
Hierarchical Influence
Diagrams

Thomas Ledet

Michael Fogh Kristensen

Summary

The computer gaming industry is a billion dollar endeavor and will probably be
one of the steady growth segments of the IT industry over the next decade.

However, the main development in computer games seems to be focusing on graph-
ics and sound. Very few games have agents that reason about their environment and
other players in the game, and these agents are often controlled by Finite State Ma-
chines that do not allow the agent to reason under uncertainty or adapt itself to the
game environment or other players.

This report describes the development of a framework for making decisions in a
hierarchical way. The framework is called Hierarchical Influence Diagrams (HID),
and is intended to compose an agent in a simple game.

As inspiration for the HID framework, various decision support system languages
are examined, including Bayesian Networks, Influence Diagrams, Multi-agent In-
fluence Diagrams, Network of Influence Diagrams, Unconstrained Influence Dia-
grams and Limited Memory Influence Diagrams.

The game consists of an area divided into squares, some of which are poisonous
and some provide more health. Which squares do what is not known by the two
or more players that compete to survive the longest. The poisonous squares cannot
kill a player, only weaken her. Players can cause damage to each other and thereby
potentially provide the fatal blow.

Decisions for an agent in this game can be divided into several smaller deci-
sions that can be structured in a hierarchical tree structure. Strategic decisions
on whether to be offensive or defensive can be made on a less frequent basis than
the decisions deciding how to realize one such strategy.

When traversing down the HID, a leaf node at the bottom is selected, and this node
decides the next HID decision, which will then be the next atomic action to execute
for the agent.

The HID framework offers two choices of HID decision traversing; an event based
algorithm and a time slot based algorithm.

iv

The event based algorithm selects the previous HID decision if none of the infor-
mation it was based upon has changed since the last HID decision. Otherwise it
finds the top-most node where information has changed and makes a new traversal
beginning from this node.

The time based algorithm reevaluates the previous traversal path starting from a
specific node. This specific node is given from a user defined scheduling ratio
which specifies the depth location of the next start node.

It is concluded that although the implementation is not finished, the use of Hier-
archical Influence Diagrams will decrease the number of computations needed in
order to make decisions in some decision scenarios. Also, it is intuitively easier
for to solve complex decision problems by decomposing them into less complex
problems.

Faculty of Engineering and Science
University of Aalborg

Department of Computer Science

TITLE:
Hierarchical Influence Diagrams

PROJECT PERIOD:
DAT6,
March 2004 - August 2004

PROJECT GROUP:
d635a

GROUP MEMBERS:
Thomas Ledet, ledet@cs.auc.dk

Michael Fogh Kristensen, mfk@cs.auc.dk

SUPERVISOR:
Manfred Jaeger, jaeger@cs.auc.dk

NUMBER OF COPIES: 6

NUMBER OF PAGES: 43

SYNOPSIS:

This project report describes the Hierarchical
Influence Diagrams (HID) framework for
modeling a decision model for an agent in
a game. A HID allows the designer to split
a complex decision model consisting of a
complex influence diagram, into a set of
simpler ones and combine these as nodes in
a tree structure. By doing so the agent only
needs to consider information related to its
current decision problem, since information
is reduced when selecting an sub node and
thereby traversing down the tree.

When traversing down the HID, a leaf node is
selected at the bottom, and this node decides
the next HID decision which is the solution to
the agents current decision problem. The HID
framework offers the developer two choices
of HID decision traversing; the event based
algorithm and the time slot based algorithm.

The event based algorithm reevaluates the
previous selected HID leaf node if none of the
information it was based has changed since
the last HID decision. Otherwise it finds the
first node where information has changed and
makes a new traversal from this point.

The time based algorithm reevaluates the
previous traversing path starting from a
specific node. This node is given from a user
defined scheduling ratio which specifies the
depth location of the next start node.

A board-like real-time action game is designed
for future test of the HID framework and
thereby the test of the algorithms.

Authors

Thomas Ledet Michael Fogh Kristensen

Contents

1 Introduction 1

1.1 Project goal . 1

1.2 Report Structure . 2

2 Problem Domain 3

2.1 Hierarchical Modeling . 3

3 Decision Support Systems 7

3.1 Bayesian Networks . 7

3.2 Influence Diagrams . 8

3.3 Discussion . 12

4 The Framework 13

4.1 Hierarchical Influence Diagrams 13

4.2 A single HID decision . 14

4.3 Multiple HID Decisions . 18

4.4 Discussion . 22

5 Application For The Framework 25

5.1 The FlagBomber Game . 25

5.2 Using The Flagbomber game in the Framework 27

iv CONTENTS

6 Implementation 33

6.1 HID Implementation technical details 33

6.2 HID Implementation . 35

6.3 Flagbomber Implementation Overview 36

7 Conclusion 41

7.1 Future work . 42

Bibliography 43

1 Introduction
Many years ago a whole new industry arose as technology made it possible: com-
puter games. Back then, the computer games were either designed so that no ac-
tual opponents were present in the game or the opponents were simple and their
“brains” only capable of following a straight line towards the player as it attacked
her.

Since then, computers have become more powerful and the computer game indus-
try has become enormous, annually selling millions of games every year. Game
development is now an expensive and time consuming process, usually involving
large teams of developers. The games have become more complex and sound and
graphics have improved immensely.

However, the focus of the developers seems to be on sound and graphics, story
lines and general usability of games, but the intelligence of the opponents (agents)
in these games has not improved nearly as much.

Very few games have agents that reason about their environment and/or other play-
ers in the game, and agents are often controlled by Finite State Automatons. This
often makes their behavior predictable or illogical.

1.1 Project goal

The goal of this project is to design a framework for making decisions in a hierar-
chical way.

We will make an implementation of the framework and describe different scenarios
where the strengths of the framework will be applied.

To test the agent, we define the problem setting as a game called Flagbomber.

This problem setting will live up to the principles of Epistimistic Verisimilitude
[MG00], where all actors in the game have access to the same amount of infor-
mation, and have the same possibilities. This is achived by a client-server model,
where the server represents the problem setting and gives information to the clients,
which represents the actors. The server will not be able to differentiate agents from
avatars, which means that no actors have any advantages over others.

2 Introduction

1.2 Report Structure

The following chapter introduces the problem domain and the advantages of hier-
archical decomposition of an agents decision problem. Chapter 3 investigates the
current decision support languages available like Bayesian networks and influence
diagrams. In Chapter 4 design details of the Hierarchical Influence Diagram (HID)
framework are presented. Chapter 5 present a design for the Flagbomber game, an
application that can be used for future test of the HID design.

2 Problem
Domain

Consider a game consisting of an arena divided into squares, some of which are
poisonous and some provide more health. Which do what is not known by the two
or more players, who compete to survive the longest in the game. The poisonous
squares cannot by themselves kill a player, only weaken her. However, the players
can attack each others, providing the fatal blow, and the last one to be alive wins
the game.

The game provides a problem domain, where an agent needs to make real-time
decisions under uncertainty. These decisions are based on information about op-
ponents, the world and the agent itself. Needless to say this can constitute a huge
amount of information that needs to be decided upon, and since it needs to be done
on a real-time basis, this can result in relatively high computational requirements.

To solve this problem we look into ways of minimizing the computational efforts
by dividing the decision problem into several sub-decision problems. This can be
done by hierarchical modeling, where decisions are made on different levels and
where the complexity of the decisions are reduced for each level.

2.1 Hierarchical Modeling

To simplify matters, we introduce another example:

Consider at large corporation that makes washing machines. The Board of Direc-
tors has one primary goal: it wants the company to earn a lot of money. This can be
accomplished in two ways: sell as many washing machines as possible and to earn
as much money as possible on each washing machine. Spending money on mar-
keting will get a lot of washing machines sold and spending money on researching
new technologies enables the company to produce the washing machines cheaper.
Researching also has the advantage, that the products may also get better.

Once the Board of Directors has decided on what to focus on, they do not want
to be troubled by how things are done. Once they have decided that researching
is the optimal strategy, they pass decisions of what to research and how on to the

4 Problem Domain

company’s Chief Engineers.

The Chief Engineers now have to decide on what to research. They may want to
add new wash programs to their washing machines or make them more friendly to
the ecosystem. Once they have made up their mind, they leave the actual research-
ing to other people that are experts in the particular field that the Chief Engineers
want to have researched.

In the game, decisions can also be split up into several decisions, which can be
represented in a hierarchical way. On a strategic level an agent can base a long
term strategy on her current health and the believed health of his opponents. Such
a strategy could be to either be defensive and avoid contact with opponents or be
offensive and actively seek out the opponents in order to kill them. How to actually
realize these strategies is not really important when considering, which strategy to
follow and could be left to other deciders.

The idea is to have task decisions (typically the strategic decisions) on a less fre-
quent basis, and to have sub-task decisions performed on a more regular basis.
Finally, sub-tasks are divided into individual steps. These steps constitute the low-
est layer in Figure 2.1.

Making a decision can then be decomposed into choosing the best sub-level de-
cider, given the decision of the above layer. This gives us the following set of
advantages for both the game and the washing machine corporation example:

• The possibility of different types of sub-decision models By using a hi-
erarchical decision model where each layer consist of a set of individual
decision models, it makes it possible to use different types of decision mod-
els. This is not limited to using different types of decision models among
the layers, but also among the decision models inside each layer. This is an
advantage if a solution is optimal for a specific sub-decision model and at
the same time less preferable for the rest of the sub-decision models.

• Better understanding of the decision problem It is intuitively easier for a
computer scientist to solve a complex decision problem by decomposing it
into a set of simpler problems.

• Information reduction The set of variables that is decided upon in each of
the decision models may differ. Variables that have already been decided
upon in a decision model on a higher decision layer may no longer be im-
portant in the current decision model, since these variables have already been
taken into account. Moreover the models placed in the same sublayer do not
necessary decide upon the same set of variables. Therefore each decision
model can be highly specialized regarding to its functionality of the over-
all decision problem, by only being designed to decide upon the variables

2.1 Hierarchical Modeling 5

necessary for solving its sub-decision. This may also have the benefit of
computational optimization.

• Varying the update interval between decisions layers As stated earlier, re-
cursively dividing the decision problem into sub-decision problems placed in
different layers as seen in Figure 2.1 makes it possible to vary the frequency
of the decision updates from layer to layer. This results in the advantage
that computationally demanding long term decisions can be made in the top
of the model and updated occasionally, whereas short term decisions can be
place in the bottom of the model and be updated on a regular basis.

Low

High

Sub Task Decision of
Frequency

decision

Task Decision

reevaluation

Sub Sub Task Decision (steps)

Figure 2.1: The hierarchical layers and the information flow between them. Lower
layers have a higher frequency decision update than higher layers. The number of
layers is optional, in this example three layers are used.

When making decisions in a hierarchical way, an important issue to consider is
“awareness”. Is a given layer aware of how the below layer will perform given a
decision? Consider the washing machine example: The Board of Directors want
to decide whether to spend their money on research or on marketing. We assume
that they want to make a somewhat educated decision which leaves them with two
options:

1. Asking both the research department and the marketing department how they
think they will do, if they get the money.

2. Figure out by themselves what will be the optimal strategy.

In the first situation, each department can only give a useful answer if they evaluate
all their possible options, pick the optimal one, and inform the Board of Directors
of the utility of this decision. This gives each department a lot of possibilities,
which each have to be evaluated. The Board of Directors may then have a some-
what accurate base for their decision, but it is also computationally exhaustive.

In the second situation, the Board of Directors may not need to be experts in re-
search or marketing themselves, but they do need to have some insight into both

6 Problem Domain

areas. They may know, that researching will have a positive influence on the profit,
if the customers are not satisfied by the washing machines produced by the com-
pany. On the other hand they may also know, that the reason why they are not
selling as many washing machines as they would like, is that not a lot of people
know that what washing machines produced by the company can do or maybe even
that they exists. An example of a Board of Directors decider can be seen in Figure
4.4.

Since recursively evaluating a tree of deciders can be exhaustive, and does not
utilize the benefits of a hierarchical model, a decider will be unaware of how its
children will solve the decided strategy at any time.

3 Decision
Support

Systems

As mentioned previously, we need a way to decompose a decision problem sce-
nario into manageable pieces, but we also need to model these pieces and their
relationship in a optimal way. In this chapter, different decision support systems
are examined with the intension of using these as inspiration for the development
of our framework in Chapter 4.

3.1 Bayesian Networks

Bayesian networks create an efficient language for building models of domains
with inherent uncertainty [Jen01]. These models make it possible to reason under
uncertainty as they integrate a graphical structure that represents the causal rela-
tionship between nodes and have a sound Bayesian foundation [BW03].

A Bayesian network consists of a set of variables and a set of directed edges be-
tween variables, representing causal dependencies. Each variable has a finite set of
mutually exclusive states and together with the directed edges, the variables form a
Directed Acyclic Graph (DAG). Additionally each variable has a table of potentials
given its parent.

A

B

CD

Figure 3.1: An example Bayesian network

An example Bayesian network can be seen in Figure 3.1. The variable B would
have attached a potential table P (B|A,C).

8 Decision Support Systems

3.2 Influence Diagrams

Decision scenarios that consist of the same sequence of decision-observation op-
tions are called symmetric. A symmetric decision scenario can be represented as a
chain of variables. This chain can be represented by a Bayesian network extended
with decision nodes (usually represented by squares) and utility nodes (usually
represented by diamonds). In this chain, the order of the decisions and the set of
observations between two decisions are important. To represent these, the graph
of solving the chain is extended with precedence links and information links. The
resulting graph is called an Influence Diagram [Jen01].

Information links indicate that the state of the parent must be known (observed)
prior to making the decision. They are illustrated as directed links going into de-
cision nodes. Precedence links specify the order in which decisions are made, and
are represented by directed links between decision nodes. These help ensure that
the order of the decisions are not violated.

Utility nodes have no states and no children. They indicate the utility or “useful-
ness” of a given network configuration. This is done by having a numeric value
assigned to each combined state configuration over all nodes linking to the utility
node. If for example the nodes C and D have three states each, the utility node U

would then have 3*3 = 9 utility configurations.

U

CB

D

A

Figure 3.2: An example Influence Diagram

A single decision example influence diagram can be seen in Figure 3.2.

As mentioned, influence diagrams can be used to make multiple decisions as can
be seen in Figure 3.3.

U

CA

1D D2

B

Figure 3.3: An example Influence Diagram with two decision nodes.

In the example in Figure 3.3 two decision nodes exist. An information link exists

3.2 Influence Diagrams 9

from A to D1, which means that A must be known in order to decide D1. D1 has a
direct impact on B, and since an information link exists from B to D2 this means
that D1 must be decided before D2.

In the following we briefly describe some extensions for influence diagrams that
will serve as inspiration for our hierarchical modeling.

3.2.1 Multi-agent influence diagrams (MAIDs)

An extension to influence diagrams for making decisions in multi-agent situations
has been developed by Daphne Koller and Brian Milch. This framework is called
multi-agent influence diagrams (MAIDs) [KM01] and extends the formalisms of
Bayesian networks and influence diagrams to represent decision problems involv-
ing multiple agents. To do this, every decision and utility variable is associated
with a particular agent.

Just as Bayesian networks make explicit the dependencies between probabilistic
variables, MAIDs make explicit the dependencies between decision variables. This
allows for the definition of qualitative notion of strategic relevance: a decision
variable D strategically relies on another decision variable D ′ when, to optimize
the decision rule at D, the decision making agent needs to take into consideration
the decision rule at D′.

The notion of strategic relevance can be expressed in a structure called a relevance
graph - a directed graph that indicates when one decision variable in the MAID
relies on another.

An example of strategic relevance is shown in Figure 3.4, where a MAID for a
two-agent situation is shown. Here an agent needs to make a decision D3, which
is based upon the strategic relevance of its own prior decision D1 and another
agents prior decision D2. Note that in this example the decision D2 is based upon
strategic relevance of decision D1, which is not observable by the agent. In this
case the A variable is observable, and is therefore connected (instead of D1) to the
D2 decision node with a relevance graph.

3.2.2 Network of Influence Diagrams (NIDs)

Ya’akov Gal and Avi Pfeffer have developed a framework they call Network of
influence diagrams (NIDs) [GP03]. NIDs provide a framework for computing op-
timal decisions for agents that operate in an environment characterized by uncer-
tainty, not only over states of knowledge but also over game mechanics and others’
decision process.

10 Decision Support Systems

U

U

UA

B

D1 D2 D3

Figure 3.4: An example of a two-agent MAID. Each color node belongs to only
one of the agent. Relevance graph are shown as dotted lines. The figure is taken
from [KM01].

In this framework, there is an explicit model of the real-world game being played,
as well as additional mental models of agents playing the game. It is based on
multi-agent influence diagrams.

A Network of Influence Diagrams is a rooted directed acyclic graph, in which each
node is a MAID. Each of these nodes is called blocks and the root of the graph is
called the top-level model and represents the real world from the modeler’s point
of view. Edges in the graph from block U to block V are labeled i, D, where D is
a set of decision variables in U belonging to agent i.

In Figure 3.5 a small NID example is shown where an analyst has uncertainty over
which of the models an agent is using to make a decision. Three possible mental
models is possible: The real world Ir model, or one of the agents different models:
I1 or I2 which resembles the fact that the agents view of the world may not be as
close to reality as believed.

I

I I1 2

r

Figure 3.5: An example of a NID. Ir is the real world model, and I1, I2 are
possible belif models of the agent.

3.2.3 Unconstrained Influence Diagrams

A limitation of influence diagrams is that the order of decisions must be explicitly
modeled into the network. This makes sense for many decision situations, but
what if we want to make a decider, where the order of some or all of the decisions
does not matter? This could be modeled by using a decision tree, but as decision

3.2 Influence Diagrams 11

trees grow exponentially with the number of variables it is not always an attractive
representation language.

Jensen and Vomlelová has created an extension to influence diagrams to cope with
decision scenarios where the order of decisions and observations is not determined.
This extension is called Unconstrained Influence Diagrams (UID) [JV02].

A special kind of chance variables is introduced to specify which variables are
observable. These new variables are called observable chance nodes and are repre-
sented by double circled chance nodes as seen in Figure 3.6.

A

U

D

D

O

O

1

2 2

1

D3

Figure 3.6: An example of an unconstrained influence diagram

Observable chance variables are considered non-existent until all ancestral deci-
sions have been made. This gives us a partial temporal order.

Figure 3.6 is an example unconstrained influence diagram. The order in which D1

and D2 are decided does not matter. However, observation nodes are considered
non-existent until all ancestral decisions have been made. Furthermore, since we
have information links from O1 and O2 to D3, both D1 and D2 must be decided
before D3 can be decided. This gives us two possible temporal orderings as seen
in Figure 3.7.

D1 O1 D2 O2 3D

3DD2 O2 D1 O1

Figure 3.7: Temporal order of Figure 3.6

3.2.4 LIMIDs

The major complexity problem for influence diagrams is that the relevant past for
a policy may be intractably large [Jen01]. One way of addressing this problem
is to restrict memory by using history variables or information blocking. Another
way is to override the no-forgetting assumption when interpreting an influence
diagram by specifying explicitly what is remembered when taking a decision. This
can be done by using a limited memory influence diagram (LIMID). A LIMID
is an influence diagram with direct representation of memory which allows for

12 Decision Support Systems

forgetting the information n time slices ahead. An example of such a diagram is
given in Figure 3.8.

5

2

3

U

V

T FV

Figure 3.8: An example of a LIMID with five time slices. The dotted lines rep-
resents forgetting links indicating that the information is forgotten n time slices
ahead. FV is only remembered in the next time slice. T will be remembered two
time slices ahead. The figure is taken from [Jen01].

3.3 Discussion

In this chapter we have briefly introduced some languages for making decisions
under uncertainty. We will base the design of our framework in Chapter 4 on some
of the ideas comprising these languages.

The idea of using influence diagrams as nodes in a network may prove useful as
we design our framework. We will base the deciders in this network on influence
diagrams as they allows us to represent a decision-observation scenario in compact
model, and allows for definition of usefulness of each decision configuration.

The order in which decisions are taken should not be predefined by the structure of
the network.

4 The
Framework

4.1 Hierarchical Influence Diagrams

In Chapter 2 we argued that decisions often can be split up into sub-decisions,
which each can be solved by specialized deciders.

Based on this idea we present Hierarchical Influence Diagrams (HID).

Definition 4.1 Hierarchical Influence Diagram
A Hierarchical Influence Diagram (HID) is a directed acyclic tree of influence
diagrams.

Each influence diagram consist of an acyclic graph over chance nodes, utility
nodes, and a decision node. A description of influence diagrams can be found
in Chapter 3. An influence diagram in a HID contains one and only one decision
node.

A decision node is a finite set of mutually exclusive states. In every influence
diagram, a decision node exists, which states represents a child influence diagram
(a link). If an influence diagram has no parents, it is called the root of the HID.

Chance nodes that share the same name have the same states, and thereby repre-
sents the same information.

Definition 4.2 Decision
Each state in a decision node is called a decision. A decision represents a link to a
child influence diagram.

An exception to this definition is the HID decision.

Definition 4.3 HID Decision
A HID decision is a decision made by a decision node, which belongs to a leaf
influence diagram.

14 The Framework

An influence diagram i is a child influence diagram if there exists another influence
diagram j, which has a decision node with a state linking to i. This other influence
diagram j is called the parent of i. Following a link is called an invocation.

The set of children for an influence diagram j is denoted children(j) and its parent
is denoted parent(j).

An influence diagram in a HID may be a child and a parent at the same time.

j

ii i1 2 k

Layer

Layer n

n−1

Link

...

Figure 4.1: Example of a parent, its children, and links between them.

In Figure 4.1 an example of parents and children is shown. j is the parent of i1,
because there is a link between them. j has an incoming link and is therefore both
a parent and a child.

In order for a decider to be evaluated in a HID, it is required that its parent has been
evaluated. Since the root of the HID is the only decider with no parents, we must
always begin our decision path at the root. However, in order to fully benefit from
the hierarchical structure, we must have some way of making decisions without
starting from the root at all times. This is discussed in more detail in Section 4.3.

4.2 A single HID decision

We will now consider the process of deciding a single HID decision, using the
washing machine example from Chapter 2. An overview of this example can be
seen in Figure 4.2 where the HID for the Washing Machine Example is given.

At some point in time, the company wants to figure out what its next company
action (HID decision) should be. The algorithm recursivedescend gives the pseudo
code for recursively evaluating a HID.

4.2 A single HID decision 15

Research Marketing

TV producer 2Engineer 1

Board of directors

Chief of Engineers

Make

Engineer 2

Reduce water usage

Chief of Marketing

Informative commercial

TV Producer 1

Make Make Make

Fictious commercial

price targeted
commercial

feature targeted
commercialcommercial commercial

Funny Sexy

New wash programs

Add new wool program Add specialized color program

Make more environmentally friendly

Reduce power usage

Figure 4.2: The HID for the washing machine example.

Algorithm decide(influencediagram)
1. for ∀ chancenode ∈ influencediagram

2. do instantiate(chancenode) if ∃ evidence(chancenode)
3. decision←evaluate(influencediagram)
4. return decision

Algorithm recursivedescend(influencediagram)
1. decision←decide(influencediagram)
2. if decision is an influence diagram
3. then return recursivedescend(decision)
4. else return decision

The algorithm is called with the root-node of the HID. This influence diagram is
then instantiated with all available evidence and evaluated by the algorithm decide.
The helper functions instantiate and evidence provide access to information about
the world in which we are making decisions.

Strategy StrategyStrategy

Strategy Decider

Sub−Strategy Decider Sub−Strategy Decider ... Sub−Strategy Decider

Figure 4.3: Overview of a strategy decider.

The decision made by the root influence diagram represents a link to a child influ-
ence diagram as illustrated in Figure 4.3. This link is followed by calling Algorithm
recursivedescend with the child as parameter. This continues recursively until we
reach a leaf influence diagram. Once a leaf influence diagram has been evaluated,

16 The Framework

we return with its decision, which is our HID decision. The chain of influence
diagrams visited and evaluated in order to get a HID decision is called a decision
path.

Figure 4.4: Board of Directors influence diagram.

The root-node of the washing machine HID is the Board of Directors influence
diagram, which can be seen in Figure 4.4.

Five chance nodes are located in this influence diagram; The Product quality node
with the states High, Medium and Low. The State of market node with the states
Prosperous, Normal and Depression. The Customer attitude node with the states
Happy, Content and Unsatisfied. The Brand perception node with the states Good,
Medium and Poor. The Number of units sold node with the states Many, Some and
Few.

In the decision variable has two states: research and marketing. Each of these
states link to a sub-strategy.

In this example, the Board of Directors decides to put their money on research.

Figure 4.5: Chief of Engineers influence diagram.

The link from the Board of Directors influence diagram to the Chief of Engineers
influence diagram is then followed. This means that we call Algorithm recur-
sivedescend on the Chief of Engineers influence diagram, which is illustrated in
Figure 4.5.

4.2 A single HID decision 17

Three chance nodes are located in this influence diagram; The Enviromental stan-
dard node with the states Better, Same and Worse. The Number of units sold node
with the states Many, Some and Few. The Customer wash program satisfaction
with the states High, Medium and Low.

The decision node contains the states New wash programs and Make more environ-
mentally friendly.

The Chief of Engineers influence diagram now has to decide what to research. In
this case it decides to research New wash programs. We then follow the New wash
programs link to the Engineer1 influence diagram, which means that the algorithm
recursivedescend is called on the Engineer1 influence diagram, seen in Figure 4.6.

Two chance nodes are located in this influence diagram; The Wool programs node
with the states Many, Some and Few. The Color programs node with the states
Many, Some and Few.

The decision node contains the states Add specialized color program and Add new
wool program.

Figure 4.6: Engineer 1 influence diagram.

The Engineer1 influence diagram is a leaf in the HID. This means that, once in-
stantiated and evaluated, this influence diagram will return a HID decision, which
will then be our next atomic action.

In this case the Add new wool program action is decided, and this yields the deci-
sion path shown in Figure 4.7.

Board of Directors Chief of Engineers Engineer 1

New

Program

Wash

Research Add new wool program

Figure 4.7: The decision path for the Single Decision Washing Machine example.

18 The Framework

4.3 Multiple HID Decisions

The previous example considers finding a single HID decision at a single point in
time. But what if we need to continue making HID decisions over some period of
time? What if our knowledge of the world changes?

Making more than one decision over time simply means that we run the Algorithm
recursivedescend again and again - once for each needed action.

However, this approach makes us start at the root influence diagram and go through
a complete path for each action. This is not very efficient and does not take advan-
tage of the hierarchical nature of HIDs.

4.3.1 Events

A solution is to base the invocation of influence diagrams on events. The concept
behind this is that a previous decision of an influence diagram higher in the tree is
only valid, if the information it has based its decision on has not changed. If none
of the information used to make this particular decision has changed, there is no
reason to reevaluate its decision.

If information changes, we will leave our current decider and go to the influence
diagram highest in the tree, which bases its decision on this information. We now
need to update the chance nodes that model this information, propagate evidence
and reevaluate the decision.

As long as none of the information used for deciding the ancestors changes, we
will continue with the same decision from the leaf decider at the end of the decision
path.

Definition 4.4 Event Variable
An Event Variable is a chance node in an influence diagram, which is included in
latest HID decision path.

Definition 4.5 Event
An event is a change of state in a Event Variable.

The generation of events is handled externally. Events occur randomly, and there-
fore they cannot be foreseen.

First an algorithm is needed to find the upmost location of the event variable in the
tree. This algorithm assumes that a HID decision path already exist, which means
that the recursivedescent algorithm has been executed at least once.

4.3 Multiple HID Decisions 19

The findinfluencediagram algorithm is called with the leaf influence diagram that
decided the last HID decision, and the event.

Algorithm findinfluencediagram(influencediagram, event)
1. upmost←influencediagram

2. while influencediagram has parent
3. do if event exist in influencediagram

4. then upmost←influencediagram

5. influencediagram←parentinfluencediagram

6. return influencediagram

An event algorithm is now constructed to handle all the decision traversing of the
HID. This algorithm makes use of the previous findinfluencediagram, and the re-
cursivedescend algorithm described in Section 4.2. Furthermore the latest HID leaf
node evaluated is always known.

Algorithm event(HID)
1. eventorigin←NULL
2. event←NULL
3. recursivedescend(root influencediagram)
4. while true
5. do if event != NULL
6. then
7. eventorigin←findeventorigin(influencediagram, event)
8. event←NULL
9. recursivedecent(eventorigin)
10. eventorigin←NULL
11. else recursivedecent(lastHIDleafinfluencediagram)

4.3.2 The washing machine example revisited

In the washing machine example in the single decision subsection, the result of
running the recursivedescend algorithm was the decision path depicted in Figure
4.7. But what happens if we extend the example to decide multiple HID decisions
and instead of repeating the recursivedescend algorithm use the event algorithm.
The first HID decision path in both cases is obviously the same.

After the Engineer1 has decided the first atomic action (HID decision), he repeats
this decision as the next atomic action. Just after Engineer1 have repeated this
decision the third time, the government introduces a new set of rules regarding

20 The Framework

standard electric appliances. This rule set is a result of the governments member-
ship in the EU and comes as a surprise for the washing machine company. Despite
being a surprise, the washing machine company is the only company that produces
washing machines that satisfy this rule-set completely.

As a consequence of this, customers seem to like their washing machines better.
This new information may render a decision higher in the hierarchy obsolete. Cus-
tomers like the fact, that their washing machines satisfy the new rule set, and this
means, that the state of the Customer attitude chance node in Board of Directors
should be changed to high.

Since the Board of Directors uses this information for making their decision, chances
are that this may change their decision.

In the light of this new information the Board of Director decides that marketing
to improve the brand perception is the best strategy for the company instead of
researching. The Chief of marketing is therefore called, and he decides that an
informative commercial is the best choice. He decides that TV producer2, who has
experience with informative commercials should do an advertisement.

TV producer2 is modeled in Figure 4.8, which contains four chance nodes; The
Price targeted commercial being broadcasted node with the states Few, Fair and
Many. The Feature commercial being broadcasted node with the states Few, Fair
and Many. The Targetgroup interest node with the states Features and Price. The
Brand perception node with the states Good, Medium and Poor.

The decision node has two states: Make feature targeted commercial and Make
price commercial.

TV producer2 decides that Make feature targeted commercial is the right choice for
the company’s next action, in order to make all potential washing machine buyers
aware, that their washing machines satisfy the new rule set. TV producer2 repeats
this action decision four more times. After this it is realized that feature commercial
being broad casted node shown in Figure 4.8 has changed to high, because of many
of these commercials are now being produced by the competitors.

Therefore TV producer2 then reevaluates the action decision, due to the changed
information only has an impact on his action decision, and not on the previous
decisions. This new information result in that TV producer2 now decides the Make
price commercial, and he repeats this decision until another event variable changes.

This decision scenario is summarized in Table 4.1, where the different decision
paths, and the influence diagrams where the event variable is located are shown.

4.3 Multiple HID Decisions 21

Figure 4.8: The influence diagram for the TV producer2.

Event ID startlayer decision history
1 BOD→ COE → E1→ ANWP

3 E1→ ANWP

3 E1→ ANWP

3 E1→ ANWP

BOD 1 BOD→ COM → TV 2→MFTC

3 TV2→MFTC

3 TV2→MFTC

3 TV2→MFTC

3 TV2→MFTC

TV2 3 TV2→MPTC

3 TV2→MPTC

3 TV2→MPTC

3 TV2→MPTC

Table 4.1: A decision path example of running the washing decider HID with
the event algorithm. The letters used are abbreviations for the HID nodes in the
washing decider example shown in Figure 4.2. The Event ID column states in
which node the event variable is located.

4.3.3 Time Slotting

An alternative way to make multiple decisions is to run the recursivedescend

algorithm with a node located at different layers of the HID at different time slots.

In order for this approach to work optimally, layers must be explicitly defined when
designing the HID and all branches must have the same depth.

To make multiple decisions, we may for instance start in layer n for five time slots
before starting a single time slot in layer n − 1. When this is repeated four times
and the layer n− 1 has been started from five times, and layer n has been started
from 25 times, the layer n− 2 is the next starting point at the next time slot.

22 The Framework

Layer n Time slots
1 1
2 2
3 3

Table 4.2: The time slot setup for the multiple decision example.

To do this we need to remember the last decision path starting point. current()
returns which influence diagram is active in each layer.

The function decision() holds a cache of the last decision of all influence diagrams.

Algorithm timeslot3l
1. timeslot = current time slot
2. n = number of layers in HID

3. recurcivedecend(rootofHID)
4. while true

5. do for l←n to 1
6. do if timeslot mod (layertimeslot(n)) = 0 then
7. recurcivedecend(current(l))
8. l←l − 1
9. else do recurcivedecend(current(l))
10.
11.

We return to the washing machine example. Engineer1 has just decided the next
atomic action to be Add new wool program. Now the layers of the HID is decided
using Time slotting with the assigned number of time slots shown in Table 4.2.

This could result in table 4.3 wich is an example of a single pass of the washing
machine HID using the time slotting algorithms with the assigned time slots shown
in table 4.2.

4.4 Discussion

When considering only HID decisions in a multiple decisions context, hierarchical
influence diagrams bear some similarities with unconstrained influence diagrams.
As described in Chapter 3, UIDs are influence diagrams, where the order of some
or all decisions is not dictated by the network structure. The order of HID decisions
in a HID is not given by the network structure, which means that we cannot model

4.4 Discussion 23

Time slot startlayer decision history
1 1 → BOD → COE → E1→ ANWP

2 3 → E1→ ANWP

3 3 → E1→ ASCP

4 3 → E1→ ANWP

5 2 → COE → E1→ ASCP

6 3 → E1→ ASCP

7 3 → E1→ ASCP

8 3 → E1→ ANWP

9 2 → COE → E2→ RWU

10 3 → E2→ RWU

11 3 → E2→ RWU

12 3 → E2→ RPU

13 1 → BOD → COM → TV P1→MFTC

Table 4.3: A decision path example of running the washing decider HID with the
time slotting algorithm with the time slot settings from table 4.2. The letters used
are abbreviations for the HID nodes in the washing decider example shown in
Figure 4.2.

that a HID decision should be made before another. UIDs provide a mechanism
for doing this, however, we believe that this feature of HIDs does not impose any
limitations in the contexts examined in this report.

If we consider HIDs as a whole, it is obvious, that a well defined order of internal
decisions exist, as we cannot get a HID decision, without following a strict path
from the root-node to a leaf-node.

Modeling time (taking past or future configurations into account) is possible in
HIDs. However, time must be explicitly modeled into the influence diagrams as
shown in Figure 5.3. Care must also be taken not to violate the structural require-
ment in HIDs.

5 Application
For The

Framework
To make future test of the HID framework possible, the focus is now turned toward
designing a decision model for an agent in a game.

The influence diagrams in this chapter is provided as illustrative examples of how
the game can be modeled.

5.1 The FlagBomber Game

The Flagbomber game is based upon ideas taken from the game Bomberman [Ent].
The game is drastically reduced in order to simplify our example.

5.1.1 The Problem Domain

The problem domain consist of an arena and a number of actors competing therein.
Everything is seen in a top down view, and is performed in real time. The term real
time relates to an unlimited series of fixed time slots. The duration of a time slot
is S seconds where exactly one decision can be performed as an atomic action.
Relating to the HID framework constructed earlier, an HID decision therefore cor-
responds to deciding upon an atomic action.

The Arena

The world consist of X ∗ Y squares, where each individual square can be either
empty or occupied by one or more actors or/and an object. An example of this is
shown in Figure 5.1.

26 Application For The Framework

The Objects

To make the problem domain non-trivial, the squares are randomly covered with
objects. An object is either an invisible item, or a wall. A wall is both movement
blocking and un-removable.

The Actors

Two types of actors exist in the problem domain: An agent which is a computer
controlled player and an avatar which is human controlled. The game is designed
under the assumption that Epistimic Verisimilitude yields the best entertainment
to a human player, and therefore all actors have the same set of possibilities or
restrictions and access to the same amount of information at any time.

An actor moves from one square to another in a single time step and consequently
only occupies one square at a given time. Actor movement is limited to North,
South, East and West, given that there is no wall occupying the target square. A
square can be occupied by more actors at the same time, allowing the actors to run
past each other.

Every actor has a vision of V ∗ V squares of the arena. Inside this vision zone
the actor can see the other actor if present, and the walls occupying the individual
squares. An actor has a “remembered” vision regarding the location of seen walls
and the actor outside the current vision zone. However the location of the opponent
actor may have been changed without the actor having any knowledge of this. Each
actor has T health points at initialization time. Death of an actor is represented by
−1 health points.

The Items

The set of invisible items contains the spawning point of each of the actors, and
the health modifier items. A spawning point is the square where an actor enters
the arena when the game starts. The health modifier items, are items each assigned
to a square. If an actor enters a square containing a health modifier, the actors
health points are either increased or decreased by one, depending whether if the
health modifier item is a poisonous item or a health item. A health modifier item
is removed from the arena once triggered. Furthermore a health modifier item can
only affect the actors health points to within the range 0 − T , and can therefore
never kill the actor nor give the actor a higher number of health point than upon
game initialization.

5.2 Using The Flagbomber game in the Framework 27

Actor Goals

The goal of the game is to survive the longest time possible. An actor can extend
this time to unlimited if she succeeds in killing the opponent. As an logical side
effect of this, an actor with low level of health points, could flee from an opponent
rather than being killed.

O

X
X A

X
X

XX
X

X X
X

X
X
X X X

X

XXX
X

X X X X
X

X X

XXX
X

X
XX X

X

Figure 5.1: The problem domain consist of a set of squares which sum up the
world. These squares can be occupied by objects X, opponents O and the actor A
itself.

5.2 Using The Flagbomber game in the Framework

First the degree of decomposition of the decision problem of the agent needs to be
specified, in other words what depth is needed in the HID that sums up the agents
behavior. For the agent in the flagbomber game the depth of three have been chosen
since it seems intuitive to model the agents behavior in terms of strategies, sub
strategies and atomic actions. The following sections are the result of analyzing
the game in regards to using it in a HID framework where the decision tree has the
depth of three.

5.2.1 The Agents Set of Strategies

To find the Strategies of the adaptive agent of the Flagbomber game, the goals
of the game is analyzed. It becomes clear that a intuitive way of describing the
strategies would be in terms of being defensive or offensive.

• Defensive The purpose of the Defensive strategy is to support the goal of
the game by staying out of reach of the opponent until she either becomes
stronger or the threat of being attacked is reduced.

• Offensive The purpose of the Offensive strategy is to support the goal of the
game by attacking the opponent. If the agent is in low risk of being killed,
she will try to get as close to the opponent and hit him.

28 Application For The Framework

5.2.2 The Agents Set Of Sub Strategies

To find the Sub Strategies the Strategies are analyzed and intuitively divided into
sub strategies. An example is the defensive strategy which is divided into the Flee
and the Hide sub strategies. Since the Offensive strategy only exibits one way of
attacking the opponent, no sub strategies are found analyzing this strategy. The
following set of Sub Strategies is found:

• Flee If the agent is in extreme danger of being killed, she will try to get
as far away from the opponent as possible. This sub strategy is considered
successful is the opponent is not in the agents vision zone after f actions.

• Hide If the agent is in moderate danger of being killed, she will try to hide
himself behind a wall, so that despite the opponent can see the agent, the
opponent cannot move directly toward the agent without being blocked. This
sub strategy is considered successful if the direct path from the agent to the
opponent is blocked within h actions.

5.2.3 The Agents Atomic Actions

When selecting the agent’s set of possible atomic actions, it is done with the pre-
viously mentioned idea of Epistimic Verisimilitude. The result of this is that every
agent has the same set of possible atomic actions. The following list sums up the
atomic actions of the actors.

• Move A Move action results in the agent moving from one square to an
adjacent square. As described earlier, the following set of move actions are
possible: North, South, East and West. A move action is only valid if the
target square is not occupied by a wall.

• Hit A Hit action results in the opponent having her health points reduced
by one. If the result is a health point status of -1, the opponent dies and
is removed from the game. A Hit action is only valid if the opponent is
occupying an adjacent square which is reachable by a move action, or if they
occupies the same square.

• Wait A wait action, is the absence of the other listed actions in the given
atom time space of the game. Therefore it is not a selectable action for
the agent, but a default action if no atomic actions have been decided upon
within the specific time slot.

5.2 Using The Flagbomber game in the Framework 29

Move
East

Move
South

Move
North

Move
West

Hit

Strategy

Offensive

Flee Hide

Defensive

Figure 5.2: The result of using the Flagbomber game in the developed framework.
A HID, where each leaf represents the actions which the agent can be seen per-
forming in the game.

5.2.4 Constructing The Strategy Decider

Based upon the HID framework from Chapter 4 the strategy decider for the Flag-
bomber game is now constructed. First, the decision node of the influence diagram
is constructed, where the offensive and the defensive strategy are states. Second,
the utility nodes and chance nodes needed to decide among these states are con-
nected. In this influence diagram we model time, and as a result of this we have
four nodes representing two chance nodes before and after a decision is taken. Each
chance node pair has the same chance node states but may differ in probability. The
chance node pair for healthpoints has the states 0, 1, 2, 3. The chance node pair for
Distance opponent has the states Far, Medium and Near. The resulting influence
diagram is depicted in Figure 5.3.

Figure 5.3: The Strategy Decider for the Flagbomber game. The decision node has
the following two states: Offensive and Defensive.

30 Application For The Framework

5.2.5 Constructing The Sub Strategy Deciders

For each state in the decision node in the strategy decider influence diagram, a
sub-strategy decider is constructed. In each influence diagram the decision node is
constructed so that each state is a sub strategy. In Figure 5.4 an example of such is
given in the form of the defensive sub strategy decider.

In this influence diagram time is also modeled. Here the same health point change
node pair exists as in Figure 5.3. Furthermore is the Hidden chance node pair with
the states True and false, stating whether the agent is hidden before and after the
decision. The decision node has the two states Flee and Hide.

Figure 5.4: The Sub Strategy Decider for the ’Defensive’ strategy. The decision
node has the following two states: Flee and Hide.

5.2.6 Constructing The Action Deciders

For each sub strategy, an Action decider model is constructed. In the decision
node of each of these models the only valid states are the atomic actions described
earlier. An example of an action decider model is the decider for the ’Hide’ sub
strategy depicted in Figure 5.5.

In this influence diagram time is modeled. This is done by observing if the agent
is hidden before and after a decision. The decision node has each of the four
moving action and the wait action as states. The states of the adjacent squares
combined with the decision have an influence on whether the agent is hidden after
the decision. Each of the destination status nodes has the following states Hidden,
Blocked and Unblocked.

5.2 Using The Flagbomber game in the Framework 31

Figure 5.5: The Action Decider for the ’Hide’ sub strategy. The decision node has
the following states: Move North, Move South, Move East, Move West and Wait.

5.2.7 The Pieces Of The Agent

When all the influence diagrams for the Flagbomber game has been constructed it
is time to have a look at what more is needed to get the agent ready for implemen-
tation.

First, we need a way of specifying the structure of the HID. This could be done
relatively simple by a configuration file describing the tree structure of the HID. In
Chapter 6 we give an example configuration file for the washing machine example
and this can be used as reference.

Second, the choice of HID algorithm needs to be made. When selecting the ap-
propriate algorithm, the general frequency of chance node change in the influence
diagrams that sums up the HID should give the developer a hint to what algorithm
is preferable to her decision scenery. A relatively small number of chance node
change would probably result in the event based algorithm being superior, whereas
the time slot based algorithm might perform poorly.

Besides this a structure for updating the chance nodes is needed. This structure
needs to be able to receive information and update the influence diagrams of the
HID with this. A mapping of this information to the individual chance nodes in
the influence diagrams of HID needs to be constructed. Because of the fact that
multiple chance node can have the same name and thereby the same states, this
mapping is not limited to being 1:1.

The information structure should also be constructed to monitor the current deci-
sion path of the HID if the event algorithm mentioned previously is chosen. If so,
the structure must be able to generate an event when a chance node belonging to

32 Application For The Framework

decision path (an event variable) is changed.

5.2.8 Summary

Based upon the HID framework, the idea for the Flagbomber game has been formu-
lated, analyzed and thereby divided into strategies and then again into sub strate-
gies which decides the atomic actions of the agent. Each of these strategies and
sub strategies has then been made into an influence diagram and connected into
one single HID depicted in Figure 5.2, where the parent - child relationship of
the influence diagrams becomes clear. These things combined make it possible to
make a future implementation of the agent and thereby the game.

6 Imple-
mentation

This chapter describes our implementation of the HID framework and the Flag-
bomber game. It describes the technologies used, and specifies the architecture of
the client-server model used.

The code can be downloaded here:
http://www.cs.aau.dk/~ledet/hid/hidcode.tar.bz2

6.1 HID Implementation technical details

We implement the Flagbomber game in Perl1 as this programming language gives
a lot of freedom in regards to data structures and because of the POE framework,
which we have previous experience with. Hugin [A/S03] is used for evaluating and
designing influence diagrams.

6.1.1 POE

Perl Object Environment2 (POE) is a framework for creating multitasking pro-
grams in Perl.

POE is event-based - everything happens for a reason. It consists of a “kernel”,
which manages a number of sessions, which all wait for an event to take place.

The kernel functions as a scheduler, always keeping an eye out for waiting data
or alarms. If, for instance, data has been received from the network, the kernel
calls the appropriate session registered for this event, which runs the appropriate
function for dealing with network data.

Furthermore, POE has built-in components for making both networking server and
clients. It handles all message queuing and makes it fairly easy to make message

1http://www.perl.org
2http://poe.perl.org

34 Implementation

handlers.

The POE framework is perfect for tasks like game servers, where everything is a
result of a request from a client or of some timed event.

6.1.2 HUGIN

Since the HID framework consists of influence diagrams, we have chosen to leave
all direct handling of these to Hugin[A/S03]. The following is a description from
the Hugin Expert website.

The Hugin Researcher package contains a flexible, user friendly and
comprehensive graphical user interface and our advanced Hugin Deci-
sion Engine for application development. The user interface contains
a graphical editor, a compiler and a runtime system for construction,
maintenance and usage of knowledge bases based on Bayesian net-
work technology.

The Hugin Decision Engine (HDE) encapsulates all functionality re-
lated to handling and using knowledge bases in a programming envi-
ronment. The HDE is delivered with application program interfaces
(API’s) for four major programming languages C, C++, Java and an
ActiveX-server for e.g. Visual Basic. [A/S03]

As described in the above text, programming interfaces for Hugin has been de-
veloped for several programming languages. We have previous experience with
both Java and C++, which make these languages obvious choices for our imple-
mentation. However, the C++ interface seems to be practically impossible to get
working on other platforms (linker problems) than those explicitly specified in the
Hugin documentation, and no such platforms were readily available to us.

This leaves us with the Java interface, which is fairly easy to set up and works
without problems. However, our game is implemented in Perl - mainly because of
the POE framework, which means that we need to have a way of accessing Java
from Perl.

Fortunately a library for doing exactly this can be found in CPAN3. It is called
Inline::Java and enables us to write Java code directly inside Perl programs. This
means that we can write our Hugin functions in Java and then access them from
Perl as if they were written in Perl.

3http://www.cpan.org - Comprehensive Perl Archive Network

6.2 HID Implementation 35

6.2 HID Implementation

The HID implementation consists of two classes: the HID class and the Decider
class, both of which are briefly described in the following.

6.2.1 The HID Class

The HID class is written in Perl and is the heart of the implementation. It maintains
the data structure of the HID.

It is instantiated with a configuration file, in which the user can specify the HID
structure, which influence diagrams are associated with each HID node and which
type of invocation (event based or time slot based) the user wants.

The configuration file consists of a nested hash structure in Perl syntax (it is ex-
ecuted by the HID class constructor) and the constructor then takes appropriate
actions needed to load the actual influence diagrams.

An example configuration file for the washing machine example can be seen in
Figure 6.1.

Each HID-node is represented as a hash with key-value pairs: The name of the
node, a file name for the associated influence diagram in Hugin format, and an
optional alias for the node.

The aliases provide us with a way to call a node by another name. This enables
us to give the nodes more descriptive names. For instance, the Board of Directors
node decides to either research or do marketing. However, we may want to refer to
the “Researcher” as Chief of Engineers to make designing the HID more intuitive.

All methods for traversing a HID are found in the HID class. An example of such
as method is the recursivedescend() method described in Section 4.2.

6.2.2 The Decider Class

The Decider class is written in Java and communicates with the Hugin decision
engine.

Its constructor takes a filename, which is then opened and loaded into memory
by Hugin. Methods for setting evidence, propagating evidence and evaluating,
and returning decisions from, and extracting any additional information about the
influence diagrams are parts of this class.

36 Implementation

$hid = {
0 => {

’Board of Directors’ => {
’file’ => ’boardofdirectorsid’,
’parent’ => undef,
’alias’ => ’root’,

},
},

1 => {
’Chief of Research’ => {

’file’ => ’chiefofengineeersid’,
’parent’ => ’Board of Directors’,
’alias’ => ’Research’,

},
’Chief of Marketing’ => {

’file’ => ’chiefofmarketingid’,
’parent’ => ’Board of Directors’,
’alias’ => ’Marketing’,

},
},

2 => {
’Engineer1’ => {

’file’ => ’engineer1id’,
’parent’ => ’Chief of Research’,
’alias’ => ’Add new wool program’,

},
’Engineer2’ => {

’file’ => ’engineer2id’,
’parent’ => ’Chief of Research’,
’alias’ => ’Add specialized color program’,

},

’TV Producer 1’ => {
’file’ => ’tvproducer1id’,
’parent’ => ’Chief of Marketing’,
’alias’ => ’Fictious Commercial’,

},
’TV Producer 2’ => {

’file’ => ’tvproducer2id’,
’parent’ => ’Chief of Marketing’,
’alias’ => ’Informative Commercial’,

},
},

};

$invocation = ’event’;

Figure 6.1: An example configuration file

6.3 Flagbomber Implementation Overview

The implementation of the Flagbomber game consists of tree parts: a server and
two types of clients, as seen in Figure 6.2. One client is an interface between the
Flagbomber game and the HID framework and thereby the agent, the other is an
avatar/interface for the human player.

6.3.1 Server

The server maintains the game state. All actor positions, actor health states, etc.
are known to the server at all times.

Every action performed by an actor is sent to the server, which then confirms the

6.3 Flagbomber Implementation Overview 37

Server

...Client Client

Figure 6.2: The Flagbomber game is implemented as a central server with two or
more connected clients.

action if successful and updates its internal representation of the game arena.

If an event occurs that as an impact on one or more actors, each actor will be
informed of the event by the server.

In Figure 6.3 and overview of the server can be seen.

Event Handlers

Flagbomber Server

Flagbomber Client Flagbomber Client...

POE

World model

Figure 6.3: An overview of the Flagbomber server

The server listens for connections on the network. Once enough clients have con-
nected and identified themselves, one of them can start the game by sending a start
game command. The server then stops listening for incoming connections, starts
the game, and sends information about the game to the clients. An example of this
can be seen in Figure 6.4. The server then sends all information about the clients
vision zone to the client.

Whenever a client moves around, it informs the server of its intended movement.
The server then checks for possible collisions and if the movement is possible, it

client > action=login name=clientname
server > action=login status=ok playerid=1 level=standard
client > action=start
server > action=start status=ok

Figure 6.4: The login sequence

38 Implementation

updates its internal representation of the world, and informs the client of its new
position, its updated vision zone, and its health state if changed.

6.3.2 The Avatar Client

The avatar client is an interface for the human player. It is implemented in Perl
using POE and Simple DirectMedia Layer4

Flagbomber Server

POE

SDL

Event Handlers

Human Player

Flagbomber Avatar

Figure 6.5: An overview of the Avatar Client

The Simple DirectMedia Layer (SDL) is a cross-platform multimedia library de-
signed to provide low level access to audio, keyboard, mouse, joystick, 3D hard-
ware via OpenGL, and 2D video framebuffer through a high-level interface. It
handles all the graphics and keyboard input. Keyboard input is sent on to POE,
where they are translated to game commands and sent to the server.

The avatar client internals can be seen in Figure 6.5.

The game is played using the arrow keys. Input is currently handled by SDL, which
also handles all graphics. However, there seems to be synchronization issues with
this approach, where key events are not necessarily detected and sent to POE. This
problem is probably linked to problems with refreshing the framebuffer (flipping
between buffers), which is currently handled by throwing timed events. This ap-
proach has the penalty of being very hard on resources and should be rewritten in
any future versions. It does, however, provide us with a somewhat working avatar
client for our game.

4http://sdl.perl.org

6.3 Flagbomber Implementation Overview 39

6.3.3 Adaptive Agent Client

The (adaptive) agent functions as an interface layer between the game and the HID
framework.

It is based on the avatar client, although the SDL layer has been removed and
replaced by the HID framework. All information is fed to the HID, which in turn
returns atomic actions, simulating keyboard input from the arrow keys.

The World Observations

The agent has a database, which holds all information it has received about the
world from the server. From this database, information suitable to feed to the HID
can be extracted or calculated.

An implementation overview of the adaptive agent can be seen in Figure 6.6.

Flagbomber

Interface

Agent
Controller

World

Hugin

Flagbomber
Server

Observations

Hugin
Interface

Network Agent

Figure 6.6: Overview of the agent implementation

As of this writing, the agent client remains unimplemented.

7 Conclusion
The purpose of this project was to develop a framework for making decisions in a
hierarchical manner. As inspiration for the framework a number of decision mod-
eling languages have been examined. The idea of making a network of influence
diagrams is taken from Network of Influence Diagrams. Inspired by Unconstrained
Influence Diagrams, the order of decisions and observations are not dictated by the
structure of network.

The resulting decision framework is called Hierarchical Influence Diagrams. The
structure and semantics of the framework have been described and an example
decision scenario of a company that produces washing machines has been given.

An implementation of the framework has been made, making it possible to evaluate
a HID.

A game intended as a testbed for the framework has been developed and partly
implemented. However, since it is only partly implemented, we have not been able
to do any tests on the framework, showing that it is possible to make an agent for
the game using a HID.

Creating a game of this type turned out to be far more time-consuming than ex-
pected. The client-server nature of the game meant that a communication protocol
had to be developed, although POE made networking a lot easier. The game and
HID framework was originally intended to be programmed in C++, but getting the
Hugin C++ interface to work was not trivial. Instead the implementation was done
in Perl and Java. This meant that we had to find a way to get the two languages to
work together as one, which turned out to be easier than expected. However, the
natures of SDL and POE turned out not to be directly compatible, which gave us
problems with reading keyboard input and updating the screen at the same time.

Although the hierarchical decomposition of decisions made it easier to model the
deciders for the game, this still turned out to be a complex task, even for a simple
Flagbomber game. This may be one of the reasons why most games rely on Finite
State Automatons for controlling their agents. More research should be made in
the area of using decision support systems in games before game developers will
consider using these powerful tools.

However, the Hierarchical Influence Diagrams language is a small step along the
way to making it easier to model types of decision scenarios that can be decom-
posed into a hierarchical structure. Also it can have the benefit that the number of

42 Conclusion

computations needed to evaluate these can be decreased. Real-life decisions taken
by people often follow a hierarchical structure, which seems to support the idea of
Hierarchical Influence Diagrams.

7.1 Future work

• Make the agent adaptive.
A way to make the agent in the Flagbomber game more interesting would be
to enable it to adapt itself to a other actors. However, this requires that we
find a way to reward the actors atomic decisions.

• Describe the rest of the deciders for the game.
As described, modeling the decisions for the game can be very extensive.
However, this is necessary in order for the agent to work completely

• Finish implementation of the framework and compare its performance
to other types of decision modeling languages in the game scenario.
Doing a comparison between Hierarchical Influence Diagrams and other de-
cision support system languages could be interesting and could give us an
idea of the efficiency of HIDs.

• Test and compare the two invocation methods.
The two invocation methods described in the report each seem to have both
advantages and disadvantages. Letting them compete against each other
in different test environments could give us a better understanding of their
strenghts and weaknesses.

Bibliography

[A/S03] Hugin Expert A/S. HUGIN API Reference Manual, version 6.1. Hugin
Expert A/S, 2003.

[BW03] David Ball and Gordon Wyeth. Classifying an opponent’s behaviour in
robot soccer. 2003.

[Ent] Hudson Entertainment. Hudson Entertainment Website. Hudson Enter-
tainment.

[GP03] Ya’akov Gal and Avi Pfeffer. A language for modeling agents’ decision
making processes in games. AAMAS’03, July 14-18, 2003, Melbourne,
Australia, 2003.

[Jen01] Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer-
Verlag, 2001.

[JV02] Finn V. Jensen and Marta Vomlelova. Unconstrained influence diagrams.
2002.

[KM01] Daphne Koller and Brian Milch. Multi-agent influence diagrams for rep-
resenting and solving games. 2001.

[MG00] Claus B. Madsen and Erik Granum. Aspects of interactive autonomy and
perception. Technical report, Aalborg University, 2000.

