ANALYZING USERBEHAVIOR IN AUBOLINE
WITH WEB USAGE MINING

MASTER THESIS

Loulse DUE
© 2005, AALBORG UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
AALBORG UNIVERSITY

TITLE : Analyzing User Behavior in Auboline with Web Usage Mininlylaster Thesis
THEME: Database Systems
SEMESTER: INF8

PROJECT TERM: September 2004 - January 2005

AUTHOR:
Louise Due
| oui se@s. aau. dk

SUPERVISOR:
Torben Bach Pedersen
tbp@s. aau. dk

NUMBER PRINTED:
NUMBER OF PAGES:
FINISHED:

5
144

Abstract

This report describes the design and implementatig
the AUBA tool, which is a web usage mining tool f
AUB. The goal of the project is to give AUB a tool
analyze the behavior of the users of Auboline and t
able to establish success rates for the different func
in the system.

A post-processor has been implemented to accomm
the ETL process of extracting the data from the log fi
transforming it to fit the data warehouse format and

n of
or
[o
D be
ions

hdate
es,
fi-

nally loading it into the data warehouse. The data ware-

house consists of two star schemas that are design
enable general as well as domain specific analysis g
data. Audit control and other data quality assurance
tivities have been integrated in the ETL process to nj
sure that the data is not flawed.

ed to
f the
ac-
ake

The analyses made with the AUBA tool give the AUB
staff information that they have not previously been able

to learn about the use of Auboline. Analysis has b
made easy with a simple user interface, and query pe

mance has been optimized by using summary tables,

een
rfor-

A user survey has been conducted to find out if the results

found with the AUBA tool match the users’ own opinig
of their behavior in Auboline. The results of the two tyf

ns
es

of analysis are comparable for the most part.

January 14th, 2005

Preface

The purpose of this report is to communicate the processesudts of the design and implementation
of the AUBA tool, a web usage mining tool for AUB. The projeashbeen carried out within the

field of Database Systems and is part of the tenth semestee dfiformatics education (INF8) at the

Department of Computer Science at Aalborg University.

I would like to thank the staff at AUB for providing data forehproject and being helpful with
information whenever possible. | would also like to thank saypervisor, Torben Bach Pedersen, for
competent and inspiring supervision throughout the pigjedod.

The AUBA tool will be used by both male and female users whea implemented at AUB, but
to ease the reading of the report, the male pronoun will bel dsethe users of the AUBA tool
throughout the report. The female pronoun will be used ferlibrrowers at the library and users of
Auboline.

The source code for the AUBA tool is included in the appendtixg with the data definition for the
tables in the database.

Louise Due

Contents

1 Introduction 1
2 Motivation 3
2.1 BusinessVersuslLibrary e . 3
2.2 Available Information e 3
2.3 WebSiteUserBehavior. e 4
2.4 RecommendationService e 4
2.5 Future Possibilities e 4
2.6 Limitations 4

3 The Library of Aalborg University 7
3.1 Facts e 7
3.2 Web Site and Architecture e e 7
3.3 LogFiles e e 8
3.3.1 UnderstandingRequests uuu 10

3.3.2 UseofLogFileInformation 11

3.4 Wishesandldeas 12
3.5 ProjectGoals e 12

4 Data Warehousing 15
4.1 DataWarehousing 15
4.2 DataWebhousing 16

5 Data Warehouse Schemas 17
5.1 PageEventSchema 18
5.1.1 FactTable. 8

5.1.2 LoglLineTable 9

5.1.3 Date DImension 0

5.1.4 TimeofDayDimension 21

5.1.5 PageDimension 2

5.1.6 SessionDIimension 23

5.2 SearchSchema e 24
521 FactTable. 5

5.2.2 SearchTypeDimension 26

6 Post-Processor Implementation 29

Vi CONTENTS
6.1 Log File Recognition and Transformation 29
6.2 Transformationto Dimensional Schema 30
6.2.1 TimeandDate 30
6.2.2 Page e 30
6.2.3 SEeSSION e 30
6.2.4 SearchType. o o 3 3
6.25 Search. e 33
6.3 DataStagingArea e 34
6.4 ETLPerformance 34
7 Data Quality Assurance 35
7.1 AuditControl e 35
7.2 CorrectnessofData e 37
7.2.1 ManualDataProcessing 37
7.2.2 Referential Integrity e 38
7.2.3 Cross-Footing 38
7.2.4 Manual Examination L. 39
7.25 ProcessValidation e 39
7.3 Errorhandling. e 39
7.3.1 Process Interrupted by Audit Number Mismatch 40
7.3.2 ProcessNotCompleted. 40
8 User Interface 41
9 Query Performance 45
9.1 SummaryTables 45
9.1.1 Basis for Selection of Summary Tables 45
9.1.2 The Greedy Algorithm 46
9.2 Indexing 51
10 User Behavior Survey 53
10.1 Frequencyof UseandEntrance awa 53
10.2 Distributionof Use e 54
10.3 PurposeofUse e 56
10.4 TypesofSearches e 56
10.5 Useof Special Features e 60
10.6 Different Types of User Behavior Analysis 60
10.6.1 The AUBATOOl e e e 61
10.6.2 Interviews e 61
10.6.3 Questionnaire e 61
11 Book Information Extension 63
11.1 Possibilities of Borrower Information 63
11.2 Possibilities of Book Information. 63

CONTENTS Vii

11.3 Howto Include Book Information 64
11.4 Updatingof New BoOKS 66
115 Future Work e 66
12 Conclusion 67
A PostgreSQL data definition 71
A.l1 page eventfacttable 71
A2 log_linetable e 71
A.3 date andtime dimensiontables L 71
A.4 pagedimensiontable e 72
A.5 sessiondimensiontable L 72
A.6 searchfacttable e 72
A.7 search_typedimensiontable 72
A.8 audittable 73
A.9 active_page eventtable 73
A.10 active_session dimensiontable oL 73
A.11 active_searchfacttable 74
B PostgreSQL Views 75
C PostgreSQL View Functions 79
C.1 Create Materialized View e 79
C.2 Refresh MaterializedView 79
C.3 DropMaterializedView e 80
D Source Code for Greedy 81
D.1 Greedy Class i e e 81
D.2 VIeWCIass 83
E Source Code for Java Classes 85
E.1 PostProcessorServletClass e 86
E.2 DatabaseClass e 97
E.3 DataExtractorClass e e 115
E.4 DateClass e 117
E.5 IncrementalloadClass 119
E.6 LogLineClass. @ . . e 122
E.7 PageClass 126
E.8 PageEventClass. e 131
E.9 SearchClass. e 132
E.10 SearchType Class e 133
E.11 SessionClass 134
E.12 UrlQuery Class 138

F Questionnaire 141

viii CONTENTS

G Summary 143

CHAPTER 1

Introduction

This report describes the design and implementation of sofyqee for the Auboline User Behav-
ior Analysis (AUBA) tool. AUBA is a web usage mining tool [Kak and Blockeel, 2000] for
the staff at The Library of Aalborg University (Aalborg UmisitetsBibliotek, AUB). It aids the
staff in analyzing the user behavior in Auboline, which is @mline system that the borrowers
can use to search for books [Auboline, 2004]. The core of nfy@émentation is a data webhouse
[Kimball and Merz, 2000] that contains information from thecess log files of the web server that
Auboline is running on.

Before the implementation of the AUBA tool, a group of congmgcience students have implemented
a book recommendation system that is going to be integraithdAuboline. It will be difficult for
the staff at AUB to find out if the book recommendation senigcbeing used in the intended way
and if it realizes its goal of helping the borrowers find bothat are of interest. Aiding the analysis
of the success of the recommendation service was one of thremwivational factors behind the
AUBA tool. The AUBA tool helps the staff at AUB find out how Aulime and the recommendation
service are used by the borrowers. For instance, they cae mralanalysis of which periods of the
year, semester, month, week or day Auboline is used most imhviiinctions are the most popular in
Auboline. Since searching is a central part of Auboline,ARHBA tool can also be used to find out
which types of searches are used most and which are moseafficihe efficiency of the different
search types can be compared to the efficiency of the reconhation service. The efficiency can
be measured by how likely the different search types ande¢bemmendation service are to lead to
reservations.

The AUBA tool is developed specifically for Auboline and caot he used to analyze the user behav-
ior on other web sites without being modified. This enablesAtiB staff to do more domain specific
analysis than they have been able to so far with regular waissts tools. They can compare the
use of the different types of functions and the differenetypf searches. They can also look at what
search constraints have the highest success rate, medainipé¢y have a better chance of leading
to book reservations than other search constraints. Tloenr#tion that the AUB staff can get from
the AUBA tool can be used to understand the users better. &tterlihe staff understand the users,
the better they can help them find the books that they wantlzer@hby increase the loan numbers.
Increasing loan numbers will help to improve the economyheflibrary.

The data webhouse that the AUBA tool uses consists of twosstaemas. The first one is a page
event star schema similar to the ones that are often usedamwdsbhouses for general analysis of
web site user behavior. Since searches are a central pattudlifhe and most of what the users can
do in Auboline relates to searches, a search star schemadshdsen designed. It is used to record
information related to the searches that the users makendmiiation that results from searches.

The main part of the implementation is a post-processorttaatlles the extract-transformation-load
processes. The input of the post-processor is a collecfiareb server access log files that contain
all the collected information about user access to the Anbalystem. These text files are recognized
and transformed to the format of the data warehouse. In tioisgss the post-processor determines
the kind of page that is requested for each log line and grthgppage events into sessions. It also
determines search information and decides which dimertatale keys to link to when adding each
page event fact to the page event star schema and possiblthalsearch star schema if the page
event is a search.

As mentioned, the AUBA tool has been developed specificalyAlJB. Web usage mining systems
can also be developed as general systems that can be usealyweathe user behavior on different
web sites [Srivastava et al., 2000], but the analysis caniehmore precise and useful with a tool
that has been designed or adjusted for a specific web sitee Bimboline is a mass produced system
that is used by many public libraries in Denmark, the AUBAItcan potentially be used to analyze

Introduction

user behavior on the web sites of other library that have hotlg same system. In order for it to be
used for web sites that are not based on the same system aln&uylite AUBA tool would have to
be adjusted for the specific structure of these web sites.gftwp of students that have developed
the recommendation service are working on commercialitiiegr system and selling it to libraries.
The AUBA tool can be sold with the recommendation servicehgohuyers have the opportunity of
measuring the success of the recommendation service hétgiiritegrate it with their book search
engine.

The motivational factors behind the present project arerilesd in the next chapter. Chapter 3
presents the specific case in detail, including the currgsiess of AUB, the source data for the
AUBA tool and the ideas and requirements put forth by AUB. itka4 is a presentation of the dif-
ferent concepts that are involved in implementing a web @saming system, and the schemas of
the designed data warehouse are described in detail in @fapChapter 6 presents the implemen-
tation of the post-processor that is the bridge between dece data in the log files and the data
warehouse. It also discusses the performance of the ETlepses. Chapter 7 describes how audit
control and error handling has been integrated with the AUB#. The graphical user interface for
the AUBA tool is presented in Chapter 8, and Chapter 9 dessnbhat has been done to improve
query performance. A survey has been conducted to uncogdrdirowers’ opinions of their own
behavior in Auboline. The results of this survey are desatiin Chapter 10. Chapter 11 discusses
the possibility of including data from other databases mdhata warehouse. Finally the conclusion
sums up the report in Chapter 12 and discusses ideas foefutonk. The appendices contain data
definition and source code for the system and the questionfraithe survey.

This master thesis is an extension of my ninth semester girfiiie, 2004]. The present report
documents the process as a whole, and therefore it desachiegies that have taken place on both
semesters. The parts of the report that contain new cotiiigiare listed below.

e The project goals in Section 3.5 have been extended todeadliata quality assurance, error
handling, graphical user interface and good query perfocaa

 In Chapter 5 the two star schemas have been extended withditrdémension and outriggers
from the session dimension to the date, time of day and pagerdiions. The outriggers are
inclued to improve query performance for certain types afrips.

» The implementation of the post-processor described im@&hna& has been altered to improve
ETL performance. Two processes that were previously peréorseparately are now combined
and this has cut the time to perform an initial or incremelaadl in half.

* In order to make sure that data is extracted, transformedi@ded into the database from
the web log files in the correct way, quality assurance has be#egrated in the ETL process.
Checks are made to ensure that the data flows through thessraseexpected and that abnor-
malities are handled. Furthermore system crashes aredthsdlthe data is not corrupted. This
is discussed in Chapter 7.

A graphical user interface (GUI) has been implemented ltmalisers to get results with the
AUBA tool without having to query the database directly. Tasults are displayed in graphical
charts. The GUI is described in Chapter 8.

» Different steps have been taken to improve query perfoo@aifhe most important of these
is the use of summary tables. Chapter 9 discusses queryrparice and how the Greedy
algorithm [Harinarayan et al., 1996] has been used to degideh views are most beneficial
to materialize.

e A user survey has been conducted to illustrate similaridied differences between the results
of analysis of Auboline user behavior with the AUBA tool ahe tusers’ own opinions of their
use of Auboline. The results of this survey along with a déston of the types of information
that can be collected with different methods can be foundhagter 10.

» Chapter 11 discusses the possibilities of including detenfother databases in the data web-
house. Information about books is an obvious opportunitgdeaign for such an extension of
the AUBA tool is also suggested in Chapter 11. This extenkamsnot been implemented.

CHAPTER 2

Motivation

The Library of Aalborg University is interested in improgithe services that they offer their borrow-
ers. As part of this service improvement, a group of studah#salborg University has developed a
book recommendation service, that is going to be implenteotethe AUB web site. The develop-
ment of the recommendation service is described in [Ly e2803] and [Ly et al., 2004]. The book
recommendation has been accomplished by finding pattethe ilibrary loans data. These patterns
are used to recommend other books to borrowers who seekmatan about a book on the library
web site. The goal of the service improvementis to increlasetimber of loans, which is a deciding
factor in the economy of the library.

2.1 Business Versus Library

In many ways a library can be compared to a business thatmelthicts or provides services. The
main service that a library provides is making literary nntleavailable for the public to use at the
library or take home for a period of time. A public library isrfded by the government, which pays
for the services that the borrowers receive. A widely usethe of improving profit of a business

is to examine patterns of customer behavior and use this letg® to adjust the business to try to
affect the customers into behaving in profitable ways. Theepas of behavior can be found by use
of data warehousing and data minih@hese techniques can be used to find patterns and correlation
among large amounts of data and thus are well suited for aimgjthe behavior of the customers.
The methods can be used in the library world as well, sinceithanother place where it could be
valuable to learn more about customer behavior.

One of the differences between the business world and ayizg¢he currency of the customers. The
borrowers can be seen as the library customers, though theptpay for the service directly, but
rather indirectly through their taxes. Therefore the nundiéooks that are borrowed by the library
borrowers is not limited by how much money they are willingpend. Rather the limit is set by how
much time the borrowers have to use the books and how manystibek can carry home. Therefore,
taking money out of the business/customer relationshi do¢ mean that the number of loans can
be increased limitlessly.

2.2 Available Information

Unfortunately, only a small part of the decision making meses that the borrowers go through with
respect to borrowing books are available. Without direesking the borrowers it is not possible to
know whether the books that they borrow are recommendediéyds or why they have chosen to
borrow exactly these books instead of some of the thousanakher books in the library. It is not
possible to read the minds of the borrowers, nor to followntaround the library. Therefore, it is
not known whether the borrowers walk directly to the bookd barrow them, or they browse around
and read the descriptions on the backs of several booksebtfey make a decision on which books
to borrow.

The physical side of the loan process is difficult to explogeduse the only hard data available is
the loans data. The book recommendation system has bedopled®n the notion that even though
borrowers are all different, they often follow similar patts. When borrowers show interest in a
book, the system offers them a list of books that other boersvimave borrowed with this book. This

way the system gives the borrowers easy access to booksavetlgood chance of being of interest

1The connection between the number of loans and the econoth tibrary is explained in Section 3.1.
2Data warehousing and data mining are discussed in Chapter 4.

Motivation

to them. This method is a way to attempt to increase loangusity the loans data as background
for the analysis.

2.3 Web Site User Behavior

As mentioned, the only hard data that is available from thegsial library is the loans data. It is
not possible to follow all of the borrowers around the lityrand look over their shoulders. But if
focus is shifted from the physical library to the library wsite, it becomes possible to do just that.
The library web site can be viewed as a second library thabtiteowers can visit from home. In
this library, many of the clicks of the users of the web site @corded one by one in the web server
log files. Therefore it is possible to see what actions leagservations. This information can help
us reason about the decision making processes that theAmysrgo through. It is still not possible
to get all the information that could be collected by askimg borrowers, but the method allows for
collecting information without bothering the borrowera.the long run this is a cheap and easy way
of analyzing the behavior of thousands of borrowers. Thalte®f this analysis should reflect the
behavior and intentions of the web site users. This is diggigh Chapter 10 where the results of the
analysis are compared to the results of a user survey.

2.4 Recommendation Service

When the book recommendation service is implemented on i Web site it will be possible to
use web log analysis to distinguish between loans that areutcome of an on-line recommendation
and loans that are a result of a regular search. This would leéfactive and precise way to measure
the success of the recommendation service. Without webnadysis, this success could only be
measured by looking at increases in loans. This would haweymassible sources of error since
changes in the loans data could be caused by a number of seaiar than the recommendation
service.

2.5 Future Possibilities

As is also true for business customers, library borrowelishgimore likely to come back for more, if
they are satisfied with what they have received. Therefagtal is not simply to get the borrowers
to borrow more books. For the effects to be permanent, th&$tuat the borrowers take home
should be the right ones to fit their needs. To have this as @esacriteria, more information than
the actions on the web site that lead up to a loan is nece$sargxample, successful loans could be
distinguished from unsuccessful ones by checking if theda@e prolonged or by asking the users
to grade the books that they have borrowed the next time thgewh to the web site. Since it is not
possible to distinguish between different users, usesfeation analysis is not included in the AUBA
tool.

By having ways of distinguishing a successful loan from asuagessful one, it would be possible to
investigate if there is a difference between the patterasl#fad to successful loans and the ones that
lead to unsuccessful ones. For example, this would makesgiple to find out if there is a higher
success rate with books that have been recommended thabawikis that have been found using key
word search. It could also be used to improve the recommanmdservice, for example by removing
recommendations that tend to lead to unsuccessful loans.

2.6 Limitations

Using data warehousing and data mining to analyze log files fihe library web server has many
potential applications. Whether these uses are possibletpdepends on the information collected
in the log files. This information can make a huge differentevhether it is possible to follow a
user through a session, whether a user can be recognizegfavious sessions and how much can
be known about what the user has seen and done on the web @itexdmple, if the user name is

2.6 Limitations 5

not recorded in the log file it can be difficult to know for surben the same user has returned to the
web site, because the rest of the information in the log fid tlould potentially be used to recognize
users, such as the IP address, is too unreliable to iderg#ysu The users of Auboline can log in if
they are borrowers at AUB, but because of privacy concerasifiernames are not visible in the log
files. Therefore it is not possible to distinguish betweatdiiidual users. This is explained in detail
in Section 3.3.

CHAPTER 3

The Library of Aalborg University

AUB is a public research library for the region of North Juite The principal task of the library is to
support research and teaching at Aalborg University by idiog relevant documentation and access
to quality information resources [AUB, 2004]. The main behrof AUB is located on Langagervej
in Aalborg. In addition to this there are three smaller spkoed branches at different parts of the
university in Aalborg and one in Esbjerg, where part of Aatbniversity is located.

3.1 Facts

AUB has 12,222 borrowers, out of which 8,791 are studen?§6lare employees at Aalborg Univer-
sity and 690 are AUB employees. The library has 669,783 baokigournals and access to 10,298
different electronic journals. In 2003, 116,194 resexvadiwere made at AUB and the library had
173,700 loans. 86,941 of the reservations were carriechootigh the web site.

The economy of a public library depends mainly on governrgesmts. A few years ago there was a
simple connection between the number of loans at AUB anduats; because AUB received 28.50
DKK for each book or magazine loan. Now the grants are cafedlan the basis of a number of
parameters, so the connection is not as straight forwardiisre A new budget model is underway
because the number of on-line downloads exceeds physarad bind therefore needs to be taken into
account when calculating the grants. The economic benkéitsAUB would have from increasing
the number of physical loans is not as straight forward aséduto be, but according to Anton L.
Nielsen, who is an organization consultant at AUB, it isl stifair assumption that an increase in
physical loans will lead to an increase in government grants

Purchasing licenses to on-line material is a very large jposhe library budget. AUB spends
2,981,600 DKK a year on on-line materials. Since there isxawiemethod of measuring the num-
ber of downloads of these materials at the moment, AUB caraledys prove the number to the
government and therefore can not always get money when smyelses their on-line materials.

3.2 Web Site and Architecture

The web site of AUB can be seen at http://www.aub.aau.dknRhis web site it is possible for users
to search the databases of on-line material of the libragsch for books, manage loans, etc.

The system that manages the loans at AUB is an off-the-systlis that has been adjusted to fit the
needs of AUB. The system is called Aleph and is developedael§Aleph, 2004]. The data of this
system is located in an Oracle database. Auboline is the tlaa@UB has given the web interface
that can be used to access Aleph through Apache. There aabereb servers at AUB, but they are
not connected to the Aleph senfer.

The recommendation service described in Chapter 2 usesthémthe Oracle database as input and
outputs XML to Auboline so the borrowers are presented wiiktaof recommended books with the
book descriptions in Auboline. Furthermore the recomméndaervice includes a librarian service
that the AUB employees can use to see statistics about logret fl., 2004].

The AUBA tool will not access the Aleph system directly. [iMake the Apache log files as inputand
will function as a system on its own. It will not be accessedh®/borrowers, but only by technical
staff at AUB.

The architecture of the current system and the AUBA tool jsicted in Figure 3.1.

1Explained by Kasper Lavschall at our meeting on 16 April 2004
2Explained by the webmaster of AUB on 3 April 2004

The Library of Aalborg University

ARR ARR

AUBOLINE

Log files

l AUBA

- AUBA N 9 AUBA Tool
g“ Postprocessor v [
= ——

Oracle PostgreSQL

Figure 3.1: The architecture of the current system and thegystem.

The borrowers can use Auboline to search for books. They Isani@g on to the system and get an
overview of the books that they have borrowed, see the retat®, or prolong the loans.

The Auboline system has its own physical server; a SUN SPA&es with four CPUs running
Solaris 8. Therefore the log files of the Auboline system aoorded separately from the access logs
of the general AUB web site. Since the Auboline system handlebook searches and other user
functions that deal with books on-line, the log files used ba exclusively from the a500 server,
which is the Auboline server.

3.3 Log Files

The log files that were received from AUB is a record of all resiis to the a500 web server between
February 25, 2003 and March 22, 2004. There is a log file foh ey in this period of time, and
they contain a total of 17.7 million lines. Since only theetmequests to the Auboline system are
needed for the analysis, the rest of the log lines are ignbyeithe post-processor (see Chapter 6).
The log lines that are ignored typically contain image arytessheet requests, requests from search
bots and web crawlers and requests to administrative sgstafter ignoring these kinds of requests
there are 3.9 million log lines left to use in the analysishef behavior of the Auboline users.

The AUB web server runs Apache 1.3.28 [Apache, 2004b]. Isubke Combined Log Format
[Apache, 2004a], and has three fields more than the CommorFbogat [Apache, 2004a]. The
Common Log Format has the seven attributes IP address, RE®iddntity, userid, time, request,
status code and size. The three extra attributes in the AgHlks are server name, referrer and user
agent. The attributes are explained in the following as iilesd in [Apache, 2004a].

IP address: This is the IP address of the remote host that made the retpudst server. The IP
address is not necessarily the same each time a given baoraoaesses the website from the
same computer. If the connection is made through a proxyRlaeldress in the log file will be
the IP address of the proxy instead of the end user compukerefore, the same IP address
could point to several different users. The IP address caldd be dynamically associated
with the computer, which means that a user can have difféReatdresses at different times.
Therefore, an IP address is not enough to identify a compiibeball and Merz, 2000]. There
are 32,042 distinct IP addresses in the log files which meaatstihere is an average of 122
clicks per IP address. As mentioned this does not mean th@#32listinct users have used
Auboline. The actual number of users could be either hightawer depending on how many
users use the same proxies and how many users use dynaragsdlgiated IP addresses.

3.3 Log Files 9

RFC 1413 identity (ident): This attribute gives the RFC 1413 identity of the user. Th€ RB13
identity is a way to determine the identity of a user of a gaitir TCP connection [IETF, 2004].
According to Apache [Apache, 20044] it is highly unreliabled should never be used for a
public server. The attribute needs to be activated to getsliothe log file. It is not activated
in the AUB log files and therefore is empty in all the log lines.

Userid (authuser): This is the userid determined by HTTP authentication [Apa@004b]. It
only has a value if the requested document has passwordcpoote The borrowers can log
on to get to the user specific information in Auboline, but Alitbe does not use this attribute
when users log in so it is empty in all the log lines.

Timestamp: The timestamp gives the date, time, and timezone that mattesitpne that the server
finished processing the request. The timestamp is precibe toearest second on the clock of
the web server, which is accurate enough for the web log aisatg be made in the present
project.

Request: The request attribute consists of three sub-attributegsétare the method, the request
URL and the protocol. The method describes the method usentirequest. The most com-
mon methods used are the GET (93.8 %) and POST (6.2 %) methibit$, are used to retrieve
information from and send information to the server, resipely [W3C, 2004]. Other methods
in the log files include the HEAD method that only returns msge headers from the docu-
ment. In these log files it is only used by web crawlers and tBAB requests are therefore
ignored.

The request URL can be used to recognize sessions and in asest find out which kind of
page the user has requested. Therefore it contains a lofahation that is useful to the
analysis. The special structure of the request URLSs of Ankads described in Section 3.3.1.

The protocol is the HTTP protocol used for the request. Inltefiles it has the values
HTTP/1.0 and HTTP/1.1.

Status: The status is a three digit integer indication of the sucstssis of the page retrieval. A
successful page retrieval has the status number 200. Qthabers indicate what went wrong
in the page retrieval. This might be used to explain why a lesares the web site, for example
if the page that she is looking for is not working properlyl #ie log lines in the log files have
status code 200 except for two single log lines. One of thasestatus 400 (client error - bad
request) and the other has status code 500 (internal sereey. eTherefore this attribute will
not be explored further.

Bytes: The number of bytes transferred from the web server to thésusemputer. This will not
be used in the AUBA tool.

Server name: The name of the server that the user has accessed. Sincgfiiledamnly record ac-
cess to the a500 server this attribute has the value “a50@uacidk” in all log lines. Therefore
the value of this attribute is not of value to the project arillimot be used.

Referrer: The URL of the site that the client reports having been refiétfrom. This is likely to be
a page that links to or includes the requested object. Thiewttt can be used to find out how
a user found Auboline. Since the referrer attribute corstétie value of the URL that the user
visited before the one in the current log line, it can also beduto piece together the pages of
a session.

Browser: This is the identifying information that the browser reoabout itself. Sometimes the
text in this field indicates that it is not a regular user butarsh bot or a web crawler, such
as Googlebot. These log lines should be ignored as they aanrindication of user behavior
on the web site and will only interfere with the results of teb log analysis. The most
common browser is Internet Explorer, which is used in 91 gerof all log lines. There are
2295 different values in the browser field.

The general pattern of the log lines is as follows. This isgattern that the post-processor, which is
described in Chapter 6, recognizes.

10

The Library of Aalborg University

<i p_address> <ident> <authuser> [<date>:<tinme> <time_zone>]
"<met hod> <request_url > <protocol >" <status> <bytes>

<server_name> "<referrer>" "<browser>"
Example:
193.162.54.8 - - [25/Apr/2003:07:51: 03 +0200] "GET /F/ VAT&QU

1PDVRLYLX5B3E9AVMUDL GOH37TR66(B451CMRMYI KT1ST- 00673
?func=fil e& il e_name=find-b& ocal base=AUBOLI NE HTTP/ 1. 0"
200 12681 a500. aub. auc. dk "http://a500. aub. auc. dk/ F/ VA7TGU1P
DVRLYLX5B3E9AVMUDLOH37TR66(@B451CVRMYI KT1ST- 00644?f unc=file
&f il e_name=base-list" "Mzilla/4.0 (conpatible; MSIE 5.01;
W ndows NT 5.0; YConmp 5.0.0.0; DKDD)"

The attributes that will be used in the AUBA tool are IP addrefate, time of day, method, request
URL, referrer and browser. The information in the rest of &tigibutes is not relevant to the imple-
mentation of AUBA tool.

3.3.1 Understanding Requests

Unfortunately, the AUB staff do not have any documentatiorAoiboline and do not have access to
the source code of the system, so they have not been ablettdbatainformation about the meaning
of the contents of the request URLs. Therefore the semaatitse contents of the request URLs
used in the implementation of the AUBA tool has been accashplil by experimenting with the web
site, and it has not been verified by AUB. Not all of the infotioain the request URLs is used in the
process of examining which pages are requested by the irssr,some of the information appearsto
be specifically for the underlying implementation and nat dppearance of the web site. Like most
web sites, Auboline is not implemented with web usage miningind. Therefore it is not possible
to get all the information that could be useful to have in taeadvebhouse from the request URLs in
the log files. For instance, when a user reads a book desgriptis not possible to see which book
she is showing interest in in the request URL.

The request URL is the relative URL requested by the user.séheer name is implicit in a relative
URL so it only contains a path and maybe a filename or a queryhdrog lines from Auboline
only image and style-sheet request URLs have filenames.e $imese requests are ignored in the
analysis the focus will be on the path and the query. The iEgue the Auboline system can take the
following forms.

IF/

/FI<session tag>/

/F/<session tag>-<serial>
/FI<session tag>-<serial>?<query>
/FI<session tag>?<query>
[FI-[?<query>

The “/F/” part is present every request made to Auboline. tRstp to other systems on the same
server look differently from this. For instance, there arew requests to an administration system
in the log files. The URLs of these requests start with “/SEtéad of “/F/”. The session tag is
a fifty character long random combination of letters and nerstthat the Auboline system uses to
distinguish sessions from each other. The serial is a nuithiaris unique for each session. The
query part of a request URL in the Auboline system is usuadlynteresting, since it describes a lot
of what the user is doing on the web site. For instance, itrifeess which function he or she has just
used and which search terms he or she entered in a searctodfies$ do not always contain all the
information that is needed, but sometimes the missing imé&ion can be constructed by putting the
information together with other information gathered ie game session.

3.3 Log Files 11

As described above, the log lines that are used for the asalge either the GET or the POST
method. When th&ET method is used, the interesting information is to be founthm query
part of the request URL. This query contains a number of téemand values that describe the
page that is requested by the user. If B@ST method is used, the request URL has no query part
[Srivastava et al., 2000], so the interesting informati®no be derived from the referrer part of the
log line. Fortunately there are no pages in Auboline with enttran one link or button to a POST
method, so if a POST method request is executed from the pegetuser comes to before the
actual reservation, the POST method request can only besavati®n. The POST method is used
in Auboline for log-in, reservation and saving a book in tresket. Below is a description of the
different variables in the request URLs that are used tdbistathe page functions that the users
access in Auboline.

func: This variable is present in all URL queries in Auboline. Itsdgbes the general function
used. The func variable is found to have 52 different value&uboline. Examples of values
are “find-b” and “bor-loan” which indicate the page functfipasic search” and “loans list”,
respectively.

file_name: The file_name variable is present in the request URL if the feariable has the value
“file”. In this case the value of the func variable is not enbug find the page function. The
page function is usually some kind of form that the user neéedi out. For instance, if the
file_name variable has the value “find-b” the page is a formreltiiee user can enter data for
basic searching. When the user submits the informationreshia the basic search form, the
func variable has the value “find-b” on the next page, whiabwehthe results of the search.

find_code: The find_code variable is used when the func variable indicabme kind of search
such as a basic search. It indicates what field the searchde ora For instance, if a user
makes a basic search on title, the find_code variable hasthe WVTI".

scan_code: The scan_code variable is presentin the URL query when aneskes an index scan.
Itis used in the same way as the find_code variable.

action: The URL query sometimes contains different variables that@icate some kind of action
in Auboline. For instance, if the func variable has the v&history-action” the query will also
have variables to indicate which history action is execufdte presence of a action_delete.x
variable indicates that the action is “delete” which medrat the function performed on that
page is that a search result has been deleted from the hiistorhese variables come in pairs
in the queries. If there is an action_delete.x variablegligalways an action_delete.y variable
as well. These variables have integer values, but the mgarithe values are not known by
AUB and it has not been possible to establish the semantiteafalues.

3.3.2 Use of Log File Information

It is not legal for the library to keep information about whiaser is logged on to their web site at a
certain time [Datatilsynet, 2005]. Therefore the user infation is not kept in the log files but in a
separate file that is emptied frequently. Since the libragsuneither session cookies nor permanent
cookies, it is not possible to establish the identity of arusea computer that has visited the web
sites [Kimball and Merz, 2000].

The only information in the log file that could be used to idignthe computer from which the
request came from is the IP address. But as explained, andiesslcannot be trusted to always
belong to the same computer. A way to get around this probtamddoe to combine the IP address
with the browser attribute in the log file. This would decre#ise uncertainty compared to just using
the IP address, but still it is not precise. When such a biggfahe library borrowers are from the
university there are a lot of proxies. There are also manyfeeho use the same browser, since so
many people use Internet Explorer, which is included as agfaiindows.

When users cannot be recognized from session to sessionat jgossible to establish the success
of a loan, since there is no information about which usersdveed which books, etc. However, it is

The Library of Aalborg University

still possible to establish the success rates of the diftdiads of searches and the recommendation
service without being able to recognize users.

The purpose of the AUBA tool is to increase the loan numberghs task is to find out what kind of
analysis of the web log files could potentially lead to insebook loan numbers. Auboline is the
only system on AUB’s web site that is directly linked to bookhs. The users can not borrow books
on the web site, but they can reserve them and it is a reasmaablmption that most reservations
lead to loans and that an increase in reservations will leahtincrease in loans. By using the log
files to analyze the users’ interaction with Auboline, it @spible to find out what makes some users
reserve books, while other users leave the web site withavinlg reached their goal. The patterns
in the interaction, such as which kinds of searches are useat amd which are most efficient, can be
found, and AUB can use this knowledge to improve their welises to help users find the books
that they are looking for.

3.4 Wishes and ldeas

One of the main wishes of AUB is to improve the services thay thifer their borrowers. The book
recommendation service is meant to be part of this servipearement, since its objective is to help
borrowers find relevant books. To find out if the implememtatdf the recommendation service is
a success, AUB would like a tool to analyze the usage of themetendation service by the web
site visitors. At the same time they would like to be able talgre the use of the Auboline system
and compare the uses of the two systems. The staff at AUB giadnthat they can use the analysis
results to further improve their services to the borrowerd thereby increase the loan numbers.

AUB would like the AUBA Tool to be developed on the same depatent platform and database
management system as was used in the implementation of tierbocommendation service. The
group of students that developed the recommendation sechiose to use Java Servlets as the plat-
form and PostgreSQL as the DBMS [Ly et al., 2004]. These @wieere made mainly because the
tools are free. The same platforms have been used for théogenent of the AUBA Tool. The Java
Servlets version used for the AUBA tool is J2EE version 12ZEH 1.3, 2004] and PostgreSQL is
version 7.4 [PostgreSQL 7.4, 2004]. The book recommendatiovice was developed on a Win-
dows platform using the Cygwin framework as a bridge to PeS@L which does not have a free
version for Windows. A free PostgreSQL version for Windovesry developed and will be available
soon, but the first version will probably not be as stable atie for Linux [PostgreSQL 7.5, 2004].
Cygwin slows down the transactions, and the system will rotunning on a Windows machine
when implemented on the AUB web server, so the AUBA tool hanlimplemented on a Debian
Linux machine. PostgreSQL has some limitations compareijitoommercial DBMS products such
as Oracle. For instance, it does not have materialized véawis is necessary to do more manual
programming in order to achieve the same query performasicaiabe achieved with a commercial
DBMS.

Since this version of the AUBA tool will only be used to anayazast behavior, the data does not
need to be extracted from the log files and loaded into thewlaltdouse in real time while the users
are active. Instead this will be done nightly when the loadtaweb server is low. Each night the
server, that Auboline is running on, makes a switch to whtedccess logs to a new file. This process
can be combined with the process of extracting the logs flanidg file used during the previous 24
hours, transforming the data and loading it into the datahwele.

3.5 Project Goals

The long term project goals are to make a tool that enabldysia@f the Auboline user behavior,
including the use of the recommendation service and corsmasibetween the way that users find
books using the standard Auboline features and the recoiatien service. Because the recommen-
dation service has not yet been integrated with Aubolirie fibt possible to include it in the analysis.
Instead a tool for the current version of Auboline that casilgde extended to enable analysis of the
recommendation service as well will be implemented.

It is important that the AUB staff can trust the results of émalyses that they make with the AUBA

3.5 Project Goals 13

tool. Furthermore, the finished AUBA tool should be easy mw#&hout knowledge of the underlying

program and database and response times should be acedptahteractive use. Loading the data
from the log files to the database should not take more thaw ari@utes each night, and it should
not slow down other processes on the web server.

CHAPTER 4

Data Warehousing

In this chapter the concepts and principles behind thisgetare discussed. The concepts include
data warehousing, dimensional modeling, data webhousidgveb usage mining.

4.1 Data Warehousing

Businesses often have very large databases where thegtallkinds of internal and external data,
such as personnel skills or product sales. All of this data loa used for decision support if it
is analyzed properly. It is important to make sure that th&ada stored and accessed in a way
that ensures usable and correct results from the analysagndibetter access to data enables the
business to make better decisions faster. A data warehsasedry large database where data from
the operational databases is specifically structured ferygand analysis performance and ease-of-
use [Kimball and Ross, 2002a].

Dimensional modeling is a technique that has been used foy years and after the first edition of
Ralph Kimball's book “The Data Warehouse Toolkit” [Kimbalhd Ross, 2002a], it has been broadly
accepted as the dominant technique for data warehouse impd€&he goals of dimensional model-
ing are user understandability and query performance.éfber the multidimensional data model is
good when the objective of the database system is to anabtag[ldedersen and Jensen, 2001]. A
dimensional model is very simple, while supporting very d@erformance on the types of queries
most often done on data warehouses [Kimball and Ross, 2002a]

Figure 4.1: Relational representation of a star schema.

A star schema is the type of schema commonly useddimensional modeling

[Levene and Loizou, 2003]. The star schema has its name bedtdaoks like a star with a fact table
in the center and dimension tables around it as depictedunefig.1. Theact table has one record
for eachfact, such as a product sale. It contains foreign keys to dimerataes along with measures
of the facts, for instance the dollar amount of a sale. A fabte generally has several thousands
or millions of records and is therefore very large. Additdmformation, such as different types of
textual descriptions of the facts, is keptdimension tables. For example, the textually descriptive
information about the date of the sale is kept in a date dimertable. Such a dimension table could
contain a lot of information about the date such as week daliddy and major events. It contains
all usable information about the day of the sale.

Each dimension table has a surrogate primary key, a sintylbuae integer, that is referenced by a
foreign key in the fact table. Since the fact table shouldamottain null references to dimensions,
dimension tables can also contain records for cases whenathe is not known. Dimension tables
are generally very wide with many attributes but have fevords compared to the fact table, so they

15

Data Warehousing

are often much smaller than the fact table.

The grain of a fact table is the level of detail associated with thedadbeclaring the grain is an
important step in the design of a star schema [Kimball andsR2302a]. It is preferable to have a
star schema with the most atomic grain possible. Becaudadtecannot be subdivided any further,
no information that could be useful at a later point will bstldf there is a need for a fact table with
a coarser granularity another star schema can be desigtiethig granularity.

Query performance can be further enhanced by use of matedaVviews to pre-calculate aggre-
gates that are accessed often. This can be done by the develbpn he knows what kinds of
queries are often used, but it can also be done automaticglithe database management system
[Zaharioudakis et al., 2000]. Unfortunately, PostgreS@egsinot support materialized views, so in
this project materialized view have been programmed manbgl using PL/pgSQL. This is ex-
plained in Chapter 9.

Entity-Relation (ER) modeling is a widely used techniquéraditional database design. One of its
main goals is to create a normalized database schema torahiddancy while still preserving all
dependencies among the data. Some of the advantages sftthas updating the data in the database
is much faster and the database uses less storage spacrafpie, a customer address only appears
in one record in one table in the database with foreign keysfall other tables that are related to
it. When a customer moves to another address, it is very easpdate the address information and
there is no risk that the address appears differently irecgffit places in the database.

Even for a very simple system, an ER diagram quickly becoragsaomplex and hard to understand,
and the resulting database schema often has more tableththanmber of entities and relations in
the diagram. While updating a database designed with the B&ehis very fast, querying the

database is often very complex and time consuming. ThatysEimodeling is not suited for data
warehouse design. Data warehouses are very large and geidoympance is very important, while

update performance is of lesser priority. That is why diniemsl modeling is a better technique
for data warehousing [Kimball, 1997]. Redundancy is acegpd improve query performance and
user understandability. Since redundancy usually onlyeappin the dimensions which commonly
take up only one to five percent of the storage space, thisthamansiderable effect on the overall
storage usage [Pedersen and Jensen, 2001]. The dimensiodal is much more predictable and
easy to understand than the ER model, so it fits the demandgafidrehousing.

PostgreSQL is the DBMS that manages the data warehouse yshd BUBA Tool. PostgreSQL
does not have a multidimensional engine included. Thegetbe AUBA Tool is a ROLAP system,
which uses relational database technology for storing #ta fPedersen and Jensen, 2001].

4.2 Data Webhousing

A data webhouse [Kimball and Merz, 2000] is a special kindathdvarehouse. In a data webhouse
the main data source is not the operational databases likenormal data warehouse. Instead, the
primary part of the data in a data webhouse is derived fronativess log files that record all access
to a web server. The information that can be derived from a detbhouse relates to user behavior
on the websites that the access logs relate to. To transfatata from the access logs to the data
webhouse a post-processor, that reads the log files andrafethe data to fit the data webhouse
schema, has been implemented. Once the data is in the dat@usehit can be queried in the same
way as a normal data warehouse. The data webhouse can beneahwiaith data from a regular
data warehouse. For instance it is possible to combine mgstinformation with web site user
information if the customers can be recognized when thaythis website.

The schemas of a data webhouse should be designed to matéictiseof the web usage min-
ing tool to be implemented. Some of the common data webhoclsengas include page event
[Kimball and Merz, 2000], sequence [Demiriz, 2002] and sabsion [Andersen et al., 2000] schemas.
A page event schema is a general type of schema, while theattes types focus on the paths that
the user takes through the web site. The schemas used intthevelahouse for the AUBA tool are
discussed in the following chapter.

CHAPTER 5

Data Warehouse Schemas

In this chapter the design of the data warehouse will be dsmil The data warehouse has two fact
tables with dimensions that have been designed to enabtifteeent kinds of analyses described in
Chapter 2. The AUBA tool helps the AUB staff analyze the fuméatal user behavior in Auboline
that is similar to user behavior on other web sites, but italan assist analysis of user behavior that
is specific for Auboline. Listed below are examples of quewtithat can be answered by use of the
AUBA tool. Chapter 8 gives examples of how these questiondbeaanswered with the graphical user
interface. The rest of the current chapter will discuss thedvarehouse schemas and the thoughts
behind the design of the fact and dimension tables.

« Non-domain specific user behavior

— On which pages do the users start their sessions?

On which pages do the users end their sessions?

How many pages do the user sessions consist of?

How does the user activity vary during the course of the week?
How does the user activity vary during the course of the day?

» Domain specific user behavior

How does the user activity vary during the course of the sésries

How does the frequency of book reservations vary during these of the semester?

What types of page functions are used most frequently?

How do users find books with Auboline?

How many book descriptions are read after the different&ioidsearches?
How many books are put in the basket after the different kofdsearches?
How many books are reserved after the different kinds ofcdess?

Which kinds of searches are most likely to lead to resermafto

As mentioned in Section 4.1, declaring the grain of the fabtd is an important step of dimensional
modeling. The data source of the AUBA tool is a collection efaserver log files, and each of these
log files consists of log lines that each describes a reqodisetweb server. The log lines are the most
atomic information since they cannot be subdivided anyh&ntA log line can describe a request for
a page, but it can also describe for instance an image or fraquest. The actual number of requests
that is needed for a page view is beyond the control of the gsein the users’ world a page view
is the most atomic information [Srivastava et al., 2000] e Tinst star schema of the data webhouse
for the AUBA tool is designed with a single page event as tlamngrA page event is often used as
the grain of a fact table in data webhouses [Kimball and M2090], because it is similar to a page
view, but incorporates the knowledge that the user doeslwatya click on a web page to view a new
page. Sometimes a request is also sent to the underlyirgnsystich as when a user makes a request
to reserve a book.

The kind of star schema that has a page event fact table aftdundies information about the time
of day, date, page, user and session in the dimension ta@blespage event schema can be used for
both the non-domain specific and some of the domain specifiavier analysis listed above. The
thoughts behind the design of the page event star schemasgstied in Section 5.1.

The domain specific task of analyzing the ways the users digalb@oks would be very complex
using only the page event star schema. For example, it wdillds very difficult to make the

17

18

Data Warehouse Schemas

analysis of how the web site users most often find the booksthleg reserve on the web site. A
search and a reservation in the page event schema are «iffgpes of pages, and a reservation can
only be made after a search has been made in the same sessi@indg a session can have more
than one search there is no direct connection to link the &geegunctions together to aid the analysis
of which kind of search led the user to find the book that wasrkesl. To ease this kind of analysis
an additional star schema has also been designed. This adiesra coarser granularity as there is
an entry in the fact table for each search made on the weblsii® described in Section 5.2. The
two star schemas have three dimensions in common, anddéheteey can be depicted together as a
so-called galaxy [Kimball and Ross, 20023a] as illustrateHigure 5.1.

[1 // - ! \\
. log_line / AN
Lol | // \\
S date AN
/ \
7/ \
7/ \
/ N
page page_event time search search_type
session

Figure 5.1: The galaxy constellation of the two star schemas

5.1 Page Event Schema

The page event star schema has a page event fact table ardifmnsions. The log line table is a
lineage table, which means that it stores information thattte used to trace a particular log line back
to its origin. The audit table is used for quality assuramdach is described in Chapter 7. Neither the
log line table nor the audit table will be used in regular geeas dimension tables although they are
associated with the fact table through a primary key / fardigy relationship just like dimensions.
The other four dimensions are date, time of day, page anibsess

The page event star schema is illustrated in Figure 5.2 nlbeaused for many types of queries, but
mostly to analyze the basic behavior of the users of the webBor example, the activity on the web
site measured by week of semester can be analyzed and cahvlithean analysis of the use of the
different types of page function to find out if the users behiavdifferent ways at different points of
the semester.

5.1.1 Fact Table

The page event fact table is a fact-less fact table [KimballRoss, 2002a]. The only columns of
the page event table are the foreign keys to the four dimartsibles and the log_line and audit
tables. It has been designed without measures becausedlesgd in this project do not require
any measures in the page event fact table. If it is later diseanl that certain measures are needed
to achieve new goals, they can be added to the fact table wittanging the rest of the schema
[Kimball and Ross, 2002a]. An example of a fact that couldsfilg help achieve new goalsdsvell
time. This fact could help analysis on how long time the users efwieb site spend on each page.
If the dwell time fact were to be added it would be necessanyswthe log lines describing image
requests in order to calculate when a page has finished lpadia use this together with the time of
the next page event to calculate the dwell time of the cupage event [Kimball and Merz, 2000].
At the moment, there is no interest in how much time the ugeead on each page, so dwell time is
not necessary in the page event fact table.

5.1 Page Event Schema 19

Llog_line } date
| log_line_key (PK) P - T — date_key (PK) Fr-=
| file_name b sql_date 1
| log_line_number | year |
| ip_address | | month !
ident Lo day !
' authuser v weekday !
' date ! } semester !
! time 1 } day_of_semester !
| timezone | | week_of_semester !
| method | ! weekend_indicator 3
| request_url Lo exam |
| session_tag } | holiday |
! serial v page_event week_of year |
' query ! '~~~ log_line_key (FK) day_of_year }
' protocol [date_key (FK) — workday }
| status 1 time_key (FK) !
| bytes | — page_key (FK) I
| servername | session_key (FK) session 1
| referrer } -1 audit_key (FK) —t - |
' browser ! } session_key (PK) !
************** ! session_tag [
- ! ip_address |
time_of_day C audt browser |
-1 time_of_day_key (PK)/ I Y referrer l
" | sql_time - ~raudit_key (PK)} first_request_url !
' | hour A '+ -1 first_page_key (FK) |
i | minute | last_request_url !
i | second - last_page_key (FK) !
I | working_hours page | | start_date 1
. | period_of_day { page_key (PK) L. start_d_ate_key (FK) ”3
| page_function start_time !
| page_function_type | | | Start_time_key (FK) ‘
l process | | end_date :
| 1 | end_date_key (FK) -
| | end_time
e 4 end_time_key (FK)
pages_in_session
book_descriptions_in_session
books_in_basket_in_session
reservations_in_session

Figure 5.2: Relational representation of the page evenssteema.

5.1.2 Log Line Table

If a result is reached in the analysis that seems strangenite to be able to go back to the source
of the information to check if it is correct. This is a big tasken dealing with information gathered
from thousands of log lines, but if it is from only a few log dis it would be nice to be able to see
how the log lines looked originally. This is also a good thinghave during implementation of the
AUBA tool where an error might occur and the log line that eadithe error is needed in order to be
able to find out what the cause of the problem was. Such prabddtan occur when users behave in
ways that were not intended in the system, such as clickie@p#ick button of the browser to go back
to a session that has expired.

The log line table is a lineage table. It is used to trace mfation in the database back to its origi-
nating log line. It contains a row for each log line that has lmeen ignored by the post-processor.
Because each of these log lines corresponds to a page évepgde event fact table has exactly the
same number of rows as the log line table. A row in the log latdd contains all the information
from the corresponding line in the log file, but it is easierdad since it is organized into labeled
columns.

1This is explained in Section 6.1.

20

Data Warehouse Schemas

A lineage table is a good tool to have when doing outlier asialyFor instance when analyzing the
number of pages in sessions it appears that a few sessioastchandreds of pages, even though
most sessions contain less than 30 pages. This informatiymnake the analyst curious about the
correctness of the analysis. By use of the log line lineagketine analyst can view the information
from all the log lines that are represented in a particullnhg session. The log lines may reveal that
a user has spent two hours clicking through Auboline at adstpace searching for books, reading
book descriptions and making reservations. Using the ¢igehmension for outlier analysis enables
the user of the AUBA tool to check up on analysis results thahs strange and thereby encourages
the users to trust the results produced.

The log_line table will not be used as a regular dimensioletabquery the data. All the information
from the log lines that is relevant in the different analyisealso present in the real dimension tables.
Most of the columns in the log_line table are parallel to thtekautes in the log files described in
Section 3.3. In addition to these columns the log_line tabl&ains a primary key, two columns that
refer to the log line in the originating log file and the thre#ibutes session_tag, serial and query
columns as described in section 3.3.

log_line_key: Surrogate primary key of the log_line table.

filename: The name of the log file that the log line originated from. Thewes of the log files have
the format “access_log."<date>. Each filename is uniqualee it contains the date from
when the file was created. For instance, the log file with lngdifrom 25 February, 2003 has
the filename “access_log.20030225".

log_line_number: The number of the line in the log file where the log line can henfih
session_tag: A tag that the Auboline system places in the URL in order toitg sessions.
serial: A session-unique number that the Auboline system placestaie session tag in the URL.
query: The part of the URL that contains variables and values thatritee the specific attributes of

the page.

5.1.3 Date Dimension

The date dimension has a row for each unique date in the timedatbat the log lines span over. The
values of most of the columns can be computed when more dateen® added but some values, such
as school vacation, have to be specified manually. The daterdiion has the following columns.

date_key: Surrogate primary key of the date dimension. The primary &kp date dimension
should always be sorted by date [Kimball and Ross, 2002a].

sql_date: The sql representation of the date. The sql_date columnearséd to make queries on
single dates or intervals of dates.

year: The four digit integer year of the date.
month: The integer month of the date ranging from 1 to 12.
day: The day of the month. This integer attribute can have valetséden 1 and 31.

week day: The name of the day of the week. The attribute is textual amdhzeve the values

“monday”, “tuesday”, “wednesday”, “thursday”, “friday"saturday” and “sunday”.
semester: A domain specific attribute specifying the name of the searakat the date belongs to.

day of semester: A domain specific attribute specifying the number of the dagalculated from
the beginning of the semester that the date belongs to. Tialfiy of a semester is the first
week day in February for the spring semesters and the first dag in September for the fall
semesters. In this implementation the first day of the seenesspecified manually, but it is a
possibility to calculate it automatically in future versm

5.1 Page Event Schema 21

week _of semester: A domain specific attribute specifying the number of the wekét the date
belongs to, as calculated from the beginning of the semester first week of a semester is
the week which the first day of the semester is in.

weekend: This column has the value “week day” if the week day is betwdemday and Friday
and “weekend” if it is Saturday or Sunday.

exam: This is a domain specific attribute specifying that has thHeesdexam” if the date is in
January or June where the regular exam periods are, “reekafigust and “no exam” in the
remaining months of the year.

public_holiday: This attribute indicates if the date is a public holiday.dstihe value “holiday” if
the date is a Danish public holiday and “no holiday” otheewishe public holidays have to be
specified manually when adding new date rows to the dimension

school_vacation: A domain specific attribute that indicates if the date is iresiged where there
is a vacation at the university or not with the values “vamaitiand “no vacation”, respectively.
The different institutes of the university do not always éaacation at the same time so the
AUB staff have to make a judgment on which vacations they wairiclude in this attribute.
The opening hours of the library are reduced during vacathe staff could possibly choose
to add vacations to the data warehouse in the same periotls apé&ning hours are reduced.
In this implementation there is a vacation in all of July andg@st and two weeks around
Christmas and New Year.

day of year: The number of the day as calculated from the beginning of & yhat the date
belongs to. The values of this attribute are between 1 and 366

week _of year: The number of the week, that the date belongs to, as calddtat® the beginning
of the year. The first week of the year is the first week with asteour days in that year.
That means that if January 1st is a Monday, Tuesday, Wedpesdehursday, the week that
January 1st is in will be the first week of the year. On the otteard if January 1st is a Friday,
Saturday or Sunday, the week is the last week of the precgaiag The attribute can have
values between 1 and 53.

workday: This attribute has the value “workday” if the date is not a kexel, public holiday or
vacation. Otherwise it has the value “no workday”.

Restrictions on the date dimension can be used to group the@ants by day, month, year, week
of semester, week day, workday, etc. to find patterns in howhmAuboline is used at different
times. For instance, it would be interesting to see how mugbodine is used in the beginning of the
semesters compared to the middle and the end. Since most bbthowers are students, one could
assume that the use of Auboline would reflect the patternrttaaty students have a period in the
beginning of the semester where they gather informationtheckfore use Auboline to find relevant
books. Toward the end of the semesters there is probablysnotugh traffic on AUB’s web sites,
since the students have all the information that they needaaam busy finishing their projects. The
result of this analysis is discussed in Chapter 10.

5.1.4 Time of Day Dimension

The time_of_day dimension has a row for each second in a 2dgesiod. This corresponds to the
accuracy of the time of day in the log files. So far it containfydhe following columns, but more
can be added without touching any of the other tables andwittonsulting the originating log files.
The time_of day dimension contains 86400 entries, whidhésnumber of seconds in a 24 hour
period.

time_of_day_key: Surrogate primary key of the time_of_day dimension.

sgl_time: The sql representation of the time of day. The values of tti#ate range from 00:00:00
to 23:59:59. This column can be used to sort query resultémy or to query specific time of
day intervals.

Data Warehouse Schemas

hour: The hour of the time of day. The values of this integer attelmange from 0 to 23.
minute: The minute of the time of day. The values of this integerladtie range from 0 to 59.
second: The second of the time of day. The values of this integeraite range from 0 to 59.

working_hours: This attribute has the value “working hours” if the time ofyda between 8 and
16 which is the most common working hours. For the rest of thg itl has the value “not
working hours”. Since the time_of day dimension does nstirfjuish workdays from days
that are not workdays, this attribute should be used in catjan with the workday attribute
of the date dimension to determine if the time of day is atyualthin working hours. An
alternative solution would be to have two rows for each sddmtween 8 and 16, one used on
workdays and one used on days that are not workdays. Thatheayser of the database will
not risk getting an inaccurate result if he or she is unawaa¢ this attribute depends on the
value of the workday attribute of the date dimension. Onlgrath of the page events in the
data set have taken place on a day that is not a work day.

period_of _day: This attribute indicates what part of the day the time istihals the value “night” if
the time of day is between 00:00:00 and 05:59:59, “mornirgfileen 06:00:00 and 11:59:59,
“afternoon” between 12:00:00 and 17:59:59 and “evenindgiMeen 18:00:00 and 23:59:59.

Restrictions on the time of day dimension can be used to fihd st reservations are made during
working hours or after hours when the borrowers are not abfgotto the library. Since the opening
hours vary between the different branches of the library dags of the week there will not be a
column to distinguish opening hours from when the librades closed. Instead the working_hours
column can be used in conjunction with the work _day columthefdate dimension to get an idea
about whether the users reserve more books when they aralabwio school or in their spare time.

5.1.5 Page Dimension

Some of the most interesting information in a log line is fdum the query part of the request URL.
The information in this query can be used to find out what typpame was viewed and what the
function of the page was. There are 95 entries in the pagerdilme, and the columns of the table
are described in the following.

page_key: Surrogate primary key of the page dimension

page_function: As described in Section 3.3, the function of a page is derfiv@t the values of
the variables in the request URL. This attribute can haveesbkuch as “reserve book”, “full
view of a record” and “basic search ontitle”. There are 9%dént values of the page_function
attribute.

page_function_type: The page_function_type attribute is a generalization ef th
page_function attribute. The page functions can be groimedlifferent types. For instance,
page functions like “basic search on title”, “multi-fieldaseh” and “browse author index” are
all different types of searches, so their page function sypee “search”. Many of the page
functions are alike. The page function type can have one pib32ible values.

process: A process that the page is a part of. There are 10 differemtgsses in Auboline. Exam-
ples are “reservation”, “search” and “login”.

Restrictions on the page dimension can be used to distingeisveen which kinds of page functions
are used most frequently and it can be combined with the tindet@ dimension to find out if the use
of the page functions varies according to for instance pleofcday or week day.

The attributes of the page dimension form a hierarchy thabkss users of the database to drill up
and down [Kimball and Ross, 2002a] to get a more general oeretailed analysis. The hierarchy
of the page dimension is depicted in Figure 5.3. In the figine,T represents the whole dimension.
The right part of the figure shows examples of values for tifferdint columns.

5.1 Page Event Schema 23

T T
\
\
\
\
\
\
\
process search
page_function_type enter data for search
\
\
\
\
\
\
\
page_function basic search

Figure 5.3: Page hierarchy.

5.1.6 Session Dimension

The session dimension contains information about the @setsbout when and where the users start
and end their sessions. The attributes of the session diomeaie described below.

session_key: Surrogate primary key of the session dimension table.

session_tag: The session tag created by Auboline for the session, asideddn Section 3.3.1.
The session tag is a fifty character long string of lettersdigds.

ip_address: The ip address of the host accessing Auboline in this session

browser: The browser of the host accessing Auboline in this sessioimceSdifferent Internet
browsers behave in different ways when reading the same iteglttgs attribute can be used to
find out which browsers Auboline should be aimed at. 96.7 grarof the browsers that have
used Auboline during the time period that the source dataspwger are different versions of
Microsoft Internet Explorer so this is the primary browseatt AUB should adjust Auboline to.

referrer: The referrer is the referrer field of the log line of the firstggaevent in the session. It
shows where the user came from before entering Auboline. ré&fegrer field is empty if a
user is redirected from AUB’s web site, uses a browser bookmafavorite or if the URL is
entered in the address field of the browser, so it is only idsihen a user has clicked on a link
on another web site that does not link to http://a500.awhdikuwhich is the URL of Auboline
that redirects to the Auboline start page. Only ten percéatl@essions in the data set have a
value in the referrer field.

first_request_url: The first URL requested in this session. This attribute shihas 49 percent
of all sessions start on the page that a visitor is rediretdedhen clicking on Auboline on
the general AUB web site or typing http://a500.aub.aucidkody in the address field of the
browser.

first_page_key: An outrigger to the primary key of the page dimension thadvad combining
session information with information about the first pagé¢ha session without joining both
tables with the big page_event fact table. An outrigger israifjn key from a dimension table
to the primary key of another dimension table. By having iggiers between dimensions, it is
possible to join the dimensions without involving the lafget table and thereby it is possible
to improve performance on certain queries [Kimball and R2682b].

last_request_url: The last URL requested in this session. This attribute isasatomparable as
the first request URL. Whenever a session consists of monedih@ page event, the last request

Data Warehouse Schemas

URL will have a session tag. Therefore the value of this fisldniique for every session with
more than one click.

last_page_key: An outrigger to the primary key of the page dimension thabval combining
session information with information about the last pagéhim session without joining both
tables with the big page_event fact table.

start_date: The SQL date of the first request in this session. This ateibias the same value as
the sql_date attribute of the date dimension for the firsepagnt in the session.

start_date_key: An outrigger to the primary key of the date dimension that\ai combining
session information with information about the start ddtéhe session without joining both
tables with the big page_event fact table.

start_time: The SQL time of day of the first request in this session. Thisbate has the same
value as the sql_time attribute of the time_of _day dimem$ay the first page event in the
session.

start_time_key: An outrigger to the primary key of the time dimension thabai combining
session information with information about the start tinigh® session without joining both
tables with the big page_event fact table.

end_date: The SQL date of the last request in this session. This at&ibas the same value as the
sql_date attribute of the date dimension for the last pagatew the session. In most cases
this will be the same as start_date, but if the session giaftse midnight and ends after, the
end_date can also be the date after the start_date.

end_date_key: An outrigger to the primary key of the date dimension thatvaf combining ses-
sion information with information about the end date of thesson without joining both tables
with the big page_event fact table.

end_time: The SQL time of day of the last request in this session. Thi#bate has the same value
as the sql_time attribute of the time_of_day dimensionlierlast page event in the session.

end_time_key: An outrigger to the primary key of the time_of day dimenstbat allows com-
bining session information with information about the eimdet of the session without joining
both tables with the big page_event fact table.

pages_in_session: The number of page requests in this session. Most sessibpe(Zent) have
less than ten clicks but some sessions are very long andicanqido 222 pages. The average
number of pages in a session is 9.7.

book_descriptions_in_session: The number of book descriptions in this session. The average
number of book descriptions in a session is 1.4.

books_in_basket_in_session: = The number of books that are put in the basket in this session.
The average number of books in the basket in a session is 0.05.

reservations_in_session: The number of reservations in this session. The average euaib
reservations in a session is 0.3.

5.2 Search Schema

The main purpose of the AUBA Tool is to assist the AUB staff imtifing success rates of the different
ways that users can find books with Auboline. At the momenbtiig way to find a book with Aubo-
line is to make a search. Therefore a schema with a searchafadletcan make this kind of analysis
very easy. When the book recommendation service is integnaith Auboline it will be simple to
add a new “recommendation” search type to the search typerdiion and use it to calculate the
success rate of the recommendation service. The searcéthima is depicted in Figure 5.4.

5.2 Search Schema 25

session
1 session_key (PK)
date session_tag
date_key (PK) [~ =---------mmmm oo ‘ ip_address
sql_date ! browser
yea_r | referrer
month \ | | first_request_url
day | first_page_key (FK) Mo
weekday | last_request_url >
semester ! last_page_key (FK) -
day_of semester search | | start_date
week_of_semester date_key (FK) " 17 start_date_key (FK)
weekend time_of day_key (FK) | | |start_time
exam session_key (FK) 1 | | start_time_key (FK) L
holiday search_type_key (FK) ! end_date !
week_of_year - audit_key (FK) -~ end_date_key (FK) |
day_of_year 1 | search_number end_time |
workday | search_number_validity end_time_key (FK) M
. | number_of_book_descriptions pages_in_session o
time_of_day . | number_of_books_in_basket book_descriptions_in_session |
— ' | number of reservations books_in_basket_in_session| |
time_of_day_key (PKj— = reservations_in_session |
sql_time e BT T pepepepepepep ey
|
::;::Lte 3 } audit ! search_type
second e "audit_key (PK): — search_type_key (PK)
working_hours L | type
period of day @ | 000 t---------- ! field

Figure 5.4: Relational representation of the search sterse.

5.2.1 Fact Table

The search star schema has the date, time of day and sessiensitbns in common with the page
event star schema. Therefore itis possible to use thesendiores to slice and dice the data that deals
with searches [Pedersen and Jensen, 2001]. For instarsgeassible to find out how the number of
reservations is distributed in the course of a semesterhichwtypes of searches are most common
in the beginning versus the end of a semester. It would begistiag to see if there are more searches
on key words in the beginning of the semesters and then mepésgrsearches, for instance on ISBN
number or title toward the ends of the semesters.

date_key: Foreign key to the date dimension describing the date ofé¢hech. This can be used to
join the search fact table with the date dimension to seesifitlost common types of searches
varies according to the different attributes of the dateeatision.

time_key: Foreign key to the time dimension describing the time of #rsh. This can be used to
see for instance how the number of reservations vary duhiegourse of a day.

session_key: Foreign key to the session dimension describing the sefsdthe search was made
in. This can be used to see for instance if the same types affseaare commonly used in the
same sessions or the users try different kinds of searcHesltthe books that they are looking
for.

search_type_key: Foreign key to the search_type dimension describing the dffsearch made.
This can be used to make an analysis of what types of seatvhesérs use and which book
attribute fields they most often search in.

Data Warehouse Schemas

search_number: The number of the search (degenerate dimension) eithen ghyeAuboline or

the post-processor. A degenerate dimension is neithertada@ foreign key to a dimension
table. It is a column that can be used to group measures. Trehsaumber can be used
to group together searches that originate from the samelsedhis way if a user chooses a
search from the search history, the facts can be added vétfattts from when the search was
first made. The problem is that this can only be done if thedvediarch number, from when
the search was first made, is present. The search numberusigote so it has to be combined
with the session key to be sure that the searches with the seaneh number refer to the same
search.

search_number_validity: Describes whether the search number is valid (given by Aobpbr
temporary (given by the post-processor because the vaidis@umber has not appeared in the
request URL). The search number only appears in the requRistdfter the user has clicked
on one of the search results, so the search number is notskwvayvn and therefore it is not
always possible to recognize a search that is chosen frosetreh history.

number_of book_descriptions: The number of books found by way of this search where the
user has read the book description. This can be used to seenbhawbook descriptions the
users read after the different kinds of searches. If a usetsra book description it indicates
that the book looked relevant to the user.

number_of books_in_basket: = The number of books found by way of this search that the user
has put in the basket. If a user puts a book in his or her batsisatn indication that the user is
considering reserving the book later on in the session.

number_of_reservations: The number of books found by way of this search that the user re
served. This is very central in measuring the success ieritérthe different searches, since
a reservation indicates that a user has found a book that Sleeowants to borrow. Unfortu-
nately it is not possible to see if a book that has been redaswbe same book as one that was
previously put in the basket.

5.2.2 Search Type Dimension

The search_type dimension contains 80 entries. The segrehdimension is a very important di-
mension in the data webhouse because it describes the Kisdarches that are made in Auboline.
Auboline has different types of searches and with some o$éaech types the user can choose one
or more fields to make the search on.

search_type key: Surrogate primary key of the search type dimension table.

type: The type of search performed. The different types of searaghAuboline are “basic search”,
“multi-base search”, “multi-field search”, “browse indeaid “CCL search”. CCL is short for
“Common Command Language”. With this function it is possitdl use command language to
make a search on one or more fields at a time. An index is anladpical list of authors, titles,
UDK classification numbers or subjects. If a user makes ackaarthe author index on the
name “Andersen” she gets a list of ten author names, namelyaime “Andersen” and the next
nine names in the alphabetical author index. From this plageiser can go to the previous
ten or the next ten authors until he or she finds the right oneeMthe user uses the search
history function in Auboline it is not always possible to kmavhich of the previous searches
in the session is usedTherefore the search type attribute will have the valuetting if the
user clicks on a search from the history function. Likewise value in the type column will
be “basket” if the user clicks on a book in the basket, bec#tuseequest URL contains no
indication of which of the previously saved books is clicked

field: The field that was used in the search. When a borrower wantsat@ ra search, she can
choose which field, for instance “title” or “subject”, to seh in, from a drop down box. The

2When a user clicks on a search in the search history, thefsearaber appears in the request URL, but this number can
not always be recognized from a previous search becauseeéinehsnumber does not appear in the request URL when the
search is made but only later, if the search results are use@ book description is read.

5.2 Search Schema 27

field column can also have the value “no value” if the user nadearch without specifying a
particular field or “all fields” if the user made a multi-fieldarch the user has chosen to search
in all fields.

type_with_field: This attribute contains a combination of the two attribiabsve. For instance
if the type is “multi-base search”, and the field is “authatien this attribute has the value
“multi-base search on author”.

The attributes of the search type dimension form a hieraeshilustrated in Figure 5.5. The type
and field attributes can be used separately or combined.

/\

basic

[autho
field author search
type_with_field basic search

on author field

Figure 5.5: Search type hierarchy. To the left is an examplgossible values of the
attributes.

CHAPTER 6

Post-Processor Implementation

The post-processor is the main part of the implementatich@fAUBA tool. It handles the extract-
transformation-load (ETL) processes that are necessdrgutisfer the information from the log files
to the database. This chapter describes how the post-gadesmplemented and how it handles the
ETL processes, especially the transformation part whege fanctions, sessions and searches are
recognized. At the end of the chapter the performance of tis& processor is discussed.

The post-processor processes one log line at a time. Treviold) is a summary of the tasks of the
post-processor. The tasks will be explained in the nexisest

» Split each log line up in the attributes described in Sec8® and convert them to the appro-
priate formats as described in Chapter 5

« Ignore image and style-sheet requests
* Ignore requests from search bots and web crawlers
* Ignore requests to administrative systems

 Transfer the information from all recognized log lines tdog line table with appropriate
columns in the database

 Find the keys of the appropriate rows in the dimension ttbelescribe the page event of the
particular log line

 Find the keys of the appropriate rows in the dimension <edescribe the search if the
request in the log line is a search

* Insert a new entry in the page_event table, and in the seabté if the log line describes a
search, with the keys found

< Update the information in the record in the session taka¢ttie log line belongs to or insert a
new session record if necessary

» Update the measures of the search fact table if needed

All the processes and the database tables that are invaivied iransformation of information from
the source data to the final dimensional database are alswe@fto as the data staging area in data
warehousing. The data presentation area contains the diblglst of the dimensional database. The
post-processor has two main functions as described abole.fifst one, which takes care of log
line recognition and transformation to the log line tabléha database, is described in the following
section. The process of transforming the data from the logslito the tables of the dimensional
database is described in Section 6.2. The two processesmatgred in the implementation, because
it is faster to finish processing of each log line while it isntain memory instead of saving all log
lines in the log line table and then starting over by scanttingtable to find dimension keys, etc.

6.1 Log File Recognition and Transformation
When the post-processor is started, it makes a chronolicggea through all the access log files in
the directory, where these files are stored. The post-psocesads each of these files one line at

a time. For each line it calls the constructor of the LogLiaeg class (Section E.6) to construct a
LogLine object with the information in the log line strind.the constructor recognizes the string as

29

Post-Processor Implementation

a valid log line, it returns a LogLine object. This LogLinejett is then used to insert a row in the
log_line table in the database using the insertLogLine oetif theDatabase class in Section E.2.
The log lines are not inserted in the actual database tadphé away, because this would cause too
many writes to the database, which should be avoided forake sf the performance of the log line
recognition process. Instead the log lines are written teeadnd the PostgreSQL copy command is
used to move the data from the file to the log line table in thalukse. This is done each time the
end of a log file is reached before the post-processor cosdimith the next file.

Some of the information in the log lines is adjusted befoiie gaved in the database. For instance,
the date is converted to an SQL date which makes it easiertbythe column in the database. The
data definition of the log_line table can be found in Sectio2. A

6.2 Transformation to Dimensional Schema

The second function of the post-processor is to transforch éag line so it can be loaded into the
dimensional database. This process will be referred to iaséidsionalizing the log lines” throughout
the rest of the report. Each log line corresponds to a pag® eVaerefore the process of transferring
the information from each log line to the tables of the pagenestar schema basically means cre-
ating a new entry in the page_event fact table with the in&diom from the log line. In order to do
this, however, it is necessary to find out which records ofineension tables the foreign keys in the
fact table should refer to. This is explained in the follog/gections.

6.2.1 Time and Date

The time and date dimension tables are preloaded with alhfloemation that is needed. There is
only 24 hours in a day, so the time dimension will not have nrores added later. But when the
AUBA tool is to be used for new data with dates that are latantthe preloaded dates, new rows
have to be added to the date dimension table before the newisdimiaded into the database. This
has to be done manually, because the system is unable tetaédinformation needed to add more
dates. For instance it cannot predict all the school vanatio

The primary key of the time dimension is calculated to limput/output between the post-processor
and the database and increase performance. The key of adidansion could also be calculated,
but instead the post-processor checks if the date is the aarie date of the preceding log line, and
it only fetches the date key from the database if the dates@réhe same. Since the log lines are
processed in chronological order, the date will be the sasnth@ previous except for at most two

times in each log file where the date has changed between thiegvines.

6.2.2 Page

The page dimension has also been preloaded into the datatibsal the possible page functions,
page function types and processes. For each page evengltles of these variables are decided in
the setVariables() method of thePage class (Section E.7). It uses the variables in the query gart o
the request URL as described in Section 3.3.1. After findirggvalues of the three columns of the
page dimension, the post-processor attempts to find thelg@agier the row of the page dimension
that has the same values for the three variables. Again fh&/output to and from the database
has been limited. The contents of the page dimension is tbende a vector at the beginning of the
dimensionalize process, and this vector is scanned to fiedppropriate page key for each page
event.

6.2.3 Session

The session dimension table is the only dimension that ipreddaded into the database. The reason
for this is that its content is not as predictable as the alireension tables. The content of the session
table is as dynamic as the content of the page event table saah new page event either changes a
session or creates a new session. The data is loaded integsierstable in parallel with the loading

6.2 Transformation to Dimensional Schema 31

of the log line and page event tables to avoid processinglegdine more than once.

The sessions that are active at a point in time in the postgsging process are the sessions where
the end time is less than twenty minutes before the time olidpéine that is being processed at that
moment. All active sessions are stored in a vector duringptis-processing. For each log line the
post-processor needs to check the active sessions vediadtout if the new page event belongs
to a session that is already in progress. If a matching sessifound, the session is updated with
the information from the log line and the key of this sessi®meturned. If no matching session is
found, the post-processor must create a new session. Tive aessions are stored in a vector to
avoid multiple access to the database, and whenever arnvimaetssion is found in the vector, it is
written to a file. The file containing inactive sessions isiedfo the database using the PostgreSQL
copy function at the end of the ETL process. The processustithted in the following algorithm.
The checklfLogLineMatchesSession() method invoked ia #igorithm can be found in Algorithm

2

Algorithm 1 Scanning the active sessions vector for matching session
ADDPAGEEVENTTOACTIVESESSIONS/ECTOR()

sessionKey— -1
for all active sessions in vector until match is foutal
if session is inactivéhen
write session to file
remove session from vector
else
if checklfLogLineMatchesSession(currentSession, loglLtimen
update session with log line information
sessionKey— currentSessionKey
end if
end if
end for
if sessionKey = -then
create new session
sessionKey— new session key
end if
return sessionKey

The advantages of using a vector to store active sessioesithef making an insert or update to the
database for every log line are clear. But other data strasfisuch as a hash table could also have
been used to store active sessions in main memory. A vecsimisle to use while still preserving
the iteration of the elements. It is very useful to keep tlresiems organized by when they were first
added to the vector. When a new page event is going to be addeddssion, the activeSessions
vector is scanned to find a matching session. Because thersesse organized by start time, the
sessions that started before the session matching the rgavepant, will be passed in the process
of locating the matching session. If one or more of the passsdions ended more than 20 minutes
before the time of the new page event, it is not necessary daofin if the page event matches these
sessions, because they are no longer active. Thereforeithestive sessions are written to the copy
file and deleted from the activeSessions vector. The ses#ian are inactive have a high probability
of having an earlier start time than the session matchingnéve page event, and therefore it is not
necessary to search beyond the session that matches theageweyent. The goal of this process is
to delete expired sessions from the vector as early as pessimake the vector as small as possible
without making extra scans through the vector. A disadwgataf using a vector for storing active
sessions is that it is slower to use compared to for instarftash table, because it is necessary to
scan the vector from the beginning for every session thatiséz be found. A hash table enables
faster access to the individual elements if there is a key#och for. When looking for a session it
is sometimes the session tag, sometimes the IP address@msebinformation and sometimes the
last request URL field that needs to be compared so a hashigatméa suitable solution for storing
the active sessions.

At the end of the dimensionalization process there are ni@dystill sessions that are active. These

32

Post-Processor Implementation

should not be discarded, but they should not be added to therdiional database either, because
they are unfinished and could be changed at a later time whempage events are added. Therefore
they are written to a copy file and copied to an active sessibletin the database at the end of the
dimensionalize process. When a new dimensionalize pratads, the active sessions from this table
are loaded into the activeSessions vector again so new pagésecan be added to these sessions if
they match.

The process of finding out if a page event matches an actigeoses a new session should be created
from the page event is aided by the fact that Auboline is sassased. Auboline places a session
tag in the request URL to be able to differentiate betweefeidint users that are using the system
at the same time. When a user enters Auboline from the geAElalweb site, he or she does not
have a session tag. Only a third of all sessions have a sesgjan the first page. This could, for
instance, be because the user has previously saved a linkNotzline page in the browser favorites.
At the first click in Auboline, the user gets a session tag Wisice keeps for the rest of the session.
If there is more than 20 minutes between two clicks, the systatomatically logs out and the user
gets a new session tag if he/she starts to use the system aga@means that the Auboline sessions
conforms to our perception of a session as an uninterrugteeissof clicks by the same user, where
an interruption is a pause of more than 20 minutes betweertlioks.

As mentioned earlier, the post-processor attempts to findagching session for each page event.
The source code of this process can be seen igdtiessionKey() method of theDatabase class in
Section E.2 along with thmatches() method of theSession class in Section E.11. The pseudo code
can be found in Algorithm 2.

Algorithm 2 Finding a matching session for a new log line
CHECKIFLOGLINEMATCHESSESSIONCURRENTSESSION, LOGLINE)

if currentSession has session tagn
if currentSessionTag = logLineSessionTagn
return true
else
return false
end if
else ifcurrentSessionlP = logLinelP and currentSessionBrowkeglsineBrowser and currentSes-
sionLastRequestURL = logLineRefertéen
return true
else
return false
end if

The session tag that Auboline has placed in the request UL tak first click can be used to find
the session that a page event belongs to. The first two pageseission, however, need to be handled
differently. If the request URL of a log line does not have ssgen tag, it is the first page in a session.
Therefore a new session should be created. So far the newrsegl only contain this page. If
the post-processor encounters a log line with a sessiomtgeirequest URL but no session tag in
the referrer field, the page is the second page of a sessidiindrthe session that this page belongs
to, it is necessary to search the active sessions vectord@fgession with the same IP address and
browser as the new page and where the request_url columiesatre referrer of the new page. If a
matching session is not found in this way, this is an indazatf a new session that has a session tag
on the first page (saved by the user in favorites of the browbethis case the post-processor creates
a new session with this page as the only one so far. This nesiosesill have the same session tag
as a previous session, but has a unique session key.

When looking for a matching session for a page with a sesaigpintthe request URL but no session
tag in the referrer, there will be a certain insecurity altbetresult. The session tag is the only certain
method of matching a page event with a session, because har®he user can have the same IP
address and the same browser at the same time. If there amtveorrent sessions with the same
IP address and browser there is a risk of swapping the firsg¢pafthese two sessions if they start
on the same page. The chance of two sessions starting onntteepsage is great, because the basic

6.2 Transformation to Dimensional Schema 33

search page, which is the page that a user comes to first Hénefsters Auboline from the general
AUB web site, is the most common start page. If the first padewo sessions are swapped this
will not affect the result of the analyses very much. The Irads, browser and request URL of
the two pages that are swapped are the same, so the only thatgare different are the time and
the referrer. The time will be at most 20 minutes wrong sifeegost-processor only finds sessions
that ended within 20 minutes before the time of the new pagateand it will not affect the average
length of sessions since the sum of the length of the two affiesessions will stay the same. The last
information that can be affected if the start pages of twaises are swapped, is the referrer field.
Since the two swapped pages are first in the sessions, theerdfeld only has a value in 9 percent
of all cases, so this will not affect any analyses much either

6.2.4 Search Type

The data of the search type dimension table is preloadedhietalatabase and when dimensional-
ization starts, it is loaded into a vector to avoid unneacgssammunication with the database. A
SearchType object is created by the constructor of tBearchType class (Section E.10) if a log line
describes a search. The search type key is collected fronettter as described for the page key to
improve performance.

6.2.5 Search

In order to populate the search fact table, the post-proceseds to add a new entry whenever it
encounters a page event that is a search. Furthermore diseofethe appropriate row in the search
fact table should be increased when a user views a book géeariputs a book in the basket or
reserves a book. This process is illustrated in Algorithm 3.

Algorithm 3 Populating the search fact table and incrementing the facts
for all page eventdo
if function type = searcthen
find search type key
add search to search fact table with search type key and kaysgfage_event fact
else iffunction type = book descriptiotihen
increment number_of book_descriptions measure of cusesarch by 1
else iffunction type = book in baskéthen
increment number_of books_in_basket measure of curearth by the number of books
chosen to put in basket
else iffunction type = reservatiotihen
increment number_of _reservations measure of currentisdmsr 1
end if
end for

Active searches are kept in a vector in the same way as a@sgans, but they do not necessarily
become inactive after twenty minutes. A search becomesiweaghen the session that it belongs to
becomes inactive or when a new search is added to the se$sierefore an active search is written
to the search copy file and removed from the active searclormetten one of these events occur.

Each search in Auboline gets a search number, but the searschar is not always present in the
request URL. Therefore a temporary search number sometigests to be added to a search in order
to recognize it from the session that it belongs to during4poscessing. The search number usually
shows in the request URL when the user clicks on a searchtresuh this case the search number
of the search and the session needs to be updated to the @atchsaumber. The search number
degenerate dimension of the search fact table can be usedup gpgether searches with the same
valid search number so results of searches from history eazsombined with results of the original
search.

34

Post-Processor Implementation

6.3 Data Staging Area

The tables that are used to keep active sessions and searc¢hesdata staging area of the AUBA
system are like the tables in the data presentation areapbue of them have extra columns to help
the post-processing of the data from the log lines contiibe. session table in the data staging area
has two additional columns. These are used to manage thehssas the log lines are processed by
the post-processor. Since the request URL of the log lines dot always reveal the search number
that the actions of the user are related to, it is vital to kizapk of the last search of each session
during the post-processing in order to know which searchitbraservations, etc., to. The value of
this last search number attribute changes during the posepsing of a session whenever a new log
line indicates that a new search has been made. The seamshenuwalidity column has the value
“valid” if the search number in the last_search_numbercwils a true search number created by
Auboline and the value “temporary” if the search number eated by the post-processor.

6.4 ETL Performance

The performance of the ETL process has been measured on a B30AMD Duron with 384 Mb
RAM running Debian Linux. On this machine, the ETL procesesathree and a half hours to read
through the 391 log files with a total of 17.7 million log lineisd load approximately 3,9 million valid
log lines into the log line table of the database along withr8illion page events, 400,000 sessions
and 826,000 searches. This is equivalent to 325 log line sacbnd or an average of 32 seconds
per log file. The part of the ETL processes that takes mostedfithe is the actual processing of the
log lines where the line is recognized and the dimension keggound. After this, the process that
copies the data to the database takes the longest time. fitad execution time of the ETL processes
that would be executed each night to transform the data flarast 24 hours would probably take
around the same amount of time depending on the availalemess on the machine. Half a minute
each night is very acceptable, especially because the lo#iteanachine is very low at the time that
the processes will be running.

The following chapter discusses how audit control and dgpaksurance has been integrated in the
post-processor. The quality assurance parts of the ETLegsoare not included in the performance
estimations discussed in this section.

CHAPTER 7

Data Quality Assurance

In defining the ETL processes it is important to make suretti@tlata is extracted, transformed and
loaded correctly. There are various methods of data quasigurance that help ensure this. These
will be discussed in this chapter.

It is important to make sure that every row in the log file isateel correctly and that the database
always contains correct information. The data quality essste checks can be divided into three
main categories [Kimball and Ross, 2002b].

< Audit control: the database must contain as many recordseasxpected based on the input

» Correctness of data: the ETL process should make surathattta in the database reflects the
true behavior of the users in Auboline

« Error handling: errors in the source code of the AUBA tootlanutside errors such as system
crashes should be caught and handled to avoid flawed data database.

In the following sections these three categories will bewuksed along with what has been done to
assure data quality in the AUBA tool.

7.1 Audit Control

The purpose of audit control is to make sure that the data ftovesigh the different stages of the
ETL process as expected. For instance, if the program isgiveg file with 10,000 log lines, the
program is expected to process 10,000 log lines. If 8,008@processed log lines are invalid these
should be discarded and 2,000 new records should appeag mlatabase. If these numbers do not
match, something in the ETL process is not as expected.drcétse error handling should make sure
that the database is modified back to the correct state itmisfore the ETL process started. Error
handling may also restart the process. This is elaborat8edtion 7.3.

Audit control runs in parallel with the ETL processes in thespprocessor. This way, mismatches
between the audit numbers are caught as early as possiblengnagpdates to the database can be
rolled back. The ETL process is stopped if an audit numbenmaish occurs, because it will not be
possible to end up in a correct database state if some of thieraumbers mismatch in the process.
Tables 7.1 through 7.4 list the different audit numbers #rat collected and matched through the
ETL process. The audit number column contains a descripfieach audit number, while the check
column describes the check that is made when the particutit aumber becomes available. The
numbers in the check column refer to the leftmost numberseftable rows. These numbers are
continuous among the tables because the audit numbersragtiswes matched with numbers from
other tables.

| | Audit number | Check |
Lines in the log file
Total log lines processed 2=1

Valid log lines processed
Invalid log lines processed
Lines in log line copy file
New log line records in database6 =

O O | W N -

Table 7.1: Log line audit numbers and checks

35

Data Quality Assurance

The collection of log lines can be followed through the ETlogass to make sure that everything
adds up the way it should at each point in the process. The etgtbat can be compared during
the process are listed in table 7.1. The number of log linesgssed (2) should be the same at the
number of lines in the log file (1). This number can be divideo ivalid (3) and invalid (4) log lines.
The valid log lines is the interesting of these numbers. digth match the number of lines in the log
line copy file (5), which should then match the number of negvline records in the database (6).
The number of new log line records in the database is founahpting the number of records in the
log line table that refer to the same filename as the curretit eecord. This can take minutes when
the log line table is big, so it can be omitted if performareeniore important. All updates to the
database, except for the audit table, are collected in desiransaction so if something goes wrong,
all the changes to the database will be rolled back.

| | Audit number | Check |
7 | Active page events before ETL
8 | New page events processed 8=3
9 | Active page events processed
10 | Lines in page event copy file 7+8=9+10
11 | Lines in active page event copy file9 =11
12 | New page event records 10=12
13 | New active page event records 11=13

Table 7.2: Page event audit numbers and checks

In the same way as for the log lines, it is possible to checkéftumber of page events adds up
through the ETL process. The checks, listed in Table 7.2adr& more complex than for the log
lines because the set of page events that are handled in th@ragess is split up into active and
inactive page events. Active page events are the ones tlatgh® an active session and therefore
cannot be inserted into the page event table before theosdsas been completed and inserted into
the session table.

Because each log line corresponds to a page event, the noit@r page events processed should
be equal to the number of valid log lines processed. This rurighnot the same as the number of
lines in the copy file as it was for the log lines, because egsictive page events and the new page
events processed are combined to the new set of page evants #ygain divided into active page
events and finished page events. Therefore the sum of theerurhbctive page events before (7)
and the new page events processed (8) should equal the suma néiinber of active page events
processed (9) and the number of lines in the page event capglfl). The number of lines in the
active page event copy file (11) should be equal to the nunflzative page events processed (9). As
for the log lines, the number of new page event records (1@)n&w active page event records (13)
should be equal to the number of lines in the page event capylfl) and the active page event copy
file (11), respectively. The number of new page event recoatisbe found by counting the number
of page event records that refer to the current audit key.

| | Audit number | Check
14 | Active searches before ETL
15 | New searches processed

16 | Active searches processed

17 | Lines in search copy file 14+15=16+17
18 | Lines in active search copy file 16 = 18
19 | New search records 17=19

20 | New active search records 18=20

Table 7.3: Search audit numbers and checks

7.2 Correctness of Data 37

The audit checks for the search fact table are listed in TAl¥eSince the search table is a fact table
as well as the page event table, and they have similar clesistats, the audit checks for the two
dimensions are also the same. The only difference is thatuh@er of new searches processed can
not be matched with the number of valid log lines processetas possible for the number of new
page events processed.

| | Audit number | Check

21 | Active sessions before ETL
22 | New sessions processed
23 | Active sessions processed

24 | Lines in session copy file 21+22=23+24
25 | Lines in active session copy file 23 = 25
26 | New session records 24 =26

27 | New active session records 25 =27

Table 7.4: Session audit numbers and checks

The audit checks for the session table listed in Table 7.4h@eame as the ones for the search table.
But since the session table does not reference the audititablnot possible to count the number of
new sessions in the same way as the numbers of new page endrsisaaches are counted. Instead,
the counting is done by comparing the number of records irsssion table before and after the
load. The number of records before the load can be found yingaat the number of records after
the previous load in the audit table. The number of recortey #ifie load is found by counting the
records in the session dimension.

7.2 Correctness of Data

The process described above ensures that the right amodatafs transfered to the database in the
ETL process. This is a good way to find errors that occur dutimg process. But even if all the
numbers match, the audit control cannot guarantee thatefecontent of the database is correct.
This is very important as well so the results of the analysademwith the program can be trusted.
One way to test if the database contains correct data afiesibeen processed by the post-processor
is to check if the output is as expected when the post-procésgiven a small familiar data set. In
addition to this method, [Kimball and Ross, 2002b] lists fikierent ways of assuring data quality.
One of these is audit control, which has already been disdysnd the remaining four are listed
below with the manual data processing method just mentioned

e Manual data processing
« Referential integrity

« Cross-footing

e Manual examination

* Process validation

These five methods of assuring data quality are discussée ifolowing sections.

7.2.1 Manual Data Processing

Itis not possible to go through all the log files manually arakesure that the content of the database
is exactly as expected. However, if a part of the log files sogled up against the data in the database,
there is a good chance of finding possible errors in the pragiththere is an error in the program,

chances are that this error will lead to several incons@ésnbetween the log files and the content

Data Quality Assurance

of the database. Therefore there is a good chance of findicty @u error by selecting random log
file passages and testing whether the information in thessagas are represented in the database
exactly as expected.

A possible test is to examine a small file and decide what thyeubof the post-processor should be,
if it were given this file. After the expected output has beefirted, the post-processor should be run
on the file and the output should be like expected.

Another way to test if the content of the database reflectsahlity that it represents is to use Aubo-
line to make a session where all clicks are known. The pregréthe session and the content of the
pages in it should be recorded. When the log file for the palaraday is available it can be processed
by the post-processor and then it is possible to examineifltiabase contains a session that reflects
the reality of the test session.

These kinds of tests should primarily be performed befoeeAUBA tool is integrated at AUB, but
if changes are made to the AUBA tool or to Auboline it would bgoad idea to perform these kinds
of tests again to make sure that the changes do not causetéhie tlee database to be incorrect.

7.2.2 Referential Integrity

As mentioned in Section 7.1, audit control assures that #tebése contains the right number of
rows in the different tables. When this is assured, it is &sportant to make sure that everything
matches up in the database. Referential integrity can b&reth®y placing foreign key constraints
between the fact tables and the dimensions in the data waseh@his means, for instance, that it is
not possible to insert a record in the page_event fact talalerefers to a log line that does not exist
in the log_line table or a session that does not exist in tksise dimension. Placing foreign key
constraints on the tables slows down insertion into therriefgtables and deletion from or updates to
the referred tables, so it is recommended to drop the cantgriaefore insertion of large amounts of
data and place them on the tables again after the insertioa.r€ommendation is that foreign key
constraints should be dropped if the insert affects mora #®% of the table [Corey et al., 2001].
Therefore, the foreign keys are dropped for the initial Iéadthe AUBA tool where approximately
one year of log file data is loaded into the database, but tlegenkept for incremental loads because
they only affect a very small part of the data in the database.

7.2.3 Cross-Footing

With cross-footing, the data warehouse is queried to chidbleidata has certain important character-
istics. For instance, the pages_in_session attributeso$dission dimension must match the number
of records in the page_event fact table that have the sarsmedey as the session. This cannot be
checked with a table constraint on the session dimensiaause a session is always inserted into
the database before the page events that belong to thersemsibtherefore there are no page_event
records with the session key in question when the sessimsésted. The following view and query
selects the session key, number of pages in session andiifgenof page events belonging to the
particular session for all such combinations where the twmlpers are not equal.

CREATE VIEW page_count AS
SELECT session_key, COUNT(*) AS page_count
FROM page_event
GROUP BY session_key;

SELECT session.session_key, page_count.page_cowitrs@ages_in_session

FROM page_count, session

WHERE session.session_key = page_count.session_key AND
session.pages_in_session <> page_count.page_count

The result set of the query contains all sessions where th#auof pages in the session does not
match the number of page events that reference the sessioff lkerefore, the result set should be
empty if everything is in order. When running the query ondlaga from the initial load in the data

7.3 Error handling 39

warehouse, the result set is empty, as it should be, and shésta success. It takes six minutes to
execute the query on the data in the initial load so it shooldoe executed after each load. Rather,
it could be part of a test set that is executed at a weekly orthtypbasis to check if everything still
matches up. Other similar tests could also be executedmiitig test set.

7.2.4 Manual Examination

If unexpected numbers occur in the database it could be aodign error in the AUBA tool or in
Auboline. Therefore it is a good idea to examine the databassuch numbers. For instance if
there is a session with 2000 clicks or if every search made particular day are 'basic searches’.
When such an out of range number is discovered, the persponsible for the AUBA tool should
investigate the cause to find outif an error has caused itloert is another explanation. For instance,
an extremely long session can be caused by a web crawlesthakhown to the AUBA tool. If such

a web crawler is discovered, all log lines created by this welvler should be discarded from the
database, and the web crawler should be added to the lisbefrkweb crawlers so it will not affect
the analysis results in the future.

This kind of test should be performed at a regular basis. imjgortant that the person performing

the tests are familiar with what is normal and what is abndédata in the database. This kind of test
has been used during implementation and has resulted imgtarice discovery of new search bots
that were not recognized by the post-processor.

7.2.5 Process Validation

Another of the data quality assurance methods that [KindrallRoss, 2002b] recommends is pro-
cess validation. It would be a good idea to sit down with somgghwho has great knowledge about
Auboline and its underlying implementation. Preferablyragess validation team would include

someone who has extensive knowledge about the values arah8esrof the variables in the URLs

and someone who knows how Auboline is used at AUB. Unforelgait has not been possible to

get information about the underlying implementation of Alibe and the variables in the URLs, and
the underlying system is not developed by AUB, it has not ketampted to contact the people who
have implemented it. If it had been possible to put togeth@oaess validation team, it would have
been used at different stages of the implementation pro&éss, before anything was implemented
to translate the URLs into the information that is needectlier data warehouse, then at different
milestones in the implementation process, and finally tida# the ETL processes in the testing
phase.

7.3 Error handling

When an error has occurred it usually means that the confehealatabase is not as it should be.
Such a state could be caused by an error in the AUBA tool, a poutage during the ETL process,
or other problems. These kinds of problems should be takenafdy the error handling part of the
AUBA tool. Part of the responsibility of error handling istoake sure that the database is returned to
a state where the contentis valid. This can be done by raflatk the changes made to the database
during the failed ETL process. Errors should be handledraat@ally whenever possible so human
intervention is rarely necessary. For instance, in the egéa power outage the ETL process that
was running can be rolled back and started over by the AUBA.Too

The Audit dimension is a very useful tool for error handlimdnere information about what happened
during the previous ETL processes can be found. There arpdssible scenarios that can cause error
and invoke the error handling process. Either the ETL pretes been interrupted by a mismatch
between some of the audit numbers or there is another resiscimas a power outage, that has caused
the ETL process to stop before it has completed. The handfititese two types of error is described
in the following.

Data Quality Assurance

7.3.1 Process Interrupted by Audit Number Mismatch

Audit number mismatches can be caused by either errors isdhece code of the AUBA tool or
by system errors, such as when the disk is full. When such iam eccurs, any changes made to
the database, except for the audit table, are rolled backde&sribed in Section 7.1, audit number
mismatches can occur throughout the entire ETL processeiiipg on when the error has occurred,
it may be beneficial to attempt to recover the process at & pdian the audit numbers matched, or
maybe the process should rather be started over from sci@icbe the first parts of processing of a
log file are very fast, there will not be much gain in attemgtio recover the process at an early point.
Quality assurance is one of the things that takes a lot ofdhdihg time - especially the counting of
the number of new lines in the database tables takes much$imee this is the final audit check and
the transaction where the changes to the database are mattelierolled back, if there is an error
in this check, the new records have to be recounted at regoVérerefore the process is restarted
from scratch each time there is an audit number mismatchn Huwdit number mismatch occurs in
the restarted process as well, the process should not laetessagain and again. After two attempts,
the abandoned and the AUBA tool administrator should beiadtof the mismatch, so the problem
can be handled manually. For instance, if the audit mismiatclaused by a lack of storage space,
the administrator will have to make more storage spaceaiail before the ETL process should be
restarted.

If the second attempt at processing the same log file givestlgxhe same audit number mismatch,
the problem could be caused by an error in the source code &WBA tool, that should be located
and corrected, before the process is restarted. The infamabout which audit numbers do not
match tells the administrator how far the process was whetior occurred, and thus can help the
administrator locate the error in the source code. New leg Bhould not be loaded into the database
until the error has been corrected, but the AUBA tool cah Isélused for analysis of the data loaded
before the error, because the database will look as it didrbehe failed load. When the error has
been located, it is necessary to consider if it only has aecefin the log file in question of if it is
necessary to reload all previous data after the error has t@eected, because the error has caused
undetected errors in the data that are too important to thé/s@s to be ignored. In most cases this
would not be necessary, since the error has not been caughtprbcessing the previous data.

7.3.2 Process Not Completed

In the event of a power outage or the like, the ETL process beélldisrupted without having the
opportunity of reporting the problem first. Therefore, itilgportant to have a process outside the
AUBA tool that can check up on the AUBA tool. This could be candal with a cron job that checks
for new log files and starts the incremental loads. If it nedithat there is an audit record that has
not been completed, but no Java process is running, it magteise there has been a power outage
or because the program has ended unexpectedly. In thigigituarror handling should restart the
process that was interrupted. Another good idea is to haverajab that checks if a java process is
stalled. In the event of a stalled process, it should bedaled restarted if the changes to the database
have not been commited.

CHAPTER 8

User Interface

The AUBA tool must be easy to use. The AUB staff should not hlatake a database systems course
to get results with the AUBA tool. A graphical user interfdwes been implemented, so the users will
not have to know the underlying structure of the databasengthing else about databases for that
matter. In the graphical user interface the users can chebadh information they need from a list
of options, and this information will appear on the screea akart. The graphical user interface has
been implemented in J2EE and JSP and will be installed on bthe servers at AUB. This way the
users can access the tool from their own machines using a melsér instead of having to install a
program on their machines. The Servlet runs on the servdrhanuser interacts with it using HTTP
requests and responses, and the HTML generated by the Semdigplayed in the user’s browser.

Se Antal khk 1 forheld 1l

n n Dato [Ugeizemester [
Antal ki
Antal sepninger
Antal sessions Gennemsnitligt antal klik per uge i semester
SessionlEngder _
Succeskniterier mg_,unn
Eeservabioner AHgin
S —— 45,000
Bawmeri klili’v 50,000
Bogbeslrivelser 85,000

B0,000

75,000

70,000
Idane] 65,000
forespergsel = 60,000

E 55,000

50,000

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

A 1 2 345 6 7 8 9 (0111213141516 171810 20 21 22 23 24 25 26 27 28 20 30 31
uge | _semester

Figure 8.1: Screen shot of AUBA graphical user interface

There are three simple steps to go through to get an anaggidtr First, the user selects the measure
that he wants information about, for instance number okslicSecond, he needs to choose how the
information about the measure should be grouped, for icstancording to date. The third step is to
select the specific attribute to use to group the measuretiy.cbuld be week of semester if the user
wants to see the distribution of clicks during the coursenefsemesters.

Figure 8.1 shows a screen shot of the simple user interfadh@cAUBA tool. In the first step, the
user chooses a measure from one of the seven possibilittee left frame. The two last steps take
place in the top right frame. The options in the second stgye@ on the measure that the user
chooses in step one. All measures can be analyzed by datevendftday. “Clicks” and “sessions”

41

User Interface

can further be analyzed by the different page attributesar@®es and success criteria, including
book descriptions, basket saves and reservations selyacate also be analyzed by search type and
session.

When the analysis parameters have been chosen, a queneitghbased on these. This query is
sent to the database, and the chart showing the results ésajed automatically from the result set
using Cewolf [Cewolf, 2004], which is an open source extensif JFreeChart [JFreeChart, 2004].

The following concrete example shows how a user would tylyicese the graphical interface to get
information with the AUBA tool. The prototype has a menu & tbft where the user can choose
which measure to find information about. If the user choosednstance “Antal klik”, he can get
information about the number of clicks in Auboline. When theer has chosen a measure in the
menu, the second choice appears in the top right frame asece@en in figure 8.2.

Se Antal khib 1 forhold 1l
Veelg infarmationstype \:I
“zelg intormationstype

Tid pa dagen
Antal klie — Sessioner
Antal segringer Sider
Antal sessions
SessionlEngder

Succeshriterier
Eeserwvationer
Bager 1 kurw
Eogbeskriveleer

Manuel

forespergsel

Figure 8.2: Selection of dimension.

Now the user has to choose if he wants to analyze the numbdicks$ evith respect to date, time
of day, page or session characteristics. Choosing “Dattiénfirst drop down box makes a second
drop down box appear. If the user wants to see the distribudfcclicks per week of semester, he
can choose “Uge i semester” in the second drop down box asralied in Figure 8.3. Clicking “Vis
resultat” after these choices will send a query to the dalaad return a chart of the result in the
bottom right frame (see figure 8.1).

Se Antal ki 1 forheld al:

Dato I:' “eaelg gruppering D
Weaaly gruppering
Ar

tléned

Lutal Il) Dagimaneden —
Antal spgninger Ugedag
Aital sessions Semester

Sessionlengder

Succeskritericr Eksamen

Ferie

Rasam‘ationer e pé Bret
Begers kurv Arbejdsdag

Bogbeskrrrelser

Iufanuel

forespergsel

Figure 8.3: Selection of attribute.

43

The graphical user interface is made as simple as possibiake it easy to understand and use. The
predefined queries are all of the same type because this linathumber of options that the user has
and thereby simplifies the process of getting to a resulthWfibwledge of the tables and materialized
views in the data warehouse, the advanced users can entquanyif he chooses the manual query
option at the bottom of the left frame. The result of a userrgefiquery is not guaranteed to have
the format that is required to show a chart of the result, steiad the result is shown in a table as
illustrated in Figure 8.4. The aesthetics of the graphisairinterface has not been a priority. In a
possible commercial version of the AUBA tool this would hawdoe improved.

Felect Search type.CYpS, COULC[F), Sum
(nuthr_Df_rEsErvat.anaj from search,
sEa[ch_t.ypE where sear:h_type.sEa[ch_t.ngE_]{Ey =
sEa[ch.sEﬂrch_typE_}(Ey group by sEﬂrch_typE.t.grpE

<]] >

Antal lehile

Antal segunger

Antal sessions type count | sum

SessionlEngder basic search £36502 116244

SUCLLUW multi-base search 3205 |91

W CCLsearch 4800 987

sger i kurv

Bogbeskrivelser basket 4841 2049
history 48483 5103
rmulti-field search 18769 2073
unlcnown 11262 (1245

Manz] browse mdex 77994 9801

toresperasel

Figure 8.4: Screen shot of the manual query part of the AUB#pbical user interface

CHAPTER 9

Query Performance

If the queries generated through the graphical interfacescthe base tables directly, the user will
have to wait several minutes in many situations before theltrappears on the screen. This is due to
the amount of data in the database. If the users of the AUBPRhiaxe to wait too long for the results
they will loose interest in using the tool. Therefore it iassary to have interactive response times
for the queries that are generated by the graphical usefact The two methods that are used to
improve query performance in the AUBA tool are summary takdled indexing. These methods are
discussed in the following.

9.1 Summary Tables

The results that are most often requested through the AUBAdre either counts, sums or aver-
ages. These aggregate queries can be sped up consideral$ynigysummary tables. Summary
tables are materialized views where counts or sums aregicedated and therefore faster to access
[Harinarayan et al., 1996]. For instance, if a user requibst@verage number of clicks in Auboline
per week day, it is useful to have a summary table that cosithia number of clicks per date. This
summary table can be used to calculate the average numbéclaf per week day. For the data
set of the initial load this kind of query takes approximatehe minute to join 3.9 million lines in
the page_event table with 393 lines in the date table andpgtmiresult by the week _day column.
It is necessary to access 86,000 disk pages to get the r€xulthe other hand, the summary table
contains only 393 lines. Each of these lines contain the itaber of clicks for a particular date,
and grouping the summary table by the week_day column okbst80 milliseconds, because it is
only necessary to access 32 disk pages.

The down-side of using summary tables is that they slow ddwerE&TL process, because they need
to be updated when new information is loaded into the badedablaving a lot of summary tables
also take up a lot of storage space. Therefore, all possibitersary tables should not be created
to make sure that the queries run smoothly. It is a good idezdate a summary table when it
represents data that is queried often and when it takes sstesage space than 25 % of the base
table data that it represents or an existing materializedthat can be used to find the same result
[Corey et al., 2001].

9.1.1 Basis for Selection of Summary Tables

In order to choose which summary tables to include in the dat@house, it is important to look at
the types of queries that will be used to access the data. Uéweg generated by the graphical user
interface all deal with the measurements listed below.

* Number of clicks

* Number of searches

* Number of sessions

 Length of sessions

« Number of book descriptions read
» Number of books saved in basket

* Number of reservations

45

Query Performance

Because these measures are central in the graphical usdaa#, they are also central in the choice
of summary tables. But there are many possible summarystalide represent these measures in dif-
ferent ways, so it is necessary to find out which kinds of qegawill be used in order to decide which
summary tables to include in the data warehouse. As memtj@ensummary table is a materialized
view of an aggregate query. Aggregate queries can be grooypete or more of the dimension
attributes of the data warehouse. So the possible summagstéor the two star schemas in the data
warehouse are the aggregate queries grouped by all possitribinations of dimension attributes
for each star schema. Since there are 44 different attskotgroup by in each star schema, there
arel,76 = 10'3 candidate summary tables for each star schema if all cortibirsaof attributes are
taken into account (1 grouped by all 44 attributes, 44 grdupe43 attributes, 946 grouped by 42
attributes, etc.). This is a total 8f 52 = 103 possible summary tables for the whole data warehouse.
Of course, all of these candidate summary tables shouldenatdterialized. It is necessary to find
a method of selecting which aggregate views to materiatizeder to achieve acceptable query per-
formance while still keeping storage space and time to ugptiet summary tables after new loads at
an acceptable level. Two questions need to be answered @ twranake a good choice on which
summary tables to use.

1. Which queries must have good performance?

2. Which summary tables are dependent on each other, i.echvglimmary tables are not as
important to use, because the same queries can be answeaedeiptable time using other
summary tables?

To answer the first question, it is necessary to take a lookhathwqueries can be executed through
the graphical user interface. There are two types of queTibs first type is the predefined queries
that are executed when a user picks measure, dimension taibdtatand clicks to get the result in
a chart as described in Chapter 8. Since the users can onbsefesingle of a limited number of
attributes to group the result by, this type of query is anragate query grouped on a single attribute.
The second type of query can be any query. Since the usersntantle query text, there is no
pattern that can be predicted, but it is reasonable to asthmheach unique user defined query will
not be used as often as each predefined query. Thereforedtiefipred queries should be prioritized
when deciding which views to materialize.

The second question can be answered by looking at the ressilb&the different queries and finding
out which result sets are subsets of other result sets. Bimsielp to limit the number of summary
tables to use. For instance, if there is a summary table treains the total number of reservations
per search type per date, this summary table can also bew$ead the total number of reservations
per search type. Thisis because the result set of the latégygan be derived from that of the former.
Similarly, the total number of clicks during working hourarcbe derived from the total number of
clicks per hour, since it is simply the sum of the number ofldiwhere the hour is from 8 through
15. The knowledge of which candidate summary tables arendkpe on each other is utilized in the
Greedy algorithm [Harinarayan et al., 1996]. This algarithan be used to decide which views to
materialize as discussed in the following section.

9.1.2 The Greedy Algorithm

As explained, summary tables are very efficient for imprgwjuery performance. If every possible
summary table is materialized, query performance woulddyg good because every query would
just be a lookup in one of the summary tables. But the downsideving materialized summary
tables is that they take up storage space and it takes timpdate them when the base tables are
updated. Therefore it is not a good idea to materialize abpime summary tables. The best compro-
mise is to materialize enough summary tables to improveygperformance to an acceptable level
and keeping storage space and ETL performance at an acleeletedd as well.

The Greedy algorithm in Algorithm 4 can be used to decide wihitall possible views are most
beneficial to materialize. The algorithm calculates thedfienf materializing each view. The benefit
of materializing a view is the difference between the nundieecords that are necessary to access
before and after materialization of the view. In this ca#tidn the dependencies between views are

9.1 Summary Tables 47

taken into account by adding the benefit of views that can Imepcted from other views. When
all benefits have been calculated, the view with the highesefit is chosen for materialization.
After this, a new round is started where all benefits are pedated. This is done because some
of the benefits may have changed because the views haveeaedswefit from the prior choice
for materialization. The view with the highest benefit is iagehosen for materialization. This is
continued until every view that has a benefit higher than ba® been chosen for materialization.
The result is a list of views in the order in which they shouédrhaterialized. This list can be used
to materialize views in the specified order until an accelptallance between query performance
and ETL performance has been reached. Materializing mesgs/improves query performance but
slows down ETL, so the choice of how many views to materialidehave to be a compromise.

Algorithm 4 The Greedy Algorithm [Harinarayan et al., 1996]
GREEDY()
S« {top view}
forall i=1tokdo
select that view v notin S such that B(v,S) is maximized
S« S union {v}
end for
resulting S is the greedy selection

It is necessary to calculate the number of records in thdtrestiof each candidate summary table
in order to be able to calculate the benefits. As mentionedntimber of possible summary tables
is huge, so it is not possible to calculate the number of @ar each possible summary table.
A possible solution to the problem is to estimate the numleecords in the candidate summary

tables. This way the long time it takes to query the databageet the number of records in the

results of the candidate summary tables can be avoided. Aaueif estimating storage space of
different subsets of the set of possible summary tablesdgested in [Shukla et al., 1996]. The

paper also suggests limiting the set of candidate summhbalys4o have a maximum of one attribute
from each hierarchy in each summery table. This would deserfize maximum number of attributes

in a candidate summary table to 21, but there are still 44u#fit attributes, so the set of candidate
summary tables is still very large. This is because a big phthe date and session dimension
attributes cannot be organized in hierarchies.

Another method of solving the problem of limiting the timesdsto estimate the sizes of candidate
summary tables is to limit the number of candidate summadressubstantially by utilizing knowl-
edge about the data and how it will be used. It is known thattobhe dimension tables are very
small. The search type and page dimensions each have lessG@aecords and the date dimension
has less than 500 records. The dimension tables that aresrsyhall have the potential of being
smaller because it is not likely that all of their attributedl be used as group by attributes. The
time of day dimension has 86400 records, but it is not necgssadave summary tables where the
measures are grouped by second. Grouping by hour is sufficemause the time of day is the in-
teresting part - not the exact minute or second. Groupingithe dimension by hour still preserves
information about period of day and working hours. This Emwnly 24 aggregated records in the
time of day dimension. The session dimension is the largestmsion table. It has approximately
four hundred thousand records. In many ways, the sessioardiion is similar to a fact table. The
attributes pages_in_session, book_descriptions_isisse®ooks_in_basket _in_sessionand reserva-
tions_in_session are additive and are therefore like mreasnd the outriggers to the page, date and
time of day dimensions are like foreign keys from a fact tableimension tables. But the session
dimension also has a lot of dimension-like attributes suechrawser and referrer. However, the out-
riggers and the measure-like attribute are the ones fronsgéksion dimension that are of interest in
the GUI, so the session attributes will not be grouped with dttributes from the page event and
search fact tables. Therefore the simplest solution is thentaree schemas when deciding which
combination of attributes to group by in the summary tabldse first schema is the page event star
schema, with the exception that the session table is remmveithe group by attributes are the keys
from the page and date dimensions and the hour attributetfiertime of day dimension. The search
schema looks like the page event schema, except that theoepiage key, but a search type key in
stead. Since the session information has been removed frertwb star schemas, there is a third

48

Query Performance

schema that contains all the session information that istefést. It has four group by attributes -
start_date_key, hour from start_time, first_page_key asd page_key.

In the following sections, these three parts of the data @use will be analyzed and the Greedy
algorithm will be used to decide which summary tables toudelin the data warehouse.

Page Event Summary Tables

Each possible summary table is a combination of attributes the dimensions of the page event star
schema. The session dimension is not considered at thislpesause it will be looked at separately.
To limit the enormous amount of combinations of attributedy the most granular attribute that will
be used from each of the remaining three dimensions is ceresid The most granular attributes of
both the page and the date dimension (page function and e&pectively) are of interest, so these
dimensions can be grouped by their keys. But the time of daedsion will be grouped by the hour
attribute, because minute and second information is nattefést. Figure 9.1 shows the views that
will be considered to materialize. The name of each view igtgsreviation of its group by attributes.
Thus, dpt is a view that is grouped by date_key, page_keyiams dbf day.hour. The numbers in
parentheses below each view name is the number of recorlle irigw. These numbers are used by
the Greedy algorithm to establish the benefit of materiadjzhe different views.

(211?;46)

P
dp dt pt
(23,510) (7716) (1720)
(393) (95) (24)
none
@)

Figure 9.1: The combinations of page event attributes aadittes of each of the ag-
gregated views.

Algorithm 4 is the Greedy algorithm. In each round, it caltek the benefit of materializing each
view as the difference between the number of records tha¢ wecessary to fetch to calculate the
view and its dependent views before and after materiatimadf the view. The result is a prioritized
list of all the views that would be beneficial to materializ€he root view of Figure 9.1 should
be materialized because all the views are dependent ondtafier that a number of views from
the prioritized list should be materialized. The Greedyoalhm has been implemented to find out
which views are most beneficial to materialize for the AUBAIlt@and the source code can be found
in Appendix D. The Greedy algorithm does not consider fregies of use of the different views,
so in its original form, it assumes that each view is used amlkegumber of times. Since it is
predicted that most queries will be single-attribute gerihis has been taken into consideration in
the implemented Greedy algorithm. The implemented Gredglyrithm assumes that each single-
attribute view is used ten times more often than the muttikatte views. This is done by multiplying
the sub-benefit that relates to single-attribute views &mheview by ten. For page event summary
tables, this customization of the Greedy algorithm charigesbenefits but the order in which the
views should be materialized is the same.

A method of choosing the right number of views to materialzéo materialize one view at a time
until the desired balance between query performance anggespace has been reached.

9.1 Summary Tables 49

| Choice | Group by attributes | Benefit |
1 page_key, time_of day.hour4,473,546
2 date_key, time_of day.hour 2,277,330
3 date_key, page_key 191,236
4 date_key 73,230
5 time_of _day.hour 16,960
6 page_key 16,250

Table 9.1: Greedy result for the page event schema witheutelsion dimension

The order in which the page event views should be materhbinel the benefit of each materialization
is listed in Table 9.1. The execution time has been testel evie single attribute query for each
attribute. When testing the execution time of differentrigeeit is learned that single attribute group
by queries take up to five minutes to execute. This cost wiken worse when more data is added
to the database, so it is reasonable to use summary tablesuðe dimensions are small, it is
possible to achieve good response time even though only aff¢he views are materialized. The
response time should be better than needed so it will stildual if there is much load on the machine
and it will not take up too much processor power from othercpsses on the machine. Therefore the
acceptable response time for each of the test queries is seet second. The summary tables are
also fairly small due to the small dimensions and therefareryg execution time is improved greatly
already at materializing of the top level view (dpt). Thegdevalue group by test queries now take up
to five seconds to execute. This is a great improvement, bahibe even better. When materializing
the two first priorities on the list (pt and dt), query exeouttime drops to below 0.2 seconds for each
query in the test set. This is very satisfying, so no more gibave to be materialized.

Search Summary Tables

The dependencies of the search attributes and the sizes wigvs are shown in Figure 9.2. When
the customized Greedy algorithm is used on these valuesgethdting materialization order is as
shown in Table 9.2. This order is not exactly the same as itldvba if the Greedy algorithm had
not been customized. Before customization, the Greedymewndation was to materialize all the
two-attribute views before the single-attribute viewst because the single-attribute views are used
more often, the benefit of materializing the view that is agguped by date_key is now higher than
the ones where date_key is one of two group by attributes.

(53:30)

P
ds dt st
(6235) (7363) (435
(393) (20) (24)

none
(1)

Figure 9.2: The combinations of search attributes and ttessf each of these aggre-
gated views.

Query Performance

| Choice | Group by attributes | Benefit |
1 search_type key, time_of day.houd,114,995
4 date_key 531,370
2 date_key, search_type_key 47,295
3 date_key, time_of day_key 46,167
5 search_type_key 4150
6 time_of _day.hour 4110

Table 9.2: Greedy result for the search schema without th&i@® dimension

The query performance for the search schema has been tested same way as the page event
schema. The search schema is very small so even when quérgibgse tables directly, the longest
execution time is only 32 seconds. In this case it is enoughdterialize the top view, which brings
query execution time down below 0.6 seconds for each queahgitest set.

Session Summary Tables

The session dimension has four attributes that have beectedlas interesting as group by attributes
for the summary tables. These are date_key, time_of_day.ficst_page_key and last_page_key.
The lattice for the session part illustrated in Figure 913iggier than the two previous lattices, because
there is an extra attribute that gives more combinationsefihputting these views and sizes in the
Greedy algorithm it gives the result shown in Table 9.3. Agaihe customization of the Greedy
algorithm has caused some changes in the order of the vietiedist. The smaller views have been
moved up on the list compared to where they were prior to eniziation.

difit
(134,758)
dfl /dft/ \ dit fit
(37,405) (35,004) (101,016) (6886)

(6215) (16,469) (7687) (1041) (760) (147

d f
(393) (62) 81) (24)
\\none//
1)

Figure 9.3: The combinations of session attributes andities f each of these aggre-
gated views.

The test set queries take up to two minutes to execute whewiggehe base tables directly. Ma-
terializing the top view (dflt) brings query execution dowma maximum of 13 seconds. After
materializing the two first priorities on the list (flt and dis well, query execution time drops to
below 0.2 seconds for each query in the test set.

9.2 Indexing 51

| Choice | Group by attributes | Benefit |
1 first_page_key, last_page_key, time_of day.hod;347,648
2 date_key, first_page_key 1,420,683
3 date_key, first_page_key, time_of_day.hour 199,508
4 date_key, first_page_key, last_page_key 194,706
5 first_page_key, time_of day.hour 121,936
6 last_page key 68,050
7 date_key 58,220
8 date_key, last_page key, time_of day.hour 33,742
9 date_key, time_of day.hour 27,317
10 date_key, last_page_key 20,936
11 time_of _day.hour 7,360
12 first_page_key 6,980
13 first_page key, last_page key 5,845
14 last_page_key, time_of day.hour 5,459

Table 9.3: Greedy result for the session part of the schemas

Materializing summary tables for the AUBA tool has improwgaery execution time a great deal.
Only seven views have been chosen for materialization awdge space is not a problem, because
the summary tables are fairly small. The largest summarletsbthe dpt table for the page event
schema, which has 214,746 rows. The seven summary tablesahtaval of 425,571 rows which is
not much more than a tenth of the rows in the page event falet.talbe only problem is the update
time of the summary tables. At the moment they are recaledl&om scratch each time, and this
takes several minutes per view. The PL/SQL functions thatlleathis can be seen in Appendix C.
Optimally the materialized views should be updated incratialéy. This is importantin to be able to
update the materialized views regularly.

9.2 Indexing

Another way to improve query performance is to index thedalfieavily. Indexing can help access
the tables faster, so to improve performance many of thenwedfithat are constrained upon in queries
should be indexed. Indexes are good to use when only a snrélbptne records of a table is to
be accessed but might slow down query time if they are useddesa a big part of a table. For
instance, if there is an index on the year column of the dateedsion table. If the table is queried
to find records from 2003 it would not be an advantage to usénithex. This is because there are
only two different years in the data set. When the index islusdind all dates in 2003, the table will
be accessed randomly, and because more than half of theid#testables are from 2003, it would
be quicker to scan through the whole table. Therefore inslskeuld be chosen with care. Indexes
can also be used on more than one column at a time. For instanegossible to have an index
on the day and month columns together. Such an index can beaasecess the day column or the
day and month columns together but does not improve perfocman accessing the month column
alone because the index is sorted by day. Unfortunatelgxind slows down the loading of data into
the database, but this is acceptable compared to the adesniden querying the tables.

CHAPTER 10

User Behavior Survey

To find out if the result of the analyses made with the AUBA toaltch how the users see their own
behavior in Auboline, a user survey has been carried out. éstipnnaire has been constructed (see
Appendix F). 32 questionnaires have been answered by bersoat the main department of AUB.
In this chapter, the answers given by the borrowers will bmared to the results of analysis made
with the AUBA tool.

It is expected that the same general patterns found with t@Adtool will also be found in the user
analysis, but it cannot be expected to get exactly the sagudtse There are many reasons for this
[Kvale, 1994, Alvesson, 2003]. First, the 32 borrowers thaswered the questionnaires represent
a very small part of the borrowers whose behavior is refleoiegtie AUBA tool analysis. Second,
many of the answers come from borrowers that were studyirysipally at AUB on the day of the
survey and therefore may represent a more uniform use of inéthan if all borrowers had been
asked. Third, there will always be a difference between heapte behave and how they describe
their own behavior. Finally, some of the answers may be wisecause borrowers misinterpret the
guestions or are not very familiar with the jargon used. ®atgd misinterpretations of the questions
are discussed along with the answers in the following sestio

10.1 Frequency of Use and Entrance

In question 1 the borrowers were asked to estimate the frexyuef their use. This question was
asked to get a picture of how often the borrowers use Aubolirfee answers for this question are
depicted in the chart in Figure 10.1.

15
4
12
10
i
i
)
2
I:l 1 I 1 1 I| |
Ewery Sewml DTeweral Abont Less Hewer
dag tmesa theia oicea
week morth moatl

Figure 10.1: Answers for question 1: How often do you use Anle@

The chart shows that none of the borrowers use Auboline edayy Most of the borrowers use
Auboline more than once a month. This result cannot be coeaptarthe AUBA results, since it is
not possible to recognize individual users and therebyd#elaow often they use Auboline.

53

User Behavior Survey

In question 2 the borrowers were asked how they most ofter &niboline. This is another thing that
the AUBA tool cannot give an exact answer for because of thenaatic redirect from the Auboline
main page to the basic search form. Because of this redirécgnly possible to establish the origin
of sessions that do not start on the start page of Auboline.aftswers to question 2 in Figure 10.2
show that almost all users access Auboline through the AUBsite There are also a few users that
have Auboline in the favorites of their browser or use a deargine to find Auboline.

f
4
2
T 1
T T T T T
z £ B F, 25, % I
+ - W]
LE 2c gpst gcold 3 5
=g w0 T oG h :lmCUE =i
Bs £ E R Eg 5 B =
g, 5w F=i = 2oz @
5 2& [3%E £DIr s
& = 2 Bc Em;E =
L wE w £ = 3

Figure 10.2: Answers for question 2: How do you enter Aubesin

10.2 Distribution of Use

In question 3 the borrowers were asked if they use Aubolinstiyduring working hours or in their
spare time. As the chart in Figure 10.3 illustrates, more @ percent of the users use Auboline
mainly during working hours and 20 percent use it more inrtBpare time. This is very close to
the average number of clicks in an hour outside working honhsch is 17 percent of the average
number of clicks during working hours. Actually, accorditogthe AUBA results, 78.4 percent of all
clicks in Auboline occur during working hours.

30

23

20

During warking hours/school time In my sparetime

Figure 10.3: Answers for question 3: What time of day do yoei Agboline most?

Question 4 is about the distribution of use of Auboline dgtiime week. This has been analyzed with
the AUBA tool as well. As illustrated in Figure 10.4, the aysi$ showed that Auboline is used most
in the beginning and middle of the week. On Thursdays andilysdhe use starts to decrease and it
is very low in the weekends.

10.2 Distribution of Use 55

800000

800000 ——

700000 +——

600000 +——

500000 +—

400000 +——

300000 +——

200000 +——

100000 +—— | —}»
1}

rmonday tuesday wednesday thursday friday saturday sunday

Figure 10.4: Total weekly distribution of activity measdrim page events per week
day.

When asking the users, the same general pattern formedluatalted in Figure 10.5 the users say
that they use Auboline most in the beginning of the weeks.tBeithart of the user behavior shows
that their use drops steeply in the middle and end of the weekedl as the weekend. The chart is
therefore different from that in Figure 10.4. There are tvasgible explanations for this, besides the
uncertainty that the borrowers do not remember exactly kigys they use Auboline most. One
explanation is that the survey was conducted on a Tuesdayhandhe borrowers that are at the
library on a Tuesday may often use the library and Aubolintnat part of the week, so if the survey
had been conducted on a Friday, the pattern might have baeththborrowers used Auboline most
toward the end of the weeks. A second explanation for thewiffces between the two results is the
way they have been measured. The AUBA result shows the nuafiloicks on the different week
days and is therefore very precise. If it had been possibéskahe borrowers to assign percentage
of use to each day of the week, the result would have been nuon@arable with the result from
the AUBA tool. Instead the question was simplified by not hgvis many options to assign values
to and by asking the borrowers to prioritize the choicesgagtof estimating the percentage of their
use on each week day. Therefore they were asked to rank thedssibilities “beginning of week”,
“middle of week”, “late in the week” and “weekend” accorditmwhich time of the week they used
Auboline most. There may be different interpretations adsén values, such that some borrowers
interpret “beginning of week” as only Monday, while otherayrinterpret it as Monday and Tuesday.

To be able to put the result of this question in a bar chart,ath@vers were given points, so if a
borrower put a 1 for “weekend”, four points were given to thnetkend” answer. The second ranked
answer got three points, the third got two and the fourth g@. oThis way of counting points for
the four possible answers has many uncertainties, beceassumes that the use of Auboline drops
with the same amount between the answers with the diffeagrits: That is, if a user uses Auboline
80 percent in the middle of the week, 10 percent in the begmni percent at the end of the week
and 3 percent in weekends, the points will only show whicletduboline is used most. The points
are therefore only precise if the use is distributed with 3@, 20 and 10 percent. The result might
have been closer to the AUBA result if the users were asked/toagpercentage distribution of their
use, but this would also have been difficult to estimate. Aeoteason that the result shows so much
action in the beginning of the week is that some users haveaméed the options but has checked
only one of the possibilities. For such an answer the chepkeadibility is given four points and the
other zero. “Beginning of week” is the answer that has mastolbeen checked, and therefore it gets
a high score.

In Question 5 the borrowers were asked to estimate how mushubke Auboline in the beginning,
middle and end of the semesters, respectively. The resillussrated in Figure 10.6. This result
is very much like the result from the AUBA tool when the dibtrtion of activity is measured by
week of semester. This is illustrated in Figure 10.7, andstimglarity of the two results is even more
obvious when the activity in Auboline is grouped in threeugre of ten weeks each for the beginning,

56

User Behavior Survey

a0
g0
70
g0
50
40
30
20
10

0 T T T
Beginning of Midde of week Last part ofthe Weskend
wneek ek

Figure 10.5: Answers for question 4: What time of week do yse Auboline most?

middle and end of the semesters as illustrated in Figure 10.8

200
180
160
140
120
100
g0
=]
40
20

Begnning ofthe Midde ofthe semester End ofthe semester
semest e

Figure 10.6: Answers for question 5: How does your use of Aakorary during the
semesters?

10.3 Purpose of Use

In Question 6 the borrowers were asked to check which of thialfunctions they use in Auboline.
The answers for this question are collected in Figure 108e fesult is difficult to compare with
results from the AUBA tool because the users were not askeddfien they use the different func-
tions. And since it is not possible to recognize borrower8umoline there is no method of finding
out how many users use each function on a regular basisabhitis possible to use the AUBA tool
to find out how often each page function is used. The resulisfanalysis can be seen in Figure
10.10.

10.4 Types of Searches
The borrowers were asked to check the search types that #eeinlQuestion 7. As Figure 10.11

illustrates, basic search is the search type that is used fiois is also true according to the AUBA
tool analysis, as illustrated in Figure 10.12, but in the AUisult the difference between the fre-

10.4 Types of Searches

120000

100000

20000

60000

40000

20000

12 3 4 5 B 7T 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 N

Figure 10.7: Average distribution of activity measured iagp events per week of

semester.
2500000
2000000
1500000
1000000
S00000
1] T T
Bedginning of the Middle ofthe semede End ofthe semester
semester

Figure 10.8: Distribution of total activity in Auboline wheethe semester is split into
three periods

33
30
25 —
20 +—
13 1+
10 17—

5 +—

|
j_|

Search for
books
Rezersations
Uzer
information
Irfamation
shout loans
Renewal of
lcans
Find location
of bocks

Figure 10.9: Answers for question 6: Which functions do ysa most in Auboline?

58

User Behavior Survey

o T T l l T I T T
=ach¥r Ferervalors Uier Fromeallon Ferewa ot Fired kecalon
bk s Irfrmeabon aboul laans = 45 of bocks

Figure 10.10: The frequency of use of different central tiores in Auboline

quency of use of the basic search and the other search tygesaiter than it is in the survey result.
Again, this could be because many borrowers use basic seambst cases, but occasionally use
other search types, and therefore checked the other sggehin the questionnaire as well. Itis also
very reasonable to assume that some borrowers do not notiaetive search types are called when
they use Auboline and therefore check the possibilities skam familiar in the questionnaire. For
instance, five of the borrowers say that they use multi-fieltsh. In the Danish version of Auboline
the term that is used for this search type and was also usdteiguestionnaire can be translated
to “search on several fields”. If the borrowers do not notitat the search that they use is called
“basic search” and they use it to make searches on diffedsfithey may think that they often use
multi-field search. Index search was checked by more thaircdadhthe borrowers. This could also
be because they are not all aware of what index search maangdognize the fields that are listed
in the parentheses (title, author, subject, etc.) becdugseaften make searches on these fields.

l:l T T T T
Bazk: search RMyi-eEl MatHiase e searh COL seanch
atandarh rearch earch ke, anthor,
ect, et

Figure 10.11: Answers for question 7: Which search typesalouse?

In Question 8 the borrowers were asled about which searasftaky use. Figure 10.13 shows that
most borrowers make searches on all fields but that the titeaaithor fields are also very popular.
As can be seen in the AUBA result for the same question in Eidx.14, these three are also the
most popular according to the AUBA analysis. The main défere between the two results is that
the AUBA results shows a much more frequent use of “all fieltisth the other search fields.

10.4 Types of Searches

00000

00000 +——f

s00000 +——f

400000 +—f

200000 —f

200000 —f

100000 +—

U I =

basicsearch brov=e indes: histony i f ield urknom n CCL=zeanch basket rmuli hase
search search

Figure 10.12: The use of the different search types in Aulgofheasured by the num-
ber of times they are each used in the data set.

16
14
12 +—
10 1+ —
8_— —
g5 4| -
4_— —
2] | -
0
= = Ly & 5 5
= £ = o=
=L Sa 2 =
E; 8
&

Figure 10.13: Answers for question 8: Which fields do you nudt&n search?

SO0 L _I_
o T T e 1

Al el Tile Condked Alsubkch WDk Aulor
bkl classmcakon

Figure 10.14: Frequency of use of the different search fields

User Behavior Survey

10.5 Use of Special Features

It is known from the AUBA analysis that the special featurégoboline are not used as frequently
as the other functions, but it is not possible to use the AUB® to find out why they are not used.
In Question 9 and 10, the borrowers were asked about this.

Figure 10.15 shows the borrowers’ answers for Question @&havhy and how they use the history
function in Auboline. It is clear that most of the borrowersmbt even know that the function exists
and that most of the ones that know about it do not use it. Atingrto the AUBA results, the history

function is only used in 7 percent of all sessions.

20
15
16 T
14—
12 77—
10 +—
5 +—
[

2 4

I:I T T T T

[id notknow KRow about To refind To combine Other
aboutthe the funcion but previous previous
history function donotuseit searchresults searches

Figure 10.15: Answers for question 9: In which way do you ineetistory function?

In Question 10, the borrowers were asked about their useeobéisket function. According to the
AUBA results, this function is only used in 0.8 percent ofsbsions. Figure 10.16 shows that five of
the borrowers who answered the questionnaires say thatigesthe basket function. This difference
might be because the users only use the basket function irthzant of their sessions.

]

ke

Fyow aontie
Echo b Bto eot
15 it
s mge ofbocks
tatloonckler
E 58 1 Ing A mowl g
Togeta [oltlEtor
IVE ESHNg ooks

Okl yotknow akont
the Dazketaction
Faremporaky

Figure 10.16: Answers for question 10: In which way do you thgebasket function?

10.6 Different Types of User Behavior Analysis

As the results from the AUBA analysis and the survey illugtrdhere are differences between the
results that can be found with different types of methodsnaflyzing user behavior [Kvale, 1994].

10.6 Different Types of User Behavior Analysis 61

These differences are discussed in the following.

10.6.1 The AUBA Tool

The AUBA tool deals with facts. It uses the actual clicks inb&line, so it is very precise and can
process a large amount of data in a short period of time. Thwiskck to this method is that the
reasons for the results are not possible to find in the bats.f&or instance, the AUBA tool can be
used to find out that the basket function is used very rarelyite reason for this is not available. If
the AUBA tool is the only method used for analyzing user bédvawm Auboline, it is not possible to
know if the users do not know about the basket function oraf/tio not use it because they have no
interest in using it. The AUBA tool is very good for analyzifagts and correlations among facts. It
is very good for asking about what happens in Auboline butla¢e be combined with other methods
there is a need for knowing why.

10.6.2 Interviews

Using interviews to analyze user behavior in Auboline ispdifferent from using the AUBA tool.
An interview takes a long time to analyze, but there is a ilityi of both asking why and receiving
much more information than requested. For instance, it$sibte to discuss the basket function with
a borrower and find out why she does not use the function andenstye even has some suggestions
about what could be done to make the basket function moractitte to use. Misinterpretations
and misunderstandings are not very common in interviewaulreethere is a chance of asking about
what is meant and asking extra questions if the answers araulffiling. Many of the facts that
are easy to find with the AUBA tool can not be found with intews because it is not possible to
ask all borrowers about their behavior in Auboline and théy ot be able to tell exactly how their
behavior is. But interviews would be a good method to combiit the AUBA analysis to find
possible answers to some of the many questions that arisetfre AUBA results.

10.6.3 Questionnaire

A questionnaire survey has a combination of some of the chexiatics of the AUBA analysis and
interviews. The questionnaires are faster to analyze thwmiiews but not as fast as the AUBA
tool. Because the users are asked directly, it is possildskdahem about their own opinions of their
behavior and why they behave as they do. There is, howev&k &af misinterpretations because
the borrowers answer the questionnaires alone and ther dsafog where misunderstandings can
be caught. A questionnaire is good to use in conjunction with AUBA tool for asking simple
guestions that are aimed at understanding the reasonirigcbible results of the AUBA analysis.

CHAPTER 11

Book Information Extension

There are many possible extensions to the AUBA tool. In itsent state the data warehouse only
contains data collected from the web log files. To extend tb8A tool it would be interesting to
combine the data from the web log files with data from the d#ifée AUB databases, for instance
borrowers and books. Possible extensions are discusskeid ichiapter, but they have not been imple-
mented, so they are not part of the current version of the AW@GA.

11.1 Possibilities of Borrower Information

Unfortunately it is not possible to recognize borrowerstia tog files. If it were possible this could

lead to much interesting information, because it would bespiale to recognize borrowers from ses-
sion to session and maybe even include information about tivby study and how far along they are
in their education. It would be very interesting to see ifloarers that have similar characteristics
also behave similarly in Auboline. It will not be possibleibalude borrower information in the data

warehouse in the future, because it is illegal for AUB to safermation about how the borrowers

use their web sites [Datatilsynet, 2005].

11.2 Possibilities of Book Information

Book information, however, is possible to include in theadaarehouse and combine with the data
from the log files. In many cases it is possible to identify tlo®ks that the borrowers deal with in
Auboline, but it is not always possible. For instance, whdroaower clicks on a book in a search
result to see the book description, the request URL contimsmber that refers to the search (the
set number) and a number that refers to the ranking of the lotble search result (the set entry), for
instance 5 for the fifth book on the search result list. Thesalers are generated by the underlying
program and refer to a temporary set of search results tinatitly be accessed during the duration of
the session, so they cannot be used to identify a book. Hawietree user clicks to see if the book is
available, the request URL contains a so-called “doc_nuinfidis number can be used to identify
the book that the borrower clicked on. For some reason, eaok bas two different doc numbers.
One is used in some situations, such as viewing holdifaysa book or putting it in the basket, and
the other is used on other pages, such as request for rasareatview reservations. AUB has a
database table that can be used to translate between théffevertt doc numbers to find out exactly
which books are dealt with in Auboline.

Adding book information to the data warehouse allows thesigecombine the information already
available with the AUBA tool with information about booklés, authors, UDK classification num-
bers and publication year. Below is a few examples of questibat can be answered with the
extended AUBA tool when book information is combined witle theb log information in the data
warehouse.

« Which ten authors have written most of the books that arrvesl in the start of the semesters?
« Which UDK numbers do books typically have, if they are fowith a search on UDK number?

* Which search types lead to most reservations of books thaiuwblished in 2000 or later?

1The book holdings page in Auboline gives information abbetquantity, stock and placement of the book

63

Book Information Extension

11.3 How to Include Book Information

To include book information in the data warehouse, two darstare necessary to answer:

» Which page events deal with books?

» Which books do these page events deal with?

The first question can be answered by looking at the pageitumscof the page events. There are
nine different page functions where the users deal withifipdmoks. These page functions will be
referred to as book actions. They are listed below.

e Request reservation
» Reservation

* View reservation
 Delete reservation

» Book description

Book holdings

Put book in basket

* View loan status

Prolong loan

As mentioned, it is not always possible to recognize whiobksdhe users deal with in Auboline from
the request URL. As an example, a reservation is made with@TR@ethod request, and therefore
no information except for the session tag appears in theestduRL. But since a reservation can
only occur after a request for a reservation, which contalhnformation that is needed, the doc
number for the reservation can be collected from the refdietd of the log line instead. Similarly,
the book a user is interested in when reading a book desmmiptinnot be recognized from the request
URL because the doc number is not present. Therefore the Witlokiways be unknown for book
descriptions when the particular log line is processed. iBtite user puts the book in the basket
afterwards or views book holdings, the doc number appeatisisnrequest URL and it is possible
to go back and change the information about the book degmmipthen the doc number is known.
In 66 % of all cases, the book description page function ifeed by a page function that enables
recognition of the book. As can be seen in Table 11.1, the loaokbe recognized from the request
URL for all other page functions.

| Page function | Book recognized| How recognized |

Request reservation Always Request URL
Reservation Always Referrer

View reservation Always Request URL
Delete reservation | Always Request URL
Book description | 66 % Later in session
Book holdings Always Request URL
Put book in basket | Always Request URL
View loan status Always Request URL
Prolong loan Always Request URL

Table 11.1: Availability of book information for book furiohs that deal with books

11.3 How to Include Book Information 65

As mentioned above, the specific books that are dealt withaee book actions can be found using
the set numbers and doc numbers in the request URLs. The AdBdrtabase should be converted
into a book dimension table that contains the attributekbkey, isbn, title, author, udk and year. It
is necessary to have a conversion table to translate eaafushaloer into the book key that references
that specific book in the book dimension table.

The book dimension cannot simply be added to the page evansattema to include book action
information in the data warehouse. It is only a small parthaf page events that are book actions
(nine out of 74 page functions), and some page events caallgctepresent more than one book
action. This is because it is possible to put more than on& boihe basket or prolong all of a user’s
current loans with just one click. Therefore it is necessamnodel the book actions with a new star
schema. In this schema the book actions will be representibe ifact table, which refers to the book
dimension table along with the date, time of day, sessioacbetype and page dimension tables.
The page dimension table is used for this star schema eveglhanly nine of the records will be
referred. This is done to make it clear that even though taer@ot as many possible values of pages
that are book actions, it is still the same type of informatioat is wanted as for the page event fact
schema. The book action fact table will also refer to the tdidiension that contains information
about the load that each book action belongs to. The boo@rastar schema is depicted in Figure
11.1.

- session
time_of_day -
- —1 session_key (PK)
date tlme__of_day_key (PK)— session_tag
date_key (PK) sql_time ip_address
sql_date hour browser
year minute last_request_url
month second start_date
day working_hours start_time
weekday period_of_day end_date
semester end_time
day_of _semester book_action pages_in_sgs_sion _ _
week_of_semester book_descriptions_in_sessio
weekend c_Iate_key (FK) books_in_basket_in_session
exam time_of_day_key (FK)— reservations_in_session
holiday session_key (FK)
week_of year search_type_key (FK)
— ke (FK) book
day_of year page_key
worEday book_key (FK) book_key (PK)
audit_key (FK) - isbn
I title
search_type ! author
| udk_level_1
Seal‘ch_type_key (PK) . : Udk_leVe|_2
type page ! udk_level 3
field | ear
— page_key (PK) ‘ y
page_function . |
page_function_type ;_a_u_djt _______ |
process ' audit_key (PK) |

Figure 11.1: Relational representation of the book acttanschema

66

Book Information Extension

11.4 Updating of New Books

If the book dimension table is created from the AUB book dassbbefore the AUBA tool is taken
into use, it will be static and will not automatically be upelé when new books are added to the
AUB database. This is a problem because all books, includiwgbooks that are added to the AUB
collection later, can be found with Auboline. When the AURMLEhas been in use for a while, a book
action may appear that refers to a book that is not in the asiretable and therefore not in the book
dimension, either. In this case it is necessary to get inétion about the new book from the AUB
database. A possible way to get this information is to usela seevice that has been implemented
at AUB. This web service uses the SOAP protocol to allow axtethe information in the databases
from outside users without direct access to the databasiéis tivis web service it is possible to query
the AUB book database to find all information about the boek ttas the new doc number found in
the log file. This information should be added to the conwersable and the book dimension table,
so it is available the next time the book shows up in a log file.

11.5 Future Work

When book information is integrated with the AUBA tool as ddésed above, it is also necessary
to extend other parts of the AUBA tool. For instance, it isessary to add information about book
actions and books to the audit dimension and extend erraliingrto also handle this data. The other
kinds of quality control described in Chapter 7 should alseektended to include book actions and
books.

An additional part of the AUBA tool that should be extendettafntegrating book actions is the
summary tables. Query performance should be measuredddrabk action star schema and views
should be materialized if query performance does not matpkaations. This should be done in the
same way as for the page event and search star schemas.

CHAPTER 12

Conclusion

In this project a web usage mining tool has been designednapi@mented. The result is a tool that
can assist analysis of the user behavior in Auboline.

Analysis of the log files and experimentation with the diéier functions of Auboline has lead to
knowledge about the possibilities of the analysis of thedab store the information from the log
lines in a logical structure that is understandable andyeastessible, the data in the database has
been logically structured in two star schemas. The streatfithe page event star schema is common
in data webhouses. It enables analysis of sessions andyragiehs as well as variations in activity
according to different time and date parameters. The sesteshschema is structured specifically
for Auboline, because searches are the central part of tstersy With the search star schema it is
possible to make analyses of the use of different types atkea and relate the number of book
descriptions, basket saves and reservations to the spsediches that lead to the activity. It is
possible to extend the data webhouse schema whenever dreereeed for new types of analysis or
new information becomes available.

As the main part of the implementation, the post-processartheen implemented to handle the
ETL processes. It transforms the pure text input files to &t fibrmat of the data webhouse. The
performance of the post-processor is satisfactory dueddithited amount of input/output activity
between the java program and the database. Extensive werkden done to assure that the data
flows through the ETL processes as expected and that theadatalill not contain flawed data. Each
incremental load is done in a single transaction to asswtethie data is either fully loaded if there
are no problems or not loaded at all if there is an error, sigch power outage, so the process can be
restarted from scratch when the problem has been fixed.

Part of the motivation behind the implementation of the AURAI was to enable the AUB staff to
analyze the success of the book recommendation system tadagated with Auboline. Therefore
one of the goals of the project has been to prepare the AUBAfto@nalysis of the use of book
recommendations. The dimensional database schema haddstgned in a way that the recommen-
dation service usage data will easily fit into. Unfortungiehas not been possible to analyze the use
of the recommendation service since it has not yet beenratied)with Auboline.

A simple graphical user interface has been implemented tcersare that the AUB staff can find
results quickly without knowing the underlying structuretbe database. Point-and-click can be
used to find the results of predefined queries while advansesican query the database manually
for more complicated requests. The AUB staff can use thelteethat can be obtained with the
graphical user interface to gain knowledge about the beha¥ithe users of Auboline.

The outriggers from the session dimension to the date, tihtap and page dimensions have im-
proved query performance, but the most substantial quefgimeance improvement has been achieved
by using summary tables in the AUBA tool. This is a very impottimprovement because the users
of the AUBA tool will most likely loose interest if they have wait several minutes for each re-
quested result. The materialized views have been hand deetsiise PostgreSQL dost not include
the option of materializing views. Updating the materiatizziews takes a long time because they are
recalculated from scratch. This is a temporary solution ihamportant to improve. It will be much
faster to update the summary tables incrementally instéestalculating them.

The user survey was conducted to illustrate the differemted kind of information that can be gained
with different methods and to compare the borrowers’ peiioef their behavior in Auboline with
the results from the AUBA tool. Each method has its own acages$ and drawbacks, and therefore
itis a good idea to use a combination of several methods begiaig information to get a more clear
picture of what is going on. For instance, it is a good idea tkena thorough analysis of the user
behavior in Auboline with the AUBA tool and then interviewetborrowers about why they behave

67

68

Conclusion

the way they do.

Because the AUBA tool has been developed specifically for Atn give the staff analysis results
that are targeted directly on the structure and contenteaif gdystem. The AUB staff that have been
involved in the project have shown a lot of interest in the AAJBol, because it gives them informa-
tion that they have not previously been able to get. Furtieeenthey find the future possibilities of

the tool very exciting.

There are many possibilities of improving and expandingdti8A tool. One of the very interesting
possibilities of expanding the AUBA tool is to make a part lo€ tsystem analyze user behavior in
real-time to categorize the users of Auboline while theysditton the web site. This can be used to
make an adaptive environment in Auboline where the useraidesl in their search for books. For
instance, an adaptive search tip feature could be implezdent

The possibilities of using the AUBA tool to find interestimfarmation about the use of Auboline
will be further increased when book information is includedhe implementation. There are many
possibilities of expanding the AUBA tool to get even moreoimhation for different analyses. The
technical staff at AUB are interested in developing the AUBAI further after it has been taken into
use and usage tests have given them an idea of which extuadsatill be interesting to explore.

Bibliography

[Aleph, 2004] Aleph (Current as of 30 June 2004). Aleph wedb.silnternet,ht t p: / / vwww.
al eph.co.il.

[Alvesson, 2003] Alvesson, M. (2003). Beyond Neo-Positivj Romantics and Localists - A Re-
flexive Approach to Interviews in Organization Reseavstademy of Management Review, 28(1).

[Andersen et al., 2000] Andersen, J., Giversen, A., Jen&ei., Larsen, R. S., Pedersen, T. B.,
and Skyt, J. (2000). Analyzing clickstreams using subsessi InProceedings of the 3rd ACM
international workshop on Data warehousing and OLAP, pages 25-32. ACM Press.

[Apache, 2004a] Apache (Current as of 30 July 2004a). Apdnttgeserver: Log files. Internet,
http://httpd. apache. org/ docs/ 1 ogs. htm .

[Apache, 2004b] Apache (Current as of 30 July 2004b). Apaskbsite. Internethtt p:
/1 httpd. apache. org/.

[AUB, 2004] AUB (Current as of 30 July 2004). Aub website.dmietht t p: / / www. aub. auc.
dk.

[Auboline, 2004] Auboline (Current as of 30 July 2004). Alihe. Internet,http://a500.
aub. auc. dk.

[Cewolf, 2004] Cewolf (Current as of 7 December 2004). Céwohart enabling web object frame-
work. Internetht t p: // cewol f. sour cef or ge. net .

[Corey et al., 2001] Corey, M. J., Abbey, M., Taub, B., and &bson, I. (2001).Oracle8i Data
Warehousing. McGraw-Hill Companies, first edition.

[Datatilsynet, 2005] Datatilsynet (Current as of 12 Jagu&005). Lov om behan-
dling af personoplysninger. Internetttp://ww. datatil synet. dk/| ovgi vni ng/
per sonopl ysni nger/ | ovt ekst . t xt.

[Demiriz, 2002] Demiriz, A. (2002). webSPADE: A Parallelde=nce Mining Algorithm to Analyze
Web Log Data2002 | EEE Inter national Conference on Data Mining (ICDM’ 02), pages 755-758.

[Due, 2004] Due, L. (2004). Analyzing User Behavior in Auinel with Web Usage Mining. Pre-
master’s thesis (INF7), Department of Computer Sciencéydkg University.

[Harinarayan et al., 1996] Harinarayan, V., Rajaramanafd Ullman, J. D. (1996). Implementing
Data Cubes Efficientlyln Proceedings of ACM SIGMOD ’ 96, pages 205-216.

[IETF, 2004] IETF (Current as of 30 July 2004). RFC1413: IDENInternet,ht t p: / / www.
ietf.org/rfc/rfcldl3.txt?nunber=1413.

[J2EE 1.3, 2004] J2EE 1.3 (Current as of 30 July 2004). JaMatfolim, Enterprice Edition (J2EE)
1.3. Internetht t p: //j ava. sun. coni j 2ee/ 1. 3/ .

[JFreeChart, 2004] JFreeChart (Current as of 7 Decembe#)200freechart web site. Internet,
http://ww. obj ect-refinery.conmljfreechart/.

[Kimball, 1997] Kimball, R. (1997). A Dimensional Modelinganifesto: Drawing the Line Be-
tween Dimensional Modeling and ER Modeling Techniqu2BMS Online, 10(9).

69

BIBLIOGRAPHY

[Kimball and Merz, 2000] Kimball, R. and Merz, R. (2000)he Data \Webhouse Toolkit: Building
the Web-Enabled Data Warehouse. Wiley Computer Publishing, first edition.

[Kimball and Ross, 2002a] Kimball, R. and Ross, M. (2002&h)e Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling. Wiley Computer Publishing, second edition.

[Kimball and Ross, 2002b] Kimball, R. and Ross, M. (2002bhe Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling. Wiley Computer Publishing, second edition.

[Kosala and Blockeel, 2000] Kosala, R. and Blockeel, H. (08Veb Mining Research: A Survey.
ACM S GKDD Explorations Newsletter, 2(1):1-15.

[Kvale, 1994] Kvale, S. (1994)Interview - En introduktion til det kvalitative forskningsinterview.
Hans Reitzels Forlag.

[Levene and Loizou, 2003] Levene, M. and Loizou, G. (2003)hyis the Snowflake Schema a
Good Data Warehouse Desigirformation Systems, 28(3):225-240.

[Ly etal., 2003] Ly, T. H., Mogensen, J., and Skouboe, K. RO0@. Building a Business Intelli-
gence System for AUB. Pre-master’s thesis (DAT5), Depantroé Computer Science, Aalborg
University.

[Ly etal., 2004] Ly, T. H., Mogensen, J., and Skouboe, K. RI0&). Building a Business Intel-
ligence System for AUB (second edition). Master's thesisp@tment of Computer Science,
Aalborg University.

[Pedersen and Jensen, 2001] Pedersen, T. B. and Jensen2C08). Multidimensional Database
Technology.|EEE Computer Magazine, 34(12):40-46.

[PostgreSQL 7.4, 2004] PostgreSQL 7.4 (Current as of 302004). Postgresql 7.4 documentation.
Internetht t p: / / www. post gresql . org/ docs/ 7. 4/ static/index. htm .

[PostgreSQL 7.5, 2004] PostgreSQL 7.5 (Current as of 302004). Postgresql on windows. In-
ternetht t p: // t echdocs. post gresql . or g/ gui des/ W ndows.

[Shukla et al., 1996] Shukla, A., Deshpande, P., Naughtdn, and Ramasamy, K. (1996). Storage
estimation for multidimensional aggregates in the preseridierarchies. IiThe VLDB Journal,
pages 522-531.

[Srivastava et al., 2000] Srivastava, J., Cooley, R., Dasbp, M., and Tan, P.-N. (2000). Web Usage
Mining: Discovery and Applications of Usage Patterns frorabAData. SIGKDD Explorations,
1(2).

[W3C, 2004] W3C (Current as of 30 July 2004). World wide welmsortium - protocol. Internet,
http: //ww. w3. org/ Prot ocol s/rfc2616/rfc2616-sec5. ht m #sec5. 1. 1.

[Zaharioudakis et al., 2000] Zaharioudakis, M., Cochréelapis, G., Pirahesh, H., and Urata, M.
(2000). Answering Complex SQL Queries Using Automatic Swanniables Proceedings of the
2000 ACM SIGMOD international conference on Management of data, pages 105-116.

APPENDIX A

PostgreSQL data definition

A.1 page event fact table

CREATE TABLE page_event (
log_line_key INTEGER REFERENCES log_line,

date_key INTEGER REFERENCES date,
time_of_day key INTEGER REFERENCES time_of_day,
page_key INTEGER REFERENCES page,
session_key INTEGER REFERENCES session,
audit_key INTEGER REFERENCES audit

A.2 log_line table

CREATE TABLE log_line (
log_line_key INTEGER PRIMARY KEY
filename VARCHAR (19) NOT NULL ,
log_line_numbedNTEGER NOT NULL ,
ip_address ~ VARCHAR (15) NOT NULL ,

ident VARCHAR (1) NOT NULL,
authuser VARCHAR (1) NOT NULL,
date DATE NOT NULL ,
time TIME NOT NULL ,
timezone VARCHAR (5) NOT NULL ,
method VARCHAR (4) NOT NULL,
request_url TEXT NOT NULL ,
session_tag ~ VARCHAR (100)NOT NULL ,
serial VARCHAR (5) NOT NULL,
query TEXT NOT NULL ,
protocol VARCHAR (8) NOT NULL,
status INTEGER NOT NULL ,
bytes INTEGER NOT NULL ,
servername VARCHAR (15) NOT NULL ,
referrer TEXT NOT NULL
browser TEXT NOT NULL

CONSTRAINT unique_lineUNIQUE (filename, log_line_number)

A.3 date and time dimension tables

CREATE TABLE date (

date_key INTEGER PRIMARY KEY ,
sql_date DATE UNIQUE NOT NULL
year INTEGER ,

month INTEGER

day INTEGER

week_day VARCHAR (10) ,

semester VARCHAR (11) ,

day_of semester INTEGER
week_of_semester INTEGER
weekend VARCHAR (10) ,
exam VARCHAR (10) ,
public_holiday VARCHAR (15) ,
school_vacation VARCHAR (20),

day_of year INTEGER
week_of_year INTEGER
workday VARCHAR (15)

71

72

PostgreSQL data definition

20 CREATE TABLE time_of_day (

25

10

15

20

10

);

A.4 page dimension table

time_of day key SERIAL

sql_time TIME

hour INTEGER
minute INTEGER
second INTEGER

PRIMARY KEY ,
UNIQUE NOT NULL ,

working_hours VARCHAR (20) ,
period_of day VARCHAR (20)

CREATE TABLE page (
page_key INTEGER PRIMARY KEY ,

page_function VARCHAR (100)NOT NULL DEFAULT 'unknown’,
page_function_typeVARCHAR (30) NOT NULL DEFAULT 'unknown’,

process VARCHAR (30) NOT NULL DEFAULT 'unknown’,
CONSTRAINT unique_pag@&NIQUE (page_function, page_function_type, process)

);

A.5 session dimension table

CREATE TABLE session (

);

session_key
session_tag
ip_address
browser
referrer
first_request_url
first_page_key
last_request_url
last_page_key
start_date
start_date_key
start_time
start_time_key
end_date
end_date_key
end_time
end_time_key
pages_in_session
book_descriptions_in_session
books_in_basket_in_session
reservations_in_session

INTEGER

PRIMARY KEY

VARCHAR (100)NOT NULL DEFAULT 'unknown’,
VARCHAR (15) NOT NULL DEFAULT 'unknown’,

TEXT
TEXT
TEXT
INTEGER
TEXT
INTEGER
DATE
INTEGER
TIME
INTEGER
DATE
INTEGER
TIME
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

A.6 search fact table

CREATE TABLE search (

);

date_key

time_of_day_key

session_key

search_type_key
search_number
search_number_validity
number_of_book_descriptions
number_of _books_in_basket
number_of_reservations

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

NOT NULL DEFAULT 'unknown’,
NOT NULL DEFAULT 'unknown’,
NOT NULL DEFAULT 'unknown’,
REFERENCES page,

NOT NULL DEFAULT 'unknown’,
REFERENCES page,

NOT NULL ,

REFERENCES date,

NOT NULL

REFERENCES time_of_day,
NOT NULL ,

REFERENCES date,

NOT NULL

REFERENCES time_of_day,
NOT NULL DEFAULT 0,

NOT NULL DEFAULT 0,

NOT NULL DEFAULT 0,

NOT NULL DEFAULT 0

REFERENCES date,
REFERENCES time_of_day,
REFERENCES session,
REFERENCES search_type,
NOT NULL DEFAULT 0,

VARCHAR (9) NOT NULL DEFAULT 'temporary’,

INTEGER
INTEGER
INTEGER

NOT NULL DEFAULT 0,
NOT NULL DEFAULT 0,
NOT NULL DEFAULT 0

A.7 search_type dimension table

CREATE TABLE search_type (

search_type_key INTEGER PRIMARY KEY
type VARCHAR (18) NOT NULL DEFAULT 'unknown’,
field VARCHAR (18) NOT NULL DEFAULT 'unknown’,

type_with_field VARCHAR (50) NOT NULL DEFAULT 'unknown’,

A.8 audit table

CONSTRAINT unique_typeJNIQUE (type, field)

A.8 audit table

CREATE TABLE audit (

audit_key INTEGER PRIMARY KEY
filename VARCHAR (19),
etl_start_time TIMESTAMP ,

5 etl_end_time TIMESTAMP ,
log_file_line_count INTEGER,
total_lines_processed INTEGER,
valid_lines_processed INTEGER,

10 invalid_lines_processed INTEGER,
copy_log_line_file_count INTEGER,
new_log_line_records INTEGER,
active_sessions_before INTEGER,

15 session_records_before INTEGER,
new_sessions_processed INTEGER,
active_sessions_processed INTEGER,
copy_session_file_count INTEGER,
session_records_after INTEGER,

20 new_session_records INTEGER,
active_searches_before INTEGER,
search_records_before INTEGER,
new_searches_processed INTEGER,

25 active_searches_processed INTEGER,
copy_search_file_count INTEGER,
search_records_after INTEGER,
new_search_records INTEGER,

30 active_page_events_before INTEGER,

page_event_records_before INTEGER,
new_page_events_processed INTEGER,
active_page_events_processed INTEGER,
copy_page_event_file_count INTEGER,

35 page_event_records_after INTEGER,
new_page_event_records INTEGER,
success_status VARCHAR (500),
proceed VARCHAR (500)
20);

A.9 active_page_event table

CREATE TABLE active_page_event (
log_line_key INTEGER REFERENCES log_line,

date_key INTEGER REFERENCES date,
time_of_day_key INTEGER REFERENCES time_of_day,

5 page_key INTEGER REFERENCES page,
session_key INTEGER REFERENCES active_session,
audit_key INTEGER REFERENCES audit

A.10 active_session dimension table

CREATE TABLE active_session (

session_key INTEGER PRIMARY KEY ,
session_tag VARCHAR (100)NOT NULL DEFAULT 'unknown’,
ip_address VARCHAR (15) NOT NULL DEFAULT 'unknown’,
5 browser TEXT NOT NULL DEFAULT 'unknown’,
first_request_url TEXT NOT NULL DEFAULT 'unknown’,
first_page_key INTEGER NOT NULL DEFAULT 1,
last_request_url TEXT NOT NULL DEFAULT 'unknown’,

last_page_key INTEGER NOT NULL DEFAULT 1,

74

PostgreSQL data definition

10

15

20

25

10

referrer TEXT NOT NULL DEFAULT 'unknown’,
start_date DATE NOT NULL ,
start_date_key INTEGER NOT NULL ,
start_time TIME NOT NULL ,
start_time_key INTEGER NOT NULL ,
end_date DATE NOT NULL ,
end_date_key INTEGER NOT NULL ,
end_time TIME NOT NULL
end_time_key INTEGER NOT NULL ,
pages_in_session INTEGER NOT NULL DEFAULT O,
book_descriptions_in_sessionINTEGER NOT NULL DEFAULT 0,
books_in_basket_in_session INTEGER NOT NULL DEFAULT 0,
reservations_in_session INTEGER NOT NULL DEFAULT 0,
last_search_number INTEGER NOT NULL DEFAULT 0,
search_number_validity VARCHAR (9) NOT NULL DEFAULT 'temporary’
)i
A.11 active_search fact table
CREATE TABLE active_search (
date_key INTEGER REFERENCES date,
time_of_day_key INTEGER REFERENCES time_of_day,
session_key INTEGER,
search_type_key INTEGER REFERENCES search_type,
search_number INTEGER NOT NULL DEFAULT 0,
search_number_validity VARCHAR (9) NOT NULL DEFAULT 'temporary’,

number_of_book_descriptions INTEGER NOT NULL DEFAULT 0,
number_of_books_in_basket INTEGER NOT NULL DEFAULT 0,
number_of_reservations INTEGER NOT NULL DEFAULT 0
——CONSTRAINT unique_search UNIQUE (session_key, seargle tigey,

—— search_number, search_number_validity)

APPENDIX B

PostgreSQL Views

CREATE VIEW page_event_dpt AS
SELECT date_key, page_key, time_of_day.hour,
COUNT () AS number_of_page_events
FROM page_event, time_of_day
5 WHERE page_event.time_of day_key =time_of_day.time_of Key
GROUPBY date_key, page_key, time_of_day.hour;

CREATE VIEW page_event_dp AS
SELECT date_key, page_key, COUNH)(AS number_of_page_events
10 FROM page_event
GROUPBY date_key, page_key;

CREATE VIEW page_event_dt AS
SELECT date_key, time_of_day.hour, COUNJ(AS number_of_page_events
15 FROM page_event, time_of_day
WHERE page_event.time_of day_key = time_of_day.time_of Key
GROUPBY date_key, time_of_day.hour;

CREATE VIEW page_event_pt AS
20 SELECT page_key, time_of_day.hour, COUNTJAS number_of_page_events
FROM page_event, time_of_day
WHERE page_event.time_of_day_key =time_of_day.time_of Key
GROUPBY page_key, time_of_day.hour;

25 CREATE VIEW page_event_d AS
SELECT date_key, COUNT) AS number_of_page_events
FROM page_event
GROUPBY date_key;

30 CREATE VIEW page_event_p AS
SELECT page_key, COUNTK) AS number_of_page_events
FROM page_event
GROUPBY page_key;

35 CREATE VIEW page_event_t AS
SELECT time_of_day.hour, COUNk) AS number_of_page_events
FROM page_event, time_of_day
WHERE page_event.time_of_day_key =time_of_day.time_of Keay
GROUPBY time_of_day.hour;

CREATE VIEW search_dst AS
SELECT date_key, search_type_key, time_of_day.hour,
COUNT () AS number_of_searches,
SUM(number_of_book_descriptions) AS total_book_desicms ,
5 SUM(number_of_books_in_basket) AS total_books_in_éigsk
SUM(number_of_reservations) AS total_reservations
FROM search, time_of_day
WHERE search.time_of_day_key =time_of day.time_of_day_key
GROUPBY date_key, search_type_key, time_of_day.hour;
10
CREATE VIEW search_ds AS
SELECT date_key, search_type_key, COUMYAS number_of_searches,
SUM(number_of_book_descriptions) AS total_book_desicms ,
SUM(number_of_books_in_basket) AS total_books_in_&gsk
15 SUM(number_of_reservations) AS total_reservations
FROM search
GROUPBY date_key, search_type_key;

CREATE VIEW search_dt AS

20 SELECT date_key, time_of_day.hour, COUN(AS number_of_searches,
SUM(number_of_book_descriptions) AS total_book_desicms ,

75

76

PostgreSQL Views

25

30

35

40

45

50

55

60

10

15

20

25

30

SUM(number_of_books_in_basket) AS total_books_in_égsk
SUM(number_of_reservations) AS total_reservations
FROM search, time_of_day
WHERE search.time_of_day_key =time_of_day.time_of day key
GROUPBY date_key, time_of_day.hour;

CREATE VIEW search_st AS

SELECT search_type_key, time_of_day.hour, COUNJTAS number_of_searches,
SUM(number_of_book_descriptions) AS total_book_dggicms ,
SUM(number_of_books_in_basket) AS total_books_in_égsk
SUM(number_of _reservations) AS total_reservations

FROM search, time_of_day

WHERE search.time_of_day_key =time_of_day.time_of day key

GROUPBY search_type_key, time_of_day.hour;

CREATE VIEW search_d AS
SELECT date_key, COUNTK) AS number_of_searches,
SUM(number_of_book_descriptions) AS total_book_dgsicms ,
SUM(number_of_books_in_basket) AS total_books_in_égsk
SUM(number_of_reservations) AS total_reservations
FROM search
GROUPBY date_key;

CREATE VIEW search_s AS
SELECT search_type_key, COUNAYAS number_of_searches,
SUM(number_of_book_descriptions) AS total_book_desicms ,
SUM(number_of_books_in_basket) AS total_books_in_éisk
SUM(number_of_reservations) AS total_reservations
FROM search
GROUPBY search_type_key;

CREATE VIEW search_t AS

SELECT time_of_day.hour, COUN) AS number_of_searches,
SUM(number_of_book_descriptions) AS total_book_dgsicms ,
SUM(number_of_books_in_basket) AS total_books_in_égsk
SUM(number_of _reservations) AS total_reservations

FROM search, time_of_day

WHERE search.time_of_day_key =time_of_day.time_of_day_key

GROUPBY time_of_day.hour;

CREATE VIEW session_dfit AS
SELECT start_date_key, first_page_key , last_page_key , timelaygf.hour,
COUNT() AS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key = time_of_day.time_of_day_key
GROUPBY start_date_key, first_page_key , last_page_key , timelayf.hour;

CREATE VIEW session_dfl AS
SELECT start_date_key, first_page_key , last_page_key,
COUNT() AS number_of_sessions
FROM session
GROUPBY start_date_key, first_page _key , last page_key , pagesesnion ;

CREATE VIEW session_dft AS
SELECT start_date_key, first_page_key , time_of_day.hour,
COUNT() AS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key = time_of_day.time_of_day_key
GROUPBY start_date_key, first_page_key , time_of_day.hour;

CREATE VIEW session_dIt AS
SELECT start_date_key, last_page_key , time_of_day.hour,
COUNT(x) AS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key = time_of_day.time_of_day_key
GROUPBY start_date_key, last_page_key, time_of_day.hour;

CREATE VIEW session_flt AS
SELECT first_page_key, last_page_key, time_of_day.hour,
COUNT(x) AS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key = time_of_day.time_of_day_key

35

40

45

50

55

60

65

70

75

80

85

77

GROUPBY first_page_key, last_page_key, time_of_day.hour;

CREATE VIEW session_df AS
SELECT start_date_key, first_page_key , COUMYAS number_of_sessions
FROM session
GROUPBY start_date_key, first_page_key ;

CREATE VIEW session_dl AS
SELECT start_date_key, last_page_key , COUNTAS number_of_sessions
FROM session
GROUPBY start_date_key, last_page_key;

CREATE VIEW session_dt AS
SELECT start_date_key, time_of_day.hour, COUMNYAS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key =time_of_day.time_of day_key
GROUPBY start_date_key, time_of_day.hour;

CREATE VIEW session_fl AS
SELECT first_page_key, last_page_key , COUNJAS number_of_sessions
FROM session
GROUPBY first_page_key, last_page_key;

CREATE VIEW session_ft AS
SELECT first_page_key, time_of_day.hour, COUNTAS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key =time_of_day.time_of day_key
GROUPBY first_page_key, time_of_day.hour;

CREATE VIEW session_It AS
SELECT last_page_key, time_of_day.hour, COUNYAS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key = time_of_day.time_of_day_key
GROUPBY last_page_key, time_of _day.hour;

CREATE VIEW session_d AS
SELECT start_date_key, COUNTFJ AS number_of_sessions
FROM session
GROUPBY start_date_key;

CREATE VIEW session_f AS
SELECT first_page_key, COUNF{ AS number_of_sessions
FROM session
GROUPBY first_page_key;

CREATE VIEW session_| AS
SELECT last_page_key, COUN¥J AS number_of_sessions
FROM session
GROUPBY last_page_key;

CREATE VIEW session_t AS
SELECT time_of_day.hour, COUN) AS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key = time_of_day.time_of_day_key
GROUPBY time_of_day.hour;

APPENDIX C

PostgreSQL View Functions

C.1 Create Materialized View

CREATE OR REPLACE FUNCTION create_matview (NAME, NAME)
RETURNS VOID
SECURITY DEFINER
LANGUAGE plpgsqgl AS’
s DECLARE
matview ALIAS FOR $1;
view_name ALIAS FOR $2;
entry matviews%ROWTYPE;
BEGIN
10 SELECT * INTO entry FROM matviewsWHERE mv_name = matview;

IF FOUND THEN
RAISEEXCEPTION "Materialized view "%’ already exists .’’,
matview;
15 END IF;

EXECUTE " REVOKE ALL ON " || view_name || "FROM PUBLIC";

EXECUTE "GRANT SELECT ON " || view_name || ” TO PUBLIC”;
20
EXECUTE ” CREATE TABLE ” || matview || * AS SELECT + FROM " || view_name;

EXECUTE ” REVOKE ALL ON ” || matview || " FROM PUBLIC";
25 EXECUTE "GRANT SELECT ON " || matview || ” TO PUBLIC";

INSERT INTO matviews (mv_name, v_name, last_refresh)
VALUES (matview, view_nameCURRENT_TIMESTAMP);

30 RETURN;
END

1

C.2 Refresh Materialized View

CREATE OR REPLACE FUNCTION refresh_matview(name) RETURNS VOID
SECURITY DEFINER
LANGUAGE plpgsqgl AS’
DECLARE
5 matview ALIAS FOR $1;
entry matviews%ROWTYPE;
BEGIN

SELECT * INTO entry FROM matviewsWHERE mv_name = matview;
10
IF NOT FOUND THEN
RAISEEXCEPTION “"Materialized view % does not exist.”, matview;
END IF;

15 EXECUTE "DELETE FROM " || matview;
EXECUTE "INSERT INTO " || matview
|| ” SELECT » FROM ” || entry.mv_view;

UPDATE matviews

20 SET last_refresh GURRENT_TIMESTAMP
WHERE mv_name=matview;

79

80 PostgreSQL View Functions

RETURN;
END

25)

C.3 Drop Materialized View

CREATE OR REPLACE FUNCTION drop_matview(NAME) RETURNS VOID
SECURITY DEFINER
LANGUAGE plpgsql AS’
DECLARE
5 matview ALIAS FOR $1;
entry matviews%ROWTYPE;
BEGIN

SELECT * INTO entry FROM matviewsWHERE mv_name = matview;
10
IF NOT FOUND THEN
RAISE EXCEPTION "Materialized view % does not exist.”, matview;
END IF;

15 EXECUTE " DROP TABLE " || matview;
DELETEFROM matviewsWHERE mv_name=matview;

RETURN;
END

20 '

APPENDIX D

Source Code for Greedy

D.1 Greedy Class

public class Greedy {

10

15

20

25

30

35

40

45

50

55

static View([] views = null ;
static booleandone =false;

public static void calculateBenefit (View candidateView) {
int benefit =0;
for (int v =0; v < views.length ; v++) {
booleandependency true;
for (int d =0; d < views[v].getViewName().length (); d++) {
if (candidateView.getViewName().indexOf(views[v].gezWiName ()
.charAt(d)) ==—1){
dependency Halse;

}

}
if (dependency){
int costBefore = views[v]. getCost ();
int costAfter = candidateView . getSize ();
int gain = costBefore— costAfter ;
if (gain >0){
if (views[v].getViewName().length () == 1) {
gain == 10;

benefit += gain;

}

candidateView . setBenefit (benefit);

}

public static void materializeBestView () {
View bestView = views [0];
for (int v =1; v <views.length ; v++) {
if (views[v]. getBenefit () > bestView. getBenefit ()) {
bestView = views|[v];
}

}

if (bestView. getBenefit () == 0) {
done =true;

}

else{
bestView. materialize ();
System.out. println (" Materializing," + bestView.getViewName() +
"_(benefit ;" + bestView. getBenefit () + ")");
for (int v =0; v < views.length ; v++) {
booleandependency true;
for (int d =0; d < views[v].getViewName().length (); d++) {
if (bestView.getViewName().indexOf(views|v].getViewNea()
.charAt(d)) ==—1){
dependency Halse;

}

}
if (dependency) {
if (views[v].getCost () > bestView. getSize ()) {
views[v]. setCost (bestView. getSize ());
}

81

82

Source Code for Greedy

60

65

70

75

80

85

90

95

100

105

110

115

120

125

}

public static void main (String [] args) {
String schema = args [0];

if (schema==ull || schema.equals("")){
System.out. println ("Error;schemgname must be_input”);

else if (schema.equals("pageevent")) {
/I page event without session with time grouped by hour
views =new View[] { new View("dpt", 214746, 214746),
new View("dp", 23510, 214746),
new View("dt", 7716, 214746),
new View("pt", 1720, 214746),

new View("d", 393, 214746),
new View("p", 95, 214746),
new View("t", 24, 214746)};

views [0]. materialize ();

else if (schema.equals("search")) {
/I search without session with time grouped by hour
views =new View[] { new View("dst" , 53530, 53530),
new View("ds", 6235, 53530),
new View("dt", 7363, 53530),

new View("st", 435, 53530),
new View("d", 393, 53530),
new View("s", 20, 53530),
new View("t", 24,53530)};

views [0]. materialize ();

else if (schema.equals("session")) {
Il session with time grouped by hour
views =new View[] { new View("dflt" , 134758, 134758),
new View("dfl", 37405, 134758),
new View("dft", 35004, 134758),
new View("dlt", 101016, 134758),

new View("flt", 6886, 134758),
new View("df", 6215, 134758),
new View("dl", 16469, 134758),
new View("dt", 7687, 134758),
new View("fl", 1041, 134758),
new View("ft" 760, 134758),
new View("It", 1427, 134758),
new View("d", 393, 134758),
new View("f", 62, 134758),
new View("l", 81, 134758),
new View("t", 24,134758)};
views [0]. materialize ();
}
else{
System.out. println ("Schemaame not_recognized.Should be one of:");
System.out. println ("basicpageevent");
System.out. println (" pageeventwithsession ");
System.out. println ("pageevent");
System.out. println ("search");
System.out. println ("session");
return ;
}

int choice =0;

while (!done) {
boolean allViewsMaterialized =true;
for (int v =0; v < views.length ; v++) {
if (!views[v]. isMaterialized ()) {
allViewsMaterialized =false;
}

}

if (! allViewsMaterialized) {

130

135

140

145

10

15

20

25

30

35

40

45

D.2 View Class

83

choice++;

System.out. print ("CHOICE" + choice +",_");

for (int v =0; v < views.length ; v++) {
if (!views[v]. isMaterialized ()){
calculateBenefit (views[v]);

else {
views[v]. setBenefit (0);
}
}
materializeBestView ();
else {
done =true;
}

}

System.out. println ("\n\n");

D.2 View Class

public class View {

private String _viewName, _parentViewName, _dimensions;

private int _size, _cost, _benefit;
private boolean _materialized ;

public View (String viewNameint size , int cost) {
_viewName = viewName;
_Size = size;
_cost = cost;
_benefit = size;
_materialized =false;

public String getViewName() {

}
return
}
public int
return
}
public int
return
}
public int
return
}

_viewName;

getSize () {
_size;

getCost () {
_cost;

getBenefit () {

_benefit ;

public boolean isMaterialized () {

return

}

_materialized ;

public void materialize () {
_materialized =true;

}

public void setBenefit {nt newBenefit) {
_benefit = newBenefit;

}

public void setCost{nt newCost) {
_cost = newCost;

}

APPENDIX E

Source Code for Java Classes

85

o

10

1

o

20

25

30

35

40

45

E.1 PostProcessor Servlet Class

packageaub;

import java.io.IOException;

import java.io. PrintWriter ;

import java.io.BufferedReader;

import java.io.FileOutputStream;

import java.io.FileReader;

import java.io .FileNotFoundException;

import java. net.MalformedURLException;
import java.sql.Time;

import java.sql. ResultSet;

import java.sql.ResultSetMetaData;

import java. util . GregorianCalendar;

import java. util . Vector;

import javax. servlet . ServletException ;

import javax. servlet . http . HttpServiet ;

import javax. servlet . http . HttpServiletRequest ;
import javax. servlet . http . HttpServletResponse ;

public class PostProcessoextends HttpServlet {

PrintWriter _out;

int _numberOfLogLinesTogether = 100;
String _runningOn = "baerbar";

/I String _runningOn =" stationaer ";
String _filePath ="";

String _pathToCopyFiles = "";
Database _database;

int _tempSearchNumber = 0;

int _logLineKey = 0;

int _lastEmptiedLogLineKey = 0;

int _auditkey = 0;

int _sessionRecordsBefore =0;
int _searchRecordsBefore =0;

int _pageEventRecordsBefore = 0;
int _activeSessionsBefore =0;
int _activeSearchesBefore =0;
int _activePageEventsBefore =0;
String _successStatus = "";

java. util .Date _etlStartDate aull;
String _logFileName ="";

int _fileLineCount =0;

int _totalLinesProcessed =0;

int _validLinesProcessed =0;

int _invalidLinesProcessed =0;
int _sessionRecordsAfter =0;

int _searchRecordsAfter =0;

50

55

60

65

70

75

80

85

90

95

int _pageEventRecordsAfter = 0;

int _newSessionsProcessed, _newSearchesProcessed, _elevdtagProcessed;

int _activeSessionsProcessed , _activeSearchesProcesaetivePageEventsProcessed;

int _newSessionRecords, _newSearchRecords, _newPageEverd®

int _linesInCopyFile =0;

int _copySessionFileCount = 0;

int _copySearchFileCount = 0;

int _copyPageEventFileCount = 0;

int _newLogLineRecords = 0;

int _numberOfLogLines = 0;

java. util .Date _etlEndDate #ull ;

boolean _etISuccess true;

private String [] _ignoreList ={".jpg", ".gif", ".ico", ".css"};

private String [] _searchBotList = {"AntMovie_Catalog using Indy, Library",
"Gigabot", "Girafabot", "Googlebot",
"Microsoft_Data Access,Internet Publishing”,
"Microsoft_URL_Control",
"MicrosoftPrototypeCrawler",
"MS_,Search 4.0_Robot", "MSIECrawler", "MSNBOT",
"NaverRobot", "NPBot", "NutchOrg", "Openbot",
"psbot", "RPF-HTTPClient/0.3-3", "TurnitinBot",
" Tutorial _Crawler", "VoilaBot", "Weh Crawler",
"WebCrawler", "www.troutfarmer.dk”,
"Xenu_Link_Sleuth", "Xenu’s Link,_ Sleuth”,
"ZyBorg"};

private String [] _filenames =null ;

private String [] _columnNames aull;

private String [] _columnValues =ull ;

public PostProcessor (Database database ,auditkey, int logLineKey,
String filePath , String pathToCopyFiles) {
_database = database;
_auditkey = auditKey;
_logLineKey = logLineKey;
_filePath = filePath ;
_pathToCopyFiles = pathToCopyFiles;
}

void countLinesinLogFile(String filePath , String filename) {
try {

_fileLineCount =0;

BufferedReader logLineReadernew BufferedReadenew FileReader
(filePath +
filename));

while (logLineReader.readLine () !=null) {
_fileLineCount++;

}

logLineReader. close ();

98

S9SSB|D BAR(10} 9P0D) 99IN0S

100

105

110

115

120

125

130

135

140

145

_columnNames qew String[] {" log_file_line_count "};
_columnValues sew String [] { Integer . toString (_fileLineCount)};
_database .updateAuditDimension(_auditKey, _columnd&am
_columnValues,
"Lines_in_Jlog, file,_counted");

catch (Exception e) {
System.out. println (e);
System.out. printin (e.getMessage ());
System.out. printin ("Errarcounting,lines_in_Jlog, file .");

void getActivelnfo () {
_activePageEventsBefore = _database . getActivePageHyen
_activeSearchesBefore = _database . getActiveSearches ()
_activeSessionsBefore = _database . getActiveSessipns ()

_columnNames new String[] {" active_sessions_before ",
" active_searches_before ",
" active_page_events_before "};
_columnValues snew String [] { Integer . toString (_activeSessionsBefore),
Integer . toString (_activeSearchesBefore),
Integer . toString (_activePageEventsBefore)};
_database . updateAuditDimension(_auditKey, _columnd&amcolumnValues,
" active_info_,collected");

_database . getPages ();
_database .getSearchTypes ();

}

private BufferedReader[] getBufferedLogFileReaders(String Piith) {
/' boolean stillMoreFiles = true;
Vector fileReaders =ew Vector ();
Vector filenameVector =new Vector ();
String filename ;
BufferedReader reader mull ;
try {
for (GregorianCalendar date mew GregorianCalendar (2003, 1, 25);
true ; date.add(date.DAY_OF_MONTH, 1)) {
Il filename =" accesstest .20030225";

filename = "access_log." + date.get(date.YEAR);
if (date.get(date.MONTH) <9){
filename +="0";

filename += (date.get(date . MONTH) + 1);

150

155

160

165

170

175

180

185

190

S

S

S

-

if (date.get(date.DAY_OF_MONTH) < 10) {
filename +="0";

}

filename += date.get(date .DAY_OF_MONTH);

reader =new BufferedReaderiew FileReader(filePath +
filename));

filenameVector .add(filename);

fileReaders .add(reader);

if (date.get(date.DAY_OF_MONTH) == 26) {

throw new FileNotFoundException(™);
}

}

}

catch (FileNotFoundException fnfe) {
/I System.out. printin (" File not found : "+ filename);
/I stillMoreFiles = false ;

catch (Exception e) {
System.out. println ("ExceptiQnin_PostProcessor . getFilenames ()");
System.out. printin (e);

BufferedReader[] readerArray rew BufferedReader]fileReaders . size ()];
for (int r =0; r < readerArray.length ; r++){
readerArray|[r] = (BufferedReader) fileReaders .get(r);

_filenames =new String[filenameVector . size ()];

for (int f =0; f < _filenames.length ; f++){
_filenames|[f]=(String) filenameVector.get(f);

}

return readerArray;

getCopyPageEventFileCount() {
return _copyPageEventFileCount;

getCopySessionFileCount () {
return _copySessionFileCount;

getCopySearchFileCount() {
return _copySearchFileCount;

[1 getRecordCountsAfterLoad() {

_pageEventRecordsAfter = _database . getNumberOfPageAfeer(_auditkey);
_searchRecordsAfter = _database . getNumberOfSeardeesAfuditkey);
_sessionRecordsAfter = _database . getNumberOfSesdtensauditkey);

Sse|D 19|AI9S 10SS9201d1S0d T'3

.8

195

200

205

210

215

220

225

230

235

240

_columnNames new String[] {" session_records_after ",
" search_records_after ",
" page_event_records_after "};
_columnValues =new String [] { Integer . toString (_sessionRecordsAfter),
Integer . toString (_searchRecordsAfter),
Integer . toString (_pageEventRecordsAfter)};
_database . updateAuditDimension(_auditKey, _columnd&amcolumnValues,
"records , after_counted");
return new int [] {_pageEventRecordsAfter,
_searchRecordsAfter,
_sessionRecordsAfter};

}

int [] getRecordCountsBeforeLoad() {
_pageEventRecordsBefore = _database . getNumberOfPagisBefore();
_searchRecordsBefore = _database .getNumberOfSeaefoesg;
_sessionRecordsBefore = _database . getNumberOfSeBsionsy();
System.out. println ("Recordbefore; page event; " + _pageEventRecordsBefore +
"._search:" + _searchRecordsBefore + ''session:"
+ _sessionRecordsBefore);

_columnNames new String[] {" session_records_before ",
" search_records_before ",
"page_event_records_before"};
_columnValues =new String [] { Integer . toString (_sessionRecordsBefore),
Integer . toString (_searchRecordsBefore),
Integer . toString (_pageEventRecordsBefore)};
_database .updateAuditDimension(_auditKey, _columnd&mcolumnValues,
"records before load counted");
return new int [] {_pageEventRecordsBefore,
_searchRecordsBefore,
_sessionRecordsBefore};

}
private boolean isOnlgnoreList (String requestUrl) {
for (int i =0; i < _ignoreList.length ; i++)
if (‘requestUrl .indexOf(_ignoreList[i]) !=1) {
return true ;
return false;
}

private booleanisSearchBot(String browser) {
for (int b =0; b < _searchBotList.length ; b++)
if (browser.indexOf(_searchBotList[b]) =1) {
return true ;

return false ;

245

250

255

260

265

270

275

280

285

290

private void loadAndDimensionalize(String filePath) {
BufferedReader[] fileReaders = getBufferedLogFileRes(iéilePath);
_database . prepareStatements ();

long _numberOfLogLines = 0;

for (int f =0; f < fileReaders .length ; f++){
_auditkey = _database .newAuditRecord(_filenamesf],
"New_audit_record created",
"Recover");

System.out. printin ("Filenamg? + _filenames|[f]);
getActivelnfo ();
getRecordCountsBeforeLoad();

countLinesinLogFile(filePath , _filenames|[f]);

_database. resetFiles ();
processLogFile (fileReaders [f], _filenames[f]);
/I getRecordCountsAfterLoad();

_newPageEventRecords = _pageEventRecordsAftepageEventRecordsBefore;
String pageEventSuccess = "";
if (_newPageEventRecords != _copyPageEventFileCount) {
pageEventSuccess =
"_Number of_new page event records does not "+
"match ,number of_lines in_copy, file.";
_etlSuccess alse;

_newSessionRecords = _sessionRecordsAftersessionRecordsBefore;
String sessionSuccess = "";
if (_newSessionRecords != _copySessionFileCount) {
sessionSuccess =
"_Number of_new_sessionrecords does not_"+
"match number of_lines in_copy,_ file.";
_etlSuccess =alse;

_newSearchRecords = _searchRecordsAftersearchRecordsBefore;
String searchSuccess = "";
if (_newSearchRecords != _copySearchFileCount) {
searchSuccess =
"_Number of_new searchrecords does not "+
"match number of_lines in_copy_file.";
_etlSuccess =false;

}

_columnNames new String[] {"new_session_records",
"new_search_records",

88

S9SSB|D BAR(10} 9P0D) 99IN0S

295

300

305

310

315

320

325

330

335

340

"new_page_event_records"};
_columnValues =ew String [] { Integer . toString (_newSessionRecords),
Integer . toString (_newSearchRecords),

Integer . toString (_newPageEventRecords)};

_database .updateAuditDimension(_auditKey, _columnd&amcolumnValues,
"number of_new session,searchand " +
"page event records counted." +
pageEventSuccess + sessionSuccess +
searchSuccess);

if (_etlSuccess){
_successStatus = "ETJprocesscompletedsuccesfully”;

else{
_successStatus = "Failure ";

System.out. println ("Successtatus;" + _successStatus);
System.out. println ();

}

i

» Preloads all dates between fromDate and toDate to the datendion table .
x» Only dates that are defined as vacations or public holidayshé Date class
= will be recognized as vacations or public holidays .

*/
private void loadDates(java.sqgl.Date fromDate, java.sgl.Date topgate
try {
GregorianCalendar currentDate nrew GregorianCalendar ();
GregorianCalendar endDaterrew GregorianCalendar ();
endDate.setTime(toDate);
int dateKey =0;
for (currentDate .setTime(fromDate); ! currentDate . afterdRate);
currentDate .add(currentDate .DAY_OF_YEAR, 1)) {
dateKey++;
Date date =new Date(dateKey, currentDate);
_database. insertDate (date);
_database .copyToDatabase("date");
catch (Exception e) {
System.out. printin (e);
}
}
Jaex

345

350

355

360

365

370

375

380

385

390

+ Preloads a row into the time of day dimension for each secand R4 hour day.

*/

private void loadTimes ()throws java.io.|IOException {
long startLoadingTime =new java. util . Date (). getTime ();
GregorianCalendar currentTime mew GregorianCalendar ();
GregorianCalendar endTimerrew GregorianCalendar ();
endTime. setTimelnMillis (Time.valueOf("23:59:59").tgeme ());

for (currentTime. setTimelnMillis (Time.valueOf("00:00:0D getTime ());
lcurrentTime. after (endTime); currentTime . add(curfiemte . SECOND, 1)) {
Time sqlTime =new Time(currentTime.getTimelnMillis ());
int hour = currentTime. get(currentTime . HOUR_OF_DAY);
int minute = currentTime . get(currentTime.MINUTE);
int second = currentTime . get(currentTime . SECOND);

String workingHours = "nqtworking_hours";
if (8 <= hour && hour < 16) {
workingHours = "working hours";

String periodOfDay;
if (0 <= hour && hour < 6) {
periodOfDay = "night";

}
else if (6 <= hour && hour <12){
periodOfDay = "morning";

}

else if (12 <= hour && hour < 18) {
periodOfDay = "afternoon”;

}

else{
periodOfDay = "evening";

_database. insertTime (sqlTime, hour, minute, second,
workingHours, periodOfDay);

_database .copyToDatabase("time_of_day");

long endLoadingTime =ew java. util . Date (). getTime ();

long loadingTimelnMillis = endLoadingTime- startLoadingTime;

String loadingTime = millisecondsToTime(loadingTimeliilg);

/I System.out. printn ("Time to load time_of_day : "+ loadTimelnMillis +
I " milliseconds ("+ loadingTime +").");

}

Jax

» Takes a long millisecond value as input and returns a stringhi:mm:ss.mmm
» format representing a more human readable value of the tiepgesented by

» the millisecond value.

*/

Sse|D 19|AI9S 10SS9201d1S0d T'3

68

395

400

405

410

415

420

425

430

435

private String millisecondsToTimégng milliseconds) {
long millisecond = milliseconds % 1000;
long timeIlnSeconds = milliseconds /1000;
long second = timelnSeconds % 60;
long timeInMinutes = timelnSeconds / 60;
long minute = timelnMinutes % 60;
long hour = timelnMinutes / 60;
return "" + hour + ":" + minute + ":" + second + "." + millisecond ;

}

boolean processLogFile (BufferedReader logFile , String filenarfie)
try {
int currentLineNumber = 0;
_totalLinesProcessed =0;
_validLinesProcessed =0;
_invalidLinesProcessed =0;
_database .resetNewInfo ();

/I BufferedReader reader = new BufferedReader
/l(new FileReader(_filePath + _filenames|f]));
LogLine logLine =null ;

String line =null;

while ((line = logFile .readLine ()) !=null) {
currentLineNumber++;
_totalLinesProcessed ++;

try {
if (!isOnlgnoreList(line) && lisSearchBot(line) &&
line .indexOf("/F/") 1=—1) {
logLine = new LogLine(_logLineKey, filename,
currentLineNumber, line);
_logLineKey++;
_validLinesProcessed ++;
if (! _database.insertLogLine (logLine)) {
_logLineKey——;
_validLinesProcessed—;
_invalidLinesProcessed ++;
System.out. println ("Error inserting_log_line_" +
currentLineNumber);

}

int dateKey =0;
int timeKey, pageKey, sessionKey;
java.sql.Date date #ull;

if (logLine = null'){
_numberOfLogLines++;
UrlQuery urlQuery =new UrlQuery(logLine.getQuery ());

440

445

450

455

460

465

470

475

480

485

/I page_event schema
int logLineKey = logLine.getLogLineKey();

if (!logLine.getDate (). equals(date)) {
date = logLine.getDate ();
dateKey = _database .getDateKey(date);
if (dateKey ==1){

System.out. println ("Ngnew log, files "+
"can_be addeduntil " +
"new_dates have been "+
" specified ");

throw new Exception("Add new,_datesto_" +

"system before new " +
"log,_lines_can be "+
"input");

}
timeKey = _database . getTimeKey(logLine.getTime ());

Page page mew Page(logLine);
pageKey = _database.getPageKey(page);

sessionKey = _database .getSessionKey(logLine , pageKey,
dateKey, timeKey);

PageEvent pageEventrrew PageEvent(logLineKey,
dateKey,
timeKey,
pageKey,
sessionKey,
_auditkey);

_database . insertPageEvent (pageEvent, logLine);

/I search schema

String searchNumberValidity = "temporary";

int searchNumber = urlQuery. getintValue
("set_number");

if (searchNumber!=-1) {
searchNumberValidity = "valid";

}

try {
SearchType searchType rew SearchType
(new UrlQuery(logLine.getQuery ()));
int searchTypeKey = _database
.getSearchTypeKey(searchType);

06

S9SSB|D BAR(10} 9P0D) 99IN0S

490

495

500

510

515

520

525

530

535

else{

int numberOfBookDescriptions = 0;
int numberOfBooksInBasket = 0;
int numberOfReservations = 0;

if (searchNumber ==-1) {
_tempSearchNumber++;
searchNumber = _tempSearchNumber;
searchNumberValidity = "temporary";

}

Search search new Search(dateKey,
timeKey, sessionKey,
searchTypeKey,
searchNumber,
searchNumberValidity,
numberOfBookDescriptions,
numberOfBooksInBasket,
numberOfReservations);

_database. insertSearch (search);

}
catch (NotSearchTypeException e) {
if (searchNumberValidity. equals ("valid")) {
_database . setLastSearchNumber(sessionKey,
searchNumber,
searchNumberValidity);

}

catch (Exception e) {
System.out. println ("ExceptiQrin_search" +
"part,_of_dimensionalize.");
System.out. printin (e);
System.out. println (e.getMessage());

String pageFunctionType = page
.getPageFunctionType ();

if (pageFunctionType.equals ("bqodtescription™)) {
_database .incrementBookDescriptions (sessionKey);

}
else if (pageFunctionType.equals ("bogk_basket")) {
_database .incrementBooksInBasket
(sessionKey, page.getNumberOfCheckedBoxes());

else if (pageFunctionType.equals (" reservation ")) {
_database . incrementReservations (sessionKey);
}

540

545

550

555

560

565

570

575

580

585

_invalidLinesProcessed ++;

}

} catch (InvalidLogLineException ille) {
/I fejl i oprettelse af logline objekt
_invalidLinesProcessed ++;

} catch (MalformedURLException mue) {
/I fejl i oprettelse af logline objekt
_invalidLinesProcessed ++;
System.out. println ("MalformeqURL_in_" + filename +

", line_" + currentLineNumber);

}
logFile . close ();

_columnNames new String[] {" total_lines_processed ",
" valid_lines_processed ",
" invalid_lines_processed "};
_columnValues sew String [] { Integer . toString (_totalLinesProcessed),
Integer . toString (_validLinesProcessed),
Integer . toString (_invalidLinesProcessed)};
booleanmatch =false;

if (_fileLineCount == _totalLinesProcessed) {
if (_totalLinesProcessed == _validLinesProcessed +
_invalidLinesProcessed) {
_successStatus = "Processipg_log_lines_complete";
match =true;

else{
_successStatus = "Mismatdbetween total number of_lines "+
"processedand sum of_valid_and invalid_lines_processed";
_database .completeAuditRecord(_auditKey, _successStdProceed");
}

else{
if (_totalLinesProcessed == _validLinesProcessed +

_invalidLinesProcessed) {

_successStatus = "Sypof_valid_and ,invalid_lines processed" +
"is_equal to_ total_lines_processed,but this_is_not "+
"equal_to_number of_lines in_log_file";

_database .completeAuditRecord(_auditKey, _successStdProceed");

else{
_successStatus = "Theotal_lines_processedis_,neither " +
"equal to_the_number of_lines in_the log_file_or_the "+
"sum_of_valid_and invalid_log_lines processed";
_database .completeAuditRecord(_auditKey, _successStdProceed");

Sse|D 19|AI9S 10SS9201d1S0d T'3

T6

590

595

600

605

610

615

620

625

630

635

}

_database .updateAuditDimension(_auditKey, _columnd&amcolumnValues,
_successStatus);

/*
System.out. println (" Total number of log lines processéd :
_totalLinesProcessed);
System.out. printin ("Number of valid log lines processéd:
_validLinesProcessed);
System.out. println (“Number of invalid log lines procedsé +
_invalidLinesProcessedx);

if (! match) {

throw new AuditMismatchException(_successStatus);
}

_newSessionsProcessed = _database .getNumberOfNear3¢kssi
_newSearchesProcessed = _database . getNumberOfNetuS=#rc
_newPageEventsProcessed = _database.getNumberOfNeveads();

_columnNames \ew String[] {"new_sessions_processed",
"new_searches_processed",
"new_page_events_processed"};

_columnValues =ew String [] { Integer . toString (_newSessionsProcessed),

Integer . toString (_newSearchesProcessed),
Integer . toString (_newPageEventsProcessed)};

_database .updateAuditDimension(_auditKey, _columnd&amcolumnValues,
"number of_new sessions,searchesand " +
"page events processedcounted");

int _activeSessionsProcessed = _database. saveActivaBe§sio
int _activeSearchesProcessed = _database . saveActive&egich
int _activePageEventsProcessed = _database.saveActi@Rage();

_columnNames new String[] {" active_sessions_processed ",
" active_searches_processed ",
" active_page_events_processed "};
_columnValues new String [] { Integer . toString (_activeSessionsProcessed)
Integer . toString (_activeSearchesProcessed),
Integer .
toString (_activePageEventsProcessed)};
_successStatus = "Activesessions,searchesand page events saved";

_database .updateAuditDimension(_auditKey, _columnd&am
_columnValues, _successStatus);

try {

640

645

650

655

660

665

670

675

680

/I count number of lines in log line copy file
BufferedReader copyFileReaderrrew BufferedReader

(new FileReader(_pathToCopyFiles + "log_line .data"));
_linesInCopyFile =0;
_database. flushFile ("log_line .data");
while (copyFileReader.readLine () l=ull) {

_linesInCopyFile ++;
}

_columnNames new String[] {" copy_log_line_file_count "};
_columnValues =new String [] { Integer . toString (_linesInCopyFile)};

if (_linesinCopyFile == _validLinesProcessed) {
_successStatus = "Linem,_log_line_copy_file_counted";

else{
_successStatus = "Numbef_lines in_log_line_copy,_file_does " +
"not_match number of_valid_lines processed";
_etlSuccess alse;
match =false;

}

_database .updateAuditDimension(_auditKey, _columnd&am
_columnValues, _successStatus);
if (!match){
throw new AuditMismatchException (_successStatus);
}

/I count number of lines in session copy file
copyFileReader. close ();
copyFileReader =new BufferedReader
(new FileReader(_pathToCopyFiles + "session . data"));
_copySessionFileCount = 0;
_database . flushFile ("session .data");
while (copyFileReader.readLine () !=ull) {
_copySessionFileCount++;
}

_columnNames new String[] {" copy_session_file_count "};

_columnValues =new String [] { Integer . toString (_copySessionFileCount)};

_database . setCopySessionFileCount(_copySessiookitt;

if (_activeSessionsBefore + _newSessionsProcessed ==
_activeSessionsProcessed + _copySessionFileCount) {

successStatus = "Lineim, sessiopcopy,_file_counted”;

else{
_successStatus = "Numbef_lines in_sessioncopy,_file_does " +

6

S9SSB|D BAR(10} 9P0D) 99IN0S

685

690

695

700

705

710

720

725

730

"not_match number of_sessionsprocessed";
_etlSuccess Halse;
match =false;

}

_database .updateAuditDimension(_auditKey, _columnd&am
_columnValues, _successStatus);
if (!match){
_etlSuccess =alse;
throw new AuditMismatchException (_successStatus);

}

/I count number of lines in search copy file
copyFileReader. close ();
copyFileReader =new BufferedReader
(new FileReader(_pathToCopyFiles + "search.data"));
_copySearchFileCount = 0;
_database. flushFile ("search.data");
while (copyFileReader.readLine () l=ull) {
_copySearchFileCount++;
}

_columnNames new String[] {" copy_search_file_count"};
_columnValues =new String [] { Integer . toString (_copySearchFileCount)};

_database . setCopySearchFileCount(_copySearchFiZou

if (_activeSearchesBefore + _newSearchesProcessed ==
_activeSearchesProcessed + _copySearchFileCount) {
_successStatus = "Linem,_searchcopy, file_counted";

else{
_successStatus = "Numbef_lines in_search,copy_file_does " +
"not_match number of_valid_searchesprocessed";
_etlSuccess Halse;
match =false;

}

_database .updateAuditDimension(_auditKey, _columnd&am
_columnValues, _successStatus);
if (!match){
_etlSuccess =alse;
throw new AuditMismatchException (_successStatus);

}

/I count number of lines in page event copy file
copyFileReader. close ();
copyFileReader =new BufferedReader

(new FileReader(_pathToCopyFiles + "page_event.data"));

735

740

745

750

755

760

765

770

775

780

_copyPageEventFileCount = 0;

_database. flushFile ("page_event.data");

while (copyFileReader.readLine () !=ull) {
_copyPageEventFileCount++;

copyFileReader. close ();
_database . setCopyPageEventFileCount(_copyPagele€uént);

_columnNames new String[] {"copy_page_event_file_count"};
_columnValues =new String [] { Integer . toString (_copyPageEventFileCount)}

_database . setCopyPageEventFileCount(_copyPagele€uént);

if (_activePageEventsBefore + _newPageEventsProcessed ==
_activePageEventsProcessed + _copyPageEventFileGount)
_successStatus = "Line®, page_evenicopy, file, counted"”;

else{
_successStatus = "Numbef_lines in_page_evenicopy, file "+
"does not_ match numbey of_valid_page events processed";
_etlSuccess =alse;
match =false;

}

_database .updateAuditDimension(_auditKey, _columnd&am
_columnValues, _successStatus);
if (! match) {
_etlSuccess =alse;
throw new AuditMismatchException (_successStatus);

}

catch (Exception e) {
System.out. printin (e);
}

/I return currentLineNumber;
/I Skriv fArst antallet af gyldige og ugyldige processezetbg
/I linier i stabil hukommelse, eller send med.

System.out. println (" Startcopying to_database");

String [] tablesToCopy snew String [{ "log_line ", "session",
"page_event", "search",
" active_session ", "active_search ",
"active_page_event"};

_etlSuccess = _database .copyToDatabase(tablesToCapyitKey);

System.out. printin ("Endcopying to_database");

Sse|D 19|AI9S 10SS9201d1S0d T'3

€6

785

790

800

805

810

815

820

825

830

/I count new records in log_line table

_newLogLineRecords = _database.getNumberOfLogLinesFiie(filename);

_columnNames new String[] {"new_log_line_records"};
_columnValues new String [] { Integer . toString (_newLogLineRecords)};

if (_validLinesProcessed == _newLogLineRecords) {
_successStatus = "Neywecords,in,_log_line_table counted";

else{
_successStatus = "Numbe@f_new_records.in_log_line_table does " +
"not_match numbey of valid_log, lines processed";
_etlSuccess Halse;
match =false;

_database .updateAuditDimension(_auditKey, _columnd&amcolumnValues,
_successStatus);
if (! match) {
_etlSuccess =Halse;
throw new AuditMismatchException(_successStatus);

}

/I count new records in session table
/*
_newSessionRecords = _database . getNumberOfSessimi&ngauditKey);

_columnNames = new String[] {"new_log_line_records"};
_columnValues = new String [] { Integer . toString (_newLdgeRecords)};

if (_validLinesProcessed == _newLogLineRecords) {
_successStatus ="New records in log_line table counted”;

}

else {

_successStatus ="Number of new records in log_line tables dor
"not match number of valid log lines processed";

match = false ;

}

_database . updateAuditDimension(_auditKey, _columnd&mcolumnValues,
_successStatus);

if (!match) {

throw new AuditMismatchException(_successStatus);

/I count new records in search table
_newLogLineRecords = _database.getNumberOfLogLinesFile(filename);

835

840

845

850

855

860

865

870

875

880

_columnNames = new String[] {"new_log_line_records"};
_columnValues = new String [] { Integer . toString (_newLdgeRecords)};

if (_validLinesProcessed == _newLogLineRecords) {
_successStatus ="New records in log_line table counted";
}

else {

_successStatus ="Number of new records in log_line tables dor
"not match number of valid log lines processed";
match = false ;

}

_database .updateAuditDimension(_auditKey, _columnd&amcolumnValues,
_successStatus);

if (! match){

throw new AuditMismatchException(_successStatus);

/I count new records in page_event table
_newLogLineRecords = _database.getNumberOfLogLinesFile(filename);

_columnNames = new String[] {"new_log_line_records"};
_columnValues = new String [] { Integer . toString (_newLadgé&Records)};

if (_validLinesProcessed == _newLogLineRecords) {
_successStatus ="New records in log_line table counted";
}

else {

_successStatus ="Number of new records in log_line tables dor
"not match number of valid log lines processed";
match = false ;

}

_database .updateAuditDimension(_auditKey, _columné&amcolumnValues,
_successStatus);

if (! match){

throw new AuditMismatchException(_successStatus);

}
*/

/I System.out. printin ("Number of new lines in the log_lin@able : "+
1 _newLogLineRecords);

I+ boolean noProblems = _fileLineCount == _totalLinesProegs&&
_totalLinesProcessed == (_validLinesProcessed +
_invalidLinesProcessed) &&

_validLinesProcessed == _linesInCopyFile &&
_linesInCopyFile ==_newLogLineRecords;

6

S9SSB|D BAR(10} 9P0D) 99IN0S

885

890

895

900

905

910

915

920

925

if (noProblems) {
_successStatus ="ETL process succesfully finished .";

else {
_successStatus =" Problem during ETL process. Data noteatort;
el

catch (AuditMismatchException ame) {
System.out. println ("Auditmismatch”);
errorHandling (" audit, mismatch");

catch (Exception e) { // hvis der sker en fejl i laesningen af en fil
System.out. println (" PostProcessor . insertLogFilef@iled ...");
System.out. println (e);
for (int s =0; s < e.getStackTrace (). length ; s++)
System.out. printin (e. getStackTrace ()[s]);

return _etlSuccess ;

}

void setAuditKey(nt newAuditKey) {
_auditkey = newAuditKey;
}

Jax

+ Presents the query result as a table in html.
*/

private void viewQueryResult(String query) {

try {
ResultSet resultSet = _database.query(query);

if (resultSet !=null){
ResultSetMetaData metaData = resultSet . getMetaData();

_out. println ("<table border=\"1\", cellspacing =\"0\">");

_out. printin ("<tr>");

for (int ¢ =1; ¢ <= metaData.getColumnCount(); c++) {
_out. printin ("<th>" + metaData.getColumnName(c) + "&/th

_out. println ("</tr>");
while (resultSet .next ()) {
_out. println ("<tr>");
for (int ¢ =1; ¢ <= metaData.getColumnCount(); c++) {
_out. printin ("<td>" + resultSet . getString (c) + "</td>")

_out. println ("</tr>");

_out. printin ("</table>");

930

935

940

945

950

955

960

965

970

975

} catch (Exception e){
_out. printin ("PostProcessor .viewQueryResfdiled ...");
_out. println (e);

public void doGet(HttpServletRequest request , HttpServietRespoaspgonse)

throws ServletException , IOException {

long startTime = System. currentTimeMillis ();
System.out. println ("\n\n\NNEWRUN_AT " + (newjava.util.Date(startTime)));
System.out. printin ();

response . setContentType (" text /html");
_out = response . getWriter ();

if (_runningOn.equals("baerbar")) {
System.out. println ("Runningpn_baerbar");
_pathToCopyFiles = "/var/ lib /pgsql /";
/I _database = new Database("test ", " louise ", _pathToEigs);
_database mew Database("aub”, "aub", _pathToCopyFiles);
_filePath = "/homel/louise/ projekt / logfiles2 /";

else if (_runningOn.equals(" stationaer ")) {
System.out. printin ("Runningon_stationaer");
_pathToCopyFiles = "/pack/ postgres /";
_database sew Database("aub”, "louise", _pathToCopyFiles);
/I _database = new Database("aubtest ", " louise ", _patbjjpilles);
/I _database = new Database("test ", " louise ", _pathToEitgs);
_filePath = "/pack/louise / projekt / logfiles /";

}
else{

System.out. printin ("ERRORWHERE_AM _|_RUNNING???");
}

String task = (String) request.getParameter ("task");
String query = (String) request . getParameter ("query");
if (query ==null') {

query = "SELECT »_FROM_log_line";

String filename = (String) request . getParameter ("filerigmne
if (filename ==null)
filename = "access_log.20030225";

int logLineFromLine = 0;
int logLineToLine = 1000;
String logLineFromLineString = request . getParameterglihesfromrow");
if (logLineFromLineString !=null)
logLineFromLine = Integer . parselnt (logLineFromLinasgy);

Sse|D 19|AI9S 10SS9201d1S0d T'3

G6

980

985

990

995

1000

1005

1010

1015

1020

1025

String logLineToLineString = request . getParameter (lifogstorow ");
if (logLineToLineString !=null)
logLineToLine = Integer . parselnt (logLineToLineString)

String fromDateString = request . getParameter ("fromtiate
if (fromDateString ==null)
fromDateString = "2003-02—25";
java.sql.Date fromDate = java. sql . Date.valueOf(frond3iting);
String toDateString = request . getParameter ("todate");
if (toDateString ==null)
toDateString = "2004-07—01";
java.sql.Date toDate = java.sql.Date.valueOf(toDate&t);

_out. println ("<htmI>");

out. println ("<head><title >PostProcesson" + _runningOn + "</ title ></head>");

_out. printin ("<body>");

_out. println ("<table cellpadding=\"10\" border=\"1\">");

_out. println ("<tr>");

_out. println ("<td>");

_out. println ("<form action=\"PostProcessor\fnethod=\"get\">");

_out. println ("<input type=\"hidden\" name=\"task\" value=\" insertloglines \">");

_out. println (" Insert_rows_from_<input_type=\"text\'_" +
"name=\"loglinesfromrow\"value=\"" +
logLineFromLine + "\" size =\"10\">" +
"_to_<input_type=\"text\"_name=\"loglinestorow\"value =\"" +
logLineToLine + "\"_ size =\"10\">");

printin ("__from_file_<input type=\"text\" name=\"filename\"value=\"" +
filename + "\">");

_out. printin ("<input type=\"submit\' value=\" Insert \">");

_out. println ("</form>");

_out. println ("</td>");

_out. println ("<td ,align=\"center\">");

_out. printin ("<form action=\"PostProcessor\method=\"get\">");

_out. println ("<input type=\"hidden\" name=\"task\" value=\"emptyloglines\">");

out. printn ("<input type=\"submit\! value =\"Empty log_lines\">");

_out. println ("</form>");

_out. println ("</td>");

_out. println ("</tr>");

_out. println ("<tr>");

_out. println ("<td colspan=\"2\">");

_out. printin ("<form action=\"PostProcessor\method=\"get\">");

_out. println ("<input type=\"hidden\' hame=\"task\"" +

"value=\" insertallloglines \">");

_out. println ("<input type=\"submit\! value=\" Insert_All _Log_Files\">");

_out. println ("</form>");

_out. println ("</td>");

_out. println ("</tr>");

_out. println ("<tr>");

_out. println ("<td colspan=\"2\">");

=

_out.

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

_out.
. println ("<input type=\"hidden\",name=\"task\" value=\"query\">");
. println ("<textaregname=\"query\"cols=\"50\"_rows=\"5\">" +

_out
_out

_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.
_out.

_out.
_out.
_out.
. printin ("</tr>");
_out.
_out.

_out

println ("<form_action=\"PostProcessor\method=\"get\">");

query + "</ textarea >");
println ("<input type=\"submit\!’ value =\"Query\">");
println ("</form>");
println ("</td>");
println ("</tr>");
println ("<tr>");
println ("<td>");
println ("<form action=\"PostProcessor\method=\"get\">");
println ("<input type=\"hidden\ name=\"task\" value=\"loaddates \">");
printin ("<input type=\"text\" ,name=\"fromdate\"value=\"2003- 02— 25\">");
println ("<input type=\"text\" ,name=\"todate\"value=\"2004-07—01\">");
println ("<input type=\"submit\" value=\"Load dates\">");
println ("</form>");
println ("</td>");
println ("<td>");
printin ("<form action=\"PostProcessor\thethod=\"get\">");
println ("<input type=\"hidden\ name=\"task\" value=\"loadtimes\">");
println ("<input type=\"submit\" value=\"Load times\">");
println ("</form>");
println ("</td>");
printin ("</tr>");
println ("<tr>");
println ("<td>");
printin ("<form action=\"PostProcessor\thethod=\"get\">");
println ("<input type=\"hidden\" name=\"task\" value =\" dimensionalize \">");
println ("<input type=\"submit\ value =\"Dimensionalize\">");
println ("</form>");
println ("</td>");
println ("<td>");
printin ("<form action=\"PostProcessor\thethod=\"get\">");
println ("<input type=\"hidden\ name=\"task\" value=\"reconnect\">");
println ("<input type=\"submit\" value=\"Reconnecto_database\">");
println ("</form>");
println ("</td>");
printin ("</tr>");
println ("<tr>");
println ("<td colspan=\"2\">");
printin ("<form action=\"PostProcessor\thethod=\"get\">");
println ("<input type=\"hidden\" name=\"task\"" +
"value=\" insertanddimensionalize \">");
println ("<input type=\"submit\" value=\" Insert and ,Dimensionalize\">");
println ("</form>");
println ("</td>");

printin ("</table >");
flush ();

96

S9SSB|D BAR(10} 9P0D) 99IN0S

if (_database.openConnection ()) { I}
if (task !=null){
if (task.equals(" insertloglines ")) { else if (task.equals("query")) {
1080 System.out. println ("task insertloglines_not_ available"); viewQueryResult(query);
Ix 1130
_logLineKey = _database .getMaxLogLineKey() + 1; else if (task.equals("loaddates")) {
/I _lastEmptiedLogLineKey = 0; loadDates(fromDate, toDate);
try {
1085 BufferedReader reader = new BufferedReader(new FileReade else if (task.equals("loadtimes™)) {
(_filePath + 1135 loadTimes ();
filename));
int linesinserted = insertLogFile (reader, filename, else if (task.equals("dimensionalize")) {
logLineFromLine, System.out. println ("taskdimensionalizenot_ available");
1090 logLineToLine); Ix
_out. printin ("Read to line "+ linesinserted + 1140 _out. flush ();
"in the log file ."); dimensionalizeLogLines ();
*/
catch (FileNotFoundException fnfe) {
1095 _out. println ("File "+ filename +" not found in "+ else if (task.equals("reconnect")){
_filePath); 1145 _database . closeConnection ();
} _database .openConnection();
*/ }
} else
1100 else if (task.equals(" insertallloglines ")) { _out. println ("Error! Task does not_exist.
");
System.out. printin ("task insertallloglines _not_available"); 1150
% _database . closeConnection ();
_logLineKey = _database . getMaxLogLineKey() + 1; }
/I _lastEmptiedLogLineKey = 0; else{
1105 BufferedReader[] fileReaders = getBufferedLogFileReader _out. println ("Connectionto_databasefailed
");
(_filePath); 1155
for (int r =0; r < fileReaders .length ; r++) { _out. println ("</body></htmI>");
/I BufferedReader reader = new BufferedReader(new FildBea
I (_filePath + _out. close ();
1110 I _filenames[s])); long endTime = System. currentTimeMillis ();
insertLogFile (fileReaders [r], _filenames[r], 0, 10000000 1160 System.out. printin ("\n\nFINISHEDAT " + (newjava.util.Date(endTime)));
long totalTime = endTime- startTime;
*/ System.out. println (" Totaltime:_" + totalTime + "_milliseconds (" +
millisecondsToTime(totalTime) + ").");
1115 else if (task.equals(" insertanddimensionalize ")) { }
_logLineKey = _database .getMaxLogLineKey() + 1; 1165 }

_database . setSessionKey ();
loadAndDimensionalize(_filePath);

/I BufferedReader[] fileReaders =
1120 /I getBufferedLogFileReaders(_filePath); E) 2 Datab ase CI ass
/lfor (int r =0; r < fileReaders .length ; r++){
/I BufferedReader reader = new BufferedReader(new FildBea packageaub;
I (_filePath +
I _filenames[s])); import java.io #;
1125 /I insertLogFile (fileReaders [r], _filenames|r], 0, 1200009 import java.langx;

import java.netsx;

3

sse|D aseqereqd z'3J

L6

10

15

20

25

30

35

40

45

50

import java.sql«;
import java. util «;

public class Database {

String _databaseName, _username;

Connection _connection;

Statement _statement;

ResultSet _resultSet ;

int _numberOfOvermathedLogLines;

int _sessionKey, _pageKey;

Vector _activePageEvents, _activeSessions , _activel$&sar _pages, _searchTypes;

FileOutputStream _fileOutputStream ;

OutputStreamWriter _outputStreamWriter ;

PrintWriter _logLineFile , _sessionFile , _pageEventFilesearchFile ,
_searchTypeFile, _dateFile , _timeOfDayFile, _activeffagntFile ,
_activeSessionFile , _activeSearchFile ; //, _pageFile;

String _pathToCopyFiles;

int _copyPageEventFileCount, _copySessionFileCount, SegchFileCount;

int _newSessions, _newSearches, _newPageEvents;

int _newSessionRecords, _newSearchRecords, _newPageEverd&

int _sessionRecordsBefore, _searchRecordsBefore, _pagseerdsBefore;

int _sessionRecordsAfter, _searchRecordsAfter, _pageReentdsAfter;

String [] _columnNames, _columnValues;

public Database (String databaseName, String username, Stritigfg@opyFiles) {
_databaseName = databaseName;
_username = username;
_sessionKey = 0;
_pageKey =0;
_numberOfOvermathedLogLines = 0;
_activePageEvents rew Vector ();
_activeSessions new Vector ();
_activeSearches mew Vector ();
_pages =new Vector ();
_searchTypes sew Vector ();
_pathToCopyFiles = pathToCopyFiles;

try {
resetFiles ();

/I _fileOutputStream = new FileOutputStream(_pathToCdpgH

1 "page.data");

/I _outputStreamWriter = new OutputStreamWriter(_file@uiStream , " UTF-8");
/I _pageFile = new PrintWriter (new BufferedWriter (_outBtreamWriter));

_fileOutputStream =new FileOutputStream(_pathToCopyFiles + "date . data");
_outputStreamWriter snew OutputStreamWriter(_fileOutputStream , "UFB");
_dateFile =new PrintWriter (new BufferedWriter(_outputStreamWriter));

55

60

65

70

75

80

85

90

95

100

_fileOutputStream =new FileOutputStream(_pathToCopyFiles +
"time_of_day.data");

_outputStreamWriter snew OutputStreamWriter(_fileOutputStream , "UFB");

_timeOfDayFile =new PrintWriter (new BufferedWriter(_outputStreamWriter));

catch (Exception e){
System.out. println ("Databaseonstructor failed ...");
System.out. printin ("Exception® + e);
System.out. printin (e.getMessage ());

}

public booleanopenConnection() {
booleansuccess =false;
try {
Class .forName("org. postgresq| . Driver");
_connection = DriverManager.getConnection("jdbc: pasgl :" +
_databaseName,
_username, "");
if (_connection !=null) {
System.out. println ("Connectippen");
System.out. printin ("dababaseNamne+ _databaseName +
", username;" + _username);
success rue;
}
_statement = _connection. createStatement ();
} catch (SQLException se) {
System.out. printin ("Database.openConnectjofdjled ...");
System.out. println ("SQLException’ + se.getMessage ());
System.out. println ("SQLState:, .. "+ se.getSQLState());
System.out. println ("VendorErrar; " + se.getErrorCode ());
} catch (Exception e){
System.out. printin ("Database.openConnectjoféjled ...");
System.out. println (e);
}
return success;

}

public void closeConnection () {

try {
_connection. close ();

} catch (SQLException se) {
System.out. printin ("Database.closeConnectigri§)led ...");
System.out. println ("SQLException’ + se.getMessage ());
System.out. println ("SQLState:, .. "+ se.getSQLState());
System.out. printin ("VendorErrqr; " + se.getErrorCode ());

} catch (Exception e){
System.out. printin ("Database.closeConnectigri@)led ...");
System.out. println (e);

86

S9SSB|D BAR(10} 9P0D) 99IN0S

110

115

120

125

130

135

140

145

150

System.out. printin (e.getMessage ());

}

public void copyToDatabase(String table) {
try {
PrintWriter file = null;
if (table.equals("log_line")){
file = _logLineFile;

else if (table .equals("session™")) {
file = _sessionFile ;
System.out. println ("SESSIONFILE");

else if (table .equals("page_event")) {
file = _pageEventFile;

else if (table .equals("search")){
file = _searchFile ;

else if (table .equals("search_type")) {
file = _searchTypeFile;

else if (table .equals("time_of_day")) {
file = _timeOfDayFile;

}
else if (table .equals("date")) {
file = _dateFile;

else if (table .equals("active_page_event")) {
file = _activePageEventFile ;

else if (table .equals (" active_session ")) {
file = _activeSessionFile ;

else if (table .equals (" active_search ")) {
file = _activeSearchFile ;

}
/I else if (table.equals("page")){
/I file = _pageFile;
1
file . write (" \\.\ n");
file . flush ();
file . close ();
update ("COPY," + table + ' FROM_,"
+ _pathToCopyFiles + table + ".data™);

catch (Exception e) {
System.out. printin ("Database.copyToDatabdaited ...");

155

160

165

170

175

180

185

190

195

200

System.out. printin (e);
System.out. println (e.getMessage ());
}
}

public booleancopyToDatabase(String [] tablesint auditkey) {
booleansuccess =true;
try {
_connection . setAutoCommi&lse);
deleteActivelnfo ();
for (int t =0; t < tables.length; t++){
PrintWriter file = null ;
if (tables[t]. equals("log_line")){
file = _logLineFile;

else if (tables[t]. equals("session")){
file = _sessionFile ;

else if (tables[t]. equals("page_event")) {
file = _pageEventFile;

else if (tables[t]. equals("search")){
file = _searchFile ;

}
else if (tables[t]. equals("search_type")) {
file = _searchTypeFile;

}
else if (tables [t]. equals("time_of day")) {
file = _timeOfDayFile;

}
else if (tables[t]. equals("date")) {
file = _dateFile ;

else if (tables[t]. equals("active_page_event™")) {
file = _activePageEventFile ;
/l'throw new SQLException("Interrupted by user");

else if (tables[t]. equals(" active_session ")) {
file = _activeSessionFile ;

else if (tables[t]. equals(" active_search ")) {

file = _activeSearchFile ;

}
/l else if (tables[t]. equals("page")){
1 file = _pageFile;
Iy

file . write (" \\.\ n");

file . flush ();

file . close ();

sse|D aseqereqd z'3J

66

205

210

215

220

225

230

235

240

245

250

_statement .addBatch("COPY+ tables[t] + "_FROM_™ +
_pathToCopyFiles + tables [t]+ ".data™);

_statement. executeBatch ();

if (success){
completeAuditRecord(auditkey, "ETlprocess" +
"completed,succesfully”, "Proceed");
_connection.commit();

else{
_connection. rollback ();
}

}
catch (SQLException sqle) {
t

success =false;
System.out. printin ("Rollback");
_connection. rollback ();

catch (Exception e) {
System.out. printin (e);

success =false;

System.out. println ("Database.copyToDatabdaied ...");
System.out. println (sqgle);

System.out. println (sgle .getMessage ());

System.out. printin (sgle . getNextException ());

catch (Exception e) {
success =false;
System.out. printin ("Database.copyToDatabdaied ...");
System.out. printin (e);
System.out. println (e.getMessage ());
}

try {
_connection . setAutoCommiit(ie);

catch (Exception e) {
System.out. println (e);
}

return success;

}

private void deleteActivelnfo () {
update ("DELETEFROM_active_page_event");
update ("DELETEFROM_active_search");
update ("DELETE,FROM_active_session");

255

260

265

270

275

280

285

290

295

public void emptyCopyFiles() {

try {

copyToDatabase("page_event");

/I _fileOutputStream = new FileOutputStream (_pathToCdpgH

I "page_event. data ");

/I _outputStreamWriter = new OutputStreamWriter(_file@uStream , " UTF-8");
/I _pageEventFile = new PrintWriter (new BufferedWriteo(tputStreamWriter));

copyToDatabase("search");

/I _fileOutputStream = new FileOutputStream(_pathToCdpgF+ " search . data ");
/I _outputStreamWriter = new OutputStreamWriter(_file@uStream , " UTF8");
/I _searchFile = new PrintWriter (new BufferedWriter (_putStreamWriter));

copyToDatabase("session");

/I _fileOutputStream = new FileOutputStream(_pathToCdpgH

1l "session .data");

/I _outputStreamWriter = new OutputStreamWriter(_file@uStream , " UTF-8");
/I _sessionFile = new PrintWriter (new BufferedWriter (tioutStreamWriter));

catch (Exception e) {

System.out. printin ("Database.emptyCopyFiles() failed);
System.out. printin (e);

System.out. println (e.getMessage ());

}

}
*

public void emptyLogLineFile() {
try {
copyToDatabase("log_line");

_fileOutputStream =new FileOutputStream(_pathToCopyFiles +
"log_line . data");

_outputStreamWriter snew OutputStreamWriter(_fileOutputStream , "UFB");

_logLineFile =new PrintWriter (new BufferedWriter(_outputStreamWriter));

catch (Exception e) {
System.out. println ("Database.emptyLogLineFilggiled ...");
System.out. println (e);
System.out. printin (e.getMessage ());

}

public void execute (String executeString) {
try {
_statement = _connection. createStatement ();
_statement. execute (executeString);
} catch (SQLException se) {

00T

S9SSB|D BAR(10} 9P0D) 99IN0S

300

305

310

315

320

325

330

335

340

345

System.out. printin ("Database. executefgiled ...");
System.out. println ("ExecuteString" + executeString);
System.out. println ("SQLException! + se.getMessage ());

System.out. println ("SQLState:, .. "+ se.getSQLState());
System.out. println ("VendorErrar; " + se.getErrorCode ());

} catch (Exception e){
System.out. printin ("Database. executefgiled ...");
System.out. println ("ExecuteString" + executeString);
System.out. println ("Statemenf: + _statement);
System.out. printin (e);
System.out. println (e.getMessage ());

}

public void flushFile (String filename) {
try {
if (filename.equals("log_line .data")) {
_logLineFile . flush ();

else if (filename.equals("session.data")) {
_sessionFile . flush ();

else if (filename.equals("page_event.data")) {
_pageEventFile. flush ();

else if (filename.equals("search.data")) {
_searchFile . flush ();

else if (filename.equals("search_type.data")) {
_searchTypeFile . flush ();

else if (filename.equals("time_of day.data")) {
_timeOfDayFile. flush ();

else if (filename.equals("date.data")) {
_dateFile . flush ();

else if (filename.equals("active_page_event.data")) {
_activePageEventFile . flush ();

else if (filename.equals(" active_session .data")) {
_activeSessionFile . flush ();

else if (filename.equals (" active_search . data")) {
_activeSearchFile . flush ();

Il else if (filename.equals ("page.data ")) {
/I _pageFile . flush ();

1

350

355

360

365

370

375

380

385

390

395

catch (Exception e) {
System.out. println ("Database. flushFiléailed ...");
System.out. println (e);
System.out. println (e.getMessage ());

}

public booleancompleteAuditRecordft auditkey, String successStatus ,
String proceed) {
update ("UPDATE,audit SET, etl_end_time=_CURRENT_TIMESTAMP, " +
" success_statys= " + successStatus + "’proceed=_"+
proceed + " WHERE,_audit_key = _" + auditkey);
System.out. println ("Successtatus;" + successStatus);
return true ;

}

public int getActivePageEvents () {

try {
query("EXECUTE select_active_page_events");

while (_resultSet . next ()) {
_activePageEvents .add(getPageEventFromResultSet ());

}
/lupdate ("DELETE FROM active_page_event");
_resultSet . close ();

catch (Exception e) {
System.out. println ("Database.getActivePageEvent&jed ...");
System.out. printin (e);
System.out. printin (e.getMessage ());

return _activePageEvents. size ();

}

public int getActiveSearches () {

try {
query("EXECUTE select_active_searches");

while (_resultSet . next ()) {
_activeSearches .add(getSearchFromResultSet ());

}
/I update ("DELETE FROM active_search");
_resultSet . close ();

catch (Exception e) {
System.out. println ("Database. getActiveSearchesjed ...");
System.out. println (e);
System.out. printin (e.getMessage ());

sse|D aseqereqd z'3J

TOT

400

405

410

415

420

430

435

440

445

return _activeSearches . size ();

}

public int getActiveSessions () {
try {

query("EXECUTE select_active_sessions");

while (_resultSet . next ()) {

_activeSessions .add(getSessionFromResultSet ());

_resultSet . close ();

catch (Exception e) {

System.out. println ("Database. getActiveSessionddjled ...");

System.out. println (e);

System.out. println (e.getMessage ());

return _activeSessions . size ();

}

public Audit getAudit(int auditkey) {
Audit audit =null;

try {
query("EXECUTE select_audit");

if (_resultSet .next () {
audit =new Audit(auditkey,
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet

_resultSet . close ();

catch (Exception e) {

. getString ("filename"),

. getString (" etl_start_time "),

. getString ("etl_end_time"),

. getint (" log_file_line_count "),

. getint (" total_lines_processed "),

. getint (" valid_lines_processed "),

. getint (" invalid_lines_processed "),
. getint (" copy_log_line_file_count "),
. getint ("new_log_line_records"),

. getString (" success_status "),

. getString ("proceed"),

. getint ("min_log_line_key"),

. getint ("max_log_line_key"));

System.out. printin ("Database.getAudit ...");

System.out. printin (e);

System.out. printin (e.getMessage ());

450

455

460

465

470

475

480

485

490

495

return audit;

public Audit[] getAuditForUnfinishedLoads () {
Audit[] audits = null;
try {

query("SELECT,»_FROM_audit WHERE proceed =_fix _this_before proceeding™);

_resultSet . last ();

int numberOfRows = _resultSet.getRow();

audits =new AuditfnumberOfRows];
_resultSet . beforeFirst ();

int row =0;
while (_resultSet . next ()) {

audits [row] =new Audit(_resultSet .
. getString ("filename™),

_resultSet

_resultSet .
_resultSet .
. getint (" log_file_line_count "),

. getint (" total_lines_processed "),

. getint (" valid_lines_processed "),

. getint (" invalid_lines_processed "),
. getint (" copy_log_line_file_count "),
. getint ("new_log_line_records"),

. getString (" success_status "),

. getString ("proceed"),

. getint ("min_log_line_key"),

. getint ("max_log_line_key"));

_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
_resultSet
row++;

_resultSet . close ();

catch (Exception e){

getint ("audit_key"),

getString (" etl_start_time "),
getString ("etl_end_time"),

System.out. println ("Database.getAuditForUnfinishead® ()...");

System.out. println (e);
System.out. printin (e.getMessage ());

return audits ;

}

public int getDateKey(java.sql.Date date) {
int dateKey =—1;

try {

query("EXECUTE select_date_key(" + date +™)");

if (_resultSet .next () {

dateKey = _resultSet . getint ("date_key");

20T

S9SSB|D BAR(10} 9P0D) 99IN0S

500

505

510

515

520

530

535

540

_resultSet . close ();
} catch (Exception e){
System.out. println ("Database.getDateKeygjiled ...");
System.out. println (e);
System.out. println (e.getMessage ());

return dateKey;

}

public String getLastSuccessfulLoadFilename () {
String filename =null ;
try {
query("SELECT filename FROM_audit WHERE_proceed,=_'Proceed’,"+
"ORDER BY, audit_key DESG LIMIT _1");

if (_resultSet .next () {
filename = _resultSet . getString (1);

catch (Exception e) {
System.out. println ("Database.getLastSuccessfullLibentkme(), failed ...");
System.out. println (e);
System.out. println (e.getMessage ());

return filename;

}

public String [] getLoadedLogFileNames() {
String [] filenames =null ;
try {
query("SELECT filename FROM_audit WHERE_proceed,=_'Proceed’,"+
"ORDER_BY_audit_key");

_resultSet . last ();

int numberOfRows = _resultSet.getRow();
filenames =new String [numberOfRows];
_resultSet . beforeFirst ();

for (int f =0; f < numberOfRows && _resultSet.next(); f++) {
filenames[f]= _resultSet . getString (1);
}

catch (Exception e) {
System.out. printin ("Exceptiorn, Database.getLoadedLogFileNames...");
System.out. println (e);
System.out. println (e.getMessage ());

return filenames;

545

550

555

560

565

570

575

580

585

590

}

public LogLine getLogLineint logLineKey) {
LogLine logLine =null ;
try {
query("EXECUTE select_log_ling(" + logLineKey + ")");

if (_resultSet .next () {
logLine = getLogLineFromResultSet();

_resultSet . close ();
} catch (Exception e){
System.out. println ("Database.getLogLinefailed ...");
System.out. println (e);
System.out. printin (e.getMessage ());

return logLine;

}

public LogLine[] getLogLines{nt numberOfLogLinesint firstLogLineKey) {
LogLine[] logLineArray =new LogLine[numberOfLogLines];
try {
int lastLogLineKey = ((firstLogLineKey / numberOfLogLines)
numberOfLogLines) + numberOfLogLines 1;
query("EXECUTE select_log_lines(" + firstLogLineKey + ", " +
lastLogLineKey + ")");
for (int | = firstLogLineKey ; | <= lastLogLineKey; |++) {
if (_resultSet .next () {
logLineArray[|%numberOfLogLines] = getLogLineFromRétSet();
}

_resultSet . close ();
} catch (Exception e){
System.out. printin ("Database.getLogLinefailed ...");
System.out. printin (e);
System.out. printin (e.getMessage ());

return logLineArray;

}

private LogLine getLogLineFromResultSet() {

LogLine logLine =null ;

try {
int logLineKey = _resultSet . getint ("log_line_key");
String filename = _resultSet . getString ("filename");
int logLineNumber = _resultSet . getint ("log_line_number");
String ipAddress = _resultSet . getString ("ip_address");
String ident = _resultSet . getString ("ident");
String authuser = _resultSet . getString ("authuser");

sse|D aseqereqd z'3J

€0t

595

600

605

610

615

620

625

630

635

640

java.sql.Date date = _resultSet .getDate("date");

Time time = _resultSet .getTime("time");

String timezone = _resultSet . getString ("timezone");
String method = _resultSet . getString ("method");

String requestUrl = _resultSet . getString (" request_drl "
String sessionTag = _resultSet . getString (" session_)tag "
String serial = _resultSet . getString (" serial ");

String query = _resultSet . getString ("query");

String protocol = _resultSet . getString (" protocol");

int status = _resultSet . getint (" status ");

int bytes = _resultSet . getint ("bytes");

String servername = _resultSet . getString ("servername")
String referrer = _resultSet . getString (" referrer ");
String browser = _resultSet . getString ("browser");

logLine = new LogLine(logLineKey, filename, logLineNumber, ipAddress,
ident, authuser, date, time, timezone, method,
requestUrl , sessionTag, serial , query, protocol,
status , bytes, servername, referrer , browser);

catch (Exception e) {
System.out. printin ("Database.getLogLineFromRest(jSéailed ...");
System.out. printin (e);
System.out. println (e.getMessage ());

return logLine;

}

public int getMaxAuditKey() {
int maxAuditkey = 0;
try {
query("SELECT max(audit_key)FROM audit");
if (_resultSet .next () {
maxAuditKey = _resultSet. getint (1);

_resultSet . close ();

} catch (Exception e) {
System.out. println ("Database.getMaxAuditKégiled...");
System.out. println (e);
System.out. println (e.getMessage ());

}

return maxAuditKey;

}

public int getMaxLogLineKey() {
int maxLogLineKey =—1;
try {
query("SELECT max(log_line_key) FROM log_line");
if (_resultSet .next ()) {

645

650

655

660

665

670

675

680

685

690

maxLogLineKey = _resultSet. getint (1);

_resultSet . close ();
} catch (Exception e){
System.out. printin ("Database.getMaxLogLineKgjled...");
System.out. println (e);
System.out. println (e.getMessage ());
}

return maxLogLineKey;

}

public int getMaxLogLineNumber() {
int maxLogLineNumber =1;
try {
query("SELECT max(log_line_number)FROM_log_line");
if (_resultSet .next ()) {
maxLogLineNumber = _resultSet.getint (1);

_resultSet . close ();
} catch (Exception e){
System.out. println ("Database.getMaxLogLineNumliiaited...");
System.out. printin (e);
System.out. printin (e.getMessage ());
}
return maxLogLineNumber;

}

public void setSessionKey () {
int maxSessionKey = 0;
int maxActiveSessionKey = 0;
try {
query("SELECT max(session_keyFROM session");
if (_resultSet .next () {
maxSessionKey = _resultSet . getint (1);

}
query("SELECT max(session_keyJFROM_active_session");
if (_resultSet .next () {
maxActiveSessionKey = _resultSet . getint (1);
}

catch (Exception e) {
System.out. printin ("Database.getMaxSessionKajed ...");
System.out. printin (e);
System.out. println (e.getMessage ());

if (maxSessionKey > maxActiveSessionKey) {/brug mdmnktion
_sessionKey = maxSessionKey;

else{

70T

S9SSB|D BAR(10} 9P0D) 99IN0S

695

700

705

710

715

720

725

730

740

_sessionKey = maxActiveSessionKey;

}

public int [] getMinAndMaxLogLineKey() {
int [minAndMax = {0, 0};
try {

query("SELECT min(log_line_key), max(log_line_key)FROM_log_line");

if (_resultSet .next ()) {
minAndMax[0] = _resultSet. getint (1);
minAndMax[1] = _resultSet. getint (2);

_resultSet . close ();
} catch (Exception e){
System.out. printin ("Database.getMinLogLineKéailed...");
System.out. printin (e);
System.out. printin (e.getMessage ());

return minAndMax;

}

public int getNumberOfLogLinesFromFile(String filename) {
int numberOfLogLines = 0;
try {
query("SELECT count¢), FROM log_line WHERE filename ="+
filename + "™);
if (_resultSet .next ()) {
numberOfLogLines = _resultSet. getint (1);
}

catch (Exception e) {
System.out. println ("Database.getNumberOfLogLines#fide_failed...");
System.out. println (e);
System.out. printin (e.getMessage ());

return numberOfLogLines;

}

public int getNumberOfNewPageEvents() {
return _newPageEvents;
}

public int getNumberOfNewSearches() {
return _newSearches;
}

public int getNumberOfNewSessions() {
return _newSessions;
}

745

750

755

760

765

770

775

780

785

public int getNumberOfPageEventsAfter(auditkey) {
_pageEventRecordsAfter = 0;
try {
query("SELECT count¢)_FROM_page_event");
if (_resultSet .next () {
_pageEventRecordsAfter = _resultSet . getint (1);

catch (Exception e) {
System.out. printin ("Database.getNumberOfPageEvdtasAailed ...");
System.out. printin (e);
System.out. println (e.getMessage ());

}

return _pageEventRecordsAfter;

}

public int getNumberOfSearchesAftén{ auditkey) {
_searchRecordsAfter = 0;
try {
query("SELECT count¢), FROM_search");
if (_resultSet .next () {
_searchRecordsAfter = _resultSet . getint (1);
}

catch (Exception e) {
System.out. println ("Database.getNumberOfSearchesAf#iled ...");
System.out. println (e);
System.out. println (e.getMessage ());

}

return _searchRecordsAfter;

}

public int getNumberOfSessionsAftén auditkey) {
int _sessionRecordsAfter =0;
try {
query("SELECT count¢)_FROM_session");
if (_resultSet .next () {
_sessionRecordsAfter = _resultSet . getint (1);
}

catch (Exception e) {
System.out. printin ("Database.getNumberOfSessiorsAfiiled ...");
System.out. printin (e);
System.out. println (e.getMessage ());

return _sessionRecordsAfter;

sse|D aseqereqd z'3J

S0T

790

795

800

805

810

815

820

825

830

835

}

public int getNumberOfPageEventsBefore() {
_pageEventRecordsBefore = 0;
try {

query("SELECT page_event_records_aftéfROM_audif WHERE,_proceed =_" +

"’Proceed ORDER _BY_audit_key DESC LIMIT _1");
if (_resultSet .next () {

_pageEventRecordsBefore = _resultSet . getint (" pag@terexords_after ");

catch (Exception e) {
System.out. printin ("Database.getNumberOfPageEveitsB failed...");
System.out. printin (e);
System.out. println (e.getMessage ());

return _pageEventRecordsBefore;

}

public int getNumberOfSearchesBefore() {
_searchRecordsBefore =0;
try {
query("SELECT search_records_afteFROM audif WHERE proceed=_"+
"'Proceed, ORDER BY, audit_key DESC LIMIT _1");
if (_resultSet .next ()) {
_searchRecordsBefore = _resultSet . getint (* searchrdscafter ");
}

catch (Exception e) {
System.out. println ("Database.getNumberOfSearchesBefiled ...");
System.out. println (e);
System.out. println (e.getMessage ());

}

return _searchRecordsBefore;

}

public int getNumberOfSessionsBefore() {
_sessionRecordsBefore =0;

try {

query("SELECT session_records_aftedfROM_audit WHERE proceed=_"+

""proceed, ORDER BY, audit_key DESG LIMIT _1");
if (_resultSet .next () {
_sessionRecordsBefore = _resultSet . getint (" sessioards_after ");

catch (Exception e) {
System.out. printin ("Database.getNumberOfSessiormBefhiled ...");
System.out. println (e);

840

845

850

855

860

865

870

875

880

885

System.out. println (e.getMessage ());
return _sessionRecordsBefore;

}

public PageEvent getPageEventFromResultSet() {

PageEvent pageEventmull ;

try {
int logLineKey = _resultSet . getint ("log_line_key");
int dateKey = _resultSet . getint ("date_key");
int timeOfDayKey = _resultSet. getint ("time_of_day_key");
int pageKey = _resultSet . getint ("page_key");
int sessionKey = _resultSet . getint ("session_key");
int auditkey = _resultSet . getint ("audit_key");

pageEvent =new PageEvent(logLineKey, dateKey, timeOfDayKey,
pageKey, sessionKey, auditKey);

catch (Exception e){
System.out. println ("Database.getPageEventFromR&si(}t failed ...");
System.out. printin (e);
System.out. printin (e.getMessage ());

}

return pageEvent;

public int getPageKey(Page page) {
try {

for (int p =0; p < _pages.size (); p++){
Page pagelnVector = (Page) _pages.get(p);
if (page.getPageFunction (). equals (pagelnVector. gefRagdon()) &&
page.getPageFunctionType (). equals (pagelnVector
.getPageFunctionType()) &&
page. getProcess (). equals (pagelnVector. getProcggs ())
return pagelnVector.getPageKey();
}
}
_pageKey++;
page.setPageKey(_pageKey);
_pages.add(page);
System.out. println ("Ngentry_for_page \"" + page + "\"_in_database.");
/I _pageFile . write (page. toString () +"\ n");
return 1; // _pageKey;

catch (Exception e) {
System.out. println ("Database.getPageKey(Pafgégd ...");

90T

S9SSB|D BAR(10} 9P0D) 99IN0S

890

895

900

905

910

915

920

925

930

935

System.out. printin (e);
System.out. printin (e.getMessage ());

return —1;

public void getPages () {
try {
query("EXECUTE select_pages");
while (_resultSet . next ()) {
Page newPage mrew Page(_resultSet . getint ("page_key"),
_resultSet . getString ("page_function"),
_resultSet . getString ("page_function_type"),
_resultSet . getString ("process"));
_pages.add(newPage);
if (newPage.getPageKey() > _pageKey) {
_pageKey = newPage.getPageKey();

}

catch (Exception e) {
System.out. println ("Database.getPagedg)led ...");
System.out. println (e);
System.out. println (e.getMessage ());

}

public QueryQuestion[] getQueryQuestions () {
QueryQuestion[] queryQuestions rew QueryQuestion[0];
try {
query(" select_query_question&S_SELECT_x, FROM_" +
"query_questionsORDER BY _id");

_resultSet . last ();

int numberOfRows = _resultSet.getRow();
queryQuestions sew QueryQuestion[numberOfRows];
_resultSet . beforeFirst ();

while (_resultSet . next ()) {
QueryQuestion newQueryQuestion =
new QueryQuestion(_resultSet. getint ("id"),
_resultSet . getString ("question™),
_resultSet . getString ("query"));
queryQuestions| _resultSet .getRowx)1] = newQueryQuestion;

catch (Exception e) {
System.out. println ("Database.getQueryQuestiont(ied ...");
System.out. printin (e);

940

945

950

955

960

965

970

975

980

985

System.out. printin (e.getMessage ());
}

return queryQuestions;

public Search getSearcint sessionKey) {
Search search =ull ;
AT . .
for (int s =0; s < _activeSearches . size (); s++){
search =(Search) _activeSearches .get(s);

/I Tiek evt. at den ikke er null

if (search.getSessionKey () == sessionKey) {
return search;

}

} catch (Exception e){
System.out. println ("Database.getSearch (sessionKajfed ...");
System.out. println (e);
System.out. printin (e.getMessage ());

return null ;

}

public Search getSearclnt sessionKey ,nt searchNumber,
String searchNumberValidity) {
Search search #ull ;
try {
for (int s =0; s < _activeSearches . size (); s++){
search =(Search) _activeSearches .get(s);
if (search.getSessionKey () == sessionKey &&
search .getSearchNumber() == searchNumber &&
search .getSearchNumberValidity (). equals (searchNuvialidity)) {
return search;

}

}
} catch (Exception e){
System.out. println ("Database. getSearch (sessioni§egrchNumber," +
"searchNumberValidity) failed ...");
System.out. printin (e);
System.out. println (e.getMessage ());

return null ;

}

private Search getSearchFromResultSet () {
Search search #ull ;
try {
int dateKey = _resultSet . getint ("date_key");

sse|D aseqereqd z'3J

L0T

990

995

1000

1005

1010

1015

1020

1025

1030

int timeOfDayKey = _resultSet. getint ("time_of_day_key");

int sessionKey = _resultSet . getint ("session_key");

int searchTypeKey = _resultSet . getint ("search_type_key");

int searchNumber = _resultSet . getint ("search_number");

String searchNumberValidity = _resultSet . getString
("search_number_validity");

int numberOfBookDescriptions = _resultSet . getint
("number_of_book_descriptions");

int numberOfBooksInBasket = _resultSet. getint ("numberbobks_in_basket");

int numberOfReservations = _resultSet . getint (" number esfenvations");

search =new Search(dateKey, timeOfDayKey, sessionKey, searchTypeKe
searchNumber, searchNumberValidity,
numberOfBookDescriptions, numberOfBooksInBasket,
numberOfReservations);

catch (Exception e) {
System.out. printin ("Database.getSearchFromRes(iSkiiled ...");
System.out. printin (e);
System.out. println (e.getMessage ());

}

return search;

}

public int getSearchTypeKey(SearchType searchType) {
try {
for (int s =0; s < _searchTypes. size (); s++){
SearchType searchTypelnVector = (SearchType) _searelsTget(s);
if (searchTypelnVector.getTypeWithField ()
.equals (searchType.getTypeWithField ())) {
return searchTypelnVector .getSearchTypeKey();

}

}
} catch (Exception e){
System.out. println ("Database.getSearchTypeKdgfled ...");
System.out. println (e);
System.out. println (e.getMessage ());
}
return 1;

}

public void getSearchTypes () {
try {
query("EXECUTE select_search_types");
while (_resultSet . next ()) {
SearchType searchType =
new SearchType(_resultSet

. getint ("search_type_key"),
_resultSet . getString ("type"),

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

_resultSet . getString (" field "),
_resultSet
. getString (" type_with_field "));
_searchTypes.add(searchType);
}

catch (Exception e){
System.out. printin ("Database.getSearchTypef(led ...");
System.out. printin (e);
System.out. println (e.getMessage ());

}

public Session getSessiomf sessionKey) {
Session session Aull ;

try {
for (int s =0; s < _activeSessions . size() && session mal ; s++) {
if (((Session) _activeSessions .get(s)). getSessionKey fessionKey) {
session = (Session) _activeSessions .get(s);
}

}
} catch (Exception e){
System.out. printin ("Database. getSessigrféjled ...");
System.out. println (e);
System.out. println (e.getMessage ());
}
return session;

}

private Session getSessionFromResultSet () {

Session session aull ;

try {
int sessionKey = _resultSet . getint ("session_key");
String sessionTag = _resultSet . getString (" session_)ag "
String ipAddress = _resultSet . getString ("ip_address");
String browser = _resultSet . getString ("browser");
String firstRequestUrl = _resultSet . getString (" first uest_url ");
int firstPageKey = _resultSet . getint (" first_page_key ");
String lastRequestUrl = _resultSet . getString (" lastuesy_url ");
int lastPageKey = _resultSet . getint ("last_page_key");
String referrer = _resultSet . getString (" referrer ");
java.sql.Date startDate = _resultSet .getDate(" state tp
int startDateKey = _resultSet . getint (" start_date_key ");
Time startTime = _resultSet .getTime(" start_time ");
int startTimeKey = _resultSet . getint (" start_time_key ");
java.sql.Date endDate = _resultSet .getDate("end_date")
int endDateKey = _resultSet . getint ("end_date_key");
Time endTime = _resultSet .getTime("end_time");

80T

S9SSB|D BAR(10} 9P0D) 99IN0S

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

int endTimeKey = _resultSet. getint ("end_time_key");

int pagesinSession = _resultSet . getint ("pages_in_seskion"

int bookDescriptionsinSession =

_resultSet . getint (" book_descriptions_in_session ");
booksInBasketIinSession =

_resultSet . getint ("books_in_basket_in_session");

int reservationsinSession = _resultSet . getint (" resematim_session ");
int lastSearchNumber = _resultSet . getint ("last_searchbeut);

in

=

String searchNumberValid = _resultSet . getString (" seanumber_validity ");

session =new Session(sessionKey, sessionTag, ipAddress, browser,
firstRequestUrl , firstPageKey , lastRequestUrl,
lastPageKey, referrer , startDate , startDateKey,
startTime , startTimeKey, endDate, endDateKey,
endTime, endTimeKey, pagesinSession,
bookDescriptionsinSession ,
booksInBasketIinSession, reservationsinSession ,
lastSearchNumber, searchNumberValid);

catch (Exception e) {
System.out. printin ("Database.getSessionFromReg()tStiled ...");
System.out. println (e);
System.out. println (e.getMessage ());

}

return session;

}

public int getSessionKey(LogLine logLineint pageKey,nt dateKey,int timeKey){
int logLineSessionKey =1;
Session currentSession ;
if (logLine ==null) {
return —1;

try {
if (!logLine.hasSessionTag ()) {
_sessionKey++;
_activeSessions .adtgw Session(_sessionKey, logLine, pageKey,
dateKey, timeKey));
_newSessions++;
logLineSessionKey = _sessionKey;
}
else{
long longLogLineTime = logLine.getDate (). getTime() +
logLine.getTime (). getTime ();
for (int v =0; v < _activeSessions . size() &&
logLineSessionKey ==-1; v++) {
currentSession = (Session) _activeSessions . get(v);
if (currentSession .getEndLong() < longLogLineTimel200000) {
/I Terminated session found

1135

1140

1145

1150

1155

1160

1165

1170

1175

1180

_sessionFile . write (currentSession . toString () + "\n");
removelnactivePageEvents(currentSession . getSessjaiK
removelnactiveSearches (currentSession . getSessiqi}ey
_activeSessions .remove(v);
V——;
Search inactiveSearch = getSearch
(currentSession .getSessionKey (),
currentSession . getLastSearchNumber(),
currentSession . getSearchNumberValidity ());
if (inactiveSearch !=null’) {
_searchFile . write (inactiveSearch . toString () + "\n");
_activeSearches .remove(inactiveSearch);

}

else if (currentSession .matches(logLine)) {
currentSession .addPageEvent(logLine, pageKey,
dateKey, timeKey);
logLineSessionKey = currentSession .getSessionKey ();

}
if (logLineSessionKey ==-1) {
_sessionKey++;
_activeSessions . adtfw Session(_sessionKey, logLine , pageKey,
dateKey, timeKey));
_newSessions++;
logLineSessionKey = _sessionKey;

}

}
} catch (Exception e){
System.out. printin ("Database.getSessionKefd)led ...");
System.out. printin (e);
System.out. println (e.getMessage ());

return logLineSessionKey;

}

public int getTimeKey(Time sqlTime) {
try {
String timeString = sqlTime. toString ();
int hour = Integer . parselnt (timeString . substring (0,2));
int minute = Integer . parselnt (timeString . substring (3,5));
int second = Integer . parselnt (timeString . substring (6));

int timeKey =1 + second + (60 minute) + (60« 60+ hour);
return timeKey;

catch (Exception e) {
System.out. println ("Database.getTimeKeygiled ...");
System.out. printin (e);

sse|D aseqereqd z'3J

60T

1185

1190

1195

1200

1205

1210

1215

1220

1225

1230

System.out. println (e.getMessage ());

return —1;

}

public booleanincrementBookDescriptiong{t sessionKey) {
booleansuccess =false;
try {
Session session = getSession (sessionKey);
if (session ==null) {
System.out. println ("Sessigjis_null _in_"+
"incrementNumberOfBookDescriptions(" +
sessionKey + ")");

}
else{
int searchNumber = session . getLastSearchNumber();
String searchNumberValidity = session .getSearchNundiletit ();
Search search = getSearch (sessionKey, searchNumber,
searchNumberValidity);
if (search !=null'){
search .incrementNumberOfBookDescriptions(1);
session . incrementBookDescriptionsinSession (1);
return true ;
}
}

catch (Exception e) {
System.out. printin ("Database.incrementNumberOfBoeddiptions()," +
"failed ...");
System.out. println (e);
System.out. println (e.getMessage ());

return false ;

}

public booleanincrementBooksInBaskett sessionKey ,int amount) {
booleansuccess =false;
try {
Session session = getSession (sessionKey);
int searchNumber = session .getLastSearchNumber();
String searchNumberValidity = session . getSearchNumddetity ();

Search search = getSearch (sessionKey, searchNumbehNearberValidity);
if (search !=null){

search .incrementNumberOfBooksInBasket(amount);

session .incrementBooksInBasketinSession(amount);

return true ;

1235

1240

1245

1250

1255

1260

1265

1270

1275

catch (Exception e){
System.out. println ("Database.incrementNumberOfBbdBasket() " +
"failed ...");
System.out. printin (e);
System.out. println (e.getMessage ());

return false ;

}

public boolean incrementReservationsnt sessionKey) {
booleansuccess =false;
try {
Session session = getSession (sessionKey);
int searchNumber = session.getLastSearchNumber();
String searchNumberValidity = session . getSearchNumédétit ();

Search search = getSearch(sessionKey, searchNumbehNearberValidity);
if (search !=null){

search .incrementNumberOfReservations(1);

session . incrementReservationsinSession (1);

return true ;

}

catch (Exception e) {
System.out. println ("Database.incrementNumberOfRedens" +
"failed ...");
System.out. printin (e);
System.out. printin (e.getMessage ());
}

return success;

public boolean insertDate (Date date) {

booleansuccess =false;

try {
_dateFile . write (date . toString () + "\n");

} catch (Exception e){
System.out. printin ("Database. insertDate fgiled ...");
System.out. println (e);
System.out. println (e.getMessage ());

}

return success;

}

public boolean insertLogLine (LogLine logLine) {
booleansuccess =false;
try {
if (logLine.getLogLineKey() % 1000 == 0) {
System.out. println ("Logline_key:_" + logLine.getLogLineKey());

0Tt

S9SSB|D BAR(10} 9P0D) 99IN0S

1280

1285

1290

1295

1300

1305

1310

1315

1320

1325

}
_logLineFile . write (logLine. toString () + "\n");
success =rue;
} catch (Exception e){
System.out. println ("Database. insertLogLine failed ...");
System.out. printin (e);
System.out. println (e.getMessage ());
}
return success;

}

public boolean insertPageEvent (PageEvent pageEvent, LogLine logLine) {
booleansuccess =false;
try {
_activePageEvents . add(pageEvent);
_newPageEvents++;
success rue;
} catch (Exception e){
System.out. println ("Database. insertPageEventdjled ...");
System.out. printin (e);
System.out. printin (e.getMessage ());
}
return success;

}

public boolean insertSearch (Search search) {
try {
Session activeSession = getSession (search .getSesgiQjiKe
if (activeSession !=null && activeSession .getLastSearchNumber(}H4) {
Search activeSearch = getSearch (search.getSessionKey ()
if (activeSearch !=null){
activeSearch . deactivate ();

_activeSearches .add(search);
_newSearches++;
activeSession .setLastSearchNumber(search. getSaartie());
activeSession . setSearchNumberValidity
(search .getSearchNumberValidity ());
activeSession . incrementSearchesInSession (1);
return true ;
} catch (Exception e){
System.out. println ("Database. insertSearchfgiled ...");
System.out. printin (e);
System.out. printin (e.getMessage ());

return false ;

1330

1335

1340

1345

1350

1355

1360

1365

1370

1375

public boolean insertTime (Time sqlTimejnt hour, int minute, int second,
String workingHours, String periodOfDay) {
booleansuccess =false;
try {
int timeKey = getTimeKey(sqlTime);
_timeOfDayFile.write (timeKey + "\t" +
sqlTime + "\t" +
hour + "\t" +
minute +"\t" +
second +"\t" +
workingHours +"\t" +
periodOfDay + "\n");
return true ;

catch(Exception e) {
System.out. printin ("database . insertTimefailed ...");
System.out. printin (e);
System.out. println (e.getMessage ());

return false;

}

public int newAuditRecord(String filename , String successStatus ,
String proceed) {
int maxAuditKey = getMaxAuditKey();
update ("INSERTINTO, audit (audit_key, filename, etl_start_time," +
" success_statusproceed) VALUES_ (" + (maxAuditKey + 1) +", ™ +
filename + "', CURRENT_TIMESTAMP,™ + successStatus + "
+ proceed + "')");
return (maxAuditKey + 1);
}

public void prepareStatements () {
try {

execute ("PREPAREselect_date_keyDATE), AS_ SELECT, date_keyFROM date " +
"WHERE _sql_date=_$1");

execute ("PREPAREselect_time_of_day_keyTIME)_AS_" +
"SELECT_time_of_day_keyFROM_time_of_day WHERE sql_time =_$1");

execute ("PREPAREselect_log_ling(INTEGER) AS_SELECT_*_FROM log_line "+
"WHERE _Jlog_line_key = _$1");

execute ("PREPARESelect_log_lines(INTEGER_INTEGER)_AS_SELECT_x_FROM_" +
"log_line_WHERE jlog_line_key BETWEEN_$1_AND_$2");

execute ("PREPAREselect_pagesAS_SELECT_x,_FROM_page");

execute ("PREPAREselect_search_typeAS, SELECT » FROM search_type");

execute ("PREPAREselect_page_keyVARCHAR(60), VARCHAR(30), VARCHAR(30))" +
" _AS_SELECT_page_keyFROM_page WHERE_page_function=_%$1_AND_"+
"page_function_typg=_$2_AND_process=_$3");

execute ("PREPAREselect_search_type_kefV/ARCHAR(18), VARCHAR(18))_AS_" +
"SELECT, search_type_keyrROM search_typge" +

sse|D aseqereqd z'3J

TTT

1380

1385

1390

1395

1400

1405

1410

1415

1420

1425

"WHERE_type_=_%$1_AND_field_=_$2");

execute ("PREPAREselect_audjt(INTEGER)_AS_SELECT_filename, " +
" etl_start_time , etl_end_time,, log_file_line_count ," +
" total_lines_processeq, valid_lines_processed,; +
" invalid_lines_processeq ,,copy_log_line_file_count)" +
"new_log_line_records, success_statusproceed " +
"FROM_audit_" +
"WHERE _audit_key =, _$1");

execute ("PREPAREselect_active_searchesS_SELECT_»_FROM_active_search" +

"ORDER_BY_date_key,time_of_day_key");

execute ("PREPAREselect_active_sessiqn&S_SELECT_x_FROM_active_sessiqr' +

"ORDER_BY_end_date,end_time");
execute ("PREPAREselect_active_page_eventsS_SELECT FROM "+
"active_page_evenORDER BY, date_key,time_of_day_key");
Il execute ("PREPARE select_query_questions AS SELEEROM " +
/I "query_questions ORDER BY id");

catch (Exception e) {
System.out. printin ("database . prepareStatemefaited ...");
System.out. println (e);
System.out. println (e.getMessage ());

}

public ResultSet query(String queryString) {
try {
_statement = _connection. createStatement ();
_resultSet = _statement.executeQuery(queryString);

}

catch (SQLException se) {
System.out. println ("Database.querygpiled ...");
System.out. println ("SQLException! + se.getMessage ());
System.out. printin ("SQLState;, .. "+ se.getSQLState());
System.out. println ("VendorErrar; " + se.getErrorCode ());
System.out. println ("query;" + queryString);

catch (Exception e) {
System.out. printin ("Database.queryailed ...");
System.out. println (e);
System.out. println (e.getMessage ());
System.out. printin ("Query;" + queryString);

}

return _resultSet ;

}

public void removelnactivePageEvenis{ inactiveSessionKey) {
/I System.out. println ("RemovelnactivePageEvents(" activeSessionKey +")");
PageEvent pageEventmull ;

try {

1430

1435

1440

1445

1450

1455

1460

1465

1470

1475

for (int p =0; p < _activePageEvents. size (); p++){
pageEvent = (PageEvent) _activePageEvents. get(p);
if (pageEvent.getSessionKey () == inactiveSessionKey) {
_pageEventFile. write (pageEvent. toString () + "\n");
_activePageEvents .remove(p);

P
}

catch (Exception e){
System.out. println ("Database.removelnactivePage¥failed ...");
System.out. println (e);
System.out. println (e.getMessage ());

}

public void removelnactiveSearchem(inactiveSessionKey) {
/I System.out. printin ("RemovelnactiveSearches (" + imaSessionKey +")");
Search search aull;
try {
for (int s =0; s < _activeSearches . size (); s++){
search =(Search) _activeSearches . get(s);

/I Tiek evt. at den ikke er null

if (search.getSessionKey () == inactiveSessionKey) {
_searchFile . write (search . toString () + "\n");
_activeSearches .remove(s);
S——,;

}

catch (Exception e) {
System.out. println ("Database. removelnactiveSear@hdailed ...");
System.out. println (e);
System.out. println (e.getMessage ());

}

public void resetFiles () {
try {
if (_logLineFile !=null') {
_logLineFile . close ();

_fileOutputStream =new FileOutputStream(_pathToCopyFiles +

"log_line . data");
_outputStreamWriter snew OutputStreamWriter(_fileOutputStream , "UFB");
_logLineFile =new PrintWriter (new BufferedWriter(_outputStreamWriter));

if (_sessionFile !=null){

AN

S9SSB|D BAR(10} 9P0D) 99IN0S

1480

1485

1490

1495

1500

1505

1510

1515

1520

_sessionFile . close ();

}
_fileOutputStream =new FileOutputStream(_pathToCopyFiles +

"session . data");
_outputStreamWriter snew OutputStreamWriter(_fileOutputStream , "UFRB");
_sessionFile =new PrintWriter (new BufferedWriter(_outputStreamWriter));

if (_pageEventFile !=null) {
_pageEventFile. close ();

}

_fileOutputStream =new FileOutputStream(_pathToCopyFiles +
"page_event.data");

_outputStreamWriter snew OutputStreamWriter(_fileOutputStream , "UFRB");

_pageEventFile =new PrintWriter (new BufferedWriter(_outputStreamWriter));

if (_searchFile !=null){
_searchFile . close ();

}

_fileOutputStream =new FileOutputStream(_pathToCopyFiles + "search . data");
_outputStreamWriter =snew OutputStreamWriter(_fileOutputStream , "UFB");
_searchFile =new PrintWriter (new BufferedWriter(_outputStreamWriter));

if (_activePageEventFile !aull){
_activePageEventFile . close ();

}
_fileOutputStream =new FileOutputStream(_pathToCopyFiles +
"active_page_event.data");
_outputStreamWriter =new OutputStreamWriter(_fileOutputStream , "UFRB");
_activePageEventFile mew PrintWriter (new BufferedWriter
(_outputStreamWriter));

if (_activeSessionFile !=ull) {
_activeSessionFile . close ();

}
_fileOutputStream =new FileOutputStream(_pathToCopyFiles +
" active_session . data");
_outputStreamWriter snew OutputStreamWriter(_fileOutputStream , "UFRB");
_activeSessionFile mew PrintWriter (new BufferedWriter
(_outputStreamWriter));

if (_activeSearchFile !=ull){
_activeSearchFile . close ();

}
_fileOutputStream =new FileOutputStream(_pathToCopyFiles +
" active_search .data");
_outputStreamWriter snew OutputStreamWriter(_fileOutputStream , "UFRB");
_activeSearchFile sew PrintWriter (new BufferedWriter
(_outputStreamWriter));

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

catch (Exception e) {
System.out. printin ("database . resetFilesfgiled ...");
System.out. println ("Exception' + e);
System.out. println (e.getMessage ());

}

public void resetNewlInfo () {
_newSessions =0;
_newSearches = 0;
_newPageEvents = 0;

}

public int saveActivePageEvents () {

/I System.out. printin ("Number of active page events :" ictivePageEvents. size ());

int activePageEvents =0;

try {

while (_activePageEvents. size () >0) {
_activePageEventFile . write (((PageEvent) _activePagefs . get (0)). toString () +
"\n");

_activePageEvents .remove(0);
activePageEvents ++;

}

catch (Exception e) {
System.out. printin ("Database.saveActivePageEvenfa(ed ...");
System.out. println (e);
System.out. println (e.getMessage ());

}

return activePageEvents ;

}

public int saveActiveSearches () {
int activeSearches =0;
try {
while (_activeSearches . size () >0){
_activeSearchFile . write (((Search) _activeSearches(0Jg toString () +
"\n");

_activeSearches .remove (0);
activeSearches ++;

}

catch (Exception e) {
System.out. printin ("Database. saveActiveSearchefafled ...");
System.out. printin (e);
System.out. println (e.getMessage ());

return activeSearches ;

sse|D aseqereqd z'3J

€Tt

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

public int saveActiveSessions () {
int activeSessions =0;
try {
while (_activeSessions . size () >0){
_activeSessionFile . write (((Session) _activeSessiges(0))
. activeSessionToString () + "\n");

_activeSessions .remove (0);
activeSessions ++;

}

catch (Exception e) {
System.out. printin ("Database. saveActiveSessionfafled ...");
System.out. printin (e);
System.out. println (e.getMessage ());

return activeSessions ;

}

public void setCopyPageEventFileCouint(newFileCount) {
_copyPageEventFileCount = newFileCount;

public void setCopySearchFileCourt¢ newFileCount) {
_copySearchFileCount = newFileCount;

public void setCopySessionFileCourinf newFileCount) {
_copySessionFileCount = newFileCount;

public booleansetLastSearchNumbér{ sessionKey ,int searchNumber,
String searchNumberValidity) {
booleansuccess =false;
try {
Session session = getSession (sessionKey);
int sessionSearchNumber=1;
String sessionSearchNumberValidity = "";
if (session ==null) {
System.out. println ("Errorin_setLastSearchNumbefCan not_find_" +
"session with, key " + sessionKey);
return false ;
}
else{
sessionSearchNumber = session . getLastSearchNumber();
sessionSearchNumberValidity = session . getSearchNorabdity ();
if ((searchNumberValidity. equals (" valid ") &&
sessionSearchNumberValidity . equals ("temporary")) ||
(searchNumberValidity . equals (" valid) &&

1625

1630

1635

1640

1645

1650

1655

1660

1665

1670

sessionSearchNumberValidity . equals (" valid ") &&
searchNumber != sessionSearchNumber)) {
session .setLastSearchNumber(searchNumber);
session . setSearchNumberValidity (searchNumber\Vgljdit

}
else{

return false ;
}

Search search = getSearch(sessionKey, sessionSearceNumb
sessionSearchNumberValidity);
if (search ==null){
if (sessionSearchNumber =1) {

System.out. printin ("Errqrin_setLastSearchNumbe€an not_find " +

"search with_sessionKey" + sessionKey +

", _search number " + sessionSearchNumber +
"_and searchNumberValidity" +
sessionSearchNumberValidity);

return false;

}
else{

search . setSearchNumber(searchNumber);

search . setSearchNumberValidity (searchNumber\Val)dity
}

return true ;
} catch (Exception e){
System.out. printin ("Database.getSearch (setLastBRarober() failed ...");
System.out. printin (e);
System.out. println (e.getMessage ());

return false ;

}

public int update(String updateString) {
int rowsUpdated = 0;
try {
/I System.out. println (updateString);

rowsUpdated = _statement. executeUpdate(updateString);

} catch (SQLException se) {
System.out. printin ("Database.updatefailed ...");
System.out. println ("UpdateString" + updateString);
System.out. println ("SQLException’ + se.getMessage ());
System.out. println ("SQLState:, .. "+ se.getSQLState());
System.out. println ("VendorErrar; " + se.getErrorCode ());

} catch (Exception e){
System.out. printin ("Database.updatefailed ...");
System.out. println ("UpdateString" + updateString);
System.out. println ("Statemenf: + _statement);

V1T

S9SSB|D BAR(10} 9P0D) 99IN0S

1675

1680

1685

1690

1695

1700

1705

System.out. printin (e);
System.out. printin (e.getMessage ());

return rowsUpdated;

public int updateAuditDimensiomft auditkey, String [] columnNames,
String [] newValues, String newSuccessStatus) {
/x System.out. printin ("updateAuditDimension:");
for (int ¢ =0; c < columnNames.length; c++) {
System.out. println (columnNames[c]+":" + newValuesfc])
}*/
System.out. println ("Successtatus;" + newSuccessStatus);

String updateString = "UPDATEaudit SET";

Itry {

for (int ¢ =0; ¢ < columnNames.length; c++) {
updateString +=

"+ columnNames|c] +"=_" + newValues[c] + "",";
updateString += " success_status,_™ + newSuccessStatus +
" WHERE audit_key = "+ auditKey;

/I System.out. printin (updateString);

return update (updateString);

I%}
catch (SQLException se) {
System.out. println ("Database.update () failed ...");
System.out. println ("UpdateString : "+ updateString);
System.out. println ("SQLException: " + se.getMessage ())
System.out. println ("SQLState: "+ se.getSQLState ());
System.out. println ("VendorError: "+ se.getErrorCodg ()
} catch (Exception e){
System.out. println ("Database.update () failed ...");
System.out. println ("UpdateString : "+ updateString);
System.out. println ("Statement : "+ _statement);
System.out. println (e);
System.out. println (e.getMessage ());
}l

1710 }

5

E.3 DataExtractor Class

packageaub;

import java. text . SimpleDateFormat;
import java. util . Date;

import java. util . Map;

import java.io. Serializable ;

10

15

20

25

30

35

40

45

50

55

import org. jfree . data . CategoryDataset;

import org. jfree .data . DefaultCategoryDataset ;
import de. laures .cewolf. DatasetProduceException;
import de. laures .cewolf. DatasetProducer;

import de. laures .cewolf. CategoryltemLinkGenerator;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org. jfree . chart . entity . CategoryltemEntity ;

import org. jfree . chart . tooltips .CategoryToolTipGenerator;

import aubx;
import java.sqlx;
import java.io #;

public class DataExtractorimplements DatasetProducer, Serializable {

/I These values would normally not be hard coded but prodbged
/I some kind of data source like a database or a file

private String [] categories ;

private String [] seriesNames;

private String xAxisLabel = "X axis";

private ResultSet resultSet ;

private String _resultDescription = "nodescription”;

private String _query = " defaultquery";

private Database _databaserlll ;

private Database getDatabase () {
if (_database =xull) {
/I _database = new Database("aub","aub ", "/ var/lib /pd¥gl/ baerbar
_database sew Database("aub”, "louise", "/pack/postgres /"); /| stadier
_database .openConnection();
System.out. printin (_database);

}

return _database;

}

private void closeDatabase () {
if (_database !=ull){
System.out. println ("Closingdatabaseconnection™);
_database . closeConnection ();
_database =ull ;

}

public void setGraphParameters () {

sse|D JojoelixJereq €3

STT

60

65

70

75

80

85

90

95

100

try {
Database database = getDatabase ();

System.out. printin (_query);
resultSet = database .query(_query);
System.out. println (resultSet);

resultSet . last ();

int numberOfRows = resultSet.getRow();
categories =new String [numberOfRows];
System.out. println (numberOfRows);
resultSet . beforeFirst ();

ResultSetMetaData metaData = resultSet .getMetaData();
int numberOfColumns = metaData.getColumnCount();
if (numberOfColumns < 2) {
throw (new Exception("Error! The resultsef must have at_least two_columns"));

xAxisLabel = metaData.getColumnName(1);

seriesNames mew String [numberOfColumns- 1J;

for (int s =1; s < numberOfColumns; s++) {
seriesNames[s- 1] = metaData.getColumnName(s + 1);

}

}
catch (SQLException sqle) {
System.out. println ("SQLExceptigcaught:,” + sgle.getMessage ());

catch (NullPointerException npe) {
System.out. println (" NullPointerExceptigiraught;," + npe.getMessage ());

catch (Exception e) {
System.out. println ("Exceptigreaught;." + e.getMessage());
}

}

public Object produceDataset(Map pararttgpws DatasetProduceException {
DefaultCategoryDataset datasetnew DefaultCategoryDataset ();
try {
int ¢ =0;
while (resultSet . next ()) {
/I for (int ¢ =0; ¢ < columnNames.length; c++) {
System.out. printin ("Value;" + resultSet . getFloat (2));
categories [c] = resultSet . getString (1);
dataset .addValueqpuble) resultSet . getFloat (2), seriesNames [0], categorief [c]
C++;

}
}
catch (SQLException sqle) {

105

110

115

120

125

130

135

140

145

150

System.out. println ("SQLExceptigcaught:,” + sgle.getMessage ());
sqle . printStackTrace ();

catch (NullPointerException npe) {
System.out. println (" NullPointerExceptigiraught;," + npe.getMessage ());

catch (Exception e){
System.out. println ("Exceptigreaught;" + e.getMessage());
}

closeDatabase ();
return dataset ;

}

public booleanhasExpired(Map params, Date since) {
/I'log .debug(getClass (). getName() + "hasExpired ()");
return (System. currentTimeMillis (}- since .getTime ()) > 5000;

}

public String getProducerld () {
return "PageViewCountDateDatasetProducer";
}

public String getType () {
return " verticalbar ";
}

public String getXAxis() {
return xAxisLabel;

public String getYAxis () {
return "Antal";
}

public void setResultDescription (String r) {
_resultDescription =r;
}

public String getResultDescription () {
return _resultDescription ;
}

public void setQuery(String q) {
_query = q;
System.out. printin ("quephas been set");

9TT

S9SSB|D BAR(10} 9P0D) 99IN0S

160

165

170

175

180

185

190

195

public void setQueryKeys(String measure, String dimension, Stringribate) {
Database database = getDatabase (); // The database il tlpgeroduceDataset

String query =
" select_ result ,query from_gui_gquerieswhere measure=""+measure+""+
" _and dimension=""+dimension+""+
"_and, attribute ="'+ attribute +"*;";

System.out. printin (query);

try {

ResultSet result = database .query(query);
System.out. printin (result);

if (result. first () {
String resultDescription = result . getString (" result");
setResultDescription (resultDescription);

String graphQuery = result . getString ("query");
setQuery(graphQuery);

} else{
System.out. printin ("Noguery has been set");
}

} catch (SQLException sgle) {
System.out. println ("SQLExceptigcaught:,” + sgle.getMessage ());
sgle . printStackTrace ();

catch (NullPointerException npe) {
System.out. println (" NullPointerExceptigrraught;," + npe.getMessage ());
npe. printStackTrace ();

catch (Exception e) {
System.out. println ("Exceptigreaught,." + e.getMessage());
e. printStackTrace ();

E.4 Date Class

packageaub;

import java. util ;

5 public class Date {

10

15

20

25

30

35

40

45

private GregorianCalendar _calendar, _firstDayOfSemester;

private String _weekDay, _semester, _weekend, _exam, _publidedp)i
_schoolVacation, _workday;

private int _dateKey, _year, _month, _day, dayOfSemester, _week®@fSer,
_dayOfYear, _weekOfYear;

long _millisintoSemester ;

private java.sql.Date _sqglDate;

public Date (int dateKey, GregorianCalendar calendar) {
_dateKey = dateKey;
_calendar = calendar;

}

public java.sql.Date getSqlDate () {
_sglDate =new java. sql.Date(_calendar . getTimelnMillis ());
return _sqlDate;

}

public int getYear () {
_year = _calendar. get(_calendar.YEAR);
return _year;

}

public int getMonth() {
_month = _calendar. get(_calendar. MONTH) + 1;
return _month;

}

public int getDay() {
_day = _calendar . get(_calendar.DAY_OF_MONTH);
return _day;
}
public String getWeekDay() {
if (_calendar.get(_calendar.DAY_OF_ WEEK) == _calendaN\DAY) {
_weekDay = "monday";

}
else if (_calendar.get(_calendar.DAY_OF_WEEK) == _calendaEBDAY) {
_weekDay = "tuesday";

}
else if (_calendar.get(_calendar.DAY_OF_WEEK) == _calendaDMESDAY) {

sse|D ared v'4

LTT

50

55

60

65

70

75

80

85

90

95

_weekDay = "wednesday";

else if (_calendar.get(_calendar.DAY_OF_WEEK) == _calendat/R$DAY) {
_weekDay = "thursday";

}
else if (_calendar.get(_calendar.DAY_OF_ WEEK) == _calendaDAY) {
_weekDay = "friday";

}
else if (_calendar.get(_calendar.DAY_OF_WEEK) == _calendaFI$RDAY) {
_weekDay = "saturday";

}
else if (_calendar.get(_calendar.DAY_OF_ WEEK) == _calendaNBJY) {
_weekDay = "sunday";

else{
_weekDay = "unknown";

return _weekDay;

}

public String getSemester () {
if (_calendar. afternew GregorianCalendar (2003, 0, 31)) &&
_calendar . beforenew GregorianCalendar (2003, 8, 1))) {
_semester = "spring2003";

}
else if (_calendar. afterfew GregorianCalendar (2003, 7, 31)) &&
_calendar . beforenew GregorianCalendar (2004, 1, 1))) {
_semester = " fall,2003";

}
else if (_calendar. afterfew GregorianCalendar (2004, 0, 31)) &&
_calendar . beforenew GregorianCalendar (2004, 8, 1))) {
_semester = "spring2004";

else{
_semester = "unknown";

return _semester;

}

public GregorianCalendar getFirstDayOfSemester () {
if (_calendar. afternew GregorianCalendar (2003, 0, 31)) &&
_calendar . beforenew GregorianCalendar (2003, 8, 1))) {
_firstDayOfSemester new GregorianCalendar (2003, 1, 1);

}
else if (_calendar. afterfew GregorianCalendar (2003, 7, 31)) &&
_calendar . beforefew GregorianCalendar (2004, 1, 1))) {
_firstDayOfSemester new GregorianCalendar (2003, 8, 1);

}
else if (_calendar. afterfew GregorianCalendar (2004, 0, 31)) &&

100

105

110

115

120

125

130

135

140

145

_calendar . beforeew GregorianCalendar (2004, 8, 1))) {
_firstDayOfSemester new GregorianCalendar (2004, 1, 1);

else{
_firstDayOfSemester sull ;

return _firstDayOfSemester;

}

public int getDayOfSemester() {
_millisintoSemester = _calendar.getTime (). getTime()
getFirstDayOfSemester (). getTime (). getTime ();
_dayOfSemester =irt) (_millisintoSemester / (2460+60+1000)) + 1;
return _dayOfSemester;

}

public int getWeekOfSemester() {
_weekOfSemester = ((getDayOfSemester(1) / 7) + 1;
return _weekOfSemester;

}

public String getWeekend() {
getWeekDay();
if (_weekDay.equals("saturday")|| _weekDay.equals('ayhji{
_weekend = "weekend";

else{
_weekend = "weekday";
}

return _weekend;

public String getExam() {
getMonth();
if (_month ==1|| _month ==6){
_exam ="exam";

else if (_month == 8) {
_exam ="reexam";

else{
_exam = "ng,exam”;
}

return _exam;
public String getPublicHoliday () {

GregorianCalendar [] publicHolidays =nfew GregorianCalendar (2003, 0, 1),
new GregorianCalendar (2003, 3, 13),

8TT

S9SSB|D BAR(10} 9P0D) 99IN0S

150

155

160

165

new GregorianCalendar (2003, 3, 17),
new GregorianCalendar (2003, 3, 18),
new GregorianCalendar (2003, 3, 20),
new GregorianCalendar (2003, 3, 21),
new GregorianCalendar (2003, 4, 16),
new GregorianCalendar (2003, 4, 29),
new GregorianCalendar (2003, 5, 5),
new GregorianCalendar (2003, 5, 8),
new GregorianCalendar (2003, 5, 9),
new GregorianCalendar (2003, 11, 25),
new GregorianCalendar (2003, 11, 26),
new GregorianCalendar (2004, 0, 1),
new GregorianCalendar (2004, 3, 4),
new GregorianCalendar (2004, 3, 8),
new GregorianCalendar (2004, 3, 9),
new GregorianCalendar (2004, 3, 11),
new GregorianCalendar (2004, 3, 12),
new GregorianCalendar (2004, 4, 7),
new GregorianCalendar (2004, 4, 20),
new GregorianCalendar (2004, 4, 30),

195

200

205

210

}

public int getWeekOfYear() {
_calendar . setMinimalDaysInFirstWeek(4);
_weekOfYear = _calendar.get(_calendar. WEEK_OF_YEAR);
return _weekOfYear;

}

public String getWorkday() {
_workday = "workday";
if (getWeekend().equals ("weekend") ||
getPublicHoliday (). equals ("holiday") ||
getSchoolVacation (). equals ("vacation")) {
_workday = "nq workday";

return _workday;

}

public String toString () {
StringBuffer buffer =new StringBuffer ();

Sse|D peoTjeluswaloul g3

new GregorianCalendar (2004, 4, 31), 215 buffer = buffer .append(_dateKey + "\t");
new GregorianCalendar (2004, 5, 5)}; buffer = buffer .append(getSqglDate () + "\t");
for (int g =0; g < publicHolidays . length && _publicHoliday =rull ; g++) { buffer = buffer .append(getYear () + "\t");
if (_calendar.equals(publicHolidays[g])) { buffer = buffer .append(getMonth() + "\t");
170 _publicHoliday = "holiday"; buffer = buffer .append(getDay () + "\t");
} 220 buffer = buffer .append(getWeekDay() + "\t");
} buffer = buffer .append(getSemester () + "\t");
if (_publicHoliday ==null) { buffer = buffer .append(getDayOfSemester() + "\t");
_publicHoliday = "ng@ holiday"; buffer = buffer .append(getWeekOfSemester() + "\t");
175 } buffer = buffer .append(getWeekend() + "\t");
return _publicHoliday ; 225 buffer = buffer .append(getExam() + "\t");
} buffer = buffer .append(getPublicHoliday () + "\t");
buffer = buffer .append(getSchoolVacation () + "\t");
public String getSchoolVacation () { buffer = buffer .append(getDayOfYear() + "\t");
180 if ((_calendar. after{ew GregorianCalendar (2003, 5, 30)) && buffer = buffer .append(getWeekOfYear() + "\t");
_calendar . beforenew GregorianCalendar (2003, 7, 1))) || 230 buffer = buffer .append(getWorkday());
(_calendar . afterrlew GregorianCalendar (2004, 5, 30)) && return buffer . toString ();
_calendar . beforenew GregorianCalendar (2004, 7, 1)))X }
_schoolVacation = "vacation"; }
185
else{
, -Schoolvacation = "novacaton’, E.5 IncrementalLoad Class
return _schoolVacation;
190 } packageaub;
public int getDayOfYear() { import java.io.BufferedReader;
_dayOfYear = _calendar. get(_calendar.DAY_OF_YEAR); import java. util . Vector;
return _dayOfYear; 5 import java. util .GregorianCalendar;

import java.io.FileReader;

6TT

10

15

20

25

30

35

40

45

50

55

import java.io .FileNotFoundException;

public class IncrementalLoad {
static Database _database;
static int _logLineKey;
/I static String _pathToCopyFiles ="/var/lib /pgsql /"Baerbar
static String _pathToCopyFiles = "/pack/ postgres /*; // statema
/I static String _filePath ="/home/louise/ projekt/ logéie /";// baerbar
static String _filePath = "/pack/louise / projekt / logfiles /";
static String [] _filenames;
static PostProcessor _postProcessor ;
static int _auditKey;
static String _successStatus ;
static String [] _columnNames;
static String [] _columnValues;
static boolean_etlSuccess ;
static int _newSessionRecords;
static int _newSearchRecords;
static int _newPageEventRecords;
static int _pageEventRecordsBefore;
static int _pageEventRecordsAfter;
static int _searchRecordsBefore;
static int _searchRecordsAfter;
static int _sessionRecordsBefore;
static int _sessionRecordsAfter;
static int _copyPageEventFileCount;
static int _copySessionFileCount;
static int _copySearchFileCount;

public static BufferedReader[] getUnprocessedFileReaders (StringPdile) {

System.out. println ("getUnprocessedFileReaders ()");

Vector fileReaders =ew Vector ();

Vector filenameVector =new Vector ();

String filename = "";

BufferedReader reader rull ;

String [] loadedFiles = _database.getLoadedLogFileN&mnes

String lastLoadedFilename = _database . getLastSucdesaéiFilename ();

GregorianCalendar date mew GregorianCalendar (2003, 1, 25);

if (lastLoadedFilename !'=ull) {
int year = Integer . parselnt (lastLoadedFilename. substritily 15));
int month = Integer . parselnt (lastLoadedFilename. subst(if 17));
int day = Integer . parseint (lastLoadedFilename. substriTg);(1
date =new GregorianCalendar(year, month 1, day);

}
try {
while (true) {
date .add(date .DAY_OF_MONTH, 1);

/l filename =" accesstest .20030225";

60

65

70

75

80

85

90

95

100

filename = "access_log." + date.get(date.YEAR);
if (date.get(date.MONTH) <9){
filename +="0";

}

filename += (date.get(date. MONTH) + 1);

if (date.get(date.DAY_OF_MONTH) < 10) {
filename +="0";

}
filename += date . get(date.DAY_OF_MONTH);
System.out. println (filename);

booleanfileLoaded = false;
for (int f =0; f < loadedFiles . length && !fileLoaded ; f++){
fileLoaded = filename . equals (loadedFiles [f]);

}
if (! fileLoaded) {
System.out. println (" Fileis_not_loaded");
reader =new BufferedReader(ew FileReader(filePath +
filename));
filenameVector . add(filename);
fileReaders .add(reader);

}
else{

System.out. printin ("File has already been loaded.");
}

}

catch (FileNotFoundException fnfe) {
System.out. println ("Filenot_found; " + filename);
/I stillMoreFiles = false ;

catch (Exception e) {
System.out. printin ("Exceptionn,_ IncrementalLoad.getUnprocessedFileReaders ()");
System.out. println (e);

BufferedReader[] readerArray mew BufferedReader|fileReaders . size ()];
for (int r =0; r < readerArray.length ; r++) {
readerArray[r] = (BufferedReader) fileReaders .get(r);

_filenames =new String[filenameVector . size ()];

for (int f =0; f < _filenames.length ; f++){
_filenames[f] = (String) filenameVector . get(f);

}

return readerArray;

}

public static booleannoOtherLoadsRunning() {
return true ;
}

0ct

S9SSB|D BAR(10} 9P0D) 99IN0S

110

115

120

125

130

140

145

150

public static void main (String [] args) {
if (noOtherLoadsRunning()) {
_etlSuccess #rue;
/I _database = new Database("aub", "aub", _pathToCo)File
_database mew Database("aub", "louise", _pathToCopyFiles);
_database .openConnection();
_database . setSessionKey ();
_logLineKey = _database . getMaxLogLineKey() + 1;
_postProcessor new PostProcessor(_database, _auditKey, _logLineKey,
_filePath , _pathToCopyFiles);
BufferedReader[] fileReaders = getUnprocessedFileRe&déitePath);
if (fileReaders .length >0){
_database . prepareStatements ();
}

long _numberOfLogLines = 0;
for (int f =0; f < fileReaders .length && _etlSuccess; f++) {
_auditkey = _database .newAuditRecord(_filenames]f],
"New_audit_record created",
"Recover");
_postProcessor . setAuditkey(_auditkey);
System.out. println ("Filenamg? + _filenames|[f]);
_postProcessor . getActivelnfo ();
int [] recordsBeforeLoad = _postProcessor . getRecordCowfitsBLoad();
/I _pageEventRecordsBefore = recordsBeforeLoad [0];
/I _searchRecordsBefore = recordsBeforeLoad [1];
/I _sessionRecordsBefore = recordsBeforeLoad [2];

_postProcessor . countLinesInLogFile (_filePath , _fileespf]);

_database. resetFiles ();

_etlSuccess = _postProcessor . processLogFile (fileRefilgr _filenames[f]);
/l'int [] recordsAfterLoad = _postProcessor .getRecord@séfterLoad();

/I _pageEventRecordsAfter = recordsAfterLoad [0];

/I _searchRecordsAfter = recordsAfterLoad [1];

/I _sessionRecordsAfter = recordsAfterLoad [2];

[%
_newPageEventRecords = _pageEventRecordsAftepageEventRecordsBefore;
System.out. println ("_newPageEventRecords: " + _newPegetRecords);
String pageEventSuccess ="";
_copyPageEventFileCount = _postProcessor .getCopyRageieCount();
if (_newPageEventRecords !=_copyPageEventFileCount) {
pageEventSuccess =
" Number of new page event records does not "+
"match number of lines in copy file . _newPageEventRecords: "
_newPageEventRecords;
_etlSuccess = false ;

}

155

160

165

170

175

180

185

190

195

_newSessionRecords = _sessionRecordsAftersessionRecordsBefore;
System.out. printin ("_newSessionRecords: " + _newSaB&oords);
String sessionSuccess ="";
_copySessionFileCount = _postProcessor .getCopySésisiGount ();
if (_newSessionRecords !=_copySessionFileCount) {
sessionSuccess =

" Number of new session records does not "+

"match number of lines in copy file .";
_etlSuccess = false ;

_newSearchRecords = _searchRecordsAftersearchRecordsBefore;
System.out. printin ("_newSearchRecords: " + _newSeagchRIs);
String searchSuccess ="";
_copySearchFileCount = _postProcessor .getCopySeéeittint ();
if (_newSearchRecords !=_copySearchFileCount) {
searchSuccess =

" Number of new search records does not "+

"match number of lines in copy file .";
_etlSuccess = false ;

}

_columnNames = new String[] {"new_session_records",
"new_search_records",

"new_page_event_records"};

_columnValues = new String [] { Integer . toString (_newSesRecords),
Integer . toString (_newSearchRecords),

Integer . toString (_newPageEventRecords)};

_database . updateAuditDimension(_auditKey, _columndé&amcolumnValues,
"number of new session, search and "+
"page event records counted."+
pageEventSuccess + sessionSuccess +
searchSuccess);
*/

if (_etlSuccess){

_successStatus = "ETJprocesscompleted succesfully”;

_database .completeAuditRecord(_auditKey, _successStdProceed");
}

/I System.out. printin ("Success status :"+ _successSjatu
System.out. println ();

Sse|D peoTjeluswaloul g3

Tt

o

10

15

20

30

35

40

45

E.6 LogLine Class

packageaub;

import java.io *;

import java.sqlx;
import java. text +;
import java.netsx;

public class LogLine {

private int _logLineKey, _logLineNumber, _status , _bytes;

private String _filename, _ipAddress, _ident, _authuser, _timeZomethod,
_sessionTag, _serial , _query, _protocol , _serverNanmewder;

private java.sql.Date _date;

private Time _time;

private URL _requestUrl, _referrer ;

private boolean _logLineValid;

/I private FileWriter _irregularLines ;

public LogLine(nt logLineKey, String filename jnt logLineNumber,

String ipAddress, String ident, String authuser,
java.sql.Date date, Time time, String timeZone,
String method, String requestUrl , String sessionTag ,n§triserial ,
String query, String protocol jnt status ,int bytes,
String serverName, String referrer , String browser) {

_logLineKey = logLineKey;

_filename = filename;

_logLineNumber = logLineNumber;

_ipAddress = ipAddress;

_ident = ident;

_authuser = authuser;

_date = date;

_time = time;

_timeZone = timeZone;

_method = method;

try {
_requestUrl =new URL(requestUrl);

} catch (MalformedURLException mue) {}

_sessionTag = sessionTag;
_serial = serial ;

_query = query;

_protocol = protocol ;
_status = status ;

_bytes = bytes;
_serverName = serverName;

50

55

60

70

75

80

85

90

95

try {
_referrer =new URL(referrer);
} catch (MalformedURLException mue) {}

_browser = browser;

x» Constructs a LogLine object using the filename , linenumivet lag line
» string . Throws InvalidLogLineException if the log line isonhaccepted
» as valid.
*/
public LogLine(int logLineKey, String filename jnt logLineNumber,
String logLine) throws InvalidLogLineException,
MalformedURLEXxception {
_logLineKey = logLineKey;
_filename = filename;
_logLineNumber = logLineNumber;

try {
/I _irregularLines = new FileWriter ("/ home/louise/ pr&jée logfiles /" +
1 " irregularlines
/I System.out. println (" irregularLines created ");

/I Escape backslashes and apostrophes
logLine = logLine. replaceAll (" \W", " \WW\ ");
logLine = logLine. replaceAll ("™, " \W");

/I remove multible spaces
while (logLine.indexOf('., ") != —1) {

logLine = logLine. replaceAll ("_", "_");
}
int firstBracket = logLine.indexOf("[");
int secondBracket = logLine.indexOf("]");
int requestStart = logLine.indexOf("\"", secondBracket);
int requestEnd = logLine.indexOf("\"", requestStart + 1);
int referrerStart = logLine.indexOf("\"" , requestEnd + 1);
int referrerEnd = logLine.indexOf("\"", referrerStart + 1);

/I split log line into six major parts

String ipldentAuthuser = logLine. substring (0, firstBratk— 1);

String timestamp = logLine. substring (firstBracket + 1, aedBracket);

String request = logLine. substring (requestStart + 1, estfind);

String statusBytesServer = logLine. substring (requestEre,
referrerStart — 1);

try {
_referrer =newURL(logLine.substring(referrerStart + 1, referrerEnd))

Ltxt ", true);

act

S9SSB|D BAR(10} 9P0D) 99IN0S

100

105

110

115

120

125

130

135

140

145

} catch (MalformedURLException mue) {
_referrer =null;
}

_browser = logLine. substring (referrerEnd + 3, logLinendéh () — 1);

String [] ipldentAuthuserParts = ipldentAuthuser . spfit\(s");

_ipAddress = ipldentAuthuserParts [0];

_ident = ipldentAuthuserParts [1];

_authuser = ipldentAuthuser . substring (_ipAddress tleifg+
_ident. length () + 2);

String dateString = timestamp. substring (0, 11);
_date = sglDateFormat(dateString);

_time = Time.valueOf(timestamp. substring (12, 20));
_timeZone = timestamp. substring (21);

String [] requestParts = request. split ("\\s");
if (requestParts .length !=3){
/I _irregularLines . write (logLine +"\n");
throw new InvalidLogLineException("requestoo_short");

}
_method = requestParts [0];

if (_method.equals("HEAD")) {
throw new InvalidLogLineException("HEAD method not acceptedas " +
"user_request");

}

_requestUrl =new URL("http://a500.aub.auc.dk" + requestParts [1]);
if (_requestUrl. toString (). endsWith("/?func=logout")) {
throw new InvalidLogLineException(" sessiqrtime—out");

_protocol = requestParts [2];

_sessionTag =ull ;

_serial ="";

if (_requestUrl !=null && _requestUrl. getPath () !=null &&
_requestUrl . getPath (). indexOf("/F/") ==1) {
throw new InvalidLogLineException("notauboline user function");

}

int endOfSessionTag = _requestUrl . getPath (). indexoff};
if (endOfSessionTag ==1) {
endOfSessionTag = _requestUrl . getPath (). length ();

}
if (_requestUrl. getPath (). length () >3) {
_sessionTag = _requestUrl . getPath (). substring (3, ede€3ionTag);

150

155

160

165

170

175

180

185

190

if (_sessionTag.length () >50) {
System.out. printin ("sessiQitag too_long; " + _sessionTag);
}

}
if (endOfSessionTag != _requestUrl . getPath (). length ()) {
_serial = _requestUrl . getPath (). substring (endOfSedsig + 1);
if (_serial .length ()!=5){
_serial ="";
}
}
_query = _requestUrl .getQuery ();
if (_query ==null'){
_Query ="
}

String [statusBytesServerParts = statusBytesServelit.(S5ps");
if (statusBytesServerParts .length !=3){
/I _irregularLines . write (logLine +"\n");
throw new InvalidLogLineException(" status, pytes .or_server missing");

}

_status = Integer . parselnt (statusBytesServerParts [0])
if (statusBytesServerParts [1]. equals{(")) {
throw new InvalidLogLineException("thebytes , attribute_has no_value");

else{
_bytes = Integer . parselnt (statusBytesServerParts [1]);

}

_serverName = statusBytesServerParts [2];

} catch (StringlndexOutOfBoundsException stringEx) {

System.out. println (stringEx);

System.out. println ("Logline_" + logLineNumber + "." + logLine);
} catch (IOException ioe) {

System.out. printin (ioe);
}

}

public int getLogLineKey() {
return _logLineKey;
}

public String getFilename () {
return _filename;
}

public int getLogLineNumber() {
return _logLineNumber;
}

sse|Q aulnbo1 93

XA

195

200

205

210

215

220

225

230

235

240

public int getStatus () {
return _status;
}

public int getBytes () {
return _bytes;
}

public String getlpAddress () {
return _ipAddress;
}

public String getldent () {
return _ident;

public String getAuthuser () {
return _authuser;
}

public String getTimeZone() {
return _timeZone;
}

public String getMethod() {
return _method;
}

public URL getRequestUTrl() {
return _requestUrl ;
}

public String getSessionTag () {
return _sessionTag;
}

public String getSerial () {
return _serial ;
}

public String getQuery () {
return _query;
}

public String getProtocol () {
return _protocol ;
}

245

250

255

260

265

270

275

280

285

290

public String getServerName() {
return _serverName;
}

public URL getReferrer () {
return _referrer ;
}

public String getBrowser () {
return _browser;
}

public java.sql.Date getDate () {
return _date;

}

public Time getTime() {
return _time;

}

public long getLongTime() {
return _date.getTime () + _time.getTime();
}

public boolean referrerHasSessionTag () {
String referrerSessionTag rull ;
if (_referrer !=null && _referrer . getPath () '=null &&
_requestUrl . getPath (). indexOf("/F/") 1=1) {

int endOfSessionTag = _referrer . getPath (). indexof();
if (endOfSessionTag ==1) {

endOfSessionTag = _referrer . getPath (). length ();
}
it (_referrer . getPath (). length () >3) {
}

return (referrerSessionTag !=ull && referrerSessionTag . length () == 50);

referrerSessionTag = _referrer . getPath (). substringe(@/OfSessionTag);

}

public booleanhasSessionTag () {
return _sessionTag !=null && !_sessionTag.equals(");
}

public boolean isValid () {
return _logLineValid;
}

public void setFilename (String newFilename) {

144"

S9SSB|D BAR(10} 9P0D) 99IN0S

295

300

305

310

315

320

325

330

335

340

_filename = newFilename;

}

public void setLogLineNumbeint newLogLineNumber) {
_logLineNumber = newLogLineNumber;
}

public void setStatusifit newStatus) {
_status = newStatus;
}

public void setBytes(nt newBytes) {
_bytes = newBytes;
}

public void setlpAddress (String newlpAddress) {
_ipAddress = newlpAddress;
}

public void setldent (String newldent) {
_ident = newldent;
}

public void setAuthuser(String newAuthuser) {
_authuser = newAuthuser;
}

public void setTimeZone(String newTimeZone) {
_timeZone = newTimeZone;
}

public void setMethod(String newMethod) {
_method = newMethod;

}
public void setRequestUrl(String newRequestUTrl) {
try {
_requestUrl =new URL(newRequestUrl);
} catch (Exception e) {}
}

public void setRequestUrl (URL newRequestUrl) {
_requestUrl = newRequestUrl;
}

public void setSessionTag (String newSessionTag) {
_sessionTag = newSessionTag;

345

350

355

360

365

370

375

380

385

390

public void setProtocol (String newProtocol) {
_protocol = newProtocol;
}

public void setServerName(String newServerName) {
_serverName = newServerName;

}
public void setReferrer (String newReferrer) {
try {
_referrer =new URL(newReferrer);
} catch (Exception e) {}
}

public void setReferrer (URL newReferrer) {
_referrer = newReferrer;
}

public void setBrowser(String newBrowser) {
_browser = newBrowser;
}

public void setDate (java.sql.Date newDate) {
_date = newDate;
}

public void setTime(Time newTime) {
_time = newTime;
}

private java.sql.Date sqlDateFormat(String datelnLogFormat) {
SimpleDateFormat dateFormatrew SimpleDateFormat("dd/MMM/yyyy");
java. sql.Date datelnSqlFormat rull ;
try {
datelnSqglFormat =new java. sqgl.Date
(dateFormat. parse (datelnLogFormat).getTime ());
} catch (ParseException pe) {
System.out. println (" TestServlet .sqlDateFormafgiled ...");
System.out. printin (pe);
} catch (Exception e){
System.out. println (" TestServlet .sqlDateFormafgiled ...");
System.out. println (e);

return datelnSqlFormat;

}

public String toString () {
StringBuffer buffer =new StringBuffer ();
buffer .append(_logLineKey + "\t");

sse|Q aulnbo1 93

Gct

buffer .append(_filename + "\t");
buffer .append(_logLineNumber + "\t");
buffer .append(_ipAddress + "\t");
buffer .append(_ident + "\t");

395 buffer .append(_authuser + "\t");
buffer .append(_date + "\t");
buffer .append(_time + "\t");
buffer .append(_timeZone + "\t");
buffer .append(_method + "\t");

400 buffer .append(_requestUrl + "\t");
buffer .append(_sessionTag + "\t");
buffer .append(_serial + "\t");
buffer .append(_query + "\t");
buffer .append(_protocol + "\t");

405 buffer .append(_status + "\t");
buffer .append(_bytes + "\t");
buffer .append(_serverName + "\t");
if (_referrer ==null'){

buffer .append("ngvalue\t");

410 }

else{
buffer .append(_referrer + "\t");

}
buffer .append(_browser);
415 return buffer . toString ();

E.7 Page Class

packageaub;

import java.netsx;

import java. util ;
5

public class Page {

private int _pageKey, _numberOfCheckedBoxes;

private String _method, _func, _fileName, _findCode, //_funcOption

10 _scanCode, _action , _pageFunction, _pageFunctionType,
_process, _field , _referrerFunc , _referrerQuery ;

public Page (LogLine logLine) {
UrlQuery urlQuery =new UrlQuery(logLine.getQuery ());
15 _pageKey =—1;
_method = logLine.getMethod();
_func = urlQuery . getValue ("func");
_fileName = urlQuery. getValue ("file_name");

20

25

30

35

40

45

50

55

60

65

}

_findCode = urlQuery. getValue("find_code");

_scanCode = urlQuery . getValue ("scan_code");

_action = "unknown";

if (urlQuery.getValue ("action_view.x") I=null) {
_action = "view";

if (urlQuery.getValue (" action_delete .x") !aull) {
_action = "delete";

if (urlQuery.getValue (" action_cross .x") !aull) {
_action = "cross";

if (urlQuery.getValue (" action_short_basket_store .x")dsll) {
_action = "store,in,_basket";

URL referrer = logLine. getReferrer ();
if (referrer !=null'){
_referrerQuery = referrer .getQuery();

if (_referrerQuery !=null){
_referrerFunc = lew UrlQuery(_referrerQuery). getValue ("func"));

_numberOfCheckedBoxes = 0;

String query = logLine.getQuery();

while (query.indexOf("=on") I=—1) {
_numberOfCheckedBoxes++;
query = query. substring (query.indexOf("=on") + 1);

setVariables ();

public Page {nt pageKey, String method, String func, String fileName,

}

String findCode, String scanCode, String action , String dfiel
String pageFunction, String pageFunctionType, Stringcess) {

_pageKey = pageKey;

_method = method;

_func = func;

_fileName = fileName;

_findCode = findCode;

_scanCode = scanCode;

_action = action ;

_field = field ;

_pageFunction = pageFunction;

_pageFunctionType = pageFunctionType;

_process = process;

public Page {nt pageKey, String pageFunction, String pageFunctionType,

String process) {

9T

S9SSB|D BAR(10} 9P0D) 99IN0S

70

75

80

85

90

95

100

105

110

115

_pageKey = pageKey;

_pageFunction = pageFunction;
_pageFunctionType = pageFunctionType;
_process = process;

}

public int getPageKey() {
return _pageKey;
}

public String getMethod() {
return _method;

}
public String getFunc () {
if (_func ==null || _func.equals(")){
_func = "unknown";
return _func;
}
public String getFileName() {
if (_fileName ==null || _fileName.equals("")) {
_fileName = "unknown";
return _fileName;
}
public String getFindCode () {
if (_findCode ==null || _findCode.equals("")){
_findCode = "unknown";
return _findCode;
}
public String getScanCode() {
if (_scanCode =null || _scanCode.equals("")){
_scanCode = "unknown";
}
return _scanCode;
}

public String getAction () {
return _action;
}

public String getField () {
if (_field ==null'){
if ("WRD".equals(_findCode)) {

120

125

130

135

140

145

150

155

160

165

field = "all fields";

}
else if ("WTI".equals(_findCode) || "LTI".equals(_scanCode)) {
_field =" title ";

else if ("WFO".equals(_findCode) || "LFO".equals(_scanCode)) {
_field = "author";

}
else if ("WKE".equals(_findCode)) {
_field = "controlled ,subject";

}
else if ("WEM".equals(_findCode)) {
_field = "all_subjects";

else if ("WIS".equals(_findCode)) {
_field =" title ";

}
else if ("WAN".equals(_findCode)) {
_field =" title ";

}
else if ("LEM".equals(_scanCode)) {
_field = "keyword";

}
else if ("LCL".equals(_scanCode)) {
_field = "UDK—classification";

}
else if ("WTI".equals(_scanCode)) {
_field = "words in_title";

else{
_field = "nqg value";
}
return _field ;

}

public String getReferrerFunc () {
if (_method.equals("POST")) {
return _referrerFunc ;

}
else{

return ("no_relevance");
}

}

public int getNumberOfCheckedBoxes() {
if (_numberOfCheckedBoxes == 0) {
return 1,
}

sse|D abed /'3

XA

170

175

180

185

190

195

200

205

210

else{
return _numberOfCheckedBoxes;
}

}

private void setVariables () {
_pageFunction = "unknown";
_pageFunctionType = "unknown";
_process = "unknown";
if (_func ==null || _func.equals("unknown") ||
_func.equals("null") || _func.equals(")){
if (_method.equals("POST") && "itemhold—request".equals(_referrerFunc)) {
_pageFunction = "reseryéook";
_pageFunctionType =" reservation ";
_process = "reservation ";

}
if (_method.equals("POST") &&
("BOR—LOGIN".equals(_referrerFunc) || "login". equals (_reéeFunc))) {
_pageFunction = "login";
_pageFunctionType = "login";
_process = "login";

}

else if (_func.equals("basketdelete")) {
_pageFunction = " deletdgtem_from_basket";
_pageFunctionType = "baskefunction";
_process = "basket";

else if (_func.equals ("basketdelete-all")) {
_pageFunction = " deleteall _items from_basket";
_pageFunctionType = "baskefunction";
_process = "basket";

else if (_func.equals ("basketfull")) {
_pageFunction = " full formaf_information on_book_from_basket";
_pageFunctionType = "booldescription";
_process = "basket";

else if (_func.equals ("basketnote")) {
_pageFunction = "entereghote for_item_to_save in_basket";
_pageFunctionType = "bopjin, basket";
_process = "basket";

else if (_func.equals ("basketnote—0")) {
_pageFunction = "entenote before saving item_in_basket";
_pageFunctionType = "baskefinction™;
_process = "basket";

}
else if (_func.equals ("basketshort")) {

215

220

225

230

235

240

245

250

255

260

_pageFunction = "shaovbooks saved in_basket";
_pageFunctionType = "baskefunction";
_process = "basket";

else if (_func.equals ("borhold")) {
_pageFunction = " reservationglist ";
_pageFunctionType =" reservatigfiunction”;
_process = " reservation ";

}
else if (_func.equals("BORHOLD—DELETE")) {

_pageFunction = " deletereservation ";
_pageFunctionType =" reservatigfiunction”;
_process = " reservation ";

}
else if (_func.equals("BORHOLD—EXP")) {
_pageFunction = "espandeidformation on_a_reservation”;

_pageFunctionType =" reservatigfiunction”;
_process = " reservation ";

else if (_func.equals ("borinfo")) {
_pageFunction = "borroweinformation";
_pageFunctionType = "borroweinformation™;
_process = "borrowejinformation”;

else if (_func.equals ("borloan")) {
_pageFunction = "loanslist";
_pageFunctionType = "borroweinformation™;
_process = "borrowejinformation”;

}
else if (_func.equals("BORLOAN—EXP")) {

_pageFunction = "expandgdiew_of_a_loan";
_pageFunctionType = "borroweinformation™;
_process = "borrowejinformation”;

}
else if (_func.equals("BORLOAN—RENEW")) {

_pageFunction = "renewioan";
_pageFunctionType = "reneyoan";
_process = "borrowejinformation”;

}
else if (_func.equals("BORLOGIN")){

_pageFunction = "loginbefore borrower information”;
_pageFunctionType = "login";
_process = "login";

else if (_func.equals ("borrenew—all")) {
_pageFunction = "renevall_loans";
_pageFunctionType = "reneyoan";
_process = "borrowejinformation”;

8¢T

S9SSB|D BAR(10} 9P0D) 99IN0S

265

270

275

280

285

290

295

300

305

310

else if (_func.equals ("borupdate™)) {
_pageFunction = "entejfinformation_for_addressupdate”;
_pageFunctionType = "borroweinformation”;
_process = "borrowejinformation”;

else if (_func.equals ("borupdate-1")) {
_pageFunction = "addressformation updated"”;
_pageFunctionType = "borroweinformation”;
_process = "borrowejinformation”;

else if (_func.equals (" direct-set")) {
pageFunction = " full format(after,_scan)";
_pageFunctionType = "booldescription";
_process = "search";

else if (_func.equals (" file ")) {
if ("base-list".equals(_fileName)) {
_pageFunction = " list of_databases";
_pageFunctionType =" listdatabases";
_process = "search";

else if ("bor—update-password".equals(_fileName)) {

_pageFunction = " fieldsto_update,passwordon_old_library_card";

_pageFunctionType = "borroweinformation”;
_process = "borrowejinformation”;

else if (“feedback".equals(_fileName)) {
_pageFunction = "feedbacform";
_pageFunctionType = “feedback";
_process = "feedback";

}

else if ("find—b".equals(_fileName)) {
_pageFunction = "basjesearch form";
_pageFunctionType = "entedata for_search";
_process = "search";

else if ("logout”. equals (_fileName)) {
_pageFunction = "clickgo_to_logout";
_pageFunctionType = "logout";
_process = "logout";

}

else if (_func.equals("find-a")) {
_pageFunction = "mult-field_search";
_pageFunctionType = "search"”;
_process = "search";

else if (_func.equals ("find-acc")) {
_pageFunction = " full ,view_of_record ,(maybe only,_from_scan)";

315

320

325

330

335

340

345

350

355

360

_pageFunctionType = "bop}description™;
_process = "search";

}
else if (_func.equals ("find-b")) {

_pageFunctionType = "search";

_process = "search";

if (getField (). equals("ngvalue™)) {
_pageFunction = "basjeearch";

else{
_pageFunction = "basjsearchon " + _field ;

else if (_func.equals ("find-c")) {
_pageFunction = "Comme@|Command Languagesearch”;
_pageFunctionType = "search"”;
_process = "search";

else if (_func.equals ("find-m")) {
_pageFunctionType = "search";
_process = "search";
if (getField (). equals("ngvalue")) {
_pageFunction = "mult-base search”;

else{
_pageFunction = "mult-base searchon " + _field;

else if (_func.equals ("find-word")) {
_pageFunction = "searcfwvord_not_found, choosepother word_from_list";
_pageFunctionType = "search"”;
_process = "search";

else if (_func.equals (" ful-mail")) {
_pageFunction = "sentecords in_mail";
_pageFunctionType = "mail";
_process = "mail";

else if (_func.equals (" ful-mail—0")) {
_pageFunction = "entejtext_to_mail_records";
_pageFunctionType = "entedata";
_process = "mail";

else if (_func.equals (" fulset")) {
_pageFunction = " full ,view_of_record after ,reservation";
_pageFunctionType = "booldescription";
_process = "search";

else if (_func.equals (" fulset-set")) {

sse|D abed /'3

6¢T

365

370

375

380

385

390

395

400

405

410

_pageFunction = " full view_of_record (different_formats)";
_pageFunctionType = "booldescription";
_process = "search";

else if (_func.equals (" history ")) {
_pageFunction = "shovhistory_options";
_pageFunctionType = " history ";
_process = "history ";

else if (_func.equals (" history-action")) {
_pageFunctionType = " histopyfunction";
_process = "history ";
if ("view".equals(_action)) {
_pageFunction = "viewsearch,result_from_history";
_pageFunctionType = "search";

else if ("delete".equals(_action)) {
_pageFunction = "deletesearch, result_from_history";

else if ("cross".equals(_action)) {
_pageFunction = "choosgow_to_cross searchresults";

else{
_pageFunction = "unknowrhistory,_action";

else if (_func.equals (" history-cross")) {
_pageFunction = "crossseveral search, results_from_history";
_pageFunctionType = " historyfunction™;
_process = "history ";

else if (_func.equals (" ill-request-1")) {
_pageFunction = " illegal request";
_pageFunctionType =" illegal ";

else if (_func.equals (“iteraglobal")) {
_pageFunction = "showvall_copies,of,_a_book";
_pageFunctionType = "shoyopies”;
_process = "search";

else if (_func.equals ("itemglobal-exp")) {
_pageFunction = "itemrecord expand,view";
_pageFunctionType = "bopjdescription™;
_process = "search";

else if (_func.equals ("item-hold—request")) {
_pageFunction = " reservatiorprocess"”;
_pageFunctionType = "beforgeservation ";
_process = " reservation “;

415

420

425

430

435

440

445

450

455

else if (_func.equals("login")) {
_pageFunction = "login";
_pageFunctionType = "login";
_process = "login";

else if (_func.equals("logout")) {
pageFunction = "sessipime—out,—_start over with_searchor,_login";
_pageFunctionType = "logout";
_process = "logout";

else if (_func.equals ("optionshow")) {
_pageFunction = "shovformats";
_pageFunctionType = "shoyformats";
_process = "search";

else if (_func.equals ("optionupdate")) {
_pageFunction = "changérmats"”;
_pageFunctionType = "chang®rmats";
_process = "search";

else if (_func.equals ("option-update-Ing")) {
_pageFunction = "chang&nguageor, base";
_pageFunctionType = "changlanguageor,_base";
_process = "search";

else if (_func.equals("scan")) {
_pageFunctionType = "search"”;
_process = "search";
if (getField (). equals("novalue")) {
_pageFunction = "brows@inknown index";

else{
_pageFunction = "browsé¢ + _field + “_index";

else if (_func.equals("scanlist")) {
_pageFunction = "browséndex";
_pageFunctionType = "entedata for_search";
_process = "search";

else if (_func.equals("service")){
_pageFunction = "lookygin,_other index (placement,author, or,_ISBN)";
_pageFunctionType = "search";
_process = "search";

else if (_func.equals("short")){
_pageFunction = " resultslist ";
_pageFunctionType =" resultslist ";

0€T

S9SSB|D BAR(10} 9P0D) 99IN0S

460

465

470

480

485

490

495

500

505

}

_process = "search";

else if (_func.equals("shortaction")) {

_pageFunction = "actionafter_search" +
"(e.g. filter _or_mail_search results)";

_pageFunctionType = "searcfunction";

_process = "search";

if ("store_in_basket". equals(_action)) {
_pageFunction = " storebook(s) in_basket";
_pageFunctionType = "boofin_basket";
_process = "basket";

}

else if (_func.equals ("short filter —3")) {
pageFunction = " filter;show ,only,_available items";
_pageFunctionType =" filter ";
_process = "search";

else if (_func.equals ("shokt filter —y")) {
_pageFunction = " filter by_year";
_pageFunctionType =" filter ";
_process = "search";

else if (_func.equals ("short-mail")) {
pageFunction = "sentlist, by mail";
_pageFunctionType = "mail";
_process = "mail";

else if (_func.equals ("shortrefine—exec")) {
_pageFunction = "refingsearch";
_pageFunctionType = " refinesearch";
_process = "search";

else if (_func.equals ("shortsort")) {
_pageFunction = "changsort order";
_pageFunctionType = "sort";
_process = "search";

else if (_func.equals ("unknown")) {
_pageFunction = "fungis,_unknown";

else{
_pageFunction = "newpage function; " + _func;

public String getPageFunction () {

if (_pageFunction =xull) {
setVariables (),

510

515

520

525

530

535

540

10

}

return

}

_pageFunction;

public String getPageFunctionType () {
if (_pageFunctionType =rull) {
setVariables ();

}

return

}

_pageFunctionType;

public String getProcess () {
if (_process ==ull) {
setVariables ();

}

return

}

_process;

public void setPageKeyfit newPageKey) {
_pageKey = newPageKey;

public String toString () {
StringBuffer buffer =new StringBuffer ();

buffer
buffer
buffer
buffer
return

.append(_pageKey + "\t");
.append(_pageFunction + "\t");
.append(_pageFunctionType + "\t");
.append(_process);

buffer . toString ();

E.8 PageEvent Class

packageaub;

public class PageEvent {

int _logLineKey, _dateKey, _timeOfDayKey, _pageKey, _sessay, _auditKey;

public PageEventift logLineKey, int dateKey,int timeOfDayKey,

int pageKey,nt sessionKey int auditkey) {

_logLineKey = logLineKey;
_dateKey = dateKey;
_timeOfDayKey = timeOfDayKey;
_pageKey = pageKey;

sse|D Juanjabed g3

TET

15

20

25

30

35

40

45

50

_sessionKey = sessionKey;
_auditkey = auditKey;

}

public int
return
}

public int
return
}

public int
return
}

public int
return
}

public int
return
}

public int
return
}

getLogLineKey() {
_logLineKey;

getDateKey() {
_dateKey;

getTimeKey() {
_timeOfDayKey;

getPageKey() {
_bageKey;

getSessionKey () {
_sessionKey;

getAuditKey () {
_auditkey;

public String toString () {

StringBuffer buffer =new StringBuffer ();
.append(_logLineKey + "\t");
.append(_dateKey + "\t");
.append(_timeOfDayKey + "\t");
.append(_pageKey + "\t");
.append(_sessionKey + "\t");
.append(_auditKey);

buffer
buffer
buffer
buffer
buffer
buffer
return

buffer . toString ();

E.9 Search Class

packageaub;

public class Search {

private int _dateKey, _timeOfDayKey, _sessionKey, _searchTypeksaarchNumber,
_numberOfBookDescriptions, _numberOfBooksInBasketminerOfReservations;

10

15

20

25

30

35

40

45

50

55

private String _searchNumberValidity;
private boolean _active ;

public Search (nt dateKey,int timeOfDayKey,int sessionKey ,int searchTypeKey,

int searchNumber, String searchNumberValidity,
int numberOfBookDescriptionsnt numberOfBooksInBasket,
int numberOfReservations) {

_dateKey = dateKey;

_timeOfDayKey = timeOfDayKey;

_sessionKey = sessionKey;

_searchTypeKey = searchTypeKey;

_searchNumber = searchNumber;

_searchNumberValidity = searchNumberValidity;

_numberOfBookDescriptions = numberOfBookDescriptions;

_numberOfBooksInBasket = numberOfBooksInBasket;

_numberOfReservations = numberOfReservations;

_active =true;

}

public int getDateKey() {
return _dateKey;
}

public int getTimeOfDayKey() {
return _timeOfDayKey;
}

public int getSessionKey () {
return _sessionKey;
}

public int getSearchTypeKey() {
return _searchTypeKey;
}

public int getSearchNumber() {
return _searchNumber;
}

public String getSearchNumberValidity () {
return _searchNumberValidity;
}

public int getNumberOfBookDescriptions() {
return _numberOfBookDescriptions;
}

public int getNumberOfBooksInBasket() {
return _numberOfBooksInBasket;

CeT

S9SSB|D BAR(10} 9P0D) 99IN0S

60

65

70

75

80

85

90

95

100

}

public int getNumberOfReservations() {
return _numberOfReservations;

public boolean getActive () {
return _active ;
}

public void deactivate () {
_active =false;
}

public void incrementNumberOfBookDescriptioms{ amount) {
_numberOfBookDescriptions = _numberOfBookDescriptiersnount;
}

public void incrementNumberOfBooksInBaskit{ amount) {
_numberOfBooksInBasket = _numberOfBooksInBasket + amoun
}

public void incrementNumberOfReservatioms(amount) {
_numberOfReservations = _numberOfReservations + amount;
}

public void setSearchNumbent newSearchNumber) {
_searchNumber = newSearchNumber;
}

public void setSearchNumberValidity (String newSearchNumber\il)di
_searchNumberValidity = newSearchNumberValidity;

public String toString () {
StringBuffer buffer =new StringBuffer ();
buffer .append(_dateKey + "\t");
buffer .append(_timeOfDayKey + "\t");
buffer .append(_sessionKey + "\t");
buffer .append(_searchTypeKey + "\t");
buffer .append(_searchNumber + "\t");
buffer .append(_searchNumberValidity + "\t");
buffer .append(_numberOfBookDescriptions + "\t");
buffer .append(_numberOfBooksInBasket + "\t");
buffer .append(_numberOfReservations);
return buffer . toString ();

10

15

20

25

30

35

40

45

E.10 SearchType Class

packageaub;

public class SearchType {

private int _searchTypeKey;
private String _type, _findCode, _scanCode, _field , _typeWithField

public SearchTypeifit searchTypeKey, String type, String field ,
String typeWithField) {
_searchTypeKey = searchTypeKey;
_type = type;
_field = field ;
_typeWithField = typeWithField;

public SearchType (UrlQuery urlQuerythrows NotSearchTypeException {
if (urlQuery ==null) {
System.out. println ("urlQueryis_null");
throw new NotSearchTypeException("urlQueris_null");
}
String func = urlQuery. getValue ("func");
/I System.out. printn ("func : "+ func);
if (func ==null'){
throw new NotSearchTypeException("fung_null");
}

_searchTypeKey = 0;

_type = "unknown";

_findCode = urlQuery . getValue ("find_code");
_scanCode = urlQuery. getValue ("scan_code");

if (func.equals("find-a")) {
_type = "multi—field_search";

}
else if (func.equals("find-b")) {
_type = "basic search";

else if (func.equals("find-c")) {
_type = "CCl, search";

else if (func.equals("find-m")) {
_type = "multi—base search”;

else if (func.equals("scanlist")|| func.equals("scan")){
_type = "browseindex";

else if (func.equals (" history-action") &&

sse|D adA1yoteas T3

€eT

50

55

65

70

75

80

85

90

95

urlQuery . getValue ("action_view.x") I=null) {

_type = "history";

}

else if (func.equals ("basketfull")) {
_type = "basket";

else{

throw new NotSearchTypeException("urlQuersioes not _indicate search");

}
_field = getField ();
_typeWithField = _type + "on "+ _field + " field";

public int getSearchTypeKey() {
return _searchTypeKey;

}

public String getType () {
return _type;

}

public String getTypeWithField () {
return _typeWithField;
}

public String getFindCode () {
return _findCode;
}

public String getField () {
if ("WRD".equals(_findCode) || "mulktifield_search".equals (_type)) {
_field ="all";

}
else if ("WTI".equals(_findCode) || "LTI".equals(_scanCode)) {
_field =" title ";

}
else if ("WFO".equals(_findCode) || "LFO".equals(_scanCode)) {
_field = "author";

}
else if ("WKE".equals(_findCode)) {
_field = " controlled_subject”;

}
else if ("WEM".equals(_findCode)) {
field = "all,subjects";

}
else if ("WIS".equals(_findCode)) {
_field =" title ";

100

105

110

115

10

15

20

25

}
else if ("WAN".equals(_findCode)) {
_field = " title ";

}
else if ("LEM".equals(_scanCode)) {
_field = "keyword";

}
else if ("LCL".equals(_scanCode)) {
_field = "UDK—classification";

}
else if ("WTI".equals(_scanCode)) {
_field = "words in_title";

else{
_field = "ng_value";

return _field ;

E.11 Session Class

packageaub;

import java.sqlx;
import java.netsx;

public class Session {

private int _sessionKey, _pagesInSession, _lastSearchNumber PafiesiKey ,
_lastPageKey, _startDateKey, _startTimeKey, _endDatekandTimeKey,
_searchesInSession , _bookDescriptionsinSession , shu®ésketinSession,

_reservationsinSession ;

private String _sessionTag, _ipAddress, _browser, _searchNuvabeity;

private java.sql.Date _startDate , _endDate;
private Time _startTime, _endTime;
private URL _firstRequestUrl , _lastRequestUrl , _referrer ;

public Sessionint sessionKey, String sessionTag, String ipAddress, Strirmvser,
String firstRequestUrl jnt firstPageKey , String lastRequestUrl,
int lastPageKey, String referrer , java.sql.Date startDate ,

int startDateKey , Time startTimeint startTimeKey,

java.sql.Date endDatdnt endDateKey, Time endTimét endTimeKey,

int pagesinSessionint _bookDescriptionsinSession ,

int _booksInBasketinSessionint _reservationsinSession ,

int lastSearchNumber, String searchNumberValidity) {
_sessionKey = sessionKey;
_sessionTag = sessionTag;

VET

S9SSB|D BAR(10} 9P0D) 99IN0S

30

35

40

45

50

55

60

}

_ipAddress = ipAddress;
_browser = browser;

try {

_firstRequestUrl =new URL(firstRequestUrl);

} catch (MalformedURLException mue) {}
_firstPageKey = firstPageKey ;

try {
_lastRequestUrl =new URL (lastRequestUrl);

} catch (MalformedURLException mue) {}
_lastPageKey = lastPageKey;

try {
_referrer =newURL(referrer);

} catch (MalformedURLException mue) {}

_startDate = startDate ;

_startDateKey = startDateKey;
_startTime = startTime;

_startTimeKey = startTimeKey;
_endDate = endDate;

_endDateKey = endDateKey;

_endTime = endTime;

_endTimeKey = endTimeKey;
_pagesInSession = pagesInSession;
_searchesInSession =0;
_bookDescriptionsIinSession = 0;
_booksInBasketIinSession = 0;
_reservationsinSession =0;
_lastSearchNumber = lastSearchNumber;
_searchNumberValidity = searchNumberValidity;

80

85

90

95

100

105

110

}

public Session{nt sessionKey, LogLine logLineint pageKey,int dateKey,

_firstPageKey = firstPageKey ;
_lastRequestUrl = lastRequestUrl ;
_lastPageKey = lastPageKey;

_referrer = referrer ;

_startDate = startDate ;

_startDateKey = startDateKey;
_startTime = startTime;

_startTimeKey = startTimeKey;
_endDate = endDate;

_endDateKey = endDateKey;

_endTime = endTime;

_endTimeKey = endTimeKey;
_pagesInSession = pagesInSession;
_lastSearchNumber = lastSearchNumber;
_searchNumberValidity = searchNumberValidity;

int timeKey) {
_sessionKey = sessionKey;
_sessionTag = logLine.getSessionTag ();
_ipAddress = logLine. getlpAddress ();
_browser = logLine.getBrowser ();
_firstRequestUrl = logLine.getRequestUrl ();
_firstPageKey = pageKey;
_lastRequestUrl = _firstRequestUrl ;
_lastPageKey = _firstPageKey ;
_referrer = logLine. getReferrer ();
_startDate = logLine.getDate ();
_startDateKey = dateKey;
_startTime = logLine.getTime();
_startTimeKey = timeKey;
_endDate = _startDate ;
_endDateKey = _startDateKey;
_endTime = _startTime;
_endTimeKey = _startTimeKey;

Sse|D uoIssas TT'3

_pagesInSession =1;
_lastSearchNumber =1;
_searchNumberValidity = "temporary";

public Sessionint sessionKey, String sessionTag, String ipAddress, Stringvser,
URL firstRequestUrl ,int firstPageKey , URL lastRequestUrl,
int lastPageKey, URL referrer, java.sql.Date startDate ,
int startDateKey , Time startTimeint startTimeKey, 115 }
java.sql.Date endDatant endDateKey, Time endTim&t endTimeKey,
int pagesinSessionint _bookDescriptionsinSession,
int _booksInBasketInSessionint _reservationsinSession ,
int lastSearchNumber, String searchNumberValidity) {
_sessionKey = sessionKey; 120
_sessionTag = sessionTag; _lastRequestUrl = logLine. getRequestUrl ();
_ipAddress = ipAddress; _lastPageKey = pageKey;
_browser = browser; _endDate = logLine . getDate ();
_firstRequestUrl = firstRequestUrl ; _endDateKey = dateKey;

public void addPageEvent(LogLine logLinent pageKey,int dateKey,int timeKey) {
if (!hasSessionTag () {
_sessionTag = logLine.getSessionTag ();

GET

125

130

135

140

145

150

155

160

170

}

_endTime = logLine.getTime ();
_endTimeKey = timeKey;
_pagesInSession++;

public void addSearch(Search search){

}

_searchesInSession ++;
_bookDescriptionsIinSession ++;
_booksInBasketIinSession++;
_reservationsinSession ++;

public String getSessionTag () {

}

return _sessionTag;

public booleanhasSessionTag () {

}

return (getSessionTag () I=null && !getSessionTag (). equals("null") &&
lgetSessionTag (). equals (""));

public int getSessionKey () {

}

return _sessionKey;

public String getlpAddress () {

}

return _ipAddress;

public String getBrowser () {

}

return _browser;

public URL getFirstRequestUrl () {

}

return _firstRequestUrl ;

public int getFirstPageKey () {

}

return _firstPageKey ;

public URL getLastRequestUrl() {

}

return _lastRequestUrl ;

public int getLastPageKey() {

}

return _lastPageKey;

175

180

185

190

195

200

205

210

215

220

public URL getReferrer () {
return _referrer ;
}

public java.sql.Date getStartDate () {
return _startDate ;
}

public int getStartDateKey () {
return _startDateKey;
}

public Time getStartTime () {
return _startTime;
}

public int getStartTimeKey () {
return _startTimeKey;
}

public java.sql.Date getEndDate () {
return _endDate;
}

public int getEndDateKey() {
return _endDateKey;
}

public Time getEndTime() {
return _endTime;

public int getEndTimeKey() {
return _endTimeKey;
}

public int getPagesInSession () {
return _pagesinSession;
}

public int getLastSearchNumber() {
return _lastSearchNumber;
}

public booleanisLastSearchNumberKnown() {
return (_lastSearchNumber != 0);
}

public String getSearchNumberValidity () {

9€T

S9SSB|D BAR(10} 9P0D) 99IN0S

225

230

235

240

245

250

255

260

265

270

return _searchNumberValidity;

}

public void incrementSearchesInSessiant(amount) {
_searchesInSession += amount;
}

public void incrementBookDescriptionsinSessiant{ amount) {
_bookDescriptionsinSession += amount;
}

public void incrementBooksInBasketinSessiamt(amount) {
_booksInBasketInSession += amount;
}

public void incrementReservationsinSessiant(amount) {
_reservationsinSession += amount;

public booleanisLastSearchNumberValid () {
return _searchNumberValidity. equals (" valid");
}

public long getEndLong() {
long endLong = _endDate.getTime () + _endTime.getTime();
return endLong;

}

public long getStartLong () {
long startLong = _startDate .getTime () + _startTime .getTime()
return startLong;

}

public booleanmatches(LogLine logLine) {
booleanmatchFound alse;
try {
if (hasSessionTag ()) {
if (_sessionTag.equals(logLine.getSessionTag()) &&
getEndLong() > logLine.getLongTime& 1200000) {
matchFound #rue;

}

else if (_ipAddress.equals (logLine.getlpAddress()) &&
logLine. getReferrer () !=null &&
_lastRequestUrl . toString (). equals (logLine . getRefie()

. toString ()) &&
_browser. equals (logLine . getBrowser()) &&
getEndLong() < logLine .getLongTime{} (20x60«1000)) {
matchFound #rue;

275

280

285

290

295

300

305

310

315

320

}
else{
if (!logLine. referrerHasSessionTag ()) {
matchFound = (_ipAddress.equals (logLine . getlpAddng &

logLine. getReferrer () !=null &&
_lastRequestUrl . toString ()
.equals (logLine. getReferrer (). toString ()) &&
_browser. equals (logLine . getBrowser()) &&

getEndLong() > logLine .getLongTimef (20+60«1000));

}

catch (Exception e) {
System.out. println ("Session.matchesigiled ...");
System.out. printin (e);
System.out. println (e.getMessage ());

return matchFound;

public void setLastSearchNumb@r{ newSearchNumber) {

_lastSearchNumber = newSearchNumber;

public void setSearchNumberValidity (String newValidity) {

_searchNumberValidity = newValidity ;

public String toString () {

StringBuffer buffer =new StringBulffer ();
try {
buffer .append(_sessionKey + "\t");
buffer .append(_sessionTag + "\t");
buffer .append(_ipAddress + "\t");
buffer .append(_browser + "\t");
if (_referrer ==null) {
buffer .append("ngvalue\t");

}
else{
if (_referrer . toString (). endsWith(" \\")X
_referrer =new URL(_referrer. toString (). replaceAll (" \W"," "));
buffer .append(_referrer + "\t");
}

buffer .append(_firstRequestUrl + "\t");
buffer .append(_firstPageKey + "\t");
buffer .append(_lastRequestUrl + "\t");
buffer .append(_lastPageKey + "\t");
buffer .append(_startDate + "\t");

Sse|D uoIssas TT'3

LET

buffer .append(_startDateKey + "\t"); 370 buffer .append(_booksInBasketinSession + "\t");
buffer .append(_startTime + "\t"); buffer .append(_reservationsinSession + "\t");
buffer .append(_startTimeKey + "\t"); buffer .append(_lastSearchNumber + "\t");
buffer .append(_endDate + "\t"); buffer .append(_searchNumberValidity);
325 buffer .append(_endDateKey + "\t");
buffer .append(_endTime + "\t"); 375 catch (Exception e){
buffer .append(_endTimeKey + "\t"); System.out. println ("Session. activeSessionToStringdjled ...");
buffer .append(_pagesinSession + "\t"); System.out. println (e);
buffer .append(_bookDescriptionsinSession + "\t");
330 buffer .append(_booksInBasketinSession + "\t"); return buffer . toString ();
buffer .append(_reservationsinSession); 380 }
}

catch (Exception e) {
System.out. println ("Session. toString,(riled ...");

s System.out. printn (e); E.12 UrlQuery Class

return buffer . toString ();

} packageaub;
340 public String activeSessionToString () { public class UrlQuery {
StringBuffer buffer =new StringBuffer ();
try { 5 private String [] variables , values;

8€ET

345

350

buffer .append(_sessionKey + "\t");
buffer .append(_sessionTag + "\t");
buffer .append(_ipAddress + "\t");
buffer .append(_browser + "\t");
buffer .append(_firstRequestUrl + "\t");
buffer .append(_firstPageKey + "\t");
buffer .append(_lastRequestUrl + "\t");
buffer .append(_lastPageKey + "\t");
if (_referrer ==null){

buffer .append("ngvalue\t");

10

15

public UrlQuery(String query) {
String [] variablesAndValues = query. split ("&");
variables =new String[variablesAndValues. length];
values =new String[variablesAndValues. length ;

for (int v =0; v < variablesAndValues. length ; v++) {
int equals = variablesAndValues[v].indexOf("=");
if (equals !=—1){
variables [v] = variablesAndValues[v]. substring (0, elgua

} values|[v] = variablesAndValues[v]. substring (equals i 1)
else{
355 if (_referrer . toString (). endsWith(" \\")X else{
_referrer =newURL(_referrer. toString (). replaceAll (" \W"," ")); variables [v]="";
20 values[v]="";
buffer .append(_referrer + "\t"); }
} }

360

365

buffer .append(_startDate + "\t");

buffer .append(_startDateKey + "\t");

buffer .append(_startTime + "\t");

buffer .append(_startTimeKey + "\t");

buffer .append(_endDate + "\t");

buffer .append(_endDateKey + "\t");

buffer .append(_endTime + "\t");

buffer .append(_endTimeKey + "\t");

buffer .append(_pagesinSession + "\t");

buffer .append(_bookDescriptionsinSession + "\t");

25

30

}

public int getintValue (String variable) {
String stringValue = getValue(variable);
try {
return Integer . parselnt (stringValue);
} catch (Exception e){
return —1;
}

S9SSB|D BAR(10} 9P0D) 99IN0S

public String getValue(String variable) {
35 String value =null ;
for (int v =0; v < variables . length && value =null ; v++) {
if (variables [v]. equals(variable)) {
value = values|[v];

40

}
}

return value;

sse|o AianduN 21°3

6€T

APPENDIX F

Questionnaire

Hvordan bruger du Auboline?

Jeg har 1 mit speciale udwiklet et system, som ATUBs personale kan bruge til at analysere de
anonyme brugeres adfErd 1 Auboline, Jeger 1 den forbindelse 1 gang med at undersege brugernes
egne opfattelser af deres adfzrd 1 Auboline for at finde ud af, hvordan dette stemmer overens med
de resultater, jeg er kommet frem til med mit system. Derfor vil jeg gerne have dig til at bruge fem

minutter pd at svare pd nedenstiende spergsmdl.
Tak for hizlpen! Louise Due.

1. Hvor ofte bruger du Auboline? (Et kryds)
O] Hver dag

[] Flere gange om ugen

[Flere gange om méneden

[Ca en gang om méneden

[sjzldnere

[Aldrig

2. Hvordan gar du ind 1 Auboline? (Afkrvds gerne flere muligheder)
[Bogmerke direkte til Auboline

O Bogmearke til ATUBs hovedside

[Skriver Aubolines TRL (a300. aub auc. dk) 1 browseren

[Skriver URLen til ATUB¢ hovedside (www.aub. auc. dk) i browseren
[Wia link pd anden hjemmeside. Hvilken:

[Andet:

3. Hvomnir pi dognet bruger du Auboline mest? (Et kryds)
[Mest i arbejdstideniskoletiden
[] Mest i fritiden

4. Hvornar pa ugen bruger du Auboline mest? (Prioriter med 1-4, hvor 1 er oftest)
O I starten af ugen

] Midt i ugen

[I slutningen af ugen

[] I weekenden

5. Hvordan varierer din brug af Auboline ilobet af semestrene?

I starten af semestret ca. gange om maneden
I midten af semestret ca. gange om mAneden
I slutningen af semestret ca. gange om méaneden.

6. Hvilke funktioner bruger du mesti Auboline?
[Segninger efter bager

] Reservationer

[Laneroplysninger

[Infermationer om hjemlin

[Fornyelse af hjemlin

[Finde opstillingfplacering af beger

VEND

141

142

Questionnaire

7. Hvilke sogetyper bruger du prime1t?

[simpel segning (standard)

[seening pa flere felter

[Swgning i flere baser

[Registerswgning (titel, forfatter, emneord, mm.)
[] CCL segning (kommandeszgning)

8. Hvilke felter soger du oftest pa?
[adle felter

[Titel

[Eontrolleret emne

[] Alle emner

[] UDE klassifikation

[] Forfatter

9. PA hvilkken méde bruger du historiefunktionen?
[Widste ikke at der var en historiefunktion

[] Wed at funktionen er der, men bruger den ikke

[C] Til at finde et tidligere segeresultater frem igen
[] Til at kombinere tidligere segninger

] Andet:

10. Pi hvilken méde bruger du kurven/gemte poster?

[Widste ikke at der var mulighed for at gemme poster

[Wed at funktionen er der, men bruger den ikke

[[] Til midlertidigt at gemme beger, som jeg overvejer at reservere/lne
[C] Til at 4 en samlet owersigt over interessante beger

[sndet:

Evt. kommentarer:

Tal for din deltagelse!

APPENDIX G

Summary

In this project a web usage mining tool has been designedwapléimented. The AUBA tool has been
implemented to aid the staff at Aalborg University Libraalborg UniversitesBibliotek, AUB) in
analyzing the behavior of the users of Auboline, the liblsgn-line system that borrowers can use
to search for books. The library staff is interested in anialg user behavior because they can use
the information to improve their services to the borroward ¢hereby increase the loan numbers to
improve the economy of the library.

The input for the AUBA tool is a collection of web server logel Analysis of the log files and
experimentation with the different functions of AubolinesHead to knowledge about the possibilities
of the analysis of the data. To store the information fromltgelines in a logical structure that is
understandable and easily accessible, the data in theadatdlas been logically structured in two
star schemas, page_event and search. The structure of deeepant star schema is common in
data webhouses. It enables analysis of sessions and pag®fisnas well as variations in activity
according to different time and date parameters. The sesteshschema is structured specifically
for Auboline, because searches are the central part of thiersy With the search star schema it
is possible to make analyses of the use of different typegaich types and relate the number of
book descriptions, basket saves and reservations to tledispearches that lead to the activity. It is
possible to extend the data webhouse schema whenever dheereeed for new types of analysis or
new information becomes available.

As the main part of the implementation, the post-processartheen implemented to handle the
ETL processes. It transforms the pure text input files to #t fibrmat of the data webhouse. The
performance of the post-processor is satisfactory dueddithited amount of input/output activity
between the java program and the database. Extensive werkden done to assure that the data
flows through the ETL processes as expected and that theadatalill not contain flawed data. Each
incremental load is done in a single transaction to asswtethie data is either fully loaded if there
are no problems or not loaded at all if there is an error, sigch power outage, so the process can be
restarted from scratch when the problem has been fixed.

Part of the motivation behind the implementation of the AURAI was to enable the AUB staff to
analyze the success of the book recommendation system tadagated with Auboline. Therefore
one of the goals of the project has been to prepare the AUBAfto@nalysis of the use of book
recommendations. The dimensional database schema haddstgned in a way that the recommen-
dation service usage data will easily fit into. Unfortungiehas not been possible to analyze the use
of the recommendation service since it has not yet beenratied) with Auboline.

A simple graphical user interface has been implemented tcersare that the AUB staff can find
results quickly without knowing the underlying structuretbe database. Point-and-click can be
used to find the results of predefined queries while advansersican query the database manually
for more complicated requests. The results that can bermddanith the graphical user interface can
be used by the AUB staff to gain knowledge about the beha¥ithreousers of Auboline.

Different steps have been taken to improve performancetheoioading of the data, communication
with the database has been kept at a minimum. For the quetypeaiormance have been optimized
in several ways. Outriggers have been placed between diametables to avoid joining with the
fact table whenever possible. Indexing is also used, buirtbst substantial query performance
improvement has been achieved by using summary tables AUBA tool. This is a very important
improvement because the users of the AUBA tool will mostikeose interest if they have to wait 20
minutes for each requested result. The materialized views heen hand coded because PostgreSQL
dost not include the option of materializing views. Updgtihe materialized views takes a long time
because they are recalculated from scratch. This is a teanpsolution that is important to improve.

It will be much faster to update the summary tables increaininstead of recalculating them.

143

144 Summary

A user survey has been conducted to illustrate the differém¢he kind of information that can be
gained with different methods and to compare the borrovgasteption of their behavior in Auboline
with the results from the AUBA tool. Each method has its ownaadages and drawbacks, and
therefore it is a good idea to use a combination of severahaust of gathering information to get a
more clear picture of what is going on. For instance, it is adjinlea to make a thorough analysis of
the user behavior in Auboline with the AUBA tool and then imtew the borrowers about why they
behave the way they do.

Because the AUBA tool has been developed specifically for Atn give the staff analysis results
that are targeted directly on the structure and contenteaif gystem. The AUB staff that have been
involved in the project have shown a lot of interest in the AAJBol, because it gives them informa-
tion that they have not previously been able to get. Furtloeerthey find the future possibilities of
the tool very exciting.

