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Abstract:

This thesis presents a number of

stochastic models and statistical meth-

ods for stochastic channel modeling.

The purpose of this is to describe the

statistical modeling and estimation of

an impulse response function for an ul-

tra wide band radio channel, in a rig-

orous mathematical context. Previous

stochastic models are presented and re-

formulated using the theory of point

processes.

The thesis provides brief descriptions

of basic likelihood and Bayesian in-

ference. The likelihood section in-

troduces the expectation maximization

algorithm, and an approach on how

to implement this for inference in the

statistical modeling of an impulse re-

sponse function.

The theory of Markov chain Monte

Carlo methods and the reversible jump

Markov chain Monte Carlo algorithm is

presented, for estimation purposes.

In the second part of the thesis an

algorithm, based on the theory from

the first part, is constructed, with the

purpose of performing statistical infer-

ence on measurements of an impulse re-

sponse function. The purpose is to fit

a parametric model of an impulse re-

sponse function to measured data.

Rasmus Froberg Brøndum Ege Rubak





Preface

“obscurum per obscurius”

This report is the masters thesis of Rasmus Froberg Brøndum and the project work
of Ege Rubak during the spring semester of 2006.

The project was proposed by Troels Pedersen, Department of Communication Tech-
nology, Aalborg University, and Martin Bøgsted Hansen, Department of Mathematical
Sciences, Aalborg University. We would like to thank Troels Pedersen for supplying
the Intel UWB database and answering our questions regarding the contextual part
of the problem at hand. Furthermore we thank Martin Bøgsted Hansen for his thor-
ough supervising and many useful ideas and comments through the entire process. We
would also like to thank Bjarne Højgaard for supplying us with unpublished material
on stochastic integration, and supervision on this part of the thesis. Finally we thank
Kim Emil Andersen, for helping us with the implementation of reversible jump Markov
Chain Monte Carlo (RJMCMC) methods in the programming language R.

The report gives a method for estimating the channel impulse response function of
an UWB system using Bayesian inference. In particular this includes Markov Chain
Monte Carlo(MCMC) methods for parameter estimation, which is extended to RJM-
CMC. This allows the algorithm to estimate the order of the model, thus giving an
automated method to determine the number of parameters necessary to properly de-
scribe the data.

In order to give a broader approach to the parameter estimation, this thesis also
supplies an introduction to the likelihood approach. This method is however not fully
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Chapter 1

Introduction

In many modern applications, such as local area networks and cell phones, there is a
rising demand for wireless communications. There is a special interest in ultra wide
band (UWB) technologies, because of attractive properties such as high resistance
towards interference and higher data rates.

Under certain assumptions for a UWB system it is possible to describe the wire-
less communication channel via the channel impulse response function. This function
determines how the channel effects the input signal and produces an output signal.
The impulse response thus plays a key role in the design of communication systems
and it is desirable to determine this function. The wireless channel changes depend-
ing on the specific location of the antennas, which makes it stochastic and thus lends
itself to statistical modeling. A satisfactory statistical model describing the general
dynamics of the impulse response of e.g. a typical office environment would be useful
in several ways. It would make it possible to simulate a wireless channel for testing
equipment, which otherwise can be time demanding, expensive and non-repeatable.
Besides that it might give a better understanding of the channel and factors affecting
the characteristics of the channel.

In this chapter some general comments on communication systems are given as well
as a description of various statistical models proposed in literature for the impulse
response function of a wireless communication channel.

1.1 Communication systems

In general a communication system consists of a communication channel, which may
be regarded as an operator S : RR → RR which given an input signal x produces
an output signal y, i.e. y = S (x). In many cases, including the one at hand, it is
reasonable to model the channel as being linear and time invariant. If we denote the
operator of the linear time invariant system by L , this means that

L (c1x1 + c2x2) = c1y1 + c2y2

L (xto
) = yt0

where L (xi) = yi for i = 1, 2, xt0(t) = x(t− t0) and yt0(t) = y(t− t0) for all t ∈ R.

Under these conditions the communication system can be summed up in a simple
mathematical model (Papoulis (1962), chapter 5)

y = x ∗ h
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where h denotes the impulse response function, which is defined as L (δ), where δ is
the Dirac δ-function. The formal mathematical treatment of the δ-function belongs to
the theory of distributions, and an introduction which covers the needed parts in this
context is found in Richards and Youn (1990). From the theory it is known that the
δ-function is the limit of real C∞ functions, which covers the way it is used here. The
impulse response h is the limiting behavior of the system when the input is a sequence
of functions approximating the δ-function. The input and output represent real signals
and usually these functions are modeled to have well defined Fourier transforms X and
Y . If the Fourier transform of h exists it is called the transfer function or frequency
response, and it is denoted H. This leads to the relation

Y = X ·H.

The importance of the impulse response function or equivalently the transfer function
of a communication system is obvious, since knowing h or H makes it possible to
calculate the output of the system for any given input and vice versa.

1.1.1 Complex baseband representation

The analysis of communication systems, is often done using complex baseband nota-
tion, and this concept will therefore be briefly introduced. A communication system
often works within a specific range of frequencies, and information is sent in this fre-
quency range when it is transmitted through the channel. Since any transmitted signal
x is a real function the Fourier transform X is complex symmetric implying that the
support of X is symmetric around zero. The signal is said to be passband around fc

if

0 < fmin < fc < fmax <∞, and supp(X) ⊂ (−fmax,−fmin) ∪ (fmin, fmax).

In order to give a unified framework for analyzing passband signals we wish to move
the frequency content of the signal from the vicinity of fc to the vicinity of 0. When
the signal is transformed in this way it is called a baseband representation of the signal
denoted by x̃. Since the baseband representation is given by a frequency translation it
satisfies X̃(f) = X(f −fc) for all f . Then x̃ can be found by using the inverse Fourier
transform on X̃ and it is given by

x̃(t) = exp(−2πifct)x(t), for t ∈ R.

To obtain this result the general translation formula for the inverse Fourier transform
is used. Letting gω denote a translation of the function g by ω then it holds that
F−1(gω)(t) = exp(−2πiωt)F−1(g)(t) for all t ∈ R.

In a similar manner it is possible to introduce baseband equivalents of the received
signal y and the impulse response h. In the complex baseband context the relation
between the input and output is (Haykin, 2001, chap. A2)

ỹ = 1
2 x̃ ∗ h̃.
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1.1.2 Multipath propagation

In wireless communication a common feature of the channel is multipath propagation
(Proakis, 2001, chap. 14). This phenomenon is due to interactions with various objects
between the transmitter and receiver. Whenever a time signal x is transmitted through
the wireless channel, the expected output is an attenuated and delayed version of the
signal

y =

∞∑

n=0

βnxτn
,

where βn ∈ (0, 1) is the attenuation factor or path gain of the n’th path, and the signal
xτn

corresponds to a delayed version of the input signal such that xτn
(t) = x(t− τn)

for all t. This model leads to the impulse response function

h =
∞∑

n=0

βnδτn
, (1.1.1)

where δτn
is the Dirac δ-function translated by τn. The corresponding frequency

response for a model of this type is given as

H(f) =
∞∑

n=0

βn exp(−2πifτn). (1.1.2)

It is worth noting that for many practical purposes it is sufficient to model a finite
number of signal components, which means that the sum in (1.1.1) is finite. This is
due to the fact that the magnitude of the reflections will decay to below the noise level
in the measuring equipment.

Since the δ-function causes the Fourier translation factor exp(2πifct) only to be eval-
uated at the τn’s the complex baseband equivalent of this impulse response is

h̃ =
∞∑

n=1

βn exp(−2πifcτn)δτn
=

∞∑

n=1

βn exp(−2πiθn)δτn
.

This model is used in much of the literature on channel modeling and has the advantage
of being very simple. The complex baseband notation is used in much of the literature
and it is thus necessary to be familiar with this concept when working with models
within this field, but for our purposes the complex baseband notation will not be
necessary, and we will not mention it further in this thesis.

1.2 Stochastic modeling

This section introduces a number of stochastic models introduced in the literature for
the impulse response function of a wireless channel.

1.2.1 The Turin model

In Turin et al. (1972) the model in (1.1.1) is used and it is assumed that the arrival
times {τi − τ0}i∈N form a Poisson process on R+, when the time of the first arrival τ0
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is given. The Turin model assumes that the attenuation factors are log-normally dis-
tributed. The model is not specifically designed for UWB channels, but for wideband
urban radio propagation, it is however used as a reference model in the literature. The
authors conclude that although the model is "sufficiently refined to be useful, further
refinement may be possible by a more elaborate analysis". In particular they notice
an inhomogeneity in the arrival rate.

1.2.2 The Saleh-Valenzuela model

In Saleh and Valenzuela (1987) an extension of the Turin model is proposed. Saleh
and Valenzuela noticed a temporal clustering in their observed data, and in order to
better describe this they proposed an impulse response function given by

h =

∞∑

k=0

∞∑

j=0

βkjδ(τkj+Tk), (1.2.1)

where {Tk−T0}k∈N is a Poisson process on R+, describing the arrivals of the clusters,
when the time of the first arrival, T0, is given and {τkj − Tk}j∈N, k = 0, 1, 2, . . . are
Poisson sequences on R+ given the cluster arrivals, describing the arrivals of rays within
each cluster. The squares of the path gains {βkj} are assumed to have exponentially
decaying mean, given by

E(β2
kj) = E(β2

00) exp(−Γ(Tk − T0)− γ(τkj − Tk)), k, j = 0, 1, 2, . . . (1.2.2)

Equation (1.2.2) states that the overall path gain of the clusters is exponentially de-
caying with a decay rate Γ, as shown by the dashed line in figure 1.2.1, and that the
path gains within clusters are exponentially decaying with a decay rate γ as shown
by the solid lines. In the original paper by Saleh and Valenzuela cluster arrivals were

T0 T1 T2 Delay

E(β2)

Figure 1.2.1: Illustration of the Saleh-Valenzuela model. The cluster arrivals form a
Poisson process with exponentially decaying path gains (dashed line).
Within the clusters the ray arrivals form another Poisson process with
exponentially decaying path gains.
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estimated, by superimposing graphs of data, and manually selecting a mean arrival
rate, which in the original paper is found to be 200 ns to 300 ns. Arrivals of rays
were estimated using a ray resolving algorithm, which the paper unfortunately does
not elaborate on. In a later article by Spencer et al. (2000) which offers an extension
of the Saleh Valenzuelah model, where spatial clustering is included, they however de-
scribe a ray resolving algorithm witch identifies the most significant arrival, and then
subtracts the signal belonging to that arrival. This is done recursively until residuals
are below a given noise threshold.

In Saleh and Valenzuela (1987) the ray arrival rate is found to be 5 ns to 10 ns,
and it is furthermore found that the normalized path gains β2

kl/E(β2
kl) are approxi-

mately Rayleigh distributed (see appendix A.4).

The model proposed by Saleh and Valenzuela does not offer the same well-founded
physical interpretation as the one proposed by Turin, since there is no clear connection
between the environment in which data is collected and the number of clusters. The
model does however fit the data well, and is therefore widely used.

1.2.3 The Molisch et al model

In Molisch et al. (2005) a further extension of the Saleh-Valenzuela model is presented.
The model has been adopted by the IEEE 802.15.4a working group as a standard model
for evaluating proposals of UWB systems. One of the major changes in the Molisch et
al. model is the introduction of frequency dependent attenuation factors. The physical
interpretation of this, is that different frequencies may have different interactions with
objects in the channel. The model furthermore describes the number of cluster arrivals
as a Poisson distributed random variable, and allows for a soft unset, so that the first
arrival does not in general correspond to the greatest value of β. Finally the arrivals
of the rays is extended to a mixture of Poisson processes with different arrival rates.

1.2.4 An autoregressive model

Morrison and Fattouche (1998) proposes an entirely different model for the frequency
response of the indoor channel. When looking from the frequency domain, the time
domain representation of the signal can be thought of as the spectrum of a time series.
Due to the spiked look of the observed impulse responses, Morrison and Fattouche
suggest modeling the frequency response as an autoregressive process of order p, i.e.

H(fn) =

p∑

k=1

αkH(fn−p) + n(fn), n = p+ 1, . . . , N (1.2.3)

where n(·) is a white noise process and fn is the n’th observation of the frequency
response.

The model parameters (α1, . . . , αk) were estimated by minimizing the sum of squares.
Inference was done on data from 5 m and 30 m non line of sight scenarios. In both
cases the model was found to poorly resemble observed data and the authors conclude
that the model is unacceptable for the 30 m case.
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1.2.5 Modeling the attenuation factor

The models mentioned above are mostly concerned with modeling the arrival times
of the output. Schuster and Bölcskei (2006) provides a comparison between different
models for the attenuation factors, using the Akaike Information Criterion. Their
measurements were obtained using two different scenarios, with respectively static
and dynamic environment, i.e. an environment with moving objects. For the static
environment, they find that the best fit, is that of a Rayleigh distribution, closely
followed by Nakagami, Weibull and Rice distributions. Tests furthermore show a
consistently bad fit for the log-normal distribution. For the dynamic environment the
best fit is found to be a combination of Rice and Rayleigh distributions, where the first
part of the impulse response has Rician amplitude, and the latter part has Rayleigh
distributed amplitude.

1.3 Summary

For physicists and engineers it is natural to treat impulse response functions on the
form (1.1.1) which involves a weighted sum of δ-functions with both the weights and
locations of the δ-functions being random. In order to make a formal theory for ran-
dom impulse response functions in this setting we are forced to treat them as a random
mapping from some measure space to the space of generalized functions equipped with
a suitable σ-field. Although this is in principle possible by the theory of generalized
random processes (see e.g. Gelfand and Vilenkin (1964)), we will use the (for statisti-
cians more natural) approach and consider the impulse response as a random measure.

Working within this frame, the goal of this thesis is to do statistical inference on
the Turin model, and a new model of our own design. In order to do this, we need to
introduce the theory of point processes and random measures, and give an overview
of Markov Chain Monte Carlo(MCMC) methods which will be used to do Bayesian
inference on data. We furthermore supply a brief description on how the inference
might be done in a maximum likelihood setting.

1.4 Overview of the thesis

The thesis is organized in three parts. Part I gives an introduction to the statistical
theory which will be used in Part II which covers the actual statistical inference. Part
III is the appendix, which contains miscellaneous mathematical results .

Chapter 2 Gives an introduction to the theory of point processes, with an emphasis
on the Poisson point process. Basic theorems are proved, and some of the stochastic
models for the impulse response given above are described with a random measures
representation of point processes on R2

+.

Chapter 3 Introduces both likelihood and Bayesian inference. The likelihood theory
deals with maximum likelihood estimation, and presents the EM algorithm and an
example on how it could be used to estimate parameters in e.g. the Turin model. The
Bayesian section is a short introduction which covers the needed concepts for the rest
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of the thesis.

Chapter 4 Covers Markov Chain Monte Carlo Methods, i.e. numerical methods used
in Bayesian inference. The chapter describes the basic theory, the Metropolis-Hastings
algorithm and the Reversible Jump MCMC algorithm which is used to determine an
unknown number of parameters.

Chapter 5 Contains a description of the dataset used in the thesis, that is how
the data is collected, and a descriptive data analysis with a short summary of charac-
teristics of the data.

Chapter 6 Describes how the methods from chapter 4 are used to design algorithms
and to do actual statistical inference on data. The methods are implemented on the
Turin model, and a new model which deviates from the delta train setting.

Chapter 7 Contains conclusive remarks on the inference, and an outlook on further
developments of statistical inference of the problem at hand.





Chapter 2

Point processes

A mathematical framework for treating the problem introduced in this report is the
theory of point processes. In this way it is possible to base the mathematics and
statistics on a rigorous foundation. The problem at hand can be summarized as
modeling a number of arrivals τ1, τ2, . . . on the positive real line along with a sequence
of positive real numbers β1, β2, . . . associated with each of the arrivals, that describes
the attenuation of the arrivals. The chapter is based on Daley and Vere-Jones (1988)
and Møller and Waagepetersen (2004).

2.1 General Point processes

2.1.1 Basic definition

We consider a metric space (S, d) which we for technical reasons assume to be a Polish
space (see appendix A.1). For x ⊆ S let n(x) denote the cardinality of x, and let
xB = x ∩B for B ⊆ S. The space of locally finite subsets of S is given by

N = {x ⊆ S | n(xB) <∞ for all B ∈ B0(S)},

where B0(S) denotes the class of bounded Borel sets in S.

In order to define a point process, a σ-algebra on N is needed, and here the following
is used

N = σ
(
{x ∈ N | n(xB) = m} | B ∈ B0(S),m ∈ N0

)
. (2.1.1)

Definition 2.1.1
A point process X : Ω → N is a measurable mapping defined on a probability space
(Ω,F ,P) taking values in the measurable space (N,N ). The probability distribution
PX on (N,N ) induced by X is called the distribution of the point process X.
Unless otherwise stated the probability measure P is assumed to be complete (defini-
tion A.2.2). �

The existence of such a measurable mapping is discussed in section 2.1.2.

The mean outcome of a point process, is determined by its intensity measure.

Definition 2.1.2 (Intensity measure)
The intensity measure of a point process X is a measure µ defined on B(S), such that
µ(B) = E(n(XB)). In some cases this measure has a density with respect to some
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measure ν on S, i.e. a function ρ such that

µ(B) =

∫

B

ρ(ξ)dν(ξ), for all B ∈ B(S).

This density is called the intensity function (with respect to ν). �

For a point process we define the class of void events by

N0 = {{x ∈ N | n(xB) = 0} | B ∈ B0(S)}. (2.1.2)

Lemma 2.1.3
The class of void events is a generating class for N , i.e.

N = σ(N0). (2.1.3)

Proof:
Since N0 ⊆ N , it is obvious that σ(N0) ⊆ N . We thus need to prove that {x ∈
N | n(xB) = m} ∈ σ(N0) for all B ∈ B0(S) and all m ∈ N.

According to proposition A.1.4 S contains a dissecting system, i.e. a sequence An =
{An,i ∈ B(S) | i = 1, . . . , kn}, n ∈ N of partitions of S, such that S is a disjoint union
of the sets in each An, and with the property that An−1,i ∩ An,i is either ∅ or An,i.
As a consequence we have that for separate points ξ, η ∈ S, ξ ∈ An,i implies η /∈ An,i

for sufficiently large n.

This means that n(xB) = m if and only if there exists an n0 ∈ N with kn0
≥ m such

that for all n > n0 there exists {j1, . . . , jm} ⊆ {1, 2, . . . , kn} such that n(x∩B∩An,ji
) >

0, i = 1, . . . ,m and n(x ∩ (B\ ∪m
i=1 An,ji

)) = 0. We then have

{x ∈ N | n(xB) = m} =
⋃

n0|kn0
≥m

⋂

n≥n0

⋃

ji,i=1,...,kn

A(n,m,B, {j1, . . . , jm},

where each of the events

A(n,m,B, {j1, . . . , jm}) =
m⋂

i=1

{x ∈ N | n(x ∩B ∩An,ji
) > 0}

⋂
{x ∈ N | n(x ∩ (B\ ∪m

i=1 An,ji
)) = 0}

belongs to σ(N0), since {x ∈ N | n(x ∩ (B\ ∪m
i=1 An,ji

)) = 0} ∈ N0 and {x ∈
N | n(x ∩ B ∩ An,ji

) > 0} ∈ σ(N0) as the complementary set of an event from N 0.
As a consequence {x ∈ N | n(xB) = m} ∈ σ(N 0). �

Using the result above, we now have the following theorem for point processes.

Theorem 2.1.4
A point process is uniquely determined by its void probabilities.

Proof:
By lemma 2.1.3 the set of void events is a generating set for N . Since N 0 is closed
under intersection it then follows from lemma A.2.1, that the probability measure for
the configurations of a point process is uniquely determined by its values on N 0. �
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2.1.2 Existence of point processes

To show the existence of point processes we turn briefly to the theory of random mea-
sures.

Let MS denote the space of all locally finite Borel measures on the polish space S,
and let the mapping TA : MS → R+ be given by µ 7→ µ(A) for all A ∈ B0(S). Then
the Borel σ-algebra on MS is given by

B(MS) = σ
(
{T−1

A (B) | B ∈ B(R+), A ∈ B0(S)}
)
,

which is the smallest σ-algebra such that all TA are
(
B(MS),B(R+)

)
measurable.

Definition 2.1.5 (Random Measure)
A random measure ξ with phase or state space S, is a measurable mapping from a
probability space (Ω,F , P ) into (MS ,B(MS)). The distribution of a random measure
is the probability measure it induces on (MS ,B(MS)). �

Thus for each event ω ∈ Ω, we have a measure ξ(·, ω). We may also consider the
function ξ(A, ·), which maps Ω to R+ for each fixed A ∈ B0(S). A general result for
random measures states that ξ(·, ω) is a random measure if and only if ξ(A, ·) is a
random variable, for each A ∈ B0(S). Another way of regarding a random measure,
is thus as a family of random variables, indexed by the Borel sets of S satisfying the
properties of a measure. A special type of random measures are the random counting
measures

Definition 2.1.6
Let S be a Polish space. The space of counting measures on S, NS , consists of all
boundedly finite, integer-valued measures ν defined on B(S). A counting measure on
S is called simple if

ν({x}) = 0 or ν({x}) = 1 for all x ∈ S.

The space of simple counting measures on S is denoted N ∗
S . �

For the space of counting measures we similarly define a mapping, SA : NS → N0

given by ν → ν(A) for all A ∈ B0(S), and let the Borel σ-algebra on NS be given by

B(NS) = σ
(
{S−1

A (B) | B ∈ B(N0), A ∈ B0(S)}
)
. (2.1.4)

In proposition 7.1.II in Daley and Vere-Jones (1988) it is shown that N ∈ NS if and
only if it is expressible as

N(A) =
∞∑

i=1

kiI(xi ∈ A), A ∈ B(S),

where each ki is a positive integer, and I(· ∈ A) is an indicator function for the set A.
With this at hand it is possible to give an alternative definition of a point process

Definition 2.1.7
Let S be a Polish space. A point process on S is a random counting measure on S,
i.e. a measurable mapping from a probability space (Ω,F ,P) into (NS,B(NS)). �
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Clearly there is an analogy to definition 2.1.1, but it might seem less intuitive to think
of a point process as a measure. The two definitions are equivalent and the advantage
of the latter is that existence properties of random measures are well studied and
these can thus be used to ensure the existence of point processes. To investigate the
connection between the two definitions consider the following mapping from (N,N )
to (NS,B(NS))

f : {x1, x2, . . . } 7→
∞∑

i=1

Ixi

and correspondingly the inverse mapping from (NS,B(NS)) to (N,N ) given by

g :
∞∑

i=1

Ixi
7→ {x1, x2, . . . },

where Ixi
(A) = I(xi ∈ A) for all A ∈ B(S).

Proposition 2.1.8
The mappings f : N → Ns and g : NS → N are measurable.

Proof:
The proof follows as a consequence of proposition A.2.5.

(i) First we consider the mapping g. Since N = σ(N 0) it suffices to show that for
any set C ∈ N0 it holds that g−1(C) ∈ B(NS). Since C ∈ N0 there exists a set
B ∈ B0(S) such that

C = {x ⊂ S | n(x ∩B) = 0}.
Then g−1(C) consists of all measures of the form

∑
Ixi

, where x ∩B = ∅, i.e.

g−1(C) = {µ =
∑

Ixi
| x ∩B = ∅}

= {µ ∈ NS | µ(B) = 0}
= {µ ∈ NS | SB(µ) = 0}
= S−1

B (0).

This is an element of B(NS) since B ∈ B0(S) and 0 ∈ B(N0).

(ii) We now consider the mapping f . Using (2.1.4) we let A ∈ B0(S) and B ∈ B(N0),
and set

C ′ = S−1
A (B) = {ν ∈ NS | ν(A) ∈ B}.

We then have

f−1(C ′) = {x ∈ N | n(x ∩A) ∈ B}
=
⋃

bi∈B

{x ∈ N | n(x ∩A) = bi}. (2.1.5)

The last equation follows since B(N0) = 2N0 , i.e. the power set of N0, and every
element is thus a countable union of natural numbers. The set (2.1.5) is an
element of N , since it is a countable union of elements from the generator given
by (2.1.1).
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�

Since these mappings are measurable a point process which is a measurable mapping
from (Ω,F ,P) into either (NS ,B(NS)) or (N,N ) can thus be composed with one of
these to obtain a measurable mapping to the other space. This ensures that which
ever definition we use leads to the same results.

The most common way of assessing the properties of the distribution of a random
measure, is through its finite dimensional distributions.

Definition 2.1.9
The finite dimensional distributions of a random measure ξ are the joint distribu-
tions, for all finite families of bounded Borel sets A1, . . . , Ak of the random variables
ξ(A1), . . . , ξ(Ak), that is the family of proper distribution functions.

Fk(A1, . . . , Ak;x1, . . . , xk) = P (ξ(Ai) ≤ xi, i = 1, . . . , k). (2.1.6)

�

It can in fact be proven that the distribution of a random measure is completely
determined by its finite dimensional distributions. The existence of a random measure
can be ensured by a number of necessary and sufficient conditions. The following
theorem is a special case of an existence theorem for random measures, aimed at point
processes.

Theorem 2.1.10 (Existence Theorem For Point Processes)
In order that a family Pk(A1, . . . , Ak;n1, . . . , nk) of discrete finite dimensional dis-
tributions defined on bounded Borel sets be the finite dimensional distributions of a
point process, it is necessary and sufficient that

(i) For any permutation i1, . . . , ik of the indices 1, . . . , k,

Pk(A1, . . . , Ak;n1, . . . , nk) = Pk(Ai1 , . . . , Aik
;ni1 , . . . , nik

).

(ii)
∑∞

r=0 Pk(A1, . . . , Ak;n1, . . . , nk−1, r) = Pk−1(A1, . . . , Ak−1;n1, . . . , nk−1).

(iii) For each disjoint pair A1, A2 ∈ B0(S), P3(A1, A2, A1 ∪ A2;n1, n2, n3) has zero
mass outside the set where n1 + n2 = n3.

(iv) For sequences {An} of bounded Borel sets with An ↓ ∅¸ P1(An, 0)→ 1.

The first two conditions, ensure the existence of the distribution as a consequence of
the Kolmogorov extension theorem, th. A.1.2, and the two latter conditions ensure
that we are in fact dealing with a measure. This ensures that if we specify finite
dimensional distributions satisfying the conditions in theorem 2.1.10 then there exists
a measurable mapping from the probability space to (NS,B(NS)) which induces a
probability distribution with the given finite dimensional distributions. As discussed
earlier this measurable mapping can be extended to a measurable mapping to the
measure space (N,N , PX).
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2.1.3 Poisson point process

The Poisson point process is a fundamental point process, that serves as the basis of
other more complex types of point processes. We only consider the case of a Poisson
point process on S ⊆ Rn with a locally integrable intensity function ρ : S → [0,∞)
since it covers the problem at hand and avoids some measure theoretic details. Local
integrability means, that

∫
B
ρ(ξ)dξ <∞ for all B ∈ B0(S).

The definition of a binomial point process is needed to define the Poisson point process
later.

Definition 2.1.11
Let f be a density on a set B ∈ B0(S) and let n ∈ N. A point process X consisting of
n independent identically distributed points with density f is called a binomial point
process of n points in B with density f . This is noted X ∼ binomial(B, n, f). �

Definition 2.1.12
A Poisson point process with intensity function ρ is a point process X on S, which
satisfies, that

1. for any B ∈ B(S) with µ(B) <∞, n(XB) ∼ Poisson(µ(B)), where Poisson(0) is
taken as a distribution with all probability mass at 0.

2. for any n ∈ N and B ∈ B(S) with 0 < µ(B) < ∞, given n(XB) = n, XB ∼
binomial(B, n, f) with f(ξ) = ρ(ξ)/µ(B).

�

In the special case, where ρ is a constant Poisson(S, ρ) is referred to as a homogeneous
Poisson Point process on S with rate or intensity ρ. Poisson(S, 1) is called the standard
or unit rate Poisson point process.

Proposition 2.1.13
(i) X ∼ Poisson(S, ρ) if and only if for all B ∈ B(S) with µ(B) <∞ and all F ∈ N ,

P (XB ∈ F ) =

∞∑

n=0

exp(−µ(B))

n!

∫

B

· · ·
∫

B

1F ({x1, . . . , xn})
n∏

i=1

ρ(xi)dx1 · · · dxn.

(ii) IfX ∼ Poisson(S, ρ), then for measurable functions h : N → [0,∞) and B ∈ B(S)
with µ(B) <∞,

E(h(XB)) =
∞∑

n=0

exp(−µ(B))

n!

∫

B

· · ·
∫

B

h({x1, . . . , xn})
n∏

i=1

ρ(xi)dx1 · · · dxn.

Proof:
Starting with part (i). Let X ∼ Poisson(S, ρ) so that definition 2.1.12 holds for X.
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Then for B ∈ B(S) with µ(B) <∞ and F ∈ N ,

P (XB ∈ F ) =
∞∑

n=0

P (n(XB) = n)P (XB ∈ F |n(XB) = n)

=
∞∑

n=0

exp(−µ(B))µ(B)n

n!

∫

B

· · ·
∫

B

1F ({x1, . . . , xn})
n∏

i=1

ρ(xi)

µ(B)
dx1 · · · dxn

=
∞∑

n=0

exp(−µ(B))

n!

∫

B

· · ·
∫

B

1F ({x1, . . . , xn})
n∏

i=1

ρ(xi)dx1 · · · dxn.

To prove part (ii) the monotone class argument measure theory is used. If h is an
indicator function for an F ∈ N , then

E(h(XB)) = E(1F (XB)) = P (XB ∈ F ),

and the result is given by (i). By linearity this extends to simple functions, that is
functions on the form f =

∑
i aiIAi

, where ai ∈ R and IAi
is an indicator function for

a set Ai. The result then follows by the monotone convergence theorem. �

Theorem 2.1.14
The Poisson point process X ∼ Poisson(S, ρ) exists and is uniquely determined by its
void probabilities

v(B) = exp(−µ(B)), for all bounded B ∈ B(S)

Proof:
Let ξ ∈ S be an arbitrary point and set Bi = {η ∈ S | i − 1 ≤ ‖η − ξ‖ < i} for
i ∈ N. It follows that S is a disjoint union of the bounded Bi. Let X = ∪∞1 Xi where
Xi ∼ Poisson(Bi, ρi), i = 1, 2, . . ., are independent, and where ρi is the restriction
of ρ to Bi. Then for bounded B ⊆ S,

P (X ∩B = ∅) =

∞∏

i=1

P (Xi ∩B = ∅) =

∞∏

i=1

exp(−µ(B ∩Bi))

= exp

(
−

∞∑

i=1

µ(B ∩Bi)

)
= exp(−µ(B)),

which is the void probability for a Poisson process with intensity measure µ. The
existence and uniqueness now follow from theorem 2.1.4. �

Proposition 2.1.15
If X is a Poisson process on S, then XB1

, XB2
, . . . are independent for disjoint sets

B1, B2, . . . ⊆ S
A proof of this proposition may be found in Møller and Waagepetersen (2004).

For the one-dimensional Poisson point process, we have the following very useful result
(Stirzaker (2003)), which gives a distribution on the inter arrival times.

Proposition 2.1.16
Let {ξ1, ξ2, . . .} ∼ Poisson(R+, λ) for λ ∈ R+, ξ0 = 0 and Ti = ξi+1 − ξi, then
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(i) Ti ∼ exp(λ), i = 1, 2, . . .

(ii) Ti is independent of Tj for i 6= j

(iii) ξi+m − ξi ∼ Gamma(m,λ), i = 1, 2, . . . , m ∈ N

Proof:
The Ti’s correspond to times between arrivals in the Poisson process. This means that

P (T1 > t) = P (n(0, t) = 0) = exp(−λt),

which means that T1 has the exponential distribution. Now conditional on T1

p(T2 > t|T1 = t1) = P (n(t1, t1 + t) = 0 | T1 = t1).

By proposition 2.1.15 events in disjoint sets are independent. This gives

= P (n(t1, t1 + t) = 0) = exp(−λt).

Similarly we have

P (Tn+1 > t | T1 = t1, . . . , Tn = tn) = P (n(tn, tn + t) = 0) = exp(−λt).

Part (iii) follows since the convolution of m independent exp(λ) distributions is a
Gamma(m,λ) distribution. �

It may in fact be proven that exponentially distributed inter arrival times is equiva-
lent with a Poisson point process, and in certain cases this is used to characterize the
Poisson process (see eg. Billingsley (1995)).

Proposition 2.1.16 is now used to derive a another property of the Poisson process
(Stirzaker (2003)) which will be used to simplify some calculations in part II

Proposition 2.1.17
Let ξ1, ξ2, . . . be arrival times in a Poisson process X ∼ Poisson(R+, λ), ξ0 = 0, then

fΞ1,...,Ξk|n(X[0,t])=k(ξ1, . . . , ξk) =
k!

tk
, 0 < ξ1 < · · · < ξk < t, (2.1.7)

which is the density function for k uniformly distributed order variables.

Proof:
By proposition 2.1.16

Ti = ξi − ξi−1, i = 1, 2, . . . ,

are independent exponentially distributed random variables, which means that

fT1,...,Tk+1
(t1, . . . , tk+1) = λk+1 exp

(
−λ

k+1∑

i=1

ti

)
.

By the change of variable formula Stirzaker (2003) the linear transformation

Ξi =

i∑

j=1

Tj , i = 1, . . . , k + 1
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may be used to show that

fΞ1,...,Ξk1+
(ξ1, . . . , ξk+1) = λk+1 exp(−λξk+1).

This then yields

P (0 < Ξ1 < ξ1 < Ξ2 < · · · < Ξk < ξk, n(X[0,t] = k))

= P (0 < Ξ1 < ξ1 < Ξ2 < · · · < Ξk < ξk < t < Ξk+1)

=

∫ ξ1

0

· · ·
∫ ∞

t

fΞ1,...,Ξk1+
(ξ1, . . . , ξk+1)dξk+1 · · · dξ1

= λkξ1(ξ2 − ξ1) · · · (ξk − ξk−1) exp(−λt).

The conditional distribution is then

P (Ξ1 < ξ1 < · · · < Ξk < ξk|n(X[0,t] = k))

=
λkξ1(ξ2 − ξ1) · · · (ξk − ξk−1) exp(−λt)

tk(k!)−1 exp(−λt)

= ξ1(ξ2 − ξ1) · · · (ξk − ξk−1)
k!

tk
.

The density given by (2.1.7) is then obtained as

∂

∂ξ1 . . . ∂ξk

[
ξ1(ξ2 − ξ1) · · · (ξk − ξk−1)

k!

tk

]
=
k!

tk
.

�

The following standard result (see e.g. Kingman (2006)) is used to show that the
superposition of Poisson point processes is a Poisson process.

Lemma 2.1.18 (Disjointness Lemma)
Let Xi ∼ Poisson(S, ρi) with µi =

∫
S
ρi(ξ)dξ < ∞, i = 1, 2. If µ1 and µ2 both have

the bisection property (definition A.2.3) then X1 and X2 are disjoint with probability
1:

P (X1 ∩X2 = ∅) = 1.

Proof:
Let n = 2k be any power of 2. By the bisection property there exists a disjoint union
S =

⋃n
i=1 Si of measurable sets Si with µ1(Si) = n−1µ1(S), i = 1, . . . , n. For each Si

the bisection property again ensures that there exists a disjoint union Si =
⋃n

j=1 Sij

of measurable sets Sij with µ2(Sij) = n−1µ2(Si), j = 1, . . . , n. Define

En =
n⋃

i,j=1

{ω ∈ Ω | n(X1 ∩ Sij) ≥ 1, n(X2 ∩ Sij) ≥ 1}

The event that the superposition of X1 and X2 is not disjoint is a subset of En:

{ω ∈ Ω | X1 ∩X2 6= ∅} ⊆ En.



26 Point processes

Since the cardinality function n(·) is a measurable mapping then En is measurable
and

P (En) ≤
n∑

i,j=1

P (n(X1 ∩ Sij) ≥ 1, n(X2 ∩ Sij) ≥ 1)

=
n∑

i,j=1

P (n(X1 ∩ Sij) ≥ 1)P (n(X2 ∩ Sij) ≥ 1).

Using that for any point process X with intensity measure µ and measurable A ∈ S
it holds that P (n(X ∩ A) ≥ 1) ≤ P (n(X ∩ A) = 1) + P (n(X ∩ A) = 2) + · · · ≤
P (n(X ∩A) = 1) + 2P (n(X ∩A) = 2) + · · · = µ(A) we get

≤
n∑

i,j=1

µ1(Sij)µ2(Sij)

= 1
n

n∑

i,j=1

µ1(Sij)µ2(Si)

= 1
n

n∑

i=1

µ1(Si)µ2(Si)

= 1
n2

n∑

i=1

µ1(S)µ2(Si)

= 1
n2µ1(S)µ2(S).

Since each En is measurable the intersection
⋂∞

n=1 En is measurable and it is seen that

P (

∞⋂

n=1

En) = 0.

Since P is a complete probability measure {ω ∈ Ω | X1 ∩X2 6= ∅} ⊆ En is measurable
and P ({ω ∈ Ω | X1 ∩ X2 6= ∅}) = 0, which proves that the union is disjoint with
probability one. �

Proposition 2.1.19
If Xi ∼ Poisson(S, ρi), i = 1, 2, . . . are mutually independent and ρ =

∑
ρi is

locally integrable, then with probability one, X =
⋃

iXi is a disjoint union and
X ∼ Poisson(S, ρ).

Proof:
By considering a bounded ball in S the conditions in the disjointness lemma are fulfilled
and by induction the countable union is disjoint with probability one. This expands
to all of S and we need only to verify the last part of the proposition. Let B ∈ B0(S)
then

P (XB = ∅) =
∞∏

i=1

P (Xi ∩B = ∅) =
∞∏

i=1

exp(−µi(B)) = exp(−µ(B)),

and the result follows from theorem 2.1.14. �
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2.1.4 Cox processes

Often a Poisson point process is not adequate to model a given problem and more
complex models are needed. In many cases Cox processes turn out to be more appro-
priate than the Poisson case. The extension to Cox processes consists of considering
the intensity function of the Poisson process as a stochastic process.

Definition 2.1.20
Suppose that Z is a nonnegative stochastic process on S, so that with probability one,
ξ 7→ Z(ξ) is a locally integrable function. If the conditional distribution of X given Z
is a Poisson process on S with intensity function Z, then X is said to be a Cox process
driven by by Z. �

2.1.5 Marked point processes

In some cases it can be convenient to label the points of a point process with marks
of a certain type. This may e.g. be an integer to label the type of point in the case of
multiple point types, but the marks may be of much more general type. Processes of
this kind are called marked point processes.

Definition 2.1.21
A marked point process X with positions in the Polish space T and marks in the
Polish space M , is a point process on S = T ×M with the additional property that
the marginal process of locations is itself a point process on T . This marginal process
may be denoted by XT , and the marked process can then be denoted X = {(t,mt) | t ∈
XT }. �

As in the case for ordinary point processes the Poisson case plays a fundamental role
for marked point processes, and it is defined as follows.

Definition 2.1.22
If XT ∼ Poisson(T, φ), where φ is a locally integrable intensity function, and given
XT the marks {mt | t ∈ XT } are mutually independent, then X is a marked Poisson
process. �

For a marked Poisson point process we have the following useful proposition.

Proposition 2.1.23
LetX be a marked Poisson point process with locations in a measure space (T,B(T ), µ1)
and marks in a measure space (M,B(M), µ2). If each mark mt conditional on XT

has a density pt with respect to µ2 which does not depend on XT \{t}. Then X ∼
Poisson(S, ρ), with S = T ×M and ρ(t,m) = φ(t)pt(m).

For a proof of this proposition we refer to Møller and Waagepetersen (2004).

The following definition is based on Brémaud and Massoulié (2002)
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Definition 2.1.24 (Shot Noise Process)
Let X be a marked point process on R ×M as given by definition 2.1.21 and h be a
measurable function such that for all t ∈ R the sum

Y (t) =
∑

n∈Z

h(t− tn,mtn
)

is well defined. The stochastic process Y is then called a shot noise process with
independent random excitation. �

2.2 Examples

It is the goal to describe impulse response function models of e.g. Turin et al. (1972)
and Saleh and Valenzuela (1987) as marked point processes. In both cases the impulse
response consists of a sequence of arrivals τ0, τ1, τ2, · · · ∈ R+ and a corresponding
attenuation factor of each arrival β0, β1, β2, · · · ∈ R+. This can be considered as a
marked point process X on R+ × R+ with location process XT = {τ0, τ1, τ2, . . . } and
marks {β0, β1, β2, . . . }.

Before treating each model in detail the concept of an impulse response measure is
introduced.

Definition 2.2.1
Let X be a marked point process with location process XT = {τ0, τ1, . . . } and marks
{β0, β1, . . . }, where both are in R+. The impulse response measure is defined as

µX(B) =
∞∑

i=0

βiI[τi ∈ B], B ∈ B(R+). (2.2.1)

Furthermore

µX(R+) =

∞∑

i=0

βi (2.2.2)

is referred to as the total impulse response. �

In some cases, depending on the statistical properties of X, the impulse response
measure will be finite almost surely and the Fourier-Stieltjes transform of the measure
exists (see appendix A.2.1). In this case it is given by

µ̂X(f) =

∫
exp(−2πift)dµX(t) =

∞∑

i=0

βi exp(−2πifτi).

This is seen to coincide with the traditional Fourier transform of the weighted δ-train
(1.1.2). In the physical interpretation of the model, it is also important that we do not
expect to send a signal with finite energy and receive infinite energy from the channel.

2.2.1 The Turin model

In the model described in section 1.2.1 the marginal processXT is assumed to be a Pois-
son point process on (τ0,∞) assuming that τ0 is known. That is if we define ti = τi−τ0
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for i = 1, 2, . . . then {t1, t2, . . . } are assumed to be Poisson(R+, λ) for some constant
parameter λ, which is equivalent to assuming XT ∼ Poisson(R+, λ1(τ0,∞)(t)). Since
we always condition on τ0, knowing {τ1, τ2, . . . } is equivalent to knowing {t1, t2, . . . }.
Thus when we condition on the location process XT = {τ1, τ2, . . . } we also know
{t1, t2, . . . } and we will use either alternative as convenient.

Besides the Poisson assumption the Turin model assumes that given the location
process XT and the amplitude of the first arrival β0 the marks {β1, β2, . . . } are inde-
pendent and βi ∼ Pti

where Pti
is a probability distribution which does not depend

on XT \{τi}. For the rest of this section we will also let β0 be given. If Pti
has

density pti
with respect to the Lebesgue measure then proposition 2.1.23 states, that

X ∼ Poisson(S, ρ), where S = R2
+ and ρ(t,mt) = λI[t > τ0]pt(mt). The points of this

Poisson point process on R2
+ will typically be denoted by ξi = (τi, βi), and the entire

process is written as

X = {ξi | ξi ∈ R2
+, i = 1, 2, . . . } ∼ Poisson(R2

+, λI[t > τ0]pt(mt)).

The actual distribution Pti
to be used when modeling the impulse response of a wire-

less channel has been widely discussed in the literature, but the general convention is
that E(βi|τi) should be a decaying function of τi. In the Turin model it is assumed
that βi|τi is log-normally distributed. The conditional mean is not assumed to have a
specific functional relation to the arrival time in the Turin model. It just states that
the mean should be fitted to the data at hand, but in order to investigate the proper-
ties of the model from a theoretical point of view we treat two separate cases. First
a model with polynomial decaying marks is discussed and afterwards an exponential
decay model.

These models will be used to ensure that the Turin model leads to an almost surely
finite total impulse response given by (2.2.2), which is equivalent to requiring that the
sum of the marks is finite almost surely. Since each mark is finite it is sufficient to
show that

∑∞
i=n βi is finite almost surely for some n ∈ N. In the case of polynomial

decay we assume that E(βi | τi, β0) = β0t
−a
i for an a > 0. A sufficient condition for

a random variable to be finite a.s. is that its mean exists and therefore we consider
the following expression letting n > a and using that Ti ∼ Gamma(i, λ) according to
proposition 2.1.16.

E

(
∞∑

i=n

βi

)
=

∞∑

i=n

E(E(βi|τi))

=
∞∑

i=n

E(β0t
−a
i )

=
∞∑

i=n

β0

∫

R+

t−aλ
i exp(−tλ)

Γ(i)
ti−1dt

=
∞∑

i=n

β0λ
aΓ(i− a)

Γ(i)

∫

R+

λ(i−a) exp(−tλ)

Γ(i− a)
t(i−a)−1dt

= β0λ
a

∞∑

i=n

Γ(i− a)

Γ(i)
.
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This expression diverges if a ≤ 1 and converges for a > 1, and thus, depending on
the speed of the decay, the polynomial decay leads to an almost surely finite impulse
response.

Now we turn to the case of exponential decay of the attenuation factors, such that

E(βi|τi) = β0 exp(−γti).
Since exponential decay is faster than polynomial decay, we have that for all degrees
of polynomial decay, a, an N(a) ∈ N exists such that for all b > N(a) the mean
E (
∑∞

i=b βi) is dominated by the corresponding mean for the polynomial decay, which
means that the exponential decay impulse response is almost surely finite. Since we
are able to obtain a closed form expression for the sum, we however choose to carry
out the calculations

E

(
∞∑

i=0

βi

)
= β0 +

∞∑

i=1

E(E(βi|τi))

= β0 +

∞∑

i=1

E(β0 exp(−γti))

= β0 +

∞∑

i=1

β0

∫

R+

exp(−γti)
λi exp(−tλ)

Γ(i)
ti−1dt

= β0 +
∞∑

i=1

β0λ
i

(λ+ γ)i

∫

R+

(λ+ γ)i exp(−t(λ+ γ))

Γ(i)
ti−1dt

= β0

(
1 +

∞∑

i=1

( λ

λ+ γ

)i)

=
β0

1− λ
λ+γ

=
β0(λ+ γ)

γ
.

We conclude that both models for the attenuation factor, leads to an almost surely
finite impulse response measure, and therefore has well-defined Fourier-Stieltjes Trans-
form. Furthermore if we want E (

∑
i βi) ≤ 1, we may control this by selecting β0, λ

and γ accordingly.

2.2.2 The Saleh-Valenzuela model

To describe the more complex model proposed by Saleh and Valenzuela (1987) we
start with the following process from the Turin model conditional on (τ0, β0)

X ′ = {ξi | ξi ∈ R2
+, i = 1, 2, . . . } ∼ Poisson(R2

+,ΛI[t > τ0]p′t(mt)),

where p′t(mt) is the conditional distribution of the marks given the location process.
This will be denoted the mother process and at each point of this process an offspring
process is started, and the process started by the i’th point of the mother process is

Xi|X ′ = {ξij | ξij ∈ R2
+, j = 1, 2, . . . } ∼ Poisson(R2

+, λI[t > τi]pt(mt)) i ∈ N0
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where pt(mt) is the conditional distribution of the marks in the offspring process, given
the locations. The total offspring process is then

X∗ =

∞⋃

i=0

Xi.

The model assumes that the arrival times and attenuation factors of an impulse re-
sponse are determined by the process

X = X ′ ∪X∗.

Conditional on (τ0, β0), it is assumed that

E(βi|τi) = β0 exp(−Γ(τi − τ0)).

Furthermore, conditional on the mother process, it is assumed that

E(βij |τij) = βi exp(−γ(τij − τi)).

An impulse response measure on this forms leads to a point process on R2
+ where the

points are scattered around a pattern as displayed by the solid lines in figure 1.2.1.

We recall the notation Ti = τi − τ0 from the previous section and similarly we de-
fine Tij = τij − τi, and note that Ti ∼ Gamma(i,Λ) and Tij ∼ Gamma(j, λ). The
total impulse response measure is given by the sum of the marks

µX(R+) =

∞∑

i=0

∞∑

j=0

βij ,

where βi0 = βi, i = 0, 1, 2, . . . are the attenuation factors of the mother process. To
check that this is finite almost surely we calculate the mean using the corresponding
result from the Turin model in the previous section.

E




∞∑

i=0

∞∑

j=0

βij


 = E

(
∞∑

i=0

βi0

)
+

∞∑

i=0

∞∑

j=1

E(E(βij|τij))

=

∞∑

i=0

E(βi) +

∞∑

i=0

∞∑

j=1

E(βi exp(−γtij))

=
β0(Λ + Γ)

Γ
+

∞∑

i=0

∞∑

j=1

E(E(βi exp(−γtij)|βi))

=
β0(Λ + Γ)

Γ
+

∞∑

i=0

E(βi)

(
λ+ γ

γ
− 1

)

=
β0(Λ + Γ)

Γ

λ+ γ

γ
. (2.2.3)
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Before describing this process further we concentrate on the offspring process X∗ given
the mother process X ′ . Since

ρ∗(t) =

∞∑

i=0

λI[t > τi]pt(mt)

is locally integrable we may use proposition 2.1.19 to verify X∗|X ′ ∼ Poisson(R2
+, ρ

∗).
Furthermore the marginal offspring process

X∗
T |X ′ =

∞⋃

i=1

Xi
T |X ′

is a superposition of Poisson point processes X i
T ∼ Poisson(R+, λI[t > τi]), and thus

X∗
T |X ′ ∼ Poisson

(
R+, λ

∞∑

i=0

I[t > τi]

)
.

It is seen that both X∗ and X∗
T are Cox processes since they have a stochastic intensity

function and conditional on the intensity function they are Poisson point processes. In
the following we wish to calculate the mean intensity function and measure for both.
First we recall that Ti = τi− τ0 is a homogeneous Poisson point process with intensity
Λ, and the corresponding counting process N[0,t] ∼ Poisson(Λt). Assuming that τ0 is
known we calculate the mean intensity function for the marginal process X∗

T .

E(ρ∗T (t)) = E
(
λ

∞∑

i=0

I[t > τi]
)

= λI[t > τ0] + λE

(
∞∑

i=1

I[t− τ0 > τi − τ0]

)

= λI[t > τ0] + λE(N[0,t−τ0])

=
(
λ+ λΛ(t− τ0)

)
I[t > τ0]

This leads to the mean intensity measure of the marginal offspring process.

E(µ∗
T ([0, t])) = E

(∫ t

0

ρ∗T (s)ds

)

=

∫ t

0

E(ρ∗T (s))ds

= λtI[t > τ0] + λΛ

∫ t

0

(s− τ0)I[s > τ0]ds

=
(
λt+

λΛ

2
(t− τ0)2

)
I[t > τ0]

Turning to the case of the entire marginal process XT we obtain

E(µT ([0, t])) = E
(
µ′

T ([0, t]) + µ∗
T ([0, t])

)

= µ′
T ([0, t]) +

(
λt+

λΛ

2
(t− τ0)2

)
I[t > τ0]

=
(
Λ(t− τ0) + λt+

λΛ

2
(t− τ0)2

)
I[t > τ0].
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The mean intensity function of the entire marginal process is then

E(ρT (t)) =
(
Λ + λ+ λΛ(t− τ0)

)
I[t > τ0]

The above results for the marginal process XT shows that the number of arrivals grows
rather rapidly, but as shown in (2.2.3) the attenuation factors decay fast enough to
ensure an almost surely finite impulse response measure.

Modifications

The model proposed by Saleh and Valenzuela (1987) has a couple of assumptions that
might be unrealistic, which are straightforward to change. First of all it is assumed
that each offspring process X i has intensity λ for i = 0, 1, 2, . . . This is not an obvious
assumption and it is easily dealt with by giving an index to λ corresponding to the
offspring process such that X i

T ∼ Poisson((τi,∞), λi), i = 0, 1, 2, . . . . The effects
on the above calculations are not overwhelming, but e.g. ρT becomes a piecewise
linear function with slopes λi in the intervals (τi, τi+1). Furthermore it is possible
to introduce individual decay rates for each offspring process such that E(βijτij) =
βi exp(−γi(τij−τi)). In the following section the cluster idea of the model is developed
in another direction.

2.2.3 A shot noise model

The models treated so far all assume that the impulse response of a system is given by
discrete arrivals of attenuated impulses located at single points in time. This model
however might be too simplistic and another approach is to assume that it is a shot
noise process. The purpose of this model is to describe the clustering effect described
in the Saleh Valenzuelah model in section 1.2.2 without using a weighted delta train.

Following definition 2.1.24 it is assumed that the impulse response function of channel
is given by a stochastic process h, with

h(t) =

∞∑

j=0

I[t ≥ τj ]βj exp(−γj(t− τj)), for all t ∈ R, (2.2.4)

where (τj , βj , γj), j = 1, 2, . . . is assumed to be a marked point process on R+ × R2
+.

The arrival times and attenuation factors τ and β are assumed to be as in the Turin
model in section 2.2.1. The decay rates γ are assumed to be iid. independent of τ, β
and with E(γ−1

j ) <∞ for j = 1, 2, . . ..

We wish to Fourier transform (2.2.4) and thus need to ensure that it is integrable
almost surely, which is done by considering the mean of the integral

E

[∫
h(t)dt

]
=

∞∑

j=0

E

[∫ ∞

τj

βj exp(−γj(t− τj))dt

]

=

∞∑

j=0

E

[
βj

γj

]
= E[γ−1

0 ]

n∑

j=0

E[βj ].
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The integrability then reduces to summability of the βj ’s. This has already been
treated in the case of polynomial or exponential decay in section 2.2.1, and it is then
meaningful to find the Fourier transform of (2.2.4)

H(f) =

∫ ∞

−∞

∞∑

j=1

1[τj ,∞)βj exp(−γj(t− τj)) exp(−2πif)dt

=

∞∑

j=1

βj exp(γjτj)

∫ ∞

τj

exp(−(γj + 2πif)t)dt

=

∞∑

j=1

βj exp(γjτj) lim
n→∞

[
−1

γj + 2πif
exp(−(γj + 2πif)t)

]n

τj

=
∞∑

j=1

βj

γj + 2πif
exp(−2πifτj)

=

∞∑

j=1

βj

γ2
j + (2πf)2

(
γj cos(2πfτj)− 2πf sin(2πfτj)

)
− (2.2.5)

i

∞∑

j=1

βj

γ2
j + (2πf)2

(
2πf cos(2πfτj) + γj sin(2πfτj)

)
. (2.2.6)

Summary

Inference for the Turin and Shot-noise model is done in chapter 6, using simulation
based inference, which is described in chapter 4. The Saleh-Valenzuela model is not
implemented for inference, but the clustering effect is to some degree described by the
decaying exponential functions in the shot-noise model.



Chapter 3

Statistical inference

3.1 Maximum likelihood estimation

This section is based on Azzalini (1996) and Jensen (2006). The purpose of this section
is to provide a brief insight into why the maximum likelihood method is the method
of choice in most cases in likelihood statistics.

In likelihood theory we consider a parametric model for data, and given an underly-
ing "true" parameter θ∗ we assume that data x is sampled from a stochastic variable
X : (Ω,F ,P)→ (X ,F , Pθ∗). The goal of the statistical inference, is to determine the
value of the parameter, which has "produced" the data. We consider the statistical
model (X ,F ,P), where X is the state space, F is a σ-algebra, and P = {Pθ|θ ∈ Θ}
is a parametrized class of probability measures on (X ,F ). The parameter θ cannot be
directly observed, we have only indirect knowledge through the fact, that data follows
a distribution parametrized by θ.

If Pθ is absolutely continuous with respect to some measure µ for all θ ∈ Θ, we
define the likelihood function as

Definition 3.1.1
The Likelihood function L(θ) or L(θ;x) is a function of θ which for each x ∈ X is
given by

L(θ) = L(θ;x) =
dPθ

dµ
(x), θ ∈ Θ. (3.1.1)

The log-likelihood function is defined as

l(θ) = l(θ;x) = log [L(θ;x)] .

�

The definition given by (3.1.1) is the Radon-Nikodym derivative of the probability dis-
tribution with respect to µ, as described in appendix A.2. For most practical purposes
µ is the Lebesgue measure on X , and the likelihood is simply the density function for
Pθ parametrized by θ.

An important principle in likelihood theory is the likelihood principle, which states
that if L(θ;x) ∝ L(θ; y) for x, y ∈ X then the inference must lead to the same conclu-
sions about θ.

Often we want to determine a point estimate for the underlying parameter θ∗. An
estimate is a "guess" on the underlying parameter given a sample. An estimator is
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defined as a measurable function θ̃ : X → Θ, and an estimate is the value of the
estimator evaluated at a sample point x. The typical approach is to maximize the
likelihood function with respect to θ.

Definition 3.1.2
If θ̂ = θ̂(x) is such that

L(θ) ≤ L(θ̂), for all θ ∈ Θ,

then θ̂ is called a maximum likelihood estimate(MLE). �

The MLE can be obtained by maximizing the likelihood with respect to θ or equiva-
lently the log-likelihood, since the logarithm is a strictly increasing function. Assuming
that L(θ) is differentiable and Θ is an open subset of Rk we consider

∂l

∂θ
(θ) = 0. (3.1.2)

This is a key element in maximum likelihood estimation, and (3.1.2) is called the like-
lihood equation. An MLE must of course satisfy (3.1.2), but to make sure a solution
is a global maximum, one needs to establish further conditions, e.g. concavity of the
likelihood function.

The MLE is not necessarily unique, and may in some cases not even exist. A more
common problem is however that the MLE cannot always be derived analytically, and
one must turn to numerical methods, such as the EM algorithm, which will be ex-
plained in detail in section 3.1.1.

A point estimate alone is not very informative, and it is desirable to have some infor-
mation on the variation of this estimate, and on how close it approximates the true
parameter. First we consider the mean of the estimate.

Definition 3.1.3
An estimate θ̃ : X → Θ is called unbiased if

Eθ∗

[
θ̃(X)

]
= θ∗, for all θ ∈ Θ.

Otherwise the estimate is called biased. �

That an estimate is unbiased does of course not ensure a correct approximation of the
true parameter, but it does ensure that the estimate is correct on average, and that
there is no systematic error.

To gain some idea of the variation of the MLE, one might consider the probability
that the true parameter is contained in some subset of Θ

Definition 3.1.4
A (1−α)-confidence region is a mapping K : X → 2Θ, where 2Θ denotes the set of all
subsets of Θ, such that

Pθ∗(θ∗ ∈ K(X)) = 1− α
�
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The probability above holds a priori, i.e. before the experiment is conducted. Once
a sample has been taken, it is not appropriate to say that the true parameter is con-
tained in K(x) with probability 1− α, it either is or is not.

Some other quantities which hint at the variation of the MLE are given in the definition
below.

Definition 3.1.5
The stochastic variable

U(θ) =
∂l(θ;X)

∂θ

is called the Fisher score function, and the matrix

j(θ) = −∂
2l(θ;X)

∂θ∂θ>

is called the observed Fisher information. The mean of j(θ)

I(θ) = Eθ [j(θ)]

is called the expected Fisher information. �

For a one-dimensional parameter space the Fisher information is used to measure the
curvature of the likelihood function around e.g. θ̂. Large values of I(θ̂) thus suggests
that the variation around the MLE is small, and that it is a good estimate. For the
multivariate case, one may consider e.g. the curvature parallel to the coordinate axes,
or the size of the eigenvalues of the matrix evaluated at the MLE, which will provide
some idea of the curvature of the entire function. This does however not give a com-
plete picture, and there is as far as we know, no standard on this subject. The observed
Fisher information provides an approximation for the expected Fisher information.

For samples x1 and x2 from independent random variables X1 and X2 we have that
L(θ;x1, x2) = L(θ;x1)L(θ;x2) which means that l(θ;x1, x2) = l(θ;x1)+l(θ;x2). Using
this we obtain that the expected Fisher information is additive, that is

I(θ;x1, x2) = I(θ;x1) + I2(θ;x2).

This means that for an iid. sample of length n the expected Fisher information may
be calculated as

I(θ) = ni(θ),

where i(θ) denotes the information for a single observation, and the Fisher information
thus increases with the number of observations.

For an unbiased estimator θ̃ a theoretical lower bound on the variance exist. It is
given as

Var(θ̃; θ) ≥ 1

I(θ)
. (3.1.3)

Equation (3.1.3) is known as the Cramér-Rao inequality and may be used to check the
efficiency of a given estimator. The expected Fisher information thus represents an in-
dex of the maximal mean precision for an unbiased estimator. In some cases the MLE
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can be proven to be unbiased and attain the Cramér-Rao lower bound, which means
that it cannot be improved. A more general version of the Cramér-Rao inequality and
a proof of this can be found in Azzalini (1996) page 73.

Under suitable regularity conditions (see e.g. Azzalini (1996) page 82), it is possi-
ble to gain an asymptotic result for the distribution of the MLE. For a k-dimensional
θ, the general result is given as

√
n(θ̂ − θ∗)

d−→ Nk(0, I(θ∗)−1),

where I(θ∗)−1 is the inverse matrix for I(θ∗). For large n the distribution of the MLE,
may then be approximated as

θ̂ ∼ Nk

(
θ∗,

1

n
I(θ∗)−1

)
.

One may then calculate approximate confidence region, by using the above distribu-
tion. It is also seen that the precision of the distribution increases with the sample
size, and that for large samples the MLE closely approximates the true parameter.

3.1.1 The EM algorithm

This section provides an introduction to the EM algorithm based on Bilmes (1998)
and Ng et al. (2002). As mentioned above, the Likelihood cannot always be maximized
analytically, and one must turn to numerical methods. The EM algorithm is one such
method developed to estimate the MLE for datasets with missing values, but it can
however be successfully implemented in other settings by augmenting the data. The
algorithm works by iteratively maximizing the likelihood function, where each itera-
tion consists of two steps: An expectation(E) step, and a maximization(M) step.

We assume that the observed data x has a probability density function fX(x; θ) =
L(θ;x), where θ is a vector containing the unknown parameters for which we wish to
obtain an MLE. The basic setup for the EM algorithm is as follows.
Assume that the data at hand x has missing values. We will call this the incomplete
data. Assume further that a complete data set z = (x, y) exists and that the complete
data has a joint density function

fZ(z|θ) = fX,Y (x, y|θ) = fY |X(y|x, θ)fX(x|θ) (3.1.4)

As usual the likelihood function for the complete data corresponds to the density func-
tion such that Lc(θ) = Lc(θ; z) = fZ(z|θ).

At the (k + 1)’th iteration of the algorithm, given the current parameter estimate
θ(k), the algorithm then performs the two following steps:

E-Step
Calculate

Q(θ; θ(k)) = Eθ(k)(lc(θ)|x)
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M-Step
Choose θ(k+1) such that

Q(θ(k+1); θ(k)) ≥ Q(θ; θ(k)), for all θ ∈ Θ. (3.1.5)

The E-step is the expected value of the missing data, given the observed data, using
the current parameter θ(k). This gives a function of θ which is then maximized in
the M-step. The two steps are then repeated until some criteria of convergence, e.g.
L(θ(k+1))− L(θ(k)) < ε for some ε > 0, is fulfilled.

In some cases it is not possible to maximize Q(θ, θ(k)) analytically, and one can in-
stead use a generalized version of the EM algorithm where θ(k+1) is chosen such that
Q(θ(k+1), θk) ≥ Q(θ(k), θ(k)).

Convergence of the EM algorithm

Using (3.1.4) the complete data log likelihood can be expressed as

lc(θ) = log(fY |X(y|x, θ) + l(θ)

The expected value at the (k+1)’th iteration, given data x and the current parameter
estimate θk then yields

Eθ(k)(lc(θ)|x) = Eθ(k)(log(fY |X(y|x, θ))|x) + Eθ(k)(l(θ)|x)

Q(θ, θ(k)) = H(θ, θ(k)) + l(θ), (3.1.6)

where H(θ, θ(k)) = Eθ(k)(log(fY |X(y|x, θ))|x). Using (3.1.6) it then follows that

l(θ(k+1))− l(θ(k)) =
[
Q(θ(k+1), θ(k))−Q(θ(k), θ(k))

]
−
[
H(θ(k+1), θ)−H(θk, θ

(k))
]
.

By (3.1.5) the expression in the first brackets on the right hand side is nonnegative.
By Jensen’s inequality we have

−
[
H(θ(k+1), θ)−H(θ(k), θ(k))

]
= Eθ(k)

[
− log

(
fY |X(y|x, θ(k+1))

fY |X(y|x, θ(k))

)
∣∣X
]

≥ − log

(
Eθk

[
fY |X(y|x, θ(k+1))

fY |X(y|x, θ(k))

]
∣∣X
)

= − log

(∫
fY |X(y|x, θ(k+1))

fY |X(y|x, θ(k))
fY |X(y|x, θ(k))dy

)

= − log(1) = 0.

This means that the entire right side is nonnegative, and that the value of the likelihood
function increases at each step of the algorithm. That the likelihood increases at each
step of the algorithm does however not ensure convergence to the MLE, it does in fact
not even ensure convergence to a local maximum of a multimodal likelihood. To ensure
convergence Cappé et al. (2005) shows that if all points of the sequence {θ(k)}k∈N0

are
contained in a compact subset of Θ regardless of the choice of the initial point θ(0),
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and if Q is continuous in both arguments, then the algorithm converges to some local
extremum of the likelihood, although this may only be a saddle point. For a more
thorough discussion of criteria of convergence we refer to Cappé et al. (2005) and Wu
(1983).
The point is however that given the right conditions the convergence is ensured, and
for practical purposes one may need to start the algorithm from a number of initial
points, unless the likelihood is unimodal.

3.1.2 Implementation of the EM algorithm in signal

estimation

Feder and Weinstein (1988) gives an elegant approach on how to implement the EM
algorithm to determine parameter values, when the data consists of superimposed
signals, that is models on the form

y(t) =

K∑

k=1

sk(t; θk) + n(t),

where θk denotes the unknown parameters, associated with the k’th signal component
sk which conditional on θk is a known deterministic real or complex function. Cor-
respondingly n(t) denotes either real or complex Gaussian white noise with known
variance σ2. Assuming that the signal is observed at discrete times ti, i = 1, . . . , N
the log likelihood for the unknown parameter vector θ = (θ1, . . . , θK) takes the form

l(θ) = c+
λ

2

[
N∑

i=1

‖y(ti)−
K∑

k=1

sk(ti; θk)‖2
]
, (3.1.7)

where c is a normalizing constant, and λ = 1 if s(t) is real and λ = 2 if s(t) is complex
(see appendix A.3). Maximizing (3.1.7) with respect to θ, is not necessarily an easy
task, and may require numerical methods such as the Newton-Raphson method. In
order to simplify the calculation we here choose to implement the EM algorithm.
We choose the complete data as the decomposition of the observed signal into the
different signal components, i.e.

x(ti) = [x1(ti), . . . , xk(ti)]
>
,

where xk(ti) = sk(ti; θk) + nk(ti). The random variable nk is the k’th element in an
arbitrary decomposition of the noise, such that n =

∑
k nk and are assumed to be

independent of nj for k 6= j and normal distributed with zero mean and variance βkσ
2

where βk > 0 and
∑

k βk = 1.

The log likelihood for the complete data, can then be written as

lc(θ) = c′ − λ

2

(
N∑

i=1

[x(ti)− s(ti; θ)]> Σ−1 [x(ti)− s(ti; θ)]
)

where the covariance matrix Σ is a diagonal matrix with entries β1σ
2, . . . , βKσ

2. The
mean vector is defined as s(ti, θ) = (s1(ti, θ1), . . . , sK(ti, θK))> and c′ is a constant
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independent of θ.

Applying the EM algorithm to this setting, the E-step yields

Q(θ, θ′) = c′ − λ

2

(
N∑

i=1

[
Eθ′ [X(ti)|y(ti)]− s(ti; θ)

]>

· Σ−1
[
Eθ′ [X(ti)|y(ti)]− s(ti; θ)

]
)
. (3.1.8)

In order to calculate the conditional mean in the expression above, a few results for
the multivariate normal distribution is applied. Since X and Y are related by a
linear transformation, that is Y = HX, where H = [1, . . . , 1], the joint distribution
of (X,Y ) is a degenerate multivariate real or complex normal distribution with mean
and covariance given by

E

(
X
Y

)
=

(
s(θ)
Hs(θ)

)
, Cov

(
X
Y

)
=

[
Σ ΣH>

HΣ HΣH>

]

By proposition A.3.3 the conditional mean is then given as

Eθ′ [X(ti)|y(ti)] = s(ti, θ
′) + ΣH>[HΣH>]− (y(ti)−Hs(ti, θ′))

The result in the appendix refers to the complex case, but it also holds for the real
multivariate normal distribution (see e.g. appendix C.1 in Lauritzen (1996)).

An easy calculation shows that

ΣH>[HΣH>]−1 = [β1, . . . , βk]> ,

which means that

Eθ′ [Xk(ti)|y(ti)] = sk(ti, θ
′) + βk

[
y(ti)−

K∑

l=1

sl(ti, θ
′
k)
]
.

Using this and the fact that Σ is a diagonal matrix, (3.1.8) may be rewritten as

Q(θ, θ′) = c′ − λ

2

(
K∑

k=1

N∑

i=1

βk‖Eθ′ [Xk(ti)|y(ti)]− sk(ti, θk)‖2
)
.

It follows that Q is maximized by minimizing each of the terms in the sum over k, and
the EM algorithm at step j + 1 given the current estimate θ(j) is then given as

E-step
For k = 1, . . . ,K calculate

Eθ(j) [Xk(ti)|y(ti)] = sk(ti, θ
(j)) + βk

[
y(ti)−

K∑

l=1

sl(ti, θ
(j)
k )
]
. (3.1.9)
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M-step

For k = 1, . . . ,K obtain θ
(j+1)
k as the value which minimizes (3.1.9)

In Feder and Weinstein (1988) it is mentioned that the βk’s can be used to con-
trol the rate of convergence of the algorithm, and possibly to avoid convergence to
an unwanted stationary point. The authors furthermore state that the RMS error
performance of the algorithm is the minimum attainable by the Cramér-Rao lower
bound.

Summary

The setting above may be used to estimate e.g. arrival times and attenuation factors
in the Turin Model as described in section 1.2.1. Due to the unified frame for real and
complex signals, the algorithm can be used on measurements of either the impulse or
frequency response. For measurements of the impulse response sk(t, θk) = βkδ(t− τk)
and for measurements of the frequency response sk(ω, θk) = βk exp(−2πiωτk), where
the unknown parameter in both cases is given as θk = (τk, βk).

Although the algorithm is computationally efficient, it does however have two ma-
jor problems. One is the inability to work with unknown noise. The algorithm could
have been developed for this setting, with this extra parameter it is however not pos-
sible to maximize the likelihood for each signal separately. The other problem is the
fact that the number of signals has to be known. Although methods for estimating
the order of the model exists (see e.g. Cappé et al. (2005), chapter 15), it would be
preferable to treat both the number of parameters and their values as unknowns in the
same statistical inference. An algorithm which treats this issue is described in section
4.3 and implemented on the Turin model and the shot noise model in section 6.2 and
6.3.

3.2 Bayesian inference

This section gives a short introduction to Bayesian inference and it is mainly based on
Lee (2004) and Gelman et al. (2003), and we refer especially to the latter for a more
thorough treatment of Bayesian inference.

3.2.1 Basic definitions

In likelihood based inference as described in section 3.1 we wish obtain information
about the unknown parameter vector θ based on observed data x. Data is linked to the
parameter through the statistical model used in the specific scenario, and the inference
is based solely on the model and the given data. In Bayesian statistics the parameters
are considered as unknown stochastic variables, for which we wish to determine the
distribution. It is assumed that the parameters have a known a priori distribution
before we have knowledge of the data, which is formally defined as

Definition 3.2.1 (Prior)
Let the parameter space (Θ,FΘ) be a measurable space, and let θ be distributed
according to some probability measure Pθ on (Θ,FΘ) prior to obtaining the data x.
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Then Pθ is the a priori distribution of θ, and if it has density pθ with respect to a
measure ξ, this will be denoted the a priori density for θ. �

Often the term “a priori” will be replaced with the more common “prior”, and both the
distribution and the density will sometimes be referred to simply as the prior. The
concept of a prior is discussed widely in the Bayesian literature, and we will treat this
later, but for now we omit this discussion. The observation model is a statistical model
for how the data is distributed given the parameters of the model, which is defined as

Definition 3.2.2 (Observation model)
Let data X be a stochastic variable on the measurable space (X ,FX ), which given
a parameter value θ is distributed according to PX|θ. Then PX|θ is the observation
model, and it is assumed to have density pX|θ with respect to some measure µ on
(X ,FX ). �

Note that the density pX|θ is actually the likelihood function L(θ;X). With these
concepts at hand we can show the basic proposition in Bayesian statistics

Proposition 3.2.3 (Bayes formula)
Let the prior and observation model be given as in definition 3.2.1 and 3.2.2, and let
Pθ|x be the distribution of the parameters θ given the observed data X = x. Then
Pθ|x is called the a posteriori distribution of θ, and it has density

p(θ|x) =
p(θ)p(x|θ)∫

Θ
p(θ̃)p(x|θ̃)dξ(θ̃)

with respect to ξ.

Proof:
The simultaneous density for (X, θ) on (X × Θ,FX ⊗ Fθ, µ⊗ ξ) is p(θ)p(x|θ), which
yields the result. �

In Bayesian statistics the following version of Bayes formula is often used

p(θ|x) ∝ p(x|θ)p(θ),

since it in some applications is sufficient to know the posterior up to proportionality,
and if the exact distribution is needed the normalizing constant can be found by inte-
gration.

The basic feature of Bayesian inference is that when data X = x is observed we
update our prior beliefs by multiplying the prior and the likelihood (and normalizing
if it is necessary) to obtain a new distribution describing our beliefs about the param-
eter of interest θ. Now if we have some new data Y = y, which is independent of X,
it is not necessary to restart the inference. Rather we can use the posterior based on
x as the new prior for θ, and update our beliefs using the likelihood L(θ;y). This is
easily seen to give the same result as starting inference from scratch

p(θ|x,y) ∝ p(θ)L(θ;x,y) ∝ p(θ)L(θ;x)L(θ;y) ∝ p(θ|x)L(θ;y).
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3.2.2 Prior distributions

Now we return to a discussion of the prior and some difficulties concerning this. The
prior should reflect the knowledge available before obtaining data, which can be a com-
bination of former experiences, expert knowledge, etc. We consider a simple example,
where it is assumed, that we are going to measure the height of a group of Danish
men and we are interested in estimating the mean height. If we denote this mean by
θ we might expect that θ ∼ N(θ0, σ

2
0) with θ0 = 178cm and σ0 = 5cm, illustrating

that prior to the experiment we already have an idea of what the parameter is, but
with some uncertainty of course. This illustrates a key issue in Bayesian inference;
the probabilities are subjective. If somebody else was to do inference for this dataset
their prior beliefs might be different from the ones stated here leading to different
results. It is however often possible to show that the influence of the prior vanishes
as the number of observations grows, so in the case of large data sets different priors
often lead to similar results. This can be illustrated by assuming that the height of
Danish men in general follow a Gaussian distribution with the unknown mean θ and
variance σ2. In order to make the example very simple we unrealistically assume that
σ2 is known, such that we only need to make inference for the mean. Then if we
have n independent measurements of the height it can be shown that the posterior is
Gaussian with variance σ2

1 given by the relation

1

σ2
1

=
1

σ2
0

+ n
1

σ2
(3.2.1)

and mean θ1, given by

θ1 =
σ2

1

σ2
0

θ0 + n
σ2

1

σ2
x̄. (3.2.2)

It is seen that the precision (reciprocal value of variance) of the posterior grows with
the number of observations, and the mean value is a weighted sum of the prior and
observed means with the weight of the observed mean growing with the number of
observations. This illustrates that a different Gaussian prior would not change the
posterior considerably if the number of observations is large, which seems reassuring.

There are however other problematic issues concerning the prior, which we will treat
briefly here. Again this is most easily illustrated by an example. If we are to make
inference of some probability parameter π, which we have no prior knowledge of, it
would seem reasonable to use a uniform prior on [0, 1], but we might as well argue that
we know nothing of

√
π and choose this to be uniform on [0, 1]. This leads to different

results, and it is not obvious which one to use. In general the problem of expressing
lack of prior knowledge is discussed widely in the Bayesian literature, and there is no
obvious way to do this. In the one-dimensional case Jeffreys (1961) suggests using a
prior given by

p(θ) ∝
√
I(θ),

where I(θ) denotes the Fisher information (see definition 3.1.5). The reason for this
choice is that it is invariant under certain transformations of the parameter. Consider
the transformation ψ = ψ(θ), where ψ is assumed to be a monotone c2-function.
Then using that I(ψ) = I(θ)|dθ/dψ|2 and the transformation theorem for stochastic
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variables, we obtain

p(ψ) = p(θ)|dθ/dψ|
∝
√
I(θ)|dθ/dψ|

=
√
I(ψ)/|dθ/dψ|2|dθ/dψ|

=
√
I(ψ),

which is the same as we would have specified using Jeffreys’ prior directly on the trans-
formed variable ψ. It is possible to extend this rule to the multi-dimensional case, but
this leads to some controversial results, and a discussion of this is outside the scope of
the current introduction to Bayesian inference.

In the discussion of priors representing no knowledge (sometimes referred to as ref-
erence priors) the concept of improper priors is introduced. This is used when we
approximate our prior beliefs by an infinite measure (e.g. the Lebesgue measure on
the real line), and not a proper probability measure. The line of thought can be il-
lustrated by returning to the example of a Gaussian prior and a Gaussian likelihood
with known variance. If we have a very vague prior knowledge we could express this
by using a large variance on the prior, leading to a very flat prior distribution. We
might argue that the limiting case of the prior variance σ2

0 = ∞ expresses total lack
of knowledge, but this is not well defined of course. It corresponds to a prior p(θ) ∝ 1
on the whole real line, which is not a probability density with respect to the Lebesgue
measure. We could however use this improper prior as an approximation to our prior
knowledge, and it is seen from (3.2.1) and (3.2.2) that it leads to the posterior distri-
bution N(x̄, σ2/n). In this case the improper prior is combined with the likelihood to
give a proper posterior, but this is not always the case and improper priors should be
treated with care.

In some cases it is possible to select a prior such that the prior and posterior be-
longs to the same class of distributions. If p(x|θ) is an observation model, then a class
Π of prior distributions is said to form a conjugate family if the posterior density

p(θ|x) ∝ p(θ)p(x|θ)

is in the class Π for all x whenever the prior density p(θ) ∈ Π. If it is possible to
express ones prior knowledge about θ as a conjugate prior, which is not always the
case, it is often easier to analytically derive the wanted results.

3.2.3 Posterior summaries

Once the posterior distribution is calculated we wish to give a summary of its prop-
erties, such as point and interval estimates. As a point estimate either the posterior
mean, median or mode is usually presented, and unless stated otherwise we will use
the posterior mean E(θ|x). Regarding interval estimates we are usually concerned
with an interval containing a specific amount of the total probability mass (typically
90%, 95% or 99%, but there is no canonical choice), and there are several different
criteria to choose this interval by. A highest density region (HDR) is the smallest set
that includes the chosen amount of the probability mass. This set is not necessarily
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connected if the posterior is multi-modal, and another possibility is to use a central
posterior region (CPR), which is the smallest connected set containing the chosen
probability mass. These interval estimates can be rather difficult to derive when the
posterior is not on a well known form, and often it will be more convenient simply to
work with an interval given by an upper and lower quantile qu and ql. That is if we are
interested in a 95% posterior interval we use the 2, 5% quantile q2,5% and the 97, 5%
quantile q97,5% to form the interval estimate [q2,5%, q97,5%]. Intervals of this type are
denoted posterior confidence intervals (PCI).

For many practical purposes, an analytical derivation of the posterior distribution
is a very difficult task, and point and interval estimates are therefore calculated us-
ing simulations. The method for simulation from the unnormalized distributions that
commonly arise in Bayesian inference relies heavily on the theory of Markov chains
which is treated before actual simulation schemes such as the Metropolis-Hastings
algorithm are presented.



Chapter 4

Simulation based infer-
ence

4.1 Markov chains

This section deals with discrete time Markov chains with continuous state space, i.e.
a sequence of stochastic variables {X(n)}n∈N0

, where X(n) : Ω → X , X ⊆ R for
all n ∈ N0. This section is based on Robert and Casella (1999). A Markov chain is
defined via. its transition kernel.

Definition 4.1.1 (Transition Kernel)
A transition kernel is a function K defined on X × B(X ), where (X ,B(X )) is a mea-
surable space, such that

• For all x ∈ X , K(x, ·) is a probability measure

• For all A ∈ B(X ), K(·, A) is measurable.

�

Definition 4.1.2 (Markovchain)
A stochastic process {X(n)}n∈N is a Markov chain with transition kernel K, if for all
n ≥ 0, all A ∈ B(X ) and all x0, . . . , xn ∈ X

P (X(n+ 1) ∈ A|X(0) = x0, . . . , X(n) = xn) = P (X(n+ 1) ∈ A|X(n) = xn)

=

∫

A

K(xn, dy) (4.1.1)

�

If the initial value X(0) ∼ µ, the distribution of {X(n)}n∈N0
is denoted by Pµ, or Px0

,
if µ is a degenerate distribution. If the initial distribution µ is known, the distribution
of the Markov chain is completely determined by the transition kernel, since

Pµ(X(1) ∈ A1) =

∫

X

K(y0, A1)µ(dy0)

Pµ((X(1), X(2)) ∈ A1 ×A2) = Pµ(X(2) ∈ A2|X(1) ∈ A1)Pµ(X(1) ∈ A1)

=

∫

X

∫

A1

K(y,A2)K(y0, dy)µ(dy0)

...

Pµ((X(1), . . . , X(n)) ∈ ×n
i=1Ai) =

∫

X

∫

A1

· · ·
∫

An−1

K(yn−1, An)

×K(yn−2, dyn−1) · · ·K(y0, dy1)µ(dy0)
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If K1(x,A) = K(x,A), the n-step transition kernel is recursively defined by

Kn(x,A) =

∫

X

Kn−1(y,A)K(x, dy).

Markov chains are often used as estimation tools in Bayesian inference, to obtain
samples from a given posterior distribution. This will be described in further detail in
section 4.2. In order to be useful in this regard, the Markov chain is required to meet
a number of conditions, to ensure convergence of the ergodic mean to the mean of the
given posterior distribution, and convergence in total variation norm.

Definition 4.1.3 (ϕ-irreducibility)
Given a measure ϕ, a Markov chain with transition kernel K is ϕ-irreducible, if for
every A ∈ B(X ), with ϕ(A) > 0 there exists an n ∈ N such that Kn(x,A) > 0 for all
x ∈ X . The chain is strongly irreducible if n = 1 for all measurable A, with φ(A) > 0.

�

The irreducibility, ensures that the Markov chain can move from any position in the
state space, to any Borel element with positive measure, within a finite number of
steps. If the Markov chain {X(n)}n∈N0

is ϕ-irreducible, it can be shown that there
exists a probability measure ψ, such that {X(n)}n∈N0

is ψ-irreducible.

Although irreducibility ensures that the Markov chain visits every element of the Borel
algebra, this condition is not sufficient to guarantee the wanted convergence. We need
to impose a further demand, on how often the chain visits every element. A Markov
chain is recurrent if the mean number of visits in every element of the Borel algebra is
infinite. In this section we however restrict our attention to a stronger property called
Harris recurrence.

Definition 4.1.4 (Harris recurrence)
Let ηA =

∑∞
n=0 1A{X(n)}n∈N0

and A ∈ B(X ). If Px(ηA = ∞) = 1 for all x ∈ A,
then A is Harris recurrent. The Markov chain {X(n)}n∈N0

is Harris recurrent, if there
exists a probability measure ψ such that the chain is ψ-irreducible, and if for all x ∈ X
and all A ∈ B(X ) with ψ(A) > 0, A is Harris recurrent. �

For a ψ-irreducible Markov chain Meyn and Tweedie (1993) shows the existence of a
disjoint partitioning of the state space X = A0∪· · ·∪Ad−1∪Ad, with ψ(Ad) = 0, such
that x ∈ A0 ⇒ K(x,A1) = 1, x ∈ A1 ⇒ K(x,A2) = 1, · · · , x ∈ Ad−1 ⇒ K(x,A0) = 1.

Definition 4.1.5
A ψ-irreducible Markov chain {X(n)}n∈N0

is periodic if d > 1, and otherwise aperiodic.
�

If {X(n)}n∈N0
is strongly irreducible it is also aperiodic, since there is positive prob-

ability of moving to every element with positive measure within a single step.

Definition 4.1.6
A σ-finite measure Π is invariant for the transition kernel K, and the associated
Markov chain, if

Π(A) =

∫

X

K(x,A)Π(dx), ∀A ∈ B(X ).

�
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If Π is a probability measure, it describes a stationary distribution, which means that
if X(n) ∼ Π, then

P (X(n+ 1) ∈ A) =

∫

X

K(xn, A)Π(dxn) = Π(A), (4.1.2)

which means that X(n + 1) ∼ Π. By induction this is valid for all X(m), m =
n+ 1, n+ 2, . . ., which means that if the Markov chain is sampling from the stationary
distribution, it will continue to do so.

Proposition 4.1.7
If {X(n)}n∈N0

is a Harris recurrent Markov chain, there exists an invariant measure
Π, which is unique op to a multiplicative factor. �

If Π is an invariant measure, for the chain {X(n)}n∈N0
, then {X(n)}n∈N0

is Π-
irreducible.

If we define the total variation norm by

‖µ1 − µ2‖TV = sup
A∈X
|µ1(A)− µ2(A)|,

then the stationary distribution can be used to describe limiting results for Markov
chains under certain regularity conditions.

Theorem 4.1.8 (Convergence Theorem for Markov chains)
If {X(n)}n∈N0

is Harris recurrent, aperiodic and has Π as stationary distribution, then

lim
n→∞

∥∥∥
∫
Kn(x, ·)µ(dx)−Π

∥∥∥
TV

for every initial distribution µ �

Theorem 4.1.8 states that regardless of how the Markov chain is initialized it converges
to the same distribution. For practical purposes the chain is run for a certain amount
of time, called the burn in, after which it is assumed to sample from the stationary
distribution.

The ergodic average of a discrete time Markov chain is defined by

Sn(h) =
1

n

n∑

i=1

h(X(i)).

Using this we have

Theorem 4.1.9 (Ergodic Theorem)
If {X(n)}n∈N0

has a σ-finite invariant measure Π, the following statements are equiv-
alent

1. If f, g ∈ L1(Π) with
∫
g(x)Π(dx) 6= 0, then

lim
n→∞

Sn(f)

Sn(g)
=

∫
f(x)Π(dx)∫
g(x)Π(dx)

, Π− a.e.

2. The Markov chain {X(n)}n∈N0
is Harris recurrent.

�
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4.2 The Metropolis-Hastings algorithm

This section provides a method to obtain empirical estimates of a posterior distribu-
tion via. Markov Chain Monte Carlo methodology. The results are based on Robert
and Casella (1999) and Berthelsen and Møller (2004). A Markov Chain Monte Carlo
(MCMC) method for simulation of a distribution P is any method that generates an
ergodic Markov chain {Xn}n∈N0

with stationary distribution P . The main focus in
this section lies on the Metropolis-Hastings algorithm, which is a very general MCMC
method which can be applied to a broad variety of problems.

The Metropolis-Hastings algorithm is defined via its target distribution Π, which is
the distribution we wish to sample from, and a conditional density called the proposal
density.

Definition 4.2.1 (The Metropolis-Hastings algorithm)
Let X(n) = xn.

Generate U ∼ Unif(0, 1) and Y ∼ q(xn, ·)

X(n+ 1) =

{
Y if U ≤ α(X(n), Y )
X(n) otherwise.

The acceptance probability α is defined by

α(x, y) = min

{
π(y)q(y, x)

π(x)q(x, y)
, 1

}
. (4.2.1)

�

It is easily seen from (4.2.1) that it is sufficient to know the target density op to a
multiplicative factor, and that the acceptance probability is simplified if the proposal
density is symmetrical, which then gives

α(x, y) = min

{
π(y)

π(x)
, 1

}
.

To prove the wanted convergence results for the Markov chain generated by the
Metropolis-Hastings algorithm we need to impose certain regularity conditions on the
target- and proposal density. First of the results are more easily proven if supp(π) = S
is a connected set, which we will assume. Furthermore the algorithm does not work if
a measurable set A, such that

∫

A

π(x)dx > 0 and

∫

A

q(x, y)dy = 0, ∀x ∈ S,

exists. This is caused by the fact that the chain never visits the set A, which has
positive probability in the stationary distribution, if X0 /∈ A. A necessary condition
is thus

supp(π) ⊂
⋃

x∈supp(π)

supp(q(x, ·)).

To prove that the Markov chain produced by the Metropolis-Hastings algorithm has
the target distribution as stationary distribution, we need to introduce the kernels
associated density function, and a property called the detailed balance condition.
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Definition 4.2.2
If a measurable space (X ,B(X )) has a σ-finite measure ν such that K(x, ·) has a
density function with respect to ν, this density function is denoted k(x, y). �

In the following it is assumed that k : X × X → R is a measurable function.

Definition 4.2.3
A Markov chain with transition kernel K satisfies the detailed balance condition(DBC)
if there exists a function π satisfying

k(y, x)π(y) = k(x, y)π(x), ∀(x, y).

�

Proposition 4.2.4
If a Markov chain with transition kernel K satisfies DBC for a probability density
function π, then Π is the chains stationary distribution.

Proof:
The strategy is to prove that if X(n) ∼ Π, then X(n + 1) ∼ Π, which means that Π
is the stationary distribution for {X(n)}n∈N0

.

For every measurable set B, we have

∫

Y

K(y,B)π(y)dy =

∫

Y

∫

B

k(y, x)π(y)dxdy

=

∫

Y

∫

B

k(x, y)π(x)dxdy

=

∫

B

π(x)dx

�

Proposition 4.2.5
For every proposal density q with supp(π) ⊆ supp(q), the Markov chain produced by
the Metropolis-Hastings algorithm has Π as stationary distribution.

Proof:
The density function for the Metropolis-Hastings algorithms transition kernel is

k(x, y) = α(x, y)q(x, y) +

(
1−

∫
α(x, y)q(x, y)dy

)
δ(y − x), (4.2.2)

where the first part corresponds to proposing and accepting a move from x to y and
the second part corresponds to rejecting a move and x = y.

To prove that the transition kernel for the Metropolis-Hastings algorithm satisfies
DBC, we first prove that the first part of (4.2.2) satisfies

α(x, y)q(x, y)π(x) = α(y, x)q(y, x)π(y).
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This is verified by considering either π(x)q(x, y) > π(y)q(y, x) or π(y)q(y, x) > π(x)q(x, y).

The last part of the proof, is to show that

π(x)

(
1−

∫
α(x, y)q(x, y)dy

)
δ(y − x) = π(y)

(
1−

∫
α(y, x)q(y, x)dx

)
δ(x− y).

Since the weights on the delta function are equal for x = y, and δ(y−x) = δ(x−y) = 0
for x 6= y, the two expressions are equal.
This shows that the transition kernel satisfies DBC, and the result follows from propo-
sition 4.2.4. �

The results above says that the Metropolis-Hastings algorithm has the wanted target
distribution as stationary distribution. We however need to ensure that the chain
converges to this distribution. To do this it is sufficient to show that the chain is
aperiodic and Harris recurrent, since the convergence then follows from the results in
section 4.1.

Lemma 4.2.6
If the Metropolis-Hastings algorithm generates a Π-irreducible Markov chain
{X(n)}n∈N0

, then the chain is Harris recurrent. �

As a consequence of this, we now have the convergence theorem for the Metropolis
Hastings algorithm

Theorem 4.2.7
Assume that chain {X(n)}n∈N0

generated by the Metropolis-Hastings algorithm is
Π-irreducible.

1. If h ∈ L(Π), then

lim
N→∞

1

N

N∑

n=1

h(X(n)) =

∫
h(x)π(x)dx, Π− a.e.

2. If, {X(n)}n∈N0
furthermore is aperiodic, then

lim
m→∞

∣∣∣
∣∣∣
∫
Km(x, ·)µ(dx)−Π

∣∣∣
∣∣∣
TV

= 0

for every initial distribution µ.

Proof:
Since {X(n)}n∈N0

is assumed Π-irreducible,then by lemma 4.2.6 it is also Harris re-
current. The theorem is now a direct consequence of theorem 4.1.9 and theorem
4.1.8. �

When designing a Metropolis-Hastings algorithm the requirements for the results
above can be checked by the following two sufficient conditions.
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A Markov chain {X(n)}n∈N0
cannot be periodic if P (X(n + 1) = X(n)) > 0, which

according to definition 4.2.1 is the same as

P (α(X(n), Y ) ≥ 1) < 1.

This means that the chain is aperiodic, if

P [π(X(n))q(X(n), Y ) ≤ π(Y )q(Y,X(n))] < 1.

A sufficient condition for irreducibility is, that the proposal density is positive for all
(x, y) ∈ S × S, since it is then possible to move to any measurable set with positive
measure within a single step.

4.3 Reversible jump MCMC

In some cases in statistical inference one of the unknowns is the order of the model.
There is a number of different methods of estimating the model order, and the method
described below is the Bayesian approach. As described in section 4.2 computations in
Bayesian inference can be handled via. MCMC methods. Reversible jump MCMC is
an extension of the Metropolis Hastings algorithm that not only proposes new values
of a number of parameters, but also proposes a jump in dimension which is accepted
with some probability. The algorithm was first suggested for spatial point processes
by Geyer and Møller (1994) and later generalized by Green (1995). The algorithm has
a wide variety of usages, e.g. determining the number of change points for a Poisson
process, or determining the number of components in a mixture density.

Let {Mk, k ∈ K } be a countable collection of models, where model Mk has a parame-
ter vector θk ∈ Rnk . Let x denote the pair (k, θk), then for a given k, x ∈ Ck = k×Rnk ,
and in general x ∈ C =

⋃
k Ck. The general state space C is equipped with the sigma

algebra given by B(C ) = σ{(k, θk)|θk ∈ B(Ck), k ∈ K }. The goal of this section is to
establish a Markov Chain on the space given above, with a transition kernel P that
satisfies the detailed balance condition, that is

∫

A

∫

B

π(dx)P (x, dx′) =

∫

B

∫

A

π(dx′)P (x′, dx). (4.3.1)

The probability of moving from state x to dx′ with a move of type m, e.g. a shift up
in dimension, is given by qm(x, dx′), and the probability of no proposal of change is
thus 1 −∑m qm(x,C ). The probability of accepting a move of type m is αm(x, x′),
and we wish to derive an expression for α such that the chain satisfies (4.3.1). The
transition kernel for the chain is given by

P (x,B) =
∑

m

∫

B

[qm(x, dx′)αm(x, x′)] + s(x)1B(x), (4.3.2)

where B ∈ B(C ), and

s(x) =
∑

m

∫

C

[qm(x, dx′)(1− αm(x, x′))] + 1−
∑

m

qm(x,C ),
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is the probability of rejection of a proposal or no proposal. If we define a measure
µx(B) = 1B(x), and substitute (4.3.2) into the left side of (4.3.1), we get

∫

A

∫

B

π(dx)

[∑

m

qm(x, dx′)αm(x, x′) + s(x)µx(dx′)

]

=
∑

m

∫

A

π(dx)

∫

B

qm(x, dx′)αm(x, x′) +

∫

A

∫

B

s(x)µx(dx′)π(dx)

=
∑

m

∫

A

π(dx)

∫

B

qm(x, dx′)αm(x, x′) +

∫

A

s(x)π(dx)1B(x)

=
∑

m

∫

A

π(dx)

∫

B

qm(x, dx′)αm(x, x′) +

∫

A∩B

s(x)π(dx)

The right side gives

∑

m

∫

B

π(dx′)

∫

A

qm(x′, dx)αm(x′, x) +

∫

B∩A

π(dx′)s(x′)

Since the last terms are equal it is sufficient for (4.3.1) to hold that

∫

A

π(dx)

∫

B

qm(x, dx′)αm(x, x′) =

∫

B

π(dx′)

∫

A

qm(x′, dx)αm(x′, x)

∫

A

qm(x,B)π(dx) =

∫

B

qm(x′, A)π(dx′) (4.3.3)

for all m and all A,B ∈ B(C ).

The idea given by Green (1995) is to decompose the model jumping into jumps be-
tween two submodels, and then establish a bijection between the two subspaces Ck and
Ck′ . More precisely we generate two continuous random auxiliary variables uk and uk′

of length mk and mk′ , such that nk +mk = nk′ +mk′ , and set (θk′ , uk′) = T (θk, uk) =
(T1(θk, uk), T2(θk, uk)). The auxiliary variables are assumed to have density functions
qk and qk′ with respect to the mk and mk′ dimensional Lebesgue measures. If the
dimension jumping probability measure qm(·)π(·) also is assumed to have a density
function, f , with respect to the proper dimensional Lebesgue measure, and the prob-
ability of choosing a jump is denoted j(·), the left side of (4.3.3) can be rewritten
as

∫

R
nk

1A(θk)

∫

R
mk

1B(θk′)j(k → k′)α(x, x′)f(x)qk(uk)dukdθk

=

∫

R
nk

∫

R
mk

1A(θk)1B(θk′)j(k → k′)α(x, x′)f(x)qk(uk)dukdθk. (4.3.4)

The right side of (4.3.3) is rewritten as

∫

R
n

k′

∫

R
m

k′

1B(θk′)1A(θk)j(k′ → k)α(x′, x)f(x′)qk′(uk′)duk′dθk′ .
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Since T is a bijection, we can now apply the transformation theorem for integrals to
the equation above, and we get

∫

R
nk

∫

R
mk

1B(T1(θk, uk))1A(θk)j(k′ → k)α((k′, T1(θk, uk)), (k, θk))

·f(k, T1(θk, uk))qk′(T2(uk))

∣∣∣∣
∂T

∂(θk, uk)

∣∣∣∣ dukdθk. (4.3.5)

Comparing (4.3.4) with (4.3.5) we see that (4.3.3) is satisfied if

j(k → k′)f(k, θk)qk(uk)α(x, x′) = j(k′ → k)f(k′, θk′)qk′(uk′)

∣∣∣∣
∂T

∂(θk, uk)

∣∣∣∣α(x′, x).

This holds if the accept probability is chosen as

α(x, x′) = min

{
1,
j(k′ → k)f(x′)qk′(uk′)

j(k → k′)f(x)qk(uk)

∣∣∣∣
∂T

∂(θk, uk)

∣∣∣∣
}
.
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Chapter 5

Data description

5.1 Data acquisition

In order to model the impulse response function of an UWB wireless channel, ac-
tual measurements are needed. There are several different ways of approaching the
problem of measuring the impulse response. Since the Dirac-impulse is a limit of real
functions one way of approximating the impulse response is by sending a very short
electrical pulse to the transmitting antenna and then measure the received signal at
the receiving antenna. An alternative way is to measure the transfer function, which
was the method used for the data at hand. Since the transfer function is a complex
valued function the method of measurement is not straight forward and the following
describes how it is possible to evaluate the transfer function at some given frequency
f0.

y(t)x(t)

RxTx

Network Analyzer

Wireless Channel

Figure 5.1.1: Schematic representation of the measurement.

Figure 5.1.1 is a schematic representation of the measurement technique. The net-
work analyzer is connected to a transmitter and a receiver antenna positioned in the
environment of interest. It sends a given signal x to the transmitter and measures
the received signal y. The measurement of the transfer function evaluated at f0 is
done by sending the input signal x = cos2πf0

, where cos2πf0
(t) = cos(2πf0t) for all

t, and then process the output y as illustrated in figure 5.1.2. This results in the
values Re(H(f0)) and Im(H(f0)) as shown in the following. First we define the signal
zc by zc(t) = y(t) cos(2πf0t) for all t and consider the Fourier transform Zc, using
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Im(H(f0))

Re(H(f0))

y(t)

2

T0

∫ T0/2

−T0/2
(·)dt

2

T0

∫ T0/2

−T0/2
(·)dt

sin(2πf0t)

cos(2πf0t)

Figure 5.1.2: Network analyzer.

F (cos2πf0
)(f) = 1

2 (δ(f − f0) + δ(f + f0))

Zc(f) = (Y ∗F (cos2πf0
)) (f)

=
1

2

∫ ∞

−∞

Y (ξ) [δ(f − f0 − ξ) + δ(f + f0 − ξ)] dξ

=
1

2
[Y (f − f0) + Y (f + f0)] . (5.1.1)

Since Y (f) = H(f)X(f) = H(f)F (cos2πf0
)(f) equation (5.1.1) leads to

Zc(f) =
1

2

[
H(f − f0)X(f − f0) +H(f + f0)X(f + f0)

]

=
1

4

[
H(f − f0)δ(f − 2f0) + [H(f − f0)

+H(f + f0)]δ(f) +H(f + f0)δ(f + 2f0)
]

=
1

4

[
H(f0)δ(f − 2f0) + 2Re(H(f0))δ(f) +H(−f0)δ(f + 2f0)

]
,

where the final result follows from the fact that the impulse response is a real function,
and thus has a complex symmetric Fourier transform, which leads toH(f0)+H(−f0) =
2Re(H(f0)). Finally Parseval’s identity is used to see that integration over a period
T0 = 1

f0
as indicated in figure 5.1.2 gives the right result

2

T0

∫ T0/2

−T0/2

zc(t)dt =
2

T0

∫ ∞

−∞

zc(t)1[−T0/2,T0/2]dt

=
2

T0

∫ ∞

−∞

Zc(f)
sin(πfT0)

πf
df

= 2

∫ ∞

−∞

Zc(f)sinc(πfT0)df

=
1

2
H(f0)sinc(π2f0T0) + Re(H(f0))sinc(0)

+
1

2
H(−f0)sinc(−π2f0T0)

= Re(H(f0)).
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The calculations can be performed the same way for the signal zs given by zs(t) =
y(t) sin(2πf0t) for all t leading to Im(H(f0)).

5.2 The noise model

In a realistic channel model some kind of noise model is needed, and a very commonly
used model is the additive white Gaussian noise channel. This simply states that
the receiver does not receive the theoretically correct signal y but rather a version
corrupted by noise given by y + W . The process W is then assumed to be a white
Gaussian process with autocorrelation function RW = σ2δ. This implies that in our
measurements the actual values are

2

T0

∫ T0/2

−T0/2

(y(t) +W (t)) cos(2πf0t)dt = Re(H(f0)) +
2

T0

∫ T0/2

−T0/2

W (t) cos(2πf0t)dt,

and correspondingly

Im(H(f0)) +
2

T0

∫ T0/2

−T0/2

W (t) sin(2πf0t)dt.

These quantities are not well defined however, which is due to the chaotic behavior of
white noise. It is actually not a stochastic process but rather a generalized stochas-
tic process which is related to the theory of generalized functions (also referred to as
distributions). A common solution to this problem is to restate the problem as integra-
tion with respect to Brownian motion. For the moment we will ignore these problems
and show the desired results by some informal calculations. Afterwards a comment
regarding the mathematical formalism will be given. The informal calculations below
are inspired by Land and Fleury (2006).

We start by introducing the notation

Wc =
2

T0

∫ T0/2

−T0/2

W (t) cos(2πf0t)dt,

and

Ws =
2

T0

∫ T0/2

−T0/2

W (t) sin(2πf0t)dt.

We are interested in the statistical properties of the noise quantities Wc and Ws. Since
they are linear transforms of Gaussian processes they follow a Gaussian distribution
and we just have to determine the mean, variance and covariance.

E(Wc) = E

[
2

T0

∫ T0/2

−T0/2

W (t) cos(2πf0t)dt

]

=
2

T0

∫ T0/2

−T0/2

E(W (t)) cos(2πf0t)dt

= 0,
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and in the same way E(Ws) = 0. The variances are calculated as follows

E[(Wc − E(Wc))
2] = E(W 2

c )

=
4

T 2
0

E[(

∫ T0/2

−T0/2

W (t) cos(2πf0t)dt)(

∫ T0/2

−T0/2

W (s) cos(2πf0s)ds)]

=
4

T 2
0

∫ T0/2

−T0/2

∫ T0/2

−T0/2

E[W (t)W (s)] cos(2πf0t) cos(2πf0s)dtds

=
4σ2

T 2
0

∫ T0/2

−T0/2

∫ T0/2

−T0/2

δ(t− s) cos(2πf0s)ds cos(2πf0t)dt

=
4σ2

T 2
0

∫ T0/2

−T0/2

cos(2πf0t) cos(2πf0t)dt

=
4πσ2

T 2
0

.

And the same type of calculations leads to Var(Ws) = 4πσ2

T 2
0

. To calculate the covari-

ance of Wc and Ws a couple of similar calculations are done

Cov(Wc,Ws) = E(WcWs)

=
4

T 2
0

∫ T0/2

−T0/2

∫ T0/2

−T0/2

E[W (t)W (s)] cos(2πf0t) sin(2πf0s)dtds

=
4σ2

T 2
0

∫ T0/2

−T0/2

∫ T0/2

−T0/2

δ(t− s) sin(2πf0s)ds cos(2πf0t)dt

=
4σ2

T 2
0

∫ T0/2

−T0/2

sin(2πf0t) cos(2πf0t)dt

= 0.

This leads to the conclusion that the we observe H(f0) + Ŵ (f0), where Ŵ (f0) ∼
CN(0, 8πσ2

T 2
0

).

As mentioned earlier the formal mathematics of the above needs to be clarified, which
involves the theory of stochastic integration and an introduction is found in Øksendal
(2003). Here it is argued that the white noise could be replaced by a Brownian motion
which has independent Gaussian distributed increments and is a proper stochastic
process with continuous realizations. So we replace the meaningless

”

∫
f(t)W (t)dt”

with

”

∫
f(t)σdBt” ,

where σBt is a Brownian motion with Var(σBt) = σ2t. This integral is developed
much like the usual Riemann-Stieltjes integral as the limit of the sum

n−1∑

j=0

f(t∗j )σ(Btj+1
−Btj

), (5.2.1)
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but due to the infinite variation of Bt this sum has different limits dependent on the
choice of t∗j . The two common choices are the midpoint of the interval leading to the
Stratonovich integral and the left endpoint leading to the Itô integral, which is used
here. Due to the Gaussian distributed increments of a Brownian motion the sum in
(5.2.1) is Gaussian distributed and so is the limit, which justifies that the integral of
the noise process follows a Gaussian distribution. A basic property of the Itô integral

is that E

(∫ T

S
f(t)σdBt

)
= 0, which also coincides with the result in our informal

calculations. Furthermore a generalization of the Itô isometry (Taksar and Højgaard
(2006), chapter 1)

E

[ ∫ T

S

f(t)σdBt

∫ T

S

g(t)σdBt

]
= E

[ ∫ T

S

f(t)g(t)σ2dt
]

can be used to verify

Var
[ 2

T0

( ∫ T0/2

−T0/2

cos(2πf0t
)
σdBt)

2
]

=
4

T 2
0

E

[( ∫ T0/2

−T0/2

cos(2πf0t)σdBt

)2]

=
4

T 2
0

E
[ ∫ T0/2

−T0/2

cos2(2πf0t)σ
2dt
]

=
4πσ2

T 2
0

.

And in the same way we obtain

Var



(∫ T0/2

−T0/2

sin(2πf0t)σdBt

)2

 =

4πσ2

T 2
0

.

This shows that the variance of the two noise components is the same and it does not
depend on the frequency f0.

Along with independence of the two integrals this ensures that the noise is complex
Gaussian as concluded in the informal calculations. The independence follows from
the covariance, which is calculated using the Itô isometry

Cov(Wc,Ws) = E

[ ∫ T0/2

−T0/2

cos(2πf0t)σdBt

∫ T0/2

−T0/2

sin(2πf0t)σdBt

]

= E

[ ∫ T0/2

−T0/2

cos(2πf0t) sin(2πf0t)σ
2dt
]

= 0.

5.3 Descriptive Data Analysis

In this section we will give a short description of the actual observed data. A database
of measurements and instructions for usage supplied by the Intel Corporation may be
found at Scholtz (2006). The data is given as an array with 1847 observations of 1601-
dimensional complex vectors. Each of these vectors is a discrete sampled frequency
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response function with equally spaced samples in the interval [2, 8] GHz. The data was
observed in three different scenarios: An office, a townhouse and an anechoic chamber.
We will use four different graphical representations of the signal.

Real and imaginary part of the frequency response

Figure 5.3.1 shows an example of the data in its unprocessed form. The figure shows a
plot of the real and imaginary parts of the complex frequency response, as a function
of the frequency. The two signals parts are seen to be very similar, there is however
a small shift in phase between the two. This similarity is verified by the empirical
cross correlation, as shown in figure 5.3.2. The figure shows the correlation between
Re[H(fi)] and Im[H(fi+k)]. The cross correllation is actually only defined for station-
ary stochastic processes, but even though the data does not fulfill this requirement,
the empirical cross correlation still hints at the covariation between real and imaginary
parts of data.
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(a) Real part of frequency response.
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(b) Imaginary part of frequency response.

Figure 5.3.1: Example of data.
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Figure 5.3.2: Cross Correlation between real and imaginary parts.
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Impulse response

Figure 5.3.3 shows a filtered version of the impulse response function. The IFFT used
to get a time domain version of the observed signal, works under the assumption that
the time domain signal is periodic with period T and the samples in the frequency do-
main are equally spaced with distance 1/T (see Hazewinkel (1995), page 648). In this
case the samples are spaced with 3.75 MHz, and the assumed period of the impulse
response, in which we have observations, can thus be obtained as [0, 266] ns.

Since the frequency response is observed on a closed interval [fm, fM ], the observed
function can be thought of as the frequency response multiplied by an indicator func-
tion for this closed interval. Since the impulse response is real, the frequency response
is complex symmetric, and we can also assume knowledge of the frequency response
on [−fM ,−fm]. The time domain representation for the signal can then be obtained
as

F−1
[
H · I

(
· ∈ [−fM ,−fm] ∪ [fm, fM ]

)]
= h ∗ g

where the filter g is given by g(t) =
(

sin(2πfM t)− sin(2πfmt)
)
(πt)−1 for all t ∈ R.

Thus when we use the IFFT the output is the impulse response function blurred
by a sinc-like filter, and the time domain representation of the signal is therefore unfit
for statistical inference. The graph can however still be used to gain some idea of the
arrival times and possible clusters.

0 50 100 150 200 250−
2.

0e
−

05
−

1.
0e

−
05

0.
0e

+
00

1.
0e

−
05

Time in ns

h(
t)

Figure 5.3.3: Filtered impulse response.

Absolute value of the frequency response

Figure 5.3.4 shows the absolute value of an observed impulse response. In chapter 6
the actual inference on data, will be done in the frequency domain. For this purpose
the absolute value of the signal, can be used to get an idea of the size of the attenuation
factors and noise levels, in the different data sets. The maximum values of the absolute
value of the frequency response ranges from 4·10−8 to 1.5·10−3, and for the simulation
based inference initial values and prior distributions should be chosen accordingly.
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Figure 5.3.4: Absolute value of frequency response.

Example of a simulated data set

Figure 5.3.5 shows the impulse response for a model with τ = (100, 102, . . . , 120) ns
and β = (11, 10, . . . , 1). The impulse response model is assumed to be a weighted
delta train with delays and weights given by τ and β. The model is then simulated
as the corresponding frequency response, and sampled at the same frequencies as the
measured data. As seen in the figure the weights are blurred by the sinc filter, but it
is however possible to make out the arrivals.
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Figure 5.3.5: Simulated impulse response.



Chapter 6

Inference on data

In this chapter statistical inference based on the data described in chapter 5 is con-
ducted using a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. The
basic assumption is that data is sampled from a frequency response function given by

H(f) =
n−1∑

i=0

βi exp(−2πiτif), f ∈ R, (6.0.1)

which is corrupted by additive complex Gaussian noise. In section 6.1 we develop an
RJMCMC algorithm to estimate the standard deviation of the noise σ, the number
of arrivals n, the arrival times τ = (τ0, . . . , τn−1) and the corresponding attenuation
factors β = (β0, . . . , βn−1). In section 6.2 the algorithm is further developed to make
statistical inference for the Turin model, and in section 6.3 the shot noise model
described in section 2.2.3 is implemented.

6.1 The basic algorithm

As mentioned the channel noise is modeled as additive complex Gaussian, such that
the observed data y = (y1, . . . , yN ) is given by

yi = H(fi) + ni, ni ∼ CN(0, σ2), i = 1, . . . , N,

where CN(·, ·) is the univariate complex Gaussian distribution described in appendix
A.3 and it is assumed that n1, . . . , nN are mutually independent.

Following the Bayesian approach we wish to calculate the posterior density of the
parameters θ = (τ, β, σ, n) given data y

p(θ|y) ∝ p(y|θ)p(θ).
The prior is assumed to factorize as

p(θ) = p(β|n)p(τ |n)p(n)p(σ) = p(n)p(σ)
n−1∏

i=0

p(βi)p(τi),

where it is implicitly assumed that β is independent of τ and that β and τ are iid. Since
we in this section wish to make inference based only on the assumptions mentioned
above, the priors are chosen non-informative as

τi ∼ Unif(0, 266)

βi ∼ Unif(0, 1)

σ ∼ Unif(0, 1)

n ∼ Unif(1, 1000).



68 Inference on data

The frequency range of the the data corresponds to a time interval of 266ns which is
the reason for choosing the prior for τ and since β describes attenuation the interval
(0, 1) seems reasonable. The measurement data typically has a magnitude of 10−5, so
the interval (0, 1) should by far cover the needed range of the standard deviation of
the noise. Finally the number of arrivals is limited to 1000, which again should be
more than adequate for the number of arrivals in 266ns. Combining this prior with
the complex Gaussian observation model yields the posterior

p(θ|y) ∝ σ−2n exp

(
− 1

σ

N∑

i=1

‖yi −H(fi)‖2
)

× I(τ ∈ [0, 266]n)I(β ∈ [0, 1]n)I(σ ∈ [0, 1])I(1 ≤ n ≤ 1000).

This is simply the likelihood function truncated at the support of the prior. This
implies that if the likelihood attains its maximum within this area then the MLE
corresponds to the mode of the posterior.

6.1.1 RJMCMC algorithm

In this section an RJMCMC algorithm, having the posterior distribution of the param-
eters given data as invariant distribution is described based on the theory of section
4.3. A typical parameter configuration is denoted θ = (τ, β, σ, n), where τ and β are
vectors of length n, and thus the length of θ is 2n+ 2.

The algorithm consists of two parts:

1. A dimension change, which updates the number of arrivals n.

2. A sequential update of all other parameter values.

Dimension Change

The dimension change is chosen with probability pdim and the parameter update is
thus chosen with probability 1− pdim. The dimension changing update consist of two
moves, which are the birth or death of a parameter pair (τ ′, β′). Birth is chosen with
probability pb and death is chosen with probability pd = 1 − pb. The probability of
choosing the birth move is thus pdimpb. Following the approach described in section
4.3 we draw the new parameter pair from a uniform distribution on [0, 266] × [0, 1],
and set

θ′ = T (θ, τ ′, β′) =
(
(τ, τ ′), (β, β′), σ, n+ 1

)
,

This satisfies the dimension matching criteria for the RJMCMC algorithm, and an

easy calculation shows that
∣∣∣ ∂T
∂(θ,τ ′,β′)

∣∣∣ = 1.

The reverse move from θ′ to θ is chosen with probability pdimpd
1

n+1 , since the pa-
rameter pair to be killed is chosen uniformly. The accept probability for the birth
move is thus given by

αb(θ, θ
′) = min

{
1,

p(θ′|y)pd
1

n+1

p(θ|y)pbp(τ ′, β′)

}
.
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Similar arguments shows that the accept probability of a death move is given by

αd(θ, θ′) = min

{
1,
p(θ′|y)pbp(τ

′, β′)

p(θ|y)pd
1
n

}
.

Parameter updates

The updates of the parameter values is done by sequentially updating each entry
of the parameter vector θ except n. The new values are proposed from a Gaussian
distribution with the current parameter value as mean and a chosen variance. This
update is then accepted with probability

αp(θ, θ′) = min

{
1,
p(θ′|y)

p(θ|y)

}
.

Due to the choice of uniform priors all the prior densities cancel out in the calcula-
tions of the various accept probabilities, which means that they only depend on the
likelihood ratio between the two parameter values. This is of course only true if both
values are within the range where the priors are non zero, and any proposal outside
this range is automatically rejected.

In the practical construction of MCMC algorithms the choice of proposal distribu-
tions is important in order to ensure proper convergence and mixing properties of the
resulting Markov Chain. In this regard the variance of the Gaussian proposal is crucial
for the performance of the algorithm. If the variance is chosen too small the accept
rate is usually high and the chain will sample from a small area around the current
value. On the other hand a large variance can result in proposals far away from the
current value which are rarely accepted and the chain will have many samples with the
same value. In Roberts et al. (1997) it is shown that given certain regularity conditions
the optimal accept rate is 0.234. This has been accepted as a general guideline, even
for algorithms where the conditions are not met, as is the case here. In Berthelsen
and Møller (2004) it is advised to choose the proposal variance such that the accept
rate is between 0.2 and 0.4. The latter has been used as a guideline for the algorithm.

This algorithm has been further developed to incorporate the Turin model for the
impulse response function which is treated in the next section.

6.2 The Turin Model

To simplify the notation we now let τ = (τ1, . . . , τn−1) and correspondingly β =
(β1, . . . , βn−1). In the Turin model it is assumed that the frequency response takes
the form (6.0.1), where (τ0, β0) is the offset, that has to be estimated, and τ conditional
on τ0 consists of the points from a Poisson point process on (τ0,∞) contained in the
observation interval [0, 266] ns. Conditional on τ the attenuation factors are assumed
to be independently Rayleigh distributed (see appendix A.4) with mean

E(βi|τi) = β0 exp(−α(τi − τ0)), i = 1, . . . n− 1.

This differs from the log-normal assumption in the original model proposed by Turin.
The Rayleigh assumption is motivated by the results in Schuster and Bölcskei (2006),
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Figure 6.2.1: Graphical model representing the assumed conditional independence
structure in the Turin model.

mentioned in section 1.2.5.

This model introduces two new parameters α and λ and new assumptions regard-
ing the prior are made. The new parameter vector for which we wish to calculate the
posterior distribution conditional on data, y, is θ = (τ0, τ, β0, β, λ, α, σ, n). In order
to specify the prior, the assumed conditional independence relations of the model is
illustrated in the graphical model in figure 6.2.1. The graph represents that condi-
tional on the parents of a given variable X we assume that X is independent of its
non-descendants. This is known as the directed local Markov property, and in sec-
tion 3.2.2 of Lauritzen (1996) it is shown that this property holds if and only if the
joint probability distribution allows a recursive factorization. This means that the
joint probability distribution can be expressed as the product of distributions of the
variables given their parents, and we obtain the following factorization of the prior

p(θ) = p(β|τ0, τ, β0, α)p(τ |τ0, n)p(n|τ0, λ)p(λ)p(α)p(σ)p(τ0)p(β0). (6.2.1)

Furthermore the assumed conditional independence implies that

p(y|θ) = p(y|τ0, τ, β0, β, σ).

The assumption of a priori independence between τ0 and β0 might seem too simplistic,
but due to lack of any prior knowledge of the structure of this dependence it is left
out of the model. In general it is attempted to use non-informative priors for the
parameters that are not affected by the Poisson and Rayleigh assumptions of the
model, whereas the priors of the rest of the parameters are chosen according to the
model assumptions. This leads to the following list of priors (letting Ordern([a, b])
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denote the distribution of the order statistic for n uniform random variables on [a, b]):

α ∼ Unif(0, 1000)

λ ∼ Unif(0, 1000)

τ0 ∼ Unif(0, 266)

β0 ∼ Unif(0, 1)

σ ∼ Unif(0, 1)

n|λ, τ0 ∼ Poisson
(
λ(266− τ0)

)

τ |τ0, n ∼ Ordern−1

(
[τ0, 266]

)

βi|τ0, τ, β0, α ∼ Rayleigh
(

(π/2)−
1
2β0 exp(−α(τi − τ0))

)
, i = 1, . . . , n− 1, iid.

To specify these priors it has been used that the number of points of a homogeneous
Poisson point process with intensity λ on an interval (a, b) is Poisson

(
λ(b − a)

)
and

conditional on the number of arrivals n in the interval the points follow the distribu-
tion of the order statistic of n uniformly distributed stochastic variables as shown in
proposition 2.1.17.

In order to simplify the expression for the prior we split the parameter vector in
two parts θ = (θ1, θ2), where θ1 = (α, λ, τ0, β0, σ) and θ2 = (τ, β, n). Using that if
X ∼ Unif(0, a) then X

a ∼ Unif(0, 1), we have

p(θ1) ∝ I
(
( α
1000 ,

λ
1000 ,

τ0

266 , β0, σ) ∈ (0, 1)5
)
.

Furthermore we have that

p(θ2|θ1) =

(
λ(266− τ0)

)n

n!
exp(−λ(266− τ0))

n!

(266− τ0)n

n−1∏

i=1

βi

s2i
exp

(
− β2

i

2s2i

)

= λn exp

(
−λ(266− τ0)−

n−1∑

i=1

β2
i

2s2i

)
n−1∏

i=1

βi

s2i
,

with the Rayleigh parameter being given by

si = (π/2)−
1
2 E(βi|τi) = (π/2)−

1
2β0 exp(−α(τi − τ0)), i = 1, . . . , n− 1.

Using this prior with the complex Gaussian observation model leads to the posterior
distribution

p(θ|y) ∝
(
λ

σ2

)n

exp

(
− 1

σ

N∑

i=1

‖yi −H(fi)‖2 − λ(266− τ0)−
n−1∑

i=1

β2
i

2s2i

)

×
n−1∏

i=1

βi

s2i
I
[
( α
1000 ,

λ
1000 ,

τ0

266 , β0, σ) ∈ (0, 1)5
]
.

6.2.1 RJMCMC algorithm

In order to describe the properties of the posterior and calculate estimates for the
parameters in the Turin model the RJMCMC algorithm is modified according to the
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above assumptions. The two new parameters are updated along with the rest of
the parameters in the sequential update, but it is important to notice that due to
the new model assumptions this is no longer just a likelihood ratio. Furthermore
the factorization according to the graph in figure 6.2.1 should be exploited to limit
calculation time. E.g. when the current parameter to be updated is λ, then λ′ is
drawn from N(λ, φ2), and the fraction in the accept probability reduces to

p(y|θ′)p(θ′)
p(y|θ)p(θ) =

p(θ′)

p(θ)
=

(
λ′

λ

)n

exp
(

(λ− λ′)(266− τ0)
)
.

This requires practically no calculation time compared to the original fraction of the
posteriors, where the likelihood has to be evaluated. Evaluating the likelihood at every
update is very time consuming in our case, since this requires the function (6.0.1) to
be evaluated at 1601 data points.

Finally before presenting the inference based on these algorithms we modify the algo-
rithm to incorporate another model.

6.3 Shot noise model

In this section the statistical inference for the shot noise model described in section
2.2.3 is considered. The impulse response is assumed to be given by (2.2.4) and the
frequency response is given by (2.2.6). We wish to use this model on the observed data
in order to model clustering effects in the impulse response function. The inference
based on this model only requires minor adjustments to the Turin model. The unknown
parameter vector is now given as

θ = (a, b, α, λ, γ, τ0, β0, σ, τ, β, n),

where the only new parameter with direct influence on the model is the decay of
the clusters γ. As mentioned in section 2.2.3 these must satisfy E(γ−1

i ) < ∞ for
i = 0, . . . , n. This is done by selecting a gamma prior with shape parameter a > 1 and
rate b > 0, since we then have

E(γ−1) =

∫

R+

γ−1 b
a exp(−bγ)

Γ(a)
γa−1dγ

=
Γ(a− 1)ba

Γ(a)ba−1

∫

R+

ba−1 exp(−bγ)

Γ(a− 1)
γa−2dγ

=
Γ(a− 1)ba

Γ(a)ba−1
<∞.

Since we have no information on the decay rates we give uninformative improper
hyperpriors on the shape and rate parameters such that

γi ∼ Gamma(a, b), i = 0, . . . , n, iid.

p(a) ∝ I(a > 1)

p(b) ∝ I(b > 0).
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Figure 6.3.1: Graphical model representing the assumed conditional independence
structure in the shot noise model.

We let the rest of the priors be given as in section 6.2. The conditional independence
structure for this model is displayed in figure 6.3.1.

Combining this information with the complex Gaussian observation model and the
results from section 6.2 leads to the posterior distribution

p(θ|y) ∝
(
λbaγa−1

σ2

)n

exp

(
− 1

σ

N∑

i=1

‖yi −H(fi)‖2 − λ(266− τ0)− nbγ −
n−1∑

i=1

β2
i

2s2i

)

×
n−1∏

i=1

βi

s2i
I
[
( α
1000 ,

λ
1000 ,

τ0

266 , β0, σ) ∈ (0, 1)5
]
.

6.3.1 RJMCMC algorithm

The RJMCMC algorithm for this model is quite similar to the one for the Turin model.
The major difference is the addition of the decay rate γ to the dimension change.
A birth move thus consists of drawing a parameter vector (τ ′, β′, γ′) uniformly on
[0, 266]× [0, 1]× [0, 5] and setting

θ′ = T (θ, τ ′, β′, γ′) = (a, b, α, λ, (γ, γ′), τ0, β0, σ, (τ, τ
′), (β, β′), n).

This mapping also has
∣∣∣ ∂T
∂(θ,τ ′,β′,γ′)

∣∣∣ = 1, and the acceptance probabilities for the

dimension changes follow as in section 6.1.1. Finally the new parameters a, b, γ should
be included in the sequential update, and factorizations according to figure 6.3.1 should
be taken into consideration in order to reduce calculation time.

6.4 Artificial Data Analysis

To test and calibrate the algorithms described in sections 6.1, 6.2 and 6.3, a collection
of artificial datasets based on the models in question were created. In the following
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sections this is described for the basic and Turin model.

Since the basic algorithm only identifies arrivals and attenuation factors it also works
on data constructed by the Turin model and a separate data set was not necessary. To
simulate two artificial data sets from the Turin model the following parameters were
chosen:

α = 0.01, λ = 0.05, τ0 = 100, β0 = 10−6.

From these values a single frequency response function as given by the Turin model
was simulated, and two data sets were obtained by adding complex Gaussian noise
with respectively σL = 1.414 · 10−6 and σS = 0.71 · 10−7. The simulation resulted in 7
arrivals on the entire interval and the two data sets are shown in the time domain in
figure 6.4.1. Since the actual data was simulated in the frequency domain, the IFFT
was used to obtain the time domain data.
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(a) σL = 1.141 · 10−6
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(b) σS = 0.71 · 10−7

Figure 6.4.1: Simulated data sets.

The artificial data was implemented for inference in the RJMCMC algorithms devel-
oped in section 6.1 and 6.2. Since the parameter space is multi-dimensional and of
varying dimension, determining the burn-in time of the chains is a difficult task. As a
measure of how well the estimated signal fits the data we choose to trace the residual
sum of squares {RSS}j∈N0

, where

RSSj =
1

N

N∑

i=1

(yi − Ĥ(j)(fi))
2,

and Ĥ(j) is the estimated frequency response at the j’th iteration, based on τ (j) and
β(j). The reason for this choice is that the RSS provides a measure of how well the
estimated model fits the data. Combined with traces of the number of parameters, n,
we will then use the convergence of this sequence as an indicator of the burn-in of the
underlying Markov chain.
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6.4.1 The basic algorithm

The simulated datasets were implemented in the algorithm for the basic model, and
burn-in was estimated by visual inspection of traces of RSS and n, as displayed in
figure 6.4.2, 6.4.3 and 6.4.4. It is seen the burn-in time for the dataset with σL was
longer, indicating that larger noise, makes it harder for the underlying chain to con-
verge.

The results for the basic algorithm are displayed in table 6.4.1 and 6.4.2. It is seen that
the estimated values closely approximate the true values, and these were all contained
in the PCI indicating that the algorithm works as intended. It is worth noting that
RSS is an MLE for the variance, and as seen from the results, this coincides with the
posterior mean of the standard deviation.

As expected there is a higher uncertainty for the dataset with σL, and a few times
the algorithm has accepted an extra arrival, the length of the PCI’s are however still
small compared to the mean. It is also noteworthy that the basic algorithm gives a
very precise estimate on the number of parameters, regardless of the noise level.
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Figure 6.4.2: Traces of RSS for the basic algorithm on data with σS .
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Figure 6.4.3: Traces of RSS for the basic algorithm on data with σL.
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Figure 6.4.4: Traces of n.

Data with σS

True value Mean q2,5% q97,5%

τ0 100.0000 100.0000 99.9999 100.0001
τ1 109.8178 109.8178 109.8177 109.8179
τ2 155.1446 155.1447 155.1445 155.1448
τ3 171.6717 171.6719 171.6717 171.6721
τ4 194.5243 194.5243 194.5241 194.5245
τ5 217.0126 217.0125 217.0123 217.0128
τ6 260.9388 260.9388 260.9384 260.9392
β0 10 10.032 10.01 10.06
β1 9.064 9.055 9.03 9.08
β2 5.761 5.733 5.71 5.76
β3 4.883 4.884 4.86 4.91
β4 3.885 3.874 3.85 3.90
β5 3.103 3.100 3.08 3.13
β6 2.000 2.005 1.98 2.02
σS 0.71 0.70 0.68 0.72
n 7 7 7 7

RSS N/A 4.902 · 10−15 4.886 · 10−15 4.917 · 10−15

Table 6.4.1: Results after burn-in from the basic RJMCMC algorithm on the artificial
dataset. Scale on β and σS is 10−7.
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Data with σL

True value Mean q2,5% q97,5%

τ0 100.0000 100.0008 99.9992 100.0023
τ1 109.8178 109.8180 109.8163 109.8196
τ2 155.1446 155.1435 155.1410 155.1459
τ3 171.6717 171.6708 171.6680 171.6736
τ4 194.5243 194.5245 194.5208 194.5283
τ5 217.0126 217.0133 217.0078 217.0189
τ6 260.9388 260.9420 260.9348 260.9490
β0 10 9.693 9.2 10.18
β1 9.064 9.307 8.81 9.80
β2 5.761 6.165 5.67 6.66
β3 4.883 5.357 4.86 5.86
β4 3.885 3.977 3.48 4.48
β5 3.103 2.614 2.10 3.12
β6 2.000 2.022 1.51 2.51
σL 14.14 14.35 14 14.7
n 7 7 7 7

RSS N/A 2.059 · 10−12 2.054 · 10−12 2.067 · 10−12

Table 6.4.2: Results after burn-in from the basic RJMCMC algorithm on the artificial
dataset. Scale on β and σL is 10−7.

6.4.2 The Turin algorithm

The algorithm from section 6.2 was also implemented for statistical inference on the
two simulated datasets. Burn-in was again estimated by visual inspection of the
trace of RSS, as displayed in figure 6.4.5. Results for the parameters of interest are
summarized in table 6.4.3. As seen the algorithm closely approximates the true values
for the dataset with σS . For the dataset with σL, the algorithm however gives a large
overestimation on the number of parameters. We suspect this to be a consequence of
the model assumption with exponentially decaying attenuation factors, which makes
it more likely to accept small values of β for late arrival times. Inspection of the
estimated values of τ and β shows that the actual values are estimated properly, but
a number of extra arrivals are added. The amplitudes of these arrivals are however so
small that they are hidden by the noise, but due their nice fit to the model assumption
the algorithm is not inclined to remove them. This is also seen on figure 6.4.6(b) which
shows a higher concentration of arrivals later in the interval. As seen from table 6.4.3
this also causes an overestimation on the arrival rate λ in the case of σL.

By comparing RSS for the basic and Turin model it is seen, that they provide a similar
fit for the case with σS . In the case of σL the Turin model however gives a large
overestimation on the number of arrivals, without giving a significant improvement to
the fit, which indicates a problem with this model.
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Figure 6.4.5: Traces of RSS.

Data with σS

True Value Mean q2,5% q97,5%

τ0 100 100 99.9999 100.0001
β0 10−6 1.003 · 10−6 1.001 · 10−6 1.006 · 10−6

n 7 7 7 7
α 0.01 0.0107 0.0063 0.0141
λ 0.05 0.0481 0.0207 0.0875
σS 0.71 · 10−7 0.7003 · 10−7 6.83 · 10−7 7.18 · 10−7

RSS N/A 4.901 · 10−15 4.888 · 10−15 4.921 · 10−15

Data with σL

τ0 100 100.0008 99.9993 100.0023
β0 10−6 0.968 · 10−6 0.92 · 10−6 1.02 · 10−6

n 7 19.71 18 20
α 0.01 0.0165 0.014 0.019
λ 0.05 0.124 0.071 0.178
σL 1.414 · 10−6 1.425 · 10−6 1.399 · 10−6 1.450 · 10−6

RSS N/A 2.035 · 10−12 2.019 · 10−12 2.05 · 10−12

Table 6.4.3: Results from the Turin model on artificial data.
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Figure 6.4.6: Plots for the Turin algorithm on data with σL.
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6.5 Analysis of real data

The inference for real data is based on observations from a townhouse with a transmitter-
receiver distance of 2.44 m and free line of sight passage. Both the absolute value of
the frequency response and the time domain data obtained using IFFT is shown in
figure 6.5.1.
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Figure 6.5.1: Plots of data.

6.5.1 The basic algorithm

The dataset was implemented in the basic algorithm, and burn-in was estimated by
visual inspection of the traces of RSS and n, as displayed in figure 6.5.2. Results from
the algorithm are summarized in table 6.5.1. Comparing with the Turin model, we
see that the basic algorithm estimates fewer arrivals and has a higher RSS. As seen
on figure 6.5.3(a), the estimated values are however sufficient to recreate the observed
signal.
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Figure 6.5.2: Traces of RSS and n from the basic algorithm.
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Figure 6.5.3: Simulated impulse responses.

6.5.2 The Turin model

The dataset was implemented in the algorithm for the Turin model, and the burn-in
was estimated by visual inspection of the traces of RSS and n as shown in figure 6.5.4.
The results from the algorithm are summarized in table 6.5.1.
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Figure 6.5.4: Traces of RSS and n

To compare the model with the observed data, we simulate 9 datasets based on the
estimated values. These are displayed in figure 6.5.5 and 6.5.6. It is clear that the
plots in the frequency domain in no way resembles the observed frequency response in
figure 6.5.1(a), and that the plots for the time domain only to a small degree resembles
the observed impulse response in figure 6.5.1(b). This implies that the model does not
efficiently describe the physical phenomenon. If we simulate another 1000 frequency
responses and consider their sums of squares, as displayed in figure 6.5.7 and compare
this with the observed sum of squares SS(y) = 4.122 · 10−6 indicated by the solid
circle, we see that the overall magnitude of the signal also is not properly described by
the model. The estimated values of τ and β which for this model may be considered
auxiliary variables, do however provide a qualitative similar reconstruction of data as
seen in figure 6.5.3(b)
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Turin model
Mean q2.5% q97.5%

τ0 163.09108 163.0871 163.0948
β0 6.937 · 10−6 6.628 · 10−7 7.217 · 10−7

n 94.62 94 97
RSS 9.666 · 10−11 9.543 · 10−11 9.8 · 10−11

α 0.036 0.0298 0.0407
λ 0.93 0.7514 1.116
σ 9.827 · 10−6 9.607 · 10−6 10.09 · 10−6

Basic Model
τ0 162.7954 162.7838 162.8068
β0 1.099 · 10−6 0.729 · 10−6 1.45 · 10−6

n 83.57 83 84
RSS 9.87 · 10−11 9.72 · 10−11 10.0 · 10−11

σ 9.93 · 10−6 9.66 · 10−6 10.20 · 10−6

Table 6.5.1: Results for the Turin and basic model on real data.

2 3 4 5 6 7 8

0e
+

00
8e

−
05

Frequency in Ghz

|H
(f

)|

2 3 4 5 6 7 8

0e
+

00
1e

−
04

Frequency in Ghz

|H
(f

)|

2 3 4 5 6 7 8

0e
+

00

Frequency in Ghz

|H
(f

)|

2 3 4 5 6 7 8

0e
+

00
8e

−
05

Frequency in Ghz

|H
(f

)|

2 3 4 5 6 7 8

0e
+

00
8e

−
05

Frequency in Ghz

|H
(f

)|

2 3 4 5 6 7 8

0e
+

00
8e

−
05

Frequency in Ghz

|H
(f

)|

2 3 4 5 6 7 8

0e
+

00
8e

−
05

Frequency in Ghz

|H
(f

)|

2 3 4 5 6 7 8

0e
+

00
6e

−
05

Frequency in Ghz

|H
(f

)|

2 3 4 5 6 7 8

0e
+

00
1e

−
04

Frequency in Ghz

|H
(f

)|

Figure 6.5.5: Simulated frequency responses.
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Figure 6.5.6: Simulated impulse responses.
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Figure 6.5.7: Histograms of sum of squares.
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Parameter Mean q2.5% q97.5%

τ0 163.81 163.805 163.815
β0 1.61 · 10−4 1.50 · 10−4 1.72 · 10−4

n 79.59 77 84
RSS 1.197 · 10−10 1.132 · 10−10 1.323 · 10−10

α 0.049 0.043 0.054
λ 0.788 0.625 0.969
σ 1.09 · 10−5 1.06 · 10−5 1.15 · 10−5

a/b 0.34 0.24 0.44
a/b2 0.0036 0.0022 0.0051

Table 6.5.2: Results for the shot noise model on real data.

6.5.3 The shot noise model

The data was also implemented in the algorithm for the shot noise model. Burn-in
time is once again obtained from visual inspection of the RSS as displayed in figure
6.5.8(a). Results for the algorithm are summarized in table 6.5.2. The number of
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Figure 6.5.8: Traces of RSS and n for the shotnoise algorithm on real data.

arrivals, n, is estimated at about 80 which is in between the estimate of the basic and
the Turin model. The RSS of the fitted signal is however higher than in these models.
Futhermore the model has a decay rate parameter γ for each arrival, but as mentioned
these extra parameters do not result in a better fit. The mean a/b and variance a/b2

of the prior gamma distribution indicate that only small values of γ fit the model and
this is confirmed by the histogram of all the accepted values of γ after burn-in shown
in figure figure 6.5.9.

The purpose of this model was to capture some of the clustering effect in the data
and in this way reduce the number of arrivals needed to fit the data. This did not
succeed. As in the Turin case the estimated parameters were used to simulate fre-
quency responses and these realizations were similar to the ones from the Turin model
displayed in figure 6.5.5. The predictive capability of the shot noise model is checked
as in the Turin model by plotting the observed sum of squares SS(y) = 4.122 · 10−6
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in the histogram of the sum of squares for 1000 realizations from the estimated shot
noise model. As seen in figure 6.5.7(b) the observed sum of squares is considerably
larger than the all the simulated, leading to the conclusion that simulation from the
estimated model does not produce data sets of the same magnitude as the observed.
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Figure 6.5.9: Histogram of accepted values of γ.

6.6 Summary

The basic algorithm does a good job of fitting a weighted delta train, to the data.
Using these estimated values, makes it possible to recreate the observed signal. By
implementing the Turin model, the algorithm still gives good estimates on τ and β,
from which it is possible to recreate the signal. By fitting a marked Poisson process,
with exponentially decaying marks, the model however fails to properly describe data.
This is most significant for the attenuation factors, since the model fails to generate
large values at the start of the signal as seen in figure 6.5.1(b). We suspect this to be
because the model on average requires the first arrival to have the largest amplitude,
which is not the case in the data at hand. A possible correction of this is by modelling
the mean of the attenuation factors as E(βi|τ, B, α) = B exp

(
−α(τi− τ0)

)
for i ∈ N0,

where B is a parameter to be determined from measured data.

The shot noise model does not provide any improvement compared to the former mod-
els, since the high number of parameters do not provide the desired model reduction.
Furthermore the higher number of parameters, do not supply a better reconstruction
of data, measured by the residual sum of squares.



Chapter 7

Conclusion and Further
developments

The main problem in this thesis was to describe previously suggested stochastic mod-
els of an impulse response function in a strict mathematical context, and implement
these for statistical inference using numerical Bayesian methods.

Using the theory of point processes, described as random measures, we reformulated
the models from Saleh and Valenzuela (1987) and Turin et al. (1972), and showed that
for exponentially or polynomially decaying amplitudes, these leads to almost surely
finite impulse responses. For proper choices of the parameters this guarantees that
the physical interpretation of the models is well founded, since the channel doesn’t
increase the strength of the signal.

The statistical inference in section 6.2 showed that the Turin model does not suffi-
ciently describe the characteristics of measured data, which leads to the conclusion
that a Poisson arrival model is insufficient to describe multipath propagation. This
is consistent with the conclusion of Turin et al. (1972) and the work in Saleh and
Valenzuela (1987) and Suzuki (1977), where extensions to the homogeneous Poisson
arrival assumption are investigated. A future prospect of the results in this thesis,
is thus implementation of e.g. the Saleh Valenzuelah or Molisch et al. model in an
RJMCMC algorithm.

In section 6.3 we investigated the possibility of describing the cluster effect suggested
by Saleh and Valenzuela (1987) as a sum of decaying exponential functions instead of
using discrete arrivals. Inference showed that this model did not provide a satisfactory
fit for the measured data.

Results from section 6.1 are however promising, since the basic algorithm gives an
automated method of estimating the model order for the impulse response function.
The results are of course insufficient in regards of simulating new impulse response
functions, since they only give a reconstruction of the measured data. By using the
RJMCMC algorithm to estimate arrival times and attenuation factors, it may however
be possible to extract a new dataset, which could be used to do statistical inference in
e.g. a pure point process setup. An introduction to how this might be done is found
in Møller and Waagepetersen (2004).
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Appendix A

Miscellaneous results

A.1 Polish spaces

Most of the results in this thesis are confined to Polish spaces which are defined as

Definition A.1.1 (Polish space)
A metric space (S, d) is called a Polish space if it is complete and separable. Meaning
respectively that all Cauchy sequences converge in S and S has a countable dense
subset. �

A classical example of a Polish space is Rn with the metric being the Euclidean distance
‖ · ‖ since all Cauchy sequences converge in Rn with this metric and Qn is a countable
dense subset (Q denotes the rationals). A famous result by Kolmogorov shown for
Polish spaces is the main reason for restricting the treatment of point processes to
these spaces (Daley and Vere-Jones (1988)).

Theorem A.1.2 (Kolmogorov Extension Theorem)
Let T be any arbitrary index set, and for t ∈ T suppose (St,Ft) is a polish space
with its associated σ-algebra. Suppose further that for each finite subfamily (σ) =
{t1, . . . , tn} of indices from T , there is given a probability measure π(σ) on F(σ) =
Ft1⊗· · ·⊗Ftn

. In order that there exist a measure π on F∞ such that for all (σ),π(σ)

is the projection of π onto F(σ), it is necessary and sufficient that for all (σ), (σ1), (σ2)

(i) π(σ) depends only on the choice of indices in (σ), not on the order in which they
are written down

(ii) if (σ1) ⊆ (σ2), then π(σ1) is the projection of π(σ2) onto (σ1).

�

For a proof of this theorem we refer to Billingsley (1995).

Another result for Polish spaces used in this thesis is given below.

Definition A.1.3 (Dissecting System)
The sequence A = {An} of finite partitions An = {Ani | i = 1, . . . , kn}, n = 1, 2, . . .
consisting of Borel sets in the space S is a dissecting system for S when

(i) Ani ∩Anj = ∅ for i 6= j and An1 ∪ · · · ∪Ankn
= S

(ii) An−1,i ∩Anj = Anj or ∅
(iii) Given distinct x, y ∈ S there exists an integer n = n(x, y) such that x ∈ Ani

implies y 6∈ Ani.
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�

Proposition A.1.4
Any Polish space (S, d) contains a dissecting system. �

For the proof of this proposition we refer to Daley and Vere-Jones (1988).

A.2 Measure theoretical results

A basic knowledge of measure theory is presumed, but some of the results used
throughout the thesis are summarized here. First a lemma regarding the uniqueness
of a measure once it is know on a generator which is closed under intersection.

Lemma A.2.1
Let µ1 and µ2 be two measures defined on a space Ω equipped with a σ-algebra
F = σ(A), for a paving A which is closed under intersection. If µ1(Ω) = µ2(Ω) < ∞
and µ1 = µ2 on A, then µ1 = µ2 on F .

Usually the measures are assumed to be complete, which is defined below.

Definition A.2.2 (Complete measure)
Let (S,F , µ) be a measure space, then µ is said to be complete if for all A ∈ F with
µ(A) = 0 all subsets B ⊆ A are measurable. By the properties of a measure this
implies that any B ⊆ A has measure µ(B) = 0. �

In the preprint Kingman (2006) it is argued that some proofs regarding point processes
are easier and more transparent when the so called bisection property is fulfilled. The
rest of this section follows Kingman (2006) very closely.

Definition A.2.3 (Bisection property)
Let (S,F , µ) be a measure space. The measure µ is said to have the bisection property
if for any A ∈ F with µ(A) <∞, there exists a measurable B ⊆ A with

µ(B) = 1
2µ(A).

�

One way of checking if a measure has the bisection property is to construct a so called
cheesewire, which is defined as

Definition A.2.4 (Cheesewire)
A cheesewire on the measure space (S,F , µ) is a measurable function f : S → R

satisfying that for any ξ ∈ R, the measurable set

f−1(ξ) = {x ∈ S | f(x) = ξ}

has measure

µ(f−1(ξ)) = 0 (A.2.1)

�
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The existence of a cheesewire ensures µ has the bisection property, which is seen in
the following.
Let A ⊆ S be measurable with µ(A) <∞, and define g : R→ R by

g(ξ) = µ({x ∈ A | f(x) ≤ ξ}).
Then g is monotone increasing, with

lim
ξ→−∞

g(ξ) = 0 and lim
ξ→∞

g(ξ) = µ(A).

Since g is monotone the only possible discontinuities are jumps, but this requires
µ({x ∈ A | f(x) < ξ}) < µ({x ∈ A | f(x) ≤ ξ}), for some ξ ∈ R, which contradicts
(A.2.1), which states that µ({x ∈ A | f(x) = ξ}) = 0. This means that a ξ ∈ R exists
such that g(ξ) = 1

2µ(A), and that µ has the bisection property.

For a given measure space the bisection property is checked by constructing a cheesewire,
and the most important example for our purposes is (Rn,B(Rn), λn), where λn is the
n-dimensional Lebesgue measure. In this case any coordinate function is a cheesewire,
and therefore the Lebesgue measure has the bisection property.

For a mapping between to measurable spaces (S,F ) and (S ′,F ′) we have the fol-
lowing useful proposition for classifying measurable functions (Billingsley (1995), page
182).

Proposition A.2.5
Let T : S → S′, and A ′ be a generator for F ′. If T−1(A) ∈ F for each A ∈ A ′ then
T is (F ,F ′) measurable.

A.2.1 Fourier-Stieltjes transform

An important mathematical tool in the analysis of functions is the Fourier transform,
and in measure theory a very similar transform of finite measures is used.

Definition A.2.6 (Fourier-Stieltjes Transform)
For a totally finite measure µ the Fourier Stieltjes Transform is defined as the bounded
uniformly continuous function

µ̂(ω) =

∫
exp(−2πiωt)µ(t).

If µ is a probability measure µ̂ is its characteristic function. �

It is seen that if µ has density p with respect to the Lebesgue measure then the
Fourier-Stieltjes transform of µ is simply the usual Fourier transform of the density,
i.e. µ̂ = p̂.

A.2.2 Radon Nikodym

Definition A.2.7
A measure ν is absolutely continuous with respect to a positive measure µ if ν(E) = 0
for every set with µ(E) = 0. �
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Theorem A.2.8 (Radon Nikodym Theorem)
Let ν be absolutely continuous with respect to a measure µ, then

ν(E) =

∫

E

fdµ,

for some L1(µ)-function f . This may also be written as

f =
dν

dµ
,

and f is called the Radon Nikodym derivative of ν with respect to µ.

A.3 Complex Gaussian distribution

If we let U, V be random variables, then the unique random variable X = U + iV is
said to be a complex random variable. This section is dedicated to a special case of
complex random variables based on Andersen et al. (1995).

The complex normal distribution is defined via. the two dimensional normal dis-
tribution. If we let [·] : Cp → R2p denote the natural bijection, between complex and
real vectors, given by

[x] =

(
Re(x)
Im(x)

)
, x ∈ Cp,

then the univariate complex normal distribution is defined as

Definition A.3.1
A complex random variable X is univariate complex normal distributed, with mean

θ ∈ C and variance σ2 ∈ R+ if [X] ∼ N2

(
[θ], σ2

2 I2

)
. This is denoted as X ∼ CN(θ, σ2)

The density function with respect to the Lebesgue measure on C is given as

fX(x) =
1

πσ2
exp

(
− 1

σ
‖x− θ‖2

)
, x ∈ C.

�

Following a similar approach the multivariate complex normal distribution may be
defined via. the multivariate normal distribution. Let A,B be n × p matrices with
real entries, and let C = A+ iB, then we define a matrix relation by

{C} =

[
A −B
B A

]
.

The multivariate complex normal distribution is then defined as

Definition A.3.2
A p-dimensional complex random vector X is said to be multivariate complex normal

distributed with mean θ ∈ Cp and covariance matrix Σ ∈ C
p×p
+ , where C

p×p
+ is the

space of positive definite complex valued p×p matrices, if [X] ∼ N2p

(
[θ], 1

2{Σ}
)
. This
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is denoted as X ∼ CNp(θ,Σ).
The density function with respect to the Lebesgue measure on Cp is given as

fX(x) =
1

|Σ|πp
exp

(
−(x− θ)Σ−1(x− θ)>

)
, x ∈ Cp.

�

For the multivariate complex normal distribution, the following result for the condi-
tional distribution holds.

Proposition A.3.3
Let ∼ CNp(θ,Σ), and let X, θ and Σ be factorized as

X =

(
X1

X2

)
, θ =

(
θ1
θ2

)
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]

where Xj , θj are pj dimensional and Σij is pi×pj , where p = p1 +p2. The conditional
distribution of X1 given X2 is then given as

X1|X2 ∼ CNp1

(
θ1 − Σ12Σ−

22(X2 − θ2),Σ1 − Σ12Σ−
22Σ21

)
,

where Σ−
22 denotes a generalized matrix inverse. �

A.4 The Rayleigh Distribution

If we consider a random variable (X1, X2)> ∼ N2(0, σ2I2) then this has probability
density

fX1,X2
(x1, x2) =

1

2πσ2
exp

[
− (x2

1 + x2
2)

2σ2

]
.

Transforming this density into polar coordinates we obtain

fR,Ψ =
r

2πσ2
exp

[
− r2

2σ2

]
.

This is seen to be independent of the phase ψ which means that p(r, ψ) = p(r)p(ψ).
We furthermore have

fΨ(ψ) =

∫ ∞

0

r

2πσ2
exp

[
− r2

2σ2

]
dr =

1

2π
, 0 ≤ ψ ≤ 2π (A.4.1)

fR(r) =

∫ 2π

0

r

2πσ2
exp

[
− r2

2σ2

]
dψ =

r

σ2
exp

[
− r

2σ2

]
, 0 ≤ r, (A.4.2)

where (A.4.1) follows by substituting r2 = x. Thus if X ∼ N2(0, σ2I2) or equivalently
Z ∼ CN(0, 2σ2), then the distribution of R = ‖X‖ is independent of the phase and
has probability density given by (A.4.2). A distribution with this density is called a
Rayleigh distribution. This is denoted R ∼ Rayleigh(σ), and the mean and variance
are given by

E(R) = σ

√
π

2

Var(R) =
(4− π)σ2

2
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Summary

This thesis deals with the stochastic modeling of impulse response functions, which
are functions that completely determine the behavior of a given radio channel. A short
description of the problem and previous models is given in the first chapter.

In order to fit the modeling into a strict mathematical context, we introduce the the-
ory of point processes. Using results from the theory of random measures we establish
the existence of point processes as random integer valued measures as a consequence
of the Kolmogorov extension theorem. The Poisson process is defined, and a number
of relevant propositions and theorems are proved. To describe the problem at hand,
as a point process we introduce marked point processes, which in short terms consists
of marking each point in a point process, with e.g. a number or a function. Under
certain assumptions a marked point process, may be shown to be equivalent to a point
process on the product space of the point space and the mark space, and using this
we describe some of the previous stochastic models for an impulse response function,
as point processes on R2.

Chapter 3 gives an introduction to maximum likelihood estimation, and introduces
the EM algorithm with an example on how this may be implemented to estimate
parameters in an impulse response function. Chapter 3 also provides the necessary
concepts from Bayesian inference, which we will use in connection with the MCMC
methods in chapter 4. The MCMC section consist of basic concepts regarding Markov
chains, such as criteria of convergence. The second half of the chapter shows how these
concepts may be applied to design Markov chains which converge to a chosen distri-
bution. In particular we describe the Metropolis Hastings algorithm, and show how
this is extended to a reversible jump MCMC algorithm, which is a Bayesian inference
tool designed to estimate an unknown number of parameters.

Using the theory from chapter 4, we design a reversible jump MCMC algorithm and
use this to estimate parameter values and model orders, in stochastic models of the
impulse response function for the data at hand.


