
On Deciding Behavioral Properties for

Petri Nets:

Timed-Arc Petri Nets and their Extensions

Ragnhildur Óskarsdóttir
Sigmar Stefánsson
Tómas Jónasson

Master Thesis

Software System Engineering
Department of Computer Science

Aalborg University, Denmark

13. May 2005

Acknowledgement

We wish to take the opportunity to thank our supervisor Jǐŕı Srba for his
guidance and support. His knowledge and encouragement has, without doubt,
greatly improved this work.

Aalborg, 13. May 2005

Ragnhildur Óskarsdóttir

Sigmar Stefánsson

Tómas Jónasson

Abstract

The Petri net model is well known in the field of model checking and
behavioral properties of it have been well studied in recent years. Proper-
ties such as reachability, coverability, deadlock and liveness have all been
shown to be decidable for this model. However the Petri net model lacks
the ability to model real time systems and therefore, a timed extension of
it, the timed-arc Petri net model, was introduced. However, decidability
of all the behavioral properties mentioned above has not been studied in
timed-arc Petri nets to the same extent as in regular Petri nets.

In this paper we give results for decidability of all of these properties
for the timed-arc Petri net model, as well as other extensions of that
model, defined completely by us or inspired by the work of others.

Contents

1 Introduction 6

2 Preliminaries 9
2.1 On the Number Theory . 9
2.2 On the Theory of Multisets . 9
2.3 Labeled Transition Systems . 10

2.3.1 Comparing LTSs . 10

3 Petri Nets 14
3.1 The Petri Net Model . 14

3.1.1 PN as Labeled Transition System 17
3.1.2 Behavioral Properties . 18

3.2 The Timed-Arc Petri Net Model 20
3.2.1 Classes of TAPNs . 25
3.2.2 TAPN as Labeled Transition System 29
3.2.3 Behavioral Properties . 30

3.3 Summary . 32

4 Undecidability Results for Timed-Arc Petri Nets 33
4.1 Undecidability of Deadlock . 33
4.2 Undecidability of Liveness . 37
4.3 Summary . 40

5 Deciding Coverability for Timed-Arc Petri Nets 42
5.1 Backwards Reachability Analysis 42
5.2 Existential Zones . 43
5.3 Applying Backwards Reachability Analysis with Existential Zones 48
5.4 Example . 53
5.5 Summary . 56

6 Extended Timed-Arc Petri Net Models 57
6.1 Distributed TAPN . 57

6.1.1 The Distributed Model . 57
6.1.2 Discrete Time . 58
6.1.3 Continuous Time . 73
6.1.4 Summary . 74

6.2 Age-Preserving TAPN . 75
6.2.1 The Age-Preserving Model 75
6.2.2 Discrete Time . 77
6.2.3 Continuous Time . 81
6.2.4 Summary . 83

6.3 Inhibitor Arcs . 84
6.3.1 TAPN with Inhibitor Arcs 84
6.3.2 Discrete and Continuous Time 85

4

6.3.3 Summary . 86
6.4 Reset Arcs . 87

6.4.1 TAPN with Reset Arcs 88
6.4.2 Discrete and Continuous Time 89
6.4.3 Summary . 89

7 Conclusion 90

5

1 Introduction

When developing a system it is often desirable to know if it behaves correctly
(i.e. behaves according to the system specification) and effectively to solve the
task it is intended to solve, before the actual construction starts. A convenient
way to analyze the effectiveness of a system is to build a model of it so that
its structure and dynamic behavior can be studied beforehand. A model is a
representation, often in mathematical terms, of what are felt to be the important
features of the object or system under study [16]. Through modeling, knowledge
about the modeled system can be obtained without the inconvenience and cost
of manipulating the actual phenomenon, and suggestions for improvements and
changes can be made.

Model checking is a formal verification technique based on the exploration
of the states of a model. Model checking can often be automated and various
tools have been developed to do so, all having the same principle, checking if
a model of a system satisfies a given property. The tools accept the system
specification (a model) and some property specification that the final system
is expected to satisfy, and through automatic verification the tools output yes
if the given model satisfies the property, otherwise generate a counter example
(Figure 1).

Model (System
requirements)

// gfed`abcModel
checking

tool

// Answer

Specification
(System property)

OO

Figure 1: Model checking

A major current challenge in automatic program verification is to extend
model checking to transition systems with infinite state space. In this paper we
focus on a time extension of the Petri net model, namely the timed-arc Petri
net model, define extensions of it and look at decidability questions concerning
some of their behavioral properties.

A Petri net (PN) consists of two kinds of nodes, called places and transitions,
where transitions are fired to move tokens around in the net, from one place to
another through connecting arcs, according to given rules. Tokens in a Petri net
represent resources of the modeled system. The location of all tokens in a Petri
net is called a marking, where we state how many tokens occupy each place. A
Petri net is an infinite-state system since it has an infinite control part, namely
markings.

The Petri net model has been extended to handle real time systems, by
introducing time aspects to it. We look at an extension called timed-arc Petri
nets (TAPNs), where tokens are assigned a value from the TAPN’s time domain

6

that represents its age, i.e. how many time units have elapsed since the token
was created. Time intervals are also introduced on the arcs in a timed-arc Petri
net and they limit what tokens can be used to fire a transition.

Reachability, coverability, deadlock and liveness are some of the most com-
mon behavioral properties checked for when studying Petri nets. Reachability
is known to be decidable for the Petri net model [13] but undecidable for the
timed-arc Petri net model [18]. Coverability on the other hand is decidable for
TAPNs, and in [3] an algorithm that uses backwards reachability and existential
zones (EZ) to decide it, is presented. Deadlock and liveness have been shown to
be decidable for Petri nets [6] but to our knowledge these two properties have not
been closely studied for TAPNs, with regard to decidability and undecidability.

Our Contribution
We give two polynomial reductions for behavioral properties of timed-arc Petri
nets, one from reachability to deadlock and another from deadlock to liveness.
We define three different types of intervals for timed-arc Petri nets (open, half
open and closed) and modify the technique of backward reachability with exis-
tential zones (the EZ algorithm) [3] so it can be used to decide coverability for
all timed-arc Petri nets, regardless what type of intervals they have.

For distributed timed-arc Petri nets (DTAPNs) [15] with discrete time do-
main we give a reduction to regular Petri nets preserving timed-reachability,
and for DTAPNs with continuous time domain we modify the existential zones
algorithm so it can be used to decide coverability for them.

We define age-preserving TAPNs, show how to construct a regular TAPN
with discrete time domain that simulates a given age-preserving TAPN, also
with discrete time domain, preserving strong bisimilarity. We also show how
to modify the EZ algorithm so it can be used to decide coverability for age-
preserving TAPNs with continuous time domain. We then define TAPNs with
inhibitor arcs and finally TAPNs with reset arcs.

Related Work
The distributed timed-arc Petri net model we define is inspired by the original
definition from [15]. The authors examine some behavioral properties for those,
and related, nets including the decidability of coverability for DTAPNs. We, on
the other hand, modify an algorithm used to define coverability for TAPNs so
it can be used in the same way for DTAPNs.

The backward reachability analysis is a technique that has been applied to
many classes of systems. In [1] the authors use this approach to decide cover-
ability for well-structured systems. In [3, 4] the authors apply this technique,
combined with existential zones, to a special class of systems called better-quasi
ordered transition systems, one of which is the timed-arc Petri net model. We
use this technique to show decidability of coverability for our extensions of the
TAPN model, modifying it every time for it to work for each extension.

7

Polynomial time reductions for Petri nets are the given in [6] and [9], but we
do not know of any similar work which has been done for timed-arc Petri nets.

Outline
This paper is structured as follows. The next section presents some preliminaries
for this paper including a section on labeled transition systems. In Section 3
we define both the Petri Net and the timed-arc Petri net models, present our
classification of TAPNs, define both models as labeled transition systems and
state the behavioral properties which are of interest to us, for both models.
We present our undecidability results for TAPNs in Section 4. In Section 5 we
introduce the technique we use when deciding coverability for TAPNs namely
backwards reachability analysis using existential zones, show how we extend it
to handle all types of intervals mentioned earlier and give an example of how
it works. Finally we define four extensions of the TAPN model, take a look
at whether or not we can reduce them to timed-arc Petri nets, and modify the
technique described in Section 5 so it can be used to decide coverability for those
extensions which do not turn out to be Turing powerful.

8

2 Preliminaries

This section is intended to list the notation used in later chapters and state
or recall several definitions. Notations are presented in a way suitable for this
instead of in their most general form.

2.1 On the Number Theory

We use N to denote the set of all natural numbers including 0, i.e. N =
{0, 1, 2, . . .}, Z to denote the set of all integers, i.e. Z = {. . . ,−2,−1, 0, 1, 2, . . .}
and R+ to denote the set of all non-negative real numbers.

Notation:
The infinity symbol ∞ is a positive infinite quantity that is greater than every
number, i.e. ∀r ∈ R, r < ∞. We assume the following, ∀r ∈ R:

∞+ r = ∞
∞− r = ∞

2.2 On the Theory of Multisets

Definition 2.1.
A multiset M is a function from an element set A to the natural numbers,
giving the multiplicity of each element, M : A → N.
A multiset is finite if

∑

a∈A

M(a) < ∞.

Given two multisets M1 and M2 over a set A, the union of them, M1 ∪M2,
is defined as follows:

(M1 ∪M2)(a) = M1(a) + M2(a) ∀a ∈ A

The intersection of two multisets, M1 ∩M2 is defined as follows:

(M1 ∩M2)(a) = min{M1(a),M2(a)} ∀a ∈ A

where min returns the smallest element in a set.

Definition 2.2.
We define the set of all finite multisets A⊕ over a set A to be

A⊕ = {M : A → N |
∑

a∈A

M(a) < ∞}.

Typically, a multiset is written as a set of ordered pairs, e.g. a multiset
where M(a) = 3 and M(b) = 2 is written {(a, 3), (b, 2)}. We will sometimes
write out the full multiset, i.e. {a, a, a, b, b}.

9

Definition 2.3.
Given a multiset A over D and a value d ∈ D we define an operator <+ that
adds the value d to every element in A s.t.

A <+ d = {a + d | a ∈ A}

2.3 Labeled Transition Systems

Labeled transitions systems capture the idea behind process behavior. A process
is an agent that exists in a given state, it can perform an action communicating
with the environment and then becomes another process.

A labeled transition system represents these processes as nodes in labeled
directed graphs.

Definition 2.4.
A labeled transition system L is a triple (S,Act ,→), where

• S is a possibly infinite set of states

• Act is a finite set of labels s.t. S ∩ (Act) = ∅, where each label represents
an action observable from the environment

• →⊆ S ×Act × S is the transition relation

Transition (s, α, s′) ∈→ is denoted as s
α−→ s′ and intuitively means that the

system can move from a state s to a state s′ while performing the observable
action α. s −→ s′ denotes that there exists an action α ∈ Act such that s

α−→ s′,
and ∗−→ denotes the reflexive and transitive closure of −→.

As an example, we look at a labeled transition system with two states, s1

and s2. From s1 we can do an a transition and reach state s2, from which we
can only do a b transition and return to state s2. This LTS is shown in Figure
2.

s1

a

²²
s2

b

MM

Figure 2: Labeled transition system

2.3.1 Comparing LTSs

To compare two LTSs we mention a few notions of equivalences. We start with
isomorphism:

10

Definition 2.5.
Two transition systems L = (S,Act ,→) and L′ = (S′,Act ,→′) are isomor-
phic, written L ∼= L′, if there exists a bijective function (onto and one-to-one)
~ : S → S′ s.t. for all α ∈ Act and any states s1, s2 in S and s′1, s

′
2 in S′, where

~(s1) = s′1 and ~(s2) = s′2, the following holds:

s1
α−→ s2 if and only if s′1

α−→ s′2.

Let us have a look at the example in Figure 3 that shows two isomorphic
LTSs.

Â
Â
Â
Â
Â
Â

s′1

b

¯¯

s′2

a

OO

L′

s1

a

²²
s2

b

MM

L

Figure 3: Isomorphic LTSs

Let ~(s1) = s′2 and ~(s2) = s′1. From state s1 we can do an a transition and
reach the state s2 in L. The same holds for ~(s1) = s′2, where we can do an a
transition and reach ~(s2) = s′1 in L′. From state s2 we can do a b transition
and become s2 in L. The same holds for ~(s2) = s′1 in L′. Thus, L ∼= L′.

A weaker equivalence notion is that of bisimilarity. A bisimulation is a binary
relation on the set of states in a labeled transition system.

Definition 2.6.
Let L = (S,Act ,→) be a labeled transition system. A binary relation R ⊆ S×S
is a (strong) bisimulation if and only if whenever (s1, s

′
1) ∈ R then for each

α ∈ Act:

• if s1
α−→ s2 then s′1

α−→ s′2 for some s′2 ∈ S s.t. (s2, s
′
2) ∈ R

• if s′1
α−→ s′2 then s1

α−→ s2 for some s2 ∈ S s.t. (s2, s
′
2) ∈ R.

Definition 2.7.
Two states s1 and s′1 in transition systems L = (S,Act ,→) and L′ = (S′,Act ′,→′

) respectively, are said to be (strongly) bisimilar, written s1 ∼ s′1, if there ex-
ists a strong bisimulation R s.t. (s1, s

′
1) ∈ R.

For example, the LTSs L and L′ in Figure 4 are strongly bisimilar where:

R = {(s1, s
′
1), (s2, s

′
2), (s2, s

′
3)}

11

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

s1

a

²²

®
s

g _ W K
3

s′1

a

¦¦¯̄
¯̄
¯̄ a

¼¼2
22

22
2

s2

b

MM 9
O

Y \ _ b e o
¦-

B
S _ k |

´
s′2

b

// s′3

b

RR

L L′

Figure 4: Strongly bisimilar LTSs

The weakest notion of equivalence that we will mention is weak bisimulation.
The intuition of weak bisimulation is that it abstracts away the internal behavior
of the system by introducing a special transition τ to model internal or silent
actions, and add it to the set of allowed transitions of the transition system.
Then we can define α=⇒ ⊆ S × S for all α ∈ Act to be the relation α−→ preceded
and followed by arbitrary many τ actions.

Definition 2.8.
We define ⇒ ⊆ S × B × Act × B × S to be a transition relation on a labeled
transition system L = (S, Act,→), where

B =
{ ∅
{τ1, . . . , τn} where n ∈ N

Transitions (s, τ, α, τ, s′) ∈⇒, (s, α, τ, τ, s′) ∈⇒ and (s, α, s′) ∈⇒ are all de-
noted by s

α=⇒ s′. Intuitively that means that the system can move from a state
s to a state s′ while performing arbitrary many internal τ actions before and
after the observable action α. s =⇒ s′ denotes that there exists an action α ∈ Act
such that s

α=⇒ s′, and ∗=⇒ denotes the reflexive and transitive closure of =⇒.

Definition 2.9.
Let L = (S,Act ,→) be a labeled transition system. A binary relation R ⊆ S×S
is a weak bisimulation if and only if whenever (s1, s

′
1) ∈ R then, for each

α ∈ Act:

• if s1
α−→ s2 then s′1

α=⇒ s′2 for some s′2 ∈ S s.t. (s2, s
′
2) ∈ R

• if s′1
α−→ s′2 then s1

α=⇒ s2 for some s2 ∈ S s.t. (s2, s
′
2) ∈ R.

Definition 2.10.
Two states s1, s′1 in transition systems L = (S,Act ,→) and L′ = (S′,Act ′,→)

12

respectively, are said to be weakly bisimilar, written s1 ≈ s′1, if there exists a
binary relation R ⊆ S × S′ which is a weak bisimulation s.t. (s1, s

′
1) ∈ R.

As an example, the LTSs L and L′ in Figure 5 are weakly bisimilar where:

R = {(s1, s
′
1), (s2, s

′
1), (s3, s

′
2)}

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

s1

τ

²²

s′1

a

²²
s2

a

²²

s′2

s3

L L′

Figure 5: Weakly bisimilar LTSs

It is obvious that given two states s and t in a transition system L
s ∼= t ⇒ s ∼ t ⇒ s ≈ t.

We will use these notions of equivalence later on to compare different classes of
timed-arc Petri nets and extensions.

13

3 Petri Nets

The theory of Petri nets was proposed and formally defined by Carl Adam Petri
in his doctoral dissertation in 1962. Petri nets are one of the oldest and most
studied formalisms for the investigation of concurrency [7]. Murata [14] gives a
detailed overview of the history of Petri nets until 1989, and further details on
the developments of the Petri net theory can be found in [11].

3.1 The Petri Net Model

A Petri net is a directed, bipartite graph consisting of two kinds of nodes called
places and transitions. Arcs are placed either from a place to a transition or
from a transition to a place.

Definition 3.1.
A Petri net (PN) is a 4-tuple N = (P, T, In, Out) where:

• P = {p1, p2, ..., pn} is a finite set of places

• T = {t1, t2, ..., tm} is a finite set of transitions s.t. P ∩ T = ∅
• In : P × T → N is a function that associates a natural number to each

pair (p, t)

• Out : T × P → N is a function that associates a natural number to each
pair (t, p)

A place p is called an input place of transition t if In(p, t) 6= 0, and an
output place of t if Out(t, p) 6= 0. We use the notation •t = {p | In(p, t) 6= 0}
to denote the multiset of all input places of transition t and similarly we use
t• = {p | Out(t, p) 6= 0} to denote the multiset of all output places of t.

In a graphical representation of a Petri net, we draw places as circles, transi-
tions as boxes and arcs are drawn as arrows between them. The value of In(p, t)
states how many arcs are drawn from place p to transition t and the value of
Out(t, p) states how many arcs are between t and p. Figure 6 shows an example
of how a Petri net can model a classical Producer-Consumer system, where one
part of the system (the producer) produces some item and transports it to a
common buffer, while another part of the system (the consumer) can fetch these
items and consume them.

14

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

__________ Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

?>=<89:;

²²

p1 ?>=<89:;

²²

p4

t1

²²

Produce Transport t3

²²?>=<89:;

²²

p2 p3 ?>=<89:;

55jjjjjjjjjjjjjjjj
Buffer ?>=<89:;

²²

p5

Transport t2

::

::

Consume t4

dd

Producer Consumer

Figure 6: Example of a Petri net

Tokens are used to represent resources in a Petri net. They are graphically
represented as a dot inside a place, one for each token positioned there. A
marking assigns a nonnegative number of tokens, k, to each place p and we say
that p is marked with k tokens.

Definition 3.2.
A marking on a TAPN N = (P, T, In, Out) is a function M : P → N, where
M(p) represents the number of tokens in the place p ∈ P .

We sometimes write a marking as a vector M = (x1, x2, ..., xn) where n is
the total number of places and the i-th component represents the number of
tokens in the place pi, assuming that P = {p1, p2, . . . , pn}.
Definition 3.3.
A marked Petri net (MPN) is a pair (N, M0) where M0 is the initial marking
on a Petri net N .

When a system has been modeled by a Petri net, its dynamic behavior is
simulated by firing an enabled transition to change the marking of the net.

Definition 3.4.
Let N = (P, T, In, Out) be a Petri net, M a marking on it and t ∈ T . We say
that t is enabled at marking M if and only if:

M(p) ≥ In(p, t) ∀p ∈ •t

i.e. we have at least In(p, t) tokens in every input place p of t.

By firing transition t we reach a marking M ′ (written M [t〉M ′) derived ac-
cording to the firing rule:

M ′(p) = M(p)− In(p, t) + Out(t, p) ∀p ∈ P

15

So a transition t is enabled if every input place p of t has at least as many
tokens as the input arcs leading from p to t. When t fires, it consumes as many
tokens, from each of its input places, as the number of input arcs from p to t
and creates as many tokens in each output place p as the number of output arcs
leading from t to p.

In Figure 7 we have a marked version of the net in Figure 6, with the initial
marking M0 = (0, 1, 0, 1, 0), and in Figure 8 we see how firing transition t2
makes the net reach the marking M ′ = (1, 0, 1, 1, 0).

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

__________ Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

?>=<89:;

²²

p1 ?>=<89:;•

²²

p4

t1

²²

Produce Transport t3

²²?>=<89:;•

²²

p2 p3 ?>=<89:;

55jjjjjjjjjjjjjjjj
Buffer ?>=<89:;

²²

p5

Transport t2

::

::

Consume t4

dd

Producer Consumer

Figure 7: Marked Petri net

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

__________ Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

?>=<89:;•

²²

p1 ?>=<89:;•

²²

p4

t1

²²

Produce Transport t3

²²?>=<89:;

²²

p2 p3 ?>=<89:;•

55jjjjjjjjjjjjjjjj
Buffer ?>=<89:;

²²

p5

Transport t2

::

::

Consume t4

dd

Producer Consumer

Figure 8: Transition firing

Notice that an enabled transition may or may not fire, and if we have more
than one transition enabled at a given time, it is non-deterministically chosen,
which of them fires.

16

Definition 3.5.
A firing sequence is a sequence of transition firings σ = t1t2...tn leading from
a marking M to a marking M ′ s.t. M [t1〉M1[t2〉M2...Mn−1[tn〉M ′. M [σ〉M ′ is
an equivalent notation. Notice that if σ is empty then M [σ〉M .

Definition 3.6.
A marking M ′ is said to be reachable from a marking M if there exists a firing
sequence σ such that M [σ〉M ′.

Definition 3.7.
The reachability set of a Petri net N , R(N, M0), is the set of all reachable
markings from the initial marking M0.

The reachability set of a single marking M on N , R(N,M) (which is not an
initial marking), is the set of all reachable markings from M .

3.1.1 PN as Labeled Transition System

Petri nets can be represented as labeled transition systems.

Definition 3.8.
A labeled PN is a 6-tuple N = (P, T, In, Out,Λ, λ) where (P, T, In, Out) is a
PN and

• Λ is finite set of labels

• λ : T → Λ is a labeling function that gives each transition t ∈ T a label

Definition 3.9.
We define L(N) = (S,Act ,→) as the labeled transition system generated by
a labeled PN N = (P, T, In,Out, Λ, λ) s.t.

• S = [P → N] is a set of states (markings in N)

• Act = Λ is the set of labels

• →⊆ S ×Act × S, is the set of allowed transitions defined by:

– M
a−→ M ′ if and only if ∃t ∈ T s.t. M [t〉M ′ and a = λ(t)

Let us have a look at an example. Given the PN N in Figure 9 we generate
the LTS L(N), a part of which is shown in Figure 10.

17

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

__________ Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

?>=<89:;•

²²

p1 ?>=<89:;•

²²

p4

t1

²²

Produce Transport t3

²²?>=<89:;

²²

p2 p3 ?>=<89:;

55jjjjjjjjjjjjjjjj
Buffer ?>=<89:;

²²

p5

Transport t2

::

::

Consume t4

dd

Producer Consumer

Figure 9: Petri net N with initial marking M0 = (1, 0, 0, 1, 0)

(1,0,0,1,0)

Produce

²²
(0,1,0,1,0)

Transport

²²
(1,0,1,1,0)

Produce

{{www
ww

ww
ww Transport

##GG
GG

GG
GG

G

(0,1,1,1,0)

Transport

{{www
ww

ww
ww Transport

##GG
GG

GG
GG

G (1,0,0,0,1)

Produce

{{www
ww

ww
ww

Consume

hh

(1,0,2,1,0)

Produce

££¦¦
¦¦

¦¦
¦¦ Transport

""EEEEEEEEEE (0,1,0,0,1)

Transport

||yyyyyyyyyy

Consume

jj

.

.

.
.
.
.

Figure 10: The LTS L(N)

Notice that transitions t2 and t3 have the same label ”Transport” in L(N).
Since two transitions in the PN have the same label, we do not care about
which one of them fires, as long as a ”Transport” action is observed from the
environment.

3.1.2 Behavioral Properties

When we have modeled a system with a Petri net, we can check various proper-
ties of the modeled system by verifying that the Petri net has certain behavioral

18

properties. Here we define and illustrate some interesting properties of Petri nets
that have been considered in the literature.

Definitions

Reachability
By looking at a marking of a Petri net, we can verify if it is possible to reach
another marking by firing a sequence of transitions.

Definition 3.10.
The reachability problem for a marking M ′ in a marked Petri net (N, M0), is
the question of whether M ′ ∈ R(N, M0).

Reachability is useful when checking if a system can possibly reach a certain
state. For example, we can check if a system ever reaches a state where some
desired behavior can or has occurred.

It is well known that reachability is decidable for Petri nets [13].

Coverability
Coverability can be regarded as relaxed reachability. The coverability question
asks if we can reach a marking that has at least some given number of tokens
in some given places.

Definition 3.11.
A marking M ′ on a Petri net N covers a marking M (written M ≤ M ′) if:

M(p) ≤ M ′(p) ∀p ∈ P

A marking M ′ covers a marking M if there are equal or more tokens present
in every place of the net in marking M ′ than in marking M .

Definition 3.12.
The coverability problem for marked Petri net (N, M0) and a given marking
M , is the question whether or not we can reach a marking M ′ that covers M
from the initial marking, i.e. if ∃M ′ s.t. M ′ ∈ R(N,M0) and M ≤ M ′.

Following these definitions, we state the following lemma:

Lemma 3.1.
If a marking M ′ on a Petri net N covers a marking M on N then R(N, M) ⊆
R(N, M ′), i.e. the reachability sets are monotone.

Coverability is known to be decidable for Petri nets [16].

Deadlock
If a Petri net can reach some marking from which it can not do anything, it
deadlocks.

Definition 3.13.
For a Petri net N = (P, T, In,Out) a transition t ∈ T is potentially fireable
in a marking M , if ∃M ′ ∈ R(N,M) and t is enabled in M ′.

19

Thus, a potentially fireable transition is a transition which can eventually
become enabled.

Definition 3.14.
A Petri net N = (P, T, In, Out), with initial marking M0, can deadlock, if
∃M ∈ R(N,M0) s.t. no transition is potentially fireable from M .

It can be very useful for us to be able to tell whether or not some Petri net
can deadlock, because very often, that is something we want to avoid in our
systems.

Reachability was shown to be polynomially reducible to deadlock for PNs in
[6], proving that deadlock is decidable for the model. Later these two properties
were shown to be recursively equivalent [9].

Liveness
Live Petri nets never deadlock, and moreover all transitions in a live Petri net
can eventually become enabled.

Definition 3.15.
A Petri net N = (P, T, In, Out), with initial marking M0, is live, if all transi-
tions t ∈ T are potentially fireable ∀M ∈ R(N, M0).

Liveness is usually a desirable property of Petri nets. By correctly modeling
a system with a Petri net and verifying that it is live, it is guaranteed that the
modeled system will never deadlock.

In [12] the author showed that liveness is recursively equivalent to reachabil-
ity, proving that liveness is decidable. Later, the deadlock problem was proved
to be polynomially reducible to the liveness problem [6] but finding a polynomial
time reduction from reachability to liveness remains an open problem.

3.2 The Timed-Arc Petri Net Model

The basic Petri net model is good for modeling some systems, but when it comes
to time dependant behavior, the basic model is insufficient. Several extended
models have been proposed that take time features into account (for a survey
see [5, 21]). As an example, we have the timed-transition Petri net model
where time is associated with transitions in the net, implying the duration of
the transition firing [8]. Another example is the timed-place Petri net model
where time is associated with places in the net, implying that a transition only
becomes enabled if tokens have been present in its input places for some time
units [19]. We will however focus on yet another timed extension of the basic
Petri net model called timed-arc Petri nets (TAPN).

In timed-arc Petri nets we introduce two time related attributes. First each
token in the net is annotated with a non-negative value, representing its age.
The second attribute are time intervals which are assigned to each arc in the
net. We will refer to arcs leading from a place to a transition as input arcs of
that transition, and similarly we will refer to arcs leading from transitions to

20

places as output arcs. As in regular Petri nets, a transition can only fire when
all its input places have at least one token but furthermore, the ages of the
tokens need to lie within the intervals of the corresponding input arcs. When a
transition is fired, the ages of the tokens created in the output places are non-
deterministically chosen to be a value within the interval of the corresponding
output arc.

Let us look at the formal definitions. Before we define timed-arc Petri nets,
we provide a formal definition of the intervals that are associated with each arc
in the TAPN.

Definition 3.16.
We define sets of intervals. A single interval can be written in five different
ways, [a, a], [a, b], (a, b], [a, b) or (a, b), where a ∈ N and b ∈ N ∪ {∞} (a < b),
are the lower and upper limits of the interval respectively.

• x ∈ [a, a] denotes x = a

• x ∈ [a, b] denotes a ≤ x ≤ b

• x ∈ [a, b) denotes a ≤ x < b

• x ∈ (a, b] denotes a < x ≤ b

• x ∈ (a, b) denotes that a < x < b

We call [a, b] closed intervals, [a, b) and (a, b] half open intervals, and (a, b) open
intervals.

We then define three sets of intervals:

• Interv1 is a set intervals defined by the following abstract syntax
I1 ::= [a, b]

• Interv2 is a set intervals defined by the following abstract syntax
I2 ::= [a, b] | [a, b) | (a, b]

• Interv3 is a set intervals defined by the following abstract syntax
I3 ::= [a, b] | [a, b) | (a, b] | (a, b)

The following relation holds for these three sets: Interv1 ⊆ Interv2 ⊆
Interv3 where Interv⊕ is the set of finite multisets over Interv.

Notation:
We use [(a, b)] as a general term when using open, half open or closed intervals,
e.g. [(a, b)] ∈ {[a, b], (a, b), [a, b), (a, b]}.

Before we formally define the timed-arc Petri net model we fix the interval
set Interv ∈ {Interv1, Interv2, Interv3}.
Definition 3.17.
A timed-arc Petri net (TAPN) is a 4-tuple N = (P, T, In, Out) where

• P = {p1, p2, ..., pn} is a finite set of places

21

• T = {t1, t2, ..., tm} is a finite set of transitions s.t. P ∩ T = ∅
• In : P ×T → Interv⊕ is a function that associates to each input arc (p, t)

a finite multiset of intervals

• Out : T × P → Interv⊕ is a function that associates to each output arc
(t, p) a finite multiset of intervals

Definition 3.18.
For a TAPN N = (P, T, In, Out), the multiset of input arcs of transition
t ∈ T is In(t) = {(p, I)|I ∈ In(p, t)} and similarly the multiset of output arcs
of transition t ∈ T is Out(t) = {(p,J)|J ∈ Out(t, p)}.

We use the notation •t = {p | In(p, t) 6= ∅} to denote the multiset of all
input places of transition t and similarly we use t• = {p | Out(t, p) 6= ∅} to
denote the multiset of all output places of t.

The time domain D indicates how time elapses in the model. We consider
discrete and continuous time elapsing. We keep the following definitions inde-
pendent of which time domain applies, and fix the time domain D ∈ {N,R+}
before we look at markings in TAPNs.

Definition 3.19.
A marking M on a TAPN N = (P, T, In, Out) is a function M : P → D⊕.

In a marking each place is annotated with a certain number of tokens and
each token has an age from the time domain D.

We write a marking M in two different ways. One is M = {(p1, 2), (p1, 4.3),
(p1, 4.3)}, where each pair consists of the name of the place and a number from
the time domain D representing the age of a token positioned in this particular
place. The other way is to write M(p1) = {2, 4.3, 4.3}, giving us the tokens
positioned in place p1.

Definition 3.20.
Marked timed-arc Petri net (MTAPN) is a pair (N,M0), where N is a
TAPN and M0 is an initial marking on N , s.t.

∀p ∈ P. ∀x ∈ M0(p). x = 0

So as initial markings on a TAPN N , we only allow tokens of age 0.

Before we go any further, let us take a look at an example of a timed-arc
Petri net. Earlier we have seen a classical Producer-Consumer system (Figure
6) modeled as a regular Petri net but now we look at a more specific case:

The producer is a dairy that produces bottles of milk and sends it to
a supermarket, and the consumer is a customer. The dairy produces
fresh milk and sends it to the supermarket, a process which takes 0
to 1 days (depending on locations). The supermarket has a certain

22

capacity so it can only handle a certain amount of milk bottles. As
time goes by the milk gets older and expires after 7 days and should
then be discarded from the supermarket. Customers buy bottles
of milk that have not expired and take them home where they can
consume it when they want to.

We can model this easily with the timed-arc Petri net in Figure 11. Note that
in this paper we sometimes draw timed-arc Petri nets where no interval is as-
signed to some arcs. These arcs should be considered to have the interval [0,∞].

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

__________ Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â _____________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Ready ?>=<89:;0

²²

p1 t3

[0,0]

##

Ready ?>=<89:;0

²²

p5

t1

[0,0]

²²

Produce Buy t4

[0,0]

²²
[0,0]

ww

?>=<89:;

²²

p2 p3 ?>=<89:;

[8,∞]

OO

[0,8)
55

?>=<89:;

²²

p6

Supermarket

Send t2

[0,0]

;;

[0,1]

22

p4 ?>=<89:;00000ll Consume t5

[0,0]

cc

Capacity

Dairy ConsumerDiscard

Figure 11: Dairy example

We represent bottles of milk as tokens in the net. A supermarket is repre-
sented as a buffer where tokens can be collected and grow older as time goes
by. The capacity place in the net makes sure that only certain number of to-
kens can exist in the buffer at each time, i.e. in our example the supermarket
can only hold 5 bottles of milk in its store at each time. Time intervals on
arcs in the Petri net, limit both the consumption and creation of tokens. For
example, the arc from p1 to t1 has the interval [0,∞] which represents that
transition t1 is enabled, no matter how old the token in place p1 is, where again
the transition from p3 to t4 that has interval [0, 8), implies that the transition
t4 is enabled only if there is a token in p3 of an age from 0 to less than 8 (and
we also require a token of any age from p5). In a graphical representation of
timed-arc Petri nets such as this, each token is symbolized in the net by its age
(e.g. the initial marking in Figure 11 has two tokens of age 0 in places p1, and
p5 and 5 tokens in p4 representing the capacity of the buffer, all of age 0 as well).

Now we have defined the TAPN model. We define how we fire transitions
and how we model the passage of time.

Definition 3.21.

23

Let N = (P, T, In, Out) be a TAPN, M a marking on it and t ∈ T .

We say that t is enabled at marking M if and only if:

• ∀p ∈ •t. ∃Xp = {x1, . . . , xn} ⊆ M(p), where In(p, t) = {I1, . . . , In},
s.t. xi ∈ Ii for 1 ≤ i ≤ n

i.e. in each input place, for every input arc, there exists at least one token whose
age fits the interval of that arc.

The set of tokens created, when t is fired, is any set

• Yp = {y1, . . . , ym} ∀p ∈ t•, where Out(t, p) = {J1, . . . ,Jm},
s.t. yi ∈ Ji for 1 ≤ i ≤ m

i.e. in each output place, for every output arc, one token, whose age fits the
interval of that arc, will be created.

Tokens are only removed from input places of t and only created in output
places of t. So we define:

Xp = ∅ ∀p ∈ (P \ •t)
Yp = ∅ ∀p ∈ (P \ t•)

Now we can define the firing rule formally.

M ′(p) = (M(p) \Xp) ∪ Yp ∀p ∈ P

As for the basic PN model, when a transition is fired, the marking of the
net changes according to the given firing rule. The firing rule for TAPNs states
that when transition t fires we remove a set of tokens, whose ages are within the
intervals associated to the input arcs, from each input place of t, and add a set
of new tokens to each output place of t, where the ages of the tokens are within
the intervals associated to the output arcs. Again, the firing of a transition t is
denoted by M [t〉M ′ where M and M ′ are markings.

An enabled transition t can fire, but it does not have to. We model the
passage of time which is simply a different kind of a transition function. The
firing of a transition that lets time elapse for d ∈ D time units is denoted by
M [ε(d)〉M ′ where M and M ′ are markings.

Definition 3.22.
Let (N,M0) be a MTAPN, where M and M ′ are markings on it, and N =
(P, T, In, Out). We write a time-elapsing transition as M [ε(d)〉M ′ for d ∈ D
whenever M ′ = M + d, s.t. M ′(p) = M(p) <+d

For example if M0[ε(1.36)〉M ′ then M ′ is a new marking where the age of all
tokens in the marking M0 have been raised by 1.36, but the number of tokens
and their positions remain the same.

24

Definition 3.23.
A firing sequence for a MTAPN is a sequence of transition firings σ =
σ1σ2...σn leading from a marking M to a marking M ′ s.t. M [σ1〉M1[σ2〉M2

. . . Mn−1[σn〉M ′, where σi (1 ≤ i ≤ n) is either a transition firing (t) or a time
elapsing transition (ε(d)). An equivalent notation is M [σ〉M ′. Notice that, if σ
is empty, M [σ〉M .

Both the definition of a reachable marking (Definition 3.10) and the reach-
ability set (Definition 3.7) are the same as for regular Petri nets, using the new
definition of a firing sequence.

Let us now look at an example of how transitions become enabled, how they
are fired and how time passes in our TAPN in Figure 11.

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

__________ Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â _____________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Ready ?>=<89:;

²²

p1 t3

[0,0]

##

Ready ?>=<89:;0

²²

p5

t1

[0,0]

²²

Produce Buy t4

[0,0]

²²
[0,0]

ww

?>=<89:;0

²²

p2 p3 ?>=<89:;

[8,∞]

OO

[0,8)
55

?>=<89:;

²²

p6

Supermarket

Send t2

[0,0]

;;

[0,1]

22

p4 ?>=<89:;00000ll Consume t5

[0,0]

cc

Capacity

Dairy ConsumerDiscard

Figure 12: Dairy example - enabled transitions

Figure 12 shows us how transition t2 is enabled since there are tokens in
places p2 and p4. By firing that transition we reach the marking shown in
Figure 13, where we have a new token of age 0 in place p3 and transitions t4
and t1 are enabled. If we fire neither t4 nor t1, time can elapse until we reach
the marking in Figure 14 where transition t3 is now enabled instead of t4, since
the token in place p3 is now of age 8.

3.2.1 Classes of TAPNs

In our definition of the timed-arc Petri net model we have used a very general
way of defining the time attributes of the model, both the types of intervals
and the time domain. Later on we will look at and compare TAPNs with the
same structure but different time attributes. For this purpose we define classes
of TAPNs.

Definition 3.24.
Let D ∈ {N,R+} be a time-domain and Interv ∈ {Interv1, Interv2, Interv3}

25

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

__________ Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â _____________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Ready ?>=<89:;0

²²

p1 t3

[0,0]

##

Ready ?>=<89:;0

²²

p5

t1

[0,0]

²²

Produce Buy t4

[0,0]

²²
[0,0]

ww

?>=<89:;

²²

p2 p3 ?>=<89:;0

[8,∞]

OO

[0,8)
55

?>=<89:;

²²

p6

Supermarket

Send t2

[0,0]

;;

[0,1]

22

p4 ?>=<89:;0000ll Consume t5

[0,0]

cc

Capacity

Dairy ConsumerDiscard

Figure 13: Dairy example - transition fires

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

__________ Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â _____________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Ready ?>=<89:;8

²²

p1 t3

[0,0]

##

Ready ?>=<89:;8

²²

p5

t1

[0,0]

²²

Produce Buy t4

[0,0]

²²
[0,0]

ww

?>=<89:;

²²

p2 p3 ?>=<89:;8

[8,∞]

OO

[0,8)
55

?>=<89:;

²²

p6

Supermarket

Send t2

[0,0]

;;

[0,1]

22

p4 ?>=<89:;8 8

8 8ll Consume t5

[0,0]

cc

Capacity

Dairy ConsumerDiscard

Figure 14: Dairy example - time elapses

be the set of allowed intervals. Then we define N (D, Interv) as the class of
all TAPNs with time domain D and interval set Interv.

Remark
Given a net in every class we can see that if Interv ∈ {Interv1, Interv2, Interv3}
and D ∈ {N,R+}:

• N (N, Interv1) denotes a regular TAPN in discrete time, allowing only
closed intervals.

• N (N, Interv2) denotes a TAPN in discrete time, allowing half open and
closed intervals.

26

• N (N, Interv3) denotes a TAPN in discrete time, where all types (closed,
half open and open) of intervals are allowed.

• N (R+, Interv1) denotes a regular TAPN in continuous time, allowing only
closed intervals.

• N (R+, Interv2) denotes a TAPN in continuous time, allowing half open
and closed intervals.

• N (R+, Interv3) denotes a TAPN in continuous time, where all types
(closed, half open and open) of intervals are allowed.

We show that a TAPN N belonging to the class N (N, Interv3) can be re-
duced to a net N ′ in N (N, Interv1) preserving isomorphism.

The intervals in a net in N (N, Interv3) are open, i.e. the endpoints are not
included in the interval. By definition, for a token to fit in an open interval
(a, b), its age has to be greater than a and less than b.

If the net in question is using continuous time it means that the token fits
in an open interval as soon as its age becomes a fraction greater than the lower
limit a and until it is just a fraction less than the upper limit b. If the net on
the other hand is using discrete time a token still does not fit the interval if it
is exactly of the age a and when it gets older it jumps straight to the age a + 1.
Therefore the lower limit a of an open interval can always be changed to a + 1
in a closed interval without changing the behavior of the net, when reducing a
TAPN in N (N, Interv3) to a TAPN in N (N, Interv1).

Similarly for the upper limit of a open interval, when using a continuous
time the token fits the interval until it is exactly of the age b. But if the TAPN
is using discrete time the token fits at age b − 1 but at age b it does not fit.
Therefore, as for the lower limit, the upper limit b of an open interval can be
changed to the closed interval b−1 when reducing a TAPN in N (N, Interv3) to
a TAPN in N (N, Interv1) without changing any behavior. The only exception
from this is if the upper limit of an open interval is ∞, then the value does not
change when the reduction is made.

We start by defining a function that performs the operations described above
on a set of intervals. The function l : Interv → N returns the lower bound of a
given interval, increased by one if appropriate:

l(K) =
{

a if K = [a, b] or K = [a, b)
a + 1 if K = (a, b] or K = (a, b)

Similarly, the function u : Interv → N returns the upper bound of a given
interval, decreased by one if appropriate:

u(K) =
{

b if K = [a, b] or K = (a, b]
b− 1 if K = [a, b) or K = (a, b)

Given a set X = {K1, . . . ,Kn} of intervals, let bound(X) be the set:

bound(X) = {[l(K), u(K)] | K ∈ X and l(K) ≤ u(K)}

27

Recall that ∞− n = ∞ ∀n ∈ N.

Lemma 3.2.
All intervals in bound(X) are in Interv1.

Example 3.1.
Given a set of intervals X = {[1, 3], (1, 3], [1, 3), (1, 3), (2, 3), [3,∞)},

bound(X) = {[1, 3], [2, 3], [1, 2], [2, 2], [3,∞]}

Lemma 3.3 follows:

Lemma 3.3.
For any x ∈ N, the following is true:

• x ∈ [a, b] ⇔ x ∈ [a, b]

• x ∈ (a, b] ⇔ x ∈ [a + 1, b]

• x ∈ [a, b) ⇔ x ∈ [a, b− 1]

• x ∈ (a, b) ⇔ x ∈ [a + 1, b− 1]

Now we can formally give the reduction:

Theorem 3.1.
Given a TAPN N in N (N, Interv3) we can construct in linear time, an iso-
morphic TAPN N ′ in N (N, Interv1), s.t. L(N) ∼= L(N ′).

Proof.
Given N = (P, T, In, Out) inN (N, Interv3) we construct N ′ = (P ′, T ′, In′, Out′)
in N (N, Interv1) s.t.

• P ′ = P

• T ′ = T

• In′(p, t) = bound(In(p, t)) ∀p ∈ P.∀t ∈ T

• Out′(t, p) = bound(Out(t, p)) ∀p ∈ P.∀t ∈ T

We show that L(N) ∼= L(N ′):

N and N ′ have the same set of possible markings since P = P ′. Thus, we
know that the set of all possible markings [P → N⊕] (states) in L(N) and in
L(N ′) is the same, and the bijective function is the identity function:

~(M) = M ∀M ∈ [P → N⊕]

28

Due to Lemma 3.3, given any two markings M1 and M2 in L(N) and any
α ∈ Λ ∪ {ε(n)|n ∈ N}:

if M1
α−→ M2 in L(N) then M1

α−→ M2 in L(N ′).

and given any two markings M ′
1 and M ′

2 in L(N ′) and any α ∈ Λ∪{ε(n)|n ∈ N}

if M ′
1

α−→ M ′
2 in L(N ′) then M1

α−→ M2 in L(N).

Corollary 3.1.
N (N, Interv3) ∼= N (N, Interv2) ∼= N (N, Interv1).

We can depict a hierarchy of the classes of TAPNs as shown in Figure 15,
where the arrows lead from a more general class to a less general one.

N (R+, Interv3)

²²
N (R+, Interv2)

²²

N (N, Interv3) ∼= N (N, Interv2) ∼= N (N, Interv1)

N (R+, Interv1)

Figure 15: Class hierarchy for TAPNs

The question of whether the hierarchy of the classes with continuous time is
strict, is still open.

3.2.2 TAPN as Labeled Transition System

Timed-arc Petri nets can be represented as labeled transition systems.

Definition 3.25.
A labeled TAPN, in the class N (D, Interv), is a 6-tuple N = (P, T, In, Out, Λ, λ)
where (P, T, In, Out) from N (D, Interv) is a TAPN and

• Λ is finite set of labels

• λ : T → Λ is a labeling function that gives each transition t ∈ T a label

Definition 3.26.
We define L(N) = (S,Act,→) as the labeled transition system generated by
a labeled TAPN N = (P, T, In, Out, Λ, λ) in N (D, Interv) s.t.

29

• S = [P → D⊕] is a set of states (markings in N)

• Act = Λ ∪ {ε(d)|d ∈ D} is the set of labels

• →⊆ S ×Act × S, is the set of allowed transitions defined by:

– M
a−→ M ′ if and only if ∃t ∈ T s.t. M [t〉M ′ and a = λ(t)

– M
ε(d)−−→ M ′ if and only if M [ε(d)〉M ′, where d ∈ D

Let us have a look at an example. Given the TAPN N with initial marking
M0 = {(p1, 0), (p4, 0), (p4, 0), (p5, 0)} in Figure 16 we generate the LTS L(N), a
part of which is shown in Figure 17.

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â __________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

__________ Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â _____________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Ready ?>=<89:;0

²²

p1 t3

[0,0]

##

Ready ?>=<89:;0

²²

p5

t1

[0,0]

²²

Produce Buy t4

[0,0]

²²
[0,0]

ww

?>=<89:;

²²

p2 p3 ?>=<89:;

[8,∞]

OO

[0,8)
55

?>=<89:;

²²

p6

Supermarket

Send t2

[0,0]

;;

[0,1]

22

p4 ?>=<89:;0,0ll Consume t5

[0,0]

cc

Capacity

Dairy ConsumerDiscard

Figure 16: The TAPN N with initial marking M0

3.2.3 Behavioral Properties

As for regular Petri nets, we can check various properties of a system modeled
with a timed-arc Petri net. We will take a look at the same properties as earlier
i.e. deadlock, liveness, reachability and coverability.

Definitions

In Definition 3.23 we defined a firing sequence for TAPNs, where we took into
account both transition firing and the passage of time. With this new defini-
tion, the definitions of deadlock (Definition 3.14), liveness (Definition 3.15) and
reachability (Definition 3.10) hold for TAPNs as well.

• A net can deadlock if in some marking no transitions are potentially fire-
able

• A net is live if all transitions are potentially fireable in every reachable
marking

30

{(p1, 0), (p4, 0), (p4, 0), (p5, 0)}
ε(1.37)

uukkkkkkkkkkkkkkkkkkkk

Produce

²²
.
.
.

{(p2, 0), (p4, 0), (p4, 0), (p5, 0)}

ε(7.1)

uulllllllllllllllllllll

Send

²²

Send

))SSSSSSSSSSSSSSSSSSS

.

.

.
{(p1, 0), (p3, 0), (p4, 0), (p5, 0)}

P roduce

ssgggggggggggggggggggggggggggggg

ε(8)

yyssssssssssssssssssssss

Buy

**

{(p1, 0), (p3, 1), (p4, 0), (p5, 0)}

ε(0.23)

{{vvvvvvvvvvvv

P roduce

²²

Buy

##HHHHHHHHHHHH

.

.

.
.
.
.

.

.

.
.
.
.

{(p1, 8), (p3, 8), (p4, 8), (p5, 8)}
ε(d)

vvmmmmmmmmmm P roduce

++XXXXXXXXXXXXXXXXX

Discard

²²

.

.

.
.
.
.

{(p1, 0), (p4, 0), (p4, 0), (p6, 0)}
ε(3.22)

wwooooooooooo
P roduce

²²

Consume

cc

{(p1, 8), (p4, 0), (p4, 8), (p5, 8)}

ε(5.78)

{{vvvvvvvvvvvv

P roduce

²²

.

.

.
.
.
.

.

.

.
.
.
.

Figure 17: The LTS L(N)

31

• A marking M can be reached if it is in the TAPNs reachability set.

The only definition we need to revise is coverability.

Coverability
The coverability question asks if we can reach a marking that has at least

some given number of tokens, each of some minimum age, in every place.

Definition 3.27.
A marking M ′ on a timed-arc Petri net N covers a marking M (written M ⊆
M ′) if:

M(p) ⊆ M ′(p) ∀p ∈ P

A marking M ′ covers a marking M if the tokens in each place in the net in
M are a subset of the tokens in the place in M ′.

Definition 3.28.
The coverability problem for MTAPN (N, M0) with a given marking M , is the
question whether or not we can reach a marking M ′ that covers M from the
initial marking, i.e. if ∃M ′ s.t. M ′ ∈ R(N, M0) and M ⊆ M ′.

Following these definitions, we state the following lemma:

Lemma 3.4.
If a marking M ′ on a TAPN N covers a marking M on N then R(N, M) ⊆
R(N, M ′), i.e. the reachability sets are monotone.

3.3 Summary

In this section we defined both the Petri net model and a timed extension of it,
the timed-arc Petri net model. We have defined how they behave and looked at
examples of their use. Behavioral properties for both model, properties which
are useful to know about a system modeled with them, have been defined and
their decidability for regular Petri nets has been summarized. In the Sections 4
and 5 we will look at decidability and undecidability results for these properties
in the timed-arc Petri net model.

32

4 Undecidability Results for Timed-Arc Petri
Nets

4.1 Undecidability of Deadlock

In [6] a polynomial time reduction from reachability to deadlock is shown for
regular Petri nets. We use this approach as an inspiration when creating a re-
duction for TAPNs.

Let us fix D ∈ {N,R+} and Interv ∈ {Interv1, Interv2, Interv3}.
Theorem 4.1.
Reachability is polynomial-time reducible to deadlock.

Proof.
Given a TAPN N = (P, T, In, Out), in any class N (D, Interv), a marking M on
it and the initial marking M0, we construct a new TAPN N ′ = (P ′, T ′, In′, Out′)
in the same class, with the initial marking M ′

0 s.t. if M can be reached in N
then N ′ will always deadlock.

We assume for now that the ages of the tokens in the final marking M
are natural numbers, but this is not really a restriction like we show later, were
stretching of intervals will be introduced. Stretching will allow the ages of tokens
in M to be rational numbers. Real numbers will not be taken into consideration
since such numbers can not be used as an input into computer programs.

Note that P will sometimes be called the original places and similarly, T will
sometimes be called the original transitions.

P ′ = P ∪ {run} ∪ {kill} ∪ {verify} ∪ {cp|p ∈ P}
T ′ = T∪{tp, loopp, subp|p ∈ P}∪{terminate}∪{looprun}∪{loopkill}∪{startverify}

In′(p, t) = In(p, t) ∀t ∈ T. ∀p ∈ P
Out′(t, p) = Out(t, p) ∀t ∈ T. ∀p ∈ P
In′(run, t) = {[0,∞]} ∀t ∈ T
Out′(t, run) = {[0,∞]} ∀t ∈ T

In′(run, looprun) = {[0,∞]}
Out′(looprun, run) = {[0,∞]}

In′(run, terminate) = {[0,∞]}
Out′(terminate, kill) = {[0, 0]}

In′(kill, loopkill) = {[0,∞]}
Out′(loopkill, kill) = {[1, 1]}

In′(p, subp) = {[x, x]|x ∈ M(p)} ∀p ∈ P
In′(kill, subp) = {[0, 0]} ∀p ∈ P
In′(cp, subp) = {[0,∞]} ∀p ∈ P

33

Out′(subp, kill) = {[0, 0]} ∀p ∈ P

To clarify the above, it says that for each token in a place p in the target
marking M , of the original net N , one arc is created from that place to the cor-
responding subp transition in N ′. Each of the arcs created has a time interval
with the upper and lower limits both set to the same number, the age of the
corresponding token in M .

In′(kill, startverify) = {[0, 0]}
Out′(startverify , verify) = {[0,∞]}

In′(cp, loopp) = {[0,∞]} ∀p ∈ P
In′(verify , loopp) = {[0,∞]} ∀p ∈ P
Out′(loopp, cp) = {[0,∞]} ∀p ∈ P
Out′(loopp, verify) = {[0,∞]} ∀p ∈ P

In′(p, tp) = {[0,∞]} ∀p ∈ P
In′(verify , tp) = {[0,∞]} ∀p ∈ P
Out′(tp, p) = {[0,∞]} ∀p ∈ P
Out′(tp, verify) = {[0,∞]} ∀p ∈ P

M ′
0(p) =





M0(p) if p ∈ P
{0} if p = run
{0} if p = cp′ and |M(p′)| > 0
∅ otherwise

We will argue that M is reachable in N if and only if N ′ deadlocks. The
first thing to notice is that the terminate transition which disables all the t
transitions from the original net N , is always enabled as long as it does not fire.
After it has fired it can never be enabled again. Therefore as long as it has not
fired, no reachable marking is dead. Two cases for M need to be checked.

• Suppose that M is reachable in N , then we will show that N ′ deadlocks:

M ∪{(run, 0)} is also reachable in N ′ by firing exactly the same sequence
of t transitions that were fired in N in order to reach M . When M has
been reached in N ′ the terminate transition can be fired, creating a fresh
token in the kill place. As there is a token in the kill place, all the tokens
can be removed from the original places in N and from the cp places using
the subp transitions. Note that the subp has to fire as soon as the token is
created in the kill place since the interval on the arc from kill to the subp

transitions is [0, 0]. The age of the tokens in the cp places does not matter
as the interval on the arc from those places to subp is [0,∞]. Since we
have reached M , each token in the p places should fit an interval on one
arc from its place to a corresponding subp transition, since the intervals
on these arcs were created according to the marking we wanted to reach

34

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â _________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

N

looprun

[0,∞]

··

loopkill

[1,1]

··
kill verify

run ?>=<89:;

[0,∞]

µµ

[0,∞]

TT

[0,∞] // terminate
[0,0] //?>=<89:; [0,0] //

[0,∞]

TT

[0,0]

¢¢

start-
verify

[0,∞] //?>=<89:;

[0,∞]

qq

[0,∞]

uu

""FF
FF

FF

zzvvv
vvv

v

t

[0,∞]
bb

||xx
xx

xx

$$HHH
HHH

H

.

.

ÃÃ@
@@

@@
@@

@ loopp

[0,∞]

¸¸

[0,∞]

>>

?>=<89:;p

==zzzzzzzzz

[0,∞] 00

[xn ,xn]

44

[x1 ,x1]

**
subp

[0,0]

NN

?>=<89:;
[0,∞]

oo

[0,∞]

TT

cp

tp

[0,∞]

bb

[0,∞]

HH

.

.

.

Figure 18: Reduction from reachability to deadlock

in the beginning.
Now it is possible to create a token in the verify place, a place that is
used to check if N ′ has a deadlock. As all the tokens were removed from
the places in the original net N , no tp transition can fire and because all
the tokens were removed from all the cp places, no loopp can fire either.
Hence N ′ deadlocks.

• Suppose that M is not reachable in N , then we will show that N ′ does
not deadlock:

Before the terminate transition has fired there is no deadlock because the
terminate transition is always enabled (there is a token in the run place
from the beginning). After terminate has fired all the transitions in the
original net N become disabled and a new token of age 0 is created in the
kill place.
If the target marking M is the empty marking, it is not reachable if there
are some tokens in N . The fact that M is the empty marking means that
no tokens are placed in the cp places, which again means that the subp

transitions will never become enabled. If on the other hand M is not the
empty marking some tokens will be placed in the cp places.
After the terminate transition has fired, a fresh token is created in the kill
place. Then the option to let time elapse is always available, no matter how

35

M looks like, and if that option is taken the loopkill transition becomes
the only transition that can fire. After the firing of that transition it will
always remain enabled and N ′ does not deadlock.
Instead of letting time elapse in the kill place, we can also try to fire a
transition. The enabled transitions depend on whether M was the empty
marking or not. If M was not the empty marking then the subp transitions
can fire and remove tokens from N and from the cp places. If on the other
hand M was the empty marking the subp transitions will never become
enabled and therefore the only option is to fire the startverify transition
and create a token in the verify place, which can also be done after firing
the subp transitions.
In the verify phase there are some options to fire transitions. If some
tokens remain in the original places of N , which is the case if M was the
empty marking or if the firing of the subp transitions did not remove all
of the tokens from N , some tp transition will always remain enabled, no
matter how time elapses, since the intervals on the arcs leading to the
tp transitions are [0,∞]. If some tokens remain in the cp places some
loopp transition will always remain enabled for the same reasons as the tp
transitions remained enabled.

Figure 19 shows an example of a reduction from reachability to deadlock for
a simple TAPN N . The initial marking is M0 = {(p1, 0), (p1, 0), (p1, 0)} and the
target marking, the marking we want to reach, is M = {(p1, 1), (p2, 1), (p2, 2)}.

Stretching

As mentioned before, the assumption that the ages of the tokens in the tar-
get marking M need to be natural numbers, is not really a restriction. Let us
now assume that the ages of the tokens in M can be rational numbers. We
have shown that the reduction from reachability to deadlock works for natural
numbers, and to show that it also works for rational numbers, stretching will
be introduced.

Definition 4.1.
Given a TAPN N = (P, T, In,Out), from any class N (D, Interv) and a mark-
ing M on it, where the ages of the tokens in M are rational numbers {x1/y1,
x2/y2, . . ., xn/yn}(xi, yi ∈ N for 1 ≤ i ≤ n) and N has intervals of the form
[(a, b)](a, b ∈ N). The intervals can be stretched by multiplying the upper and
lower limits, a and b respectively, with the least common denominator of the
ages of tokens {x1/y1, x2/y2, ..., xn/yn}. Each token age is then multiplied with
the same number, making it a natural number.

This means that the ages of the tokens can be changed to natural numbers
and the intervals stretched accordingly, preserving, amongst others, the reach-
ability property of the underlying net. This is a fact since the least common

36

Â
Â
Â
Â
Â _________________________

Â
Â
Â
Â
Â

N

looprun

[0,∞]

··

loopkill

[1,1]

··
kill verify

run ?>=<89:;0

[0,∞]

++

[0,∞]

TT

[0,∞] // terminate
[0,0] //?>=<89:; [0,0] //

[0,∞]

TT

[0,0]

¢¢

[0,0]

11

start-
verify

[0,∞] //?>=<89:;

[0,∞]

ww

[0,∞]

ss
[0,∞]

¦¦

[0,∞]

ÄÄ

?>=<89:;0

[0,∞]

{{

[0,∞]

22 loopp1

[0,∞]
tt

[0,∞]

77

loopp2

[0,∞]

44

[0,∞]

==

?>=<89:;0

[0,∞]

ÂÂ

[0,∞]
rr

cp1 cp2

subp1

[0,0]

88

subp2

[0,0]

PP

?>=<89:;000
[0,∞] //

[0,∞]
00

[1,1]

kk

t1
[0,2] //

[0,∞]

SS

?>=<89:;
[0,∞]

22

[1,1]

55

[2,2]

00

tp2

[0,∞]

ss

[0,∞]

WW

p1 p2

tp1

[0,∞]

ll
[0,∞]

__

Figure 19: Reachability to deadlock example

denominator of the token ages is always a natural number, so are the upper and
lower limits of each of the intervals and when two natural numbers are multi-
plied together, the outcome is a natural number. Therefore the restriction on
the intervals that they need to be natural numbers, holds, and each token age
becomes a natural number as well.

Corollary 4.1.
Deadlock is undecidable for TAPNs from any class N (D, Interv).

Proof.
In [18] reachability is shown to be undecidable for TAPNs. We have shown that
reachability is polynomial time reducible to deadlock and thus that deadlock is
also undecidable for TAPNs.

4.2 Undecidability of Liveness

In [6] a polynomial time reduction from deadlock to liveness is shown for regular
Petri nets. We use this approach as an inspiration when creating a reduction
for TAPNs.

Let us fix D ∈ {N,R+} and Interv ∈ {Interv1, Interv2, Interv3}.

37

Theorem 4.2.
Deadlock is polynomial-time reducible to liveness

Proof.
Given a TAPN N = (P, T, In,Out), in any class N (D, Interv), with initial
marking M0 we construct a new TAPN N ′ = (P ′, T ′, In′, Out′), in the same
class, with initial marking M ′

0, s.t. if N deadlocks then N ′ is always live, as
follows:

P ′ = P ∪ {ok}
T ′ = T ∪ {t′|t ∈ T} ∪ {live}

In′(p, t) = In(p, t) ∀t ∈ T.∀p ∈ P
Out′(t, p) = Out(t, p) ∀t ∈ T.∀p ∈ P

In′(p, t′) = In(p, t) ∀t ∈ T.∀p ∈ P
Out′(t′, ok) = {[0, 0]} ∀t′ ∈ T ′

In′(ok, live) = {[0,∞]}
Out′(live, p) = {[0,∞]} ∀p ∈ P
Out′(live, ok) = {[0, 0]}

M ′
0(p) =

{
M0(p) if p ∈ P
∅ if p = ok

N has no reachable dead marking if and only if N ′ is live. To show this
we will look at two cases:

• If N can reach a dead marking Mdead, then N ′ is not live:
If N can reach Mdead then N ′ can reach the same marking without firing
any t′ transition. Since the t′ transitions in N ′ have identical input arcs
to the t transitions in N , Mdead is a dead marking in N ′ and therefore N ′

is not live.

• If N has no reachable dead marking then N ′ is live:
This means that any reachable marking is not dead so we can fire at least
one t′ transition. Doing this creates a token in the ok place, which can
then never be emptied. That means that the live transition can always
fire, and since it creates tokens in all places in N ′, every transition in N ′

is live, making N ′ live.

38

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â _________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

N

p1 ?>=<89:;
$$III

II

...

::uuuuu
... ...

...

!!B
BB

BB
B t′j

[0,0]

¶¶

pi ?>=<89:;

[Ik]

²²

[I1]
zzuuu

uu [Iq]$$III
II

Ik

22dddddddddddddddddddddddddddddd

I1
44hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Iq

// ...

...

...

##GGG
G

tj

{{www
w

##GGG
G

... live

[0,0]

**

[0,∞]

tt

[0,∞]

\\

[0,∞]

ll

[0,∞]
oo

[0,∞]

[[8888888

...

[0,0]

²²
...

$$III
II

...

pn ?>=<89:;
::uuuuu ?>=<89:;

[0,∞]

jj

ok

Figure 20: Reduction from deadlock to liveness

Figure 21 shows an example of a reduction from deadlock to liveness for a
simple TAPN N .

Corollary 4.2.
Liveness is undecidable for TAPNs from any class N (D, Interv).

Proof.
In the previous section we proved that deadlock is undecidable for TAPNs. Now
we have shown that deadlock is polynomial time reducible to liveness and thus
that liveness is also undecidable for TAPNs.

39

p1 ?>=<89:;1

[0,2]

²²

[0,2] // t′

[0,0]

¯¯

t

[3,5]

²²

live

[0,0]

$$

[0,∞]

ii

[0,∞]

||
p2 ?>=<89:; ?>=<89:;

[0,∞]

cc

ok

N

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â ______

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Figure 21: Deadlock to liveness example

4.3 Summary

Polynomial time reductions for regular Petri nets have been a focus of research
for years. A summary of the relations of reachability, deadlock and liveness,
with regard to polynomial time reductions, are shown in Figure 22.

Reachability Problem

(1)

((
Deadlock Problem

(2) //

(3)

ii Liveness Problem

Figure 22: Summary of polynomial time reductions for PNs

(1) In [6] the authors give a polynomial time reduction from reachability to
deadlock and (2) a polynomial time reduction from deadlock to liveness as well.
(3) In [9] reachability and deadlock are shown to be polynomially equivalent. In
[12] the author shows that liveness and reachability are recursively equivalent,
but a polynomial time reduction between them remains an open problem.

For TAPNs, with inspiration from [6], we have constructed polynomial time
reductions from reachability to deadlock and from deadlock to liveness. Since
we know that reachability is undecidable for TAPNs [18] we have been able
to proof that both deadlock and liveness are undecidable for TAPNs as well.
Figure 23 shows a summary of the relations between these three properties, with
regard to polynomial time reductions.

40

Reachability Problem // Deadlock Problem // Liveness Problem

Figure 23: Summary of polynomial time reductions for TAPNs

In [20] the author shows that reachability for 1-safe TAPNs is PSPACE-
Complete. With that knowledge and our reductions we can see that both dead-
lock and liveness are PSPACE-Hard. To show that they are PSPACE-Complete
we need to show that they are polynomially equivalent to reachability but for
now, that remains an open problem.

Claim 4.1.
We claim that deadlock for 1-safe TAPNs is PSPACE-Complete.

It has been shown for regular Petri nets that reachability and deadlock are poly-
nomially equivalent. Reachability for 1-safe TAPNs was further more proved
to be PSPACE-Complete in [20] and since we have found a polynomial time
reduction from reachability to deadlock we claim that there exists a polynomial
time reduction from deadlock to reachability for 1-safe TAPNs making those
two properties polynomially equivalent and thus making deadlock PSPACE-
Complete.

41

5 Deciding Coverability for Timed-Arc Petri Nets

In [3] the authors show how to use backwards reachability analysis and existen-
tial zones to decide coverability for timed-arc Petri Nets.

5.1 Backwards Reachability Analysis

The backwards reachability analysis [17] can be applied to any labeled transi-
tion system, to check if a given state is reachable from another.

The key idea is to check whether a given state s′ is reachable from an initial
state s by starting at s′ and trace backwards the possible transitions that could
be performed to reach this state. By doing this iteratively, and examining if at
some point we discover the initial state s, we can determine if the state s′ is
reachable from s, i.e. s

∗−→ s′.

More to our interest, the backwards reachability analysis can also be used to
determine the reachability of a set of states K ⊆ S from a given initial state s0

in a transition system L = (S, Act,→). Let preα(K) be the set of states from
which we can do the single transition α ∈ Act to reach a state in K. Formally,

preα(K) = {s ∈ S|∃s′ ∈ K s.t. s
α−→ s′} (Figure 24).

00
00

00
00

00 ±±±±±±±±±±

""

00
00

00
00

00 ±±±±±±±±±±

α

∀s• •∃s′

preα(K) K

Figure 24: The sets preα(K) and K

As we iteratively trace all possible transitions in Act backwards, we generate
a preα(K) set for every α ∈ Act . Let

pre(K) =
⋃

α∈Act

preα(K)

denote the set of all states from which we can do a transition to reach a state
in K, i.e.

∀s ∈ pre(K) ∃s′ ∈ K s.t . s
α−→ s′ for some α ∈ Act .

42

00
00

00
00

00 ±±±±±±±±±±

α′′

!!

00
00

00
00

00 ±±±±±±±±±±

pre(K)

00
00

00
00

00 ±±±±±±±±±±

α′

##

00
00

00
00

00 ±±±±±±±±±±

α

%%

K

• •• •• •

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â _______________

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Figure 25: The sets pre(K) and K

Then pre∗(K) denotes the transitive closure

K0 = K

K1 = pre(K0)

K2 = pre(K1)

...

Ki+1 = pre(Ki)

Hence, pre∗(K) =
⋃

i≥0 Ki is the set of all states from which we can do zero
or more transitions to reach a state in K (Figure 25). Checking if s0 ∈ pre∗(K)
is then a simple task, given that pre∗(K) is finite.

5.2 Existential Zones

Notice that when dealing with infinite state systems like TAPNs, the set pre∗(K)
might be an infinite set. It is obvious, that if it is infinite, we cannot check if
s ∈ pre∗(K). So, for this technique to be applied to infinite-state systems, we
need to represent pre∗(K) in a finite way.

The theory of existential zones (EZ) is based on the well known theory of
existential regions (ER) which has been applied to verify timed networks [4].
These constraint systems are variants of other constraint systems, zones and
regions respectively. The difference is that EZ and ER operate on unbounded
number of clocks, opposite to zones and regions, which operate on finite sets of
clocks and are therefore not directly suitable for analyzing timed-arc Petri nets.

The intuitive notion of existential zones, is that they provide a way by which
we can represent an infinite set of markings in a finite way.

The theory of EZ was first proposed in [4] as an analysis technique to be used in
backwards reachability analysis of timed-arc Petri nets. Existential zones char-
acterize a set of markings and enable us to represent an infinite set of markings

43

in a finite way. EZ as represented in [4] can be applied to all TAPNs that belong
to the class N (R+, Interv1). We extend this technique to handle all TAPNs
belonging to the class N (R+, Interv3).

Notation:
We use the notation n0 to denote the set {0, 1, . . . , n} and n1 to denote the set
{1, 2, . . . , n} for n ∈ N.

Intuition:
A difference bound matrix (DBM) is a matrix of size (m + 1) × (m + 1),
where m ∈ N, used to represent constraints on ages of m artificial tokens.

D : m0 ×m0 → Z ∪ {∞} ∪Z where Z = {z|z ∈ Z}.

For a DBM D, we write D(k, l) to denote the value in row k and column l.
A DBM specifies minimum constraints on the ages of tokens xi and xj , for each
i, j ∈ m1, s.t.:

•
{

xi ≤ D(i, 0) if D(i, 0) ∈ Z
xi < D(i, 0) if D(i, 0) ∈ Z

•
{ −D(0, i) ≤ xi if D(0, i) ∈ Z
−D(0, i) < xi if D(0, i) ∈ Z

•
{

xi − xj ≤ D(i, j) if D(i, j) ∈ Z
xi − xj < D(i, j) if D(i, j) ∈ Z

The overlined values in the DBM indicate that the constraints are with strict
inequalities. Note that the diagonal line in the DBM is irrelevant.

Let us look at an example where we want to represent the following con-
straints on some two tokens, artificially represented by x1 and x2:

• x1 ≤ 10

• x2 > 6

• x2 − x1 ≤ 2

With these constraints we construct the following DBM D:

D =

i\j 0 1 2
0 − 0 −6
1 10 − ∞
2 ∞ 2 −

D represents the constraints given above in the following manner:

• D(1, 0) = 10 : x1 ≤ 10

44

• D(0, 2) = −6 : −(−6) < x2

• D(2, 1) = 2 : x2 − x1 ≤ 2

The difference bound matrix plays an essential role in existential zones.

Definition 5.1.
An existential zone is a triple Z = (m,P , D) where:

• m ∈ N is the minimum number of tokens required

• P (placing) is a function P : {x1, . . . , xm} → P , where {x1, . . . , xm} is a
set of artificial tokens, pointing to real tokens in the marking. P specifies
where tokens should be located

• D is a difference bound matrix of the size (m + 1)× (m + 1)

An existential zone states the minimum requirements on a marking for it to
be satisfactory :

• The minimum number of tokens the marking should have

• The placing specifies where the tokens should be located

• The DBM specifies minimum constraints on the ages of tokens and the
difference between the ages of any two tokens

We say that a marking M satisfies an existential zone Z, written M |= Z,
according to the following definition.

Definition 5.2.
A marking M = {(p1, x1), . . . , (pn, xn)} of a TAPN N = (P, T, In, Out) is said
to satisfy an existential zone Z = (m,P , D) (written M |= Z) if there exists
an injective function h : m1 → n1 (called a witness) s.t. the following holds:

• (1) P (xi) = ph(i), for each i ∈ m1

• (2)
{

xh(i) ≤ D(i, 0) if D(i, 0) ∈ Z
xh(i) < D(i, 0) if D(i, 0) ∈ Z for each i ∈ m1

• (3)
{ −D(0, i) ≤ xh(i) if D(0, i) ∈ Z
−D(0, i) < xh(i) if D(0, i) ∈ Z for each i ∈ m1

• (4)
{

xh(i) − xh(j) ≤ D(i, j) if D(i, j) ∈ Z
xh(i) − xh(j) < D(i, j) if D(i, j) ∈ Z for each i, j ∈ m1

Intuitively, this states:

45

(1) Tokens in M are located according to the placing P .

(2) The ages of tokens do not violate the upper bounds represented
in D.

(3) The ages of tokens do not violate the lower bounds represented
in D.

(4) The difference between the ages of two tokens does not violate
the constraints represented in D.

Checking if M |= Z for a given marking M , is straightforward. We check if
we can find a match for the actual tokens in M = {(p1, x1), . . . , (pn, xn)} from
the artificial tokens represented in Z. This is done by finding and applying
an injective function h : m1 → n1 called a witness function, where xh(i) is an
artificial token mapped to an actual token in M .

Example 5.1.
We define an existential zone Z0 for the TAPN N with the marking M =
{(p1, 0), (p3, 0), (p3, 1)} in Figure 26.

Z0 = (3, P 0, D0) where:

P 0(x1) = p1

P 0(x2) = p3

P 0(x3) = p3

and

D0 =

i\j 0 1 2 3
0 − 0 0 −1
1 0 − ∞ ∞
2 0 ∞ − −1
3 1 ∞ ∞ −

The zone Z0 thus requires at least 3 tokens, one in place p1 and two in p3,
and the constraints on the ages of the tokens represented in the DBM say that
one of the tokens in p3 (x3) must at least be of age 1 and that it must also be
one time unit older that the other token in p3 (x2).

An example of a marking that satisfies this zone Z0 is

M1 = {(p1, 0), (p1, 2), (p3, 1), (p3, 1), (p3, 5)},

as we can find in M1 at least 3 tokens (witnesses) that match the criteria given
by Z0.

The set of all markings that satisfy Z is denoted by JZK = {M | M |= Z}.
An existential zone is consistent if JZK 6= ∅. The set JZK is upwards closed and
is always infinite, for a consistent zone Z.

46

p1 p2

?>=<89:;0

(2,4]

""EE
EE

EE
EE

EE
EE

?>=<89:;
[1,3]

||yy
yy

yy
yy

yy
yy

t1

[1,2]

²²?>=<89:;0, 1

[1,∞]

²²

p3

t2

[0,0]

MM

[0,0]

QQ

Figure 26: The TAPN N

We show that the set JZK is always infinite for a consistent Z. If we consider
the existential zone Z, we can find infinitely many markings that satisfy it. By
replicating a marking M that satisfies Z and adding one or more tokens to it we
create a new marking M ′ s.t. M ⊆ M ′. This can be done repeatedly, i.e. we can
find a marking M ′′ s.t. M ′ ⊆ M ′′, and since there are no upper bounds on the
number of tokens a marking can have, we can create infinitely many markings
that cover M and satisfy Z. Thus, if JZK is consistent, it is always infinite.

Existential zones are normalized [4] if irrelevant constraints have been re-
moved. An example are the following constraints, one on a token x1 and two
other constraints that combined imply a new constraint on x1:

(1) 2 ≤ x1 ≤ 10
(2) 5 ≤ x2

(3) x2 − x1 ≤ 2

Constraints (2) and (3) together imply that x1 ≥ 3. Therefore, by nor-
malizing these constraints in a DBM we would modify constraint (1) to be
3 ≤ x1 ≤ 10.

Definition 5.3.
An existential zone Z = (m, P , D) is said to be normalized if for each i, j, k ∈
m0, we have D(i, j) ≤ D(i, k) + D(k, j).

By normalizing, we combine constraints to create new ones that represent
the most strict bounds on each token. A normalized existential zone is denoted
by Z̃ and JZ̃K = JZK[4]. Normalization enables us to compare two zones and see

47

if they are equal. Given two zones Z = (m,P ,D) and Z ′ = (m′, P ′, D′), we can
normalize both of them and then check if there exists a bijection b : m → m′

s.t. b(P) = P ′ and b(D) = D′ where:

b(P)(xi) = P (xb(i))

b(D)(i, j) = D(b(i), b(j))

From now on we will only consider normalized zones.

5.3 Applying Backwards Reachability Analysis with Ex-
istential Zones

We apply the backwards reachability analysis using existential zones to decide
coverability for timed-arc Petri nets.

Theorem 5.1.
Coverability is decidable for timed-arc Petri nets in the class N (R+, Interv3).

The proof of Theorem 5.1 was done in [8] for TAPNs in N (R+, Interv1).
The proof provided in this section applies to TAPNs in N (R+, Interv3). Recall
the coverability problem, where we want to know if we can reach any marking
M ′ that covers a given marking M from the initial marking M0. Given a TAPN
N = (P, T, In,Out) in N (R+, Interv3).

We start by defining an existential zone Z0 that defines the minimum con-
straints of a marking according to M . We know that any other marking M ′

that satisfies Z0 is a marking that covers M , i.e. M ′ |= Z0 ⇒ M ⊆ M ′.

When Z0 has been defined, we start applying the backwards reachability
analysis described earlier in this section. We trace back each transition t ∈ T
and discover each pret(Z) zone and we trace back the time-elapsing transition
{ε(r)|r ∈ R+} to discover the preε(Z) zone as well. Then we have discovered a
set of zones

pre(Z) = {preε} ∪
⋃

t∈T

{pret(Z)}

which is always finite, since the number of these transitions is always finite (later
we will show preε(Z) is computed as only one zone for all time delays r ∈ R+).

After we have calculated pre(Z) we have a set of existential zones that char-
acterizes all markings from which we can reach a marking in Z0 in one step.

We repeat this procedure for all the existential zones in pre(Z) to discover the
next set pre(pre(Z)) =

⋃
Z′∈pre(Z) pre(Z ′). We do this iteratively until we have

calculated the whole transitive closure pre∗(Z) where we reach a fixed point s.t.
pre(pre′(Z)) = pre′(Z). This termination of the iteration is guaranteed since
EZ are better-quasi ordered [3].

When we know pre∗(Z), we can check if the initial marking M0 satisfies any
of the existential zones in pre∗(Z) (see how in Defintion 5.2) and hence, we can

48

determine if we can reach a marking M ′ that covers a given marking M from
an initial marking M0.

To complete this proof we show how the zones pret(Z) and preε(Z) are
computed.

Computing pret(Z)
To calculate pret(Z) we define the cases for comparison of values in Z and Z.
We first recall the definition of min(a, b) where a, b ∈ Z:

min(a, b) =
{

a if a ≤ b
b if a > b

Now we can define the min function for values in Z ∪Z.

min(x, y) =





a if a ≤ b and x = a ∈ Z, y = b ∈ Z
b if a > b and x = a ∈ Z, y = b ∈ Z

a if a ≤ b and x = a ∈ Z, y = b ∈ Z
b if a > b and x = a ∈ Z, y = b ∈ Z

a if a < b and x = a ∈ Z, y = b ∈ Z
b if a ≥ b and x = a ∈ Z, y = b ∈ Z

a if a ≤ b and x = a ∈ Z, y = b ∈ Z
b if a > b and x = a ∈ Z, y = b ∈ Z

For example, min(2, 3) = 2, min(2, 2) = 2 and min(2, 3) = 2.

Then we define three operations, conjunction, addition and restriction [3].

Conjunction: The conjunction operation (denoted by ⊗) adds an additional
constraint on the age of an existing token in Z.

Definition 5.4.
For an interval I = [(a, b)], an existential zone Z = (m,P , D) and i ∈ m1,
conjunction Z ⊗ (I, i) is the existential zone Z ′ = (m,P , D′) where:

•
{

D′(i, 0) = min(b,D(i, 0)) if I = [(a, b]
D′(i, 0) = min(b,D(i, 0)) if I = [(a, b)

49

•
{

D′(0, i) = min(−a,D(0, i)) if I = [a, b)]
D′(0, i) = min(−a,D(0, i)) if I = (a, b)]

• D′(k, j) = D(k, j) for each j, k ∈ m1 with j 6= k, (k, j) 6= (i, 0) and
(k, j) 6= (0, i)

Intuitively, to create Z ′, we modify the first row and the first column so that
the DBM D′ in Z ′ represent the tightest constraint that can be composed from
the constraints in D and the constraints we add. For example, for a zone

Z =


2, P ,

0 1 2
0 − 0 0
1 8 − 8
2 8 4 −




we perform the operation Z ⊗ ([1, 10], 1) to get the following Z ′:

Z ′ =


2, P ,

0 1 2
0 − −1 0
1 8 − 8
2 8 4 −




Addition: The second operation, addition (denoted by ⊕) simply adds a new
token to a zone Z.

Definition 5.5.
For an existential zone Z = (m,P ,D), a place p ∈ P and an interval I = [(a, b)],
addition Z ⊕ (p, I) gives us an existential zone Z ′ = (m + 1, P ′, D′) where

• P ′(m + 1) = p, and P ′(j) = P (j) for each j ∈ m1

•
{

D′(0,m + 1) = a if I = [a, b)]
D′(0,m + 1) = a if I = (a, b)]

•
{

D′(m + 1, 0) = b if I = [(a, b]
D′(m + 1, 0) = b if I = [(a, b)

• D′(m + 1, j) = ∞ and D′(j, m + 1) = ∞, for each j ∈ m1

• D′(k, j) = D(k, j) for each j, k ∈ m0 with j 6= k

Intuitively, we add a column and a row to the DBM D in Z to create D′ in
Z ′. The values in the new column/row are according to the interval I for the 0
row and column, and other values are set to infinity. We add one token to the
placing and increase m by one. For example, for a zone

50

Z =


2,

P (1) = B
P (2) = C

,

0 1 2
0 − 0 0
1 8 − 8
2 8 4 −




we perform the operation Z ⊕ (A, [1, 2]) to get the following Z ′:

Z ′ =




3,
P (1) = B
P (2) = C
P (3) = A

,

0 1 2 3
0 − 0 0 −1
1 8 − 8 ∞
2 8 4 − ∞
3 2 ∞ ∞ −




Abstraction: Finally, the abstraction operation removes a given token i from
an existential zone Z (denoted by Z/i).

Definition 5.6.
For an existential zone Z = (m,P ,D), and a token i, abstraction Z/i gives
us an existential zone Z ′ = (m− 1, P ′, D′) where

• P ′(j) = P (j) ∀j ∈ (i− 1)0, and P ′(j) = P (j + 1), for j ∈ {i, . . . ,m− 1}.

• D′(j, k) = D(j, k) ∀j, k ∈ (i− 1)0

• D′(j, k) = D(j, k + 1) and D′(k, j) = D(k + 1, j) ∀j ∈ (i− 1)0 and k ∈
{i, ..., m− 1}

• D′(j, k) = D(j + 1, k + 1) ∀j, k ∈ {i, ...,m− 1}

Intuitively, we remove one row and one column from the DBM D in Z to
create the D′ in Z ′, remove one token from the placing and decrease m by one.
For example, for a zone

Z =




3,
P (1) = B
P (2) = C
P (3) = A

,

0 1 2 3
0 − 0 0 −1
1 8 − 8 ∞
2 8 4 − ∞
3 2 ∞ ∞ −




we perform the operation Z/2 to get the following Z ′:

Z ′ =


2,

P (1) = B
P (2) = A

,

0 1 2
0 − 0 −1
1 8 − ∞
2 2 ∞ −




51

We are now ready to define pret(Z) [3]:

Definition 5.7.
Consider a TAPN N = (P, T, In, Out), a transition t ∈ T , and an existen-
tial zone Z = (m,P , D). Let In(t) = {(p1, I1), . . . , (pk, Ik)}, and Out(t) =
{(q1,J1), . . . , (q`,J`)}

Then pret(Z) is the smallest set containing each existential zone Z ′ such
that there is a partial injection h : m1 → `1 with a domain {i1, ..., in}, and an
existential zone Z ′ satisfying the following conditions:

(1) P (i) = qh(i),∀i ∈ {i1, . . . , in}
(2) Z ⊗ (Jh(i1), i1)⊗ ...⊗ (Jh(in), in) is consistent
(3) Z ′ = (Z/i1/.../in)⊕ (p1, I1)⊕ ...⊕ (pk, Ik)

So, to calculate the zone Z ′ = pret(Z) we start by mapping the artificial to-
kens in the placing to actual tokens in the net (1). Then we add restrictions to Z
according to the intervals on the arcs from the transition t to its output places,
and check if Z is consistent (2). In (3) we create a new existential zone Z ′,
that equals Z after removing the selected tokens that are in the output places
of the transition t, and then add constraints to Z ′ according to the intervals on
arcs of the input places of t to see in which places (input places of t) we require
tokens and their ages. This is how we, step by step, calculate the existential
zone Z ′ = pret(Z).

Computing preε(Z)
Finally, we define preε(Z) [3]:

Definition 5.8.
For an existential zone Z = (m, P , D), the set preε(Z) is the existential zone
Z ′ = (m,P , D′) where D′(0, i) = 0,∀i ∈ m1 and D′(j, i) = D(j, i) ∀i, j ∈ m0,
with i 6= j and j 6= 0.

To calculate the existential zone for preε(Z), we simply lower the lower
bounds of all the tokens to 0, i.e. we remove all constraints on lower bounds on
the ages of tokens.

Following theorems are shown in [3]:

Theorem 5.2.
For a zone Z, pret(Z) is the largest set of zones satisfying:

∀M ∈ Jpret(Z)K. ∃M ′ ∈ JZK s.t. M [t〉M ′

Theorem 5.3.
For a zone Z, preε(Z) is the largest zone satisfying:

∀M ∈ Jpreε(Z)K. ∃M ′ ∈ JZK. ∃r ∈ R+ s.t. M
ε(r)−−→ M ′

52

Now we have shown how to calculate the sets pret(Z) and preε(Z). Thus
we can compute pre(Z). Next section illustrates in details how it works in an
example.

5.4 Example

We will provide an answer to the question:
Given the TAPN N in Figure 27 can we reach a marking M ′ that covers the
marking M = {(p3, 4)} from the initial marking M0 = {(p1, 0), (p2, 0)} (Figure
28)?

p1 p2

?>=<89:;
(2,4]

""EE
EE

EE
EE

EE
EE

?>=<89:;
[1,3)

||yy
yy

yy
yy

yy
yy

t1

[1,2]

²²?>=<89:;4 p3

Figure 27: The TAPN N with a marking M we want to cover

p1 p2

?>=<89:;0

(2,4]

""EE
EE

EE
EE

EE
EE

?>=<89:;0

[1,3)

||yy
yy

yy
yy

yy
yy

t1

[1,2]

²²?>=<89:; p3

Figure 28: The initial marking M0 of N

53

We start by defining the existential zone Z0 that characterizes the marking
M = {(p3, 4)}:

Z0 =


1, P (1) = p3 ,

0 1
0 − −4
1 4 −




We know that any marking that satisfies Z0 covers M .

Now we trace back each transition in the net. In this example we will only
look at one case of h for each calculation, where it is an injection (not partial).
Note that h can also be different than shown in the example and thus creating
more zones in each iteration. Therefore, when we show the set pre∗(Z), we will
not show the full set, only selected zones in it.

• t1
For the transition t1, with h(1) = 1 and Out(t1) = {(q1, [1, 2])} where
q1 = p3, Z0 ⊗ ([1, 2], 1) is not consistent, condition (2) is violated and
pret1(Z0) does not exist.

• ε
Then we calculate preε(Z0) to be the zone Z1:

Z1 =


1, P (1) = p1 ,

0 1
0 − 0
1 4 −




Now the first iteration is complete for this h and pre(Z0) = {Z1} ∪ {Z0}.

We calculate pre(pre(Z0)). Then we look at the existential zones in pre(Z0).
We trace back the transition in the net to find the pret1(Z1) and preε(Z1) zones.

• t1
For t1, with h(1) = 1, Out(t1) = {(q1, [1, 2])} where q1 = p3, conditions
(1), (2) and (3) all hold and we get the zone Z2 = pret1(Z1):

Z2 =


2,

P (1) = p1

P (2) = p2
,

0 1 2
0 − −2 −1
1 4 − 3
2 3 1 −




• ε
Finally we find that preε(Z1) = Z1.

54

Now the second iteration is complete, for this h, and pre(pre(Z0)) = {Z2}∪
{Z1} ∪ {Z0}.

We calculate pre(pre(pre(Z0))). We take the zone Z2, and calculate pret1(Z2)
and preε(Z2).

• t1
For any h no tokens are positioned in the output place p3 so pret1(Z2)
does not exist, since condition (1) is violated.

• ε

Z3 = preε(Z2) =


2,

P (1) = p1

P (2) = p2
,

0 1 2
0 − 0 0
1 4 − 3
2 3 1 −




The third iteration is complete and pre(pre(pre(Z0))) = {Z3}∪{Z2}∪{Z1}∪
{Z0}.

In the fourth iteration we discover no new zones.

• t1
pret1(Z3) does not exist (violation of constraint (1)).

• ε
preε(Z3) = Z3.

Thus, we have now completed all our iterations and discovered the transitive
closure pre∗(Z0) = {Z0, Z1, Z2, Z3}.

Let us recall our question:
Given the net N in Figure 27 can we reach a marking M ′ that covers the mark-
ing M = {(p3, 4)} from the initial marking M0 = {(p1, 0), (p2, 0)}?

To determine this, we check if the given initial marking M0 = {(p1, 0), (p2, 0)}
satisfies any of the zones in pre∗(Z0). We discover that M0 |= Z3, and the an-
swer to our question is yes.

We can modify our question to ask if we can reach a marking that covers the
same marking M in N from another initial marking, e.g. M ′

0 = {(p1, 4), (p2, 4)}.
We would see that M ′

0 6|= Z ′ ∀Z ′ ∈ pre∗(Z), but since we have not computed
the whole set pre∗(Z) we cannot provide a complete answer but intuitively the
answer to the question would be no.

55

5.5 Summary

The section started with an introduction of the backward reachability analysis
technique. Next, we defined existential zones and how markings on TAPNs sat-
isfy those zones. We then combined these two things and showed how backward
reachability analysis can be used to decide coverability for TAPNs, with both
continuous and discrete time and all types of intervals, using existential zones.

56

6 Extended Timed-Arc Petri Net Models

6.1 Distributed TAPN

Until now, we have discussed time dependant models where full synchronization
is assumed, i.e. there is only one global clock and time elapses synchronously
for the whole model. For many systems, this assumption is not justified. For
example consider highly geographically distributed systems where clusters run
asynchronously with one another, but the components of each cluster are syn-
chronized.

The Distributed TAPN model was first proposed in [15] and it suggests
having more than one clock in a net, making time pass synchronously only for
specified parts of it.

6.1.1 The Distributed Model

Let us assume an equivalence relation ≡ over places. Intuitively, (p, p′) ∈≡
implies that the places p and p′ share a clock. When two places share a clock,
the tokens placed in them grow older at the same rate. We write p ≡ p′ to
denote that (p, p′) ∈≡.

Definition 6.1.
An equivalence class groups together equivalent places, i.e.

[p]≡ = {p′|p ≡ p′}

Let us fix Interv ∈ {Interv1, Interv2, Interv3} and a time domain D ∈
{N,R+}. A distributed timed-arc Petri net can then be defined as follows.

Definition 6.2.
A distributed timed-arc Petri net (DTAPN) is a 5-tuple N = (P, T, In, Out,≡)
where

• P = {p1, ..., pn} is a finite set of places

• T = {t1, ..., tm} is a finite set of transitions s.t. P ∩ T = ∅
• In : P × T → Interv⊕ is a function that associates to each arc (p, t) a

finite multiset of intervals

• Out : T × P → Interv⊕ is a function that associates to each arc (t, p) a
finite multiset of intervals

• ≡ ⊆ P × P is an equivalence relation over places

We let E(≡) = {[p]≡ | p ∈ P} denote the set of all equivalence classes in N .

Definition 6.3.
Marked distributed timed-arc Petri net (MDTAPN) is a pair (N,M0),
where N is a DTAPN and M0 is an initial marking on N , s.t.

57

∀p ∈ P. ∀x ∈ M0(p). x = 0

As an initial marking on a DTAPN N , we only allow tokens of age 0.

Definition of firing rules and enabled transitions for DTAPNs is the same
as for TAPNs, Definition 6.20.

We define a time-elapsing function for MDTAPNs as follows.

Definition 6.4.
Let (N, M0) be a MDTAPN, where M and M ′ are markings on it, and N =
(P, T, In, Out,≡). We write a time-elapsing transition as M [ε〉M ′ for some
time-elapsing function ε : E(≡) → D where:

M ′(p) = M(p) <+ ε([p]≡) ∀p ∈ P

Note that a TAPN is the same as a DTAPN, where all places belong to the
same equivalence class, i.e. ≡= P × P .

Classes of DTAPNs
The definitions above provide a general way of defining the time attributes of
the DTAPN model, both the types of intervals and the time domain. We define
classes of DTAPNs as follows.

Definition 6.5.
Let D ∈ {N,R+} be a time-domain and Interv ∈ {Interv1, Interv2, Interv3}
be the set of allowed intervals. Then we define ND(D, Interv) as the class of
all DTAPNs with time domain D and interval set Interv.

We claim that a DTAPN N belonging to the class ND(N, Interv3) can be
reduced to a DTAPN N ′

D in ND(N, Interv1) preserving isomorphism. Since the
only difference between the DTAPN model and the basic TAPN model is how
time elapses, we can apply the same construction as in the proof of Theorem
3.1 to show that ND(N, Interv3) ∼= ND(N, Interv1). Thus, we can depict the
hierarchy for classes of DTAPNs as shown in Figure 29 where the arrows lead
from a more general class to a less general one.

The question of whether the hierarchy of the classes with continuous time is
strict is still open.

6.1.2 Discrete Time

Finding a polynomial time reduction from DTAPNs with discrete time to TAPNs
seems to be a difficult task. Since in DTAPNs we might have more than one
clock, i.e. one for each equivalence class, where as for TAPNs we only have one
global clock where all the tokens in the net grow older at once, the intuitive
understanding of the problem is obvious.

58

ND(R+, Interv3)

²²
ND(R+, Interv2)

²²

ND(N, Interv3) ∼= ND(N, Interv2) ∼= ND(N, Interv1)

ND(R+, Interv1)

Figure 29: Class hierarchy for DTAPNs

We have tried to create a reduction in different ways, e.g. being inspired
by [9], but always stumble upon this same problem. However, we will show
that we can reduce discrete time DTAPNs to regular Petri nets (without time)
preserving timed-reachability.

Definition 6.6.
Timed-reachability is the problem, can we reach a marking M from an initial
marking M0 within at most v time units elapsed in every equivalence class? This
is denoted by M0[σ〉vM and formally we ask if ∃σ s.t . M0[σ〉vM?

We start by explaining the technique in [8] where TAPNs are polynomially
reduced to PNs, following up with a section where we show how DTAPNs can
be reduced to PNs applying the same technique, preserving timed-reachability.

Reducing TAPNs to PNs
In this section we implicitly assume the discrete time setting. We will explain
the intuition behind the technique described in [8]. This reduction will help to
answer the following problem:

∃σ s.t. M0[σ〉vM

This reduction preserves timed-reachability.
The first thing to notice is that in regular Petri nets no time related attributes

are present, as in TAPNs, where time has a significant effect on the behavior of
the net. It is therefore obvious that we need to find a way to represent time in
ordinary PNs.

In [8] the authors suggest how to do this. By introducing special clock places
and tick transitions to the Petri net, to play the role of a global clock, we can
simulate the passage of time. Figure 30 shows an example of what we like to
call a time line, where the clock places c0, c1 and c2 are connected by the tick
transitions tick1 and tick2.

59

Â
Â
Â
Â
Â _______________________

_______________________ Â
Â
Â
Â
Â

c0 c1 c2

time line ?>=<89:; // tick1 //?>=<89:; // tick2 //?>=<89:; // . . .

Figure 30: An example of a time line

At all times, we must have exactly one clock place marked in any given
timeline. Initially we place a token in c0, meaning 0 time has elapsed. The
time line then indicates, in discrete steps, how long time has elapsed, by moving
the token around. However, since time in TAPNs can elapse infinitely but PNs
must have finitely many places and transitions, we can only reduce TAPNs to
PNs up to a given instance in time v. So with this instance v we can reduce a
given TAPN N to a PN N ′ up to it and the time line in N ′ will be finite.

Let us now look at how the time line helps us to represent time in an ordinary
PN. As an example, we look at the simple TAPN N given in Figure 31. N
has two places, p1 and p2 and one transition t1 s.t. In(p1, t1) = {[1, 2]} and
Out(t1, p2) = {[0, 0]}.

We start the construction of a PN N ′ by creating the time line. In this
example we set the time limit v = 3, so we create the clock places c0, c1, c2 and
c3 and the tick transitions tick1, tick2 and tick3.

Now we create, for each place p in N a set of places {p0, p1, . . . , pv)} in N ′.
In our example, for p1, we create the places p0

1, p1
1, p2

1 and p3
1 and for p2 we

create the places p0
2, p1

2, p2
2 and p3

2. See Figure 32.

60

p1 ?>=<89:;0

[1,2]

²²
t1

[0,0]

²²
p2 ?>=<89:;

Figure 31: The TAPN N

c0 c1 c2 c3

?>=<89:; // tick1 //?>=<89:; // tick2 //?>=<89:; // tick3 //?>=<89:;

p0
1
?>=<89:; ?>=<89:; p0

2

p1
1
?>=<89:; ?>=<89:; p1

2

p2
1
?>=<89:; ?>=<89:; p2

2

p3
1
?>=<89:; ?>=<89:; p3

2

Figure 32: The net N’

The idea is that the ages of the tokens are controlled in a static way: tokens
do not move when they become older, instead the clock places in the time line
do the work. This way, we capture the age x of a token in place p in N by
placing a token in one of the pj places in N ′ s.t. for the marked clock place ci,
i− j = x. For example, look at how we represent the age of the token in p1 in
the TAPN N , by placing tokens in the PN N ′ in Figure 33.

61

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

c0 c1 c2 c3

p1 ?>=<89:;0

[1,2]

²²

?>=<89:;• // tick1 //?>=<89:; // tick2 //?>=<89:; // tick3 //?>=<89:;

p0
1
?>=<89:;• ?>=<89:; p0

2

t1

[0,0]

²²
p1
1
?>=<89:; ?>=<89:; p1

2

p2 ?>=<89:;
p2
1
?>=<89:; ?>=<89:; p2

2

p3
1
?>=<89:; ?>=<89:; p3

2

N N ′

(a)

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

c0 c1 c2 c3

p1 ?>=<89:;1

[1,2]

²²

?>=<89:; // tick1 //?>=<89:;• // tick2 //?>=<89:; // tick3 //?>=<89:;

p0
1
?>=<89:;• ?>=<89:; p0

2

t1

[0,0]

²²
p1
1
?>=<89:; ?>=<89:; p1

2

p2 ?>=<89:;
p2
1
?>=<89:; ?>=<89:; p2

2

p3
1
?>=<89:; ?>=<89:; p3

2

N N ′

(b)

Figure 33: Simulating time in a Petri net

62

In Figure 33 (a) the age of the token in p1 in N , which is 0, is represented by
placing tokens in p0

1 and c0 in N ′, i.e. marking places pj and ci represents that
the age of the token in place p equals i − j, in this case p0

1 and c0 are marked
in N ′, so they represent a token of age 0 − 0 = 0 in place p1 of N . In Figure
33 (b), one time unit has elapsed in N so that the age of the token in p1 is 1.
This is represented in N ′ by marking places p0

1 and c1(the purpose of the other
pj places will be explained later).

Now, let us move on to adding the transition t1 to the picture. t1 in N is
enabled whenever we have a token in p1 of age 1 or 2. The same has to be true
for N ′, a transition representing t1 in N ′ must be enabled when we a have a
token in a place pj

1 and a clock place ci s.t. i − j = 1 or i − j = 2. The or
between these conditions implies that we need to have two transitions in N ′

that represent the one transition t1 in N . In general, we create in N ′, for every
transition t in N a set of transitions {tn, . . . , tm} where {n, . . . , m} = {x | x ∈
In(p, t), x ∈ N, p ∈ •t}. In words, we create as many tk transitions as there
are values that fit the intervals from each input place of the transition t.

So for our transition t1 in N , we create the transitions t11 and t21 in N ′, since
In(p1, t1) = {[1, 2]} (hence, |{x | x ∈ [1, 2]}| = 2).

As we said before, these transitions must be enabled when we a have a token
in a place pj

1 and a clock place ci s.t. i− j = 1 or i− j = 2 respectively. Thus,
we put an arc from places p0

1 and c1 to t11 in N ′, and from places p0
1 and c2 to

t21 in N ′. We also have to add an arc from each of the transitions back to the
time line, so we do not remove the token from the time line completely (these
arcs were missing from the reduction given in [8]).

We are now well on our way in explaining the reduction from the TAPN
N to the PN N ′. We complete the picture by explaining the set of places
{p0

2, p
1
2, p

2
2, p

3
2} in N ′ that represent the place p2 in N (Figure 34).

c0 c1 c2 c3

?>=<89:; // tick1 //?>=<89:; //

··

tick2 //?>=<89:; //

¶¶

tick3 //?>=<89:;

p0
1
?>=<89:;

**VVVVVVVVVVVVVVV

00

?>=<89:; p0
2

p1
1
?>=<89:; t11

TT

?>=<89:; p1
2

p2
1
?>=<89:; t21

SS

?>=<89:; p2
2

p3
1
?>=<89:; ?>=<89:; p3

2

Figure 34: The net N’

Recall that the transition t1 in N outputs a token to the place p2 and
Out(t1, p2) = {[0, 0]}, i.e. t1 creates a token in p2 of age 0. The same has
to be true for the transitions that represent t1 in N ′, namely t11 and t21. They

63

must both output a token to a place pj
2, and its age should be represented as

being 0. Lets start by looking at the t11 transition. When it fires, it consumes a
token from p0

1 and c1. This indicates, that since it should create a token of age
0 in one of the pi

2 places, that t11 must output to the place p1
2 (since the token

in c1 does not move as we fire t11). However, the other transition t21 consumes
tokens from p0

1 and c2, so to create a token of age 0, t21 must output to the place
p2
2. Figure 35 shows this.

c0 c1 c2 c3

?>=<89:; // tick1 //?>=<89:; //

··

tick2 //?>=<89:; //

¶¶

tick3 //?>=<89:;

p0
1
?>=<89:;

**VVVVVVVVVVVVVVV

00

?>=<89:; p0
2

p1
1
?>=<89:; t11

TT

//?>=<89:; p1
2

p2
1
?>=<89:; t21

SS

//?>=<89:; p2
2

p3
1
?>=<89:; ?>=<89:; p3

2

Figure 35: The net N’

In general, a transition tk outputs to a place pj in N ′ for all places p that
are output places of t in N and k − j ∈ Out(t, p) ∩N.

Now imagine that the TAPN N we have been working with is a part of a
larger net (still with v = 3). We could easily be in the situation where time
has elapsed for 1 time unit and we have just placed a token of age 0 in place
p1. Since time has elapsed for 1 time unit, the token in the time line is situated
in place c1, and to represent a token in p1 of age 0, we have a token in p1

1 (see
Figure 36).

c0 c1 c2 c3

?>=<89:; // tick1 //?>=<89:;• //

··

tick2 //?>=<89:; //

¶¶

tick3 //?>=<89:;

p0
1
?>=<89:;

**VVVVVVVVVVVVVVV

00

?>=<89:; p0
2

p1
1
?>=<89:;• t11

TT

//?>=<89:; p1
2

p2
1
?>=<89:; t21

SS

//?>=<89:; p2
2

p3
1
?>=<89:; ?>=<89:; p3

2

Figure 36: The net N’

64

From this situation, neither t11 nor t21 are enabled in N ′, and similarly t1 is
not enabled in N when a token of age 0 is in place p1. However, we can let
time elapse in N , making the token in p1 grow to age 1, and then t1 becomes
enabled. The same must be true for N ′, if we let time elapse, i.e. fire the tick2

transition, the token in p1
1 represents a token of age 1, and then we should be

able to fire a transition tk1 .
Thus, we discover that only adding as many tk transitions as there are values

that fit the intervals from each place to the transition t, is not enough. We need
more tk1 transitions to represent t1 in N ′. Thus, we add a second index to the
transitions in N ′ s.t. tk1 becomes tk,l

1 where 1 ≤ l ≤ v.
Now we can add more transitions, tk,l

1 to N ′, to represent t1 consuming a
token of age 1 from place p1, after a total of 2 time units elapsing in the net
(Figure 37). We add arcs to t1,2

1 and t2,2
1 from the corresponding input places

and from t1,2
1 and t2,2

1 to the output places p2
2 and p3

2, to represent in N ′ the
creation of a token of age 0 in place p2, after t1 has fired in N .

c0 c1 c2 c3

?>=<89:; // tick1 //?>=<89:; //

··

tick2 //?>=<89:;• //

¶¶

vv

tick3 //?>=<89:;

tt

p0
1
?>=<89:;

**VVVVVVVVVVVVVVV

00

?>=<89:; p0
2

p1
1
?>=<89:;•

¼¼

##

t1,1
1

TT

//?>=<89:; p1
2

p2
1
?>=<89:; t2,1

1

SS

//?>=<89:; p2
2

p3
1
?>=<89:; t1,2

1

33

BB

?>=<89:; p3
2

t2,2
1

44

JJ

Figure 37: The net N’

Now we do the same for the places p2
1 and p3

1. We add the transitions t1,3
1 ,

t2,3
1 , t1,4

1 and t1,4
1 to complete the picture. We do not draw the transitions t2,3

1 ,
t1,4
1 and t1,4

1 since we are only looking at time elapsing up to v. The final picture
of N ′ can be seen in Figure 38.

The formal definition and proof of this reduction can be found in [8].

Reducing DTAPNs to PNs
Recall that a TAPN is the same as a DTAPN, where all places belong to the
same equivalence class. Therefore, we have now shown that we can reduce
DTAPN where ≡= P × P to PN. Let us look at the case where this does not
hold i.e. we have more than one equivalence class. We are only handling the
DTAPN model in discrete time setting.

65

c0 c1 c2 c3

?>=<89:; // tick1 //?>=<89:; //

··

tick2 //?>=<89:; //

¶¶

vv

tick3 //?>=<89:;

tt

²²

p0
1
?>=<89:;

**VVVVVVVVVVVVVVV

00

?>=<89:; p0
2

p1
1
?>=<89:;

¼¼

##

t1,1
1

TT

//?>=<89:; p1
2

p2
1
?>=<89:;

22

t2,1
1

SS

//?>=<89:; p2
2

p3
1
?>=<89:; t1,2

1

33

BB

?>=<89:; p3
2

t2,2
1

44

JJ

t1,3
1

BB

NN

Figure 38: The net N’

We will show that we can polynomially reduce DTAPNs to PNs preserving
timed-reachability.

As an example, we will use the DTAPN N in Figure 39, where place p1 and
p2 are in separate equivalence classes, and the time constant v = 3.

Â
Â
Â
Â ______

______ Â
Â
Â
Â

Â
Â
Â
Â ______

______ Â
Â
Â
Â

p1 ?>=<89:;0

[1,2]

²²

e

t1

[0,0]

²²
p2 ?>=<89:; e’

Figure 39: The DTAPN N

Now that we have two equivalence classes in N , we represent this in the
PN N ′ by having two time lines, each representing how time elapses in its
corresponding equivalence class. An element e ∈ E is an equivalence class, s.t.
[p]≡ = [p′]≡ ∀p, p′ ∈ e. We create in N ′ two time lines, one for e = {p1} and
one for e′ = {p2}, and places by the same rules as earlier, for each p in N we
create a set of places {p0, p1, . . . , pk} in N ′ (see Figure 40).

66

ce
0 ce

1 ce
2 ce

3

?>=<89:; // ticke
1

//?>=<89:; // ticke
2

//?>=<89:; // ticke
3

//?>=<89:;

ce′
0 ce′

1 ce′
2 ce′

3

?>=<89:; // ticke′
1

//?>=<89:; // ticke′
2

//?>=<89:; // ticke′
3

//?>=<89:;
Â
Â
Â
Â
Â
Â
Â
Â
Â _______________________

_______________________ Â
Â
Â
Â
Â
Â
Â
Â
Â

time lines

p0
1
?>=<89:; ?>=<89:; p0

2

p1
1
?>=<89:; ?>=<89:; p1

2

p2
1
?>=<89:; ?>=<89:; p2

2

p3
1
?>=<89:; ?>=<89:; p3

2

Figure 40: Creation of places in N ′

Again, the idea is that the ages of the tokens in N ′ are controlled in a static
way, the clock places in the time lines do the work. So to represent a token of
age 0 in place p ∈ e in N , we put a token in one of the pj places in N ′ s.t. for
the marked clock place ce

i , i − j = 0. For example, look at how we represent
the age of the token in p1 in the DTAPN N , by placing tokens in the PN N ′ in
Figure 41.

In Figure 41 (a) we represent two tokens of age 0, one in place p1 and the
other in p2. We fire a time elapsing transition ε in N where ε(e) = 1 and
ε(e′) = 0, where the token in p1 grows older by one time unit but the token
in p2 does not grow older. N ′ matches this transition firing by firing the ticke

1

transition. Thus, in Figure 41 (b), N ′ represents the marking {(p1, 1), (p2, 0)}
of N .

We connect places to transitions in the same way as before, creating for each
t in N , a set of transitions {tn,l, . . . , tm,l|l ∈ v1} where {n, . . . ,m} = {x | x ∈
In(p, t), x ∈ N, p ∈ P}. In words, we create v times as many tk transitions as
there are values that fit the intervals from each place to the transition t.

So for our transition t1 in N , we create t1,1
1 , t2,1

1 , t1,2
1 , t2,2

1 and t1,3
1 in N ′,

since In(p1, t1) = {[1, 2]} (hence, |{x | x ∈ [1, 2]}| = 2). This is shown in Figure
42.

67

ce
0 ce

1 ce
2 ce

3

?>=<89:;• // ticke
1

//?>=<89:; // ticke
2

//?>=<89:; // ticke
3

//?>=<89:;

p0
1
?>=<89:;• ?>=<89:;• p0

2

p1
1
?>=<89:; ?>=<89:; p1

2

p2
1
?>=<89:; ?>=<89:; p2

2

p3
1
?>=<89:; ?>=<89:; p3

2

p1 ?>=<89:;0

[1,2]

²²
t1

[0,0]

²²
p2 ?>=<89:;0

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â ______

______ Â
Â
Â
Â

Â
Â
Â
Â ______

______ Â
Â
Â
Â

(a)

ce′
0 ce′

1 ce′
2 ce′

3

?>=<89:;• // ticke′
1

//?>=<89:; // ticke′
2

//?>=<89:; // ticke′
3

//?>=<89:;

ce
0 ce

1 ce
2 ce

3

?>=<89:; // ticke
1

//?>=<89:;• // ticke
2

//?>=<89:; // ticke
3

//?>=<89:;

p0
1
?>=<89:;• ?>=<89:;• p0

2

p1
1
?>=<89:; ?>=<89:; p1

2

p2
1
?>=<89:; ?>=<89:; p2

2

p3
1
?>=<89:; ?>=<89:; p3

2

p1 ?>=<89:;1

[1,2]

²²
t1

[0,0]

²²
p2 ?>=<89:;0

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â ______

______ Â
Â
Â
Â

Â
Â
Â
Â ______

______ Â
Â
Â
Â

(b)

ce′
0 ce′

1 ce′
2 ce′

3

?>=<89:;• // ticke′
1

//?>=<89:; // ticke′
2

//?>=<89:; // ticke′
3

//?>=<89:;

Figure 41: Simulation of time

Now, since t1 outputs to p2 in N , we need to add an arc from each of these
tk,l
1 transitions to one of the pj

2 places in N ′. The token that is created must be
of age 0, so we need to make sure that the token in place pj

2 is represented as

68

ce
0 ce

1 ce
2 ce

3

?>=<89:; // ticke
1

//?>=<89:; // ticke
2

//?>=<89:; // ticke
3

//?>=<89:;

ce′
0 ce′

1 ce′
2 ce′

3

?>=<89:; // ticke′
1

//?>=<89:; // ticke′
2

//?>=<89:; // ticke′
3

//?>=<89:;

p0
1
?>=<89:; t1,1

1 t2,1
1

?>=<89:; p0
2

p1
1
?>=<89:; t1,2

1 t2,2
1

?>=<89:; p1
2

p2
1
?>=<89:; t1,3

1
?>=<89:; p2

2

p3
1
?>=<89:; ?>=<89:; p3

2

Figure 42: Creation of transitions in N ′

being of age 0. Here this reduction gets even more complex, since the place p2

is not in the same equivalence class as p1, implying that the age of the tokens in
the pj

2 places are represented by a different time line than the one that represents
the ages of the tokens t1 consumes.

Therefore, we need to duplicate the set of transitions in N ′ for every clock
place in the time line of the equivalence class that the output place of t belongs
to, and make sure that no matter where the token is in that time line, we always
create a token of age 0 in p2.

Let us look at our example again. In N , t1 outputs to p2, which does not
belong to the same equivalence class as p1, the input place of t1. Therefore,
we need to add more transitions and an arc from each transition to an output
place, where each transitions checks where the token is in the time line for
the equivalence class of p2. So, for each tk,l

i transition we create transitions
{tk,l,1, . . . , tk,l,|E|}. In Figure 43 it is shown how the duplicates of transitions
t1,1
1 will look like and where they will output.

69

ce
0 ce

1 ce
2 ce

3

?>=<89:; // ticke
1

//?>=<89:; //

··

µµ

··

®®

ticke
2

//?>=<89:; // ticke
3

//?>=<89:;

ce′
0 ce′

1 ce′
2 ce′

3

?>=<89:; //

½½

ticke′
1

//?>=<89:; //

··

ticke′
2

//?>=<89:; //

°°

ticke′
3

//?>=<89:;

­­

p0
1
?>=<89:;

''NNNNNNNNNNNNNNNNN

##GGGGGGGGGGGGGGGGGGGGGGGGGGGG

##

##

?>=<89:; p0
2

p1
1
?>=<89:; t1,1,0

1

TT

ZZ

66

?>=<89:; p1
2

p2
1
?>=<89:; t1,1,1

1

TT

VV

88

?>=<89:; p2
2

p3
1
?>=<89:; t1,1,2

1

VV

MM

<<

?>=<89:; p3
2

t1,1,3
1

ff

RR

DD

Figure 43: Duplicate transitions in N ′

Formally, we define this reduction as follows:

Definition 6.7.
Given a DTAPN N = (P, T, In, Out,≡), in the class ND(N, Interv1), with ini-
tial marking M0, we define the associated Petri net N ′ = (P ′, T ′, In′, Out′) as
follows.

Let F = {(p, ppos, cpos)|p ∈ P, ppos ∈ v0, cpos ∈ v0} be a multiset.

- We say that a multiset F = {(p1, ppos1, cpos1), . . . , (pn, pposn, cposn)}
instantiates a multiset {(p1, I1), . . . , (pn, In)} where Ii ∈ Interv1 if
and only if (cposi − pposi) ∈ Ii for all i ∈ n1.

• P ′ = {pj |p ∈ P, j ∈ v0} ∪ {ce
i |i ∈ v0, e ∈ E(≡)}

• T ′ = {t(F, F ′)|t ∈ T , F instantiates In(t) and F ′ instantiates Out(t)} ∪
{ticke

i |i ∈ v1, e ∈ E(≡)}.

70

• In′(ce
i−1, tick

e
i) = 1 ∀i ∈ v1 ∀e ∈ E(≡)

In′(ce
i , t(F, F ′)) =

{
1 if ∃(p, ppos, i) ∈ F s.t. p ∈ e
0 otherwise

In′(pj , t(F, F ′)) =
∑v

cpos=0 F (p, j, cpos)

• Out′(ticke
i , c

e
i) = 1 ∀i ∈ v1 ∀e ∈ E(≡)

Out′(t(F, F ′), ce
i) =

{
1 if ∃(p, ppos, i) ∈ F ′ s.t. p ∈ e
0 otherwise

Out′(t(F, F ′), pj) =
∑v

cpos=0 F ′(p, j, cpos)

Finally, a marking M on N can be translated to a set of markings f(M) on
N ′ as follows:

We define the inverse function f−1(M ′) = M . Let clockp = i where p ∈ e
and M ′(ce

i) = 1. Then:

M(p) =
v⋃

j=0

{u1, . . . , un|n = M ′(pj), ui = clockp − j for 1 ≤ i ≤ M ′(pj)}

Thus, f(M) = {M ′|f−1(M ′) = M}.
A general picture of the reduction is presented in Figure 44 where •t =

{p1, . . . , pn} and t• = {q1, . . . , qm}.

c
[p1]≡
i

?>=<89:; //

¼¼

ticki+1 //

.

.

.

c
[pn]≡
i

?>=<89:; //

""

ticki+1 //

?>=<89:;p1
1

&&
. . . ?>=<89:;p1

n
// t(F, F ′)

''

--

ee

OO

//

))TTTTTTTTTTTTTTTTTTTT
?>=<89:;ql

1
. . . ?>=<89:;q1

m

.

.

.
.
.
.

.

.

.
.
.
.

?>=<89:;pj
1

66

. . . ?>=<89:;pj
n

77nnnnnnnnnnnnnn ?>=<89:;qj
1

. . . ?>=<89:;qj
m

Figure 44: Reducing DTAPN to PN

Theorem 6.1.
Given a DTAPN N ∈ (N, Interv1) with an initial marking M0, a marking M

71

on it and a constant v, we can reduce it, in polynomial time, to a corresponding
PN N ′ preserving timed reachability,i.e.

M0[σ〉vM if and only if ∃M ′
0 ∈ f(M0). ∃M ′ ∈ f(M). ∃σ′ s.t . M ′

0[σ
′〉M ′

Proof.
Assume that we can reach M from M0 within v time units, i.e. there exists a
σ = t1, ..., tn s.t. M0[σ〉vM . We show how firing of a transition t from σ can be
simulated in N ′:

• t ∈ T :
When t fires in N we consume a set of tokens {x1, . . . , xf} ⊆ M(p) from
each place p ∈ •t and create a set of tokens {y1, . . . , yg} in each place
p ∈ t•. To match this transition firing, we fire a transition t(F, F ′) in
N ′ where F corresponds to the set In(t) and F ′ corresponds to the set
Out(t), and t(F, F ′) simulates the firing of t(F, F ′) in the PN N ′.

• ε ∈ [E(≡) → N]:
When a time elapsing transition ε fires in N , we match it by firing a
sequence of tick transitions in N ′ for each e ∈ E(≡), i.e. we fire ticke

r+1,
ticke

r+2, . . . , ticke
s where the clock place ce

r is marked in N ′ and ε(e) = s.

Assume that M cannot be reached from M0 within v time units, i.e. there
does not exists a σ = t1, ..., tn s.t. M0[σ〉vM . Then, for any M ′

0 ∈ f(M0) and
M ′ ∈ f(M), there does not exists σ′ = t1, . . . , tm for N ′ s.t. M ′

0[σ
′〉M ′.

Corollary 6.1 follows since ND(N, Interv3) ∼= ND(N, Interv1).

Corollary 6.1.
Given a DTAPN N in ND(N, Interv3) with an initial marking M0, a marking
M on it and a constant v, we can reduce it to a corresponding PN N ′ preserving
timed reachability,i.e.

M0[σ〉vM if and only if ∃M ′
0 ∈ f(M0). ∃M ′ ∈ f(M). ∃σ′ s.t . and M ′

0[σ
′〉M ′

Showing a stronger equivalence relation is still an open problem. We believe
that DTAPNs in ND(N, Interv3) are weakly bisimilar to PNs up to a certain
”depth”, i.e. we can reduce DTAPNs to PNs up to a given time constant v.

72

6.1.3 Continuous Time

We now consider the DTAPN model in continuous time. We apply the same
technique as we did for the TAPN model, backwards reachability analysis using
existential zones.

We want to determine, given a DTAPN N in ND(R+, Interv3) with an
initial marking M0 and a marking M , if we can reach a marking M ′ from M0

s.t. M ⊆ M ′. As before, we start by defining a zone Z that characterizes the
marking M and compute the transitive closure pre∗(Z).

To calculate the set pre(Z) we need to compute two things, pret(Z) and
preε(Z). We calculate pret(Z) using the same formula as for regular TAPNs
from Section 5.3. We need to redefine preε(Z) for the DTAPN model, where
we, in addition to lowering the lower bounds of each token to 0, relax the time
constraints between tokens that are in places that belong to different equivalence
classes. The set preε(Z) is the largest zone that satisfies ∀M ∈ JZK. ∃M ′ ∈
JZ ′K. ∃ε s.t . M [ε〉M ′. (Figure 45).

00
00

00
00

00 ±±±±±±±±±±

""

00
00

00
00

00 ±±±±±±±±±±

ε

∀M
• •

∃M ′

Z′ = preε(Z) Z

Figure 45: Existential zones

For a given zone Z we calculate preε(Z) as shown in Definition 6.8.

Definition 6.8.
For a normalized existential zone Z = (m,P ,D), preε(Z) is the existential zone
Z ′ = (m,P ,D′) where:

• D′(0, j) = 0 for j ∈ m1

• D′(i, 0) = D(i, 0) for i ∈ m1

• D′(i, j) =
{

D(i, j) if P (xi) ≡ P (xj)
∞ if P (xi) 6≡ P (xj)

for i ∈ m1, j ∈ m1

Theorem 6.2.
For a normalized existential zone Z, preε(Z) = Z ′ is the largest zone that
satisfies: ∀M ∈ JZ ′K. ∃M ′ ∈ JZK. ∃ε s.t. M [ε〉M ′ for some ε.

The following proof is a slight modification of [2]:

Proof.
All zones are assumed to be normalized.

73

Assume that a marking M ′ |= Z and ∃ε s.t. M [ε〉M ′. We show that M |=
Z ′ = preε(Z):

• M satisfies the same constraints on clock differences for places belonging
to the same equivalence class as M ′ since all the clocks are increased by
the same value. Other difference constraints are released and trivially
satisfied.

• M ′ satisfies the upper bounds of single clock values in Z, and therefore
M will satisfy the (same) upper bounds in Z ′.

• Z ′ has no lower bounds on single clock values, so they are trivially satisfied
by M since time elapses backwards.

Assume that a marking M |= Z ′ = preε(Z). We show that M [ε〉M ′ for some
ε and M ′ |= Z.

We define ε to be the minimum time delay required so that each token in
M ′ will satisfy the lower bound required by Z. The normality of Z and the
minimality of ε ensure that the delay will not make any token larger than the
corresponding upper bound in Z.

Corollary 6.2 follows:

Corollary 6.2.
Coverability is decidable for DTAPNs in the class ND(R+, Interv3) using back-
wards reachability analysis and existential zones.

6.1.4 Summary

We have examined the decidability of properties for DTAPNs. In [15] the au-
thors claim that reachability is undecidable for all classes of the DTAPN model.
They also claim that coverability is decidable for DTAPNs in ND(N, Interv1)
and ND(R+, Interv1) and we have proofed this to be true.

We have further examined the decidability of coverability and shown that
coverability is decidable for all classes of DTAPNs. We also proved that timed-
reachability is decidable for all classes of DTAPNs with discrete time, whereas
this is still an open problem for the classes of DTAPNs with continuous time.

It is also worth mentioning that since we have shown that both the reacha-
bility problem and the deadlock problem are undecidable for TAPNs, it follows
that they are also undecidable for this more general model.

74

6.2 Age-Preserving TAPN

By definition, transitions in timed-arc Petri nets consume tokens whose ages lie
within some interval, and create new tokens whose ages nondeterministically lie
within another (possibly identical) interval.

We define a new model based on the TAPN model, where a new kind of tran-
sitions, called age-preserving transitions are allowed. When an age-preserving
transition is fired, the tokens created in the output places are of the same age
as the token that the transition consumed from its input place. Graphically,
age-preserving transitions are represented by a box with a double border.

6.2.1 The Age-Preserving Model

We define the TAPN model with age-preserving transitions. Let us fix the
interval set Interv ∈ {Interv1, Interv2, Interv3} and the time domain D ∈
{N,R+}.
Definition 6.9.
A timed-arc Petri net (TAPN) with age-preserving transitions is a
4-tuple N = (P,T, In,Out) where

• P = {p1, p2, ..., pn} is a finite set of places,

• T = T ∪ T̂ where T = {t1, t2, ..., tm} and T̂ = {t̂1, t̂2, ...t̂k, } are finite sets
of regular and age-preserving transitions respectively s.t. T̂ ∩ T = ∅ and
P ∩ T = ∅,

• In : P ×T→ Interv⊕, is a function that associates intervals to arcs (p, t)
and (p, t̂). However, we restrict the number of input places to transitions
t̂ ∈ T̂ to be equal to one, s.t.

∑

p∈P

|In(p, t̂)| = 1.

• Out : T × P → Interv⊕, is a function that associates intervals to arcs of
the form (t, p).
Out : T̂ ×P → N associates a natural number to (t̂, p), the number of arcs
between t̂ and p. The time intervals are irrelevant, since output arcs from
an age-preserving transition do not use them.

We limit the number of input places that an age-preserving transition can
have, an age-preserving transition has to have exactly one input place. Should
we allow less than one input place, we would not be able to tell the ages of the
tokens created in the transitions output places. Should we allow more than one
input place to age-preserving transitions, the model would be somewhat more
complicated. We would have to follow some method of determining the ages
of the tokens that are to be created in the output places, and we would not
always be able to make the transition preserve the age of each consumed token
(since we are not guaranteed that the number of output places are the same as
the number of input places) and thus, this kind of transition would belong to a
different model.

75

We use the notation •t̂ = {p | In(p, t̂) 6= ∅} to denote the multiset of all
input places of transition t and similarly we use t̂• = {p | Out(t̂, p) 6= 0} to
denote the multiset of all output places of t.

The firing rule for TAPN model with age-preserving transitions is identical
to the firing rule in Definition 6.20 for t ∈ T . For t̂ ∈ T̂ we have the following
definition.

Definition 6.10.
Let N = (P,T, In,Out) be a TAPN with age-preserving transitions, M a mark-
ing on it and t̂ ∈ T̂ , where In(t̂) = {(p, I)}.
We say that t̂ is enabled at marking M if and only if:

∃x ∈ I ∩M(p)

i.e. in the input place, there exists at least one token whose age fits the interval
of the input arc leading from p to t̂.
Let us fix x s.t. x ∈ I ∩M(p). Then we can define:

• Xp = {x}
• Xp′ = ∅ ∀p′ 6= p

• Yp′ =
{ {x, x, . . . , x} where x occurs Out(t̂, p′) times if p′ ∈ t̂•

∅ otherwise

Now we can define the firing rule for t̂ ∈ T̂ :

M ′(p) = (M(p) \Xp) ∪ Yp ∀p ∈ P

Notice that as the regular t transitions, an enabled age-preserving transition
t̂ can fire, but it does not have to. We model the passage of time for this model
the same way we did for the basic TAPN model, Definition 3.22.

Classes of Age-Preserving TAPNs
The definitions above provide a general way of defining the time attributes of the
age-preserving TAPN model, both the types of intervals and the time domain.
We define classes of age-preserving TAPNs as follows.

Definition 6.11.
Let D ∈ {N,R+} be a time-domain and Interv ∈ {Interv1, Interv2, Interv3}
be the set of allowed intervals. Then we define NA(D, Interv) as the class of
all age-preserving TAPNs with time domain D and intervals set Interv.

We claim that an age-preserving TAPN N belonging to the classNA(N, Interv3)
can be reduced to an age-preserving TAPN N ′ in NA(N, Interv1) preserving
isomorphism. This can be shown by applying the same technique as in Section

76

3.2.1 when reducing TAPNs in N (N, Interv3) to TAPNs in N (N, Interv1).
Thus, we can depict the hierarchy for classes of age-preserving TAPNs as shown
in Figure 46 where the arrows lead from a more general class to a less general
one. The strictness of the hierarchy remains an open question.

NA(R+, Interv3)

²²
NA(R+, Interv2)

²²

NA(N, Interv3) ∼= NA(N, Interv2) ∼= NA(N, Interv1)

NA(R+, Interv1)

Figure 46: Class hierarchy for age-preserving TAPNs

6.2.2 Discrete Time

We show how we can build an ordinary timed-arc Petri net in the classN (N, Interv1),
that simulates an age-preserving TAPN in NA(N, Interv1), preserving strong
bisimilarity.
Remark:
Since we have shown thatNA(N, Interv3) ∼= NA(N, Interv1) andN (N, Interv3) ∼=
N (N, Interv1), this reduction applies to all classes of age-preserving TAPNs and
TAPNs with discrete time domain.

Inspired by the technique described in [8] we define a maximal guard of an
age-preserving TAPN with age-preserving transitions:

Definition 6.12.
Let N = (P,T, In,Out) in NA(N, Interv3) be an age-preserving TAPN, and
X = [(a, b)] for some a ∈ N b ∈ N ∪ {∞}. We define limit : I → N as a
function:

limit(X) =
{

a if b = ∞
b if b 6= ∞

We define the set of all intervals in an age-preserving TAPN N,

allN =
⋃

p∈P,t∈T
In(p, t)

⋃

p∈P,t∈T

Out(t, p).

The maximal guard of an age-preserving TAPN N can now be defined as
follows:

maxGuard(N) = max{limit(I) | I ∈ allN}.

77

Let G(N) = maxGuard(N) + 1 in the following definitions.

The intuitive idea behind this simulation, is to capture the behavior of an
age-preserving transition t̂ by a set of regular transitions.

Figure 47 shows an example where the age-preserving transition t̂1 in N ,
where G(N) = 3, is simulated by the set of regular transitions, {t11, t21, t31} in N ′:

?>=<89:;p1
[1,4) //

[1,2]

²²

t̂1
//

²²

?>=<89:;p3

t1

[1,2]

²²

?>=<89:;p4

?>=<89:;p2

N

?>=<89:;p1
[1,1] //

[2,2]

''NNNNNNNNNNN

[3,3]

ÁÁ=
==

==
==

==
==

==
==

=

[1,2]

²²

t11
[1,1] //

[1,1]

((PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
?>=<89:;p3

t21

[2,2]
55jjjjjjjjjjjjjjjjj

[2,2]

++XXXXXXXXXXXXXXXXXXXXXXXXXXXX

t1

[1,2]

²²

t31 [3,3]
//

[3,3]

::vvvvvvvvvvvvvvvvvvvv
?>=<89:;p4

?>=<89:;p2

N ′

Figure 47: Example of a simulation

This simulation is straight forward when the ∞ sign is not present in the
net. Otherwise we add a special transition to the set, i.e. to simulate an age
preserving transition t̂ in a net where the ∞ sign is present, we capture its
behavior by the set of transitions {ta, . . . , tb, t∞}, where b = G(N) − 1 and
In(p, t̂) = {[a, b]} for p ∈ •t̂. For example in Figure 48, the age-preserving
transition t̂1 in N where G(N) = 5, is simulated by the set of transitions
{t21, t31, t41, t∞1 } in N ′.

Definition 6.13.
A labeled TAPN with age-preserving transitions, in the class NA(Interv,D),
is a 6-tuple L(N) = (P ,T,In,Out,Λ,λ) where (P,T, In, Out) is a age-preserving
TAPN and

78

?>=<89:;p1
[2,∞] //

[3,4]

²²

t̂1
//

²²

?>=<89:;p3

t1

[3,4]

²²

?>=<89:;p4

?>=<89:;p2

N

?>=<89:;p1
[2,2] //
[3,3]

))SSSSSSSSSSSSSSSSS

[4,4]

##HHHHHHHHHHHHHHHHHHHH

[5,∞]

ÁÁ<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<

[3,4]

²²

t21
[2,2] //

[2,2]

''OOOOOOOOOOOOOOOOOOOOOOOOOOOO
?>=<89:;p3

t31

[3,3]

++WWWWWWWWWWWWWWWWWWWWWWWWWW

[3,3]
55kkkkkkkkkkkkkkk

t1

[3,4]

²²

t41
[4,4] //

[4,4]

;;xxxxxxxxxxxxxxxxxxx
?>=<89:;p4

t∞1

[5,∞]

33gggggggggggggggggggggggggg

[5,∞]

AA¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

?>=<89:;p2

N ′

Figure 48: Example of a simulation, G(N) = 5

• Λ is finite set of labels

• λ : T → Λ is a labeling function that gives each transition in the age-
preserving TAPN a label

Theorem 6.3.
Given an age-preserving TAPN N in the class NA(N, Interv1) we can construct
a regular TAPN N ′ in the class N (N, Interv1) that simulates the behavior of
N s.t. T (N ′) ∼ T (N).

Proof.
Given an age-preserving TAPN N = (P,T, In,Out, Λ, λ) where T = T̂ ∪ T , T̂ ∩
T = ∅ and the initial marking is M0, we construct a TAPN N ′ = (P ′,T ′,In′,Out′,Λ′,λ′)
with initial marking M ′

0 = M0 s.t.

• P ′ = P

• T ′ = {t | t ∈ T} ∪
{ti | t̂ ∈ T̂ , a ≤ i ≤ b where In(p, t̂) = {[(a, b)]}, a, b ∈ N, p ∈ P} ∪

79

{ti | t̂ ∈ T̂ , a ≤ i ≤ G(N) where In(p, t̂) = {[(a,∞)]}, a ∈ N, p ∈ P} ∪
{t∞| t̂ ∈ T̂ , In(p, t̂) = {[(a,∞)]}, a ∈ N, p ∈ P}

• In′(p, t) =





In(p, t) if t ∈ T, ∀p ∈ P
{[i, i]} if t = t′i ∈ T ′ and i < ∞, ∀p ∈ •t′i

{[G(N),∞]} if t = t′∞ ∈ T ′, ∀p ∈ •t′i

∅ otherwise

∀t ∈ T ′

• Out′(t, p) =





Out(p, t) if t ∈ T, ∀p ∈ P
{[i, i]} if t = t′i ∈ T ′ and i < ∞, ∀p ∈ •t′i

{[G(N),∞]} if t = t′∞ ∈ T ′, ∀p ∈ •t′i

∅ otherwise

∀t ∈ T ′

• Λ′ = Λ

• λ′(t) =
{

λ(t) if t ∈ T

λ(t̂′) if t = t′i ∈ T ′

We show that T (N ′) ∼ T (N):

We define a strong bisimulation R. For any markings M ′
1 and M1 on T (N ′)

and T (N) respectively, (M ′
1,M1) ∈ R if and only if:

• ∀p ∈ P ′. |M ′
1(p)| = |M1(p)|

• ∀p ∈ P ′. {x | x ∈ M ′
1(p), x < G(N)} = {x | x ∈ M1(p), x < G(N)}

Should an age-preserving transition t̂ ∈ T̂ fire in N , we consume a token of
a given age x from the input place of t̂ and create tokens of the same age in its
output places. The ordinary TAPN N ′ can behave in the same way, where we
fire a corresponding transition ti ∈ T ′ if the age of the token is less than G(N),
i.e. x < G(N).

However, if the age of the token is greater than or equal to G(N), i.e. x ≥
G(N), we fire a transition t∞ ∈ T ′, that consumes a token of any age greater
than G(N) and creates tokens of any age greater than G(N).

Creation of tokens that are not necessarily of the same age as the token
consumed in this case does not matter. The behavior of N ′ is still the same as
the behavior of N , no matter how old the tokens are, as long as they are older
than the maximal guard (tokens older than the maximal guard can only be used
to fire transitions where the input intervals are of the form [(a,∞)]).

Thus, it is obvious that whenever (M ′
1,M1) ∈ R then ∀α ∈ Λ∪{ε(n)|n ∈ N},

• if M ′
1

α−→ M ′
2 in N ′ then M1

α−→ M2 in N and (M ′
2,M2) ∈ R

• if M1
α−→ M2 in N then M ′

1
α−→ M ′

2 in N ′ and (M ′
2,M2) ∈ R

and T (N ′) ∼ T (N), because the initial markings belong to R.

80

We have shown that the age-preserving model in discrete time is equivalent
to the basic TAPN model, and thus, we can translate the decidability results
from the basic TAPN model to the age-preserving model in discrete time. Next
section examines the age-preserving TAPN model in continuous time.

6.2.3 Continuous Time

Age-preserving TAPNs in the class NA(R+, Interv3) do not appear to be easily
reduced to the basic TAPN model. The reduction given for age-preserving
TAPNs with discrete time domain does not apply, since we would have to create
infinitely many transitions in the TAPN. However, we show that we can apply
backwards reachability and existential zones to decide coverability for the age-
preserving TAPN model.

We start by giving a definition of how we apply the C function to a set of
intervals:

Definition 6.14.
C is a function where, for some set of intervals K = {K1, . . . ,Kn} ⊆ Interv3,
CK ∈ Interv3 and CK is the largest possible interval s.t. CK ⊆ K for all K ∈ K

So for example, given a set of intervals K = {[1, 6], [5, 7], (5, 9]}, CK = (5, 6],
the largest possible interval from K.

We can apply backwards reachability and existential zones to the age-preserving
model by adding a small part to the definitions given in Section 5. But first, let
us define the function range:

Definition 6.15.
For a given difference bound matrix D and an index i, range is a function that
returns the upper and lower constraints stored in D, for the artificial token rep-
resented in D with index i, i.e.

range(i) =





[−D(0, i), D(i, 0)] if D(0, i) ∈ Z and D(i, 0) ∈ Z
(−D(0, i), D(i, 0)] if D(0, i) ∈ Z and D(i, 0) ∈ Z
[−D(0, i), D(i, 0)) if D(0, i) ∈ Z and D(i, 0) ∈ Z
(−D(0, i), D(i, 0)) if D(0, i) ∈ Z and D(i, 0) ∈ Z

In Section 5 we calculate pre(Z) of a given normalized zone Z by tracing
back all possible transitions in a given TAPN. For the age-preserving model we
do the same, and now we also need to consider the age-preserving transitions,
t̂ ∈ T̂ . Definition 6.16 shows how we calculate pret̂(Z) for a given zone Z.

Definition 6.16.
Consider an age-preserving TAPN N = (P,T, In,Out), a transition t̂ ∈ T, and
an existential zone Z = (m,P , D). Let In(t̂) = {(p, I)} and t̂• = {q1, . . . , q`}.

81

Then pre t̂(Z) is the smallest set containing each existential zone Z ′ such
that there is a partial injection h : m1 → `1 with domain {i1, ..., in} satisfying
the following conditions:

(1) P (i) = qh(i),∀i ∈ {i1, . . . , in}
(2) Z ⊗ (I, i1)⊗ ...⊗ (I, in) is consistent
(3) Z ′ = Z/i1/.../in ⊕ (p,C({range(i)|i ∈ {i1, . . . in}} ∪ I))

So, to calculate a zone Z ′ ∈ pret̂(Z) we start by mapping the artificial tokens
in the placing to actual tokens in the net (1). Then we add restrictions to Z
according to the interval on the input arc of t̂, and check if Z is consistent (2).
In (3) we create a new existential zone Z ′, that equals Z after removing the
tokens that are in the output places of the transition t̂, and then adding to Z ′

the tightest constraint implied by either the input interval of t̂ or the current
constraints on the tokens, depending on which is tighter. This is how we get
the interval that the age of token in the input place of t̂ must be in s.t. the
following theorem holds:

Theorem 6.4.
Given an existential zone Z, every zone Z ′ ∈ pret̂(Z) satisfies:

∀M |= Z ′. ∃M ′ |= Z s.t . M [t̂〉M ′

and pret̂(Z) is the largest such a set of zones.

Proof.
Given an arbitrary marking M |= Z ′ we show that there exists a marking M ′

where M [t̂〉M ′, s.t. M ′ |= Z:

When we calculate Z ′ = pret̂(Z), the constraints in the DBM in Z ′ are the
tightest constraints we can find by combining all the constraints in Z and the
input interval I. Thus, if M |= Z ′, we ensure that when t̂ fires s.t. M [t̂〉M ′,
then M ′ |= Z since all the constraints in Z are equally or more general than the
constraints in Z ′.

Given an arbitrary marking M ′ |= Z. we show that for any marking M where
M [t̂〉M ′, M |= Z ′ where Z ′ ∈ pret̂(Z):

All tokens created in the output places of t̂ have to be of the same age. So
the constraints on them, represented in Z, are combined to find one tightest
constraint for which the age of each of these tokens fulfills. Furthermore, since
the age of each of the tokens has to fit into the input interval I of t̂ as well
(the ages of the tokens in the output places are the same as the age of the token
consumed by t̂) we find one tightest constraint for both the constraints in Z and
I. This constraint is represented in the zone Z ′ = pret̂(Z) and any marking M ,
for which we can fire t̂ and reach a marking M ′ |= Z, has to satisfy this zone
Z ′.

82

Now the set pre(Z), that contains all the zones in the age-preserving model,
is defined as follows:

pre(Z) = {pret(Z)|t ∈ T} ∪ {preε(Z)} ∪ {pret̂(Z)|t̂ ∈ T̂}

Theorem 6.5 follows:

Theorem 6.5.
Coverability is decidable for age-preserving TAPNs in NA(R+, Interv3).

6.2.4 Summary

We have now shown how we can apply backwards reachability and existen-
tial zones to determine the decidability of coverability for TAPNs with age-
preserving transitions.

83

6.3 Inhibitor Arcs

Inhibitor arcs for Petri nets were first defined in [16] but in this section we define
them for TAPNs.

It is often the case, that we would like some transition to fire only if there
are no tokens present in a given place. An example of this is when we are mod-
eling mutual exclusion, where we want to fire a transition that enables a process
to access a critical section if and only if no other process is accessing it. We
model each process as an individual token in the net. In this case, we would
like to be able to check if there are no tokens in the place ”Critical Section”.
This is called test for zero, which is done by extending the TAPN model with
inhibitor arcs [16]. Inhibitor arcs are graphically represented by a small circle
at the origin of the arc. Figure 49 shows how a TAPN with inhibitor arcs can
model mutual exclusion with two processes.

Exit Critical Section Critical Section

t1

[0,∞]

²²

?>=<89:;[0,∞]oo
©

»»

p2

p1 ?>=<89:;0 0
[0,∞]

// t2

[0,∞]

OO

Ready Enter Critical Section

Figure 49: Mutual exclusion modeled with inhibitor arcs

6.3.1 TAPN with Inhibitor Arcs

Let us fix D ∈ {N,R+} and Interv ∈ {Interv1, Interv2, Interv3}.
Definition 6.17.
A timed-arc Petri net (TAPN) with inhibitor arcs is a 5-tuple N =
(P, T, In, Out, Inhibit) where

• P = {p1, p2, ..., pn} is a finite set of places

• T = {t1, t2, ..., tm} is a finite set of transitions s.t. P ∩ T = ∅
• In : P × T → Interv⊕ is a function that associates to each arc (p, t) a

finite multiset of intervals

• Out : T × P → Interv⊕ is a function that associates to each arc (t, p) a
finite multiset of intervals

• Inhibit : P × T → {0, 1} is a function that represents the presence of an
inhibitor arc from place to a transition

84

We use the notation ◦t = {p | Inhibit(p, t) = 1} to denote the set of all input
places of the transition t connected by an inhibitor arc.

Definition 6.18.
Let N = (P, T, In, Out, Inhibit) be a TAPN with inhibitor arcs, M a marking
on it and t ∈ T .
We say that t is enabled at marking M if and only if:

• ∀p ∈ ◦t. |M(p)| = 0

• ∀p ∈ •t. ∃Xp = {x1, . . . , xn} ⊆ M(p), where In(p, t) = {I1, . . . , In},
s.t. xi ∈ Ii for 1 ≤ i ≤ n

i.e. all places connected to t by an inhibitor arc are empty and in each input
place, for every regular input arc, there exists at least one token whose age fits
the interval of that arc.

The set of tokens created, when t is fired, is any set

Yp = {y1, . . . , ym} ∀p ∈ t•, where Out(t, p) = {J1, . . . ,Jm},
s.t. yi ∈ Ji for 1 ≤ i ≤ m

i.e. in each output place, for every output arc, one token, whose age fits the
interval of that arc, will be created.

Tokens are only consumed from input places of t and only created in output
places of t. So we define:

Xp = ∅ ∀p ∈ (P \ •t)
Yp = ∅ ∀p ∈ (P \ t•)

Now we can define the firing rule formally.

M ′(p) = (M(p) \Xp) ∪ Yp ∀p ∈ P

6.3.2 Discrete and Continuous Time

Theorem 6.6.
Timed-arc Petri nets with inhibitor arcs, using two or more inhibitor arcs, can
not be reduced to regular timed-arc Petri nets.

Proof.
TAPNs (and even regular Petri nets) using inhibitor arcs are known to be Turing
powerful [16]. If we were able to model a TAPN with inhibitor arcs using only
regular arcs, then regular TAPNs were also Turing powerful, but that it is not
the case, since coverability is decidable for them.

85

6.3.3 Summary

We have defined TAPNs with inhibitor arcs and argued that this model is Turing
powerful. We have shown how having inhibitor arcs in our model would give us
a more power, since we could test for zero, but since it would make the model
Turing powerful, all properties, e.g. coverability, would be undecidable.

86

6.4 Reset Arcs

In [10] the authors defined the reset Petri net model which is a regular Petri net
model using reset arcs. In this section we extend that definition of reset arcs to
work for TAPNs.

The difference between a reset arc and a regular arc, from place p to transi-
tion t, lies in the number of tokens consumed by t. Instead of consuming only
one token, transition t consumes all tokens in p, thus resetting the token count
in p to 0. Reset arcs are graphically represented with an x drawn over the arc,
near its origin. Petri nets with reset arcs are called reset Petri nets.

We can also use reset arcs in timed-arc Petri nets. As for all other arcs in the
TAPN model we need to assign time interval to each reset arc. Let us assume
we have place p, transition t and a reset arc, with interval I, leading from p to
t. For t to become enabled (assuming p is its only input place) p has to have at
least one token whose age fits this interval.

Let us look at an example where having reset arcs helps us. This example
is an extension of the dairy example in Section 4.

Each consumer that buys milk has a refrigerator where he can store
the full milk bottles. When he consumes the milk, the empty bottle
ends up in a recycle bin and the consumer is ready to buy a new,
full one. At least 10 days after the first bottle is put in the recycle
bin someone comes and takes all the bottles in it and returns them,
all in one bottle case, back to the dairy.

Using TAPN with reset arc we can model this as is shown in Figure 50.
Ready ?>=<89:;

²²
. . . // Buy

[0,0]

²²
Refrigerator ?>=<89:;0

²²
Consume

[0,0] //

[0,0]

\\

?>=<89:; [10,∞] // Fetch
[0,0] //?>=<89:; // . . .

Recycle
Bin

Dairy

??ÄÄ

Figure 50: Reset arc example

A reset arc is used to model how all the empty milk bottles are taken from
the recycle bin at once, as long as one of them has been in it for at least 10
days.

Let us now look at the formal definition.

87

6.4.1 TAPN with Reset Arcs

Let us fix D ∈ {N,R+} and Interv ∈ {Interv1, Interv2, Interv3}.
Definition 6.19.
A timed-arc Petri net (TAPN) with reset arcs is a 5-tuple N = (P, T, In,
Out, Reset) where

• P = {p1, p2, ..., pn} is a finite set of places

• T = {t1, t2, ..., tm} is a finite set of transitions s.t. P ∩ T = ∅
• In : P × T → Interv⊕ is a function that associates to each arc (p, t) a

finite multiset of intervals

• Out : T × P → Interv⊕ is a function that associates to each arc (t, p) a
finite multiset of intervals

• Reset : P × T → Interv⊕ is a function that associates a time interval to
each reset arc.

We use the notation ×t = {p | Reset(p, t) 6= ∅} to denote the multiset of all
input places of the transition t connected by a reset arc.

Definition 6.20.
Let N = (P, T, In, Out, Reset) be a TAPN with reset arcs, M a marking on it
and t ∈ T .
We say that t is enabled at marking M if and only if:

• ∀p ∈ •t. ∃Xp = {x1, . . . , xn} ⊆ M(p), where In(p, t) = {I1, . . . , In},
s.t. xi ∈ Ii for 1 ≤ i ≤ n

• ∀p ∈ ×t. ∃Zp = {z1, . . . , zl} ⊆ M(p), where Reset(p, t) = {K1, . . . ,Kl},
s.t. zi ∈ Ki for 1 ≤ i ≤ l

• Xp ∩ Zp = ∅
i.e. in each input place, for every input arc, both regular and reset arcs, there
exists at least one token whose age fits the interval of that arc.

The set of tokens created, when t is fired, is any set

Yp = {y1, . . . , ym} ∀p ∈ t•, where Out(t, p) = {J1, . . . ,Jm},
s.t. yi ∈ Ji for 1 ≤ i ≤ m

i.e. in each output place, for every output arc, one token, whose age fits the
interval of that arc, will be created.

Tokens are only consumed from input places of t and only created in output
places of t. So we define:

88

Xp = ∅ ∀p ∈ (P \ •t)
Yp = ∅ ∀p ∈ (P \ t•)

And we define the firing rule formally:

M ′(p) =
{

Yp if p ∈×t
(M(p) \Xp) ∪ Yp else ∀p ∈ P

So we remove a set of tokens, whose ages are within the intervals associated
to the input arcs, from each input place of t, and add a set of new tokens to
each output place of t, where the ages of the tokens are within the intervals
associated to the output arcs. If the arc is a reset arc on the other hand, we
remove all tokens from p and add only tokens to it, if it is an output place of t
as well as an input place.

6.4.2 Discrete and Continuous Time

Theorem 6.7.
Timed-arc Petri nets with reset arcs, using two or more reset arcs, can not be
reduced to regular timed-arc Petri nets.

Proof.
In [10] the authors show how to reduce nets with inhibitor arcs into nets with
reset arcs, for regular Petri nets. We can extend this to TAPNs by simply
associating each arc with a time interval [0,∞] and therefore not limiting the
possible behavior of the net in any way. Being able to simulate inhibitor arcs
in TAPNs with reset arcs tells us that this model is Turing powerful and thus
that we can not reduce it to regular TAPNs since we know that coverability is
decidable for them.

6.4.3 Summary

We have defined TAPNs with reset arcs. Having reset arcs in our model can
help us when modeling some systems but since we have proven this model to be
Turing powerful, all its properties are undecidable.

89

7 Conclusion

In this paper we have looked at decidability and undecidability of some behav-
ioral properties for both known and new Petri net models. We started with
four properties in mind; reachability, coverability, liveness and deadlock but the
fifth one, timed reachability, was taken into consideration when we found that
reduction from continuous time DTAPN to PN, preserving timed-reachability,
was an interesting thing to look at.

Decidability results for these five properties are listed in Tables 1-5. The
following legend explains what each symbol represents:

• ✓= Shown by us to be decidable

• ✗= Shown by us to be undecidable

• (✓)= Shown by others to be decidable

• (✗)= Shown by others to be undecidable

• -= Not well defined

• ?= Open problem

Let us start by looking at the regular Petri net model (Table 1). Timed
reachability is not a well defined property for this model since regular Petri nets
are un-timed. Reachability was shown in [13] to be decidable and coverability
was shown to be decidable in [16]. Reachability has been shown to be polyno-
mially reducible to deadlock [6], and liveness polynomially reducible to liveness
[6] making both of them decidable as well.

Tim
ed

Rea
ch

ab
ilit

y

Rea
ch

ab
ilit

y

Cov
era

bil
ity

Li
ve

ne
ss

Dea
dlo

ck

PN − (✓) (✓) (✓) (✓)

Table 1: Summary of decidability results for PN

We classified the timed-arc Petri nets (Table 2) by both time domain and types
of intervals. Timed reachability has been shown to be decidable for TAPNs with
discrete time [8] but this remains an open problem for TAPNs with continuous
time. Reachability is undecidable for all TAPNs [18], regardless of time domain
and type of intervals. Coverability has been shown to be decidable for TAPNs
using only closed intervals [3, 4] no matter the time domain. We were able to
show that this also holds for TAPNs using both open and half open intervals,
by modifying the algorithm used in [3, 4]. In Section 4 we gave polynomial re-
ductions from reachability to deadlock and from deadlock to liveness for TAPNs

90

and since reachability is undecidable for all TAPNs, no matter the class, dead-
lock and liveness are undecidable as well.

Tim
ed

Rea
ch

ab
ilit

y

Rea
ch

ab
ilit

y

Cov
era

bil
ity

Li
ve

ne
ss

Dea
dlo

ck

TAPN
N (N, Interv3) (✓) (✗) ✓ ✗ ✗
N (N, Interv2) (✓) (✗) ✓ ✗ ✗
N (N, Interv1) (✓) (✗) (✓) ✗ ✗
N (R+, Interv3) ? (✗) ✓ ✗ ✗
N (R+, Interv2) ? (✗) ✓ ✗ ✗
N (R+, Interv1) ? (✗) (✓) ✗ ✗

Table 2: Summary of decidability results for TAPN

Distributed timed-arc Petri nets (Table 3) were classified in the same way as
regular TAPNs. We showed, with reduction to regular Petri nets, that timed
reachability is decidable for DTAPNs with discrete time, but like for TAPNs
this remains an open problem for DTAPNs with continuous time. Since reacha-
bility is undecidable for all TAPNs [18], reachability is undecidable for DTAPN
as well, since it is a more expressive model. Coverability was claimed to be de-
cidable for DTAPNs using only closed intervals [15] no matter the time domain
but we give the proof for this. As for TAPNs, we were able to show that this
also holds for DTAPNs using both open and half open intervals. Knowing that
deadlock and liveness are undecidable for the less expressive TAPN model, it is
obvious that these properties are undecidable for the DTAPN model as well.

Tim
ed

Rea
ch

ab
ilit

y

Rea
ch

ab
ilit

y

Cov
era

bil
ity

Li
ve

ne
ss

Dea
dlo

ck

DTAPN
ND(N, Interv3) ✓ (✗) ✓ ✗ ✗
ND(N, Interv2) ✓ (✗) ✓ ✗ ✗
ND(N, Interv1) ✓ (✗) ✓ ✗ ✗
ND(R+, Interv3) ? (✗) ✓ ✗ ✗
ND(R+, Interv2) ? (✗) ✓ ✗ ✗
ND(R+, Interv1) ? (✗) ✓ ✗ ✗

Table 3: Summary of decidability results for DTAPN

91

Age-preserving TAPN (Table 4) is a model which we defined ourselves in this
paper so no decidable properties were known beforehand. We showed that the
age-preserving TAPN model in discrete time is equivalent to the basic TAPN
model and therefore that timed reachability is decidable for this model, in dis-
crete time. But like for TAPNs and DTAPNs, this remains an open problem
with continuous time. Since the age-preserving TAPN model is equivalent to
the TAPN model in discrete time and more expressive in continuous time, it is
obvious that reachability is undecidable for this model as well. By modifying
the technique described in Section 5 in this paper we were able to show that
coverability is decidable for all classes of age-preserving TAPNs. Deadlock and
liveness are undecidable for this more expressive model.

Tim
ed

Rea
ch

ab
ilit

y

Rea
ch

ab
ilit

y

Cov
era

bil
ity

Li
ve

ne
ss

Dea
dlo

ck

Age-preserving TAPN
NA(N, Interv3) ✓ (✗) ✓ ✗ ✗
NA(N, Interv2) ✓ (✗) ✓ ✗ ✗
NA(N, Interv1) ✓ (✗) ✓ ✗ ✗
NA(R+, Interv3) ? (✗) ✓ ✗ ✗
NA(R+, Interv2) ? (✗) ✓ ✗ ✗
NA(R+, Interv1) ? (✗) ✓ ✗ ✗

Table 4: Summary of decidability results for age-preserving TAPN

In this last table (Table 5) we have combined the results for both reset and
inhibitor arcs, for both PN and TAPN. Timed reachability is, as mentioned in
the text with Table 1, not well defined for the PN model. All other places in
this Table 5 are marked as shown by others to be undecidable since inhibitor
arcs have been proven to make PN, and thus TAPN, Turing powerful [16] and
in [10] the authors gave a reduction from a PN using inhibitor arcs to a PN
using reset arcs, thus showing that reset arcs are Turing powerful as well.

92

Tim
ed

Rea
ch

ab
ilit

y

Rea
ch

ab
ilit

y

Cov
era

bil
ity

Li
ve

ne
ss

Dea
dlo

ck

PN with inhibitor arcs - (✗) (✗) (✗) (✗)
TAPN with inhibitor arcs (✗) (✗) (✗) (✗) (✗)

PN with reset arcs - (✗) (✗) (✗) (✗)
TAPN with reset arcs (✗) (✗) (✗) (✗) (✗)

Table 5: Summary of decidability results for PN and TAPN using reset and
inhibitor arcs

When looking at all five tables we see that only for timed-reachability do we not
have results for every class, there are some open problems. The reason for this
is that the idea to work on decidability results for other models than DTAPNs
surfaced late in our project work, leaving insufficient time to explore all the in-
teresting questions. Those ”blanks” in the tables aside, we have listed complete
decidability results for reachability, coverability, liveness and deadlock, for our
six PN and TAPN models.

The general behavioral change that seems to occur when we extend the
Petri net model with time is that reachability, deadlock and liveness all become
undecidable, leaving coverability as the only decidable property. But with time
we get a new property, timed reachability, which seems to be decidable for all our
models in discrete time. For the continuous time models, timed reachability is an
open problem but it would be interesting to know the results for them, especially
to see if the use of open and half open intervals gives us more expressive models
than those using only normal (closed) intervals.

93

References

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Yih-Kuen Tsay. General decid-
ability theorems for infinite-state systems. In LICS ’96: Proceedings of the
11th Annual IEEE Symposium on Logic in Computer Science, page 313.
IEEE Computer Society, 1996.

[2] Parosh Aziz Abdulla. Personal email communication, 2005.

[3] Parosh Aziz Abdulla and Aletta Nylen. Timed Petri nets and BQOs. Lec-
ture Notes in Computer Science, 2075:53–70, 2001.

[4] Parosh Aziz Abdulla and Aletta Nylen. Better quasi-ordered transition
systems. CoRR, cs.LO/0409052, 2004.

[5] Fred D.J. Bowden. Modeling time in petri nets. In Proceedings of the
Second Australia-Japan Workshop on Stochastic Models, 1996.

[6] A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets.
Theoretical Computer Science, 147:117–136, 1995.

[7] Allan Cheng. Reasoning about concurrent computational systems. Tech-
nical Report DS-96-2, August 1996. Ph.D. thesis. xiv+229 pp.

[8] David de Frutos Escrig, Valent́ın Valero Ruiz, and Olga Marroqúın Alonso.
Decidability of properties of timed-arc Petri nets. Lecture Notes in Com-
puter Science, 1825:187+, 2000.

[9] Catherine Dufourd and Alain Finkel. Polynomial-time many-one reduc-
tions for Petri nets. In S. Ramesh and G. Sivakumar, editors, Proceedings
of the 17th Conference on Fundations of Software Technology and The-
oretical Computer Science (FSTTCS’97), volume 1346 of Lecture Notes
in Computer Science, pages 312–326, Kharagpur, India, December 1997.
Springer.

[10] Catherine Dufourd, Alain Finkel, and Ph. Schnoebelen. Reset nets between
decidability and undecidability. In ICALP ’98: Proceedings of the 25th In-
ternational Colloquium on Automata, Languages and Programming, pages
103–115, London, UK, 1998. Springer-Verlag.

[11] J. Esparza and M. Nielsen. Decidability issues for petri nets - a survey.
Bulletin of the European Association for Theoretical Computer Science,
52:245–262, 1994.

[12] M. Hack. Decidability questions for petri nets. Technical report, Cam-
bridge, MA, USA, 1976.

[13] Ernst W. Mayr. An algorithm for the general petri net reachability problem.
In STOC ’81: Proceedings of the thirteenth annual ACM symposium on
Theory of computing, pages 238–246. ACM Press, 1981.

94

[14] Tadao Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, Abril 1989.

[15] Mogens Nielsen, Vladimiro Sassone, and Jiri Srba. Towards a notion of
distributed time for petri nets. In Proceedings of the 22nd International
Conference on Application and Theory of Petri Nets, pages 23–31. Springer-
Verlag, 2001.

[16] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Pren-
tice Hall PTR, 1981.

[17] Olivier Roux, Didier Lime, and Guillaume Gardey. The softwares devel-
oped by the real-time systems group. http://www.irccyn.ec-nantes.
fr/irccyn/d/en/equipes/TempsReel/logs/software-2-romeo, 2004.

[18] V. Valero Ruiz, F. Cuartero Gomez, and D. de Frutos Escrig. On non-
decidability of reachability for timed-arc petri nets. In Proc. 8th Int.
Workshop on Petri Net and Performance Models (PNPM’99), 8-10 Oc-
tober 1999, Zaragoza, Spain, pages 188–196, 1999.

[19] J. Sifakis. Use of petri nets for performance evaulation. In Proceedings of
the Third International Symposium IFIP W.G. 7.3., Measuring, modelling
and evaluating computer systems(Bonn-Bad Godesberg, 1977), pages 75–
93. Elsevier Science Publishers, 1977.

[20] J. Srba. Timed-arc petri nets vs. networks of timed automata. In Proceed-
ings of 26nd International Conference on Application and Theory of Petri
Nets (ICATPN 2005), LNCS. Springer-Verlag, 2005. To appear.

[21] Michael Weber. Petri net markup language. http://www.informatik.
hu-berlin.de/top/pnml/about.html, 2004.

95

