
MICROSOFT SQL SERVER 2005:
RETHINKING CODE PLACEMENT

Jacob Elkjær Hansen
Morten Kirkegaard Hansen

Erik Hejlskov

Department of Computer Science
Aalborg University

14TH of June – 2006

Aalborg University
Department of Computer Science, Fredrik Bajers Vej 7E, DK-9220 Aalborg Øst

Title:
Microsoft SQL Server 2005:
Rethinking Code Placement

Thesis Period:
DAT6,
February 1, 2006 – June 14, 2006

Thesis Group:
d631a

Group Members:
Jacob Elkjær Hansen
Morten Kirkegaard Hansen
Erik Hejlskov

Supervisor:
Bent Thomsen

Number of Copies: 7

Number of Pages: 98

Abstract
This thesis examines the possibilities in-
troduced by the integration of CLR in Mi-
crosoft SQL Server 2005. The focus of
the examination is to determine how the
CLR integration affects the design of a
distributed system concerning the perfor-
mance and scalability criteria. The goal of
the thesis is to define a metric empirically,
which is able to determine whether a given
functionality achieve the best performance
and scalability on the application server or
database.
In order to define the metric, the param-
eters affecting performance and scalabil-
ity are determined. A subset of these pa-
rameters is varied in a full factorial experi-
mental design to determine the impact of
each parameter. The measurements ob-
tained from the performed experiments are
compared statistically. Thereby, determin-
ing the differences between code deployed
on the application server and the two tech-
nologies – T-SQL and SQLCLR. Subse-
quently, the obtained result is used to de-
fine the metric.
In order to make the metric easy to use
for the developer, it has been implemented
into a tool with a simple user interface,
where the different parameters can be
specified.

Preface

This thesis is the product of a four–month process of studying and developing
a metric that can help developers of distributed enterprise systems decide where
functionality should be placed; application server or database. The focus has been
on examining the performance and scalability differences between the application
server and the two technologies – T-SQL and SQLCLR. We have studied existing
works in the fields of performance and scalability to help outline the parameters
included in our metric. The metric proposed is established by empirical studies.

It is expected the reader has basic knowledge in computer science and experience
in computer programming and databases. Especially experience in the C# and T-
SQL languages as well as Microsoft SQL Server 2005, is an advantage. It should
be noted however, that different qualifications are needed for different chapters
in the thesis. The target audience for the Microsoft SQL Server 2005 and Test
chapters is primarily system developers and programmers, whereas the rest of the
chapters are for project leaders and decision makers. A summary of the thesis is
presented in Appendix N.

In addition, Italic font is used when referring to the factors and parameters used
in our metric.

Morten Kirkegaard Hansen Jacob Elkjær Hansen

Erik Hejlskov

iii

Contents

Contents v

Introduction ix

I Background Knowledge 1

1 Related Work 3

1.1 Software Performance Engineering 3

1.2 Transaction Processing Performance Council 5

1.3 SQLCLR–Based Programming 6

1.4 Enterprise Resource Planning . 7

1.5 JMP . 8

2 Microsoft SQL Server 2005 9

2.1 Transact-SQL . 9

2.2 SQLCLR . 11

II Metric Design 17

3 Metric 19

3.1 Preliminaries . 19

3.2 Metric Outline . 20

3.3 Excluded Parameters . 23

v

CONTENTS

4 Experimental Design 27

4.1 Choosing the Experimental Design 27

4.2 Preliminary Experiments . 29

4.3 Factors . 30

4.4 Replication . 34

4.5 Experiment Measures . 35

III System Development 37

5 Experiment Implementation 39

5.1 Implementation . 39

5.2 Code Snippets . 46

6 Experiment Results 51

6.1 Statistical Methods . 51

6.2 Replication Accuracy . 54

6.3 Sample Data . 55

6.4 Summary . 65

7 The Metric 67

7.1 Metric Development . 67

7.2 Metric Accuracy . 70

IV Discussion 71

8 Discussion 73

8.1 Comparing existing Guidelines 73

8.2 Experimental Design . 74

8.3 The Defined Metric . 77

9 Conclusion 79

vi

CONTENTS

10 Future Work 81

V Appendix 83

A Setup Specification 85

B Experiment Queries 87

C Compiere Statistics 89

D TPC-H Database Schema 91

E Experiments Execution Order 93

F Query Optimizations 95

G Software Performance Engineering 97

H Weighted Score Calculations 99

I Experiment Deviations 101

J Replication Calculations 107

K Result Graphs 111

L Sample Metric Calculations 119

M Commonly Used Normal Quantiles 123

N Summary 125

Bibliography 127

vii

Introduction

A hot topic when developing distributed systems is the issues around utilizing the
available resources most optimal, concerning placement of functionality. In dis-
tributed systems, the system architecture often resembles a three–tier architecture,
consisting of a client–tier, application–tier, and database–tier. Each of these tiers
deploys a number of distinct services, such as user interaction in the client–tier,
data processing and functionality in the application–tier, and storing of data in the
database–tier. As we discovered in our DAT5 project [1], there exist a number
of object–relational mapping tools that can not only boost the performance of the
system, through e.g. caching of data and queries at the application–tier, but also
bridge the gap between the object–oriented and relational paradigms.

However, with the release of Microsoft SQL Server 2005 (MSSQL2005), the data
processing and functionality, often placed in the application–tier, is possibly sub-
ject to change from primarily being placed in the application–tier. With the release
of MSSQL2005, developers now has the option of writing managed code in any
of the .NET supported languages, such as Visual Basic .NET or C# and deploy it
on the database. The managed code in form of stored procedures (SP), functions,
aggregates, types, or triggers can then be executed within the database engine
using the hosted Common Language Runtime (SQLCLR). Thus, it is now pos-
sible to develop the functionality for the system in both the application–tier and
database–tier and with an added benefit of programming in the same programming
language. Previously, this was usually done using T-SQL in the database–tier and
a .NET language in the application–tier. Thereby, relocating functionality from
the application–tier to the database–tier in order to e.g. improve performance
does not even require knowledge of multiple languages.

The new option of placing functionality on the database–tier is especially impor-
tant, since one of the most important goals in distributed software development is
to achieve high performing software that scales well. Most often developers try
to ensure the software satisfies this goal by utilizing various techniques such as
metrics and tests, thereby ensuring the software comply with the stated criteria
and the product specification.

ix

Introduction

History shows the consequences of neglecting performance in systems combined
with bad planning, as such, effort should naturally be put into planning when de-
veloping new software. One example of a system that performs poorly is the Dan-
ish employment exchange’s control system AMANDA. The whole development
process was riddled with flaws and inaccuracies that in the end resulted in a dou-
bling of the budget to around 500 million DKR, poor performing database connec-
tivity, unsatisfactory functionality, and a highly complex user interface. In effect,
this resulted in reduced productivity of around 30–50% equalling approximately
two millions DKR per day [2]. The morale of the story is quite self–explanatory
and especially the issues around the database connectivity is of special interest to
us, which for AMANDA was highly ineffective, resulting in long response times
and erroneous searches.

One of the problems the hosted SQLCLR introduces is that no metric or tool cur-
rently exist that is able to provide the developer with information about when it is
beneficial to place a particular piece of functionality in the application–tier or the
database–tier. Thus, the developer is currently only provided with guidelines from
which he must decide whether functionality should be placed on the application–
tier or the database–tier and what technology should be used in the case of the
database–tier [3]. We want to define a metric that can help make this decision, by
performing a number of experiments, which cover a range of different scenarios.
As such, the developer is provided with a tool that can help determine the place-
ment of functionality as early as the design phase, thereby minimizing the cost
that any changes in decisions might impose.

Problem Statement

Given T-SQL and the integration of the SQLCLR in MSSQL2005,
when is it beneficial, with respect to performance and scalability, to
place functionality on either the application server or the database
and should T-SQL or SQLCLR be used on the database. Furthermore,
define a metric that can be used by developers as early as the design
phase to help decide where to place the functionality and which tech-
nology to use.

Focus and Scope

As specified in the problem statement, we only examine T-SQL and SQLCLR
even though it is also possible to use Extended Stored Procedures (XP) on the

x

database. However, with the integration of SQLCLR, the use of XP is declining,
since SQLCLR can perform the same operations as XP, but with better security
and reliability [3]. Because of this, XP is not included in the comparison. Fur-
thermore, for fair comparison the database and application server use the same
operating system. The choice was made to use Windows Server 2003, which
has support for the .NET Framework and is the application server of choice for
MSSQL2005 in TPC [4]. As such, the metric is not generic but only applicable
for MSSQL2005 and for applications developed in the C#, since it is the most
popular .NET language [5].

As already mentioned, the task is to develop a metric, which can give an indica-
tion of whether a piece of functionality in a distributed system should be deployed
in the application–tier or database–tier. A 3–tier model is examined but only lo-
cality issues between the application–tier and database–tier will be determined.
The application–tier is referred to as application server throughout the report, and
the database–tier is referred to as database throughout the report. The metric can
be used as early as design time and determines the location for best performance.
When discussing functionality, it should be understood as a part of a larger sys-
tem that performs a specific task. Furthermore, it has to concern communication
with a database, as either ad–hoc SQL or manipulation or validation of the data.
However, it does not necessarily have to be e.g. an entire class; it can also be
individual methods or a subset of a method. For example, a rather simple piece
of functionality is listed in Section 5.2, which traverses the data obtained from a
query and returns a string. In addition, when implementing the functionality for
the database, it is done using SP. Focusing only on SP is because the functionality
on the application server should correspond to the functionality on the database,
i.e. it should be able to retrieve, insert, and delete data, which is only possible by
using SP.

In particular when developing the metric, we are interested in the performance
and scalability criteria, since they are critical for the operation of distributed sys-
tems, both for the application server and the database. However, other criteria
applicable for distributed systems could have been considered as well, such as
those specified in the International Organization for Standardization (ISO) 9126
standard; reliability, interoperability, security, portability, and maintainability [6].

For our metric, we intend to target the small to medium–sized enterprise (SME).
Not choosing to span the metric to large enterprises is because of limited resources
such as hardware and software. Furthermore, to develop the metric all the pa-
rameters influencing performance and scalability must be evaluated for different
levels to provide an accurate metric. As this approach results in a large amount
of combinations, only a number of parameters are evaluated for a set of levels in

xi

Introduction

this thesis. The parameters not evaluated are left out for various reasons, either
through a preliminary analysis or because of unpredictability.

The following is a definition of the performance and scalability criteria used in
the development of the metric. Even though there is a distinction between per-
formance and scalability, it does not mean they are not closely related. This is
because performance issues might not become apparent until the system is put
under an increased load and scalability cannot be defined unless performance re-
quirements have been specified.

Performance

As the computer industry becomes more competitive, the developers strive to de-
velop systems with high performance that still retain high quality and low cost [7].
Therefore, the performance of a computer system becomes a key criterion during
all phases of development. In this thesis, performance is defined as a measure of
response time. Thus, if a scenario has a lower response time than another, it can
be said to perform better.

Currently, best practice for tuning software, hardware, and numerous other per-
formance related factors already exists plentiful. However, our metric provides a
measurement for the best performance trade–off by specifying whether it is most
beneficial to place functionality on the application server or database. By using it,
the developer is able to decide where the functionality should be placed.

The parameters used in our metric are computations, number of queries, type of
queries, hardware, workload unit, data volume, and locality, which are described
in Section 3.2. In order to determine how each of the parameters affects perfor-
mance, four measures are analysed, which are described in detail in Section 4.5;
response time, throughput, CPU utilization, and network utilization.

Scalability

A dominant theme in the development of distributed systems is that systems
should be able to operate effectively at different scales. Scalability relates to the
ability of a system to remain effective as the workload is increased, by providing
more resources [8]. Since it is not possible in this thesis to provide more re-
sources to the hardware configuration because of software limitations, scalability
is defined as the ability to handle increased load compared to response time.

To help achieve scalability in enterprise applications, there are two possibilities;
either scale out or scale up.

xii

• Scaling out
Adding more machines to a system, thereby distributing the load on the
system across more than a single machine. However, even though several
machines are used, they still operate as a single machine.

• Scaling up
Adding more resources to a single machine, such as adding either additional
or faster processors, faster or more memory or disk drives. Thereby, it is
able to handle an increased load while still operating as a single machine.

Each of these two options poses benefits and drawbacks. By scaling up and main-
taining a single machine, the fault tolerance is decreased, since there is a single
point of failure and it is more difficult to do maintenance without affecting the
operability of the system. However, compared to scaling out, there is less man-
agement and no overhead from synchronizing several machines. These benefits
and drawbacks shall therefore be considered when buying more resources to a
system.

In our metric, neither scaling out or scaling up is possible, since resources are not
available to change the hardware configurations. Instead, the metric considers two
different hardware scenarios: one with a heavy–duty database and a lightweight
application server, and one with a heavy–duty application server and a lightweight
database. The hardware scenarios are further described in Section 4.3.3. The
reason for having two different hardware scenarios is to examine how hardware
affects the placement of functionality. This examination does not tell how locality
is affected by scaling up or scaling out, but whether the majority of resources
should be placed on the database or the application server.

Outline

The thesis is divided into five parts; Background Knowledge, Metric Development,
System Development, Discussion, and Appendix.

Background Knowledge contains the knowledge gained by examining the work
already made by others. Furthermore, is a description of various tools and ap-
plications utilized throughout the thesis. Lastly, the concepts and functionality
available in MSSQL2005 related to SQLCLR and T-SQL are introduced.

Metric Development presents an outline of the metric proposed in this thesis. Fur-
thermore, a description of the included and excluded parameters is presented. The
included parameters have been determined to affect performance and scalability

xiii

Introduction

the most, whereas the excluded parameters have minimal influence. The param-
eters serve as the basis for the metric and are used in the experimental design,
which contains the design decisions for the experiments performed to outline the
metric.

System Development examines the required steps in order to develop the applica-
tion simulating the experiments of the experimental design. Furthermore, a pre-
sentation of code snippets for each of the three possible placement of functionality
is given. The results gathered from performing the experiments are presented and
the various findings are discussed and concluded on. Lastly, the metric is defined
using the results gathered from the experiments and an implementation of a tool,
which uses the metric for determining the best locality of the functionality.

Discussion contains a discussion of the validity of the approaches and results in
this thesis, as well as an overall conclusion of the thesis. The Discussion is ended
with an examination of the possible further developments of this thesis.

The Appendix lists various data, statistics, configurations, and graphs used through-
out the thesis.

xiv

Part I

Background Knowledge

1

Chapter 1

Related Work

This chapter contains a description of other work that is used in the development
of the metric, including a presentation of the Software Performance Engineering
(SPE) techniques and the TPC-H benchmark, which is utilized in this thesis. Fi-
nally, the chapter contains a presentation of existing guidelines for deciding where
functionality should be placed, the Compiere ERP solution, and the statistical tool
JMP.

1.1 Software Performance Engineering

SPE is an example of an existing technique used to improve software performance
in the same area as the metric presented in this thesis. SPE [9] is a collection of
techniques that helps developers to create software that fulfils the required perfor-
mance objectives, such as response time and throughput. Among the techniques
described in SPE is an estimation of the amount of instructions used by a particu-
lar functionality. We have used these considerations about instructions to outline
the computations factor.

When the SPE techniques are used on a given application it is not applied on the
entire application as the techniques are time consuming. Instead, only a subset
of a given application is analysed. More specifically, the Pareto principle is used
to find the 20% of the software that is executed 80% of the time [9]. SPE dif-
fers from standard software development in one particular way, namely the phase
where performance issues are considered. In standard software development, the
performance issues are usually dealt with after the implementation. The software
is tested against the outlined requirements and tuned as needed. SPE however,
validates the performance objectives at all stages of the development process. The

3

Related Work

benefit of this approach is that if a flaw is discovered at design time, the cost of
correcting it is less than discovering the same flaw after the implementation.

The SPE collection of techniques contains principles for improving software per-
formance, recommends patterns and describes anti–patterns for the design, tech-
niques for eliciting performance objectives, techniques for gathering data needed
for evaluation, as well as evaluation guidelines for the development process. In or-
der to estimate the performance, the software is modelled and decorated using the
approaches described in the following nine steps. The nine steps illustrated in the
activity diagram in Appendix G.1 are used throughout the software development
process, utilizing the various techniques available in SPE.

1. Assess performance risk
Different risks might appear during the process of software development.
The developers need to identify these risks and determine the impact of
each of them. When a risk is identified the probability of happening as well
as the severity of damage is determined.

2. Identify critical use cases
The use cases are identified during the software analysis. Some of these
use cases are considered critical for the software. The critical use cases are
found by examining the software with e.g. the rule of Pareto in mind.

3. Select key performance scenarios
Each of the critical use cases consists of a set of actions performed by the
user. Among these actions, only a subset has a significant impact on the
performance of the software, which is identified like the critical use cases.

4. Establish performance objectives
When the key scenarios are identified, each of them should have quan-
titatively specified criteria associated with it, such as response time and
throughput.

The steps 5 through 8 are repeated until performance problems are solved

5. Construct performance models
In order to evaluate the scenarios, each of them is converted into an exe-
cution model. The models specify the processing steps for the scenarios
and characterize the performance of the software according to the included
factors, such as workload or multiple users.

6. Determine software resource requirements
Software resource requirements concern the main resources utilizing com-

4

1.2 Transaction Processing Performance Council

putational capacity, such as number of access to database and number of
executed instructions.

7. Add computer resource requirements
When the software resources are identified, an analysis of the extent of com-
puter resource consumption is needed. Each of the software resources uti-
lizes hardware resources such as CPU, disk I/O, or network bandwidth.

8. Evaluate the models
The results of the models contain information about the execution time of
each of the scenarios as well as the resource utilization. Hence, a thorough
analysis of the influence of the factors is needed in order to minimize the
risk for a potential performance problem.

9. Verify and validate the models
The constructed models are continuously verified and validated during the
software development. The verification and validation of the models en-
courage the developers to reflect the performance of the software as accurate
as possible.

1.2 Transaction Processing Performance Council

TPC is a non–profit corporation that develops performance benchmarks for trans-
action processing and databases. A transaction process is for example an up-
date of a database with new data such as airline reservations or inventory control
[10]. Performance is in most cases measured as transactions per unit of time. The
benchmarks are widely available and anyone who wants to run one of the TPC
benchmarks can do so freely. However, the results of the benchmarks can only be
published if TPC approves it, in order to protect the validity of the benchmarks.

The TPC-H is a decision support benchmark and consists of a number of business–
oriented ad–hoc queries and concurrent data modifications. The benchmark illus-
trates appropriate and commonly used queries and data scenarios, with a focus on
large volumes of data and complex queries. The TPC-H database schema, which
is illustrated in Appendix D, models a database corresponding to a company that
sell, distribute, and manage a product. When developing our metric some of the
ideas and concepts from the TPC-H benchmark are used. However, instead of
fully implementing the benchmark, only the database schema and two queries,
which are relevant for this thesis, are used.

5

Related Work

1.3 SQLCLR–Based Programming

In the article “Using CLR Integration in SQL Server 2005” [3] different SQLCLR
features are described and compared to T-SQL and XP. Furthermore, the article
provides high–level guidelines for the issue of code placement on the application
server vs. the database. The guidelines in the article indicate the SQLCLR is an
alternative to the procedural features of T-SQL and placing logic in the middle
tier.

A situation where the SQLCLR performs better than T-SQL is when performing
complex calculations. Another use for the SQLCLR is for procedural logic to
evaluate tabular results that can then be queried in the FROM clause of a SELECT
statement or in another Data Manipulation Language (DML) statement. However,
the SQLCLR should not be used to write procedural code that is expressible by
the declarative features in T-SQL, as the performance of SQLCLR is lower under
this circumstance.

One of the differences between SQLCLR and T-SQL becomes apparent when
writing data access code. This is due to the approach of managed code, where
queries are represented by dynamic strings, that are parsed as parameters to meth-
ods in the ActiveX Data Objects .NET (ADO.NET) Application Programming
Interface (API). In T-SQL, queries are embedded in the procedural code, but the
performance of data access in T-SQL is better than that of SQLCLR.

A scenario where SQLCLR code outperforms T-SQL is when doing processing
on forward–only and read–only row navigation. This navigation is in T-SQL im-
plemented using a CURSOR, which is faster than the SqlDataReader class, but
any additional processing of data, is faster with the SQLCLR. Still, T-SQL per-
forms better than SQLCLR when submitting SQL statements without any need
of additional processing. This is due to the overhead of the SQLCLR traversing
additional layers of code to switch between managed code and SQL statements.

A scenario where T-SQL and the SQLCLR perform equally well is when transfer-
ring results back to the client. T-SQL transfers the rows produced by the SELECT
statement and managed code transfers the result using the sqlPipe object.

A benefit of SQLCLR is that managed code is very similar to the code on the ap-
plication server, which makes it more portable than T-SQL. The article also states
however, that developers should be careful not to deploy too much functionality
on the database, due to the additional load this implies. Therefore, the article
provides two guidelines for code to be placed on the database:

• Data Validation
By using the database for data validation the functionality concerning data

6

1.4 Enterprise Resource Planning

validation is centralized and not distributed to different tiers in the system.
Hence, making the code for data validation easier to maintain.

• Network Traffic Reduction
If a lot of data has to be extracted from the database but only a small amount
of the data is returned as a result of e.g. an analysis of the data, the system
could benefit from putting the functionality on the database. Thereby, re-
ducing unnecessary network traffic.

1.4 Enterprise Resource Planning

Enterprise Resource Planning (ERP), are systems used to integrate and support
various business processes. The main goal of ERP systems is to integrate the de-
partments and functions in a company into a stand–alone system that spans across
all of the company’s needs. Because of this, ERP systems contain a large range
of modules to help in a number of business activities, such as accounting, sales,
inventory, quality management, and human resource management, to name a few.
One of the benefits of this approach is that by combining all these modules into
a single system, it is easier for different branches in a company to communicate
between each other [11]. Because ERP systems are complete solutions, it is ad-
vantageous to use as basis for statistical analysis of general applications focused
for e.g. our SME target group. Furthermore, the article in Section 1.3 indicates
that applications like the ERP solutions contain functionality that might benefit
from the integration of SQLCLR on the database.

1.4.1 Compiere

Compiere is an open source ERP and Customer Relationship Management1

(CRM) solution targeted for SME, distribution chains, and franchise systems [12].
Some of the modules included in Compiere are Customer Relations, Performance
Analysis, Supply Chain, and Web Store. Since Compiere covers the SME target
group of the metric developed in this thesis, the system is used to gather statistics
to supplement some of the choices taken concerning the parameters in our metric.
The reason for using the Compiere solution is as the article presenting Safe Query
Objects2 [13] states:

1ERP is often referred to as a back-office system with no direct contact with the customer,
whereas CRM is a front-office system, which deals with the customer, such as a web store.

2Safe Query Objects is a technique for representing queries as statically typed objects and uses
the Compiere solution for evaluation.

7

Related Work

“The Compiere ERP application provides a sophisticated range of
queries for evaluation.”

Examining the Compiere solution, reveals 871 uses of SELECT statements span-
ning from joins, to dynamic and parameterized queries. As such, it appears to
provide a large range of queries and thus, the implemented functionality contain-
ing these queries can be expected to span across a reasonable range of different
functionalities. An examination of these functionalities enables us to extract the
characteristics for further use.

1.5 JMP

JMP is an application developed by SAS Institute [14], which we use to perform
various statistical analyses of data. The application provides build–in macros for
common statistical designs such as full factorial design, which is described in
Section 4.1. When sample data is loaded into the application, it is possible to
analyse it using the provided functionality. The application is able to calculate
mean, variance, standard deviation etc.

8

Chapter 2

Microsoft SQL Server 2005

MSSQL2005 is the latest in a line of databases produced by Microsoft, which
has previously collaborated with Sybase [15] to develop databases. However, the
partnership was terminated and a new line of databases was created exclusively
by Microsoft, ranging from the early version 4.2 to 2000 and lately 2005. Some of
the most significant improvements in MSSQL2005 compared to MSSQL2000 are
the integration of the .NET CLR, XML support, a new management tool set, and
an enhanced T-SQL language [16]. A description of the T-SQL language, as well
as the integration of the CLR in MSSQL2005 is presented in this chapter, with an
emphasis on functionality used in this thesis.

2.1 Transact-SQL

T-SQL is an extension to the SQL language and complies with the American Na-
tional Standards Institute SQL-99 standard [17]. T-SQL is integrated by Microsoft
as a native programming language in their database and is commonly used by
database developers to write scripts and procedural code. Even though T-SQL is a
programming language with basic logical operations, local variables, and support
for creating, calling, and using functions it is not nearly as powerful and expres-
sive as other similar languages such as Pascal and ALGOL.

T-SQL has a large array of functionality and continues to be extended in each new
version of the SQL Server. Some noteworthy additions in MSSQL2005 are the
TOP operator, new join types for the FROM clause, improved error handling, and
random data sampling [17]. However, instead of making a thorough description
of the T-SQL language, there is a focus on the basics of T-SQL as well as SP,
which are relevant for understanding the T-SQL functionality used to develop our

9

Microsoft SQL Server 2005

experiments.

2.1.1 Language Constructs

In T-SQL, there are three classes of statements also known from standard SQL:

• Data Definition Language (DDL) statements
Used to create elements in the database

• Data Control Language (DCL) statements
Used to determine access privileges

• Data Manipulation Language (DML) statements
Used to modify or query data

In this section, as well as the rest of this thesis, the focus is on the DML statements,
which include the SELECT, UPDATE, DELETE, and INSERT statements.

T-SQL provides, unlike standard SQL, a control-of-flow, which includes several
keywords, such as BEGIN, END, BREAK, IF, ELSE, RETURN, and WHILE [18].
Thus, it is possible to construct structures that are more complex. It is for exam-
ple possible to enclose a series of statements in a BEGIN...END block and break
out of the block with BREAK. It is also possible to execute a statement repeatedly
as long as a condition is true with the WHILE command and evaluate conditions
with the IF command. Another enhancement is local variables, which is used to
contain values of either system–supplied or user–defined types. The local vari-
ables are useful in a single script, but not outside the script, since global variables
are not supported. An example of a simple block of statements is illustrated in
Listing 2.1. Line 4, contains a declaration of a local variable of type decimal
called @CustOrder. The variable in line 5 is assigned the value returned by the
query.

2.1.2 Stored Procedures

A SP should be understood as a small program, which is stored physically on the
database. To write a SP in MSSQL2005, a language is required, which can be
either T-SQL, covered here, or a .NET language such as C#, which is covered in
Section 2.2.3. The SP is able to:

• Accept input parameters

10

2.2 SQLCLR

• Return single or multiple output values

• Return a value indicating whether the SP was a success or failure

• Perform operations on the database or call other SP

SP can be divided into two classes, the system–defined SP and the user–defined
SP. SP is in the remaining of the thesis referring to user–defined SP, whereas
system–defined SP is named so explicitly. System–defined SP, which are installed
with SQL Server, are actually executed continuously in the database environ-
ment. Actions such as table modifications and administrative operations are in
fact system–defined SP executed each time one of these actions is triggered.

The SP can be customized to suit the need of the developer as illustrated in Listing
2.1. The purpose of this SP is to retrieve the prices of all the orders made by a
specified customer. The SP uses standard T-SQL syntax and operates on the TPC-
H database.

One of the benefits of using a SP is the direct execution in the database engine;
meaning database requests are usually processed faster, since the SP has direct
access to the data. Furthermore, since it is possible for a SP to do computations
and operations on large sets of data, the result returned to the user can be a subset
of the data, thus limiting the amount of data transferred across the network. Other
benefits include security mechanisms and sharing of application logic.

Listing 2.1: T-SQL Stored Procedure
1 CREATE PROCEDURE usp_cust_order (@CustID int)
2 AS
3 BEGIN
4 DECLARE @CustOrder decimal
5 SELECT @CustOrder = O_TOTALPRICE
6 FROM dbo.ORDERS AS o
7 INNER JOIN dbo.CUSTOMER AS c ON o.O_CUSTKEY = c.C_CUSTKEY
8 WHERE C_CUSTKEY = @CustID
9 RETURN @CustOrder

10 END

2.2 SQLCLR

A new feature in MSSQL2005 is the integration of the Microsoft .NET Frame-
work 2.0 CLR into the database. The integration of the CLR allows developers
to write SP, types, functions, triggers, and aggregates in any of the 25+ supported
.NET languages, such as Visual Basic .NET, C++, and C#. The SQLCLR is an

11

Microsoft SQL Server 2005

alternative to XP, but with better security, a larger amount of class libraries, and
object–oriented capabilities among other things. The integration of the SQLCLR
was made with the following design goals in mind: [16, 17, 19]

• Security
Database administrators should have full control of the .NET code running
on the database and have a simple security mechanism through the intro-
duction of the SAFE, EXTERNAL ACCESS, and UNSAFE permissions.

• Reliability
Critical applications are expected to have an uptime of 99.999% or better
[17]. Therefore, the user code should not be able to perform operations
that e.g. overwrite the memory buffer or internal data structures, which is
possible with XP, as these operations might bring down the database.

• Scalability
It is common the database must be able to support multiple concurrent users.
Hence, it is important the .NET user code containing functionality including
threading or high memory demands do not affect the overall scalability of
the database.

• Performance
Performance is very important in enterprise applications, thus code written
in a .NET language and deployed inside the database must perform just as
well as code deployed outside the database.

2.2.1 The Microsoft .NET Framework 2.0 CLR

The CLR is a virtual machine much like the Java Virtual Machine is for Java and
is an execution environment that handles compilation, loading, and execution of
a hosted application. Furthermore, it provides several services such as memory,
thread, and I/O management, as well as type–safety, garbage collection, and se-
curity. When a given application is executed in the execution environment, the
code is referred to as managed code, whereas unmanaged code refers to code
that is run outside and not under control of the CLR, such as Win32 functions or
COM objects. This is because managed code in the CLR resides in an application
domain, which should be understood as a lightweight process, unlike Win32 func-
tions and COM objects, which are isolated in different memory address spaces.
The application domain is kept under control of the CLR, which also ensures that
other application domains do not use the same memory address space. Because

12

2.2 SQLCLR

Figure 2.1: CLR in MSSQL2005

of the CLR’s architecture, it is possible to host it by other processes, in this case
MSSQL2005.

For a more detailed description of the CLR, consult our previous project [1].

2.2.2 Structure of the SQLCLR

The SQLCLR is hosted in MSSQL2005 as illustrated in Figure 2.1, where the op-
erating system (SQL OS) handles connections to the database as well as memory,
threads and synchronization of the database. The hosting layer handles commu-
nication and coordination between the SQLCLR, the SQL Engine, and the SQL
OS. The coordination includes memory management, security, garbage collection,
deadlock detection, and assembly loading of .NET code. [20]

Because the MSSQL2005 and the SQLCLR have different internal models for
memory and thread handling as well as security, an extension to the hosting API
in the .NET framework had to be made. This extension allows the database and the
SQLCLR to work together by having the database control the resources available
or making recommendations on how they should be managed. This essentially
means the database at all times has control of memory usage by either accepting
or rejecting memory requests made by the SQLCLR. The benefit of using this
approach is the database and the SQLCLR do not compete for the memory, since
the database always has higher precedent unless otherwise specified, as such the
overall memory usage can be within the limit specified by the user.

Furthermore, the database also handles any thread scheduling for the SQLCLR,

13

Microsoft SQL Server 2005

which means the SQLCLR has to call the database’s API in order to create threads,
no matter if the thread is used for internal use or for executing user code. In order
for the database’s thread scheduler to schedule other tasks if a thread is waiting on
a synchronization object, the SQLCLR calls the database synchronization objects
[16].

2.2.3 Stored Procedures

With the introduction of the SQLCLR, it is possible to write SP in any of the
.NET supported languages besides T-SQL, as described in Section 2.1.2. The SP
written in a .NET language are implemented as public static methods and
are able to return various results, where the return type of the methods can be
either System.Int32, SqlInt32, or void. Furthermore, and probably more
important; it is possible to return string messages and tabular results.

In order to return a tabular result from a SP, the Send() method in the Pipe
class is used as illustrated in Listing 2.2 in line 12. The SP is invoked in the same
manner as a standard T-SQL SP.

Listing 2.2: SQLCLR Stored Procedure
1 ...
2 public partial class StoredProcedures
3 {
4 [Microsoft.SqlServer.Server.SqlProcedure]
5 public static void CustOrder(int custid)
6 {
7 using(SqlConnection connection = new SqlConnection("

context connection=true"))
8 {
9 connection.Open();

10 SqlCommand command = new SqlCommand("SELECT
O_TOTALPRICE FROM dbo.ORDERS AS o INNER JOIN dbo.
CUSTOMER AS c ON o.O_CUSTKEY = c.C_CUSTKEY WHERE
C_CUSTKEY = " + custid + "", connection);

11 SqlDataReader r = command.ExecuteReader();
12 SqlContext.Pipe.Send(r);
13 }
14 }
15 };

The functionality implemented in Listing 2.2 corresponds to the SP implemented
using T-SQL, which was illustrated in Listing 2.1. As Listing 2.2 illustrates, the
implementation of a SP in SQLCLR follows standard language syntax, in this
case C#. However, the connection is modified to a context connection in
order to achieve a better performance when running the SP on the database. The
context connection is specified in line 7.

14

2.2 SQLCLR

2.2.4 The SqlContext Class

Accessing data usually involves a data provider for the ADO.NET such as Open
Database Connectivity or Object Linking and Embedding DB providers. These
providers run outside the database server and make an explicit connection to the
database to send queries and retrieve results. In MSSQL2005, a new data provider
has been introduced that runs inside the database. The provider is able to access
the database directly through the context in which it runs, which is done using
different classes in the ADO.NET data provider model. Most of these classes
are located in the Microsoft.SqlServer.Server namespace and an ex-
ample of an inside data provider is the SqlServer provider. The different data
providers need to implement the same interface, thereby the same code can be
used with different data sources and the only code differing is the code for open-
ing the connection. This specification is called the General Programming Model
for Managed Providers (GPM) and ensures that with relative ease it is possible to
move functionality from the application server to the database [17].

The SqlContext class is a part of the SqlServer provider. When running
on the database, SP and functions are executed as part of the user’s connection,
thus a new connection is not required, thereby removing unnecessary network
overhead. The SqlContext class is a helper class that retrieves the particular
context and calls the corresponding methods [21]. To use the existing connection,
the context connection has to be set to true, as specified previously in line
7 in Listing 2.2. There are however a few limitations to using the context
connection, such as only having one active context connection at a
time for each client connection and no support for Multiple Active Result Sets
[22].

15

Part II

Metric Design

17

Chapter 3

Metric

This chapter contains a description of the parameters included in the metric, the
parameters not included, and considerations that have affected the development
of the metric. The description is a general presentation of the parameters as well
as the reason(s) for either including them or excluding them. In the two following
chapters, there is a differentiation between the following terms:

• Experimental Design
The overall design strategy, for example full factorial or fractional factorial.

• Experiment
One of the experiments performed in the experimental design.

• Parameters
All that influences the performance and scalability in the metric.

• Factors
A subset of the parameters that are examined in the experiments.

• Levels
The different values or ranges for the factors and parameters.

3.1 Preliminaries

The purpose of the thesis is to determine in which situations functionality should
be placed on either the application server or the database concerning performance
and scalability. To make the comparison fair, it is also necessary to determine

19

Metric

whether the functionality on the database should be written for T-SQL or SQL-
CLR.

In order to create a metric that with 100% accuracy determines where the function-
ality should be placed, all possible scenarios would have to be explored. Instead,
the metric gives an indication, since the experimental design used to develop the
metric is focused on a number of specific factors with a limited set of levels.
Therefore, the metric is only valid concerning the factors and levels that are eval-
uated in the experimental design. This obviously limits the validity of the metric;
however, the choice was made because the metric should not be limited to a spe-
cific scenario, but on the other hand exploring all possible scenarios would be too
vast. Instead, the middle ground, where a number of parameters are evaluated, is
chosen.

3.2 Metric Outline

The parameters selected in this chapter, is the foundation for the experiments de-
scribed in Chapter 4. One of the purposes of the experiments is to determine how
much each of the parameters affects performance and scalability in order to es-
tablish the weight for each of the parameters in the metric. Another purpose is
to determine whether any of the parameters causes bottlenecks and thereby intro-
duces deviations in response time.

Since the experimental design is limited to a number of parameters, the parameters
not included have to be – where possible – set to a specific level, which remains
unchanged during the execution of the experiments in the experimental design.
The reason for doing so is to reduce uncertainties concerning variations between
the experiments performed on the different combinations of parameters. As such,
even though a parameter is excluded, the level for the parameter is still important
to specify. This is because situations might occur where the metric indicates a
faulty answer due to one of the excluded parameters being completely different
than the system used on.

In situations where the metric exceeds the levels specified in the experimental
design for both included and excluded parameters, the metric will likely give a
misleading indication.

The parameters described below are discovered by examining performance guide-
lines for databases [23, 24]. The parameters are included in the metric if they
are essential to performance and scalability of a distributed application. A short
description of each of the parameters as well as a reason for including them is
provided. The excluded parameters are described in Section 3.3.

20

3.2 Metric Outline

3.2.1 Computations

An application usually contains a set of different functions. These functions con-
sist of various computations in order to enable the application to provide the cor-
rect functionality. The computations should be understood as loops, method invo-
cations, etc. and the amount of these affects the execution time of the function.

When implementing an application in an object–oriented language, two major
issues influence the performance. First, the creation and destruction of objects
have to be limited as they have a negative impact on performance. The overhead
of object creation and destruction depends on the complexity of the objects and
how the memory is allocated [9]. Second, the amount of method invocations in the
application. Each invocation consumes between 25 and 100 machine instructions
for standard programming languages and hardware or even more depending on
the arguments and return values of the method [9].

3.2.2 Data Volume

The data volume in real world applications varies greatly depending on the size
of the enterprise, from less than a gigabyte (GB) to several terabytes (TB) of data
[10]. Therefore, it is important to evaluate different data volumes in the performed
experiments to cover different enterprise sizes. As the scope of the project is SME,
an estimation of the data volumes used by these enterprises is needed.

In addition, when building an application utilizing a database it is important not
only to consider the capacity currently needed for the application, but also to
consider future capacity requirements. The data volume needed for storing the
business data is likely to change as the enterprise evolves and the amount of or-
ders, customer information etc. grows. When the data volume grows, the ideal
placement of functionality might be different from that at design time. Therefore,
it is important to take into account how much the data volume is expected to grow
and the lifetime of the developed software.

3.2.3 Hardware

One of the reasons for considering where to place functionality is to take best ad-
vantage of the available resources. A possibility is to use the hardware resources
in parallel instead of sequential. Thereby, the application server is able to query
multiple databases and concurrently work on other tasks. However, if the func-
tionality is instead placed on the database, hence requiring the database to process
both the query and the functionality, the task will be executed sequentially in

21

Metric

the database. Therefore, the optimal configuration of the hardware in the system
depends on both the executed application as well as the available hardware. Fur-
thermore, the processing capability of the system influences the placement of the
functionality, as a lightweight database do not have additional CPU cycles that
can be used on functionality besides handling queries. Whereas a heavy–duty
database might have spare CPU cycles and thus can handle additional functional-
ity. Therefore, it is important to examine how different hardware configurations
affect the placement of functionality.

3.2.4 Number of Queries

It is common that in an application with database interactions, some of the func-
tionality retrieve data from the database. In order to retrieve the data, the func-
tionality must execute one or multiple queries. All of these queries introduce a
network round trip, which varies in duration according to the execution time of
the query, available hardware, etc. Each query takes up a certain amount of CPU
time according to their complexity. Hence, the number of queries has an influ-
ence on the utilization of CPU time on both the application server as well as the
database, since more processing has to be done. Therefore, the execution time of
a particular functionality depends on the contained number of queries.

3.2.5 Type of Queries

As described in Section 2.1, there are three types of SQL statements; DDL, DCL,
and DML, where the most used statements are the DML statements [25], which
include SELECT, UPDATE, DELETE, and INSERT. As such, the focus is primar-
ily on the DML statements. A consideration to take into account when choosing
the queries is the complexity of the queries, such as whether the queries should
involve retrieving data from multiple tables through joins or use aggregates to e.g.
calculate the sum of a column.

Another consideration is whether the data a query returns is used to take a partic-
ular action upon. Relevant actions might include using a subset of the returned
data to perform an UPDATE or an INSERT on another table, while returning an-
other subset of the data to the client. Obviously, being able to perform this on the
database is likely to not only affect the performance of the system, but also the
amount of network utilization.

22

3.3 Excluded Parameters

3.2.6 Workload Unit

When working with distributed systems, an important parameter to consider is the
amount of users that access the system. Therefore, it is important to examine how
well the system scales when different amount of users interact with the system.
The term workload unit (WU) is defined as a measure of the load on the system,
but we assume a one–to–one relation between one unit and the increased load on
the system made by one user. For example, the resources needed to handle 50
users correspond to 50 WU.

3.3 Excluded Parameters

Beside the previously mentioned parameters, several other parameters have been
considered but not included in the metric for different reasons. These parameters
as well as the corresponding level are listed and discussed below.

3.3.1 Installed Software

Installed software refers to the services and software included in Windows Server
2003 as well as any third party software required for a given enterprise application
to operate. The environment used for conducting the experiments is cleaned for
unnecessary software and services in order to gain the most optimal conditions. In
effect, this means that beside vital services, only the experiments are running on
the application server, and only MSSQL2005 is running on the database server.
The choice was made because simulating all different combinations of running
software would be too massive an undertaking and outside the budget of this the-
sis.

3.3.2 Cache

A cache is a storage mechanism that maintains a collection of recently used data.
As new data is retrieved, it is added to the cache and if the cache is full, existing
data will be replaced. The benefit of this approach is that by caching the data
closer to where it is used, access to the cached copy of the data will be many
times faster as opposed to e.g. fetching it from a remote database or computing a
set of data for each client request. It should be noted that cache can be found in
several different places in a computer; the CPU, disk, operating system, and as we
examined in our DAT5 project [1] also at the application level.

23

Metric

However, caches at the CPU and disk are not manageable. As such, mainly the
caching happening on the database is of concern. Instead of comparing differ-
ent caching scenarios on the database however, the focus is on tuning the cache
to achieve better performance, which is essential for any distributed application
utilizing a database [26].

3.3.3 Batch

A batch is a single, or multiple T-SQL statements, which are grouped into a single
unit that can be executed on the database. Take an example where it is required
to retrieve data, update a row in a table, and then insert a new record. If these
three tasks had to be executed in an ad–hoc SQL manner twice a second, this
would result in 518,400 queries a day. If these three tasks were put into a batch,
this would result in 172,800 queries a day. In essence, that means by consolidating
work through batching makes more effective use of the network since fewer round
trips have to be made. However, this is not without drawbacks, since an error in
one query will result in the failure of the entire batch.

As indicated, the use of batch provides in some scenarios a performance benefit.
However, there are two reasons for excluding batch in the experimental design.
First, the Compiere solution, described in Section 1.4.1, has not yet implemented
the batch functionality. Hence, the statistic gathered from the solution does not
contain any indication of the usage of batch. Second, the use of batch changes the
scenarios where e.g. two queries are executed. For example, if the second query
requires data from the first query in order to create a new query or insert data into
the database.

3.3.4 External Resources

External resources should be understood as accessing external files, the registry,
networks, or making remote connections to other application servers or databases
and are not considered due to the following reasons. First, the use of external
resources inside the database is generally considered inappropriate, as they can
be unpredictable or unavailable [24]. Second, accessing external resources are
not standard elements in a system, but more specializations for each individual
system. Third, when considering remote connections, establishing a connection
to a secondary database from either the application server or the primary database
implies equal overhead, such as network round trips. Although, in some situations
it might be beneficial to place it on the primary database. For example, when the
result set returned from the secondary database is used to determine what data

24

3.3 Excluded Parameters

should be returned from the primary database.

3.3.5 Number of Connections

The number of connections is the amount of database connections established in
order to execute queries for the users of a given system. The reason for not consid-
ering it is that a connection pool is implemented, which manages a fixed amount
of available connections. The connection pool is simply a cache of connections
that is maintained in the application server’s memory. Thereby, when a new con-
nection is established and put into the pool, the connection can be reused when
new requests are executed, without having to establish a new, assuming the con-
nection string is equal. If all the connections in the pool are used, then a new one
is made and put into the pool. Initially in the life span of an application using con-
nection pooling, there is a performance overhead as new connections are added to
the pool. However, assuming a distributed application executing thousands or mil-
lions of queries to the database, the overhead of creating and maintaining a con-
nection pool is less than creating new connections for every query. Furthermore,
it is possible to initialize a set amount of connections such that new connections
do not need to be added continuously. [22]

3.3.6 Returned Result

Returned result should be understood as the result returned by a piece of func-
tionality or query. For example, if the functionality is placed on the database, a
scenario could be that data retrieved from the database is traversed; however, only
a single value is send back to the application, thus saving network utilization.
However, a preliminary analysis of the impact on performance by this parame-
ter indicated an almost insignificant influence, except as explained for network
utilization in Section 4.5.

25

Chapter 4

Experimental Design

To develop the metric, experiments are performed on the factors included in the
metric, in order to support the validity of the metric. The chapter contains a pre-
sentation of the design strategy for the experiments, as well as a discussion of the
factors and levels chosen for the experiments.

4.1 Choosing the Experimental Design

When designing an experimental design, there are primarily two options avail-
able. One option is to perform a full factorial design, where all possible factors
and levels are included. The other option is to perform a fractional factorial de-
sign, where only a subset of the factors and levels are included, thus the design is
not validated against all possible combinations of levels as with the full factorial
design.

4.1.1 Fractional Factorial Design

Making a fractional factorial design has the benefit of analysing all factors and
all levels, but with a limited number of combinations. Assume an experimental
design where experiments are performed on all combinations of the factors: num-
ber of queries, hardware, and computations. These experiments only include a
fraction of the factors: type of queries, data volume, WU, and locality. For this
experimental design, eight experiments are performed as listed in Table 4.1, how-
ever very limited information is gained from these experiments. Even though all
combinations are made on the three first factors, nothing is definitely concluded,
since the other factors come into play as well. For example, if the experiment with

27

Experimental Design

1 number of queries, 1 computation, and hardware Scenario1 is faster than the ex-
periment with 1 number of queries, 1 computations, and hardware Scenario2, then
it is not certain that Scenario1 is faster than Scenario2. It could instead be because
Query 1 is faster than Query 2 or that a SP written in T-SQL is faster than placing
the functionality on the application server. Therefore, with a fractional factorial
design, it is possible to examine many factors, but only get an indication of how
the factors influence performance and scalability.

E
xp

er
im

en
tN

um
be

r

N
um

be
ro

fq
ue

ri
es

H
ar

dw
ar

e

C
om

pu
ta

tio
ns

Ty
pe

of
qu

er
ie

s

D
at

a
vo

lu
m

e

W
or

kl
oa

d
un

it

L
oc

al
ity

1 1 1 1 Q1 17 63 T-SQL
2 1 1 6 Q1 1 1 SQLCLR
3 1 2 1 Q2 17 125 App
4 1 2 6 Q3 17 63 SQLCLR
5 6 1 1 Q2 1 125 App
6 6 1 6 Q3 17 1 T-SQL
7 6 2 1 Q2 17 1 SQLCLR
8 6 2 6 Q1 1 125 T-SQL

Table 4.1: Example of a Fractional Factorial Design

4.1.2 Full Factorial Design

Making a full factorial design provides information on all combinations of factors
and their associated levels. Thus, the drawbacks of performing a fractional fac-
torial design are avoided. Instead, more experiments have to be performed com-
pared to the fractional design, unless the amount of included factors is reduced.
The drawback of performing a full factorial design is that it usually becomes ex-
tremely comprehensive and time consuming. For example, assume the excluded
parameters listed in Section 3.3 should be included as well. For each factor the
number of levels is multiplied with each other, e.g. the number of queries times
computations etc. Therefore, by including additional factors the number of exper-
iments increases accordingly. In a more formal logic, it can be described as:

28

4.2 Preliminary Experiments

n =
k∏

i=1

ni

n = amount of experiments

k = amount of factors

The ith factor has ni levels

4.1.3 Experimental Design

Having considered the benefits and drawbacks, we have chosen the full factorial
design with fewer factors and fewer levels. The experimental design with thor-
ough experiments on a limited set of factors and levels gives more usable results
than a fractional design containing all factors with a limited amount of combina-
tions. This is because in order to develop the metric, it is vital to know how much
each of the factors affects the measurements. If this information is unknown, the
metric will be nothing more than a guess.

For the full factorial design, the following seven factors with the number of levels
in parenthesis are chosen: number of queries(2), hardware(2), computations(2),
type of queries(3), data volume(2), WU(3), and locality(3). Performing a full fac-
torial design on these factors accumulates to 2*2*2*3*2*3*3 = 432 experiments
for the experimental design. The experiments are throughout the thesis referred to
as the abbreviations c0 to c431. One example of an experiment is c0 with 17 GB
data volume, hardware Scenario1, Query 1, 1 number of queries, 1 computation,
1 WU, and locality on the application server.

4.2 Preliminary Experiments

Before running the full suite of experiments, it is preferable to perform a subset of
the experiments. The purpose of these experiments is to determine whether some
factors or levels should be removed, and determine how many replications that
have to be performed in order to get accurate results. Furthermore, the preliminary
experiments are used to uncover bugs and errors that might occur and potentially
render some results unusable. Thus, by fixing these bugs and errors, the overall
comparison is more accurate for all experiment configurations.

Since a single execution of the preliminary experiments would not be very useful,
considering there might be one or more outliers among the results, three repli-

29

Experimental Design

cations are performed. The results from the preliminary experiments are subse-
quently used to determine the final factors and levels, as well as the amount of
replications for the final experiments. How the number of replications is calcu-
lated is described in Section 4.4.

The implementation and setup of the preliminary experiments are not described;
instead refer to the description of the final implementation in Chapter 5, since
the difference between the preliminary experiments and the final does not differ
much. The preliminary experiments were tested on the returned result parameter
and all factors and levels described in this chapter, except for hardware and data
volume, since it was not possible at the time due to software issues.

The preliminary experiments indicated that all factors except one have an impact
on the overall performance. Thus, all factors are included except the returned
result parameter as explained in Section 3.3.6.

4.3 Factors

In our approach, seven different factors are considered, which are specified with
specific levels for each experiment. Several other parameters have been evaluated,
which were described in Chapter 3. The chosen factors are described below with
their corresponding levels.

4.3.1 Computations

2 levels: 1 and 6 computations.

Number of Computations

The number of computations an application is required to perform can differ from
one execution to the other. In order to specify the levels for computations, the
observed numbers in the Compiere solution are used, as listed in Table C.2 in
Appendix C. The number of computations concerning loops in the Compiere
solution range from zero to six. However, as the queries only returns 10 rows, the
difference between 0 and 1 loop is limited. The loop can be flattened to an almost
identical computation without any looping. Additionally, functions containing 1
loop is the most frequently observed amount in the Compiere solution. Therefore,
the levels for computations are specified to 1 and 6.

30

4.3 Factors

Complexity of Computations

The performance issues concerning creation and destruction of objects are disre-
garded, as the statistics of the functions in the Compiere solution in Appendix C.3
indicate the functions only contain a limited amount. However, the number of
method invocations associated with each query is specified according to the aver-
age values identified by the Compiere solution. Therefore, each of the functions
consists of 16 method invocations outside the loop(s) and each loop contains 7
additional method invocations.

The reason for distinguishing between method invocations inside and outside
loops is the number of times a method is invoked. Furthermore, loops are gen-
erally considered the cornerstone of algorithms concerning execution paths [6].
However, the loops in the functions are not nested as only 15 of the functions
executing SELECT statements have nested loops in the Compiere solution. The
reason for counting methods in the specification is the CPU utilization of invok-
ing a method is significantly larger than e.g. evaluating a logical boolean expres-
sion. Hence, the complexity of computations is limited to method invocations and
loops.

4.3.2 Data Volume

2 levels: 1 and 17 GB data.

As the data volume differs among SME, the experiments on performance and
scalability require different volumes of data. Since the benchmarks from TPC are
business related, their data makes sense to utilize in the experiments. The database
schema used for outlining our metric is therefore the same as the one in the TPC-
H benchmark, which is illustrated in Appendix D. The database schema consists
of eighth tables, ranging from the small REGION table to the large LINEITEM
table that contains 102 million rows for 17 GB data volume. The numbers above
the table names are the amount of rows in the table factored by a scale factor (SF).
The SF is used to simulate various volumes of data and is achieved by scaling
the data up to a given amount. The SF used is 1 and 17 GB of data, which is
inspired by the “Exact Globe 2003” ERP solution [27]. The specification for this
solution states that small enterprises use databases with less than 2 GB of data,
small/medium enterprises use databases with data between two and 8 GB of data,
medium/large enterprises use databases with data between 8 and 25 GB of data,
and large enterprises use databases with more than 25 GB of data [27]. Consider-
ing the metric development is addressed at SME, specifying the data volume to 1
and 17 GB is representative.

31

Experimental Design

4.3.3 Hardware

2 levels: Scenario1 and Scenario2.

To examine different hardware scenarios, the computer laboratory at Aalborg Uni-
versity is utilized. The laboratory contains a number of machines, however only
one machine has significant computation capabilities. In addition to this machine,
the machine situated in our group room is used, albeit not as good as the one in
the laboratory. The configurations are listed in Appendix A.

Since the configurations of the machines available differ, it is not possible to ex-
amine a system configuration where both application server and database have
equal memory and processing capacity. As only one machine has significant com-
putation capabilities, at least one of the machines in the system configuration is
lightweight. Hence, the available machines provide three possible system config-
urations. However, as the lightweight machines are limited in processing capacity
and are insufficient for SME, the configuration containing two lightweight ma-
chines is left out. The two configurations used as levels for the hardware factor
are therefore:

Database Application
Scenario1 heavy–duty lightweight
Scenario2 lightweight heavy–duty

Table 4.2: Hardware Configurations

4.3.4 Number of Queries

2 levels: 1 and 6 queries

The experimental design specifies two levels for the number of queries executed
in a function, which are either 1 or 6 queries. The two levels are chosen after
examining the functionality containing database interactions in the Compiere so-
lution. The statistics in Table C.2 in Appendix C illustrate that a function with
only 1 query is the most common in the Compiere solution. Furthermore, the Ta-
ble illustrates the highest number of queries executed by any of the functions is 6.
Hence, number of queries is set to 1 and 6 according to the numbers observed in
the Compiere solution.

32

4.3 Factors

4.3.5 Type of Queries

3 levels: Query 1, Query 2, and Query 3

To make the metric cover a number of scenarios, it is important to examine differ-
ent queries that might be relevant in a real distributed system. Since data is used
from the TPC-H benchmark, it makes sense to partly utilize the queries from this
benchmark, which is designed specifically for the database schema. Thereby, the
queries examine a large percentage of the available data, while exhibiting a high
degree of complexity.

The 22 queries covered in the TPC-H benchmark are all SELECT queries, which
is the most commonly used query in real systems. One example of such a real
system is the Compiere solution that contains 639 functions containing SELECT
queries and 173 functions containing INSERT, UPDATE, or DELETE queries.
Thus, to comply with these statistics, the experimental design covers two different
SELECT queries and a SELECT query, where the result is used to insert data into
the database and subsequently delete it again.

Query 1 resembles query Q6 from the TPC-H benchmark and Query 2 resembles
Q14, which is illustrated in Listing B.1 and B.2 respectively in Appendix B. Query
3 also uses query Q14 as in Query 2, however additionally it inserts the data
retrieved in the query into a table and subsequently deletes it. A more detailed
description of Q6 and Q14 is provided in Section 5.1.3.

4.3.6 Workload Unit

3 levels: 1, 63, and 125 WU

The WU factor is meant as a representative unit for the users that access the sys-
tem. Since the metric is directed at SME, the highest level is set to 125. The
number is derived from the specification for SME by the European Commission.
Small enterprises are specified as having less than 50 employees and medium as
having less than 250 [28]. Choosing 125 WU is therefore approximately the mid
value. Furthermore, the worst–case scenario is assumed, which means that all
users use the system concurrently. Having assumed the worst case scenario and
in order to examine how well the system scales, the levels 1 and 63 WU are also
considered.

Although 125 seem reasonable for a SME, it is still a relatively small amount
compared to larger scale applications, where the amount of users can be tens of
thousands. However, testing for this large amount of users is not viable because
of the limited amount of resources available as mentioned earlier, as such we limit

33

Experimental Design

this factor to our target group of SME.

4.3.7 Locality

3 levels: Application Server, SQLCLR, and T-SQL

The locality factor has three levels; T-SQL, SQLCLR, and functionality on the
application server. Although the purpose of the metric is to determine whether a
certain piece of functionality should be placed on either the database or applica-
tion server, it is still important to know which implementation technique is best
on the database – T-SQL or SQLCLR. This is because T-SQL and SQLCLR per-
forms best in different areas, as mentioned in Section 1.3. As such, T-SQL might
perform better than the application server, whereas SQLCLR does not.

4.4 Replication

Performing replications is an important part of any experiment in order to reduce
deviations and errors. It is of course not possible to remove all experimental er-
rors, but it is possible to minimize the effect they might imply, thereby improving
the accuracy of the experiments. Based on the results from the preliminary ex-
periments, which were obtained by running the experiments three times, the final
experiments should be replicated 78 times. This is a compromise between the re-
quired time for executing all the experiments and a satisfactory accuracy. 78 repli-
cations give an inaccuracy of maximum 20% with a certainty of 80% (80/20). In
contrast to this 514 replications had to be made if the accuracy should be 90/10,
and 2917 replications if the accuracy should be 95/5. The calculations used to
define the amount of replications are based on the formula used in [7].

Replication formula:

n = (100zs
rx

)2

n = Amount of replications required.

z = The normal variate of the desired confidence level. Since a 80% quantile is
used, this value is 1,282 according to Table M.1 in Appendix M.

s = Standard deviation in response time.

r = Accuracy of response time. Setting the level to 20, means the mean response
time of the result will deviate with maximum 20%.

x = Mean of the response time.

34

4.5 Experiment Measures

Putting the values for c115 from the preliminary experiments into the formula
gives the following calculation:

n = (100×1,282×1,67174583
20×1,2134729

)2 = 77, 98237

The above calculation has been done for all experiments and the highest replica-
tion value was that for c115 with 77,98, thus 78 replications are performed. All
the results from calculating the amount of replications can be found in Appendix
J.

4.5 Experiment Measures

The different functionality available in the system have different possible out-
come; correct, incorrect, or refused. In order to evaluate the performance of these
outcomes the following measures are suggested: response time, throughput, relia-
bility, availability, and utilization [29]. However, as we are only concerned about
the correct outcomes of the performed experiments, the availability and reliabil-
ity measures are disregarded. The reason is that correct execution of function-
ality is of primary concern of an implementation, whereas incorrect and refused
represents exceptions. Therefore, during the execution of the functionality, the
following measures are recorded for further analysis.

Response Time

The analysed functionality is provided by the application server, even though the
underlying functionality is situated on either the application server or the database.
Hence, the response time is the time between the invocations of the function on
the application server until the result of the function is available for use in the
application. The measurement is performed individually for each of the functions
representing the experiments.

Throughput

Throughput measures the rate of function executions per unit of time the system
is able to service and is measured to determine how well the system scales as load
on the application server and database are varied according to the WU factor. This
effectively means:

35

Experimental Design

Throughput =
workload units

response time

CPU Utilization

There are three CPUs present in the system. As described in the hardware con-
figuration in Appendix A, one of the machines has 1 CPU and the other 2 CPUs.
Both the CPU on the application server as well as the CPU on the database is mea-
sured concerning utilization. The measured CPU utilizations are an average of the
percentage of CPU time used during the execution of a function in the application
server and database respectively.

Network Utilization

The various functions transfer different amount of data across the network as the
underlying functionality is placed on either the application server or the database.
Hence, the total amount of transferred data is measured for each execution of the
functions.

36

Part III

System Development

37

Chapter 5

Experiment Implementation

In this chapter, the experiments specified in the experimental design are imple-
mented, this is done in order to be able to produce sample data that can be used to
define the metric. An application is implemented that include functionality corre-
sponding to each of the 216 scenarios specified in the experimental design. The
reason only 216 scenarios are implemented is because the hardware factor cannot
be implemented directly into an application, but only varied externally by switch-
ing between the two hardware configurations respectively. This chapter contains
a description of the setup used for the different experiments, as well as a detailed
description of the implementation of the application and the various performance
optimizations applied to both the setup and application.

5.1 Implementation

The application is implemented according to the factors and their corresponding
levels as specified in Chapter 4. One of the factors is locality, where the appli-
cation server in this factor is used as a common base for the implementation, i.e.
the functionality is first implemented for the application server. The functional-
ity provided by this implementation is then translated to SQLCLR and T-SQL
respectively. This approach ensures the functionality provided by the different
implementations is equivalent. The reason for using the application server as the
common base is the statistics from Compiere solution used to outline the com-
putations factor are gathered from the application server tier. Furthermore, one
of the ideas of integrating the .NET framework on the database is to enable the
programmer to move code from the application server to the database [3].

As the Compiere solution is implemented in Java, the values obtained from the

39

Experiment Implementation

Figure 5.1: System Architecture

statistics as presented in Appendix C need to be converted in order to be valid in
the C# implementation. Therefore, statements accessing attributes using implicit
get and set methods are counted as explicit method invocations. Furthermore,
the using keyword in C# is able to implicitly call the dispose method. Hence,
the different functionalities implemented for the application server and SQLCLR
seem to contain fewer method invocations than defined in the computations factor;
however, this is not the case. The following sections contain the necessary steps
involved in developing the application and to comply with the stated factors in
Section 4.3.

5.1.1 System Architecture

First the system architecture has to be determined. The system is, as already
mentioned, structured as a three–tier system, however physically it is only a two–
tier system as illustrated in Figure 5.1. The reason this approach is chosen is from
a financial viewpoint, since choosing a true three–tier approach would require
125 different clients according to the WU factor. Instead, the application server is
structured to simulate 1, 63, and 125 different clients accessing the application by
using threads.

It can be argued whether this approach is optimal, since using threads to simu-
late clients is not pure concurrency, considering only one Thread can truly run

40

5.1 Implementation

at a time, unless the simulation is performed on a machine with multiple proces-
sors. However, context switching between different threads is so fast that it is
hardly noticeable. Another argumentation against using threads is the fact that it
introduce an overhead each time threads have to be context switched [30]. The
overhead is because each time a Thread has used its time slice on the CPU, the
state of the Thread has to be saved; thereby the thread scheduler can go back to
the exact state of that Thread when it is granted a time slice again. Using true
three–tier system architecture would also introduce an overhead, since the appli-
cation server would have to handle the incoming connections. We do however,
acknowledge the most realistic approach would be to structure the system as a
true three–tier system architecture.

5.1.2 Setup

The setup is specified according to the hardware and data volume factors. The
hardware scenarios used are as specified in Section 4.3.3, with the configurations
listed in Appendix A. In order to generate different data volumes, a tool named
DBGEN developed by TPC is utilized [31]. DBGEN is a database population
generator that generates random data corresponding to the schema for the TPC-
H benchmark, which is also the same schema used for the database as listed in
Appendix D. Since the data is randomly generated, the same data generated for
1GB and 17GB are used in both hardware scenarios to ensure a fair comparison.

Optimizations

The setup is a combination of several components, such as hardware, operating
system, database, and the implemented experiments. Each of these components
is optimized according to existing guidelines. The guidelines are primarily from
two sources, namely a series of articles named “How to Perform a SQL Server
Audit” [32] and a document named “Improving .NET Application Performance
and Scalability” [26]. One of the guideline mentioned in [32] states that most SQL
Server configuration settings should not be changed, since doing so will likely
result in decreased performance. For example, in our case where the database runs
dedicated on a server, the maximum and minimum memory allocation settings is
left at default, since it allows SQL Server to dynamically allocate memory for best
performance.

41

Experiment Implementation

5.1.3 Query Selection

The three selected queries for the experiments are modifications of the TPC-H
queries Q6 and Q14 and comply with the type of queries factor in the experi-
mental design. Furthermore, they are also designed to be comparable with the
computations factor, concerning the amount of loops and method invocations.

TPC-H Queries

The TPC-H benchmark includes 22 decision support queries, which cover a broad
spectrum of useful real world business scenarios. Among the 22 queries stated in
the TPC-H benchmark, only the following two queries are used in the developed
experiments:

• Forecasting Revenue Change Query (Q6)
This query forecasts how much could be saved over a given year if cer-
tain discounts +/- 0.01 are removed. This is done by running through the
LINEITEM table and adding the discounts with a shipping date in the cur-
rent year, the correct discount, and a quantity less than the stated quantity.

• Promotion Effect Query (Q14)
This query is used to monitor how various promotions such as campaigns
or advertisement is responded to on the market. This is done by performing
a join on the LINEITEM and PART tables and retrieving only those parts
that are shipped in a given year and month and returns the percentage of the
revenue for them.

Our Queries

The Q6 and Q14 queries are used as basis and modified according to fulfil the
computations factor presented in Section 4.3.1. That is, if the computations factor
needs 4 columns and only 2 is provided by the original TPC-H query, additional
columns are added in order to make the computations comparable. Furthermore,
in order to make the queries comparable both are modified to return at most 10
rows.

Query 1, illustrated in Listing B.1, is almost identical to the TPC-H query Q14.
The difference is that in order to fulfil the computations factor, our query addi-
tionally selects the columns L SHIPMODE, L PARTKEY, and L SUPPKEY.

Query 2 is illustrated in Listing B.2 and is somewhat similar to the TPC-H query
Q6. The difference between the two queries is that our query selects at most

42

5.1 Implementation

10 rows and additionally retrieves data from the four columns L SHIPMODE,
L PARTKEY, L SUPPKEY, and L TAX instead of getting the REVENUE aggre-
gate. The reason for this substitution is to get a simpler query that does not utilize
many resources on the database.

Query 3 is illustrated in Listing B.3. Query 3 is actually a combination of multiple
statements and uses the same SELECT statement as in Query 2. In addition, it
inserts the four columns of data retrieved in Query 2 into a separate table and
subsequently deletes it.

The reason for choosing these three queries is that they are rather simple and have
a reasonable execution time making them suitable for running a large number of
replications. Furthermore, the TPC-H queries are representative for any industry
that manage, sell, or distribute products. The forecasting (Q6) and promotion
effect (Q14) are common tasks in these businesses [31].

Query Optimization

The three queries are optimized using the MSSQL2005 Database Engine Tuning
Advisor (DETA) tool. By using the queries as input to the DETA, several op-
timizations are suggested in order to achieve better performance. For the three
queries, the DETA suggests 2 indexes and 2 statistic to be created as presented in
Appendix F.1. The statistics are associated with the LINEITEM table, whereas an
index is associated with both the PART and the LINEITEM tables respectively.
The expected performance gain from the suggested optimizations is estimated to
be approximately 99%. All of the optimizations suggested by DETA are per-
formed. The reason for not using optimizations such as table partitioning is that
partitioning is not supported in the standard version of SQL Server, which is used
in the system.

• Statistics
Statistics are used by the query optimizer to help create the most optimal
query execution plan for a query and whether indexes should be used for the
query. The statistics contain information such as cardinality and selectivity
[16].

• Partitioning
Partitioning should be understood as the process of splitting either a database
or table into several smaller databases or tables. The partitioning can be
done following different approaches, such as partitioning on a range of keys
for a table or for a list of values. The benefit of partitioning can be in-

43

Experiment Implementation

creased performance, scalability, and manageability, since queries do not
need to search and retrieve data from e.g. a large table [16].

5.1.4 Order of Execution

A consideration to take into account when implementing the experiments is the
order in which they should be executed. This should not be neglected, since
mechanisms such as caching on the database can affect the outcome. Instead
of executing each experiment 78 times in a row, to comply with the replications,
and then proceed to the next experiment, a random method has been implemented
that generates a random sequence of numbers from 0–107 corresponding to the
number of experiments. This method is executed 78 times in order to generate
the random execution order for the 78 replications. The execution order of the
experiments in the first replication is presented in Appendix E.1. The sequence of
numbers is therefore not random across the 78 replications, i.e. any number can
at most appear two times in a row, which happens when a number is the last in a
replication and the first in the succeeding replication.

The reason for generating the numbers this way is the random pattern of ran-
dom functions. Preliminary testing of the .NET random function revealed a non–
desirable effect. The last numbers in a sequence usually appeared frequently be-
cause those numbers were the only ones left. Hence, in order to reduce the non–
random pattern, the method described previously is used.

5.1.5 System Initialization

In order to provide a common base before the execution of the experiments, an
initialization step is developed. The initialization procedure contains two steps
that ensure the preconditions are the same.

First, the database is restarted in order to reset any caching that might be present.
Furthermore, any non–vital processes are stopped, thereby the database has the
maximum amount of memory available and the effect by other processes that
might require processing during execution is minimized.

Second, the 48 methods calling the SP on the database are initialized; thereby the
overhead of loading the data to main memory, establishing the connection pool
as well as compiling the SP and queries is avoided. Hence, the variance in the
measurements is smaller and fewer replications are required.

44

5.1 Implementation

5.1.6 Performance Monitoring

In order to determine how well each of the experiments performs, it is necessary
to continuously collect information concerning different performance aspects of
the experiments, which are related to the measures specified in Section 4.5. Ac-
cording to [32], some of the key aspects to monitor are disk, memory and pro-
cessor utilization. To collect information on these aspects, the .NET Framework
PerformanceCounter class is utilized, which can be used to read a number
of Windows NT performance counters. The performance counters implemented
in the application are:

• “Available KBytes”
Measures the amount of free memory

• “% Processor Time”
Measures the utilization of one or more CPUs in percentage – can exceed
100% for multiple CPUs

• “Avg. Disk Queue Length”
Measures how long the I/O queue is for the disk

• “Bytes Total/sec”
Measures both data transmitted and received over the network

Listing 5.1: Sample Performance Counter
1 ...
2 PerformanceCounter CPUdb = new System.Diagnostics.

PerformanceCounter("Process", "% Processor Time", "
sqlservr", "D631A-CELSIUS");

3 ...
4 dbCPU += CPUdb.NextValue();
5 ...

A sample performance counter is illustrated in Listing 5.1. In this case, the
counter is specified for collecting information about how much processor time
the sqlservr process, which is the process handling the SQL Server, consumes
on the remote database situated on the Celsius machine. To retrieve the informa-
tion, the NextValue() is called as illustrated in line 4. Furthermore, in order to
reduce the overhead that performance counters introduce, this information is only
collected once every 1/10th of a second.

In addition to the information collected from the performance counter, another
aspect has to be considered, namely the time it takes for executing each of the

45

Experiment Implementation

experiments. The response time is calculated using a special high–resolution
counter called QueryPerformanceCounter, which supports a timing res-
olution of approximately 10 milliseconds. This is in contrast to the standard
DateTime.Now() timer method that only supports a resolution of 1 second
[33].

5.2 Code Snippets

The section presents code snippets for each of the three localities; application
server, SQLCLR, and T-SQL. The code snippets illustrate the implementation of
the same piece of functionality for each of the three. The functionality has been
picked because it gives a good overview of the general implementation. The code
functionality is specified for Query 1, 1 computations, and 1 number of queries.
In order to reduce cluttering the code with the query used in the implementation,
the query has been left out and replaced by a QUERY1, however refer to Query 1
in Appendix B for an outline of the query.

5.2.1 Application Server Code

To simulate that all code is executed on the application server, no code is placed
on the database, as neither SP nor general functionality. Instead, the functional-
ity is restricted solely to the application server, using ad–hoc string based SQL
statements to retrieve data from the database, which is illustrated in Listing 5.2.

Listing 5.2: Application Server Code
1 public void Query1Number1Comp1()
2 {
3 int i = 0;
4 StringBuilder sb = new StringBuilder();
5 using (SqlDataReader sdr = db.ExecuteReader(CommandType.

Text, QUERY1))
6 {
7 while (sdr.Read())
8 {
9 sb.Append(sdr.GetString(0)).Append(sdr.GetInt32

(2)).Append(sdr.GetDecimal(3));
10 i += sdr.GetInt32(2);
11 }
12 }
13 sb.Append("1"); sb.Append("2"); sb.Append("3"); sb.Append

("4"); sb.Append("5");
14 sb.Replace(’1’, ’2’);
15 }

46

5.2 Code Snippets

To simulate one computation, a StringBuilder is implemented, which the
data retrieved from the database is appended to together with a number of static
appends, in order to reach the set number of method calls as specified in Section
4.3.1. Another point to consider regarding computations is loops, which is simu-
lated by a while loop that iterates through the data retrieved from the database.
The connectivity to the database is handled through an external connectivity class,
which manages all communication with the database, such as opening and closing
the connections to the database.

5.2.2 SQLCLR Code

As opposed to placing all code on the application server, only the connectivity
between the application server and database is handled on the application server.
The actual code containing the functionality is solely placed on the database, how-
ever compared to the code described previously for the application server, there is
not much difference as illustrated in Listing 5.3.

Listing 5.3: SQLCLR Code
1 [Microsoft.SqlServer.Server.SqlProcedure]
2 public static void ClrQuery1Number1Comp1()
3 {
4 using (SqlConnection conn = new SqlConnection("context

connection=true;"))
5 using (SqlCommand cmd = conn.CreateCommand())
6 {
7 int i = 0;
8 StringBuilder sb = new StringBuilder();
9 cmd.CommandText = QUERY1;

10 cmd.CommandTimeout = 360;
11 conn.Open();
12

13 using (SqlDataReader sdr = cmd.ExecuteReader())
14 {
15 while (sdr.Read())
16 {
17 sb.Append(sdr.GetString(0)).Append(sdr.

GetInt32(2)).Append(sdr.GetDecimal(3));
18 i += sdr.GetInt32(1);
19 }
20 }
21 sb.Append("1"); sb.Append("2"); sb.Append("3"); sb.

Append("4"); sb.Append("5");
22 sb.Replace(’1’, ’2’);
23 SqlMetaData[] metadataQuery1 = new SqlMetaData[] {
24 new SqlMetaData("s_name", SqlDbType.Text)};
25 SqlDataRecord record = new SqlDataRecord(

metadataQuery1);

47

Experiment Implementation

26 record.SetSqlString(0, sb.ToString());
27 SqlContext.Pipe.Send(record);
28 }
29 }

In line 1, the class is specified as a SP, however lines 2–22 are almost equal to
placing functionality on the application server, except the connectivity internal on
the database is handled explicitly in the SP. It is however noteworthy to recall from
Section 2.2.4 that in order to use the client’s existing connection, thus not having to
create a new connection, the SqlConnection has to be specified as “context
connection=true” as illustrated in line 4. In lines 23–27, is the code neces-
sary to send results back to the application server, where the SqlDataRecord
class represents a single row of data and its corresponding meta data, which is
specified by the SqlMetaData object in line 23. The SqlDataRecord is
then sent back to the application server using the SqlPipe as specified in line
27.

5.2.3 T-SQL Code

As with SQLCLR, only the connectivity between the application server and
database is handled on the application server. The T-SQL code is illustrated in
Listing 5.4. Line 1 in Listing 5.4 contains the standard keywords used to create
a T-SQL SP on the database, as well as an OUTPUT variable declaration, which
specify it should be returned upon successful execution. The statement in line 4,
is an optimization as it stops the message containing the number of rows affected
to be returned as part of the result. Hence, reducing the amount of data returned to
the application server. In lines 5–6, are various declarations of required variables,
however only one is of particular interest. In line 6, an in–memory temporary
table is created, which is populated in line 8 with the values returned by Query
1. Instead of the in–memory table, a CURSOR could have been used. However,
CURSOR should generally be avoided as they are slow and use more resources
compared to e.g. in–memory table [32]. Hence, the usage of an in–memory table
is an optimization of the implemented T-SQL code. The data obtained by Query 1
is extracted from the temporary table inside the WHILE loop in lines 10–14. Each
row in the temporary table is extracted and either appended to the @sb variable or
added to an integer variable as seen in line 13. At the end of the SP all the 1’s in
@sb are replaced with 2’s.

Listing 5.4: T-SQL Code
1 CREATE PROCEDURE [dbo].[TsqlQuery1Number1Comp1] (@sb VARCHAR

(8000) OUTPUT)
2 AS

48

5.2 Code Snippets

3 BEGIN
4 SET NOCOUNT ON;
5 DECLARE @i INT, @count INT, @countlimit INT, @names VARCHAR

(25), @namen VARCHAR(25), @partkeyp INT, @addresss
VARCHAR(40)

6 DECLARE @tempTable TABLE(ROW_VALUE INT IDENTITY (1,1),
S_NAME VARCHAR(25), N_NAME VARCHAR(25), P_PARTKEY INT
NOT NULL, S_ADDRESS VARCHAR(40))

7 SELECT @i = 0, @count = 1, @sb = ’’
8 INSERT INTO @tempTable QUERY1
9 SELECT @countlimit= COUNT(row_value) FROM @temptable

10 WHILE @count <= @countlimit
11 BEGIN
12 SELECT @names = s_name, @namen = n_name, @partkeyp =

p_partkey, @addresss = s_address FROM @tempTable
WHERE @count = row_value

13 SELECT @sb = @sb + @names + @namen + @addresss, @i = @i
+ @partkeyp, @count = @count + 1

14 END
15 SELECT @sb = @sb + ’1’ + ’2’ + ’3’ + ’4’ + ’5’
16 SET @sb = REPLACE(@sb,’1’,’2’)
17 END

49

Chapter 6

Experiment Results

This chapter contains a presentation of the results of the experiments. As de-
scribed previously, the experimental design includes 432 different experiments,
which have been replicated 78 times to a total of 33.696 experiments. To help
interpret and present the large amount of results collected from the experiments,
a number of statistical methods have been employed. These methods as well as a
discussion of the accuracy of the experiments are presented in this chapter. Fur-
thermore, the summarized data collected from using the statistical methods are
used to graphically illustrate and discuss interesting findings.

6.1 Statistical Methods

When working with large sets of data that should be analysed, it is favourable to
use statistical methods to summarize the data and present it as graphs or charts.
The methods used are the mean value and the confidence interval, which are de-
scribed below.

6.1.1 Mean Value

The reasons for using the mean value of the replications are to reduce the sum of
squared deviation as much as possible and because the skewness of the sample
data is limited. If the determinants in Figure 6.1 are not fulfilled, it is recommend-
able to use mean instead of e.g. mode or median [7].

• Mode
The most frequent element in a data set.

51

Experiment Results

Figure 6.1: Deciding between the Median, Mode, and Mean

• Median
The element located exactly between two exact halves of a sorted data set.

In order to compare the different alternatives, the mean value of each of the mea-
surements is calculated by taking the sum of all the replications divided by the
number of replications:

Mean x =
1

n

n∑
i=1

xi

n = Number of replications
xi = Measured value of the i’th replication

6.1.2 Standard Deviation

The mean value is an average value; however, it disregards the variance in the
replications. The variance should be understood as a measurement of the disper-
sion of a replication, thereby indicating how far from the mean value the typical

52

6.1 Statistical Methods

measured value is. In order to calculate confidence intervals of the mean value,
standard deviation must be determined. The variance is calculated by:

V ariance s2 =
1

n− 1

n∑
i=1

(xi − x)2

n = Number of replications
xi = Measured value of the i’th replication
x = Mean value

Standard Deviation s =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2

6.1.3 Confidence Interval

The calculated mean value is as explained an average of the 78 replications.
Hence, the obtained values for each of the 78 replications are likely different from
the calculated mean value and even varies between samples. As the values differ
from the mean, it is not a perfect estimate. In fact, it is not possible to obtain a per-
fect estimate from any finite size samples [7]. Therefore, it is required to calculate
an interval, which with a certain probability contains the mean of the sample. The
probability of the mean being within a certain interval is given by:

Probability{c1 ≤ x ≤ c2} = 1− α

x = Mean value
α = Significance level
1− α = Confidence coefficient

The value of 1 − α can be converted to percent. Hence, the value of 100(1 − α)
is called the confidence level and is usually near 100%. In our case, α is specified
to 0,2, which means with 80% confidence the mean is between interval. The
confidence interval within the range of c1 and c2 is calculated by

Confidence Interval(x−
z1−α/2S

√
n

, x +
z1−α/2S

√
n

)

n = Number of replications
x = Mean value
z1−α/2S = (1− α/2)− quantile
S = Standard Deviation

53

Experiment Results

In order to calculate the bounds of the confidence interval a value for the quan-
tile needs to be obtained. The 100-quantiles are referred to as percentiles. The
quantile value is obtainable from tables such as the one in Appendix M.

When the confidence intervals are calculated for the different experiments it
is possible to determine, which experiment is the better one and thereby de-
cide whether the functionality should be placed on the application server or the
database. If the calculated confidence intervals do not overlap, one of the com-
pared experiments can be said to be better than the other. However, if the confi-
dence intervals of two experiments overlap it is not possible to determine which
of the experiments is the best without performing additional replications to reduce
the uncertainty.

6.2 Replication Accuracy

Before examining the data gathered from the experiments, it is advisable to anal-
yse the accuracy of the data, since data not within the expected bounds can lead
to misleading conclusions. As specified in Section 4.4, the satisfactory amount of
replications was calculated to be 78. This amount of replications should ensure
with a certainty of 80% that the measured mean value of the response time does
not deviate with more than 20% from the real mean value. However, whether this
is the case cannot be determined exactly, since the real mean value is unknown.
Thus, it can only be assumed the measured mean values for 78 replications are
correct with the stated accuracy.

Although the real mean value is unknown, it is still possible to determine whether
the results follow the tendency from the replication calculations in Section 4.4.
That is, whether the results that deviate the most from the mean are the same
experiments that required the most replications. By doing this, it is possible to
detect unexpected errors since experiments with low replication levels should be
the ones with lowest deviation, according to the formula for replications in Section
4.4.

The replication calculations are listed in Appendix J and the deviations in the
result are listed in Appendix I. When examining the values in these two tables,
some interesting experiments are c115, c150, and c83. c115 was the one that
required the most replications with 77,98, but the result is much more accurate
and only two experiments deviate with more than 10% from the mean and none
deviate with more than 20%. c150 also required a lot of replications with 35,75,
which is also the tendency for the result where 73 of the replications deviate with
more than 50%. When examining the other spectrum of deviations, c83 only

54

6.3 Sample Data

required 0,0004 replications and the result also shows that none deviates with
more than 10%. Generally speaking, it seems the tendency from the replication
calculations is not far off for the results, even though a few experiments deviates
with more or less than expected.

6.3 Sample Data

The data collected during the execution of the experiments is as described in Sec-
tion 4.5 divided into four groups: response time, CPU utilization, network utiliza-
tion, and throughput. The data for the four groups are obtained by the various
performance counters as described in Section 5.1.6 and are collected for each of
the 33.696 experiments. Presenting all the data from these experiments would be
too vast; instead, in the following a description of the data that displays the most
interesting deviations is given. The displayed data is the mean value for each of
the 78 replications, calculated using the equation in Section 6.1.1. Furthermore,
the confidence interval is illustrated for each of the values by using the confidence
interval equation in Section 6.1.3. The interval is represented by a high and low
value and the interval between is the confidence interval.

The data represented use the following static configuration:

• 6 Number of queries

• 6 Computations

• Hardware Scenario1

• 1GB Data volume

The factors WU, locality, and type of queries are varied throughout the collected
data.

6.3.1 Response Time

The response time provides an overall measure of how fast each of the experi-
ments executed and is the prime measure used to determine how well each of the
experiments performs.

55

Experiment Results

1 Workload Unit

Figure 6.2 illustrates the response time for 1 WU. The tendency is clear; the appli-
cation server has the highest response time for all three queries and the SQLCLR
has the lowest. The results are not surprising, since simulating only 1 WU puts
limited load on the database and as such SQLCLR and T-SQL can utilize the
database more effectively.

Figure 6.2: Response Time - 1 Workload Unit

An interesting point to consider is the large confidence interval illustrated by the
two black lines for Query 3. However, this is likely because the execution time of
the experiments for 1 WU is as low as approximately 5ms. The slightest variance
in the setup, such as another process briefly utilizing the CPU, brief network con-
gestion, or the performance counter measuring the elapsed time, affects the results
much more than if the execution time is longer.

63 Workload Units

Figure 6.3 illustrates the response time for 63 WU. As opposed to the tendency
for 1 WU, the figure indicates the application server is noticeable faster than both
SQLCLR and T-SQL for Query 1, marginally faster than SQLCLR for Query 2,

56

6.3 Sample Data

but not the fastest for Query 3. The reason the application server is faster for
Query 1 and 2 is because the load on the database is increased as the number of
WU is increased, which can also be read from the graphs illustrating the CPU
utilization in Section 6.3.3.

Figure 6.3: Response Time - 63 Workload Units

However, even though the load on the database is increased, the results for Query
3 displays an interesting finding, namely the SQLCLR is the fastest and the dif-
ference between the application server and T-SQL is marginal if considering the
upper confidence interval value of 1,19 for application server and lower confi-
dence interval value 1,23 for T-SQL. Recall that Query 3 uses the data from the
SELECT statement to first insert it in the database and subsequently delete it.
For both SQLCLR and T-SQL, this does not imply additional round trips to the
database, since the code executing the statements reside on the database. How-
ever, the application server requires additional round trips to the database for both
inserting and deleting, thereby increasing the overall response time. These addi-
tional round trips can also be read from the network utilization in Section 6.3.4.

Another issue to consider compared to 1 WU, is the decrease in confidence interval
for primarily Query 1 and 2 if considering the ratio between the confidence inter-
val and mean value. However, this can be contributed to the increased execution
time compared to 1 WU.

57

Experiment Results

125 Workload Units

Since the ratio for the graph for 125 WU is almost identical to that for 63 WU, the
figure is placed in Appendix K. Not much can be concluded from the figure that
has not already been noted for 63 WU. It does however indicate the tendency for
63 and 125 WU might span beyond 125 WU, i.e. the application server performs
best for Query 1 and 2 and SQLCLR for Query 3. However, further experiments
have to be performed to make a conclusion on this subject.

6.3.2 Throughput

To get an idea of how well the different experiments scale, it makes sense to look
at the throughput for different loads on the system by varying the amount of WU.
The throughput is, as mentioned in Section 4.5, the rate of function executions per
unit of time the system is able to service.

Figure 6.4: Throughput - Query 1

58

6.3 Sample Data

Query 1

Figure 6.4 shows a somewhat mixed tendency, since both SQLCLR and the appli-
cation server delivers an increase in throughput for all three WU levels, whereas
the throughput for T-SQL declines for 125 WU. Generally speaking, the applica-
tion server delivers the best throughput, except for 1 WU.

Figure 6.5: Throughput - Query 2

Query 2

When examining Query 2 as illustrated in Figure 6.5, it shows the best throughput
for both T-SQL and application server is for 63 WU, which could indicate the
experiments only scales up to a certain level. However, for SQLCLR, the best
throughput is still for 125 WU, with 474,2 transactions/second compared to 458,1
for 63 WU. Furthermore, compared to the throughput for Query 1, the SQLCLR
is closer to the performance of the application server.

59

Experiment Results

Figure 6.6: Throughput - Query 3

Query 3

Figure 6.6 shows the throughput for Query 3. Common for all three placements
– the best throughput is for 63 WU, albeit only with a slight advantage over 125
WU, considering the different y–axis scales for the three queries. The best overall
throughput is for the SQLCLR; however, compared to Query 1 and 2, the T-SQL
is suddenly not the worst performing of the three if considering all three WU. This
can be contributed to what was discussed for response time concerning the insert
and delete operations in Query 3.

As all three figures show, the tendency seems to be the throughput for 1 WU is
much worse than that for both 63 and 125 WU. The throughput for 63 and 125
WU is almost equal but the fact that 63 WU generally produce the best throughput
could indicate the maximum load has been reached for the system for 125. Fur-
thermore, there is a mixed tendency between SQLCLR and the application server
concerning the best throughput; however, the SQLCLR appears to perform the
best.

Finally, it is interesting to observe the rather large difference between the through-
put for the three queries. For Query 1, the maximum transactions/second is 172,

60

6.3 Sample Data

for Query 2 it is 531, and for Query 3 it is 73. This is not surprising, since Query
2 is also the simplest query compared to Query 1, which contains both aggregates
and joins. Query 3 uses the same SELECT statement as Query 2, however ad-
ditionally it also inserts and deletes data, which lengthen the execution time and
thereby reduces the throughput. Furthermore, insert and delete transactions are
continuously logged on the database in order to enable roll–back if an error occur,
which also imply additional overhead.

6.3.3 CPU Utilization

As described in Section 4.5, CPU utilization is the percentage of CPU time used
during the execution of the functions on the application server and database re-
spectively. As the Celsius machine has two CPUs, the utilization for the database
is divided by two in order to make it comparable. The confidence intervals for
the graphs are illustrated individually for the application server and database in
Appendix K. Furthermore, the figure for 1 WU is illustrated in Appendix K, since
the results are inconclusive.

63 Workload Units

When examining Query 1 and 3 in both Figure 6.7 and Figure 6.8, the tendency
is the overall application CPU utilization for an experiment is almost identical
for the three placements. Not surprising, there is also a connection between how
much functionality is placed on the application server and database respectively
and the CPU utilization.

What is surprising however, is that the CPU utilization for Query 2 is rather small
both for SQLCLR and application server. For 63 WU the combined CPU utiliza-
tion is 5,13% for the application server and 6,86% for the SQLCLR. The reason
for this low utilization is probably that Query 2 is a very simple query with no
joins or aggregates. Therefore, the execution time of the query is very short and
the performance counters might miss high CPU utilization readings considering
the interval between successive reads is 1/10th of a second. The CPU utilization
when using T-SQL is not quiet as low, which can be because the response time for
T-SQL is higher and the counters therefore measure more values, thus achieving
higher accuracy.

61

Experiment Results

Figure 6.7: CPU Utilization - 63 Workload Units

125 Workload Units

With 125 WU, the measured CPU utilization for Query 2 for application server
and SQLCLR gives a more accurate result. The application server utilizes 50,08%
overall and SQLCLR 61,63%. This is still lower than for the other queries, but as
mentioned earlier; this is because Query 2 is simpler than both Query 1 and 3.

6.3.4 Network Utilization

The network utilization measures how much data is transferred across the net-
work on the application server, both inbound and outbound. However, since it is
not possible to fit the setup into a closed network, there might be small deviations
because of this, since other machines might be accessing the network. Further-
more, it should be noted the amount of bytes transferred is not solely tied to the
queries, since monitoring performance counters remotely accounts for additional
network traffic. The figure for 1 WU is placed in Appendix K, since the results
are inconclusive because all values lie in the same confidence interval.

62

6.3 Sample Data

Figure 6.8: CPU Utilization - 125 Workload Units

125 Workload Units

Figure 6.9 illustrates the network utilization for 125 WU. The figure for 63 WU
has been excluded since it is similar to that for 125. Compared to 1 WU, the figure
for 125 draws a completely different picture, where the confidence interval seems
to be somewhat settled. SQLCLR clearly uses the least amount of bandwidth and
the applications server the most.

The results of this figure are not surprising, since for all three queries, the SQL
statements used for the application server are pure ad–hoc SQL strings, compared
to the parameterized approach for T-SQL and SQLCLR. In effect, this results in
more characters having to be transferred across the network, for Query 1 this is
364 chars for the application server and 22 for T-SQL – a factor 17. Obviously as
the number of WU increase, the required bandwidth is increased as well.

However, this cannot alone account for the large difference for the application
server for Query 3. Recall that Query 3 also inserts and deletes data in the
database, for T-SQL and SQLCLR this does not require additional round trips to
the database as was discussed earlier. In contrast, the application server not only
has to make additional round trips, but it also has to transmit the batch of INSERT

63

Experiment Results

Figure 6.9: Network Utilization - 125 Workload Units

statements where each statement is approximately 73 chars, which grows along
with the number of WU.

6.3.5 Memory Consumption

Analysing the data concerning memory consumption, the results are quite one–
sided as illustrated in Figure K.11 in Appendix K. For all the experiments, the
difference is only 0,18%, where the amount of free memory is approximately 2,6
GB of 5.3 GB for Scenario1 and 640 MB of 3 GB for Scenario2. This could
indicate the memory settles once it has reached a certain level and thus does not
cause any bottlenecks that might affect the performance of the experiments, since
the memory limit has not been reached.

6.3.6 Disk Queue Length

The length of the disk queue on the database is an estimate of the number of
outstanding requests for the disk. The number of outstanding requests contains
both requests that are not yet serviced as well as the requests that are currently

64

6.4 Summary

serviced. As illustrated in Figure K.9 in Appendix K, the length of the disk queue
even for 125 WU is very short. Generally speaking, a disk queue length below
2 during the execution of an application is satisfactory [32]. Therefore, the disk
utilized by the database is not a bottleneck for the system and does not have a
significant influence on the results gained from the experiments.

6.3.7 Hardware

As already stated, the experiments include two different hardware configura-
tions. One configuration with a heavy–duty database and a lightweight applica-
tion server (Scenario1), and another with a lightweight database and a heavy–duty
application server (Scenario2). Even though no resources have been added, Sce-
nario1 still performs twice as fast overall as Scenario2, with a mean response time
of 0,452 seconds compared to 0,908 seconds. When examining the specific ex-
periments, the same tendency seems to be the case, where Scenario2 is generally
slower than Scenario1.

However, it is interesting to examine the three different queries in this context.
For Query 1, Scenario2 only requires about 50% more time than Scenario1, while
for Query 2 it requires twice as much time and for Query 3 three–time as much.
An explanation for Query 2 is because of the increased CPU utilization, which
e.g. uses an aggregate as opposed to Query 1 that is straight table retrieval. Query
3 on the other hand can be explained because it performs a number of inserts and
a delete in the database, which demands a lot of writing on the disk. As such, the
performance of the disk is very important for Query 3. Therefore, Query 2 and 3
benefit the most from having a heavy–duty database.

6.4 Summary

The results presented in this chapter generally indicate an advantage of using the
application server or SQLCLR rather than T-SQL. However, this does not mean
that T-SQL is never preferable, most noticeable are the experiments c276, c68,
c106, c212, and c213, which are listed in Appendix I. These experiments are a
combination of the following factors and levels; 1 computations, 1 or 6 number
of queries, Query 3, hardware Scenario1, 1 or 17 data volume, and 1 or 63 WU.
These experiments show a general pattern, namely the number of queries, data
volume, and WU factors have the least impact on T-SQL, except for 125 WU.
Furthermore, by examining Table 6.1, it is possible to get an insight into how
T-SQL overall compares to SQLCLR and the application server.

65

Experiment Results

Response Time
AppQ1 0,29075649
CLRQ1 0,38132076
TSQLQ1 0,47114546
AppQ2 0,12895275
CLRQ2 0,1477825
TSQLQ2 0,24352864
AppQ3 1,47130295
CLRQ3 1,45850985
TSQLQ3 1,5267751

Table 6.1: Placement by Query

In Table 6.1 is listed the mean response time, which is for all combinations of
factors except locality and type of queries. The table shows that T-SQL is the worst
performing of the three, although there is only a small difference for Query 3,
which is the query that T-SQL performs best on. A reason for this is as mentioned
in [3] that T-SQL is good at data access that contains little or no procedural logic
at all. As such, the reason SQLCLR performs better than T-SQL is likely because
there are computations in all the experiments, which was also noted in [3] to be in
SQLCLR’s favour.

In general, across all three queries however, the application server is the best per-
forming followed by SQLCLR. The reason for this is likely because of the in-
creased load introduced by executing T-SQL and SQLCLR code on the database.
This is also noted in [16], where it is mentioned that performance and scalability
might be affected by the increased load on the database. This is also the conclu-
sion reached when examining the figures in this chapter, although some interesting
observations were noted as well. For example, the network utilization of the ap-
plication server, where in best cases it transferred more than twice as much data
across the network and in worst cases more than six times.

66

Chapter 7

The Metric

In this chapter, the definition of the metric is presented using the data from the
conducted experiments, as was presented in the previous chapter. Additionally, to
ease the use of the metric, a tool is implemented that can be used by developers to
input levels for the different factors specified in the metric. The tool is presented
along with a sample usage of the metric.

7.1 Metric Development

To develop an effective software metric some conditions can improve the quality
of the metric as stated in [6]. The applicable of these conditions have been used
to define the metric in this thesis:

• Simple and computable
It is easy for the developer to use the metric and it does not demand inordi-
nate effort or time. To achieve this condition, a tool is implemented where
the developer only needs to input the levels for each factor. Thereby, the
developer does not waste any time or effort on mathematical formulas and
calculations.

• Intuitively persuasive
The metric satisfy the developer’s intuitive notions by outputting an easy
understandable measure for the best locality and how certain the measure-
ment is.

• Consistent and objective
The metric result is unambiguous and always indicates a best locality using
the data from the experiments.

67

The Metric

• Consistent in the use of units and dimensions
The factors considered can be put in any combination not leading to bizarre
combinations that are impossible in real situations.

The metric has been developed with these conditions in mind and all conditions
have been met. To use the metric, the developer has to input the specified levels
for the different factors, where some of these levels can be determined precisely,
while others are only estimates. Number of queries and computations is likely not
known at design time and the developer therefore has to make a qualified estimate.
Type of queries can in many cases be determined at design time, since the design
reveals what kind of data that needs to be retrieved from the database. Hardware
is in most cases known at design time, but can of course be upgraded at a later
stage. Data volume and WU are likely also known at design time but in most
cases they increase over time, as such, an estimate has to be made on what level
can be expected. When these levels are determined, they can be specified for the
metric and the best locality can be calculated with a given certainty.

7.1.1 The Metric

The most optimal approach would be to develop a metric that has the benefit of
100% accuracy for the levels experimented on, while still retaining a certain level
of accuracy on the in–between. Thus, in order to estimate a response time for a
scenario that has not been conducted in the experiments, it is necessary to specify
a response time between two scenarios. This is possible if only one factor deviates
from the levels; however, it is somewhat more complex if more factors deviate.
Therefore, a response time is calculated for each factor individually.

For the factor examined, the level specified by the developer is used, but for the
other factors, the levels that are closest to the ones chosen by the developer are
considered. For example, if 100 WU is chosen, the metric determines the closest
value, which in this case is 125, considering the levels in the metric are specified
for 1, 63, and 125 WU. When calculating the value in–between for the WU factor,
the following formula is used:

Response time = res63 + (
res125− res63

int
× (dev − int2))

res63 = Response time for the scenario with 63 WU and the levels for the other
factors closest to the developers choice.
res125 = Response time for the scenario with 125 WU and the levels for the other
factors closest to the developers choice.

68

7.1 Metric Development

dev = The developer’s choice for WU
int = Interval between res63 and res125, in this case 125− 63 = 62
int2 = The lowest level for the factor. In most cases 1, but in this case 63

The same formula is used for the other factors, by replacing res63 and res125
with the corresponding high/low levels. However, the factors type of queries and
hardware cannot deviate from the experimented levels, since it is not possible to
draw a line between the response time of one level of these factors and the other.
As such, the developer has to specify a level that corresponds to a level for the two
factors.

Furthermore, since not all factors from the experiments affect response time
equally, the metric puts a weighted score on each factor. The weighted score
is calculated by assuming that functionality on the database is slower than on
the application server, as was the general conclusion from the results presented
in Chapter 6. The difference between the two is calculated in percent and if the
database is the fastest, a negative percent value is given. For each factor, the dif-
ference in percent between the levels is calculated and this value determines how
large the weighted score will be. A table with these values is shown in Appendix
H.

Finally, the values for the different factors are added together and the values for
T-SQL, SQLCLR, and application server can be compared. The location with the
lowest value indicates location where the lowest response time can be expected.

7.1.2 Sample Usage

The process explained in the previous section has been implemented into a tool.
The tool is straightforward and only requires the developer to input the levels
corresponding to the system, except for the type of queries and hardware factors
as was mentioned earlier. These two factors can only be chosen from a drop–down
menu and as such cannot be generic.

Figure 7.1 illustrates a screen shot from the tool. The sample is specified for the
scenario with 2 number of queries, 4 computations, Query 3, Scenario1, 12,4 GB
data volume, and 85 WU. As the result illustrates, the best locality is SQLCLR,
which is 1,58% faster than T-SQL and 10,19% faster than the application server.
These percentages are indications of how certain it is that one locality is better than
another, as such they are not accurate results that specifies SQLCLR is exactly
1,58% faster than T-SQL.

Therefore, this particular result specifies that SQLCLR is almost the same as T-
SQL and slightly better than the application server. The calculations made to

69

The Metric

determine the percentages for this scenario are listed in Appendix L.

Figure 7.1: Metric Tool Screenshot

7.2 Metric Accuracy

The metric output has been examined with the results from the experiments and
the accuracy of the metric is satisfactory. The metric’s output corresponds to the
performed experiments. The two factors type of queries and hardware cannot
be varied in the metric however number of queries, computations, data volume,
and WU can. When variations are made on these factors, the metric’s output
values varies accordingly. The accuracy of these variations is difficult to determine
precisely, because it has not been possible to validate the output with a sample
system.

The metric is therefore not 100 % verified, since it would demand experiments on
all possible scenarios. However, an approach to verifying it can be by developing
an application for each of the three locality. The metric should then be used on
the design documents and the results compared to the performance of the three
implementations. This would still only be a validation of one specific scenario.
As such, testing all possible scenarios would demand an infinite amount of time.

70

Part IV

Discussion

71

Chapter 8

Discussion

This chapter contains a general discussion of the core parts of the thesis. This
includes the existing guidelines for locality as was outlined in Section 1.3. Fur-
thermore, is a discussion of the validity of the included factors and their levels.
Finally, there is a discussion of the developed metric.

8.1 Comparing existing Guidelines

As described in Section 1.3, Microsoft has published existing guidelines for de-
ciding placement of functionality between the application server and database.
The published article contains guidelines for whether the functionality should be
implemented in either SQLCLR or T-SQL. There is however, one statement in
particular in the article, which contradict best practice concerning databases. For
example, the article assumes utilization of CURSOR in T-SQL, which is discour-
aged in databases [26, 32]. Whether this is due to special cases or because the au-
thors are unaware of the drawbacks of CURSOR is unknown. Hence, the outlined
guidelines might deviate if optimizations are done on both the code for T-SQL
and SQLCLR.

Most of the provided guidelines in [3], concerning code placement, are primar-
ily concerned about security, reduction in network utilization, and performance.
In this thesis however, the focus is only on performance and scalability and the
results obtained from the experiments is used as basis for the developed metric.
With this metric, it is possible to determine whether the code should be placed on
the application server or database.

As stated in Chapter 6, the majority of the experiments benefits from being placed
on the application server. However, in several situations such as the experiments

73

Discussion

containing both SELECT, INSERT, and DELETE statements, the database out-
performs the application server. Hence, the results indicate that functionality uti-
lizing data obtained from the database to insert or delete data benefits from being
placed on the database. Of course other characteristics of the functionality have
an influence as well, e.g. the amount of computations needed to execute the func-
tionality as these computations use CPU time that could otherwise have been used
processing queries.

As mentioned, the article [3] provides guidelines concerning T-SQL vs. SQLCLR
on the database. These guidelines generally correspond to the results obtained
from the experiments performed in this thesis. For example, the results indicate
an advantage for the SQLCLR when the retrieved data needs additional process-
ing. However, if the functionality primarily contains declarative statements an
implementation in T-SQL performs better than the equivalent SQLCLR.

8.2 Experimental Design

During the preliminary search of related work, we did not come across any anal-
ysis of the impact of factors like those in our metric. The related work only con-
tained guidelines, on which the developer needs to rely. Therefore, a full factorial
design was used in order to provide insight about the influence of each of the
included factors. By using this approach, the impact of each of the factors was de-
termined. This knowledge would not have been obtained by other methods such
as the fractional factorial design. A drawback however, of the full factorial design
is the extensive amount of experiments required to be performed when including
multiple factors. Hence, the number of levels included in each factor needed to be
considered carefully in order to cover performance and scalability sufficiently.

8.2.1 Factors

The factors and their corresponding levels included in the experimental design
have different impact on the response time. Overall, the effect of the factors and
their interactions explain 98% of the result obtained when measuring response
time, which is determined by the effect screening performed by the JMP applica-
tion. The effect screening provides a measure of the impact of each of the factors
as well as their interactions. The last 2% can be contributed to excluded parame-
ters and the accuracy of the performance counters. Since, the model explains 98%
of the variation, the model appears to be appropriate according to the guidelines
in [7].

74

8.2 Experimental Design

Data Volume

As explained in Section 4.2, the data volume factor does not pose any significant
impact on the result. The reason for this is the optimization done on the database
with indexes and statistics improved the performance of the queries with 99%.
The optimizations reduce the amount of data required to be traversed for both
levels of data volume. Therefore, as the data traversed for both levels is reduced
significantly, the difference concerning response time becomes insignificant. If
the data volume factor should have an impact on the result, the difference between
the levels must therefore be larger. Alternatively, the queries could be changed
such that a larger part of the tables is traversed. Thereby, a difference in response
time is revealed. However, changing the data volume implies going beyond the
SME target group.

Hardware

Even though a part of the hardware used in the experiments is from the computer
lab at Aalborg University, the computation capability is limited. Comparing the
Celsius machine to other applicable machines for SME, the capability of Celsius
is limited. Despite the limited capability of the hardware, the hardware factor
significantly influences the result as explained in Section 6.3.7. However, it is
not possible to predict the influence of hardware configurations that differ from
those in the experiments, as the machine consists of multiple components. Each
of the components in the machine affects the processing capability and even a
small change can induce a significant impact on the response time for the experi-
ments. Therefore, additional experiments need to be performed utilizing different
hardware configurations in order to determine the impact of the factor and be able
to provide the metric with levels that correspond to the need of the developer.

Workload Unit

The choice of levels in Section 4.3.6 for the WU factor is influenced by the hard-
ware factor as well as the SME target group. The response time of the experiments
is varying due to the levels. The choice of 1 WU is debatable as the response time
of the experiments with 1 WU is very low. The low response time in conjunction
with the relatively low accuracy of the measurements obtained by the performance
counters degrades the worth of these experiments. Furthermore, a SME applica-
tion is most likely not supposed to support only 1 WU, as such the results are
primarily useful when calculating the values for the metric between 1 and 63 WU.
Another consideration concerning WU is the upper level of 125 WU. Whether this

75

Discussion

level is sufficient depends on the usage of the application. If only the employees
of a SME is expected to use the application, then 125 WU is appropriate. How-
ever, if the application e.g. is the official website of an enterprise, then 125 WU is
insufficient. The results however, indicate that at least for experiments containing
both SELECT, INSERT, and DELETE statements, additional WU would degrade
performance, as the throughput for 63 WU is higher than 125 WU. Hence, when
considering the available hardware, the levels appear to be appropriate.

Type of Queries

The factor type of queries exhibited a significant impact on the results. As de-
scribed previously, the complexity of the queries such as aggregates and joins
affects the response time of the overall functionality. The reason for utilizing fast
queries is due to a preliminary execution of all the experiments. The preliminaries
revealed that when the complexity of the queries increased and thereby the execu-
tion time, placing the functionality on the application server is the better choice. In
addition, by using complex queries, the overall execution time of the experiments
increased to weeks or even months. However, if the hardware configuration for the
experiments is improved, it could be interesting to examine whether functionality
containing complex queries would benefit from being located on the database.

A property of the queries that could easily be changed is the number of rows
returned by the queries. Currently, the number is set to 10 for all the queries,
as it is difficult to compare the queries if they return different number of rows.
This is because the number of results returned alters the computations factor, as
the code in the loops is executed according to the number of rows. Furthermore,
the preliminaries did not indicate any change concerning placing the functionality
on the application server or the database when altering the number of returned
results.

Number of Queries

As mentioned in Section 4.3.1, the levels for the number of queries factor are
determined from the number of queries observed in the Compiere solution. The
advantage of using the Compiere solution is that it contains a significant range
of functionality and represents the SME target group [12]. Furthermore, as the
response time of the used queries is low, the influence of each query is limited.
Therefore, the levels are considered appropriate for the development of our metric.

76

8.3 The Defined Metric

Computations

The definition of the computations factor is debatable. A computation consists
of a certain amount of method invocations and loops according to the statistics
obtained from the Compiere solution as stated in Section 4.3.1. As stated in the
definition, the approach is inspired by a similar one used in SPE [9]. However,
the use of method invocations as a measure of the complexity is debatable. In our
definition, method invocations are given the same weight even though the execu-
tion time or utilization of resources differs significantly. That is, a string append
gives the same weight as an implicit traversing of a large collection of objects or
a remote connection to another server. These methods are obviously not equal
concerning resource consumption. However, when examining the implementa-
tion of the experiments performed in this thesis, all of them contain comparable
method invocations, as primarily data extraction from result sets and string ap-
pends are used. Thereby, the situation is avoided where unequal methods are
provided the same weight. If a particular piece of functionality is determined to
contain methods that require additional resources compared to the ones used in
the experiments, it is possible to increase the value for computations accordingly.
Hence, the metric is able to consider these methods.

8.3 The Defined Metric

As stated in the previous chapter, the metric tool is only known to be 100% ac-
curate in the cases where the experiments described in this thesis and the input
made by the developer is identical. Beside these cases, the metric can only give
an informed guess based on the performed experiments. Hence, the farther away
the input values are from the performed experiments, likely the more inaccurate
the result will be. The only way to reduce this inaccuracy is to perform additional
experiments, either to determine whether the result of the metric is in fact accurate
or to include the results of the additional experiments in the metric and thereby
improve it.

77

Chapter 9

Conclusion

The goal of this thesis was to define a metric that can help determine when it is
beneficial to place functionality on either the application server or database. The
metric was defined by performing a number of experiments that included var-
ious measures to help determine the response time and utilization of hardware
resources, such as CPU and disk. The response time measure provided the most
useful information and was the source for defining the metric, which was imple-
mented into a tool. The tool allows the developer to easily determine where a
certain piece of functionality should be placed.

In general, the results gathered from the experiments displayed a noticeable ad-
vantage to using the application server for functionality containing pure SELECT
queries. However, especially the SQLCLR performed better than the application
server for functionality containing both SELECT, INSERT, and DELETE queries.
This was contributed to the additional round trips to the database required for the
application server, for the INSERT and DELETE queries.

The additional round trips combined with the ad–hoc SQL approach resulted in a
doubling of the network utilization compared to T-SQL and SQLCLR. This was
also noted in [3] as being one of the strengths of moving functionality away from
the application server. While network utilization is not included in our metric,
it is still an important consideration to keep in mind for large–scale applications
that require huge amounts of bandwidth. This is especially important if the net-
work acts as a bottleneck for the application, since noticeable improvements can
be achieved by deploying functionality on the database. As such, if bandwidth is
a consideration, our experiments displayed a clear advantage of placing function-
ality on the database. This also leads us to conclude the same is the case if e.g.
only a single value is required to be retrieved from a large result set.

When examining the scalability, the functionality containing pure SELECT queries

79

Conclusion

shows a mixed tendency concerning throughput when increasing WU from 63 to
125. For SQLCLR, the throughput increases, whereas for T-SQL it degrades,
the application server on the other hand shows both degrading and increasing
scalability. However, examining the throughput for functionality containing both
SELECT, INSERT, and DELETE queries, it degrades for all three locality when
the WU is increased from 63 to 125. Therefore, the experiments containing
only SELECT queries scales better than the experiments containing SELECT,
INSERT, and DELETE queries.

Thus, evaluating the introduction of the SQLCLR in MSSQL2005, it should defi-
nitely be considered when designing systems that utilize MSSQL2005. First and
foremost, it introduces improved security and reliability, which was not possible
using XP [3]. Furthermore, the possibility of writing code in a .NET supported
language both on the application server and database, which in our case allowed
for an easy implementation of the functionality in SQLCLR and will likely appeal
to many developers. In addition and just as important is how well the SQLCLR
performs and scales and as we discovered it certainly was an alternative to imple-
menting all the functionality on the application server. As such, we believe it will
become more popular as more developers become aware of its possibilities.

While the developed metric has limitations, such as network utilization, it is still
applicable for the goal stated for the metric. Namely, that it should be able to help
the developer determine where functionality should be placed when considering
performance. This is also the case within the boundaries stated for the metric.
The accuracy of the metric however, is difficult to predict except for the specific
scenarios that were conducted experiments on. These specific scenarios however,
are satisfactory accurate and in order to reduce the uncertainty for the in–between
levels, additional experiments would have to be performed.

Besides defining a metric, we have implemented a tool, which is able to perform
the calculations required in the metric for the developer. The tool developed for
the metric is straightforward to use and does not require a high learning curve for
the developer. As was specified in the problem statement, the metric could be
used as early as the design phase. This is also the case with the metric, as long as
the developer is able to estimate the expected levels of the factors.

As such, the new possibilities concerning the hosting of the SQLCLR in MSSQL2005
presented a number of interesting findings concerning the performance and scala-
bility criteria. Furthermore, the evaluation resulted in the development of a metric,
which was implemented in a tool. By providing the tool with the desired levels of
the factors, it calculates the value of the metric for the developer. Hence, the tool
is helpful for a developer working with distributed systems.

80

Chapter 10

Future Work

In this thesis, we examined the new addition of a hosted CLR in MSSQL2005
and how well it performed compared to placing functionality on the application
server and database respectively. However, other solutions exist beside the stan-
dard approaches examined in this thesis, such as ORM tools like NHibernate for
.NET and Hibernate and TopLink [34] for Java. Besides performing the standard
create, read, update, and delete operations these tools also support caching of both
queries and data, which is one of the parameters not varied in this thesis. Further-
more and just as interesting, they map tables from the database to classes in the
application, thus retaining the object–oriented syntax and semantics while work-
ing with a relational database. Some of these solutions were analysed and tested
in our previous project [1] and demonstrated substantial performance gain com-
pared to using the ad–hoc approach in e.g. C# or Java. In this thesis, the results
were somewhat mixed with best performance between the application server and
SQLCLR, as such it could be interesting to examine how the results would be if
the ORM tools were utilized on the application server.

Another important future work would be to perform experiments on additional
levels of the factors used in the metric. This should be done to ensure the met-
ric is not only accurate for the levels experimented on in this thesis but also for
the in–between levels. Furthermore, as was noted in Chapter 6, the experiments
for 1 WU had a low response time, causing the results to be highly inaccurate
with large confidence intervals. A solution to this could be to use longer running
queries, such that deviations in CPU and network utilization would have less ef-
fect. However, on the other hand, longer running queries would also equal more
utilization of the database and thus the overall results will likely shift more in
favour of the application server. Aside from experimenting on additional levels,
the amount of included factors could also be increased. Six factors beside the

81

Future Work

locality are included in the metric, but with more time and resources it could be
interesting to make experiments on more factors. Thereby, the metric will be able
to cover scenarios closer to the systems, which the metric will be used on.

As stated earlier in this thesis, the performed replications have a certainty of 80%
that the measured mean values for the response time does not deviate with more
than 20% from the real mean value. It has not been possible with the time and
reasources available to make this measure more accurate; however, it could be
very useful for the validity of the metric to make the accuracy higher in the future.

Furthermore, it could be interesting to focus on additional criteria beside perfor-
mance and scalability, considering they are not the only concerns for the developer
when choosing locality. Therefore, by defining a metric that includes e.g. the cri-
teria specified in the ISO 9126 standard, the developer does not have to examine
additional tools, guidelines, and metrics.

A critical point to consider is to use the metric on an actual application. One
thing is to define a metric using results gathered from a simulation of a real sys-
tem, another is to try to apply the metric. A possibility could be to port parts of
the Compiere solution to the .NET platform, considering it is used to determine
a number of the levels for the different factors. Hopefully, this could give an
indication of how accurate the metric is when used on a real system.

In this thesis, we have only implemented and evaluated functionality in C#. How-
ever, it could be interesting to analyse other .NET languages such as Visual Basic
.NET, in order to determine any differences in performance and scalability. If
there are any differences between the .NET languages, it would likely affect the
decision of placing the functionality on the application server or the database.

As an additional follow up, we are also aware of the support for both JVM and
CLR in Oracle [35] and DB2 [36], where the CLR is hosted as an external process,
outside the actual database engine. In effect, some of the benefits of integrating
the CLR as in MSSQL2005, such as the internal models for memory, threads,
and security management are not as apparent and other limitations such as lim-
ited support for other functionality than SP. However, it could still be interesting
to examine how these implementations of the CLR perform compared to that in
MSSQL2005 and in general, what the performance benefits are on the Java plat-
form.

82

Part V

Appendix

83

Appendix A

Setup Specification

• SCENICO 14

– AMD 1.8GHz Sempron 3000+

– Single processor

– 1.2GB RAM

– 80GB IDE HDD

– Windows Server 2003

– Microsoft SQL Server 2005 v. 9.0.2047

• Celsius 1

– Intel(R) Pentium(R) 4 CPU 3.00GHz

– Dual processor

– 3.2GB RAM

– 141GB, SATA max UDMA/133 disk drive

– Windows Server 2003

– Microsoft SQL Server 2005 v. 9.0.2047

85

Appendix B

Experiment Queries

Listing B.1: Query 1
1 SELECT TOP 10
2 L_SHIPMODE,
3 L_PARTKEY,
4 L_SUPPKEY,
5 100.00 * SUM (
6 CASE WHEN P_TYPE LIKE ’PROMO%%’
7 THEN L_EXTENDEDPRICE*(1-L_DISCOUNT)
8 ELSE 0 END
9) / SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS PROMO_REVENUE

10 FROM
11 LINEITEM,
12 PART
13 WHERE
14 L_PARTKEY = P_PARTKEY AND
15 L_SHIPDATE >= ’1995-09-01’ AND
16 L_SHIPDATE < dateadd(mm, 1, ’1995-09-01’)
17 GROUP BY
18 L_PARTKEY,
19 L_SUPPKEY,
20 L_SHIPMODE

Listing B.2: Query 2
1 SELECT TOP 10
2 L_SHIPMODE,
3 L_PARTKEY,
4 L_SUPPKEY,
5 L_TAX
6 FROM
7 LINEITEM
8 WHERE
9 L_SHIPDATE >= ’1994-01-01’ AND

10 L_SHIPDATE < dateadd (yy, 1, ’1994-01-01’) AND

87

Experiment Queries

11 L_DISCOUNT BETWEEN .06 - 0.01 AND
12 .06 + 0.01 AND
13 L_QUANTITY < 24

Listing B.3: Query 3
1 SELECT TOP 10
2 L_SHIPMODE,
3 L_PARTKEY,
4 L_SUPPKEY,
5 L_TAX
6 FROM
7 LINEITEM
8 WHERE
9 L_SHIPDATE >= ’1994-01-01’ AND

10 L_SHIPDATE < dateadd (yy, 1, ’1994-01-01’) AND
11 L_DISCOUNT BETWEEN .06 - 0.01 AND .06 + 0.01 AND
12 L_QUANTITY < 24
13

14

15 INSERT INTO [dbo].[TEMPTABLE] VALUES (L_SHIPMODE, L_PARTKEY,
L_SUPPKEY, L_TAX)

16

17 DELETE FROM [dbo].[TEMPTABLE] WHERE SUPPKEY > 0

88

Appendix C

Compiere Statistics

The Compiere ERP application is developed in Java [37]. The project contains
2021 files. Among these files 347 are of special interest since they contains func-
tions utilizing select queries. The statistics of the analysed functions are presented
in the following tables.

Compiere functions Number of functions
With select 654
With insert, update, or delete 173
Selects without nested loops 639
Selects with nested loops 15

Table C.1: Compiere Functions

Functions containing 0 1 2 3 4 5 6
Number of selects 598 30 6 3 1 1
Number of loops 241 359 27 8 0 3 1

Table C.2: Function Details

Method invocations Max Min Average Total
Outside loops 230 4 15.55 9939
Inside loops 110 1 6.55 3004

Table C.3: Function Computations

89

Compiere Statistics

Returned Value Number of Functions
void 144
Single value 295
Array 200

Table C.4: Returned Values by Functions

90

Appendix D

TPC-H Database Schema

91

TPC-H Database Schema

92

Appendix E

Experiments Execution Order

104, 3, 32, 14, 22, 44, 1, 7, 73, 4, 46, 86
38, 17, 39, 9, 77, 43, 2, 11, 96, 101, 67, 37
93, 95, 51, 62, 58, 106, 34, 42, 30, 92, 24, 79
45, 107, 97, 105, 54, 59, 19, 21, 49, 87, 10, 100
82, 0, 99, 68, 35, 61, 13, 28, 89, 56, 52, 5
31, 90, 65, 47, 81, 98, 69, 83, 76, 16, 36, 40
27, 103, 66, 84, 33, 94, 15, 78, 6, 41, 57, 55
23, 91, 63, 88, 25, 72, 85, 64, 29, 70, 74, 12
20, 102, 53, 26, 18, 48, 75, 50, 80, 71, 60, 8

Table E.1: Experiments Execution Order

93

Appendix F

Query Optimizations

Listing F.1: Query Optimizations
1 <Database>
2 <Name>Test</Name>
3 <Schema>
4 <Name>dbo</Name>
5 <Table>
6 <Name>PART</Name>
7 <Recommendation>
8 <Create>
9 <Index Clustered="true" IndexSizeInMB="28.695313">

10 <Name>_dta_index_PART_c_6_2137058649__K1</Name>
11 <Column Type="KeyColumn" SortOrder="Ascending">
12 <Name>[P_PARTKEY]</Name>
13 </Column>
14 <FileGroup>[PRIMARY]</FileGroup>
15 </Index>
16 </Create>
17 </Recommendation>
18 </Table>
19 <Table>
20 <Name>LINEITEM</Name>
21 <Recommendation>
22 <Create>
23 <Index IndexSizeInMB="282.062500">
24 <Name>

_dta_index_LINEITEM_6_2089058478__K2_K3_K15_K11_6_7
</Name>

25 <Column Type="KeyColumn" SortOrder="Ascending">
26 <Name>[L_PARTKEY]</Name>
27 </Column>
28 <Column Type="KeyColumn" SortOrder="Ascending">
29 <Name>[L_SUPPKEY]</Name>
30 </Column>
31 <Column Type="KeyColumn" SortOrder="Ascending">
32 <Name>[L_SHIPMODE]</Name>

95

Query Optimizations

33 </Column>
34 <Column Type="KeyColumn" SortOrder="Ascending">
35 <Name>[L_SHIPDATE]</Name>
36 </Column>
37 <Column Type="IncludedColumn">
38 <Name>[L_EXTENDEDPRICE]</Name>
39 </Column>
40 <Column Type="IncludedColumn">
41 <Name>[L_DISCOUNT]</Name>
42 </Column>
43 <FileGroup>[PRIMARY]</FileGroup>
44 </Index>
45 </Create>
46 <Create>
47 <Statistics>
48 <Name>_dta_stat_2089058478_11_7_5</Name>
49 <Column>
50 <Name>[L_SHIPDATE]</Name>
51 </Column>
52 <Column>
53 <Name>[L_DISCOUNT]</Name>
54 </Column>
55 <Column>
56 <Name>[L_QUANTITY]</Name>
57 </Column>
58 </Statistics>
59 </Create>
60 <Create>
61 <Statistics>
62 <Name>_dta_stat_2089058478_2_11_3_15</Name>
63 <Column>
64 <Name>[L_PARTKEY]</Name>
65 </Column>
66 <Column>
67 <Name>[L_SHIPDATE]</Name>
68 </Column>
69 <Column>
70 <Name>[L_SUPPKEY]</Name>
71 </Column>
72 <Column>
73 <Name>[L_SHIPMODE]</Name>
74 </Column>
75 </Statistics>
76 </Create>
77 </Recommendation>
78 </Table>
79 </Schema>
80 </Database>

96

Appendix G

Software Performance Engineering

97

Software Performance Engineering

Figure G.1: The SPE Process

98

Appendix H

Weighted Score Calculations

App DB P D W
Query1 0,28996 0,37876 30,62493 33,95197 0,42219
Query2 0,12684 0,14723 16,07890
Query3 1,05129 1,01631 -3,32704
Data1 0,48864 0,51317 5,01886 0,07320 0,00091
Data17 0,49008 0,51504 5,09207
Number1 0,3813 0,40359 5,82226 1,25629 0,01562
Number6 0,59733 0,62461 4,56596
Comp1 0,35299 0,38628 9,43072 6,84337 0,08509
Comp6 0,62573 0,64192 2,58735
Scenario1 0,34367 0,34686 0,92767 6,36170 0,07910
Scenario2 0,63505 0,68135 7,28938
Unit1 0,01582 0,01183 -25,18373 31,93031 0,39705
Units63 0,47785 0,51009 6,74658
Units125 0,97442 1,02039 4,71728

Total
80,41686

Table H.1: Calculating Weighted Score

App = Response time for code on the application server
DB = Response time for code on the database
P = The percentage that code on the database performs poorer than on the appli-
cation server
D = Difference between best and worse
W = Weighted score

99

Appendix I

Experiment Deviations

101

Experiment Deviations

ID Response Time Mean 10% 20% 50%
0 0,128528593333333 3 1 0
1 0,164670266410256 5 1 0
2 0,726469002307692 0 0 0
3 0,726183122820512 0 0 0
4 0,112264178717948 5 3 0
5 0,161708398461538 6 0 0
6 0,247534579358974 71 7 4
7 0,254660048076923 3 0 0
8 0,211148230000000 3 0 0
9 0,861841812692307 0 0 0
10 0,242185457564102 4 0 0
11 0,906030307820512 0 0 0
12 0,112465181923076 14 4 1
13 0,232690177564102 3 0 0
14 0,135007614871794 9 2 0
15 0,263581122051282 2 0 0
16 0,266716701666666 25 6 1
17 0,896204351794871 2 0 0
18 0,469279256410256 9 2 0
19 1,623953180384615 26 0 0
20 0,123948725512820 26 6 2
21 0,280611949615384 31 12 0
22 0,342288407307692 11 6 0
23 0,767955639230769 34 9 0
24 0,003578351794871 43 35 2
25 0,004556935256410 75 41 9
26 0,016411887179487 22 3 1
27 0,017200853846153 27 3 2
28 0,003166926410256 72 53 49
29 0,002895247051282 52 46 9
30 0,009497393461538 32 9 3
31 0,009740712948717 42 21 2
32 0,003821299487179 35 31 4
33 0,010098250128205 8 4 1
34 0,004185151153846 43 13 3
35 0,011160066794871 15 3 2
36 0,002510661410256 63 52 8
37 0,003788807307692 41 22 4
38 0,004287567179487 71 62 4
39 0,004820090256410 74 22 3
40 0,004406200384615 72 51 6
41 0,010324235128205 48 4 3
42 0,007192032307692 41 6 4
43 0,014936188205128 7 4 2
44 0,002632371025641 68 55 9
45 0,003933532435897 53 30 5
46 0,006170762948717 71 21 5
47 0,007854640769230 9 1 1
48 1,333372838717948 44 16 0
49 2,279144960641025 24 1 0
50 1,439375962051282 34 7 0
51 2,389565580769230 36 2 0
52 1,399710241025641 41 16 0
53 1,512333773333333 35 12 0
54 2,067537136025641 34 5 0
55 2,169421905000000 30 3 0
56 1,354351862820512 39 19 0
57 1,472001996282051 35 10 0
58 2,092162168076923 26 6 0

Continuing Table I.1
ID Response Time Mean 10% 20% 50%
59 2,587985623589743 30 0 0
60 0,021342420512820 48 26 2
61 0,035803171410256 30 5 2
62 0,026072389871794 30 8 2
63 0,042330551282051 31 7 2
64 0,016500098589743 38 18 3
65 0,016698079230769 41 12 1
66 0,026559603333333 18 2 1
67 0,027722975897435 19 2 1
68 0,015931630384615 42 15 4
69 0,019174116923076 57 27 5
70 0,026863806794871 17 1 0
71 0,030417986666666 14 3 1
72 0,069557655769230 5 2 2
73 0,084402261025641 9 1 1
74 0,375130129615384 3 1 0
75 0,372595407051282 0 0 0
76 0,056348455512820 4 2 1
77 0,082021816025641 10 1 0
78 0,100537723589743 8 2 0
79 0,120480006025641 6 1 0
80 0,110397325128205 8 3 0
81 0,432966673717948 1 0 0
82 0,126509976410256 7 0 0
83 0,459021736410256 2 0 0
84 0,060158165256410 38 8 0
85 0,120646482051282 9 5 0
86 0,070413916538461 22 7 0
87 0,137512771923076 5 2 0
88 0,126141518974358 19 3 0
89 0,434464861538461 2 0 0
90 0,243030505128205 2 1 1
91 0,740433097435897 25 0 0
92 0,063553704487179 19 6 3
93 0,126194254102564 26 5 0
94 0,165878040000000 4 1 0
95 0,351020791538461 28 7 0
96 0,665892309230769 48 14 0
97 1,104354141923076 27 7 0
98 0,728151232435897 43 16 0
99 1,174441641025641 28 3 0
100 0,695166639487179 44 15 0
101 0,745360409615384 40 17 0
102 1,026757024615384 33 6 0
103 1,079648082820512 31 8 1
104 0,668858923717948 46 17 0
105 0,715550723205128 43 14 0
106 1,023905122307692 34 8 0
107 1,253759313717948 26 7 1
108 0,157065697179487 1 0 0
109 0,169102873205128 6 1 0
110 0,896146347564102 0 0 0
111 0,924051481410256 1 1 1
112 0,111449986794871 2 1 0
113 0,160149834487179 5 1 0
114 0,235000494615384 52 3 3
115 0,258073414615384 2 0 0
116 0,238835034743589 0 0 0
117 1,035277413846153 1 0 0
118 0,272721440256410 3 0 0
119 1,078972843076923 0 0 0
120 0,110121345128205 7 5 0

102

Continuing Table I.1
ID Response Time Mean 10% 20% 50%
121 0,236341726923076 5 1 0
122 0,139093881410256 15 3 0
123 0,267892080384615 3 0 0
124 0,292320535769230 11 3 0
125 1,045563393205128 0 0 0
126 0,495761676794871 5 3 0
127 1,870670036923076 8 2 0
128 0,130549897051282 40 10 2
129 0,287595077948717 37 16 0
130 0,346617474358974 15 4 1
131 0,843186724615384 29 8 0
132 0,003615643717948 34 26 5
133 0,004584259743589 71 36 3
134 0,031178432564102 78 76 9
135 0,018098540384615 26 4 2
136 0,003160436538461 67 54 44
137 0,003576837179487 63 42 26
138 0,008969153461538 41 7 1
139 0,009139200897435 42 8 0
140 0,003827767820512 38 21 5
141 0,011381635384615 6 2 0
142 0,005095196794871 72 33 4
143 0,012542748974358 2 2 1
144 0,003411675128205 63 50 5
145 0,004358485897435 76 31 4
146 0,004925321666666 64 58 5
147 0,005659106794871 76 69 6
148 0,004565270512820 73 58 3
149 0,011452680000000 5 3 1
150 0,007450767564102 37 9 4
151 0,016040571666666 5 2 0
152 0,003957633333333 73 66 18
153 0,004626368461538 70 65 5
154 0,005946798205128 76 6 2
155 0,008512792564102 34 4 2
156 1,230451095128205 35 15 0
157 2,175194888333333 22 2 0
158 1,333013001666666 45 11 0
159 2,265796863333333 23 5 0
160 1,263528805641025 39 15 0
161 1,400313859487179 32 18 0
162 1,991914614871794 39 10 0
163 2,102002994230769 32 5 0
164 1,264174374615384 39 16 0
165 1,349932345128205 34 18 0
166 1,978104551025641 25 4 0
167 2,472934956282051 30 2 0
168 0,019400435384615 40 20 4
169 0,032677401538461 19 4 1
170 0,024904225128205 22 5 1
171 0,038235696410256 13 1 1
172 0,015149515256410 46 18 1
173 0,016521444615384 38 8 3
174 0,025274645128205 11 1 1
175 0,027274340512820 16 3 2
176 0,015964860384615 47 15 2
177 0,015484592435897 30 7 1
178 0,025736593076923 8 1 0
179 0,030611933333333 25 3 1
180 0,082920068333333 4 1 0
181 0,087258991282051 7 2 0
182 0,455560001410256 1 0 0

Continuing Table I.1
ID Response Time Mean 10% 20% 50%
183 0,456873171794871 1 0 0
184 0,057998039615384 13 6 2
185 0,084082256153846 17 5 0
186 0,121147133333333 74 33 2
187 0,125619542948717 25 3 1
188 0,125966020641025 7 3 0
189 0,520209533974358 2 0 0
190 0,140637513461538 4 1 0
191 0,549568414358974 3 0 0
192 0,061908071666666 50 9 5
193 0,120524991025641 6 6 0
194 0,071818367435897 28 7 0
195 0,137995135128205 11 4 0
196 0,139902296282051 17 4 0
197 0,519426558974358 2 0 0
198 0,249628249487179 6 1 0
199 0,872684402820512 18 0 0
200 0,064836265897435 15 3 1
201 0,126397045000000 26 4 0
202 0,184002866282051 36 1 1
203 0,390485225512820 38 10 0
204 0,622391024358974 45 16 0
205 1,057746846794871 23 5 0
206 0,680183637179487 29 16 0
207 1,116514583333333 27 1 0
208 0,619383036153846 37 18 0
209 0,704835143846153 40 16 1
210 0,955224670512820 39 9 0
211 1,016990939358974 28 6 0
212 0,606498419230769 41 19 0
213 0,673414007564102 42 14 0
214 0,978408776153846 29 11 2
215 1,186799403974358 36 6 0
216 0,175923128717948 2 2 0
217 0,176266595256410 5 2 0
218 1,039198345769230 0 0 0
219 1,038002356538461 0 0 0
220 0,074565052948717 6 4 2
221 0,109666900000000 8 3 1
222 0,684656662179487 46 28 1
223 0,514309883589743 74 67 10
224 0,337696769358974 1 0 0
225 1,289027083717948 0 0 0
226 0,401681893846153 1 0 0
227 1,364985352564102 0 0 0
228 0,209250486282051 4 2 0
229 0,525435234615384 1 1 0
230 0,259469292307692 0 0 0
231 0,571035963717948 0 0 0
232 0,326806476282051 1 0 0
233 1,183421740000000 1 0 0
234 0,593135860641025 1 1 1
235 1,750886563333333 0 0 0
236 0,215784848205128 2 0 0
237 0,563532012307692 1 1 1
238 0,439009176923076 1 0 0
239 1,104674335384615 1 1 1
240 0,002741365897435 17 8 3
241 0,003560421282051 76 16 5
242 0,015123040128205 8 2 0
243 0,015385563205128 8 2 0
244 0,001879830256410 76 41 8

103

Experiment Deviations

Continuing Table I.1
ID Response Time Mean 10% 20% 50%
245 0,002885216282051 77 69 11
246 0,008592281538461 16 8 0
247 0,009142173461538 39 6 0
248 0,003415012435897 7 6 2
249 0,010487177435897 2 0 0
250 0,004660329871794 45 10 4
251 0,035388552692307 78 78 78
252 0,002532230897435 51 8 6
253 0,004984812564102 9 7 2
254 0,003230538589743 5 5 3
255 0,005730003205128 6 5 2
256 0,003573515384615 4 4 2
257 0,010629840256410 3 2 1
258 0,006909803076923 63 3 1
259 0,015801148974358 13 3 0
260 0,002641915384615 37 10 5
261 0,005217606282051 11 5 1
262 0,004986995512820 11 8 3
263 0,010215429230769 18 4 2
264 2,633370022948717 59 18 0
265 4,951291611025641 34 0 0
266 2,944799752307692 60 15 0
267 5,281589438076923 18 0 0
268 2,729550232692307 62 23 0
269 3,034162190384615 60 9 0
270 4,909851318076923 30 1 1
271 5,191368979230769 25 0 0
272 2,728203162692307 62 18 0
273 3,050790269358974 57 14 0
274 5,130804139487179 23 0 0
275 5,831501357307692 18 0 0
276 0,029755384487179 43 27 1
277 0,052381802820512 15 1 0
278 0,033372051410256 40 6 0
279 0,057303127692307 8 0 0
280 0,024494532564102 55 11 0
281 0,029283568205128 42 24 1
282 0,045851861794871 17 0 0
283 0,048873736282051 14 1 1
284 0,024476243461538 52 17 1
285 0,026609728589743 47 11 0
286 0,047767050897435 17 1 1
287 0,052425107948717 16 2 2
288 0,089715293846153 2 2 1
289 0,101625715512820 61 2 1
290 0,521647960512820 0 0 0
291 0,523616377564102 1 0 0
292 0,041214036666666 4 1 1
293 0,059381191923076 13 5 0
294 0,186413221666666 0 0 0
295 0,186756255641025 1 0 0
296 0,173422947948717 1 1 0
297 0,654644602307692 0 0 0
298 0,205107418461538 5 1 0
299 0,690898581153846 0 0 0
300 0,104850344615384 4 2 0
301 0,264489422692307 0 0 0
302 0,131146114230769 0 0 0
303 0,287948052307692 4 0 0
304 0,165684587435897 0 0 0
305 0,597484345384615 0 0 0
306 0,298286270256410 1 0 0

Continuing Table I.1
ID Response Time Mean 10% 20% 50%
307 0,895567991282051 1 1 1
308 0,109672554615384 4 2 1
309 0,280224660512820 1 0 0
310 0,223391128846153 1 1 0
311 0,545151852051282 0 0 0
312 1,323885615512820 64 21 0
313 2,493461230769230 24 0 0
314 1,481438560384615 58 13 0
315 2,663378012948717 19 0 0
316 1,389342538461538 62 20 0
317 1,533347146025641 59 14 0
318 2,457273873717948 28 0 0
319 2,607861999615384 21 0 0
320 1,370648481410256 63 19 0
321 1,534683969487179 58 14 0
322 2,560467996153846 29 0 0
323 2,938348672307692 17 0 0
324 0,201429137435897 0 0 0
325 0,202446509487179 1 0 0
326 1,206676769358974 0 0 0
327 1,204570601282051 0 0 0
328 0,074978060256410 6 5 3
329 0,109667694358974 6 3 2
330 0,694255040384615 52 34 2
331 0,570272378205128 65 53 6
332 0,368411636410256 1 0 0
333 1,449545875000000 0 0 0
334 0,437449951666666 0 0 0
335 1,541025594871794 0 0 0
336 0,211675095769230 2 0 0
337 0,527753269102564 0 0 0
338 0,263919587051282 1 1 0
339 0,584041023076923 1 0 0
340 0,355656031794871 0 0 0
341 1,344069300000000 0 0 0
342 0,621926657564102 1 1 0
343 1,898020085000000 0 0 0
344 0,220047970641025 3 1 0
345 0,567956031410256 0 0 0
346 0,453701152564102 2 1 1
347 1,086355488333333 0 0 0
348 0,002866201923076 6 5 1
349 0,003583792948717 33 13 3
350 0,016879071153846 9 3 1
351 0,016854019743589 15 3 0
352 0,002127891410256 77 68 11
353 0,003120210000000 74 73 13
354 0,009750832820512 54 4 2
355 0,009410733076923 54 9 1
356 0,003602583974358 4 4 3
357 0,011939249615384 2 2 1
358 0,004829013461538 22 9 3
359 0,012846883974358 2 1 0
360 0,002405382692307 9 6 2
361 0,005158875769230 13 5 2
362 0,003354922435897 7 6 4
363 0,006032754743589 10 8 3
364 0,004033182820512 38 7 6
365 0,011475583846153 2 1 1
366 0,006806322692307 10 8 1
367 0,017872578205128 28 2 1
368 0,003296492051282 77 71 3

104

Continuing Table I.1
ID Response Time Mean 10% 20% 50%
369 0,005432721282051 11 5 4
370 0,005512959871794 41 7 3
371 0,010541199358974 12 3 0
372 2,772453694743589 40 3 0
373 5,108759932820512 4 0 0
374 3,080500273461538 32 2 0
375 5,419166970769230 3 0 0
376 2,926471899230769 37 3 0
377 3,186674219102564 33 2 0
378 5,064032630769230 7 0 0
379 5,395675251538461 4 0 0
380 2,846526055512820 37 3 0
381 3,174966833461538 32 1 0
382 5,258800605000000 2 0 0
383 5,974342876923076 0 0 0
384 0,029379227051282 27 5 2
385 0,058653698717948 37 8 4
386 0,038071549230769 33 5 2
387 0,063151822435897 24 7 5
388 0,026443506538461 33 7 1
389 0,029048637692307 30 9 1
390 0,052143112948717 31 6 2
391 0,051241568461538 6 3 0
392 0,026781636538461 31 9 3
393 0,028803920641025 27 2 1
394 0,051699396282051 24 7 4
395 0,054872437179487 13 5 2
396 0,103186759743589 6 0 0
397 0,103735701923076 5 1 0
398 0,607829788589743 0 0 0
399 0,607707038076923 0 0 0
400 0,042855312179487 17 6 1
401 0,060877482820512 16 5 2
402 0,194012309487179 3 3 0
403 0,199719593717948 1 1 1
404 0,187790606666666 1 0 0
405 0,738127335897435 0 0 0
406 0,221947637179487 1 0 0
407 0,780062690256410 0 0 0
408 0,107762120256410 2 1 1
409 0,267655709615384 1 0 0
410 0,135112592307692 4 4 0
411 0,296653198333333 2 1 1
412 0,181888172564102 3 1 0
413 0,678851794615384 1 0 0
414 0,315439818589743 0 0 0
415 0,968205619102564 0 0 0
416 0,112314265897435 3 2 1
417 0,287922076538461 2 0 0
418 0,237821742435897 1 1 1
419 0,555213277307692 0 0 0
420 1,389093475897435 41 3 0
421 2,573134705897435 4 0 0
422 1,559207850769230 32 1 0
423 2,748584986666666 3 1 1
424 1,495245159487179 38 4 0
425 1,617523952435897 29 2 0
426 2,537707405512820 10 0 0
427 2,703173536410256 5 0 0
428 1,442392223974358 37 4 0
429 1,606729535897435 25 2 0
430 2,657386690384615 9 2 0

Continuing Table I.1
ID Response Time Mean 10% 20% 50%
431 3,006148163461538 2 0 0

Table I.1: Deviations in the Results of
the Experiments

105

Appendix J

Replication Calculations

C Response time Std deviation 95% - 5% 90% - 10% 80% - 20%
0 0,13356549 0,00440274 1,66966632930571 0,294028453558379 0,0446450808941234
1 0,16763872 0,00399587 0,873064165193119 0,153746710850733 0,0233447962605889
2 0,74551049 0,01046617 0,302858792024168 0,053333471905404 0,00809811818810406
3 0,75367689 0,01316569 0,468909451431239 0,0825750142069203 0,0125381341311901
4 0,12886824 0,00895517 7,42041182608859 1,3067354690553 0,198413827019673
5 0,16627579 0,00393121 0,858947424804604 0,151260751067711 0,0229673298138237
6 0,23581656 0,00596019 0,981620780118559 0,17286354458561 0,0262474833243892
7 0,28119626 0,00160147 0,0498414500456543 0,00877708571036754 0,00133270673913269
8 0,21158276 0,0014682 0,0739915316574693 0,0130299181625757 0,00197845393318882
9 0,88329513 0,00802509 0,12684118343251 0,0223367485811874 0,00339159674939694
10 0,25504051 0,00568261 0,762868179627819 0,134341183737074 0,0203982741900287
11 0,93020556 0,00615657 0,0673119102280464 0,0118536359768618 0,00179984804420098
12 0,1198873 0,00321877 1,10765793967238 0,195058704459206 0,0296175813404913
13 0,23666816 0,01090247 3,26093593016362 0,574251233237519 0,0871939176333792
14 0,14520952 0,01112796 9,02429047852201 1,58917870432519 0,24129981622928
15 0,26777621 0,00616735 0,815127122847735 0,143543990303782 0,0217956220951427
16 0,22384074 0,00320768 0,315555635668088 0,0555693876905936 0,00843761812388977
17 0,86483897 0,01937495 0,771228043622058 0,135813356852768 0,020621807957067
18 0,44861409 0,00418066 0,13344921178026 0,023500423216087 0,00356828831642318
19 1,82886615 0,03410554 0,534389788746964 0,0941061099603031 0,014289007886697
20 0,12722474 0,0043638 1,80783448289337 0,318359883028656 0,0483395486363567
21 0,24487675 0,00892398 2,0407706761657 0,359379976375162 0,0545680117785323
22 0,31973999 0,00417367 0,261827003426157 0,0461077686996477 0,00700097231588028
23 0,76657573 0,07696185 15,4886298443702 2,72754969118412 0,414149294505196
24 0,00247005 0,000055145 0,765901512279781 0,134875354003989 0,0204793822409301
25 0,00327854 0,00093115 123,951120166633 21,8278080714359 3,31431956770526
26 0,02234111 0,00769059 182,088265108835 32,0657667112099 4,86884426125724
27 0,01605428 0,00177952 18,8797489264179 3,32472619407343 0,504824169528029
28 0,00152328 0,00041526 114,196515720015 20,1100209841767 3,05349194187027
29 0,0019279 0,00069536 199,904484409351 35,2032052025076 5,34523079306789
30 0,00823485 0,00180026 73,4397538336903 12,9327500174284 1,96369998795687
31 0,01026387 0,00210946 64,9071347062193 11,4301547007365 1,73554693456022
32 0,00285772 0,00002304 0,099884416057669 0,0175896584081147 0,00267080179835167
33 0,00976828 0,00021312 0,731449503373546 0,128808350841212 0,0195581725970706
34 0,00494169 0,00147338 136,599993551871 24,0552762879531 3,6525368303953
35 0,01110644 0,00049667 3,07296944002345 0,541150310348517 0,082167895960425
36 0,00189884 0,00012474 6,63142511787755 1,16779480910328 0,177317171481846

107

Replication Calculations

Continuing Table J.1
C Response time Std deviation 95% - 5% 90% - 10% 80% - 20%
37 0,00353779 0,00077525 73,7889930466646 12,994251087379 1,97303826869056
38 0,0032669 0,00107955 167,797689205431 29,549194471843 4,48672963989073
39 0,00391754 0,000028087 0,0789870626167811 0,0139096318016956 0,00211202905527941
40 0,0030678 0,0001068 1,86234678354079 0,327959506125767 0,0497971488942124
41 0,00944003 0,00027093 1,2657256438949 0,222894447334488 0,0338441416525132
42 0,0078158 0,00137821 47,7810899436492 8,41425603360341 1,27761492718767
43 0,01487573 0,00142114 14,0245613515272 2,46972704285105 0,375001678511352
44 0,00266384 0,00098808 211,417084521125 37,2305755506349 5,65306533118519
45 0,00604546 0,00279793 329,14489214592 57,9624574896633 8,80098021851622
46 0,00508994 0,00013302 1,04949577652156 0,184816340109703 0,0280623876869633
47 0,00864421 0,00235834 114,375854167851 20,1416025077155 3,05828725897678
48 0,70819559 0,20403556 127,54910824429 22,4614142308383 3,41052589705605
49 1,64739951 0,04105621 0,954403407618723 0,168070561816786 0,0255197200727424
50 0,69024983 0,11892592 45,6155123169398 8,03289753731823 1,21970971185811
51 1,73946307 0,06910785 2,42547315525427 0,427126132011852 0,0648545420855912
52 0,67978928 0,16512896 90,6713333231346 15,9672333634251 2,42445388035863
53 0,92755522 0,03898613 2,71464372227943 0,478049105748985 0,0725866518673142
54 1,36520889 0,07687789 4,87278028044791 0,858097228914973 0,130292901031518
55 1,51145914 0,04394957 1,29923757526945 0,228795902724028 0,0347402146348062
56 0,69851373 0,07397417 17,2338552933888 3,03488411536159 0,460814744950208
57 0,77416506 0,04232254 4,59249242906357 0,80873850253519 0,122798305507215
58 1,50016916 0,0741993 3,7591640960113 0,661989276792807 0,100516002637782
59 1,91036691 0,02898457 0,353730317305009 0,062291953996075 0,00945836803054713
60 0,01440909 0,00218746 35,4143493002807 6,23647142891582 0,946941590408205
61 0,02743216 0,00200492 8,20816768372395 1,44545937606395 0,219477570937642
62 0,01933337 0,0004953 1,00854124803801 0,177604242419959 0,0269673076670597
63 0,03252276 0,00171551 4,27546990115185 0,75291079493339 0,114321464263274
64 0,00944086 0,00083534 12,0302755556038 2,11853305981574 0,321676622407462
65 0,01051037 0,00020365 0,576905863563027 0,101593196158381 0,0154258419751302
66 0,02414897 0,00502224 66,4614535713791 11,7038704511461 1,77710774839011
67 0,02110734 0,00028922 0,288510594623731 0,0508067525130597 0,00771446282991417
68 0,00743903 0,00081509 18,4480575077294 3,24870528017971 0,49328120554153
69 0,00910181 0,00073681 10,0699572359962 1,77332075369226 0,269259820067379
70 0,02059955 0,00014327 0,0743305231282469 0,0130896146038184 0,0019875182003239
71 0,02373458 0,0002636 0,189539549445957 0,0333779388333959 0,00506808358599959
72 0,08033181 0,0093363 20,7561416477543 3,65515919163658 0,554996891683864
73 0,0894325 0,00620423 7,39532339642595 1,30231739339165 0,197742989408507
74 0,38232941 0,00355961 0,133199181802504 0,0234563929051125 0,00356160278387876
75 0,38342266 0,01579628 2,60811195032448 0,459288847119482 0,0697381069255826
76 0,06531547 0,0024769 2,20982034534103 0,389149644679396 0,0590882180155449
77 0,08650457 0,00519001 5,53134083443978 0,974069826473013 0,14790210155895
78 0,12554026 0,00412304 1,65745285032646 0,291877658352292 0,0443185056093155
79 0,14414607 0,00177357 0,232628644233251 0,0409659339214965 0,00622023961182857
80 0,1100787 0,00113796 0,164217540438457 0,0289187298173272 0,00439100031451048
81 0,44197805 0,00252695 0,0502300983602669 0,0088455267281433 0,00134309877683549
82 0,14025861 0,01507407 17,7490097590577 3,12560288247436 0,4745894209972
83 0,46914203 0,00148192 0,015332499782802 0,00270005516742742 0,000409974544672628
84 0,06354774 0,00302842 3,4898288239414 0,614559301027308 0,0933142672981223
85 0,1167424 0,0023788 0,638014808655865 0,112354489183738 0,017059829406714
86 0,08009957 0,0113328 30,7599916778616 5,41683845793975 0,82248907620467
87 0,13578243 0,00621888 3,22336387337488 0,567634789244667 0,0861892812666691
88 0,11905191 0,00526386 3,00405624313781 0,529014687587008 0,0803252312341672
89 0,43680356 0,00659526 0,3503189558086 0,0616912128014347 0,00936715189514742
90 0,22858827 0,00297713 0,260651273108772 0,0459007224407906 0,0069695345524134
91 0,76027977 0,12006959 38,3258080387939 6,74917968412753 1,02479086401419
92 0,06346589 0,00200198 1,52901185877664 0,269259183357589 0,0408841317124378
93 0,12088259 0,00474199 2,36464466514489 0,416414227144855 0,0632280537184635
94 0,16103443 0,00545752 1,76492122157397 0,310802852236679 0,0471920942082424
95 0,42569284 0,03719694 11,7325893773076 2,06611048584761 0,313716814344121
96 0,33187021 0,05563304 43,1818433826216 7,60432812756786 1,15463602345995
97 0,73363067 0,03900093 4,34277273177411 0,764762831990514 0,116121069528587
98 0,37199113 0,03977578 17,5688920754284 3,09388413541305 0,469773267964135

108

Continuing Table J.1
C Response time Std deviation 95% - 5% 90% - 10% 80% - 20%
99 0,85853249 0,02466973 1,26878330818696 0,223432902406329 0,0339259003052872
100 0,32612823 0,05378884 41,8003293979437 7,36104333865256 1,11769582617637
101 0,38400858 0,04079799 17,3447407284664 3,05441105462231 0,4637797021588
102 0,62052002 0,04738686 8,96141113111669 1,57810564322678 0,239618490145015
103 0,66287876 0,0553193 10,7018110517511 1,8845902912403 0,286154911153853
104 0,34279031 0,03352681 14,6993972553674 2,58856573159333 0,393046064379596
105 0,40697668 0,03189904 9,44035467705463 1,66244766275619 0,252424925165483
106 0,64619628 0,08526227 26,7520463948902 4,71103878239099 0,715320932344524
107 0,83422744 0,078202 13,5032687924869 2,37792735671266 0,361062876452899
108 0,152511 0,0046496 1,4282393089756 0,251513124483985 0,0381895821735217
109 0,17708638 0,01965114 18,9224476781128 3,33224544969318 0,505965888199622
110 0,88621831 0,01489952 0,434345425275887 0,076488284792286 0,0116139292666325
111 0,88338583 0,00350843 0,0242380071135792 0,00426831614428384 0,000648098227355434
112 0,11585439 0,00724698 6,01258556392507 1,05881708471863 0,160770067751139
113 0,162516 0,0073329 3,12846578780094 0,550923224270749 0,0836518085795917
114 0,21852936 0,01294155 5,38921035422073 0,94904063077755 0,144101685466509
115 1,21347285 1,67174583 2916,43635462918 513,584814044631 77,9823697044455
116 0,23189595 0,002854 0,232752172768111 0,0409876873122415 0,00622354263191991
117 1,0027714 0,01513555 0,350077879978275 0,061648759316965 0,00936070578686962
118 0,28594305 0,0204949 7,89413684784593 1,39015850581088 0,21108072431928
119 1,055826 0,02296037 0,726683323615045 0,127969025977809 0,0194307300792816
120 0,11511975 0,0173905 35,066837102173 6,17527448650352 0,937649488193587
121 0,22896271 0,00806902 1,90846502062012 0,336080933557864 0,0510303009252275
122 0,13564322 0,00516454 2,22761043304315 0,392282481392882 0,0595639058165349
123 0,26398001 0,01113872 2,73590256169183 0,481792790081095 0,0731550903562644
124 0,30433887 0,0304365 15,3690387774199 2,70648968904022 0,410951558068582
125 1,01600799 0,02983581 1,32511494800269 0,233352911363037 0,0354321477346869
126 0,48063213 0,01737986 2,00927361810761 0,35383334043365 0,0537258143404878
127 1,56613788 0,0728545 3,32525465544743 0,585577768963918 0,08891373113318
128 0,12400245 0,00423824 1,79507539546298 0,31611300610473 0,0479983843687022
129 0,25040669 0,01396336 4,77815406695187 0,841433540648651 0,127762697911238
130 0,32731041 0,01358573 2,64739324456386 0,466206288045405 0,0707884464623882
131 0,7622913 0,09752173 25,1497111483999 4,42886734110455 0,672476212148956
132 0,0026738 0,00013202 3,74622409614682 0,65971054116616 0,100170000966323
133 0,00459882 0,00058563 24,9187322446513 4,38819192669282 0,666300084822376
134 0,01747215 0,00069815 2,45344835062999 0,432052567485781 0,0656025687054352
135 0,02518579 0,01276791 394,912248311347 69,5440972990884 10,5595285491992
136 0,00205333 0,00075862 209,750596909036 36,9371068695839 5,60850524576879
137 0,00298939 0,00141433 343,960432385687 60,5714760156235 9,19713182131555
138 0,02625539 0,02762766 1701,46645807616 299,628460290994 45,4953821168777
139 0,01038354 0,00166051 39,2974386194101 6,92028395330651 1,05077122015448
140 0,003436 0,0007658 76,3302259112242 13,4417625189648 2,04098810083231
141 0,01043131 0,00016035 0,36310510803641 0,0639428558396389 0,00970903984636012
142 0,00496041 0,00058444 21,3312767140294 3,75644055016668 0,570375384445095
143 0,0117325 0,0000946866 0,10008478318722 0,0176249430851857 0,00267615939977797
144 0,00302431 0,00204034 699,398361764492 123,164140715702 18,7011595611305
145 0,00323561 0,00019866 5,79269494599293 1,02009431885351 0,154890429255032
146 0,00944208 0,00844494 1229,22085290991 216,465948985809 32,8680428248957
147 0,00479707 0,00114956 88,2436187829856 15,5397125232474 2,35953940605294
148 0,00400246 0,00112097 120,533040847185 21,2258838673016 3,22292380494664
149 0,01063468 0,00071611 6,96759274084266 1,22699397038596 0,186305931965208
150 0,01546686 0,01442747 1337,05165197626 235,454966455321 35,7513223536844
151 0,01551352 0,00017303 0,191158779839251 0,0336630855121895 0,00511138006423958
152 0,00194215 0,0000371556 0,562412744418477 0,0990409560284133 0,015038311565455
153 0,00420463 0,00131046 149,267102704008 26,2859558253471 3,99124169786844
154 0,00486226 0,0000725631 0,342237373246964 0,0602680450815165 0,00915105907415437
155 0,00741603 0,00031279 2,73359957461172 0,481387233762539 0,0730935109600192
156 0,40826874 0,04474832 18,4600701604336 3,25082070985313 0,493602410947854
157 1,67387745 0,01472178 0,118862665046278 0,0209317304757038 0,00317825975354539
158 0,48188462 0,05555474 20,4234093465914 3,59656499096145 0,546099988008696
159 1,789991 0,04821254 1,11478332447531 0,196313485631853 0,0298081064623947
160 0,40870911 0,03547485 11,5766961165778 2,03865766274875 0,309548396311147

109

Replication Calculations

Continuing Table J.1
C Response time Std deviation 95% - 5% 90% - 10% 80% - 20%
161 0,56234298 0,01510774 1,10909457832335 0,195311696708886 0,0296559955120311
162 1,49222578 0,05385088 2,00119157595251 0,352410091779264 0,0535097092304601
163 1,4720856 0,0578822 2,37572443319954 0,418365375712514 0,0635243147931499
164 0,43531222 0,04481762 16,2880088451459 2,86832043518234 0,435523828762911
165 0,49031157 0,02960006 5,60032245845752 0,986217499261214 0,149746595953085
166 1,49597719 0,01761383 0,213024616240726 0,037513662091499 0,00569604899947975
167 1,89377821 0,1249442 6,68876757263379 1,17789282269994 0,178850447015003
168 0,0123593 0,0021635 47,0866924420404 8,29197254499898 1,2590474852456
169 0,02801427 0,0056474 62,4468610365554 10,9969001936983 1,66976186416864
170 0,01715525 0,00086183 3,87812003081187 0,682937432084138 0,103696756324189
171 0,03131385 0,00073207 0,839855209085304 0,147898609444311 0,0224568245108925
172 0,01501541 0,01206869 992,699967387349 174,814590876806 26,5437288694868
173 0,00866758 0,00184051 69,287163005212 12,2014782428662 1,85266417786498
174 0,0288342 0,01319686 321,882629154121 56,6835720504985 8,60679512113926
175 0,0188104 0,00042362 0,779343619382319 0,1372425107793 0,0208388097196107
176 0,00727858 0,00104549 31,704330081813 5,58313657132693 0,847739668910442
177 0,00692453 0,00106545 36,3795798605159 6,40644865368938 0,97275081689066
178 0,018656 0,00127311 7,15594389291817 1,26016263229083 0,191342239084373
179 0,02322679 0,00237402 16,0532324394602 2,82697628019512 0,42924616032108
180 0,08287422 0,00181807 0,739527668731807 0,13023091679118 0,0197741740457227
181 0,0885105 0,00233314 1,06773663653928 0,188028557885465 0,0285501286545903
182 0,43975421 0,00577216 0,264745656763513 0,0466217439246332 0,00707901396531711
183 0,45174941 0,01539066 1,7835752380712 0,314087826921179 0,0476908825355276
184 0,06227887 0,00280378 3,11442984827252 0,548451493529497 0,0832765026608746
185 0,09519925 0,01288141 28,1340261785815 4,95440559857194 0,75227358459247
186 0,12426915 0,00985127 9,65672631170614 1,70055073521675 0,258210469835494
187 0,14044457 0,00904139 6,36843373688001 1,12148199336479 0,17028506496271
188 0,12537506 0,01052487 10,8288741585514 1,90696612055485 0,289552441895288
189 0,50251768 0,00512273 0,159688034241406 0,0281210831982833 0,00426988619306689
190 0,15048812 0,01397176 13,245548111261 2,33254271187624 0,354171702773781
191 0,52856019 0,00462768 0,117790394058949 0,020742903418066 0,00314958838123016
192 0,06337714 0,00275251 2,89844237820097 0,510416072500474 0,0775012301383273
193 0,12282334 0,01667492 28,3229082606273 4,98766775731231 0,757324088207699
194 0,07065954 0,00148317 0,677036974765294 0,119226297612925 0,0181032401361762
195 0,14425642 0,0109087 8,78714576144425 1,54741748939974 0,234958821689399
196 0,13649109 0,00858835 6,08391306702592 1,07137786711258 0,162677288427522
197 0,50231272 0,01176453 0,84289396691195 0,14843373508518 0,0225380776251268
198 0,23930425 0,00498984 0,668104736915988 0,117653329388346 0,0178644017081931
199 0,85141324 0,04228309 3,78987398952779 0,667397292958139 0,101337152143063
200 0,06905095 0,0006767 0,147579206559363 0,0259887170989823 0,00394610917132951
201 0,12410264 0,00046646 0,0217089545545635 0,00382294966605794 0,000580474083476521
202 0,16781258 0,00752292 3,08813297063295 0,543820610022974 0,0825733524512336
203 0,36406089 0,03188865 11,7895261166323 2,07613705290504 0,315239241483236
204 0,20294181 0,0066665 1,65815392031143 0,292001116866067 0,0443372514662822
205 0,73696266 0,03943195 4,3992402004162 0,77470676042087 0,117630948874636
206 0,30969886 0,01226973 2,41192018806632 0,42473945276136 0,0644921503275248
207 0,80604481 0,00808193 0,154484151282164 0,0272046787454002 0,00413073996270869
208 0,18862369 0,00436449 0,822709792015125 0,144879299311337 0,0219983745088613
209 0,26886294 0,03312274 23,3218371563665 4,10697849796027 0,623600828602992
210 0,60318849 0,0533581 12,0244924987307 2,11751466276276 0,321521989689905
211 0,69555982 0,01737319 0,958654907415489 0,168819251473279 0,0256334006022089
212 0,21292473 0,05866241 116,637909039478 20,5399506591363 3,11877217201489
213 0,24434046 0,01243714 3,9812770994475 0,701103405028661 0,106455065330727
214 0,65077712 0,02456224 2,1889887216929 0,385481193097864 0,058531202816398
215 0,87520658 0,00300816 0,018153185683437 0,00319677831431061 0,000485396650275685
MAX 2916,43635462918 513,584814044631 77,9823697044455
AVERAGE 66,052148963456 11,6317918574836 1,76616338363271

Table J.1: Calculating the Amount of Replications

110

Appendix K

Result Graphs

Figure K.1: CPU Utilization - 1 Workload Unit

111

Result Graphs

Figure K.2: Application CPU Utilization - 1 Workload Unit

Figure K.3: Application CPU Utilization - 63 Workload Units

112

Figure K.4: Application CPU Utilization - 125 Workload Units

Figure K.5: Database CPU Utilization - 1 Workload Unit

113

Result Graphs

Figure K.6: Database CPU Utilization - 63 Workload Units

Figure K.7: Database CPU Utilization - 125 Workload Units

114

Figure K.8: Response Time - 125 Workload Units

Figure K.9: Disk Queue Length - 125 Workload Units

115

Result Graphs

Figure K.10: Network Utilization - 1 Workload Unit

116

Figure K.11: Memory Utilization - 1 Workload Unit

117

Appendix L

Sample Metric Calculations

The example scenario considered has 2 number of queries, 4 computations, Query
3, Scenario1, 12,4 GB data volume, and 85 WU.

Preliminaries

cloQue = Closest number of queries = 1
cloCom = Closest computations = 6
cloDat = Closest data volume = 17
cloUse = Closest WU = 63

Application Server

resQue1 = Response time for 1 number of queries and closest values for the other
factors = 1,058
resQue6 = Response time for 6 number of queries and closest values for the other
factors = 1,117
resCom1 = Response time for 1 computations and closest values for the other
factors = 0,622
resCom6 = Response time for 6 computations and closest values for the other
factors = 1,058
resDat1 = Response time for 1 GB data volume and closest values for the other
factors = 1,1004
resDat17 = Response time for 17 GB data volume and closest values for the
other factors = 1,058
resUse63 = Response time for 63 WU and closest values for the other factors =

119

Sample Metric Calculations

1,058
resUse125 = Response time for 125 WU and closest values for the other factors
= 2,175
resQue = The calculated response time for 2 number of queries = resQue1 +
(resQue6−resQue1

5
× (2− 1)) = 1,058

resCom = The calculated response time for 4 computations = resCom1 +
(resCom6−resCom1

5
× (4− 1)) = 0,884

resDat = The calculated response time for 12,4 GB data volume = resDat1 +
(resDat17−resDat1

16
× (12, 4− 1)) = 1,071

resUse = The calculated response time for 85 WU = resUse63+(resUse125−resUse63
62

×
(85− 63)) = 1,454
resTqu = Response time for Query 3 = 1,058
resHar = Response time for Scenario1 = 1,058

The final value for the application is calculated by multiplying all factors with
their corresponding weights and then adding the factors together:
Final response time for the application = resQue × 0, 01562 + resCom ×
0, 08509+resDat×0, 00091+resUse×0, 39705+resTqu×0, 42219+resHar×
0, 07910 = 85,314

SQLCLR

resQue1 = Response time for 1 number of queries and closest values for the other
factors = 0,955
resQue6 = Response time for 6 number of queries and closest values for the other
factors = 1,017
resCom1 = Response time for 1 computations and closest values for the other
factors = 0,619
resCom6 = Response time for 6 computations and closest values for the other
factors = 0,955
resDat1 = Response time for 1 GB data volume and closest values for the other
factors = 1,027
resDat17 = Response time for 17 GB data volume and closest values for the
other factors = 0,955
resUse63 = Response time for 63 WU and closest values for the other factors =
0,955
resUse125 = Response time for 125 WU and closest values for the other factors
= 1,992
resQue = The calculated response time for 2 number of queries = resQue1 +
(resQue6−resQue1

5
× (2− 1)) = 1,058

120

resCom = The calculated response time for 4 computations = resCom1 +
(resCom6−resCom1

5
× (4− 1)) = 0,821

resDat = The calculated response time for 12,4 GB data volume = resDat1 +
(resDat17−resDat1

16
× (12, 4− 1)) = 0,976

resUse = The calculated response time for 85 WU = resUse63+(resUse125−resUse63
62

×
(85− 63)) = 1,323
resTqu = Response time for Query 3 = 0,955
resHar = Response time for Scenario1 = 0,955

The final value for the application is calculated by multiplying all factors with
their corresponding weights and then adding the factors together:
Final response time for the application = resQue × 0, 01562 + resCom ×
0, 08509+resDat×0, 00091+resUse×0, 39705+resTqu×0, 42219+resHar×
0, 07910 = 77,427

T-SQL

resQue1 = Response time for 1 number of queries and closest values for the other
factors = 0,978
resQue6 = Response time for 6 number of queries and closest values for the other
factors = 1,187
resCom1 = Response time for 1 computations and closest values for the other
factors = 0,606
resCom6 = Response time for 6 computations and closest values for the other
factors = 0,978
resDat1 = Response time for 1 GB data volume and closest values for the other
factors = 1,024
resDat17 = Response time for 17 GB data volume and closest values for the
other factors = 0,978
resUse63 = Response time for 63 WU and closest values for the other factors =
0,978
resUse125 = Response time for 125 WU and closest values for the other factors
= 1,978
resQue = The calculated response time for 2 number of queries = resQue1 +
(resQue6−resQue1

5
× (2− 1)) = 0,978

resCom = The calculated response time for 4 computations = resCom1 +
(resCom6−resCom1

5
× (4− 1)) = 0,830

resDat = The calculated response time for 12,4 GB data volume = resDat1 +
(resDat17−resDat1

16
× (12, 4− 1)) = 0,991

resUse = The calculated response time for 85 WU = resUse63+(resUse125−resUse63
62

×

121

Sample Metric Calculations

(85− 63)) = 1,333
resTqu = Response time for Query 3 = 0,978
resHar = Response time for Scenario1 = 0,978

The final value for the application is calculated by multiplying all factors with
their corresponding weights and then adding the factors together:
Final response time for the application = resQue × 0, 01562 + resCom ×
0, 08509+resDat×0, 00091+resUse×0, 39705+resTqu×0, 42219+resHar×
0, 07910 = 78,650

Comparing Locality

As the results show, the lowest value, and thereby the best locality, is for SQL-
CLR, the next best is T-SQL, and the worst is the application server.

Examining the amount in percent the three location deviate from each other, gives
the following result:

SQLCLR better than T-SQL = T-SQL−SQLCLR
SQLCLR × 100 = 78,650−77,427

77,427
× 100 =

1,58%

SQLCLR better than App = App−SQLCLR
SQLCLR ×100 = 85,314−77,427

77,427
×100 = 10,19%

122

Appendix M

Commonly Used Normal Quantiles

Table M.1 is originally presented in [7] on p. 630.

Confidence Level (%) α α/2 z1−α/2

20 0.8 0.4 0.253
40 0.6 0.3 0.524
60 0.4 0.2 0.842
68.26 0.3174 0.1587 1.000
80 0.2 0.1 1.282
90 0.1 0.05 1.645
95 0.05 0.025 1.960
95.46 0.0454 0.0228 2.000
98 0.02 0.01 2.326
99 0.01 0.005 2.576
99.74 0.0026 0.0013 3.000
99.8 0.002 0.001 3.090
99.9 0.001 0.0005 3.29
99.98 0.0002 0.0001 3.72

Table M.1: Commonly Used Normal Quantiles

123

Appendix N

Summary

The objective of this master thesis was to examine the possibilities introduced by
the integration of CLR in Microsoft SQL Server 2005. The focus of the exam-
ination was to determine whether the CLR integration posed an impact on the
design of a C# application concerning the performance and scalability criteria.
Subsequently, the obtained result of the examination was used to define a metric,
which indicates whether a given functionality achieve the best performance and
scalability on the application server or database.

As mentioned, the metric concerns the placement of functionality on either the
application server or database. Hence, to provide a fair comparison of the applica-
tion server and database it was necessary to consider the different implementation
possibilities on the database. The possibilities were using XP, T-SQL, and SQL-
CLR. XP was excluded as the use of it was predicted to decline according to the
references. Therefore, only T-SQL and SQLCLR had to be considered.

In order to develop the definition of the metric, an analysis of the parameters af-
fecting the performance and scalability criteria was performed. The result of the
analysis determined a large amount of parameters affecting the criteria. Among
these parameters, only seven were used as factors in the full factorial experimen-
tal design. The seven parameters were type of queries, number of queries, com-
putations, workload units, hardware, data volume, and locality. The parameters
included in the experimental design were provided with either two or three levels.
Each of the remaining parameters was set to a fixed level if possible, during the
execution of the experiments.

The data obtained from the execution of the experiments was analysed in order to
determine the impact of each parameter. Subsequently, the result of the analysis
was used to define the metric. As the metric was defined, the accuracy of the
metric was examined by using the characteristics of the performed experiments as

125

Summary

input.

In order to produce an output from the metric, several time consuming calculations
must be performed, which are generally considered inappropriate. Therefore, the
thesis provides a tool, which is able to perform these calculations automatically.
The developer provides the values for the seven parameters examined in the thesis
and the tool outputs a value indicating whether the functionality should be located
on the application server or database.

Even though the results were obtained in a specific research context, the thesis dis-
covered several scenarios, which benefit from the CLR integration in the database.
The scenarios proved the hypotheses on design impact in a C# application by using
the CLR integration in the database. The conclusions are however, to be cautiously
drawn as the full factorial experimental design only contained seven parameters.
One of the scenarios, which benefits from the CLR integration is functionality
retrieving data from the database in order to perform additional insert and delete
queries using this data. As the functionality requires access to the database several
times, the amount of round trips are reduced, as both the SQLCLR and T-SQL in
the database are able to access the data more efficiently.

126

Bibliography

[1] Erik Hejlskov, Morten K. Hansen, and Jacob E. Hansen. Java vs. .net
- a comparison of persistence solutions. http://www.cs.aau.dk/
library/files/rapbibfiles1/1136533201.pdf.

[2] Erik Frøkjær. Amanda og problemerne med statens it–projekter.
http://erfa.teknologisk.dk/erfaswudv/Mat/0101/
AmandaFinal.pdf.

[3] Balaji Rathakrishnan, Christian Kleinerman, Brad Richards, Ramachandran
Venkatesh, Vineet Rao, and Isaac Kunen. Using clr integration in sql
server 2005. http://msdn.microsoft.com/library/en-us/
dnsql90/html/sqlclrguidance.asp?frame=true&_r=1.

[4] Transaction Processing Performance Council. Top ten tpc-h by per-
formance. http://www.tpc.org/tpch/results/tpch_perf_
results.asp.

[5] Andrew Binstock. 2005 survey spots trends in software develop-
ment. http://www.infoworld.com/pdf/special_report/
2005/49SRrrDevelop.pdf.

[6] Roger S. Pressman. Software Engineering - A Practitioner’s Approach.
McGraw-Hill, 2005.

[7] Raj Jain. Art of Computer Systems Performance Analysis Techniques For
Experimental Design Measurements Simulation And Modeling. Wiley Com-
puter Publishing, John Wiley & Sons, Inc., 1991.

[8] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems
- Concepts and Design. Pearson Education Ltd., 2001.

[9] Connie U. Smith and Lloyd G. Williams. Performance Solutions A practical
guide to creating responsive, scalable software. Addison-Wesley, 2002.

127

BIBLIOGRAPHY

[10] Transaction Processing Performance Council. Transaction processing per-
formance council. http://www.tpc.org/.

[11] Christopher Koch. The abcs of erp. http://www.cio.com/
research/erp/edit/erpbasics.html.

[12] ComPiere Inc. Smart open source erp software with integrated crm solutions
by compiere erp & crm. http://www.compiere.com.

[13] William R. Cook and Siddhartha Rai. Safe query objects.
http://www.cs.utexas.edu/˜wcook/papers/SafeQuery/
SafeQueryFinal.pdf, 2005.

[14] SAS Institute. Jmp 6. http://www.jmp.com.

[15] Sybase Inc. Sybase database systems. http://www.sybase.com.

[16] Inc. Scalability Experts. Microsoft SQL 2005: Changing the Paradigm (SQL
2005 Public Beta Edition). Sams, 2005.

[17] Bob Beauchemin, Niels Berglund, and Dan Sullivan. A First Look at SQL
Server 2005 for Developers. Addison-Wesley, 2004.

[18] Craig S. Mullins. Sql server update. http://www.craigsmullins.
com/ssu_sql.htm.

[19] Microsoft. Clr hosted environment. http://msdn2.microsoft.
com/en-us/library/ms131047.aspx.

[20] Mcgraw-Hill. Microsoft sql server 2005 developer’s guide.
http://books.mcgraw-hill.com/downloads/products/
0072260998/0072260998_ch03.pdf.

[21] Microsoft Corporation. Sqlcontext class (microsoft.sqlserver.server).
http://msdn2.microsoft.com/en-us/library/
microsoft.sqlserver.server.sqlcontext.aspx.

[22] Glenn Johnson. Programming Microsoft ADO.NET 2.0 Applications: Ad-
vanced Topics. Microsoft Press, 2006.

[23] Oracle. Oracle® database performance tuning guide. http:
//www.stanford.edu/dept/itss/docs/oracle/10g/
server.101/b10752/title.htm.

[24] Thomas Rizzo. Pro SQL Server 2005. Apress, 2006.

128

BIBLIOGRAPHY

[25] the free encyclopedia Wikipedia. Sql. http://en.wikipedia.org/
wiki/SQL.

[26] J.D. Meier, Srinath Vasireddy, Ashish Babbar, and Alex Mackman. Improv-
ing .NET Application Performance and Scalability. Microsoft Corporation,
2004.

[27] Exact Software. Additionele server aanbevelingen. http:
//www.exact.nl/docs/BDDocument.asp?Action=View&ID=
%7B00716E63-DE66-423E-B992-D858D761426D%7D.

[28] European Commission. Europa - enterprise - sme definition.
http://europa.eu.int/comm/enterprise/enterprise_
policy/sme_definition/index_en.htm.

[29] Ye Wu Jerry Zeyu Gao, H S Jacob Tsao. Testing and Quality Assurance for
Component-Based Software. Artech, 2003.

[30] Andrew D. Birrell. An introduction to programming with c# threads. http:
//birrell.org/andrew/papers/ThreadsCSharp.pdf, 2005.

[31] Transaction Processing Performance Council. Tpc-h. http://www.tpc.
org/tpch/.

[32] Brad M. McGehee. How to perform a sql server performance audit article se-
ries. http://www.sql-server-performance.com/articles_
audit.asp.

[33] Microsoft. How to use performancecounter to time code. http://
support.microsoft.com/kb/172338/en-us.

[34] Oracle. Oracle toplink. http://www.oracle.com/technology/
products/ias/toplink/index.html.

[35] Oracle. Oracle database 10g. http://www.oracle.com/
technology/products/database/oracle10g/index.html.

[36] IBM. Db2 product family. http://www-306.ibm.com/software/
data/db2/.

[37] ComPiere Inc. Sourceforge.net: Compiere erp + crm business solution.
http://sourceforge.net/projects/compiere.

All links working June 13, 2006

129

