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ABSTRACT

T-UppAal is an online testing tool for model-based black-box conformance test-
ing of embedded real-time systems. The study of re-runs and coverage mea-
surement with the tool had not been studied so far. This report gives a precise
description of different re-runs criteria’s for use with T-UppAal. To find out
which of them would work in practice, a detailed analysis of T-UppAal in re-
gards to re-runs was done. We also propose coverage measurements that can be
used to determine the quality of a test. An industrial case study was done on
both selective type of re-runs and coverage measurements. To help with creating
test re-runs and coverage measurements, the tool Butler was made. It includes
an array of features for creating re-runs and calculating coverage measurements.
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1. INTRODUCTION

Success in a software industry is more than delivering product to the market on
time and in an efficient manner. The quality of the system must also be taken
into the consideration. As complexity of the software is rapidly growing, qual-
ity assurance activities can compound up to half of the software development
process for normal system. It is higher for the life critical systems.

The errors can be made at any stage of software development - requirement
analysis, design or coding. The testing role in the software quality assurance is
to detect the faults in the product and to make sure that the final functionality
meets customer’s requirements.

However, most of the produced software has some errors left. The reasons
could be following:

• Untested code was executed

• Statements during testing were executed in different order

• The combination of untested inputs was encountered

• User’s operating environment was not tested [24]

Consequently, the testing itself should be observed and analysed to improve the
quality of the product. In the following section we overview the main types of
testing. Later we introduce testing using formal methods and online testing.
Finally we describe the T-UppAal testing tool and our objectives.

1.1 Types of Testing

There are several ways of classifying tests. Different aspects of system behaviour
can be tested using conformance, performance, robustness, stress reliability,
availability or security testing.

Conformance testing is a process that verifies if a system meets specification
requirements and performs correctly in its designed environment. A specifica-
tion indicates how a system should behave. Tests are applied to the implemen-
tation under test (IUT). A verdict (pass or fail) about system correctness is
given according to the observations performed during testing.

Depending on software accessibility appropriate testing strategies can be
used. There are two main strategies: white box and black box testing. In white
box testing the internal structure of the IUT should be known. Differently in
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black box testing the tester may know only possible inputs and expected outputs
but not how the program produces them [20].

The testing process can be classified as static or dynamic. Static testing
combines all the ways of finding errors that can be made without executing the
code (inspections, walk-throughs, reviews etc.). It is one of the most effective
ways to find defects in early stages of a software development. By contrast
the dynamic testing is running the program and comparing its behaviour with
specification [20].

There are a number of different testing approaches starting with informal ad
hoc testing and finishing with formal specified and controlled methods.

1.2 Testing with Formal Methods

A system specification written in natural language can be interpreted in different
ways. Such uncertainty complicates entire software development process and the
testing as a part of it. A solution is using formal methods. The main advantages
of using formal methods are [20, 14]:

• The techniques from mathematics and logics make specifications precise,
complete and unambiguous, which makes it a good means for communi-
cation among system designers, analysts and testers.

• A variety of model checkers can be used to validate a specification written
in a formal language so errors can be found in earlier stages of the system
development life cycle. The specification is clear, precise and complete
when it reaches the test engineer.

• The automation of the process becomes more accessible. In the test gen-
eration phase test cases can be derived algorithmically from a formal spec-
ification. Automatic online testing allows executing tests while they are
generated.

• A verdict assignment and a result analysis are simpler because a compar-
ison of expected and observed responses is easier to perform with formal
methods.

Conformance testing using formal methods is verifying the black-box IUT
functional behaviour according to a formal specification. There are two main
phases of the process: test generation and test execution, see Figure 1.1. A
programmer develops the system according the specification. During testing
conformance to the specification is checked. A test suite is made from the same
specification which is executed on the IUT giving a pass or fail verdict.

A number of formal models and specifications exists [11]:

• State-Based Models – this includes for example Finite State Machines
(FSM), Input/Output automata (also extended with time to I/O Timed
automata) or Specification and Description Language (based on Extended



1. Introduction 6

Fig. 1.1: Formal conformance testing process [20]

FSM) – the advantage of these models is that they usually provide the
executable specifications, so they can be automatically converted into a
simulator for the specified system

• Process Algebra Models – based on Communicating Sequential Processes
(CSP) for example Timed Acceptances Model or Communicating Shared
Resources

• Logic-Based Models – based on Temporal Logic, give possibility of assert-
ing both safety and the liveness properties.

• Petri-Nets Models – a number of subclasses of Petri net models have been
derived. Several models for timed Petri nets were proposed.

In our situation, we use labeled transition systems for describing behaviour
of the system. A labeled transition system is a directed graph whose nodes are
named as states and edges as transitions. One of the states is specified as initial.
All transitions are labeled with a action indicating event that brings the system
from one state to another.

A timed automata are a standard finite-state automata extended with a
finite collection of real-valued clocks. That makes it an expressive formalism for
modeling real-time systems.

The IUT specification is given as a Timed Input-Output Automata (TIOA),
which is a timed automaton where the set of actions is partitioned into inputs
and outputs. Where inputs are used to model actions performed by environment
and outputs are under the system’s control. TIAO is input and time-passage
enabled.

We use relativized timed conformance to check if an implementation is correct
according to a specification. The implementation is correct if it 1) produces the
same output as a specification after the timed trace; 2) produces an output at
a time when one is allowed by a specification; 3) omits to produce an output no
longer than permitted by a specification [5].
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1.3 Online Testing

During offline testing, test cases are generated completely and stored in a test
notation language. The test cases are then executed on a system under test. The
output is compared with the expected one and the decision is made according
to the verdict of the test.

Online testing combines the test generation and execution (see Figure 1.2).
One stimulus is generated at a time and immediately executed on a system under
test. The produced output or quiescence is checked against the specification and
a new test primitive is generated through all the testing process. online testing
based on CPS has been proposed and applied in practice by J. Peleska [17]

Fig. 1.2: Online testing [20]

The advantages of the online testing are [5]:

• A single test run can continue for a long time (hours or even days). Long
and complicated test cases may be executed without a human interaction.

• In the offline testing the test steps must be precomputed. That reasons
the huge size of a test suit. Contrarily, the online testing reduces the state
explosion problem.

• It allows more expressive specification languages.

Non-determinism in the specification makes modeling flexible. If an implemen-
tation is too large and complex to interpret online in a real-time it can be
changed to a more abstract one. So functional and/or timed behaviour is more
important than the computation. If needed, the model can be a mixture of
abstraction and precision [5].

The disadvantage of online testing could be the need to meet strict time
constraints that is very difficult to assure for most of the systems. Also tools
are relatively immature.

1.4 T-UppAal

T-UppAal is a testing tool for a model-based black-box conformance testing of
embedded real-time systems. Tests are generated according to a formal timed
automata model of the IUT and assumed operating environment, which com-
bined, specifies the required and allowed behaviour of the IUT. The environment
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and the model of a IUT are disjunct in T-UppAal. The reason is that it is easier
to think of an environment and a IUT individually during the design process
because they are separate in the real world. Another argument is that it is not
simple to put TA instead of the environment when it is not specified explicitly.

Fig. 1.3: T-UppAal

Since T-UppAal is an online testing tool it executes tests on the IUT as they
are generated. The tool is based on the UppAal engine, which is a model-checker
of real-time systems, modelled as networks of timed automata [23].

The IUT (Figure 1.3) is connected via an adapter and considered as a black-
box. Communication with a system is via input/output channels. The user has
to provide Timed Automata model of the IUT together with its environment.
The latter is used to restrict the generated traces to realistic ones [22]. T-UppAal
is explained with more detailed in Section 2.6.

1.5 Project Motivation

An online test of the IUT may potentially run for a long time at the same
time generating a huge amount of data. A great value would be to obtain
testing information that can be analysed and reused to achieve better testing
performance:

• reproduce errors faster,

• test parts of the IUT that were not tested,

• easier find the cause of the error;

In some cases it is not easy to recall the scenario of how the error was found.
We need to send exact sequence of inputs at the same time as it was during the
test. If we had no data about time intervals when actions were send, we would
need to try send several inputs in different time to repeat the failure. It is one of
the reasons that makes process of reproducing the error longer and that could
be eliminated by logging the test data.

When using randomly generated tests, a tester should be aware that some
parts of the IUT could be left without testing. It could be that there are
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number of conditions that must be satisfied in order to enter another part of
the implementation. In this case testing process can be improved by combining
random testing techniques and means of detecting which part of the IUT was
not tested.

It can be the case, that the error was found after a long testing period.
There is a minority of errors that needs all the trace to be repeated in order to
reproduce them. Possibility to exclude the part of the trace that is only needed
to reproduce the error would make testing process more efficient.

1.5.1 Failure Diagnosis

Consider the situation that the IUT was tested and a verdict fail was assigned.
To report the failure, a test engineer must know the circumstances of its appear-
ance. Moreover, a system developer should know how to reproduce the error in
order to fix it.

Readability of the Data

The idea of model-based black-box conformance testing limits what we can
observe during a test run to a sequence of input/output actions occurring at
certain points in time. The information generated by T-UppAal about the
executed test is written in a log file. The problem is that the file cannot be
processed by any program and the format is not easily read by a human. Yet
the hand-operated repeating of the test is not efficient.

As shown in Figure 1.4, to solve the problem we suggest to make a tool that
builds a timed automata trace (TA trace) from the data stored in the log file (1).
In order to re-run the test on the IUT automatically, the environment model
should be replaced with our generated TA trace in T-UppAal. The TA trace
could also be analysed in the UppAal model checker. The user could examine
single steps or re-run the entire test on the model in order to check the states
where the error occurred.

Repeatability of the Error

In order to reproduce the error we need to repeat the behaviour of the IUT. In
some cases it is enough to send the same sequence of inputs as it was during
the test run. However, to find the most difficult errors it may be necessary to
repeat the exact behaviour of the T-UppAal and IUT.

There are many possible interpretations what does it mean to re-run a trace
and also many technical problems connected (for more information see Chapter
3)

The problem is that we do not know what type of reruns we are able to
perform using T-UppAal with TA trace.

The solution could be to analyse variants of a test reruns and to do exper-
iments to find out if they are possible and what conditions should be satisfied
in order to successfully reproduce the error.
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Fig. 1.4: System improvement proposal: suggested objects are in a grey area. Circles
represent processes and arrows show data flow

1.5.2 Test Quality

Assume that the IUT was tested for some time and no fault was found. There
could be two possibilities: there were no errors in the system or the test suite
did not cover the part of the system that contained an error. The problem is
that we do not know about the quality of the test generated by T-UppAal.

Our proposal is to calculate what part of the IUT was covered by the gen-
erated test and analyse the measurement. As shown in Figure 1.4 we will take
data from the log file generated by T-UppAal and build a TA trace (1). The TA
trace will be used to calculate how many times each location/edge was visited
during the test (2). The obtained coverage information can be analysed (3) and
given to a test engineer to evaluate the quality of the test.

Using coverage metric a tester can decide when to stop testing. It can be
specified that test should stop after reaching target value of coverage measure.

Also there could be the situation that online test was running for a long
time, and after certain time the coverage stopped increasing, but did not reach
the target value. After analysis of such a data we could conclude about quality
of test cases generated by the tool (maybe it never gives inputs to reach the
certain part of the model).
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1.6 Project Goal

We are examining the data of executed tests. Our aim is to discover analysis
methods that makes it easier to search for a source of a failure. Our goal is to
improve testing effectiveness by proposing following:

• Design an algorithm and a tool that creates a test trace according the
data in the log file.

• Design an algorithm and create a tool that calculates the coverage.

• Use the implemented algorithm to simulate test the re-run in T-UppAal
and try to indicate cause of the failure.

• Find the best possible ways of making a test re-runs.

• To evaluate performance of T-UppAal by analysing location, edge and
code coverage.

1.7 Structure of the Report

The structure of the report is organized as follows. In Chapter 2 we introduce
Timed Automata, TIOA network, relativized time conformance relation and
give more details about T-UppAal. Variations of re-runs and problems concern-
ing them are analysed in Chapter 3. The idea of coverage measure is presented
in Chapter 4. Trace generation and coverage calculation algorithms and their
usage are described in Chapter 5. Experimental results are presented in Chap-
ter 6. Our experiment on industrial case study is described in Chapter 7 We
outline conclusions and talk over future work in Chapter 8.



2. TIMED AUTOMATA AND TESTING

In this chapter we formally present our semantic framework. We introduce
the Timed Automaton, the timed I/O transition system and the relativized
input/output conformance relation. We give the semantics to the Timed Au-
tomaton using the timed I/O transition system. We stick to the definitions
presented in [5].

2.1 Timed Automata

We assume that there is a set of actions Act that is partitioned into two disjoint
sets of actions: the output actions Aout and the input actions Ain. We assume
that there is a distinguished unobservable action τ /∈ Act. We denote by Actτ
the set Act ∪ τ .

One formal model for real-time systems is a Timed Automaton. Let X
denote a set of non-negative real-valued variables called clocks. We let G(X)
denote the set of guards on clocks being conjunctions of simple constraints of
the form x ./ c , where ./∈ {≤, <, =, >,≥} and x ∈ X and c ∈ N. Let U(X)
denote the set of updates of clocks corresponding to sequences of statements of
the form x := c, where x ∈ X, c ∈ N.

Definition 2.1. A Timed Automaton over (Act,X) is a tuple (L, l0, I, E),
where L is a set of locations, l0 ∈ L is an initial location, I : L → G(X)
assigns invariants to locations, and E is a set of edges such that E ⊆ L ×
G(X)×Actτ × U(X)× L.

We write l
g,α,u−→ l′ iff (l, g, α, u, l′) ∈ E.

2.2 Timed I/O Transition Systems

Definition 2.2. A timed I/O transition system (TIOTS) S is a tuple (S, s0, Ain, Aout,→),
where S is a set of states, s0 ∈ S is the initial state, and →⊆ S×(Aτ ∪ R≥0)×S
is a transition relation satisfying the usual timing constraints:

• time determinism – if s
d→ s′ and s

d→ s′′ then s′ = s′′, d ∈ R≥0

• time additivity – if s
d1→ s′ and s

d2→ s′′ then s
d1+d2→ s′′; d1, d2 ∈ R≥0

where R≥0 denotes non-negative real numbers
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Definition 2.3. Let a, b, ... ∈ Actτ , α, β, ... ∈ Actτ∪ R≥0, and d, e, ... ∈ R≥0.

• s
α→=def ∃s′ : s

α→ s′

• s
a⇒ s′ =def s

τ→
∗ a→ τ→

∗
s′

• s
d⇒ s′ =def s

τ→
∗ d1→ τ→

∗ d2→ τ→
∗

...
dn→ τ→

∗
s′ where d = d1 + d2 + ..dn

• s
a⇒=def ∃s′ : s

a⇒ s′

We extend ⇒ to sequences of actions and delays in the usual manner.

Definition 2.4. The timed I/O transition system S is strongly input enabled
iff it specifies all input action transitions for all possible states:

∀s ∈ S ∀i ∈ Ain : s
i→

Strongly input enabled I/O transition system will accept any input in any
state.

Definition 2.5. The timed I/O transition system S is weakly input enabled iff
it specifies all input action transitions for all possible states within an arbitrary
number of internal τ action transitions:

∀s ∈ S ∀i ∈ Ain : s
i⇒

Definition 2.6. Let d1 . . . dn+1 ∈ R≥0 and o1 . . . on ∈ Aout The timed I/O
transition system S is non-blocking iff

∀s ∈ S ∀t ∈ R≥0 ∃σ = d1o1...dnondn+1 : s
σ⇒ ∧

∑
di ≥ t.

Definition 2.7. The timed I/O transition system S is deterministic iff

∀s ∈ S ∀a ∈ Actτ ∪ R≥0 : if
(
p

a→ p′ ∧ p
a→ p′′

)
then p′ = p′′

We assume that the timed I/O transition system S is strongly input en-
abled and non-blocking. Therefore S will not block time in any input enabled
environments.

The semantics of a Timed Automaton T is defined by associating a TIOTS
S with T . The states of a Timed Automaton are of the form s = (l, v̄), where
l ∈ L is a location and v̄ ∈ R|X|

≥ is a clock valuation satisfying the invariant
of current location l : v̄ |= I(l). Intuitively there are two kinds of transitions:
delay transitions and discrete transitions.

Definition 2.8. The Transitions for Timed Automata System S:

• let d ∈ R≥0. We say that (l, v̄) d→ (l, v̄′) is a delay transition iff ∀d′ ≤ d :
v̄ + d′ |= I(l) and v̄′ = v̄ + d
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• let α ∈ Act. We say that (l, v̄) α→ (l′, v̄′) is a discrete transition iff there
exists an edge e = (l, g, α, u, l′) such that v̄ |= g, v̄′ = u(v̄) and v̄′ |= I(l′).

In delay transitions the values of all clocks of the automaton are incremented
by the amount of the delay, d. Discrete transitions correspond to execution of
edges (l, g, α, u, l′) for which the guard g is satisfied by v̄. The clock valuation
v̄′ of the target state is obtained by modifying v̄ according to updates u and
satisfies the invariants on l′.

Let us have two input enabled, non-blocking TIOTS S = (S, s0, Ain, Aout,→)
and E = (E, e0, Aout, Ain,→). We call E the environment for the specification
S. E and S are correspondingly the sets of states for E and S. e0 and s0 are the
initial states. Any output action of E is the input action for S and vice verse.

Definition 2.9. The parallel composition of S and E form a closed system
S‖E whose observable behaviour is defined by the timed I/O transition system
〈S × E, (s0, e0), Ain, Aout〉 where we define → as:

s
a→ s′ e

a→ e′

(s, e) a→ (s′, e′)

s
τ→ s′

(s, e) τ→ (s′, e)

e
τ→ e′

(s, e) τ→ (s, e′)

s
d→ s′ e

d→ e′

(s, e) d→ (s′, e′)
[5]

where a ∈ Act and d ∈ R≥0

In a similar way we can present the specification S as a Timed Automata
Network N = (S1|| . . . ||Sn||E1|| . . . ||Em) as a collection of concurrent Timed
Automata composed by a parallel composition:

Definition 2.10. Let assume that there exist a set of unobservable actions
Ainternwhere Aintern ∩ (Ain ∪Aout) = ∅ over which we allow timed automata
to synchronize internally. Let A1 in ∪ · · · ∪An+m in ∪A1 out ∪ · · · ∪Am+n out ⊆
Aintern. Let assume also that we have a number of TIOTS:

S1 =(S1, si 1, Ain ∪A1 in, Aout ∪A1 out,→)
...

Sn =(Sn, si n, Ain ∪An in, Aout ∪An out,→)
E1 =(E1, ei 1, Aout ∪An+1 in, Ain ∪An+1 out,→)

...
Em =(Em, ei m, Aout ∪An+m in, Ain ∪An+m out,→)

A parallel composition of S1 . . .Sn . . . E1 . . . Em form a Timed Automata Network
N whose observable behaviour is defined by the timed I/O transition system

(S1 × · · · × Sn × E1 × · · · × Em, (si 1, . . . , si n, . . . , ei m) , Ain, Aout,→)

where we define transition → as:
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• action transition:

si
a→ s′i ej

a→ e′j

(s1, . . . , si, . . . , ej , . . . , em) a→ (s1, . . . , s′i, . . . , e
′
j , . . . , em)

where a ∈ Ain ∪Aout, 1 ≤ i ≤ n and 1 ≤ j ≤ m

• synchronization transition

si
b→ s′i sj

b→ s′j

(s1, . . . , si, . . . , sj , . . . , em) τ→ (s1, . . . , s′i, . . . , s
′
j , . . . , em)

or
ek

c→ e′k el
c→ e′l

(s1, . . . , ek, . . . , el, . . . , em) τ→ (s1, . . . , e′k, . . . , e′l, . . . , em)

where b ∈ Ai in ∩ Aj out, c ∈ An+k in ∩ An+l out, 1 ≤ i, j ≤ n and 1 ≤
k, l ≤ m

• delay transition

s1
d→ s′1 . . . sn

d→ s′n, e1
d→ e′1 . . . em

d→ e′m

(s1, . . . , sn, e1, . . . , em) d→ (s′1, . . . , s′n, e′1, . . . , e
′
m)

where d ∈ R≥0

One of the extensions that T-UppAal supports is committed locations. [15]
An automata network is forced to perform the next action from that location,
i.e., a committed location must be left immediately that is only the transitions
from that location can be taken. Another extension is the use of integer vari-
ables. The variables can be updated and checked for value by guards in a similar
way as clocks. The difference is that the values of the variables can be changed
only through the updates but not by delay transitions.

2.3 Example Specification – Light Controller

In order to better understand specification as Timed Automata Network we
give an example of such a specification. The specification is a controller for
some smart lamp. When the switch is closed for very short time the impulse is
ignored. If the switch is held for a short time then the light is turned on/off. If
the switch is held for longer time then the level of light should be increased or
decreased depending on the time for how long the switch was closed.

The specification consists of the network of four Timed Automata. We call
them: Interface (Figure 2.1), Dimmer (Figure 2.2), Switch and Adjust Light
(Figure 2.3). The environment is just one Timed Automaton (Figure 2.4).
The locations are marked as circles and the transitions as arrows. The initial
location is marked with double circle. The committed locations are marked
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with C inside a circle. Some of the locations have invariants. The invariants
are the text placed near the given location. If the label belongs to the input
set of labels then the name of the transition ended with question mark. In the
other case name ends with exclamation mark. The set of visible input actions
consists of grasp (which corresponds to closing a switch or holding a wire) and
release (which opens the switch). The set of visible output action consists of
setLevel 1...setLevel 10 (which corresponds to setting light to certain level).

Fig. 2.1: Interface Timed Automaton of the Light Controller Specification

The first automaton Interface (Figure 2.1) is responsible for interpreting a
sequence of grasp and release actions. Depending on the length between the
consecutive grasp and release actions, they are ignored (if the delay was less
than 20 time units) they generate the touch action (if the delay was between
20 and 50 time units) or they are treated as holding the wire (for the delay
bigger than 50 time units)– the sequence of the starthold and endhold actions
is generated. For measuring the time delay timed automaton uses the x clock
variable.

Fig. 2.2: Dimmer Timed Automaton of the Light Controller Specification
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The second automaton Dimmer (Figure 2.2) interprets the sequence of
starthold and endhold actions generated by the Interface. Depending on how
long the delay is between those two actions, the appropriate actions are gener-
ated. The current level of light is stored in the L variable. When the automaton
is in location D2 the light level is decreased every 50 time units, and when in
D1 it is increased. This is done by updating the value of the L variable and
generating the setLevel action. The delay is measured using the local clock
variable x. Here we can see how the committed locations (D7 and D8 ) can be
used to make two transitions atomic. When we start holding the wire (close the
switch) we set the light level to the stored old value of the light level (L:=OL).
At the same time we set the variable on, which represents whether the light is
on. We also need to generate the setLevel action so we use again the committed
locations (D5 and D3 ). When we end holding the wire (endhold action) we
store the current value of light in the OL variable.

Fig. 2.3: Switch and Adjust Light Timed Automata of the Light Controller Specifica-
tion

The next automaton Switch (left in Figure 2.3) is responsible for interpreting
the touch action. When the touch action is received, it turns on/off the light by
setting the on variable and storing/restoring the light level to/from OL variable.
Also the setLevel action is generated.

The last automaton Adjust Light (right in Figure 2.3) is used to translate the
setLevel action into the output actions setLevel 0...setLevel 10. Which action
is generated depends on the current value of the variable L. A short delay is
allowed between receiving the setLevel action and sending the output action.
This delay can be up to 5 time units.

Fig. 2.4: Environment for the Light Controller Specification

To make the specification a closed system we need an environment. An
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example model is shown in Figure 2.4. The environment presented here is very
permissive. It allows any sequence of the input/output actions except that after
the grasp action must follow the release action, i.e. it is not possible to generate
two consecutive release or grasp actions.

2.4 Relativized Time Conformance

In this section we define the notion of a relativized conformance [5] between
timed I/O transition systems. The notion is derived from the input/output
conformance relation (ioco) of Tretmans [21] by taking time and environment
constraints into account. This relation ensures that the implementation has no
behaviour that is not allowed by the specification:

• it is not allowed to produce an output at a time that is not allowed by the
specification

• it is not allowed to omit producing an output when one is required by the
specification by delaying more than allowed.

To define the relativized timed conformance relation (rtioco) we need to intro-
duce some terms. Let σ ∈ (Ain ∪Aout ∪ R≥0)

∗ be an observable timed trace of
the form σ = d1a1d2 . . . akdk+1.

Definition 2.11. The observable timed traces TTr(s) of the state s is:

TTr(s) =
{

σ ∈ (Ain ∪Aout ∪ R≥0)
∗ |s σ⇒

}
Definition 2.12. For a state s (and the subset S′ ⊆ S ) and a timed trace σ,
s After σ is :

s After σ =
{

s′|s σ⇒ s′
}

, S′ After σ =
⋃

s∈S′

s After σ

s After σ is the set of states that can be reached after σ.

Definition 2.13. For a state s (and the subset S′ ⊆ S ) the set Out(s) is:

Out (s) =
{

α ∈ Aout ∪ R≥0|s
α⇒

}
, Out(S′) =

⋃
s∈S′

Out(s)

Out(s) is a set of observable outputs or delays that can occur in that state
s. Now we are able to define the rtioco relation formally:

Definition 2.14. Given an environment E with the initial state e0, a system S
(called implementation) with the initial state s0 and a system T (called specifica-
tion) with the initial state t0, the E-relativized timed input/output conformance
relation rtiocoE between systems S and T is defined as:

S rtiocoE T iff ∀σ ∈ TTr(e0) : Out ((s0, e0) After σ) ⊆ Out ((t0, e0) After σ)

Whenever S rtiocoE T we will say that S is a correct implementation of the
specification T under the environmental constraints expressed by E .
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2.5 UppAal

UppAal is a tool for modelling, verification and simulation of real time systems
modelled as networks of timed automata. The tool consists of a graphical user
interface and a model-checking engine (Figure 2.5).

Fig. 2.5: UppAal architecture

There are three parts in the user interface : system editor, simulator and
verifier.

In the system editor the user can model a real time system as a network
of timed automata. These automata are designed using the UppAal modelling
language that extends timed automata with additional features [3].

The simulator is a validation tool, which allows the user to examine the
possible executions of the system during early design stages, and enables the
fault detection prior to the verification by the model-checker. The user can
control the simulation and select the (symbolic) state or transition to be visual-
ized or perform a simulation step-by-step. The values of the data and the clock
variables in the current state or transition selected are displayed. The current
control points of each automaton of the selected automata edges are marked to
indicate the current transition. A message sequence chart view of the generated
trace is also showed in the simulator[23].

The verifier allows the user to enter the properties to be verified. The user
can specify the system requirements and indicate the options according to which
the verification is going to be performed. The requirement specification is ex-
pressed in a simplified version of computation tree logic. The result can be: the
truth value of the property is unknown, the property is satisfied, and the prop-
erty is not satisfied. The result of the model checking may include a diagnostic
trace if the property is satisfied [23].

A command line version of UppAal exists. Given a specification and a set
of properties it checks whether these properties are satisfied. It also gives the
possibility of generating a trace that satisfies given property. The trace gen-
erated can be of the following type: 1) some , 2)shortest or 3)fastest. This
diagnostic information is generated on the standard output. The advantage of
using the command line tool is that we can re-direct the output to a text file.
This allows to automate generating test and batch of experiments can be made
more efficiently.
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2.6 T-UppAal

As we mentioned before, T-UppAal is a testing tool for model-based black-box
conformance testing of embedded real-time systems. The specification for the
algorithm is in the form of two TIOTSs S||E . One represents the IUT and the
other the environment. The interaction between S and E is done by explicitly
declaring set of observable actions called the test primitives. An adapter can
translate those primitives to the real interactions with the IUT. The randomized
online testing algorithm [5] that T-UppAal uses maintains the current reachable
set of states Z ⊆ S ×E . It represents all the states the specification can occupy
after the observed timed trace. Here S is a set of states and E the set of
environment states. This information allows T-UppAal to choose the proper
test primitive and validate the outputs from the IUT.

T-UppAal randomly performs one of three actions: send an input to the
IUT, wait for the output, or reset the IUT. The state set is updated when an
input is offered or an output or a delay is observed. The presence of improper
output from IUT is detected when the set of current states becomes empty.

The functions used in Algorithm 1 are defined as:
EnvOutput(Z) =

{
a ∈ Ain |∃ (s, e) ∈ Z.e a→

}
Delays(Z) =

{
d

∣∣∣∃ (s, e) ∈ Z.e d⇒
}

ImpOutput(Z) =
{
a ∈ Aout |∃ (s, e) ∈ Z.s a→

}
The EnvOutput is the set of input actions that are allowed by the environ-

ment in the current state set, and is empty if environment model has no outputs
to offer. If the environment must produce an input at a certain time, Delays
must pick a real number from the interval that fulfils those constrains. To com-
pute After the reachability algorithm from [2] is used. ImpOutput is the set
of output actions that is allowed according to IUT specification in the current
state set. The function ZAfter α computes the set of states Z reachable after
the action α ∈ Ain ∪Aout. Ain denotes the set of input actions. Aout is the set
of output actions. The function ZAfter δ computes the set of states Z reachable
after the time delay δ. The concrete realization of the Algorithm 1 is presented
in [12].

The Main idea of the algorithm is the following. Start where the Z contains
the initial states in both the environment and the specification. Then continually
compute the set of states Z that the specification can be in after the observed
test run so far. This is done until either Z is empty (no legal states) and
a fail verdict is assigned, or it has reached the defined number of iterations
(MaxNoIterations) and a passed verdict is assigned. One of the three basic
actions T-UppAal does is:

1. Send an input (enabled output in the environment) randomly chosen
among legal inputs according to the Z. Then update Z, according to
ZAfter α(line 3-6).

2. Randomly choose how long it will wait for the output. If it observes the
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output before the chosen time has passed, it updates the Z according
to how long it have waited. It checks also if the output is a legal one
according to Z. If it is a legal output, Z is updated, else a fail verdict
is assigned. If no output is observed during sleeping the Z is updated
according to the passing of time (line 7-19).

3. Third, reset the IUT and restart the algorithm(line 21-22).

Algorithm 1: Test Generation and Execution
1: InitiallyZ := {(s0 , e0})
2: while Z 6= ∅ ∧NoIterations ≤ MaxNoIterations do
3: action:
4: randomly choose a ∈ EnvOutput(Z)
5: send a to IUT
6: Z := ZAftera
7: delay:
8: randomly choose δ ∈ Delays(Z)
9: sleep for δ and wake up on output o

10: if o after δ′ ≤ δ then
11: Z := Z After δ′

12: if o /∈ ImpOutput(Z) then
13: return fail
14: else
15: Z := Z After o
16: end if
17: else
18: Z := Z After δ
19: end if
20: restart:
21: Z := {(s0 , e0 )}
22: reset IUT
23: end while
24: if Z = ∅ then
25: return fail
26: else
27: return pass
28: end if

2.6.1 Options in T-UppAal

The T-UppAal tool itself is a command line programme. It does not have any
GUI interface. The specification of the IUT must be built using other tools, such
as UppAal. There are several command line arguments that can be specified
for a test run. Below we describe the one we consider most relevant to re-runs
and coverage measurements, other options are described further in [22]:
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- I filename. References the specified dynamic library containing the binary
adapter code to an implementation;

- b Use breadth-first search of the state space;

- d Use depth-first search of the state space;

- P delay

o eager: chose possible transition as soon as possible,

o lazy: chose possible transition as late as possible,

o random: delay within bounds specified by model,

o lower, upper: try random delay from the specified interval;

- u (inDelay,inRes,outDelay,outRes). Observation uncertainty intervals in
microseconds:

o inDelay: the least delay that takes to deliver input,

o inRes: possible additional delay for delivering input,

o outDelay: the least delay that takes to observe output,

o utRes: possible additional delay for observing output;

- F future. The amount of future in model time units to be precomputed;

The -u and -F options

As the -u and -F options effects are subtler than the other options, we describe
them as they are implemented in the current version of T-UppAal [16]. We use
the following notions for describing them:

1. Delay uncertainties:

• δ: The delay in sending action to the IUT (the source of the delay
is later described in Section 3.3.1). The least delay is δmin and the
max delay is δmax

2. Time-stamps:

• t: current real-world time.

• ttgt: the time we want T-UppAal to deliver the input.

• ttry: the time T-UppAal tries to send the input to the IUT.

• tdone: the time input was delivered.

3. Intervals:

• 〈l, u〉: real time interval where l is the lower bound and u is the upper.

• 〈L,U〉: model time interval where L is the lower, U is the upper.
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4. Constants

• T: One model time unit corresponds to T amount of real time.

The algorithm 4 gives a more detailed description of line 4, 5 and 6 in the
algorithm 1 in conjunction with the -u options and the -F options. These options
are used to compensate for uncertainties in adapter delay by increasing the state
set which the IUT can be in. For simplicity we omit in the algorithm preemption
because of an output o received from the IUT. If there is an output from the
IUT, the output is processed according to ZAfter o and then T-UppAal may
try to send another input a ∈ EnvOutput(Z).

Algorithm 3 and 2 which are used by the algorithm 4, show how model time
units are converted to real time units and vice verse. Detailed description of how
it is actually done is omitted for clarity and only the idea described. T-UppAal
did not support δin

min > 0 at the time of this writing. We assume δin
min = 0 and

do not include it in the algorithm.
The idea of algorithm 2 is to change the interval (l, u) (which should be a

real time interval) to model time. As T-UppAal wants to take into account the
observation uncertainties. The deltain

max is added to the upper interval, thereby
making it larger.

The idea of algorithm 3 is very similar to the previous one. The input is
still an interval except now it’s in model time (L, U). The real time interval
should not have any timing uncertainties(as the uncertainties are only used in
computing of the state setZAfter a) and therefore deltain

max is subtracted from
the real time (T ∗ U).

Algorithm 2: Simplified Real to Model Time
1: function 〈L,U 〉R2M(l , u)
2: return

〈
(l/T , (u + δin

max )/T
〉

3: end function

Algorithm 3: Simplified Model to Real Time
1: function 〈l , u〉M2R(L,U )
2: return

〈
T ∗ L,T ∗ L− δin

max

〉
3: end function

As stated before, the algorithm 4 is a detailed description of what happens
in line 4 to 6 in algorithm 1 with timing uncertainties. T-UppAal starts by
getting the current real time. This time (after changed to model time units) is
the lower value of the interval to compute ZAfter τ([L,U ]). The upper value
is determined by the - F options, and is the amount of future time we want
to be precomputed. T-UppAal randomly chooses a ∈ EnvOutput(Z) with the
interval in which a should be sent to the IUT. The next step is to determine
when a should be sent. As some time has been used for choosing a, T-UppAal
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Algorithm 4: Working of T-UppAal with timing uncertainties
1: t := getTimeNow()
2: 〈L,U 〉 := R2M(t , t + F )
3: ZAfter τ([L,U ])
4: a 〈L,U 〉 := randomly choose a ∈ EnvOutput(Z)
5: 〈l , u〉 := M2R(L,U )
6: t := getTimeNow()
7: randomly choose ttgt ∈ (max (l , t), u)
8: wait until ttgt time
9: offer a to IUT

10: ttry := getTimeNow()
11: receive confirmation a sent to IUT
12: tdone := getTimeNow()
13: 〈L,U 〉 := R2M(ttry , tdone)
14: ZAfter τ([L,U ])

needs to get the current time. The higher of l and t must be chosen. t is the
current time and T-UppAal cannot send a at a time before time t. A random
time from that interval is chosen to determine when a is sent. At the target
time the action a is then sent to the IUT. Next T-UppAal stores the interval
in which it tried to send it and to the time it got acknowledgement from the
adapter that the actions has been sent. This interval is then used to compute
ZAfter τ([L,U ]).

2.6.2 The Adapter and The System Layers

An important system component that is needed for testing is the adapter. The
adapter must be programmed by ”hand”. The adapter is strongly dependent on
the IUT and must be created (or adopted) for each one individually. Whenever
there is a communication between the IUT and T-UppAal, the message (action)
is sent first to the adapter before either going to the IUT or to the T-UppAal
engine. The adapter translates then the action into IUT specific message and
ensures that the IUT receive it. The adapter also handles the time stamping of
when an action is performed.

One of the results of testing is a log file. We will call this file trace log. The
log contains every input and output primitive that was sent by T-UppAal to
the IUT and the delays that occurred between them. This log file can help the
analysis of the quality of the testing or diagnose the cause of the error. All this
is done in a separate part of the adapter called the driver.

The layers in T-UppAal that the actions pass, can be seen in Figure 2.6
for input actions and in Figure 2.7 for output actions. In Figure 2.6 we see
the path for the input action α. It starts in the engine where T-UppAal has
decided to send it according to T-UppAal algorithm 1. The action α is then
passed trough the driver to the adapter. When α has been sent to the IUT,
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Fig. 2.6: Where the action α is time stamped

the adapter confirms that the action has been consumed to the driver. When
the driver receives the ack, it time stamps the event by Tα. The engine then
receives an update that the action α has been sent to the IUT at time Tα. Then
driver writes this info to the log file.

Fig. 2.7: where the action β is time stamped

The process is very similar for when output actions are received from the
IUT. Instead of the action originating from the engine, it now comes from the
IUT. The IUT communicates to the driver via the adapter that the output
action β has occurred. As before, it is time stamped in the driver, sent to
engine and then written by the driver to the log (with its time stamp).



3. TEST RE-RUN

The idea of test re-runs is important in testing and debugging. Whenever we
encounter some error we would like to know if we are able to reproduce the
occurrence of the error. Another use is to verify that the error was removed. In
this chapter we will try to discuss different issues connected to the problem of
making re-runs.

3.1 Variations of Test Re-runs

The idea of model-based black-box conformance testing limits what we can
observe during a test run to a sequence of input/output actions occurring at
certain points in time. In order to make a re-run of the test and reproduce the
error we want to repeat the exact behaviour of the IUT. To do this we need:

• send the same input at the same time,

• check if received output conforms to the one received during the test run
and that it was produced at exactly the same time;

Due to various factors discussed later in this chapter we are not able to specify
exactly at what time the input action will occur. We are able to specify some
bounds when the action will occur. We have a similar situation with output
action. It may occur at slightly different moment as last time. These facts
require that we define more specifically what it means to re-execute a trace.

3.1.1 Available Options for Re-run

In the following sections we will try to identify number of independent factors
that may change how the actual re-run is done. We split them into four sections:

• Specification and Environmental Constraints

• Timing tolerance

• Relative position of timing constraints

• Order of the actions
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3.1.2 Specification and Environmental Constraints

When making a run T-UppAal, creates a log file in which the time of occurring
input/output actions is stored. When doing re-run this information is our basis
for making a re-run. Additionally we have the specification according to which
the run was done. This specification is divided into two parts: one describing
environment and the other describing behaviour of the IUT.

When doing the re-run we have three options:

1. We may take the original specification constraints into account. Taking
into account the original specification makes the re-run timing much more
restrictive. This is because we are at the same time checking that during
the re-run the IUT is conforming to the specification. The resulting time
tolerance on action will be conjunction of constraints resulting from inter-
preting information stored in the driver log file and the fact that the IUT
must conform to the specification.

2. We may take into account only part of the specification describing the
behaviour of IUT. This way we still check if the IUT conforms to the
specification and is as restrictive about when the actions should occur.
The environment specifies constraints on the input actions. Without the
environment we may happen to test the part that was not possible to test
when using the original environment.

3. We may skip specification constraints. We take into account only the
information stored in the driver log file. This way we only check if the
re-run is similar to the original run, but we are not checking if the IUT
still conforms to the specification during the re-run. This kind of re-run
is the least restrictive of all three possibilities.

3.1.3 Timing tolerance

We can specify the timing tolerance in several ways:

• Specify one global tolerance for all actions. The size of timing tolerance
will be the same for all actions.

• Specify timing tolerance separately for input actions and separately for
output actions.

• Specify timing tolerance individually for each action. By this we mean that
timing tolerance will be individual for each action, but all actions with the
same label will have the same tolerance. There is also the possibility of
not specify timing constraints at all for some actions (e.g. output actions).

In general it is difficult to say which type of specifying tolerance is best. It may
happen that specifying one tolerance for all action is good enough, but for some
cases it may happen that we need to specify individual tolerance for each action.
It seems that having separate tolerance for input and output, but not to specify
explicitly the tolerance for each action, is good enough for most cases.
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3.1.4 Relative Position of Timing Constraints

Given information stored in the driver log file we need to specify the relative
position of timing bounds when this action should occur. We can do this in
several ways:

• Specify the timing constraints relative to the beginning of the run. It
means that if the previous action occurred at different time as previously,
it does not affect the time bounds the next action. This type of specifying
timing bounds we will refer in this report as using global time.

• Specify the timing constraint relative to the time when the previous action
had occurred. By this we mean that the action time bounds will be shifted
by the difference between times when previous action occurred in the run
and in the re-run. In our report we will refer to this type of specifying
bounds as relative time.

• Specify the timing constraints of the action relative to the time when the
action with the same label/type occurred. The timing bounds on the
action will be shifted by the difference between the time when action with
the same label occurred during the run and the re-run.

Which type of specifying bounds is the best one, depend on the behaviour of
IUT. Basically we do not know how the implementation treats its time. It may
start counting from the beginning after each interaction or always use the global
time. It may also be a mixture of both local and global time. Thus the small
differences between run and the re-run may or may not accumulate over time.
In theory there can be a situation when no solution is good.

3.1.5 Order of Actions

Sometimes it may happen that if two actions occur quickly one after another. If
the tolerance on actions is bigger that the time between two consecutive actions
then the timing bounds of those actions will overlap. So another option is
whether allow actions to occur in different order. We have three choices:

• All actions should happen in the same order as in the run. This is the
strictest choice.

• Allow change of order only in certain situations. For example we may
allow actions of different type to be swapped - if input action occurs next
to the output action during re-run their order may be different.

• Do not pay any attention to the order of action as long as the timing
constraints are satisfied. This option gives most freedom.
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(a) Specification (b) Environment

Fig. 3.1: Specification and environment used to illustrate the examples

3.1.6 Examples of Re-runs

When we combine the parameters we can get many different types of re-runs.
In this section we give examples how the re-run constraints can be constructed.

In all the examples we will be using the same specification. It is a specifica-
tion of what can be a simple mouse controller. It can be seen in Figure 3.1(a).
It accepts actions click and depending how quickly they are pressed after each
other, a singleClick or a doubleClick action is produced. In Figure 3.1(b) we
see the environment for that specification. We accept anything from the IUT
and we try to input click actions not too fast and not too slowly – between 2
and 20 model time units.

Fig. 3.2: The time line showing actions during exemplary run

In Figure 3.2 we can see an exemplary run that we will refer in the exam-
ples. The action click happened at the time of 3 model time units, then it was
followed by the singleClick action and then we have 2 more click actions and
one doubleClick action.

To make clearer description of generation of the re-run constraints, we need
to present the constraints that were imposed by the specification and the envi-
ronment in each step. We will present them in the form of intervals. To shorten
notation and avoid ambiguity we will use alternative names for actions. The
first action click will be represented by C1,singleClick by SC, second and third
click by C2 and C3 and doubleClick by DC. Timing bounds may depend on
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when some action occurred before. To represent the time when an action oc-
curred we will use t letter superscripted with an action name. For example tC1

represents the time when the first click action occurred. We will use the same
notation when presenting the constraints for the re-runs.

Action Specification Environment
name constraints constraints
C1 [0,∞] [2, 20]
SC [tC1 + 5, tC1 + 7] [0,∞]
C2 [tSC ,∞] [tC1 + 2, tC1 + 20]
C3 [tC2, tC2 + 7] [tC2 + 2, tC2 + 20]
DC [tC3, tC3 + 3] [0,∞]

Tab. 3.1: Constraints imposed by the environment and the specification

In Table 3.1 we can see the constraints imposed by the specification IUT and
the environment. The first click action can happen according to the specification
at any time. The environment imposes the interval between 2 and 20 model
time units. The singleClick action can occur between 5 and 7 model time units
measured relative to the first click. The environment does not impose anything.
When we look at the specification and Table 3.1 it may seem that there is slight
inconsistency in the bounds for the C2 (second click) action. The specification
does not have any bounds. We do not specify [0,∞] interval because this click
must follow the singleClick action.

When looking at the row with C3 action it may seem that specification is
not input enabled (specify constraint on input action). This is not true. We just
omit possibilities for actions that would result in different run. For example in
the second row we have not only possibility to perform singleClick action but
also another click action. But this would lead to different run.

Example 1 - Environment with Specification and Global Time

The first example that we present is quite restrictive. We include environmental
and specification constraints. The timing tolerance for all actions is the same.
It is ±2 model time units no matter if it is input or output action. The position
of timing constraints is measured relative to the beginning of the run. We do
not allow the actions to be mixed between each other. In Table 3.2 we can see
the constraints derived from the log file. These are created following options
we specified for this example. The additional part (in all rows except the fist
one e.g. [tC1,∞]) is added because we want actions to occur in the same order
as during the run. The final version of the constraints is the conjunction of the
constraints from Table 3.2 and Table 3.1. It can be seen in the third column of
Table 3.2. The only situation when environment affect the final interval is for the
action C3. We can notice that the actual interval when action occurs depends
how we choose the previous actions to occur. For example if the first click action
occur after 1 model time unit then the allowed interval for singleClick action
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Action Log file Final constraints:
name constraints Env ∧ Spec ∧ Log
C1 [1, 5] [1, 5]
SC [7, 11] ∩ [tC1,∞] [7, 11] ∩ [tC1 + 5, tC1 + 7]
C2 [8, 12] ∩ [tSC ,∞] [8, 12] ∩ [tSC ,∞]
C3 [10, 14] ∩ [tC2,∞] [10, 14] ∩ [tC2 + 2, tC2 + 7]
DC [12, 16] ∩ [tC3,∞] [12, 16] ∩ [tC3, tC3 + 3]

Tab. 3.2: Example 1 - Constraints for the re-run derived from the log file

is [7, 8] (in model time units), but if the click action occurs after 5 model time
units then the interval for singleClick action is [10, 11]

Example 2 - Specification and Relative Time

In this example we set the options to little less restrictive values. We will
include only specification constraints. The timing tolerance is individual for
each action. For click it will be ±1 mode time unit, for singleClick ±2 model
units and for doubleClick ±3 model time units. The timing constraints will be
positioned relative the time when action with the same label occurred last time.
We additionally allow actions to change the order - the sequence of actions may
be different in the re-run as long as the timing constraints are satisfied.

Action Log file Final constraints:
name constraints Spec ∧ Log
C1 [2, 4] [2, 4]
SC [7, 11] [7, 11] ∩ [tC1 + 5, tC1 + 7]
C2 [tC1 + 7− 1, tC1 + 7 + 1] [tC1 + 6, tC1 + 8]
C3 [tC2 + 2− 1, tC2 + 2 + 1] [tC2 + 1, tC2 + 3]
DC [11, 17] [11, 17] ∩ [tC3, tC3 + 3]

Tab. 3.3: Example 2 - Constraints for the re-run derived from the log file

In Table 3.3 we can see the constraints derived from the log file for this
example. The final constraints that take into account the environmental con-
straints can be seen in the last column. Similarly as in the first example the
timing constraints for some actions depend on the time when the previous action
occurs. For example action singleClick will have the timing tolerance [8, 10] if
the first click action occurs at 3 or [9, 11] if the click action occurs at 4.

Example 3 - Input and Output Actions

In the third example the options are the less restrictive. We will not include
any part of the specification constraints. We specify separately the tolerance
separately for the input and output actions. For input actions it is ±2 model
time units and for the output actions it is ±3 model time units. The position of
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timing constraints will be relative the previous action occurred(relative time).
We allow the order of action to change. For example in the re-run action SC is
allowed before action C1 if the timing constraints are satisfied.

Action Log file
name constraints
C1 [1, 5]
SC [tC1 + 6− 3, tC1 + 6 + 3]
C2 [tSC + 1− 2, tSC + 1 + 2]
C3 [tC2 + 2− 2, tC2 + 2 + 2]
DC [tC3 + 2− 3, tC3 + 2 + 3]

Tab. 3.4: Example 3 - Constraints for the re-run derived from the log file

In Table 3.4 we can see the constraints derived from the log file for this
example. These are the final constraints at the same time. As in the previous
examples the timing constraints depend on the time when the previous action
should occur, but only the relative position can change. The size of the gap is
the same and depends only on the tolerance we specified.

Example 4 - Input Actions Only

In the last example the options are the least restrictive of all examples. We will
not include any part of the specification constraints. We put constraints only
on input actions. We allow output actions to appear at any time in any order.
The tolerance for input actions is ±3 model time units. The position of timing
constraints will be relative the beginning of the run (global time). The order of
input action should not change. In Table 3.5 we can see the constraints derived

Action Log file
name constraints
C1 [0, 6]
SC [0,∞]
C2 [6, 9]
C3 [7, 10] ∩ [tC2,∞]
DC [0,∞]

Tab. 3.5: Example 4 - Constraints for the re-run derived from the log file

from the log file for this example. These are the final constraints also. The time
when the action should occur is independent on the time when other actions
occur.

Summary

We can see that there can be many ways how we can create constraints for the
re-run. The biggest impact has the fact if we include specification constraints
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or not. If we do include specification constraint, then we must be careful with
choosing other parameters. The gap for the actions may be smaller than in-
tended. In the extreme case including the specification constraints may result
in deadlocks in the model. Not including the environment is much safer. We
always have the same tolerance gap as we intended. The problem with this kind
of re-run may be that we are not sure if the behaviour of the IUT still conforms
to the model.

3.2 Timed Automata Trace

The idea behind Timed Automata trace is to take information stored in the
driver log, decide which options we want to use during re-run (see Section 3.1)
and create the Timed Automata. This Timed Automata (which we will call
Timed Automata trace or TA trace in short) should be generated in a way that
it can be easily merged with the specification. In general it is possible to create
Timed Automata with any value of the option specified in Section 3.1. However
we present here only a subset of the many possibilities. We assume that we
will replace the environment with the TA trace we create. Thus we have no
possibility of including the environmental constraints. We discuss later in this
chapter why including environmental constraints would create problems. First
we describe the way we create the TA trace and then tell what possibilities it
gives us.

As mentioned in Section 2.6 T-UppAal writes all test primitives to the trace
log. The data stored in the log was kept to minimum so not to affect the test
run. The information stored there is straightforward. It stores labels of the test
primitives, parameters to the labels and the delays between them.

The process of changing the debug trace into the TA is in principle quite
straightforward one. For each test primitive in the log we create a location in
the TA (except the initial location which we just include). Then we create the
transition leading from the last added location to the newly added one, and on
that transition a proper label is added (the input or output label). We also
consider the delay by adding proper guards and invariants. In order to choose
those guards we must know how many microseconds one model time unit is.
We call this value precision. The precision value can be different from the one
used in the original run. Care must be taken to avoid rounding errors and
the specification itself must be modified. See Section 5.2.7 for the details. To
take into account value passing we must update the variables or put additional
guards to take the parameters into account (for the details see Section 5.2.8).

In Figure 3.3(a) we can see short driver log file. In Figure 3.3(b) we can see
how the example TA trace could look like for this log file. In this example the
order of actions must be the same as during the original run. We also assume
that the timing constraints are relative to the beginning(global time) of the run.
We assume that one model time unit was 10 000 microseconds. The tolerance
on input was 0, so it was as small as possible. The gap for the input action
to happen is therefore one model time unit. The tolerance for output was ±2
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(a) Definition of in-
put output actions

(b) Driver log file

Fig. 3.3: The driver log and the TA trace

model time units.

3.3 Possible Problems Concerning Re-runs

Sometimes the re-run of the test can be difficult or even impossible. In this
section we will discuss several factors that can influence the reruns. We divide
them into four parts:

• Unpredictable platform behaviour ,

• Non-determinism,

• Global and relative time;

• Conversion of time units;

The following sections describe them in more detailed.

3.3.1 Platform Behaviour

To make re-runs it is important that the system is in the same initial state as
it was during the original run.

Furthermore do we need to perform the same actions as we did in the original
run at the precisely the same time. Because of the system delays that is rarely
possible. The cause of the delay can be traced to computation, communication
and scheduling.
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Computation

During a test run, the set of states reached after the event trace must be com-
puted in real time. The correctness of output/input sent to T-UppAal is vali-
dated based on this state set. The number of stored states depends on the size
of model and if it is deterministic or non-deterministic. In more determinis-
tic model the count of states remains relatively lower. Concurrent models can
interleave events in many different orders so the state set may grow large for
non-deterministic models. We can therefore expect more computation delay
when dealing with non-deterministic models because computation time tends
to be longer.

We can also expect the computation time to be different during a re-run
than in the original run as the model is different.

Communication

The communication itself also takes time. A message needs to travel trough
various operating and protocol a stack layers. Each layer handles specific part
of the procedure of delivering a message over the net, before the message is sent
over the physical wire. The International Standards Organization (ISO) defines
seven layers [9]. We depict them and the route that the message from T-UppAal
must traverse to get to the IUT in Figure 3.4. We are also aware that there are
other ways that the adapter for the T-UppAal application could communicate
with the IUT. For example if the IUT and T-UppAal are on the same com-
puter, the adapter and IUT could use mutual exclusion and shared variables.
Whatever method that is used between the IUT and T-UppAal’s adapter, we
must acknowledge that the time it take can vary and be unpredictable, thereby
possibly affect the ability to make re-runs.

Fig. 3.4: ISO 7 layers

Like message takes time in getting to the physical medium(cable, radio, fiber,
etc.) we also have a delay corresponding to the time in which the message is on
the physical medium. This depends on bandwidth (how much information can
be transferred over a connection in a given period of time) and a latency (how
much time it takes for a response to return from a request) of the net.
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Scheduling

Process scheduling in OS is the key to multiprogramming. The role of process
scheduling is to assign which processes should execute on the CPU over time.
In many multitasking systems the processor scheduling operates on three levels.
They are differentiated by the time scale at which they perform their operations.

Fig. 3.5: Process states

The states that the processes can be in can be seen in Figure 3.5. We use
the more common one, a seven state process model [18] to explain the example
effects of scheduling on the ability of being able to re-running a trace.

A process is decided by the long-term scheduler if it is added to the system
for processing. If admitted it is put into the ready queue and its control handed
over to the short-term scheduler. The short-term scheduler decides – according
to performance criteria [1] – to either: admit it to the CPU, continue to keep
it in ready state or moves it to the medium-term scheduler. The short time
scheduler is invoked because of pre-emption to favour another process or when
an event (example: clock interrupts, I/O interrupts, operating system calls,
signals [18]) occurs that leads to suspension of the current process.

In many systems each process is assigned a priority and the short-term sched-
uler always chooses a process with the highest priority. If two processes have
equal priority, one is chosen in accordance to scheduling policy (First come first
served, Round robin, etc. [1]). In Linux/Unix the priority is dynamic and
depends on the CPU Utilization history.

In a view of process scheduling, we need to make sure that T-UppAal has
access to the CPU at the time it is either delivering or receiving an action.
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Failure to do so will cause a delay of the same length as it took other preceding
processes to finish and to do the context switch. If the only process running is
T-UppAal running or T-UppAal is having higher priority than other processes,
then the possibility of this delay occurring is lower. On the other hand it is
impossible to have complete control over non real-time operating systems. The
system can initiate I/O or use the file system. There are also parts in UppAal
that require the use of the file system and the need to do I/O. The I/O operations
are usually done by kernel code. In most non real-time systems kernel code is
not pre-emptive thus T-UppAal will not run (even with highest priority) until
those operations finish execution.

For some operating system the CPU is given a fixed time (quantum) to work
on a process. After each quantum the short-term scheduler checks for processes
to be scheduled. If the need to switch a task arises anywhere in a quantum
time frame the actual task switch would happen only at the end of the current
quantum.

Fig. 3.6: Origin of a delay example

The example showing how quantum concept can create additional delay is
shown in Figure 3.6. We assume that the quantum is 10 ms. Lets say that
process (e.g. T-UppAal) needs 25ms of CPU time to finish its computation.
After that it goes into blocked state. We assume that process wants to wake up
16ms later. Even though no process is occupying the CPU the scheduler does
not check for process to run until the end of quantum (at 40ms). Therefore we
can get a delay as big as the quantum time gap plus the dispatcher latency (the
time it takes to stop one process and to start another).

A different situation would be in Real Time Operating System (RTOS). In
Figure 3.7 we can see an example of priority-based pre-emptive scheduling used
in most RTOSes. A task with higher priority will be run first. If low a priority
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Fig. 3.7: Scheduling in Real Time OS [13]

task already started to run (task 2 in Figure 3.7) and a high priority task became
ready (Task 3), the scheduler will immediately stop execution of the low priority
task allowing the higher priority task (task 3) to run. After the higher priority
task finished its work the lower priority task can continue executing. At the
time of writing this report, the version(s) of T-UppAal released so far did not
support RTOS.

Timing of actions

Because of the system delays, we cannot choose the exact moment in time when
a action should occur. We therefore propose an interval in time (tolerance) on
when actions should occur. This is both needed for input actions and output
actions. The input tolerance is because of the delay in T-UppAal and the output
tolerance for the IUT delay.

Validity

By having a tolerance on when action should occur introduces another problem,
validity. That is when constructing the TA re-run trace, there is a possibility
of that the new TA that replaces the environmentwill allow actions to happen
that were not allowed according to the original environment.

In Figure 3.8 we can see the example of this. There is the original environ-
ment, TA trace, and the trace log (driver log), which we want to make a re-run
from. The TA trace was constructed with tolerance of ±3 ms on the input
actions and ±5 on the output actions. The re-run TA allows action happen
within time period [695, 701] (698 ± 3). If T-UppAal offers action between 695
and 700 we will have no problems. But if the time is equal to 701 we could
generate the a! action at a time that was not possible according to the original
environment.
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Fig. 3.8: Example problem of validity after having generated TA generated from the
trace log to the right

3.3.2 Effect of Non-determinism

We identify two sources of non-determinism in the TA: 1) in the possible of states
after an action (Action non-determinism), and 2) in timing of actions(Time non-
determinism).

Action non-determinism

In Figure 3.9 (a) an example of a non-deterministic specification is shown. There
are two transitions with the same action a going from the initial location. The
problem is that during a test re-run any transition can be traversed by the IUT
and we cannot control the IUT in which one it should traverse. The path chosen
could differ from those we wanted to according to the re-run. A variation of
this problem is when time determines which branch of the specification can be
traversed and both time intervals have common time. We must therefore accept
that we will not be able (or at least difficult), to make re-runs for IUT with high
degree of action non-determinism.

Time non-determinism

We also have non-determinism because of timing of actions as allowed by loca-
tion invariants and guards(tolerance). We can see an example of non-determinism
because of timing in Figure 3.9(b). According the specification the a action can
happen in time interval [3, 5]. In the test re-run the action a can be sent on
time 3, 4 or 5 so we cannot be sure which time the IUT will choose to produce
the output.
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(a) Action non-
determinism

(b) Time
non-
determinism

Fig. 3.9: Non-determinism examples

3.3.3 Global and Relative Time

When generating the TA from the trace log, we have two main ways on how
the flow of time can be represented. We can use absolute/global time so that
action happen relative to when we started the test. Or we can use local time so
the action occurs relative to the time of previous action performed. In Figure
3.10 an example of the two approaches can be seen.

Both approaches have their pros and cons. The features of using a global-
time are:

• Actions in the re-run happens at the same time as during the original run

• The relative time between any two actions can change only by amount
allowed by tolerances of both actions.

We would therefore rather use global time when we are having an IUT where
timing of actions is dependent on other actions. For example: a 5 min after
action α action β should occur(where number actions between those action can
occur).

The attributes of local time are:

• If the IUT consistently produces actions too late or too early the error
does not accumulate itself as we measure relative to the last action.

• The relative time between consecutive actions can change only by amount
allowed by tolerance of the latter action.

When timing of actions in the IUT is only dependent on when previous
action occur, local time should be chosen.

3.3.4 Narrowing of Gap

A problem we call the narrowing of gap, is related to timing of actions as de-
scribed in the previous section about global and relative time. The environment
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Fig. 3.10: Example of global (a) and local (b) time generated from a trace log (c) to
the right
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and the specification of the IUT constraints are conjuncted in T-UppAal. Be-
cause of this conjunction, a different timing of actions in the environment and
the model can lead to that the tolerance (gap), in which the action is allowed
to happen, to become to small for T-UppAal to handle.

(a) Specification (b) Environment

Fig. 3.11: Model that causes the gap to narrow

An example model that suffers from this kind of problem can be seen in
Figure 3.11. The model consists of two simple templates. The template in
Figure Figure 3.11(a) consumes an action a periodically, while the template in
Figure 3.11 (b) sends the same action a periodically. We use relative time for the
specification and global time for the environment. The specification consumes an
action between period and period + tolerance. The other one (the Environment),
sends an action at the time between period*n and period*n+tolerance. As the
time progress and T-UppAal chooses action a to happen at a specific time.
Because of the separation of specification and the environment, the allowed
interval for following actions a becomes smaller.

A time-line of a run from the above example with a period of 20 and tolerance
of 10 can be seen in Figure 3.12. We start where T-UppAal can perform the
action between 20 and 30 model time units. In the next cycle, the intersection
of the environment and the specification has narrowed to 42 and 50 time units,
which T-UppAal can choose from. This continues until the gap becomes the size
of 1. This could lead to T-UppAal being unable to perform the action in time
because of real time constraints(which will result in a inconclusive verdict).

Narrowing gap re-run example

We show another example to demonstrate how this could occur when we are
having a re-run. In this example we have the specification input enabled (as it
should be according to our assumption of Timed I/O specification in Chapter
2). In Figure 3.13 we have an in (a) an environment that can consume an a
action at any time, and it sends b action periodically between 5 and 7 model
time units after each send. In (b) we have specification that sends a action
periodically between 4 to 8 model time units one after other. The specification
is also input enabled and can receive b at any time.
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Fig. 3.12: Example of a narrowing gap using the model in Figure 3.11

(a) Specification (b) Environment

Fig. 3.13: An example environment and a specification model
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(a) Trace (b) TA Environ-
ment

Fig. 3.14: The TA environment generated from a trace of an example run from the
model in Figure 3.13

In Figure 3.14(a) we can see an example trace generated using the specifi-
cation from Figure 3.13. In Figure 3.14(b) we see TA generated from the trace
in Figure 3.14(a). The input actions have tolerance of ± 1 time units and the
tolerance on output actions of ± 3. Then we use it and replace environment in
Figure 3.13 according to our idea of making re-runs.

At the first step, the intersection between the environment and the specifi-
cation gives us that we can receive the a action at an interval from 4 to 8 model
time units. Let us assume we receive it at 8. But now we can send the b action
only at 8 as the allowed interval for action b is from 6 to 8. We get a gap of 0
and that can be impossible for T-UppAal to handle.

3.3.5 Conversion of Time Units

As noted in Section 3.2, when we create the TA trace for re-run, we use the trace
log and the specification used for that trace. The level of precision in the model
time units in the specification corresponds to that what is needed to accurately
model the IUT and the environment model(at least according to the author of
the specification).

After a run we get a very precise trace (in microseconds) of when actions
happened. When generating the TA from the trace log, one idea would be to
convert microseconds in the trace log to the model time units. This approach
has some shortcomings. Because of rounding, some information will be lost.
Because of that the interval cannot be smaller than one model time unit. This
leads potentially to validity problems. It may be the case, that T-UppAal is able
to deliver action at much higher precision than one model time unit. In that
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case a better approach could be to generate the TA according to the precision
in the trace log and then modify the specification so it uses the same time units
as the TA.

(a) Driver log file (b) Converted
with precision
10000

(c) Converted
with precision 1

Fig. 3.15: Conversion of time units

Figure 3.15 shows TA generated using both of the approaches. First the
driver log file shown in Figure 3.15(a) is converted using precision 10 000 and
the tolerance on the input ±2. The result is in Figure 3.15(b). In Figure 3.15(c)
we can see the same driver log file converted using the precision of 1 and same
tolerance.

For specification with high model time units, for example hours, having a
precision in microseconds is excessive of what is needed. Thereby the best option
could be, to allow the tester to specify the precision in the new model.



4. THE COVERAGE MEASUREMENTS

As test-runs can possibly take hours to days, the log generated by T-UppAal
can become quite large. In order to better examine what part of the IUT were
tested and to what extend they were tested a coverage measure can be useful.
We created the tool that can facilitate the calculation of the coverage of the
specification. We believe that with the use of our tool the analysis of the test
run is easier and gives more understanding what was happening during the
test-runs.

4.1 Idea of Implementation

Our proposal is to create a tool that can facilitate the calculation of the coverage
of the model. We believe that with the use of the tool the analysis of the test
run is easier and gives more understanding what was happening during the
test-runs.

The idea how to measure the coverage is to include in the specification a
set of auxiliary variables that will be used as counters. Each time an edge
leading to a location is visited the corresponding counter for that location is
incremented by one. Similarly we can calculate also how many times the edges
have been visited by including the variables for transitions. We need to modify
the specification to do this. As explained in section 2.6, the model consists of two
parts: the environment and the model of the IUT. We replace the environment
part with TA generated from the trace log. The model of the IUT is extended
with one with auxiliary variables. Having that we can ask UppAal (off-line) for
some path that will lead to the last state of the TA generated from trace log.
By checking the values at that stage we can calculate the coverage and check
what parts of the specification were visited during test re-run.

In Figure 4.1 we see an example taken from the light controller, showing
specification with added variables. It shows the specification of the ”interface”.
The ”interface” generates nothing if we press it for a short time, action touch
if we hold it for longer time and a pair of actions starthold and endhold when
we hold it for a long time. In Figure 4.1 we see added variables for location and
transition coverage. Those variables are in slanted font. The variables starting
with cLoc are used to count when a location is covered and they are added to all
incoming transitions. The variables starting with cTrans are used to count the
transitions. For example cLocIntFace[0] corresponds to the initial state S1 and
cTransIntface[3] to transition from state S4 to S1. The variable of transition
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Fig. 4.1: TA of an Interface from a light controller specification where variables for
coverage measurement have been added.

coverage is incremented every time the transition is traversed. The location
coverage variable is increased by one every time the transition leading to that
location is passed.

4.2 Coverage and Non-determinism

Sometimes it can be the case that there exists more than one path leading to
the last location TA from trace log. This can only happen if the specification is
non-deterministic. The problem is illustrated in Figure 4.2 (a).

(a) Specification (b) Envi-
ronment

Fig. 4.2: Example of non-deterministic specification

We can see that in the specification there are two transitions going from the
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initial location s1 that accepts action a and one transition that accepts action
c. They all leads to the location s2. From s2 to s3 there is transition producing
output b. The specification is not restricted by any guards. cTran variables
are added on every transition and cLoc variables are added to every transition
that leads to the corresponding location.In Figure 4.2 (b) there is a test run TA
trace example. The environment is sending action a and then accepting action
b.

We can ask UppAal to find some path to the last location of the TA trace
and examine values of variables in the last state. The problem is that there are
three paths leading to the state. Therefore for some edges we will be not able
to check if they were covered. We can distinguish three cases:

1. transition was possibly traversed,

2. transitions was certainly not traversed,

3. transition was certainly traversed

Using query asking about the path to the last state we get information only
that some transition/location could be possible covered. The solution could
be to ask query about specific transition/location. Using UppAal reachability
properties we can ask if there exists the path starting at the initial state such
that property ϕ is eventually satisfied along that path Asking two queries is
enough to classify a transition/location into one of enumerated categories. If
we assume that the last location’s name in the trace is final and that the name
of transition of our interest is cTrans[x] then the queries could look as follows:

1. E <> Environment.final and cTran[x] > 0

2. E <> Environment.final and cTran[x] == 0

Depending on the results of those queries we can classify transition as follows:

1. If both results of the queries are true then the transition was possibly
traversed .

2. If the first query is false and the second true then the transition was
certainly not traversed.

3. If the first query is true and the second false then the transition was
certainly traversed .

When analysing whether a property was certainly satisfied, the combination
of the queries can be changed to the one equivalent query: A <> Environment.final 
cTran[x] == 0

In the example (figure 4.2) the following queries will be satisfied:

• Transition was possibly traversed:

E <> Environment.e3 and cTrans1 > 0
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• Transition was certainly not traversed:

E <> Environment.e3 and cTran3 == 0

• Transition was certainly traversed:

A <> Environment.e3 cTrans4 == 1



5. BUTLER

In this chapter we present the tool we created: Butler. First we specify require-
ments for the tool we intended to create. Next we give some details about how
the tool was implemented. In the end of this chapter we present the available
options for the tool and example of usage.

5.1 The Tool Requirements

The idea of behind Butler is to provide user with a tool that is able to convert
the driver log file into Timed Automata trace (as described in Chapter 3). In
order to make the tool more usable it should be able to merge the created TA
trace in the specification automatically. There are number of possibilities how
the TA trace can be created. (see the Section 3.1) It should be possible to
specify how the TA trace is generated: the time tolerance for the input and
output actions, if we use relative or global time, what is the precision of the
model time units. This way we can easily generate TA trace that is best for our
needs. Additionally it should be able to add coverage variables as described in
Chapter 4. It should run on different platforms. The detailed requirements are
listed in the Table 5.1
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No. Description Priority
1 The tool should be able to generate TA from the trace log

and be able to handle action value passing (as parameters)
A

2 The tool should be able to generate TA in XML format. A
3 The tool should be able to generate TA that can be im-

ported into the UppAal tool.
A

4 The user should be able to specify

1. The name of the log to read

2. The name of the output file that the tool generates

3. The name of the file with the specification (to merge
with TA trace or add coverage variables)

4. The name of the configuration file.

A

5 The user should be able to specify if the time is global or
relative (relative time - clock value on the nodes in the TA
should reset after each input/output action.)

A

6 The user should be able to specify the precision that the
model time unit will have (specify how many microseconds
one model time unit lasts)

A

7 The user should be able to specify:

1. time tolerance (Error bounds)that should be placed
on the clock value for the input action in the TA.

2. time tolerance (Error bounds) that should be placed
on the clock value for the output action in the TA.

A

8 The user should be able to get help by typing ”-h” to see
what option the tool provides.

A

9 The tool should be able to run on the following platforms:

1. Linux on Intel

2. MS Windows

3. Sun Solaris

1-A,
2-B,
3-B
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No. Description Priority
10 The tool should be able to generate the TA in other than

XML format.
B

11 User should be able to choose if he wants auxiliary variables
on transitions that are initiated to 0 and increment by one
when:

1. a transition is traversed (transition coverage)

2. a transition leading to a location is visited (location
coverage)

A

12 User should be able to choose to have the tool generate
a query. The query is of the form: E <> trace.sX where
trace is the name TA trace and sX is the last location in
that trace. This query can be used by UppAal to check if
there is a path to the last state in the TA generated from
the trace log. This query should be saved in a file specified
as a input parameter by the user.

A

13 A T-UppAal specification outputted by the tool should
be formatted, in such a way that a new line character is
inserted in certain places to make the XML format more
readable.

B

14 The tool should read from configuration file all the options
that are available by specifying a command line option (ex-
cept configuration file name). In addition user should be
able to change the default name of the template TA trace.

A

Tab. 5.1: Butler requirements continued
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5.2 The Tool Implementation

In this section we describe some interesting details and some problems regarding
implementation of the tool. The tool we have created is written using C++. To
facilitate parsing XML files we used Xerces C++ Parser [25]. The tool supports
value passing using parameterised input/output actions.

In order be compatible with the UppAal we used the UppAal Timed Au-
tomata Parser Library (libutap) to parse the specification. We extended this
library with the possibility of writing the specification. Both XML and XTA
format are supported.

We created also the library for reading definition of input and output actions.
So far those definitions were hard coded into the source of the adapter. Every
change required recompilation of the adapter.

The problems with implementation can be split into several sub problems:

• reading and representing the options

• parsing and representing a specification

• parsing and representing a log file

• integrating the trace log into the specification

• adding coverage variables

• printing output to the file

We describe each of these problems separately in the following sections. The
section 5.2.9 describes the current status of the tool and some features that were
designed but not implemented.

5.2.1 Reading and Representing the Options

The program as it is has quite many options. We need easy access to those
options from almost any class in the project. Because of that and to make
adding new options easier we created a separate class just for storing option for
the program. Each option has dedicated variable in the class. These variables
are initialized when the options are read first from the file and then from the
command line. The only exception is the option to specify the name of the file
with the options, which from obvious reasons must be read from the command
line first. The format of the file where the options are stored is in the XML
format, to make changes to that file possible using any text editor or even better
– an XML dedicated editor.

5.2.2 Parsing and Representing a Specification

In order to stay compliant to the format of the specification that UppAal uses, we
decided to use the UppAal Timed Automata Parser Library (libutap). Butler is
able to parse both formats supported by UppAal: Extensible Markup Language
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(XML) and XTA. If the specification format changes, it will be easier to update
Butler. The price for that was that we needed to use the data structures used
in libutap. The libutap checks specification for syntactic and semantic mistakes
and is quite complicated. The representation of the specification is also quite
complicated but it allows doing many complex operations. What libutap library
was missing was writing the specification. In UppAal all changes are done by
hand or by GUI part of the program. The libutap is used only to check the
correctness of the specification. We extended libutap with the possibility of
writing the structure. The supported format of the output is XML and XTA.

5.2.3 Parsing and Representing a Log File

We assumed that the log file for the test run could be quite large since test
may be running for quite long time. Because of that we did not represented
the trace automaton using the same structures as for representing the specifica-
tion. Instead we used more compact representation. We store all of the labels
appearing in the log file in a separate table. Next for each two rows of the log
file we store only two integers: the length of the delay and the pointer to the
label. This way long names for the input/output action will not cause program
to increase its memory requirements very much.

5.2.4 Library for Parsing input/output Actions

In order to decide which part of the specification is the environment, we need
explicit definition of the actions that are input and output. Those are not
defined in the file containing the specification. So far it was the responsibility
of the adapter to tell T-UppAal which actions are outputs and which inputs.
In the same way the precision of model time unit and timeout for testing was
defined. Our solution is to put those definitions in a separate file. We wrote a
library that parses this file and stores the results in a class that can be easily
used in the adapter. This way there is no need to recompile the adapter if we
want to change for example the timeout for testing. The explicit definition of
input/output actions is also necessary for proper interpretation of the log file
created by the driver.

Structure of the file

The file containing definition of input/output actions can contain following lines:

• line containing definition of input actions. The line starts with input key-
word followed by comma separated list of names actions. The line should
end with semicolon. The list of parameters for the actions is inside pair
of brackets that follows the action name. This list is a comma separated
sequence of parameters names.

• line containing definition of output actions. The line starts with output
keyword and, in similar way as line defining input actions, is followed by
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comma separated list of actions names. The list of parameters is inside a
pair of brackets that follows action name. The line ends with semicolon.

• line containing definition of the timeout for the test. The timeout is as-
sumed to be in the Model Time Units. It defines after what time the test
will finish with success. The line starts with timeout keyword followed by
number (the value of timeout). The line ends with semicolon.

• line containing definition of the precision. The precision tells how many
microsecond is one Model Time Unit. The line starts with precision key-
word followed by number (value of precision). The line ends with semi-
colon.

The example of the file can be seen in Figure 5.1(a).

5.2.5 Integrating the Trace Log into the Specification

We tried to make the integration of the trace log into the specification in a way
that would require no human intervention. In order to do this it is not enough to
read the specification and trace log from the files. We need to determine which
part of the specification is the environment. After that we substitute only the
environment part with the newly created trace log. The problem increases by the
possibility that the specifications can be in the form of templates. A template is
a specification of one timed automaton but with parameters. This way creating
similar Timed Automata is simplified greatly. This caused detection of between
environment and IUT more difficult for butler. In the extreme case it may
happen that one template is instantiated once as timed automaton specifying
environment, and the other time to represent IUT. Butler detects such situations
and handles them by assuming, that one instantiation cannot be used at the
same time to represent the environment and the specification. We use the
following strategy:

1. We read the definition of input/output from a separate file (see section
5.2.4).

2. For each process we check if it produces input or output labels. To do this
first we must check labels in the original template and check if the labels
not passed as parameters. Then we classify process as environment or as
specification (or left undefined)

3. In the last step we change the system definition to contain only instantia-
tions that represent specification or are undefined. Next we add the trace
log to the system definition.

Using this strategy it may happen that we do not delete all parts of the environ-
ment. This will be the case if there is an instantiation of a template being part
of the environment that does not produce any actions defined in the separate
file. The lonely process should be not the problem, because it will not produce
any actions defined as input/output actions. Those actions should be the only



5. Butler 56

means for communication between environment and IUT. The rare case where
manual deletion of a template could be required is, for example, when there is
some invariant on initial location in this template.

5.2.6 Adding Coverage Variables

In our tool we have the possibility to add auxiliary variables to measure coverage.
The measure can be for locations or for edges. The idea is quite similar for both.
The difference is that for edge coverage we have one variable for each transition
and for location coverage we have one variable for each location. The algorithm
for adding coverage variables is as follows:

1. We classify all instantiations as described in the section 5.2.5

2. We declare all necessary variables in the global declaration section. We
add one variable for each location/transition for each instantiation that is
not classified as environment. We declare them as arrays of integers– one
array for each instantiation. We include instantiation name in the name
those arrays.

3. We modify the definition of each template that is used to create instantia-
tion that is not classified as environment. The modified template increases
the appropriate variables at each transition (as described in the section
4.1).

4. We modify the declarations of the templates and the instantiations to pass
the needed array variables.

The example of the specification with added coverage variables can be seen in
Figure 4.1. The slanted texts in Figure are the variables added by Butler. The
variables starting with cLoc are used to measure location coverage and variables
starting with cTrans are used to measure the transition coverage.

5.2.7 Scaling Specification Precision

Our tool has possibility of scaling the default precision of the specification. It
means that we have the possibility to change the meaning of model time units.
For example if one model time unit is 100 ms we can change it to be 10 ms.
We do not allow scaling the precision the other way round - it is not possible to
change precision from 10 ms to 100 ms. The algorithm looks as follows:

1. First we get the number by which we need to scaling the precision. It is
the ratio: r = b old precision

new precisionc For example when changing from 100ms to
10ms then r = 10. As UppAal does not support the rational numbers as
update for clock the r number must be a natural number and we can do
only scaling.

2. For every comparison or assignment to a clock variable in every guard or
invariant:
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• If the right side does not contain clocks then multiply everything by
r.

• Otherwise split the right side into parts until we get a single clock or
part without clock. Multiply the parts without clocks by r.

For example let us assume that we want to change the guard:

a >= 30 + delay && t >= delay + x

We assume that a is an integer, delay is constant and t and x are clocks. The
guard after parsing by our tool and changing the precision (r = 10) would look
like:

a >= 30 + delay && t >= 10 ∗ delay + x

5.2.8 Actions with Parameters

Recently the actions that are defined as input or output were extended with
a possibility of having parameters. It means that when we send or receive an
action from the IUT, we can have parameter for that action. The actions and
the parameters are defined in a separate file (see section 5.2.4)

(a) Definition of in-
put output actions

(b) Driver log file (c) Timed Automata
trace

Fig. 5.1: Definition of input/output actions, driver log and resulting TA trace

An example of such definition can be seen in Figure 5.1(a). As input we
have one action a with two parameters var1 and var2. The b action is the only
output and it has one parameter var3. The precision is 10 000 (one model time
unit is 10 000 microseconds) and timeout for testing is 1000 model time units.
The example driver log file with a and b actions defined in above way can be
seen in Figure 5.1(b). First we delay for 1914ms then we send input action a
with two parameters: 15 and 25. After delaying more we receive output action
b with parameter 30. T-UppAal does not support the actions with parameters
directly. We need to make use of guards and updates to compensate for that.
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The process of generating the TA trace taking parameter of actions into account
looks as follows:

1. For every pair of delay and input/output interaction create one transition
with guards taking into account the delay and action synchronizing over
this transition.

2. For every input action and for every parameter for that action take the
corresponding value from the driver log file and assign it to the variable
defined in the definition of this input action

3. For every output action and for every parameter for that action take the
corresponding value from the driver log file and compare it to the variable
defined in the definition of this output action.

In Figure 5.1(c) we see the resulting TA trace created from the driver log from
Figure 5.1(b) and actions defined as in Figure 5.1(a). For input action a we as-
sign values 15 and 25 from the driver log to the correspondingly to the variables
var1 and var2. For the output action b we check in the guard if it is equal to
the value of the variable var3.

5.2.9 The Tool Status

All of the requirements with priority of A were implemented and works (see
the Table 5.1). From the B priority requirements writing in XTA format is not
functioning (specifically there are some errors when generating trace in XTA
format). Workaround could be to run Butler two times: first generate TA trace
in XML format and then use Butler to convert it to XTA format.

Butler does not compile under Solaris platform. Under Windows operating
system it is possible to compile it using Cygwin environment. The compiled
version for Windows was not tested as thoroughly as the version compiled for
Linux.

We tried to make a documentation of code at the same time as implemen-
tation was being done, but it was only partially done. Butler does support
generating the queries needed to do the detailed coverage measurement as de-
scribed in section 4.2.

Butler source code consists of total 9168 lines. They can be divided into
following parts:

• The extension of UppAal Timed Automata Parser Library (libutap). We
added support for writing of the structures to the file in XML or XTA
format. This code is new compared to version from the first semester –
1919 lines – 10 files

• The library for parsing the file with input/output actions. (see the Section
5.2.4) – 3 files were a source for tools that generate code automatically
(GNU Bison, GNU Flex, GNU Gperf). From 264 lines of code 4674 lines
of C++ code were generated. New code in this semester.
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• All other files. This includes files for manipulation on the data structures
from libutap and converting the driver log file into TA trace. This main
part of Butler. It was changed heavily from the first semester to support
value passing and several other extensions. It consists of 16 files containing
2035 lines of code.

5.3 The Tool Options

The options for Butler are as follow:

• -h, –help - shows the help for the program

• -O file name - tells the program to read options from the specified file.
The command line options override the options read from the file. By
default no option file is specified.

• -d file name - this option allows user to specify the file where the trace
log is stored. If this option is not specified no trace log is merged with
specification.

• -s file name - tells the program to read the specification from the file.
When no parameter is specified no specification is merged with TA trace.

• -o file name - this option specify in what file should the output be stored.
When no parameter is specified then the standard output is used.

• -c file name - name of the file from which input/output channel defini-
tions will be read. This file must be specified if trace log file is processed.

• -q file name- this option specify file into which queries should be written
to. The queries include the query to the last location of the TA trace. If
the coverage variables are added then the file will contain also the queries
to do the detailed coverage measurements. If file is not specified queries
are not generated.

• -f [xml—xta] - this option allows to specify format in which output is
produced. By default the format is the same as the format of the specifi-
cation. There exists no option to specify the format of the specification.
Butler detects the format by analysing the content of the file.

• -u number - allows setting up the time tolerance for the output actions.
This way we can allow SUT to send the output within some error bounds
compared to the previous run.

• -n number - allows feeding the SUT with input within some bounds.
This option should be used with care, because providing input at different
time may cause the SUT to interpret the same input with differently.
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• -p number - this option allows to specify how many microseconds is
one model time unit. If this number is different from the one specified
in the file with definition of input/output actions then all clocks assign-
ments/comparisons are modified as described in the section 5.2.7

• -l - include location coverage in the specification. This option causes our
program to add coverage variables and updates to measure how many
times each location has been visited.

• -t - include transition coverage (similar to -l option - location coverage)

• -e - generate the trace that allows any output action from IUT.

• -g - tells the program to generate TA where clock is not reset after each
transition (global time). By default the relative time is used.

• -i - by default the upper limit for output action is specified as a guard for
transition. If output does not arrive in time we are allowed to stay in that
location. When this option is specified then the upper bound is specified
as invariant. If the output does not arrive in time we will be not allowed
to stay in that location.

The user can specify in the configuration file all the options that can be
specified in the command line. If the option is specified both in command line
and in the configuration file, then the command line option will override the
option specified in the configuration file. Additionally in the configuration file
we can specify the name of the template in which the trace is placed. This can
be used to avoid conflicts with names of existing templates.

5.3.1 Usage

In using the tool various combinations of options can be chosen depending on
what the user needs. The examples below show the most general cases of us-
age. In the examples we assume that driver.log is the name of the trace log
generated by T-UppAal. output.xml or output.xta is the name of the output
file, specification.xml is the name of the file with specification we are working
with and definition.act is the file containing the definitions of input and output
actions.

Example 1 - TA trace generation

The simplest example of usage would be to create the TA trace from the log
file:

butler -s driver.log -c definition.act

The generated output will be displayed on the screen.
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Example 2 - merging TA trace into specification

In this example we construct a TA from a trace and add it to the specification.
We have specify the tolerance on input actions to 2 and on output actions to 3:

butler -d driver.log -o output.xml -s specification.xml -n 2 -u 3
-c definition.act

The output.xml file contains now the specification from specification.xml where
the TA generated from the trace log has replaced the environment part. It is
ready for opening with UppAal where we can analyse it and simulate the run.

Example 3 - coverage measurement

Here is a command to add the additional coverage variables to the specification:

butler -d driver.log -o output.xml -s specification.xml -l -t
-q query.q -c definition.act

The auxiliary variables are added in the generated file output.xml. They are
used as counters. The user can open output.xml in UppAal and simulate the
re-run to examine how often a state or transitions have been visited during a
certain run. Using the command line based tool of UppAal can also be used
to do the measurement. For this purpose the -q option is used and the result
is query.q file. This file contains the query asking if there exists a path to the
last state of the TA trace. Additionally it contains the queries (two queries for
each location and transition) to check the detailed coverage of transition and
locations as described in Chapter 4

Example 4 - precision changing

Here is an example command to change the default precision of the specification:

butler -d driver.log -o output.xml -s specification.xml
-c definition.act -p 10

We assume that the precision specified in the definition.act file is 100. The
result will be specification combined with the trace log, with bigger precision.
In the new specification one model time unit will be 10 microseconds instead
of 100 microseconds as before. All comparisons and assignments with clock
variables will be updated accordingly. It is the user responsibility to update
the definition.act file (or the adapter source code) so during the re-run the new
precision is used.
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To be able better understand what factors affect possibilities of re-runs, exper-
iments focusing on T-UppAal and the adapter were needed. Our aim is to find
the precision of determining when an action should happen. That is, if we want
an action to happen at a certain time, what will be the difference between when
the actions happens and the time when we wanted this action to happen. This
information is critical to check if the test re-run is possible and to what extend.
We trace the origin of the delay to three sources. Computation delay, commu-
nication delay and the delay connected to the scheduling policy of the system
(scheduling delay)(Section 3.3.1). When testing an IUT using T-UppAal, all
communication goes trough the adapter(we consider the driver as a part of the
adapter). These layers as described in Section 2.6.2 all add to delay, and thereby
lessening our control in timing of events.

To identify these delays we do three experiments. The first one is to give us
a broad view of timing in a model with an IUT and T-UppAal and the effect of
the delay. By that we get a measure of the total delay and the behaviour of the
model. In the second experiment, we put our focus on T-UppAal and the effect
of the scheduling delay. We do this by removing a part of the model, namely
the IUT. For the last experiments in this category, we look at different OS. We
do this to check what impact OS has scheduling precision and thereby timing
of events.

6.1 System Delay Estimate

In this experiment we try to measure the delay we can expect in T-UppAal, the
adapter and the IUT, and in the communication between them.

To do this we made a simple Java program (for the IUT) that waits for
an input, sleeps a certain amount of time and sends an output back. We try
to force T-UppAal to send input periodically by restricting the environment.
By measuring the actual time when T-UppAal sends an input and receives an
output from the intended one, we will be able to estimate the size of the delay.

6.1.1 Experimental Setup

The experiments were performed on two computers connected directly to each
other a via cross cable. This way we ensure that the network delay is minimal
and not affected by other network traffic. The following computers were used:
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PC1: AMD Athlon 1.8 GHz, 256MB on RAM running Red Hat Linux 2.4.27
PC2: Pentium 1.3 GHz, 512MB of RAM running Red Hat Linux 2.4.27

The model used for experiments is shown in Figure 6.1.

(a) Specification of theIUT (b) Environment

Fig. 6.1: The Model

The specification of the IUT has one location and it accepts an input a
and sends an output b at any time (Figure 6.1(a)). This gives our Java pro-
gram complete freedom when to send the output back. The environment model
(Figure 6.1(b)) is more complex. It sends an input a to the IUT in a time
interval: [period-tolerance; period+tolerance]. After sending an input it waits
for an output for max period*10 time units. This constraint could have been
omitted but we wanted to have time-out when no action is sent from the IUT.
The values of period and tolerance were 500 and 50 ms respectively during all
of the experiments.

All communication between T-UppAal and the IUT goes trough the adapter.
T-UppAal and the adapter were running on PC1 and the IUT on PC2. The
time was measured in both the IUT and the adapter. In Figure 6.2 we see the
sequence of actions and moments when the time is measured.

T-UppAal sends an action a to the adapter. The adapter records the time
t
[n]
1 right after it receives the input. Then the action a is sent to the IUT and

time t
[n]
2 is measured. Acknowledgement that input was forwarded to the IUT

is sent to the T-UppAal. The time t
[n]
3 is measured right after this event.

The IUT records time twice: right after receiving the input t
[n]
IUT1 and before

sending a b output t
[n]
IUT2. In between these actions the IUT sleeps for the defined

period of time tsleep.
The adapter measures time t

[n]
4 after receiving the output from the IUT and

after sending the output to T-UppAal t
[n]
5 .

Then T-UppAal sends the next input a to the adapter at the time t
[n+1]
1 .

The process is repeated until a specified number of iterations.
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Fig. 6.2: The sequence of actions and the measured time
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The pseudo code for the IUT can be seen in algorithm 5. The IUT enters the
loop first. In this loop it waits for an input. After receiving input it behaves as
denoted in Figure 6.2. When it is not specified otherwise, the intended sleeping
time of the IUT is 250ms.

Algorithm 5: IUT
1: n := 0
2: while (true) do
3: getMessage ()
4: t

[n]
IUT1 := getT ime()

5: sleep(wait time)
6: t

[n]
IUT2 := getT ime()

7: sendMessage(msg)
8: n + +
9: end while

The pseudo code of the adapter is shown in the algorithm 6. It consists
of two functions perform() and threadExecute(). T-UppAal calls the function
perform() to pass the message to the adapter. The adapter sends the message
received from T-UppAal further to the IUT using sendMessageToIUT(msg).
The acknowledgement to T-UppAal is sent with the function inputDelivered().
After that the function perform() returns.

The receive part of the adapter is running a separate thread, which is sup-
posed to handle messages coming from the IUT. The function threadExecute() is
a main function for this thread. Inside threadExecute() we enter a loop. In this
loop we wait for the message from the IUT. The message is sent to T-UppAal
by function tryReport(msg). The counter n is incremented after sending one
input and receiving one output.

The moments, when values of current time are assigned to variables, are
explained in Figure 6.2.

We performed number of experiments using this setup. The summary of the
parameters that were used is presented in Table 6.1.

We ran T-UppAal with two options for choosing when to send the input:
the Eager and Random (described in Section 2.6). As these option affect the
timing of when actions occur, we wanted to check how T-UppAal works with
them. We expect that the Eager option is better for the re-run as it gives more
control of when events happen.

Additionally we specified different lengths of the observation uncertainties.
The numbers used in the Table 6.1 are specified in microseconds. For the Eager
parameter we vary from 0 to 100 000 microseconds. We do not expect actions
to occur at different time. The option causes to accept actions that arrive later
than normally. For Random parameter we used the same numbers, but for
smaller values we were not able to obtain a longer runs.

We decided also to do experiments with the IUT sleeping a random time
and with not waiting at all, because we experienced an interesting behaviour of
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Algorithm 6: Adapter for experiment with input and output actions
1: n := 0
2: perform(msg)
3: t

[n]
1 := getT ime()

4: Mutex Lock(msg)
5: sendMessageToIUT (msg)
6: t

[n]
2 := getT ime()

7: inputDelivered()
8: Mutex UnLock(msg)
9: t

[n]
3 := getT ime()

10: threadExecute()
11: while (!fail) do
12: waitForMessagefromIUT ()
13: Mutex Lock(msg)
14: msg := getMessage()
15: t

[n]
4 := getT ime()

16: tryReport(msg)
17: Mutex UnLock(msg)
18: t

[n]
5 := getT ime()

19: n := n + +
20: end while

-P -U Tsleep [ms]
Eager 0, 0 250
Eager 10, 10 250
Eager 100, 100 250
Eager 1000, 1000 250
Eager 10 000, 10 000 250
Eager 100 000, 100 000 250
Random 0,0 250
Random 1000, 1000 250
Random 100 000, 100 000 250
Random 1000, 1000, 1000, 1000 250
Random 100 000, 100 000, 100 000, 100 000 250
Eager 0, 0 no sleep
Eager 0, 0 Random
Eager 10 000, 10 000 no sleep

Tab. 6.1: Overview of experiments
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the T-UppAal (explained later in this chapter).

In the description of experiments we are using:

• T-UppAal waiting time:
The time T-UppAal waits before sending an input after the output was
received.

(t[n+1]
1 − t

[n]
5 )

• IUT waiting time:
The time IUT waits before sending an output after the input was received.

(t[n]
4 − t

[n]
2 )

6.1.2 Results

Our goal in this experiment was to find out the delay we could expect in T-
UppAal, adapter and the IUT. The results for all the runs were quite similar.
We present here only chosen results that seemed most interesting.

Waiting Time of the IUT and T-UppAal, and the effect of T-UppAal options

In Figure 6.3 T-UppAal waiting time and IUT waiting time is shown. X-axis
represents number of steps n. Y-axis delineates time in microseconds.

According to the environment specification 6.1 (b), a waiting time after
receiving b actions should be 500± 50 (period ± tolerance). By using only the
eager option we expect the optimal case T-UppAal waiting time to be 450 ms.
We can see in Figure 6.3(a) that the average T-UppAal waiting time is around
455 ms when -u option is set to 0,0, and gives us the average delay of 5 ms.

When -u option is 100 000 microseconds (Figure 6.3(b)) the average of T-
UppAal waiting time remains 445 ms. This difference is much smaller than
specified -u option (100ms) so either the -u option does not have the effect on
when T-UppAal sends the message or this effect is minimal.

In the IUT the Tsleep was set to 250 ms. The IUT behaviour is almost the
same in both Figures (6.3(c) and (d)) average waiting time is 255 ms, giving
us again delay of 5 ms. This is quite reasonable, as the options specified for
T-UppAal should not affect the waiting time of the IUT.

Peaks

When looking at graphs 6.3 (c) and (d), we can see that we have upwards and
downwards peaks. As they happen at the same steps 61 and 125 for both of
the runs (with the options -u 0,0 and -u 10.000, 10.000), we speculate that it
is T-UppAal or the adapter that initiate some process that takes control of
the CPU rather than a random scheduling disturbance. One reason could be
that T-UppAal or the adapter needed to perform some I/O or to access the file
system.
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(a) T-UppAal waiting time. -u 0,0 (b) T-UppAal waiting time. -u 100 000,100 000

(c) IUT waiting time. -u 0,0 (d) IUT waiting time. -u 100 000,100

Fig. 6.3: T-UppAal and IUT waiting time. -P eager. OS Linux 2.4
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The rest of the runs with Eager option looked almost identical to the one
showed in Figure 6.3, except it was shifted up to 10 ms.

Network Delay

By having the tsleep, and the time between the adapter sending an a action
to the IUT and getting a b action back from the IUT. We can calculate the

network delay. The formula becomes ( t
[n]
4 −t

[n]
1 −tsleep

2 ).
The maximal value for this was 0.5 ms. An important factor in the calcu-

lation is that the max precision in Java that is possible when timing tsleep is
in milliseconds. Because of that, we know that even tough we got the maximal
value of 0.5 ms, the actual value can be much smaller.

Dependency between T-UppAal and the IUT Waiting Time

Fig. 6.4: 1st experiment. Sum of T-UppAal and IUT waiting time. Options: -u
0,0; -P eager. OS Linux 2.4

An interesting fact is the zigzag behaviour of the graphs with the Eager
option. In theory there should be no dependency between the waiting time of
T-UppAal and the waiting time of IUT. But obviously, when we add those two
graphs, we obtain a straight line with 10ms jumps as seen in Figure 6.4.

We found out that this behaviour is caused by the scheduler of Linux kernel
2.4. It appears that the sleeping process can be woken up only at a certain
periodic points in time. Specifically the process can be woken up every ten
milliseconds. In Figure 6.5 we see a time line for several runs. Each time the
waiting time of the IUT (as in experiments) increases a little. Next we can see
the time T-UppAal wants to sleep. At the end there is a dispatch latency.

We assume that the main source of latency is the fact that the scheduler
checks if there is a new process to be scheduled every 10ms. So each time the
waiting time of the IUT increases, the latency decreases and so does the actual



6. Experiments 70

Fig. 6.5: T-UppAal and IUT waiting time

waiting time of T-UppAal. When we cross to certain critical point (between
Run 3 and Run 4) we will see 10ms jumps. That can explain why we have
jumps in T-UppAal waiting time.

In Figure 6.4 (b) and (d) we have similar problem. We do not have jumps
in T-UppAal waiting time when we have jumps in IUT waiting time. This can
be explained using the same mechanism. If we compare Run 1 and Run 4, we
see that IUT waiting time is different by 10ms. At the same time the dispatch
latency has not changed, thus that waiting time of T-UppAal does not change
significantly also.

6.2 Local Scheduling

In these experiments we wanted to measure the characteristic of T-UppAal when
sending an action periodically. By that we will be able to find what the precision
to expect from T-UppAal. We send one action periodically to the adapter and
do not expected a response from it. We also do not reset the clock after each
repetition to avoid accumulation of errors thus reproducing a perfect periodic
signal.

6.2.1 Setup

Experiments were performed on:

Linux computer: AMD Athlon 1.8 GHz, 256MB of RAM running Red Hat
Linux with kernel 2.4.27 and Debian Linux with kernel 2.6.11

Solaris computer: Fire v880R, 8x900 MHz CPU, 32 GB RAM Solaris 9
(SPARC) with Sun OS 5.9
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The specification of the IUT has one location and it accepts input a at any
time but does not send output at all (Figure 6.6 a). The environment model
(Figure 6.6 b) has one location and it sends input a to the IUT in a time interval
[period*n-tolerance; period*n+tolerance] where n is a counter incremented after
every action.

(a) Specification of the IUT (b) Environment

Fig. 6.6: Strict, periodic Model

Fig. 6.7: Sequence of actions and measured time

In Figure 6.7 we can see the sequence of actions and moments when the
time was measured. The pattern differs from the one explained in 6.2. There
are no IUT and output actions. Time t

[n]
2 is not measured. From previous set

of experiments (see Section 6.1) we realized that difference between t
[n]
2 and t

[n]
3

is small enough to be ignored.
The adapter for these experiments differs from the previous one. It does

not have the function that sends action to IUT and function threadExecute() is
empty. The pseudo code can be seen in Algorithm 7.

In Table 6.2 we can see the parameters used in the experiments on Linux
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Algorithm 7: Adapter for experiment only with input actions
1: n := 0
2: perform(msg)
3: t

[n]
1 := getT ime()

4: Mutex Lock(msg)
5: inputDelivered()
6: Mutex UnLock(msg)
7: t

[n]
3 := getT ime()

8: n := n + +
9: threadExecute()

-P -U Operating System
Eager 0, 0 Linux kernel 2.4
Eager 10.000, 10.000 Linux kernel 2.4
Eager 100.000, 100.000 Linux kernel 2.4

Random 15.000, 15.000 Linux kernel 2.4
Random 100.000, 100.000 Linux kernel 2.4
Eager 0, 0 Linux kernel 2.6
Eager 10.000, 10.000 Linux kernel 2.6
Eager 0, 0 Solaris
Eager 10 000, 10 000 Solaris

Tab. 6.2: Overview of parameters for experiments on Linux kernel 2.4, Linux kernel
2.6 and Solaris (right)
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kernel 2.4 and 2.6 and Solaris. Additionally we did runs with high scheduling
priority on Linux 2.4 and 2.6, to compare if it had any influence. We were not
able to perform runs with high priority on Solaris, because we were not able to
obtain root privileges needed for that. The experiments run on Solaris were run
on a public machine, so the processes run by other users could bias the results.

6.2.2 Results

In Figure 6.8 we see how practical time measured during experiments differs from
actual time on different Operating Systems. In the graphs we used deviation
from perfect periodic expected output time calculate using formula:

(tn+1
1 − tn1 )− n ∗ 500.000, n = 1, .., N where k is the number of steps.

In Figure 6.8 (a) we can see the runs for the Linux with kernel 2.4. The plot
average value is almost 50 ms with seldom peaks reaching 49.5 ms. It seems
that the precision at which T-UppAal is sending the input is pretty good. There
are only 0.5ms disturbances, probably caused by some background process. In
Figure 6.8 (c) we can see the same run but for Solaris system. The disturbances
on this graph are smaller than for Linux with kernel 2.4. They seem to be
smaller than 0.2ms. In Figure 6.8 (b) we can see the results for the last operat-
ing system we tried, Linux with kernel 2.6. The disturbances here are around
1ms. From these results it seems that Linux 2.6 is the worst kernel to perform
the experiments on. This is not exactly true, which we will show in the next
experiments (Section 6.3).

In Figure 6.9 (a) we see the runs with a high priority (-19) on Linux with
kernel 2.4. The plot is very similar to the one with normal priority on the same
kernel (see Figure 6.8). We can notice that still we have similar peaks, but now
they are quite regular and fewer. In Figure 6.9 (b) we can see the runs with a
high priority but on Linux with kernel 2.6. This time we do not see any apparent
difference between run with normal priority and run with high priority. We can
see that high priority does help, but the improvement is minimal. The reason
for that could be, that we performed the runs on a dedicated machine.

We also did runs using the random option. All of the operating systems gave
us similar results to the one seen in Figure 6.10. We can see from that graph,
that T-UppAal has good random distribution. The range was in accordance
to specification ranging from 450 ms to 550 ms. We noticed that in all of the
experiments the effects of uncertainty were minimal to none.

6.3 Scheduling Resolution

This set of experiments was motivated by the fact, that the results in Section 6.1
(dependency between T-UppAal and IUT waiting time) still had no explanation
and experiments from Section 6.2 showed that Linux with kernel 2.4 and Solaris
OS are better than the Linux with kernel 2.6. This is in contradiction with the
fact that scheduler in the kernel 2.6 was improved since kernel 2.4. The idea
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(a) Linux 2.4

(b) Linux 2.6

(c) Solaris

Fig. 6.8: -P eager. -u 0,0
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(a) High priority - Linux 2.4

(b) High priority - Linux 2.6

Fig. 6.9: High priority -P eager. -u 0,0

Fig. 6.10: Linux 2.4 -P random. -u 15.000, 15.000
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of the experiment is the same as in Section 6.2, but this time we the adapter
sleeps certain amount of time after receiving input. After waking up it sends
back the output to T-UppAal.

6.3.1 Setup

The experiments were performed on the same set of computers used in previous
experiment (6.2). The model used in this experiment is the same as used in
Section 6.1.

The sequence of actions is shown in Figure 6.11. The pattern of the exper-
iment is similar to the one in Figure 6.7. The difference is, that the adapter
waits for tadp (value depending on the experiment) and then sends output b to
T-UppAal. The time t

[n]
4 is additionally measured.

Fig. 6.11: Sequence of actions and measured time

The algorithm 8 shows how the adapter for this set of experiments behaves.
As there is no IUT in this experiment, perform() function just wakes up another
thread by sending a signal. When threadExecute() function gets the signal it
starts to sleep for k time units. We subtract time from k because we want the
total sleep to be as close to k as possible. As already some time has passed before
we encounter the sleep statement, we subtract that time (getT ime()− t

[n]
1 ). In

every step the k value is increased by l which can be from 0 or 1000 depending
on the experiment. After waking up local time is stored to t

[n]
4 variable and the

message is sent to T-UppAal by calling function tryReport(msg).
In the result analysis we used:
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• T-UppAal waiting time:
The time T-UppAal waits before sending an input after the output was
received.

(t[n+1]
1 − t

[n]
4 )

• Adapter waiting time:
The time T-UppAal waits before sending an output after the input from
T-UppAal was received.

(t[n]
4 − t

[n]
1 )

Algorithm 8: Adapter for experiment without IUT
1: n := 0
2: perform(msg)
3: t

[n]
1 := getT ime()

4: inputDelivered()
5: signalThead()

6: threadExecute()
7: k := sleepT ime
8: while (!fail) do
9: waitForSignal()

10: sleep(k − (getT ime()− t
[n]
1 ))

11: k := k + step

12: t
[n]
4 := getT ime()

13: tryReport(msg)
14: n := n + +
15: end while

-P -U sleep step
Eager 0,0 0 0 µs
Eager 0,0 0 10 µs
Eager 0,0 0 100 µs
Eager 0,0 0 1000 µs

Tab. 6.3: Parameters - Linux with kernel 2.4.27 and Solaris

In Table 6.3 we can see the summary of the parameters that were use in
experiments on Linux with kernel 2.4. We decided to do all the experiments with
-u 0,0 parameter, because we saw in Section 6.1 that it did not had significant
influence on the results. The Eager option was also used, because the results
are easier to interpret. The parameter that was changing was adapter’s waiting
time before sending back the input. We experimented with no sleeping time
and with an increasing the sleeping time. We did the same set of experiments
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also on the Solaris machine. Again it was a public machine, so results may be
biased.

-P and priority -U sleep step
Eager, normal 0,0 200 ms 0
Eager, normal 0,0 0 10 µs
Eager, normal 0,0 0 100 µs
Eager, normal 0,0 0 1000 µs
Eager, high 0,0 0 100 µs
Eager,high 0,0 0 1000 µs

Tab. 6.4: Parameters - Linux with kernel 2.6.11

In Table 6.4 we can see the parameters for the Linux with kernel 2.6. They
are the same as for Linux with kernel 2.4. The only difference is that we did
the experiment with constant sleeping time equal to 200 ms. We also did some
experiments with higher priority.

6.3.2 Results

We do not show all the results that we obtain, but again only the most inter-
esting ones.

The runs without sleeping delay in adapter on Linux with kernel 2.4 gave us
adapter waiting time of between 160 µs and 250 µs.

T-UppAal waiting time for the same set of experiments was between 460.0
ms and 459.6 ms. For Solaris the adapter delay was between 0.99 ms and 0.96
ms. T-UppAal waiting time was between 45.0 ms and 46.0 ms with the average
equal to 45.1 ms. Solaris seems worse at immediate response time, but it may
be affected by the fact that it is a public machine. T-UppAal sleeping time is
nearer the desired value on Solaris though.

The runs with adapter waiting time increasing by 100 µs gives new informa-
tion about the problem. The Adapter and T-UppAal waiting time is shown in
Figure 6.12 for Linux with kernel 2.4, in Figure 6.13 for Linux with kernel 2.6
and in Figure 6.14 for Solaris.

The X-axis represents number of steps (one step is sending one input and
receiving one output). Y-axis delineates time in microseconds.

In Figure 6.12 (a) the most apparent is the fact that the waiting time in-
creases in 10 ms steps. The obvious conclusion is that the Linux kernel 2.4 is not
capable of getting better scheduling precision than 10 ms when waking up the
process. (in the C++ code we used nanosleep). In Figure 6.12 (b) we see the
T-UppAal waiting time for the same set of experiments. We can notice similar
effect, as in Section 6.1, that the small peaks complement each other.

In Figure 6.13 (a) we see the waiting time of the adapter but this time on
Linux with kernel 2.6. The plot here is quite different. We no longer see 10 ms
steps. The size of steps is 1 ms and this is the best resolution scheduling with
kernel 2.6. This is actually the resolution of the 8254 Programmable Interval
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(a) Adapter waiting time (b) T-UppAal waiting time

Fig. 6.12: Linux 2.4. -u 0,0. Increasing from 0 by 100 µs

(a) Adapter waiting time (b) T-UppAal waiting time

Fig. 6.13: Linux 2.6. -u 0,0. Increasing from 0 by 100 µs
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Timer used on most uni-processor PC [19]. This can explain why the results
from the experiments from Section 6.2 could show that the kernel 2.4 is better
than 2.6. We simply did not change the time, so we never experienced the 10
ms jump. In Figure 6.13 (b) we see the waiting time for T-UppAal. From this
graph we can see more clearly that 1 ms is the limit of scheduling resolution.
The plot is almost a straight line with 1 ms jumps.

(a) Adapter waiting time (b) T-UppAal waiting time

Fig. 6.14: Solaris. -u 0,0. Increasing from 0 by 100 µs

In Figure 6.14 (a) we can see the waiting time of the adapter on Solaris.
The graph looks very similar to the one in Figure 6.12 (a). We can also see 10
ms jumps, so the resolution for schedule for Sun OS is the same as for Linux
with kernel 2.4. The same fact can be seen in Figure 6.14 (b), where T-UppAal
waiting time is plotted. We see 10 ms also here. The resolution of 10 ms for
scheduler is the base of our explanation for the first experiment (Section 6.1).

6.4 Conclusions

Our first set of experiments (Section 6.1) showed that the network latency is
minimal compared to the scheduling delay. The first and second experiments
(Section 6.1 and 6.2) showed us that the limit in the precision we could achieve
when we are deciding when an action happened or when we want T-UppAal to
perform an action. This gives us the knowledge that the tolerance gap (Section
3.3.1) on when input actions should be performed by T-UppAal can in no cases
be less than the scheduling delay (10 ms for Linux 2.4). Therefore having a
specification of higher precision than milliseconds is not applicable. We found
out that the problem of precision depends on the OS. In our experiments Linux
kernel 2.6 gave the best precision.

We also see that even tough we have a certain precision in scheduling, we
sometimes get a longer waiting time (peaks) that can be explained by other
processes needing the CPU. We also noted that the effect of the uncertainty
parameter -u option in T-UppAal is minimal on the IUT waiting time and the
T-UppAal waiting time.
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6.5 Coverage experiments

In our previous work [7] we made experiments involved coverage calculation.
We chose to calculate two types of the implementation model coverage:

• Location coverage measure how many (and how often) locations of the se-
lected TA-components were visited when test was executed on the model.

• Transition coverage indicates how many (and how often) transitions of
the selected TA-components were traversed when test was executed o the
model. [8]

There were two specifications used for experiments:

1. Light Controller specification (2.3)

2. Modified Light Controller specification (without integer variables) [7].

For experiment we used mutation testing [10]. Mutants with two types of
errors were made for the experiments:

1. Timed error. It occurs when system does not meet time constraints (10
mutants).

2. Logical error. It is usually observed when the system produces unexpected
results (12 mutants).

Coverage measure

We wanted to check the hypothesis what was the dependency between the cov-
erage required to kill a mutant and a way the coverage was calculated. We were
aware that different measures of the coverage produce different results. There-
fore we wanted to find out which measure gives the greatest confidence (when
it reaches value 100%) that all errors have been found.

Coverage was measured using different methods:

1. Counting the number of visited locations and divide by the number of all
locations;

2. Specifying the target number n of visits for each transition. When each
transition is visited at least n times then the coverage is equal to 100%;

3. Calculating transition coverage using the modified specification;

Form experimental results we conclude that location coverage calculated on
original specification does not give good assurance, because most of the times
maximum coverage value reached 100% and the average value was about 80%.

We expected transition coverage measure to be more confident than location
coverage. The experiments on the original specification showed that average
value was shifted down by about 20%. Still for many mutants the maximum
values reached 100%.
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Fig. 6.15: The transition coverage of the modified specification for mutants with
logical error(maximal, average and minimal values)

Our experiments showed that the coverage measure with target did not give
much better assurance than the ordinary ones. Additionally it causes unneces-
sary stretch between the minimal and maximal value.

The transition coverage measure calculated for modified specification (see
Figure 6.15 gave the best assurance. We show minimum, maximum and average
coverage values for each mutant. This time maximum values are below 90%.
And for example to kill M6 mutant we needed about 20% of the model to be
covered. Compared with location coverage calculated on original specification,
the same mutant (M6) was killed when average coverage value was 80%.

We can conclude that coverage required to kill a mutant depends on the way
it was calculated and that using transition coverage on modified specification
we can have much bigger confidence that most of errors were found when the
coverage reached 100%.

Dependency between coverage and time

Another thing we wanted to check was the dependency between time and the
coverage. We expected that the coverage increase with a time faster at the
beginning. The longer test is executed the slower coverage increases. The
coverage is not reaching 100 percent. The longer test was executed the bigger
part of the IUT was examined.

Experiments were performed:

• with IUT without any errors introduced.
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Fig. 6.16: Transition Coverage vs. Time. Modified Specification.

• using original and modified specifications

• run the test for different intervals of time

The examined data was:

• time of a test run;

• location and transition coverage.

In Figure 6.16 we show transition coverage versus time calculated using
modified specification. In the graph we have minimum, maximum and average
coverage value. In X axis we show average time in seconds and in y axis we
delineate coverage value in percentage. It was the most detail coverage measure,
so coverage value was increasing slower compared with other setups (e.g.. loca-
tion coverage calculated on original specification). But still the result supported
the hypothesis.

As we expected, the coverage value increased with the time faster at the
beginning. The longer test was executing the slower coverage was growing.
According the hypothesis coverage value should not reach 100%. This did not
proved out with original specification. However with modified specification the
100% coverage was not reached.

Error detection

Another hypothesis we were tying to prove was that the same error is detected
in certain location/transition or set of locations/transitions.
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We believed that when some error is introduced into a program, it is usually
detected when passing though certain part of the specification (transition or
location). The possibility of encountering this error may depend on other factors
like the values of variables or the values of clocks (or factors not captured by
the formal specification due to abstraction in modelling).

To check the hypothesis we made:

• 10 runs for each mutant described above;

• timeout for T-UppAal 1000 seconds.

The examined data was in which locations/transitions the error was observed
(in the case where it is detected).

In the bottom part of Figure 6.17 we see mutants and their transitions, where
the error was detected. The number in the x axis represents amount of times
the error was found on the particular transition.

We see that for mutants M0, M4, M7 the error was discovered always when
traversing the same transition. For mutants M5 it was in the same transition in
nine out of ten runs. Mutants M8 and M9 did have a different last transitions
but the error seemed to almost always be detected when leaving state A1.
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Fig. 6.17: Number of hits for the last transition(s). Logical errors
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If several test runs were done for a long time, it is likely that different paths
would be traversed. After examining last transitions we realized that no matter
how long was the test run, we usually find error in the same transition/location
or in a constant set of them. For some mutants T-UppAal needed only one
transition and for others it was from one to three. This implies that when
getting many different last transitions, the mutant can be discovered on many
transitions, but not that many transitions are needed to discover the mutant.
For timed mutants the results were similar. It was frequently the case that
T-UppAal found the error on the same transition or when traversing from a
certain location.

The experiment gave promising results that shortening of test run was pos-
sible.



7. INDUSTRIAL CASE STUDY

Having analysed the factors that could affect re-runs we believed that we were
ready to try out re-runs on the industrial case study. As our IUT we used EKC
201/301. The EKC 201/301 is an advanced electronic thermostat regulator. It is
made by Danfoss, a Danish company recognized world-wide for its Refrigeration
and Air Conditioning, Heating, Water and Motion Controls [4]. It has been
sold worldwide and is used to control and monitor the temperature of cooling
plants such as freezer rooms and large supermarket refrigerators. The T-UppAal
(TRON) tool was used by [6] to examine an industrial case study and EKC
refrigerator was used as IUT. We extend the ideas proposed in [6] by checking
the possibility on test re-run on the same IUT (EKC refrigerator controller).
Additionally we do coverage measurements of one run using the ideas presented
in Chapter 4. The modelling of the IUT to TA had already been done by [6] and
was therefore ready to be used in our experiment. For keen readers the model
can be viewed at http://www.cs.aau.dk/∼bnielsen/compressor.xml. The time
constants in the specification were in the order of seconds , but some ranged to
hours.

7.1 The ECK control objectives

The main control objective of EKC unit is to turn on/off a compressor when the
refrigerator room it is monitoring gets too hot/cold. The temperature should
be maintained between user defined set-point and set-point+differential degrees.
The regulation is based on the temperature Tn which is the average room tem-
perature. The temperature Tn is recalculated periodically using the readings
from a sensor. The new temperature is a weighted average (equation 7.1) where
the old temperature is weighted by 80% and the new sample by 20%

Tn =
Tn−1 ∗ 4 + T

5
(7.1)

The simplified control objective can be seen in Figure 7.1. There should be
a minimal delay before the compressor can restart and the minimum duration
when compressor should remain on. If the temperature is above/below high
Alarm Limit/low Alarm Limit for alarm delay time units an alarm must sound.
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Fig. 7.1: EKC Main Control Objective

7.2 Model Structure

The functionality of the EKC unit was model by [6] as the network of TA: its
main components handling, basic temperature regulation, alarm monitoring,
and defrost modes with manual and automatic controlled (fixed) periodic de-
frost (de)activation. The input actions that are sent to the EKC (IUT) unit
can be seen in Figure 7.2 with the output actions. The tolerance and timing
uncertainties of the IUT and those caused by adaptation software were modelled
explicitly in the model.

Fig. 7.2: Model input/output actions

The model itself is quite complicated even though not all of the function-
ality of the controller was modelled. It consists of thirteen main components
(counting components of the environment) The model is also non-deterministic
as it gives much tolerance for IUT when the action can occur.
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Fig. 7.3: Model components dependencies

Figure 7.3 depicts the main components and their dependencies. The figure
and the following description is taken directly from [6] as their explanation of
the model we find complete and descriptive.

”The Temperature Measurement component periodically samples the
temperature sensor and calculates a new estimated room air temperature. The
Compressor component controls the compressor relay, based on the estimated
room temperature, alarm and defrost status. The High Temperature Alarm
component monitors the alarm state of the EKC, and triggers the alarm relay if
the temperature is too high for too long. The Defrost component controls the
events that must take place during a defrost cycle. When defrosting the com-
pressor is disengaged, and alarms are suppressed until delayAfterDefrost time
units after completion. Defrosting may be started manually by the user, and
is engaged automatically with a certain period. It stops when the defrosting
time has elapsed, or when stopped manually by the user. The Auto Defrost
component implements automatic periodic time based defrosting. It automat-
ically engages the defrost mode periodically. The Relay component models a
digital physical output (compressor relay, defrost relay, alarm relay, alarm dis-
play) that when given a command switches on (respectively off) within a certain
time bound. The Temperature Generator is a part of the environment that
simulates the variation in room temperature, currently alternatingly increases
the temperature linearly between minimum and maximum temperature, and
the reverse. Finally, the Defrost Event Generator environment component
randomly issues user initiated defrost start and stop commands.”

7.3 Model Adaptation

The setup was a little more complicated than in the previous experiments as the
inputs and outputs of the EKC are stored in a parameter database internally
in the EKC. To access that database, we were provided by Danfoss a Visual
Basic (VB) API monitoring software that runs on a MS Windows XP PC. As
T-UppAal only exists in UNIX version, a second computer was needed to host
it and connect to the VB interface using a TCP/IP connection. The connection
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from the VB host to the EKC gateway was via RS-232 and from it to the EKC
unit by a LON network.

Fig. 7.4: Test Adaptation

In Figure 7.4 we can see the path that input and output message must travel
between T-UppAal and the IUT. When T-UppAal decides to send input it is
forwarded to the adapter. In the adapter this is converted to the set parameter
command for the VB component. The VB component updates the internal
parameter database in the EKC through the EKC Gateway. In order to receive
an output from IUT, the adapter periodically (every 500ms) asks for the values
of all the parameters. It compares the received values with the previous readout
and translates the changed parameters to the outputs that are understood by
T-UppAal. As the result the timing uncertainty is quit large. We have no grain
control when event should happen or even no exact information when the event
happened.

The computers that were used:

1. PC1:(used alternatively)

(a) AMD Athlon 1.8 GHz, 256MB on RAM running Red Hat Linux 2.6

(b) Dual Xeon, 2x2,8 GHz CPU, 3072 MB RAM Interactive use RedHat
Enterprise Linux 3 (Intel x86)

2. PC2:Pentium 1.3 GHz, 512MB of RAM running Windows XP

We used two computers for hosting T-UppAal (one at a time) and one for
the VB application. The more powerful one (PC1 b) is a computer situated at
Aalborg University network for running applications. When using that com-
puter, other processes could be running that could affect our results. Therefore
we choose also to have another - not as powerful one (PC1a), which we could
dedicate only for running the experiments.



7. Industrial case study 91

7.4 The Tools and The Options

When making a re-run there are number of parameters that both butler and
T-UppAal can use that affects the re-runs. We divide them into two parts.
The one used in generating the re-run TA with Butler, and the options that
T-UppAal were run with.

The Butler options (see Section 5.3) used during this experiments were:

• Input tolerance

• Output tolerance

• Precision

• Output enabled

• Global/Local clock

The input and output tolerance specify the gap in which actions are allowed
to happen (see Section 3.3.1). The precision specifies how many microseconds
one model time unit lasts in the new specification generated by Butler. 5.2.7.
For example the value of 1000 would make the re-run specification where each
model time unit would correspond to 1000 microseconds. Output enabled option
creates specification where all output actions coming from the IUT are valid.
Any output action can arrive at any time (only original model constraints are
taken into account). Global/Local clock parameter decides if a global or a local
clock should be used in the TA re-run (see Section 3.3.3).

For coverage measurement we used Butler with following options:

• The input and output tolerance set to zero - we used most restrictive
tolerances in order to minimise state set explosion and reduce time needed
to give results to the query

• The global clock was used. We wanted the actions to be allowed to happen
at exactly the same time. This is possible as we do not the actual re-run,
just model checking.

• We increased the precision from 100 000 to 10 000. This the rounding
errors had no impact.

• We added the transition coverage variables. We did not included the
location coverage as the results should be similar. The other factor was
time limitation.

Butler saves the specification with coverage variables and TA trace included
in the separate file. It generates also the file with queries for the UppAal.
We used command line version of UppAal called verifyta. We used depth first
search.

The T-UppAal options used:
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• -u inRes,outRes (in microseconds)

• -P delay (eager, random)

The -u options is used to specify the observation uncertainty intervals in
microseconds. This tells T-UppAal how long it may take the action to be
delivered. The -P option controls how T-UppAal should choose to delay before
sending a action. When random option is specified, the action is sent at a
random time chosen from the allowed time interval. With eager the action is
sent at the earliest possible moment (as early as allowed by the time interval).
To be able to make re-runs we need as much control as possible when the input
actions should occur. Because of that we have chosen to set the -P delay option
to eager in our experiments.

7.5 Results

We split the results into three sections. One where we tried a very restrictive
type of re-runs where:

• The sequence of the actions had to be the same.

• Both the input and the output actions were with tolerance which decided
when they should happen.

• Tolerance was specified separately for the input and the output.

• The input and the output was checked against conformance to a specifi-
cation.

The second type of re-run was made less restrictive by removing the imple-
mentation part from the specification.

The last section presents the results for the coverage measurements.

7.5.1 Re-run with Conformance to Specification and Sequence of Actions

Our first attempts allowed us to find and fix minor bugs in Butler: One regarding
invariants wrongly defined to be a valid T-UppAal XML specification, the other
being the channels not being in right order. The previous experiments were done
on much simpler specifications and therefore we did not encounter those errors.
After having fixed these errors we continued. Over 50 runs were made from two
recorded test runs of length of 7 and 10 minutes. The number of actions for
these runs was 63 and 128 respectively. The summary of all the options can be
seen in Table 7.1

The length of these runs lasted from 40 to 273 seconds (average of 27 actions).
The majority of them stopped after around 126, some even sooner. The failures
of the run can be split into three categories:

• ”TEST INCONCLUSIVE: IUT failed to offer output in time”
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Computer
used

Number
of
runs.

Input toler-
ance range
in ms

Output tol-
erance range
in ms

Precision in
µs

T-UppAaal
parameter
range on -u

PC1 a) 41 25 to 400 10.000 to
20.000

1.000 0,0 to 5.000,
5.000

PC1 b) 13 25 to 1.200 5.000 1.000 5.000, 5.000
to 20.000,
20.000

Tab. 7.1: Overview of parameters used in the experiment

• ”TEST INCONCLUSIVE: Model contains Deadlock(s)”

• ”TEST INCONCLUSIVE: Input executed too late. CPU too slow or load
too high”

The inconclusive verdict of ”IUT failed to offer output in time”. To solve
this problem we increased the tolerance on output actions. After we increased
it these verdict stopped to appear.

More of a mystery was the fact that T-UppAal was reporting deadlock(s)
in the specification. This was rather unexpected, as when the specification was
checked for deadlocks using the UppAal model checker tool, it showed none. By
generating a TA trace of the re-run using Butler, we managed to analyse where
the deadlock occurred. We created simple specification in which UppAal did
not showed deadlock where it should. This appeared to be a critical bug in the
UppAal model checker. Because of the bug a new version of UppAal (with a
bug fix) was released.

Many times we encountered the ”Input executed too late...” verdict. Our
first response was to increase the tolerance on when input actions could occur.
When increasing the tolerance we managed to get a little longer runs as seen
in Figure 7.5. But increasing tolerance more than 400ms did not increased the
time of re-run. With tolerance much higher than 400ms the re-runs were either
stopping very shortly, after 15 sec or around 250 sec. One explanation can be
that T-UppAal is encountering state explosion. Therefore it needs more pow-
erful computer to be able to fulfill the action deadlines. When trying on more
powerful computer PC1 b), it gave similar results. After further investigation,
it appeared that in some of the cases, the state set used by T-UppAal for com-
puting the possible state of the IUT, was rather low (88 states). After thorough
analysis (accompanied by simple experiments) we found possible reason of the
problem. The result is the concept of narrowing gap described in Section 3.3.4.

7.5.2 Re-run without Implementation Part

We experimented with re-runs that have less restriction on actions. For this
experiment we used the same setup as for the previous experiment except only
computer PC1 a) was used.
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Fig. 7.5: Re-runs length in seconds(Y-axis) for different input tolerance (X-axis

The parameters used in the experiment can be viewed in Table 7.2. The
difference in this experience from the last one is, that now we remove the im-
plementation part in the specification. This gives us a specification where we
only have TA trace of the run we want to simulate. This means that T-UppAal
verdict will only conform that the re-run is in accordance to the TA trace, but
not check if it is valid according to the implementation part (as it is now re-
moved). We generated four TA (specification) from four different runs of length
of 20 min. The number of actions in these runs was 169, 187, 190 and 201.

Computer
used

Number
of
runs.

Input toler-
ance range
in ms

Output tol-
erance range
in ms

Precision in
µs

T-UppAaal
parameter
range on -u

PC1 a) 4 50 10.000 1.000 0,0

Tab. 7.2: Overview of parameters used in the experiment

The result was that: For all of the four runs, we encountered success and
managed to do a complete re-runs (of 20 min.).

7.5.3 Coverage Measurements

We performed the coverage measurements for the 10 min run with 128 actions
we obtained in the previous experiments. We generated two queries for each
edge as described in Section 4. It was in total 260 queries.

During our first trials we experienced a problem with a state space explosion.
UppAal was using more than 1.5GB of memory and still was not able to provide
answer to half of the queries. The solution to the problem was changing the
range of coverage variables from [0, 32762] to [0, 1] and the assignments from
increasing value of coverage variable by one to setting value to one. After such
modification we managed to obtain answer to all queries within 30 minutes when
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using -T option with UppAal (reuse state space).

Template Certainly Certainly not Possibly
instantiation traversed traversed traversed
IUT TemperatureReceiver 2 0 0
IUT TemperatureMeasurementErr 5 0 0
IUT Compressor 8 2 0
IUT compressorRelay 5 7 0
IUT ActionHandler 4 6 0
IUT alarmRelay 1 10 1
IUT highAlarmDisplay 1 10 1
IUT HighTemperatureAlarm 8 7 4
IUT AutoDefrost 1 1 0
IUT Defrost 11 4 1
IUT defrostRelay 5 7 0
IUT INIT Count 6 0 0
Sum 57 54 7

Tab. 7.3: Results of coverage measurements - number of covered edges

The summary of the results of the queries can be seen in Table 7.3. We
can see that more than half of the transitions were covered. Seven out of 118
transitions were possibly covered. We have no possibility of checking if they
were actually visited during the run using data we have. We can see that the
templates IUT AutoDefrost, IUT highAlarmDisplay and IUT alarmRelay were
not covered at all except the first transition. From that we see that the features
associated with the alarm and the auto defrosting were not tested the run.

7.6 Summary

The first experiment 7.5.1 showed us that with this kind of restriction on the re-
run, It is difficult (almost impossible) to make a re-runs with a fairly complicated
specification. One of the reason for that, we explain in Section 3.3.4 narrowing
gap. By knowing why the more restrictive type of re-run failed, we choose a less
restrictive one 7.5.2 where the problem of narrowing gap should not occur. In
that we had success for all of the runs which confirmed, that the narrowing gap
had the most effect on why we failed with the more restrictive ones. We managed
to do the coverage measurements using technique described in Chapter 4. The
care must be taken to avoid state space explosion when doing the coverage
measurements.



8. CONCLUSIONS AND FUTURE WORK

8.1 Epilogue and Conclusions

Our main goal of the project was to obtain testing information, analyse it and
reused in order to achieve a better testing performance. The data logged during
a test run needs to be used to reproduce errors faster by repeating exact behav-
iour of the test tool. Additional metrics to the test run information should be
applied to discover untested parts of the systems.

In order to make such an improvement we put following tasks for us:

• To transform test information and use it for a re-run,

• To find a technique of model coverage measurement.

In the next sections we conclude and sum up the results obtained through
out our work.

8.1.1 Butler

The problem of not readable test run information was solved by creating a
Butler tool, that constructs TA trace from a trace log.

One of the features is that a tool automatically generates a new specification,
where the environment part is replaced with the TA trace that can be used for
test re-runs. Also using UppAal and the new specification, simulation and
reachability analysis can be performed regarding the run.

Another helpful thing is that definitions can be separated from the code of
the adapter. In order to achieve it we created a library for parsing a file with
the definitions of input/output actions.

The need to calculate test coverage can also be satisfied by the tool. Butler
has an option to include in the specification a set of auxiliary variables used
as counters. Using UppAal and the modified specification with counters and
TA included, we are able to obtain the information of how many times each
transition/location was traversed/visited in the run.

The tool is compatible with future releases of UppAal, because we used
libutap library for parsing the specification. We extended this library with pos-
sibility of writing the specification that has been parsed (and possibly modified).

We conclude that Butler is a helpful tool that gives the tester an array of
possibilities that he can use for testing and diagnosis of runs.
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8.1.2 Re-runs

Problems regarding Re-runs

To be able to make re-runs, it is crucial to understand the factors that affect
re-runs and problems concerning them. We identified following problems:

• Platform behaviour

• Effect of non-determinism

• Global and relative time

• Narrowing of the gap

• Conversion of time units

We proposed solutions to some of them. In order to achieve that a detailed
analysis of T-UppAal performance with re-runs was done.

When analysing behavior of platforms in context of a test re-run, we came
up with conclusions:

• The effect of network latency is small (less than 500 microseconds) com-
pared with a scheduling delay that is at least 1 ms in Linux kernel 2.6 and
10 ms in Linux kernel 2.4.

• The tolerance gap (section 3.3.1) on when input actions sent by T-UppAal
can in no cases be less than the scheduling delay (10 ms for Linux 2.4),
otherwise T-UppAal would not be able to deliver actions in time.

• Having a specification of higher precision than milliseconds is not applica-
ble, because scheduling resolution is in ms. It may be applicable in Real
time OS.

• T-UppAal should be run on RTOS in order to perform precise reruns,
because RTOS gives much better control over the scheduling.

The problem of time non-determinism we partially solve by specifying an
eager option to T-UppAal during a test re-run.

When analysing usage of a global and a local time, we infer that the choice
is IUT specific. The global time should be used when we have the IUT where
timing of actions is dependent on other actions. When timing of actions in the
IUT are only dependent on when previous action occur, local time should be
chosen.

The narrowing gap problem we solve by removing the constraints imposed
by specification.

To deal with a situation that T-UppAal is able to deliver action at much
higher precision than one model time unit, we decided to generate the TA and
the specification according to a precision specified by the user. The user can
increase by choosing a natural number (decrease is not possible) the precision
of the model, to a max value of microseconds (as that is the precision in the
trace log from T-UppAal).
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Re-runs Criteria’s

In our analysis of re-run, we identified different types of test re-runs criteria’s.
We ordered them according to the difficulty:

• Specification and environmental constraints

• Timing tolerance

• Relative position of timing constraints

• Order of the actions

We identified the border which of them are feasible using T-UppAal and
which are not. In our analysis we focused our work on a restrictive type. When
we found out that it is not possible to make a re-run using that type, a detailed
analysis of possible reasons followed.

After detail examination of the criteria’s, we conclude that they are IUT
specific. In our case (industrial case study) the best was to remove specification,
use global time and have bigger tolerance on output actions than on input. We
successfully did re-runs using this approach.

8.1.3 Coverage Measurements

The coverage calculation experiments were done in our previous work [7]. In
this project we proposed another methodology for coverage measure. Using this
methodology transitions (or locations) can be classified as:

• possibly traversed,

• certainly not traversed,

• certainly traversed

We added a feature to Butler so that it generated the queries automatically
for every transition in the specification. Using this feature we did a cover-
age measurements on an industrial case study. We conclude that our tool and
method are feasible, and can be used in practice to give the tester more under-
standing of what was tested during a run.

8.2 Future Work

We successfully applied Butler to an industrial case study, however bugs in
Butler were found and corrected. This could indicate that there still exist
undiscovered bugs in Butler. A more thorough testing of Butler on different
specifications with the use of different options could be useful.

Also some improvement of Butler can be made:

• possibility to reorder actions,
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• setting individual tolerance for actions

• extension with a graphical interface for better usability.

The coverage measure opens several possibilities:

• Guiding - It would be useful to generate the TA traces that would cover
the parts of the specification that were not covered during previous runs

• Graphical representation of results - at the moment the coverage mea-
surements are obtained in the form of answers to queries or the values of
variables. It would be useful to present them in some more readable for-
mat. For example the specification can be coloured according to coverage
results.

More study of the different types of re-runs than used in our experiments
could prove useful. This could include to show in more detail which types of
re-runs are usable for different kind of testing (specifications).

Runs can continue for a long time. Making a re-run of the complete trace is
at the moment also equally long. Our results indicated that path shortening of
TA trace to the error is possible [7]. One idea to do this would be to generate
TA trace from the trace log, remove unnecessary parts from the path to the
error and then replace the environment with the new shorter TA trace.
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