
Abstract
For a long time programs with multiple threads of executions have been
synonymous with programs relying on synchronization primitives based
on mutual exclusion, and thereby locking [4].

Recently desktop computers have been getting multi-core CPUs and multi
CPUs, and the focus in the desktop environment has started shifting from
utilizing one processor to it’s fullest, to how more processors are shared
optimally.

Algorithms relying on mutual exclusion are not able to run in parallel;
since using a lock makes sure only one thread has access to a given locked
object at a time, and thereby forcing sequential execution. If the threads
executing constantly has to access common variables, and thereby risk
colliding, using locks makes sense since execution cannot be in parallel. In
cases where there is a good chance for algorithms to run in parallel, the
number of necessary locks that do prevent race conditions might be small.
When the necessary number of locks is small, the unnecessary locks are
an overhead. If this overhead could be eliminated, the performance could
be greatly improved. Using non-blocking algorithms is one way to go.

Some research has gone into developing and proving non-blocking
algorithms, and some research has gone into experimenting with the
performance of non-blocking algorithms on large scale multithreaded
multi processor systems [3] [6] [7] [10]. The questions remains: Will these
algorithms really show improved performance compared to their lock-
based variants on desktop computers?

This paper will perform a performance experiment using an abstract data
type implemented as both a lock-based- and non-blocking algorithm. The
experiment will show which particular implementation of the selected
algorithm shows the best performance. The result of the experiment can
be used as guidelines for how to choose between implementing a lock-
based or non-blocking variant of an algorithm, at least on the architecture
the experiment is performed on.

Table of contents

TABLE OF CONTENTS...1:1
1 INTRODUCTION ...1:2

1.1 WHAT ARE LOCK-BASED ALGORITHMS? ... 1:2
1.2 WHAT ARE NON-BLOCKING ALGORITHMS?... 1:2

1.2.1 The ABA Problem ..1:3
1.3 A REASON FOR CONSIDERING NON-BLOCKING ALGORITHMS... 1:4

1.3.1 Why would locking be more expensive than detecting the collision and retrying?1:5
2 PLANNING THE EXPERIMENT ...2:8

2.1 DEFINING A CASE FOR STUDYING .. 2:9
3 DESIGNING THE ALGORITHMS...3:11

3.1 DESIGN OF A SINGLE-THREADED HASH-TABLE ...3:11
3.1.1 The interface ..3:12
3.1.2 Design of Insert, Lookup and Remove ...3:13

3.2 DESIGN OF A MULTI-THREADED LOCK-BASED HASH-TABLE ..3:15
3.3 DESIGN OF A MULTI-THREADED NON-BLOCKING HASH-TABLE..3:17

3.3.1 Examining solutions for the ABA problem ..3:18
3.3.2 Designing the methods ..3:23

4 EXECUTING THE EXPERIMENT ..4:29
5 THE RESULTS OF THE EXPERIMENT..5:30

5.1 EXPERIMENT WITH A VECTOR SIZE OF 256..5:30
5.2 EXPERIMENT WITH A VECTOR SIZE OF 4096..5:33
5.3 EXPERIMENT WITH A VECTOR SIZE OF 65536..5:36

6 MULTITHREADED- VERSUS SINGLETHREADED ALGORITHMS6:40
6.1 WHY ARE THE SINGLETHREADED- AND THE NON-BLOCKING ALGORITHM NOT ON PAR THEN?6:41
6.2 HOW CAN THE NON-BLOCKING ALGORITHM BE IMPROVED? ..6:42

7 CONCLUSION ..7:43
APPENDIX A – MUTUAL EXCLUSION PITFALLS ..7:45

WHAT IS A DEADLOCK? AND WHY IS IT A PROBLEM?...7:45
PRIORITY INVERSION ..7:46
CONVOYING..7:46

APPENDIX B – CD CONTENTS ..7:47

 Lock-based versus non-blocking algorithms 1:2

 1:2

1 Introduction
This paper will focus on performance differences between lock-based and non-
blocking algorithms. Non-blocking algorithms is a relatively new field
compared to the lock-based algorithms, and I have only been able to find a
few articles on the topic. The articles use a set of terms, but not always with
the exact same meaning. The articles I found were mostly focused on
developing a non-blocking algorithm, or measuring performance of a data
structure I could not believe would perform better in a non-blocking form.
When being interested in the performance of the lock-based- versus non-
blocking algorithms, and by reading the works of other authors on the topic,
the development of a hypothesis started.

In this paper I will briefly introduce the terms I choose to use regarding non-
blocking algorithms. The terms I choose are also chosen by the authors of the
articles I have read, that have been published since Herlihy et al. published
their article [6] in 2003.

After the introduction of the terms, the problems of the two types of
multithreading algorithms will be described. That knowledge will be used to
formulate a hypothesis, and from the hypothesis an experiment is planned,
designed and conducted. The results of this experiment are then analyzed, to
either prove the hypothesis or prove it wrong.

1.1 What are lock-based algorithms?
Lock-based algorithms are algorithms relying on mutual exclusion to avoid
race conditions. Shared resources used by the algorithms are surrounded by
locks, that only allows one thread of executions to progress at a time, so any
access to shared resources are conducted in sequence and not in parallel.
Lock-based algorithms based on mutexes can be changed to support multiple
readers and a single writer by replacing mutexes with shared/exclusive locks.

1.2 What are non-blocking algorithms?
Non-blocking algorithms do not rely on mutual exclusion to avoid race
conditions, but uses atomic operations as test_and_set() and
compare_and_swap() to test if a race condition occurred. If a race condition
did occur the operation will be repeated.

Non-blocking algorithms is used as a broad term describing all algorithms
where killing a thread does not result in other threads being able to progress.
Any algorithms using locks, spin-locks or similar mechanisms are therefore
not non-blocking.

 Lock-based versus non-blocking algorithms 1:3

 1:3

Non-blocking algorithms comes in three variants: Wait-free, lock-free and
obstruction-free. The different categories describe what progress algorithms
of that category promises to deliver [6].

Obstruction freedom is the lightest guarantee and does guarantee to be
deadlock free. Further more it guarantees that any thread running in
isolation will be able to complete its operation in a known number of steps
[6].

Lock-freedom guarantees no deadlock and no livelock. Every step taken by
the algorithm achieves global progress. Lock-freedom can prevent livelock by
implementing a helper mechanism. If thread 2 is obstructed by thread 1,
thread 2 helps thread 1 finish, and can then carry out its own operation [6].

Wait-freedom is the strongest guarantee of progress; it guarantees no
deadlock, no livelock, no starvation and guarantees that every active process
will progress in a bounded number of steps [2]. Since each process will
progress in a bounded number of steps, there can be no retry loops causing a
livelock. If each operation must complete within a bounded number of steps,
the resources to carry out an operation must be readily available to avoid
starvation.

The stronger the guarantees the algorithm provides, the more careful it has
to be designed. Herlihy concluded that introducing obstruction freedom as a
guarantee and adhering to it makes the design of non-blocking algorithms
easier and makes the algorithms more efficient in typical case low contention
situations [6].

1.2.1 The ABA Problem
All non-blocking algorithms that rely on compare_and_swap() are susceptible
to the ABA problem. Compare_and_swaps() will by comparing with a
previous value, make sure that the value being written has not changed since
the original value was obtained. Compare_and_swap() relies on an old value
and a new value to check if a swap is valid. The ABA problem covers problem
covers problems where the value is modified and later re-modified to a value
that can be misinterpreted by another thread of execution. Given the
existence of two threads 1 and 2, thread 1 reads a value A from a variable
and is switched out. Thread 2 then reads the same variable and writes B into
that variable, and changes it back to A. When thread 1 is swapped in again it
will do a compare_and_swap() and it will succeed. Using compare_and_swap()
does not provide guarantees that data has not been changed, just that the
value is the same.

Compare_and_swap() works by taking 3 parameters, an “old value”, a “new
value” and a pointer to the integer that needs to be changed.

 Lock-based versus non-blocking algorithms 1:4

 1:4

Compare_and_swap() is carried out as an atomic operation and it succeeds if
the value of integer pointed to had the value “old value”. If the value was “old
value”, the “new value” is written to the integer, else nothing is written.
Algorithms relying on compare_and_swap() will believe that if
compare_and_swap() succeeds, their operation succeeded, this however might
not be the case.

Making sure the values that are being swapped have not been referenced in
the mean time can solve the ABA problem. One way to obtain this is to use
load-linked/store conditional instead of compare_and_swap(). Load-linked
will read the value from a memory cell and will make sure that store
conditional will not succeed, if that memory cell has been modified. Before I
start designing algorithms I will describe and analyze ways to solve the ABA
problem in the section called [Examining solutions for the ABA problem]. The
design phase will then be able to build on the solutions.

1.3 A reason for considering non-blocking algorithms
Standard desktop computers are getting multi-core processors, and some
desktop computers have more than one multi-core processor. Desktop
computers are moving toward being yesterday’s super computer. By gaining
the power of yesterdays super computer, the theory behind algorithms on
yesterday’s super computers, applies to today’s desktop computers.

The focus of multithreaded algorithms has been on detecting the critical
sections of the code, and making sure no more than one thread entered at a
time. The construction of non-blocking algorithms shares the same focus on
the critical sections, but instead of aiming for serialization of the critical
sections, they aim for parallelization. The construction of non-blocking
algorithms has been viewed as a black art, and by many the construction of
lock-based algorithms has seemed easier. Having too coarse-grained locking
results in serialization of an algorithm, and having serialized execution, the
multiple threads of execution will never run in parallel. Trading in coarse-
grained locking for a fine-grained locking increases the complexity of the
locking algorithm, and the risk of common mutual exclusion pitfalls rise see
[Appendix A].

There are multiple reasons for choosing to use threads to implement an
algorithm. If the algorithm is very CPU bound, the reason to choose to use
more than one thread of execution can be to achieve better performance. If
the algorithm is I/O bound, the multiple threads can allow processing while
waiting on I/O or allow multiple I/O requests to be performed in parallel
without having to resort to asynchronous I/O. If performance is the main
concern, the use of non-blocking algorithms should be considered. Non-
blocking algorithms will never block thread execution, a thread is only off
duty when the operating systems scheduler has told it to be. The summed up

 Lock-based versus non-blocking algorithms 1:5

 1:5

theory behind non-blocking algorithms is, that locking is more expensive
than detecting collisions and retrying.

1.3.1 Why would locking be more expensive than detecting the
collision and retrying?

A possible cause could be the cost of obtaining and releasing locks. The
obtaining and releasing of locks do cause an overhead, if obtaining a lock
causes a thread to wait; the locking causes a thread context switch. Another
possible cause is if threads are rarely requesting access to the same resources
at the same time then most of the locking occurring is unnecessary. If on the
other hand threads do want the same resource constantly, there really is no
performance benefit from threading since only one thread will be running at
a time.

Non-blocking algorithms use atomic operations to ensure safe operations in
multithreaded environments, while lock-based algorithms marks executable
sequences as being locked or only to be carried out atomically. Both types of
algorithms aims at protecting shared data by accessing and modifying it
atomically. Using locks the programmer decide how large chunks of code
should be considered atomic, if the non-blocking approach is chosen a few
simple atomic operations are available. The size of the atomic chunks in a
lock-based algorithm defines the lock granularity. If the lock granularity is
low most of the algorithm cannot be carried out in parallel, if the granularity
is high the opportunities for running in parallel rise at the cost of the
additional locks and the complexity of the algorithm.

When the lock granularity is decided, it has an impact on the algorithms
ability to run in parallel. A linked list could have an integer representing the
number of elements. If a lock protects the element count, the lock granularity
is high, but the cost of a mutex compared to the cost of an atomic operation
used by lock-free algorithms is expensive. Inserting and removing from the
linked list would require the number of elements to change, and thereby
access via the lock, so ultimately there is only one writer at a time. Mutexes
and semaphores can be implemented using atomic operations on integers and
a wait queue (Linux 2.6). If a mutex is used to make incrementing and
decrementing the number of elements in a linked list an atomic operation,
another atomic operation is typically used to decrement and increment a
semaphore, and add a thread to a waiting list, making a thread context
switch, waking up a sleeping thread. It will potentially be many processor
cycles wasted to do a fairly simple task. The problem is these processor cycles
probably cannot be reclaimed by running in parallel, since the purpose of the
locks is to prevent task being carried out in parallel. Using a lock-based
approach, it is hard to get the same granularity as in lock-free algorithms.
Settling for a lower granularity means that locks will be held for longer
periods, and threads are not able to run in parallel while the locks are held.

 Lock-based versus non-blocking algorithms 1:6

 1:6

A possible improvement of lock-based algorithms is to let the algorithm
detect when a lock is necessary, and only lock a resource when it really is
necessary. A lock is necessary multiple threads of execution are dependant
on their order of execution, a situation named a race condition [2]. Detecting
when a lock is necessary would require knowledge of future events, and is
therefore still impossible, but it is possible to detect when a lock would have
been necessary.

A technique for detecting when a lock would have been necessary has been a
known practice in database systems for a long time. Optimistic locking
(optimistic concurrency control) or pessimistic locking has been heavily
debated in database circles. Optimistic locking has the same characteristics
as non-blocking algorithms, they try to execute their transactions and test if
they where successful [1]. If a transaction is unsuccessful, it is restarted.
Restarting a transaction can be expensive, depending on the contents of the
transaction. The success of Optimistic locking depends on the cost of
restarting transactions. The cost can be affordable when collisions are rare,
or transaction can be redone quickly. Pessimistic locking makes sure that the
transaction can run in isolation without being disturbed by other
transactions. The pessimistic locking of database systems resembles lock-
based algorithms. They have an extra cost involving taking a lock and
releasing a lock, and the problems of making sure deadlocks do not occur.
Pessimistic locking has the advantage that it can be better at conserving
resources than optimistic locking. The cost of trying and failing affects not
only the transaction or process retrying, but all other transactions and
processes.

Detecting which locks would have been necessary is the same as detecting
when threads have collided when accessing a shared resource. If the cost of
detecting threads colliding is as low or lower than the cost of obtaining a lock,
and the cost of retrying the operation is as low or lower than the cost of a lock
wait, it is quite plausible that non-blocking algorithms indeed are faster than
lock-based algorithms. There can however be a problem with the number of
collisions. If collisions are very frequent, non-blocking threads can work
against each other, constantly spoiling each other’s work, causing all threads
to retry and possibly collide again. This phenomenon is known as a livelock
and is very similar to a deadlock, except that threads participating in a
livelock are actively trying to progress or get out of the way so other threads
can progress [2]. The non-blocking algorithms that are susceptible to livelock
are the algorithms that only guarantee obstruction freedom. Lock-free and
wait-free non-blocking algorithms guarantee no livelock.

I have summarized the statement in the paragraph above to my hypothesis.

 Lock-based versus non-blocking algorithms 1:7

 1:7

Hypothesis: an algorithm with a small probability of threads colliding
causing race conditions would be better of running without locks performance
wise, while an algorithm with high probability of threads colliding would
benefit from running lock-based.

Maged M. Michael and Michael L. Scott concludes in their paper “Simple,
Fast, and Practical Non-Blocking and Blocking Concurrent Queue
Algorithms” [3], that queues using blocking are faster than non-blocking
queues. Their conclusion suggests that blocking is faster when threads collide
often. An insert in a queue requires modification to one end of the queue,
while a delete from a queue requires access to the other end. Multiple threads
trying to either insert or delete in the queue will collide. The question is how
an algorithm where thread collisions are unlikely will perform.

 Lock-based versus non-blocking algorithms 2:8

 2:8

2 Planning the experiment
In order to investigate the differences in performance of lock-based and non-
blocking algorithms I will conduct an experiment that will show how similar
algorithms implemented as lock-based and non-blocking will perform. I find
it interesting to explore how these algorithms behave in a normal desktop
computer environment on modern multi CPU machines. If they do provide
better performance, a change of focus in the education of multithreaded
programming might be considered.

It is often suggested that creating multithreaded applications is hard, and
difficult to verify [4]. There has been a tendency to move shared data into
thread safe containers, in order to have a set of building blocks that would
simplify the creation of error free multithreaded applications. Picking an
algorithm for a container therefore seems obvious.

Maged M. Michael found that in the case of queues choosing a blocking
variant is faster [3]. Choosing a stack would, if my hypothesis is correct,
perform better as a blocking implementation. A stack has much resemblance
to a queue, except that insertion and removal will occur from the same end of
the stack. Taking what Maged M. Michael found, my hypothesis and applying
that to a stack would allow one push or one pop occurring at the same time,
meaning stacks will not perform well run in parallel. If the stack will not
allow parallel executions, the benefits of running on multi CPU’s are non
existing.

A container algorithm that is better for examine the part of the hypothesis
that favors optimistic locking would be a vector or a hash table. A vector will
allow random access to its data, and hash table uses a vector to store its
elements. In the case of perfect hashing, the hash table has random access as
the vector, but in other hash table implementations the hash collisions must
be dealt with. A hash table using chaining is implemented via a vector of
linked lists. Having a vector as entry point to the top of the list makes it a
good data structures to use for this experiment. Threads can collide when
they enter the same hash collision list, but depending on the number of
threads, the size of the vector used and the efficiency of the hash function the
collisions can become more or less likely.

The progress guarantee supported by the non-blocking algorithm should be
obstruction freedom sin the aim is to create an experiment with an algorithm
where race conditions seldom occur. Therefore the probability of a livelock
should be infinitesimal. The design of the non-blocking algorithm should
make the cost of a restart insignificant, and thereby further reduce the
chance of a livelock. If a thread can restart and use most of its calculations in
the retry, there is not much wasted in retrying, and the risk that the
operation fails once more is infinitesimal.

 Lock-based versus non-blocking algorithms 2:9

 2:9

2.1 Defining a case for studying
A hash-table is a data structure that trades in memory for speed. It is usually
chosen for its ability to do fast lookups. A hash-table can be implemented as
vector of lists. Each item inserted into the hash-table must have a key. This
key is used to calculate an elements index in the array via a hash function. A
hash table goal is to provide O(1) lookup, but this depends on the quality of a
hash function. If a hash function generates the same index for multiple keys,
the keys can either be stored in that index, or rehashed with another
function. Worst case lookup for a hash table where collisions are kept as a
linked list is O(n), worst case for rehashing lookup can be more than O(n)
depending on the hashing functions available(hashing functions can hit the
same indexes).

Hash-tables can be implemented as a set or as a multiset, as a map or as a
multimap. A set or a map stores unique items and multiset and multimap
allows storing multiple items with the same key. The difference between a
map and a set is that a map stores a key and an item, while a set uses the
item as key and only stores items.

The vector of a hash-table contains a number of hash-buckets. A hash-bucket
is a collection of items stored under a certain index. The hash-table design we
will examine further is a vector where the hash-buckets contain a chained
lists items that have collided and ended up in the same bucket. There are
other ways to deal with hash collisions, like inserting in the next empty
bucket, using another hash function to place the item or adding a new hash
table in the bucket. If items can be placed multiple places in he vector, lookup
can be costly performance wise. And items placed out of order can cause
other items to be less optimally placed. Keeping the hash collisions in a
linked list makes sure that the lookup will be O(n) on the list and not O(n) on
the vector. If the items are evenly distributed in the buckets, O(n) on the list
or on the vector matters for a vector size of 64k.
A hash table typically provides operations for insertion, lookup and deletion
of items. The keys of a hash-table are unique. Other typical operations can be
returning the number of items in the table, a “contains operation” returning
if a key exists in the hash-table and possibly a grow operation that will
extend the hash-table and rehash all the keys.

void insert(key,item)
bool lookup(key,item&)
void delete(key)
unsigned int count()
bool contains(key)
void grow()

Figure 1 Typical interface for a hash-table

 Lock-based versus non-blocking algorithms 2:10

 2:10

Examining the performance of a non-blocking and a lock-based hash-table
requires two implementations based on the same general algorithm.
Therefore a simple single-threaded hash-table will serve as point of reference
for the two different multi-threaded algorithms. This approach has been
chosen in order to get the most comparable algorithms.

The next chapter will be about designing the three different algorithms.

 Lock-based versus non-blocking algorithms 3:11

 3:11

3 Designing the algorithms

3.1 Design of a single-threaded hash-table
Showing and explaining the data structure will introduce the design for the
hash table. Pseudo-code for the insert, lookup and delete operations will be
build upon the explained data structure.

The count, contains and grow operations are not shown as pseudo-code, and
will not be part of the experiment. Neither of the operations contributes to
understanding the difference between the two different approaches to
multithreaded algorithms.

Figure 2 Hash-table overview
Figure 2 Hash-table overview shows the data structures that will be used for
the pseudo-code. The table shows a hash-table consisting of pointers to
buckets, each bucket can refer to another bucket.

The hash table contains a vector of pointers to the different hash-buckets.
Each hash-bucket is a linked list of items with data and a pointer to the next
element in the list. The linked list can pose a performance problem if it gets
large, but if the lists get large it is not an algorithm problem. The problem is
perhaps with the size of the hash vector. The hash vector should be the size of
the maximum number of elements in the hash table divided by the maximum
number of entries wanted in each bucket. The problem can also be the hash
functions ability to distribute the items evenly between the hash buckets.
The optimal sizes for the vector and for the hash vector depends on the data
set it should hold, therefore a good implementation of a Hash-table will allow
both to be selected by the user.

 Lock-based versus non-blocking algorithms 3:12

 3:12

3.1.1 The interface
Looking at code for the hash-table we start by defining the interface. The only
change to the interface shown above is a list of template types and the name
of the variables used. The interface for the consists of an insert, remove and a
lookup method as shown previously. The user can choose the type of Key used
for calculating the hash, the Value the container should store, the hash-
function used and the size of the vector.

3.1.1.1 Constructor/destructor
The constructor of the HashTable class needs to initiliaze the items_ array
with zeroes, and initialize the itemcount_ to zero. The destructor of the
HashTable must delete the hash-buckets.

3.1.1.2 Private members
The private function hashTableIndex, needs to call the hashFunctionType
supplied as template parameter and make sure the index is within the
vectors bounds. To simplify the bounds checking the TableSize is only
allowed to be a size that is a power of two. When TableSize is kept as a power
of two a bitwise and with TableSize-1 will keep indexes in bounds.

template < class Key ,
 class Value >

struct Item {
 Value value_;
 Key key_;
 Item* next_;
};

template < class Key,
 class Value,
 unsigned int (*hashFunctionType)(const Key&),
 unsigned int TableSize=1024>

class HashTable {
public:
 typedef Item<Key,Value> ItemType;

 HashTable();
 ~HashTable();

 bool insert(const Key& key, const Value& value);
 bool remove(const Key& key);
 bool lookup(const Key& key,Value& outvalue);

 private:
 unsigned int hashTableIndex(const Key& key);
 ItemType* items_[TableSize];
 unsigned int itemcount_;
};

Figure 3 - Hash table interface

unsigned int hashTableIndex(const Key& key) {
 return hashFunctionType(key) & TableSize-1;
};

Figure 4 - Hashtable index function

 Lock-based versus non-blocking algorithms 3:13

 3:13

3.1.2 Design of Insert, Lookup and Remove
Having decided on the interface for the class, we can design the pseudo-code
for the insert-, remove- and lookup methods. The design of these three
methods have a great impact on the design of the multithreaded versions, so
this design will not lack any details. The design in form of prose text is
accompanied by a very code like pseudo-code where references to are marked
by [I] for insert [L] for lookup and [R] for remove. Each reference contains a
letter, a line number and a colon. This is done to make the references look
different from the ones appearing in the list of references.

3.1.2.1 Insert method
The purpose of the insert method is to insert a value with a unique key in the
hash-table. Insert needs to make sure the key suggested is unique [I3:] and
this requires a search O(n) through the hash-bucket. If the key is not found in
the hash-bucket [I5:] it is considered unique, and the insert function can

create a new node [I7:] and insert it in the list [I11:].

3.1.2.2 Lookup method
The purpose of Lookup is to find a value by a key. If the methods finds a
value [L3:]-[L5:], the value is copied to the out parameter value [L6:]. The
methods returns true on success [L8:] and false on failure[L7:].

The lookup method resembles the first part of insert, where insert makes
sure the key it wants to insert is unique.

bool insert(const Key& key,const Value& value) {
 unsigned int ix = hashTableIndex(key); // I1:find index
 ItemType* item = items_[ix]; // I2:find hash-table bucket
 while (item != 0 && item->key_ != key) {//I3: check if key is in bucket
 item=item->next_; // I4:
 if (items_[ix] && item!=0) // I5: is key found?
 return false; // I6: key was not unique so we exit

 ItemType* newItemPtr = new ItemType; // I7:create a new item
 newItemPtr->key_ = key; // I8:assign key
 newItemPtr->value_ = value; // I9:assign value
 newItemPtr->next_ = items_[ix]; // I10:insert it at the top
 items_[ix] = newItemPtr; // I11:replace top pointer
 ++itemcount_; // I12:increment #items in table
 return true; // I13:return success
}

bool lookup(const Key& key, Value& value) {
 unsigned int ix = hashTableIndex(key); // L1:find index
 ItemType* item = items_[ix]; // L2:find hash-table bucket
 while (item != 0 && item->key_ != key) {//L3: check if key is in bucket
 item=item->next_; // L4:
 if (item!=0) // L5: is key found?
 value=item->value_; // L6: copy value
 else
 return false; // L7: key was not unique so we exit
 return true; // L8:return success
}

Figure 5 - insert method

Figure 6 - Lookup method

 Lock-based versus non-blocking algorithms 3:14

 3:14

3.1.2.3 Remove method
The remove method resembles the lookup method, but [R02:] keeps references
to an items a previous object [R05:], so it can unlink [R09:] [R10:] the item and
delete it [R11:].

The remove method returns true on successful removal of a key, and false in
case the key given, as a parameter does not reference an item in the hash-
table [R14:].

Having decided on the detailed layout of the methods and the interface for
the class, the design and implementation of the multithreaded variants is
next.

The most straightforward to port is the multithreaded lock-based algorithm,
therefore we will look at that next.

bool remove(const Key& key) {
 unsigned int ix = hashTableIndex(key); //R01: calculate index
 ItemType* prev = 0; //R02: previous node = 0
 ItemType* item = items_[ix]; //R03: item = list top
 while (item != 0 && item->key_ != key) { //R04: find item in has bucket
 prev=item; //R05: previous=item
 item=item->next_; //R06: item = next item
 }
 if (item) { //R07: item found?
 if (prev) { //R08: was item at top?
 prev->next_=prev->next_->next_; //R09: in list unlink item
 } else {
 items_[ix] = items_[ix]->next_; //R10: unlink item at top
 }
 delete item; //R11: delete the item
 --itemcount_; //R12: decrement itemcount
 return true; //R13: remove was successful
 }
 return false; //R14: item was not found
}

Figure 7 - Remove method

 Lock-based versus non-blocking algorithms 3:15

 3:15

3.2 Design of a multi-threaded lock-based hash-table
Looking at the class interface from Figure 3 there are two instance variables
that needs protection. The variables items_ array and the itemcount_ are
both written to. A mutex securing the whole items_ array comes at a cost,
that multiple operations cannot occur concurrently. If on the other hand, each
bucket is protected by a mutex, multiple threads can concurrently insert,
remove and lookup in different hash buckets, but are limited to one per hash-
bucket. It is possible to allow multiple readers and a single writer using a
readers/writer lock. But the lock is more expensive and requires the use of a
mutex and a semaphore. The choice is between allowing multiple readers in
the same hash-bucket and adding a cost to each lock, or allowing only one in
each bucket and keeping the locking the cheapest possible.

The test for these algorithms will focus on performance, and have one thread
plus one thread per CPU. Since we allow multiple threads to access the hash-
table, it is desired that the number of times threads try to access the same
hash-bucket is infinitesimal. So for the test we rely on the hash-function to
distribute the indexes for the data. The test should aim at showing good
performance, so the test data should also be selected so threads will not be
forced to run in convoy [Convoying].

The interface to the multithreaded implementation bears much resemblance
to the single-threaded version, except for the mutex protecting the item count
and the array of mutexes protecting the hash-buckets. Between the mutex
array and the item array there is a one to one correspondence.

template < class Key,
 class Value,
 unsigned int (*hashFunc)(const Key&) ,
 unsigned int TableSize=1024>

class HashTable {
public:
 typedef Item<Key,Value> ItemType;

 HashTable() {
 for (unsigned int ix=0;ix<TableSize; ++ix)
 items_[ix]=0;
 }
 ~HashTable() {
 }
 bool insert(const Key& key, const Value& value);
 bool remove(const Key& key);
 bool lookup(const Key& key,Value& outvalue);
 private:
 unsigned int hashTableIndex(const Key& key);
 ItemType* items_[TableSize];
 Mutex mutexArray_[TableSize];
 unsigned int itemcount_;
 Mutex itemCountMutex_;
};

Figure 8 - Interface to the lock-based hash-table

 Lock-based versus non-blocking algorithms 3:16

 3:16

Looking at the interface, it is obvious that construction and destruction is not
thread-safe in any way. This means if the HashTable class is used, the client
of the HashTable class must secure the construction and destruction.

The Item class has no changes in the lock-based version, since there is no lock
on individual items; they are locked using the locks of the hash-buckets.

To avoid deadlocks, the insert, remove and lookup methods will be allowed to
take a maximum of two locks, one lock in the mutex array, and one lock for
the item count. The locks must be obtained in a predefined order to avoid
deadlocks [2].

Line [I02:] and [I13:] is special for the lock-based implementation. Locks are
obtained using RAII idiom (Resource Acquisition Is Initialization), to be
exception safe [5]. Those lines are the only lines different from the single
threaded version. The lock-based versions of lookup and remove are equally
simple. The lookup method has one MutexLocker instance to lock the Hash-
bucket being searched, and the remove method has two MutexLocker
instances like the insert method.

The itemcount will not be correct when is not locked before doing the actual
insert, but itemcount will quickly become a bottle-neck if that lock is held
during the entire insert and remove methods. The consequence of moving the
item count mutex to the bottom is that more the item count can be a bit off.
The number can be off by the number of threads waiting on the item count
mutex.

bool insert(const Key& key,
 const Value& value) {
 unsigned int ix = hashTableIndex(key); // I01: find index based on key
 MutexLocker rowMutex(mutexArray_[ix]); // I02: uses a stack-based
 //object to lock and unlock hash-bucket

 ItemType* item = items_[ix]; // I03: access hash-bucket
 while (item != 0 && item->key_ != key) { // I04: search for key
 item=item->next_; // I05: next item..
 }

 if (items_[ix] && item!=0) // I06: was key found?
 return false; // I07: no key found

 ItemType* newItemPtr = new ItemType; // I08: create new item
 newItemPtr->key_ = key; // I09: assign key
 newItemPtr->value_ = value; // I10: assign value
 newItemPtr->next_ = items_[ix]; // I11: newItem's next is top
 items_[ix] = newItemPtr; // I12: newItem is top

 MutexLocker itemCountMutex(itemCountMutex_); // I13: lock itemcount
 ++itemcount_; // I14: increase itemcount
 return true; // I15: success at inserting
}

Figure 9 - Insert method in lock-based implementation

 Lock-based versus non-blocking algorithms 3:17

 3:17

3.3 Design of a multi-threaded non-blocking hash-table
When designing a non-blocking algorithm it is necessary to decide what kind
of guarantee is required. The purpose of this algorithm is to be a competitor
to a lock-based algorithm, so the code needs to be simple more than it needs
to guarantee a maximum number of cycles spend per method. Herlihy
suggested that obstruction freedom is a well performing guarantee in low
contention situations. The algorithm to be designed is supposed to work on a
data structure where threads seldom clash. Based on the conclusions of
Herlihy et al. I choose to implement a non-blocking algorithm that will only
guarantee obstruction-freedom [6].

Memory management in non-blocking algorithms can be a challenge. One
thread cannot block access to an allocated memory block, so it is not trivial to
determine when a block of memory can be freed. The algorithm will be
implemented in C++ and in C++ there is no build in garbage collector. One
way to implement garbage collection in C++ is by using reference counting,
and even though Maged M. Michael warns about the performance problems, I
see it as a good option [7].

Reference counting can be implemented on multiple levels, just like locks can
be implemented on multiple levels. The more fine-grained the reference
counting is, the more flexible and expensive it is, because of the increasing
number of counters. If a more coarse-grained reference counting scheme is
chosen, the cost of reference counting goes down but you trade in memory for
performance. The longer the algorithm must keep dead objects around, the
more memory it will consume. There is another cost of making the reference
cost more coarse-grained and that is dead objects must be marked or kept in
a list, so they can be found and collected when the reference count reaches
zero.

This algorithm will use a dead object list called delete list. The advantage is
that objects can be torn out of their lists and inserted in a dead object list on
removal, so new threads cannot reach these objects, but threads already
working on these objects will be able to continue their work.

When an object is unreachable to new threads it is dead. Using a delete list
creates a situation where old threads working on a deleted object potentially
can keep it alive forever. This means that the data structure looks a bit
different depending on which thread is looking. Figure 10 shows an object
inserted in a delete list wrapped in another delete list item, so all pointers
are kept as they where when the object was alive. This is a temporary
inconsistency and it might mean that this algorithm is not useable in all
situations. The view of the data structure is consistent again as soon as all
threads have dropped their references to the item in the dead object list.

 Lock-based versus non-blocking algorithms 3:18

 3:18

Figure 10 - A list with a dead objects list showing how dead
objects are only dead to some threads

3.3.1 Examining solutions for the ABA problem
Before we can start designing and testing algorithms, it is necessary to
examine the ABA problem and try to come up with a solution for it.

3.3.1.1 Method 1: Solving the ABA problem by counting references
A common method is to use a part of the value being swapped as a reference
count. Compare_and_swap() works with 32 bit integers, 32 bits is the usual
size of a pointer. When reference-counting 32 bit integers a pointer cannot be
contained, so pointers cannot be used directly. A common method is to use
indexes instead of pointers, and using the top 8-bits as reference. Another
method could be aligning your storage to 16-bit or 32-bit boundaries, and
using the 3-4 lower bits as counters. 3-4 bits is not that much, 8-bits makes
the ABA problem more unlikely, but none of these methods solves it.

Adding a counter to each pointer is not from doing actual reference counting.
It adds the cost of replacing pointers with indexes, incrementing a counter,
shifting it and combining it with an index before each compare_and_swap().

Regular reference counting counts how many references an object currently
has, and requires use of incrementing and decrementing a counter.

3.3.1.2 Method 2: Solving the ABA problem using reference-counting
To solve the ABA problem with pointers, it is necessary to make sure that the
address of any element that is deleted will not be able to be recycled and
reused as a new element, before all threads accessing the element are done
with their operation. If reference counting is used, and everyone accessing an
element must hold a reference to the element, the element can be reused
when no references to it exist.

That is a bold statement that needs a bit of clarification:

 Lock-based versus non-blocking algorithms 3:19

 3:19

Before any thread can experience the ABA problem they need to have a
pointer to an object that they will later try to change. So before they can
change anything they take this reference. If they hold this reference until
they do want to change the items themselves, it is visible to the algorithm
that it is not safe to delete that pointer. The typical way for the pointer to be
deleted is, it is put in a state where threads accessing can carry on doing so
until the last reference to the pointer is gone, then it is safe to delete it. When
it is safe to delete it, there are no references to it, and there can be no ABA
problem.

Reference counting can be expensive, but just as locking, reference counting
gets more expensive the more fine-grained it is. If each element in a linked
list is reference counted it is much more expensive to traverse the list, than if
the list itself is reference counted. In the example I will show, I have used a
very coarse-grained reference counting since the algorithm in the example
would not benefit from a more fine-grained reference count.

Example: If we have a simple list of elements with a number of threads
performing operations on it. The list is reference counted meaning, that if a
thread is using that list, the thread has one reference to the list. So there is
not a reference count of each item in the list displayed in Figure 11.

Figure 11 - A reference counted list with five references
When threads work on the items it is not safe to delete any items. So when a
thread wants to delete an item from the list, the thread must decouple the
item, and put it on a delete list.

 Lock-based versus non-blocking algorithms 3:20

 3:20

Figure 12 - A thread decides to remove an item from the list
Any thread can carry on doing their job even though they reference a
“deleted” item. What it means to the algorithm that an item is deleted varies.
If a lookup is being done on the deleted item, and it was found before it was
deleted, it would make sense to return a copy of the data. But new operations
will not be able to see items in the deleted list.

Figure 13 - The last thread exits
When the last thread leaves the list, the list knows it is safe to delete the
elements of the delete list. To make sure no new thread can remove elements
and put them on the delete list, while the delete list is being deleted, the

 Lock-based versus non-blocking algorithms 3:21

 3:21

delete list No new thread can access the data of the delete list. When it is safe
to delete the data it is because it is certain there are no references, when
there are no references there can be no lurking ABA problem. The correctness
of this algorithm depends on the correctness of the reference counting.

The example of the list uses reference counting directly on the list data
structure, and that can be implemented using either an internal- or an
external reference-count. If the list uses an internal reference-count each
public method would increase the reference count when the method was
entered and decrease when the method returned. Using external reference
count would allow a client to increase the reference count, perform a bunch of
operations and then decrease the reference count.

Using internal reference counting hides the bookkeeping, but can be
expensive if a client uses many public functions. The external reference count
exposes some internal logic to the client, but allows the client to make
decisions on when the object in question is not referenced anymore.

Threads entering and leaving will cause the reference count to rise and fall,
and there can be a fear that memory will not be reclaimed before the running
process is out of address space. To improve on the number of times elements
in the delete list will be reclaimed the reference counting can be reconsidered.
In order to be safe the list does not need to wait for the reference count to
reach 0 before the items in the delete list can be deleted. The only threads
that are able to reach the element that was deleted are threads that were
actively working when the element was “deleted”. So when the last of the
threads that was referencing the list when the item was “deleted” have left,
the item can be safely deleted.

There is a solution to this, but the bookkeeping is extensive. If each thread
entering gets a ticket with an incrementing number, and the item deleted
keeps a list of what tickets where active when it was placed on the delete list,
it would be possible to delete items from the delete list, without having to
wait until all threads are out.

Another possibility is to either reference count all items, or place “gates” that
reference count and has a deleted list. The term gate is a term I made up, to
describe reference counting for a group of objects. I imagine a gate being like
entering a Theme Park. You buy yourself a ticket and enter a gate at the
entrance. Each time you take a ride, you find yourself in a queue in front of a
gate. The number of people riding on the ride is controlled, and when the ride
is finished they leave.

 Lock-based versus non-blocking algorithms 3:22

 3:22

Figure 14 - A list with a gate
If gates are placed in a data structure, they can keep track of how many
threads are currently working on a group of objects. And as soon as you can
keep track off how many threads are possibly accessing the objects, you will
be able to tell when they can be deleted.

Figure 15 – Gates like a hallway with doors
The gates can be constructed like doors in a hallway. You open one and find
yourself in a new part of the hallway, or a set of circumscribed circles you
step into. If it is a set of circles, you will enter more and more gates as you get
closer to the middle, but you will not leave any of the gates before moving
outwards again. Another image of this is a spiral where you enter gates
moving in- and exits gates moving outwards.

Figure 16 – Gates like circumscribed circles or like a spiral

 Lock-based versus non-blocking algorithms 3:23

 3:23

Reference counting has problems with cyclic references, and therefore the
last suggestion has problems with cyclic references. If the elements in the list
example were cyclic and entering another circle will keep adding to the
reference count, the reference count will continue to grow and be useless.
Using the hallway with doors principle, the reference counts lost to cycles will
be steady and can therefore be detected. Cyclic references can be solved, and
suggestions to how can be found in the book “Garbage Collection” [9].

This section has described two different ways to solve the ABA problem
without relying on automatic garbage collection. Since the non-blocking
algorithm I am designing uses reference counting, I will solve the ABA
problem in the algorithm using reference counting as suggested in method 2.
The variant used will be the one using external reference counting. This will
let clients of the algorithms choose how often cycles should be spent on
reference counting.

3.3.2 Designing the methods
Designing the methods for the non-blocking algorithm has required a
different mind set than the blocking methods. In some ways it has forced the
code to be as simple as possible to wrap my head around them. Therefore the
design of the non-blocking methods has got more details than the methods for
the other algorithms.

3.3.2.1 The insert method
Like the single-threaded and the lock-based algorithm, the insert method has
responsibility for inserting an item in the list, guaranteeing the key of the
item is unique and updating the item count. The insert algorithm is
presented in Figure 17.

When inserting in the list of a hash-bucket without blocking, the safest place
to insert is at the top of the list. The top of the list is the most safe, since the
top pointer cannot be removed and put on the dead objects list, any next
pointer in the list can bring cause that situation.

Guaranteeing uniqueness of keys in a hash-bucket can be expensive, since it
means that the list has to be traversed and no insert may occur while or after
it is checked. Only inserting at the top of the list [NB-I06:]gives the guarantee
that if the top pointer has not changed since the traversing of the algorithm
started[NB-I11:], and if there was no key found matching the one to be
inserted, the key is unique. That means, if the item is successfully inserted at
the top of the list, the key is also guaranteed to be unique.

The item count in the non-blocking version relies on the atomic operation
Add_Atomic. Both insert and remove will use the Add_Atomic command to
increase or decrease item count. Here the item count is no bottle-neck like it

 Lock-based versus non-blocking algorithms 3:24

 3:24

is in the lock-based implementation, but the number is still off a bit
depending on how many threads have performed an insertion or deletion and
are about to increase or decrease the item count.

The gate reference parameter is not used in the function, but is taken to
make sure the client of the algorithm has instantiated a gate before calling.
The algorithm will not function without the gate since there would be no
reference counting and thereby no protection against deletion of memory and
the ABA problem.
A thread can be prevented in progressing if other threads have success in
modifying the hash-buckets top pointer. But if one thread is prevented from
progressing, the top pointer has been successfully modified by another
thread. This algorithm is not lock-free since other threads constantly
changing the top pointer of a hash-bucket [NB-I06:] can starve the insert
method.

3.3.2.2 The lookup method
Having done the insert method, the lookup method can use a part of it. The
lookup method is very simple in comparison.

bool insert(GateType& gate,const Key& key, const Value& value) {
 unsigned int ix = hashTableIndex(key); //NB-I01: find hash_bucket index

 bool success = false; //NB-I02: no success yet
 ItemType* newItemPtr = new ItemType; //NB-I03: create new item
 newItemPtr->key_ = key; //NB-I04: assign key
 newItemPtr->value_ = value; //NB-I05: assign value

 do {
 ItemType* itemTopPtr = items_[ix]; //NB-I06: take a fresh copy of the top pointer
 if (findFirst(key, itemTopPtr)) {//NB-I07: check if key is unique
 delete newItemPtr; //NB-I08: another thread beat us to it...
 return false; //NB-I09: not unique (anymore)
 }
 newItemPtr->next_=itemTopPtr; //NB-I10: current top is next_ cannot fail
 success = Compare_And_Swap(itemTopPtr , newItemPtr, &items_[ix])) { //NB-I11:
 } while (!success); //NB-I12: check if we need to restart/retry

 Add_Atomic(1, &itemcount_); //NB-I13: add to the item count
 return true;
}

Figure 17 - Non-blocking insert

bool lookup(GateType& gate, const Key& key, Value& value) {
// performs an insert in the top of the chained list
 unsigned int ix = hashTableIndex(key);
 ItemType* oldItemTopPtr = items_[ix];

 // check if unique
 if (oldItemTopPtr) {
 if (ItemType* item = findFirst(key, oldItemTopPtr)) {
 value = item->value_;
 return true;
 }
 }
 return false;
}

 Lock-based versus non-blocking algorithms 3:25

 3:25

The lookup method can find item that is removed from the list by another
thread, during the copying of its value. A thread started shortly after will
never find this item, but that is not a problem. At the time it was there, and
the thread found it successfully, and therefore returning the value after the
item is deleted is correct.

3.3.2.3 The remove method
It is hard to remove items from a non-blocking list, therefore many non-
blocking implementations uses tombstones, and some that avoid to e.g. the
algorithm suggested by Chris Purcell and Tim Harris [10]. A tombstone is an
easy way to mark an item as dead. The item still lingers and can be accessed,
but it is marked as being dead. The disadvantage of leaving tombstones is
that they are not really deleted and they are traversed as any valid item. For
some uses tombstones are a smart solution of a tricky problem, but for
structures with a high throughput, like a system event queue, leaving
tombstones is not acceptable. So when designing the remove method I will try
to make a remove method that removes the item, so the system eventually
can reclaim its resources tied to that item.

Figure 18 - List before delete
The insert method avoided problems by only adding items to the top pointer
of the hash-bucket; this is not possible for the remove method. The remove
method must be able to remove an item no matter where it is in the list. This
makes the remove method trickier to design.

One example of a tricky part is doing a dual delete in the same hash-bucket
list: Consider a list like the list shown in Figure 18 two threads want to
remove two different items A and B. Only one compare_and_swap() can occur
atomically so reading a pointer and doing a successful compare_and_swap()
does not guarantee that the pointer read has not changed, just that the
pointer written to has not changed. Figure 19 shows a fragment of code used
for removal. If the to threads use the same piece of code and B is first to read
the Prevnext, and thread A is switched in at the ellipsis, the removal will not
be complete.

 Prevnext= previous->next
…
Next = next
If (CAS(Prevnext, next , & previous->next))

Figure 19 - A code fragment of removing from a list

 Lock-based versus non-blocking algorithms 3:26

 3:26

Figure 20 - removing A while removing B
A will be properly deleted in the first shot, and makes the top pointer point to
B, but B will still remember A as it previous item.

Figure 21 - Item B deletion makes it 's previous point to it 's next
And now B is accidentally left alive in the top of the list, so the thread
deleting must after the compare_and_swap make sure that a lookup will not
find the item it has tried to delete. It is completely valid if another thread has
inserted a new item with the same key, so the lookup must check if the item
found points to the same item as it was trying to delete, before the delete is
retried.

Figure 22 - A and B deleted

 Lock-based versus non-blocking algorithms 3:27

 3:27

The top hash-bucket pointer is not the only pointer to remove from; when we
remove from the top pointer we know that if we change that pointer, that
pointer will be okay.

Figure 23 shows the pseudo-code for the remove method, the line
[NB-R09]shows how the remove method separates the handling of deletion in
the top of from the deletion any other place in the list.

Another problem with the remove pseudo-code is the handling of removing
items while the item after is removed and the items next pointer is changed.
This problem is an intermittent problem, since it requires two values to be in
sync while storing that value somewhere else with compare_and_swap()
[NB-R08]. It is possible to detect the situation, since line [NB-R10] does a
compare_and_swap() and right after we should check if the next pointer
itemTypePtr->next_ is equal to typesNext the copy of the next pointer. If they are
equal there is no problem. If they are not equal a new compare_and_swap()
can be performed to try to rectify the situation, but it can fail.

 bool remove(Gate<ItemType>& gate, const Key& key) {
 unsigned int ix = hashTableIndex(key); //NB-R01: find hash-bucket
 bool success = false; //NB-R02: no success yet
 do { //NB-R03:
 ItemType* itemTypePtr = items_[ix]; //NB-R04: take a copy of the top pointer
 ItemType* itemTypePrevPtr=0; /NB-R05: previous pointer = no previous

 while (itemTypePtr) { //NB-R06: iterate
 if (itemTypePtr->key_==key) { //NB-R07: is the key the right key
 ItemType* typesNext = itemTypePtr->next_;
 //NB-R08: store a copy of the next pointer
 if (itemTypePrevPtr) { //NB-R09: if item has a previous pointer
 success = Compare_And_Swap(itemTypePtr , typesNext ,
 &itemTypePrevPtr->next_); //NB-R10: no success yet
 if (success) {
 if (itemTypePtr != findFirst(key)) {//NB-R11: no success yet
 gate.addGarbage(itemTypePtr); //NB-R12: item was deleted
 } else {
 success = false; //NB-R13: item was partly deleted
 }
 }
 break; //NB-R14: exit while loop
 } else { //NB-R15: if item is first pointer
 success = Compare_And_Swap(itemTypePtr , typesNext , &items_[ix]);
 //NB-R16: CAS
 if (success)
 gate.addGarbage(itemTypePtr);//NB-R17: item was deleted
 break; //NB-R18: exit while loop
 }
 }
 itemTypePrevPtr = itemTypePtr; //NB-R19: update previous pointer
 itemTypePtr=itemTypePtr->next_;//NB-R20: advance itemTypePtr
 }
 if (itemTypePtr==0) //NB-R21:(itemTypePtr==0)key is not in bucket
 return false; //NB-R22: key was not in bucket
 } while (!success); //NB-R23: do{}while no successful remove

 if (success) //NB-R24: successful?
 Add_Atomic(-1,&itemcount_); //NB-R25: decrement itemcount
 return success;
}

Figure 23 - Pseudo code for the remove function

 Lock-based versus non-blocking algorithms 3:28

 3:28

The remove method has issues, some I have not found a workaround for,
since they were discovered very late in the process. So for the purity of the
test, I will leave out the remove method. I cannot time the method properly if
it has code to detect the flaw described above, and without the code I cannot
trust the result of a test.

A possibility could be turning to the tombstones, or disallow collisions in the
hash-table. Neither of the options are attractive since tombstones will hurt
the performance and make large claims on memory and disallowing collisions
will leave the algorithm useless for anything else than perfect hashing.
Therefore I will leave the remove method in the state it is in.

 Lock-based versus non-blocking algorithms 4:29

 4:29

4 Executing the experiment
The purpose of this experiment is to investigate the algorithms for
performance, and test if my hypothesis is correct. The methods that can be
tested are Insert and Lookup.

For the experiment I have a plain text file of 173.528 words. This file I will
memorymap and let multiple threads read and insert words from this file.
Each thread will get a part of the file for processing, and the insert part is
done when it has processed its own part. After Insert has been tested,
another thread will take over that will lookup all words stored by the Insert
thread. So when I execute with a number of threads, I create the same
number of threads for Insert as I do for lookup. I time the executions of all
insert threads and all lookup threads, so I end up with two execution
measurements in nanosecond resolution.

The insert test will start with an empty hash-table and when the insert part
is done; the lookup will take each of the words and look it up. The two parts
must be measured independently.

I will perform the experiment on the single-threaded algorithm, the lock-
based algorithm and the non-blocking algorithm on hash-tables with different
vector sizes. I have chosen the sizes 256,4096 and 65536 (hex 0x100, 0x1000
and 0x10000). Of the threaded algorithms I expect the multithreaded
algorithm to perform best on the small vector sizes and the non-blocking best
on the large sizes.

I will use the hash-function called DJBHash by Professor Daniel J.
Bernstein. It is a fast hash-function and it distributes the keys well, so the
number of hash-collisions will be at a minimum.

I will perform the experiment with different numbers of threads too, since the
number of threads can affect performance. I expect to see differences in the
performance of the algorithms when changing the number of executing
threads. If the number of threads gets very high, the non-blocking algorithm
might experience a live-lock, the number of CPU’s do limit how many threads
can be running concurrently, and as long the threads are allowed to carry out
more than one complete operation before they are switched out, the risk of
colliding with another thread is slim. The lock-based algorithm has one lock
that is shared between all threads, and that is the item count lock. I suspect
that might degrade the performance of inserts with many threads running. I
will test with 1,2,3,4,5,10,25 and 50 threads. Each test is repeated 10 times to
get an even measurement.

 Lock-based versus non-blocking algorithms 5:30

 5:30

5 The results of the experiment
The gathered data from the experiment has been collected as spreadsheets,
and are available on CD. There is too much data to present it as an appendix.

5.1 Experiment with a vector size of 256
The first test where the vector size was 100, my hypothesis was that the lock-
based implementation would perform better.

Figure 24 - Insert min-max vector size 0x100
Looking at the results of the experiment, the lock-based and non-blocking
algorithms had very similar performance, but the lock-based insert had some
peaks when adding more than four threads, which could be caused by the
item count mutex. The lookup lock-based and non-blocking implementations
showed very little differences.

Figure 25 - Lookup min-max

 Lock-based versus non-blocking algorithms 5:31

 5:31

There seems to be very small differences between the lock-based and the non-
blocking version.

During the experiment I wondered why the measurements on executing a
specific executable would give so different result when executing it again, and
why some executables would give almost the same results over and over
again.

I decided to create a graph for the average deviation for the measurements of
the 10 runs of the two algorithms.

Figure 26 - Insert average deviation for a vector of size 0x100
The non-blocking insert method Figure 26 shows very steady performance,
while the lock-based implementation starts to vary when the number of
threads is above 4.

Figure 27 - Lookup method average deviation for a vector size of
0x100

 Lock-based versus non-blocking algorithms 5:32

 5:32

The performance shown for the lookup method in Figure 27 does not vary as
much as the performance shown for the insert method in Figure 26.

The average deviation shows how good the algorithms are at giving the same
performance time after time, the lower their value the better.

Figure 28 - Average insert performance for a vector of size 0x100
My experiment with vector size 256 (0x100) shows that even with an average
of 173528/256=677 collisions per bucket, the non-blocking algorithm shows
equivalent performance when the number of threads are low, and better
performance when the number of threads are high. The non-blocking insert
has another benefit; it is more consistent than the performance of the lock-
based algorithm.

Figure 29 - Average lookup performance for a vector of size 0x100

 Lock-based versus non-blocking algorithms 5:33

 5:33

The lookup methods measurements in Figure 29 showed very small
differences, so small that I will call the results inconclusive. One algorithm
might be faster than the other, but it has not been shown in my experiment.
The experiment can not conclude that the last part of my hypothesis is
correct, since the experiment shows the algorithms are on par.

5.2 Experiment with a vector size of 4096
The hash-table with a vector size of 4096 gives around 173528/4096=42
collisions per hash-bucket. I considered the size of 4096 for a middle ground,
where I expected the algorithms two show equal performance, but the results
where not as I expected.

Figure 30 - Insert min-max with a vector of size 0x1000
Figure 30 shows that the lock-based algorithm showed very varying
performance, one run would show the same performance as the lock-based
while next run would be far off.

Figure 31 - Insert average deviation with a vector size of 0x1000

 Lock-based versus non-blocking algorithms 5:34

 5:34

The average performance show in Figure 32 of the insert algorithms shows
that the non-blocking method is better dealing with multiple threads.

Figure 32 - Average insert performance
The lookup method performance measurements show a slight tendency
towards the non-blocking algorithm but as with the vector size of 256, the
performance of the two algorithms are similar. The average insert
performance seems to be the same for the two algorithms at 2 threads and
already at 3 threads a small difference shows, at 4 threads there is a huge
different in performance. At vector size 256(0x100) the problem showed at 5
threads (Figure 28).

Figure 33 - Average lookup performance
The average deviation of the lookup methods shows that the lock-based
algorithm has the most predictable lookup performance.

 Lock-based versus non-blocking algorithms 5:35

 5:35

Figure 34 - Average deviation of the lookup methods
My experiment with a hash-table with a vector of size 4096(0x1000) shows an
apparent distinction between the two insert methods and very little
difference between the lookup methods.

I did not expect that the lock-based algorithm would provide the most
predictable performance for lookup,

 Lock-based versus non-blocking algorithms 5:36

 5:36

5.3 Experiment with a vector size of 65536
The experiment with a vector size of 65536 would give an average of
173528/65536=2 collisions per bucket. The risk of threads colliding would be
small, so the necessity for synchronization is small.

Figure 35 - minimum and maximum values for insert
If the first part of my hypothesis is correct, the performance of the non-
blocking algorithm should be better, so from this experiment I expect to see a
clear difference in both the insert and the lookup methods.

Figure 36 - minimum and maximum for lookup
Figure 35 and Figure 36 shows the minimum and maximum performance for
insert and lookup. The shape of the graph of the insert performance
resembles the shape of the graph shown in Figure 30 showing the inserts in a
hash-table with a vector size of 4096.

 Lock-based versus non-blocking algorithms 5:37

 5:37

The graph shows that with 2 threads, the performance of the insert method of
the algorithms is almost identical. The average performance of the lock-based
version is 206745860.30 nanoseconds and the average performance of the
non-blocking algorithm is 166108600.90, so the non-blocking algorithm is
measurably faster.

Figure 37 shows the average performance of the lock-based algorithm divided
by the performance of the non-blocking algorithm. It indicates how much
faster the non-blocking algorithm is on inserts.
Vector size:0x100 0x1000 0x10000

The non-blocking insert method is marginally faster up to 4 threads using a
vector of size 256. It is marginally faster using up to 3 threads with a vector
size of 4096. The tendency is that the non-blocking insert method generally is
faster, but it is not noticeable before the thread count is high, or the vector
size of the hash-table has a low collision count.
Vector size:0x100 0x1000 0x10000

1 thread 1.47

2 threads 1.24

3 threads 1.57

4 threads 4.17

5 threads 7.08

6 threads 9.38

7 threads 6.71

8 threads 6.58

1 thread 1.15

2 threads 1.01

3 threads 1.18

4 threads 3.19

5 threads 4.15

6 threads 4.59

7 threads 3.99

8 threads 3.79

1 thread 1.05

2 threads 1.07

3 threads 1.05

4 threads 1.04

5 threads 1.20

6 threads 1.31

7 threads 1.25

8 threads 1.49

 Figure 37 – showing differences in the average insert performance

1 thread 2.31

2 threads 2.38

3 threads 2.42

4 threads 2.38

5 threads 2.34

6 threads 2.31

7 threads 2.33

8 threads 2.10

1 thread 1.17

2 threads 1.09

3 threads 1.16

4 threads 1.12

5 threads 1.02

6 threads 1.18

7 threads 1.11

8 threads 1.27

1 thread 1.05

2 threads 1.08

3 threads 1.03

4 threads 1.01

5 threads 1.05

6 threads 1.04

7 threads 1.05

8 threads 1.06

 Figure 38 - showing differences in the average lookup performance

 Lock-based versus non-blocking algorithms 5:38

 5:38

Figure 38 shows the difference in the lookup performance. The number of
threads does not affect the lookup performance.

The number of collisions in a hash-bucket affects the lookup performance. As
long as the number of collisions is high; the penalty of locking and unlocking
a mutex is low. As soon as the number of collisions is low; the cost of locking a
mutex affects performance.

Changing the vector size to 65536 also had an impact on the predictability of
the performance. The non-blocking algorithm produced very consistent result
while the lock-based algorithm produced different result for every run.

Figure 39 - average deviation for insert methods
The insert methods average deviation in Figure 39 is almost similar to the
one of Figure 31 with a vector size of 4096. So the performance of the lock-
based algorithm is not predictable.

Figure 40 - The average deviation for lookup

 Lock-based versus non-blocking algorithms 5:39

 5:39

The average deviation of the performance of the lookup methods has changed.
When the vector size was 4096 the non-blocking algorithm provided the least
predictable performance, with a vector size of 65536 the tables have turned

The graph shows a difference between 3,4 and 5 threads that is hard to
explain, and the difference between 5,10 and 25 threads is just as hard to
explain. I suspect that dividing the lookups between threads depending on
the number of threads causes more or less threads to wait on mutexes.

My experiment with a vector size of 65536 shows that the non-blocking
algorithm is faster than the lock-based algorithm. The insert method is faster
with a few threads and much faster with many threads (Figure 37). The
lookup method is consequently more than two times as fast (Figure 38). The
suspected cause of the measurable better performances from the ”vector size
4096 experiment” to this is, that the number of collisions has been reduced
and the cost of locking and unlocking a mutex suddenly is a larger part of the
lookup method.

The experiments have shown that none of the situations I have setup
resulted in the lock-based hash-table algorithm showing better performance.
The insert method of the non-blocking algorithm showed better performance,
and showed more predictable performance.

The lookup method showed performance improvements when there are few
hash-bucket collisions. An algorithm using rehashing or another way of
dealing with hash-bucket collisions might yield better results.

 Lock-based versus non-blocking algorithms 6:40

 6:40

6 Multithreaded- versus singlethreaded algorithms
When comparing the two multithreaded algorithms, the question whether or
not to use threads was never posed. When examining the performance, a
valid question is, do we get more performance using multithreaded
algorithms?

To compare the algorithms I have chosen to compare the single-threaded
algorithm with the number of threads that gave the overall best performance
using the 3 different vector sizes. All the numbers are measured in
nanoseconds and are presented as such.

The ST/X factor is calculated by dividing the average singlethreaded
performance for a method by the average performance of a threaded version
of the same algorithm. This factor shows how many times faster the
algorithm is than the singlethreaded version.

Table 1 – Single- versus multithreaded performance
 ST 1 thread NB 2 threads LB 2 threads

 Insert Lookup Insert Lookup Insert Lookup

0x100 Vector size

avg 4732295662 4572246119 2678607070 2475515652 2878824986 2669828908
ST/X
factor 1.00 1.00 1.77 1.85 1.64 1.71

0x1000 Vector size

avg 425465908 342240817.1 361997488.9 196653453.1 366535246.9 214483906.1
ST/X
factor 1.00 1.00 1.18 1.74 1.16 1.60

0x10000 Vector size

avg 127013655.6 53800640.8 166108600.9 28215340.9 206745860.3 67052433.7
ST/X
factor 1.00 1.00 0.76 1.91 0.61 0.80

For each of the 3 vector sizes I have marked the method of the algorithm that
has the best performance as bold, and I have marked algorithms with worse
performance than the singlethreaded with bold and red.

The measurements of Table 1 shows that in the first to cases where the,
vector size is 256 and 4096; the non-blocking algorithm provides the best
performance. But in the last case with few hash-bucket collisions, the
singlethreaded algorithm outperforms both threaded algorithms when it
comes to the insert method. The non-blocking algorithm has much better
lookup speed than the singlethreaded and the lock-based algorithms.

 Lock-based versus non-blocking algorithms 6:41

 6:41

The size of the vector had great impact on the performance of the
singlethreaded insert method. When the of the size of the vector changed
from 256 to 4096 the performance improved by a factor 11 while the threaded
algorithms only improved by a factor 7. From 4096 to 65536 the performance
of the singlethreaded version changed by a factor 3, while the threaded
versions improvement was a factor 2 for the non-blocking and about a factor
1.5 for the lock-based.

The lock-based implementation shows it has an overhead using the locks, and
it clearly visible in the lookup method, when the vector size is 65536. The
lookup method only uses one mutex per hash-bucket, but using 2 threads the
algorithm can handle 80% of what a singlethreaded algorithm can. Running
lookups from a lock-based multithreaded environment eats up around 120%
of the performance.

Looking at the non-blocking algorithms performance, it is more scaleable and
performs almost twice as good as the single-threaded algorithm, and more
than twice as good as the lock-based algorithm. The non-blocking algorithm’s
insert method does seem to have problems with scaling. When the vector size
is large, it is not able to outperform the singlethreaded insert method, even
though it outperformed it massively when the vector size was 256.

Having profiled the non-blocking algorithm I found that the multithreaded
algorithms can perform the search for if keys are unique in parallel, and
searching through a long list of collisions is faster, if 2 CPU’s can handle each
half. When the vector size increases, there are fewer hash-collisions. And
when there are fewer hash-collisions, the benefit of using two processors to
skim through the keys diminishes.

6.1 Why are the singlethreaded- and the non-blocking algorithm
not on par then?

The non-blocking algorithm uses compare_and_swap() with a memory
barrier. This is necessary to make sure that all previously written data is
written when the compare_and_swap() succeeds. On insert the
compare_and_swap() takes place after the next pointer is set to point to the
next element in the list, but modern CPU’s allow writes to be reordered for
aggressive caching purposes. From one thread of execution these reordering
are not noticeable, but with multiple threads of execution memory barriers
are necessary. The compare_and_swap() with memory barrier is not cheap,
and I have profiled the non-blocking algorithm and can see that the
percentage of time spent in compare_and_swap() climbs drastically as the
size of the hash-table vector declines.

 Lock-based versus non-blocking algorithms 6:42

 6:42

6.2 How can the non-blocking algorithm be improved?
Storing collisions in chained lists is not a good idea, a fixed size array of
pointers to items would avoid storing a next pointer in the item, and the
memory barrier can be avoided. This has another benefit; all items can be
removed without the risk of a race condition during the compare_and_swap of
a previous elements pointer.

 Lock-based versus non-blocking algorithms 7:43

 7:43

7 Conclusion
This experiment was carried out to examine the differences in performance of
a lock-based- and a non-blocking algorithm. The 3 implementations had 3
functions they supported, insert, lookup and remove. I successfully tested the
insert and lookup methods of 3 different types of hash-table implementations,
namely a lock-based, a non-blocking and a singlethreaded.

I have been unable to test remove method since I found problems in the non-
blocking implementation late in the process. This leaves the question of how
remove would perform non-blocking.

An alternative solution to the ABA problem was suggested and implemented,
but without the remove method, the ABA problem will not occur. The
correctness of the algorithm has not been proved; therefore the suggested
solution to the ABA problem could be a topic for another project.

My hypothesis was, that an algorithm with a small probability of threads
colliding causing race conditions would be better of running without locks
performance wise, while an algorithm with high probability of threads
colliding would benefit from running lock-based.

I suspected there would be clear cases where one algorithm would perform
better than the other, but among the algorithms tested the non-blocking
implementation has superior performance in most cases. There was one case
where the singlethreaded algorithm outperformed the non-blocking
algorithm, but I think it due to my lack of experience with non-blocking
algorithms and a will to create very identical implementations of the
algorithms to make them comparable.

Access to queues and stacks is innately serial while access to hash-tables is
widely parallel. Therefore I suspected that the abstract data structure hash-
table is well suited for non-blocking algorithms, while data structures such as
stacks and queues are most suitable for lock-based algorithms.

During the experiment I discovered that the non-blocking algorithm not only
showed good performance, but also a more reliable performance than the
lock-based implementation. This can only be explained by a low number of
thread collisions, resulting in a low number of retries necessary by the non-
blocking algorithms, this strengthened my hypothesis.

The reason the non-blocking algorithm has done so well in the experiment
and that I have been unable to prove the last part of my hypothesis, is that I
have not worked with vector sizes small enough to create enough problems
for threads to run in parallel on the data structure. Maged M. Michael
demonstrated how queues perform better blocking than non-blocking. So with

 Lock-based versus non-blocking algorithms 7:44

 7:44

the help of another author the last part of the hypothesis is made probable,
without my experiments indicating it directly [3]. The hash-table is innately
parallel in its design, but also very reliant on the hash-function that
distributes the keys. To falsify the hypothesis a cleverly chosen hash-function
that resulted in many hash collisions might have shown a different picture.

This has been my first encounter with non-blocking algorithms, therefore I
am not surprised that I did have a hard time getting the algorithms right. I
believe this field will gain much more interest in the years to come and it in
time will get its own set of idioms and patterns to ease the implementation.

 Lock-based versus non-blocking algorithms 7:45

 7:45

Appendix A – Mutual exclusion pitfalls
The number of problems caused by use of locking makes lock-based
algorithms more vulnerable to other problems. Lock-based algorithms are
vulnerable to deadlock, priority inversion and convoying, while lock-free
algorithms do not have these problems, therefore writing lock-based
programs requires a great deal of planning and thought.

What is a deadlock? And why is it a problem?
A set of threads are deadlocked if each thread is waiting for an event, that
only another thread in the set can generate. A deadlock can be illustrated as
a cyclic graph, where each thread is waiting for a resource and by itself
contributes to the deadlock by holding a resource wanted by another thread.
Figure 41 shows a deadlock in the simplest form where two threads each
holds a resource required by the other.

Resource

Resource

Thread Thread

Has

Waiting for

Waiting for

Has

Figure 41 Deadlock where to threads have acquired a resource each, that
the other needs to proceed.
To be part of the deadlock, a thread must have a resource required by
another thread, so thread 3 in Figure 42 is not part of the deadlock.

Resource

Resource

Thread 1 Thread 2

Has

Waiting for

Waiting for

Has

Waiting for

Thread 3

Figure 42 Thread 1 and 2 as part a the deadlock, while thread 3 just waits
for a resource to be available

Why are deadlocks a problem? The problem is it grinds the threads to a halt.
The threads tasks are not being carried out; they will never have any
progress. And the threads will hold the resources they have obtained forever,
so other threads cannot use them. If the resource held is memory, it might be
negligible. But if the resource held is a hospital heart monitor, or a space
shuttles landing gear, the consequences can be fatal.

 Lock-based versus non-blocking algorithms 7:46

 7:46

Priority inversion
Priority inversion can occur when threads with different priorities shares
resources and demand exclusive access for those resources. If a priority 1
(1=low,10=high) thread is using the resource a high priority thread requires,
any medium priority thread ready to run will cause the low priority thread to
be switched out by the scheduler and prevent the high priority thread from
running [2].

Convoying
A problem of threads blocking other threads by holding locks, while being
preempted, can cause convoying. Convoying will make one or more threads
wait for another thread effectively causing threads to form a convoy like cars
following a tractor on a single-track road. If threads are used to achieve high
performance or some threads cannot be allowed to block for security reasons,
lock-free algorithms are a better choice.

 Lock-based versus non-blocking algorithms 7:47

 7:47

Appendix B – CD Contents
The CD included contains the source code for the hash-tables. To each
algorithm is a project file for version 2.2.1 of XCode.

There is a directory called performance measurements, that includes the text
output gathered from the executables. The processed performance
measurements in the form of excel documents, PDF documents and images of
the graphs produced.

 Lock-based versus non-blocking algorithms 7:48

 7:48

Bibliography

[1] The essence of Databases
By F.D.Rolland,, book
Publisher: Prentice Hall PTR; 1st edition (November 10, 1997)
ISBN: 0137278276

[2] Introduction to Operation Systems
By John English,, book
Publisher: Palgrave Macmillan (August 10, 2004)
ISBN: 0333990129

[3] Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms
By Maged M. Michael & Michael L. Scott, 1996, article
Source: Annual ACM Symposium on Principles of Distributed Computing
ISBN:0-89791-800-2

[4] Modern Multithreading
By Richard H. Carver & Kuo-Chung Tai, book
Publisher: Wiley-Interscience (October 19, 2005)
ISBN: 0471725048

[5] C++ Coding standards: 101 rules, Guidelines, and Best Practices
By Herb Sutter and Alexandrei Alexandrescu
Publisher: Addison-Wesley Professional (October 25, 2004)
ISBN: 0321113586

[6] Obstruction-Free Synchronization: Double-Ended Queue as an example
By Maurice Herlihy, Victor Luchangco, Mark Moir, article
International Conference on Distributed Computing Systems, pages 522--529. IEEE, 2003
http://www.cs.brown.edu/people/mph/HerlihyLM03/main.pdf

[7] High Performance Dynamic Lock-Free Hash Tables and List-Based sets
By Maged M. Michael, 2002, article,
Source: Annual ACM Symposium on Principles of Distributed Computing
ISBN:1-58113-529-7

[8] Modern C++ Design: Generic Programming and Design Patterns Applied
By Andrei Alexandrescu, book
Publisher: Addison-Wesley Professional; 1st edition (February 13, 2001)
ISBN: 0201704315

[9] Garbage Collection, Algorithms for Automatic Dynamic Memory Management
By Richard Jones & Rafael Lins,, book
Publisher: John Wiley & Sons (September 17, 1996)
ISBN: 0471941484

[10] Non-blocking Hashtables with Open Addressing
By Chris Purcell and Tim Harris, 2005, article
ISSN: 1476-2896
UCAM-CL-TR-639
http://www.cl.cam.ac.uk/Research/SRG/netos/papers/2005-disc-hashtables.pdf

