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ABSTRACT:
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Bayes with EM learning for
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results of these algorithms applied to
the given database.
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map of the geographical area where
the data come from.
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1. Introduction

This chapter is dedicated to introduce the motivation behind this project and define the
goals we want to achieve with it. A brief description of the solutions to the problem and
the software we developed are presented.

We will explain what Data Mining is and how we can use it to get our goals.

1.1. Data Mining

Data mining is the process of extracting information patterns from a large data set.
These patterns are implicit, non-trivial, unknown, and potentially useful. In this process
we will use computational techniques from statistics and pattern recognition.

Often data mining is confused with deductive processing of databases, expert
system, statistical analysis, visualization of data or small programs of learning but data
mining is all the described process above.

The typical problem in data mining is classification, the task of classification occurs
in a wide range of human activity. At its broadest, the term could cover any context in
which some decision or forecast is made on the basis of currently available information,
and a classification procedure is then some formal method for repeatedly making such
judgements in a new situation.

The construction of a classification procedure from a set of data for which the true
classes are known has also been variously termed pattern recognition, discrimination, or
supervised learning. Contexts in which a classification task is fundamental include, for
example, mechanical procedures for sorting letters on the basis of machine-read
postcodes, assigning individuals to credits status on the basis of financial and other
personal information, and the preliminary diagnosis of a patient’s disease in order to
select immediate treatment while awaiting definitive test results. In fact, some of the
most urgent problems arising in science, industry and commerce can be regarded as
classification or decision problems using complex and often very extensive data.

1.1.1. KDD

In the elaboration of this project, we will use the KDD process, KDD is an acronym
meaning Knowledge Discovery from Databases. The KDD is a complete process of
extracting knowledge from database.

The KDD started in 1989 to emphasize in the concept that knowledge is the final
result of a process of discovery guided by the data. This means all the process you need
to do to get the knowledge from a database. The data mining is a phase of the full
process.



The KDD process contains:

e The use of the database, pre-process, transformation.

e Algorithms to obtain patterns/models from the data.

e Evaluation of the algorithms’ results and select those models that can
consider knowledge.

Pesprocessed D Diaza

a7t

Targel Ilne

Figure 1.1-1: The KDE process

Phases of the process:

1. Understanding of the domain of application of the problem, identification
of a priori knowledge and creation of the Data Warehouse.

The understanding of the domain of application of the problem will allow to
obtain a priori knowledge and to reduce the space of possible solutions, which
will give more efficiency to the rest of the process. In this phase is important
the unification of the information in Data Warehouse from several databases.

2. Selection of data, data cleaning and pre-processing.
e From the result of the previous phase selects a data set using analysis and
visualizations of the data.
e Data cleaning: The missing values fill up, identify and eliminate the
outliers, the noise is smoothed and inconsistencies are eliminated
e Pre-processing: Transformation of the data, variables, values.

3. Sieve of data: Reduction and projection.

e Reduction of cases, rows: This is made by techniques like compression of
sampling of the data, or election of representatives (clustering).
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e Projection: To select the set of attributes adapted for the specific task to
make.

4. Selection of the data mining technique and application of concrete data
mining algorithms.

In this moment of the process we have to ask us what kind of knowledge are
we searching? What technique is the most adapted? Will we need uncertainty?

5. Evaluation, interpretation and presentation of the obtained results.

In the last phase we can obtain many hypotheses of models, it will be
necessary to decide that models are but the valid ones. In order to do that is
usual to run independent test set.

6. Diffusion and use of the new knowledge.

The last phase of the process, it is time to make final reports, use the
knowledge or/and incorporate it in an existing systems.

1.2. Motivation

The project we are involved in is the plant data mining. For numerous geographic
regions extensive data collections exist related to the distribution of plant species in that
area. For this collections the region is partitioned into a large number of small units
(typically just using a regular grid that is imposed on the region), and for each unit in
the partition, and for all plant species, it is recorded whether the species occurs or not in
the unit.

Using clustering techniques from Machine Learning, one can use this data, for
example, to find natural sub regions exhibiting relatively uniform vegetation (typically
corresponding to regions with certain climatic and/or geological characteristics).
Furthermore, one can classify the plants according to their distribution patterns.

One of the simplest possible models that can be used in this task is a Naive Bayes
model, represented by a Bayesians Network with one root node for the unobserved
region type, and one child for every plant species. After learning parameters for this
data from the distribution data, one can cluster the areas according to their most
probable regions type, according to the learned model. More sophisticated models can
be designed, which also take the spatial relationship between neighbouring regions into
account.

1.3. Initial problem

For this project plant distribution data from Switzerland is available. Data from other
geographic regions can perhaps also be obtained so it can be interesting to develop a
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tool that integrates several clustering techniques and able to show the clustered regions
on a map of the land.

The main purpose of the project is to analyze this plant distribution applying several
Machine Learning techniques making emphasis in the use of Bayesian methods as the
Naive Bayes model.

A second goal is to develop a tool to show the clustering results for this kind of data
on the corresponding map of the region where the data come from. This tool can also
contain some methods to compare two clustering results in order to identify the
equivalences of clusters among both results and to show the instances that differ from
one clustering to the other.

1.4. Description of the solution

Once we understood the problem we started to think how we could solve it. We had a
huge database and we did not know much about the data contents. We began
understanding the data, the different attributes that it has and the different values that
each attribute can get. The idea was to get a complete general view of the database
meanings.

After that, we decided to perform a first approach to take a look at the kind of
information we could extract from that database. For doing that we used Weka, an
application in data mining which support different knowledge analysis algorithms'. We
used the K-Means algorithm® included in Weka’s API for the first clustering approach
making different tests transforming de original database. The changes we made were
relative to the abundance values.

When we took this first approach we realized that the transformations of the dataset
were useful for further work on the project so we decided to define three dataset for the
rest of the experiments. Other conclusion that we obtained from the first approach was
that the results that Weka offers are difficult to analyze. It offers the centers of the
clusters, the amount of members in each cluster but not a relation of the cluster
membership. It seemed to us that this was not enough information because, in our case
with the Swiss flora, we found that could be more interesting to show the clustering
results in a map of Switzerland.

Because of this we decided to implement an application with possibilities to apply
clustering techniques and show the results in the Swiss map. This application is going to
be described in Chapter 4 and the user’s manual can be found in Appendix D. The main
utility of the application is making possible to apply some clustering methods and see
the results with the same dataset.

We obtained the map of Switzerland from the Webflora’s site at
http://www.wsl.ch/land/products/webflora/.. In this map the different areas are
shown separated by lines so the main problem we had was finding a way to draw in a

! See Appendix C for further details about Weka.
* See Appendix A for further details about the K-Means algorithm and other clustering techniques.
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selected area. To do that, we needed some references of each area to be able to decide
where to draw. We decided to get the points of the contour of each area and, for that
purpose, we were looking for an application that could do that easily.

As we did not find anyone to do that automatically we tried to extract the points
manually. In this way we found an application which stores the points of a polygon that
we define by clicks with the mouse. The application we used was Vextractor 3.10 demo
version.

We created a polygon for each area, going through the areas in the order imposed by
the dataset’. This was a long work, because there were many areas and some of them
small and mixed with other ones; but this work was made and the points were stored in
a text file in which there was one line for each area with the point of the polygon formed
for it.

Lowland areas Mountain areas [l Lake areas

Figure 1.4-1: Original map from the Webflora’s site

Figure 1.4-1 shows the map that we found in the Webflora’s site. It contains all
areas in which the land has been divided and it differences between 3 kinds of regions:
lowlands, mountain areas and lake areas. We have to mention that the lake areas are not
included in the database, so we are not going to cluster that kind of areas. This means
that lake areas will always appear as they do in this map.

To put this map into the application we transformed it to make it clearer. We
rescaled the map to do it bigger and sharpened it to show the areas more defined. The
adapted map is showed in Figure 1.4-2.

With all these modifications now we could draw in the map the clustering results
obtained from some clustering method, so the next steep was to implement those
methods that the application was going to support and the functions necessary to show
the results in the map. We considered implementing four clustering methods, two
partition-based methods and two probabilistic clustering methods.

3 A description of the order imposed to the areas is shown on Chapter 2.
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The two partition-based methods are the K-Means algorithm and a variation of it,
the Trimmed K-Means®. These methods have been implemented based on the approach
found in Weka’s API introducing the necessary modifications to adapt the method to
our needs. For the K-Means algorithm we mainly introduced the clustering assignments,
necessary to know which area is in each cluster. For the Trimmed K-Means we had to
insert more modifications.

Figure 1.4-2: Transformed map used in our application

The probabilistic methods we decided to implement were a Naive Bayes approach
based on Hugin Expert API, and a version to the EM algorithm’ based on the BC-EM
method proposed by Pefa et al. [PLL99] and the ECM approach [Sch97]. As we said
above, for the Naive Bayes approach we used the Hugin API® to build a Bayesian
Network, and applied the learning algorithm implemented by Hugin that is a version of
the EM algorithm named penalized EM. Our approach to the EM algorithm is not a
penalized version of the EM implemented in Java. For further information about
implementation check Appendix E.

After the implementation of all these clustering methods, the next steep was to
integrate all them in our application. With the application built we could run the
different techniques with each version of the database. We analyzed the results in detail
in Chapters 5 and 6 and a comparison between them in Chapter 7.

Finally we drew some general conclusions after all the experiments, and do some
proposals for further work related with the project.

* See Appendix A for further details about the K-Means algorithm and other clustering techniques.
> See Appendix B for further information about Bayesian Network and EM algorithm.
% See Appendix C for further details about Hugin Expert.
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1.5. Thesis Organization

This chapter gives a brief overview on our project, the targets of our work, and our
proposed approaches. The rest of this thesis is organized in four main sections:

Section I. DESCRIPTIVE APPROACH
Chapter 2. Description and Data Pre-processing
Chapter 3. First Approach Analysis
Chapter 4. Description of the Application

Section II. ANALYTICAL APPROACH
Chapter 5. K-Means Approach Analysis
Chapter 6. Naive Bayes Approach Analysis
Chapter 7. Comparative Analysis of Different Approaches

Section ITI. CONCLUSIONS
Chapter 8. General Conclusions and Further Work

Section IV. APPENDIXES
Appendix A. Clustering Techniques
Appendix B. Bayesian Networks
Appendix C. Tools
Appendix D. User Manual.
Appendix E. Implementation and Source Code

In Section I we go through the data describing the original dataset, the
transformations realized to work with it in other sections and the results obtained from
Weka that describe the dataset in parameters of descriptive statistics as clusters size,
mean/mode and standard deviation. We also describe the analysis tool we developed
before going through the real analysis.

In Section II we analyze the data after applying some clustering techniques available
in our application such as the K-Means algorithm and the Naive Bayes network. We
also analyze the differences of the clusters obtained by each technique and present the
option for automatic comparison integrated in our tool.

In Section III we draw general conclusions from the complete project work and
suggest several paths to follow the work thru. Some of these paths can be a seed for new
projects and others are related to amplify the scope of the application.

Last Section groups the appendixes where further information related to several
issues of the project can be found. We explain the theoretical concepts of the Machine
Learning techniques we consider in the project, the tools we have worked with and
implementation details as well as the source code of the main functions of the
application. We also include the user manual of the application where we explain how
to use it and the main functionalities of the tool.

15
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2. Description and Data Pre-processing

2.1. Description of the Database

The initial database, which is available in its original format in the file flora ch.xls,
contains the data related to the flora of Switzerland divided in 565 areas that are
explained in the Webflora’s site at http://www.wsl.ch/land/products/webflora/.
The original database is divided into twelve Excel sheets because the rows are too long
to be kept in a unique sheet.

Each row in the database corresponds with one of the areas of the Swiss map, and
for each of these rows different values of abundance for each plant are presented. These
values come from discrete variables which can take integer values from 2 to 7. The total
amount of areas represented in the database is 565, which means that not all the areas of
the Swiss map are represented in the database. In fact, only the lowlands and mountain
areas have been considered not taking into account the lake areas.

The 565 areas considered are numbered sequentially on the basis of its belonging to
one of the 9 regions in which Switzerland has been divided into. We can see the regions
painted on the map in Figure 2.2-1.Those regions are the following:

100's: Jura Mountains

200's: Central Plateau, western parts
300's: Central Plateau, central parts
400's: Central Plateau, eastern parts
500's: Northern Pre-Alps, western parts
600's: Northern Pre-Alps, eastern parts
700's: Central Alps, Valais

800's: Southern Alps, Tessin

900's: Central Alps, the Grisons

2.2. Description of the attributes

In this section, we will describe the differences attributes present in the database and for
each of them we will explain the values that it can take and the meaning of the
corresponding values. We have the following information contained in the Excel file:

= Species names: A row that has a string containing the name of the plants that are
registered in the database.

= Species number: This is a number associated to each specie name. This has no
more information than the proper name; it is just a numerical identification of
the plants. It is in range 1 to 21934.

17
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Figure 2.2-1: Map of Switzerland with the 9 regions represented in different colours

= Number ecological group: This is a value associated to each plant and it
represents a discrete variable taking integer values in the range 0 to 8. Each
value means a different ecological group:

No data

Forest species

Mountain species

Pioneers lowlands

Water species

Wetland species

Dry/partially dry grassland species
Ruderals and weeds

Fertilized meadow species

OO DN W —=O

= Abundance: This is the value that represents the frequency of each species that
have been found in an area. It represents a discrete integer variable in the range
2-7 meaning:

2: Rare’

3: Frequent (not rare)
4: Registered in 1984
5: Registered in 1985
6: Registered in 1998
7: Registered in 2000

7 Found at one location, trees planted outside of their natural range.
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As is described in the Webflora’s site, the original dataset had another two
values, 0 and 1, but it also mentions that because the reduced data quality of
these values they are not included here. These values were references to
literature data (0) and herbarium specimen data (1).

= Number of the mapping area: This value represents, for each area, the number
on the map related to the 9 regions in which Switzerland has been divided into.
This value is in range 101-999 but there are only 565 different values.

= Timberline: This is a binary variable that can take two values, T or B, and is
associated to each area. It means that the area is a mountain area, so the area is
above the timberline (T) or it is a lowland area, which is below the timberline
(B). In the original distribution atlas, also 28 lake mapping units were
distinguished. Due to partly inconsistent data within the lake mapping units they
have been omitted.

All this may be usable to extract different information from the dataset but, as we
are interested in clustering the areas, data related to the ecological group and species
number is useless.

The main information we are dealing with is the one related to the abundance of
each plant into each area and the number of those areas on the map. The information
relative to the timberline has been rejected because it only takes into account if the area
belongs to a mountain zone or to the lowlands, and the clustering already finds these
two main groups of areas.

2.3. Extraction of the data

The original dataset contains data from 2697 plants located in 565 areas from
Switzerland tabulated as seen below in Table 2.3-1.

Species name, Flora Helvetica|2697 names

Nr ecological group|2697 values; range 0-8

Species Nr, Flora Helvetica|2697 values; range 1-21934

Timberline Nr. of the mapping area abundance

565 values;
T: below timberline
B: above timberline

565 values; 565x2697 values;
range 101-999 range 2-7

Table 2.3-1: Tabulation of the data contained in the original Excel file

As seen on section 2.1 this dataset come on an Excel workbook with the dataset
spread in 12 sheets. So, the first step consisted on extracting that dataset from the Excel
container into a CSV format. To do that, first we saved each sheet in 12 ASCII format
files and then replaced all tabs with commas. To do this the easiest way we used the
option “replace all” from GVim editor.

The only values of the dataset we considered for the posterior analyses were the
abundance values ranged 2-7 and, as we were going to use Weka and it needs a column
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with the class label, we also needed the ‘Nr. of the mapping area’ so we also saved that
column in another ASCII file.

The next step was to transform the ASCII files into a Weka format and for that
purpose we wrote the following Java class. This code generates a file “ddbb.arff” with
all the values of the attributes for each area and the code of the area as last column. It
supposes that 13 ASCII files, named 1 to 13, exist with each row of the 12 Excel sheets
by files and the data separated by commas and, in the last file, just one column with the
names of the areas.

import java.io.*;
class Procesa{

public static void main (String args[]) {
String[][] table = new String[568][13];

try{
/* READ PHASE */
for (int j=1; J<14; j++){
BufferedReader in = new BufferedReader (
new FileReader ("" + 7j));
String line = in.readLine();
for (int i=0; 1<568; i++){
table[i] [J-1] = line;
line = in.readLine();
}
in.close();
}
/* WRITE PHASE */
PrintWriter out = new PrintWriter (
new FileWriter ("ddbb.arff"));
for (int i=0; 1<568; i++){
for (int j=0; 3<12; J++)
out.print (tablel[i][3] + ", ™)
out.print (table[i][12] + "\n");
}
out.close();
}catch (Exception ex) {
System.out.println ("I0O Exception: " + ex);
}

}

The headers to complete the Weka’s ARFF format are added manually from a table
containing the structure show in Table 2.3-2 consisting on a column with the string
“@attribute ”, other with the name of the plant copied from the original Excel file and
transposed, and the last one with the possible values 2 to 7 that the attribute can get.
Afterwards, this table is saved into an ASCII file.

| “@attribute” |  Species name (transposed) | {2,3,4,5,6,7} |

Table 2.3-2: Structure of the table used to generate the Weka’s headers

For the cases of the class variable we also transposed the column from the original
data file and replaced the tabs by commas.
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2.4. Data transformations

After the first approach we realized that we can make some transformations of the
original data to run different experiments and compare the results. In this chapter we
explain the different dataset used in the next chapters, the transformations made and the
meaning of the values that we use in the different dataset.

These transformations have been done because the original dataset has
inconsistencies; the values 4, 5, 6 and 7, which refer to the presence of plants which
have been registered in several years, do not contribute with clear information to the
clustering problem. Also, there are a lot of blanks in the database that we must treat and
decide which value is adequate to fill them.

2.4.1. General considerations

There are several factors that are going to be the same in all the transformations of the
dataset that we are going to use. These are, for instance, the format of the data files,
what we have done with the blanks, etc.

First of all, we are going to explain what we did with the blanks. Reading the
instructions of the original data base we can see the meaning of each value; the data
available have values referred to the abundance of each plant. These numeric values
reflect the abundance of each plant in each area; with this values we suppose and
assume that the blank mean that there is no plant of that specie in that area, so we use
zero to replace all the blanks.

About the format of the dataset we chose, for the first approach, the Weka’s format
because it was the way to make that approach fast. For the rest of the experiments we
chose one more general and easier to adapt to the different programs we were going to
use format. We chose a simple format based in the character separated by comas, that is,
plain text file in a CSV format. Based on this format we will adapt it to the appropriate
files required for each method considered.

Finally, we have to say that we are going to use for the clustering just the abundance
values rejecting the values related to the number of ecological group and timberline
because the ecological number is something related with plants and we are going to
cluster the areas and the timberline information only makes a difference among
lowlands and mountain areas.

2.4.2. Original dataset

This dataset is extracted directly from the original database; the only transformation we
made was to replace the blanks by zeroes. Other values of the abundance have been kept
as in the original dataset.

The meaning of the values is based on the one seen in section 2.2:
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Value | Meaning
0 No presence of the plant
2 Rare (found at one location, trees planted outside
of their natural range)
Frequent (not rare)
Registered in 1984
Registered in 1985
Registered in 1998
Registered in 2000

N[O~ Ww

Table 2.4-1: Definition of original dataset

2.4.3. Transformed dataset

To generate this dataset we made some changes to rescale the values of the original
dataset so they could represent a measure of the abundance of the plants in each area.
The objective for doing this is to codify the most proximal concept with near numerical
values, in order to permit the clustering methods to measure the distance in a more
correct way.

The scale of value chose is 0 to 3 maintaining the same meaning for values 0 and 3,
recoding 2 as 1 and creating the value 2 as a new value that groups the values 4 to 7
from the original dataset as “registered data”. It seems logical to code the values this
way because the codifications 4 to 7 in the original dataset do not mention the
abundance and we supposed that these presences can be considered as not rare because
the plants have been found.

The definition of these values is presented on Table 2.4-2.

Value | Meaning
0 No presence of the plant
1 Rare (found at one location, trees planted outside
of their natural range)
2 Registered in further years
3 Frequent (not rare or registered)

Table 2.4-2: Definition of the transformed dataset

We tried to order these values in a correct way considering first that the rare species
are near to those that are not found. Then, we decided that the registered plants are rare
but in a different way because a plant found in 1984 do not have to be rare. So we chose
to put this value between the rare and the frequent value, which is the highest of the new
scale.

2.4.4. Binary dataset

The binary dataset was made to be able to consider only the presence or absence of each
species in each area. In this case we do not have information about the abundance of the
specie and the possible values are only 0 and 1.

The definition of the values is shown in Table 2.4-3.
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Value | Meaning
0 Absence of the plant
1 Presence of the plant

Table 2.4-3: Definition of binary dataset

With these two values we unify all the abundances in only one value. It seems
interesting to us because we can see how this changes influence in the methods applied.
This can reveal how relevant is the information of the abundance or, in the other hand, if
it does not give too much information.

2.5. Conclusions

The dataset we are going to work with comes on an Excel file with the information split
in several sheets because the number of columns exceeds the maximum permitted by
the spreadsheet.

From all the possible attributes we can work with, we chose the abundance of plants
by areas because the information we want to cluster is related to the areas in which
Switzerland is divided.

We found that this information has a non informative format so we transformed the
dataset to use the abundance as a distance measure among the instances. We considered
using only the presence or absence information relative to each plant but this gives not
much information about the distance between areas, so we recoded the original dataset
into the following four cases:

Value | Meaning
0 No presence of the plant
1 Rare
2 Registered in further years
3 Frequent
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3. First Approach Analysis

For the first approach we decided to run the K-Means method included in the Weka’s
API. We first tried to use the original dataset filling the blanks with the missing value
considered by Weka; however, with this dataset the procedure returned bad results so
we changed the dataset to make a further analysis.

3.1. Weka’s K-Means first run

The first change we did to the dataset was to fill the blanks with question marks ‘?’ that
is the value that Weka recognizes as missing. This way, the range of attributes was 2-7
as we explained in Chapter 2 meaning the same as the original range.

Unfortunately, the results were bad as most of the instances were assigned to a
unique cluster and most of them just contained 1 instance. The clusters generated for
k=8 are shown in Table 3.1-1.

Cluster | Center Size
102 482
101 1
311
103
638
929
345 7
702

N[O |WIN—|O
) I Y Y

Table 3.1-1: Weka results for the 8-means using the original dataset with missing values

Next step was to make the data numeric and with this dataset the results were a bit
better but the method still generates clusters with just one instance or a few more. This
can be seen in Table 3.1-2

Cluster | Center Size
0 267 54
1 101 3
2 311 1
3 236 144
4 638 1
5 102 19
6 124 51
7 151 113

Table 3.1-2: Weka results for the 8-means using the numerical dataset with missing values

As these results are not accurate enough because the numeral values are not chosen
the better way to use them as distance measures, we decided to fill the blanks with a
value different than a missing value and still representative of the non existence of that
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plant. In the next section we go through the analysis using zero as the value we used to
fill the blanks.

3.2.  Filling the blanks

After the first run described above the next change we did to the dataset was to fill the
blanks so we replaced de question mark ‘?° for ceros. This way, the range of attributes
was 0-7 meaning the same as the original range but with the new value ‘0’ that means
‘no data’.

The last thing we needed was the attributed definition and our attributed were the
plant species and the classes, and to do that we just transpose the species name row and
the Nr. of the mapping area column.

For this dataset we applied the k-means procedure to generate 10, 12 and 15 clusters
and the results for each run of the method were the ones shown in Table 3.2-1.

Cluster | Center | Size

Cluster | Center| Size 0 104 19

Cluster | Center| Size 0 104 19 1 101 40
0 104 52 1 101 46 2 222 69
1 101 44 2 148 79 3 626 49
2 148 82 3 507 59 4 632 2
3 507 68 4 238 85 5 566 76
4 238 84 5 566 82 6 565 51
5 566 92 6 565 49 7 504 16
6 565 49 7 501 25 8 111 45
7 501 25 8 111 37 9 801 27
8 111 42 9 801 27 10 532 1
9 801 27 10 236 11 11 443 51
11 343 46 12 501 20

13 236 21

(a) (b) 14 232 78

(c)

Table 3.2-1: Results for k-means clustering with values 0-7 for k=10 (a), k=12 (b) and k=15 (c).
The table shows for each cluster which area is the center of the cluster and how many areas are in that cluster

As we can see, making 10 or 12 clusters we have a good distribution of the areas
because for the 15 clusters run two of them have few areas. Also we can see that most
of the clusters have the same center (101, 104, 501, 801 ...) and a similar size so we can
conclude that these clusters are important.

3.3. Reducing the range of the data

The next change we did to the dataset was to reduce the range of values because values
2 and 3 are more significant than values 4 to 7 that only mean that there have been
found plants in a concrete year after the first study. Now the range of attributes was 0-3
meaning the same as the original range but with the value ‘0’ that means ‘no data’ and
the new value ‘1’ that means ‘data registered between 1984 and 2000°.
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We also applied the k-means procedure to make 10, 12 and 15 clusters getting the
results in Table 3.3-1 for each run of the method.

The results are similar to the previous ones and we can get the same conclusions.
Strong clusters are again centerd in areas such as 101, 104 and 801; and again the best
choice could be to make 10 or 12 clusters but now the clusters are more unequal.

Cluster | Center | Size

Cluster | Center| Size 0 104 19

Cluster | Center| Size 0 104 19 1 101 39
0 104 52 1 101 45 2 148 78
1 101 47 2 148 81 3 626 49
2 148 83 3 507 59 4 632 2
3 507 68 4 238 93 5 566 76
4 238 90 5 566 82 6 565 51
5 566 92 6 565 477 7 504 16
6 565 46 7 504 20 8 111 37
7 504 19 8 111 36 9 801 27
8 111 41 9 801 27 10 532 1
9 801 27 10 236 11 11 443 51
11 343 45 12 501 20

13 236 21

(a) (b) 14 232 78

(c)

Table 3.3-1: Results for k-means clustering with values 0-3 for k=10 (a), k=12 (b) and k=15 (c).
The table shows for each cluster which area is the center of the cluster and how many areas are in that cluster

Comparing with the previous dataset we can see that one of the clusters change for
both the 12 clusters and the 15 clusters runs. In the first case the change is not that
significant because the center moves from 501 to 504 and the size of the cluster is just a
bit lower, but on the second case we can see that the center changes much from 222 to
148 and making a bigger cluster. This could mean that for the first dataset the values 4-7
have enough relevance to change the size and the center of that cluster. And with the
second dataset, as we don’t have those values, we can’t see those differences and the
method just creates a bigger cluster.

3.4. Making the dataset binary

Our last change was to make the dataset binary. We transformed the values 2-7 into a
new value ‘1’ just for representing that there have been found that plant in a concrete
area. The attributes now got binary (0-1) values meaning ‘no data’ for the ‘0’ value and
‘data registered’ for the ‘1’ value.

We also applied the k-means procedure to make 10, 12 and 15 clusters getting the
results that are presented on Table 3.4-1 for each run of the method.

The results for the k-means procedure making 10, 12 and 15 clusters are again
similar to the previous ones and we can get the same conclusions. Strong clusters are
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again centered in areas such as 101, 104 and 801 but now the method doesn’t identify
these centers as quick as with the other datasets.

Now the center and the size of the clusters change a bit more because we only
consider the presence-absence criteria. This way the method doesn’t take into account
the abundance of each plant in each area so it just groups the registered or not registered
value.

Cluster | Center | Size

Cluster | Center| Size 0 343 27

Cluster | Center| Size 0 236 18 1 101 38
0 104 48 1 101 38 2 148 83
1 101 37 2 148 80 3 626 48
2 148 82 3 567 53 4 346 23
3 443 74 4 238 91 5 566 76
4 238 92 5 566 84 6 565 49
5 566 93 6 565 48 7 508 18
6 565 47 7 504 19 8 111 35
7 504 18 8 111 44 9 801 27
8 103 47 9 801 27 10 104 18
9 801 27 10 104 18 11 506 39
11 443 45 12 614 2

13 236 10

(a) (b) 14 232 72

(c)

Table 3.4-1: Results for k-means clustering with values 0-1 for k=10 (a), k=12 (b) and k=15 (c).
The table shows for each cluster which area is the center of the cluster and how many areas are in that cluster

As a first approach we could see that the size of the clusters change as we use
different datasets and different values of k. But we cannot say many things about the
clusters because we cannot see which areas are included in each cluster, and where are
they located in the map.

We cannot either see if the areas that compose each cluster are mountain areas or
lowland areas, or which areas changes from one cluster to another in each of the runs.
That is why we opted for the development of the tool to visualize this information on
the Switzerland map and base on this software further analysis.

3.5. Conclusions

For this first approach we decided to use the application Weka that is known by us both
and has most of the interesting Machine Intelligence methods available.

After the first run with the original dataset we found that the results are not usable
because most of the clusters obtained had just one instance. We run the Simple K-
Means method with the dataset composed by discrete values and, after that we
considered numerical values. In both cases the blanks in the original dataset were
treated as missing values and that’s why the results were that bad, so we took the
determination of treating those values as absences.
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With this absence information we run the k-means method with several values of k
and different datasets. These first transformations have nothing to do with the
transformations explained in Chapter 2 and do not take into account any distance
measure. These results were better than before but now the problem was in the
impossibility of extracting more interpretations than the size and cluster center.

That’s why we opted for implementing an application able to represent the

clustering results on a map of the land considered. This application is described in
Chapter 4.
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4. Description of the Application

In the previous chapter we have seen the results obtained with Weka have a difficult
interpretation in the field where we are working. For this reason we decided to
implement a software application able to run several clustering methods and show the
results on a map of the land where the dataset comes from.

In this chapter we describe that program from a Software Engineering point of view
including its relations with several Machine Intelligence libraries as the ones provided
with Weka and Hugin.

4.1. Class Diagrams

The class diagram is one of the diagrams included in the UML standard and it shows the
main classes that are going to interact in the program. We also show the packages where
the classes inherit from. Figure 4.1-1 shows the simplified class diagram generated with
Rational Rose™.

J#
M
EXE CAV2D Graphic
- ™ AboutDialog
DEDialog
OptionDialog
MethodDialeg
DifiCialog

Figure 4.1-1: Simplified class diagram of the application

There is a launcher class, EXE which is responsible of starting the application. It
creates an object from CAV2D, the main window, which is created with J# and uses
several components of that API as menus, labels, buttons, and etcetera. Some of those
components are other windows that act as dialogs. This is the case of DBDialog, used to
select the dataset to load an the parameters of that dataset; AboutDialog, where some
information about the program is shown; MethodDialog, to choose the clustering
method and its parameters; OptionDialog®, to show a general dialog that requires the

¥ This dialog is required because J# does not provide this kind of control.
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user’s interaction; and DiffDialog, where the user chooses the parameters for a
clustering comparison.

Some of these dialogs are just accessed when needed, and others are fields in
CAV2D. That’s why the class diagram represents them in a different way. This diagram
is simplified because all these dialogs also inherit and use the package J#.

Graphic is the component where the clusters will be drawn. It handles the paint
event to draw the polygons that represents each area in a concrete color. For this
purpose, it has a structure where the polygons are stored indexed by area name, number
in this case, and those polygons come from a file where they are stored in as format
described in the user manual’.

The class diagram from Figure 4.1-1 only shows the classes involved in the user
interface (UI) and does not reflex the clustering methods. These methods are
implemented in Java and the difficulty to integrate them into the application made us
take the determination of access to them via the command line. The class diagram for
these classes is shown in Figure 4.1-2 and is very simple because they only access to the
API of the tool from which they are based on.

EM Waka R
M
A A& !
Trimmed Kmeans SimpleKMeans

Mawe

Figure 4.1-2: Class diagram of the clustering methods

The EM class is special because it is implemented completely isolated and, because
of that, it does not have any connection but the obvious one to the Java™ API that we
have omitted'’.

4.2. Sequence Diagrams

The sequence diagram shows the steps taken in the interaction among the classes and
the user of an application. We show the general sequence for applying a generic
clustering method and showing its results on the map. As we need to load a dataset, we
also show the general load sequence for any of the files that the program works with. A
concrete interesting interaction is the change of the map and points that is also described
in sequence diagram.

’ The user manual is located in Appendix D.
' For implementation details check Appendix E.
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User CAV2D
[] Load DB
|T| Load DB

oy =

Apply clustering method T

L Method Dialog | . Create Dialog

Show options D o

 Choose options 4

H ' Apply method executeMethod Method

L Results D
Shm«‘:.r results |_| H

: Enabie draw botons
| [—

View:clusters

H Show' clusters

— |

Figure 4.2-1: Sequence diagram for the complete process of clustering

e CAVZD
Change map
]
H OpenFileDialog Create with image filter
Choose map D H

| D Map File
- ;

OpenFileDialag Create with dot file fiter
Choos dot file H
E Do fil i :

Dot file

" =

Map chabged

A

Figure 4.2-2: Sequence diagram for the change map process
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]
L
2
=
3
[

Open load dialog

H Dialog Create dialog |"'|
: Show dialog i H
Load file L

H |-| Open file and load content

Figure 4.2-3: Sequence diagram for the generic load process

4.3. Files Formats

The application uses different file formats for different purposes. It supports several
dataset formats but imposes a concrete one for the results of the clustering.

4.3.1.Dataset File Formats

The dataset can come on several formats because the load dialog permits to specify
parameters such as data separator and presence of class variable and attributes names.
The following files are supported:

Data files (*.dat)

Comma separated values files (*.csv)
Generic ASCII files (*.txt)

Tabbed files (*.tab)

Also a generic flat file can be loaded if it fulfils the only rule of having as separator
one of the three permitted: comma, tabulator and space.

The file can also contain, and it must be checked, a first line with the names of the
attributes and a last value with the class variable useful as areas identification. It was
contemplated the possibility of loading an office file (Access or Excel file) because the
original dataset comes on an Excel format, but it could not be implemented because of
lack of time. This is one of the proposals as further work in chapter 8.

4.3.2.Clustering Results File Formats

The results of the clustering analysis come in two formats. One of them is a text based
format that is the one presented as results of the clustering analysis. This information
can be saved as rich text in a rich text format file (.rtf). This option is accessible through
both, the file menu and the toolbar.
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The other results file is automatically generated and it contains the clustering
assignments using as identifier of the instances the class variable without mattering if it
comes on the dataset or it has been automatically generated''. It is a flat ASCII file that
contains, in a CSV format, the instances assigned to each of the clusters found. These
files are called clustering assignments files (.ca) and their format and extension are
required for further uses of these results as reload of the assignments to view them on
the map, or compare two clustering assignments automatically.

The CA files generated will be located in the same directory where the dataset is and
they will have the same name of the dataset followed by the method run to create them.

4.3.3.Map Formats

The last kinds of files the program considers are the formats related to the map where
the clustering is showed on. The change of the map requires two kinds of files, an image
with the new map and a file with the points that define each of the polygons
representing the areas on the map.

The image file can come on one of the standard image file formats where as the file
with the polygons must have a concrete structure explained below. The supported image
files are:

Windows Bitmap (*.bmp)

Jpeg File (*.jpg; *.jpeg)
Compuserver (*.gif)

Portable Network Graphics (*.png)

For the polygons file we use, we talk about the dot file format (.dot) but the program
also accepts .csv and .txt files. The format for all them is concretely defined and if the
file does not follow it the change of the map will not have success.

The first line of the dot file must contain the amount of areas considered. This is for
the initialization of some structures that we are using to store and draw the areas. The
following lines must have the following information knowing that the point (0, 0) of an
image is the top left corner:

<area id>,X1,Y1,X2,Y2, ooy X, Yy

The first value always will be the identification of the area and it must be followed,
in a CSV format, by the pairs of point that draw the polygon that covers the area. An
example of this format can be seen in Figure 4.3-1.

In the example show in Figure 4.3-1 we begin from the western point (1, 5) and go
around the area opposite to the clockwise direction to (4, 8) and so on until we reach
again (1, 5) that must be included again to close the polygon.

" The automatically generated class column contains the string “Inst” followed by the number of
instance.
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(5,4) (10,4)

(1,)

Areab1
(4,8)

(4,10) (7,10)

”"Areabl1,1,5,4,8,4,10,7,10,10,4,5,4,1,5"”

Figure 4.3-1: Example of an area transformed into a dot file format

To generate the dot file for the Switzerland map we used the program Vextractor
3.10 demo that permits to “create polylines” on an image that will define a polygon and
save them as a vector file in Autocad, ArcView, Windows MetaFile, and other formats.
From those other formats is very interesting for us the ASCII xyz file format. This
format saves the polylines as plain text with a line for each point and it has the
possibility to include an index for the points belonging to the same polyline and a Z-
coordinate that for us is useless.

Creating the polylines in the order the areas appear in the Webflora’s site, saving
them as “map.xyz” and having the identifications loaded in another file “areas.txt” as
CVS we only needed to run the following Java code to obtain the dot file:

import java.io.*;
class ProcessDots{

public static void main (String args[]) {
StringBuffer output = new StringBuffer();

try({
String areas|[] = new BufferedReader (
new FileReader ("areas.txt")) .readLine () .split (", ")’

/* READ PHASE */
BufferedReader in = new BufferedReader (
new FileReader ("map.xyz"));
String readed = in.readLine();
String [] line = readed.split(",");
//The polyline id, without Z-coordinate, is the 3™ value
String prev = line[2];
int i=0;
//add the number of areas and the first area id
output.append (areas.length+"\n"+areas[i]);
while (readed !'= null) {
line = readed.split(",");
//1f the polyline id is new add break and the next area
if(!1ine[2] .equals (prev)) {
output.append ("\n"+areas[++1]);
prev = line([2];

//the values are 200 times smaller and are related to
//the bottom left corner. 588 is the height of the map
double X = (Float.parseFloat(line[0])*200);
double Y 588.0 - (Float.parseFloat(line[1])*200);
output.append (", "+X+","+Y) ;
readed = in.readLine();
}

in.close();
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/* WRITE PHASE */
PrintWriter out = new PrintWriter (
new FileWriter ("swiss.dot"));
out.print (output) ;
out.close();
}catch (IOException ex){ ex.printStackTrace(); }

4.4, Main Functionalities

The main purpose of this program is to have a tool where some clustering method could
be run and where the results could be shown on a map, so these are the main
functionalities of it.

The application can load datasets in the formats explained in section 4.3.1 and show
them into a data grid with the attributes as columns and one row per instance. This
loaded dataset can be saved in a CSV format keeping the class variable if it exist in the
original dataset but adding a row with the attributes names it the do not appear on that
original dataset.

The application supports 4 clustering methods:

Simple K-Means Approach'?
Trimmed K-Means Approach'”
Naive Bayes Network'”
Expectation-Maximization Algorithm

Each of these methods can be applied only once a dataset has been loaded and they
will generate automatically a file, or a set of files'*, with the name of the method run.
All they also show text based results that are shown once the method finish and that can
be saved as .rtf files or printed. To show the graphical clustering results an option is
activated when the method finishes rightly.

The application can always load CA files and show the clustering in them but not
the text-based results because, as .rtf files, they can be red with any of the multiple text
processing applications existing.

Finally, the program allows comparing two clustering assignment files
automatically searching for the equivalent clusters on both files. This search can be
based on any of the two files and can follows two different comparison criteria. These
two criteria are explained in chapter 7.

"2 Theoretical explanations of the k-means methods can be found in Appendix A. Details about the
implantation are described in Appendix E.

" Theoretical explanations about the Bayesian Networks and the EM algorithm are located in Appendix
B. Also, details about implementation are found in Appendix E.

'* The Naive Bayes method generates three files when it is run with two root nodes. One file per root
node and other with the crossed clustering results.
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4.5. Conclusions

This chapter gives a brief description of the application tool we have developed from
the viewpoint of the Software Engineering including the main functionalities and the
restrictions to the files supported by the program.

Other details about the GUI or how to work with it are explained in the user manual
located in Appendix D.
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5. K-Means Approach Analysis

In this chapter we analyze the results of applying the Simple K-Means algorithm on the
datasets created from the original database of Swiss flora. Also, we analyze and
compare the Trimmed K-Means variation with the Simple K-Means approach.

5.1. Introduction

For the analysis of k-means method we used the algorithm implemented in Weka API,
the SimpleKMeans class. We modified the code for our necessities in the project
basically to show the cluster assignments (cluster membership) that the method
generates. The original algorithm only shows the number of items that each cluster has
and the centers of the clusters, but knowing the cluster membership was necessary for
our project in order to draw the areas of each cluster on the map.

In this chapter we will analyze several experiments running the k-mean algorithm on
each of the datasets we created. In the experiments, we change the number of clusters
and compare the results. We are going to use the binary dataset and the transformed
dataset in the experiments, since these two datasets contain enough information, and the
original dataset has many possible values which are difficult to be interpreted.

5.2. Binary dataset

We run several experiments using this dataset with different numbers of clusters. The
experiments start with small values of the k and end with bigger values. With this
dataset the algorithm has no information about the distance because it only represents
the presence/absence data (0/1). We started with k=5, continued with k=8, and ended
with k=12.

For k=5 the results are shown in Figure 5.2-1. In that figure we can see that there are
four significant clusters. There is a big one, cluster 3 in green, covering the north part of
the map and some areas in the south, which can be interpreted as a snowball effect
because the areas to the south clustered into this one are far from the northern areas and
seem to have a low relation with them. We can see the same phenomena in other
clustering results.

Other three important clusters are in the center-south of Swiss. These three clusters
reveal vegetation differences along the south of Swiss interlaced each other. This is due
to the lowlands and mountain areas located in the south of Swiss that gives the
clustering that root shape. This part of the map is conformed by several mountains and
valleys or depressions caused by some rivers that flow through the mountains. This
configuration makes the flora different from one area to another and similar to the
mountain areas and areas along the rivers.
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Cluster 4, the light blue one, covers the mountain areas to the south and center of
Swiss. The other two clusters, numbers 2 and 5, show differences between the lowland
areas to the south and in the center of the land. Cluster 2 also shows the snowball effect
containing areas in the north-west.

The last cluster 1, the one in yellow, has a smaller size than the others. As it clusters
several zones on the map, it may be representing areas in which there are strange plants
that are similar around the map. This can also happen because these are mountain areas
and they have similar special conditions. However, it is different enough from the
configuration of the southern mountain areas because they are clustered separately in
cluster 5.

Color Codes

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster &

OOEEO

Figure 5.2-1: Clustering of Simple K-Means method with k=5 on the binary dataset

Figure 5.2-2 shows the clustering for k=8. Now we can see how, in the north-west
zone, cluster 1 still stands so it must be an important cluster with significative
differences respect to the other clusters. Also, the cluster in the middle, now number 5,
the orange cluster. The big cluster at the north of the map has been split into another
two distinct clusters, numbers 2 and 3. This reveals a lower level clustering of this big
area that shows less important differences between the floras of the north of Swiss. This
also happens with the light blue cluster, number 4, which now is divided into two sub-
clusters that again represents more concrete differences among the flora of the lowland
areas of the south of Swiss.

Again we can see a division in cluster 5, the orange one, which now has been
divided into two clusters, numbers 7 and 8. The areas in these two clusters are lowland
areas surrounded by mountains; however, we cannot infer anything from the position or
the other adjacent clusters because both clusters touch with the two mountain areas
regions and also both are spread along the south of the country. One possible
explanation for this division is the existence of two main depressions, one to the west
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into cluster 8 and the other to the east into cluster 7. These two depressions can have
vegetation differences that create these two clusters, and the other areas just are
assigned to the closest cluster.

In a hierarchical approach we can generate the dendrogram shown in Figure 5.2-4 to
see graphically the divisions of the clusters of higher level into a lower level clustering
and the ones that are coming on the next analysis with k=12. Not all the clusters are
represented because some of them are not the result of the division of a previous cluster.

Color Codes

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster &
Cluster B
Cluster 7
Cluster 8

OEOOOEEO

Figure 5.2-2: Clustering of Simple K-Means method with k=8 on the binary dataset

The last experiment for this dataset was done with k=12. The results are shown in
Figure 1.2-3. Again we can see how the north zone, cluster 3, is split into two clusters
representing different groups of areas. Now, the cluster that previously was in yellow is
in dark red but it still represents more or less the same group of areas that have a very
specific flora configuration. From the Webflora’s site we can infer this is because these
areas are mountain areas in the middle of a huge extension of lowlands. It is not strange
to think that in these areas there are plants that are endemic from this concrete kind of
areas.

In the middle and south of the map are there more changes. Here we can see many
clusters mixed. Cluster 4 remains practically unchanged as cluster 6 does. These two
clusters are very compact clusters because, even with a high value of k as 12, they
remain practically unchanged but they come from a unique cluster when k=5 so this
means that these two clusters are very close each other.

Two new clusters have appeared taking areas from several other clusters of higher
level. These clusters are numbers 1 and 12, and they appear as small clusters probably
just for the need of get 12 different groups. Cluster 1 is clearly this kind of cluster but
cluster 12 seems to have more reasons to be. This cluster groups areas along the center
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of the map and all these areas are mountain areas so maybe it represents another group
of mountain areas that are particularly different from the one northern and southern the
land. The differences are not that obvious because with a lower k these areas were
clustered with the northern or southern mountain areas. This reveals that this group of
areas could be some kind of mixture of both edge clusters.
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Figure 5.2-3: Clustering of Simple K-Means method with k=12 on the binary dataset

Other areas have been clustered together according to more detailed similarities
between their flora configurations. Clusters 2 and 5, for instance, have changed in some
areas according to the new centers found. Cluster 7 has also changed a bit referring to
the previous clustering for the same reason.

i Cluster 1 i i Cluster 1 i i Cluster 11 i
i Cluster 2 ' ' Cluster 5 ' ' Cluster 5 '
! ' ' ' ! Cluster 3 '
: : : Cluster 3 : : :
; Cluster 3 ; ; : ; Cluster 9 ;
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Figure 5.2-4: Dendrogram15 representation of the Simple K-Means runs with the binary dataset

1> See Appendix A for further information about the dendrogram.
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Cluster 8, the light green cluster, now has been divided into two new clusters,
numbers 8 and 10, as it happened before when this cluster appeared with k=8. Taking
into account the splitting we have found as we increase the value of k, it is logical to
group the results in a hierarchical structure of the clustering.

This hierarchical dendrogram can be seen in Figure 5.2-4. The Figure shows two
clusters that are maintained along the different runs changing only the name given on
each of these runs; hence, these clusters are very compact. Other two very compact
clusters are numbers 4 and 6 that come from cluster 4 when k=5. These clusters are very
compact but also they are very close because for k=5 they form a unique cluster.

In the rest of the clusters, there are two compact clusters, numbers 2 and 7, that are
grouped with other clusters of less relevance with k=5. We say that other clusters are
less relevant because, at a lower level, they present enough difference to make the
method group them in separate clusters. We can see a bi-dimensional representation of
the dendrogram of Figure 5.2-4 in Figure 5.2-5.

This figure represents the same information as Figure 5.2-4 but in a Venn’s diagram
format. In this format it is easy to see that there are 5 main clusters, and three of them
can be split into two each other. We see how clusters 1 and 2 are never split; cluster 4 is
just split once when we look for a greater number of clusters whereas the other clusters
are split again to generate the 10 smaller clusters that are represented.

Cluster 4

Cluster 3 Cluster 5
Cluster 3 Cluster 8

Figure 5.2-5: A 2D graphical view of the hierarchical clustering of the original dataset

As we have seen along these experimental results, the binary dataset is good to find
general differences among the data. The k-means method groups the areas taking into
account which plants appear in each area and then grouping the areas with similar kinds
of plants in it. The method is useful to find big main clusters but it has not enough
information with this dataset to go further into these main clusters.

In the data we have found 2 important groups (clusters 1 and 2 in the 5-means
experiment), one of them not so big but also important because it represents a set of
plants that appears only in these few areas that are assigned to cluster 1. These two main
clusters reveal the two main different groups of plants and appear with any k you give
to the method.
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The next pair of important groups of plants appears with a higher value of k. The
plants found into them are similar so they are grouped together with a low k. These
clusters are numbers 4 and 6, and they represent the two main differences among the
flora of the southern mountain areas so it is logical that these areas are grouped together
at a high level of clustering.

Other two important clusters that also appear with k=8 are numbers 2 and 7 which
represent respectively a set of plants that only occur in the north west part of Swiss and
an special vegetation related to the lowlands surrounded by mountains. The rest of the
clusters have less importance because they appear at a low level of clustering, and at
this level, the clusters are formed with very concrete differences just for the need of
getting the specified number of clusters.

5.3. Transformed dataset

Using the transformed dataset we followed the same experimental structure that the one
we used with the previous dataset. Now the k-means algorithm can calculate and use as
distance measure the possible values of each attribute. These values have been selected
appropriately in order to represent the distances in an appropriate way.

|
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Figure 5.3-1: Clustering of Simple K-Means method with k=5 on the transformed dataset

The 5-means clustering is shown in Figure 5.3-1. These results are quite different
from the ones using the binary dataset: the big cluster on the north of the map has been
divided into two smaller clusters, the red and green ones, seen as an interesting thing the
fact that the red cluster includes areas from both the north and the south of the green
cluster. This means that the green cluster has a main flora that in the edges has changed
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by contact with other species. Also we can see some areas in the south of the map
grouped with cluster 3, which supports the theory of a general cluster.

Now, the lowland and mountain areas to the south are distinguished more clearly
and both have an important extension. Cluster 5 now represents all lowland areas from
the center and south of the land so we can infer that there are enough differences
introducing cluster 2. It is no necessary to divide this cluster into two as it happened
with the binary dataset.

The mountain areas to the north are still grouped together with several mountain
areas across the land. This can be interpreted as an amount of mountain areas different
from the main mountain area, cluster 4, that show more similarities with the northern
mountain areas group. These areas can have some endemic plants in common that are
not in cluster 4.
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Figure 5.3-2: Clustering of Simple K-Means method with k=8 on the transformed dataset

The clustering results from k=8 run in Figure 5.3-2 have less difference with the
binary dataset analysis. With this dataset cluster 5 is almost the same cluster; however,
it is a bit bigger because some areas allocated on clusters 2 and 7 have been taken into
cluster 5. Compared with the 5-means clustering the big orange cluster has been
separated into 3 new clusters, the orange (cluster 5), the purple (cluster 7), and the light
green (cluster 8) ones. This division is different from the one we got in the binary
dataset because now the southern lowland areas are clustered into cluster 7, and only
some areas to the west conforms cluster 8.

Cluster 8 has been reduced and areas that were assigned to that cluster now belong
to cluster 7. This happens because, with the binary dataset, this cluster grouped only
those lowland areas where particular plants were found not considering the amount of
plants. Now cluster 8 represents a concrete region with concrete specific flora and a
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concrete amount of some plants moreover than the simple presence-absence of each of
them. This supports again the theory of a main depression that has a concrete flora. In
fact, this cluster now represents the particular flora along the depression caused by the
river that flows between the south western mountains and, as we can see in the figure,
these particularities are different from the ones that define the other depression to the
south west of the land.

Again cluster 4 has been divided into clusters 4 and 6 so the two clusters are still
close. As clusters 4 and 6 keep more or less the same configuration than the one they
have with the binary dataset, their similarities are just related to the presence or absence
of characteristic plants; but currently, the light blue cluster has taken more areas from
the center of the map so there are more similarities than the ones we found both with the
binary dataset and with k=5 and the current dataset.

The main difference of this map happens on clusters 2 and 3. Here we have found
that the areas in the middle of the land that for the 5-means were clustered into cluster 2
are now closer to cluster 5. This means that cluster 2 was taking areas from both clusters
3 and 5, probably because of a chain effect that makes these areas closer to the closest
area from cluster 2 than to the closest areas of the other two clusters.

With this clustering we still can see areas from the south of Swiss clustered together
with areas from the north. This could mean that they are so different from their
neighborhood that they are grouped with a big cluster, the one closer but not that
similar, just because of the fact that they must be clustered somewhere. Other
interpretation could be that in fact these areas are similar to the ones from cluster 3 but
some of these areas in the 5-means run now have been grouped with cluster 7 so this
argument has not enough weight.

Color Codes —‘*’"\f\‘-;f
[ Chaster 1 3 A58
B Cluster 2 P e - ol i

B Cluster 3

[ Cluster 4

[ Cluster 5

O Cluster &

B Cluster 7

O Cluster 8

[ Cluster

B Cluster 10

B Cluster 11

[ Cluster 12

Figure 5.3-3: Clustering of Simple K-Means method with k=12 on the transformed dataset
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For the 12-means clustering we obtained the results we can see in Figure 5.3-3. The
results are again a bit different respect the clustering made with the binary dataset. One
of the differences is at clusters 2, 3 and 9 (red, green and grey clusters). In the clustering
made with the binary dataset the areas of some edges of each of these three clusters
were assigned in a different way having cluster 2 more areas than now.

This happens because with the binary dataset only the presence or absence of each
plant in these areas fulfilled the flora configuration to be clustered as they were; but
now, with the amount information, the method also considers the weight of that
presence. With this criterion of amount of presence, those areas in the edge of the
clusters are closer to the new cluster they are assigned to. This happens because, in
these areas, there must be a mixture of plants from both bordering clusters and taking
into account only the existing plants the assignment is different than taking into account
also the amount of that presence.

Some areas belonging to cluster 9 now have been assigned to cluster 2 and areas in
the edge between clusters 3 and 5 that were assigned to cluster 2 now have been re-
clustered into one of these bordering clusters. But this is not strange comparing with the
8-means results because the orange cluster is almost the same. Just the north edge of
this cluster changes from one cluster to other, which can be interpreted as the existence
of a mixture of species that, in some cases is closer to one cluster and in other cases is
closer to other cluster.

Now cluster 7 is the one where cluster 10 comes from but this only means that this
new cluster will appear at this level of detail. Again, those areas belonging to cluster 3
at the south of the map are clustered into this new region shows the reason why they
were assigned to cluster 3 was just because this was the closest one.

Other clusters are almost the same except the yellow one that now has been divided
into two, clusters 1 and 11. This means that, looking for differences, these areas are
farther than other mountain or lowland areas. Knowing this now we can say that with
the transformed dataset we can find more differences in the northern mountain areas and
there is no need to search those differences in the southern ones as it happened with the
binary dataset. Also we can say that the central mountain areas have an own flora
different from the other mountain areas.

Finally, the changes for the lowland areas are located at the edges of these areas
probably because of the mixture of flora configurations.

5.4. Trimmed K-Means analysis

The Trimmed K-Means approach is a specific version of the k-means algorithm that
leaves out of the clustering an amount of instances to make clusters with less variance.
See Appendix A for further details.

We applied the method using only the transformed dataset because this method

needs some kind of distance measure to trim the instances with a trimming level 0=0.05
that is a standard statistical significance level. This means that the method will leave a
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5% of the instances out of the clustering. For our dataset with 565 instances these are 28
instances unclustered.

Figure 5.4-1 shows the clustering results for the trimmed 5-means with 0=0.05; this
is known as 0.05 trimmed 5-means. As we can see in the figure, the trimmed clustering
is almost equal to the one without trimming except the two areas to the north that
without trimming are in cluster 3 and now have been assigned to cluster 2, and another
one to the west previously in cluster 5 and now also in cluster 2.

The main importance of this technique is that it generates spherical clusters taking
into account for the new centers computation only those instances significantly close to
one of the centers. With this restriction the method is not affected by outlier instances
and it reaches better centers than the simple k-means approach. Also, this method shows
those instances that are not assigned to any cluster, called the trimmed instances or
outlier instances. These trimmed areas are not colored in the figures we are going to
show and they only have the color of the original map.

Often, the method allows to differentiate between outlying clusters and radial
outliers. The first kind of outliers is constituted by groups of outliers that differ from the
main clusters found but without enough “strength” to be considered as one of those
main clusters. The radial outliers are isolated instances that do not constitute groups
[GGMO3].
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Figure 5.4-1: Clustering of 0.05 Trimmed K-Means method with k=5 on the transformed dataset

For the 0.05 trimmed 5-means those trimmed instances are the three without a color
association to the east, 9 to the south west on the depression area we have talked about
previously and 16 to the south that are the ones assigned to the big cluster to the north
with the simple k-means approach. These two groups of areas to the south are
candidates to be outlying clusters. This means that probably they represent two
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“hidden” clusters that have not been formed because they did not have enough strength
against the bigger clusters, and probably they will appear with a higher value of k.

Now we can infer from these results that these trimmed areas are far from all
centers. As we suggested before, now we can see that effectively there is an important
weigh on the areas along the depression to the west and, as we can say now, it is true
that those areas cause a deviation on the k-means centers because they are far from their
closest clusters. In this case, that cluster was number 5 and, for this approach, it only
caused one misclassification on the clustering. The same can be said about the western
trimmed areas and some on the south that also were assigned to cluster 5.

Most of the areas that have been trimmed are from 800’s zone because in these areas
the flora is very different from all the other flora configurations represented by the
clusters formed. These areas are the ones to the center-south of the map and, as many of
the most distant are from this zone it seems logical that they cause a higher effect on the
center’s deviation. For these southern areas assigned to cluster 3 we can see that they
were causing a misclassification of two areas because of their effect in the center of this
cluster.

These trimmed areas have all a high distance to their closest center and with a
higher trimming level we can see that the new trimmed areas are around these ones. We
can see the 0.15 trimmed 5-means results in Figure 5.4-2 supporting this argument. This
means that, in fact, these areas form one or several outlying clusters and there should be
some “hidden” clusters around some of these trimmed areas. And this is not that strange
after analyzing the simple k-means results.

Figure 5.4-2: Clustering of 0.15 Trimmed K-Means method with k=5 on the transformed dataset

This new image, Figure 5.4-2, also supports the argument of an important weigh or
variance on the areas along the two depressions, the one to the south west of the land
and the other to the south east, because a new group of trimmed areas have appeared
along the eastern depression.

We must take a look at the fact that all the trimmed areas are lowland areas. This
means that the mountain areas have a similar concrete flora maybe because of the
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temperature and other climatic conditions related to the mountain. Also we can infer
that the lowland areas have a more diverse flora and that is why the clusters vary that
much from one clustering to other.

Figure 5.4-3 shows the trimmed clustering for k=8. Comparing with the trimmed 5-
means we can see that now the method has found the cluster for the western untrimmed
areas, cluster 8, and have grouped them into this cluster. Still there are areas to the south
that are outliers and, as they haven’t found a cluster to belong close enough to be
considered, which means that they have a very specific flora very different from the one
found in other areas. Other trimmed areas have less significance because they spread all
over the map, and only represent the amount that must be trimmed.

Comparing with the simple k-means results we can see that the clustered areas are
the same apart from the ones trimmed. This means there is no important deviation of the
centers caused by the trimmed areas because if we go further into the trimming we
could see that are many trimmed areas that belonged to cluster 3 but areas clustered into
this cluster are the same than with the untrimmed approach.
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Figure 5.4-3: Clustering of 0.05 Trimmed K-Means method with k=8 on the transformed dataset

Figure 5.4-4 shows the results for the 0.05 trimmed 12-means experiment. As we
can see, now the southern trimmed areas have also been clustered together as we
predicted before so these areas were, actually, an outlying cluster. Other areas have been
trimmed because of their distance to the closest cluster but these new trims seem to be
just radial outliers. Looking at the map we can imagine that this happens because the
method trims always a concrete number of instances.

Compared with the simple clustering there are more evidences of the centers’

deviation as some of the areas assigned to cluster 2 before now have been corrected into
clusters 5 and 9. There is an area previously assigned to cluster 3 that now also belongs

50



to cluster 9. This means that cluster 2 has less significance than the one we inferred in
the simple k-means analysis because it is affected by the outliers that were assigned to
both clusters 5 and 9.

We can also see an estrange effect of the trimming in one area assigned to cluster 8
to the east of the map. This area must be close to both clusters 5 and 8 but, because of
the trimming and/or the presence of cluster 8, it has been now assigned to number 8
instead of cluster 5 that seems more logical. This happens because of the need to trim an
amount of instances, which is an undesired effect of the method.
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Figure 5.4-4: Clustering of 0.05 Trimmed K-Means method with k=12 on the transformed dataset

To solve the problem of miss-clustering doubt to an excess of trimming and find an
optimal value for k and o, Garcia Escudero et al. created the k-variogram to represent
the trimmed k-variance functions defined in [GGMO3] against o for a concrete value of
k. It also uses the second derivate of the trimmed k-variance functions that shows peaks
and exponential decay easier to interpret.

When the function shows a smooth decay the value of k is good or high depending
on the graphic for the previous k; and when there are peaks on the function they must be
interpreted as the presence of a small cluster accounting a percentage of the data given
by the value of a at that peak. Unfortunately, by the time this document has been written
there is no computational implementation to make an automatic selection of the optimal
values for k and a since we did not have time to approach the problem.

Another possible approximation is to calculate the distance between the trimmed
instances and the one with the higher separation to its closer cluster. If the instance is
closer to this outlier than the half distance to its closer cluster it can also be interpreted
as outlier, otherwise the instance can be untrimmed. This also can be said for a concrete
trimmed instance i as: “if the ratio of the distance between the farther outlier and i
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divided by the distance from i to its closer cluster is greater than 0.5, i can be
considered as non-outlier”.

The algorithm for this alternative can check, for each i in the trimmed instances, the
following condition:

; d( fart'hest{trlmmed }, trimmed.) . 1 s untrim (trimme d[)
d(trimmed , closerCluster,) 2

5.5. Conclusions

After all these experiments we can see how the k-means algorithm finds clusters
splitting others when we increase the value of k. This supports a good way to see the
most important clusters that we can find in the data. Also this method lets us find
compact clusters that remain almost unchanged as we increase the numbers of centers
and the clusters that are close because of the split effect we mentioned above.

Another conclusion we can obtain is that the datasets we used produce similar
results, which means the main information in the data is the presence or absence of
plants in an area. However, this information is not enough when we make a high or low
number of clusters as we could see the results from k=5 and k=12, because there is not
enough information to find 12 good clusters, and neither to find important similarities in
the data to generate 5 clusters.

We found that a good number for clustering is around 8-10 because with a lower k
the method generates big clusters that are the union of two more compact but close each
other, and with a higher k it expends the time searching for concrete differences that let
it have this number of centers.

As we could see, the trimmed k-means approach helps to find better centers
removing the outlier instances, and with this removal we can find sometimes the
presence of another cluster for which we will need another center. This method as it is
can also cause undesired effects because of the trimming of important instances for a
cluster that can make another instance belonging to this cluster be misclassified.

A solution for this problem is to check the distance variation of the outlier instances
looking for an important jump that represents the change from outliers to important
instances. This can be done manually with the k-variogram to detect a good value for k
and a. A computational approach is to check whether the distance between an instance
and the farthest one is less than the half of itself; if this happens the instance can be
considered an outlier; otherwise, can be considered to calculate the new centers.
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6. Naive Bayes Approach Analysis

This chapter is dedicated to the Naive Bayes approach for all of the three datasets we
created. We used the Hugin Expert 6.4 API to build a Naive Bayes model, and to apply
the learning process that uses the EM algorithm. In this chapter will be commented the
results obtained with different Naive Bayes models and with different initial number of
classes to cluster in.

6.1. Introduction

As we said before, we used Hugin 6.4 API for the construction of the model. We
implemented a Bayesian Network with a Naive Bayes structure; it consists of one root
node connected to the rest of the nodes acting as leaves. There is no connection
between the leaves but through the root node. This was the first model we built; after
that, a second root node was added with the proposal of comparing both roots clustering
results and to cross them to generate a new partition of the dataset to study. The reason
for use two roots nodes is because the EM algorithm is based in the initial probability
distribution of the root node, so if we use two root nodes we can compare the results of
a running of EM with different initial probabilities and observe if they are similar or
not, and in case that they were not similar we can obtain the join clusters of the two root
nodes.

For example, for the Swiss flora’s dataset the program creates a root node for the
cluster assignments initialized with the number of cluster that we want to generate, and
one leave node for each one of the plant that we have in our database. For the leave
nodes, the parent is the cluster node and the number of states of these nodes depends on
the different values that the dataset has. Each node will have as many states as the
amount of possible values that the plant can get.

With this structure created, the learning will be made through the EM algorithm
implemented in Hugin API 6.4. The EM algorithm requires to have missing values on

the cluster label attribute of each instance and nowhere else because the purpose of this
analysis is to make the network learn the best clusters for the data.

6.2. Building model

The first thing that we have to do for constructing the model is to define the structure of
the network, which is the Naive Bayes structure. We implemented this structure using
the Hugin API, which support a set of classes useful for that purpose.

The steps that we took in this way were:

1) Create a Domain object. This is the first step to create a Bayesian network in
Hugin. Every item in a network is associated with one domain that is the
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2)

3)

4)

5)

6)

7)

9)

container of the network, and establishes the closed environment where the
network is going to work.

Create all the nodes. In this step we create the nodes that are necessary for the
Naive Bayes network, that is the two root nodes and all the leaves associated
with each plant. For our network we used the class “NumberedDiscrete-
ChanceNode” that represents a node with discrete values but all of them are
numerical. The name of each of these nodes will come from the first row that
should contain the name of the attributes.

Define the number of state of each node. For the root nodes it is defined by the
number of clusters wanted, and for the leave nodes this comes from the different
values of each attribute on the dataset.

Connect the nodes. In this step are defined the relationships between the nodes.
In our case all the leaf nodes associated with the plants have as parents the two
root nodes and there is no link between the brothers neither between the roots.
Create experience tables. Each node has a conditional probabilities table (CPT)
where the node keeps the probabilities for each of its states. It is necessary for
the posterior application of the EM algorithm.

Init experience tables. For the root nodes we initialized the tables randomly
because the default uniform distribution gave bad results in the learning phase.
The leave nodes are initialized with the default distribution.

Load dataset. Loads the file with the cases to apply the method with.

Compile domain. Before applying the learning algorithm the domain must be
compiled to ‘lock’ it and make it ready for the execution.

Apply the learning algorithm: Now is when the network learns the structure of
the dataset. It updates the conditional probabilities tables using the cases loaded
into domain. For this purpose, the API uses an implementation of the EM
algorithm.

In Figure 6.2-1 and Figure 6.2-2 are shown the structure of the two models
constructed for applying the EM algorithm. In the first one, Figure 6.2-1, we can see all
the plants represented as leave nodes and all of these leave nodes as children of the
Cluster node. In Figure 6.2-2 we have a similar structure, but now there are two root

nodes,

Cluster]l and Cluster2. With this structure we will possibly get two different

clustering results using the same dataset.
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Figure 6.2-1: Naive Bayes model with one root node



Figure 6.2-2: Naive Bayes model with two root nodes

Figure 6.2-3 shows a screenshot of the Hugin GUI with the Network created for the
case of one root node.

Figure 6.2-3: Screenshot of the Hugin GUI showing the model with one root node

After all these steps, the conditional probabilities tables (CPT) of the nodes have the
probabilities belonging to each cluster. An example of this table is shown below. This
table was obtained from a leave node; we can see that for an observed value of the
attribute of 0 the probability of cluster 0 is 1 and the probabilities of other clusters are
shown on the same row. These are conditional probabilities of each state at the root
node given each state of a leave node.

Cluster | 0 1 2 3 4
0 1.0 | 0.978261 | 0.974684 | 0.966102 | 0.764706
1 0.0 | 0.0217391 | 0.0126582 | 0.0 0.0
2 0.0] 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0126582 | 0.0338983 | 0.235294

Table 6.2-1: Example of CPT of a leave node with 4 states and a root node with 5 states

With all the probabilities tables calculated, the next step is to enter the evidence of
each cluster and propagate it to see in which cluster of both root nodes the probability is
higher and assign the instance to it. That was made following the next steeps:

1) Enter the evidences of one case in the case files, all the leaves nodes has an
activated state.
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2) Propagate evidences; this is through a Hugin API function.
3) Search through all states in the root nodes which have the higher belief.

That was the process followed for the different runs that we made. This process is
common to all the tests we made and the changes are related to the dataset that we used
and the number of root nodes and states of each of them.

6.3. Original dataset

We begin the experiments with the original dataset. We run the method with two root
nodes; one is with three states and the other with four states. The results of the
clustering using the Naive Bayes (NB) model are shown in Figure 1.3-1.
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Figure 6.3-1: Clustering of Naive Bayes method with 2 root nodes (3 & 4 states) on the original dataset

The results show not all the states have found relevant areas. Although we put three
and four states respectively in the two root nodes respectively, only six clusters appear
instead of twelve as we expect. We can see a big orange cluster, which covers all the
north part of the map that comes from the two big clusters. In fact, the two big clusters
belong to each of the two root nodes individually. This cluster and what the big two
clusters come from represent a vast lowland area that has common plants. Hence they
do not have enough differences, which disable the method to divide them.

The method has also recognized the main mountain area to the south of the land and
two different lowlands around this one. The yellow cluster represents a zone affected for
both, the mountain areas to the south and the big lowland area to the north so it has a
different flora as NB shows. The green cluster is again built with the strange lowland
areas to the south and west that in trimmed k-means approach were trimmed. Since
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Naive also recognizes these as different areas we have more power to agree that
affirmation.

The red area is less significant because it just means that in each root node it was
assigned to different clusters. Cluster 6 probably appears for the same reason. Knowing
this we can say that both root nodes make a similar but not equal clustering because for
concrete areas each node takes into account different probabilities to assign them to the
most probable class.

About the complete dataset we considered that the data is not correctly ordered,
there is not order relationship between the data which has the value “rare” and the data
which has the value “registered 1984”. We cannot order this data so we decided not to
spend much time making many experiments in this dataset.

6.4. Binary dataset

We tried to apply this model to the binary dataset. The dataset has the value 1 for plants
which has some kind of presence in the area, and 0 when there is no data about the
presence of the plant in the area.

Color Codes
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Figure 6.4-1: Clustering of first root node (3 states) of Naive Bayes method on the binary dataset

The first test was made using two root nodes, one of them with three states and the
other with four states. The results of each node are shown in Figure 6.4-1 and Figure
6.4-2. In these results we observe that in the two nodes there is a big cluster that
contains most of the areas, and this big cluster is in the north of the map in each time.
Furthermore, in middle zone of the map we see that in both clustering we obtain
different clusters; it seems that there are two clusters in that zone and each of the roots
recognize one of them.
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The big green cluster on root 1 represents all the lowland areas that have general
similarities. That’s why it does not cover other lowland areas to the south that, as we
have seen several times, have special vegetation. On the other hand, the big red cluster
represents most of the mountain areas and, as we can see, it also takes the lowlands to
the west. This means that these areas are more similar to mountain areas than to
lowlands, which supports again the conclusion of a very particular flora.

In the second root clustering we can see that the big yellow cluster has grouped
together the northern lowlands and the southern mountain areas. The main differences
that this root has found are between the lowlands to the south and center of the map.
The big yellow cluster must have taken areas from mountain and lowlands in an equal
measure and the probability distribution has come in this way.

Finally another cluster that both nodes have found is in the south appears; however,
the first root only assigns the southern areas to it whereas the second root also clusters
some areas to the east and many to the west of the county. We must take into account
that the second root has found only 3 clusters although it was initialized with 4 states.
One of the states has been taken to a low probability in all the cases so no areas have
been assigned to it. Checking the combination of the results we can see with more detail
which clusters have been found.
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Figure 6.4-2: Clustering of second root node (4 states) of Naive Bayes method on the binary dataset

The combination of the results of each node is shown in Figure 6.4-3. It is necessary
to say that the combination of the two roots with three and four clusters respectively
should return twelve clusters; but first, the second node did not find four clusters it
should find, it only found three; and second, some of the combinations between clusters
have not got any area in them. That is why after the crossing we only obtain 5 clusters
instead of the 12 we expect to get.
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With these results we can see how there is a big cluster again situated in the north of
the map. As we commented when analyzing the original dataset’s results, this area
comes from the crossing of the two biggest ones in the roots clustering and it groups the
common areas that, again, are the lowlands to the north.

In the middle zone there are two different clusters, numbers 2 and 5, which come
from the crosses between the big red area from root 1 and the big yellow one from root
2 and both green areas from both roots. These clusters show both differences found on
each of the roots between the lowlands and mountain areas to the south and center of the
map. We can see another two relevant clusters that represent the two outlier zones we
have talked about other times.

We can see that the join clusters of the two root nodes are more accurate because
now we have more representative clusters. This happens because now we join the
patterns found on the data by the two root nodes. With the two patterns we obtain more
information from the dataset.
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Figure 6.4-3: Clustering of Naive Bayes method with 2 root nodes (3 & 4 states) on the binary dataset

The next experiment was done with one root node having eight states. The objective
of the experiment was to compare the clustering with two root nodes and the clustering
with only one. The results are shown in Figure 6.4-4. The results show both clustering
assignments are quite similar with the crossed clustering. Both have the big main zone
to the north that now is extended with some areas to the south and both sides of the map
as a chain that tries to reach the southern areas.

Again the lowlands and mountain areas to the center and south of the country have
been detected but now the outlier zones have been clustered together. This is similar to
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the trimmed 5-means run where these areas were trimmed because they were too far
from their closest centers.

One interesting difference is in the small area in the center of the map. This area was
clustered with the center lowlands on cluster 5 when we run the method with two root
nodes; and now, with the one root node model, the method has found more similarities
with the lowland areas on cluster 4. This means that the characteristic found by the one
root execution is related to the fewer common plants because it groups this area with the
southern ones, and with two roots both of them find the common similarities and that’s
why both cluster this area into one of the bigger clusters it generates.
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Figure 6.4-4: Clustering of Naive Bayes method with 1 root node (8 states) on the binary dataset

Another interesting thing is that this small area was assigned to northern mountain
areas in the k-means approach. We are not comparing both clustering now; but it is
necessary to mention that NB does not consider the distances between instances
whereas k-means does. Hence, with a distance criterion, the similarities and differences
of the data have a strongpoint on the numerical results. NB does not have this
strongpoint but it can find peculiarities in the data that then are used to suggest a
possible clustering of that data.

We found out these clustering results obtained with one root node are depending on
the number of initial clusters given to the node but it does not conditions the resulting
number of clusters. As we can see in Figure 6.4-1 and Figure 6.4-2, even asking for a
low number of clusters, the method does not guarantee to find all them even when they
exist, as we can see in Figure 6.4-4.

The NB method finds a random amount of patterns inside the dataset having as
maximum the a priori number of clusters given to the method. This is why the
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experiment with 8 states finds 4 clusters and the experiment with 4 states does not find
the fourth cluster.
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Figure 6.4-5: Clustering of Naive Bayes method with 2 root nodes (4 states each) on the binary dataset

The last experiment we run with this dataset was with two root nodes having four
states individually. The reason for this is trying to obtain more clusters from the same
basis we applied when we run the method with 2 roots of 3 and 4 states respectively.
The results can be seen in Figure 6.4-5.

Nevertheless the results reveal only a few more clusters because of few differences
in the roots clustering. We obtained eight clusters but three of them have only one
member so they are not relevant. The clusters found are quite similar but not the same
because although the big cluster to the north and the one to the south now in yellow are
almost the same, they have been changed on the configuration of cluster 5 that now
have fewer areas since some of them have been assigned to cluster 3.

With this fact we can say that now the NB has found the particularities that makes
cluster 3 different from the others and, as we saw on the small map for the 0.15 trimmed
5-means, outlier and cause perturbations to a distance based method as k-means is.
Nothing to mention about cluster 6 that again is almost the same cluster except for one
of those three areas without relevance.

As we commented before, we have noticed that in all of the experiments executed
with this dataset appears one area in the middle of the map, inside the big cluster, that
belongs to another cluster; it reveals that it must contain one species or several species
which are not common in the neighbor areas.
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6.5. Transformed dataset

With the transformed dataset we rescaled the data; this has been done to try to have
consecutives values representing a scale on the amount of plants information. With this
dataset we tried to make the same experiments that with binary dataset.

Figure 6.5-1 shows the experiment with only one root node and eight states. In this
case there are again five representative clusters because cluster 3 is only composed of
three areas and these areas are spread along the country. The big cluster is again on the
north of the map but this time it does not covers that many areas to the south and sides
of the land. cluster 5, in the middle zone, is bigger than before on one hand because of
the areas that cluster 2 has not been taken and on the other hand because the importance
of cluster 4 has decreased with this dataset and it has lost some areas close to cluster 5.
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Figure 6.5-1: Clustering of Naive Bayes method with 1 root node (8 states) on the transformed dataset

The method has found the cluster on the depression to the west and it have
distinguished it from the southern mountain areas, so we can again support the
conclusion that the number of initial states is relevant to the method to search only main
similarities or also particularities on the data. Related to the dataset we can say that now
it has information to classify a better way because with the presence-absence dataset the
method assigned areas to the big cluster due to its size. This happened because with just
the presence-absence information the decisions are taken as a binary function when the
real information has a multinomial distribution.

Figure 6.5-2 shows the second experiment we made was with two root nodes with
three and four states respectively. Now they were more different as we can see in the
graphics. The big area to the north has again been reduced and confined to that part of
the map. Two of the cluster, numbers 4 and 6, appeared, which shows discrepancies
between the two root nodes when clustering some areas.
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Figure 6.5-2: Clustering of Naive Bayes method with 2 root node (3 & 4 states) on the transformed dataset

The big mountain area to the south has been kept almost the same as before; but
now it has taken a set of areas from the big red cluster to the north and the small area in
the middle of the land. Let us remember that this small area was grouped with the center
lowlands using only the binary dataset but, as this cluster has also been reduced and
many of its areas have been clustered into cluster 7, the particularities of the small land
made it been assigned to this mountain areas cluster.

Cluster 5 is almost the same as with the binary dataset and, in fact, it has grown
because now the power of the big cluster is less and the probability distribution is more
accurate. And back to cluster 7 it has been revealed as an important cluster that supports
the theory of similar vegetation along both depressions to the east and to the west.
These particularities found in the dataset are the ones that we were supposing in the k-
means approach and now we can say that with enough information, not only the
presence-absence criterion, the mapping of the land can be done by lowland and
mountain areas and differencing the north, south and center of the country.

As we noticed and expected, the results obtained with the two datasets have the
differences we explained above. Unlike the k-means approach, the NB method does not
take into account any distance criterion among the instances; but there still appear
difference between the results because with the binary dataset the method can only treat
the presence/absence of the plants while with the transformed dataset it has more
information in the abundance of the plants.

This information is used to update the probabilities, and for this purpose, the method
has more freedom if the information used follows a Multinomial Probability
Distribution instead of a Binomial Distribution that is what happens when the binary
dataset is used.
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6.6. Conclusions

The main conclusion we can obtain is that EM algorithm applied in a Naive Bayes
structure cannot find many clusters from the data that we have. In all the cases we
obtained fewer than five relevant clusters so we can conclude that the method is good as
the first approximation to the clustering. About the dataset we can conclude that there
are five well defined clusters that the algorithm could find; however, the algorithm
cannot reach further into the data.

We have found that the results of the Naive Bayes method depends on how many
clusters the method is looking for, because when it looks for a few number of clusters it
finds the main similarities in the data; while, if it is searching for more clusters it pays
attention on the dissimilarities and peculiarities of each instance to update the
probabilities tables.

We can conclude it is interesting to use two root nodes in the case of the binary
dataset. When we applied the method with one root and 3 or 4 states we saw that, in
both cases, the results obtained were not good clusters; and when we combined them we
obtained more interesting and accurate clusters. In the transformed dataset the
differences are less and the results with two root nodes and one root node are quite
similar.

This happens because the method searches for a pattern within the data that can
change in each run because of the random initialization of the prior distributions. This is
why it has advantages to run the method with two root nodes because each of them can
find different patterns and after that, these patterns are combined; and using just one
node, even with a big amount of states, it will find clusters following just one of these
patterns within the data.

Finally we can conclude again with the importance of the dataset moreover for this
algorithm because the calculus of probabilities is more accurate using a multinomial
distribution function to model the data in the nodes, and because using a binary decision
variable generates a clustering that only shows the main similarities in the data and
leaves the particularities hidden.
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7. Comparative Analysis of Different
Approaches

7.1. Introduction

In this chapter we are going to analyze the differences between the clustering
approaches taken on the project. We are going to comment the differences found as well
as to explain the causes of the different results obtained. To do that we will use the
result obtained in the previous chapters and the utility “Clustering Comparison”
integrated in the application that we have developed. This utility is destined to compare
two different clustering results given in the concrete file format we explain below.

7.2. Clustering comparison

This utility was implemented by us in the CAV-2D application. It is accessed by the
tools menu, and it permits load two files of clustering results and compare them. It
compares using two different criteria, and it shows the results in text format and a
graphical representation on the map. The user can also base the analysis on any of the
two results files obtaining a different explanation of what happen.

To compare two clustering results, these results must come in our “.CA” file format.
This format is a plain ASCII with one line per cluster and the areas belonging to it
separated by commas. The user can create its own .CA file but we recommend using the
ones that are automatically generated by the application. After that, you have to choose
which of the clustering results will be the base file for the comparison and the
comparison criterion that you want to apply.

We have developed two comparison criteria and called them the Maximum
concordance criterion and the Minimum discordance criterion because the first one
looks for the pairs with more areas in common and the second one tries not to leave
clusters without pair taking into account the percentage that a pair represents in the two
clusters that become a pair, not the size.

7.2.1. Maximum concordance criterion

The maximum concordance criterion (max criterion) is the simplest criterion available
in the application. This criterion treats as similar clusters of the two results the one with
the maximum number of areas in common. It just counts the number of areas that are in
the two clusters and choose firstly the pair which has more areas in both clusters.

In this criterion the significance is related to the size if the cross related to the whole
table, this is, the value of each cell related to the sum of all the values in the table. Said
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in other words, this method looks for the higher values in the table and sort them
descending to select the pairs.

To explain the criterion we are going to show the Example 7.2-1:

Example 7.2-1: In this example we compare two clustering files, one with
five clusters and the other one with two clusters. We are basing the analysis
on the five clusters file, so these five clusters are named with the letters A-E.
In the same way, the surrogated clustering is named with numbers 0-1.

The Table 7.2-1 is the equivalence table that shows the number of instances
that both clustering results have in common. For instance, the number 228 in
A0 means that between the cluster A from the base file and the cluster 0
from the surrogated file there are 228 areas in common.

0
228 | 1
195
20
0

0

k=l

B O QW >

Table 7.2-1: Clustering equivalence table

With this equivalence table, the next step is to obtain the most significant
pairs applying the criterion, in this case the maximum concordance. The
results of the criterion are shown in Table 7.2-2.

Pairs | Significance
A-0 40.35%
B-0 34.51%
A-1 20.70%
C-0 3.539%
D-1 0.530%
B-1 0.176%
E-1 0.176%

Table 7.2-2: Maximum criterion concordance results

The significance obtained for each pair is calculated dividing each cell in the
equivalence table by the sum of all cells'®. This is showed as a percentage to
make it easier to interpret. It represents the size of the cross in the table and
we can sort the pairs by this value.

The method now selects the pairs with a higher significance identifying them
as equivalent clusters. For the max criterion the first pair will be A-0 because
it has the highest significance. This means that the highest value in the table is
in cell A0 and that crossed-cluster has a 40% of the areas in it. As this
criterion only looks for the highest crossed-clusters this is the first the method
will identify as a pair.

' This is the number of areas that must be the same for both clustering results.
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The next pair with a high value would be B-0 but cluster 0 is already assigned
as equivalent to cluster A so this pair is not considered. We go down to the
next maximum significance until we get a pair where none of the clusters has
been assigned as equivalent to other and we found that the only one available
is the pair D-1 that is the last that we can make because the surrogated
clustering only has 2 clusters. So with this criterion we obtain that cluster A
corresponds to cluster 0, and cluster D corresponds to cluster 1.

7.2.2. Minimum discordance criterion

The minimum discordance criterion (min criterion) is a more complex criterion than the
max criterion. The main idea of this criterion is to give more importance to the fraction
that each cell represents on the two clusters that are crossed. This means to identify
similar clusters using the number of areas that both have in common with respect to the
amount of areas of each cluster. This is done because for the maximum concordance
criterion the biggest clusters have more significance because they have more areas in
common. As that amount of areas in common can be less representative than the areas
in common for other pair we thought about another significance criterion.

Example 7.2-2: To make this criterion easier to be understood we are going to
apply it to the equivalence table from Example 7.2-1. First we must build the
“Relative Frequency Tables” (RFT) where we compute the proportion that
each cell represents in the two clusters crossed on it. We can see that tables for
on Table 7.2-3.

0 1 0 1

A | 228/443 | 117/122 A | 228/345 | 117/345 | 345
B | 195/443 1/122 B | 195/196 1/196 | 196
C 20/443 0/122 C 20/20 0/20 20
D 0/443 3/122 D 0/3 3/3 3
E 0/443 1/122 E 0/1 1/1 1

443 122

Table 7.2-3: Relative Frequency Tables

The next step is to multiply cell by cell the relative frequency tables to get the
significance of each crossed-cluster. The resulting table can be seen in Table

7.2-4.
0 1
A | 34.01% | 32.52%
B | 43.79% 0.00%
C 4.51% 0.00%
D 0.00% 2.46%
E 0.00% 0.82%

Table 7.2-4: Minimum discordance significance table

And sorting these percentages we obtain the most significant pairs. Table
7.2-5 shows these significance results of applying the minimum discordance
criterion to the equivalences table.
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Pairs | Significance
B-0 43.79%
A-0 34.01%
A-1 32.52%
C-0 4.514%
D-1 2.459%
E-1 0.819%
B-1 0.004%

Table 7.2-5: Minimum discordance criterion results

The significance obtained in this case is calculated as the product of the ratio
of areas in common divided by each sum of areas for each cluster in the
pair. Once we have the significance calculated, the sequence to obtain the
comparison between is the same than in the maximum concordance
criterion. With this criterion the results obtained are cluster B corresponds to
cluster 0 and cluster A corresponds to cluster 1. This means that pair BO has
a high frequency in both clusters more than to have only a high number of
areas in common.

As we can see in the example the clusters correspondences are different depending
on the criterion used. This happens because the size of a pair does not mean the pair is
representative. The representative of a pair is given by the frequency of the pair in the
two clusters that form the pair.

Comparing the two results obtained in the examples above we can see that max
criterion gives more importance to AQ because it is the biggest pair but it does not have
as high representative ness as pair BO that, for cluster B contains almost 100% of the
areas.

Max Criterion Min Criterion
Pairs | Significance Pairs | Significance
A-0 40.35% B-0 43.79%
B-0 34.51% A-0 34.01%
A-1 20.70% A-1 32.52%
Cc-0 3.539% C-0 4.514%
D-1 0.530% D-1 2.459%
B-1 0.176% E-1 0.819%
E-1 0.176% B-1 0.004%

Table 7.2-6: Comparison of both criteria results

As max criterion takes the pair A0, the next in significance, B0, is not considered as
it happens with Al and CO and the next pair chosen is D1 that only has a 0.5% of the
areas. On the other hand, the min criterion takes BO with a medium significance (about
50%) but the second pair chosen is Al that also has a medium-low (about 30%)
significance.

7.2.3. Map Results Notation

The color codes for the resulting maps applying the Clustering Comparison tool of the
program are a bit different from the codes used for the results of a clustering technique.
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Now, the codes are related to the clustering equivalences and have concrete operators
we are going to describe.

e Operator “:” (A:1). This operator indicates that the cluster A is equivalent to the
cluster 1 and the areas painted with this color are the ones that appear in both
clusters.

e Operator “\” (A\1). This operator refers the areas that are in cluster A but not in
cluster 1. This operator appears when the comparison table has more columns
than rows or the same number of columns and rows.

e Operator “N” (AN1). This operator indicates the areas that area both in cluster A
and cluster 1. It appears when the number of rows is greater than the number of
columns because not all the basic clusters can find an equivalent surrogated
cluster.

7.3. Comparative Analysis

We begin now the comparison of the main clustering results obtained in the previous
chapters. We are comparing the resulting maps and also applying the automatic
comparison tool integrated in the application we developed with both comparison
criteria to find the equivalences among results.

7.3.1. K-means Approaches Comparative

Here we are going to compare the results for both k-means approaches, the Simple K-
Means and the 0.05-Trimmed K-Means. This comparison is based on the Simple K-
Means results because it is the one where all the areas are clustered.

The first comparison is for k=5 with the binary dataset. The results of these two
clustering methods are shown in Figure 7.3-1. As we can see, the trimmed procedure is
not affected by the lowland areas to the south, because they are trimmed, and because of
that the clusters in the middle of the land have almost disappeared.

Figure 7.3-1: Results for simple 5-means [left] and 0.05-trimmed 5-means [right] using the binary dataset

With the trimming, those areas are not displacing the cluster center, and the big
cluster in the middle of the map of the simple 5-means disappears while the cluster to
the north of the trimmed map is revealed.
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The results for comparison of these two clustering assignments applying the max
criterion are in Table 7.3-1 and Figure 7.3-2. From the table we can infer the following
equivalences:

Cluster A corresponds with Cluster 0
Cluster B corresponds with Cluster 2
Cluster C corresponds with Cluster 1
Cluster E corresponds with Cluster 4
Cluster D is not crossed

Equivalences for surrogated Pairs Significance
clustering

A-0 27.43%

0 1 2 3 4 B-2 20.17%

A 155 0 0 0 5 c-1 12.03%
B 0 0 114 34 4 D-1 11.68%
C 0 68 0 36 2 E-4 10.445%
D 0 66 0 0 22 Cc-3 6.371%
E 0 0 0 0 59 B-3 6.017%

Table 7.3-1: Results for simple 5-means and 0.05-trimmed 5-means comparison using the binary dataset
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Figure 7.3-2: Map for simple 5-means and 0.05-trimmed 5-means max comparison using the binary dataset

From the map, we can see that the cluster that has more areas in common (in the
original clustering results) is the one that represents the southern mountain areas and
this means that this cluster is a very compact cluster because both methods find it with
almost the same areas. We can see that the areas not in common for these two clusters
(A\0) are few and spread through the center and east of the land.
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The next important equivalence is B:2. This cluster represents the northern lowlands
that have a common flora not affected by outlier areas. This happens because the
trimmed clustering identifies as a different cluster areas to the north-west after
identifying those outlier areas.

The next cross in importance for this criterion is C:1 but, as we can see, there is
more importance in the fact that EV is void. This means that for both clustering the
areas belonging to the cross E:4 are the same, so this is a very compact cluster although
it is a small and spread cluster. As cluster D is not crossed because there is no cell with
value different from zero where the surrogated cluster has not been assigned, it is shown
as its own.

The max criterion gives results useful for finding the biggest crosses not considering
the importance of those crosses on each of the clustering. This is why we are going to
analyze the results of the min criterion. These results are showed in Table 7.3-2 and
Figure 7.3-3.

Equivalences for surrogated Pairs Significance
clustering

A-0 96.87%
0 1 2 3 4 B-2 75.00%
A 155 0 0 0 5 E-4 64.13%
B 0 0 114 34 4 D-1 36.94%
C 0 68 0 36 2 Cc-1 32.55%
D 0 66 0 0 22 C-3 17.46%
E 0 0 0 0 59 B-3 10.86%

Table 7.3-2: Results for simple 5-means and 0.05-trimmed 5-means comparison using the binary dataset

From the table now we can see that all the basic clusters have a surrogated
equivalent because the criterion takes into account how much does each cross represents
on both clustering. The correspondences now are:

Cluster A corresponds with Cluster 0
Cluster B corresponds with Cluster 2
Cluster E corresponds with Cluster 4
Cluster D corresponds with Cluster 1
Cluster C corresponds with Cluster 3

We can see in the map that the two biggest crosses are the same as before but now
the third in significance is the one we talked about above, the cross E:4. This cross now
has 100% of instances from cluster E and the highest number of instances from cluster
4. This is why it has been relegated to the third place in significance but it still has been
identified as an equivalent pair.

Now the method has found an equivalent cluster for cluster D that represents the
lowlands surrounded by mountains to the south. As the trimmed procedure has found
some of these areas as outliers now we can see them in D\1.

At this point, the interest to analyze C:3 is lower than the interest to analyze C\3

because C\3 represents areas that were miss-clustered on the simple 5-means because of
the outliers and C:3 are areas that have been assigned to the same cluster for both
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methods. This also happens with B\2 that represents another set of miss-clustered areas
to the north again because of the outliers.
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Figure 7.3-3: Map for simple 5-means and 0.05-trimmed 5-means min comparison using the binary dataset

The second comparison is for k=8 also with the binary dataset. The results of these

two clustering methods are shown in Figure 7.3-4 and the results for the comparison are
on Table 7.3-3 and Figure 7.3-1.

Figure 7.3-4: Results for simple 8-means [left] and 0.05-trimmed 8-means [right] using the binary dataset

As we can see in Figure 7.3-4, the results now are very similar so we can conclude
that, for k=8, the outliers does not have an important impact on the binary dataset. In
fact, as we can see in Table 7.3-3, the crosses are almost relegated to the diagonal which
will make that the equivalences will be clearly determined.

The only difference between the max criterion and min criterion now is the order of

the equivalences. That is why we only show one of the maps, concretely the max
criterion map.
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Equivalences for surrogated Max Criterion Min Criterion

clustering

A-0 18.58% c-2 100.0%
0 T |2 [3 |4 |5 |6 |7 c-2 16.10% D-3 99.99%
A|105]0 |0 [0 [0 o o |4 B-1 15.92% F-5 99.99%
B[O 900 [o |2 Jo Jo |4 D-3 13.27% A-0 95.42%
clo 0 |91]0 Jo |o Jo o F-5 8.849% G-6 91.83%
D|O 0 |0 | 7510 |O JO |JO E-4 8.318% B-1 90.72%
E|O 0 |0 |0 ]47]0 J]O |3 G-6 7.964% E-4 83.35%
FloO 0 10 JO0 |0 15010 10 H-7 7.256% H-7 71.83%
cl1 |3 |0 0 JO 10 1450 A-7 0.707%  H-4 0.670%

H 0 0 0 0 4 0 0 41

Table 7.3-3: Results for simple 8-means and 0.05-trimmed 8-means comparison using the binary dataset

As we can see in Table 7.3-3, the bigger cross is A:0 because is the one that, in both
cases, covers most of the northern lowlands of Swiss but the most accurate cross is C:2
that represents the southern mountain areas and in both clustering results it has the same
areas. This means that this cluster is the most compact in this analysis, but also D:3 and

F:5 are very compact because they also have all the areas in common but are smaller
than C:2.
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Figure 7.3-5: Map for simple 8-means and 0.05-trimmed 8-means max comparison using the binary dataset

Checking these crosses in the map we can see that these three clusters are the three
composed of mountain areas so we can conclude that the mountain flora is very special
and specific, and that there are three different specializations across the land, one to the
north and center of Swiss and two to the south. As we do not have information about the
height or other climatic conditions we cannot say if these clusters answer to any of those
climatic factors.
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About the lowland areas, there also exist three main clusters to the north, A:0, G:6
and B:1, that change in some areas when the trimmed 8-means is applied but this effect
is not very accused.

Now we are going to consider the transformed dataset. With it we are going to
compare again the simple 5-means with the 0.05-trimmed 5-means and the simple 8-
means with the 0.05-trimmed 8-means.

The maps for k=5 are showed in Figure 7.3-6 while the results for the comparison
are contemplated in Table 7.3-4 and Figure 7.3-7. In those maps we can see that the
differences between the simple and trimmed results are not very different even without
the outliers. This means that, with the distance information contained in the transformed
dataset the influence of the presence of outliers now is not as high as before. This is
because the amount takes an important role on the clusters construction and the outliers
influence.

Figure 7.3-6: Results for simple 5-means [left] and 0.05-trimmed 5-means [right] using the transformed dataset

As it happened with the previous analysis, the differences between the max and min
criteria are just related to the importance given to the crosses but in both cases is clear
which clusters are going to be equivalent seen just the equivalences table.

Equivalences for surrogated Max Criterion Min Criterion
clustering

B-0 27.78% B-0 100.0%

0 1 2 3 4 A-1 25.30% D-3 95.38%

A 0 143 |0 1 16 C-2 19.645% A-1 89.37%
B 157 0 0 0 0 D-3 10.97% Cc-2 88.80%
C 0 0 111 2 12 E-4 10.79% E-4 68.53%
D 0 0 0 62 0 A-4 2.831% A-4 1.797%
E 0 0 0 0 61 Cc-4 2.123% Cc-4 1.294%

Table 7.3-4: Results for simple 5-means and 0.05-trimmed 5-means comparison using the transformed dataset

We can see in the map that again the most compact cluster is the one representing
the southern mountain areas because it is not affected by the outliers. Other important
clusters are D:3, A:1 and C:2 that represent the three main lowland clusters and seen
them with this significance means that now the abundance information gives them a
more accurate clustering criterion.
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Color Codes
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Figure 7.3-7: Map for simple 5-means and 0.05-trimmed 5-means min comparison using the transformed dataset

We can also see the outliers on A\l and C\2 and now we can see that the northern
mountain areas have less significance what means again that this clustering is better
with this dataset because there appear more clusters independent or almost independent
of the outliers.

The last k-means approaches comparison is among the 8-means results for the
transformed dataset because for the previous comparisons the analysis did not report
much information. Figure 7.3-8 shows the two clustering results and Figure 7.3-9 and
Table 7.3-5 has the results of the comparison procedure.

Figure 7.3-8: Results for simple 8-means [left] and 0.05-trimmed 8-means [right] using the transformed dataset

As we can see in Figure 7.3-8, the results are again very similar apart of the outliers
to the south of the map. The impact of the outliers is almost null when the transformed
dataset is used and the value of k is 8. In fact, as we can see in Table 7.3-5, the crosses
are again almost relegated to the diagonal but now the cross H:7 has less power than
before because it only has 18 areas in common from the 46 in cluster 7.
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Equivalences for surrogated Max Criterion Min Criterion

clustering

A-0 18.40% c-2 100.0%

0 T (2 |3 |4 |5 |6 |7 B-1 17.34% D-3 99.99%

A | 104 0 0 0 0 0 0 15 Cc-2 16.46% F-5 99.98%
B|O 96 [0 o Jo [o Jo |3 D-3 13.62% G-6 99.98%
cl0 0 93 | 0 0 0 0 0 E-4 9.734% B-1 97.02%
DO 0 [0 | 77/0 |0 JO JO F-5 8.318% A-0 87.39%
E|O 0 |0 |0 |5 10 |0 |10 G-6 7.964% E-4 84.61%
g 8 8 8 8 8 37 25 8 H-7 3.185%  H-7 39.13%
— o To To To o 8 A-7 2.654% A-7 4.110%

Table 7.3-5: Results for simple 8-means and 0.05-trimmed 8-means comparison using the binary dataset

The interpretation is not very different from the one taken from the binary dataset
comparison. The most important crosses are again the three mountain areas that are the
ones that have the same areas in both clustering results. And again the next more
important clusters are the three lowland clusters to the north that again differ in some
areas from one clustering to the other.

Now cluster G:6, the north-western lowland cluster is not affected by outliers and
the areas in it are the same for both results. A\ is restricted to some areas to the south
that are trimmed as it happens with E\4 but E:4 is less important cluster because it
represents a concrete difference between the lowlands to the south.
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Figure 7.3-9: Map for simple 8-means and 0.05-trimmed 8-means max comparison on the transformed dataset

As we could see, the trimmed k-means is useful to detect the outliers and their
influence on the clustering results. In chapter 5 we supposed this behavior but now we
have seen when the outliers have more impact and when they are trimmed but they have
no influence on the clustering.
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When the outliers have a low influence the results of the simple k-means procedure
are almost the same but, as we cannot identify those outliers before the run of the
method it is always useful to check the trimmed k-means results.

7.3.2. Naive Bayes Approaches Comparative

Now we are going to compare the results of two Naive Bayes approaches, the approach
with one root node and the run with two root nodes. For the one root node we initialized
the number of states of the node to 8, and for the two root nodes run we initialized one
root with 3 and the other with 4 states.

For both approaches we compare both, the binary and the transformed datasets, and
we use the two comparison criteria basing the analysis on the network with one root
node.

We begin with the comparison for the binary dataset. For this dataset we can see in
Figure 7.3-10 the two maps resulting from applying the two Naive Bayes approaches. In
this figure we can see that the northern lowland areas cluster and the southern mountain
areas cluster are very similar in both results. The yellow cluster to the south equals or
almost equals in both maps.

The main difference lies in the central lowlands. These areas have been clustered
mostly together'’ for the two root nodes; however, they have been split into the central
and the south lowlands in the one root node run. This means that the initialization
contributes on the performance of the method but does not impose a number of final
clusters as it happens with the k-means method.

Figure 7.3-10: Results for Naive Bayes 1 root [left] and Naive Bayes 2 roots [right] using the binary dataset

Table 7.3-6 shows the results for the comparison of both clustering assignments
based on the results obtained with one root node and the significance of each pair using
the max and min criterion. Figure 7.3-11 shows the graphical results for this
comparison.

We can see that the equivalences table has many zeroes and the bigger values in the
diagonal. Because of that the pairs found by the comparison criteria will be the same
differing only in the significance given to them. In both cases A:0 and B:1 are the most

"7 Apart from the south-western area clustered apart.
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significant in size and in frequency captured. The next pair found by the max criterion is
C:2 and the E:4 is the third in significance for the min criterion. These four pairs
represent the four biggest clusters that are found by both runs of the Naive Bayes
method.

Equivalences for surrogated Max Criterion Min Criterion
clustering

A-0 36.28% B-1 98.51%

0 1 2 3 4 B-1 35.22% A-0 96.68%
al205]0 5 1 0 c-2 12.92% E-4 96.29%
Bl 1 799 | 2 0 0 D-2 4.955% c-2 67.59%
E-4 4.601% D-3 42.60%

c|o 0 7310 10 D-3 4.247%  D-2 13.96%
DO 0 2812410 A-2 0.884%  E-3 0.142%
E|O 0 0 1 26 B-2 0.353% A-2 0.109%

Table 7.3-6: Results for Naive Bayes 1 root against Naive Bayes 2 roots comparison using the binary dataset

As we can see in the map, both runs find a big cluster to the north and another
smaller to the south that together captures more 50% of the areas. The next cluster is
important because it only has one area not in common for both runs. This pair is E:4 and
it could be dismissed taking into account only its size because it groups less that the 5%
of the areas. But, as we have explained, this is an important cluster to consider. In fact,

this cluster represents a group of areas that are particular they belong to the south of the
land.

The central lowlands represented by C:2 are part of the third biggest pair but there
exist no despicable amount of areas that are not belonging to this pair. These are
lowland areas that are recognized as a different cluster by the 8 states root so they must
have a special configuration of plants that the Naive model with two roots does not
recognize.

Color Codes
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Figure 7.3-11: Map for for Naive Bayes 1 root against Naive Bayes 2 roots comparison using the binary dataset
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Now we are going to compare the results with the transformed dataset. Again we are
going to compare the two results based on the Naive with one root node and applying
the two comparison criteria.

The maps for both results are shown in Figure 7.3-12 while the results for the
comparison are contemplated in Table 7.3-7 and Table 7.3-8 for the numerical results
and in Figure 7.3-13 and Figure 7.3-14 for the graphical maps.

Figure 7.3-12: Results for Naive Bayes 1 root [left] and Naive Bayes 2 roots [right] on the transformed dataset

For this run of the Naive Bayes with one root we find the results are a bit different
from other runs. Now the method has found an extended cluster in the north of the land
and the other three typical big clusters. One interesting thing is that now the method has
found the small area in the middle of the land as a different cluster. This means that it
has a very specific flora that makes this area special.

Equivalences for surrogated Max Criterion Min Criterion
clustering
B-0 34.33% B-0 97.97%
0 1 2 3 4 | 5]6 A-1 21.94% Cc-2 59.81%
AlO 124 | 0 75 111010 Cc-2 15.92% A-1 48.65%
B | 194 0 2 0 11110 A-3 13.27% A-3 32.32%
clo 16 90 | 5 ololo E-2 3.008% E-2 9.475%
D|o 15 10 | 0 ololo c-1 2.831% D-1 5.696%
ElO 1 17 | 6 0lol1 D-1 2.654% E-6 4.000%
Flo 0 3 0 ololo D-2 1.769% D-2 3.278%
G lo 1 0 1 ol olo E-3 1.061:/0 F-2 2.459:/0
210 1 0 0 ol olo Cc-3 0.884% E-3 1.655%

Table 7.3-7: Results for Naive Bayes 1 root against Naive Bayes 2 roots on the transformed dataset

In Table 7.3-7 we can see that both criteria identify the most significant pairs A:1,
B:0 and C:2 but in a different order. This means that these pairs have many areas in
common and, at the same time, the amount of areas in common represent an important
percentage of the areas contained in both of the two clusters crossed in each pair. The
other pair is E:3 but it has low significance in both criteria so it can be dismissed.

As the table has more rows than columns there will be some basic clusters without
pairing and all the crosses of the two clustering will be shown in Figure 7.3-13. We can
see the three main pairs represent three zones clearly defined for both methods but now,
as cluster 3 covers a large part of the north, the cluster AN3 is now and interesting
cluster to be taken into account.
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With the min criterion we can say that pair B:0 has a high frequency in both clusters
but for the next pair in significance that frequency goes down giving a medium
significance (about 50%). As we can see in the table, even when the value of the cell is
high, other cells in the same column and row have values high enough to make the
frequency lower. This is even more accurate in pair A:1 where the value in cell is even
higher than the one for C:2 but the presence of that many areas in AN3 makes this pair
to be less significant for the min criterion.

We see other crosses have less interest because they are small clusters and also the
pair E:3 has a low interpretation based on the fact that this clusters represents one of the
outlying clusters also identified by the trimmed k-means.
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Figure 7.3-13: Map for Naive Bayes 1 root against Naive Bayes 2 roots on the transformed dataset

Basing the comparison on the 2 root nodes run we have enough surrogated clusters
to assign one of them to every basic cluster. The pairs formed are the same as before
because the significance for both criteria does not change. But now their names are
different and the analysis is taken from another point of view.

Equivalences for surrogated Max Criterion Min Criterion
clustering

A-1 34.33% A-1 97.97%

0 1 2 3 4 51617 B-0 21.94% Cc-2 59.81%
AlO 194 | 0 0 0 0olo0]o0 Cc-2 15.92% B-0 48.65%
B| 124 ] 0 16 | 15 | 1 ol1]1 D-0 13.27% D-0 32.32%
clo 2 oo 1017131010 c-4 3.008% c-4 9.475%
D | 75 0 5 0 6 0l 1]o0 B-2 2.831% B-3 5.696%
E |1 1 0 0 0 ololo B-3 2.654% G-4 4.000%
F|oO 1 0 0 0 0ololo C-3 1.769% C-3 3.278%
clo 0 0 0 1 ololo D-4 1.061% C-5 2.459%

Table 7.3-8: Results for Naive Bayes 2 roots against Naive Bayes 1 root on the transformed dataset
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Cluster A:1 now is the previous B:0, C:2 is still the same pair, and A:1 now is B:0.
This is obvious because now the equivalences table is transposed. The analysis is from
the point of view of the 2 roots Naive results and the pairs formed have a cluster
associated with the areas that are in the basic cluster but not in the surrogated. Now also
appear three clusters that do not have a pair, these are clusters E, F and G. This happens
because they are very small clusters from the crossed clustering and there are few
differences among the results of the two root nodes.

The important clusters are again the mountain cluster to the south and the two
lowlands to the north and center of the land. However, as it was seen in the previous
analysis, there is a cluster to the north that acquires importance, D\4. This cluster also
represents other areas from the cluster to the northern part of the map that are not in the
big cluster to the north in the 2 roots results.
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Figure 7.3-14: Map for Naive Bayes 2 roots against Naive Bayes 1 root on the transformed dataset

The other small clusters that appear are less significant because they only represent
some areas of discrepancy among the two runs.

7.3.3. Naive Bayes and K-means Comparative

Here we are going to compare the results for the Simple K-Means approach and the
Naive Bayes approach. We compare the Naive Bayes results with the 5-means
clustering firstly with the binary and then with the transformed one. We do only this
comparison because the Naive Bayes approach does not find more than 5 relevant
clusters even when it is run with two roots having 4 states in each root.
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We compare the clustering results with the two comparison criteria and the analysis
is based on both files because different pairs and different resulting maps could be
generated.

We begin with the comparison of the binary dataset. For this dataset we can see in
Figure 7.3-15 the two maps resulting from applying the k-means and the Naive
approaches. In this figure we can see the southern mountain areas cluster is very similar
in both results, and the northern lowlands cluster is equivalent in the two clustering. The
main differences are in the lowlands to the south and center where Naive identifies 3
different clusters whereas k-means only finds 2, and the mountain areas to the north and
center that only k-means identifies as a cluster.

Figure 7.3-15: Results for 5-means [left] and Naive Bayes 3-4 [right] using the binary dataset

We can see that the k-means method is better for finding small but clearly different
clusters, as the northern mountain areas that are clearly different from the lowlands,
although it is affected by outliers. Moreover, Naive is not sensible to very small clusters
but it can identify the outlier instances because it is not affected by them because it does
not use any distance measure to find the clusters.

Table 7.3-9 shows the results for the comparison of both clustering assignments
based on the 5-means results and the significance of each pair using the max and min
criterion. Figure 7.3-1 and Figure 7.3-17 show each other the results for the comparison
basing the analysis on the k-means and on the Naive Bayes respectively. We show the
significances for the comparison based on Naive Bayes in Table 7.3-10.

Equivalences for surrogated Max Criterion Min Criterion
clustering

A-1 28.31% A-1 80.40%

0 1 2 3 4 B-0 26.01% B-0 69.01%
Alo 160 | 0 0 0 c-2 12.21% c-2 41.58%
E-1 6.902% D-3 29.54%

B|14710 0 0 > Cc-0 6.548% D-4 19.27%
c|37 |0 6910 |O D-2 6.547%  D-2 14.40%
D |4 0 3712621 D-3 4.601% E-1 12.95%
E |18 39 2 0 0 D-4 3.716% Cc-0 6.269%

Table 7.3-9: Results for 5-means against Naive Bayes 3-4 comparison using the binary dataset

From the table we can see that A:1, B:0 and C:2 are clear equivalences for both
criteria. This means in both clustering these three clusters are very stable. This is not
strange because the areas that are in A\l is zero and in B\O is just 5 so, basing the
analysis on the k-means we find that, as the biggest clusters from Naive Bayes come
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from clusters with a high probability on both root nodes, they will have a larger size and
contain most of the areas from the big k-means clusters. In the opposite way, small
clusters from Naive Bayes, which come from clusters with lower probability, will have
even a lower probability and they will be almost contained in k-means clusters.

Color Codes
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Figure 7.3-16: Map for 5-means (base clustering) and Naive Bayes 3-4 comparison on the binary dataset

As we can see, there is a cluster from k-means that has not found a pair, cluster E,
and it is the one representing the northern mountain areas that Naive does not find. We
can also see one of the outlying clusters that Naive has found has been paired with
cluster D but this is only useful to identify this cluster as a different cluster with a
different probability distribution.

Basing the comparison on the Naive Bayes results we can see that now, big pairs
have many areas that are not in the pair as happens with B\O and A\l. We must point
that now the names of the clusters are different because we are basing it on the Naive.

Equivalences for surrogated Max Criterion Min Criterion
clustering

B-0 28.31% B-0 80.40%

0 7 > 13 |a A-1 26.01%  A-1 69.01%

Al O 147 | 37 | 4 18 c-2 12.21% Cc-2 41.58%
Bl160 10 0 0 39 B-4 6.902% D-3 29.54%
A-2 6.548% E-3 19.27%

c|0 0 69 372 c-3 6.547%  C-3 14.40%
D|O 0 0O 12610 D-3 4.601% B-4 12.95%
E|O 5 0 21 1 0 E-3 3.716% A-2 6.269%

Table 7.3-10: Results for Naive Bayes 3-4 against 5-means comparison using the binary dataset

We can see that B\O represents mountain areas to the center for the land and that A\l
are several areas, lowlands and mountain areas, which were on the biggest cluster from
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Naive Bayes because of its high probability but in the k-means were identified as
another cluster or part of other clusters.

In Figure 7.3-17 we see there are many areas Naive does not detect as a cluster and
also the outlying clusters that are not detected by k-means (D:3 and E). We can see
again that the southern mountain area is found without problems by both methods so
this is the most compact cluster in the land.
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Figure 7.3-17: Map for Naive Bayes 3-4 (base clustering) and 5-means comparison on the binary dataset

Now we are going to consider the transformed dataset. With it we are going to
compare again the simple 5-means with Naive Bayes results basing the comparison on
both methods and applying the two comparison criteria.

The maps for both results are shown in Figure 7.3-18 while the numerical results for
the comparison are contemplated in Table 7.3-11 and Table 7.3-12, and graphical
results are shown in Figure 7.3-19 and Figure 7.3-20. In Figure 7.3-18 we can see that
the differences between the k-means and the Naive results are very large since now we
are using the transformed dataset. K-means finds three clusters to the north that naive
does not because it only discovers the very big one. This happens again because the
very big cluster comes from the two big ones with a high probability on the two root
nodes from the Naive model.
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Figure 7.3-18: Results for 5-means [left] and Naive Bayes 3-4 [right] using the transformed dataset

Again, k-means does the same with the small clusters that Naive finds to the south.
These are three lowlands clusters that in k-means are not identified and they form a
unique cluster. Both methods find again the southern mountain areas as an important
cluster.

Equivalences for surrogated Max Criterion Min Criterion
clustering
B-1 27.78% B-1 79.29%
5 T 5 T T2 A-2 20.17? c-0 68.13?
=T 5 12 Ter 117 c-0 19.46% A-2 51.98%
A-3 10.79% A-3 30.00%
B|O 157 | 0 0 |41
- T30 o 5 o B-4 7.256% E-0 15.62%
E-0 4.424% B-4 13.91%
D14 10 11 10 10 A-4 3.008% F-4 4.918%
El25 |0 0 0 10 D-0 2.477% D-0 4.900%
F10 0 0 0 |3 D-2 1.946% D-2 3.872%
G |2 0 0 0 |0 A-0 1.415% A-4 2.368%
H|1 0 0 0 |0

Table 7.3-11: Results for Naive Bayes 3-4 against 5-means comparison using the transformed dataset

In Table 7.3-11 we can see that both criteria identify as most significant pairs A:2,
B:1 and C:0 but in a different order. This means these pairs have many areas in common
and, at the same time, the amount of areas in common represent an important percentage
of the areas contained in both of the two clusters crossed in each pair. The other pair,
F:4, has low significance in both criteria so it can be dismissed.

As the table has more rows than columns for the comparison based on the Naive
results there will be some basic clusters without pair and all the crosses of the two
clustering will be shown on the map.

We can see that the three main pairs represent three zones clearly defined for both
methods. These are two lowland zones one to the north and the other in the middle of
the land and the huge mountain cluster to the south that always is identified.

In Figure 7.3-19 we can also see the three different areas that are in cluster A but not
in cluster 2 which are found by k-means because the abundance of the plants makes
them different. We also see in BN4 mountain areas to the center that Naive groups with
the southern mountain areas and k-means groups apart from this cluster. This means
that Naive finds more general characteristics within the data and k-means looks for
concrete differences among the instances.
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Figure 7.3-19: Map for Naive Bayes 3-4 against 5-means comparison using the transformed dataset

Other pairs are less important except E and D which are the ones in the Naive results
that identify the southern lowland areas as two different clusters, but that in k-means are
not interpreted as that and they are clustered together with the rest of lowlands to the
center-south of Switzerland.

As we found about that these areas are outliers when the trimmed k-means is
applied we can interpret this as an important difference between the k-means and the
Naive; this is that Naive finds dissimilarities within the data that k-means does not see
because it only takes into account the distances among the instances. This is why k-
means has problems to find outlying clusters with a wrong k because they use to be
close to other existing clusters; whereas Naive identifies those outlying clusters because
they have particularities that make them different.

Basing the comparison on k-means clustering we have enough surrogated clusters to
assign to every basic cluster. The pairs formed are the same as before because the
significance for both criteria does not change but now the analysis is taken from another
point of view.

Equivalences for surrogated Max Criterion Min Criterion
clustering

B-1 27.78% B-1 79.29%

0 1 2 3 2 5167 Cc-0 20.17% A-2 68.13%
A-2 19.46% Cc-0 51.98%

A|S 0 110 11412510121} 44 10.79%  D-0 30.00%
Bl O 15710 0O |06 100160 E-1 7.256% A-4 15.62%
c| 114 |0 0 11 |0 01010 A-4 4.424% E-1 13.91%
D| 61 0 1 0 0 01010 E-0 3.008% E-5 4.918%
E| 17 41 0 0 0 300 A-3 2.477% A-3 4.899%

Table 7.3-12: Results for 5-means against Naive Bayes 3-4 comparison using the transformed dataset
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Cluster A represents all the southern lowlands that k-means recognizes as a cluster
and, as Naive does interpret these areas as a group of several clusters A has crosses with
many Naive clusters. These areas that are in A but not in 2 are mainly lowlands to the
southern part of Swiss that several times have been identified as outlying clusters.
Cluster B again includes the mountain areas to the south, and as it happened with the
binary dataset there is no area contained in B outside its pair, cluster 1. Cluster C is the
big lowland cluster to the north that always appears as one of the three most significant
clusters.

Color Codes

[ ClusterB:1
B Cluster C:0
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Figure 7.3-20: Map for 5-means against Naive Bayes 3-4 comparison using the transformed dataset

In the results for this comparison cluster D, containing lowland areas to the north
and center of the land, has no pair because it is almost included into cluster 1 and that
cluster is assigned to cluster 0, which is bigger. And pair E:5 is less interest because it
only represents 3 areas to the eastern part of the map whereas E\5 groups the mountain
areas to the north and center that have been identified by the k-means.

The last comparison we are going to treat is the comparison among the Naive Bayes
with one root node and 8 states and the Simple 8-Means with the transformed dataset.
We are basing the analysis on the k-means procedure because it is the one that always
has 8 clusters.

The maps for both results are shown in Figure 7.3-21 while the numerical results for
the comparison are contemplated in Table 7.3-13 and Table 7.3-14, and graphical
results are shown in Figure 7.3-22. In Figure 7.3-21 we can see the differences between
the k-means and the Naive results still exist but not so different as other times. K-means
finds three clusters to the north whereas Naive only finds two. Now, Naive Bayes has
found a pattern where the northern lowlands are clustered in two groups as k-means
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does. However, because of this, the results now do not split the southern lowlands as
those with the binary dataset in section 7.3.2.

Figure 7.3-21: Results for 8-means [left] and Naive Bayes 8 [right] using the transformed dataset

Now we can see that k-means has split the mountain areas into clusters to the south
where as Naive only have found two small areas with concrete differences, one in the
center of the map and another one in the south-west. Also, Naive has found as one
cluster the lowlands to the south whereas k-means has split that zone into three clusters.
One of these three clusters has also been found, in some way, by Naive because it has
not grouped two zones to the south and south-west with the southern lowlands. These
areas are again the ones that trimmed k-means identifies as outlying cluster so we can
consider them as other two clusters found by Naive.

Equivalences for surrogated Max Criterion Min Criterion
clustering

B-0 18.93% B-0 60.89%

0 1 5 3 7 5 s 3 A-2 16.46% D-5 49.52%
U 0 93 | 77 | 0 0 24 | 0 A-3 13.62% A-2 47.93%
B | 107 | 40 | O 0 3 2 0 3 Cc-4 10.26% Cc-4 42.42%
clo 55 [ 0 0 58 |0 1 8 c-1 9.734% A-3 39.69%
D | 12 6 0 0 0 45 | 17 | 7 D-5 7.964% Cc-1 24.54%
E|O 0 0 0 0 0 2 0 B-1 7.079% B-1 10.02%
F|10 0 0 0 0 0 1 0 A-6 4.247% D-6 7.381%
G|O 0 0 0 1 0 0 0 D-6 3.008% A-6 6.597%

Table 7.3-13: Results for Naive Bayes 8 against 8-means comparison using the transformed dataset

In Table 7.3-13 we can see the two criteria identify the most significant pairs in a
very different way. For the max criterion these pairs are: B:0, A:2, C:4, D:5 and with
lower significance E:6. On the other hand, the min criterion identifies B:0, D:5, A:2 and
C:4 as the sequence of most significant pairs. From the results of both criteria we can
think the significant pairs are going to be very different but, as we have seen, the pairs
are again the same.

Basing the comparison on k-means clustering there are no enough surrogated
clusters to assign to every basic cluster. The pairs formed are the same as before
because the significance for both criteria does not change but now the analysis is taken
from a more interesting point of view and because of that we are showing the map with
the results.

As the table for this comparison has more rows than columns there will be some

basic clusters without pairs and all the crosses of the two clustering will be shown on
the map in Figure 7.3-22.
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Equivalences for surrogated Max Criterion Min Criterion

clustering

A-1 18.93% A-1 60.89%
5T T3 TaT5Te c-0 16.46% F-3 49.52%
E — D-0 13.62% c-0 47.93%
A0 0710 01010 E-2 10.26% E-2 42.425%
B|]O0O |40 |55]6 |0]0]0O B-2 9.734% D-0 39.69%
cl93]o0 o o |o]o]o F-3 7.964% B-2 24.54%
D| 770 0 1o lololo B-1 7.079% B-1 10.02%
E 0 6 58 |0 olol1 G-0 4.247% G-3 7.381%
Flo 2 Jo fasfofofol 75 2-70%0 &L Ll
G|124]0 1 17121110 H-2 1.415%  H-3 3.128%

H|O0 |3 8 |7 |o]o]o

Table 7.3-14: Results for 8-means against Naive Bayes 8 comparison using the transformed dataset

Clusters A:1 and F:3 represent the northern lowlands that k-means and Naive
recognizes as clusters. This means that there is a clear separation among the areas in that

zone although both methods have discrepancies about the border areas represented by
AN3 and FNI1.

The next significant pair is C:0 but we must also take into account the existence of
DNO because these two clusters represent the southern mountain areas that the two
methods clusters in a different way. This happens because Naive has found a pattern
that conduces it to find the northern split instead of the southern one. As we can see
cluster G is crossed with several clusters from the Naive results. For instance, GNO
represents the different clustering of the center mountain areas that for k-means are
clustered together with the northern ones and for Naive, as it does not find these
northern mountains, they are assigned to the southern cluster.

Color Codes

Cluster A:1
Cluster F:3 [l Cluster GN0O
Clugter 0[] Cluster G 2
Cluster E:2 [ Cluster G 3
Cluster G:4 [ Cluster G5
Cluster 47 3 [l Cluster HO1 1
Cluster B 1 ] Cluster HN 2
Cluster 1 2 [ Cluster HO 3
Cluster BN 3
Cluster D10
Cluster EM 1
Cluster EM B
Cluster F1

E0EE00NOOONNEC

Figure 7.3-22: Map for 5-means against Naive Bayes 3-4 comparison using the transformed dataset
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E:2, BN2 and BNI are clusters that represent the two different lowlands to the
center of the land found by k-means that Naive has classified into the two big clusters
one to the north and the other to the south. This means that k-means have more criteria
to find small differences than Naive which only finds the main patterns hidden within
the data.

Cluster G is interesting itself because it groups the northern and center mountain
areas that Naive does not recognize except the small area in the middle of the map that
this run of the Naive procedure has identified as a cluster. This is the pair returned by
the comparison method and it can be interpreted as an endemic area with plant similar
to the mountain areas but with species that does not appear in any other area. This can
be a particularly high mountain in the center of the country or something about because
it is always clustered as a mountain area by the k-means procedures. The other crosses
of cluster G indicates the mountain areas that Naive has not recognized.

Other pairs are less important except H which is the one in k-means that finds the
outlying cluster to the west that trimmed k-means found. The presence of several
crosses indicates that Naive finds some of the areas from this cluster as two clusters
different from the others it finds.

After this comparison we can say the k-means approach is better to find the main
clusters because it takes into account the distances among instances, which helps to find
the different centers that constitute the more different clusters. But the method is
affected by the presence of outliers when the value of k is not well chosen.

On the other hand, the Naive Bayes method is good to find the most different
clusters within the data and with its clustering criterion it finds clusters that, in terms the
distance measure used by the k-means procedures, are far each other; even outlying
clusters, but not concrete small ones as k-means does.

7.4. Conclusions

We have seen the two comparison criteria proposed have a very different behavior but
in some cases they return the same equivalent pairs. The max criterion is easier to be
understood but it only takes into account the size of the pair. The min criterion
computes the frequency of each cell on the two clusters that form the pair and then uses
that information to compute a level of significance of each cross.

With the min criterion the pairs with a low relative frequency in one of the
clustering, what means that the cross contains few of the total of instances grouped in
the cluster, loses significance even if the number of areas in the pair is high. Also, with
this criterion we have a significance that can be interpreted in terms of the pairs’ size
because when the frequency of two pairs is the same the significance is lower for the
pair with a small number of areas.

About the k-means approaches, for low values of k the Simple k-Means method can

be affected by the presence of outliers; this occurs when the dataset it works with is not
much informative as it happens with the binary dataset. In those cases it is a good idea
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to run once the Trimmed k-Means procedure to identify the outlying clusters and to
check if they are causing a miss clustering.

For a right values of k both methods return almost the same results but find a right k
is a milestone in these partition-based methods.

For the two Naive Bayes approaches we must say that the using of two root nodes
makes the method faster because with a high number of states in the root node the
procedure needs to compute more probabilities. Nevertheless, the method with one root
and more states finds different clusters than the two roots network. This happens
because the two roots network looks for a few clusters for each root and then crosses the
results. If each of the roots finds a different pattern within the data the cross will show
both patterns, which does not always happen.

The using of a root node with many states does not guarantee to find all the clusters
suggested but the method will look for several clusters following the pattern or patterns
found.

The comparison of the two clustering methods, k-means and Naive Bates, shows
each of them has good and bad properties. K-Means is good to find the main clusters
because it finds the different centers that constitute the more different clusters. But the
method is affected by the presence of outliers when the value ofk is not well chosen.

Naive Bayes is not good for finding those centers but it is good for finding the most
different clusters within the data clustering strange areas and even outlying clusters but
not concrete small clusters that k-means finds.

With the comparison, we conclude that running only one of the clustering methods

available is never a good idea because they all have their pros and cons. So, as far as
possible, always it is better to apply several different clustering techniques.
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8. Conclusions and Further Work

This chapter concludes our contribution in this project, summarizes our observations on
the Swiss plant data, and points out some future work.

8.1. Contribution

The purpose of this project is to analyze the flora dataset containing the abundance
information about the plants present in Switzerland. This is an interesting data mining
project because, for many geographic regions, extensive data collections exist on the
distribution of plant species in the area, and it is interesting to cluster those regions
grouping by plant species and amount of each species.

8.1.1. Data Processing

The original dataset contained data from 2697 plants located in 565 areas from
Switzerland tabulated as seen below in Table 8.1-1.

Species name, Flora Helvetica|2697 names

Nr ecological group|2697 values; range 0-8

Species Nr, Flora Helvetica|2697 values; range 1-21934

Timberline Nr. of the mapping area abundance

565 values;
T: below timberline
B: above timberline

565 values; 565x2697 values;
range 101-999 range 2-7

Table 8.1-1: Tabulation of the data contained in the original Excel file.

We transformed the original dataset into a binary dataset (presence-absence) and a
rescaled dataset. This transformation is based on some preliminary experiments on the
original dataset and have been done because the original dataset has inconsistencies as
the values which refer to the presence of plants registered in several years, do not
contribute with clear information to the clustering problem.

These two resulting datasets have been the ones used for the different experiments
we have carried out.

Finally, the clustering results show the good quality of our data transformation.

8.1.2. System Development

We developed a system to run all the clustering method and do the comparisons of the
different clustering results. This is a milestone in this project since we have not found
any suitable tool we could use in this project.
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We found that the software available was not suitable to make an extensive analysis
because the results provided did not allow taking an interpretation based on the position
of the areas in the Swiss map. This is why we decided to implement a tool which
permits to apply some clustering techniques and show the results on a map to help the
user make an easier interpretation.

The application developed was called, CAV-2D (Clustering Analysis and 2D
Visualization tool). It has been built under the Visual Studio™ platform and it is
compiled for Windows™ systems. The main utility of the program is geographical
clustering of the instances of a dataset previously loaded into the application, and
represent the resulting clusters in a map. The map used can be changed, but as this
project is related to the Swiss flora, the initial map loaded when the program starts is the
map of Switzerland.

CAV-2D offers the possibility of applying several clustering methods, and shows
the results both in a text format which can be saved in an rtf file, and on a loaded map.
The methods supported in the application are Simple K-means, Trimmed K-means,
Naive Bayes and the EM algorithm.

CAV-2D saves the clustering results in an own file format able to be loaded directly
to view when necessary or to compare two different clustering results obtained for the
same geographical region. The comparison can be made using two different criteria, and
the results are also shown in text format and on the map.

8.1.3. Application and Comparison of Clustering Methods

We applied various clustering techniques such as partition-based techniques and
probabilistic methods in this project.

One of the partition-based methods applied is the k-means algorithm. This is a
moving centers method that finds the best centers for k clusters changing their positions
as the method goes. It follows the following steps:

1. Choose the first k centers g;°, 2. ... &’
Create the k clusters C;'"', C,"™" ... " assigning each point to the class whose
center is closer to the point. ‘ ‘ ‘

3. For each cluster C;""' calculate the new centers g; "', &' ... g """

4. Back to step 2 using the new centers to calculate the new clusters.

The method runs until it reaches a fixed number of iterations or when the position of
the centers doesn’t change significantly. Also, another termination criterion for
computational implementations is when the cluster assignments don’t change in a
concrete iteration.

Another partition-based technique applied was a modification of the k-means
algorithm called the trimmed k-means. Given a dataset {x,°, x,’ ... x,'} and a trimming
level o that represents the percentage of instances trimmed, the algorithm goes as
follows:
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1. Choose k starting points g;°, g’ ... g’ that will serve as seed centers.
2. K-mean step:
a. Compute the distances of each observation to its nearest center and keep the
[n(1—a)] lowest observations.

b. Create the k clusters C,""!, C,'"' ... C,'"! assigning each of the kept points to
the class whose center is closer to the point.
c. For each cluster calculate the new centers g, g™ ... g™
3. Repeat step 2 until a stop condition is fulfilled.

This technique is the basis for a functional analysis made through a graphic called
the k-variogram. Interpreting this graphic you can find the optimal value for the number
of clusters, k, and for the trimming level a.

About the probabilistic methods we applied a simple Bayesian Network called the
Naive Bayes Network that uses a learning procedure called the Expectation
Maximization (EM) algorithm. The EM algorithm repeats the following two steeps:

1. Estimation Step (E-step): In this first steep the algorithm calculates an expected
value for each missing value using the log-likelihood of the posterior probability
of the variable as Bayesian estimator.

2. Maximization Step (M-step): In this steep, the method calculates the new
maximum likelihood probability distribution using the values computed on the
E-step. Then, the probability distribution is replaced by the new one and iterates.

We also have developed two clustering comparison criteria and called them the
Maximum concordance criterion (max criterion) and the Minimum discordance
criterion (min criterion) because the first one looks for the pairs with more areas in
common and the second one tries not to leave clusters without pair taking into account
the percentage that a pair represents in the two clusters that become a pair, not the size.

The max criterion helps to find the pairs with higher coincidences as equivalent
clusters whereas the min criterion finds the pairs that contain a high proportion of the
areas contained in the two clusters compared.

With these two criteria, we observed many useful and interesting things from the
data. For instance, when the two criteria find the same pair with a high significance we
can infer that the pair-cluster is big and stable for both runs. The pair is big in the sense
of its size, if the max significance is high, and in the sense of the frequency captured, if
the min significance is high.

When the number of clusters of the two results to compare is different the two
analyses available return different results because when it is based on the clustering
with fewer clusters all them can be paired but when it is based on the clustering with
more clusters is impossible to find a pair for all them. This is why for the first case the
results are related to the areas in common and not in common for two clusters
independently from the cross where the not in common are. The second case cannot be
treated this way so all the crosses are shown.
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For some results is interesting to analyze the areas that two clusters do not have in
common and for others it is interesting to see all the pairs formed.

8.1.4. Other Contributions

During this project we studied the possibility of implementing an own approach to the
EM algorithm. Checking several approaches we found two interesting ones that tried to
make the algorithm faster, the BC-EM approach [PLL99] and the ECM approach
[Sch97].

The BC-EM approach [PLL99] is a method that alternates a Bound and Collapse
(BC) step and an Expectation Maximization (EM) step. The BC method [RS98] is as
deterministic method to estimate conditional probabilities from incomplete databases. It
bounds the set of possible estimates determining a probability interval that is then is
collapsed into a unique value.

The ECM algorithm [Sch97] is an extension of the EM where the M-step is replaced
by a sequence of N simpler conditional or constrained maximizations known as a CM-
step.

Combining these two approaches we have the BC-ECM algorithm but at the
moment of writing this thesis the method has not been implemented.

8.2. Conclusions

We based all our conclusions, except the first approach, on the results obtained from the
program implemented.

After analyzing several experiments with different methods and different
configurations of those methods applied to the available datasets, we obtained a general
view of the Swiss flora and the pros and cons of the different clustering techniques.

About the Swiss flora we have found that there is a clear difference among the
mountain and lowland areas mainly with the southern mountain areas. Also we
observed that the lowland areas are separated into northern and southern lowlands.
These are three regions that are recognized by every clustering method so we can infer
that they are clearly differentiable because of their flora.

In a further analysis we can see that there are two special regions to the south where
the flora configuration has enough differences to be identified by a probabilistic method
and only detected as outlying cluster by the trimmed approach of the k-means
algorithm. Also we can see that the mountains areas to the south can be split into two
different regions, one to the south and the other to the center of the map. This also
happens with the northern lowlands region.

We found two depressions, one to south-west of the land and the other to the south-

east where there must be special riverside flora because they are identified as separated
regions in several experiments.
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About the clustering techniques the main conclusion we obtained is that there is no
method being the best because all them have pros and cons. Partition based methods are
good to find the main groups of instances but they are affected by the initialization and
the presence of outliers. On the other hand, probabilistic methods are not influenced by
those outliers but they do not have the accuracy of the partition based methods. These
probabilistic methods are good to find the main patterns within the data but not concrete
differences among instances.

About the k-Means algorithm it is very dependant of the number of clusters (k), and
a wrong value of k makes the method return small and low significant clusters, when k
is too high or big and maybe wrong clusters if there exists outlying clusters. For this
reason is interesting to apply, at least once, the trimmed k-means algorithm. Also with
this algorithm we find the miss-clustered instances comparing the results with the
simple k-means which gives us a basis to build the k-variogram, a graphic where we can
see if the value of k is right and the amount of outliers.

Adding a second root node to the Naive Bayes network helps the method find
different patterns within the data, because in many cases each root gets a different
pattern and this is useful when the results are going to be combined. Furthermore, this
configuration permits to use a lower number of states for each root node making the
learning faster. Moreover, the use of a high number of states makes that the method
could find more accurate patterns having enough time to compute.

Related to the datasets we have used, we can say that for partition based methods
there is a difference between using the binary or the transformed dataset, because these
methods base the clustering on a distance criterion, and in the transformed dataset we
have a distance measure that the binary dataset does not have. This difference is not that
big in the probabilistic methods because they do not use any distance measure.

As the probabilistic methods learn a probability distribution in the model, the
presence of several possible values for each attribute makes decisions with a more solid
base; but in our case, the results of using binary or transformed dataset are not very
different. This means within the data the patterns are mostly related to the presence and
absence of the species in each area.

8.3. Further work

After finishing this project we found several things that deserve for further work or even
for another project.

e An open work is to allow datasets coming in Access or Excel format to be
loaded. Even it can be contemplated the possibility of allowing the user to
introduce manually the data.

e Another interesting work will be to add more clustering techniques and more
comparison criteria, including the possibility of a user defined comparator.
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Something very useful will be the possibility of showing the k-variogram
graphics to allow the user choosing a right value of k and o, the number of
clusters and the trimming level respectively, for the k-means procedures.

And a very interesting basis for another project is a tool able to recognize the
polygons forming each area on a map and save those polygons in our dot file
format. Integrating the two applications the scope of the program will cover any
geographical clustering problem.



Appendix A
Clustering Techniques

The aim of any Clustering Techniques is to group similar objects using their
characteristics. These techniques are used to:

Get a general descriptive idea of the data.

Find natural groups.

Find patterns in the dataset and build laws or models that can explain them.
Find classification schemes for plants, animals, diseases, ...

There are many classification methods because of the many different objectives of
the different fields of the science. Good (1977) classified the existing clustering
methods based on 45 yes-no criteria. That makes 2*° clustering methods.

1. Hierarchic Methods [Gar05]

The hierarchic methods groups or splits the clusters based on a distance measure
between the clusters. The process is repeated making different levels of a tree named
dendrogram.

Tree Diagram for 5 Variables
Single Linkage
Dissimilarities from matrix

VAR1

VAR3

VAR2

VAR4

VAR5

0 1 2 3 4 5 6 7

Linkage Distance
Figure A1-1: Example of a dendrogram for 5 variables
A dendrogram is a tree-form graph in which each vertex represents the union of the

two closer classes and the height of that node represents the distance between those
classes. Cutting the tree at a determinate height gives the classes within each partition.

There are 2 ways of building a dendrogram that leads to 2 kinds of hierarchic
methods: Agglomerative Methods and Divisive Methods.

Agglomerative Methods (AM) uses the bottom-up approach to build the

dendrogram fusing each time the 2 clusters that are closer given a distance measure. A
formal definition will be: “Given a set of objects E = {1, 2, ..., n} Agglomerative
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Methods builds a succession of fitted'® partitions IT, I1,, ... , IT, in which each set
within a partition is as much compact as possible and so each partition has less classes
than the previous one”.

In AM the first partition is formed by as much classes as the number of objects to
classify and the last partition is always a unique class with all the objects in the set E.

On the other hand, Divisive Methods (DM) uses the top-down approach to build the
dendrogram splitting each time the cluster with more distance within its objects given a
distance measure. The formal definition could be: “Given a set of objects E = {1, 2, ...,
n} Divisive Methods builds a succession of fitted partitions IT;, IT,, ..., IT, in which
each set within a partition is as much compact as possible and so each partition has
more classes than the previous one”. The first partition will always have a unique class,
the set E, and the last partition will have n classes, the n object in the set E.

DM begins with all the information available and the process can be stopped
anytime we get the number of clusters we need. Processing times for DM are in order of
number of attributes squared and for AM are in order of number of instances. But the
first step of DM can be taken in 2"'-1 different ways and that is a huge requirement of
memory when n is big.

1.1. Distance Measures

To measure the distance between the groups we use an Aggregation Index. This index
defines a measure of the dissimilarity between objects that is used on the dendrogram as
height of the corresponding vertex. Some usual Aggregation indexes are:

e Single linkage: Use the inferior of all the distances between the members of one
cluster and the members of other cluster. This index has 2 undesired effects, as a
cluster grows its distance to other objects is lower so it will ate all the point
quickly. On the other hand, there could be a chain of close points that make the
method add farther points to the cluster instead others that could be closer.

e Complete linkage: Use the superior of all the distances between the members of
one cluster and the members of other cluster. So this method joins two clusters
only if all the points are close each other.

e Average linkage: This method uses the average of the distances between the
members of one cluster and the members of other clusters.

e Gravity center: The gravity center of a cluster is the mean taking all the points
in that cluster. This method uses that gravity center to measure the distances
between clusters. The new center will be a weighted mean of the previous
gravity centers.

'8 A partition 7 is fitted into another partition 7" if each class of ©” is obtained fusing 2 or more classes of
.
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e Median method: This method also uses the gravity center but now the new
center will be the mean of the previous ones.

e Ward criteria: Ward criteria use the variability between classes and within
classes because lower variability between classes’ means better is the partition
and higher within classes variability also means better clustering. The way to
calculate these two measures is using the squared distances from each point to
the gravity center or between the gravity centers of each cluster.

2. Partition-Based Methods

The objective of non-hierarchic methods is to build a partition of the space E into k
classes. As in hierarchic methods we need the classes to be compact and different each
other.

Non-hierarchic methods need to have a fixed number of classes, k, and a
comparison criterion for the quality of the different partitions as the size of each class or
the separation between classes.

An inoperative approach will be an Exhaustive Algorithm that consist on searching
all the partition possible and then select the best of them. The cost of this kind

algorithms is in the order of k"/k! that for n=100 and k=5 it is and order of 10°”. As this

approach is unviable it is better to use other algorithms which find a good solution in a
reasonable time although the solution won’t be the optimal solution.

2.1. K-Means Method [Gar05]

K-Means approach is a moving centers method that finds the best centers for k clusters
changing their positions as the method goes. K-Means method is based on the Forgy’s
algorithm that is described below.

1. Choose the first k centers g,°, g,° ... g randomly, by hand or using another
criterion.

2. Create the k clusters C;', C,' ... Ci' assigning each point to the class whose
center is closer to the point. The method assigns the point x to the class C,' if x
is closer to g;° than to any other center g;".

3. For each cluster C;', C,' ... Ci' calculate the new centers g;', &' ... g’

4. Back to step 2 using the new centers to calculate the new clusters.

The method continues until it reaches a fixed number of iterations or when the
position of the centers doesn’t change significantly. Also, another termination criterion
for computational implementations is when the cluster assignments don’t change in a
concrete iteration.

There is no theoretic explanation that ensures that the algorithm will converge to the
optimal solution but, in practice we can see that the solution approximates to the
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optimal and it stabilizes in a few iterations. Also, the solution does not depends on the
original centers g;°, g’ ... g’.

Here we have an example of how the algorithm works. It shows the i step with k=3
and p=2. The centers on the previous step were g, ", g;"' and with those centers
there are created the clusters C,', C,', C5'. The new centers for those clusters are g;', g/,

1

g3

Figure A2-1: Step i of the K-Means method with k=3 and p=2.

2.2. Trimmed K-Means Method

Cuesta-Albertos et al. [CGM97] introduced a robust clustering criterion, the trimmed k-
means, consisting on the k-means method applied on the observations remaining after
removing a fixed proportion of outlying observations. Trimmed k-means constitute the
natural extension of the idea of the “impartial trimming” introduced in [Gor91], to the
clustering framework [GGM99].

[CGM97] established the existence and a characterization, without moment
conditions, of trimmed k-means and proved their consistency for absolutely continuous
multivariate distributions having a unique trimmed k-mean. Afterwards, [GGM99]
obtained a central limit theorem (CLT) for trimmed k-means under very general
conditions: a multivariate framework, a general penalty function, @, and every k > 1.

Trimmed K-Means is a variation of the k-means algorithm that uses a trimmed set
(at a given level a) with the lowest possible variation (penalized by the function ®@).
That’s why in some papers this method is referred to as “Impartially a-Trimmed K-®-
Means” but the shorter “Trimmed K-Means” will be used.

The method obtains a k-set, if exists, with the minimum k-variation, first into the
classes and then between classes. It deletes a number of points in the original dataset to
create spherical clusters with minimum variation. For more details of the method see
[CGMO7] page 554.
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Figure A2-2": [Left] untrimmed 3-mean (circles) and the corresponding clustering allocation.
[Right] 0.08 trimmed 3-mean (squares) with the 95% tolerance regions of attaining a 90% coverage.

Given a dataset {x,’, x," ... X,"} and a trimming level o, the trimmed k-means
algorithm is as follows:

1.

(98]

Choose k starting points g;°, g,° ... g that will serve as seed centers.

K-mean step:

a.

C.

Compute the distances of each observation to its nearest center and keep the
[n(1—a)] lowest observations where [n(1—ca)| denotes the smallest integer
rounding n(l — &) by excess.

Create the k clusters C;'"', C,'"! ... G assigning each point to the class
whose center is closer to the point but only taking into account the points we
have kept.

For each cluster calculate the new centers g, g, ... g\

Repeat step 2 until a stop condition is fulfilled.
Compute the final evaluatlon function

Tl OJZZH’C g/H

j=1 x;eC

This value is called the trimmed k-variance and is the basis for a functional analysis
which purpose is to discover the number of clusters and the trimming level using a
graphical representation named k-variogram.

2.3. Dynamic Clouds Method

Dynamic Clouds method is a generalization of K-Means method proposed by Diday
[Did71]. Instead of choosing a point as center of each class and assign the others using
the proximity to that center, this method selects a set of h points for each class to be the

' Taken from [GCM99]
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kernel of the cluster. Then, the method assigns each instance to a class using the
proximity to the kernel criteria. Several criteria are listed below:

e Minimum distance to the points of the kernel.
e Distance to the center of the kernel.

e Average distance to the points of the kernel.

[ ]

Forgy’s algorithm for dynamic clouds is described below and an illustration using
the minimum distance to the points’ criteria with k=2 and h=4 is shown in Figure A2-3.

1. Choose the first k kernels with h points each.

Create the k clusters assigning each point using a proximity to the kernel
criteria.

For each cluster calculate the new kernels inside the class.

4. Back to step 2 using the new kernels to calculate the new clusters.

(98]

X d(x, kernel 2)

q'\\
g i
* d(x, kernel 1)

kernel 1 kernel.';z’

Figure A2-3: Dynamic Clouds method using minimum distance to kernel criteria for k=2 and h=4.

For the dynamic clouds clustering shown in Figure A2-3, the point X will be
assigned to the closest point of the ones that compose each of the clusters kernels.
Visually, it seems closer to kernel 1 so it will be assigned to Cluster 1.

3. Density-Based Methods

Density-based approaches [Kri00] apply a local cluster criterion. Clusters are regarded
as regions in the data space in which the objects are dense, and which are separated by
regions of low object density (noise). These regions may have an arbitrary shape and the
points inside a region may be arbitrarily distributed.

The main idea of density-based methods for clustering instances is to identify
contiguous regions of high density. It classifies the points in three groups taking into
account how many other points are close to the one considered. The method uses a
maximum distance € to the point and a minimum number of neighbors, £.

With these two parameters the main algorithm for density-based methods is:

1. Classification step:
a) Label as core points: points with at least k other points within
distance ¢.
b) Label as border points: points within distance € of a core point.
c) Label as isolated points: all remaining points.
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2. Connection step:

a) Label as directly connected points those within ¢ distance of each
other. Each border point is directly connected to one randomly
chosen core point within distance «.

b) Return as many clusters as directly connected relations with at least
one core point.

There are several density-based methods with different performances. In the
following sections we are describing two of them with a variation for each of them, so
four density-based methods are presented.

3.1. DBSCAN

The algorithm DBSCAN (Density-Based Spatial Clustering of Applications with
Noise), based on the formal notion of density-reachability for k-dimensional points, is
designed to discover clusters of arbitrary shape.

A generalization of the DBSCAN algorithm is GDBSCAN. GDBSCAN generalizes
the notion of point density and therefore it can be applied to objects of arbitrary data
type, e.g. 2-dimensional polygons.

3.2. OPTICS

While DBSCAN computes a single level clustering user defined density, the algorithm
OPTICS (Ordering Points To Identify the Clustering Structure) represents the intrinsic,
hierarchical structure of the data by a (one-dimensional) ordering of the points. The
resulting graph (called reachability plot) visualizes clusters of different densities as well
as hierarchical clusters.

Based on the same theoretical foundation as OPTICS, LOF (Local Outlier Factors)
computes the local outliers of a dataset, i.e. objects that are outliers relative to their
surrounding space, by assigning an outlier factor to each object. This outlier factor can
be used to rank the objects regarding their outlier-ness. The outlier factors can be
computed very efficiently if OPTICS is used to analyze the clustering structure.
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Appendix B
Bayesian Networks

1. Introduction

The Bayesian Networks appear as the application of graphical models to specify
probability distributions. Basically we can see that a Bayesian Network is an acyclic
directed graph, in which the nodes represent the variables of a problem that we want to
solve. With this structure we can show the knowledge about the problem from two
points of views:

1.1.

Qualitative: This point expresses the relationships of dependency or
independency between de variables of the problems. It corresponds to the
graphical part of the representation. These dependences are represented by
the connections in the graph.

Quantitative: It expresses the belief that we have respect to the relationship
expressed in the model. This is represented in the probabilities’ tables.

Definition of Bayesian Networks

A Bayesian Network consists on the following [Jen96]:

A set of variables and a set of directed edges between variables.

Each variable has a finite number of mutually exclusive states.

The variables together with the directed edges form a directed acyclic graph
(DAG™).

To each variable A with parents By, B,..., B, there is attached a conditional
probability table with P(A| By, Bs..., By).

2. Conditional probabilities

As said in the text above, a Bayesian Network is composed by a graph and the
conditional probabilities’ tables (CPT). On these tables the conditional probabilities of
the attributes given a set of evidences are given. To explain it, we are going to begin
explaining the concept of probability.

20 A directed graph is acyclic if there is no directed path A;— ... — A, such that A; = A,.
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2.1. Probability

The probability of an event A, P(A), is a number in the unit interval [0,1] such that it
gives the possibility of that event to happen. Probabilities obey the following basic
axioms [Jen96].

a) P(A) =1 ifand only if A is certain.
b) If A and B are mutually exclusive, this means independent, then

P(A~B)=P(A)- P(B)

2.2. Conditional probability

The conditional probability is the basis of the Bayesian Network. The concept
represents the probability of an event given that the probability of other is X. It can be
summarized in one sentence: “Given the event B, the probability of the event A is x”.
This probability is represented as P(A | B) = x.

The conditional probability comes from the update of the probabilities given an
event. It is defined from the probability of the intersection of the events.

P(A N B)

P(A|B)= o5

We can infer now the probability of the joint event as P(A W B)=P(A|B)-P(B) and
extend the concept to several events:

P(A,B,C)=P(A~B~C)=P(A|B,C)-P(B|C) P(C)

Now, from axiom b) we can conclude that, when A and B are mutually exclusive
then P(A|B)=P(A). This means that the occurrence of B gives no information about

the occurrence of A.

The joint probability has the commutative property, so P(AnB)=P(BnA) and

from this we can substitute the probability of the joint event by the conditional
probabilities:

P(A|B)-P(B)=P(B|A)-P(A)
And from the formula above we can conclude the Bayes’ rule:

P(A|B)P(B)

P(B|A)= oA
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Remembering that probabilities should always be conditioned by a context C, the
Bayes’ rule conditioned on C is:

P(A|B, C)P(B|C)

P(B|A,C)= A0

3. Dependency relations

In a Bayesian Network appear relations between the variables represented in the graph.
As we said before, these relations are represented by the links between the nodes, which
represent the variables. There are three situations in which evidence may be transmitted
through variables.

3.1. Serial connection

In this case the relation is A = B = C. This implies that if we have evidence in B, then
A and C are independent. In the other hand, if we do not know the state of B, the
evidence on A will have influence on the certainty of B. The same occurs in the
opposite direction if we have and evidence on C, this will have influence on A through
B. This can be represented in a graph on Figure B3-1:

Figure B3-1: A serial connection

We can deduce from this graph that there is independence between A and C through
B, I(4|B|C), and there is no independence between A and C if B is unknown,

—I(4]|D|C).

3.2. Diverging connections

This situation is represented with A €< B = C. For this case we can deduce that if
evidence is registered on B, then A and C will be independent but if there is not
evidence on B, the evidence on A will have influence in C and the same is in the
opposite direction. The graph of the example is in Figure B3-2.

Figure B3-2: A diverging connection

109



Now the independences deduced are the same as above: —/(4|J|C) and
I(A|B|C). This can be generalized to any number of children on B node.

3.3. Converging connections

The converging connection occurs when the links are directed to the opposite direction
of the previous case, from the leaves to the root node. In this case we have to be more
carefully. Now we have the case A = B €< C. For this case if we have evidence on B,
the other two variables will be independent, but now if B has evidence, A and C will be

dependent through B.

Figure B3-3: A converging connection

That means, in terms of independence, that now we have I(4|Y|C) and
—I(4A|B|C).

4. D-Separation

Two variables A and B in a Bayesian Network are d-separated [Jen96] if for all paths
between A and B there is an intermediate variable V such that either:

- the connection is serial or diverging and the state of V is known
or
- the connection is converging and neither V nor any of V’s descendants have
received evidence

Otherwise, we say that A and B are d-connected.

If A and B are d-separated, then changes in the certainty of A have no impact on the
certainty on B.

5. Naive Bayes Network

Naive Bayes is a practical Bayesian learning method. It consists in a Bayesian Network
with a concrete structure. It is oriented to classification. The idea is to suppose that all
the attributes are independent known the class variable.
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Figure B5-1: The model of a Bayesian Network

This network uses the Bayes’ rule for classification:

P(4,...,A4 |C)P(C)

PIC |y ) == =8
A

This is used to compute posterior probabilities of the class node given evidences on
the attribute nodes starting from a random probability distribution for the root node.
Most of the times, for this the Uniform Distribution is taken.

5.1. MAP Hypothesis

The MAP hypothesis says that if we want to classify a new case (aj... a;) and the class
variable has k possible categories Q.= {c;... ck}, we are interesting in identifying the
most probable and return it as classification criterion.

Cyiap :argrggxP(dal,...,an)

:argmax P(ala'--aan |C)P(C)
ceQ, P(a,,...,a,)

= argmax P(a,,...,a,|c)P(c)

The main problem of the MAP hypothesis is that you have to work with join
probabilities and that makes this method hard to compute.

The idea of Naive Bayes simplifies the MAP hypothesis, making it easy to compute,
with the assumption that the MAP hypothesis is:

Cyar = argrggz({P(c | al""’an)}: argrggz({P(c)l:[P(ai |c)}

This is not a very realistic assumption, but the Naive Bayes algorithm is considered
as a standard and its results are competitive against most of the other classifiers.
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6. Naive Bayes’ Learning

To estimate the probability La Place’s rule is used. This rule assigns as probability of an
event the fraction of the times that the event has been observed (n.) over the total of
times the experiment has been repeated (n).

nC
p=te
n

This works but it provides poor estimates when 7. is very small. For this reason we
can use the Bayesian approach for estimating the probability, using the m-estimate:

n.+mp
n+m

Where p is our prior estimate of the probability we wish to determine, m is a
constant called the equivalent sample size and n, n. as we defined before.

6.1. The EM learning

In some cases we do not have a complete dataset because of the presence of missing
values or because of perturbations that corrupt the data. For those cases the EM
algorithm can be a good solution for the Bayesian Network learning. It can estimate
those missing values and check the likelihood of the others assuming that a probability
distribution is behind the data. The EM algorithm can be used on variables which have
some missing values and on variables which have never been observed.

The EM algorithm repeats the following two steeps:

- Estimation Step (E-step): In this first steep the algorithm calculates an
expected value for each missing value using the log-likelihood of the
posterior probability of the variable as Bayesian estimator.

- Maximization Step (M-step): In this steep, the method calculates the new
maximum likelihood probability distribution using the values computed on
the E-step. Then, the probability distribution is replaced by the new one and
iterates.

A formal definition of the algorithm is [JNOS5]:

“Assume that we have a model structure B over the variables U =
{Xi...Xa}, and let &, denote the parameter corresponding to the

conditional probability P(X;= k | pa(Xi) =)), i.e., the conditional probability
X; being in its k™ state given the j" configuration of the parents of X;. Using

this notation we can find a maximum likelihood estimate H;k , for the

parameter 6, given a data set D = {c?w . .c_im} with m cases as follows™:
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1. Choose an € > 0 to regulate the stopping criteria.
2. Let 8°= {6,,} be some initial estimate of the parameters (chosen
arbitrarily), where:
1<i<n,
1<k< sp(X,)|-1,and
1< j<lsp(sp(X)))|
Set t=1.
4. Repeat:

(98]

o E-steep: For each 1<i <n calculate the table of expected counts:
E4[N(X,, pa(X,)| D]= ) P(X,, pa(X,)|d,0")

deD

o M-steep: Use the expected counts as if they were actual counts to
calculate a new maximum likelihood estimate for all &, :

- E@f[N(Xi:k’pa(Xi):j|D]

ijk [sp (X;)| .
"X ELIN(X, =k, pa(X,) = j| D]

o Set@ " =6 and t=1+1

5. Until there is no 6,," € 6" st. 0, -0, |>¢
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Appendix C
Tools

This Appendix is destined to offer general information about the tools used in the
realization of the project. These tools are mainly the following:

e Weka 3.4.7 — The Waikato University’s GNU environment that includes
several Machine Learning tools.

e HUGIN Expert 6.4 —Proprietary software to create Bayesian Networks.

e J2SDK 1.4.2 — The Sun Microsystems’ development kit that includes the
compiler javac, the documentation generator javadoc, the Java runtime JRE
1.4.2 and other tools used for several purposes.

e J# — Programming language similar to Java included in the Visual Studio .NET
development environment that allows creating applications in a visual approach.

1. Weka API 3.4.7

Weka is the acronym of Waikato Environment for Knowledge Analysis, and it is a
collection of state-of-the-art machine learning algorithms for data mining tasks. The
algorithms can either be applied directly to a dataset or called from your own Java code.
Weka contains tools for data pre-processing, classification, regression, clustering,
association rules, and visualization. It is also well-suited for developing new machine
learning schemes. It is implemented in Java released under de GPL (General Public
License).

M O O Weka GUI Chooser

Waikato Environment for
Knowledge Analysis

(c) 1999 - 2003
University of Waikato
Mew Zealand

Gul

Simple CLI 14 Explorer )

. N
" Experimenter KnowledgeFlow |

Figure C1-1: Weka GUI Chooser
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Weka is designed to support for the whole process of experimental data mining, the
preparation of the input data, the statistical evaluation of learning schemes and the
visualization of the input data and the result of learning.

The main features are:

49 data pre-processing tools
76 classification/regression algorithms
8 clustering algorithms
15 attribute/subset evaluators + 10 search algorithms for feature selection
3 algorithms for finding association rules
3 graphical user interfaces
o “The Explorer” (exploratory data analysis)
o “The Experimenter” (experimental environment)
o “The Knowledge Flow” (new process model inspired interface)

You can see in Figure C1-1 and Figure C1-2 the main Weka interface, the GUI
chooser, and the Weka explorer where the Machine Learning algorithms are accessible
to be applied on a loaded dataset. As we can see, the explorer groups the tools in the 6
features mentioned above.

8686 Weka Knowledge Explorer
Open file... ) ; Open URL... f Open DB... ) Indo f Save... 3

-Filter

K_ Choose ||None

Current relation- Selected attribute
Relation: None Name: None Type: None
Instances: None Attributes: None || Missing: None Distinct: None Unique: None
Attributes '
Tj “ Visualize All
-Status-
Welcome to the Weka Knowledge Explorer Lleg | .ﬂh x0

Figure C1-2: Weka Explorer
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2. Hugin Expert API 6.4

The HUGIN API contains a high performance inference engine that can be used as the
core of knowledge based systems built using Bayesian belief networks or influence
diagrams. A knowledge engineer can build knowledge bases that model the application
domain, using probabilistic descriptions of causal relationships in the domain. Given
this description, the HUGIN inference engine can perform fast and accurate reasoning.

Werzion B.6

Copyright € 1935-2005 Hugin Expert 475

Figure C2-1: The HUGIN Expert 6.6

The HUGIN API is provided in the form of a library that can be linked into
applications written using the C, C++, or Java programming languages. The C version
provides a traditional function-oriented interface, while the C++ and Java versions
provide an object-oriented interface. The present manual describes the C interface. The
C++ and Java interfaces are described in online documentation supplied with the
respective libraries.

The HUGIN API is used just like any other library. It does not require any special
programming techniques or program structures. The HUGIN API does not control your
application. Rather, your application controls the HUGIN API by telling it which
operations to perform. The HUGIN inference engine sits passive until you engage it.

B flora
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Edit  Functions  View @
| chisters | plart1347 |

[ clusters o [ | =z [ = [ =+ [ = [ & =7z [ & [ e [ ia | 11

o 1 1 i 0.595305 0894118 [0.97561 |0.465368 [0.6 1 1 1 0978261
i 0 0 [ o o 0 0 0 0 0 o o

z fi f [ 0.033598 (0035204 |0.012195 |0, 142857 [0.04 [ f o o

3 i i i 0067797 [0.070558 [0.012195 |0.367347 [0.76 i n i 0071739
4 0 i f o o 0 0 0 0 0 ] o

5 f f [ o o o 0.020405 |0.05 [ f o o

3 i f [ B o 0 0 [ [ f o o

I i i fi o o 0 0 i fi i o o
[Expetience  [19 |46 |72 |59 s a2 |49 |25 |37 |27 |11 146

r 1
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i U,

$ A ¥ |

plant1348 plant1 349

plant1350 plant! 351 pla'v:l

Figure C2-2: An example of a Hugin Expert network
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3.Java SDK 1.4.2

Java is an object-oriented, platform independent programming language developed in
1991 by a team of Sun Microsystems, Inc. engineers lead by Patrick Naughton and
James Gosling. Java was initially intended for use on consumer devices, such as cable
TV boxes. Before Java caught a major market share of programming assignments, it had
to prove its worthiness.

=

JAVA

Figure C3-1: The Java logo and its mascot Duke

Java's roots may be found in the "Green Project", which was initially launched by
Sun to create smart consumer electronics and from which came the "*7" (a combination
PDA/remote control) in 1992. However, the project never got off the ground. Oak,
possibly named for the tree outside Gosling's window, was the language used for the
"*7". It was discovered that another language went by the Oak moniker, and the creators
subsequently changed the name to Java. When the market for smart consumer
electronics evaporated, the creators found a new outlet for their "write once, run
anywhere" language.

The main features of Java are:

Platform Independence

Object Oriented
Compiler/Interpreter Combo
Robust

Several dangerous features of C & C++ eliminated
Automatic Memory Management
Security

Dynamic Binding

Good Performance

Threading

Built-in Networking
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4. Microsoft Visual J#

Visual J# is a tool that Java-language programmers can use to build applications and

services to run on the NET Framework.

Visual J# targets the common language runtime (CLR) and can be used to develop
NET Framework applications, including XML Web services and Web applications,
making full use of the .NET Framework. Visual J# applications benefit from the

following:
e Cross-language integration.
e Enhanced security.
e Versioning and deployment support.
e Debugging and profiling services.

Microsoft Visual J# is a development tool that developers who are familiar with the
Java-language syntax can use to build applications and services on the .NET
Framework. It integrates the Java-language syntax into the Visual Studio .NET shell.
Visual J# also supports the functionality found in Visual J++ 6.0 including Microsoft

extensions.

Visual J# is not used for developing applications intended to run on a Java Virtual
Machine. Applications and services built with Visual J# will run only on the .NET

Framework.

New Project

Project bypes: Templates: ; EI
Business Inteligence Projects visual Studio installed templates

(- Wisual Basic i

- Visual C# [EE windows Application (% Class Library

= visual Ja @Windows Control Library _ECUnsole Application

L owindows [%3% Empty Project ECryStal Reports Application

o Starter Kits
- Wisual C++ My Templates
[#- Other Project Types I
_;E]Search Online Templates...
I project For creating an application with a Windows user interface
Mame: Winc-léws.ﬂ.pﬁli"cationl |
Location: [ Cii\Documents and Settings) AdministratoriDeskiop v | [ Browse...
Solution Mame: WindowsApplicationi Create directory For solution
[ K, ] [ Cancel ]

Figure C4-1: Visual Studio Project creator showing Visual J# templates

Microsoft Visual J# .NET Redistributable Package is the redistributable package for
Microsoft Visual J#. The Redistributable Package will only run applications and
services developed with Visual J#; Java-language applications written with other Java-
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language development tools will not run with the Microsoft Visual J# .NET
Redistributable Package.

Visual J# and the Microsoft Visual J# .NET Redistributable Package have been
independently developed by Microsoft, and are not endorsed or approved by Sun
Microsystems, Inc.
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Appendix D
User Manual

This appendix is destined to explain how to use the application developed.

1. Introduction

The application developed was called, CAV-2D (Clustering Analysis and 2D
Visualization tool). It has been built under the Visual Studio™ platform and it is
compiled for Windows™ systems. The main utility of the program is geographical
clustering of the instances of a dataset previously loaded into the application, and
represent the resulting clusters in a map. The map used can be loaded, but as this
application is made to solve the problem with the Swiss flora, the initial map loaded
when the program starts is the map of Switzerland.

CAV-2D offers the possibility of applying several clustering methods, and shows
the results both in a text format which can be saved in a rtf file, and on a loaded map.
The methods supported in the application are two partition-based methods Simple K-
means and Trimmed K-means, and two probabilistic methods Naive Bayes oriented to
clustering and EM algorithm. CAV-2D also saves the clustering results in a file and
loads them again to view when necessary.

It is possible too, using CAV-2D, to compare two different clustering results
obtained for the geographical region. The comparison can be made using two different
criteria, and is also shown in the map.

2. Description of the Application

In this section we are going to describe the different interfaces that you can find
working with CAV-2D.

2.1. Main Window

When the application is launched appears the main window shown in Figure D2-1. This
is a standard user interface with a menu bar at the top followed by a buttons bar, the
main panel and the status panel at the bottom of the window. On the left of the main
panel there is a zone destined to the color codes of the clusters. In the main panel which
we have three tabs where we can choose between the dataset, the results or map. These
different tabs are shown in Figure D2-2 and Figure D2-3.
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V-2D [Clustering analysis and 2D visualization tool]

& Hide Clusters

Figure D2-1: CAV-2D's main window. Map tab

™ CAV-2D [Clustering analysis and 2D visualization tool]
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Figure D2-2: Dataset Tab
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2 CAV-2D [Clustering analysis and 2D visualization tool]

File  Clustering  Tools  Help
S| % B & | dusteringMethods. . |~ Show Clusters e sis |
Datsset | Resulls | Map¥iew
Resulls of the clustering analysis
=il
TEETTERTTERT =
* kNeans *
TEETTERTTERT
Punning time: 350 miliseconds
MNurber of iterations: 3
Within cluster sum of sguared errors (S3E): 16.555642Z66542456
=== Cluster Centroids ===
Cluster 1
Mean/Mode: 680.3333 683 654 685.6667 637 694 698.3333 7038 TEL 5
Std Devs: 109.5689 111.6373 111.6378 111.0961 111 111.9687 115.4527 105.4467 104.28381 10%
Cluster Z
Mean/Hode: 186.75 218.75 221 229 245 256.5 258.75 260.75 277 27
Std Devs: 116.7058 104.2665 104.5084 106.4393 115.597 119.372Z 1z0.21z 118.6462 125.10Z6 1zt
Cluster 3
Mean/Mode: 922 923 oz4 az7 oz8 231 935 936 37 941
Std Deva: a u} u} u} u} u} u} u} [u} 0
=== Clusters Mewkbership ===
Cluster 1 = {794,915,6566}
Cluster 2 = {915,342,651,564}
Cluster 3 = {178}
=== Clustering stats for training data ===
Clustered Instances
3 { 38%)
2 4 [ 50%)
3 1 ( 13%) |
|
< >
Simple K-Means method applied successfully ~| z

Figure D2-3: Results Tab

2.2. Menu Bar

The menu bar contains the main functionalities of the program separated in 4 different
menus: file menu, clustering, tools, and help. These four menus are described in the
following sections.

2.21. File menu

In Figure D2-4 is shown the file menu. It contains the options to load and save files as
well as the printing and the exit option. We are describing each option below.

File | Clustering Tools  Help

| Open Dataset  Chrl+0 |

Save Dataset  ChrH4S
Save Resulks ChrHR
Print Chrl4+P

Exit Al+F4

Figure D2-4: File Menu
e Open dataset
With this option the open dataset dialog is shown. The presence of a dataset
loaded is necessary to use the different algorithms that have been included in the

application. The open dataset dialog is shown in Figure D2-5. In this dialog you
can choose the dataset file indicating the application the options of the file you
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want to load. You can indicate, activating the checkboxes, if the file has the
attribute names in the first rows or if the file has a class variable in the last
column.

You must indicate too, the separator used in the file for the data. The supported
separators appear in the dialog, the application can load files separated by

comma, tabulator and space.

Finally you click in open and the dataset will be loaded into the application.

Open DataSet

Datazet
Choose dataset fils... | |
Options Data Separatar
[ attibute names on first row (%) Comma
[ Clasz variable an last column 3 Tabulator
() Space
I Open l [ Cancel

Figure D2-5: Open Dataset Dialog
Save dataset
Through this option you can save a previously loaded dataset into a file. The

dialog that appears is a standard Windows save dialog. The format of the saved
file is a CSV (comma separated values) file.

Save results

The option “Save results” is useful when you have applied a clustering method
because it is the one that permits to save the text results into an rtf file. The
dialog that appears is the typical save file dialog from Windows.

Print

Selecting this option appears the typically standard dialog to print the textual
results of the results tab.

Exit

Terminates the program’s execution.

2.2.2. Clustering menu

In the clustering menu appears the different clustering methods that can be applied to
the dataset loaded before. Figure D2-6 shows the methods that appear in the clustering
menu that are also available from a drop down menu in the tool bar.

124



Clustering | Tools  Help

Simple K-Means Chrl+k

Trimmed K-Means  Chrl4+T |

Maive Bayes Chrl+1

EM ailgorithm Ctrl+E

Figure D2-6: Clustering menu

The dialog that appears after select one method is the same for all the methods, but
for each one only the parameters appropriated are enabled to be changed.

Simple K-Means

Selecting this menu appears the dialog to configure the options of the simple k-
means method. The algorithm origins from Weka API; however, it is adapted to
obtain the cluster memberships. The parameters enabled to change are:

1. Numbers of clusters: This indicates the number of cluster you want to find
into the dataset.

2. Seed: This parameter is used to generate the random values for the initial
centers of the clusters.

Trimmed K-Means

For this algorithm the parameters to configure are almost the same as the simple
k-means. The window dialog which appears is shown in Figure D2-7. In it
appears one more parameter enabled:

1. Trimming level: The trimming level indicates the fraction of the total of
instances that you want to trim.

Trimmed K-Means properties

Sbout

Cluster data uging the Trimmed K-Means algorithm based on the Trimmed
K-Mets by Garcia-Escudero et -al.

Options
Mumber of clusters ' 23
Seed . 10|
Trimming level . 0 051

[ Run _] [ Cancel ]

Figure D2-7: Trimmed K-Means properties dialog
Naive Bayes

With this option the Hugin’s Naive Bayes EM approach is applied to the data
loaded. This method allows choosing to build a Naive Bayes model with one
root node or with two root nodes. The results shown in the map, in the case of
the two root nodes, will be the ones obtained for the join of the results of the two
root nodes. The results of the separated nodes can be founded in two files
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generated; these files are indicated in the textual results of the method. The
Figure D2-8 shows the option dialog that appears.

Naive Bayes properties
Abatt

Cluster data using Hugin's Maive Bapes EM approach.

Options
Mumber of clusters ' 23 States at leaves B
Seed . 10 Second root hode

Clusters in second root BE- ||

[ Fun l l Cancel ]

Figure D2-8: Naive Bayes properties dialog

The parameters to configure in this case:

1. Number of clusters: In this case it indicates the number of states for initialize
the first root node. That is the number of cluster you are searching for.

2. States at leaves: It represents the number of states that the leaves nodes have.
It is related with the different values that the attributes can acquire. It implies
that all the attributes must have the same number of states.

3. Second root node: Enabling this checkbox the model generated will have two
root nodes and the number of states for the second root will appear.

4. Cluster in second root: It has the same meaning as that in the number of
cluster but now it represents the number of states of the second root node.

2.2.3. Tools menu

In this menu there are different interesting tools related with the application. Figure
D2-9 shows the contents of the menu.

Tools | Help

Load Mew Map  ChrlHL
Load Ca file Chrl+m

| Clustering Comparison

Figure D2-9: Tools menu

e Load New Map

This menu permits to load a new map into the application. To load successfully
the map it is necessary to have a map image file and a dot file*' with the points
which represent each area of the map. These points are the ones that represent
the polygon which forms the areas of the map.

*! We explain the dot file in section 3.3.
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The process to load a new map is: first load the image file with the map; second
load the dot file with the point of each area. If one of these steps fails, the change
of the map will not have success.

e Load CA file

Loads a CA (Cluster Assignments) file showing in the map the clustering results
stored in the file.

e Clustering Comparison

This is an interesting tool that compares two clustering assignments files. As we
said in the introduction of the manual it permits to do the comparison of the two
clustering using two different criteria. When you select this tool a window dialog
as the one shown in Figure D2-10 appears.

Choose the CA files to analize

L4 files to process
Choose Ca file 1 | w search
Choose CAfle 2 | v search
Analyzis options E quivalence criterion
(%) Base analpsis on C4 file 1 (&) Mawimur concordance
() Base analysiz on CA fils 2 () Mirimurn discordance
[ 1] l l Cancel ]

Figure D2-10: Comparison window dialog

In the window dialog you have to choose the two clustering files, the clustering
which to base the analysis on and the criterion of comparison. You can choose in
which file you want to base the analysis, this is the clustering that the
comparison method uses to search for correspondence pairs in the surrogated
file.

The equivalence criterion is how the method searches the correspondences
between the clusters. There are two different criteria implemented in the
application, the maximum concordance criterion and the minimum discordance
criterion. We are explaining both criteria in details in section 4.

2.24. Help menu

Finally we have the help menu; it is shown in Figure D2-11.

Help

Index

| sbout.. Flz |

Figure D2-11: Help menu
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It only contains two options to choose, one is the index of the help and the other is the
information about the program. The about dialog is shown in Figure D2-12.

| CAV-Z2D w10
b Clustering analyzis and 20 vizualization tool

Qliver Centeno Akvarsz
Javier T. Mediano Serrano

Aalborg University 2008

— About clustering algarithmz

® Simple K-Means adapted from Weka AP 3.4.7
2 1993-2005 University of Waikato

® Trimmed K-Means based on Cuesta-albertos, Gordaliza
and Matran impartial trimming procedure [1997) revized
by Garzia-Escudero, Gordaliza and Matran [1935)

m Maive Bayes from Hugin Expert AP| 6.4
©1995-2005 Hugin Expert A/5

m Eh algonithm baged on Pefia's BC-EM [2000] and
ECH algorithm by keng and Rubin [1393]

Figure D2-12: About dialog

2.3. Tool bar

The tool bar contains quick access buttons to the main tools of the application. The bar
is showed in Figure D2-13.

Cut
Save results Paste
Select clustering
method
Open dataset Show the original map
H W ¥ = . T
|5 B _'ﬂ | & Eg @ | Clustering Methods,,, - | “1 Show Clusters &% Hide Clusters
Show clustering results
in the map
Save dataset Copy Print

Figure D2-13: Tool bar

3. Files formats supported

The application uses different file formats with different purposes. It supports several
dataset formats but imposes a concrete one for the clustering results.
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3.1. Dataset File Formats

The dataset can come on several formats because the load dialog permits to specify
parameters such as data separator and presence of class variable and attributes names.
The following files are supported:

Data files (*.dat)

Comma separated values files (*.csv)
Generic ASCII files (*.txt)

Tabbed files (*.tab)

Also a generic flat file can be loaded if it fulfils the only rule of having as separator
one of the three permitted: comma, tabulator and space.

The file can also contain, and it must be checked, a first row with the names of the
attributes and a last column with the class variable useful as areas identification. It was
contemplate the possibility of load an office file (Access or Excel file) because the
original dataset comes on an Excel format, but it could not be implemented because of
the lack of time. This is one of the proposals as further work in chapter 8.

3.2. Clustering Results File Formats

The results of the clustering analysis are shown two formats. One of them is a text based
format that is the one presented as results of the clustering analysis. This information
can be saved as rich text in a rich text format file (.rtf). This option is accessible through
both the file menu and the toolbar.

The other results file is automatically generated and contains the clustering
assignments using as identifier of the instances the class variable without mattering if it
comes on the dataset or it has been automatically generated™. It is a flat ASCII file that
contains, in a CSV format, the instances assigned to each of the clusters found. These
files are called clustering assignments files (.ca) and their format and extension are
required for further uses of these results as reload of the assignments to view them on
the map, or compare two clustering assignments automatically.

The CA files generated will be located in the same directory where the dataset is and
they will have the same name of the dataset followed by the method run to create them.

3.3. Map Formats

The last kinds of files the program considers are the formats related to the map where
the clustering is showed on. The change of the map requires two kinds of files, an image
with the new map and a file with the points that define each of the polygons
representing the areas on the map.

** The automatically generated class column contains the string “Inst” followed by the number of
instance.
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The image file can come on one of the standard image file formats where as the file
with the polygons must have a concrete structure explained below. The supported image
files are:

Windows Bitmap (*.bmp)

Jpeg File (*.jpg; *.jpeg)
Compuserver (*.gif)

Portable Network Graphics (*.png)

For the polygons file we use talk about the dot file format (.dot) but the program
also accepts .csv and .txt files. The format for all them is concretely defined and if the
file does not follow it the change of the map will not have success.

The first line of the dot file must contain the amount of areas considered. This is for
the initialization of some structures that we are using to store and draw the areas. The
following files must have the following information knowing that the point (0, 0) of an
image is the top left corner:

<area id>,X1,Y1,X2,Y2, ooy X, Yy

The first value always will be the identification of the area and it must be followed,
in a CSV format, by the pairs of point that draw the polygon that covers the area. An
example of this format can be seen in Figure 4.3-1.

In the example shown in Figure 4.3-1 we begin with the western point (1, 5) and go
around the area opposite to the clockwise direction to (4, 8) and so on until we reach
again (1, 5) that must be included again to close the polygon.

(5,4) (10,4)

(1,5)
Areab1

(4.8)

(4,10) (7,10)

”"Areabl1,1,5,4,8,4,10,7,10,10,4,5,4,1,5"”

Figure D3-1: Example of an area transformed into a dot file format

4. Clustering Comparison Criteria
4.1. Maximum concordance criterion

The maximum concordance criterion (max criterion) is the simplest criterion available
in the application. This criterion treats as similar clusters of the two results the one with
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the maximum number of areas in common. It just counts the number of areas that are in
the two clusters and choose firstly the pair which has more areas in both clusters.

In this criterion the significance is related to the size if the cross related to the whole
table, this is, the value of each cell related to the sum of all the values in the table. Said
with another words, this method looks for the higher values in the table and sort them
descending to select the pairs.

To explain the criterion we are going to show the Example 7.2-1:

Example 4-1. In this example we compare two clustering files, one with
five clusters and the other one with two clusters. We are basing the analysis
on the five clusters file, so these five clusters are named with the letters A-E.
In the same way, the surrogated clustering is named with numbers 0-1.

The Table 7.2-1 is the equivalence table that shows the number of instances
that both clustering results have in common. For instance, the number 228 in
A0 means that between the cluster A from the base file and the cluster 0
from the surrogated file there are 228 areas in common.

0
228 | 1
195
20
0

0

ke R el

B O QW >

Table D4-1: Clustering equivalence table

With this equivalence table, the next step is to obtain the most significant
pairs applying the criterion, in this case the maximum concordance. The
results of the criterion are shown in Table 7.2-2.

Pairs | Significance
A-0 40.35%
B-0 34.51%
A-1 20.70%
C-0 3.539%
D-1 0.530%
B-1 0.176%
E-1 0.176%

Table D4-2: Maximum criterion concordance results

The significance obtained for each pair is calculated dividing each cell in the
equivalence table by the sum of all cells™. This is showed as a percentage to
make it easier to interpret. It represents the size of the cross in the table and
we can sort the pairs by this value.

The method now selects the pairs with a higher significance identifying them
as equivalent clusters. For the max criterion the first pair will be A-0 because
it has the highest significance. This means that the highest value in the table is

** This is the number of areas that must be the same for both clustering results.
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The minimum discordance criterion (min criterion) is a more complex criterion than the
maximum. The main idea of this criterion is to give more importance to the fraction that
each cell represents on the two clusters that are crossed. This means to identify similar
clusters using the number of areas that both have in common with respect to the amount
of areas of each cluster. This is done because for the maximum concordance criterion
the biggest clusters have more significance because they have more areas in common.
As that amount of areas in common can be less representative than the areas in common

in cell A0 and that crossed-cluster has a 40% of the areas in it. As this
criterion only looks for the highest crossed-clusters this is the first the method
will identify as a pair.

The next pair with a high value would be B-0 but cluster 0 is already assigned
as equivalent to cluster A so this pair is not considered. We go down to the
next maximum significance until we get a pair where none of the clusters has
been assigned as equivalent to other and we found that the only one available
is the pair D-1 that is the last that we can make because the surrogated
clustering only has 2 clusters. So with this criterion we obtain that cluster A
corresponds to cluster 0, and cluster D corresponds to cluster 1.

4.2. Minimum discordance criterion

for other pair we thought about another significance criterion.
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Example 4-2. To make this criterion easier to be understood we are going to
apply it to the equivalence table from Example 7.2-1. First we must build the
“Relative Frequency Tables” (RFT) where we compute the proportion that
each cell represents in the two clusters crossed on it. We can see that tables for
on Table 7.2-3.

0 1 0 1
A | 228/443 | 117/122 A | 228/345 | 117/345 | 345
B | 195/443 1/122 B | 195/196 1/196 | 196
C 20/443 0/122 C 20/20 0/20 20
D 0/443 3/122 D 0/3 3/3 3
E 0/443 1/122 E 0/1 1/1 1

443 122

Table D4-3: Relative Frequency Tables

The next step is to multiply cell by cell the relative frequency tables to get the
significance of each crossed-cluster. The resulting table can be seen in Table
7.2-4.

0 1
A | 34.01% | 32.52%
B | 43.79% 0.00%
C 4.51% 0.00%
D 0.00% 2.46%
E 0.00% 0.82%

Table D4-4: Minimum discordance significance table



And sorting these percentages we obtain the most significant pairs. Table
7.2-5 shows these significance results of applying the minimum discordance
criterion to the equivalences table.

Pairs | Significance
B-0 43.79%
A-0 34.01%
A-1 32.52%
C-0 4.514%
D-1

E-1

B-1

2.459%
0.819%
0.004%

Table D4-5: Minimum discordance criterion results

The significance obtained in this case is calculated as the product of the ratio
of areas in common divided by each sum of areas for each cluster in the
pair. Once we have the significance calculated, the sequence to obtain the
comparison between is the same than in the maximum concordance
criterion. With this criterion the results obtained are cluster B corresponds to
cluster 0 and cluster A corresponds to cluster 1. This means that pair BO has
a high frequency in both clusters more than to have only a high number of
areas in common.

As we can see in the example the clusters correspondences are different depending
on the criterion used. This happens because the size of a pair does not mean the pair is
representative. The representative of a pair is given by the frequency of the pair in the
two clusters that form the pair.

Comparing the two results obtained in the examples above we can see that max
criterion gives more importance to AQ because it is the biggest pair but it does not have
as high representative ness as pair BO that, for cluster B contains almost 100% of the
areas.

Max Criterion Min Criterion
Pairs | Significance Pairs | Significance
A-0 40.35% B-0 43.79%
B-0 34.51% A-0 34.01%
A-1 20.70% A-1 32.52%
Cc-0 3.539% C-0 4.514%
D-1 0.530% D-1 2.459%
B-1 0.176% E-1 0.819%
E-1 0.176% B-1 0.004%

Table D4-6: Comparison of both criteria results

As max criterion takes the pair A0, the next in significance, B0, is not considered as
it happens with Al and CO and the next pair chosen is D1 that only has a 0.5% of the
areas. On the other hand, the min criterion takes BO with a medium significance (about
50%) but the second pair chosen is Al that also has a medium-low (about 30%)
significance.
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5. Note

The application CAV-2D serves the clustering analysis in Swiss plant data, and
provides the foundation of the project involved in this thesis. Nevertheless, it is possible
to use it with other kind of data and from other countries for any kind of geographical
clustering. The user manual facilitates the using of this application, and will be enriched
with more and more follow-up work in this project.
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Appendix E
Implementation and Source Code

This appendix is dedicated to show the code of the most interesting functions and
classes implemented in the development of the project.

1. Naive Bayes

The code of the Naive Bayes network model was implemented in Java, using the Hugin
API. The main steeps in the construction of the model are:

1.

Create de domain object: This is made calling to the constructor of the Domain
class included in the Hugin API.

Initialize the domain: This steep is made in the ini¢ function of the Naive class.
This function uses the createDCNode to create all the nodes using the
NumberedDCNode class constructor of Hugin API, the roots and the leaves.
Create the links among them with the setParent function of the nodes created
and initialize the nodes created with the number of states using the
setNumberOfStates function for each node created.

Compile and load the cases file: This is made with the function of the domain
class compile and parseCases.

Initialize the random probabilities of the root nodes; it is made inserting a table
of random probabilities for each root node.

Apply EM algorithm: The EM algorithm is applied in the learnTables function
of the domain created.

Set evidences: This is made in setEvidences function. In this function we read
the cases file and for each value of the each case we select the state in the
corresponding node using selectState function of each node. Once we have all
the nodes with one state activated propagate the evidence using
evidenceToPropagate function of the domain.

Search the belief higher: This is made en setEvidences function too. It consists
in look for all the states of each root node for seeing what state has the belief
higher. For do this use the function getBelief in the root nodes.

Join the result: For do that it called the join function, this use the results of the
two root nodes and combine them.

The complete code is the following.

import COM.hugin.HAPI.*;
import java.util.ListIterator;
import java.awt.geom.Point2D;
import java.io.*;
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public class Naive {
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public Domain domain; //the domain for the network

private NumberedDCNode nodes[]; //the array of leave nodes
private String [] names; //the names of the leaves nodes

private NumberedDCNode root; //the first root node

private NumberedDCNode root2; //the second root node

private java.util.Vector asignments, asignments2; //CA results
private String path, file;

private int nroot=1l; //number of root nodes

private long ms; //stores the run time

private String[] key = new String[]{"101".."999"}; //default areas

/*

* Network constructor

*/

public Naive (String[] args) {
try {

//

//

//

//

//

//

if (args.length==5){ //there is a file with the key areas
BufferedReader nk = new BufferedReader (
new FileReader (args([4]));
key= nk.readLine () .split(",");
nk.close() ;

}

ms = System.currentTimeMillis(); //get the actual time
file=args[0];
path= args[0].substring(0,args[0].lastIndexOf (".")+1);

1. // Create the domain
domain=new COM.hugin.HAPI.Class (

new ClassCollection()) .createDomain () ;
domain.setNodeSize (new Point2D.Double (70, 30));
asignments = new java.util.Vector();
asignments2 = new java.util.Vector();

//Read data file

BufferedReader in = new BufferedReader (
newFileReader (args[0]));

names = in.readLine () .split (" ");

2. // Initialize the model

int 1 = Integer.parselnt(args[l]);
int ¢ = Integer.parselnt(args[2]);
int ¢c2 = Integer.parselnt(args[3]);

this.init (names.length-1, 1, c, c2);

3. // Compile the model
this.domain.compile () ;

4. // Randomize the initial probabilities of the root nodes
root.getTable () .setData (rand(root.getTable () .getData(), 1));
root2.getTable () .setData (rand(root2.getTable () .getData(), 1)),
this.load(args([0]);

5. // apply EM algorithm
this.domain.setMaxNumberOfEMIterations (100) ;
this.domain.learnTables () ;

6-7. // Set the evidences
this.setEvidences (in, ¢, c2):



// 8. // Save and join the clustering results
this.save (1) ;
this.save (2);
this.join();
this.toString();
}catch (ExceptionHugin e) {
System.out.println ("\tException occured!!\n");
e.printStackTrace () ;
}catch (IOException e) {
System.out.println ("Exception reading file");
}
}

/*
* 2. Init the naive bayes.
*/
public void init (int num, int states, int clss, int clss2)
throws ExceptionHugin({

nodes = new NumberedDCNode [num];

root=constructNDC (names [num], names[num], clss);
root.getExperienceTable () ;

root.setPosition (new Point2D.Double ( (num*100) /2, 500));
root2=constructNDC (names [num] + "2", names[num] + "2", clss2);
root2.getExperienceTable () ;

root2.setPosition (new Point2D.Double (((num*100)/2)+200, 500));

for(int 1=0; i<num; 1i++) {
nodes[i] = constructNDC (names[i], names[i], states);
i] .setPosition (new Point2D.Double (i*100, 150));

nodes [
nodes[i] .addParent (root) ;
nodes[i] .addParent (root2) ;
nodes[i] .getExperienceTable () ;
}
}
/*
* Load a data files into the domain
*/
public void load(String file) throws ExceptionHugin({
domain.parseCases (file, new DefaultClassParselListener());
}
/*
* Create a Numbered Node
*/

protected NumberedDCNode constructNDC(String label,

String name, int n) {

try {
NumberedDCNode node = new NumberedDCNode (domain) ;
node.setNumberOfStates (n) ;
for (int i = 0; 1 < n; 1++) node.setStateValue (i, 1i);
for (int 1 = 0; 1 < n; 1++) node.setStatelLabel (i, ""+1i);
node.setLabel (label) ;
node.setName (name) ;
return node;

}catch (ExceptionHugin e) {
e.printStackTrace () ;

}

return null;
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/*
* 6. introduces the evidences into the network
*/

public void setEvidences (BufferedReader in, int c, int c2)
throws ExceptionHugin, IOException/{

String readed=in.readLine() ;
String [] caso;

String exceptions="";

int j=0,%k=0;

// read all the instances
while (readed != null) {
caso = readed.split (" ");
// set the evidence to the actual instance
for (int i=0; i<caso.length-1; i++)
if(!caso[i].equals("?"))
nodes[i] .selectState(Integer.parselnt (caso[i]));
// propagate the evidence
this.domain.adapt () ;
if (this.domain.evidenceToPropagate())
try{this.domain.propagate (Domain.H EQUILIBRIUM SUM,
Domain.H EVIDENCE MODE NORMAL) ;
}catch (ExceptionHugin ehug) {
exceptions += (j+1)+",";
}

System.gc () ;
// 7. // search the states with more belief in the roots
double maxLH1=0.0, maxLH2=0.0;
int cluster=0, cluster2=0;
for (int i=0; i<c; i++)
if (maxLH1 < root.getBelief (1)) {
maxLHl = root.getBelief (i);
cluster = i;
}
for (int i=0; i<c2; i++)
if (maxLH2 < root2.getBelief (i)) {
maxLH2 = root2.getBelief(i);
cluster2 = 1i;

}

//assing the instance to the cluster given by the state
asignments.add (j++, new Integer (cluster));
asignments?2.add (k++, new Integer (cluster2));
this.domain.retractFindings () ;
readed=in.readLine () ;
}
if (exceptions.length() != 0)
System.out.println ("\n\tPropagation exceptions @
+exceptions+"\b");

}
/*

* 8. Obtain the join results of the two root nodes
*/

public void join() throws ExceptionHugin,IOException{

String path = file.substring(0,file.lastIndexOf(".")+1);
PrintWriter out = new PrintWriter (path + "Naive Bayes.ca");
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String[] output = new String[root.getNumberOfStates()*
root2.getNumberOfStates () ];

for (int i=0; i< output.length; i++) output[i] = "";
for (int i=0;i<key.length;i++) {
output [ ((Integer)asignments.get (i) *

root2.getNumberOfStates())
+ (Integer)asignments2.get (i)] += key[i]+",";
}
for (int i=0; i< output.length; i++)
if (output[i].length() !'=0)
out.println (output[i].substring(0,
output[i].length()-1));
out.close();

/*
* Saves the assignments in a txt file
*/

public void save(int n) throws IOException, ExceptionHugin{

String[] output= null;

String path = file.substring(0,file.lastIndexOf(".")+1);
PrintWriter out = new PrintWriter (path

+ "Naive Bayes Root " + n + ".ca");
if (n==1) output = new String[root.getNumberOfStates()];
if (n==2) output = new String[root2.getNumberOfStates()];
for (int i=0; i< output.length; i++) output[i] = "";

for (int i=0; i< key.length; i++) {
if (n==1) output[ (Integer)asignments.get(i)] += key[i]l+",";
if (n==2) output[ (Integer)asignments2.get(i)] += key[i]l+",";
}
for (int i=0; i< output.length; i++)
if (output[i].length () !'=0)
out.println (output[i].substring (0, output[i].length()-1));
out.close();

}
/*

* Generates a random prior distribution
*/
public double[] rand(double[] rand, int s) {
java.util.Random rnd = new java.util.Random(rand.length*s);
for (int i=0; i<s; i++) {
double sum = 1.0;
for (int j=i; j< rand.length-s; j+=s){
double r=Math.random() ;

if((r+ "").length()>=7)
r=Double.parseDouble ((r+ "") .substring(0,7));

if(r>0.5) r /=2;

while (sum-r < 0.0 || r<0.00001 || r>0.99999) ¢{

r=Math.random() ;
if((r+ "").length()>=7)
r=Double.parseDouble ((r+ "") .substring(0,7));
}
rand[j] = r;
sum -= r;

}

double r=Math.random() ;
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if((r+ "").length()>=7)
r=Double.parseDouble ((r+ "") .substring(0,7));
rand[j] = r;
}

return rand;

}

/*
* Returns the results as text
*/

public String toString() {

System.out.println ("\Lxxxkxxdokxxdokoxxdoxn)
System.out.println("\t* Naive Bayes *");
System.out.println ("M\LH*F*xFELrxFkkLxxKxA\n") ;
String [] names;

BufferedReader in=null;

int n=0;
try{
System.out.println ("Running time: " +
getTime (System.currentTimeMillis () - ms));

System.out.println ("Log Likehood after EM "+
this.domain.getLogLikelihood () + "\n");
}catch (ExceptionHugin e) {
System.out.println ("\tException occured!!\n");
e.printStackTrace () ;

}

System.out.println ("=== Cluster memberships ===\n");
try{
in = new BufferedReader (new FileReader (path +
"Naive Bayes.ca"));

String reader=in.readLine();

while (reader!=null) {
System.out.print ("Cluster " + n + ": {");
names = reader.split(" ");
for (int j=0;j<names.length-1;j++)

System.out.print (names[j] + ",");
System.out.print (names[names.length-1] + "}\n\n");
n++;
reader=in.readLine () ;

}

System.out.println ("Generated files: ");
System.out.println ("\t\"Naive Bayes Root 1l.ca\"");
try{

if (root.getNumberOfStates () >1)
System.out.println("\t\"Naive Bayes Root 2.ca\"");
}catch (ExceptionHugin e) {
System.out.println ("\tException occured!!\n");
e.printStackTrace () ;
}
System.out.println ("corresponding to the cluster in each
root.\nTo open the files use Tool > Load CA file");
in.close();
}catch (IOException e) {
System.out.println ("Exception reading file");

}

return "";



/*

* Transforms a long time into a hh:mm:ss.nnnn format

*/
public String getTime (long ms) {
String time = "";

if (ms > 3600000)

time += (ms / 3600000) + " hours, ";
if (ms > 60000) {

ms = ms % 3600000;

time += (ms / 60000) + " minutes, ";
}
if (ms > 60000) {

ms = ms $ 60000;

time 4= (ms / 1000) + " seconds and ";
}

time += (ms % 1000) + " miliseconds";

return time;

* Create the naive bayes for the swiss flora
* Use: java Naive <file name> <leaves states> <rootl states>

* <root2 states> [areas keys]
*/
public static void main (String argsl[]) {
if (args.length != 4 && args.length != 5)
System.out.println ("Use: java Naive <file name> <leaves
states> <rootl states> <root2 states> [areas keys]");
else

new Naive (args);

2. Simple K-means

As we said in the report, the simple k-means code is obtained from the Weka API. This
is implemented in Java. We modified the code to our necessities. The modifications we
made offer the possibility to show the memberships of each cluster and save it as a .ca
file. The main algorithm of the simple k-means is the same as in Weka API and the
code is showed in this section. We are going to explain the interesting fields used in this
fragment of the code.

e converged: A Boolean variable used to know when the algorithm has
converged. This happens when there are not changes in the clusters assignments
in iteration.

e m Tteration: An integer variable which counts the number of iterations taken
by the algorithm.

e clusterAssignments: This is an array of integer values which have one
position for each instance. In it is stored the number of cluster which the
instance belongs to.

e m ClusterCentroids: This is a weka.core.Instance object which holds the
cluster centers.
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e m ClusterstdDevs: Another weka.core.Instance object which holds the
standard deviations of each cluster.

Now we can understand the k-means algorithm shown below:

/* K-means algorithm */
//Iterate until the method converges

while (!converged) {
emptyClusterCount = 0;
m Iterations++; //count the numbers of iterations

converged = true; //admit the convergence happens
//go throw all the instances
for (i = 0; i < instances.numInstances(); i++) {
Instance toCluster = instances.instance(i); //get the ith
//Assign the instance to one cluster
int newC = clusterProcessedInstance (toCluster, true);
if (newC != clusterAssignments[i])
//1if an instance changes the clustering doesn't converge
converged = false;
clusterAssignments[i] = newC; //update the asignments array

}

// update centroids
m ClusterCentroids = new Instances(instances, m NumClusters);
for (1 = 0; 1 < m NumClusters; i++)
tempI[i] = new Instances(instances, 0);
for (i = 0; i < instances.numInstances(); 1i++)
tempI [clusterAssignments|[i]].add(instances.instance (1)) ;
for (1 = 0; 1 < m NumClusters; i++) {
double [] vals = new double[instances.numAttributes()];
if (tempI[i].numInstances() == 0)
emptyClusterCount++; // empty cluster
else {
for (int j = 0; j < instances.numAttributes(); j++) {
vals[j] tempI[i] .meanOrMode (J) ;
m ClusterNominalCounts[i][]] =
tempI[i].attributeStats (j) .nominalCounts;

}

m ClusterCentroids.add(new Instance(l1.0, vals));
}

//it there are empty clusters it doesn't count them
if (emptyClusterCount > 0) {

m NumClusters -= emptyClusterCount;

tempI = new Instances[m NumClusters];
}
//1if it hasn't converged reset the counts
if (!converged) {

m squaredErrors = new double [m NumClusters];

m ClusterNominalCounts = new int

[m NumClusters] [instances.numAttributes ()] [0];

}

/* Calculate the deviations */

m ClusterStdDevs = new Instances (instances, m NumClusters);
m ClusterSizes = new int [m NumClusters];
for (i = 0; 1 < m NumClusters; i++) {

double [] wvals2 = new double[instances.numAttributes()];



for (int j = 0; j < instances.numAttributes(); Jj++) {
if (instances.attribute(j) .isNumeric())

vals2[j] = Math.sqgrt(tempI[i].variance(3));
else
vals2[j] = Instance.missingValue();

}
m ClusterStdDevs.add(new Instance(l.0, vals2));
m ClusterSizes([i] = tempI[i].numlInstances();

}

As we could see, the algorithm uses a method to process an instance that returns the
cluster which it is assigned to. This method is used in the algorithm above; it chooses a
cluster for each instance. To assign a cluster to one instance it calculates the distance
with respect to the centroids of the each cluster.

private int clusterProcessedInstance (Instance instance,
boolean updateErrors) {
double minDist = Integer.MAX VALUE;
int bestCluster = 0;
for (int i = 0; i < m NumClusters; i++) {
double dist = distance(instance,
m ClusterCentroids.instance (1))
if (dist < minDist) {
minDist = dist;
bestCluster = 1i;

}
if (updateErrors) {

m squaredErrors[bestCluster] += minDist;
}

return bestCluster;

The following code is used to show the clusters membership in the output of the
algorithm. This code was added to the toString() method of the SimpleKMeans class.

/* Memberships of each cluster */
int ¢ = instances.instance (0) .numValues () ;
temp.append ("=== Clusters Membership ===");
for(int i=0; i< m NumClusters; i++) {
temp.append ("\n Cluster "+ (i+1)+" = {");
for (int j=0; j<clusterAssignments.length; j++) {
if (clusterAssignments[j]==1)
temp.append (instances.instance (j) .stringValue (c-1)+",");
}
temp.deleteCharAt (temp.toString () .length()-1);
temp.append ("}");
}

return temp.toString();

Finally, we use a function to store the results of the method, the clustering
assignments, in a file to load them into our application and be able to draw on the map
the results.
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/*
* Returns the members of each cluster in array
*/
public String[][] getMembers (String output) throws IOException {
String members[] []=new String[m NumClusters][];
String aux=new String();
String cluster[];

int ¢ = instances.instance (0) .numValues () ;
for(int i=0; i< m NumClusters; i++) {

int k=0;

aux="" ;

for (int j=0; j<clusterAssignments.length; j++) {
if (clusterAssignments[j]==1)
aux+=(instances.instance (j) .stringValue (c-1)+",");
}
members[i]=aux.split(",");
}
PrintWriter out = new PrintWriter (output);
for(int i=0; i<m NumClusters; i++) {
for (int j=0; j<members[i].length-1; j++)
out.print (members[i] [F]1+", ")
out.print (members[i] [members[i].length-1]1+"\n");
}
out.close();
return members;

3. Trimmed K-means

The code of the trimmed k-means is a modification of the simple k-means. We added
the sentences necessary to apply the trims to the instances and we changed also the
function which processes the instances. We created a new method, procesar (), that
now returns the distances to the center to the cluster assigned.

/* trimmed k-means algorithm */
//Itereate until method converge
while (!converged) {

emptyClusterCount = 0;

m_Tterations++; //count the iterations

converged = true; //assume that there si convergence

//go throws all the instances

for (i = 0; i < instances.numInstances(); i++) {
Instance toCluster = instances.instance(i); //take the i-th
//Assign the instance i to some cluster
double newD = procesar (toCluster, 1i);

if (newD != distances[i])

//1f one distance changes the method doesn't converge
converged = false;

distances[i] = newD; //update the distances array

}

//Sort the distances to each centroid
double[] sorted = distances.clone();
Arrays.sort (sorted) ;

double maxVar = sorted[untrimmed -17;
int count = 0;
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// update centroids

m ClusterCentroids = new Instances(instances, m NumClusters);

for (1 = 0; 1 < m NumClusters; i++)
tempI[i] = new Instances (instances, 0)

// assign only the instances closer than naxVar to the center

for (i = 0; i < instances.numInstances(); i++) {
if (distances[i] <= maxVar & count < untrimmed) {
tempI [clusterAssignments([i]].add(
instances.instance (1)) ;
count++;
}else clusterAssignments[i] = -1;

}

// Calculate the centroids of the clusters
for (i = 0; 1 < m NumClusters; i++) {
double [] vals = new double[instances.numAttributes()];
if (tempI[i].numInstances() == 0)
emptyClusterCount++; // empty cluster
else {
for (int j = 0; j < instances.numAttributes(); j++)
vals[j] tempI[i] .meanOrMode (J) ;
m ClusterNominalCounts[i][]] =
tempI[i].attributeStats (j) .nominalCounts;

}

m ClusterCentroids.add(new Instance(l1.0, vals));

}

//If there is empty cluster it doesn't count them
if (emptyClusterCount > 0) {

m NumClusters -= emptyClusterCount;

tempI = new Instances[m NumClusters];
}
//If the method hasn’t converged reset the values
if (!converged) {

m squaredErrors = new double [m NumClusters];

m ClusterNominalCounts = new int

[m NumClusters] [instances.numAttributes ()] [0];

}

//Sort the distances to each centroid
double[] sorted = distances.clone();
Arrays.sort (sorted) ;

double radius = sorted[untrimmed - 1];

int ¢ = instances.instance (0) .numValues () ;
trimmed = new java.util.HashMap () ;

for (i = 0; i < instances.numInstances(); i++) {

if (distances[i] > radius/* && d<0.5*/){
trimmed.put (new Double (distances[i]), new String(
instances.instance (i) .stringValue(c - 1)));
if (clusterAssignments[i] != -1){
tempI [clusterAssignments[i]].remove (
instances.instance(i));
clusterAssignments[i] = -1;

}

/* Calcuate the desviations */

{
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m ClusterStdDevs = new Instances (instances, m NumClusters);
m ClusterSizes = new int [m NumClusters];
for (i = 0; 1 < m NumClusters; i++) {
double [] wvals2 = new double[instances.numAttributes()];
for (int j = 0; j < instances.numAttributes(); j++) {
if (instances.attribute(j) .isNumeric())

vals2[j] = Math.sqgrt(tempI[i].variance(3));
else
vals2[j] = Instance.missingValue();

}

m ClusterStdDevs.add(new Instance(l.0, vals2));
m ClusterSizes([i] = tempI[i].numlInstances();

}

This is the new method designed to process the instances and search the closest
cluster for each of them. The difference with respect to the original method that makes
this in the SimpleKMeans class is that it returns the distance to the center of the cluster
assignment instead of the number of the cluster.

private double procesar (Instance instance, int index) {
double minDist = Integer.MAX VALUE;
int bestCluster = 0;
for (int 1 = 0; i < m NumClusters; i++) {
double dist = distance(instance,
m ClusterCentroids.instance (1))
if (dist < minDist) {
minDist = dist;
bestCluster = 1i;
}
}
m squaredErrors[bestCluster] += minDist;
clusterAssignments[index] = bestCluster;
return minDist;

4. Graphics

The Graphics object contains a function that handles the paint event to draw the
polygons that represent the areas on the map. This object is implemented as a J#
component and here is shown the code for painting. The following fields are used:

e see: A Boolean variable used to know when the graphic must be shown or not.

e c: A Color array with 25 different colors to paint 25 different clusters.

e clusters: This is a two dimensions array that contains, in each row, the areas
belonging to a cluster. Because of this, the array is not a matrix because some
clusters will contain more areas than others.

e areas: A HashMap that contains, for each area, the array of points that define
the polygon associated to the area on the map.

private void paint (System.Object o,
System.Windows.Forms.PaintEventArgs e) {

System.Drawing.Graphics g = e.get Graphics();

if (clusters != null & this.see){
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//draw the areas
for (int i=0; i<clusters.length & i<c.length; i++) {
for (int j = 0; j < clusters[i].length; j++)
if (clusters[i][j] !'= null &&

areas.get (clusters[i] [j]) != null)
//£ill the polygon with a brush with the color
g.FillPolygon (new SolidBrush(c[i]),
(PointF[])areas.get (clusters[i][J]))

5. Methods Execution

The clustering methods are executed via command line using the following J#
functions:

/**********************************

* EXECUTE A COMMAND LINE PROCESS *
**********************************/
private String execute(String command, String args) {
String output = "", error = "";
draw.set Enabled(false);
resSaved = true;

try{
//create the info of the process that is going to start
ProcessStartInfo psi = new ProcessStartInfo(command, args);

psi.set CreateNoWindow (true); //force background mode
psi.set UseShellExecute(false);//force streams redirection
psi.set RedirectStandardOutput (true);
psi.set RedirectStandardError (true);
psi.set WorkingDirectory(directory); //actual directory
//run the process and get the output
Process p = Process.Start (psi);
output = p.get StandardOutput () .ReadToEnd() ;
error = p.get StandardError () .ReadToEnd() ;
p.WaitForExit (5000); //wait 5 seconds for the process
System.gc () ;

}

catch (Win32Exception exc) {
status.set Text (exc.get Message());

}

//1if there is no error return the output

if (error.equals("")) {
resSaved = false;
draw.set Enabled(true);
return output;

}

return error;

}

/**************************************************

* METHOD TO APPLY A DETERMINED CLUSTERING METHOD *

**************************************************/

private void cluster (Object sender, System.EventArgs e) {
if (openDB.dataSets.get SelectedItem() == null) {

status.set Text ("Error!! No dataset file loaded");
new OptionDialog("Information", "You must load a dataset
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file before applying a clustering method.") .ShowDialog() ;

return;

}

if (!resSaved && !results.get Text().equals(""))
askSaveRes () ;

methodProps.set (sender.toString());

if (methodProps.ShowDialog() == DialogResult.OK) {

//Get the parameters from the Dialog

String params = methodProps.method;

String path = openDB.dataSets.get SelectedItem() .
ToString () .substring (0, openDB.dataSets.
get SelectedItem().ToString() .lastIndexOf(".")+1);

numClust = Integer.parselnt (
methodProps.nClusters.get Text());

//Choose the method to apply
if (sender.toString() .Contains ("K-Means")) {
saveToArff (instances, path.substring(0,
path.lastIndexOf ("\\")+1), path.substring/(
path.lastIndexOf ("\\")+1)+sender.toString());
//Set the params to the method
params += "-t \""+patht+sender.toString()+".arff\" -s "
+ methodProps.seed.get Text() + " -N "
+ methodProps.nClusters.get Text();

if (sender.toString() .equals ("Naive Bayes")) {

numClust *= Integer.parselnt (
methodProps.nSecondRoot.get Text());

//Set the params to the method
params += "\"" + openDB.dataSets.get SelectedItem().
ToString() + "-tmp\" " + methodProps.nStates.get Text ()
+ " " + methodProps.nClusters.get Text() + " "
+ methodProps.nSecondRoot.get Text () ;

}

//Bpply the method invoking it via command line
results.set Text (execute("java", params)):;
tabs.set SelectedTab (clusters);

setColors () ;

//Load the cluster assigments if everything is OK
if (draw.get Enabled()) {

graphic.cluster (readCA (numClust, "" + path
+ sender.toString() + ".ca"));
status.set Text (sender+" method applied successfully");
resSaved = false;
}else(
status.set Text ("Error applying "+sender+" method!!!");

resSaved = true;

6. Clustering Comparison

The clustering comparison is made in the method comparison that is called after the
load of the two .ca files considered. The method needs to order a two dimensional array
that represents the crossed table of the clustering results, and then apply the concrete
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comparison criterion. The two criteria are implemented on the methods
maxCriterion () and minCriterion (). The code is shown below.

/* CREATES THE CLUSTERING THAT COMPARES TWO CLUSTERINGS */
public void compare(String[][] cal, Stringl[][] caZ2,

boolean one2two, String crit) {

//Sort the clusters

status.set Text ("Sorting data");

cal = sort(cal);

ca?2 = sort(ca2);

System.gc () ;

//Create the map of the clustering
java.util.AbstractMap map;
String[][] cruces;

if (one2two) {
results.set Text (results.get Text()

+ "\n=== Assignments for base clustering 1 ===\n");
cruces = getMapFrom(cal, ca2);

}else({
results.set Text (results.get Text()
+ "\n=== Assignments for base clustering 2 ===\n");
cruces = getMapFrom(caz2, cal);

}

results.set Text (results.get Text() + "\n\n"
+ crit + " criterion results:\n");

results.set Text (results.get Text()

+ "\n\tPairs\tSignificance\n");
//Rpply the selected criterion for cluster equivalence
if (crit.Contains ("Maximum")) map = maxCriterion (cruces);
else map = minCriterion (cruces);
System.gc () ;

//Get the assignments indexes
Point[] p = new Point[Math.min (cruces.length,
cruces[0].length)];
boolean [][]lequiv = new boolean[cruces.length+l]
[cruces[0].length+1];

int 3 = 0;
for (int i = 0; 1 < cruces.length || j<p.length; i++) {
if (map.get(new Integer(i)) == null) {

Point[] g= new Point[j];
System.Array.ConstrainedCopy(p, 0, g, 0, J);
P = g; System.gc(); break;
}
int X = ((Point)map.get(new Integer(i))).get X();
int Y = ((Point)map.get(new Integer(i))).get Y();
if (!equiv[X] [cruces[0].length] &&
lequiv[cruces.length] [Y]) {
plj++] = (Point)map.get (new Integer(i));
equiv [X] [Y] = true;
equiv[X] [cruces[0].length] = true;
equiv[cruces.length] [Y] = true;

}

results.set Text (results.get Text() + "\n");
//Write the results into a CA file
numClust = p.length;
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try{
PrintWriter out = new PrintWriter (
new FileWriter ("Crossed Clustering.ca"));

//print the cluster similarities
for (int i=0; i< p.length; i++){
String line = cruces[p[i].get X()][p[i].get Y ()
0, cruces[pli].get X()][pli]l.get Y ()].length
out.println(line);
results.set Text (results.get Text ()+"Cluster "
+leter[pl[i] .get X()]+" corresponds with Cluster "
+p[il.get Y()+": {"+line+"}\n");
colorCodes[1i + c.length].set Text("Cluster " +
leter([p[i]l.get X()] + ":" + p[i]l.get Y());

] .substring(
0O-1);

}

//print the cluster disimilarities
results.set Text (results.get Text()+"\n");

//more rows that columns
if (cruces.length > cruces[0].length) {
for (int i = 0; i < cruces.length; i++)
for (j = 0; j < cruces[0].length; j++)
if(lequiv([i] [j] && cruces[i][j] !'= null) {
String line = cruces[i][j].substring (0,
cruces[i][J].length()-1);
results.set Text (results.get Text()+"Instances in "
+leter[i]+" crossed with "+j+": {"+line+"}\n");
colorCodes|[ (numClust++) +c.length] .set Text (
"Cluster " + leter[i] + "N" + 3J);
out.println(line);
}
}else{ //more columns that rows
for (int i = 0; i < cruces.length; i++) {
String line = ""; int Y = 0;
for (j = 0; j < cruces[0].length; j++) {
if (equiv[il[j]) Y = j;

else 1if (cruces[i][j] != null)
line += cruces[i][]j];
}
if (line.length() == 0) line = " ";

if (equiv[i] [Y]){
results.set Text (results.get Text()+"Instances in "
+ leter[i] + " but not in " + Y + ": {"
+ line.substring(0, line.length() - 1) + "}\n");
colorCodes|[ (numClust++) + c.length].set Text(
"Cluster " + leter[i] + "\\" + Y);
}else({
results.set Text (results.get Text()+"Instances in "
+ leter[i] + " not crossed: {"
+ line.substring(0, line.length() - 1) + "}\n");
colorCodes|[ (numClust++) +c.length] .set Text (
"Cluster " + leter[i]):;
}
out.println(line.substring (0, line.length() - 1));
}
}

out.close();

//Put the clustering on the map
graphic.cluster (readCA (numClust, "Crossed Clustering.ca"));
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}catch (Exception excep) {
status.set Text ("IOException writint the CA file");
}
}

/* MULTIPLY THE MATRIX BY THE PROPORTION OF BOTH FREQUENCIES *
* REPRESENTED BY EACH CELL AND APPLY THESE RESULTS AS CRITERION */

public java.util.AbstractMap minCriterion(String[][] cruces) {

java.util.AbstractMap map = new java.util.HashMap ()

double[] percents = new double[cruces.length*cruces|[0].length];
int[] cumulativeY = new int[cruces([0].length];
for (int i = 0; i < cruces.length; i++) {
int cumulativeX = 0;
for (int j = 0; j < cruces[i].length; j++) {
int next = 0;
if (cruces([i][j] != null)
next = split(cruces[i][J].substring(0,
cruces[i][J].length() - 1), ",").length;
percents[i * cruces[i].length + j] = next;

cumulativeX += next;
cumulativeY[j] += next;
}
//calculate the proportion of data represented by rows
for (int j = 0; j < cruces[i].length; j++)
percents[i * cruces[i].length + j] /=
cumulativeX / percents[i * cruces[i].length + J];

}

//calculate the proportion of data represented by columns
for (int i = 0; i < cruces.length; i++)
for (int j = 0; j < cruces[i].length; j++) {
percents[i * cruces[i].length + j] /= cumulativeY([j];
while (map.get (new Double (
percents[i * cruces[i].length + j])) != null)
percents[i * cruces[i].length + 7J]
(percents[i*cruces[i].length + 7]
* cumulativeY[j] - 0.005) / cumulativeY[]];
map.put (new Double (percents[i * cruces[i].length + 1),
new Point (i, J));

}

//Sort the array descending and update the map
System.Array.Sort (percents) ;
System.Array.Reverse (percents) ;

for (int i=0; i<percents.length && percents[i]!=0.0; i++) {
int X = ((Point)map.get (new Double (percents[i]))) .get X();
int Y = ((Point)map.get (new Double (percents[i]))) .get Y ();
map.put (new Integer (i), map.remove (
new Double (percents[i])));
String perc = ((percents[i]*100)+"00000") .substring(0,5);
results.set Text (results.get Text() + "\t "+leter([X]
+M-TY4+"\ t "+perc+"s\n") ;

}
return map;

}

/* GETS THE BIGGER CROSSES AS CRITERION */
public java.util.AbstractMap maxCriterion(String[][] cruces) {

java.util.AbstractMap map = new java.util.HashMap ()
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double[] percents=new double[cruces.length*cruces[0].length];

int cumulative = 0;
for (int i = 0; i < cruces.length; i++) {
for (int 7 = 0; j < cruces[0].length; j++) {
int next = 0;
if (cruces([i][j] != null)
next = split(cruces[i][J].substring(0,
cruces[i][j].length() - 1), ",").length;
percents[i * cruces[0].length + j] = next;

cumulative += next;

}

//calculate the proportion of data represented by columns
for (int i = 0; i < cruces.length; i++)
for (int j = 0; j < cruces[0].length; j++) {
percents[i * cruces[0].length + j] /= cumulative;
while (map.get (
new Double (percents[i*cruces|[0].length+j])) !=null)
percents[i * cruces[0].length + j] =
(percents[i * cruces[0].length + Jj] * cumulative
- 0.005) / cumulative;
map.put (new Double (percents[i * cruces[0].length + 1),
new Point (i, J));

}

//Sort the array descending and update the map
System.Array.Sort (percents) ;

System.Array.Reverse (percents) ;

for (int i=0; i<percents.length && percents[i]!=0.0; i++) {

int X = ((Point)map.get (new Double (percents[i]))) .get X();

int Y = ((Point)map.get (new Double (percents[i]))) .get Y ();

map.put (new Integer (i), map.remove (new Double (percents[i])));

String perc = (""+ (percents[i] * 100)) .substring(0,5);

results.set Text (results.get Text() + "\t "+leter([X]
+M-TY4+"\ t "+perc+"s\n") ;

}

return map;
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