This will of course
lower your belief that the cause it the dirty spark plugs (even though they may
be dirty too).

The BN Structure

The following is the definition of a BN [Jen02]:

• A BN is a set of nodes interconnected by directed edges.

• The nodes are variables with discrete set of mutually exclusive states.

• The nodes and edges together form a directed acyclic graph.

• Each variable A with parents B1, ..., Bn has a potential table attached which
specifies P(A|B1, ..., Bn).

The potential is a probability table for a variable stating how likely a variable
is to be in a certain state. This is also referred to as the conditional probability
table (CPT) for the variable.

An example of a BN is seen in Figure 2.9. If a variable has been observed
to be in a certain state, the variable is said to be instantiated. Another term
used in this situation is that evidence has been entered on the variable. When
evidence has been entered into a BN, it is propagated. This means that the evi-
dence is distributed to all relevant nodes in the BN.

Propagation in BN

Propagation in BNs are performed in a junction tree. A junction tree is build in
the following way.



2.2. APPLIED AI TECHNIQUES 21

First the BN is moralized. If two parents have a common child, there is put
a link between them. The moral graph is undirected.

With the moral graph, the following procedure is used to build a junction
tree:

• Choose a simplicial node X to be the first in the elimination order. That
the node is simplicial means that FX is a clique.

• Eliminate nodes in FX that only have neighbors in FX .

• Denote FX with an index Vi with i being the number of nodes eliminated
from FX .

• Denote the nodes remaining from FX with Si. This set is called the sepa-
rator set.

• Remove eliminated nodes from the graph. Choose the next clique and
repeat the procedure without resetting i.

• Continue until all cliques have been removed.

• Connect all cliques Vi to a separator Si.

• Connect all separators Si to a clique Vj where j > i.

• Attach two mailboxes to the separators for sending and receiving infor-
mation in the tree.

The steps involved in propagation are covered in [Jen02]. Roughly propa-
gation is done through two steps: a collection step and a distribution step. In the
collection step, information is sent towards a chosen root node from the leafs.
In the distribution step information is sent the opposite direction, from the root
to the leafs. When both these steps have finished, the tree is fully propagated.
The point of passing information up and down the tree is to keep it consistent
for instance when evidence is entered at some node.

A message between two cliques consists of the potential on the sending
clique where the variables not in the separator are marginalized. This is pos-
sible because between any two clique-nodes in a join tree, their intersection
of variables is present in all nodes between them. The intersections is what
is placed in the separators. This means that if any variable is needed further
down in the tree, it will be present in the separators on the path between the
nodes, meaning that it will not be marginalized.

Bayesian Learning

Instead of manually specifying the CPTs of a BN, which is often a very difficult
task, learning can be used. This learning is done based on training data. The
training data, in the case of a BN solving a task in the RISK game, is informa-
tion gathered on previously played games. From these past games, statistical
information is gathered concerning values of each node in the BN. For exam-
ple for a node A with the states a1 and a2, the occurrences of each state will be
respectively a1

ALL and a2
ALL , where ALL denotes the number of occurrences of A.



22 CHAPTER 2. PREVIOUS WORK

A

CB

D
E

Figure 2.9: An example of the BN structure.

The previous method works if training data is available for the states of all
nodes in the BN. However, this may not always be the case. Often there may
be nodes which are not part of the training data. Therefore their probability
distributions cannot be specified through statistics. To specify these, Bayesian
learning algorithms can be used. These algorithms takes already known infor-
mation (found as above) and uses it to tune the unspecified nodes’ probabilities
towards usable distributions.

The EM Algorithm
The Expectation-Maximization (EM) algorithm is an example of such a Bayesian
learning algorithm. As described in [Tho], if the training data is missing infor-
mation on some variables, the algorithm gives an estimate on the most likely
state of the variable. Each iteration consists of two steps, first the expectation
step where the missing values in the data set are filled with calculated expected
values, then the maximization step uses the filled-in data set to calculate new
maximum likelihood estimate for the variables. This way missing values are
filled in and can be used in the next iteration. The algorithm will continue until
the difference between the maximum likelihood estimates calculated in itera-
tion n and the maximum likelihood estimate in iteration n − 1 is smaller than
some predefined threshold value, or has run for some predefined number of
iterations.

This can be useful in the game of Risk because although most variables are
always observable there might be some which can never be observed.

Modeling Techniques

In this section some modeling techniques that might be useful when the BNs
will be constructed in the Design phase.

Divorcing
The modeling of a BN can be quite tedious to do by hand since the size of the
conditional probability table (CPTs) of each node grows exponentially with its
number of parents. Thus the amount of probabilities to specify grows at the
same speed. Specifying them by hand will therefore take a very long time.



2.2. APPLIED AI TECHNIQUES 23

Also when computing the probabilities in the BN the sheer size of it will make
the calculation time increase rapidly and the BN itself may be too big to handle.
To reduce the CPT size divorcing can be used when modeling. An example of
this can be seen on Figure 2.10.

A B C

D

A B

C

D

E

Figure 2.10: The node E divorces A and B and thereby reduces the CPT of D.

E is used to lower the number of states the variable D has to consider. The
divorcing results in D having a smaller CPT if the number of states in E is lower
than the combined number of states in A and B.

Time Complexity

The EM algorithm handles each training example independently. This means
that its computational complexity with respect to the size of the training data
i linear. However, the EM algorithm does a propagation of evidence in the
M-step. The computational complexity of propagating a BN is known to be
NP-hard.

2.2.5 Naive Bayes Classifiers

A naive Bayes network is a special BN. It is one where the observed node is
child of all other nodes in the network. This structure is seen in Figure 2.11,
where a target attribute is parent to all other attributes in the BN. Naive Bayes
uses an assumption that all attributes in the underlying model are indepen-
dent of each other [Mit97]. This assumption is to simplify the calculations for
the classification since the probability of seeing a specific conjunction of the
variables is found by multiplying the probabilities for the attributes. Notice
even though this assumption may not always hold, naive Bayes may in fact
still perform quite well. Using a naive Bayes classifier, it is possible to classify
new training examples based on experience from training data.

The Training Data

The training data for the naive Bayes classifier (NBC) is much like the one
used in decision trees. Meaning that there is one target variable that is decided
which is dependent on the other variables.

Learning

Classifying a new instance, which is a new observation of the attributes’ states,
is done in the following way:



24 CHAPTER 2. PREVIOUS WORK

Target Attibute

Attribute2Attribute1 Attribute3 Attribute4

Figure 2.11: A naive Bayes network.

vNB = argmax
v j∈V

P(v j) ∏
i

P(ai|v j)

where vNB is the target value that is output. V is the set of states in the target
attribute. a is an attribute from the new observation and v is the target attribute.
When the NBC is presented a new configuration of attributes to decide on it
compares it to the training data. For each state v in the target attribute, P(ai|v)
is calculated. Finally the product of all P(ai|v) and P(v) is found. The result of
the classifier is the one where v results in the highest probability.

Time and Space Complexity

Since the time required to do the calculations for each training example is con-
stant, this does not affect the time complexity. However, these calculations are
needed to be done for each training example, so the time complexity is then
O(n) where n is the number of training examples.

The space required for the naive Bayes classifier is constant since the size of
the network never changes.

2.3 Additions to the Framework

Some additions have been made to the design of our framework. This has been
done through implementation of the original design and then reassessing the
decisions made, resulting in additional modules.

2.3.1 New Modules

Five new modules have been designed. These do not incorporate very large
changes, but are merely added because some functionality were needed in the
framework. The new modules are: the IG “Continent Ownership”, “Remove
Goals”, “Score Attack Plan”, “Score Merged Plan” and “Do Attack”. Each new
module will be described in the following section, including an analysis of
which AI techniques could be used to implement their behavior.



2.3. ADDITIONS TO THE FRAMEWORK 25

Continent Ownership

This module has been made to give the MP access to some simplified board
information. It is in fact the list of continents and the owner of that given
continent. The owner might be null, if no player owns the entire continent. No
AI technique (neural network, decision tree etc.) could give better information
than the direct information from the board. So it does not make sense to have
anything other than scripting for this module.

Remove Goals

The conquering of a territory might have fulfilled one or more of the goals
from the MP, and therefore the goal distribution should be revised. This mod-
ule has been added, to avoid calling the IGs and the MP again, every time a
territory has been conquered. For instance, the goal distribution given by the
MP might have some positive value in “obstruct Africa”, but the last attack just
conquered a territory in Africa. Then it would in fact be necessary to run each
of the IGs and the MP again, to revise the goal distribution. But this takes some
time, and it seems more efficient and just as effective to remove fulfilled goals
and then continue with the same goal distribution. One could also argue, that
if a new goal distribution were calculated, it most likely would resemble the
last goal distribution, since no territories have been lost and the enemy has not
gained any reinforcements. Only if a whole continent has been conquered by
the AI, then the IGs and MP is called again, since that is a major change in the
power balance.

Analyzing whether or not a goal has been fulfilled is simply a matter of
looking at the board and compare it to the goals one by one. So only scripting
will be used for this module. No AI technique would do it any better.

Score Attack Plan

Instead of just selecting the attack plan with the highest priority, there should
be some evaluation of the attack plan where the cost also is used. For in-
stance, when two attack plans are almost equally important (the priorities are
almost equal), but one of the plans is much cheaper - then the cheapest should
be selected. This would naturally lead to a scoring function where score =
priority/cost. A few examples of such a function can be seen in column 3 in
Table 2.1. As one can see, such a function favors very low cost much more than
priority, which is not the intention. In this example, the plan with priority 0.3
is in fact selected. The function is therefore changed to favor high priority in-
stead. The function score = priority10/cost is found suitable. This function is
depicted in column 4 in the same table.

It is not certain whether or not this function is the best when selecting attack
plans, so it should be analyzed which AI techniques could handle this module
better than our script:

Neural Network: It is straight forward to have a neural network that has two
real numbered inputs and a single output producing a score.

Decision Tree: It is also straight-forward to have a decision tree with two at-
tributes for the cost and priority and then a target attribute for the score.



26 CHAPTER 2. PREVIOUS WORK

Priority Cost Priority/Cost Priority10/Cost
0.90 4 0.2250 0.08717
0.85 3 0.2833 0.06562
0.70 8 0.0875 0.00353
0.60 7 0.0857 0.00086
0.50 3 0.1667 0.00033
0.30 1 0.3000 0.00001

Table 2.1: The Priority vs. Cost function. Third column depicts the most common function.
Fourth column depicts the function used in the “Score Attack Plan” module.

The values of each of the attributes should be divided into states: “0.0-
0.1”, “0.1-0.2” etc.

Naive Bayes Classifier: Implementing this technique for the score module can
be done in the same manner as for the decision tree.

Bayesian Network: A BN for this module would resemble the Naive Bayes
Classifier, since the priority and cost both influence the score and they
are both independent of each other. So there is no need for a BN for this
module.

Score Merged Plan

A Merged Plan List is a list consisting of both attack plans and defense plans.
This module scores the elements of this list like the module “Score Attack Plan”
did for attack plans. The reasoning behind this module has already been ar-
gued in Section 2.1.3. The AI techniques that seem usable to this module are
the same as for “Score Attack Plan”.

Do Attack

Instead of just performing the attack plan as the original design dictated, it was
decided that an attack plan might not necessarily go as planned. Therefore, the
ability to abort an attack plan was added and this new module was hereby
created. There are two criteria that can stop an attack plan:

• If the attack plan has become more expensive than the estimated cost.

• If the probability of winning the next battle in the attack plan is too small.

If any of these criteria are true, then the attack plan is aborted and a new set
of attack plans is constructed.

2.4 Framework Behavior

This section will cover the behavior of the framework. This was not described
in detail in the original design, but is very important because it could poten-
tially put some limitations on the performance of the AI techniques. The behav-
ior of the framework between the modules (e.g. merging plans etc.) stays the



2.4. FRAMEWORK BEHAVIOR 27

same, even when the modules implemented as different AI techniques evolve
their behavior. This means that the performance of an AI technique is limited
by the behavior of the framework. One can say that the behavior of learning
algorithms are limited to the environment in which they are implemented.

One could even say that the design of the framework could be a limitation
on the AI - perhaps there exist some better design and combination of modules,
that would perform better than our framework. But even with a non-perfect
design, one can still compare AI techniques, since they all are implemented
in the same system. The performance of each AI technique is therefore only
measured using our framework.

But as stated above, analyzing where the behavior of the framework could
potentially limit the AI is important. This analysis will be made alongside the
following description of the behavior of the framework.

For a better overview of the framework, Figure 2.12 shows the dataflow in
the framework.



28 CHAPTER 2. PREVIOUS WORK

B
o

ar
d

P
as

t
O

p
p

o
n

en
ts

’ #
 o

f R
IS

K
 c

ar
d

s

Pl
an

n
er

 

A
tt

ac
k 

Pl
an

s

D
ef

en
se

 L
is

t

R
ei

n
fo

rc
e

Fo
rt

ify

G
o

al
 D

is
t.

B
o

ar
d

O
p

. N
ex

t 
M

ov
e

B
o

ar
d

G
o

al
 D

is
t.

B
o

ar
d

M
as

te
r P

ri
o

ri
ti

ze
r 

Es
t. 

O
p

. M
is

si
o

n

H
o

w
 C

lo
se

 to
 W

in
n

in
g

O
p

. N
ex

t 
M

ov
e

H
o

w
 C

lo
se

 to
 O

cc
u

p
in

g
 C

o
n

t.

M
ak

eA
tt

ac
kP

la
n

C
al

cC
o

st

Pr
io

ri
ti

ze

C
al

cC
o

st

Pr
io

ri
ti

ze

D
is

ca
rd

Pl
an

s

C
as

h
C

ar
d

s

Pl
ac

eA
rm

ie
s

Tr
an

sf
er

O
w

n
er

sh
ip

R
em

ov
eG

o
al

s

A
tt

ac
k

Sc
o

re
A

tt
ac

kP
la

n

D
o

A
tt

ac
k

Sc
o

re
M

er
g

ed
Pl

an

M
er

g
ed

 P
la

n
s

Fi
gu

re
2.

12
:T

he
in

fo
rm

at
io

n
flo

w
in

ou
r

fr
am

ew
or

k.
A

tt
he

to
p,

th
e

di
ffe

re
nt

in
fo

rm
at

io
n

di
re

ct
ly

av
ai

la
bl

e
(t

he
pa

st
,b

oa
rd

an
d

op
po

ne
nt

s’
nu

m
be

r
of

R
IS

K
ca

rd
s)

is
lo

ca
te

d.
Th

es
e

fe
ed

in
fo

rm
at

io
n

to
m

an
y

di
ffe

re
nt

m
od

ul
es

in
th

e
fr

am
ew

or
k.

Be
lo

w
th

e
di

re
ct

av
ai

la
bl

e
in

fo
rm

at
io

n,
th

e
In

fo
rm

at
io

n
G

iv
er

s
ar

e
lo

ca
te

d.
Th

ey
m

ai
nl

y
fe

ed
in

fo
rm

at
io

n
to

th
e

M
as

te
r

Pr
io

ri
tiz

er
be

lo
w

.
Th

e
M

P
de

liv
er

s
a

go
al

di
st

ri
bu

tio
n

to
th

e
di

ffe
re

nt
pa

rt
s

of
th

e
R

ou
nd

Pl
an

ne
r.

Th
es

e
pa

rt
s,

ca
lle

d
th

e
Pl

an
ne

r,
R

ei
nf

or
ce

,a
nd

Fo
rt

ify
ar

e
lo

ca
te

d
at

th
e

bo
tt

om
of

th
e

fig
ur

e.
Th

e
co

lo
rs

on
th

e
ar

ro
w

s
ar

e
m

er
el

y
fo

r
m

ak
in

g
th

e
fig

ur
e

m
or

e
re

ad
ab

le
.A

ll
gr

ay
bo

xe
s

ar
e

m
od

ul
es

.T
he

st
ar

s
in

di
ca

te
s

th
at

th
e

m
od

ul
e

pe
rf

or
m

s
a

R
is

k
ac

tio
n,

su
ch

as
pl

ac
in

g
ar

m
ie

s
on

th
e

bo
ar

d.



2.4. FRAMEWORK BEHAVIOR 29

2.4.1 Class Structure Overview

The class diagram [Lar00] for the framework can be seen in Figure 2.13. In the
figure, public methods on classes are not included. The important methods
are discussed later. Dashed boxes illustrate classes already implemented in
JRisk3. Thin lined boxes are “module” classes, which are used in implementing
the behavior of each module in our framework. Thick lined boxes illustrate
“framework” classes, which are used to control when the different modules
are called and do data conversion between modules. All “module” classes also
have a “TrainingExampleWriter” class associated, which deals with producing
training examples for the learning algorithms.

Player

AIPlayer

AIPlayerFramework

AI_FrameworkAI_OpponentFramework

IG_Mission

IG_Winning

IG_NextMove

IG_Continent

IG_Ownership

MasterPrioritizer

RP_Planner RP_Reinforce RP_Attack RP_Fortify RP_InitPlacement

MakeAP

DiscardAP

AP_Cost

AP_Priority

De_Cost

De_Priority

CashCards

PlaceArmy

ScoreAP

DoAttack

Fortify

Generalization (“Is a”)

Aggregation (“Has a”)

Class already 
implemented in JRisk.

“Framework” class.

“Module” class.

Figure 2.13: A simple class diagram for the framework.

3In the version of JRisk, which were used in the original design, the AIs in the game were all
implemented in the player class, not as stand-alone classes. We corrected this and implemented all
AIs as classes inheriting the AIPlayer class. A later version of JRisk adapted this design (though
not due to us).



30 CHAPTER 2. PREVIOUS WORK

AI Framework Class

The AI Framework class is the main class in our framework. This is respon-
sible for running all the IG modules, the MP and the different parts of the RP
according to which phase the game is in. Recall that the game of Risk can be in
four different phases:

1. Initial army placement.

2. Reinforce.

3. Attack.

4. Fortify.

The game is only in phase 1 once per game, but phases 2-4 are repeated
each time a player gets a new turn. In JRisk, these phases have been expanded,
which is also reflected in AI Framework class:

• Trade cards: This phase is where the player decides whether to cash cards
or not.

• Reinforce: This is both the normal reinforce phase, but also used in the
initial army placement. A boolean flag is set to indicate which phase it is.

• Attack: This is the normal attack phase, but has been split into the three
next phases also. This phase is for selecting where to attack.

• Roll: This phase is for deciding how many dice to use in the attack.

• Defend: This phase is for deciding how many dice the defender will roll.

• Move: This phase is when the attack has been won and armies must be
moved to the conquered territory.

• Fortify: This is the normal fortify phase.

• End turn: This phase is for doing clean up when a player is done fortify-
ing and can do nothing else than end his turn4.

• Game ended: This phase is for doing clean up and reading the winner’s
mission when the game has ended.

• Select capital: This is used in a special kind of Risk - Capital Risk. It is
unused in our framework.

In the AI Framework class, each of these phases have a corresponding method.
Every time the AI has to make a decision, the phase is checked and the corre-
sponding method is called. These methods then call their respective modules
and convert the output to actions in Risk. Some of these methods are more
interesting than the others concerning imposing limitations on the AI.

4In our version of JRisk, one can not be certain that the game ever comes in this phase at all, so it
is unused in the framework. Any clean up can be done just before returning the fortify command.



2.4. FRAMEWORK BEHAVIOR 31

The RunRP Planner Method
The first method is called runRP Planner and is responsible for calling the
modules in the Planner class, but also for converting the output of those mod-
ules into a “merged plan list”. This list is used in the Reinforce class to deter-
mine where to place new reinforcements. Recall that the Planner class produce
“attack plans” and “defense plans”. A single attack plan contains a list of ter-
ritories, but a single defense plan contains a only a single territory. Merging
these plans are described in the original design and has not been changed - the
start territory in each attack plan is kept and the rest is removed. This list of
start territories is then merged with the territories from the defense plans. This
results in a merged list of territories with a priority and a cost. The place army
module then place armies in the territories with the highest score calculated by
the “Score Merged Plan” in this merged list. There are a number of issues with
this procedure:

• Attack plan information is thrown away: Perhaps the reinforcement
would perform better, if it had access to each entire attack plan. But the
removal of most of the attack plan was decided because it was concluded
through analysis, that none of the AI techniques seemed to perform very
well with massive amount of input, which entire attack plans would be.
The only relevant information seemed to be the starting territory for each
attack plan, including cost and priority.

• Defense priority vs. attack plan priority: As stated above, the merged
plan list is sorted by score, for the place army module to place armies in
the most important territories only. This could either be a territory from
an attack plan or from a defense plan. But for this to be sound, the score
of a defense plan and the priority of an score plan must be comparable.
But calculating the score is based on its priority and cost, and calculation
of the priorities for attack plans and defense plans are based on entirely
different information. The attack plan priority is based on how well the
attack plan fulfills the goal distribution given by the MP, and the defense
plan priority is based on the “next move” estimate of the opponents. This
is a potential problem, that one must be aware of.

All of these issues might potentially impose limitations on the AI, but as
argued, they can not be without.

The Attack Method
The second method is the attack method, which now also will be described a
bit more in detail.

The attack method is mainly responsible for calling the scoreattackplan and
the doAttack modules, which are located in the Attack class. First of all, the
attack method takes the list of attack plans produced by the Planner and feeds
it to the Attack class. The Attack class use the score module to find a score
for each attack plan. The doAttack module is then called with the attack plan
with the highest score as input. The doAttack module just attacks from the
first territory in the attack plan to the second territory in the plan. But instead
of just performing the attacks, it also keeps track of how well the attack plan



32 CHAPTER 2. PREVIOUS WORK

progresses, meaning that it compares the actual cost of the attack plan so far
with the estimated cost. If the attack plan becomes too expensive, it should be
stopped and revised. This is done by outputting a boolean flag as true. This
flag is then read by the attack method in the AI Framework class, which then
runs the planner again to generate new attack plans. This flag can also be set to
true if the probability of winning the next attack is lower than some threshold.

If, at some point the planner no longer produce any valid attack plan (be-
cause the discard module has discarded them all), the command “endattack” is
given, and the game goes into the fortify phase.

There are some limitations in the attack method:

• One of the limitations of the attack method, is the fact that the doAttack
module is only implemented as a script, and because the term “revise
the attack plan, if the cost gets too expensive” impose some limitations,
since “too expensive” is defined by the designers, and not found through
learning.

• The threshold for when the probability of winning a battle is too low
is also decided by the designers. One way of dealing with this problem
would clearly be to have learning involved. This was actually considered
in the early stages of the original design, but removed because it seemed
unnecessary. At this point it would require large changes in the design,
and compared to the possible benefits that would be gained from it, it has
been decided not to include learning in these two cases.

AI OpponentFramework Class

This class is used when estimating the “next move” of an opponent. When the
“next move” module is called, an instance of this class is created for each oppo-
nent in the game. The class uses the same IG instances as the real framework,
so they are not called again - the same estimates are just used. But a new in-
stance of the MP and the Planner class is created. The MP and Planner are run,
and a list of attack plans are produced. The most important (the highest score
provided by the score module) attack plan is then used as the “next move” of
that opponent.

There does not seem to be any other limitations in this class, that the ones
imposed by the framework. Also, there was not found any learning algorithms
usable to implemented this module, so whether or not this class sets any limi-
tations is in fact irrelevant.

RP Planner Class

The Planner class is the class that handles everything concerning attack and
defense plans. It makes all possible plans from the current board, gives them
a cost and priority, and discards bad plans. For each occupied territory on the
board, a “defense cost” and “priority” are calculated by calling the appropriate
modules.

The Planner class has a run() method which does the above. In a bit greater
detail, this is:



2.5. ASSUMPTIONS IN PREVIOUS WORK 33

1. Run RemoveGoals module.

2. From all occupied territories to all unoccupied territories, run MakeAt-
tackPlan module and add the resulting path to a list of attack plans.

3. Run AP Priority module on each element in that list.

4. Run AP Cost module on each element in that list.

5. Add each list element that only attacks a single territory to a simple attack plan list.

6. Run DiscardAttackPlan on each element in list of attack plans.

7. If the list of attack plans is empty and the player has not received a RISK
card in this round, add simple attack plan list to the output. Otherwise add
attack plan list to the output.

8. For all occupied territories, run De Priority and De Cost, and add territo-
ries to a defense list that have priority and cost larger than zero.

9. Return the output from this run() method.

When the discard module discards all attack plans, it would result in the AI
ending his attack an go into the fortify phase. But this is not always a good
idea. If the AI has not attacked any territories in his turn, then he would not
receive a RISK card, which can later be used to gain more reinforcements. One
should always, if possible, try to attack just a single territory in order to receive
a RISK card. The simple attack plan list is used for this purpose. These attack
plans only attack a single territory and are only used if all other plans have
been discarded and the AI has not received a RISK card. It is on the other hand
not certain that these attack plans will ever be used. The doAttack might deem
the attack plan impossible to use because of its probability of winning the at-
tack.

There only seem to be very little limitations here. All other behavior is
modularized as much as possible. The fact that attack plans are made from
each occupied territory to every opponent territory expand the number of at-
tack plans to the most possible. The only real limit here, is the whole idea with
attack plans with priorities and cost. This might not be the best procedure for
playing Risk at all. But this is the environment that has been designed and in
which we will test the AI. Also, the prioritizing of goals and calculations of
costs seem to be common in many games, which makes this design valid.

2.5 Assumptions in Previous Work

The framework and possible limits it imposed on the AI has now been dis-
cussed.

In [CJJ06] a lot of interesting discussions and conclusions were made on the
different choices made throughout the project. These discussions will now be
elaborated upon.



34 CHAPTER 2. PREVIOUS WORK

Training From Scripted vs. Training From Human Players

The most desirable choice on how to train an AI to play against human players,
is in fact to generate training data from actual games against them. This would
allow the AI to capture a lot of the nuances of a game as it is played by a
human. This is however not possible in this project. A lot of training data is
needed to train the learning AIs and we do not have the resources to gather this
data with human players. Therefore we will use another approach. We have
designed and implemented a scripted AI to take the place of human players
and will use this AI to generate the training data used to train the learning AIs.
The design was made based on an analysis of how we believe RISK should
be played. Therefore the AI to some extent mimics the way we play RISK.
Therefore we assume it is adequate for the basis of training the learning AIs.
The AI was designed to at least defeat the AIs distributed with JRISK, in which
it has succeeded. In 2 out of 3 games it defeated the “Hard AI”.

Finding a Board Score In RISK

Another important conclusion made in the previous project was that it is not
possible to find a usable way to determine how good a board state is in RISK.
Good in the sense of how beneficial a player’s armies are placed. This is not
possible due to the contradictory tasks involved in RISK. You need to fulfill
your own mission, but you have to prevent the others from fulfilling theirs as
well. The first is important since it is required to win. The other is required in
order not to lose. Therefore a board score should score high if it seems to fulfill
both these terms. If one of them is less fulfilled, should they count equally?
Is it more important to fulfill your own mission than preventing others from
fulfilling theirs? These questions are hard to answer. Also a board score in
RISK is very dependent on what you estimate the opponents’ missions to be,
since this will be needed to say whether or not you are preventing him from
winning. This means that the better the IG for this task is, the better and more
precise the board score will be. This will give the AIs implementing a good IG
a huge advantage compared to the ones that does not whenever a board score
is needed. A more in-depth explanation of why it is not possible to find a board
score is found in [CJJ06] on page 61.

Training Methods

Not having a way to score the board rules out the usage of reinforcement learn-
ing in this project. Reinforcement learning is a technique used to train learning
AIs [Mit97]. Roughly, learning is done by scoring the output action compared
to all other possible actions. With a usable board score, it would be possible
to compare actions by comparing the board score for all possible actions. But
this is not possible without any measure for how good one action is compared
to another. Instead we rely solely on supervised learning. In this technique an
action is either right or wrong. There is no “degree” of how wrong it may be. A
supervisor looks at the action and says whether it is wrong and gives the right
result.

In this project the supervisor is, in most cases, the scripted AI. Since we
have argued that it is a substitute for a human player, we believe it can be



2.6. COMBINING AI TECHNIQUES WITH MODULES 35

trusted to tell the learning AIs what is right to do. The right decision is in most
cases what the script itself would do. In fact, there is only one case where the
script output is not used to train the AI. This is in the module “IG: Estimate
Opponents’ Missions”. In this module, we actually have the precise mission
available after the game has been played, and therefore we will use this when
training instead of the script’s estimate of the mission. This should improve the
performance of the trained versions of this module since they will always be
guided towards the correct mission, no matter how poorly the scripted version
may perform.

However, for every other module we define the following: Every game won
by the scripted AI, is an example positive behavior by the script. Every game
the script lost is an example of negative behavior. In most cases the learning
AI should only learn the positive behavior of the script. This is however not
entirely true and is discussed further in Chapter 3.

2.6 Combining AI Techniques with Modules

As written in the previous section, we have chosen a broad selection of AI
techniques to implement the different modules in the framework. It is not
possible to implement all modules with all techniques, in most cases because
the input or output could not be represented in the AI technique, or because
the task of the module was too simple. A more detailed argumentation for this
is given throughout Section 2.10 in [CJJ06]. A list of all modules and which
AI techniques that will implement them is given in Table 2.2. This table also
includes the modules not present in [CJJ06]. In the following, we will do a brief
presentation of each AI technique used in this project.



36 CHAPTER 2. PREVIOUS WORK

Sc
ri

pt
R

an
do

m
D

ec
is

io
n

Tr
ee

N
eu

ra
lN

et
.

Ba
ye

si
an

N
et

.
N

ai
ve

B.
C

.
In

it
ia

la
rm

y
pl

ac
em

en
t

x
x

x
x

x
Es

ti
m

at
e

op
po

ne
nt

s’
m

is
si

on
s

x
x

x
x

x
x

H
ow

cl
os

e
an

op
po

ne
nt

is
to

w
in

ni
ng

x
x

x
x

x
Th

e
op

po
ne

nt
s’

ne
xt

m
ov

es
x

x
H

ow
cl

os
e

an
op

po
ne

nt
is

to
ow

ni
ng

a
co

nt
in

en
t

x
x

x
x

x
x

C
on

ti
ne

nt
ow

ne
rs

hi
p

x
M

P
G

oa
lW

ei
gh

ti
ng

x
x

x
M

ak
e

at
ta

ck
pl

an
x

x
C

al
cu

la
te

at
ta

ck
pl

an
co

st
x

x
Pr

io
ri

ti
ze

at
ta

ck
pl

an
x

x
x

x
x

x
Sc

or
e

at
ta

ck
pl

an
x

x
x

x
x

D
is

ca
rd

at
ta

ck
pl

an
x

x
x

x
x

R
em

ov
e

go
al

s
x

C
al

cu
la

te
de

fe
ns

e
co

st
x

x
x

x
x

x
Sc

or
e

m
er

ge
d

pl
an

x
x

x
x

x
Pr

io
ri

ti
ze

te
rr

it
or

y
ne

ed
in

g
de

fe
ns

e
x

x
x

x
x

C
as

h
ca

rd
s

x
x

x
x

x
Pl

ac
e

ar
m

ie
s

x
x

x
x

x
Tr

an
sf

er
ar

m
ie

s
x

x
x

Ta
bl

e
2.

2:
Ea

ch
of

th
e

m
od

ul
es

in
th

e
fr

am
ew

or
k

ha
s

be
en

co
m

bi
ne

d
w

ith
th

e
A

It
ec

hn
iq

ue
s.

Fi
rs

tt
he

In
iti

al
A

rm
y

Pl
ac

em
en

tm
od

ul
e,

th
en

ea
ch

of
th

e
In

fo
rm

at
io

n
G

iv
er

s,
th

en
th

e
M

as
te

r
Pr

io
ri

tiz
er

an
d

la
st

ly
th

e
m

od
ul

es
in

th
e

R
ou

nd
Pl

an
ne

r.



2.7. BAYESIAN NETWORK REDESIGN 37

2.7 Bayesian Network Redesign

In [CJJ06] we presented some Bayesian networks for use in some of the mod-
ules. These relied on the concept of time slicing to let them model changes over
time. We will now show another way of modeling the modules without the use
of time slicing, since this will give a large reduction of the number of nodes.

2.7.1 IG: Close to Continent

The Bayesian network for this IG is no longer modeled as a time sliced BN.
The time sliced version was chosen to specify what changes that may occur
over time. In the original BN which is seen in Figure 2.14, the thing changing
over time was the the number of armies placed within a specific continent and
the territories surrounding it.

This information could however be entered into a BN without the use of
time slicing. The new BN is seen in Figure 2.15.

Armies_X_Cont Armies_Opp_Cont

Armies_Left

CloseToOwn

Armies_X_CloseArmies_Opp_Close

Armies_Left

Reinforce_X

Reinforce_Opp

To next 
time slice

To next 
time slice

To next 
time slice

To next 
time slice

Figure 2.14: The previous design of the BN “IG:Close To Continent”

Instead of using the nodes “Reinforce x” and “Reinfoce opp” to specify
how many reinforcements a player and his opponents will receive, this infor-
mation will be entered directly into the nodes stating the number of armies a
player has within and outside a continent. This information can be found us-
ing a function that estimates the number of reinforcements available in a given
round from how the board looks right now. It is possible to use the same func-



38 CHAPTER 2. PREVIOUS WORK

Close_To_Own

Armies_Left_Cont

Armies_Opp_ContArmies_X_Cont

Armies_Left_Close

Armies_Opp_Close Armies_X_Close

Figure 2.15: The new design of the BN “IG:Close To Continent”

tion in a gaming situation, and thereby instantiating the network with respect
to the round it is estimating for.

2.7.2 IG: Close to Winning

In [CJJ06] we argued that this IG should be modeled as a time sliced BN since
all inputs to the “Close to win” node, such as the “Close to continent” IG, were
themselves time sliced BNs. However, since this is not the case any longer,
this IG will not be time sliced either. The previous version of the BN is seen in
Figure 2.16 and the new one in Figure 2.17.

CloseTo24

CloseToWin

CloseToKill
Player 1

CloseToKill
Player 2

CloseToKill
Player 3

CloseToKill
Player 4

CloseToKill
Player 6

CloseToKill
Player 5

CloseToOwn
Asia

CloseToOwn
Europe

CloseToOwn
N. America

CloseToOwn
S. America

CloseToOwn
Africa

CloseToOwn
Australia

CloseTo18

Mission

Figure 2.16: The previous design of the BN “IG:Close To Winning”



2.7. BAYESIAN NETWORK REDESIGN 39

A
ny

C
on

tin
en

t2

C
on

q2
4_

C
on

q1
8K

ill
1_

K
ill

2

S
A

_E
U

_A
N

Y
_O

R
...

A
S

_S
A

_O
R

_A
S

_A
F

C
lo

se
To

W
in

M
is

si
on

E
U

_A
U

_A
N

Y
E

U
_S

A
_A

N
Y

N
A

_A
U

N
A

_A
F

A
S

_A
F

A
si

a

A
S

_S
A

A
fri

ca

S
ou

th
A

m
er

ic
a

N
or

th
A

m
er

ic
a

E
ur

op
e

A
us

tra
lia

O
bs

er
ve

d_
M

is
si

on

K
ill

_P
la

ye
r4

K
ill

_P
la

ye
r6

K
ill

_P
la

ye
r3

K
ill

_P
la

ye
r1

K
ill

_P
la

ye
r2

K
ill

_P
la

ye
r5

K
ill

3_
K

ill
4

K
ill

5_
K

ill
6

N
A

_A
U

_O
R

_N
A

_A
F

A
ny

C
on

tin
en

t
C

on
q2

4
C

on
q1

8

Fi
gu

re
2.

17
:T

he
ne

w
de

si
gn

of
th

e
BN

“I
G

:C
lo

se
To

W
in

ni
ng

”



40 CHAPTER 2. PREVIOUS WORK

As seen in the new network, a lot of separator nodes have been introduced
to lower the number of states to the target node by divorcing its parents. The
first separators are the ones determining how close an opponent is to fulfill a
given mission. This is for example the node “AS AF”. This node is child of
“Asia” and “Africa”. When the game is running and we want to use the net-
work to find out how close an player is to winning, these nodes are instantiated
to how close he is to conquer each of the continents. “AS AF” then gives in-
formation on whether or not a player is close to fulfilling the mission given
evidence of each parent node. This scheme is repeated for each of the “Con-
quer Continent X and Y” missions. The “AnyContinent” nodes are used to give
input for how close a player is to fulfilling a mission that includes conquering
any third continent but the two required by the mission.

Each pair of nodes stating whether or not a player is close to fulfilling a mis-
sion are parents to another node. The task of this node is simply to lower the
number of inputs to the “Close To Win” node. They have two states specifying
whether or not one of the missions is close to being fulfilled. The “Kill Player
X”, the “Conquer24” and “Conquer18” are “simple” missions, meaning they
are not made up from composite goals like the “Conquer Continent X and Y”.
Pairwise they are parents of nodes choosing whether or not a player is close to
fulfilling one of them.

Common for all the nodes stating whether or not a player is close to fulfill-
ing one of two missions is that they also have the “Mission” node as a parent.
This is again to limit the number of states on the “Close To Win” node. By this
construction, the network should learn that the player is only close to fulfilling
one of the two missions if the player has the mission. The “Mission” node is
also parent to the “Observed Mission” node. Since, when training, we have
both the estimate of a mission given by the script and the real mission avail-
able, it is possible to have this construction. Through this, the BN will learn
how trustworthy the script’s estimates on missions are. The “Observed Mis-
sion” node is the one that will be instantiated while playing the game. Both it
and the “Mission” node has one state for each possible mission in the game.



Chapter 3
Training

In order to make it easier to train the models for each AI technique, it will
be convenient to construct a framework that can handle the task of reading
information from the game history and train the AI techniques on the basis of
this. Such a learning framework can be seen in Figure 3.1.

JRisk
(AI script)

Converter Trainer
JRisk

(AI model)
Game history Training data Model

Figure 3.1: An overview of the learning framework.

The framework consists of four parts. The first part is the Risk game with
our scripted AI. The second part is the training data converter which is respon-
sible for converting the game history from the games played by the scripted AI
into a series of training examples. The next part is the Trainer which uses these
training examples to train a model based on a learning AI technique which can
then be used in the Risk game (the final part in the figure).

This chapter will follow the sequence depicted in the figure and describe
the details involved in each of the framework’s tasks. It will start with a short
introduction of each task, which then will be described in details.

3.1 The Scripted AI

As written in [CJJ06] Section 2.9, the scripted AI should generate training data
for the learning AI techniques. To get more varied game play, the “hard AI”
and “Easy AI” (which was already present in JRisk) should also participate in
the games played. However, they only participate through their play against
the scripted AI, whose actions in return are stored. The games should also
consist of a random amount of players (between 3 and 6 players) — again for
the sake of varied game play.

The composition of games will then result in at least one scripted AI, and
then between 2 and 5 more random players (“hard AI”, “easy AI” or the scripted

41



42 CHAPTER 3. TRAINING

AI). This means that a game in theory can consist of 6 scripted AIs. Only the
data from the scripted AI will be a part of the game history.

The scripted AI’s history of played games needs to be stored in a format
that allows it to be easily read by the Converter. The file format for the saved
game history can be seen in [CJJ06], Section 3.3. It will now be discussed what
and when the data from each module is saved and why it is done that way.

3.1.1 What Should Be Stored?

In order to train a given module, the input and output of the module needs
to be stored, so that a learning algorithm can learn what to produce given a
certain input. This is common to all modules. It might now seem straight-
forward how to save training data for a module: every time the module is run,
the input and output is saved as a training example. This is by far the easiest
procedure and will produce many training examples from just a single game.
But the modules in our framework depend highly on each other, the output
from one module is the input to another, which result in some problems. An
example is the “attack plan priority” module. This module takes an attack plan
as input and produces a priority. But later in the sequence of modules, this
attack plan with cost and priority might be discarded because of a high cost. It
can therefore not be concluded whether or not the output from that particular
run of the “priority” module helped in winning the game, since its associated
attack plan is never used. So it is in fact useless as a training example.

Therefore, only the priorities of used attack plans are stored as training sam-
ples. This is also a problem in other modules, which will be explained in detail
below.

Information Givers

All the output produced by the Information Givers are used in the Master Pri-
oritizer, which is what the Round Planner base all its decisions upon. This
means that every time an IG is run, it is used in the whole decision making pro-
cess of the AI. Generating training data for an IG is therefore straight-forward:
when an IG is run and produces an output, the input and output for that par-
ticular run is stored as a training example for later use.

Master Prioritizer

The training data for the MP is stored in the same manner as for the IGs. Ar-
guments for this are the same as for the IGs.

Priority, Cost and Discard for Attack Plans

Training data for the modules for calculating priority and cost for a attack plan
is stored as written in the introduction to this section. It can not be determined
whether a priority and cost for an unused attack plan helped win the game or
not, therefore training data for priority and cost is only stored for attack plans
that are actually used. The same goes for the “Discard attack plan” module:
Determining whether or not the discarding of a given attack plan helped to AI
in winning or not can not be done.



3.2. THE CONVERTER 43

Priority and Cost for Defense Plans

Defense plans are mostly used when placing reinforcement armies in the be-
ginning of a round. But only the plans with the highest priority are used, which
obviously means that some plans are not used. This also means that training
data for the priority and cost for defense plan modules is only generated from
defense plans that are actually used - in fact the same procedure as above.

Cash Cards, Place Armies, Fortify and Initial Placement

These modules directly produce an action in the game, meaning that their out-
put is always used. The procedure for storing training data for these modules
is therefore the same as for the IGs: every time a given module is run, the input
and output is stored as a training example for that particular module.

3.2 The Converter

How the convertion of game history into training examples should be done,
depends on both the module and the AI technique. Each module has defined
what input it takes and what output it gives, and it differs from module to
module what kind of data this is. Also, each AI technique requires to have the
input represented in each their way.

The Converter will go through the game history and for each set of input
and output data, it will create a training example suitable for a specific AI tech-
nique. These training examples can then be written to a file and then be used
by the Trainer to train the AI model.

3.2.1 Making Continuous Values Discrete

The game history could for example consist of integer or float values. The num-
ber of possible values for such data is then potentially infinite, but not all AI
techniques can handle this. Their input has to be discrete and only belong to a
limited number of states. The problem is: How do we transform an input with
a potentially infinite number of states into an input with a few states without
losing information?

Dividing the Infinite Input Into a Few States

One way to do it, is to make an estimate on the distribution of the input values.
If for example the input is the number of armies in a territory, the minimum
value according to the rules of Risk is 1. The number of armies could poten-
tially be infinite but a quick estimate would be that a useful maximum value
could be 100 armies. If the number of armies is greater than 100, then the input
would be mapped to 100. This gives us 100 states, one for each number be-
tween 1 and 100, which is still a large number of states for e.g. a BN to handle.
This state space can then be further divided, for example with a state for each
ten armies, resulting in ten states total, which is acceptable.

The aforementioned method assumes the input values are evenly distributed
between 1 and 100, but this will almost never be the case in a Risk game. Most



44 CHAPTER 3. TRAINING

territories will have only a handful armies in them, the number seldomly ex-
ceeds 10 and a territory with 100 armies will almost never be observed. Instead
it would be wise to make the division of states reflect how frequently the values
are observed. The intervals should be smaller around often observed values
where more precision is needed. Some information will evidently be lost when
mapping an infinite domain into a limited domain, since this corresponds to
rounding off a float value to an integer value. But doing it this way the states
will fit the observed values and minimize the information loss.

To determine the distribution of an input variable one could simply make
the computer play a large number of games and count how many times each
value of the input variable is observed. This can be done directly by going
through the game history generated by the scripted AI, so no extra playing is
needed.

From a Few States to Infinite Output

Another problem occurs when the output from an AI model with few states
has to be used in the game where the state space is potentially unlimited. One
state in the AI model may cover a range of values in the game. So here the
problem is the opposite: How do we reconstruct the real value on basis of a
value belonging to a simplified state space?

Since each state in the AI model covers a range of real values, a solution
to this problem would be to take the real value that lies in the middle of this
range. This way the information loss is minimized, since this gives the value
which on average is closest to the correct one.

3.2.2 Constructing the Training Data

Each player in a game generates training data, but the learning AI techniques
should be guided towards the correct behavior, meaining that it should learn
to win the game. This would indicate that the only information that should be
trained from is data stored for players that have won a game. This approach
has two major downsides. The first is that a lot of data would be omitted. If
a game has six players, there will only be one winner. This means that data
for five players would be thrown away, and this is hardly efficient. The second
and maybe more serious downside of this approach is that if the AI only learns
from the winning scripts, they will actually never improve beyond the scripts.
They will at best mimic the scripts, but will never become better than them1.

This is in fact the whole downside to this kind of supervised learning im-
plemented in this project. The AI can at best become as good as the scripts. At
no point does it evaluate its own performance and try to become better2. But it
has already been argued, that the only way the AI can learn anything, is to say
that if a game is won everything it did was perfect, if not then everything was
wrong.

1This does however not include the Mission Information Giver, since in learning, it directly has
access to which mission a player actually had and it therefore does not try to mimic the script.

2This could have been solved by having human players create training data, but still, the AI
would at best become as good as the best of the players.



3.2. THE CONVERTER 45

If on the other hand, reinforcement learning was possible, where each ac-
tion is given a score of how well that action performed, it could more easily be
spotted which actions were better than others. One could then infer that per-
forming these good actions would have a better chance of leading to victory.
But as argued in Section 2.5 on page 33, it is impossible to calculate whether
or not a given action will result in a better situation or not. Therefore, the only
way to evolve beyond the training data is by doing something other than what
the training data dictates. But the actions of the winners have already been
deemed perfect, so only the actions of the losers can be used in trying to evolve
beyond the scripts.

Therefore, a way to learn from the players who lost the game might be
useful.

3.2.3 Two Approaches for Learning from Losers

There are two different ways an AI technique can learn from losers. Which of
the two approaches is used depends on the technique.

First of all, the logic explanation to why a player is losing is that the behav-
ior of the losing player is wrong. So a given AI should learn not to do as the
loser. And here lies the problem of learning from losers: Finding the correct
behavior (or at least better behavior), when only incorrect behavior is present.

The two approaches in finding this correct behavior are the following:

Approach 1: Everything, but incorrect behavior. The correct behavior lies in
the domain of “everything, but the incorrect behavior”, so doing every-
thing else will over time yield the correct behavior. But “everything else”
is quite a large search space, and in some AI techniques this is impossible.

Approach 2: The opposite behavior. Doing the opposite of the incorrect be-
havior might be a better solution. This narrows the search space, but
determining the opposite of a given behavior is in some cases impossi-
ble. Also, doing the opposite of some incorrect behavior might be even
worse.

The up- and downsides of the two approaches will now be analyzed and
after that it will be decided which approach each AI technique should use.

Everything, but the Incorrect Behavior

A way to turn a losing AI’s output into training data is by assuming that every
thing it has done in the game is wrong. If for example we have three possible
actions an AI can perform (A, B, C), and the losing AI performed action A,
our assumption says that both B and C are correct actions that would have led
the AI to victory. This may not always be true, but we believe that if enough
games are played, the training data will be varied enough for the learning AIs
to discover, what the best action is.

If, in our small example, losers often have chosen action A, we believe that
the good action is either B or C. Later in the training data we discover that there
are also a lot of examples where the winner has chosen action B. Since losers
has chosen A and winners has chosen B, our AI will learn that B is in fact the



46 CHAPTER 3. TRAINING

best choice in a given situation. This small example shows that appart from
the assumption that every thing the loser does is wrong, we also assume that
every thing the winner does is correct. Without this second assumption, we
would not have any way of pointing the trained AI in the right direction when
given, in the example, two right choices whenever loser’s data is used.

A thing that need to be handled is how much loser data to use. In a game
of RISK, there are possibly six players. Since there is only one winner, it means
there are five losers. So there will be five times more losers than winners. The
problem is that the amount of winner data is then five times smaller than loser
data. The result of this is that winner data has five times less influence on the
training than the loser data. This is a problem since the winner data is from
an AI that has succeeded whereas the loser data is not. Therefore, winner data
should at least has an equal amount of influence on the training of the AI as
loser data.

There are basically two ways of fixing this problem. The first way is by
multiplying the amount of winner data by the number of losers. This will
ensure that the winner data has as much influence on the training as loser data.
The downside of this is that the amount of examples in the training data will
be multiplied with the number of players. In practice, this is not feasible if the
number of examples is very high.

The other way is to only use data from one loser. A random of the five
losers is then selected. Even though the number of examples will be fewer,
this is a more applicable solution. From our assumption that everything the
loser did was wrong, we get that using one or five losers to train from does
not matter. We only care about whether they succeeded or failed in their task.
This approach will keep the number of training examples down compared to
the other approach, which could be a plus if the number of training examples
is too high for a learning technique to handle.

The Opposite Behavior

Doing the opposite of some action or behavior may result in better behavior
than the behavior of a losing player. But it might also result in even worse
behavior. Which of the two statements holds in practice is definitely worth
looking into. But in some cases it is not possible to find the opposite of some
action, but if it is possible, then it is useful for limiting the search space of
possible actions.

3.2.4 Choosing an Approach

With the two approaches’ pros and cons in mind, it can now be decided for
each AI technique which approach to use.

Neural Networks

The behavior of a neural network can be viewed in the output vector of the net-
work, and the behavior of network can be corrected by changing the resulting
error vector. It would not make sense here to follow the first approach here,
since “doing everything else” would in fact mean that the network should be



3.2. THE CONVERTER 47

trained with every other error vector possible, which is impossible. The set of
error vectors could be limited into ranges, but instead it was chosen to follow
the second approach, since the number of error vectors to train from would be
very large - even if it is limited into ranges. Following the second approach
is in fact possible to do for neural networks. Learning to do the opposite of
a given behavior of a neural network is simply a matter of negating the error
vector. Whether or not this will yield to better behavior over time, will only
show through the results of the testing.

Bayesian Networks

In Bayesian networks the behavior of a player in a game would in all cases
correspond to one or more nodes being in certain states. This means that doing
“everything else” corresponds to the nodes being in all other states but the
given state.

A way of implementing this in Bayesian Networks is to distribute the loser
example for a given node over the number of possible states of that node, ex-
cept the actual state of the loser example. This can be done directly in the
training data. When encountering a loser example, make s− 1 examples of the
node being in every other state than the actual example, where s is the number
of states the given node has. To ensure fairness for the winner examples, each
time a winner example is encountered, it is copied s − 1 times.

For example, if the Bayesian network for an Information Giver has a node
determining the output estimate of the IG with, for instance, 20 states. A loser
example for this node would then consist of 19 example of the node being in
every other state, but the actual state. A winner example would consist of 19
identical examples of the node being in the actual state.

In Bayesian networks it does not make sense to find the “opposite behav-
ior”, since it is unknown what the opposite state of a given state is.

Decision Trees

This is in fact done in the same manner as for Bayesian networks. The training
examples for losers consist of examples of the target attribute being in every
other state but the actual state.

Naive Bayes Classifiers

Naive Bayes Classifiers corresponds roughly to Bayesian networks and the
same approach can be used.

3.2.5 Training with Winners Only

As already stated, the theory that losers can be used in evolving the learning
AI beyond the training data, is only a theory. Actual tests will show whether
or not it holds. It would therefore be a good idea to let the learning AIs also
train from winners only. There is in our opinion a small chance that the AIs
would become better than the scripts. The reason for this, is that the behavior



48 CHAPTER 3. TRAINING

of winners must be a small subset of the full behavior of the scripts. If the AIs
adapt only the behavior of the winner, they might in most cases be better than
the more general script. This is illustrated in Figure 3.2.

Winner
behavior

Script
behavior

Figure 3.2: The behavior of the winning scripts is a subset of the behavior of all scripts. If an
AI only learns the behavior of the winning scripts, it will most likely be better than the general
script.

The pitfalls of this hypothesis, is whether or not one can say that the win-
ning script’s behavior is a subset of the general behavior of the script, since the
scripts generally are deterministic. In some cases though, the scripts take ran-
dom actions, when a number of actions seem equally valuable. However, we
argue that if a script is fully deterministic and an AI model is trained with only
the actions the script did when it won, then a fully trained AI model will not
be any different from the script. If the trained model and the script are given
the same situation they will react the same. Therefore an AI that learns from a
deterministic script will not be any better than the script.

If on the other hand, the scripts are non-deterministic (even if it is only
in isolated situations), then the winners can have reacted differently than the
losers in the same situation. We then say that the winning behavior is a subset
of the script’s behavior, which thereby gives a learning AI the chance to learn
the winning behavior and become better than the losers.

3.2.6 Class Diagram

The class diagram for the converter can be seen in Figure 3.3. Each box repre-
sents a class while the arrows shows their relationship, either an aggregation
or a generalization as defined in [Lar00].

The responsibility of the different classes are:

TrainingData: This class is the main class in the converter. It loads and parses
all game history files, which are in XML format. It fills the read data into
the corresponding data structures.

XMLInput: Holds the information on the current game history file in process.

GameData: This is a container class for all types of data structures, such as all
types of module outputs (cost estimates, attack plans etc.) and other data
structures read from the game history.

CostAttribute, GoalDistributionAttribute, etc.: All of the different data struc-
tures. These classes holds the information read from the game history
and has methods for converting the data to neural network training data,



3.3. THE TRAINER 49

TrainingData GameData

IG_ContinentData

IG_WinningData

IG_MissionData

MasterPrioritizerData

....

DataOutput

NNTDOutput

ARFFOutput

BNOutput

XMLInput

GameDataAttribute

CostAttribute

GoalDistributionAttribute

MissionEstimateAttribute

TerritoryAttribute

....

Generalization (”Is a”)

Aggregation (”Has a”)

Figure 3.3: The class diagram for the training data converter.

Weka training data (ARFF file format), and training data for Bayesian
networks.

GameDataAttribute: The super class for the data structures. It holds common
methods for those classes.

IG ContinentData, IG WinningData, etc.: These classes are responsible for con-
verting the read game history to training data, using the above men-
tioned data structures. There is a single class for each module, because
the game history used varies from module to module — the game history
used by a module corresponds to the input and output of that module.

NNTDOutput, ARFFOutput, and BNOutput: Each of these classes are respon-
sible for outputting training data in a suitable data format.

DataOutput: The super class for the above classes. It holds common methods
for those classes.

The training data is output in different file formats depending on the AI
technique. These file formats are described in Appendix D.

3.3 The Trainer

Using the training examples generated by the converter, this part of the frame-
work is responsible for training the models for each AI technique. The trainer
will then output a trained model that can be used from within JRisk as a re-
placement for the scripted AI modules. In the JRisk module, an input suited
for the given AI model can be constructed from the input given to module from
the game itself. Using this input, the AI model can be queried and an output
value can be retrieved.

The idea is to construct a “training example” from the module input which
the AI model then classifies. Therefore the input need to be converted into



50 CHAPTER 3. TRAINING

a format readable by the AI model. Forunately this input convertion corre-
sponds to the convertion that was done by the Converter when transforming
game history into training examples, so this can simply be reused. Also, the
resulting output from the AI model may need to be converted into a format
understandable by JRisk. This convertion maps the values from the possibly
limited state space of the AI model to the possibly unlimited state space of the
JRisk module output.

3.3.1 Training Tools

Instead of implementing all the different AI techniques ourselves, we looked
at a number of existing implementations to see if they could suit our needs.

The first implementation we looked at was the Weka Machine Learning
Project (Weka) from [WF05]. Weka is a collection of machine learning algo-
rithms for solving datamining problems. It provides a single interface across
all machine learning techniques, which makes it easy to switch one technique
with another without affecting the rest of the system. It is open source and
implemented in Java so it will be easy to use from within JRisk, plus we can
modify it to suit our requirements if needed. The techniques in Weka include
the four we have chosen for this project: Neural networks, Bayesian networks,
naive Bayes classifier, and decision trees.

The neural network implementation is however restricted by Weka’s flex-
ibility. In order to have the same interface to all techniques, the output from
a model is restricted to have only one output variable. This makes it unus-
able to us, since most of our neural networks have more than one output node.
Therefore we need to make our own implementation of neural networks.

For Bayesian networks there already exists the commercial Hugin [AOJJ89]
application, which is specialized in dealing with Bayesian networks. One could
therefore assume that Hugin possess the most efficient techniques for Bayesian
networks. And since Hugin also has graphical modeling tools for manipulat-
ing with the networks, and also because the Hugin decision engine can be used
directly from our Java program, it will be our choice of a Bayesian network im-
plementation.

Weka’s implementation of the two remaining techniques, naive Bayes clas-
sifier and decision trees, suit our needs and therefore Weka was chosen for
these.

Naive Bayes Classifier

In Weka, the naive Bayes classifier is implemented as described in [DHS73]
which follows the procedure previously mentioned in Section 2.2.5. It suited
our needs and needed no modifications to be used in this project.

Decision Tree

The decision tree classifier in Weka is an implementation of the ID3 algorithm
as described in [Qui86]. It does not support training data with missing values
but since all our training data is complete this will not be an issue. A thing that
is an issue has to do with classifying unseen instances:



3.3. THE TRAINER 51

When the decision tree has been trained it can be used to classify instances.
Starting at the root node it checks the value of the corresponding instance at-
tribute to see which of its children it should visit next. At the chosen child
node this check is repeated with its corresponding attribute; this will be re-
peated until a leaf node is reached. The value of the leaf node will then be the
classification of the instance. But what happens if we try to classify an instance
where, following the procedure just described, there does not exist a path from
the root node to a leaf? Then the decision tree is unable to classify the instance!

It is suggested in [Qui86] that in a case with an instance where the path ends
in a NULL leaf, it would be better if the decision tree assigned the instance the
most frequent classification instead of failing. However, in Weka this behavior
is not implemented: the decision tree classifier will simply fail when reaching
a NULL leaf. This needs to be fixed before Weka can be used for building de-
cision trees with the ID3 algorithm. Because Weka is open source it is possible
for us to extend the existing classifier and implement this behavior.

The definition of “the most frequent classification” which should be as-
signed to the instance is not clear. But it can be done by assigning the classifi-
cation that was most often given to training examples when the decision tree
was trained. This is under the assumption that the training examples reflect the
real world domain. This could be the leaf value that appear most often in the
decision tree as a whole, but this would not be optimal since the distribution
of leaf values for the tree as a whole not necessarily matches the distribution
of leaf values for some smaller branch of the tree. It would be better to use
the distribution of leaf values for that particular branch and then assign the
classification that appears most often in this. This will give the most probable
classification according to the instance’s other attributes that have defined the
path down to the NULL leaf.

Neural Networks

As written in the introduction to this section, the implementation of neural net-
works in Weka was unsatisfactory. So we implemented neural networks our-
selves. The implementation includes data structures for the neural network
architecture, and an implementation of the back propagation algorithm (BPA)
based on [Mit97] which is used in the training of neural networks. It was cho-
sen because it is well documented and widely used.

Bayesian Networks

For Bayesian networks we used the Hugin Researcher application for mod-
eling and training the networks. Inside the game we used the Hugin Deci-
sion Engine library for inference. It uses a propagation algorithm called Hugin
Propagation proposed by [JLO90]. This algorithm is based on the algorithm
previously described in Section 2.2.4.

3.3.2 Training Data Set Size

When it is time to train the different learning AI techniques, it must be deter-
mined how much training data is needed.



52 CHAPTER 3. TRAINING

The two contradictory factors in this is the following:

• There should be a sufficient amount of data, so the learning algorithms
have an opportunity to become adequately trained.

• But the amount of data should not become so large, that it will take for-
ever for the algorithms to learn anything. Also, the storage capacity avail-
able sets a natural limit.

The amount of data might also be highly dependent on the different AI
techniques. But through the analysis of the time complexity of each of the AI
techniques used, no exponential time complexity was found with respect to the
amount of training data. So it must be concluded that the amount of training
data used does not affect the AI techniques differently. The amount of data
will therefore be the same for each AI technique and make them more easily
comparable.

Finding the right amount of data is not an easy task, as it also is highly
dependent on the available computing power. A goal that we feel would be
adequate is a couple of thousand played games. This will hopefully result in
many thousand module examples. But the amount of available storage is 50
gigabytes, which might pose a limit.

3.3.3 Training Iterations

When learning algorithms are trained from training examples, it is not always
enough to iterate through the examples once. Depending on the learning algo-
rithm and the size of the training data, it is necessary to have different criteria
for ending the training. These criteria are:

• Iterate until a fixed number of iterations have been reached.

• Iterate until the network converges to some acceptable state.

• Iterate a fixed number of times, test the learning algorithm’s behavior and
performance in its application, and iterate again until the performance is
satisfactory.

Which criteria is selected depends on the AI technique.

Neural Networks

In many cases, neural networks are trained until the error in the network is suf-
ficiently small, meaning that the network has converged. However, one must
be aware that if the training data is iterated too many times, overfitting can
occur, meaning that the network has trained to respond correctly to the train-
ing data only. The network should be trained to generalize over the training
data, so that the network also responds correctly to data that is from outside
the training data set. This can be avoided by checking the generality of the net-
work using a sample of the training data as described in [Mit97]. This sample
is not used in training, but only used to check if the network responds correctly



3.3. THE TRAINER 53

to data it has not been trained with.

However, the plan to have the network converge to some sufficiently small
error does not work when the network is trained using both winners and
losers. The training data will therefore consist of data from both winners and
losers. When learning from a winner example, the network will use the error
vector to update the weights in the network. But when learning from a loser
example, the error vector will be negated. So the general error of the network,
when the training data has been iterated through, will most likely not decrease,
as it would when normal training is used. Depending on the winner-loser ra-
tio, the error can decrease and increase, but will most likely remain the same.
The network is not trained to respond to the generality of the training data, it
is actually trained to act outside the training data. And therefore having the
network converge to sufficiently small error does not make sense.

Determining whether or not the behavior of the network is acceptable can
only be done by implementing the network in a game and test the behavior em-
perical. If the network behaves poorly, another iteration through the training
data might be necessary. This approach however, can hardly be done automat-
ically and might, depending on hardware availablity, take a great amount of
time to get acceptable results. So it seems that the only practical solution here
to is have a fixed number of iterations when training neural networks. When
learning from winners only we will also use the fixed iterations approach, al-
though it would have be possible to use convergence as a criteria. We do this
to make the results comparable with the network trained with winners and
losers, because they will then be trained for the same number of iterations.

Bayesian Networks

When training the Bayisian Networks using the EM algorithm in Hugin, it is
possible to specify a number of iterations for the algorithm to go through the
training data or specify the convergence limit. The convergence limit specifies
how small the changes in the probabilities when propagating should be before
the network is evaluated to be “fully trained”.

There are a few things to consider when deciding whether to use one over
the other. The first thing concerns the training data. If the set of training ex-
amples is large, and there a many entries where data is unavailable, it could be
unwise to let the network train until it converges. This would simply take too
long depending on the number of nodes with unknown values. On the other
hand, if there is no missing or unknown data in the training data set, the EM
algorithm simply counts observations of each state in each node, making it no
problem to let it converge.

The second thing to consider is the size of the network. If the network is
large, it will take much longer for the EM algorithm to update all nodes than
in a smaller network.

Specifically for the networks used in this project, we will let the “IG: Close
to continent” be trained until it converges. The reason for this is that we have
training data available for each node in the network. Therefore this should



54 CHAPTER 3. TRAINING

pose no problem. The network should be able to perform at least as well as the
scripted AI when fully trained.

The “IG: Close to winning” network has a lot more nodes than the “IG:
Close to continent”. There is not data available for a lot of the nodes in the
training data. This means that the EM algorithm will take much longer when
going through the training data. Through testing we have found that it takes
roughly 24 hours for the EM algorithm to go through 1.5 million training exam-
ples one time. Therefore the number of iterations this network will run will be
two. Whether or not this is sufficient for the network to perform decently will
be shown through testing. However, the training data is made from nearly
800.000 board states, so the network may still be able to adapt some rational
behavior from these states.



Chapter 4
Testing

There are numerous things to test when deciding whether or not a specific AI
technique applies to solve a given task from our framework. We divide the
testing into hard and soft values. The hard values are those that can be mea-
sured directly by analyzing software behavior and thus are objective values,
whereas the soft ones are harder to measure since they are subjective to each
player. We will first cover the hard values and then continue to the soft values.
What we are interested in is finding the AI composition that yields the most
successful AI in the terms of won games which is also fun to play against.

4.1 Finding the Best Combination of Modules

The first step in finding an AI that gives good opposition is to find the com-
bined AI that performs best. The modular design of our framework makes
it possible to implement different AI techniques on each module. This means
that it is possible to make a large number of AIs by combining these modules in
various ways. The different techniques that can be used to implement specific
modules is seen in Table 2.2 on Page 36.

We assume that our scripted AI is not the best performing AI, and by ex-
changing individual modules with trained AI techniques, the performance,
opposition-wise, will be better.

There are a few different ways of finding the best performing AI from the
set of possible AI compositions. These will be considered throughout this sec-
tion.

4.1.1 Limiting The Number Of Games To Play

Without doubt, the best way of finding the best AI is letting all possible AI
compositions play against each other until an overall winner has been estab-
lished.This means having them all play against each other in games consisting
of both tree, four, five, and six players. However, from Table 2.2, it is found that
there are over one hundred million different AI combinations. This is found

55



56 CHAPTER 4. TESTING

by multiplying the number of AI techniques implementing each of the mod-
ules. The “Random” technique is not included in this calculation since this
technique is not considered valid in this project. The high number of AI com-
positions highly limits the possibility of building all of them and playing them
against each other to obtain the best AI. To resolve this problem, one method
would be limiting the number of games each AI must play against each other
to a low number. This could for example be ten games. This however, is not a
very good idea since there is a certain amount of luck involved in the game and
ten games will therefore not be enough to counter for this fact, and the results
will therefore be useless since the lucky AIs may be deemed winners because
they were lucky and not because they actually performed better. Therefore, the
AI composition needs to be found in another way.

Tournament

One approach to limit the number of games to play is by having a tournament
scheme as seen in Figure 4.1 where the winners of each group progress to the
next step in the tournament. The tournament approach has the benefit that it
is fairly easy to implement and that it will find the best overall AI in relatively
short time since not all combinations of possible games are played. However,
since not all possible combinations of games are played, some good AIs may
be thrown away if placed in an unfortunate group. If an AI loses most games
in one group, it is of course removed from the tournament. But this AI may
in fact have been the best if it had been put in another group, from which it
would have been passed on to the next round of the tournament. One may
argue that this means nothing since it will then lose whenever it is meets the
one that could defeat it in group four, thus in the end, the result would be the
same. But this is not true. If the overall best AI is placed in a group with the
ones that can defeat precisely it, but loses to everyone else, and the specific AI
can defeat everyone else, this AI is removed and will never reach round two
where it would defeat everyone. This is a flaw in the tournament approach.
The benefit of the tournament approach is the not all AI compositions needs
to play each other to find a winner. But still it is not useful in this project
since it still requires a very high number of games to be played. Especially in
the first round of the tournament which includes all possible AI compositions.
This means that the tournament method will not be considered a viable way of
finding the best AI in this project.

Fixed Size Game

Another approach to limiting the number of games played is by playing only
games of a certain number of players instead of playing games with both three,
four, five, and six players. Playing all AIs against each other in fixed sized
games requires some careful planning. A thing to consider and keep track of
is how many games the different AIs have played against each other. This is
very important since no AI should have the benefit of playing more games
than others. The reason for this requirement is that this would give the AI
a possible advantage of winning more games than an other AI that might be
equally good, but has not been allowed to play as many games. It may not be



4.1. FINDING THE BEST COMBINATION OF MODULES 57

Figure 4.1: In the tournament the winning AI from each group is allowed to play in the next
step of the tournament until a winner is found. The different colors within the AIs represent the
different modules which is implemented by different AI techniques.

possible to let all AIs play a precisely equal number of games. This is depends
on the number of different AIs.

The downside of using fixed size games is that the AIs have been trained
using a random number of players (from three to six players). Therefore they
should also be evaluated playing under this circumstance since there may be
an AI that performs better against three players than it does against six players.
This is overcome by first letting all AIs play against each other an equal number
of times in a game with three players. Next they get to play each other an equal
number times in a game with four players and so forth up to six players. This
will ensure that AIs get to play in every possible environment, which is what
is needed to analyze whether or not it is versatile enough to qualify as the best
performing AI.

Random Sized Game

Instead of having all AIs play each other in one fixed sized games, it is possible
to let them play in random sized games. The main thing to consider in this
approach is still how to make sure that all players have played each other an
equal amount of times. This method will reveal the best performing AI over a
number of games with a random number of players and will, over time, reveal
the best performing versatile AI. However, there is still need of quite a few
examples of the AIs playing in both three, four, five, and six player games to
determine whether or not it is better than the other AIs. Therefore, even a
testing scheme based on using random sized game will be too imposible for
this project.

4.1.2 Limiting the Number of AIs

At this time it should be clear that the previous atempts to limit how many
games that needs to be played has failed because they all involved playing all
possible AI compositions against each other. Therefore we will now take some



58 CHAPTER 4. TESTING

other approaches for isolating the best performing AI composition, without
having to go through all possible AI compositions.

Stepwise Evolution

One approach to limit the number of AI compositions to test is to do a “step-
wise evolution” of the AI. This means gradually evolving an AI from an initial
composition towards the best possible AI composition one module at the time.
This procedure works are follows:

All modules in the AI are initially using one AI technique e.g. scripting.
This is the initial AI. Then one by one, the initial technique on the modules are
replaced by the different techniques available for that module. These new AIs
are played against each other to find a winning AI. This winning AI is the one
that has won the most games from a series of games. The winning AI is the
new initial AI, and the same steps are performed once again to find the best
technique on the next module. The final result is an AI utilizing the best AI
technique on each module. This should also be the best overall performing AI.

Figure 4.2 shows how this method evolves from the initial AI to the best
performing AI. The leftmost AI configuration in each round is the initial AI.
The example given in the figure is for a game with four players. This example
needs to be generalized to work for games with three to six players. There
needs to be some structure on how to choose which players to play in a game.
Also, there should not be any players of the same type in a game since this may
pose a problem. They are both equal, meaning that the probability of either of
them losing or winning should also be equal. If any of them wins, they would
naturally be chosen as the winner of the game and the “Winner count” for
both would go one up no matter which of them was the actual winner. Also,
their chance of winning are doubled since there are two of them in the game.
The solution to this is naturally to take the average of all their wins, but this
actually punishes the AI for having a “twin” in the game. So therefore twins
are not allowed in the game. Also having a twin in the game would ensure that
at least one of them will lose each game since there is only one winner.

Best Module Approach

This approach is similar to “Stepwise Evolution”(SE) in the sense that initially
the AI is entirely scripted. The difference from SE is that even though the best
technique for a module is been found in the first step, the technique is not used
in the next step. Instead the initial AI remains the same and each module is
exchanged with each usable AI technique. This is seen in Figure 4.3. After the
best technique for each module has been found, they can be combined to one
full AI composition. This procedure should produce the same result as SE, and
may be used to check if the best AI is in fact found through SE. If the result
of this approach differs from that found from SE, it may indicate that certain
modules may not be very important to the complete AI since more techniques
may be used to implement them. The major benefit with this approach over SE
is that it is possible to run the best module approach in parallel. This is possible
because each module is tested within a static initial AI. In SE each module is
tested within an AI build from the best performing techniques already tested,
meaning that testing needs to be done in some predetermined order.



4.2. MOST IMPORTANT MODULES 59

Initial Technique Technique A Technique B Technique C

First Round

Second Round

Third Round

Figure 4.2: Using Stepwise Evolution to find the best AI. Each step(round) shows the AIs
participating in the game. The arrow points towards the winner. At each step the winning
technique of the previously tested module is incorporated in the AI. Continually building the
best performing AI as the modules are tested.

4.2 Most Important Modules

A beneficial test to make is a test of which modules that are actually most im-
portant in our framework. This test is necessary when analyzing which AI
techniques are best on a particular module. If the module is not really impor-
tant to the AI composition, the success or failure of that AI may in fact not be
subscribed to a specific technique.

A fairly simple approach to test which modules of the winning AI are most
important is by exchanging each module one at a time with a “random” mod-
ule. Meaning one that gives a random output. By testing the module impor-
tance this way we assume that “random” should not make many good deci-
sions, and therefore an AI implementing the random at a module should not
win many games. This test is rather important since it gives some guidelines
to whether or not the success of the AI relates to a specific AI technique. If
an AI is still winning if a given module has been replaced with the “random”



60 CHAPTER 4. TESTING

Initial Technique Technique A Technique B Technique C

First Round

Second Round

Third Round

Figure 4.3: Using Best Module Approach to find the best AI. Each step(round) shows the AIs
participating in the game. The arrow points towards the winner. At each step the same initial
AI composition is used. Only the module being tested has been exchanged with the various AI
techniques. The winning techniques are memorized so the best performing AI may be build after
all tests have been completed.

module, it may mean that this module has none or little influence on the AI’s
performance.

4.3 Time Used In Each Module

This test is used to discover the relationship between the success of a technique
and the average time it uses to deliver an output. This may turn out to be
closely related to the task of discovering whether or not the AI is fun to play
against since a player do not want to wait a very long time for the AIs’ turns to
pass.

Ideally this test should be done counting CPU cycles instead of system time.
This would be to avoid the possibility of the operating system interrupting the
game while we are in fact measuring the time within a module. Unfortunately
it is not possible to count CPU cycles within a Java function and we have not
been able to find a code profiler that could do so.

Since it is not possible to count CPU cycles, the time spent in each mod-



4.4. MODEL SIZE 61

ule is measured within each module as “system time usage”. This is done by
implementing a check for what the system time is as the AI starts running the
module and another check on the system time as the module returns its output.
With this method we of course have the problem with the OS interrupts, and
we need to keep this in mind while analyzing the performance times of each
technique. To somewhat counter for the “current work load” and different
CPU speeds of the test systems on a system, we run a benchmark before a new
game is started. In the benchmark we test how long it takes to take the square
root of a random number 10.000 times. Using this benchmark is not perfect
since the workload of a system may change while the game is being played,
but since the game is run many times, it should even out the differences in
workload.

Another minor problem is when timing some of our scripts that uses “out of
script” methods. For instance we have “RP Planner: Make Attack Plan” which
uses a path finding algorithm placed outside the Planner class. We also have
the “IG: Opponents’ Next Moves” which runs the MP and RP from the oppo-
nent’s side of the game. The time these “outside” tasks will still be counted as
time used in the script being times since the calling of these “outside” scripts
are part of the times script’s design. If a learning AI technique should catch
the behavior of the script it would also need to catch the behavior of the called
script. This means that the trained technique on the module would be timed
for doing the same amount of work as the script, including “outside” calls. So
to keep things fair, work done outside the scripted module is counted as if it
was done within the module itself.

4.4 Model Size

We will keep track of some information regarding the size (in MB) of the mod-
els we train. The size of the models affects the model load times and the
amount of memory required to run the game. Higher memory requirements
increases the risk of performing worse due to swapping between RAM and
hard drive. Loading models means both loading from the physical disk and
creating data structures to hold the model within the game. In this project we
do not consider the actual reading from the user’s hard disk to RAM since this
is not really dependent of which AI technique that is being used, but rather
the speed of the user’s hard disk. The construction of the data structures how-
ever is dependent of which AI technique is being used. Therefore we are only
interested in the time it takes to handle this.

4.5 User Experience

The user experience of the AI is the soft value we would like to test. The thing
we are interested in is whether or not our best performing AI is fun to play
against.

To determine if the best AI is fun to play against will require a broad array
of users. These users must range from players with low experience in playing
RISK to very experienced users. The reason for this range is that the AI may be
fun to play against if you have low experience and dull if you have much.



62 CHAPTER 4. TESTING

One thing that influences how fun the AI is to play against is how hard it is
to beat. It must neither be to hard, nor to easy to beat. This is of course depen-
dent on the user’s experience with RISK and therefore hard to handle without
having a difficulty setting for the AI. So what we could get from this test would
be a mark for how hard our AI is to beat by users of different experience levels.
If the AI’s mechanics are too simple to see through, it will become to simple to
beat.

A thing that may influence the experience of the AI, apart from how hard
it is to beat is how much time it uses to take its turn since no player wants to
wait too long for the AI to finish its turn, since this basically is time where he
is doing nothing but waiting. This time is influenced directly by the time each
module uses, hence this is why the time used in each module is important.

There are basically two ways of testing the AI. The first is having a closed
group of handpicked testers of different skill level that play the game and re-
port their experiences back to us after each game. This method has the ad-
vantage that we have full control over the testers and are, if needed, available
to assist them with any problems. The other method is a public test where
the game is put on the Internet for players to download. The game should
be distributed along with a form to fill out for feedback. This method has the
advantage that the possible test group will be much broader and have greater
variety. However, there is a risk that there may not be any feedback at all. If
users find the game boring, they are most likely not to give feedback, since they
already may feel that they have wasted enough of their time already. If they
do in fact send feedback, it is most likely biased in a negative direction so they
may not supply the objective feedback that we in fact need. Likewise are users
who find the game fun biased in a positive direction. They may have problems
giving feedback on the things that are not so good in the game. So in fact, the
best method for having users tests is by doing it in a closed environment where
we, as developers, are more in control.

4.6 Miscellaneous Recordings

There are a few other things we will record while the AIs play against each
other. These are some useful results that may benefit us while analyzing the
results. One of the things we record is what missions the different players
have. This may be useful to examine whether or not an AI technique performs
better if it has specific missions in the game. Also the number of rounds a game
lasts is recorded. We have observed that often in games where the first player
has the “Conquer 24 Territories” mission, the player wins within his first turn.
Whether this observation is true or not can be seen through the test results.

Another way of obtaining this result would be by having an AI play against
the other AIs with each mission a fixed number of games. This can be done by
making sure an AI is given the required mission in a predetermined number
of games. We will not be doing this in this project since it will require a lot of
work for too little gain. We believe that over time, this tendency will still shine
through by just recording what mission the winner has.

We will also be recording which missions the techniques have when they
lose a game. This should indicate which missions the techniques may not be
good a fulfilling.



4.7. NUMBER OF GAMES PLAYED 63

4.7 Number of Games Played

To obtain a clear indication of which AIs that are superior to others requires
a large number of games to be played. It is hard to estimate the number of
required games, but while tweaking the scripted version of the AI towards
defeating the AIs incorporated in JRISK, we found that we need around 500
games to have a clear indication of which AI is superior to the other.

4.8 Summary of the Tests

Before proceeding to describing in detail how the test will be performed, a
small summary of what exactly we will be testing and what requirements there
is to the tests, may be in its place. We will find the best AI composition through
the mentioned “Best Module” approach. The choice was between this and
“Stepwise Evolution” approach due to the fact that the number of possible AI
compositions are to high for us to do a complete test utilizing all possible AIs.
Since we assume that both “Best Module” and “Stepwise Evolution” produce
the same AI, either one of them would be useful for this project. However,
since “Best Module” is able to run in parallel, this is the chosen method for this
project. The data used to find the best performing AI is:

• Number of games won by each technique within games of three, four,
five, and six players.

• The number of games that each technique must play against the others is
500.

• The time used by each technique in the modules they implement.

• The time it takes to initialize a module.

• How important each module is in the framework.

• How many rounds a game lasts.

• What the AI’s missions are in each game.

• What the size of each model is.

4.8.1 Building the Best AI From Test Results

After the tests have been completed, it should be possible to find the best AI.
We will use the module importance tests to justify which modules that

should be replaced by the best performing AI techniques. If a module is not
important, there is no real point in letting it use a well performing AI technique
implement it. Instead the less time consuming technique should be used to im-
plement it since this means less time spent in the AI’s turn. However, if there
is a clear tendency for a better performing AI technique on an unimportant
module, we will still use this technique in the best AI. The argument for doing
this is that the importance test is based on 500 games. This may not be quite
enough to make a final statement on the importance of a module, and therefore
we will let the performance tests have the benefit of the doubt. Also, unless the



64 CHAPTER 4. TESTING

time used by this technique is much greater than the fastest module, this is no
real loss.

After the most successful AI has been constructed, it will make sense to let
it play some other combinations of AIs to ensure its success. These could theo-
retically be random AI compositions, but to ensure it, it may make more sense
to have a more systematic approach. This would be playing against combina-
tions of the best AI with other techniques on the important modules. It is not
useful to exchange unimportant modules since they will not impact the suc-
cess rate of the AI. Also an AI constructed using “Stepwise Evolution” could
be compared to the AI constructed through “Best Module”. If these are not
identical, they could play against each other to determine the best AI.

If any of the new AI compositions are remarkably better than the one we
have found, it will be considered the best. The best AI should then be passed
to the end users for them to supply feedback on the user experience of the AI.
However, we do not in this project have the resources to have a user experience
test, and will therefore not perform a such.

4.9 Performing the Tests

In this section we will go over the details involved in performing the more
practical side of performing the tests. This includes the considerations of how
to uphold the different requirements specified of the test, and the design of
how to implement them.

4.9.1 Scheduling Module Performance Test

As written above, the performance of each AI technique for each module is
tested separately. The best performing AI technique for each module is then
combined resulting in the best AI.

But there are some issues when finding the best AI technique for a given
module:

1. Each AI technique should play an equal amount of games, for compari-
son reasons.

2. Each AI technique should play an equal amount of games against each of
the other AI techniques. Otherwise a given technique could play an un-
equal amount of games against an easy opponent compared to a harder
opponent.

3. Each AI technique should be tested in games with all possible combina-
tions of the other AI techniques, for the same reasons as above. For ex-
ample, a neural network should play in a game with a decision tree only,
but also in a game with both a decision tree and a Bayesian network.

4. As already stated, each technique should be tested in 3 player games, 4
player games, 5 player games and 6 player games, since the performance
way vary when playing different amounts of players.



4.9. PERFORMING THE TESTS 65

Script Neural Net. Decision Tree Bayesian Net.
In game x x x

Not in game x

Table 4.1: A single test game. The game consist of three players: one player with the given mod-
ule implemented as a script, another player with the module implemented as a neural network
and lastly a player with the module implemented as a Bayesian network.

5. In a single game, no AI technique must be present more than once. In a
game with two of the same technique, that technique will have at least
one loser, and not necessarily a winner, which is unfair.

All these issues must be fulfilled when performing the tests. This is in fact a
scheduling problem — determining which techniques should play who and in
what order. Also, a different amount of AI techniques have been implemented
for each module. So the schedules for each module is different.

This can luckily be solved in a very systematic way. This is best illustrated
in an example.

A given module has been implemented with the following AI techniques:
Scripted, Neural Network, Decision Tree and Bayesian Network (script, nn,
dt and bn for short). Each of these techniques can either be in a given test
game or not. One can not only play test games with all techniques included,
since this would violate issue 3. Some way of making a list of games with all
combinations of AI techniques for a given module is needed.

Table 4.1 illustrates a single test game and which AI techniques are included
in that game. The game consist of three players: one player with the given
module implemented as a script, another player with the module implemented
as a neural network and lastly a player with the module implemented as a
Bayesian network.

In this manner, the entire list of games to be played (schedule) of all com-
binations of AI techniques for a given module would consist of 24 − 1 games.
The case where none of the AI techniques are in the test game is useless in the
test, which explains the minus 1. Such a list would in fact be seen in Figure
4.9.1

The first game in the schedule consist of only a scripted version of the mod-
ule. The second game consist of a player with a scripted module and another
player with a neural network implementation of the module.

To ensure issue 4, there should be 4 different lists. One for games with 3
players, one for games with 4 players, 5 players and 6 players.

If the schedule for example is a 4 player game schedule, then games with
less than 4 players (e.g. game 1, 2, 3, 5 etc) are padded with non-framework
players, such as the “easy AI” and “hard AI” already implemented in JRisk.
If it is a 3 player game list, then games with more than 3 players are removed
from the list.

Implementing The Schedule

Table 4.1 is an example of a single test game and can actually be viewed as
bit string “1101”, instead of the table. This results in a very easy way of im-



66 CHAPTER 4. TESTING

1. script

2. script, nn

3. script, nn, dt

4. script, nn, dt, bn

5. script, dt

6. script, dt, bn

7. script, bn

8. nn,

9. nn, dt

10. etc.

Figure 4.4: An example of a game schedule.

plementing a method for creating a schedule. Making all combinations of AI
techniques is in fact just a matter of listing the bit strings from “0001” to “1111”.

This will result in a game list consisting of the same games as the list de-
picted in Figure 4.9.1. This list will however start with “bn”, “dt”, “dt, bn”
etc.

When having games where the number of techniques to play in a game
exceeds the number of player slots, we simply cut the exceeding players away.
This can be done because the used method ensures that games between the
removed techniques and those kept will eventually be played too. If there, on
the contrary, are too few techniques to fill all available player slots in a game,
the remaining slots are filled with random “easy” or “hard” AIs. An algorithm
for generating such a test schedule can been found in Appendix E.1.

In this manner, each technique will play each other technique exactly the
same number of times.

Ensuring The 500 Games

As stated in the previous section, it is necessary that each AI technique play at
least 500 games, to ensure that the results are not based on luck and random-
ness.

In a game with three to six players, a full schedule for a module imple-
mented with 4 different AI techniques will consist of 591 games. Any of the
techniques will be in precisely 31 of those games2. For a technique to play
at least 500 games, it must play the whole list of games 500/31 ≈ 17 times,
resulting in 59 ∗ 17 = 1003 games played for a full test of that given module.

1When playing with four to six players, all possible combinations of AIs are possible (from
binary 0001 to 1111). 1111 corresponds to 15 and having three of these gives us 45 games to play.
For three players, the 1111 string is not possible, hence we have only 14 games. 45 + 14 = 59

2Found by counting.



Chapter 5
Implementation

This chapter will briefly discuss the implementation of this project, and some
of the problems that occurred.

5.1 Script Implementation

We have implemented the framework designed in [CJJ06] including the changes
given in Chapter 2. Apart from the framework, we have implemented the
scripted AIs for each module within the framework. Furthermore many of
the scripts have also been redesigned before they were implemented. Details
on the redesigned scripts are found in Appendix A. The changes made to the
scripted AIs were made to make it perform better, in the sense of winning more
games compared to the “Hard” and “Easy” AIs implemented in JRISK.

While the scripted AIs were implemented, the author of JRISK released a
new version of the game with an “Extra Hard” AI. We do not have any knowl-
edge of what changes were made to the new AI type, only that it should be
harder to beat. When comparing our scripted AI to this new AI we noticed
no difference in performance. Our AI was successful in beating both “Easy”,
“Hard”, and “Extra Hard”. The goal of the scripted AI was to beat “Hard”
and “Easy” in more than half of the played games. Having fulfilled this, the
scripted AI was considered ready to produce training data.

5.2 Training Data Converter

The Training Data Converter has been implemented as described in Section
3.2. The Converter converts the game history produced by the scripted AIs
into training data for each of the AI techniques. As described, the game history
amounted to 30 gigabytes of data, which more than doubled when converted.
If one is not accustomed to handling 70-80 gigabytes in around two million
files, it can cause some problems. Such a large amount of data is for instance
not easily moved. This also sets some limits on the applications handling the
amount of data. Some of these limits are described in the next section. The
applications developed solely for this project that handled the data, were all

67



68 CHAPTER 5. IMPLEMENTATION

developed with this in mind, such that they for instance not loaded the entire
data into memory.

5.3 Training The AI Models

This section will cover some of the choices we have made during implemen-
tation of the various AI techniques. Also we will list some practical problems
we have encountered during this phase. Some of them were solved but others
were not.

5.3.1 Limitations in Training

Because the training data conversions and training of the AI techniques are
very time and memory consuming, it imposed some limits on which tech-
niques were trained with “winners and losers”, “winners only” and which
were trained with both. How each AI technique will be trained can be seen
in Table 5.1.

Decision Tree Neural Net. Bayesian Net. Naive B. C.
Winners and losers x x x
Winners only x x

Table 5.1: .

The training data conversion and training of decision trees was quite prob-
lematic, therefore there was no time to train with winners only. The same goes
for naive Bayes classifiers. Neural networks however, was implemented by us
and there was therefore no problems with exaggerated memory usage, so neu-
ral networks were trained with both “winners and loser” and “winners only”.
The training of Bayesian networks in Hugin was very time consuming on the
very large “winners and losers” training data set, and was aborted after almost
a day of training on a tenth of the data. Bayesian networks was therefore only
trained with winners.

5.3.2 Techniques Implemented on Modules

In Table 2.2 on page 36 the different AI techniques we wanted to implement
on each module were presented. Due to various problems described in this
section and time constraints, some techniques had to be been omitted. Table
5.2 shows which techniques have been implemented. Techniques marked with
“x” are the ones implemented and trained in this project. The ones marked
with “-” are the ones that were planned but were omitted. The “Random” AI
has been removed since the random-technique is not used for testing. The new
coloum “NNWO” are neural networks trained with winners only.



5.3. TRAINING THE AI MODELS 69

Sc
ri

pt
D

ec
is

io
n

Tr
ee

N
eu

ra
lN

et
.

Ba
ye

si
an

N
et

.
N

ai
ve

B.
C

.
N

N
W

O
In

it
ia

la
rm

y
pl

ac
em

en
t

x
-

x
-

x
Es

ti
m

at
e

op
po

ne
nt

s’
m

is
si

on
s

x
-

x
-

x
H

ow
cl

os
e

an
op

po
ne

nt
is

to
w

in
ni

ng
x

-
x

x
x

x
Th

e
op

po
ne

nt
s’

ne
xt

m
ov

es
x

H
ow

cl
os

e
an

op
po

ne
nt

is
to

ow
ni

ng
a

co
nt

in
en

t
x

-
x

x
x

x
C

on
ti

ne
nt

ow
ne

rs
hi

p
x

M
P

G
oa

lW
ei

gh
ti

ng
x

x
x

M
ak

e
at

ta
ck

pl
an

x
C

al
cu

la
te

at
ta

ck
pl

an
co

st
x

Pr
io

ri
ti

ze
at

ta
ck

pl
an

x
-

x
-

-
x

Sc
or

e
at

ta
ck

pl
an

x
x

x
x

x
D

is
ca

rd
at

ta
ck

pl
an

x
-

-
-

R
em

ov
e

go
al

s
x

C
al

cu
la

te
de

fe
ns

e
co

st
x

x
x

-
x

x
Sc

or
e

m
er

ge
d

pl
an

x
x

x
x

x
Pr

io
ri

ti
ze

te
rr

it
or

y
ne

ed
in

g
de

fe
ns

e
x

x
x

x
x

C
as

h
ca

rd
s

x
-

-
-

Pl
ac

e
ar

m
ie

s
x

-
-

-
-

Tr
an

sf
er

ar
m

ie
s

x
-

-

Ta
bl

e
5.

2:
Ta

bl
e

sh
ow

in
g

w
hi

ch
m

od
ul

es
ha

ve
be

en
im

pl
em

en
te

d
w

ith
w

hi
ch

A
It

ec
hn

iq
ue

s.
“x

”
m

ea
ns

th
at

th
e

te
ch

ni
qu

e
is

im
pl

em
en

te
d

fo
r

th
e

gi
ve

n
m

od
ul

e,
“-

”
m

ea
ns

it
is

no
t.



70 CHAPTER 5. IMPLEMENTATION

5.3.3 Dividing Into Ranges

Some of the AI techniques, such as Bayesian networks and decision trees are
only able to handle a discrete set of states of a node/attribute. In theory there
is no limit on the number of states the different techniques can handle, but in
practice there are. We have chosen a maximum of 20 states on each node in
both decision trees, naive Bayes classifiers, and Bayesian networks. However,
in some cases this number was too high. More details will be given on this in
the following sections. As discussed in Section 3.2.1, it is not always a good
idea to just have a linear distribution over the values in the states. To find an
appropriate distribution, we made an “Interval Maker” tool.

The “Interval Makes” simply does the following: For a given module, sort
all the output from that module. Specify the number X of intervals you want
it divided into (e.g. 20 for 20 states). The data will then be divided into X
“chunks” of data, where each interval is from the lowest to the highest number
in the chunk. This is illustrated in Figure 5.1 which is a sorted list of values,
divided into 4 intervals.

 1  1  2  3  5  8 10 10 11 12 12 16 18 20 20 20

[-   ,3] ]3,10] ]10,16] ]16,   ]∞ ∞

Figure 5.1: A sorted list of values are divided into four intervals.

5.3.4 Training Bayesian Networks

When modeling the Bayesian networks for this project, our intention was to use
the “Interval Maker” just described. However, for the “IG: Close to Winning”
a linear distribution are used for the nodes “Kill Player X”, the “Conquer24”
and “Conquer18”. Because of time constraints we have not found intervals for
these nodes.

All nodes in both networks have a random probability distribution before
the network is trained. This should ensure that we do not end up having an
even distribution at some nodes in the network after it has been trained. Hav-
ing even distributions on nodes in a network may result in a network giving a
“static” distribution on other nodes regardless of instantiations.

As earlier mentioned, we use Hugin for training the Bayesian networks.
Hugin uses an EM learning algorithm for training the BN.

Problems

A problem we experienced while training our BNs emerged from Hugin’s way
of training them. In Hugin, training is done by specifying a training data file
which is loaded into the computer’s memory. This approach may be feasi-
ble for some projects, but in our case this approach is far from optimal. The
amount of training examples used in this project is very large. We had a 6
gigabytes training data file which is obviously too large to handle for most sys-
tems, and also for Hugin which, being a Java program, has a maximum of 4GB
available. When using EM learning it is not necessary to load everything into



5.3. TRAINING THE AI MODELS 71

memory since EM only uses one training example at a time. Using this knowl-
edge we came up with a simple fix for the problem. We simple divided the
large file into several smaller files. By doing this, it was possible to train with
training sets of any size with the only problem that we had to manually load
new files whenever Hugin had processed one file. This leads directly to the
next problem: There is no way of telling how far into a training file Hugin is.
This means that we had no way of estimating how long it would take before
a network was trained. Of course it is rather difficult to give a timed estimate
on this since EM learning is a NP Hard problem, but at least an output of what
number training example it was processing should be possible. This made it
hard for us to estimate whether or not the BN was actually trainable with 6
gigabytes of training data, without spending weeks.

5.3.5 Training Decision Trees and Naive Bayes Classifiers

The AI techniques decision tree and naive Bayes classifiers were both imple-
mented using Weka, so the cause of a problem with one technique will most
likely also apply to the other technique. This section will cover the problems
we had training the techniques which caused some of them not to be imple-
mented in the game. We will then explain what actions we took to try and
solve these problems and finally describe the general training procedure for
these techniques.

Problems

The main problem that caused the training of some of the decision trees and
naive Bayes models to fail, was that the Trainer ran out of memory. This hap-
pened even though the Trainer had allocated the system maximum of 3 GB
memory. This is because Weka loads the entire set of training example into
memory. And although the space required to train does not grow exponen-
tially with the number of training examples, a hefty amount of training exam-
ples could still bring the system to the knees.

We also had problems with the Java Virtual Machine which would sud-
denly crash without a reason. It did so after the Trainer had run for some
hours and after restarting the Trainer, it crashed after the same period of time.
A search on the Internet did not give any result as to what the cause of the Java
error was. We suspect this could be related to the problem with memory usage
but cannot be sure.

Reducing Memory Usage

The memory usage depends on three factors:

• The number of attributes.

• The number of states in each attribute.

• The number of training examples.

The most effective way to lower the memory usage is to reduce the number
of states in each attribute. This will both affect the number of branches in the



72 CHAPTER 5. IMPLEMENTATION

tree plus reduce the number of training examples. The latter is because of
the way the Converter generates training examples from winners and losers:
If there are t states in the target attribute, t − 1 (the one action performed by
the loser) training examples will be generated for a loser. Also, t − 1 training
examples will be generated for a winner in order to match the amount of loser
examples.

A more brutal way of lowering the memory usage would be to just cut
away a big part of the training examples and only train from a selection of the
available training examples. This can lead to a poorly trained AI, an AI that
potentially could have been better.

Training Procedure

At first it was tried to train the AI model as it has been designed. Then, if the
training of the model ran out of memory we tried the following three steps:

1. Halve the number of states in the attributes.

2. Quarter the number of states in the attributes.

3. Cut away some of the training examples containing quartered attribute
states.

When these steps had all been tried we had to consider the model untrain-
able and omitted it from the tests. When halving and quartering states or re-
moving states in general, the model will become more inaccurate. On the other
hand, when removing training examples, the model will not only become in-
accurate, but it might also output wrong. This is why the removal of training
examples is the last resort and only used when removing more states would
make the model unusable.

5.4 Training Neural Networks

Implementing the training of neural networks did not produce any significant
memory and time consumption problems. However, the matter also discussed
in Section 3.3.3, were it is discussed that training neural networks (that also
learns from losers) until it converges is impossible. Training the neural net-
work for a fixed number of iterations is the only practical solution. The nerual
networks that trained from winner only could however have been trained un-
til they converged, but to compare the two approaches, it seemed fair only to
training these neural networks a fixed number of iterations also. The number
of iterations were selected to be 50 for all neural networks. This might seem a
bit low, but the amount of available training examples is so great, so we believe
that 50 iterations will be sufficient. The number of iterations were also selected
based on the time it took to train each network. The most simple networks took
around half a day to go through all iterations, but the more complex networks
took many days. This also sets a natural limit on the number of iterations.
Whether or not the neural networks have trained sufficiently will be shown in
the results of the tests.



5.5. IMPLEMENTING THE TESTS 73

5.5 Implementing the Tests

Scheduling of the tests to find the best performing technique in each module
was implemented as described in Section 4.8 and in Section 4.9.

These tests produced a file for each game played, consisting data such as
“run times” for each module, the number of players in the game, the num-
ber of rounds the game lasted etc., which resulted in 3 gigabytes of data. A
“Game Statistics Analyzer” then had to be written. This analyzer gathered all
the information and produced summaries, such as the maximum, minimum,
average and median of all the run times of each technique for each module,
which mission each player won with, the amount of games a given technique
for a given module has won etc.

These results will be presented in the following chapter.



74 CHAPTER 5. IMPLEMENTATION



Chapter 6
Results

This chapter will describe the results from testing module importance and
module performance. First the amount of training data generated will be pre-
sented. This is the data used in the training of the learning algorithms. After-
ward, the testing of the importance of each module is presented and analyzed
upon. This is followed be a description and analysis of the performance test.
The outcome of this result analysis is a proposal for the best combination of AI
techniques in each module.

6.1 Training Amount

This section will cover the results of the training data generations — the amount
of games played and number of module runs recorded.

We set a goal to generate around a couple of thousand played games, a
maximum of 50 gigabytes data or use a maximum of one week to generate
the data. The result was 6 days of computing time, 3275 generated games and
30 gigabytes of data. Table 6.1 shows the amount of data generated for each
module.

Many of the modules use the board as input, and in some cases it is the
same board used in a series of modules. So only unique board states are saved.
The modules that use the same board state just link to the same board state file.

The data types “attack plan” and “defense plan” holds data for the mod-
ules in the Planner. Only attack and defense plans that are actually carried out
are saved.

It might seem a bit odd, that there are almost twice as many IG Mission files
than there are for the other IGs. This is because a mission estimate is needed
every time a initial placement of armies is made.

6.2 Module Importance

We ran the module importance test where the scripted AI for each module was
replaced by the random AI as described in Section 4.2. They played against a

75



76 CHAPTER 6. RESULTS

Module/Data Type # Files Data (MB)
IG Mission 253104 13637
IG Continent 131879 1371
IG Winning 131879 2179
Master Prioritizer 131879 2713
RP CashCards 11941 55
RP Fortify 54047 219
RP PlaceArmies 336881 1497
InitialPlacement 121225 721
Attack plan 214822 852
Defense plan 7473 29
Board states 784111 6166

Table 6.1:

random amount of JRisk’s Easy and Hard AI’s. 500 games was played for each
module and the number of wins for the module with the scripted AI and with
the random AI was recorded.

Table 6.2 shows the result of this test. The first two columns show for each
module how many times it won with a scripted AI and with a random AI. The
two last columns show how much lower the number of victories was when the
scripted AI for the module is replaced with the random AI. Looking at the ta-
ble, Diff. is the difference in wins and Diff.% is the difference in wins in percent
for the random AI compared to the scripted AI. The larger the percentage value
is, the more impact the module has on the whole AI’s performance. Figure 6.1
shows this graphically.

Looking at the graph it is clear that not all modules impacts the AI’s per-
formance significantly. For example, the “Calculate defense cost” module only
affects the AI’s performance with 6%. This means that if even if the AI tech-
nique for that module was replaced with an AI technique that was as bad as the
random AI, we would only be able to measure a 6% difference in the number
of won games. Since a lot of factors influences who wins the game, a differ-
ence of only 6% will get lost among them and will not influence the number of
won games in such a degree that we can measure a clear tendency. This also
means that even if the module’s AI technique was replaced by a super duper
AI technique, it would not show in the test results.

In general, we will only consider a module’s test result for valid if its im-
pact is still at least 15%. Eight of our 17 modules does not fulfill this require-
ment. The modules are: “Estimate opponents’ missions”, “How close an op-
ponent is to winning”, “Calculate attack plan cost”, “Calculate defense cost”,
“Score merged plan”, “Prioritize territory needing defense”, “Cash cards”, and
“Transfer armies”. These modules are considered unimportant in the test re-
sult. Modules with an importance of at least 15% are considered fairly impor-
tant, while modules with an importance of at least 25% are considered very
important.



6.3. MODULE PERFORMANCE 77

Script Random Diff. Diff.%
Initial army placement 193 119 74 38
Estimate opponents’ missions 160 133 27 17
How close an opponent is to winning 185 166 19 10
The opponents’ next moves 175 144 31 18
How close to owning a continent 172 139 33 19
MP Goal Weighting 216 112 104 48
Make attack plan 169 133 36 21
Calculate attack plan cost 179 149 30 17
Prioritize attack plan 238 62 176 74
Score attack plan 188 132 56 30
Discard attack plan 197 145 52 26
Calculate defense cost 173 162 11 6
Score merged plan 163 150 13 8
Prioritize territory needing defense 137 171 -34 -25
Cash cards 163 151 12 7
Place armies 171 108 63 37
Transfer armies 146 171 -25 -17

Table 6.2: Results of the module importance test. For each module is it shown how many times
it won with a scripted AI and with a random AI. Next it is shown how much worse the module
performs when it is replaced by random AI: Diff. is the difference in wins and Diff.% is the
difference in wins in percent.

6.3 Module Performance

This section will discuss the results of the performance tests of each technique
in each module. The tests were performed as described in Section 4.8 and in
Section 4.9.

Each module will be discussed and a technique will be selected for the “Best
AI”, which should be the best compinations of AI techniques in modules possi-
ble. There will also be selected some “challenger” techniques in each module.
These challengers will make up an AI that the “Best AI” could be evaluated
against.

Some modules in the framework have only been implemented as scripts
and is not included in the performance test.

The different test result can be seen in the following graphs:

Performance graph: Figure 6.2 in page 79 shows the number of wins per 100
games for each technique in each module.

Tun time graph: Figure 6.3 on page 85 shows the median run time for each
technique in each module. The times have been divided by a benchmark
which is calculated in the beginning of each game. This makes the times
comparable even when the tests have been run on different systems. The
times are in microseconds per benchmark.



78 CHAPTER 6. RESULTS

0 10 20 30 40 50 60 70 80

Initial army placement

Estimate opponents' missions

How close an opponent is to winning

The opponents' next moves

How close to owning a continent

MP Goal Weighting

Make attack plan

Calculate attack plan cost

Prioritize attack plan

Score attack plan

Discard attack plan

Calculate defense cost

Score merged plan

Prioritize territory needing defense

Cash cards

Place armies

Transfer armies

Diff.%

Unimportant
Fairly

important
Very

important

Figure 6.1: This graph is made from the values of Table 6.2’s last column, Diff.%. It shows how
much lower the number of game victories is when the scripted AI for a module is replaced by the
random AI.

Turn time graph: Figure 6.4 on page 86 shows the median turn time for each
technique in each module. The turn times are calculated by starting the
clock when the AI begins his turn and stopped when he has finished
fortifying and his turn ends. The times have been also been divided by a
benchmark. The times are in microseconds per benchmark.

These graphs will all be used in the evaluation of the tests, but also the
module importance test described in Section 6.2 will be used in the evaluation.
The module importance is a direct measure of how influential each module is in
the framework and thereby also how precise the test results are. If a module is
not important in the framework, it can not be determined with certainty which
AI technique is the best, unless there are some considerable difference in the
performances. On the other hand, if a module is important in the framework,
then the performance of each AI technique is directly comparable.

It was previously argued that the load time of models also is interesting to
analyze. But load times only impact the beginning of the game, not the overall
course of the game, nor the actual performance of the given technique. It has
therefore been decided that load times are not analyzed further.

The actual performance tests where performed in 18 days. Before this, the
scripted AI spent 6 days generating data followed by a couple of weeks of data
conversion, where many of the conversions had to be restarted because of var-
ious problems such as excessive memory usage, server reboot etc. The range of
systems used to generate training data, data conversions, and performing the
tests can be seen in Appendix F.



6.4. TEST RESULTS 79

0 10 20 30 40 50

Initial army placement

Estimate opponents'
missions

How  close an
opponent is to w inning

The opponents' next
moves

How  close to ow ning
a continent

MP Goal Weighting

Prioritize attack plan

Score attack plan

Calculate defense
cost

Score merged plan

Prioritize territory
needing defense

Wins pr 100 games

Script

NN

NN_WO

DT

NB

BN

Figure 6.2: This graph shows the number of wins per 100 games for each technique in each
module. This will be called the performance graph.

6.4 Test Results

This section contains an analysis of the results gathered through the module
performance tests.

6.4.1 Initial Army Placement

Looking at the importance graph, we see that this module is fairly important.
This means that this module has some effect on the output of the game since
a change in performance of this module changes the general performance of
the AI. Therefore we directly compare the values for the AI techniques in the
performance graph since if one of them performs worse than another, this too
will affect the general AI.

As seen in the graph, the script performs slightly better that both NN and



80 CHAPTER 6. RESULTS

NN WO. As argued in 5.4 the reason for this may be that both NNs have not
trained enough.

The difference between the two NNs is very small, meaning that they per-
form equally good. The slight difference between them we subscribe to general
uncertainties, but the equal performance is rather interesting. We would have
assumed that one of them would perform better than the other because of the
difference in training. NN WO was trained by only winners whereas NN was
trained by both winners and losers. This result indicates that the difference in
the two training methods has no saying when training NNs.

Looking at the run time graph, we see that the run time for the NNs is
roughly eight times longer than that for the script.

Summing up these result we conclude that the NNs performed slightly
worse than the script for this module and their run times were also worse. This
means that the scripted version of this module will be used for the “Best AI”.
However, the NNs on this module should be considered for the AI to challenge
the “Best AI”. The purpose of the “Challenger AI” is discussed in 4.8.1.

6.4.2 Estimate opponents’ mission

Besides being rated fairly important in the importance graph, this module is
interesting to us. This is because the NN on this module is the only one that
has been trained with certain information instead of information estimated by
the script1. This means that this IG is not relying on the output of the scripted
AI and is therefore trained directly towards the correct value. Looking at the
performance graph we see that the NN performs slightly better than script,
which means that it has been trained to perform at least as well as the scripts.

Looking at the run time graph, we see that the NN performs roughly factor
120 worse than the script. However as seen in the turn time graph, the factor
120 means only a turn time increase of one percent. The radical time consump-
tion of the NN is tributed the conversion of the past to NN input, which is a
lengthy procedure.

Even though it is unclear, due to uncertainties based on the low importance,
to say whether or not the NN plays better than the script, we will still use
the NN in the “Best AI”. We believe that the NN does perform better than
our script since it has been trained towards giving the correct output given its
input.

6.4.3 How Close an Opponent is to Winning

As seen in the importance graph, this module is rated unimportant. This means
that the results are too uncertain to trust. Therefore we will look at the query
and round times to find a technique for the “Best AI”. We notice that the query
time of the neural networks are 300 times slower than our script whereas the
NB is 860 times slower, and the BN is roughly 7000 times slower. When looking
at the turn times there is not much difference between the techniques except
that the BN is a little slower than the rest.

There is not point in using anything else than our script in the “Best AI” for
this module.

1Recall the when training this module we have certain information on the AIs mission



6.4. TEST RESULTS 81

6.4.4 The Opponents’ Next Moves

Looking at the importance graph we see that this module is just on the border
between being fairly important and unimportant.

On the performance graph we see that the NN WO and the script performs
equally well. This measure of course has some uncertainties since the impor-
tance measure borders to “unimportant”.

However, looking at the time differences we see that the neural network
is roughly 5000 times faster than the script. Also in the round time the use of
NN WO gives a speed increase on 630%.

Therefore, we will use NN WO in the “Best AI”.

6.4.5 How Close an Opponent is to Owning a Continent

This module is fairly important to the AI.
Looking at the performance graph we see that all techniques on this module

performs almost equally. BN seems to have a slight advantage since it scores a
little higher that the remaining techniques. This may either be because uncer-
tainties in the data, but it may also be because the BN is trained with winners
only. It should thereby train towards the scripted behavior. What is really in-
teresting is that it in fact outperforms the script. This indicates that BN may
in fact be capable of catching “winning behavior” as discussed in 3.2.5. NN
and NN WO performs equally well, which is surprising since we would be-
lieve that NN WO would actually perform better since it is always trained in
the right direction whereas NN may not. The difference between the neural
networks and the script is so small that it is subscribed to being uncertainties.
The NB performs as well as the script in this module.

Looking at the run times for this module, we see that both neural networks
are four time faster than the scripts whereas the BN is 27 times slower to query
and the NB tops with a query time which is 130 times slower than the script.
The explanation of the extremely high query times of NB may be that the mod-
ule consists of 30 models which all in turn needs to be queried as described
in ??. Also when looking at the turn times of the module we see that the time
spend in the module is not much dependent of the AI technique used. Only
NB is somewhat more time consuming than the remaining techniques.

The conclusion to all this is that we will be using BN in the “Best AI” and
use NN WO in the challenging AI.

6.4.6 MP Goal Weighting

In the importance graph we see that this module is very important to the AI.
This comes as no surprise since this module gathers all information from the
IGs and outputs the overall goals for the AI in the current turn. Without this
module, the AI would simply not have any goal to work towards.

Looking at the performance table we see that NN WO performs almost as
good as the script whereas NN performs very poorly. This indicates that train-
ing with both winners and losers does not work for neural networks, but train-
ing with winners only does. This may be due to the fact that when training
with both winners and losers, we negate the error, and instead of adjusting the
weights in the correct direction (as with winners only) we adjust the weights



82 CHAPTER 6. RESULTS

in another direction. This direction is not necessarily the correct one meaning
that the network will be trained to perform worse than before. This means that
training is most likely to be slower for NN than for NN WO, and in worst case
that NN will behave randomly.

Looking at the run time table we see that the script is roughly 73 times faster
than both neural networks.

Based on these results we will use the script in the “Best AI”. NN WO will
be used in a “Challenger AI”.

6.4.7 Prioritize Attack Plan

This is the most important module according to the importance graph, which
means that we can rely on the results in the performance graph.

For this module, the script is almost twice as good as the NN WO which is
the best of the two NN’s. Given enough training time the NNs might be able
to at least mimic the behavior of the script, so the explanation for the NN’s
performance could lie here.

The NN WO model performs quite a lot worse than the script, while the
NN at the same time is nearing NN WO. The poor results for NN and NN WO
may again be due to lack of sufficient training data.

The run time for the script is twice as long as the two NN’s which causes
an increase in turn time by 20% compared to the two NN’s. If the NN’s could
be trained to match the scripted AI, they would be a better choice than the
scripted AI because of their low run time consumption. But as the AI models
look now, the script’s performance is by far the best, it should be used for the
“Best AI”. None of the NN’s are close enough to the script’s performance to be
picked to challenge the “Best AI”.

6.4.8 Score Attack Plan

Looking at the importance graph reveals this module to be fairly important to
the AI.

All techniques perform slightly worse than the script for this module. DT
and NB performs equally and are slightly better than both NN and NN WO.
That DT and NB performs better than the neural networks is probably because
of the low number of input for this module. The DT is fairly simple to build
with only two regular variables and a target variable. The NB is also fairly
simple to train, which explains why both of these perform well in this module.
The reason that they do not match the scripts may either be due to uncertainties
in the data, but also it may be because of the way they are trained. It may not
always be wise to do “everything else” since this may slow the training down
since “everything else” may sometimes contain more wrongs than rights. That
the two neural networks perform equally well is again rather interesting since
we would assume that NN WO would train faster. It may be coincidental or
due to uncertainties that their performance is equal.

Looking in the run times for the module, we see that the script is roughly
500 times faster than both neural networks, and 1000 times faster than both
DT and BN. This is because this is a simple mathematical function. It is faster
feeding the input directly to a function than queering any of the models.



6.5. BUILDING THE BEST AI 83

Since the script outperformed all other techniques in this module, it is cho-
sen for the “Best AI”. Since DT and NB are close to matching the performance
of the script, both are selected to be part of the challenger AIs.

6.4.9 Calculate Defense Cost

The importance graph shows that this module’s effect on the AI performance is
unimportant. Therefore the performance results for this module are also very
close and difficult to conclude on. However, it can be seen that the scripted AI
is remarkably faster than the others. It is therefore chosen as the “Best AI” for
this module.

6.4.10 Score Merged Plan

The importance for this module is very low according to the importance graph.
Therefore the result for it should be taken with a huge grain of salt. It seems
that the technique used for the “Best AI” should therefore be picked with exe-
cution speed as the primary argument.

The scripted AI’s run time is more than 200 times smaller than its closest
rival, but the turn time graph reveals that the run time has no effect on the turn
time which for all techniques in about the same. The difference at only 5% is
so small that it most likely is caused by small errors in the measurement.

Since the time measures are so close to each other, and the performance
measure cannot be trusted completely, the scripted AI is chosen as “Best AI”.

6.4.11 Prioritize Territory Needing Defense

This module is not important but still we need to select an AI technique for the
“Best AI”.

Looking at the module performance graph reveals that all techniques per-
form fairly equal. NN WO performs slightly better closely followed by NB.
The module not being important explains the even distribution since it does
not matter which technique is used.

Looking at the run time graph reveals that DT and NB use roughly 9000
times more time in the module, but when looking in the turn time graph we
see that the time each turn takes is roughly indifferent.

We will therefore use NN WO in the “Best AI”.

6.5 Building the Best AI

After having analyzed the gathered training results, it is now possible to com-
pose both the “Best AI” and the “Challenger AIs”.

6.5.1 The Best AI

The “Best AI” is the one implementing the most successful technique on each
module. The techniques have been analyzed through looking at the impor-
tance of the module they implement, their performance, and the time they use



84 CHAPTER 6. RESULTS

Module Technique
Initial army placement Script

Estimate opponents’ missions NN
How close an opponent is to winning Script

The opponents’ next moves NN WO
How close an opponent is to owning a continent BN

Continent ownership Script
MP Goal Weighting Script

Make attack plan Script
Calculate attack plan cost Script

Prioritize attack plan Script
Score attack plan Script

Discard attack plan Script
Remove goals Script

Calculate defense cost Script
Score merged plan Script

Prioritize territory needing defense NN WO
Cash cards Script

Place armies Script
Transfer armies Script

Table 6.3: The Best AI composition.

to output a result. The “Best AI” is seen in Table 6.3. The techniques written in
italic are the ones used on modules that has not been tested.

6.5.2 The Challenger AIs

The challenger AIs are AIs that will challenge the “Best AI”. The challenger AIs
are initially clones of the “Best AI”. The difference between the challengers and
the best AI is that the challengers will use different AI techniques on some of
the fairly and very important modules. A list of the challenger AIs is seen in
Table 6.4.

The next step would be playing a series of games where the “Best AI” and
all challengers play against each other. This should, as with the performance
tests, be done systematically meaning that each AI should play against all other
AIs an equal amount of times. This is to ensure that all AIs are equally treated
in the sense of the number of games they play, and number of oppponents in
the games.



6.5. BUILDING THE BEST AI 85

0.12

0.16

0.15

0.02

0.71

0.00

0.00

0.01

0.98

3.49

3.04

1.24

0.37

0.28

0.44

0.59

1.04

3.04

1.26

0.37

0.29

0.45

0.72

0.47

0.67

0.47

0.69

0.97

3.58

0 0.5 1 1.5 2 2.5 3 3.5 4

Initial army placement

Estimate opponents'
missions

How  close an opponent
is to w inning

The opponents' next
moves

How  close to ow ning a
continent

MP Goal Weighting

Prioritize attack plan

Score attack plan

Calculate defense cost

Score merged plan

Prioritize territory needing
defense

Median module run time in µsec/benchmark

Script

NN

NN_WO

DT

NB

BN

18.75

129.49
1040.35

5227.52

12.89

1772.97
351.34

34.69
35.58

0.00
0.43
0.42

11.16
11.25

Figure 6.3: This graph shows the median run time for each technique in each module. The times
have been divided by a benchmark which is calculated in the beginning of each game. This makes
the times comparable even when the tests have been run on different systems. The times are in
microseconds per benchmark. This will be called the run time graph.



86 CHAPTER 6. RESULTS

3495

9824

4311

7874

6648

3686

4268

5957

4357

5833

4909

3516

9928

4242

6398

4024

3691

6010

8656

5869

5316

3459

4525

1236

6770

3366

3499

6141

8675

5686

5157

6561

5947

5441

4417

8726

6707

5650

5468

5756

6936

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Initial army placement

Estimate opponents'
missions

How close an opponent is
to winning

The opponents' next moves

How close to owning a
continent

MP Goal Weighting

Prioritize attack plan

Score attack plan

Calculate defense cost

Score merged plan

Prioritize territory needing
defense

Turn Time in µsec/benchmark

Script
NN
NN_WO
DT
NB
BN

103429
100695

Figure 6.4: This graph shows the median turn time for each technique in each module. The turn
times are calculated by starting the clock when the AI begins his turn (“receives the dice”) and
stops when he ends his turn (“gives the dice to the next player”). The times have been also been
divided by a benchmark. The times are in microseconds per benchmark. This will be called the
turn time graph.



6.5. BUILDING THE BEST AI 87

M
od

ul
e

C
ha

ll
en

ge
r

1
C

ha
ll

en
ge

r
2

C
ha

ll
en

ge
r

3
C

ha
ll

en
ge

r
4

C
ha

ll
en

ge
r

5
C

ha
ll

en
ge

r
6

In
it

.a
rm

y
pl

ac
em

en
t

N
N

N
N

W
O

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Es
t.

op
po

ne
nt

s’
m

is
si

on
s

N
N

N
N

N
N

N
N

N
N

N
N

C
lo

se
to

w
in

ni
ng

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

O
pp

.n
ex

tm
ov

es
N

N
W

O
N

N
W

O
N

N
W

O
N

N
W

O
N

N
W

O
N

N
W

O
C

lo
se

to
co

nt
in

en
t

BN
BN

N
N

W
O

BN
BN

BN
C

on
ti

ne
nt

ow
ne

rs
hi

p
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
M

P
G

oa
lW

ei
gh

ti
ng

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
N

N
W

O
Sc

ri
pt

Sc
ri

pt
M

ak
e

at
ta

ck
pl

an
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
C

al
c.

at
ta

ck
pl

an
co

st
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Pr

io
ri

ti
ze

at
ta

ck
pl

an
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

or
e

at
ta

ck
pl

an
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
D

T
N

B
D

is
ca

rd
at

ta
ck

pl
an

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

R
em

ov
e

go
al

s
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
C

al
cu

la
te

de
fe

ns
e

co
st

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
or

e
m

er
ge

d
pl

an
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Pr

io
ri

ti
ze

de
fe

ns
e

N
N

W
O

N
N

W
O

N
N

W
O

N
N

W
O

N
N

W
O

N
N

W
O

C
as

h
ca

rd
s

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Pl
ac

e
ar

m
ie

s
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Tr

an
sf

er
ar

m
ie

s
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt
Sc

ri
pt

Sc
ri

pt

Ta
bl

e
6.

4:
C

ha
lle

ng
er

A
Ic

om
po

si
tio

ns
.



88 CHAPTER 6. RESULTS



Chapter 7
Reflection

Until now we have argued that we would like to find the best performing AI
for playing Risk. In this section we will argue that the framework made for
playing Risk is general enough to suit other games. This is done in three parts.
In the first part we will argue that Risk is general compared to other games.
Secondly, we will argue that our framework is also usable for other games than
Risk. In the third part we will go through each module and argue whether or
not these too can be generalized. By doing this, we are able to argue that the
AI techniques which performs best at each module will be the best at solv-
ing the general case in most computer games. Furthermore we will analyze
which applications we believe the different AI techniques can be used to solve
in computer games.

7.1 Generalization of Risk

When looking analytically at Risk, it becomes clear that there are two different
goals of the game:

1. Conquer territories.

2. Prevent the opponent from conquering your territories

These goals can be divided into two groups: offensive goals and defensive
goals, with the first goal being offensive. For completing these goals some re-
sources are available. In Risk these resources are the number of armies placed
on the board. As the number of resources decrease, so does the chance of win-
ning the game. Generally, offensive goals can be said to improve the income
of resources, where defensive goals prevents it from decreasing. In Risk the
income of resources is highly based on how many, and also which, territories
the player occupies. Conquering more territories means that more armies are
available for reinforcing occupied territories on the board. Losing territories
means a loss in income.

We believe that this is common in most computer games. Therefore we will
now go through a couple of games to argue that the these goals are also present

89



90 CHAPTER 7. REFLECTION

in them. We will try to do a broad selection genre-wise to make sure that it is
not limited to a specific range of games.

A weighting between when to meet offensive and defensive goals is what
an AI playing Risk should handle since you cannot always win by constantly
aiming for either of them. Our framework handles this weighting in the MP
meaning that in games where this weighting is needed, our framework will be
applicable.

By showing that AIs in other games can also be expressed within these two
goals, we argue that our framework, is also able to handle an AI for these.

7.1.1 Risk vs. Counter-Strike

Counter-Strike is a real-time 3D shooter with two teams. One team has to place
a bomb at a predefined spot in a closed environment, and the other team has
to prevent them from placing the bomb1. To aid in their tasks, both teams has
a broad selection of weapons available which are bought in the beginning of
each round. Money are earned by shooting enemies and through winning the
round. The winning condition of both teams is to kill all of the opposing team’s
members or fulfill their missions before the round ends at some specified time.
More information on Counter-Strike is found on [cs].

Analyzing the tasks in the game reveals the following categorization:

Offensive goals: Kill opposing team members. Fulfill mission.

Defensive goals: Do not get killed. Prevent team members from getting killed.
Prevent opposing team from fulfilling their mission.

The resources available for fulfilling the goals are the money earned through-
out a round. These allows the player to buy better weapons the following
round. If the player do not have any money, he must settle with cheaper
weapons which will make his goals harder to fulfill.

So at these points Counter-Strike has something in common with Risk.

7.1.2 Risk vs. The Sims

The Sims is a micro management game. The task of the player is to control
the life of a “virtual human”. The player is responsible of making sure that his
avatar has a job to earn money. Money is used to improve the life of the avatar
by buying things for his house. The main objective in the game is keeping the
avatar happy. There are some variables in the game which states the mental
and physical health of the avatar. These are managed by letting the “Sim”
watch TV, read, have a party, etc. Negative things like fires, not eating, not
cleaning, etc, makes the Sim unhappy. More information on The Sims is found
on [sim].

There is no real winning condition for the game since there is always some-
thing the Sim needs. So the goal of the game is just to keep the Sim alive and
happy.

Not having a winning condition does not mean that the goals of the game
cannot be divided into offensive and defensive goals. The offensive goals are

1There are a few more missions that will not be used here.



7.1. GENERALIZATION OF RISK 91

those that benefits the avatar in a major way, whereas the defensive are the
basic tasks that needs to be done to prevent the Sim from dying or getting too
depressed. The lists of possible things to do in the game is too long to list here,
so we present a selection which should give an impression of how to categorize
them.

Offensive goals: Getting a career. Getting married. Etc.

Defensive goals: Cleaning. Cooking. Eating. Making sure that the Sim is not
late for his job. invite people over for parties. Etc.

Here the offensive goals improves the economy of the avatar, whereas the
defensive goals keeps him alive and keeps him from getting depressed and so
forth. A feature in The Sims here, is that it is actually through the defensive
goals the offensive goals are met. By managing the defensive goals, the offen-
sive goals are more or less automatically fulfilled. By making sure that the Sim
is happy and gets to work every day will most likely get him promoted on his
job. This means that he will make even more money and will be able to buy
more things to make him even happier. This is of course a simplification since it
is not that simple in the game. Neglecting the defensive goals will get the Sim
depressed or sick, which will eventually make him lose his job, and thereby
his income. This balancing of the goals does not mean anything special when
comparing it to for example Risk.

7.1.3 Risk vs. Command & Conquer

Command & Conquer is a real-time strategy game. The point of the game is
to destroy the opponent’s units and/or buildings. To do this the player has
an arsenal of different units available (soldiers, tanks, flying machines, etc.).
He may build more from his base, given that he has the resources available
for it. Resources are gathered by sending a special “Harvester” unit to harvest
crystals at specific places on the map. The resources are shared, meaning that
if one player harvest them, they are not available to other players. There is
a fixed number of crystals available on the map. As the game progress, the
player needs to build new buildings to improve his technology and thereby be
able to build better vehicles. More information on C&C is available through
[cc].

The offensive and defensive goals for Command & Conquer therefore look
at follows:

Offensive goals: Destroy enemy units. Destroy enemy buildings. Destroy en-
emy harvesters. Harvest crystals. Advance in technology.

Defensive goals: Defend own units. Defend own buildings. Defend own har-
vesters.

Again the offensive goals are those that contributes to higher income, whereas
the defensive ones prevents unnecessary spending on funds. If the defensive
goals are not fulfilled it means that funding must be spend on rebuilding de-
stroyed material. This will prevent the fulfillment of the offensive goals since
the player’s army is not increasing in size when it is getting destroyed.



92 CHAPTER 7. REFLECTION

7.1.4 The Generality of Risk

Through the analysis of these games, we have discovered that an AI solving
them should handle a set of both offensive and defensive goals. This does not
only apply to the specific games analyzed, but to the whole genre-class. The
reason for this is that within a genre-class, the objective of the games seldomle
changes. Therefore we argue that an AI framework that solves Risk, will also
be able to solve a whole range of other games.

7.2 Generalization of the Framework

In the previous section we argued that Risk catches a feature present in most
games, namely the presence of offensive goals that add to an increment in
needed resources, and defensive goals that prevents the decrement of resources.

In this section we will analyze whether our framework, being built for Risk,
is also general enough to be useful for other games.

We will go through all three layers in our framework model (IG, MP, and
RP) and discover if each have a place in the games we have examined in the
previous section.

7.2.1 Our Framework in Counter-Strike

The following sections shows why we believe our framework is usable for
building an AI that plays Counter-Strike. We will not give complete lists of
what the different layers are useful for since this would require a deeper anal-
ysis of the game. Instead we will merely give a few examples to show some of
the usages of each layer.

IGs in Counter-Strike

In Counter-Strike (CS), the players can only see what their avatars can see.
Therefore a player has to guess where an opponent is if he for instance dis-
appears around a corner. If an AI should take the player’s place in the game,
an IG would definitely be used for this estimation task. Another use of an IG
would be finding the best hiding spot based on where the AI believe the en-
emies are. This would be useful to find both the best cover if the AI is under
attack and also if the AI wants to find a long term hiding place.

So there would be some use in having IGs in a CS AI.

MP in Counter-Strike

It is possible to make a list of goals to use in CS. Some of these goals are “Plant
bomb”, “Shoot at enemy”, “Move to”, “Defuse bomb”, “Get better weapon”,
etc. What goal to take is highly dependent on the situation, meaning the situa-
tion as presented by the IGs.

RP in Counter-Strike

An RP in CS would have the same task as in Risk: To convert the MP goals into
usable plans based on the available actions (move, shoot, reload, etc.).



7.2. GENERALIZATION OF THE FRAMEWORK 93

CS Conclusion

The previous examples shows that our AI framework would indeed be useful
for building an AI for CS. There are some uncertainties which can be handled
in the IG layer, goals to be handled by MP, and actions that needs to be planned
within the RP. Since the game is real-time, neither of the layers can use to much
time to output, but this is not depending on the framework, but on the imple-
mentation of the layers.

7.2.2 Our Framework in The Sims

The following sections shows why we also believe our framework is also us-
able for building an AI that plays The Sims. Note that this is not an AI that take
the role of an NPC in the game, but one that takes the role of a human player.

IGs in The Sims

In The Sims we do not find any need for IGs. Everything is already presented
through the graphical interface. Of course the AI should not analyze the GUI,
but this also means that all information needed is already presented through
some “internal” information givers which are already available. There is noth-
ing unknown that needs to be estimated, hence there is no need for information
givers in the game. This however does not mean that our framework is use-
less. This only means that the game mechanics already handles what we would
require from the IGs.

MP in The Sims

It is possible to make a list of goals for the avatar in The Sims to do. These
are for example “Go to work”, “Go to sleep”, “Go to the bathroom”, “Cook
meal”, etc. Since all information is available to the MP from the game itself (for
example that the avatar needs to go to the bathroom), it should be possible for
the MP to find a correct goal to output (“Go to the bathroom”).

RP in The Sims

The RP in The Sims would decide how to fulfill the goals emerging from the
MP by changing the goals into actions (Walk, Use, Dance, etc.).

The Sims Conclusion

As shown, it is possible to divide the problem of playing The Sims into smaller
tasks that fit within our framework. The only thing to notice is that the IGs
are already given by the game. This should not pose a problem since this only
means that the MPs input is already defined. In 7.1.2 we noticed that the de-
fensive goals are the most important ones in The Sims. This is not a problem in
our framework since this just needs to be handled by the MP.



94 CHAPTER 7. REFLECTION

7.2.3 Our Framework in Command & Conquer

The following shows how our framework can be used to make an AI for Com-
mand & Conquer (C&C).

IGs in Command & Conquer

There are some uncertainties in C&C which can be estimated by some IGs.
For instance, you do not have full information of the map at all times. It only
is possible to see what is going on in an area around each owned unit and
building. So if a player unit passes an enemy unit, an IG should start estimating
not only where the enemy units are going but also where they come from (the
enemy base). An IG estimating the size of the enemy’s army, and also how
improved his technology is, would also be extremely useful. So IGs would
have their right in a game like C&C.

MP in Command & Conquer

The MP will in C&C work in the same manner as in the other games described.
It outputs goals based on how the world looks and the estimates given by the
IGs. Some of the goals it could issues could be “Attack target”, “Defend target”,
“Go to position”, “Build vehicle X”, “Build building X”.

RP in Command & Conquer

The RP in C&C would be responsible for carrying out orders issued from the
MP. It would handle all planning and resource management involved in both
attacking and building a base/vehicles.

C&C Conclusion

In the previous we have seen that it is possible to build an AI for C&C within
our framework. There are some uncertainties which are covered by the IG,
some goals to handle by the MP, and some actions that must be performed
through the RP.

7.2.4 Summary on the Generality of Our Framework

As we have argued, our framework applies for building AIs for other games
than Risk. As mentioned earlier: Not only do we believe that it goes for the
specific games named, but also for the class of games they represent. The rea-
son for this assumption is that the only things that separate the named games
from those within the same genre is added functionality and new graphics.
Added functionality is handled within the RP which will have new ways of
fulfilling its goals.

That the framework is general is an important point to make, since this
allow us to make conclusions concerning the generality of the AI technique
used within the different layers in our AI framework.



7.3. GENERALITY OF THE APPLIED TECHNIQUES 95

7.3 Generality of the Applied Techniques

Now that the generality of Risk as a game and our framework as a general
AI framework for implementing common AIs has been discussed, it is time to
discuss the generality of each the applied AI techniques for implementing AIs
in other computer games.

7.3.1 Generality of Neural Networks

When looking at the applications of neural network, one could conclude that
they are born estimators, which also comes apparent through their deployment
in real life. Most applications of neural networks tend to pertain to pattern
recognition, or deriving some abstract meaning from complex data. This can
also be seen in the way neural networks are constructed and trained — the idea
of having weights incrementally adjust toward some generality of the training
data. However, this suggests quite heavily that neural networks are not prone
to producing some exact value from some input, such as summation of real
values.

Another aspect to consider, especially in computer games, is the compu-
tation time used on querying the network for an output. This is one of the
advantages of neural networks. If a computer game, or some other application
for that matter, has some computational hard and time-consuming procedure
in which the output is some abstraction over some large and complex data set,
then it would be wise to have a neural network try to learn to mimic the pro-
cedure and perhaps produce a result much quicker. This can also be seen in
the results from the tests in this project, such as the IG NextMove, which is very
time consuming. The corresponding neural network produce an output much
faster (1000 times faster actually). With a bit more training of the particular
neural network, it should mimic the script much better and thereby be a valid
substitute.

Problems in Training

Looking a bit closer on the result of the tests made in this project, one can con-
clude that the hypothesis of learning from losers by doing the opposite, did not
seem to be effective. The reason might be that the networks were not trained
sufficiently. But as argued, there is no way of knowing when to stop the train-
ing. The network will never converge to the training data, since the desired
behavior of the network lies outside the training data. One could solve this by
training the networks further, run the test again, train some more if necessary
and so on. But this is very time-consuming and could not be implemented in
the time scope of this project.

Generally, the networks trained with winners only did not perform as well
as the scripts. The reason for this could also be lack of training. It would in fact
have been possible to train these networks until they converged to some small
error. The reason why the two were trained in the exact same way with an



96 CHAPTER 7. REFLECTION

equal amount of iterations was to compare the two procedures of neural net-
work training. The performance of the “winners only” networks could proba-
bly have been improved with more training. But compared to neural networks
trained with “winners and losers”, the “winners only” networks performed
generally much better. So the conclusion would be that “doing the opposite of
losers” does not seem to produce improved behavior. Whether or not the “win-
ners only” networks become better than the general behavior of the scripts, as
argued in Section 3.2.5, could not be concluded. The networks did not outper-
form the scripts, but with more training they might.

Applications of NN in Computer Games

The usability of neural networks in computer games is quite good. As already
mentioned, the run time (query time) of a neural network, makes it very us-
able in also real-time computer games. The ability to mimic the behavior of
script or procedure (but not copy the behavior) makes it very usable for heavy
data analysis, such as the decision making process of an AI agent, where the
corresponding script might take too long.

7.3.2 Generality of Decision Trees

Looking at our test results for the four modules for which this technique was
implemented, decision trees worked quite well. The technique performed best
with modules with a simple input in terms of number of variables, while it
performed worse when the input was more complex.

A weakness with decision trees is that if the number of states in the vari-
ables is large then it will not be able to build a model that covers all cases,
because this would require training examples where all situations are present.
Then, when the trained model is used to classify a previously unseen instance,
it ends up at a NULL leaf and does not know which classification to give. We
then made it return the leaf value that had been seen most often given the state
of the instance’s other variables. This inevitably will lead to bad decisions.

In general, decision trees would be best suited for tasks where the total
amount of states in variables is minimal, to avoid meeting a situation it has not
seen in its training examples.

With the simplicity of decision tree in mind, the run time seems a bit in the
high end. This is likely caused by Weka whose ability to be flexible and to be
used by many AI techniques inevitable will make it slower than a specialized
implementation made solely for the purpose of decision trees. The run time
could probably be lowered this way. However, the run time for a decision tree
is low enough to find usage in e.g. computer games where response time is
usually of high importance. As long as the input is quite simple, its run time is
low, but as the input gets more complex, the run time rises accordingly.

Problems in Training

In our case, the decision trees failed to train on half of the modules. The train-
ing example amount was large and each variable had 20 states. These two
factors made training a problem because of the way the ID3 algorithm works.
The more states, the lower chance ID3’s candidate model will correctly classify



7.3. GENERALITY OF THE APPLIED TECHNIQUES 97

the rest of the training examples. ID3 continuously constructs a new candi-
date model from a bigger and bigger amount of the training examples until it
correctly classifies the rest of the examples. With many states and variables,
it potentially will continue to fail until the candidate model covers all training
examples. However, with a training example amount of 3 GB, this will not
work.

We trained all decision trees with “winners and loser” examples, and since
the decision trees performed well, this suggests that this idea of doing “every-
thing else that what the loser did” is a viable way of training a decision tree. It
would be interesting to see how this method compares to training with “win-
ners only”.

7.3.3 Generality of Naive Bayes Classifiers

The naive Bayes classifier’s performance is rather fluctuating but generally it
performs well in our tests. In “Score attack plan” which has a simple input it
shares the second place with decision tree, but is not far away from the script
which performs best. In “How close to owning a continent” which has a com-
plex input it shares the last place with the script, with which it has a compa-
rable performance. In fact, with complex input it never performs worse than
a decision tree. This gives a hint on that naive Bayes handles complex input
quite well, and since its performance with simple input is decent, it seems like
a good choice for an all-round technique. It is interesting this is the case de-
spite the fact that the naive Bayes’ assumption on variable independence is
very unlikely to always hold.

Compared to the other AI techniques it has the advantage that it is fast
to train while pertaining a decent performance. The run time is the same as
the decision trees, which makes sense, since they both rely on simple table
look-ups when calculating the output. Besides, they are both a part of the
Weka implementation so they will suffer from the same possible slow-downs
Weka may introduce. As with decision trees, the run time increases with the
complexity of the input. Overall it seems to handle different situations quite
well, and since it is quite simple it can easily be incorporated in a computer
game where it will probably have a decent performance.

Problems in Training

We had some problems with getting the naive Bayes classifier trained through
Weka, since it ran out of memory. This is because Weka loads all training exam-
ples at once, even when this is not needed in the case of naive Bayes. A custom
implementation only loading one at a time would be able to train naive Bayes
no matter the amount of training examples. This would make it possible to test
the naive Bayes technique with the rest of the modules. We also only tried test-
ing naive Bayes with “Winners and losers” but not “Winners only” with which
it might perform even better.

7.3.4 Generality of Bayesian Networks

Having worked with Bayesian networks through this entire project, we have
come aware of their pros and cons. The major benefit of working with them



98 CHAPTER 7. REFLECTION

is the simplicity of the model. It is quite easy to model causalities between
different nodes representing real-life observations. An expert to the domain
can incorporate his knowledge directly into the model structure and thereby
make the model fit the domain. The downside of this is that one tends to forget
what happens when one node causally influences another. Namely that the
CPT of the influenced node grows exponentially with the size of the number
of states in the parent node.

In a perfect world it would be possible to specify the CPTs of all nodes by
hand, but when you have roughly 20 states in each node in a network, this is
no longer an option. Instead we trained each node using the EM algorithm.

Problems in Training

We started out by training the BNs using both “winners and losers” data, but
it turned out that it would take far too long to train any of our networks this
way which is why the BNs are trained with winners only.

The training of “IG: Close to winning” used roughly 24 hours going through
its winners-only training data one time. With training data from both winners
and losers, the amount of training data would be multiplied with the number
of states within the node we wish to observe minus one. So the time it takes to
train a larger network with a large amount of training data, is something that
needs to be taken into consideration when wanting to train BNs.

Applications of BN in Computer Games

As already mentioned, the pros of using BNs is its modeling. The cons are their
query times. Going through the test results, we find that the performance of
the BNs are matching that of NNs, DTs, and NBs. However, the query time
for BNs is extremely long compared to especially NNs. The query time is of
course dependent of the BN model since propagating it is NP-hard. This is
a problem if the technique should be used in for example a real-time game,
where decisions may need to be made in split seconds. But, as indicated by
the test results, BNs are very useful when doing estimates based on input that
causally influences one another. So its main applicability in computer games
lies in information gathering. So if we should state where the main use of BNs
is in our framework, it would be would be in the set of IGs.

7.3.5 Generality of Scripts

Scripting is the most general of all AI techniques. This is also why this is the
most commonly used technique. It is a very intuitive approach to constructing
an AI since it is based on how the developer believes the AI should behave. As
such, the developer has 100% control over the AI behavior, given there is no
randomness in the scripts. However, the success of the AI is highly dependent
how well it has been designed. If it is too transparent what the AI does in
different situations, no one will have problems beating it which is fatal for an
AI since without AI opposition, a game will lose its value.



7.3. GENERALITY OF THE APPLIED TECHNIQUES 99

Problems in Implementation

The major downside of scripting is, that as the game complexity rises, so does
the things to handle by the AI. Thereby the design and implementation tasks
grow very complex too. It is by far easier to train e.g. a neural network to
handle a complex task, given that sufficient training data is available, than
coding a script for it. In this project this is best seen through the script of the MP.
This script handles a lot of different input, and output a list of goals which is
very important to the entire AI. Because of this importance, the script needed to
be carefully designed, implemented, and tweaked in order to behave optimally.
A neural network trained from the training data performs almost as well a the
script without any tweaking. But of course the training of the NN requires
the presence of training data, which in our case was in fact generated by the
scripts.

Applications of Scripts in Games

As mentioned, scripting is by far the most general of all AI techniques. This
is also visible in this project since we at first build our entire AI as scripts to
generate training data. This is also a major benefit for scripts, that they are
highly versatile. Generally, scripting is also the most commonly used method
for AI design in the game industry.



100 CHAPTER 7. REFLECTION



Chapter 8
Conclusion

This chapter will conclude the combinatory tests of AI techniques in computer
games performed in this project.

The work in this report is based on the work in [CJJ06], which documents
the design of a framework for an AI playing the board game Risk. The purpose
of this framework is to test the usability of common AI techniques in common
tasks in computer games in general. The framework is therefore designed to be
modular, incorporating many common tasks in computer such as information
gathering, estimation and planning. The framework is also designed to be
general enough to cover other types of games, meaning that the results of these
tests can be generalized to include most computer games.

The designed model is a three layered framework consisting of the first
layer called Information Givers, the second layer called the Master Prioritizer
and the third layer called the Round Planner. Each layer consist of numerous
modules implementing the different tasks in each layer. Each module is de-
fined to take some input and produce an output. This results in a complex
interconnection of modules passing data to each others. Each of the three lay-
ers define different types of modules:

The Information Givers inspect the environment in which the AI act and pro-
duce estimates and abstractions on various useful information. This in-
formation is available to both the Master Prioritizer and the Round Plan-
ner.

The Master Prioritizer utilizes the information provided by the Information
Givers and prioritizes a list of goals the AI should act upon. The goals
are dependent on the game.

The Round Planner use the prioritized list of goals and possibly some infor-
mation from the Information Givers to plan a series of actions to do. How
the Round Planner produce this plan is highly dependent on which game
it is implemented in, which also makes the composition of modules in
the Round Planner dependent on the game. However some of the mod-
ules in this project are very general for most games, such has prioritizing

101



102 CHAPTER 8. CONCLUSION

plans and estimating their cost.

The work in [CJJ06] also includes an analysis of the most common AI tech-
niques used for implementing agents in computer games. This analysis covers
scripting, which is the most used method of implementing AI behavior. The
behavior is implemented directly in the code by the programmer or designer
and does not include any learning. Different learning techniques were also
explored. These are: neural networks, decision trees, Bayesian networks, and
naive Bayes classifiers. Which technique can fully implement the behavior of
each module is then analyzed. The input and output of each module set some
constraints on which techniques can be used for that given module.

Common to all learning techniques is that they learn from training exam-
ples. It was decided that the scripted implementations of all the modules
should generate training examples for the learning algorithms by playing thou-
sands of games of Risk. The fact that the learning techniques only learns from
scripted modules, raises the question of whether or not this will result in the
learning modules only mimicking the behavior of the scripts, instead of im-
proving the module behavior. It is therefore proposed that instead of learning
to do the same as every training example, the learning algorithms will do the
same as the winning players, but not do the same as the losing players. It is
proposed that the learning algorithms could either do the opposite of the los-
ing players or do everything else but the losing players.

In this project the framework and scripted versions of each module were
implemented. Alongside this a training data converter, learning framework,
data analyzer, neural networks and an interval maker was also implemented.
The interface between JRisk (the Java implementation of the game Risk) and
each of the AI techniques was also implemented.

The framework and the scripted modules were, aside from a few changes,
implemented as designed in [CJJ06]. This included some new modules, and
it was found which AI techniques could implement these. When the imple-
mented framework and scripts were done, the generation of training data for
the learning techniques was initiated. This resulted in data from 3275 played
games and more than a million training examples for all the modules.

The training data converter was constructed to convert this generated game
history into the file formats needed by each of the techniques. The decision
trees and naive Bayes classifiers both used the Weka Machine Learning Project
and the game history was therefore converted into the Weka ARFF file format.
For Bayesian networks, the game history was converted to the Hugin learning
file format. Since neural networks were implemented solely for this project, the
game history was converted into a training data file format that was designed
for this purpose.

In this project various ways to test the different AI techniques was proposed
and the chosen method was thereafter implemented. The chosen method tests
each module separately, since a complete combinatory test of all techniques in
all modules would result in millions of combinations of AIs. The applied test
systematically combined the different techniques in each module to find the
most winning, and the fastest technique for each module.



103

The results showed that the proposal of learning from losers by doing the
opposite in neural networks did not result in improved behavior compared to
the scripts. Learning from winners only in neural networks however shows ac-
ceptable performance with respect to the number of won games. It was argued
that with some more training it might perform at least as good as the scripts.

Another significant result is the fact that in some cases the neural network
performed factors faster than the script with an equal amount of won games,
meaning that the neural network could easily replace the script. This is very
useful in real-time games were the AI has limited time to plan, but most defi-
nitely also useful in other games and applications.

For decision trees and naive Bayes classifiers, doing everything else but the
losers, did result in some improved behavior compared to the scripts. This is
actually quite interesting, since the techniques were pulled in one direction by
the winners and in all other directions by the losers. However the downside of
decision trees and naive Bayes classifiers is the long query time compared to
scripts.

Bayesian networks performed very well when training from winners only,
even with only a few iterations through the training data. Like the decision
trees and naive Bayes classifiers, the Bayesian networks are very time consum-
ing when querying the network, so in modeling the network one should keep
the model as simple as possible.

From the test results we were able to compose an AI that implements the
best performing techniques on each module, the “Best AI”. This AI should be
the best performing AI, but to make sure, we also composed some AIs which
implement the techniques performing nearly as good as the best techniques on
important modules. This have resulted in six “Challenger AIs” which can chal-
lenge the “Best AI” and reveal if some of the modules have been falsely chosen
due to uncertainties in the test data. This test was not run simply because it
takes too long, so it would not be finished before the deadline of this project.

Specific for the AI techniques we found that neural networks are useful for
making fast decisions when given a large amount of input. This makes it very
useful in planning, where even scripts may take too long to process the data.

Decision trees are also useful in situations where time matters. However,
the input to these needs to simple in terms of few input variables for the trees
to be effective. When there are too many input variables, training the trees
becomes problematic and therefore they become imprecise.

Bayesian networks are not useful for time-critical tasks in computer games.
The propagation of the networks are simply to slow for this. Therefore BNs are
mainly for use in long term information gathering tasks or planning in turn-
based games.

Naive Bayes perform decently within all task in both performance and
query time. Therefore this model is qualified for most tasks within the frame-
work.

Scripting is useful for every task. This is shown through the implementa-
tion of the scripted AI. However, scripting takes far more time to implement
than using learning techniques. Also the scripts are not capable of learning,
meaning that they are “trapped” in the script designers way of thinking.



104 CHAPTER 8. CONCLUSION

We have argued that our framework designed for Risk is general enough to
handle other games. This is done through showing that it is possible to divide
Risk into two sets of goals that it must prioritize in order two win: offensive
and defensive goals. We show that exactly these goals are also present in games
of other genres. With this said, we are able to argue that an AI technique which
is good at solving a task within the framework in Risk is also good at solving
this task within other games.

8.1 Future Work

There is still a few thing that would be interesting to investigate regarding this
project. In this section we will go a few of the more obvious choices.

Challenger Test

The test between our “Best AI” and the “Challenger” AIs was not run in this
project due to time restrictions. Therefore an obvious extension to this project
would be running this test to see if the “Best AI” is in fact the best AI.

Stepwise Evolution

Another interesting discovery to make would be by implementing and running
the “Stepwise Evolution” approach to see if it, as argued, produce the same AI
as the “Best Module” approach.

Implement DT and NB

We have argued that Weka may slow down the query times of the DTs and
NBs. Therefore it would be interesting to implement DTs and NBs ourselves,
thereby rule out the possibility of Weka slowing down the run times of the
techniques.

Training Issues

There are numerous extensions to the way that we train that could be applied:

More training

We have argued that the lack of training have some responsibility in the tech-
niques not matching the performance of the scripts. Therefore it would make
sense to let the techniques train more. NN WO should for example be allowed
to train until they converge to see, if they perform as well, or even outperform,
scripts.

Winners only in DT and NB

It would be interesting to train both DTs and NBs with winners only to see if
these new trained versions would outperform those trained with both winners
and losers. This would supply us with final evidence on whether or not the “do



8.1. FUTURE WORK 105

as winners and everything else but losers”-method is better than just doing the
same as winners always.



106 CHAPTER 8. CONCLUSION



Bibliography

[AOJJ89] S. K. Andersen, K. G. Olesen, F. V. Jensen, and F. Jensen. Hugin -
a shell for building bayesian belief universes for expert systems. In
Proceedings of the Eleventh International Joint Conference on Artificial In-
telligence, Detroit, MI, 1989.

[cc] Command & Conquer Official Homepage. http://www.ea.com/
official/cc/.

[CJJ06] Pelle Coltau, Jens Juul Jacobsen, and Brian Jensen. Artificial intelli-
gence in computer games. Aalborg University, Department of Com-
puter Science, Fredrik Bajers Vej 7, building E, DK-9220 Aalborg,
Denmark, January 2006. Available through the Electronic Document
Library http://www.cs.aau.dk/library.

[cs] Counter-Strike Official Homepage. http://www.counter-strike.
net.

[DHS73] Richard Duda, Peter Hart, and David G. Stork. Pattern Classification
and Scene Analysis. Wiley, New York, 2nd edition, 1973.

[ED90] Russel C. Eberhart and Roy W. Dobbins, editors. Neural Network PC
Tools - A Practical Guide. Academic Press, Inc, 1990.

[jav] Java by Sun Microsystems. http://www.java.com.

[Jen02] Finn V. Jensen. Bayesions Networks and Decision Graphs. Springer,
2002.

[JLO90] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating
in causal probalistic networks by local computations. Computational
Statistics Quarterly, (4):269–282, 1990.

[jri] JRisk by Yura Mamyrin. http://jrisk.sourceforge.net/.

[Lar00] Lars Mathiassen and Andreas Munk-Madsen and Peter Axel Nielsen
and Jan Stage. Object Oriented Analysis and Design. Marko Publishing
ApS, 2000.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill Companies, Inc.,
1997.

107

http://www.ea.com/official/cc/
http://www.ea.com/official/cc/
http://www.cs.aau.dk/library
http://www.counter-strike.net
http://www.counter-strike.net
http://www.java.com
http://jrisk.sourceforge.net/


108 BIBLIOGRAPHY

[Qui86] R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–
106, 1986.

[Rab02] Steve Rabin, editor. AI Game Programming Wisdom. Charles River
Media, inc., first edition, 2002.

[sim] The Sims Official Homepage. http://thesims.ea.com.

[SL94] James V. Stone and Raymond Lister. On the relative time complex-
ity of standard and conjugate gradient back propagation. 1994 IEEE
International Conference on Neural Networks, 1:84–87, 1994.

[Tho] Thomas D. Nielsen. Notes on EM Algorithm.

[wek] Weka ARFF file format specification. http://weka.sourceforge.
net/wekadoc/index.php/en:ARFF (3.5.2).

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, San Francisco, 2nd edition,
2005.

[Wu95] Xindong Wu. Knowledge Acquisition from Databases. Ablex Publishing
Corporation, 1995.

http://thesims.ea.com
http://weka.sourceforge.net/wekadoc/index.php/en:ARFF_(3.5.2)
http://weka.sourceforge.net/wekadoc/index.php/en:ARFF_(3.5.2)


Appendix A
Changes in the Scripted AI

This appendix contains all adjustments made to the scripted AI. All of these
adjustments were made either while implementing the AI or while tweaking it
towards beating the AIs distributed with JRISK.

A.1 IG: How Close The Opponent Is To Owning a
Continent

This IG has one more input than the one in the original design. It takes a
Boolean “BeginningOfTurn”, stating whether or not the module is run at the
beginning of the AI’s turn. The reason for this is that this IG may be run in
the middle of the AI’s turn if the AI have conquered a continent. However, it
should not in this case consider reinforcements that it should receive itself in
the current turn, when estimating how close it itself is to occupying a continent
(since these reinforcements have already been used).

A.2 IG: Ownership

This new IG is used to get knowledge of if a player fully occupies an entire
continent. It outputs a two-dimensional array (continents and players) with
a Boolean value stating whether or not a given player occupies the continent.
The input to this IG is the board. To fill this array, it runs through the territories
within a continent and checks if a certain player occupies them all. If so, the
place in the array belonging to that player and that continent is set to true, if
not it is set to false.

A.3 IG: How Close The Opponent Is to Winning

Appart from the input mentioned in the original design, this IG is also given
a Boolean telling whether or not it is run in the beginning of a round. This is
needed since the IG may be run in the middle of a round. When this happens, it

109



110 APPENDIX A. CHANGES IN THE SCRIPTED AI

must not consider reinforcements that the AI itself should receive in the current
round. Another input given to the IG is an estimate on how close an opponent
is to occupy a continent. This is needed to calculate the winning estimate if an
opponent is estimated to have a continent mission.

A.4 Master Prioritizer

Instead of doing an intitial distribution of point followed by a redestribution of
the same points, another approach is simply to give the goals the points they
claim and nothing else. This approach should give a more ”clear” description
of precisely how important a goal is. This may also benefit the part of the
RP evaluating plans. The difference from the original design: Only goals that
have some importance are given points. In the original MP, goals that had no
”real” importance could be passed to the RP in certain situations due to the
initial distribution. Goals no longer sum to 100. There was no real reason for
them to do so. In the old version, if the highest score of any of the goals was
20, we would have no real knowledge of how important that specific goal is
without looking at all other goals. In the new version, the importance is in
fact the importance of the goal. The same problem persisted regarding a 50/50
distribution over two goals. There was no way to know how important these
goals really were. We know that they would probably be high, but not how
high. They could for example be 70/70, 80/80 or even 100/100 in reality. This
would in fact leave it up to the RP to decide when a goal is important since
what is received is not necessarily a list of goals with an importance attached on
each, but may possibly only be a prioritized list of goals. But this prioritization
also occurs directly in the new version.

Since the redistribution step is removed the MP no longer needs to have the
two modes “Preventive” and “Mission Specific”. These were used to decide
where to take points from and where to put them. These are not needed in
the new version, since there is no redistribution. The goals’ importance are
distributed directly and passed to the RP.

The MP has the new IG “continentOwner” as input to gain information on
whether or not a continent is fully occupied by a player since this information
is now used to determine whether or not to defend or obstruct that continent.

For all goals there is a rule that if the AI is very close to winning (estimate
above 0.98 within this round), goals involved in their mission are given 1.0
importance points. Else the points given is as in the following.

Conquer and Defend Goals

Mission specific goal are given a basic importance of 0.5 in addition to the
number of points given if close to occupying the continent.

Conquer Continent Goals

These are distributed in the same way as “Conquer and Defend” if the AI’s
probability of winning within the current round is above 0.9.



A.4. MASTER PRIORITIZER 111

Defend Continent Goals

Continents are only given a defend goal if they are fully occupied and not, as
stated in the original design, if they are estimated to occupy it within the next
five rounds. The reason for this is that AI turned out to play too defensively
when considering what happens over five rounds. This also makes sense, since
over five rounds, all players may be able to occupy most continents since they
will receive reinforcements five times (which is at least three armies each time).
A continent which is occupied by the AI is given 0.6 points. This number may
seem high, but it is reasonable since occupying and defending continents is an
important task in RISK. If the continent is mission specific to the AI, it will be
giving an additional 0.4 points meaning that the total will be 1.0. This makes
defending mission specific continents a very important task.

Obstruct Continent Goals

The obstruct goal is given if an opponent is fully occupying a continent. If the
continent is estimated to be in the opponent’s mission, the continent is given
0.3 points in “obstruct and defend”. If the player occupying the continent is
a player the AI must destroy, 0.2 points are given to the obstruct goal on that
continent, since it is important that the AI’s target opponent is not able to get
more reinforcements if it can be avoided. If the continent is mission specific to
the AI, there will be added an extra 0.2 on “obstruct and defend” to allow the
AI to get a foothold in that continent. If the opponent is not close to winning,
there will only be assigned “Obstruct and defend” points to a continent if it is
mission specific to the AI (0.4 points). Else there will be assigned 0.3 points in
“Obstruct” and another 0.2 if the opponent is the target of the AI’s mission.

Attack Player

This goal will get 0.3 points assigned if a player is close to winning within the
next five rounds. If the AI has a player as mission target, attack on that player
is set to 0.4. If that player is estimated to win within the following round, the
attack goal is given 1.0. If any player is close to winning, they will be given 0.2
points in the goal.

18 Territories

If the AI has this mission the goal is given 0.2 points. If he also is close to
winning within the next five rounds, this goal is given another 0.3 points.

24 Territories

If the AI has this mission this goal is given 0.2. If he also is close to winning
within the next five rounds, this goal is given 0.2 points.



112 APPENDIX A. CHANGES IN THE SCRIPTED AI

A.5 RP: Calculate Attack Plan Cost

The board and MP goals are no longer given as input to this module. The board
was never used for anything in the design of this module. MP goals were used
to decide how many armies to leave on each territory in cases where the AI
had the “18 with two on each”. This information has been put on the attack
plan type, since this is more efficient than taking the complete board into this
module for this information only.

Formula 3.14 in [CJJ06] has changed from
Costestimated = ∑t∈Tplan

Γ(At) + Costmin × Amin
to
Costestimated = ∑t∈Tplan

Γ(At) + Costmin

The multiplication with Amin was already the Formula for Costmin (3.13):
Costmin = |Tplan| × Amin, which means that it should not be done again.

A.6 RP: Make Attack Plan

Instead of just making two attack plans (one with and without HamPath in the
continent of the target territory), all possible combinations of attack plans are
made. For each continent in the A* path, both a direct (A*) path and a HamPath
is found through the continent. The reason for this is that the AI on its path to
the target territory might move through another continent, or move out from
a continent, that could be taken at a low cost. To avoid the AI not occupying
these continents these plans are considered too.

A.7 RP: Place Armies

It may seem a little unclear in the original design how armies are placed in the
beginning of a round. If a merged plan list (a list containing both attack plans
and territories needing defense) exists, this is sorted by priority. The one with
the highest priority will have its cost paid (if possible) and is removed from the
list, if any more armies are left to place then the next in the list will have its cost
payed and so forth until no more reinforcements are available. If the highest
prioritized territory has the same priority as other elements in the list, the one
with the lowest cost is payed first, then the next less costly and so forth. If the
merged plan list is empty, either from the beginning or because every item in
it have had their cost fulfilled, the armies are placed in the border territories of
an occupied continent. If no continents are occupied, the armies are placed in
random territories occupied by the AI.

A.8 RP: Prioritize Attack Plan

Only one of the original formulas for calculating a priority for an attack plan
gave a satisfactory result, and the rest was therefore redesigned.

As written in the original design, a list of priorities are calculated. One for
each goal given by the MP, stating how well the attack plan satisfies that goal.
This list is then summed to get the resulting priority.



A.8. RP: PRIORITIZE ATTACK PLAN 113

Conquer Continent

Formula 3.15 on page 112 in the original report holds and is unaltered.

Conquer and Defend Continent

This type of goal is covered by the above formula in the original report and not
discussed further. But this needs to be extended a bit.

If the attack plan result in a conquered continent that can not be defended,
then it does not satisfy this goal. This can be examined by simulating the attack
plan, and then calculate whether or not the continent can be defended.

Simulating an attack plan is done by calculating the average army loss for
each territory in the attack plan subtracted from the amount of armies in the
starting territory. The average army loss is found by using formula 3.1 on page
90 in the original report. Afterward, when simulating the attack plan is done
(and the continent has been conquered), the “Calculate Defense Cost” module
is used on each of the border territories in the continent. This will calculate
how many armies is needed for defending each of the border territories, which
is easily compared with the actual number of armies located in each of those
territories. If there is to few armies in just one of the border territories, then it
can be inferred that the continent can not be defended.

Obstruct Continent

The original design argued that formula 3.15 also could be used for determin-
ing how well an attack plan satisfy the obstruct continent goal. This is not
true. If an attack plan contains a territory in a given continent, then the attack
plan satisfy the obstruct goal for this continent, otherwise not. The following
formula describes this:

Pplan,obstructcontinent = min(1, |Tgoal ∩ Tplan|)× Pgoal (A.1)

where Tgoal is the set of territories in a given continent not owned by the
given player. Tplan is the set of territories in the attack plan. Pgoal is priority of
the given goal.

Obstruct Continent and Defend Obstruction

Is not discussed in the original report, but done in the same manner as checking
whether a conquered continent can be defended.

Kill Player

There is an error in formula 3.16 on page 112 in the original report. If Tplan
conquers exactly all of a given player’s territories, then the formula will return
zero: if Atarget == Aplan, then the first term in the formula is zero. So the
formula has been redesigned:

Pplan,kill =
Aplan

Atarget
×
|Ttarget ∩ Tplan|

|Ttarget|
× Pgoal (A.2)



114 APPENDIX A. CHANGES IN THE SCRIPTED AI

Conquer 24 Territories

The original formula (3.17) did not state how well a given attack plan made
the player come any close to conquering 24 territories as intended. It only gave
higher priority the more territories the attack plan conquered, which resulted
in longer attack plans getting better priority. The following formula returns a
better result:

Pplan,24territories = min(1,
|Tplan|+ |T|

24
)× Pgoal (A.3)

Conquer 18 Territories

The original design for how well an attack plan satisfy this goal lacked the
same expressive power as the above. The new formula is the following:

Pplan,18territories = min(1,
|Tplan|+ |T|

18
×
|Tp>1|
|Tplan|

)× Pgoal (A.4)

where Tp>1 is the number of territories in the attack plan, where more than
1 army is left behind.

A.9 RP: Prioritize Territory Needing Defense

This RP module no longer takes the opponents number of RISK cards as input.
The reason for this is that this information is already contained in “Opponent’s
next move”.

A.10 RP: Transfer Armies

The priority of a path, PPath, found from one occupied territory with extra
armies to another occupied territory is:

PPath = priority× sourceArmies
totalArmies

pathLength2 ×multiplier

where priority is the priority the target territory’s priority, sourceArmies
is the number of armies in the source territory and totalArmies is the total
number of the AI’s armies on the board. The pathLength is the number of
territories concerned in the path. The multiplier is a float used for tweaking the
formula. The result of this formula is that it will make the AI’s larger armies
move towards territories needing defense if they are somewhat close to them.
The higher the priority a territory has, and the larger the army is, the further
away they may be to get a high score. However if the priority is high enough,
the formula will be more willing to select territories closer to the target territory
with fewer armies to quickly fulfill its need for reinforcement, even though
this may be a short-term solution. However planning defense over more than
2-3 turns is not usually an option available in RISK, therefore we believe this
formula holds.



Appendix B
Rules of Risk

RISK is a board game with three to six players. The board consists of 42 terri-
tories. Each territory belongs to one of 6 continents. In Figure B.1 the board of
a RISK game is depicted.

Figure B.1: The board in a RISK game.

At the beginning of the game, territories are distributed equally and ran-
domly between each player. Also, each player is assigned a secret mission that
he must solve in order to win the game.

The possible missions are:

• Conquer Asia and South America

115



116 APPENDIX B. RULES OF RISK

• Conquer Asia and Africa

• Conquer North America and Africa

• Conquer North America and Australia

• Conquer Europe and South America and a 3rd continent of your choice

• Conquer Europe and Australasia and a 3rd continent of your choice

• Occupy 18 territories with at least 2 armies in each territory

• Occupy 24 territories

• Kill black player

• Kill purple player

• Kill red player

• Kill yellow player

• Kill blue player

• Kill green player

If your own color is the color you need to kill, or if someone else kills that
color, your mission changes to ”Occupy 24 territories”.

Initially each territory is occupied by a single army. Each player then gets
a number of armies to place in the territories they occupy. This number is
dependent on how many players there are in the game:

• 3 players: 35 armies each

• 4 players: 30 armies each

• 5 players: 25 armies each

• 6 players: 20 armies each

Then in turn the players place an army in one of their occupied territories
until no more armies are available. This is called the Initial army placement.

When this is done, the game is ready to start.

A player’s turn consists of four phases:

1. Cashing in RISK cards

2. Defend

3. Attack

4. Fortify

For a better overview, Figure B.2 on page 119 shows the activities in the four
phases.



B.1. CASHING IN RISK CARDS PHASE 117

B.1 Cashing in RISK Cards Phase

In the first phase, the player may trade in RISK cards for extra armies. RISK
cards are earned from successfully conquering an opponent’s territory. It is
only possible to earn one RISK card in a turn. There are three types of RISK
cards: a cannon cards, an infantry card and a calvary card. There exist one
RISK card for each territory in the game. Each RISK card has the corresponding
territory depicted on it.

It is possible to cash RISK cards when three or more cards are on hand. The
traded sets have the following values:

• 3 Cannon: results in 4 extra armies.

• 3 Infantry: results in 6 extra armies.

• 3 Calvary: results in 8 extra armies.

• 3 Different: results in 10 extra armies.

A player must have a maximum of five RISK cards at a time, meaning he
must trade cards before receiving the sixth.

If you own one of the territories depicted on the traded RISK cards, you
may place two armies in that territory. This can only be done for one of the
three RISK cards traded.

B.2 Defend Phase

In the defend phase, players also receive reinforcement armies for occupied
territories. The number of armies are given the following way:

• The total amount of your territories divided by 3, with a minimum of 3
and rounded down (e.g. 14 territories gives 4 armies).

• If you own South America an extra 2 armies are earned.

• If you own North America an extra 5 armies are earned.

• If you own Europe an extra 5 armies are earned.

• If you own Africa an extra 3 armies are earned.

• If you own Asia an extra 7 armies are earned.

• If you own Australia an extra 2 armies are earned.

All armies are then placed in the territories of your choice before entering
the next phase. This also include the armies gained from cashing RISK cards.



118 APPENDIX B. RULES OF RISK

B.3 Attack Phase

The next phase is the attack phase. In this phase, which is optional, the player
may try to conquer opponent players’ territories. This is done by attacking
from an occupied territory into a neighboring opponent territory. The attacker
decides whether to attack with one, two, and three armies. The attacker use
the amount of dice according to the number of armies he attack with (1 army
= 1 die, 2 armies = 2 dice and 3 armies = 3 dice). The defender has the same
choice, but can only defend with 2 armies.

An attack is done as follows:

1. The attacker decide where to attack (source and target territory).

2. The attacker decide whether to attack with 1, 2 or 3 armies.

3. The defender decide whether to defend with 1 or 2 armies.

4. The attacker and defender both roll their dice.

5. The dice of both attacker and defender are ranked according to value and
are compared for each rank. If, in one rank comparison, the dice are the
same, the defender wins in this rank.

6. The defender and attacker lose the amount of armies equal to the rank
comparisons they lost.

7. The attacker then decide whether to attack again or to stop (retreat). If
the attacker decides to attack, step 2-7 are repeated. If the attacker has
no more armies to attack with, he has lost and must continue to attack
somewhere else or move on to next phase.

8. If the attacker has won he has to move a minimum of X armies to the
captured territory, where X is the amount dice he used in the winning
roll.

When conquering a territory, the attacker must leave at least one army in
the territory he attacks from.

B.4 Fortify Phase

In the final phase, which is also optional, the player may fortify a territory by
moving armies from exactly one territory to a neighboring territory. He must
leave at least one army at the territory he moves armies from.

When a player kills another player, he gets all the killed player’s RISK
cards.

B.5 RISK Activity Diagram

These four phases results in Figure B.2, which is an activity diagram for a
player in a game of RISK.



B.5. RISK ACTIVITY DIAGRAM 119

From/To

NoYes

From/To

No

Yes

Done

Yes

NoNo

No

Yes

Done

Yes

Determine From/
To

Attack with 1,2, or 
3 dice

Fortify?

Determine Where/
and how many.

Move Army

Determine 
whether to use 

RISK card

Place an Army

Done?

Attack a 
territory?

Target territory 
cleared?

Move a number of 
armies to target 

territory

Continue 
attack?

Figure B.2: The activities of a player’s turn in RISK. Diamond shapes are conditions and
rounded boxes are actions. The starting point of the figure is the black dot. Phase 1 is the first
action “Cash RISK cards” following the starting point. Phase 2 is the next action and following
condition on whether the placement is done. Phase 3 is the next six actions and conditions which
represent the “Attack” phase. The last condition and two actions are phase 4, “Fortify”. The
turn ends in the circle at the bottom.



120 APPENDIX B. RULES OF RISK



Appendix C
The Goals from the Master
Prioritizier

The following will describe in detail the complete set af goals that the Master
Prioritizer should decide upon.

Conquer and defend continent: This goal is meant as conquering a given con-
tinent and holding that continent a complete round, such that the AIs re-
inforcements increase, and perhaps complete a part of his mission. This
is done by leaving sufficient armies on the border-territories towards
neighboring continents. The difficulty of such a goal varies a great deal
throughout a game. A player might only be a single territory away from
completing this goal, or the given continent might belong completely to
another player. There is one goal of this type for each continent in the
game, a total of six goals.

Conquer continent: This goal is a lighter version of the above. It has no re-
quirement of defending the conquered continent in the following round.
This goal is most likely to be used in the completion of a mission, where
the capturing of a continent is important, not the following defence. There
is also one goal of this type for each continent.

Defend Continent: This goal can only be given if the continent has already
been captured. The importance is weighted according to the importance
of the continent: how many reinforcements does it pay, is it in my mis-
sion, etc. In most cases defending a captured continent is always impor-
tant. There is also one goal of this type for each continent.

Obstruct continent: The meaning of this goal is: obstruct an enemy-controlled
continent by capturing a territory in that continent. If an enemy player
has captured a complete continent, it is in most cases important that he
is not allowed to keep that continent. So capturing a territory in that
continent should be prioritized as important. If some information giver
has calculated that the given player is close to completing his mission,
then it is even more important to obstruct one of his continents. There is
also one goal of this type for each continent.

121



122 APPENDIX C. THE GOALS FROM THE MASTER PRIORITIZIER

Obstruct continent and defend obstruction: If it is of importance that a player
does not recapture a lost continent, or if another player is simply close to
capturing a continent, it should be important that the AI reinforce armies
in an occupied territory in that continent, so that the continent is not eas-
ily captured - thereby defending his obstruction. There is also one goal
of this type for each continent.

Attack player: This goal is mainly used, when the AIs mission is to kill a given
player. If he has captured some rewarding continent, and is well fortified,
it might be time to begin hunting down his enemy and winning the game.
This goal could also be used as a vengeance action. If a given player has
annoyed him throughout the game, it might result in an interesting game
play, if the AI suddenly starts to retaliate. The goal can also be used if the
AI discovers that a weaker player has many RISK cards. Prioritizing this
goal high would encourage the AI to attack and destroy this player to get
his RISK cards. There is one goal of this type for each player in the game,
and since there can be up to six players this gives six goals.

18 territories with at least 2 armies: This goal is only used, when the AI has
the mission Occupy 18 territories with at least 2 armies on each territory, and
the MP has calculated that the AI is close to fulfilling this mission.

24 territories: This goal is only used, when the AI has the mission Occupy 24
territories, and the MP has calculated that the AI is close to fulfilling this
mission. It is implied, that there is no restriction of 2 or more armies on
each territory - at least 1 army on each territory is needed.

In Figure C.1 one can see a depiction of the information flow from and to
the Master Prioritizer. The MP corresponds to the Master Prioritizer, and IG1−5
is the Information Givers, that provide indirect information to the MP. The out-
ward edges from MP are the different weights given to each goal. The Co&De
is the Conquer and defend Continent goal, the Co is the Conquer Continent goal
and so on.



123

MP 

IG IG2 4

Co&De Co De Ob Ob&De At 

wIn&De wIn wDe wOb wOb&De wAt

18w2 24w1 

w18w2 w24w1

 

IG1 IG5IG3

Figure C.1: The Master Prioritizer MP, receives some information from the Information Givers
IG1−5 and outputs a weight to each of the goals.



124 APPENDIX C. THE GOALS FROM THE MASTER PRIORITIZIER



Appendix D
Trainer Data

This appendix will give an explanation on how the various training data files
look.

D.1 Neural Network

The training data file format for neural networks has been designed for this
project. Essentially the format must contain the following:

• How many input, hidden and output nodes the network consist of.

• A series of training example with input values and corresponding target
values.

– Input values for a single training example is a list of real values.
Each value correspond to each input node.

– The target values for the same training example also consist of real
values. There is a target value for each output node in the network.

• Also, for each training example, there is a little remark on whether or not
this example is produced by a winner or a loser.

An example of such a file can be seen in Figure D.1. The extension of such
a file is “.nntd”.

D.2 Decision Trees and Naive Bayes

Since the decision tree and naive Bayes classifiers are both a part of Weka, the
training data file format for these is the same. Weka uses the ARFF file format
[wek] which is a text file that describes the attributes of the training example.
A simple example of an ARFF file can be seen in Figure D.2. The example is
a simplified version of our Round Planner module “Score Attack Plan” which
based on the attack plan’s estimated cost and priority determines a score for it.

125



126 APPENDIX D. TRAINER DATA

@input_nodes 5
@hidden_nodes 3
@output_nodes 2

@data
W{0.1,0.4,0.56,0.7,-0.5},{1.0,0.4}
W{0.4,-0.6,0.3,-0.4,-0.1},{-0.3,0.6}
L{0.51,0.34,0.6,-0.75,0.55},{0.9,-0.3}
L{0.63,0.34,-0.56,0.73,0.1},{0.12,0.45}

Figure D.1: A simple example of a training data file for neural networks (nntd).

@relation RP_ScoreAttackPlan

@attribute CostEstimated {1, 2, 3, 4, 5}
@attribute Priority {0.0, 0.25, 0.5, 0.75, 1.0}
@attribute Score {0.0, 0.25, 0.5, 0.75, 1.0}

@data
1,0.5,0.75
5,0.25,0.5
2,0.5,1.0

Figure D.2: A simple example of a training data file in ARFF format.

The ARFF file consists of two parts: First a header part which describes
the attributes and their states then followed by the training data itself. The
name to be associated with the training data is specified after the keyword
@relation, in this case “RP ScoreAttackPlan”. Each attribute is then specified
with @attribute followed by its possible states separated by commas. In this
example the “Priority” attribute has five states between 0.0 and 1.0. The last
attribute that is specified will automatically become the target attribute, in this
case “Score”.

The keyword @data marks the start of the data section. Each training exam-
ple consist of the observed values of each attribute separated by commas. In
this case, the following attribute states have been observed in the first training
example: “CostEstimated” is 1, “Priority” is 0.5, and “Score” is 0.75. The rest
of the file will be line by line of training examples.



D.3. BAYESIAN NETWORKS 127

D.3 Bayesian Networks

Figure D.3 shows the contents of a training data file as required by the EM
algorithm in Hugin. The first entry is a list of all the nodes we wish to learn on
in the network. These are separated by commas. The following lines specifies
what state is observed on that specific node in each training example. The
entries here are also comma separated. If there is no observation on a node, it
is entered as “N/A”.

Node1,Node2,Node3
S1,S3,S6
S2,S3,S5
S1,N/A,S5
S3,S2,S4

Figure D.3: The structure of the training data files used by Hugin. The first line is the name of
each node in the BN. The following lines are the observed states for each node. The “N/A” state
is used to specify that no observations on that given node is seen in the current training example.

A thing to make sure of when creating this file is that the nodes mentioned
in line one are in fact present in the network. Hugin will not load the file if
some nodes are not present. A more serious thing to be certain about is that
the states observed in the file are in fact present in the node to which they
should belong. Hugin gives no warning if it encounters a state not present in
the node. This means that if the states in the file differs from the ones in the
net it will not be discovered before the EM algorithm has terminated, and even
then it can only be discovered through faulty network behavior. This is highly
problematic when working with very large training files.



128 APPENDIX D. TRAINER DATA



Appendix E
Testing Algorithm

This appendix contains an explanation of an algorithm for generating a test
schedule.

E.1 Algorithm for Generating a Test Schedule

A schedule from a set of different AI techniques, for instance {script, nn, dt,
bn}, can be done as follows:

1. Iterate over the value i = [1; 2s[, where s is the size of the technique-set.

2. Convert the value i to a bit string and add a technique where the bit is on.
For example: bit string = “1010” would result in a game with two players,
where the given module is implemented as a scripted and as a decision
tree respectively. If the value i = 7 (“0111”) the result would be a game
with three players. First a player with the given module implemented
as a neural network. Then a player with the module implemented as
a decision tree. And lastly a player with the module implemented as a
Bayesian network.

129



130 APPENDIX E. TESTING ALGORITHM



Appendix F
Test Suite

The performance test of all the techniques in each module in the framework
were performed in 18 days. The range of computers used in the tests can be
seen in Table F.1. Some of the system were either dedicated (D) to performing
the test, dedicated except normal usage (d) or shared (s) with other users, which is
most typical for public servers.

Name OS CPU RAM Status
fire1 Solaris 9 8x900 MHz (SPARC) 31768 MB s
fire2 Solaris 9 2x900 MHz (SPARC) 4069 MB d
homer RedHat Linux 3 2x2.8 GHz (Intel x86) 4096 MB s
pelle Win XP 1.8 GHz (AMD Athlon 64) 1024 MB d
edblab1 Win XP 2.8 GHz (Intel Pentium) 512 MB D
edblab2 Win XP 2.8 GHz (Intel Pentium) 512 MB D
edblab3 Win XP 2.8 GHz (Intel Pentium) 512 MB D
gr.room1 Win XP 2.8 GHz (Intel Pentium) 512 MB d
gr.room2 Win XP 1.1 GHz (AMD Athlon) 512 MB D
jens Win XP 1.9 GHz (AMD Athlon XP) 768 MB D
brian Win XP 3.2 GHz (Intel Pentium) 1024 MB d
laptop1 Win XP 1.8 GHz (AMD Sempron) 1024 MB d
atle Win XP 2.0 GHz (AMD Athlon XP) 768 MB d

Table F.1: The suite of systems running the performance tests. The multi-processor systems
ran more tests simultaneously. since JRisk only runs in two threads, which would only utilize
two of the processors on the given system. The status coulmn show the status of dedication for
each system. “D” stands for total “dedication” to running the test. “d” stands for “dedicated
except for normal usage”. “s” stands for “shared” with other users, which is most typical for
pblic servers.

131



132 APPENDIX F. TEST SUITE



Appendix G
Enclosed CD

This report includes an enclosed CD. This CD contains the following:

JRisk: The actual game, where one can play against the different implementa-
tions of the AI framework in a game of Risk.

ai-data: The trained models for each technique for each module. This also
includes a sample of the training examples from 10 games. This can be
converted and trained on each of the techniques.

Training Data Converter: This is the converter.

Trainer: And the trainer.

report.pdf: This report in a digital version.

If the CD is not enclosed or the report is a digital version, the content of the
CD can be found through the following link:

http://www.pellecoltau.dk/master-thesis/cd.zip

G.1 JRisk

This is the implementation of the board game Risk. It includes different im-
plementations of the AI framework discussed in this report. The following AIs
can be selected in the game:

Easy: The easy AI already implemented in JRisk.

Hard: The hard AI already implemented in JRisk.

Extra hard: The new hard AI implemented in a newer version of JRisk.

Scripted Framework: Creates a purely scripted implementation of the frame-
work.

Best framework: Creates the best implementation of the framework, which
were found through the research documented in this report.

133

http://www.pellecoltau.dk/master-thesis/cd.zip


134 APPENDIX G. ENCLOSED CD

Custom framework: Creates an implementation of the framework, which is
leaded from the file “custom framework.txt”. This makes it possible to
create your own custom framework. Please be aware that not all tech-
niques can be used in all modules. Please consult Table 5.2 on page 69.
Please also notice that Bayesian networks (BN) only works if Hugin Re-
searcher [AOJJ89] is installed on the computer. Therefore, the best AI
does NOT use BN in the module “IG Continent”, but instead a neural
network trained with winners only, which is the second best technique
for that module.

JRisk can be run in different with different user interfaces: Swing (graphi-
cal) or command line.

Command Line Interface

The command line interface is pretty self explanatory. But the following com-
mands are important:

newgame: Starts a new game.

newplayer: Creates a new player. The usage can either be “newplayer human
[color] [name]” or newplayer ai [ai-type] [color] [name]”. The possible
entries for “ai-type” are the following:

easy: The easy AI..

hard: The hard AI.

extrahard: The extra hard AI.

framework: The purely scripted framework.

framework best: The best framework.

framework custom: The custom framework, loaded from the file “cus-
tom framework.txt”.

startgame mission: Begins the game. The AI only works with mission types
of Risk games.

Swing Interface

In the graphical user interface (GUI), one can select different AIs. These AIs
corresponds to the AIs described above. The GUI is quite unstable and might
crash when selecting players. The authors of this report is not responsible for
instability in third party software. Also, there is “feature” when playing the
game: In the AIs turn, the board might turn all red, blue or some other color for
a small second - this is only a small insight into the decision making process of
the AI, which is caught by the GUI.

G.2 Training Data Converter

The Training Data Converter will convert the game history located in “ai-data/
training examples/” into training data for given technique in a given module.



G.3. TRAINER 135

The usage of the converter is explained by running “explain usage.bat”. The
converted data will be located in “ai-data/training examples converted/”. Please
consult Table 5.2 on page 69 to see which techniques can be converted in which
modules.

G.3 Trainer

The Trainer will train a given technique in a given module. The trainer will
train the technique from the data converted by the Training Data Converter.
this trainer can only be used to train neural networks, decision trees and naive
Bayes classifiers. Bayesian networks are trained used Hugin Researcher [AOJJ89].
Again, consult Table 5.2 on page 69 to see which techniques can be trained
in which modules. Please note that the trained modules located in “ai-data/
trained models/” will be overridden if the trainer is run. The models already
located in “ai-data/trained models/” were trained from 3275 games, and only
10 games are distributed with this CD.

If any of the two BNs are trained, please copy them to the root of the JRisk
folder, otherwise the Hugin API can not find them.



136 APPENDIX G. ENCLOSED CD



Appendix H
Summary

In commercial games released today the majority of AI opponents are designed
and implemented using scripts. This leaves a lot of design choices to the de-
signer, but it also means that as the size and complexity of the game increases,
so does the chance that the AI designer overlooks some detail in the aspects of
the game. An obvious solution for this would be to use learning AIs to handle
different tasks within a game, and thereby relieve the AI designer, since the
learning AIs would learn the details by itself.

Left is now to choose which learning AI techniques should be chosen for
the various tasks commonly found in computer games. There are a lot of pos-
sible techniques to choose from, but which ones suit which tasks the best?

In this report we test how well different learning AI techniques compare to
each other in solving various tasks in computer games. The learning AIs used
are neural networks, decision trees, naive Bayes classifiers, and Bayesian net-
works.

An AIs performance is measured in terms of time spent solving its task,
and its success rate. These terms have been chosen since they cover both the
AI’s system requirements as well as its usability in solving a given task. The
test is done through the use of an AI framework which we have designed in
a previous project [CJJ06] and implemented in this project period. A brief de-
scription of the previous project is included in this report. The AI framework is
designed to play the board game Risk. It is modular and covers different tasks
involved in both estimating uncertainties and planning. It has been designed
such that at each module it is possible to exchange a technique implementing
it with another technique.

We have implemented a scripted AI for playing Risk which will serve as a
basis for generating training data for the learning AIs. We cover various as-
pects of training and find that it possible to use data for both winning and
losing scripts to generate training data. Not only do we find it possible, but we
also believe that learning from both winners and losers, will make the training
of the learning techniques somewhat faster.

137



138 APPENDIX H. SUMMARY

We use various tools to aid us in training the different models. These are
Hugin which is a tool for building, training, and querying Bayesian networks,
and Weka for training and querying naive Bayes classifiers and decision trees.
We implement neural networks with the back-propagation algorithm ourselves.

We consider how to compose an AI that implements the best performing
technique on each module. It is not possible for us to simply let all AI com-
positions play against each other since it is possible for us to make over 10
million possible AI compositions. We therefore come up with an approach we
call “Best Module” approach which severely lower the games that needs to
be played. This approach uses the “pure” scripted AI composition, where all
modules are scripts, in all games. The only module not being scripted is the
one being tested on. For this module the scripted AI will be replaced by each of
the different techniques found to be usable on this module. When all modules
have been tested this way, the best technique from each module are used to
form the “Best AI”.

We argue that our framework, designed for Risk, is general enough to han-
dle other games. This is done through showing that it is possible to divide Risk
into two sets of goals that it must prioritize in order two win: offensive and de-
fensive goals. We show that exactly these goals are also present in games of
other genres. With this said, we are able to argue that an AI technique which
is good at solving a task within the framework in Risk is also good at solving
this task within other games.

The main results of the report regards the generality of the specific AI tech-
niques:

• Neural networks are useful for making fast decisions when given a large
amount of input. This makes it very useful in planning, where even
scripts may take too long to process the data.

• Decision trees are also useful in situations where time matters. How-
ever,the input to these needs to simple in terms of few input variables for
the trees to be effective. When there are too many input variables, train-
ing the trees becomes problematic and therefore they become imprecise.

• Naive Bayes classifier perform decently within all task in both perfor-
mance and query time. Therefore this model is qualified for most tasks
within the framework.

• Bayesian networks are not useful for time-critical tasks in computer games.
The propagation of the networks are simply to slow for this. Therefore
BNs are mainly for use in long term information gathering tasks or plan-
ning in turn based games.

• Scripting is useful for every task. This is shown through the implemen-
tation of the scripted AI. However, scripting takes far more time to im-
plement than using learning techniques. Also the scripts are not capable
of learning, meaning that they are trapped in the script designers way of
thinking.


	1 Introduction
	1.1 Project Goal
	1.2 Report Overview 
	1.3 The Board Game Risk
	1.3.1 A Few Definitions

	1.4 JRisk

	2 Previous Work
	2.1 The Framework
	2.1.1 The Information Givers
	2.1.2 The Master Prioritizer
	2.1.3 The Round Planner

	2.2 Applied AI Techniques
	2.2.1 Scripting
	2.2.2 Decision Trees
	2.2.3 Neural Networks
	2.2.4 Bayesian Networks
	2.2.5 Naive Bayes Classifiers

	2.3 Additions to the Framework
	2.3.1 New Modules

	2.4 Framework Behavior
	2.4.1 Class Structure Overview

	2.5 Assumptions in Previous Work
	2.6 Combining AI Techniques with Modules
	2.7 Bayesian Network Redesign
	2.7.1 IG: Close to Continent
	2.7.2 IG: Close to Winning


	3 Training
	3.1 The Scripted AI
	3.1.1 What Should Be Stored?

	3.2 The Converter
	3.2.1 Making Continuous Values Discrete
	3.2.2 Constructing the Training Data
	3.2.3 Two Approaches for Learning from Losers
	3.2.4 Choosing an Approach
	3.2.5 Training with Winners Only
	3.2.6 Class Diagram

	3.3 The Trainer
	3.3.1 Training Tools
	3.3.2 Training Data Set Size
	3.3.3 Training Iterations


	4 Testing
	4.1 Finding the Best Combination of Modules
	4.1.1 Limiting The Number Of Games To Play
	4.1.2 Limiting the Number of AIs

	4.2 Most Important Modules
	4.3 Time Used In Each Module
	4.4 Model Size
	4.5 User Experience
	4.6 Miscellaneous Recordings
	4.7 Number of Games Played
	4.8 Summary of the Tests
	4.8.1 Building the Best AI From Test Results

	4.9 Performing the Tests
	4.9.1 Scheduling Module Performance Test


	5 Implementation
	5.1 Script Implementation
	5.2 Training Data Converter
	5.3 Training The AI Models
	5.3.1 Limitations in Training
	5.3.2 Techniques Implemented on Modules
	5.3.3 Dividing Into Ranges
	5.3.4 Training Bayesian Networks
	5.3.5 Training Decision Trees and Naive Bayes Classifiers

	5.4 Training Neural Networks
	5.5 Implementing the Tests

	6 Results
	6.1 Training Amount
	6.2 Module Importance
	6.3 Module Performance
	6.4 Test Results
	6.4.1 Initial Army Placement
	6.4.2 Estimate opponents' mission
	6.4.3 How Close an Opponent is to Winning
	6.4.4 The Opponents' Next Moves
	6.4.5 How Close an Opponent is to Owning a Continent
	6.4.6 MP Goal Weighting
	6.4.7 Prioritize Attack Plan
	6.4.8 Score Attack Plan
	6.4.9 Calculate Defense Cost
	6.4.10 Score Merged Plan
	6.4.11 Prioritize Territory Needing Defense

	6.5 Building the Best AI
	6.5.1 The Best AI
	6.5.2 The Challenger AIs


	7 Reflection
	7.1 Generalization of Risk
	7.1.1 Risk vs. Counter-Strike
	7.1.2 Risk vs. The Sims
	7.1.3 Risk vs. Command & Conquer
	7.1.4 The Generality of Risk

	7.2 Generalization of the Framework
	7.2.1 Our Framework in Counter-Strike
	7.2.2 Our Framework in The Sims
	7.2.3 Our Framework in Command & Conquer
	7.2.4 Summary on the Generality of Our Framework

	7.3 Generality of the Applied Techniques
	7.3.1 Generality of Neural Networks
	7.3.2 Generality of Decision Trees
	7.3.3 Generality of Naive Bayes Classifiers
	7.3.4 Generality of Bayesian Networks
	7.3.5 Generality of Scripts


	8 Conclusion
	8.1 Future Work

	Bibliography
	A Changes in the Scripted AI
	A.1 IG: How Close The Opponent Is To Owning a Continent
	A.2 IG: Ownership
	A.3 IG: How Close The Opponent Is to Winning
	A.4 Master Prioritizer
	A.5 RP: Calculate Attack Plan Cost
	A.6 RP: Make Attack Plan
	A.7 RP: Place Armies
	A.8 RP: Prioritize Attack Plan
	A.9 RP: Prioritize Territory Needing Defense
	A.10 RP: Transfer Armies

	B Rules of Risk
	B.1 Cashing in RISK Cards Phase
	B.2 Defend Phase
	B.3 Attack Phase
	B.4 Fortify Phase
	B.5 RISK Activity Diagram

	C The Goals from the Master Prioritizier
	D Trainer Data
	D.1 Neural Network
	D.2 Decision Trees and Naive Bayes
	D.3 Bayesian Networks

	E Testing Algorithm
	E.1 Algorithm for Generating a Test Schedule

	F Test Suite
	G Enclosed CD
	G.1 JRisk
	G.2 Training Data Converter
	G.3 Trainer

	H Summary



