Department of Computer Science

Aalborg University

TITLE:

Usability Evaluation
in Open Source Development

SEMESTER:
INF 8,
From 1st of February 2006
to 8th of June 2006

PROJECT GROUP:
E3-211

Authors:
Morten Sieker Andreasen
Henrik Villemann Nielsen

Simon Ormbholt Schrgder

SUPERVISOR:
Jan Stage

ABSTRACT:

Open Source Software has become an in-
creasingly popular alternative to commer-
cial software but it has been criticized for
it’s lack of usability. This master thesis
shows how usability work in Open Source
Software development can be improved us-
ing remote usability evaluation.

Initially a questionnaire survey and inter-
views with open source developers and us-
ability professionals were performed in or-
der to investigate the opinions towards us-
ability and the current practice of usabil-
ity evaluation. The importance of usability
was regarded as high among open source
developers but in practice the main us-
ability effort was based on common sense.
The main obstacles for improved usability
work were found in the open source devel-
opment model and in the distributed orga-
nizational structure.

Therefore a comparative study of three
remote usability evaluation methods was
performed against a laboratory evaluation.
This comparison showed that the results
of a remote synchronous evaluation were
comparable to those of a laboratory evalu-
ation. An asynchronous remote evaluation
identified significantly fewer problems than
a laboratory evaluation but the problems
identified were critical.

We consider both methods alternatives or
supplements for usability evaluation in the

open source community.

Summary

This master thesis treats the overall topics: Usability evaluation and Open Source Software
(OSS) development. We have investigated these topics in two studies. In one study we conducted
three surveys in order to explore how contributors working within OSS considered usability. In
the second study we completed a methodical comparison of three approaches for remote usability
evaluation to a laboratory evaluation.

OSS is a concept that covers software which is released under a license that allows the end
user to freely use, distribute and modify the source code of the program. Famous OSS projects
include Linux, Eclipse, Apache, Tomcat and the Mozilla suite of programs. The majority of OSS
projects are developed by individuals or small development teams with little formal organization.
Though the OSS community has produced software products able to compete with commercial
alternatives, OSS development also faces a number of fundamental challenges. The premises of
OSS are often vastly different from traditional software development environments; developers
often work in their spare time and most communication needs to be by electronic means since
developers often are distributed around the world.

In recent years there has been increasing attention towards the technological achievements of
OSS. At the same time OSS has been criticized for it’s lack of usability for non-technical users
compared to commercial software. In this context we wanted to investigate the opinions and
practice towards usability within the OSS community. We did this by conducting a questionnaire
survey which was sent out to fourteen OSS projects. Following this we conducted three interviews
with OSS developers where we investigated the findings from the questionnaire further. In order
to reduce bias we also conducted a focus group interview and personal interviews with five
usability professionals contributing to OSS.

The first study concluded that even though OSS contributors were interested in usability and
regarded the importance as high in their projects, in practice the usability effort was limited.
Most usability considerations were based on common sense, design guidelines and conventions
from other programs. We found that conventional usability evaluation methods did not support
the OSS development paradigm and we wanted to investigate if alternatives existed that solved
the following obstacles: Lack of access to usability laboratories, lack of financial resources, the

geographically distributed nature and short development cycles.

We wanted to explore whether remote usability evaluation could help to overcome the obstacles
in the OSS community. Remote usability evaluation is a term used when the evaluators are
separated from users in space and possibly time. When evaluating using synchronous methods
the evaluator is separated from the user in space but not in time. On the other hand when
conducting an asynchronous evaluation the evaluator is separated from the user in time and
possibly in space.

We conducted a comparative study in which we compared three approaches for remote usability
evaluation to a conventional laboratory evaluation. The following methods were compared:

e Laboratory evaluation (LAB)
e Remote synchronous evaluation (RS)
e Asynchronous expert evaluation (AE)

e Asynchronous user evaluation (AU)

The comparison revealed a number of findings which supported the idea of introducing remote
usability methodologies to the OSS community. The study concluded that the results of an
RS evaluation were comparable to those of a LAB evaluation. They identified almost the same
number of usability problems. In addition, test users spent the same time completing the
evaluation. The AE and AU evaluations identified fewer problems than the LAB evaluation.
However, almost all reported problems turned out to be critical. There was no significant
difference between the number of problems identified by the usability experts and the ordinary
users.

The overall conclusion was that the remote methods have the potential to solve some of the
obstacles to usability work in the OSS community.

iv

Preface

This master thesis deals with usability evaluation in relation to Open Source Software (OSS)
development. It consists of this report and two individual research papers. The work would not
have been possible without the invaluable assistance from a number of people.

First and foremost we want to thank our project supervisor Jan Stage for guiding us and
providing constructive feedback on methodical as well as structural difficulties. Furthermore,
we want to thank Mikael Skov for reviewing our methodology concerning the data analysis of
the performed evaluations. Mikael also provided us with insight in statistical analysis.

In regard to the interviews of this study we would like to thank Anders Rune Jensen, ‘Taupter’
and Duncan, and the employees at Relevantive. We especially thank Ellen Reitmayr and Bjorn
Balazs for taking extra time to answer our questions. We also performed twenty-four usability
evaluations and in this connection, we thank the participants for volunteering their time. Finally,
we thank the respondents of the questionnaire.

Bibliographical Reference Format

When referring to literature we use square brackets [x] where x denotes the unique number given
to each item in the bibliography.

Contents

Introduction

1.1 Research Questions e
1.1.1 Research Question 1
1.1.2 Research Question 2

Open Source Development
2.1 History
2.2 The OSS Development Process

Research Papers

3.1 Research paper 1
Usability in Open Source Software Development: Opinions and Practice . .

3.2 Research paper 2
A Comparison of Remote Usability Evaluation Methods

Comparison with Other’s Remote Evaluation Experiences

Research Methodology
5.1 Research Question 1
5.2 Research Question 2

Conclusion

Bibliography

10

11

13

19
19
20

23

27

CONTENTS

A Usability in Open Source Software Development: Opinions and Practice 33

B A Comparison of Remote Usability Evaluation Methods 45

C Data Analysis Procedure in Paper 2 59

viii

CHAPTER 1

Introduction

Attention for OSS has increased in recent years and it is no longer just used by computer experts.
However, usability problems in many OSS user interfaces are well documented [6, 11, 14, 28].
The premises of OSS are different from most commercial software projects; for instance OSS
is developed in distributed collaboration between potentially large number of programmers and
most projects do not receive any funding.

1.1 Research Questions

The two main themes covered in this master thesis are OSS and usability. More specific we
have investigated the opinions and practice towards usability in the open source community and
made a comparison of three approaches to remote usability evaluation.

The overall research question in this thesis is:
How can the usability work in OSS development be improved?
In order to answer this question we present the two research questions which have guided the

course of our research.

1.1.1 Research Question 1

Little research has been conducted concerning reasons that OSS generally does not have the
same degree of usability as commercial software. If the state of affairs regarding usability is to
change, the obstacles need to be identified. The first research question of the thesis is:

How is usability currently considered by both OSS developers and usability experts
participating in OSS projects, what is the current practice of usability evaluation
within 0SS development, and what are the obstacles for change?

1. Introduction

1.1.2 Research Question 2

The area of remote usability evaluation is relatively new and no methodical comparison have
been made of multiple types of remote usability evaluations. The second research question of

the thesis is:

How do three different approaches to remote usability evaluation compare to a labo-
ratory evaluation in regard to the identification of usability problems?

CHAPTER 2

Open Source Development

Today most people involved with software development and the IT industry have heard of the
term OSS. In the following we present an overview of the history of OSS and present and discuss
the OSS development methodology.

2.1 History

OSS is a concept that has evolved over the last 25 years. In the early days of computing most
software was distributed freely among academics and professionals but by the 1980’s software
was largely sold as a commodity with strict limitations [13,20,31]. In 1984 the Free Software
Foundation (FSF) came to existence originating as a protest to the rising commercialization
of the software community. The FSF insists on using the term ‘Free Software’ referring to
“Free as in speech, not free as in beer” [36]. The FSF is a highly ideological organization and
it developed the GNU! General Public License (GPL) [35], under which a large share of Free
Software is distributed. FSF’s founder Richard Stallman describes proprietary software as a
social problem that limits the freedom of the users and he lists four basic liberties that software
needs to comply to in order to be labeled Free Software [37]:

e The freedom to run the program, for any purpose.

e The freedom to study how the program works, and adapt it to your needs. Access to the
source code is a precondition for this.

e The freedom to redistribute copies so you can help your neighbour.

e The freedom to improve the program, and release your improvements to the public, so
that the whole community benefits. Access to the source code is a precondition for this.

!Acronym for “Gnu’s Not UNIX”. A UNIX-compatible operating system developed by the Free Software
Foundation and the basis of the General Public License (GPL)

2. Open Source Development

Within the technological community and the IT industry opinions vary on the benefits of these
freedoms. As one of the leading commercial software companies, Microsoft has repeatedly crit-
icized those sharing their software for undermining the foundation of the software industry.
Already in 1976 Bill Gates sent out an open letter to hobbyists stating that they were “stealing”
his software by sharing it [15]. Today Microsoft is one of the prominent advocates of copyrights
and patents in the software world, and this is the foundation upon which they evolved into the
world’s largest distributor of software with 61.000 employees worldwide and an annual turnover
exceeding 40 billion dollars in 2005.

In 1991 the Finnish computer science student Linus Torvalds started developing the Linux
operating system under GPL and encouraged other hackers? to contribute to the project. During
the 1990’s and the rise of the internet, Linux became increasingly popular and commercial
companies started to turn their attention to Linux and other Free Software projects. In 1998
Netscape was loosing the ‘browser war’ against Microsoft’s Internet Explorer and decided to
turn it’s Netscape Navigator into an OSS product. The resulting Mozilla Foundation revived
the browser and attracted contributors from the OSS community [39]. Around the same time
the Open Source Initiative (OSI) was founded by Eric Raymond and Bruce Perens. They were
concerned that businesses did not find Stallman’s freedom rhetoric appealing and wanted to
form an organization that attracted the commercial world. OSI was less ideological and had
more pragmatic views than the FSF and chose the term ‘Open Source Software’ instead of ‘Free
Software’. There were principal differences between OSI and FSF but they largely agreed on
the main principles and goals of the effort against proprietary software [31,36]. Today OSI is
a non-profit corporation dedicated to managing and promoting the ‘Open Source Definition’
and maintaining a variety of open source licenses such as GPL and BSD? (Table 2.1). The
main difference between the GPL and BSD is that derivative work of software under a BSD
license does not need to be OSS. Although the majority of OSS is developed by individuals and
small development teams, many corporations also distribute software under one or more of these
licenses. For instance IBM and Novell are deeply involved with OSS development and the kernel
of Apple’s OSX operating system is based on a BSD license.

To many OSS contributors proprietary software is considered the main opponent and the com-
mercial world is increasingly aware of OSS. In 1998 a number of internal Microsoft memos, the
so called ‘Halloween documents’, were leaked onto the internet. The documents revealed that
“0S8S poses a direct, short-term revenue and platform threat to Microsoft, particularly in server
space. Additionally, the intrinsic parallelism and free idea exchange in OSS has benefits that
are not replicable with our current licensing model and therefore present a long term developer
mind share threat” [40]. Microsoft has repeatedly defended the commercial business model with
emphasis on intellectual property as the only serious alternative, when it comes to financially
viable software development. They have discouraged consumers to turn to OSS and Linux by
associating it to the failed projects of the ‘dot-com bubble’ of the late 1990’s [27]. Though
companies like IBM do make substantial profits on Linux and OSS, it is true that many OSS
companies are struggling generating profits [30].

2A slang term for a computer enthusiast. Not to be confused with the term ‘cracker’ that refers to a person
committing criminal acts online.
3Berkeley Software Distribution: A free license developed by the University of California at Berkeley.

2.1. History

Attribute Commercial | Shared Source | Trial | Shareware | Freeware | BSD | GPL
Zero initial (x) (x) X b'e X
cost

Redistribu- (x) X X b'e b'e b'e
table

Unlimited X X X
usage

Source code (x) X X
available

Source code X X
modifiable

All deriva- X
tives must

be free

Table 2.1: An overview of various software licenses or ways of distribution [40]. Notes: Usually trial software
and shareware is only available at no cost in limited editions. Shared Source is a license type launched by
Microsoft that gives business partners access to source code.

As a response to OSS Microsoft released the ‘Shared Source’ license in 2001 [27], which gave
limited access to the source code of a selection of Microsoft’s programs to selected customers

and partners, in order to counter increasing requests for openness of Microsoft products (Table
2.1).

Some parts of the debate about OSS can be characterized as mud slinging from both sides.
The CEO of Microsoft Steve Ballmer stated that “Linux is a cancer that attaches itself in
an intellectual property sense to everything it touches” in an interview with the Chicago Sun-
Times [2], referring to the fact that the GPL license requires all derivatives to be OSS as well.
This issue has been one of the major themes in the OSS debate. In relation to this the company
SCO, which claims to hold the rights to the UNIX operating system, has sued companies involved
with OSS such as IBM, Red Hat and Novell. The CEO of SCO Darl McBride has furthermore
claimed that GPL violates the American Constitution, is a direct attack against international
copyright laws, and even poses a threat to American national security, since it allows rogue
nations to obtain advanced technology [24,25]. OSS proponents have answered back using the
same level of shrill rhetoric and have compared the Shared Source license to a virus: “Shared
source, therefore, behaves like a virus that infects developers’ brains. Once you let it into your
organization, you must keep careful track of which developers have been contaminated, avoid
deploying them to any projects which might compete with a Microsoft product, and even erect
”Chinese walls” between projects so that no knowledge from shared source can leak into projects
with competitive implications.” [29]. They also claim that the patent based business model
threatens the software industry as a whole.

2. Open Source Development

2.2 The OSS Development Process

The principle behind OSS development is simple. When the source code for a piece of software
can be freely read, redistributed, and modified, the software evolves. This way development
and project management in OSS varies from most commercial software projects. In the famous
paper ‘The Cathedral and the Bazaar’ Eric Raymond described the OSS development process
with the metaphor of “a great babbling bazaar of differing agendas and approaches” [32]. In his
opinion proprietary software development is comparable to cathedral building with long release
cycles and no openness in the development process. Linus Torvalds compared OSS development
to the world of science: “science took this whole notion of developing ideas in the open and
improving on other peoples’ ideas and making it into what science is today” and furthermore
stated that proprietary software resembled witchcraft and alchemy, because of it’s secrecy [9].
A practical argument for openness that OSS developers often use is “Given enough eyeballs, all
bugs are shallow” [32]. Mockus et al [26] described the main characteristics of OSS development
as:

e OSS systems are built by potentially large numbers of volunteers
e Work is not assigned; people undertake the work they choose to undertake
e There is no explicit system level design, or even detailed design

e There is no project plan, schedule, or list of deliverables

The possibility of an OSS project splitting up binds the projects together. Karl Fogel described
the social and political infrastructure of OSS, and listed a number of factors that have turned
out to be essential for successful OSS projects in regard to technical quality, operational health
and survivability [13]. One of the important attributes of OSS was the possibility of forking.
This means that the project can be split up, if contributors disagree about the way the project
is heading. Fogel claims that this is the main ingredient that binds developers together on OSS
projects. “The paradozical thing is that the possibility of forks is usually a much greater force
in free software projects than actual forks, which are very rare”. Though it is common to refer
to OSS project managers as ‘benevolent dictators’, the fork-ability of OSS makes it possible
for contributors to continue a fork of the project without the current leader, if the ‘tyrant’
looses the trust of his subjects. Therefore OSS leaders often let things work themselves out
through discussion and only make decisions when no consensus can be reached [13]. When OSS
projects mature they tend to move away from ‘dictatorship’ and establish the foundation of
more democratic systems.

A good, motivating working environment is vital in OSS development. The community around
an OSS project is considered the main factor that results in quality software. For instance Brian
Behlendof of the Apache Software Foundation stated “The Apache Software Foundation, for ex-
ample, believes that it’s first order of business is creating healthy software developer communities
focused on solving common problems: good software is simply an emergent result” [13]. Beside
abilities like good structure design skills and communicative talent, one of the most important
roles of an OSS leader is to nurture the developer community and make others willing to join the
project and continue to make contributions [13]. Hence, a good OSS leader should concentrate
his efforts on making sure that contributors feel appreciated and that there is a positive working
environment.

2.2. The OSS Development Process

OSS emphasizes other stages of development than traditional software engineering. Paul Vixie
compared OSS development to the following seven stages of traditional software engineering [41]:

Marketing requirements
System level design
Detailed design
Implementation
Integration

Field testing

Support

NS U WD

Vixie stated that the Marketing requirements are not a high priority in OSS since “Open Source
folks tend to build the tools they need or wish they had”. Often OSS projects are initiated in
order to scratch a developer’s personal ‘itch’ [32]. He also found that unfunded OSS projects
initially do not have System level design. The overall design of the system evolves during the
first couple of versions of the program. The Detailed design is also not a high priority to
OSS developers and programming interfaces are often not documented very well. The stage
of Implementation is considered the fun part: “The opportunity to write code is the primary
motivation for almost all open-source software development effort ever expended”. In OSS the
Integration stage usually means making sure that the software builds on every kind of system
the developer has access to and making a ready-to-download package for users. There is little
pre-release testing and usually no unit tests, regression or otherwise. However, Vixen states that
the post-release stage of Field testing is the major strength of OSS: “The essence of field testing
is its lack of rigor. What software engineering is looking for from its field testers is patterns of
use which are inherently unpredictable at the time the system is being designed and built—in other
words, real world experiences of real users. Unfunded open-source projects are simply unbeatable
in this area”. There is little focus on the Support stage within OSS and usually the developers
themselves do not provide any; “‘Oops, sorry!’ is what’s usually said when a user finds a bug,
or ‘Oops, sorry, and thanks!’ if they also send a patch”. Support can be maintained through
the community or consultants specialized in OSS.

Overall the ‘OSS model’ can therefore be considered a development framework rather than a
step-by-step development model. To get the benefits of the OSS framework Fogel recommended
going through the following steps when initiating an OSS project [13]:

e Look around: Are there any existing projects doing what you need?

e Build infrastructure: Set up a mailing list, a website, version control system, bug tracking
system and real time chat.

e Mission statement: Describe the goal of the project.

e Developer guidelines: Make guides available to new contributors.

e Documentation: As a minimum there should be a description of how to set up the software
and perform basic diagnostic tests in case it does not work.

e License: Choose an OSS license and apply it.

e Set the tone of the community: Make sure that there is a good working environment, avoid
private discussions and make sure that rudeness is not accepted in discussions.

2. Open Source Development

e Code reviews: Setup systems for code reviews to ensure quality.

Many have strong opinions about the strengths and weaknesses of OSS and the development
method, but little formal research has been performed to investigate the claims. We have listed
the main positive and negative attributes of OSS that have been described by Mockus et al,
Feller et al and Vixie [12,26,41] (Table 2.2).

Speed of development

Access to code and lack of ‘black
boxes’ is important for code inspec-
tions to assure dependability and
correctness

Peer reviews result in better code
Large pool of testers and developers
facilitates debugging

Supports geographically distributed

No formal System Level Design pro-
cedures

No formal specification of require-
ments

Developer centered user interfaces
Lack of documentation

Lack of support and warranty
Potential intellectual property prob-
lems

development teams

Table 2.2: The table summarizes the advantages and disadvantages of the OSS development model.

Overall OSS or Free Software development was founded in ideology and has evolved into a
commonly used approach to software development. Opinions about OSS are divided and there
are indeed both strengths and weaknesses of the approach. The ‘OSS development model’ can
be considered a development framework rather than a full scale software engineering strategy.
Compared to commercial software engineering, OSS development places strong emphasis on the
stages of implementation and field testing and often disregards the design stages. This approach
does have advantages like the possibility of rapid software development and a thoroughly tested
code base but from a customer perspective, the lack of a formal design stage, documentation
and support can seem like major disadvantages.

CHAPTER 3

Research Papers

This chapter presents the two research papers of the thesis, which are included in the appendices
(Paper 1: Appendix A on page 33 and Paper 2: Appendix B on page 47). The relation between
the research papers is illustrated in Figure 3.1.

OSS community
with usability
problems

Our motivation,

Our contribution

A systematic A systematic
documentation of investigation of
the opinions and remote usability

practice concerning evaluation methods

usability in the OSS which might solve

community the main problem
(1) (2)

Figure 3.1: The relation between the two research papers. We were motivated by the problems in the OSS
community and during the research conducted we suggest methods to improve the usability of OSS - our
contribution. The numbers in the figure refer to the two papers below.

1. Andreasen, M. S., Nielsen, H. V., Schragder, S. O. (2006).
Usability in Open Source Software development: Opinions and practice.
Department of Computer Science, Aalborg University, 2006

2. Andreasen, M. S., Nielsen, H. V., Schrgder, S. O. (2006).
A Comparison of Remote Usability Evaluation Methods.
Department of Computer Science, Aalborg University, 2006

3. Research Papers

3.1 Research Paper 1

Usability in Open Source Software Development: Opinions and Practice

The first paper describes a series of surveys concerning the subject of usability within OSS.

e Questionnaire survey

— A questionnaire survey was performed in order to get an overview of the opinions and
current practice of usability evaluation among OSS developers.

e Interviews with OSS developers

— Interviews with three of the respondents of the questionnaire were performed to get
a clear picture of the methods and thoughts connected to usability and evaluation in
OSS projects. The three developers were selected because they were either project
managers or usability evaluators in their current OSS project.

e Interviews with OSS evaluators

— In order to get several perspectives on usability within the OSS community, we inter-
viewed five usability professionals at the Berlin based usability company Relevantive.
This company has extensive experience working with OSS projects and initiated the
openusability.org project. We wanted to investigate what their experiences was work-
ing with OSS and usability.

We used interview guides based on the data from the questionnaires during the follow-up in-
terviews. The themes in the interview guides included: Motivation for contributing to OSS,
usability methods used in the project, usability as a part of the development process, usability
experts in the development team, and decision making in the project. At Relevantive we per-
formed a focus group interview followed by personal interviews. In the focus group interview we
used an interview guide which included the following themes: Test procedures of OSS, usabil-
ity evaluation, communication with OSS developers, remote usability evaluation, and OSS and
usability.

We found that people within the OSS community were interested in usability and regarded it’s
importance as high. However, in practice the current usability effort among the developers was
limited. The majority stated that they used formal or informal Ul guidelines or inspiration
from similar programs in the development of the Ul In the follow-up interviews we learned that
the democratic and flat organizational structure of OSS development, which is often considered
a strength, makes it a challenge to use conventional usability approaches in the development
process. For instance there was reluctance to include usability experts directly in the devel-
opment process because developers feared that they would overrule the democratic decision
making process. In order to overcome the reluctance among developers it was necessary for us-
ability professionals to build up trust. This was achieved after a history of sensible, realistic and
constructive usability related suggestions and by meeting OSS developers in person at various
conferences and gatherings. Furthermore, Relevantive stated that OSS developers who design
user interfaces should be aware of basic usability principles. Currently there are limited resources
available among usability experts involved with OSS and this makes it vital that developers do
not rely entirely on external usability evaluations.

10

3.2. Research Paper 2
A Comparison of Remote Usability Evaluation Methods

The paper lists a number of obstacles for usability work within the OSS community. In paper
2 we explore usability evaluation methods with the potential to solve these obstacles.

3.2 Research Paper 2
A Comparison of Remote Usability Evaluation Methods

The second paper looks at three approaches to remote usability evaluation. The methods were
compared to a laboratory evaluation which was used as a benchmark. The motivation for
researching remote evaluation methodologies was founded in the need for suitable evaluation
methods for the OSS community. Furthermore, the area has not undergone substantial research
and no methodical comparison of multiple remote evaluation methods has been made.

The methods evaluated were the following:

Laboratory evaluation (LAB)

— A laboratory evaluation based on the think aloud protocol described by Rubin [33]
was performed and used as a benchmark.

Remote synchronous evaluation (RS)

— A remote think aloud evaluation using web-cams, audio connection, and a shared
desktop to simulate a laboratory evaluation. The test participants and the moderator
were separated in space.

Asynchronous expert evaluation (AE)

— An asynchronous evaluation where the test participants consisted of expert usability
evaluators. The evaluation was conducted in natural settings and usability prob-
lems were reported through an online questionnaire. The test participants and the
moderator were separated in space and time.

Asynchronous user evaluation (AU)

— This evaluation was conducted similar to the AE evaluation. The only difference was
that the participants were mainstream users.

In order to minimize subjective bias we used a strict data analysis method (described in detail
in Appendix C on page 59) as we were only three evaluators. By using the any-two agreement
equation we showed that the resulting evaluator effect underlined the validity of our results.

The results showed that the RS evaluation performed as well as a conventional laboratory
experiment. Statistical analysis showed that there was no significant difference between the
number of identified problems. We also found that there was no significant difference in number
of cosmetic, serious, and critical problems identified. The two methods were comparable and
identified the same problems.

When comparing the AE evaluation with a laboratory evaluation we found that there was a
significant difference in the total number of identified problems. There was also a significant
difference in the number of critical problems identified but not in respect to serious and cosmetic
problems.

In the comparison of the AU evaluation to the laboratory evaluation we identified a statistical

11

3. Research Papers

significance in the total number of identified problems. There was also statistical significance
in respect to critical and cosmetic problems while there was no statistical significance in the
number of identified serious problems.

We also wanted to compare the two asynchronous evaluations to see whether the experts were
better at identifying problems than the non experts. We found that there was no statistical
significance in the number of identified problems and severity.

The paper concludes that the RS evaluation is comparable with a LAB evaluation. The asyn-
chronous method identifies fewer problems than the LAB evaluation. However, most of the
problems identified in the asynchronous evaluations were critical.

12

CHAPTER 4

Comparison with Other's Remote Evaluation Experiences

This chapter provides a short, systematic overview on how our results compare to the existing
knowledge on remote evaluation methods. It supplements paper 2 by providing an overview of
claimed advantages and disadvantages of remote usability evaluation.

The comparative study used a laboratory evaluation as a benchmark and had the limitation that
the RS evaluation was not performed in a natural environment. Therefore we do not have basis
to evaluate claims about cost efficiency, technical difficulties and the difficulties of recruiting
users.

Table 4.1 on page 17 presents an overview of the statements including those that we can not
evaluate. In the following sections we present the advantages and disadvantages from the existing
literature and conclude on whether our results support these statements.

Remote Synchronous Evaluation

Claimed Advantages of RS Fvaluation

Identifies the same or more usability problems than laboratory evaluations

We found that the RS evaluation identified the same number of usability problems as the labo-
ratory evaluation. The RS evaluation identified a total of 38 problems compared to the 35 found
in the LAB evaluation and this difference was not statistical significant (p=0.6073). In addition,
there was no significant difference in the distribution of cosmetic (p=1), serious (p=0.3498) or
critical (p=1) problems identified.

Our results supported this statement.

4. Comparison with Other’s Remote Evaluation Experiences

Claimed Disadvantages of RS Fvaluation

There is a longer task completion time

Our results did not show longer completion time of RS tests than in LAB tests. On average a
LAB test lasted 22:10 minutes (SD=05:20) compared to the 22:30 (SD=03:31) of an RS test.
Our results did not support this statement.

The moderator may not be completely engaged in the test as there is no physical
presence

In some instances the moderator was not fully engaged in the RS tests, compared to the LAB
tests. For instance the moderator was not as good at encouraging the test user to think aloud
as in the LAB evaluation. However this was not visible in the results and we do not have data
to evaluate the claim.

Our results were inconclusive on this statement.

Distance between user and moderator can be awkward

We did not experience that the distance between the moderator and test user was awkward
in the RS evaluation. Moreover, we did not notice misunderstandings because of the web-cam
based communication and in the debriefing of the users, some expressed that they liked the fact
that the moderator was not looking over their shoulder.

Our results were inconclusive on this statement.

The moderator looses control

The loss of moderator control in the RS evaluation, was not a problem in the majority of test
sessions. In one of the tests we did experience that a user moved the web-cam windows and
minimized others. This instance was solved by talking to the test user but visualized the lack
of moderator control.

Our results were inconclusive on this statement.

Asynchronous Expert and Asynchronous User Evaluations

Claimed Advantages of AE and AU FEvaluation

Users identify usability problems themselves resulting in lower workload for the
evaluators

During the data analysis the evaluators used considerately less time generating problem lists
for the individual AE and AU tests. We estimated the analysis time of each asynchronous test
to be between 5 and 25 minutes. This was considerately less time than the evaluators used on
analyzing the data from the LAB and RS evaluations. The analysis of this data took approxi-
mately 3 hours per test session (lasting on average 25 minutes per test session). The duration
of the video analysis compares to the time spent in a study performed by Kjeldskov et al [21].
Some problems reported by users were not immediately understandable and needed to be inter-
preted by the evaluators, but overall the workload of the evaluators was lower than in the LAB
evaluation.

Our results supported this statement.

14

The evaluation produces qualitative descriptions of problems

The quality of problem reports from users varied considerately. Most were very descriptive: “I
marked the Inbox and chose Functions —> Run filter on the chosen folder. That did not work -
tried three times. Then I chose Functions —> Message filter —> marked the filter rule —> Run
now on Inbox. I don’t understand why the first action did not work. Run filter on the chosen
folder sounds exactly as what I wanted to do.”. While others tended to be short and imprecise:
“It wasn’t easy to do. I'm not that good at handling computers and I have never made a mail
filter before.”. In general we found the quality of the descriptions to be good enough to be
interpreted by the evaluators in order to generate problem lists.

Our results supported this statement.

Only minimal usability evaluation training of users is required

In the asynchronous evaluations we provided minimal training in the form of a classification
matrix explaining how usability problems should be categorized as either cosmetic, serious, or
critical. We also showed an example of a problem description. Though users did report problems
without further training than this, most problems were not classified correctly compared to the
evaluators characterization of the same problems. We therefore found that users needed more
information about classification of usability problems than we provided.

Our results did not support this statement.

Very few critical issues missed by users

The AE evaluation identified 15 critical usability problems and the AU evaluation found 11.
Compared to the 22 problems identified in the LAB evaluation, these numbers showed significant
difference (p=0.0363 and p=0.0078).

Our results did not support this statement.

The evaluation is conducted in realistic test environments with external interrup-
tions

We conducted the AE and AU evaluations in natural settings. The users performed the test at
their own computers when it was convenient for them. Though we do not know whether this
influenced test results we got feedback suggesting that this was a positive element: “I think this
method gives a better impression on how much people wants to work on a task before moving
on to the next task.”. Overall we do not have enough information to assess whether testing in
natural settings was an advantage in our study.

Our results were inconclusive on this statement.

Claimed Disadvantages of AE and AU FEwvaluation

Users need to be prompted to keep making comments while reporting critical inci-
dents

Overall the test users reported a low number of usability problems compared to the time spent
on the evaluation. In the AU evaluation users spent on average 45:29 minutes (SD=18:51) and
reported 3.2 usability problems. The AE test users identified an average of 4.7 usability prob-
lems and spent on average 1:03:48 hours (SD=48:37) performing the test. The LAB evaluation
identified on average 15.3 usability problems per test session with an average time consumption
of 22:10 minutes (SD=05:20). It is important to remember that problems in the RS and LAB

15

4. Comparison with Other’s Remote Evaluation Experiences

evaluations were identified by the evaluators while they were identified by the test users in the
AE and AU evaluations. These numbers indicate that the test participants with more prompting
would have reported more problems, but we have no evidence of this.

Our results were inconclusive on this statement.

16

Methods

Advantages

‘ Disadvantages

RS evaluation

+ Identifies the same or more usability
problems than conventional labora-
tory evaluations [19] [7] [18] [3§]

=+ There is a longer task completion time
(38]

? The moderator may not be completely
engaged in the test as there is no
physical presence [1]

? Distance between user and moderator
can be awkward [34]

? The moderator looses control [3] [4] [5]

RS evaluation
(Not
gated in our
study)

investi-

Cost effective in regard to travel expenses
and accommodation [34] [16] [3] [4]
[5] [19] [18] [10]

A larger and more diverse pool of users is
available [16] [3] [4] [5] [19] [18]

It is easier to recruit users [19] [7]

The evaluation is conducted in realistic
environments with external inter-

ruptions [34] [16] [3] [4] [5] [38] [10]

Lack of facial expressions and body lan-
guage when not using web-cam [34]
(16] [3] [4] [5] [10]

User must setup the system and there
are technical demands in regard to
bandwidth and server [34] [16] [3] [4]
(5]

Difficult to build trust between modera-
tor and participant [10]

The evaluation is conducted in realistic
environments with external inter-
ruptions [16] [3] [4] [5] [7]

The setup time is longer and there are
difficulties in fixing system crashes

(7] [10]
AE and AU
evaluations + Users identify usability problems them- | ? Users need to be prompted to keep mak-
selves resulting in lower workload ing comments while reporting criti-
for the evaluators [17] [8] cal incidents [18]
+ The evaluation produces qualitative de-
scriptions of problems [18]
<+ Only minimal usability evaluation
training of users is required [17] [8]
+ Very few critical issues missed by users
[17] [8]
? The evaluation is conducted in realis-
tic environments with external in-
terruptions [17] [8] [18]
AE and AU
evaluations Cost effective in regard to travel expenses Too long time before users report critical
(Not investi- and accommodation [17] [8] incidents, resulting in missing con-

gated in our
study)

textual information [17] [8]

Table 4.1: Advantages and disadvantages of RS, AE and AU evaluation methods identified in the literature.

The symbols before each statement denote how our study relates to it: ‘+’ = Our results agree on this

)

statement, ‘+’ = Our results do not agree on the statement, and ‘?” = Our results are inconclusive on this
statement. Furthermore, there are findings in the literature which our study has not investigated. The numbers

refer to the literature in the bibliography.

17

CHAPTER b

Research Methodology

This chapter describes and explains the research methods used to answer the two research

questions. We have based this section primarily on the research conducted by Wynekoop and

Conger [42]. They present an overview of ten different research methodologies of which we have

used three.

The research methods are divided according to whether the research is performed in a natural
or artificial setting (Table 5.1).

#1 | Describe and un- | OSS contributors Survey research Environment inde-
derstand pendent
49 Comparison of | Remote usability | Laboratory exper- | Artificial
methods evaluation methods | iment (LAB, RS)
Field experiment | Natural

(AE, AU)

Table 5.1: Research methods used to answer the two research questions. Object refer to the object on which

the method was used. The method is the chosen research methodology. The purpose describes the overall

purpose of the study, while setting describes the setting the research was performed in.

5.1 Research Question 1

The research performed in paper 1 covered information on the opinions and practice towards

usability among contributors to OSS (Section 1.1.1). We performed a questionnaire survey and

two interview surveys.

According to Wynekoop and Conger, questionnaire and interview surveys belong to the category

5. Research Methodology

of field surveys. Conducting a field study is preferable when the object of the study is to collect
descriptive data and when developing or testing hypotheses. Wynekoop and Conger presents a
number of advantages and disadvantages related to this research:

e Advantage

— It is possible to collect large amounts of data which makes it possible to generalize
on a subject while also reducing bias

e Disadvantages

— It presents a static view of the domain

— Participating is voluntary

The main advantage of conducting this type of research is the possibility to generalize on the
data. In the questionnaire survey we received 24 answers out of a minimum of 293 possible
answers which reduces the generalizability of our results. In an effort to minimize this negative
side effect we did not perform statistical analysis on the data. The information was primarily
used as inspiration when creating the interview guides used during the three developer interviews.

A disadvantage is connected to the fact that this type of survey often presents a static view of the
domain. A possible solution to this is to perform a longitudinal study. Instead of doing this we
found another study investigating the OSS community, and several of it’s findings corresponded
to ours. This study was performed by the Boston Consulting Group in 2002 and it revealed
demographics, interests, and motivations of the OSS contributors [23].

We specifically pointed out that the questionnaire was directed at usability considerations and
OSS and it is plausible that this have affected the bias of who participated in the questionnaire
survey. When we conducted the interviews we selected the respondents in a way so that both
usability testers and project managers were interviewed. The main point of this was to receive
information on about usability considerations and project management but it was also done in
an effort to minimize the bias of only interviewing contributors with usability responsibility.

5.2 Research Question 2

Following the findings in the first paper we made a thorough comparison of three remote usability
evaluations to a laboratory evaluation (Section 1.1.2). When conducting the experiments we
used two different research methodologies. The LAB and RS evaluations were performed as
laboratory experiments while the AE and AU evaluations were field experiments.

Laboratory Experiment

According to Wynekoop and Conger there are the following advantages and disadvantages re-
lated to a laboratory experiment:

e Advantages

— Experiments can be replicated because of the large experimenter control

20

5.2. Research Question 2

— It provides a precise measurement of the phenomena of interest
e Disadvantages

— The method assumes that real-world interference is not important

— Generality is limited to the sample population

The goal of our research was to evaluate three approaches to remote usability evaluation methods
and not an application. In this respect, replicability is a priority so other researchers can use
the experience collected through the study. The increased level of experimenter control made it
possible to make sure that the setup worked properly and that the individual test sessions were
recorded in the correct way.

In the evaluations performed in the laboratory we were able to measure the exact time used
to perform the evaluation which provided data for statistical analysis. Moreover, we had the
possibility to observe the participants while they conducted the test.

We chose to conduct the RS evaluation in a controlled environment as opposed to the AE and
AU evaluations conducted in natural settings. We performed it in a laboratory since we wished
to be able to control the setup and make sure that there were no technical difficulties relating
to the setup or bandwidth.

We used a sample consisting of students from Aalborg University. Moreover, we selected par-
ticipants who had not used the tested application but at the same time were familiar with the
central concept of e-mail. In order to minimize the problem of generality, a replication of the
laboratory evaluation using a different sample could have been performed.

Field Experiment

According to Wynekoop and Conger there are the following advantages and disadvantages re-
lated to a field experiment:

e Advantages

— It is carried out in natural settings

— There is increased control over variables compared to a field study
e Disadvantages

— Increased experimenter control over variables results in a decrease of the naturalness

— There is less experimenter control over possible contaminating effects

When we analyzed the results of the asynchronous evaluations compared to the results from the
experiments in the laboratory, we saw that the asynchronous participants solved insignificantly
more tasks while using longer time. This could be a result of the differences of the settings.
For instance, the participants was not affected by a moderator. One expert participant of an
asynchronous evaluation even stated that this method was better at showing how long a user
wanted to work with a task before giving up.

We chose to minimize our control over the variables. Even though this control is presented as
an advantage of the field experiment it is also presented as a possible disadvantage. In this

21

5. Research Methodology

respect we chose to control only the most crucial variables: How problems were reported using
the questionnaire and which program to test.

We controlled some variables during the evaluation while the participants controlled others.
For instance the participants were free to conduct the evaluation when and how they wanted.
Hereby we increased the naturalness of the AE and AU evaluations.

As the evaluations were performed in natural settings we lost control over possible contaminating
effects. We chose to perform the AE and AU evaluations as field experiments since the technical
problems, which discouraged us from conducting the RS evaluation as a field experiment, were
not present here.

22

CHAPTER O

Conclusion

The focus of this master thesis is usability in OSS projects. In this chapter we present the
conclusions for the research questions of the two papers. Subsequently we relate these answers
to the overall research question (Section 1.1) and present the limitations and possible future
work.

Research question 1: How is usability currently considered by both OSS developers and us-
ability experts participating in OSS projects, what is the current practice of usability evaluation
within OSS development, and what are the obstacles for change?

The first research paper showed that even though OSS contributors were interested in usability
and regarded it’s importance as high in their projects, in practice the usability effort was limited.
Most usability considerations were based on common sense, design guidelines and conventions
from other programs. Expert inspections and conventional usability evaluation were also used
to some extent but the development model, and the lack of knowledge among OSS contribu-
tors, made this problematic. OSS projects are characterized by a flat organizational structure
based on democratic principles, and contributors expressed concern that direct involvement of
usability experts would disrupt the balance of power in internal discussions. We found that
the most promising current approach to usability evaluation in OSS was conducted by groups
of external usability professionals, as the results of their evaluations were appreciated and to
some extent used by the developers. However, there are only a limited number of contributors
with the necessary knowledge about usability, few have access to usability laboratories and the
distributed nature of OSS makes it a challenge to co-operate with developers. Usability pro-
fessionals involved with OSS also mentioned the obstacle of recruiting volunteer test users to
participate in usability evaluations. Therefore we found that conventional usability evaluation
methods did not support the OSS development paradigm and we wanted to investigate whether
alternatives existed that solved the following obstacles:

6. Conclusion

e The lack of access to usability laboratories

e There is a limited number of usability experts available
e The lack of financial resources

e The geographically distributed nature of OSS

e The problem of recruitment of test users

e The short development cycles of OSS development

e The preference of externally performed usability evaluations by contributors

We chose to focus the second research question on remote usability evaluation in order to explore
whether this type of evaluation would overcome some of the key obstacles.

Research question 2: How do three different approaches to remote usability evaluation com-
pare to a laboratory evaluation in regard to the identification of usability problems?

The second research paper revealed that the results of the RS evaluation were comparable
to those of the LAB evaluation. The two evaluation methods identified the same number of
problems and almost the same distribution of cosmetic, serious and critical problems. Some test
users even felt more comfortable in an evaluation setup, where the moderator was not physically
present. Hence, an RS evaluation can be as effective as a LAB evaluation.

In the AE and AU evaluation methods, we did not find any difference between expert users and
ordinary users in their ability to identify usability problems. In both evaluations users identified
fewer problems than the LAB evaluation, and their classification of problem severity did not
match the classification of the evaluators. Almost all problems were classified cosmetic by the
users but when reviewed by the evaluators, most of these problems turned out to be critical.
Thus, if a user in a remote asynchronous evaluation reports a problem, it is fair to assume that
it is indeed a critical problem. This type of evaluation can therefore be performed quantitatively
with large samples of a system’s user base in order to identify the most severe usability problems
of the system. It can also be used as a supplement to other types of evaluation or as low cost
alternative for those without the resources to perform a conventional usability evaluation.

Overall research question: How can the usability work in OSS development be improved?

We found that there is an interest in an increased level of usability among those involved with
OSS development. However, lack of knowledge about usability among many developers is a
fundamental problem in the process of designing user interfaces. It is also a challenge for the
usability effort within OSS that development is distributed geographically since face-to-face
communication with development teams usually is not possible.

Both developers and usability professionals prefer that usability evaluations are performed by
people with in-depth usability knowledge. Therefore, it is vital that the OSS community at-
tracts this type of people and makes them feel that their contributions are appreciated. In
practice there are not a lot of usability experts involved with OSS and furthermore they do not
all have access to usability laboratories and volunteer test users. We found that the RS eval-
uation method can simulate a usability laboratory and generate comparable results. Thus, we
consider this method a possibility for usability experts who do not have the resources to perform
a laboratory test or those who need volunteer test users in certain narrow user segments that
are not available locally.

24

The asynchronous evaluation method is a usable method within the OSS community. Since users
report and classify usability problems themselves this type of evaluation can be performed by
the developers without assistance from the scarce number of external usability experts. Given
that the problem descriptions contain a satisfactory level of detail, the developers can use these
reports directly in the development process.

In this thesis we have investigated how usability work in OSS can be improved and we have
suggested approaches to remote usability evaluation as a possibility for solving the key obsta-
cles. There are other fundamental usability related challenges for the OSS community than the
evaluation methods but this is beyond the scope of this study.

The questionnaire survey received twenty-four responses from a potential user group with a
minimum of 293 possible. Two of the developers in the follow-up interviews were associated with
the same project. We performed the LAB and RS evaluations in the controlled environment of
a usability laboratory, while the AE and AU evaluations were performed in natural settings.

We see three obvious subjects for further research. First of all, it would be interesting to further
develop the asynchronous method. The method has potential to solve many obstacles as the
identification of problems is placed at the user. The main problem concerning this method was
the low number of identified problems. Providing the test participants with a better conceptual
tool for identifying problems could solve this. Furthermore, it would be relevant to conduct the
RS usability evaluation in a natural environment in order to reflect over the technical challenges
of this method. Finally, it would be compelling to let experienced usability evaluators assess the
RS evaluation method, in order to get their qualitative impression of the method.

25

Bibliography

[1] AMES, M.
final report on remote usability studies.

http://www.ocf.berkeley.edu/~ morganya/research/dmp/report.html,

2005.

[2] BALLMER, S.
interview with chicago sun times.
Chicago Sun Times

http://www.suntimes.com/output/tech/cst-fin-micro01.html,

2001.

[3] BARTEK, V., AND CHEATHAM, D.
experience remote usability testing, part 1.

www-106.ibm.com/developerworks/library /wa-rmusts1/,

January 2003.

[4] BARTEK, V., AND CHEATHAM, D.
experience remote usability testing, part 2.

www-106.ibm.com/developerworks/web/library/wa-rmusts2.html,

February 2003.

[5] BARTEK, V., AND CHEATHAM, D.
experiences in remote usability evaluations.
http://www-3.ibm.com/ibm/easy/eou-ext.nsf/Publish/

50?OpenDocument&../Publish/1116 /$File/paper1116.pdf,

2004.

[6] BENSON, C., MULLER-PROVE, M., AND MZOUREK, J. Professional usability in open
source projects: Gnome, openoffice.org, netbeans. In CHI °04: CHI 04 extended ab-
stracts on Human factors in computing systems (New York, NY, USA, 2004), ACM Press,
pp- 1083-1084.

BIBLIOGRAPHY

[7]

8]

[9]

28

BrusH, A. B., AMES, M., AND DAvis, J. A comparison of synchronous remote and local
usability studies for an expert interface. In CHI °04: CHI ’04 extended abstracts on Human
factors in computing systems (New York, NY, USA, 2004), ACM Press, pp. 1179-1182.

CasTiLLO, J. C., HARTSON, H. R., AND Hix, D. Remote usability evaluation: can users

report their own critical incidents? In CHI ’98: CHI 98 conference summary on Human
factors in computing systems (New York, NY, USA, 1998), ACM Press, pp. 253-254.

CNN.
reclusive linux founder opens up.

http://edition.cnn.com/2006/BUSINESS/05/18/global.office.linustorvalds/,

May 2006.

DrAY, S., AND SIEGEL, D. Remote possibilities?: international usability testing at a
distance. interactions 11, 2 (2004), 10-17.

EKLUND, S., FELDMAN, M., TROMBLEY, M., AND SINHA, R.
improving the usability of open source software: Usability testing of staroffice calc.

http://www.sims.berkeley.edu/“sinha/opensource.html,

2001.

FELLER, J., AND FITZGERALD, B. Understanding open source software development.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

FoGEL, K. Producing Open Source Software - How to run a succesful Free Software Project.
O’Reilly Media, 1005 Gravenstein Highway North, Sebastopol, CA 95472, USA, 2006.

FRrISHBERG, N., Dirks, A. M., BENSON, C., NICKELL, S., AND SMITH, S. Getting
to know you: open source development meets usability. In CHI ’02: CHI 02 extended
abstracts on Human factors in computing systems (New York, NY, USA, 2002), ACM
Press, pp. 932-933.

GATES, W. H.
open letter to hobbyists.

http://en.wikipedia.org/wiki/Open_Letter_to_Hobbyists,

1976.

GouGH, D., AND PHILLIPS, H. Remote online usability testing: Why, how, and when to
use it.
http://www.boxesandarrows.com/view/remote_online_usability_testing_

why_how_and_when_to_use.it,

2003.

HarrsoN, H. R., AND CASTILLO, J. C. Remote evaluation for post-deployment usabil-

ity improvement. In AVI °98: Proceedings of the working conference on Advanced visual
interfaces (New York, NY, USA, 1998), ACM Press, pp. 22-29.

HarTson, H. R., CasTiLLO, J. C., KELSO, J., AND NEALE, W. C. Remote evaluation:
the network as an extension of the usability laboratory. In CHI ’96: Proceedings of the

BIBLIOGRAPHY

[22]

[23]

[25]

[27]

28]

SIGCHI conference on Human factors in computing systems (New York, NY, USA, 1996),
ACM Press, pp. 228-235.

HoUCK-WHITAKER, J.
remote testing versus lab testing.

http://boltpeters.com/articles/versus.html,

2005.

KAVANAGH, P. Open Source Software - Implementation and Management. Elsevier Digital
Press, 200 Wheeler Road, Burlington, MA 01803, USA, 2004.

KJELDSKOV, J., SKOV, M. B., AND STACE, J. Instant data analysis: conducting usability
evaluations in a day. In NordiCHI ’04: Proceedings of the third Nordic conference on
Human-computer interaction (New York, NY, USA, 2004), ACM Press, pp. 233-240.

KJyeLDskov, J., Skov, M. B., AND STAGE, J. Does time heal : a longitudinal study
of usability. In OZCHI ’05: Proceedings of the 19th conference of the computer-human
interaction special interest group (CHISIG) of Australia on Computer-human interaction
(Narrabundah, Australia, Australia, 2005), Computer-Human Interaction Special Interest
Group (CHISIG) of Australia, pp. 1-10.

LakuANI, K., AND WOLF, B.
bcg hacker survey.
Boston Consulting Group

http://www.ostg.com/bcg/BCGHACKERSURVEY-0.73.pdf,

2002.

McBRIDE, D. Open letter on copyrights.

http://www.caldera.com/copyright/,

December 2003.

McBRIDE, D. Letter to the congress.
http://www.osaia.org/letters/sco-hill.pdf,

January 2004.

Mockus, A., FIELDING, R., AND HERBSLEB, J. Two case studies of open source software
development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol. 11, 3 (2002), 309—
346.

MuUNDIE, C. The commercial software model.

http://www.microsoft.com/presspass/exec/craig/05-03sharedsource.mspx,

May 2001.
Speech at The New York University Stern School of Business.

Nicuors, D. M., aAND TwIDALE, M. B. Usability and open source software. Tech. Rep.
10/02, Department of Computer Science, University of Waikato, 2002. Working Paper
Series ISSN 1170-487X.

29

BIBLIOGRAPHY

[29]

[30]

[31]

[32]

33]

[34]

[36]

[37]

[38]

[39]

30

OPENSOURCE.ORG.
shared source: A dangerous virus.

http://www.opensource.org/advocacy/shared_source.php,

2002.

PaAaLMisaNoO, S.
ibm’s annual stockholders meeting.
IBM website

http://www.ibm.com/ibm/sjp/04-30-2002.html,

2002.

PERENS, B.
open source initiative - the open source definition.

http://www.opensource.org/docs/definition.php,

1997.

RaymonD, E. The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly, feb 1999.

RuBiIN, J.
Handbook of Usability Testing.
Katherine Schowalter, 1994.

SAFIRE, M.
remote moderated usability.

http://www.upassoc.org/usability_resources/conference/2004/im_safire.html,

2004.

STALLMAN, R.
gnu general public license.

http://www.gnu.org/copyleft/gpl.html,

1991.

STALLMAN, R.
why ‘free software’ is better than ‘open source’.

http://www.gnu.org/philosophy /free-software-for-freedom.html,

2001.

STALLMAN, R.
gnu operating system - free software foundation.

http://www.gnu.org,

2004.

THOMPSON, K. E., RozaNskI, E. P., AND HAAKE, A. R. Here, there, anywhere: remote
usability testing that works. In CITCS5 ’04: Proceedings of the 5th conference on Information
technology education (New York, NY, USA, 2004), ACM Press, pp. 132-137.

TRUDELLE, P. Shall we dance? - ten lessons learned from netscape’s flirtation with open
source ui development. In CHI 2002 (2002), Presented at the Open Source Meets Usability
Workshop, Conference on Human Factors in Computer Systems.

BIBLIOGRAPHY

[40] VALLoPPILLIL, V., AND COHEN, J.
microsoft: The halloween documents.

http://www.catb.org/ esr/halloween/,
1998.
Microsoft has acknowledged the authenticity of these leaked internal memos.

[41] VIxIE, P. Software engineering. In Open Sources: Voices from the Open Source Revolution
(New York, NY, USA, 1999), O’Reilly.

[42] WyNEKOOP, J. L., AND CONGER, S. A.
a review of computer aided software engineering research methods. In Proceedings of the
IFIP TC8 WG 8.2 Working Conference on The Information Systems Research Arena of
The 90’s (1990).

31

APPENDIX A

Usability in Open Source Software Development: Opinions and Practice

Usability in Open Source Software Development: Opinions
and Practice

Morten Sieker Andreasen Henrik Villemann Nielsen
Department of
Computer Science
Aalborg University, Denmark

vileman@cs.aau.dk

Department of
Computer Science
Aalborg University, Denmark

sieker@cs.aau.dk

ABSTRACT

Open Source Software developers have been able to pro-
duce programs that in functionality are able to compete with
proprietary software. However, the programs are often de-
signed for power-users and with little emphasis on usability.
A questionnaire survey and a series of interviews with OSS
contributors were performed in order to explore opinions on
usability within OSS and current practice of the usability
effort within OSS development. Contributors involved with
OSS with both technical and usability backgrounds were in-
terviewed. There are several obstacles for usability work
within OSS such as geographically distributed development,
lack of resources and evaluation methods that fit into the
OSS paradigm.

Keywords
Open source software development, usability, usability eva-
luation, empirical study

1. INTRODUCTION

Open Source Software (OSS) is a concept that covers soft-
ware which is released under a license that allows the end
user to freely use, distribute and modify the source code of
the program. OSS is often described as ‘free’ software, which
refers to the liberty and not to the price of the software [13,
27]. Famous OSS projects include Linux, Eclipse, Apache,
Tomcat and the Mozilla suite of programs. Although many
companies like IBM, SUN and Novell are involved with OSS,
the majority of OSS projects are developed by individuals
or small development teams with little formal organization
[16].

It has been claimed that use of the OSS development model
results in increased security and quality, since the code is
exposed to extreme scrutiny with problems being identified
and solved swiftly [20]. In addition, the release cycles of
OSS development projects are often short and allow rapid
software development. Though the OSS community has pro-
duced software products able to compete with commercial
alternatives [26, 9], OSS development also faces a number
of fundamental challenges. The stereotype of OSS develop-
ers is that they represent the “cowboys of the software world
with few formal procedures, actively hostile to any authority
other than the hacker ethic” [9]. The premises of OSS are
often vastly different from traditional software development
environments; developers often work in their spare time and
most communication needs to be by electronic means since

Simon Ormholt Schrader
Department of
Computer Science
Aalborg University, Denmark

ormholt@cs.aau.dk

developers often are distributed around the world. Eric Ray-
mond, who is a prominent voice in the open source move-
ment and co-founder of the Open Source Initiative, com-
pared the development process of OSS to “a great babbling
bazaar of different agendas and approaches” [20]. We chose
to focus our research towards projects developed in small
groups by volunteers. Corporations involved with OSS of-
ten have trained usability experts and laboratories at their
disposal, and arguably their usability evaluation procedures
do not differ to those of conventional software development.

In recent years there has been an increasing attention to-
wards the technological achievements of OSS [14]. At the
same time OSS has been criticized for it’s lack of usability
for non-technical users compared to commercial software [3,
6,9, 17, 21]. There has been little research about the reasons
that OSS generally does not have the same degree of usabil-
ity as commercial software, and if the state of affairs regard-
ing usability is to change, the core problems need to be iden-
tified. In this article we answer how usability is currently
considered by both OSS developers and usability experts
participating in OSS projects, what is the current practice
of usability evaluation within OSS development, and what
the obstacles for change are.

Addressing the key question, this paper describes a num-
ber of empirical studies performed to outline the problems
and opportunities involved with the usability effort within
the OSS community. In section 2 we describe how this pa-
per relates to existing research within the field of OSS and
usability. In section 3 we describe the methods we used
to conduct a questionnaire survey and a series of interviews
with OSS developers and usability professionals that had ex-
tensive experience working within the OSS community. In
section 4 we present the main results of the empirical stud-
ies, and in section 5 we discuss three overall themes related
to OSS based on the results of our study. Finally, we sum-
marize the main results and answer the key question in the
conclusion in section 6.

2. RELATED WORK

OSS has been the subject of several studies with different
focus areas but little research has been conducted regarding
usability evaluation or usability’s role in the OSS develop-
ment process. Feller and Fitzgerald described the OSS de-
velopment paradigm and stated that the OSS development
model could potentially solve some of the software indus-
try’s problems regarding reliability, pace of development and

cost, but their study did not suggest how [7]. Johnson-Eilola
constructed a basic overview of issues of OSS models for de-
velopment and distribution of computer documentation. His
arguments concerned two different methods of implement-
ing open source models for computer documentation but it
was not very methodic and seemed biased [14]. Gasser and
Ripoche conducted quantitative studies of the problem man-
agement and bug reporting methods within OSS. They ex-
tracted large amounts of data from the Bugzilla bug report-
ing tool and analyzed it in order to describe the process that
a problem went through from the initial report to it’s reso-
lution [11]. Sandusky et al followed this study up with an
investigation of the relations between bug reports, so called
bug reporting networks, and an analysis of a single social
negotiation [25, 24]. However, these studies were primarily
focused on the resolution of technical problems and they did
not cover the process of resolving usability problems. The
Boston Consulting Group conducted a large, quantitative
study of the background and interests of OSS contributors,
which revealed among other things demographics, interests
and motivations of a large sample of respondents [16].

Some work has been done to explore the field of usability in
OSS. For instance Nichols and Twidale explored usability
discussions in OSS development by examining the commu-
nication between developers who used a bug reporting utility
for OSS. They described, how existing human-computer in-
teraction techniques could be used to leverage distributed
networked communities, of developers and users, to address
issues of usability [30]. This study was based entirely on
quantitative measures and ignored other forms of commu-
nication than the bug reporting utility. In another study
they listed some of the general usability issues and chal-
lenges that OSS was facing [17]. They did not perform a
systematic study of the OSS research area and they did not
conduct any experiments to find solutions to the usability
problems of OSS.

Trudelle described ten lessons that Netscape learned from
it’s flirtation with OSS user interface development. The pre-
sented experiences origins from just one company involved
with OSS but on the other hand Trudelle describes down-
to-earth considerations for companies. When Netscape re-
leased it’s web-browser as OSS in the Mozilla project, they
discovered that the design stage could not be skipped. Fur-
thermore, Netscape found out that a division of authority
and ‘ownership’ of various parts of the user interface was
important in order to settle discussions and make decisions,
yet open discussion and exposure of all possible work was
advantageous. Conventional practice like identification of
target users was also important since OSS contributors often
worked with their own use in mind [29]. This was supported
by Pemberton who stated that it was an obstacle for OSS’s
mainstream acceptance that developers with programming
backgrounds did not understand the problems of ordinary
users [19]. Eric Raymond stated that the OSS community
needed “a big player with a lot of money, which is doing
systematic user interface end user testing. We’re not very
good at that yet, we need to find a way to be good at it” [22].
According to Raymond, the problem concerned organizing
usability evaluations and the costs of conducting them. As
a key figure in the OSS community, Raymond must be con-
sidered biased. Nichols and Twidale agreed, and pointed

to the lack of usability expertise and resources in the OSS
community as the main problem [17].

Our motivation for writing this article was based on an in-
terest in the OSS development paradigm. We were curious
about investigating, whether the OSS development model
was suitable for the design of intuitive user interfaces for
anyone outside the ‘hacker’ community.

3. METHOD

In order to answer the key question we chose to conduct
a series of empirical studies. We wanted to know more
about the current practice of usability evaluation methods
in OSS projects, and furthermore clarify the thoughts and
experiences of usability evaluators working on OSS projects.
This resulted in a total of three empirical surveys; an online
questionnaire survey, interviews with three OSS developers
and interviews with five people working at Relevantive, a
company performing pro bono usability evaluation for OSS
projects.

3.1 Questionnaire

Setting: The questionnaire survey was conducted from mid
September to mid October 2005. The survey consisted of
three parts, corresponding to areas we wanted to explore:
‘About your current project’, ‘Communication’ and ‘Usabil-
ity’. This was done to keep a relation between the questions,
give the respondents an overview of the survey, and to make
sure that the respondents understood what the intentions of
the questions were [18]. The questions were mixed between
quantitative scales where it was possible to choose from a
set of predefined options, and qualitative questions where
the respondents could answer freely.

Participants: To exploit the advantages of a quantitative
survey we wanted to get a high number of respondents,
and therefore we contacted fourteen different OSS projects,
where the number of contributors varied from one person
to more than fifty persons per project. We used two main
criteria for selecting OSS projects to contact; they should
not be developed by professionals and the product should
be targeted at mainstream users. The reason for this se-
lection was that we wanted to get feedback from developers
who contributed to OSS software that was directed towards
ordinary users and not technical users. This resulted in a
total of twenty-four respondents located in fourteen different
countries (Table 1). Via mailings lists and websites related
to the projects, we found that the minimum number of con-
tributors that received the invitation to participate in the
questionnaire was 293.

Materials / Data collection: For the online survey we used
the PHP /MySQL based survey tool UCCASS. This made it
simple to extract the data in a variety of data formats, once
the survey had been completed.

Data Analysis: The data analysis was conducted in two
parts. First we extracted all the data from the online ques-
tionnaire, mapped the quantitative data in diagrams and
graphs and organized all the qualitative data in sections re-
flecting the three research areas of the questionnaire (Figure
1). We performed the actual analysis through use of con-
densation of meaning. This method covers the idea that the

Project Contacted | n | Description c Contributor countries
Mplayer yes 1 | A multimedia player for Linux 16 | Germany

The GIMP yes 5 | An image editing program 6 USA, Germany, Australia, France
Kopete yes 5 | An instant messaging client 6 Brazil, Chile, Germany, UK, Turkey
GNU cash yes 1 | A budget program for Linux 1 UK

Gnome yes 1 | Desktop environment 50 | Denmark

Abiword yes 1 | An open source word processor 11 | UK

mmsv2 yes 2 | A system to play multimedia files on a TV 1 Denmark, Sweden
Gnumeric yes 2 | A spreadsheet application for Gnome 1 Denmark, Australia
Xine yes 1 | A multimedia player 11 | Germany

Inkscape yes 0 | A vector drawing program 16

Konqueror yes 0 | KDE’s file manager and browser 33

Kile yes 0 | A ETgXsource editor 29

K3B yes 0 | A CD-ROM / DVD burning application 4

Amarok yes 0 | A multimedia jukebox 5

Point of sale no 1 | Proprietary retail inventory software 1 Belgium

Tuxpaint no 1 | A children’s painting program 50 | USA

Tapper no 1 | A software installation manager for Linux 1 Norway

Scribus no 1 | A Desktop Publishing application 50 | Canada

Kshower no 1 | A visualization tool for data 1 Greece

Total 24 293

Table 1: Overview of contacted projects and those who chose to participate in the survey - n indicates the
number of respondent from the particular OSS project - ¢ depicts the minimum number of contributors in

the project.

Figure 1: A mapping of the questionnaire results

researcher concentrates on the essential parts of an answer
[15] We used the data to determine tendencies and focus
areas for the follow-up interviews with the OSS developers.

3.2 Developer Interviews

Setting: To get a clear picture of the methods and thoughts
connected to usability evaluation in OSS projects, we chose
to perform interviews with three of the respondents from
the questionnaire. In the questionnaire we asked the respon-
dents if they were willing to help us further by participating
in a personal interview, and eighteen out of the twenty-four
respondents answered that we could contact them for more
information about their project.

Participants: Since the main purpose of the interviews was

to acquire knowledge about usability within open source
software we looked for respondents who had the role of us-
ability tester or project manager. The role of project man-
ager was relevant since we wanted to attain knowledge on
how OSS projects were administered in regards to usability.
In the questionnaire respondents selected the various roles
that they had in their OSS project. We used this to se-
lect respondents, who had indicated that they were - among
other roles - project managers or usability testers, for follow-
up interviews. This screening process resulted in the selec-
tion of three OSS contributors for the follow-up interviews;
two project managers and one usability tester. One of the
project managers and the usability tester were both involved
with the Kopete instant messaging application and the sec-
ond project manager was the main developer on mmsv2, a
system to organize and play back multimedia files on a T'V.

Materials: The interviews were conducted as semi-struc-
tured interviews, based on an interview guide to make the
results comparable. As proposed by Steiner Kvale [15], the
interview guide was based on a set of thematic questions.
The thematic questions were made to ensure that the inter-
views investigated the same areas of interest, and thereby
made the results comparable. The research question lead us
to investigate the following themes:

Respondent’s motivation for contributing to OSS
Usability considerations used in the project
Frequency and place of usability evaluations
Usability as a part of the development process
Usability experts in the development team
Willingness to alter program code because of usability
problems discovered in tests

e Decision making in the project especially in regards to
usability

Data Collection: As the respondents were located in three
different countries we contacted them separately and sug-
gested interview methods according to what was possible
and convenient for them. This resulted in one in person in-
terview and two interviews via instant messaging software.
In the in person interview we used an audio recorder for
our data collection. We later transcribed the recording, to
ease our analysis. The process of transcribing took 10 man
hours and resulted in 9 pages of text. The interviews con-
ducted through instant messaging were transcribed through
a built-in feature, that saved the conversation in an XML
file.

Data Analysis: In the data analysis of the interview we also
used condensation of meaning. First we identified a number
of topics or tendencies we found important in the transcrip-
tions. Following this we analyzed the statements in more
detail to extract the overall opinion of the respondent.

3.3 Evaluator Interviews

Setting / Participants: To get a another perspective on how
usability tests were conducted in an open source context, we
contacted the company Relevantive, located in Berlin. At
the moment Relevantive is one of the leading forces within
usability in open source projects and they develop and ad-
minister the website openusability.org, where they provide
communication between open source projects and usability
evaluators.

Materials: We performed the interviews over a six hour
span, where we first conducted a two hour focus group in-
terview with the five employees. Hereafter, we had personal
interviews with two of the employees and finally we had the
opportunity to observe them while they conducted a usabil-
ity test of an OSS product. The focus group interview was
conducted as a semi structured interview, based on an in-
terview guide with seven themes we wanted to discuss:

Background information about Relevantive
Test procedures of OSS

Usability evaluation

Communication with OSS developers

K Desktop Environment (KDE) guidelines
Remote usability evaluation

OSS and usability in general

For the individual interviews we did not use a pre-con-
structed interview guide, but instead we used the data col-
lected from the focus group interview to find new themes we
wanted to explore further.

Data Collection: We used a combination of audio recording
and note taking to collect data. The focus group interview
was recorded on a laptop, and later transcribed. The pro-
cess of transcribing took 16 man hours and produced 15
pages of text. The individual interviews were not recorded,
but all three moderators took notes. Immediately after the
individual interviews the three moderators compared notes
and gathered these in a single text document. This process
took 2 hours and resulted in 6 pages of text.

Data Analysis: For the data analysis we used the same pro-
cedure as in the developer interviews.

4. RESULTS

Through the empirical studies we attained knowledge on
the perception of usability in OSS by both developers and
usability professionals. Furthermore, we got an insight in
the current practice of usability evaluation in OSS projects.
The results covered the following themes:

e The OSS contributors

e Opinions about usability

e The OSS development process

e Usability evaluation methods in practice

41 TheOSSContributors

Contributors to OSS are highly ideological. Initially we
wanted to investigate who the OSS contributors were and
what their motivation for participating in OSS development
was. In the questionnaire the respondents primarily con-
sisted of males between 19 and 40. This is comparable to
the Boston Consulting Group survey that found the aver-
age age of OSS contributors to be 30 years [16]. In the
questionnaire and in the interviews we found that the main
motivation for contributing to OSS for both developers and
usability experts was ideology. There was a general feeling
that contributing to OSS was the right thing to do. In the
questionnaire answers 88 per cent of the developers chose
‘To strengthen free software’ as their motivation (Figure 2)
and the interviews with developers and usability profession-
als supported this. Another finding was that only one person
was motivated because he was getting paid by an employer.
This underlined the ideological foundation we found OSS
developers to base their contribution on. In addition, 54
per cent of the questionnaire respondents chose ‘Commu-
nity reputation’ as a motivation. We consider the people
who prioritized strengthening of free software or community
reputation to be the ones who potentially would have an
interest in increasing the market share of of OSS by making
it more accessible to mainstream users.

Number of respondents
~

41 3

1
0

To strengthen free Community Intellectually Professional Improve skill Paid by employer Other
software reputation stimulating status

Motivation for participating

Figure 2: The motivation for developers to con-
tribute to OSS. The 24 respondents could choose
more than one motivating factor.

Contributors to OSS want challenges. The results of the
questionnaire showed that 75 per cent of developers con-
tributed to OSS in order to improve their skills and 88 per

cent wanted to be intellectually stimulated. The technical
challenge as a motivating factor was also evident in the inter-
views with OSS contributors. A project manager explained
that the idea for his OSS project came about “because at the
time when I started it, there weren’t any multimedia systems
actually that was either open source or closed software”. An-
other project manager explained that he initially needed a
program to chat with his girlfriend and therefore wanted to
develop a system that allowed him to do so. One third of
the questionnaire respondents furthermore stated that they
were motivated to contribute to OSS because of ‘Professional
status’. We interpreted this to be similar to improvement of
skill in the way that OSS contributors feel that they develop
themselves and gain knowledge by their involvement in OSS.
The interviewed usability professionals explained that they
got valuable experience from their involvement with OSS.
The immediate effect that a usability evaluation resulted in
was very satisfying and a great motivation for further in-
volvement in OSS. For instance the results of Relevantive’s
usability evaluation of the German edition of Wikipedia, an
open source on-line encyclopedia, were also implemented in
the international edition of Wikipedia. This differed greatly
from their co-operation with commercial software compa-
nies, where consultant reports often resulted in only minor
changes to the software - or none at all.

In short, OSS contributors are mainly motivated by an ide-
ological belief in free software and to be intellectually stim-
ulated. Developers as well as people with usability expertise
also feel that they receive valuable skills and experience from
their involvement with OSS and they enjoy the challenges
involved with OSS development.

4.2 Opinions about Usability

We wanted to investigate whether OSS contributors were
positive towards usability and how much they knew about
it. Hence, we explored this subject in the interviews and in
the questionnaire survey.

In principle usability is important. The majority, a total
of 83 per cent, of questionnaire respondents regarded the
importance of usability as either ‘high’, ‘very high’ or ‘ex-
tremely high’. Only 13 per cent considered it ‘moderate’, 4
per cent stated ‘slight’ and nobody thought it had no impor-
tance (Figure 3). Two of the OSS developers that we inter-
viewed stated that usability had extremely high importance
in the questionnaire. One of them explained that some de-
velopers see usability as a trivial task which is not interesting
nor intellectually stimulating; “...hackers code for fun, and
sure it is more fun to add support for some protocol feature
than firing a dialog for grandma”. The third developer we
interviewed answered that usability had only slight impor-
tance in the questionnaire. In the interview we investigated
this and the main reason was that he developed the system
as a hobby and that a large user base was not his goal.

The people at Relevantive considered the importance of us-
ability extremely high. Their experience was that especially
the young developers had usability as a high priority while
some of the older developers were reluctant. We did not have
enough information about the respondents in the question-
naire to support this notion though.

None Slight
4%

Moderate

13%

Extremely high
o

High
17%

Very high
37%

Figure 3: The priority of usability for the OSS de-
velopers in the questionnaire.

Although the questionnaire revealed a high priority of us-
ability among OSS contributors it should be considered,
whether these good intentions are in fact used in practice.
The interviews showed that some developers have a prag-
matic view on usability and find it more interesting to de-
velop new features than correcting usability problems in the
user interface.

Focus area Key words n

Effectiveness Accuracy, completeness, | 7
productivity

Efficiency Learning time, intuitiveness, | 16
resources spent

Satisfaction Attitude to system, enter- | 1

tainment value

Technical property | Functionality of system 3
No category Did not provide definition 1
Total 28

Table 2: The focus areas for the 24 definitions of
usability. The value n = 28 is a result of 4 definitions
that had multiple focus areas.

There is confusion about the definition of usability. Though
OSS contributors wished to develop software which was easy
to use, the definitions of the term ‘usability’ in the ques-
tionnaire varied considerately. We divided the definitions
into three focus areas corresponding to the 1S09241 defi-
nition: Effectiveness, Efficiency and Satisfaction [10]. The
definitions that did not relate to any of these focus areas
were categorized as either ‘Technical property’ or ‘No cate-
gory’ (Table 2). Efficiency was the center of focus for 16 of
the definitions, for instance “Usability is the science that’s
concerned with how quickly/easily a user is able to perform
useful tasks with a given system”. Some of these definitions
were focused on intuitiveness and put emphasis on the af-
fordance of the user interface and user centered design: “A
user should be able to use the basics of the program with-
out any help of documentation. This is basically done by
building a GUI which maps to the users mind space. like
putting a dustbin where you’re gonna delete files”. Another
respondent defined usability very brief but still emphasized
the importance of intuitiveness “If your grandma can use
it”. Seven definitions were instead focused on effectiveness.

For instance one respondent stated that usability was: “Al-
lowing a user to perform tasks with as little diversion as
possible”. Three of the OSS contributors who participated
in the questionnaire defined usability based on some techni-
cal attribute of the program. One of them defined usability
“Within development: 1. Tools that do not get in the way of
development. 2. Security through the use of GnuPG. After
development: 1. Documentation. 2. Accessible bug reports.
3. Responding to users. 4. Internationalization. 5. Lo-
calization” another simply defined usability as “A working
thing, that works when requested to work”. These definitions
revealed an alternative, developer centered understanding of
the term usability.

Overall a high number of the OSS contributors who partici-
pated in the questionnaire survey showed an understanding
of at least one dimension of the term usability. Most em-
phasized efficiency as the most important aspect of usability
and only few definitions covered more than one of the focus
areas efficiency, effectivity, and satisfaction. None of the def-
initions of usability included all three focus areas and some
definitions were simplified and arguably not easy to use in
practice. Finally, three definitions were focused on aspects
outside the scope of the ISO definition of usability. This
confusion must be taken into consideration in relation to
the high priority of usability among OSS contributors that
we identified.

Usability experts are only advisors. Though most OSS con-
tributors wanted a higher degree of usability in their soft-
ware, they were reluctant to include usability experts di-
rectly in the development process. OSS contributors clearly
stated that they were afraid that direct involvement of us-
ability experts, especially in decision making, would overrule
the democratic way of OSS, since it would be difficult to have
a democratic debate against the only expert on the matter;
“Makes no sense to have 1 person deciding how the interface
should look. I prefer the independent group approach. Fits
better in the OSS model”. Another contributor described
the possibility of contributions from usability experts as:
“It’s a bit difficult. OSS people don’t like too much to be
told what to program. The human resources flow according
to their personal interests, and maybe an usability expert by
itself would not be sooooo useful”. However, OSS developers
were positive towards external usability evaluations where
the experts contributed with a usability report of the tested
program: “From time to time we get some usability reports
from professional people. Once in a while they arrive
and bless us with their wisdom. lol.”. Despite the appre-
ciation of the knowledge of usability professionals and the
usability reports, we sensed a gap between the technically
minded contributors and those with a usability background.
We consider it a paradox that OSS developers on one hand
wanted a higher degree of usability in their software and
furthermore appreciated the inspections made by external
usability experts, yet the usability evaluation effort should
ideally be performed by external persons or groups in the
role of advisors.

We learned that in practice usability is not the first priority
of all developers since most found technical challenges more
interesting. Furthermore, there was reluctance to include
usability experts in the decision making process because of

a fear that the knowledge would make it difficult for others
to influence the design of the user interface. OSS contrib-
utors were mainly positive towards usability but there was
some confusion about exactly what the term covered. Co-
operation between OSS developers and usability profession-
als is ideally performed with the usability people in the role
as external advisers.

4.3 The OSS Development Process

OSS development reflects a babbling bazaar. We wanted to
identify characteristics of OSS development methodology in
order to compare the finding with a conventional software
development paradigm. We identified four important factors
of OSS development.

e Development in short iterative cycles
e Usability is an add-on property

e Democracy is important

e Trust is crucial

The development process is characterized by short itera-
tive cycles. When we asked the developers about the de-
velopment process in the OSS community we found that
all developers independently thought that the development
process was characterized by development in small iterative
steps. Two of the developers compared the basics of OSS de-
velopment to the extreme programming (XP) development
paradigm [2]; “I’m an XP (development methodology) fan,
so I start doing things in short steps. I add functionality and
elements to the interface as needed, but try to group them in
a meaningful way”. XP is an unconventional development
methodology with a strict focus on short development cy-
cles, frequent testing and direct involvement of the customer.
However, despite the apparent simplicity of XP the method
relies on a set of procedures. To mention a few: Frequent
meetings between developers and users, pair programming
and extreme emphasis on tests. Hence, OSS development
contains elements of XP but arguably others have been left
out. Nevertheless, OSS is developed iteratively and does
contain testing. This iterative method gives the opportu-
nity to include usability evaluation as an element in each
cycle. One of the interviewed OSS contributors stated “I
have to confess most of this stuff is not yet implemented”
about an external usability evaluation that was more than
six months old. Therefore the short iterative cycles of the
OSS development process need to be considered by usabil-
ity professionals providing feedback to developers; feedback
needs to be realistic and possible to implement within the
current release cycle.

Usability is regarded as an add-on property. A typical un-
derstanding of usability was that it could be incorporated at
a certain stage of the development process, for instance once
the program could be compiled or had the desired function-
ality. The analysis showed that the developers had different
ideas on when usability belonged in the development pro-
cess. We identified four main stages (one respondent was
not sure what to answer):

e In the beginning (12)
o Iteratively (5)

e In the end (1)
e During testing / QA (5)

This showed that there was no shared opinion about where
in the development process the main usability effort should
be made. Still, half of the respondents stated that it should
be considered in the beginning of the development process.
For instance one respondent stated that the usability effort
should be “At the beginning. Usability is harder to bolt on
later, although it can be added later at the expense of cre-
ating a whole new interface”. There was difference of opin-
ion even between developers contributing to the same OSS
project. For instance contributors to Kopete independently
stated that usability should be considered in four different
stages. This showed that there was no general agreement
on how usability should be incorporated in some projects.
The low number of OSS contributors who answered that us-
ability considerations should be an iterative process suggests
that many considered usability as an add-on property. The
usability professionals at Relevantive shared the impression
that OSS developers often saw usability as an add-on prop-
erty of the software and not as an integrated part of the
development process.

Democracy is important in the OSS development process.
Compared to traditional software development there was lit-
tle formal leadership; “OSS people don’t like too much to be
told what to program. The human resources flow according
to their personal interests...”. As opposed to conventional
software development we noticed that even though almost
every OSS project had at least one project manager associ-
ated, this title did not equal leadership of the project. Often
the title project manager reflected the person who founded
the project rather than the person who kept track of every-
thing or delegated tasks to other contributors. Still, state-
ments were ambiguous “I am the original author of Kopete.
Kopete has no project manager. I am still the benevolent
dictator. We have hardcore contributors, release dudes, etc
but nobody manages the project”. On one hand he stated
that there was no hierarchy with a designated project man-
ager, on the other hand the particular project manager un-
derlined his central role in the decision making process -
even if the part about dictatorship was said in a humorous
tone. Another of the interviewed persons stated “Some per-
sons, the ‘fathers’ of the project, have an outspoken voice
and can persuade more easily about some issues” In gen-
eral, the project managers interviewed stated that one of
the main concepts of OSS was the democratic way of devel-
oping software. This did not call for the project managers
to make decisions concerning the project without involving
the other project contributors. They stated that most ma-
jor decisions were made democratically by everyone involved
and discussed for instance on the mailing list.

Trust is crucial in the development process. Co-operation
with the OSS community is based on trust and both develop-
ers and usability professionals contributing to OSS need to
be prepared to build a rapport with other contributors. For
instance Relevantive experienced that almost all problems
faced when working with OSS developers were grounded in
lack of trust, which made developers ignore suggestions from
usability professionals. On the other hand the developers
stated that the changes “has to make sense, and we need to

eval if it can be done. Some changes are too big to be done,
not because of the idea itself, but because of the underlying
code”. The nature of OSS, where contributors rarely meet
in person, makes it necessary to judge others based on past
merits. It can be difficult for a usability expert to display
merits, since usability improvements are more difficult to
measure than the programming of a new feature. Relevan-
tive stated that when there was no face-to-face contact with
the other person, the task of building trust could be the
most strenuous task of co-operating with OSS developers -
but none the less crucial for being heard. Relevantive found
that attending various OSS conferences and gatherings was
an excellent way to get acquainted with OSS developers and
ultimately build the necessary level of trust. When trust
had been established, the direct contact between usability
professionals and developers resulted in a work environment
which, in the view of Relevantive, was very gratifying.

We found it difficult to define the OSS development pro-
cess in detail, and it may in fact be questioned whether a
uniform ‘OSS development model’ exists. Interviewed OSS
contributors agreed that the development model held sim-
ilarities to methods like XP. They used short release cy-
cles of the programs and implemented new features, without
going through the long analysis and design stages of some
conventional software development methodologies. Though
frequent testing during the entire development process is
a keystone of XP, we noticed that more than half of the
contributors thought usability belonged in the beginning of
development. Democracy is an ideal for OSS contributors
in the way that discussions should be open and equal to ev-
eryone. The organization of work within OSS development
depends highly on trust; contributors are measured on their
previous merits. Overall we observed several factors that
support Raymond’s notion of the ‘babbling bazaar’ [20].

4.4 Usability Evaluation Methodsin Practice

Common sense was the primary evaluation method. We
wanted to investigate how usability evaluation fits into the
OSS development process. Moreover, we wanted to iden-
tify some of the current usability methods adopted by OSS
contributors. In the questionnaire survey 79 per cent of
respondents answered that they followed common usabil-
ity conventions and the same number of respondents stated
that they used usability guidelines. Active usability evalua-
tion was not used as frequently; 42 per cent answered that
they used expert inspections, but they were rarely performed
by usability professionals, 21 per cent mentioned a remote
usability evaluation and about 8 per cent used a usability
laboratory (Figure 4).

Guidelines replace usability evaluation. The methods most
often used were formal or informal guidelines, and inspira-
tions from similar programs. One set of guidelines often
mentioned in the interviews were the KDE user interface
guidelines. These guidelines define standards for menu lay-
outs and user interface structure within the KDE and in
addition it also provides a programming framework for ap-
plication design. In the interviews the framework was high-
lighted as a usability enhancing factor since “basically the
only way to escape the guidelines is when you try to make a
strange ui component, which is not part of the framework”.
Nevertheless, the notion that this would ensure a high degree

Number of respondents
N

2

= [
0 [
No usabilty Usabilty Other Synchronous Inspection by Follow common Userinterface

evaluaion evaluation in remote usability usability expert usability quidelines
Iaboratory evaluation

Evaluation methods used

Figure 4: The developers were asked which evalua-
tion methods were used in their project if any. The
respondents could choose more than one method.

of usability was rejected by the interviewed usability profes-
sionals, of whom some had been deeply involved with the
development of the KDE user interface guidelines. Though
they considered the emergence of standards and consistency
to be some of the most important parts of usability, they
firmly stated that guidelines alone were not sufficient; “Peo-
ple learn to use a program even if the design is stupid - so
make standards even if they are poor ... guidelines are not
the solution to all usability problems”. Guidelines were gen-
erally good as they were helping to make standards in the
look and feel of applications and provide the end user with
a consistent experience. However, the usability profession-
als also said that “guidelines can only be made for general
items and not for specialized functions” and they did not
think guidelines could replace usability evaluation.

In regards to consistency an OSS developer mentioned that
“I have the opinion that even if some interface paradigm is
not so ergonomic, it should always be consistent”. Another
OSS developer had knowledge about some usability princi-
ples and used it in his own design of user interfaces: “There
are some conventions I personally use, like the 7 rule. It
states that the human being can take in one shot only about
seven elements on a given group. If it’s more than 7, the
brain starts to group the elements in smaller groups it can
handle. So if you have an intuitive interface it will be bet-
ter if you have less visible options”. He explained that he
had never received formal usability training and that he had
learned about usability by reading books and from internet
based sources.

Though formal user interface guide lines were used and though

some OSS developers showed knowledge about usability prin-
ciples, we got the impression that most people just used
common sense and inspiration from similar programs.

Money is a deciding factor. Only two of the respondents
mentioned that they had used laboratories for usability eval-
uation. One of the interviewed developers thought that the
economy of accessing a laboratory was a key issue: “I think
that the usability aspect is sort of harder for open source
projects to do, so some sort of easier way or cheaper way
to do this would actually be very welcoming, I would think,

because you can’t rent a decent lab”. Usability evaluations
of OSS conducted by Relevantive were often performed as
inspections by the professionals themselves. This testing
method was not chosen because it was deemed the most us-
able, however, often it was the only possible test form. In
most cases Relevantive did not receive any funding to finance
their evaluation of OSS software. Hence, they were not able
to pay ‘real users’ to participate in conventional usability
testing in a dedicated laboratory, though they considered
this a more effective evaluation method.

Remote usability evaluation is not a substitute for a labo-
ratory evaluation. Five questionnaire respondents indicated
that they used remote usability evaluation methods (Figure
4). When we investigated this approach to usability evalua-
tion further during the interviews, we discovered that their
idea of remote usability evaluation concerned troubleshoot-
ing of technical problems - for instance by connecting to a
users computer and performing ‘live’ bug-fixing. The usabil-
ity professionals at Relevantive were hesitant towards using
remote methods where a conventional think aloud evaluation
was performed remotely. In their opinion facial expressions
were vital for identifying usability problems. A remote setup
would also introduce too many problems, if the test users
had to setup an environment consisting of web-cams, shared
desktop and audio connections by themselves. A number
of studies of remote usability testing mentioned the bene-
fits of letting the test user operate in their normal working
environment without the stress of a room full of recording
equipment and observers [1, 5, 12, 23, 28]. At Relevantive
they did acknowledge such advantages, however, they also
thought that the current general level of usability was so
low that the benefits of natural settings would not be ex-
ploited. They also thought that the users real environment
would only add to the difficulty of performing the usability
evaluation.

5. DISCUSSION

It remains to be seen whether the OSS community can pro-
vide user friendly interfaces to the same extent as conven-
tional software development. During our research and in the
empirical studies we noticed four common mantras about
OSS and usability that we wish to challenge and discuss:

e OSS development is always democratic
e OSS will solve the ‘software crisis’
e Usability problems are just bugs

5.1 OSSDevelopment is Always Democratic

Is OSS democratic? We found that OSS projects in general
had flat organizational structures and that OSS develop-
ers in our study praised the democratic organization of the
development process. Furthermore, 25 per cent of the re-
spondents in the questionnaire survey indicated that they
contributed because of ideological reasons. The survey by
Boston Consulting Group showed similar results [16]. Yet,
you could argue whether the OSS development process is in-
deed democratic. Admittedly the development process and
the flow of communication is open to anyone, however, the
‘ideal’ situation with no formal leader is not necessarily a
sign of democracy. Raymond instead chose to describe the
OSS development model as ‘Meritocratic’, indicating that

the previous contributions of the developers founded the
basis of the social structure and influence on future deci-
sions [20]. Trudelle stated that UI designers involved with
OSS should be “willing and able to engage the beast, for
they can only get the needed leverage from impressing those
doing the work - it’s a meritocracy out there” [29]. This
was the exact point that our interview with both Relevan-
tive and the OSS developers revealed; a level of trust must
be built through merits in order to participate fully in the
development process. One of the interviewed OSS contribu-
tors jokingly referred to himself as “the benevolent dictator”
because he had initiated the project, and others supported
the notion that there is a level of hierarchy among OSS
contributors. However, these sociological patterns of OSS
still need further research to be fully understood. For in-
stance Feller and Fitzgerald called for further examinations
that clarifies whether the ideals of collective public good,
selfless behaviour, and absolute democracy are more than
just an utopian illusion with no founding in the practical
development process [7]. We found that democracy is one
of the OSS ideals and there is indeed an open discussion
among contributors; yet we also noticed that there are in-
formal power structures in OSS development that are not
necessarily founded in democracy.

5.2 OSSWill Solvethe ‘Software Crisis

Will the OSS approach solve current software problems?
The notion of a ‘software crisis’ has been evident during
the last 30 years of computing. It covered the problems of
delivering quality software that lived up to the requirements
of the users, staying within budgets and deadlines [4]. In a
famous paper, Brooks stated that “as we look to the horizon
of a decade hence, we see no silver bullet. There is no single
development, in either technology or in management tech-
nique, that by itself promises even one order-of-magnitude
improvement in productivity, in reliability, in simplicity” [8].
Though methods for structured software development have
evolved substantially, the media still report of failed soft-
ware projects with the mentioned problems. It has been
claimed that OSS development could possibly solve some of
these problems [7]. The latest version of commercial sys-
tems like Microsoft Windows has a long release cycle, has
been repeatedly delayed, and core features has been can-
celed during the development process. This suggests that
the concept of ‘cathedral building’ is getting increasingly
difficult as software complexity rises. Raymond’s argument
is that software is getting increasingly complex and that to-
day operating systems and other large programs can not be
“built like cathedrals, carefully crafted by individual wizards
or small bands of mages working in splendid isolation, with
no beta to be released before its time” [20]. The ‘Bazaar’
approach of OSS is the opposite but Raymond admits that
it is not usable in all situations: “It’s fairly clear that one
cannot code from the ground up in bazaar style. One can
test, debug and improve in bazaar style, but it would be very
hard to originate a project in bazaar mode. Linus didn’t
try it. I didn’t either. Your nascent developer community
needs to have something runnable and testable to play with”
[20]. Arguably, the OSS approach is not a full scale develop-
ment model but rather an underlying philosophy with a set
of principles to use during development. In the interviews
OSS contributors compared OSS development to XP in re-
gards to small development cycles and a well maintained

prototype. Methods like XP has evolved as a reaction to
shortcomings of conventional software development when it
comes to rapid software development [2]. The bazaar ap-
proach of OSS combined with the emphasis on testing in
XP has the potential to solve some of the problems in re-
gard to delays and code quality, however imagining that it is
the ‘silver bullet’ for all types of development projects would
be wrong.

5.3 Usability Problemsarejust Bugs

Should usability problems be handled just like other ‘bugs’,
and can the usability effort of OSS be handled within the
current development framework? Wilson and Coyne sug-
gest two fundamental approaches to track usability issues.
One of them handles usability issues as regular bugs that
are added to the bug database like any other problem, the
other suggests a separate infrastructure to handle usabil-
ity issues [31]. The latter approach has been taken by the
usability professionals at Relevantive. They initiated the
openusability.org project which goal was to bridge the gap
between OSS developers and people with usability exper-
tise. Openusability.org is a web-based on-line forum where
it is possible to submit usability reports or request evalu-
ations. According to Wilson and Coyne there are advan-
tages and disadvantages to this separation from other bugs
in the system. It puts usability out of the mainstream of
development and makes it less visible to other developers.
Furthermore, if usability issues are not in the general bug
reports, they are less likely to be fixed. On the other hand
they argue that comparing usability issues in the context of
programming bugs is a risk, since a bug that makes the sys-
tem crash obviously will get a high priority compared to a
‘cosmetic’ problem in the user interface. They also mention
that current bug databases do not have sufficient categories
to fully describe usability issues [31]. In our study we found
that OSS developers prioritized an open and free negotiation
process of potential changes to the project. The negotiation
process within OSS has been the subject of a study by San-
dusky and Gasser [24]. They examined negotiation in the
context of the OSS bug report database Bugzilla and found
that negotiation takes place in 61 per cent of bug reports
and 27 per cent contains evidence of negotiation of several
issues. The open negotiation process can sometimes cause
problems making decisions. Trudelle described Netscape’s
experience about this in the Mozilla project. He found out
that although the open discussion where everyone could par-
ticipate was beneficial, sometimes it was more productive to
create a ‘by-invitation’ group of UI owners and stake hold-
ers to settle issues and make authoritative decision, that
had proved difficult to agree upon [29]. Hence, this experi-
ence should be considered by those developing systems for
OSS usability collaboration; who has the authority to end
an intractable argument and how will heated discussions be
resolved?

We can not say for sure how usability problems are dealt
with most effectively within OSS. However, we find it inter-
esting to see the progress of current usability initiatives and
the experience with these systems will tell, whether it works
better than simply treating usability problems as a bug.

6. CONCLUSION

In this study we explored opinions about usability among de-
velopers and usability experts involved with OSS. Further-
more, we gathered information about the current practice
of usability evaluation. The study included a questionnaire
survey, interviews with OSS developers and interviews with
usability professionals involved with OSS. This provided us
with multiple perspectives on the subject of usability within
OSS.

Overall we found that the developers were interested in us-
ability but in practice most of the effort was based on com-
mon sense. They appreciated external usability evaluations
performed by volunteer usability professionals, as long as
they respected the decision making process. The usability
professionals agreed that usability evaluation should be per-
formed by external groups of experts.

Usability evaluation has not been the top priority of many
OSS projects but attention to the subject is increasing among
OSS developers. Moreover, there are several obstacles for
usability work within OSS. Developers ought to have a ba-
sic understanding of usability theory in order to integrate
usability considerations in the development process. De-
velopment is performed geographically distributed. Finally,
the lack of resources and evaluation methods fitting into the
OSS paradigm poses a problem.

We used mailing lists, forums and chat to contact potential
respondents and we received a total of 24 answers to the
questionnaire. Any reference in this article to quantitative
data from the questionnaire should be considered indicative
only. There is potential bias as two of the interviewed devel-
opers were associated with the same project. The interview
with the usability professionals at Relevantive was also bi-
ased since all the interviewed people related to the same
company.

7. ACKNOWLEDGMENTS

We would like to thank the staff at the Human Computer
Interaction Research Unit at Aalborg University. We would
especially like to thank our project counsellor Jan Stage for
his invaluable feedback, suggestions and criticism. A special
thank goes to Anders Rune Jensen, ‘Taupter’ and Duncan
who participated in the interviews. Furthermore, we would
like to thank Ellen Reitmayr, Bjorn Balazs and the rest of
the staff at Relevantive for their co-operation and hospitality
during our visit in Berlin. Finally, we would also like to
thank all the participants in the questionnaire survey.

8. REFERENCES
[1] V. Bartek and D. Cheatham.

experiences in remote usability evaluations.
http://www-3.ibm.com/ibm/easy/cou_ext.nsf/Publish/

507OpenDocument&../Publish/1116/8File/paper1116.pdf,

2004.
[2] K. Beck.
Extreme programming explained: embrace change.
Addison-Wesley Longman Publishing Co., Inc., 2001.
[3] C. Benson, M. Muller-Prove, and J. Mzourek.

Professional usability in open source projects: Gnome,
openoffice.org, netbeans. In CHI ’04: CHI ’0/
extended abstracts on Human factors in computing

10

6

(10]

(11]

(12]

(13]

(14]

(15]

systems, pages 1083-1084, New York, NY, USA, 2004.
ACM Press.

E. W. Dijkstra. The humble programmer. Commun.
ACM, 15(10):859-866, 1972.

S. Dray and D. Siegel. Remote possibilities?:
international usability testing at a distance.
interactions, 11(2):10-17, 2004.

S. Eklund, M. Feldman, M. Trombley, and R. Sinha.
improving the usability of open source software:
Usability testing of staroffice calc.

http://www.sims.berkeley.edu/ sinha/opensource.html,

2001.

J. Feller and B. Fitzgerald. A framework analysis of
the open source software development paradigm. In
ICIS ’00: Proceedings of the twenty first international
conference on Information systems, pages 5869,
Atlanta, GA, USA, 2000. Association for Information
Systems.

J. Frederick P. Brooks. No silver bullet: essence and
accidents of software engineering. Computer,
20(4):10-19, 1987.

N. Frishberg, A. M. Dirks, C. Benson, S. Nickell, and
S. Smith. Getting to know you: open source
development meets usability. In CHI ’02: CHI ’02
extended abstracts on Human factors in computing
systems, pages 932-933, New York, NY, USA, 2002.
ACM Press.

E. Frgkjeer, M. Hertzum, and K. Hornbaek. Measuring
usability: are effectiveness, efficiency, and satisfaction
really correlated? In CHI ’00: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 345-352, New York, NY, USA, 2000.
ACM Press.

L. Gasser and G. Ripoche. Distributed collective
practices and f/oss problem management. In
Conference on Cooperation, Innovation and
Technologie. CITE2003, 2003.

D. Gough and H. Phillips. Remote online usability
testing: Why, how, and when to use it.

http://www.boxesandarrows.com/view/remote_online_usability_testing.-

why_-how_and-when_to_use.it,

2003.

O. S. Initiative.
the bsd license.

http://www.opensource.org/licenses/bsd-license.php,

2006.

J. Johnson-Eilola. Open source basics: definitions,
models, and questions. In SIGDOC' ’02: Proceedings
of the 20th annual international conference on
Computer documentation, pages 79-83, New York,
NY, USA, 2002. ACM Press.

S. Kvale.
Interview - En introduktion til det kvalitative
forskningsinterview.

Hans Reitzels Forlag, 2001.

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

24]

[25]

[26]

[27]

[28]

K. Lakhani and B. Wolf.
bcg hacker survey.
Boston Consulting Group

http://www.ostg.com/bcg/BCGHACKERSURVEY-0.73.pdf,

2002.

D. M. Nichols and M. B. T'widale. Usability and open
source software. Technical Report 10/02, Department
of Computer Science, University of Waikato, 2002.
Working Paper Series ISSN 1170-487X.

P. Nielsen.
Produktion af viden - en praktisk metodebog.
Teknisk forlag, 1998.

S. Pemberton. Scratching someone else’s itch: (why
open source can’t do usability). interactions, 11(1):72,
2004.

E. Raymond. The Cathedral and the Bazaar: Musings
on Linuz and Open Source by an Accidental
Revolutionary. O’Reilly, feb 1999.

E. Raymond. The revenge of the hackers. O’Reilly and
Associates, 1999.

E. Raymond.
why open source will rule.

http://news.zdnet.com/2100-3513-22-871366.html,

2002.

M. Safire.
remote moderated usability.
http://www.upassoc.org/usability_resources/-

conference/2004/im_safire.html,

2004.

R. J. Sandusky and L. Gasser. Negotiation and the
coordination of information and activity in distributed
software problem management. In GROUP ’05:
Proceedings of the 2005 international ACM
SIGGROUP conference on Supporting group work,
pages 187-196, New York, NY, USA, 2005. ACM
Press.

R. J. Sandusky, L. Gasser, and G. Ripoche. Bug
report networks: Varieties, strategies, and impacts in
a f/oss development community. In MSR 2004:
International Workshop on Mining Software
Repositories. IEEE International Conference on
Software Engineering, 2004.

Smith, Engen, Mankoski, Frishberg, Pedersen, and
Benson.
gnome usability study report.

http://developer.gnome.org/projects/gup/utl_report/report-main.html,

2001.

R. Stallman.
gnu general public license.

http://www.gnu.org/copyleft/gpl.html,

1991.

K. E. Thompson, E. P. Rozanski, and A. R. Haake.
Here, there, anywhere: remote usability testing that
works. In CITCS ’04: Proceedings of the 5th
conference on Information technology education, pages
132-137, New York, NY, USA, 2004. ACM Press.

11

[29]

[30]

[31]

P. Trudelle. Shall we dance? - ten lessons learned from
netscape’s flirtation with open source ui development.
In CHI 2002. Presented at the Open Source Meets
Usability Workshop, Conference on Human Factors in
Computer Systems, 2002.

M. B. Twidale and D. M. Nichols. Exploring usability
discussions in open source development. In HICSS,
2005.

C. Wilson and K. P. Coyne. The whiteboard:
Tracking usability issues: to bug or not to bug?
Interactions, 8(3):15-19, 2001.

APPENDIX B

A Comparison of Remote Usability Evaluation Methods

A Comparison of Remote Usability Evaluation Methods

Morten Sieker Andreasen Henrik Villemann Nielsen
Department of
Computer Science
Aalborg University, Denmark

vileman@cs.aau.dk

Department of
Computer Science
Aalborg University, Denmark

sieker@cs.aau.dk

ABSTRACT

Based on an initial interest in the problems of usability eval-
uation within Open Source Software, this paper presents and
discusses results from an empirical study of remote usabil-
ity evaluation methods. The study includes a comparison
of one synchronous and two asynchronous remote usability
evaluation methods against an evaluation performed in a
state-of-the-art usability laboratory. The aim of the com-
parison was to see whether the same number of usability
problems was identified. Each of the four evaluation meth-
ods was performed with six users and the data analysis was
performed using a highly structured procedure in order to
minimize subjective bias. We found that the remote syn-
chronous evaluation method using web-cams showed results
almost identical to the laboratory evaluation. The asyn-
chronous methods identified fewer problems than the other
methods but the problems identified were mostly critical.
Remote usability evaluation can provide results comparable
to a laboratory usability evaluation.

Keywords

Usability, remote evaluation, empirical study.

1. INTRODUCTION

Remote usability evaluation is a term used when “the eval-
uators are separated in space and/or time from users” [8].
This definition states that there are two general types of
evaluations; synchronous and asynchronous. When evaluat-
ing using synchronous methods the evaluator is separated
from the user in space but not in time. On the other hand
when conducting an asynchronous evaluation the evaluator
is separated from the user in time and possibly in space.

Our motivation for researching remote usability methodol-
ogy was founded in previous research about Open Source
Software (OSS), where we examined how usability consid-
erations were thought of and implemented in OSS projects
from the perspective of developers as well as usability pro-
fessionals [2]. This study showed that there was a genuine
interest from both sides to increase the usability of OSS. It
also showed that most usability evaluation methods used in
the open source community were limited in scope. Guide-
lines and informal conventions were the primary elements of
the usability effort and use of conventional usability evalua-
tions was limited partly due to the lack of access to usabil-
ity laboratories. The usability problems in many OSS user
interfaces are well documented [6, 12, 13, 24, 26] and we
found it interesting to investigate whether evaluation meth-

Simon Ormholt Schrader
Department of
Computer Science
Aalborg University, Denmark

ormholt@cs.aau.dk

ods existed which were suitable for use in the context of OSS
development.

OSS development is characterized by distributed collabo-
ration between contributors to a specific project; a project
can have hundreds of contributors spread worldwide [10, 23].
This makes it hard to employ conventional usability eval-
uation methods. Arguably methods suitable for the OSS
community can with ease be performed by external usabil-
ity evaluators. In this article we examine how three different
approaches to remote usability evaluations compare to a lab-
oratory evaluation in regard to the identification of usability
problems.

Addressing the key question, this article describes an empir-
ical study performed to investigate whether remote evalua-
tion methods are comparable to conventional usability eval-
uation. In section 2 we describe previous research about
remote usability evaluation and how this study contributes
with new knowledge. In section 3 we present the meth-
ods of the various evaluation types while also describing
the method used for data analysis. In section 4 we present
the results of the empirical study, and in section 5 we dis-
cuss themes related to the research question based on overall
findings and finally we conclude on the key question of this
article in section 6.

2. RELATED WORK

The field of remote usability evaluation lacks a thorough
methodical comparison of several methods. In existing lit-
erature we identified five methods whereof two were syn-
chronous and three were asynchronous (Table 1). The ma-
jority of literature concerning remote usability evaluation
simulates a conventional laboratory think aloud evaluation
by using video and or audio connections plus remote desktop
sharing. Especially the research carried out by Dray et al,
Whitaker, and Hammontree et al described how this method
has been used and what the advantages and disadvantages of
the method were [11, 15, 19]. Some of the advantages found
included cost efficiency, a potentially more diverse pool of
suitable test users, and that the method identified the same
problems as a think aloud evaluation performed in a labo-
ratory - in some cases even more. Dray et al also pointed
to problems connected to this evaluation method. In their
study they found that it was difficult to build trust between
moderator and user, it demanded longer setup time, and if
there was a malfunction in the hardware or software it was
very difficult to re-establish the test setup [11].

Synchronous Asynchronous
Usability Usability in- | Self admin- | Self report of | Logged wuse
evaluation spection istered web | critical inci- | pattern
study dent
Text communication | [3, 4, 5] 22 16, §]
Questionnaire or | [3,4,5,19, 17, | [22 [25] 17] [32, 29]
multiple choice 31, 1]
Workflow logging 17 22 [32, 29]
Screen shot (still im- | [15 22
age)
Live observation 28, 14, 3, 4, 5]
Audio communica- | [28, 14, 3, 4, 5, | [9] [17]
tion 19, 7, 17, 31,
15, 1, 11]
Video capture of | [28, 14, 3, 4, 5, | [9] (16, 8, 17]
screen 19, 7, 17, 31,
15, 1, 11]
Video capture of face | [19, 15, 11]

Table 1:

A few articles also describe experiments where a type of syn-
chronous remote usability inspection was performed [22, 9].
Others like Hartson et al discussed strengths and weaknesses
of several kinds of remote evaluation and presented two case
studies [17]. Existing literature concentrate on listing pros
and cons of the various methods when used under different
circumstances. It lacks thorough descriptions of the used
methods, the process of data analysis and often the empir-
ical data is not provided. Olmsted et al performed a self
administered web study, where the user filled out a ques-
tionnaire during the test, to a conventional usability study
in a laboratory. The study revealed a number of disadvan-
tages to this remote evaluation method as there was a low
frequency of completion amongst the users, it was very time
consuming, and it provided less qualitative information [25].
Hartson et al took this a step further and tried to make the
users identify and report the critical incidents themselves.
The users were taught how to do this with minimal training
and generally the study showed that the users only missed
few of the critical issues found through conventional evalu-
ation. The method also proved to be both cost and labour
efficient as much of the work was moved from the evaluators
to the users [8, 17, 16].

Finally, articles by Scholtz and Winckler et al described the
use of automatic logging of the use patterns of the test users
in order to identify usability problems [29, 32]. They listed
the same disadvantages as Olmsted et al when analyzing
logged use patterns. The lack of accurate qualitative data
made the analysis difficult and it proved to be a lot less effi-
cient compared to conventional usability evaluation methods

[32].

As a research area remote usability evaluation is still at it’s
dawn. A common denominator which is characteristic for
the above studies is that they mainly compare one remote
usability evaluation method to a conventional method. The
articles are often vague when describing the method used for
data analysis and also present limited data as backing for
the conclusions made. The area lacks a thorough methodical
comparison of several alternatives to usability evaluation. In
this article we have performed a systematic comparison of

Table of remote usability testing methods identified in literature.

three remote evaluation methods intended to fill this void in
the exiting research.

3. METHOD

Following the methodologies presented in the related work
we have chosen to compare three types of remote usability
evaluation with a laboratory evaluation as benchmark.

Laboratory evaluation (LAB)
Remote synchronous evaluation (RS)
Asynchronous expert evaluation (AE)
Asynchronous user evaluation (AU)

The details concerning participants and the tested system
are the same for all methods so these two are described in
the following. Afterwards the specifics for each methodology
are described in more detail.

Evaluation method | Female | Male Sum

LAB evaluation 4(26,3) | 2 (21,5) | 6 (24,7)
SR evaluation 2 (26,5) | 4 (24,0) | 6 (24,8)
AE evaluation 2(26,5) | 4 (26,8) | 6 (26,0)
AU evaluation 2 (23,0) | 4 (26,0) | 6 (25,0)

Table 2: Gender representation in the four usability
evaluations. The number in the parentheses denote
the average age.

Participants: A total of 24 users, 14 male and 10 female,
participated in the four different usability evaluations. They
were all students at Aalborg University aged between 19 and
30 (mean=25.13 , SD=3) (Table 2). All participants had
experience using a computer and the internet, and the six
participants of the AE evaluation had furthermore received
formal training in usability evaluations through their educa-
tion. The 18 users who had not received usability evaluation
training were randomly assigned as test subjects to one of
the three remaining evaluation methods; LAB, RS, and AU.

The users received compensation for their involvement in
form of snacks and beverages.

System: We chose to test the Mozilla Thunderbird 1.5 (Dan-
ish version) e-mail client in all four usability evaluations. We
wanted to test a system within a domain - in this case e-mail
- that was familiar to the participants. During the screen-
ing and selection of participants we made sure that none of
them had experience using Thunderbird, however, we made
sure that they had all used an e-mail client like Outlook or
Netscape mail, so they were familiar with the basic concepts
of an e-mail application.

3.1 Laboratory Evaluation

Setting: The LAB tests were based on the think aloud pro-
tocol described by Rubin [27] and were performed in a state-
of-the-art usability laboratory. The test participants and the
moderator performed the tests in a designated test room fit-
ted with cameras (Figure 1, room A) with one-way mirrors
that made it possible to observe the tests from the control
room. Furthermore the operators in the control room (Fig-
ure 1, room C) were able to communicate with the mod-
erator via an ear-piece. The moderator and the partici-

B A

f 0

a %o
= Q

e 9V (]

Figure 1: The setting used when conducting the
LAB usability evaluation.

pants were both seated in front of the same PC. The role of
the moderator was primarily to ensure that the participants
thought aloud while performing a task, but also to proceed
to a new task if the user got stuck. Prior to the tests we
constructed nine different tasks which the users should com-
plete during the tests. The tasks included sub-tasks such as:
Create a new mail account, set up a spam filter, add a friend
to your contact list, and add a label to an e-mail.

Procedure: Initially the moderator introduced the partic-
ipants to the concept of a ‘think aloud’ evaluation. The
moderator explained that the session was being recorded
but emphasized that the recording would only be used for
research, in order to make the participant feel relaxed and
comfortable with the setup.

The participants were asked to solve the nine tasks. We did
not specify a time limit, but encouraged the participants
to try and solve all tasks without help from the moderator.
After the sessions the participants were debriefed in a short
interview about the evaluation method.

Data collection: In the LAB evaluation we recorded both
audio and video feeds. The video feed consisted of the users
desktop and a small video image of the test participants face
in the bottom right corner of the screen.

3.2 Remote Usability Evaluation

Setting: The RS evaluation was based on the literature de-
scribed in section 2. We learned that a simulated laboratory
evaluation using tools such as web-cams, remote desktop
connections and audio was the most frequently used and
effective remote usability evaluation method. Hence, we de-
signed a remote usability evaluation that took advantage of
these tools. All though it was performed inside the usabil-
ity laboratory, it was setup to simulate a remote evaluation
environment. The moderator and the participants were in

i A

olp 8

] ;

D%
fH‘ c 8V (]

Figure 2: The setting used when conducting the RS
usability evaluation.

separate rooms (Figure 2, room A (moderator) and room
B (participant)) and they could only communicate through
an audio connection and web-cams (Figure 3). The one-way
mirror between room A and B was covered with curtains.
The operators in room C, the control room, were able to
communicate with the moderator via an ear-piece (Figure
2, room C). We chose VNC and Microsoft Netmeeting as
the testing platform since this software allowed shared desk-
top and communication via web-cams. We also chose to use
Skype for the audio communication, since the audio quality
through Netmeeting was not satisfactory.

Procedure: The procedure for the RS evaluation was equal to
the LAB evaluation apart from the communication between
the moderator and the participant.

Data collection: In the RS evaluation the recorded data
consisted of the audio and video images that the modera-
tor experienced through VNC, web-cam and Skype. This
reflected a real world remote testing scenario where this
would be all the information that the moderator received.
The video feed consisted of the view of the users desktop
provided by Netmeeting and a video image from the test
participant’s web-cam in the lower right corner. The test
participant also had a web-cam image of the moderator in
the lower right corner of the screen, however, this was not
visible in the recorded material that was provided for further
analysis.

Problem severity | Delay in task completion Irritation Expected action
Small Less than 30 seconds delay Slight irritation Minor difference in expected action
Medium More than 30 seconds delay | Average irritation | Significant difference in expected action
Large Could not solve the task High irritation Critical difference in expected action

Table 3: This table provided the respondents with the information necessary to classify the problems.

Figure 3: A participant in the RS evaluation.

3.3 Asynchronous Usability Evaluations
Setting: The asynchronous evaluations were inspired by par-
ticularly one type of evaluation method identified in exist-
ing research about remote usability evaluation. Castillo et
al and Hartson et al described positive experiences with a
method called ‘Self report of critical incident’ [8, 17, 16]. In
this evaluation method the participants not only performed
the tests but also identified the main problems of the tested
software, and thereby minimized the workload for the evalu-
ators. We wanted to see if users without any formal usabil-
ity knowledge were able to generate useful results. Thus,
we chose to divide the method into two different parts; an
asynchronous evaluation with experts of usability and an
asynchronous evaluation with ordinary users. Both proce-
dures were performed in remote locations at the participants
own computers at a convenient time.

Procedure: Before the tests we made an installation manual
to Thunderbird and put that on the first page of the on-
line questionnaire. This was done in order to minimize the
contact between the participants and the evaluator during
or prior to the tests. The participants were presented with
the same nine tasks as the participants of the RS and LAB
tests. In this evaluation the tasks were an integrated part
of an online questionnaire, where the users after each task
could report any identified problems.

Data collection: The data collection for the asynchronous
evaluations was done solely through the online question-
naire constructed through the UCCASS system. On top of
guiding the participants through the assignments, the on-
line questionnaire also gathered the input from the users in
a MySQL database.

The questionnaire was designed in a way that made it pos-

sible for the participants to classify the identified problems.
The problems could be classified as ‘small’, ‘medium’ and
‘large’. These categories were correlated to the much used
usability classifications ‘cosmetic’, ‘serious’, and ‘critical’.
The respondents were presented with a table specifying how
to classify the specific problem (Table 3). Furthermore, it
was possible to log where in the program they encountered
a problem and how the problem intervened with the com-
pletion of the task.

3.4 Data analysis

In the four different usability evaluations we conducted a to-
tal of 24 tests with six participants in each. The data anal-
ysis of these tests was not commenced before all of the tests
had been carried out. We were aware that there were some
methodical challenges in the fact that we were only three
usability evaluators to condense the problem lists from the
empirical data. Thus, we constructed an analysis procedure
that, according to Kjeldskov et al [21], minimized subjective
bias of the evaluators.

The tests produced 24 objects for analysis; twelve usabil-
ity evaluations performed in ‘real time’ and twelve asyn-
chronous usability evaluations. The data from the LAB tests
consisted of an audio recording and video captures of the
participants face and desktop recorded by professional video
equipment. The data from the RS evaluation consisted of a
web-cam image and a video capture of the desktop and au-
dio communication between moderator and the participants.
The data from the asynchronous tests were semi structured
problem lists, where the participant had already identified
the problem areas and categorized them using Table 3.
The 24 sets of data were given a random identifier to min-
imize the subjective bias of knowing which test were being
analyzed. Furthermore, each of the three evaluators ran-
domly selected the order in which the sets of data were an-
alyzed. In each set of data the evaluators identified the
main usability problems and numbered them with a unique
identifier to make it possible to trace each problem back
to the original problem list. The evaluators then identified
and categorized the problems found in each set of data. It
was carefully noted in which set of data the problems were
identified. This process took approximately 42 hours per
evaluator, a total of 126 man-hours.

Hence, after the evaluation process a separate problem list
of the tested software had been generated by each test evalu-
ator. Ultimately the three test evaluators negotiated a com-
plete problem list of the tested system until consensus had
been reached (Table 14 on the last page). This process took
approximately 30 man-hours. The final categorization of the
problems were made by using ‘worst case’ categorization.
This resulted in a problem being categorized as critical if
just one evaluator had categorized it as such.

Following the effort to minimize subjective bias, we were
interested in calculating the evaluator effect. This measure

relates the evaluators’ individual performance to their col-
lective performance [18]. Hertzum and Jacobson used the
any-two agreement equation (Equation 1).

|P; N Pyl

1
Avg. of = = -1 i
vg. of PP, over all 2n(n) pairs of evaluators
1)

In the equation, P; and P; are the sets of problems de-
tected by evaluator i and evaluator j and n is the number
of evaluators. We calculated the evaluator effect using the
any-two agreement equation in order to see how often eval-
uators agreed on identified usability problems. The average

E1 E2 | E1 E3 | E2 E3 | Avg.
Problems 29 30 28 29
agreed on
Number of 42 45 43 43.3
problems
Any-two 69.0% | 66.7% | 65.9% | 66.9%
agreement

Table 4: A calculation of the evaluator effect be-
tween evaluators E1, E2 and E3 using the any-two
agreement formula (Equation 1).

percentage of any-two agreement in our data analysis was
66.9 per cent (Table 4). Hertzum and Jakobsen found that
the average agreement between any two evaluators in twelve
studies varied from 5 per cent to 65 per cent (avg. 22.4 %,
SD=19.8) [18]. Compared to these figures we achieved a
very high any-two agreement factor and this supports the
validity of the usability problems identified and ultimately
the final problem list.

In the analysis of the results we applied different statisti-
cal analysis tools. The total number of problems identified
in the four setups, the number of critical, serious and cos-
metic problems were analyzed through a Fisher’s exact test.
ANOVA one-way analysis of variance were used with the
number of tasks solved, and with the time usage in the four
evaluations. Furthermore, a Tukey post hoc comparison on
the average number of problems identified in the evaluations
was used.

4. RESULTS

Through four usability evaluations we attained knowledge
about the effectiveness and usefulness of remote usability
evaluation The results covered the following themes:

Task completion

Task completion time

Usability problems identified

Average number of identified problems
Unique problems

Opinions about the evaluation methods

4.1 Tasks Completion

The 24 test sessions resulted in an average of 8.1 out of 9
tasks completed. As seen in Table 5 the AE evaluation and
the AU evaluation resulted in a higher number of solved

tasks than the LAB evaluation and the RS evaluation. How-
ever, through an ANOVA test we found no significant differ-
ence in the number of tasks completed in the four evaluations
(F[3,20]=0.68, p=0.575).

Evaluation method | Mean value | SD
LAB 8 1.1
RS 7.5 2.1
AE 8.5 0.8
AU 8.3 0.8
Total 8.1 1.3

Table 5: Tasks solved. SD= Standard deviation

4.2 Task Completion Time

The variation in completion time is not important. The
results shown in Table 6 depicted that the participants in
the two asynchronous evaluations, especially the partici-
pants in the AU evaluation (M=1:03:48, SD=0:48:37) had
a longer task completion time than the participants in the
LAB evaluation (M=00:22:10, SD=00:05:20) and the par-
ticipants of the RS evaluation (M=00:22:30, SD=00:03:31).
A significant difference was found when comparing the time
used for the four evaluations through an ANOVA test (F[3,
20]=3.514, p=0.034). Yet, we found no pairwise differences
between the evaluations using a Tukey’s post hoc test, at a
five per cent significance level.

In the AE and AU evaluations, however, the online ques-
tionnaire only recorded the begin and end time. Therefore
we do not know if the participants had any breaks during
the test sessions, and therefore we do not know the exact
time spent on the test, which is an essential element when
comparing AE, AU and LAB evaluations. For example, one
of the participants in the AU evaluation used considerable
more time (02:39:34) to complete the test, than the average
for the rest of the asynchronous tests (00:54:39).

4.3 Usability Problems Identified

The number of problems identified in the evaluations vary
widely. The 24 usability test sessions resulted in 46 usability
problems (Table 14 on the last page). Based on the classifi-
cation scheme in Table 3 we classified 24 of the 46 usability
problems as critical, 10 as serious, and 12 as cosmetic.

Laboratory evaluation

In the LAB evaluation the evaluators identified 35 of the
46 usability problems: 22 of these problems were critical, 5
were serious, and 8 were cosmetic. The laboratory evalua-
tion was performed as a benchmark to constitute a basis for
comparison of test results.

Laboratory evaluation vs remote synchronous evaluation

In the results from the RS evaluation we saw that 38 of the
46 overall problems were identified. This corresponded well
to the number of problems identified in the LAB evaluation,
and according to a Fisher’s exact test (Table 7) there was no
significant difference in the number of problems identified in
the two evaluations (p=0.6073). A similar pattern was found
in the identification of critical problems. The LAB evalua-
tion and RS evaluation both identified 22 of the 24 critical
problems, where 4 of the 22 problems were found in only one
of the two evaluations. Thus, 18 of the problems identified

Task completion | LAB N=6 RS N=6 AE N=6 AU N=6
time and num-
ber of identified
problems
Task completion 22:10 (05:20) 22:30 (03:31) 45:29 (18:51) 1:03:48 (48:37)
time (SD)

C % C % C % C %
Critical (24) 22 92% 22 92% 15 63% 11 46%
Serious (10) 5 50% 8 80% 3 30% 2 20%
Cosmetic (12) 8 67% 8 67% 3 25% 0 0%
Total (46) 35 76% 38 83% 21 46% 13 28%

Table 6: Key results of the usability evaluations. In the table ‘C’ denotes the count of identified problems

within the three categories of severity.

LAB RS AE AU
LAB (p=0.6073) | p=0.00561 | p<0.0001
* kksk
RS | (p=0.6073) p=0.0004 | p<0.0001
*k kkk
AE p=0.0051 | p=0.0004 (p=0.1300)
* *kk
AU p<0.0001 | p<0.0001 | (p=0.1300)
kkk kkk

Table 7: Fisher’s exact test for statistical signif-
icance. Calculated on the overall number of er-
rors identified in the four evaluations. (p)=Not
significant, *=Significant, **=Very significant, and
***—extremely significant.

in the two evaluations were the same. In the identification
of serious and cosmetic problems the LAB evaluation and
the RS evaluation attained almost equal results. The RS
evaluation identified 8 of 10 serious problems and 8 of 12
cosmetic problems, which was slightly better than the LAB
evaluation. In the identification of critical (p=1.000), seri-
ous (p=0.3498), and cosmetic (p=1.000) problems no sig-
nificant difference was found through a Fisher’s exact test.

Laboratory evaluation vs asynchronous expert evaluation
The AE evaluation identified a total of 21 of 46 problems,
compared to the LAB evaluation that identified 35 of the 46
problems. A Fisher’s exact test showed that there was a sig-
nificant difference (p=0.0051) in the number of total prob-
lems identified in the two evaluations. In the identification
of critical problems the difference between the LAB evalua-
tion and the AE evaluation was not as distinct, since the AE
evaluation identified 15 of 24 critical problems against the
LAB evaluation’s 22 of 24 critical problems identified. This
showed that even though the AE evaluation did not find as
many overall problems as the LAB evaluation the majority
of the problems identified were critical. However, a Fisher’s
exact test still found a significant difference (p=0.0363) in
the number of critical problems identified.

In the identification of serious and cosmetic problems the
AFE evaluation identified 3 of 10 serious and 3 of 12 cosmetic
problems. The Fisher’s exact test did not classify this as a
significant difference in the number of serious (p=0.6499) or
cosmetic (p=0.0995) problems identified, when comparing
to the LAB evaluation.

Laboratory evaluation vs asynchronous user evaluation
The AU evaluation identified 13 of the 46 overall problems.
A comparison of this result to the LAB evaluation through
a Fisher’s exact test found an extremely significant differ-
ence (p<0.0001) as seen in Table 7. In the identification
of critical problems, the difference between the two evalua-
tions was also classified as significant (p=0.0078), since the
AU evaluation only identified 11 of the 24 overall critical
problems where the LAB evaluation identified 22 of the 24
critical problems. This showed that the majority (84,6%) of
the problems identified in the AU evaluation were critical.
The difference in the number of serious problems identified
was not classified as a significant difference according to the
Fisher’s exact test (p=0.3498). However, in the identifica-
tion of cosmetic problems the AU evaluation did not find
any problems, while the LAB evaluation identified 8 of the
12 overall cosmetic problems. In a Fisher exact test this re-
sulted in a significant difference between the two evaluation
methods (p=0.0013).

Asynchronous expert evaluation vs asynchronous user eval-
uation

We wanted to investigate the internal relation between the
AE and AU evaluations since these were similar except for
the usability knowledge of the participants. In Table 8 we
classified the results of a Fisher’s exact test comparing the
critical, serious and cosmetic problems identified in the two
asynchronous evaluations. This showed that there was no
significant difference in the number of problems identified in
the two asynchronous evaluation, despite the differences in
problems identified.

Problems P

Overall 0.1300
Critical 0.7702
Serious 1.0000
Cosmetic | 0.2174

Table 8: Comparison of statistical significance be-
tween the AU and AE evaluations. P=significance
level

4.4 Average Number of Identified Problems

The average number of problems identified per test session
for the four setups varied immensely. In the results depicted
in Table 9 we found that the average number of usability

problems identified by the test participants were almost the
same in the RS and the LAB evaluations. Furthermore,
the Tukey comparison did not find a significant difference
in the number of problems identified (p> 0.05). However,
we found a very significant difference when comparing the
average number of problems identified by the participants
of the LAB evaluation with the average number of problems
identified by the participants of the AE and AU evaluations
(p<0.001).

Mean | SD | Tukey comparison
Lab | 15.33 | 441
RS 16.67 | 2.42 p>0.05
AE 4.67 | 2.66 p< 0.001
AU 3.17 1.72 p<0.001

Table 9: Average number of problems solved. SD=
Standard deviation. In the Tukey test the evalua-
tions are compared to the LAB evaluation.

4.5 Unique Problems

Different usability evaluation methods often reveal unique
problems. In our identification of unique problems we were
inspired by the identification of action areas in Karat et al
[20].

We identified the problems that were identified in one test
session only, and the problems that were identified by only
one evaluation method.

Problems identified in one test session

As shown in the Sum column in Table 10, none of the 24
critical problems, 2 of the 10 serious problems, and 6 of the
12 cosmetic problems were identified in one test session only.
This underlines the validity of the critical problems, and
furthermore shows that 50 per cent of the overall cosmetic
problems were only identified in one test session.

Problems identified in one evaluation method

In the Sum column in Table 10 we saw that 1 of the 24
critical problems, 5 of the 10 serious problems, and 6 of
the 12 cosmetic problems were identified in only one of the
four evaluations. Thus 23 of the overall 24 critical problems
were identified in more than one evaluation method. Fur-
thermore, 50 per cent of the serious and cosmetic problems
were only identified in one evaluation method.

Table 6 showed that the AE and AU evaluations identified
63 and 50 per cent of all critical problems, where the LAB
and RS evaluations both identified 92 per cent of all critical
problems. However, Table 10 shows that the asynchronous
evaluations did not identify any unique critical problems.
Therefore, we know that the critical problems identified in
the AE and AU evaluations were the same problems as iden-
tified in the LAB and the RS evaluations.

Furthermore we found that the RS evaluation identified 1
critical, 3 serious, and 2 cosmetic problems that were not
identified in any of the other evaluations, which was the
largest amount of unique problems identified in all of the
four evaluation methods.

4.6 Opinions about the Evaluation Methods
The degree of irritation was low in all evaluation methods.
We wanted to know how test participants felt during the

Lab RS AE AU | Sum
N=6 | N=6 | N=6 | N=6 | N=24
Critical (24) 0()|0(1)] 0()]0()]| 0()
Serious (10) 1(1) [0@B)| 0() [1(1)| 2(5)
Cosmetic (12) | 2(2) [2(2) | 2(2) | 0(0) | 6 (6)
Total (46) 3(3) [206) 2@ |10)|8(12)

Table 10: Identification of unique problems. The
numbers outside parentheses are unique problems
identified in only one test session. The number in-
side parentheses are problems identified by only one
evaluation method.

usability evaluation. Hence, we asked participants to grade
their degree of irritation on a scale of five going from ‘very
low’ to ‘very high’ and, furthermore, we collected qualita-
tive feedback about the evaluation methods. Out of the 24
participants, 21 answered that their degree of irritation was
‘low’ or ‘very low’. Participants in the LAB and RS eval-
uations mostly indicated ‘very low’ while most of the AE
participants only chose ‘low’ (Figure 4). One of the partici-
pants in the RS evaluation even preferred this method to the
conventional method; “I liked this evaluation method better
than the traditional method where the test leader looks over
your shoulder.”. In both LAB and RS evaluations partici-
pants stated that it was awkward to ‘think aloud’. Further-
more, one of the AE participants mentioned that switching
between the program and the questionnaire was a source
of frustration; “The worst ‘problem’ was to move back and
forth between the browser and the program while memorizing
the task.”. Overall we found that there was no major differ-
ence between the LAB evaluation and the remote evaluation
methods in regard to irritation of the test participant.

Number of respondents
I

Very low Low Medium High Very high

The level of irritation after evaluation

[WLAB RS mAE DAU]

Figure 4: The degree of irritation among partici-
pants in the four different evaluation methods.

The questionnaire implementation was not optimal. One of
the non-expert users commented that the reporting of prob-
lems was not entirely logical and the relatively low num-
ber of problem reported using the asynchronous methods
(Table 6) suggests that this is a major problem of the ques-
tionnaire implementation. For instance respondents had the
possibility of splitting a problem into three subproblems but
this confused respondents. One participant did not under-

stand the structure of the questionnaire: “I answered ‘No’

to finding problems most times but I still used the following
possibility to comment where I clarified the small problems
I experienced - this does not match with answering ‘No’ to
the finding of problems.”. This was seen often in particu-
larly the AU evaluations and it is a problem in respect to
the asynchronous setup. Some participants did not under-
stand the structure of the questionnaire and did not use the
functionality as intended

We did not find any evidence that the methods performed
remotely were perceived as more irritating than the LAB
evaluation. However, some participants found it strange to
think aloud which presents a problem for this method.
Some feedback suggested methodical problems connected to
the setup of the asynchronous evaluations. These were the
cause of problems since important data was possibly not
reported. In future implementations of an asynchronous
method, it is crucial for the evaluators to construct the ques-
tionnaire in a way that minimize the risk of misinterpreta-
tions.

5. DISCUSSION

We carried out this study in order to compare three methods
for remote evaluation of usability against a LAB evaluation.
In the previous section we presented the main results in
order to answer our key question. Through the empirical
research, the study also brought four other related questions
to our attention, which are important to discuss:

e [s the physical presence of the moderator important?
e Can participants in AE and AU identify and classify

problems?

e Which problems are not found by the asynchronous
methods?

e Is the evaluator’s choice of classification method im-
portant?

5.1 The Importance of the Moderator

Is the physical presence of the moderator important? The
comparison between the LAB and RS evaluation methods
showed that they identified the same number of usability
problems and almost the same distribution of cosmetic, se-
rious and critical problems (Table 6). The comparison also
showed that there was no significant difference in either task
completion time or the number of completed tasks between
LAB and RS evaluation (Table 5). Thompson et al claimed
that one of the disadvantages of a remote synchronous us-
ability evaluation was increased task completion time [31]
but we did not find anything to support this notion. Nor
did we experience the ‘distance’ between the moderator and
test user to be an influential factor which several sources
suggested [1, 3, 4, 5, 11, 14, 28]. The similar results of the
two evaluation methods in our study show that the physical
presence of the moderator is not important. In fact, several
test users expressed that the RS evaluation method was less
stressful than the LAB test. One test user who had tried
a laboratory evaluation earlier stated: “I liked this evalua-
tion method better than the traditional method where the test
leader looks over your shoulder.” and others supported this
saying that the video image of the moderator was a positive
element, since it was nice to be able to see the attitude of

the moderator. In our study the RS evaluation method sim-
ulated a laboratory usability evaluation via web-cams, audio
connection and shared desktop. We found that this helped
communicate facial expressions and body language in a way
that minimized the problems of remote usability evaluation.
The main parameter that varied between the two evaluation
methods was the physical presence of the moderator. In the
LAB evaluation the moderator was sitting next to the test
user, in the RS evaluation the test user and the moderator
could see a web-cam image of each other in the corner of
the screen. Overall we found that it is possible to compen-
sate the physical absence of a moderator, and in our setup
of a RS usability evaluation, this did not have any effect on
the identified usability problems. The moderator’s physical
presence was not important.

5.2 Identification and Classification of Prob-

lems in the Asynchronous Evaluations

Can participants in AE and AU identify and classify prob-
lems? We have shown that the asynchronous methods did
not identify as many problems as the LAB and RS eval-
uations. This was the focus of this papers key question.
Even though the key question was not directed at finding
out whether the users themselves were able to identify and
classify problems, we chose to investigate this further.

Identification of Problems

The participants did not identify as many problems as the
evaluators. One of the main ideas in the asynchronous meth-
ods is that the participants themselves identify the problems
which makes the method very time efficient for the evalua-
tors. We wanted to see how many problems the participants
identified compared to the number of problems identified by
the evaluators (Table 11). The evaluator’s problem iden-
tification was made using the classifications and comments
provided by the individual participants. In the table it is
obvious that the evaluators identified more problems than
the participants. On average the test participants identified
1,92 problems while the evaluators identified 4,17 problems
per test. This shows that the evaluators identified more
than twice as many problems as the participants. One pos-
sible explanation of this could be that the participants in
the asynchronous evaluation solved most of the tasks (Ta-
ble 5). It is possible that this affects the final judgment
on whether or not the participants experienced problems,
as they feel success after managing to solve the tasks even
when encountering problems. This is supported by Hartson
et al [17].

Classification of Problems

The participants classified the problems different than the
evaluators. As discussed in the results (Table 6) the two
asynchronous methods identified fewer problems than the
two other methods. In addition, we noticed that the partic-
ipants classified almost all problems as cosmetic and only
3 problems as critical (Table 12). When comparing the
classifications made by the participants to the evaluator’s
classifications there is a notable difference. As an example
participant T17 identified 3 problems and classified them
all as cosmetic. The problems were in the final problem list
classified as critical. This illustrates the difference in the
classifications made.

Both expert and non expert users classified almost all prob-

AE AU

T14 [T18 [T16 [T13 [T17 [T15 | T19 [T20 [T23 [T24 [T22 [T21
Severity Participants
Cosmetic 1 1 2 3 2 1 2 2 2
Serious 1 2
Critical 1 1 1
Severity Evaluators
Cosmetic 1 1 1
Serious 1 2 1 1
Critical 7 4 3 4 3 3 3 5 1 4 2 3

Table 11: A table showing the number of problems identified. The table shows how many problems the par-
ticipants identified and how many problems the evaluators identified in the data provided by the participants.

AE AU

Ti4 [T18[T16] Ti13 | Ti17 [Ti5| T19 | T20 [T23] T24 | T22 [T21
Severity Participants
Cosmetic P8 P8 | P13,39 | P18,22,25 P32,41 P22 | P10,22 | P16,33 | P3,14
Serious P32 P22 | P22,23
Critical P3 P22 P14
Severity Evaluators
Cosmetic
Serious P39 P23
Critical P3,8,32 | P22 P8 P13 P18,22,25 | P22 P22 P14,32/41 | P22 | P10,22 | P16,33 | P3,14

Table 12: A table showing the classification of the problems found by the participants. The table shows how
the participants classified the problems they found and how the evaluators classified the same problems. P
refers to the problems in the final problem list (Table 14)

lems as cosmetic. A study by Skov and Stage showed that
novice evaluators who had received a conceptual tool and
an introduction to this tool were better at identifying and
classifying usability problems than ordinary users [30]. Our
study did not support this, since there was no obvious dif-
ference between expert users and ordinary users.

We have shown that the asynchronous methods did not iden-
tify or classify usability problems in the same way as the
evaluators. However, we do not believe the method should
be rejected. We have shown that the asynchronous method
did not identify unique problems (Section 4.5), but the prob-
lems identified were mostly classified as critical. The prob-
lems identified are in-fact critical and they present real prob-
lems in the evaluated application.

5.3 The Asynchronous Methods Revisited
Which problems are not found by the asynchronous meth-
ods? We found that the LAB and RS evaluations identified
almost twice as many problems as the AE and AU evalu-
ations (Table 6). When investigating this difference closer
we found that many of the problems not identified by the
asynchronous evaluations were of a specific type.

The following list shows examples of problems which were
not identified by the asynchronous evaluations:

e Cosmetic problems

— Confusion about ‘New...” button in the message
filter (P20).
— Incorrect keying when creating contact (P27).

— Confusion about ‘missing’ accept-button after set-
ting message filter (P15).

e Serious problems

— Confusion about the difference between ‘Spam fil-
ter’ and ‘Message filter’ (P17).

— Confusion about the term ‘New mailing list’ in
contacts (P29).

— Confusion about the difference between deleting
an e-mail and moving it to trash (P39).

e Critical problems

— Confusion about drop-downs concerning local fold-
ers or account name during setting of message fil-
ter (P9).

— Confusion about ‘Filter log’ in the (P19) message
filter.

— Problem finding the ‘Label’ function (P43).

When examining these problem descriptions it is apparent
that many of the problems involve confusion for the par-
ticipants. These problems were identified when closely ana-
lyzing the video material, by interpreting mouse movements,
facial expressions, and the comments made when solving the
tasks. The problems are valid but it was uncertain whether
the users were aware that they were encountering a prob-
lem. This observation is important since it is crucial for
the asynchronous evaluations that the users recognize that
they have encountered a problem. If the users themselves do
not recognize that they are having a problem it will not be
reported in the asynchronous methods. This finding is sup-
ported by Hartson et al [16] who found that the users had

Task completion | LAB N=6 RS N=6 AE N=6 AU N=6
time and number of
identified problems

C % C % C % C %
Critical (12) 10 83% 12 100% 7 58% 6 50%
Serious (18) 13 2% 14 78% 8 44% 7 39%
Cosmetic (16) 12 75% 12 75% 6 38% 0 0%
Total (46) 35 76% 38 83% 21 46% 13 28%

Table 13: Overall usability problems categorized after a weight system (cosmetic=1, serious=2, critical=3).
In the table ‘C’ denotes the count of identified problems within the three categories of severity.

to be prompted continuously to keep reporting the prob-
lems faced and that users were often slow to recognize that
they were encountering a problem. However, in Table 5 we
learned that the users of the asynchronous evaluations on
average solved a higher number of tasks. This supported
the notion that the participants of the asynchronous evalu-
ations did not report as many problems as the participants
of the LAB evaluation.

It is evident that there is a difference in the number of prob-
lems identified by the individual evaluation methods. There
is, however, one thing the problems which were not identified
have in common. The type of problems missed were typi-
cally problems which entailed confusion. We suggest that
the users are not always aware that they are encountering a
problem.

5.4 Choice of Classification Method

Is the evaluator’s choice of classification method important?
In the analysis of the empirical data we used a ‘worst case’
principle. When the three evaluators merged their problem
lists, a problem would be categorized as critical if just one
evaluator had found it to be so. We wanted to investigate
whether this choice of categorization made a large impact
on the results. We tried to perform alternative calculations
based on a system where cosmetic, serious and critical prob-
lems were given a weight from 1 to 3 (Table 13). The change
of categorization method resulted in a decrease in the sum
of critical problems from 24 to 12. The total number of seri-
ous problems increased from 10 to 18 and cosmetic problems
went from 12 to 16. Using the worst case classification, a
Fisher exact test showed only a significant difference in the
number of critical problems identified in AE and AU com-
pared to LAB (p=0.0363 and p=0.0078). This significant
difference in the number of critical problems identified was
not present when using the weight based system (p=0.3707
and p=0.1930). Except for this change there were no major
differences between the two methods of categorization and
the internal relations between the four evaluation methods
remained largely the same.

6. CONCLUSION

In this article we examined how three different approaches
to remote usability evaluation compared to a conventional
laboratory think aloud usability evaluation. We set up a
remote synchronous evaluation using web-cams, audio con-
nection and shared desktop and an asynchronous question-
naire based evaluation performed by both users with and
without usability training. In the asynchronous evaluations
the users identified the usability problems themselves. The
empirical study and data analysis was performed following

10

a strict structure in order to minimize subjective bias from
the evaluators. The study found that a RS evaluation was
comparable to a LAB evaluation. They identified almost the
same number of usability problems. In addition, test users
spent the same time completing the evaluation.

The AE and AU evaluation methods identified fewer prob-
lems than the LAB evaluation. The classification by the test
users did not match the classification of the evaluators, how-
ever, almost all reported problems turned out to be critical.
There was no significant difference between users with and
without usability knowledge.

Remote usability evaluation is a usable alternative to con-
ventional methods. We suggest that remote methods can
be considered in situations where there is no access to a
laboratory or in a domain where it is not possible to use
conventional methods.

Each evaluation was performed with six users. The method
for data analysis with randomization was used in order to
minimize subjective bias. The RS evaluation was performed
in a laboratory simulating the distance between the test
user and the moderator. A real world setup would reveal a
number of technical problems or performance issues that we
have chosen to ignore. The AE and AU evaluation methods
depended on our actual implementation in a questionnaire
based system.

It would be interesting to perform remote usability evalua-
tions outside the controlled environment of a usability labo-
ratory. This would highlight some of the practical problems
connected to remote usability evaluation. Furthermore, it
would be interesting to establish co-operation with one or
several OSS projects in order to let the OSS contributors
evaluate the methods.

7. ACKNOWLEDGMENTS

We would like to thank our project counsellor Jan Stage who

contributed with constructive criticism and advice when needed.

We would also like to thank Mikael Skov for his help and
advice regarding statistical calculations and the procedure
for data analysis. Finally, we would like to send a special
thank to the 24 participants of the usability evaluations.

8. REFERENCES
[1] M. Ames.
final report on remote usability studies.

http://www.ocf.berkeley.edu/ morganya/research/dmp/report.html,

2005.
[2] M. S. Andreasen, H. V. Nielsen, and S. O. Schrgder.

[10]

[11]

[12]

[13]

usability in open source software development:
Opinions and practice.

http://www.cs.aau.dk/3icker,

June 2006.

V. Bartek and D. Cheatham.
experience remote usability testing, part 1.

www-106.ibm.com/developerworks/library /wa-rmusts1/,

January 2003.

V. Bartek and D. Cheatham.
experience remote usability testing, part 2.

www-106.ibm.com/developerworks/web/library /wa-rmusts2.html,

February 2003.

V. Bartek and D. Cheatham.

experiences in remote usability evaluations.
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/

50?OpenDocument&../Publish/1116/$File/paper1116.pdf,

2004.

C. Benson, M. Muller-Prove, and J. Mzourek.
Professional usability in open source projects: Gnome,
openoffice.org, netbeans. In CHI ’04: CHI 04
extended abstracts on Human factors in computing
systems, pages 1083-1084, New York, NY, USA, 2004.
ACM Press.

A. B. Brush, M. Ames, and J. Davis. A comparison of
synchronous remote and local usability studies for an
expert interface. In CHI ’04: CHI ’0/ extended
abstracts on Human factors in computing systems,
pages 1179-1182, New York, NY, USA, 2004. ACM
Press.

J. C. Castillo, H. R. Hartson, and D. Hix. Remote
usability evaluation: can users report their own critical
incidents? In CHI ’98: CHI 98 conference summary
on Human factors in computing systems, pages
253—-254, New York, NY, USA, 1998. ACM Press.

G.-J. de Vreede, A. Fruhling, and A. Chakrapani. A
repeatable collaboration process for usability testing.
In HICSS ’05: Proceedings of the Proceedings of the
38th Annual Hawaii International Conference on
System Sciences (HICSS’05) - Track 1, page 46,
Washington, DC, USA, 2005. IEEE Computer Society.

B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg.
Who is an open source software developer? Commun.
ACM, 45(2):67-72, 2002.

S. Dray and D. Siegel. Remote possibilities?:
international usability testing at a distance.
interactions, 11(2):10-17, 2004.

S. Eklund, M. Feldman, M. Trombley, and R. Sinha.
improving the usability of open source software:
Usability testing of staroffice calc.

http://www.sims.berkeley.edu/“sinha/opensource.html,

2001.

N. Frishberg, A. M. Dirks, C. Benson, S. Nickell, and
S. Smith. Getting to know you: open source
development meets usability. In CHI ’02: CHI ’02
extended abstracts on Human factors in computing
systems, pages 932-933, New York, NY, USA, 2002.
ACM Press.

11

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

24]

[25]

D. Gough and H. Phillips. Remote online usability
testing: Why, how, and when to use it.

http://www.boxesandarrows.com/view/remote_online_usability_testing_

why-how_and-when-to_use-it,

2003.

M. Hammontree, P. Weiler, and N. Nayak. Remote
usability testing. interactions, 1(3):21-25, 1994.

H. R. Hartson and J. C. Castillo. Remote evaluation
for post-deployment usability improvement. In AVI
’98: Proceedings of the working conference on
Advanced visual interfaces, pages 22—29, New York,
NY, USA, 1998. ACM Press.

H. R. Hartson, J. C. Castillo, J. Kelso, and W. C.
Neale. Remote evaluation: the network as an
extension of the usability laboratory. In CHI ’96:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 228235, New
York, NY, USA, 1996. ACM Press.

M. Hertzum and N. Ebbe Jacobsen.

the evaluator effect: A chilling fact about usability
evaluation methods.

International Journal of Human-Computer
Interaction, 13, 2001.

J. Houck-Whitaker.
remote testing versus lab testing.

http://boltpeters.com/articles/versus.html,

2005.

C.-M. Karat, R. Campbell, and T. Fiegel. Comparison
of empirical testing and walkthrough methods in user
interface evaluation. In CHI ’92: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 397-404, New York, NY, USA, 1992.
ACM Press.

J. Kjeldskov, M. B. Skov, and J. Stage. Does time
heal : a longitudinal study of usability. In OZCHI ’05:
Proceedings of the 19th conference of the
computer-human interaction special interest group
(CHISIG) of Australia on Computer-human
interaction, pages 1-10, Narrabundah, Australia,
Australia, 2005. Computer-Human Interaction Special
Interest Group (CHISIG) of Australia.

F. S. H. Krauss. Methodology for remote usability
activities: A case study. IBM Systems Journal,
42(4):582-593, 2003.

J. Y. Moon and L. Sproull.
essence of distributed work: The case of the linux
kernel.

http://www.firstmonday.org/issues/issue5-11/moon/index.html,

2000.

D. M. Nichols and M. B. Twidale. Usability and open
source software. Technical Report 10/02, Department
of Computer Science, University of Waikato, 2002.
Working Paper Series ISSN 1170-487X.

E. Olmsted and M. Gill.

in-person usability study compared with
self-administered web (remote-different time-place)
study: Does mode of study produce similar results?
UPA2005, 2005.

[26]

27]

(28]

29]

(30]

(31]

(32]

E. Raymond. The revenge of the hackers. O'Reilly and
Associates, 1999.

J. Rubin.
Handbook of Usability Testing.
Katherine Schowalter, 1994.

M. Safire.
remote moderated usability.
http://www.upassoc.org/usability_resources/-

conference/2004/im_safire.html,

2004.

J. Scholtz.

adaption of traditional usability testing methods for
remote testing.

IEFEE, 2001. Proceedings of the 34th Hawaii
International Conference on System Sciences.

M. B. Skov and J. Stage. Supporting problem
identification in usability evaluations. In OZCHI ’05:
Proceedings of the 19th conference of the
computer-human interaction special interest group
(CHISIG) of Australia on Computer-human
interaction, pages 1-9, Narrabundah, Australia,
Australia, 2005. Computer-Human Interaction Special
Interest Group (CHISIG) of Australia.

K. E. Thompson, E. P. Rozanski, and A. R. Haake.
Here, there, anywhere: remote usability testing that
works. In CITCS ’04: Proceedings of the 5th
conference on Information technology education, pages
132-137, New York, NY, USA, 2004. ACM Press.

M. A. A. Winckler, C. M. D. S. Freitas, and J. V.

de Lima. Usability remote evaluation for www. In CHI
’00: CHI ’00 extended abstracts on Human factors in
computing systems, pages 131-132, New York, NY,
USA, 2000. ACM Press.

12

Pid [Problem description [Severity
Account settings
P1 Problem finding the ‘Create account’ function Critical
P2 Problems receiving new e-mails Cosmetic
P3 Problem changing the account settings Critical
P4 Confusion about the term ‘Global inbox’ when creating account Serious
P5 Confusion about not entering a password when creating account Serious
P6 Problem finding the account settings function Critical
p7 Confusion about the functionality when creating account Cosmetic
Message filter
P8 Problem finding the ‘Message filter’ function Critical
P9 Confusion about drop-downs concerning local folders or account name during setting of | Critical
message filter
P10 | Confusion about inactivity of the ‘Run filter’ button Critical
P11 | Uncertainty about the ‘Run filter’ functionality Cosmetic
P12 | General confusion concerning the message filter window Critical
P13 | Unexpected result when running the message filter Critical
P14 | Confusion during setting of filtering rules or destination folder Critical
P15 | Confusion about missing accept button after setting message filter Cosmetic
P16 | Problem finding the ‘Run filter’ function Critical
P17 | Confusion about the difference between ‘Spam filter’ and ‘Message filter’ Serious
P18 | Confusion about ‘+’ when setting a message filter Critical
P19 | Confusion about ‘Filter log’ in the message filter Critical
P20 | Confusion about ‘New...” button in the message filter Cosmetic
Contacts
P21 | Problem finding the ‘Create contact’ function Critical
P22 | Problem creating a contact based on a received e-mail Critical
P23 | No automatic input of first and last name when a contact is created based on a received | Serious
e-mail
P24 | Confusion about the meaning of ‘Recipients preferred format’ Cosmetic
P25 | Uncertainty about the division of information in contacts Critical
P26 | Missing cursor when entering address during creation of contact Serious
P27 | Incorrect keying when creating contact Cosmetic
P28 | Confusion about the meaning of ‘New card’ in contacts Cosmetic
P29 | Confusion about the term ‘New mailing list’ in contacts Serious
P30 | Confusion about the layout of the contacts Cosmetic
Spam filter
P31 | Confusion about dialog box concerning the spam filter Serious
P32 | Confusion about the functionality of the spam filter Critical
P33 | Problem finding the ‘Spam filter’ function Critical
P34 | Confusion about the two drop-downs when configuring the spam filter Critical
P35 | Confusion about the drop-down used to select account in the spam filter Critical
P36 | Confusion about the difference between ‘Delete mail’ and ‘Delete mail after X days’ Critical
P37 | Problem marking an e-mail as spam Critical
P38 | Confusion that marking an e-mail as spam does not start the ‘Spam filter’ function Critical
P39 | Confusion about the difference between deleting an e-mail and moving it to trash Serious
General
P40 | Confusion about counting number of mails in folders Cosmetic
P41 | Confusion on how to create a folder Critical
P42 | Problem showing folders using the ‘4’ Cosmetic
P43 | Problem finding the ‘Label’ function Critical
P44 | Confusion about the result of right and left clicking an e-mail Serious
P45 | Double clicking the Inbox results in opening a new instance of the Inbox - the user do not | Cosmetic
notice this
P46 | Confusion about drop-down when creating a new folder Serious

Table 14: The final problem list.

13

APPENDIX C

Data Analysis Procedure in Paper 2

In the second research paper we conducted twenty-four usability tests spread across four different
evaluation methods:

e Laboratory evaluation (LAB evaluation)
e Remote synchronous evaluation (RS evaluation)
e Asynchronous expert evaluation (AE evaluation)

e Asynchronous user evaluation (AU evaluation)

To compensate for the fact, that we were only three evaluators to condense problem lists from
the twenty-four sets of empirical data, we constructed a procedure for data analysis inspired by
Kjeldskov et al [22] in order to minimize subjective bias. The procedure made sure that each
set of data was analyzed by each evaluator in random order. Figure C.1 has been subdivided
into six phases corresponding to the following paragraphs.

Phase A The four evaluations produced 24 objects for analysis named T1 to T24. The results
of the LAB evaluation, T1 to T6, consisted of a video capture of the participants face,
desktop and and audio recorded by professional equipment in a state-of-the-art usability
laboratory.

The results of the RS evaluation, T7-T12 included a capture of web-cam image of the
participants face, and a video capture of the desktop using remote desktop software. Fur-
thermore, audio communication between moderator and participant was recorded through
Internet telephony software.

The results of the AE (T12-T18) and the AU evaluations (T19-T24), resulted in semi
structured problem lists, where the participants had already identified and categorized the
problem areas.

C. Data Analysis Procedure in Paper 2

LAB evaluation RS evaluation AE evaluation AU evaluation
Problem list 1 Problem list 2 Problem list 3
(El-1.. El-n) (E2-1.. E2-n) (E3-1.. E3-n)
COMPLETE
E PROBLEM LIST
(Y1 .. Yn)
F Problem list for — Problem list for Problem list Itor — > Prob]iel‘n list for
LAB evaluation RS evaluation Comparison of problem lists AE evaluation AU evaluation

Figure C.1: Analysis procedure

Phase B The 24 sets of data were given a random name from X1 to X24, to minimize the
bias of knowing exactly which test was being analyzed. Thereafter, each of the three test
evaluators (E1, E2, E3) randomly selected the order that they would generate problem
lists for each set of data. The evaluators identified the main usability problems in each set
of data and numbered them with a unique identifier.

For example: E1-X3-1 (Evaluator 1 - test X3 - problem number 1)

Phase C The evaluators then categorized the problems found in each set of data into overall
usability problem named E1-1, E1-2, E1-n and so forth. It was carefully noted in which
set of data the problems were identified.

For instance: E1-3: E1-X3-1, E1-X7-5, E1-X22-3

60

(Evaluator 1 - overall problem 3 - consisting of problems E1-X3-1, E1-X7-5 and E1-X22-3)

Phase D The evaluators constructed an overall problem list each, so that three separate prob-
lem lists of the tested software existed.

Phase E Ultimately the three test evaluators negotiated a complete problem list of the tested
system until consensus had been reached. The result was another list of problems from
Y1 to Yn. For each problem Yn it was listed which ‘sub problems’ it consisted of.
For instance: Y4: E1-3, E1-8, E2-3, E2-9, E3-1, E3-8
(Problem Y - consisting of overall problems E1-3, E1-8, E2-3, E2-9, E3-1, E3-8)

Phase F After the merge of the problem list was complete, it was possible to ‘trace back’ each
problem Yn to its origin Tn.

61

	1-41.pdf
	42-52.pdf
	53-69.pdf

