
ANALYZING USER BEHAVIOR IN AUBOLINE
WITH WEB USAGE M INING

MASTER THESIS

�� ��LOUISE DUE
© 2005, AALBORG UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
AALBORG UNIVERSITY

T ITLE : Analyzing User Behavior in Auboline with Web Usage Mining -Master Thesis
THEME : Database Systems
SEMESTER : INF8
PROJECT TERM : September 2004 - January 2005

AUTHOR :
Louise Due

louise@cs.aau.dk

SUPERVISOR:
Torben Bach Pedersen

tbp@cs.aau.dk

Abstract

This report describes the design and implementation of
the AUBA tool, which is a web usage mining tool for
AUB. The goal of the project is to give AUB a tool to
analyze the behavior of the users of Auboline and to be
able to establish success rates for the different functions
in the system.
A post-processor has been implemented to accommodate
the ETL process of extracting the data from the log files,
transforming it to fit the data warehouse format and fi-
nally loading it into the data warehouse. The data ware-
house consists of two star schemas that are designed to
enable general as well as domain specific analysis of the
data. Audit control and other data quality assurance ac-
tivities have been integrated in the ETL process to make
sure that the data is not flawed.
The analyses made with the AUBA tool give the AUB
staff information that they have not previously been able
to learn about the use of Auboline. Analysis has been
made easy with a simple user interface, and query perfor-
mance has been optimized by using summary tables.
A user survey has been conducted to find out if the results
found with the AUBA tool match the users’ own opinions
of their behavior in Auboline. The results of the two types
of analysis are comparable for the most part.

NUMBER PRINTED : 5
NUMBER OF PAGES: 144
FINISHED : January 14th, 2005

Preface

The purpose of this report is to communicate the process and results of the design and implementation
of the AUBA tool, a web usage mining tool for AUB. The project has been carried out within the
field of Database Systems and is part of the tenth semester of the Informatics education (INF8) at the
Department of Computer Science at Aalborg University.

I would like to thank the staff at AUB for providing data for the project and being helpful with
information whenever possible. I would also like to thank mysupervisor, Torben Bach Pedersen, for
competent and inspiring supervision throughout the project period.

The AUBA tool will be used by both male and female users when itis implemented at AUB, but
to ease the reading of the report, the male pronoun will be used for the users of the AUBA tool
throughout the report. The female pronoun will be used for the borrowers at the library and users of
Auboline.

The source code for the AUBA tool is included in the appendix along with the data definition for the
tables in the database.

Louise Due

iii

Contents

1 Introduction 1

2 Motivation 3

2.1 Business Versus Library 3

2.2 Available Information 3

2.3 Web Site User Behavior 4

2.4 Recommendation Service 4

2.5 Future Possibilities 4

2.6 Limitations .. . 4

3 The Library of Aalborg University 7

3.1 Facts .7

3.2 Web Site and Architecture 7

3.3 Log Files . 8

3.3.1 Understanding Requests 10

3.3.2 Use of Log File Information 11

3.4 Wishes and Ideas .. . 12

3.5 Project Goals .. . 12

4 Data Warehousing 15

4.1 Data Warehousing 15

4.2 Data Webhousing .. . 16

5 Data Warehouse Schemas 17

5.1 Page Event Schema .. . 18

5.1.1 Fact Table . 18

5.1.2 Log Line Table . 19

5.1.3 Date Dimension . 20

5.1.4 Time of Day Dimension .21

5.1.5 Page Dimension . 22

5.1.6 Session Dimension .. 23

5.2 Search Schema .. 24

5.2.1 Fact Table . 25

5.2.2 Search Type Dimension .. 26

6 Post-Processor Implementation 29

v

vi CONTENTS

6.1 Log File Recognition and Transformation 29

6.2 Transformation to Dimensional Schema 30

6.2.1 Time and Date . 30

6.2.2 Page . 30

6.2.3 Session . 30

6.2.4 Search Type . 33

6.2.5 Search . 33

6.3 Data Staging Area 34

6.4 ETL Performance .. . 34

7 Data Quality Assurance 35

7.1 Audit Control .. . 35

7.2 Correctness of Data 37

7.2.1 Manual Data Processing .. . 37

7.2.2 Referential Integrity 38

7.2.3 Cross-Footing .. 38

7.2.4 Manual Examination .. 39

7.2.5 Process Validation .. . 39

7.3 Error handling 39

7.3.1 Process Interrupted by Audit Number Mismatch 40

7.3.2 Process Not Completed .. . 40

8 User Interface 41

9 Query Performance 45

9.1 Summary Tables .. 45

9.1.1 Basis for Selection of Summary Tables 45

9.1.2 The Greedy Algorithm .. 46

9.2 Indexing .. 51

10 User Behavior Survey 53

10.1 Frequency of Use and Entrance 53

10.2 Distribution of Use 54

10.3 Purpose of Use .. . 56

10.4 Types of Searches 56

10.5 Use of Special Features 60

10.6 Different Types of User Behavior Analysis 60

10.6.1 The AUBA Tool . 61

10.6.2 Interviews .. 61

10.6.3 Questionnaire .. . 61

11 Book Information Extension 63

11.1 Possibilities of Borrower Information 63

11.2 Possibilities of Book Information 63

CONTENTS vii

11.3 How to Include Book Information 64

11.4 Updating of New Books 66

11.5 Future Work .. . 66

12 Conclusion 67

A PostgreSQL data definition 71

A.1 page_event fact table 71

A.2 log_line table 71

A.3 date and time dimension tables 71

A.4 page dimension table 72

A.5 session dimension table 72

A.6 search fact table 72

A.7 search_type dimension table 72

A.8 audit table .. . 73

A.9 active_page_event table 73

A.10 active_session dimension table 73

A.11 active_search fact table 74

B PostgreSQL Views 75

C PostgreSQL View Functions 79

C.1 Create Materialized View 79

C.2 Refresh Materialized View 79

C.3 Drop Materialized View 80

D Source Code for Greedy 81

D.1 Greedy Class .. 81

D.2 View Class .83

E Source Code for Java Classes 85

E.1 PostProcessor Servlet Class 86

E.2 Database Class .. . 97

E.3 DataExtractor Class 115

E.4 Date Class .. 117

E.5 IncrementalLoad Class 119

E.6 LogLine Class .. . 122

E.7 Page Class .. 126

E.8 PageEvent Class 131

E.9 Search Class .. . 132

E.10 SearchType Class 133

E.11 Session Class 134

E.12 UrlQuery Class 138

F Questionnaire 141

viii CONTENTS

G Summary 143

CHAPTER 1

Introduction

This report describes the design and implementation of a prototype for the Auboline User Behav-
ior Analysis (AUBA) tool. AUBA is a web usage mining tool [Kosala and Blockeel, 2000] for
the staff at The Library of Aalborg University (Aalborg UniversitetsBibliotek, AUB). It aids the
staff in analyzing the user behavior in Auboline, which is anon-line system that the borrowers
can use to search for books [Auboline, 2004]. The core of the implementation is a data webhouse
[Kimball and Merz, 2000] that contains information from theaccess log files of the web server that
Auboline is running on.

Before the implementation of the AUBA tool, a group of computer science students have implemented
a book recommendation system that is going to be integrated with Auboline. It will be difficult for
the staff at AUB to find out if the book recommendation serviceis being used in the intended way
and if it realizes its goal of helping the borrowers find booksthat are of interest. Aiding the analysis
of the success of the recommendation service was one of the main motivational factors behind the
AUBA tool. The AUBA tool helps the staff at AUB find out how Auboline and the recommendation
service are used by the borrowers. For instance, they can make an analysis of which periods of the
year, semester, month, week or day Auboline is used most or which functions are the most popular in
Auboline. Since searching is a central part of Auboline, theAUBA tool can also be used to find out
which types of searches are used most and which are most efficient. The efficiency of the different
search types can be compared to the efficiency of the recommendation service. The efficiency can
be measured by how likely the different search types and the recommendation service are to lead to
reservations.

The AUBA tool is developed specifically for Auboline and can not be used to analyze the user behav-
ior on other web sites without being modified. This enables the AUB staff to do more domain specific
analysis than they have been able to so far with regular web statistics tools. They can compare the
use of the different types of functions and the different types of searches. They can also look at what
search constraints have the highest success rate, meaning that they have a better chance of leading
to book reservations than other search constraints. The information that the AUB staff can get from
the AUBA tool can be used to understand the users better. The better the staff understand the users,
the better they can help them find the books that they want and thereby increase the loan numbers.
Increasing loan numbers will help to improve the economy of the library.

The data webhouse that the AUBA tool uses consists of two starschemas. The first one is a page
event star schema similar to the ones that are often used in data webhouses for general analysis of
web site user behavior. Since searches are a central part of Auboline and most of what the users can
do in Auboline relates to searches, a search star schema has also been designed. It is used to record
information related to the searches that the users make and information that results from searches.

The main part of the implementation is a post-processor thathandles the extract-transformation-load
processes. The input of the post-processor is a collection of web server access log files that contain
all the collected information about user access to the Auboline system. These text files are recognized
and transformed to the format of the data warehouse. In this process the post-processor determines
the kind of page that is requested for each log line and groupsthe page events into sessions. It also
determines search information and decides which dimensiontable keys to link to when adding each
page event fact to the page event star schema and possibly also the search star schema if the page
event is a search.

As mentioned, the AUBA tool has been developed specifically for AUB. Web usage mining systems
can also be developed as general systems that can be used to analyze the user behavior on different
web sites [Srivastava et al., 2000], but the analysis can be much more precise and useful with a tool
that has been designed or adjusted for a specific web site. Since Auboline is a mass produced system
that is used by many public libraries in Denmark, the AUBA tool can potentially be used to analyze

1

2 Introduction

user behavior on the web sites of other library that have bought the same system. In order for it to be
used for web sites that are not based on the same system as Auboline, the AUBA tool would have to
be adjusted for the specific structure of these web sites. Thegroup of students that have developed
the recommendation service are working on commercializingtheir system and selling it to libraries.
The AUBA tool can be sold with the recommendation service so the buyers have the opportunity of
measuring the success of the recommendation service after they integrate it with their book search
engine.

The motivational factors behind the present project are described in the next chapter. Chapter 3
presents the specific case in detail, including the current systems of AUB, the source data for the
AUBA tool and the ideas and requirements put forth by AUB. Chapter 4 is a presentation of the dif-
ferent concepts that are involved in implementing a web usage mining system, and the schemas of
the designed data warehouse are described in detail in Chapter 5. Chapter 6 presents the implemen-
tation of the post-processor that is the bridge between the source data in the log files and the data
warehouse. It also discusses the performance of the ETL processes. Chapter 7 describes how audit
control and error handling has been integrated with the AUBAtool. The graphical user interface for
the AUBA tool is presented in Chapter 8, and Chapter 9 describes what has been done to improve
query performance. A survey has been conducted to uncover the borrowers’ opinions of their own
behavior in Auboline. The results of this survey are described in Chapter 10. Chapter 11 discusses
the possibility of including data from other databases in the data warehouse. Finally the conclusion
sums up the report in Chapter 12 and discusses ideas for future work. The appendices contain data
definition and source code for the system and the questionnaire for the survey.

This master thesis is an extension of my ninth semester project [Due, 2004]. The present report
documents the process as a whole, and therefore it describesactivities that have taken place on both
semesters. The parts of the report that contain new contributions are listed below.

• The project goals in Section 3.5 have been extended to include data quality assurance, error
handling, graphical user interface and good query performance.

• In Chapter 5 the two star schemas have been extended with an audit dimension and outriggers
from the session dimension to the date, time of day and page dimensions. The outriggers are
inclued to improve query performance for certain types of queries.

• The implementation of the post-processor described in Chapter 6 has been altered to improve
ETL performance. Two processes that were previously performed separately are now combined
and this has cut the time to perform an initial or incrementalload in half.

• In order to make sure that data is extracted, transformed and loaded into the database from
the web log files in the correct way, quality assurance has been integrated in the ETL process.
Checks are made to ensure that the data flows through the process as expected and that abnor-
malities are handled. Furthermore system crashes are handled so the data is not corrupted. This
is discussed in Chapter 7.

• A graphical user interface (GUI) has been implemented to allow users to get results with the
AUBA tool without having to query the database directly. Theresults are displayed in graphical
charts. The GUI is described in Chapter 8.

• Different steps have been taken to improve query performance. The most important of these
is the use of summary tables. Chapter 9 discusses query performance and how the Greedy
algorithm [Harinarayan et al., 1996] has been used to decidewhich views are most beneficial
to materialize.

• A user survey has been conducted to illustrate similarities and differences between the results
of analysis of Auboline user behavior with the AUBA tool and the users’ own opinions of their
use of Auboline. The results of this survey along with a discussion of the types of information
that can be collected with different methods can be found in Chapter 10.

• Chapter 11 discusses the possibilities of including data from other databases in the data web-
house. Information about books is an obvious opportunity. Adesign for such an extension of
the AUBA tool is also suggested in Chapter 11. This extensionhas not been implemented.

CHAPTER 2

Motivation

The Library of Aalborg University is interested in improving the services that they offer their borrow-
ers. As part of this service improvement, a group of studentsat Aalborg University has developed a
book recommendation service, that is going to be implemented on the AUB web site. The develop-
ment of the recommendation service is described in [Ly et al., 2003] and [Ly et al., 2004]. The book
recommendation has been accomplished by finding patterns inthe library loans data. These patterns
are used to recommend other books to borrowers who seek information about a book on the library
web site. The goal of the service improvement is to increase the number of loans, which is a deciding
factor in the economy of the library.1

2.1 Business Versus Library

In many ways a library can be compared to a business that sellsproducts or provides services. The
main service that a library provides is making literary material available for the public to use at the
library or take home for a period of time. A public library is funded by the government, which pays
for the services that the borrowers receive. A widely used method of improving profit of a business
is to examine patterns of customer behavior and use this knowledge to adjust the business to try to
affect the customers into behaving in profitable ways. The patterns of behavior can be found by use
of data warehousing and data mining.2 These techniques can be used to find patterns and correlations
among large amounts of data and thus are well suited for analyzing the behavior of the customers.
The methods can be used in the library world as well, since this is another place where it could be
valuable to learn more about customer behavior.

One of the differences between the business world and a library is the currency of the customers. The
borrowers can be seen as the library customers, though they do not pay for the service directly, but
rather indirectly through their taxes. Therefore the number of books that are borrowed by the library
borrowers is not limited by how much money they are willing tospend. Rather the limit is set by how
much time the borrowers have to use the books and how many books they can carry home. Therefore,
taking money out of the business/customer relationship does not mean that the number of loans can
be increased limitlessly.

2.2 Available Information

Unfortunately, only a small part of the decision making processes that the borrowers go through with
respect to borrowing books are available. Without directlyasking the borrowers it is not possible to
know whether the books that they borrow are recommended by friends or why they have chosen to
borrow exactly these books instead of some of the thousands of other books in the library. It is not
possible to read the minds of the borrowers, nor to follow them around the library. Therefore, it is
not known whether the borrowers walk directly to the books and borrow them, or they browse around
and read the descriptions on the backs of several books before they make a decision on which books
to borrow.

The physical side of the loan process is difficult to explore because the only hard data available is
the loans data. The book recommendation system has been developed on the notion that even though
borrowers are all different, they often follow similar patterns. When borrowers show interest in a
book, the system offers them a list of books that other borrowers have borrowed with this book. This
way the system gives the borrowers easy access to books that have a good chance of being of interest

1The connection between the number of loans and the economy ofthe library is explained in Section 3.1.
2Data warehousing and data mining are discussed in Chapter 4.

3

4 Motivation

to them. This method is a way to attempt to increase loans using only the loans data as background
for the analysis.

2.3 Web Site User Behavior

As mentioned, the only hard data that is available from the physical library is the loans data. It is
not possible to follow all of the borrowers around the library and look over their shoulders. But if
focus is shifted from the physical library to the library website, it becomes possible to do just that.
The library web site can be viewed as a second library that theborrowers can visit from home. In
this library, many of the clicks of the users of the web site are recorded one by one in the web server
log files. Therefore it is possible to see what actions lead toreservations. This information can help
us reason about the decision making processes that the borrowers go through. It is still not possible
to get all the information that could be collected by asking the borrowers, but the method allows for
collecting information without bothering the borrowers. In the long run this is a cheap and easy way
of analyzing the behavior of thousands of borrowers. The results of this analysis should reflect the
behavior and intentions of the web site users. This is discussed in Chapter 10 where the results of the
analysis are compared to the results of a user survey.

2.4 Recommendation Service

When the book recommendation service is implemented on the AUB web site it will be possible to
use web log analysis to distinguish between loans that are the outcome of an on-line recommendation
and loans that are a result of a regular search. This would be an effective and precise way to measure
the success of the recommendation service. Without web log analysis, this success could only be
measured by looking at increases in loans. This would have many possible sources of error since
changes in the loans data could be caused by a number of reasons other than the recommendation
service.

2.5 Future Possibilities

As is also true for business customers, library borrowers will be more likely to come back for more, if
they are satisfied with what they have received. Therefore the goal is not simply to get the borrowers
to borrow more books. For the effects to be permanent, the books that the borrowers take home
should be the right ones to fit their needs. To have this as a success criteria, more information than
the actions on the web site that lead up to a loan is necessary.For example, successful loans could be
distinguished from unsuccessful ones by checking if the loans are prolonged or by asking the users
to grade the books that they have borrowed the next time they log on to the web site. Since it is not
possible to distinguish between different users, user satisfaction analysis is not included in the AUBA
tool.

By having ways of distinguishing a successful loan from an unsuccessful one, it would be possible to
investigate if there is a difference between the patterns that lead to successful loans and the ones that
lead to unsuccessful ones. For example, this would make it possible to find out if there is a higher
success rate with books that have been recommended than withbooks that have been found using key
word search. It could also be used to improve the recommendation service, for example by removing
recommendations that tend to lead to unsuccessful loans.

2.6 Limitations

Using data warehousing and data mining to analyze log files from the library web server has many
potential applications. Whether these uses are possible ornot, depends on the information collected
in the log files. This information can make a huge difference in whether it is possible to follow a
user through a session, whether a user can be recognized fromprevious sessions and how much can
be known about what the user has seen and done on the web site. For example, if the user name is

2.6 Limitations 5

not recorded in the log file it can be difficult to know for sure when the same user has returned to the
web site, because the rest of the information in the log file that could potentially be used to recognize
users, such as the IP address, is too unreliable to identify users. The users of Auboline can log in if
they are borrowers at AUB, but because of privacy concerns the usernames are not visible in the log
files. Therefore it is not possible to distinguish between individual users. This is explained in detail
in Section 3.3.

CHAPTER 3

The Library of Aalborg University

AUB is a public research library for the region of North Jutland. The principal task of the library is to
support research and teaching at Aalborg University by providing relevant documentation and access
to quality information resources [AUB, 2004]. The main branch of AUB is located on Langagervej
in Aalborg. In addition to this there are three smaller specialized branches at different parts of the
university in Aalborg and one in Esbjerg, where part of Aalborg University is located.

3.1 Facts

AUB has 12,222 borrowers, out of which 8,791 are students, 1,766 are employees at Aalborg Univer-
sity and 690 are AUB employees. The library has 669,783 booksand journals and access to 10,298
different electronic journals. In 2003, 116,194 reservations were made at AUB and the library had
173,700 loans. 86,941 of the reservations were carried out through the web site.

The economy of a public library depends mainly on governmentgrants. A few years ago there was a
simple connection between the number of loans at AUB and the grants, because AUB received 28.50
DKK for each book or magazine loan. Now the grants are calculated on the basis of a number of
parameters, so the connection is not as straight forward as earlier. A new budget model is underway
because the number of on-line downloads exceeds physical loans and therefore needs to be taken into
account when calculating the grants. The economic benefits that AUB would have from increasing
the number of physical loans is not as straight forward as it used to be, but according to Anton L.
Nielsen, who is an organization consultant at AUB, it is still a fair assumption that an increase in
physical loans will lead to an increase in government grants.

Purchasing licenses to on-line material is a very large postin the library budget. AUB spends
2,981,600 DKK a year on on-line materials. Since there is no exact method of measuring the num-
ber of downloads of these materials at the moment, AUB can notalways prove the number to the
government and therefore can not always get money when somebody uses their on-line materials.1

3.2 Web Site and Architecture

The web site of AUB can be seen at http://www.aub.aau.dk. From this web site it is possible for users
to search the databases of on-line material of the library, search for books, manage loans, etc.

The system that manages the loans at AUB is an off-the-shelf system that has been adjusted to fit the
needs of AUB. The system is called Aleph and is developed in Israel [Aleph, 2004]. The data of this
system is located in an Oracle database. Auboline is the namethat AUB has given the web interface
that can be used to access Aleph through Apache. There are several web servers at AUB, but they are
not connected to the Aleph server.2

The recommendation service described in Chapter 2 uses the data in the Oracle database as input and
outputs XML to Auboline so the borrowers are presented with alist of recommended books with the
book descriptions in Auboline. Furthermore the recommendation service includes a librarian service
that the AUB employees can use to see statistics about loans [Ly et al., 2004].

The AUBA tool will not access the Aleph system directly. It will take the Apache log files as input and
will function as a system on its own. It will not be accessed bythe borrowers, but only by technical
staff at AUB.

The architecture of the current system and the AUBA tool is depicted in Figure 3.1.

1Explained by Kasper Løvschall at our meeting on 16 April 2004.
2Explained by the webmaster of AUB on 3 April 2004

7

8 The Library of Aalborg University

AUBOLINE

ALEPH

Postprocessor
AUBA

PostgreSQL

AUBA Tool

Log files

Oracle

AUBA

Figure 3.1: The architecture of the current system and the new system.

The borrowers can use Auboline to search for books. They can also log on to the system and get an
overview of the books that they have borrowed, see the returndate, or prolong the loans.

The Auboline system has its own physical server; a SUN SPARC server with four CPUs running
Solaris 8. Therefore the log files of the Auboline system are recorded separately from the access logs
of the general AUB web site. Since the Auboline system handles all book searches and other user
functions that deal with books on-line, the log files used will be exclusively from the a500 server,
which is the Auboline server.

3.3 Log Files

The log files that were received from AUB is a record of all requests to the a500 web server between
February 25, 2003 and March 22, 2004. There is a log file for each day in this period of time, and
they contain a total of 17.7 million lines. Since only the true requests to the Auboline system are
needed for the analysis, the rest of the log lines are ignoredby the post-processor (see Chapter 6).
The log lines that are ignored typically contain image and style-sheet requests, requests from search
bots and web crawlers and requests to administrative systems. After ignoring these kinds of requests
there are 3.9 million log lines left to use in the analysis of the behavior of the Auboline users.

The AUB web server runs Apache 1.3.28 [Apache, 2004b]. It uses the Combined Log Format
[Apache, 2004a], and has three fields more than the Common LogFormat [Apache, 2004a]. The
Common Log Format has the seven attributes IP address, RFC 1413 identity, userid, time, request,
status code and size. The three extra attributes in the AUB log files are server name, referrer and user
agent. The attributes are explained in the following as described in [Apache, 2004a].

IP address: This is the IP address of the remote host that made the requestto the server. The IP
address is not necessarily the same each time a given borrower accesses the website from the
same computer. If the connection is made through a proxy, theIP address in the log file will be
the IP address of the proxy instead of the end user computer. Therefore, the same IP address
could point to several different users. The IP address couldalso be dynamically associated
with the computer, which means that a user can have differentIP addresses at different times.
Therefore, an IP address is not enough to identify a computer[Kimball and Merz, 2000]. There
are 32,042 distinct IP addresses in the log files which means that there is an average of 122
clicks per IP address. As mentioned this does not mean that 32,042 distinct users have used
Auboline. The actual number of users could be either higher or lower depending on how many
users use the same proxies and how many users use dynamicallyassociated IP addresses.

3.3 Log Files 9

RFC 1413 identity (ident): This attribute gives the RFC 1413 identity of the user. The RFC 1413
identity is a way to determine the identity of a user of a particular TCP connection [IETF, 2004].
According to Apache [Apache, 2004a] it is highly unreliableand should never be used for a
public server. The attribute needs to be activated to get shown in the log file. It is not activated
in the AUB log files and therefore is empty in all the log lines.

Userid (authuser): This is the userid determined by HTTP authentication [Apache, 2004b]. It
only has a value if the requested document has password protection. The borrowers can log
on to get to the user specific information in Auboline, but Auboline does not use this attribute
when users log in so it is empty in all the log lines.

Timestamp: The timestamp gives the date, time, and timezone that make upthe time that the server
finished processing the request. The timestamp is precise tothe nearest second on the clock of
the web server, which is accurate enough for the web log analysis to be made in the present
project.

Request: The request attribute consists of three sub-attributes. These are the method, the request
URL and the protocol. The method describes the method used inthe request. The most com-
mon methods used are the GET (93.8 %) and POST (6.2 %) methods,which are used to retrieve
information from and send information to the server, respectively [W3C, 2004]. Other methods
in the log files include the HEAD method that only returns response headers from the docu-
ment. In these log files it is only used by web crawlers and the HEAD requests are therefore
ignored.

The request URL can be used to recognize sessions and in most cases find out which kind of
page the user has requested. Therefore it contains a lot of information that is useful to the
analysis. The special structure of the request URLs of Auboline is described in Section 3.3.1.

The protocol is the HTTP protocol used for the request. In thelog files it has the values
HTTP/1.0 and HTTP/1.1.

Status: The status is a three digit integer indication of the successstatus of the page retrieval. A
successful page retrieval has the status number 200. Other numbers indicate what went wrong
in the page retrieval. This might be used to explain why a userleaves the web site, for example
if the page that she is looking for is not working properly. All the log lines in the log files have
status code 200 except for two single log lines. One of these has status 400 (client error - bad
request) and the other has status code 500 (internal server error). Therefore this attribute will
not be explored further.

Bytes: The number of bytes transferred from the web server to the user’s computer. This will not
be used in the AUBA tool.

Server name: The name of the server that the user has accessed. Since the log files only record ac-
cess to the a500 server this attribute has the value “a500.aub.auc.dk” in all log lines. Therefore
the value of this attribute is not of value to the project and will not be used.

Referrer: The URL of the site that the client reports having been referred from. This is likely to be
a page that links to or includes the requested object. The attribute can be used to find out how
a user found Auboline. Since the referrer attribute contains the value of the URL that the user
visited before the one in the current log line, it can also be used to piece together the pages of
a session.

Browser: This is the identifying information that the browser reports about itself. Sometimes the
text in this field indicates that it is not a regular user but a search bot or a web crawler, such
as Googlebot. These log lines should be ignored as they are not an indication of user behavior
on the web site and will only interfere with the results of theweb log analysis. The most
common browser is Internet Explorer, which is used in 91 percent of all log lines. There are
2295 different values in the browser field.

The general pattern of the log lines is as follows. This is thepattern that the post-processor, which is
described in Chapter 6, recognizes.

10 The Library of Aalborg University

<ip_address> <ident> <authuser> [<date>:<time> <time_zone>]
"<method> <request_url> <protocol>" <status> <bytes>
<server_name> "<referrer>" "<browser>"

Example:

193.162.54.8 - - [25/Apr/2003:07:51:03 +0200] "GET /F/VA7GU
1PDMRLYLX5B3E9AVMUD1G9H37TR66Q3451CM2MYIKT1ST-00673
?func=file&file_name=find-b&local_base=AUBOLINE HTTP/1.0"
200 12681 a500.aub.auc.dk "http://a500.aub.auc.dk/F/VA7GU1P
DMRLYLX5B3E9AVMUD1G9H37TR66Q3451CM2MYIKT1ST-00644?func=file
&file_name=base-list" "Mozilla/4.0 (compatible; MSIE 5.01;
Windows NT 5.0; YComp 5.0.0.0; DKDD)"

The attributes that will be used in the AUBA tool are IP address, date, time of day, method, request
URL, referrer and browser. The information in the rest of theattributes is not relevant to the imple-
mentation of AUBA tool.

3.3.1 Understanding Requests

Unfortunately, the AUB staff do not have any documentation on Auboline and do not have access to
the source code of the system, so they have not been able to contribute information about the meaning
of the contents of the request URLs. Therefore the semanticsof the contents of the request URLs
used in the implementation of the AUBA tool has been accomplished by experimenting with the web
site, and it has not been verified by AUB. Not all of the information in the request URLs is used in the
process of examining which pages are requested by the user, since some of the information appears to
be specifically for the underlying implementation and not the appearance of the web site. Like most
web sites, Auboline is not implemented with web usage miningin mind. Therefore it is not possible
to get all the information that could be useful to have in the data webhouse from the request URLs in
the log files. For instance, when a user reads a book description it is not possible to see which book
she is showing interest in in the request URL.

The request URL is the relative URL requested by the user. Theserver name is implicit in a relative
URL so it only contains a path and maybe a filename or a query. Inthe log lines from Auboline
only image and style-sheet request URLs have filenames. Since these requests are ignored in the
analysis the focus will be on the path and the query. The requests to the Auboline system can take the
following forms.

/F/
/F/<session tag>/
/F/<session tag>-<serial>
/F/<session tag>-<serial>?<query>
/F/<session tag>?<query>
/F/-/?<query>

The “/F/” part is present every request made to Auboline. Requests to other systems on the same
server look differently from this. For instance, there are afew requests to an administration system
in the log files. The URLs of these requests start with “/S/” instead of “/F/”. The session tag is
a fifty character long random combination of letters and numbers that the Auboline system uses to
distinguish sessions from each other. The serial is a numberthat is unique for each session. The
query part of a request URL in the Auboline system is usually very interesting, since it describes a lot
of what the user is doing on the web site. For instance, it describes which function he or she has just
used and which search terms he or she entered in a search. The log files do not always contain all the
information that is needed, but sometimes the missing information can be constructed by putting the
information together with other information gathered in the same session.

3.3 Log Files 11

As described above, the log lines that are used for the analysis use either the GET or the POST
method. When theGET method is used, the interesting information is to be found inthe query
part of the request URL. This query contains a number of variables and values that describe the
page that is requested by the user. If thePOST method is used, the request URL has no query part
[Srivastava et al., 2000], so the interesting information is to be derived from the referrer part of the
log line. Fortunately there are no pages in Auboline with more than one link or button to a POST
method, so if a POST method request is executed from the page that a user comes to before the
actual reservation, the POST method request can only be a reservation. The POST method is used
in Auboline for log-in, reservation and saving a book in the basket. Below is a description of the
different variables in the request URLs that are used to establish the page functions that the users
access in Auboline.

func: This variable is present in all URL queries in Auboline. It describes the general function
used. The func variable is found to have 52 different values in Auboline. Examples of values
are “find-b” and “bor-loan” which indicate the page functions “basic search” and “loans list”,
respectively.

file_name: The file_name variable is present in the request URL if the func variable has the value
“file”. In this case the value of the func variable is not enough to find the page function. The
page function is usually some kind of form that the user needsto fill out. For instance, if the
file_name variable has the value “find-b” the page is a form where the user can enter data for
basic searching. When the user submits the information entered in the basic search form, the
func variable has the value “find-b” on the next page, which shows the results of the search.

find_code: The find_code variable is used when the func variable indicates some kind of search
such as a basic search. It indicates what field the search is made on. For instance, if a user
makes a basic search on title, the find_code variable has the value “WTI”.

scan_code: The scan_code variable is present in the URL query when a usermakes an index scan.
It is used in the same way as the find_code variable.

action: The URL query sometimes contains different variables that all indicate some kind of action
in Auboline. For instance, if the func variable has the value“history-action” the query will also
have variables to indicate which history action is executed. The presence of a action_delete.x
variable indicates that the action is “delete” which means that the function performed on that
page is that a search result has been deleted from the historylist. These variables come in pairs
in the queries. If there is an action_delete.x variable, there is always an action_delete.y variable
as well. These variables have integer values, but the meaning of the values are not known by
AUB and it has not been possible to establish the semantics ofthe values.

3.3.2 Use of Log File Information

It is not legal for the library to keep information about which user is logged on to their web site at a
certain time [Datatilsynet, 2005]. Therefore the user information is not kept in the log files but in a
separate file that is emptied frequently. Since the library uses neither session cookies nor permanent
cookies, it is not possible to establish the identity of a user or a computer that has visited the web
sites [Kimball and Merz, 2000].

The only information in the log file that could be used to identify the computer from which the
request came from is the IP address. But as explained, an IP address cannot be trusted to always
belong to the same computer. A way to get around this problem could be to combine the IP address
with the browser attribute in the log file. This would decrease the uncertainty compared to just using
the IP address, but still it is not precise. When such a big part of the library borrowers are from the
university there are a lot of proxies. There are also many people who use the same browser, since so
many people use Internet Explorer, which is included as a part of Windows.

When users cannot be recognized from session to session it isnot possible to establish the success
of a loan, since there is no information about which users borrowed which books, etc. However, it is

12 The Library of Aalborg University

still possible to establish the success rates of the different kinds of searches and the recommendation
service without being able to recognize users.

The purpose of the AUBA tool is to increase the loan numbers, so the task is to find out what kind of
analysis of the web log files could potentially lead to increased book loan numbers. Auboline is the
only system on AUB’s web site that is directly linked to book loans. The users can not borrow books
on the web site, but they can reserve them and it is a reasonable assumption that most reservations
lead to loans and that an increase in reservations will lead to an increase in loans. By using the log
files to analyze the users’ interaction with Auboline, it is possible to find out what makes some users
reserve books, while other users leave the web site without having reached their goal. The patterns
in the interaction, such as which kinds of searches are used most and which are most efficient, can be
found, and AUB can use this knowledge to improve their web services to help users find the books
that they are looking for.

3.4 Wishes and Ideas

One of the main wishes of AUB is to improve the services that they offer their borrowers. The book
recommendation service is meant to be part of this service improvement, since its objective is to help
borrowers find relevant books. To find out if the implementation of the recommendation service is
a success, AUB would like a tool to analyze the usage of the recommendation service by the web
site visitors. At the same time they would like to be able to analyze the use of the Auboline system
and compare the uses of the two systems. The staff at AUB are hoping that they can use the analysis
results to further improve their services to the borrowers and thereby increase the loan numbers.

AUB would like the AUBA Tool to be developed on the same development platform and database
management system as was used in the implementation of the book recommendation service. The
group of students that developed the recommendation service chose to use Java Servlets as the plat-
form and PostgreSQL as the DBMS [Ly et al., 2004]. These choices were made mainly because the
tools are free. The same platforms have been used for the development of the AUBA Tool. The Java
Servlets version used for the AUBA tool is J2EE version 1.3 [J2EE 1.3, 2004] and PostgreSQL is
version 7.4 [PostgreSQL 7.4, 2004]. The book recommendation service was developed on a Win-
dows platform using the Cygwin framework as a bridge to PostgreSQL which does not have a free
version for Windows. A free PostgreSQL version for Windows being developed and will be available
soon, but the first version will probably not be as stable as the one for Linux [PostgreSQL 7.5, 2004].
Cygwin slows down the transactions, and the system will not be running on a Windows machine
when implemented on the AUB web server, so the AUBA tool has been implemented on a Debian
Linux machine. PostgreSQL has some limitations compared tobig commercial DBMS products such
as Oracle. For instance, it does not have materialized viewsso it is necessary to do more manual
programming in order to achieve the same query performance as can be achieved with a commercial
DBMS.

Since this version of the AUBA tool will only be used to analyze past behavior, the data does not
need to be extracted from the log files and loaded into the datawebhouse in real time while the users
are active. Instead this will be done nightly when the load onthe web server is low. Each night the
server, that Auboline is running on, makes a switch to write the access logs to a new file. This process
can be combined with the process of extracting the logs from the log file used during the previous 24
hours, transforming the data and loading it into the data webhouse.

3.5 Project Goals

The long term project goals are to make a tool that enables analysis of the Auboline user behavior,
including the use of the recommendation service and comparisons between the way that users find
books using the standard Auboline features and the recommendation service. Because the recommen-
dation service has not yet been integrated with Auboline, itis not possible to include it in the analysis.
Instead a tool for the current version of Auboline that can easily be extended to enable analysis of the
recommendation service as well will be implemented.

It is important that the AUB staff can trust the results of theanalyses that they make with the AUBA

3.5 Project Goals 13

tool. Furthermore, the finished AUBA tool should be easy to use without knowledge of the underlying
program and database and response times should be acceptable for interactive use. Loading the data
from the log files to the database should not take more than a few minutes each night, and it should
not slow down other processes on the web server.

CHAPTER 4

Data Warehousing

In this chapter the concepts and principles behind this project are discussed. The concepts include
data warehousing, dimensional modeling, data webhousing and web usage mining.

4.1 Data Warehousing

Businesses often have very large databases where they collect all kinds of internal and external data,
such as personnel skills or product sales. All of this data can be used for decision support if it
is analyzed properly. It is important to make sure that the data is stored and accessed in a way
that ensures usable and correct results from the analyses. Having better access to data enables the
business to make better decisions faster. A data warehouse is a very large database where data from
the operational databases is specifically structured for query and analysis performance and ease-of-
use [Kimball and Ross, 2002a].

Dimensional modeling is a technique that has been used for many years and after the first edition of
Ralph Kimball’s book “The Data Warehouse Toolkit” [Kimballand Ross, 2002a], it has been broadly
accepted as the dominant technique for data warehouse modeling. The goals of dimensional model-
ing are user understandability and query performance. Therefore the multidimensional data model is
good when the objective of the database system is to analyze data [Pedersen and Jensen, 2001]. A
dimensional model is very simple, while supporting very good performance on the types of queries
most often done on data warehouses [Kimball and Ross, 2002a].

fact table

dimension 3

dimension 4

dimension 5
dimension 1

dimension 2

Figure 4.1: Relational representation of a star schema.

A star schema is the type of schema commonly used indimensional modeling
[Levene and Loizou, 2003]. The star schema has its name because it looks like a star with a fact table
in the center and dimension tables around it as depicted in figure 4.1. Thefact table has one record
for eachfact, such as a product sale. It contains foreign keys to dimension tables along with measures
of the facts, for instance the dollar amount of a sale. A fact table generally has several thousands
or millions of records and is therefore very large. Additional information, such as different types of
textual descriptions of the facts, is kept indimension tables. For example, the textually descriptive
information about the date of the sale is kept in a date dimension table. Such a dimension table could
contain a lot of information about the date such as week day, holiday and major events. It contains
all usable information about the day of the sale.

Each dimension table has a surrogate primary key, a single attribute integer, that is referenced by a
foreign key in the fact table. Since the fact table should notcontain null references to dimensions,
dimension tables can also contain records for cases where the value is not known. Dimension tables
are generally very wide with many attributes but have few records compared to the fact table, so they

15

16 Data Warehousing

are often much smaller than the fact table.

The grain of a fact table is the level of detail associated with the facts. Declaring the grain is an
important step in the design of a star schema [Kimball and Ross, 2002a]. It is preferable to have a
star schema with the most atomic grain possible. Because thefacts cannot be subdivided any further,
no information that could be useful at a later point will be lost. If there is a need for a fact table with
a coarser granularity another star schema can be designed with this granularity.

Query performance can be further enhanced by use of materialized views to pre-calculate aggre-
gates that are accessed often. This can be done by the developer when he knows what kinds of
queries are often used, but it can also be done automaticallyby the database management system
[Zaharioudakis et al., 2000]. Unfortunately, PostgreSQL does not support materialized views, so in
this project materialized view have been programmed manually by using PL/pgSQL. This is ex-
plained in Chapter 9.

Entity-Relation (ER) modeling is a widely used technique intraditional database design. One of its
main goals is to create a normalized database schema to avoidredundancy while still preserving all
dependencies among the data. Some of the advantages of this is that updating the data in the database
is much faster and the database uses less storage space. For example, a customer address only appears
in one record in one table in the database with foreign keys from all other tables that are related to
it. When a customer moves to another address, it is very easy to update the address information and
there is no risk that the address appears differently in different places in the database.

Even for a very simple system, an ER diagram quickly becomes very complex and hard to understand,
and the resulting database schema often has more tables thanthe number of entities and relations in
the diagram. While updating a database designed with the ER model is very fast, querying the
database is often very complex and time consuming. That is why ER modeling is not suited for data
warehouse design. Data warehouses are very large and query performance is very important, while
update performance is of lesser priority. That is why dimensional modeling is a better technique
for data warehousing [Kimball, 1997]. Redundancy is accepted to improve query performance and
user understandability. Since redundancy usually only appears in the dimensions which commonly
take up only one to five percent of the storage space, this has an inconsiderable effect on the overall
storage usage [Pedersen and Jensen, 2001]. The dimensionalmodel is much more predictable and
easy to understand than the ER model, so it fits the demands of data warehousing.

PostgreSQL is the DBMS that manages the data warehouse used by the AUBA Tool. PostgreSQL
does not have a multidimensional engine included. Therefore, the AUBA Tool is a ROLAP system,
which uses relational database technology for storing the data [Pedersen and Jensen, 2001].

4.2 Data Webhousing

A data webhouse [Kimball and Merz, 2000] is a special kind of data warehouse. In a data webhouse
the main data source is not the operational databases like ina normal data warehouse. Instead, the
primary part of the data in a data webhouse is derived from theaccess log files that record all access
to a web server. The information that can be derived from a data webhouse relates to user behavior
on the websites that the access logs relate to. To transfer the data from the access logs to the data
webhouse a post-processor, that reads the log files and reformats the data to fit the data webhouse
schema, has been implemented. Once the data is in the data webhouse it can be queried in the same
way as a normal data warehouse. The data webhouse can be combined with data from a regular
data warehouse. For instance it is possible to combine customer information with web site user
information if the customers can be recognized when they visit the website.

The schemas of a data webhouse should be designed to match thefocus of the web usage min-
ing tool to be implemented. Some of the common data webhouse schemas include page event
[Kimball and Merz, 2000], sequence [Demiriz, 2002] and sub-session [Andersen et al., 2000] schemas.
A page event schema is a general type of schema, while the two latter types focus on the paths that
the user takes through the web site. The schemas used in the data webhouse for the AUBA tool are
discussed in the following chapter.

CHAPTER 5

Data Warehouse Schemas

In this chapter the design of the data warehouse will be discussed. The data warehouse has two fact
tables with dimensions that have been designed to enable thedifferent kinds of analyses described in
Chapter 2. The AUBA tool helps the AUB staff analyze the fundamental user behavior in Auboline
that is similar to user behavior on other web sites, but it canalso assist analysis of user behavior that
is specific for Auboline. Listed below are examples of questions that can be answered by use of the
AUBA tool. Chapter 8 gives examples of how these questions can be answered with the graphical user
interface. The rest of the current chapter will discuss the data warehouse schemas and the thoughts
behind the design of the fact and dimension tables.

• Non-domain specific user behavior

– On which pages do the users start their sessions?

– On which pages do the users end their sessions?

– How many pages do the user sessions consist of?

– How does the user activity vary during the course of the week?

– How does the user activity vary during the course of the day?

• Domain specific user behavior

– How does the user activity vary during the course of the semester?

– How does the frequency of book reservations vary during the course of the semester?

– What types of page functions are used most frequently?

– How do users find books with Auboline?

– How many book descriptions are read after the different kinds of searches?

– How many books are put in the basket after the different kindsof searches?

– How many books are reserved after the different kinds of searches?

– Which kinds of searches are most likely to lead to reservations?

As mentioned in Section 4.1, declaring the grain of the fact table is an important step of dimensional
modeling. The data source of the AUBA tool is a collection of web server log files, and each of these
log files consists of log lines that each describes a request to the web server. The log lines are the most
atomic information since they cannot be subdivided any further. A log line can describe a request for
a page, but it can also describe for instance an image or framerequest. The actual number of requests
that is needed for a page view is beyond the control of the user, so in the users’ world a page view
is the most atomic information [Srivastava et al., 2000]. The first star schema of the data webhouse
for the AUBA tool is designed with a single page event as the grain. A page event is often used as
the grain of a fact table in data webhouses [Kimball and Merz,2000], because it is similar to a page
view, but incorporates the knowledge that the user does not always click on a web page to view a new
page. Sometimes a request is also sent to the underlying system, such as when a user makes a request
to reserve a book.

The kind of star schema that has a page event fact table often includes information about the time
of day, date, page, user and session in the dimension tables,so a page event schema can be used for
both the non-domain specific and some of the domain specific behavior analysis listed above. The
thoughts behind the design of the page event star schema are described in Section 5.1.

The domain specific task of analyzing the ways the users deal with books would be very complex
using only the page event star schema. For example, it would still be very difficult to make the

17

18 Data Warehouse Schemas

analysis of how the web site users most often find the books that they reserve on the web site. A
search and a reservation in the page event schema are different types of pages, and a reservation can
only be made after a search has been made in the same session. But since a session can have more
than one search there is no direct connection to link the two page functions together to aid the analysis
of which kind of search led the user to find the book that was reserved. To ease this kind of analysis
an additional star schema has also been designed. This schema has a coarser granularity as there is
an entry in the fact table for each search made on the web site.It is described in Section 5.2. The
two star schemas have three dimensions in common, and therefore they can be depicted together as a
so-called galaxy [Kimball and Ross, 2002a] as illustrated in Figure 5.1.

time

date

session

page_event search search_type

log_line

page

audit

Figure 5.1: The galaxy constellation of the two star schemas.

5.1 Page Event Schema

The page event star schema has a page event fact table and fourdimensions. The log line table is a
lineage table, which means that it stores information that can be used to trace a particular log line back
to its origin. The audit table is used for quality assurance,which is described in Chapter 7. Neither the
log line table nor the audit table will be used in regular queries as dimension tables although they are
associated with the fact table through a primary key / foreign key relationship just like dimensions.
The other four dimensions are date, time of day, page and session.

The page event star schema is illustrated in Figure 5.2. It can be used for many types of queries, but
mostly to analyze the basic behavior of the users of the web site. For example, the activity on the web
site measured by week of semester can be analyzed and combined with an analysis of the use of the
different types of page function to find out if the users behave in different ways at different points of
the semester.

5.1.1 Fact Table

The page event fact table is a fact-less fact table [Kimball and Ross, 2002a]. The only columns of
the page event table are the foreign keys to the four dimension tables and the log_line and audit
tables. It has been designed without measures because the goals set in this project do not require
any measures in the page event fact table. If it is later discovered that certain measures are needed
to achieve new goals, they can be added to the fact table without changing the rest of the schema
[Kimball and Ross, 2002a]. An example of a fact that could possibly help achieve new goals isdwell
time. This fact could help analysis on how long time the users of the web site spend on each page.
If the dwell time fact were to be added it would be necessary touse the log lines describing image
requests in order to calculate when a page has finished loading and use this together with the time of
the next page event to calculate the dwell time of the currentpage event [Kimball and Merz, 2000].
At the moment, there is no interest in how much time the users spend on each page, so dwell time is
not necessary in the page event fact table.

5.1 Page Event Schema 19

page_event

log_line_key (FK)
date_key (FK)
time_key (FK)
page_key (FK)
session_key (FK)
audit_key (FK)

log_line

file_name
log_line_number
ip_address
ident
authuser
date
time
timezone
method
request_url
session_tag
serial
query
protocol
status
bytes
servername
referrer
browser

log_line_key (PK)

sql_time
hour
minute
second
working_hours
period_of_day

time_of_day

time_of_day_key (PK)
audit_key (PK)
...

audit

page

page_key (PK)
page_function
page_function_type
process

date

sql_date
year
month
day
weekday
semester
day_of_semester
week_of_semester
weekend_indicator
exam
holiday
week_of_year
day_of_year
workday

date_key (PK)

session_key (PK)
session_tag
ip_address
browser

session

referrer

pages_in_session

end_time
end_time_key (FK)

end_date_key (FK)
end_date
start_time_key (FK)
start_time
start_date_key (FK)
start_date
last_page_key (FK)

first_request_url
first_page_key (FK)
last_request_url

book_descriptions_in_session
books_in_basket_in_session
reservations_in_session

Figure 5.2: Relational representation of the page event star schema.

5.1.2 Log Line Table

If a result is reached in the analysis that seems strange, it is nice to be able to go back to the source
of the information to check if it is correct. This is a big taskwhen dealing with information gathered
from thousands of log lines, but if it is from only a few log lines it would be nice to be able to see
how the log lines looked originally. This is also a good thingto have during implementation of the
AUBA tool where an error might occur and the log line that caused the error is needed in order to be
able to find out what the cause of the problem was. Such problems often occur when users behave in
ways that were not intended in the system, such as clicking the back button of the browser to go back
to a session that has expired.

The log line table is a lineage table. It is used to trace information in the database back to its origi-
nating log line. It contains a row for each log line that has not been ignored by the post-processor.1

Because each of these log lines corresponds to a page event, the page event fact table has exactly the
same number of rows as the log line table. A row in the log line table contains all the information
from the corresponding line in the log file, but it is easier toread since it is organized into labeled
columns.

1This is explained in Section 6.1.

20 Data Warehouse Schemas

A lineage table is a good tool to have when doing outlier analysis. For instance when analyzing the
number of pages in sessions it appears that a few sessions consist hundreds of pages, even though
most sessions contain less than 30 pages. This information may make the analyst curious about the
correctness of the analysis. By use of the log line lineage table the analyst can view the information
from all the log lines that are represented in a particularlylong session. The log lines may reveal that
a user has spent two hours clicking through Auboline at a steady pace searching for books, reading
book descriptions and making reservations. Using the lineage dimension for outlier analysis enables
the user of the AUBA tool to check up on analysis results that seem strange and thereby encourages
the users to trust the results produced.

The log_line table will not be used as a regular dimension table to query the data. All the information
from the log lines that is relevant in the different analysesis also present in the real dimension tables.
Most of the columns in the log_line table are parallel to the attributes in the log files described in
Section 3.3. In addition to these columns the log_line tablecontains a primary key, two columns that
refer to the log line in the originating log file and the three attributes session_tag, serial and query
columns as described in section 3.3.

log_line_key: Surrogate primary key of the log_line table.

filename: The name of the log file that the log line originated from. The names of the log files have
the format “access_log.”<date>. Each filename is unique because it contains the date from
when the file was created. For instance, the log file with log lines from 25 February, 2003 has
the filename “access_log.20030225”.

log_line_number: The number of the line in the log file where the log line can be found.

session_tag: A tag that the Auboline system places in the URL in order to identify sessions.

serial: A session-unique number that the Auboline system places after the session tag in the URL.

query: The part of the URL that contains variables and values that describe the specific attributes of
the page.

5.1.3 Date Dimension

The date dimension has a row for each unique date in the time period that the log lines span over. The
values of most of the columns can be computed when more date rows are added but some values, such
as school vacation, have to be specified manually. The date dimension has the following columns.

date_key: Surrogate primary key of the date dimension. The primary keyof a date dimension
should always be sorted by date [Kimball and Ross, 2002a].

sql_date: The sql representation of the date. The sql_date column can be used to make queries on
single dates or intervals of dates.

year: The four digit integer year of the date.

month: The integer month of the date ranging from 1 to 12.

day: The day of the month. This integer attribute can have values between 1 and 31.

week_day: The name of the day of the week. The attribute is textual and can have the values
“monday”, “tuesday”, “wednesday”, “thursday”, “friday”,“saturday” and “sunday”.

semester: A domain specific attribute specifying the name of the semester that the date belongs to.

day_of_semester: A domain specific attribute specifying the number of the day as calculated from
the beginning of the semester that the date belongs to. The first day of a semester is the first
week day in February for the spring semesters and the first week day in September for the fall
semesters. In this implementation the first day of the semester is specified manually, but it is a
possibility to calculate it automatically in future versions.

5.1 Page Event Schema 21

week_of_semester: A domain specific attribute specifying the number of the week, that the date
belongs to, as calculated from the beginning of the semester. The first week of a semester is
the week which the first day of the semester is in.

weekend: This column has the value “week day” if the week day is betweenMonday and Friday
and “weekend” if it is Saturday or Sunday.

exam: This is a domain specific attribute specifying that has the value “exam” if the date is in
January or June where the regular exam periods are, “reexam”in August and “no exam” in the
remaining months of the year.

public_holiday: This attribute indicates if the date is a public holiday. It has the value “holiday” if
the date is a Danish public holiday and “no holiday” otherwise. The public holidays have to be
specified manually when adding new date rows to the dimension.

school_vacation: A domain specific attribute that indicates if the date is in a period where there
is a vacation at the university or not with the values “vacation” and “no vacation”, respectively.
The different institutes of the university do not always have vacation at the same time so the
AUB staff have to make a judgment on which vacations they wantto include in this attribute.
The opening hours of the library are reduced during vacationso the staff could possibly choose
to add vacations to the data warehouse in the same periods as the opening hours are reduced.
In this implementation there is a vacation in all of July and August and two weeks around
Christmas and New Year.

day_of_year: The number of the day as calculated from the beginning of the year that the date
belongs to. The values of this attribute are between 1 and 366.

week_of_year: The number of the week, that the date belongs to, as calculated from the beginning
of the year. The first week of the year is the first week with at least four days in that year.
That means that if January 1st is a Monday, Tuesday, Wednesday or Thursday, the week that
January 1st is in will be the first week of the year. On the otherhand if January 1st is a Friday,
Saturday or Sunday, the week is the last week of the precedingyear. The attribute can have
values between 1 and 53.

workday: This attribute has the value “workday” if the date is not a weekend, public holiday or
vacation. Otherwise it has the value “no workday”.

Restrictions on the date dimension can be used to group the page events by day, month, year, week
of semester, week day, workday, etc. to find patterns in how much Auboline is used at different
times. For instance, it would be interesting to see how much Auboline is used in the beginning of the
semesters compared to the middle and the end. Since most of the borrowers are students, one could
assume that the use of Auboline would reflect the pattern thatmany students have a period in the
beginning of the semester where they gather information andtherefore use Auboline to find relevant
books. Toward the end of the semesters there is probably not as much traffic on AUB’s web sites,
since the students have all the information that they need and are busy finishing their projects. The
result of this analysis is discussed in Chapter 10.

5.1.4 Time of Day Dimension

The time_of_day dimension has a row for each second in a 24 hour period. This corresponds to the
accuracy of the time of day in the log files. So far it contains only the following columns, but more
can be added without touching any of the other tables and without consulting the originating log files.
The time_of_day dimension contains 86400 entries, which isthe number of seconds in a 24 hour
period.

time_of_day_key: Surrogate primary key of the time_of_day dimension.

sql_time: The sql representation of the time of day. The values of this attribute range from 00:00:00
to 23:59:59. This column can be used to sort query results by time or to query specific time of
day intervals.

22 Data Warehouse Schemas

hour: The hour of the time of day. The values of this integer attribute range from 0 to 23.

minute: The minute of the time of day. The values of this integer attribute range from 0 to 59.

second: The second of the time of day. The values of this integer attribute range from 0 to 59.

working_hours: This attribute has the value “working hours” if the time of day is between 8 and
16 which is the most common working hours. For the rest of the day it has the value “not
working hours”. Since the time_of_day dimension does not distinguish workdays from days
that are not workdays, this attribute should be used in conjunction with the workday attribute
of the date dimension to determine if the time of day is actually within working hours. An
alternative solution would be to have two rows for each second between 8 and 16, one used on
workdays and one used on days that are not workdays. That way the user of the database will
not risk getting an inaccurate result if he or she is unaware that this attribute depends on the
value of the workday attribute of the date dimension. Only a tenth of the page events in the
data set have taken place on a day that is not a work day.

period_of_day: This attribute indicates what part of the day the time is in. It has the value “night” if
the time of day is between 00:00:00 and 05:59:59, “morning” between 06:00:00 and 11:59:59,
“afternoon” between 12:00:00 and 17:59:59 and “evening” between 18:00:00 and 23:59:59.

Restrictions on the time of day dimension can be used to find out if most reservations are made during
working hours or after hours when the borrowers are not able to go to the library. Since the opening
hours vary between the different branches of the library anddays of the week there will not be a
column to distinguish opening hours from when the librariesare closed. Instead the working_hours
column can be used in conjunction with the work_day column ofthe date dimension to get an idea
about whether the users reserve more books when they are at work or in school or in their spare time.

5.1.5 Page Dimension

Some of the most interesting information in a log line is found in the query part of the request URL.
The information in this query can be used to find out what type of page was viewed and what the
function of the page was. There are 95 entries in the page dimension, and the columns of the table
are described in the following.

page_key: Surrogate primary key of the page dimension

page_function: As described in Section 3.3, the function of a page is derivedfrom the values of
the variables in the request URL. This attribute can have values such as “reserve book”, “full
view of a record” and “basic search on title”. There are 95 different values of the page_function
attribute.

page_function_type: The page_function_type attribute is a generalization of the
page_function attribute. The page functions can be groupedinto different types. For instance,
page functions like “basic search on title”, “multi-field search” and “browse author index” are
all different types of searches, so their page function types are “search”. Many of the page
functions are alike. The page function type can have one of 32possible values.

process: A process that the page is a part of. There are 10 different processes in Auboline. Exam-
ples are “reservation”, “search” and “login”.

Restrictions on the page dimension can be used to distinguish between which kinds of page functions
are used most frequently and it can be combined with the time or date dimension to find out if the use
of the page functions varies according to for instance period of day or week day.

The attributes of the page dimension form a hierarchy that enables users of the database to drill up
and down [Kimball and Ross, 2002a] to get a more general or more detailed analysis. The hierarchy
of the page dimension is depicted in Figure 5.3. In the figure,the T represents the whole dimension.
The right part of the figure shows examples of values for the different columns.

5.1 Page Event Schema 23

page_function_type

page_function

process

T

basic search

enter data for search

search

T

Figure 5.3: Page hierarchy.

5.1.6 Session Dimension

The session dimension contains information about the usersand about when and where the users start
and end their sessions. The attributes of the session dimension are described below.

session_key: Surrogate primary key of the session dimension table.

session_tag: The session tag created by Auboline for the session, as described in Section 3.3.1.
The session tag is a fifty character long string of letters anddigits.

ip_address: The ip address of the host accessing Auboline in this session.

browser: The browser of the host accessing Auboline in this session. Since different Internet
browsers behave in different ways when reading the same web site, this attribute can be used to
find out which browsers Auboline should be aimed at. 96.7 percent of the browsers that have
used Auboline during the time period that the source data spans over are different versions of
Microsoft Internet Explorer so this is the primary browser that AUB should adjust Auboline to.

referrer: The referrer is the referrer field of the log line of the first page event in the session. It
shows where the user came from before entering Auboline. Thereferrer field is empty if a
user is redirected from AUB’s web site, uses a browser bookmark or favorite or if the URL is
entered in the address field of the browser, so it is only visible when a user has clicked on a link
on another web site that does not link to http://a500.aub.auc.dk which is the URL of Auboline
that redirects to the Auboline start page. Only ten percent of all sessions in the data set have a
value in the referrer field.

first_request_url: The first URL requested in this session. This attribute showsthat 49 percent
of all sessions start on the page that a visitor is redirectedto when clicking on Auboline on
the general AUB web site or typing http://a500.aub.auc.dk directly in the address field of the
browser.

first_page_key: An outrigger to the primary key of the page dimension that allows combining
session information with information about the first page inthe session without joining both
tables with the big page_event fact table. An outrigger is a foreign key from a dimension table
to the primary key of another dimension table. By having outriggers between dimensions, it is
possible to join the dimensions without involving the largefact table and thereby it is possible
to improve performance on certain queries [Kimball and Ross, 2002b].

last_request_url: The last URL requested in this session. This attribute is notas comparable as
the first request URL. Whenever a session consists of more than one page event, the last request

24 Data Warehouse Schemas

URL will have a session tag. Therefore the value of this field is unique for every session with
more than one click.

last_page_key: An outrigger to the primary key of the page dimension that allows combining
session information with information about the last page inthe session without joining both
tables with the big page_event fact table.

start_date: The SQL date of the first request in this session. This attribute has the same value as
the sql_date attribute of the date dimension for the first page event in the session.

start_date_key: An outrigger to the primary key of the date dimension that allows combining
session information with information about the start date of the session without joining both
tables with the big page_event fact table.

start_time: The SQL time of day of the first request in this session. This attribute has the same
value as the sql_time attribute of the time_of_day dimension for the first page event in the
session.

start_time_key: An outrigger to the primary key of the time dimension that allows combining
session information with information about the start time of the session without joining both
tables with the big page_event fact table.

end_date: The SQL date of the last request in this session. This attribute has the same value as the
sql_date attribute of the date dimension for the last page event in the session. In most cases
this will be the same as start_date, but if the session startsbefore midnight and ends after, the
end_date can also be the date after the start_date.

end_date_key: An outrigger to the primary key of the date dimension that allows combining ses-
sion information with information about the end date of the session without joining both tables
with the big page_event fact table.

end_time: The SQL time of day of the last request in this session. This attribute has the same value
as the sql_time attribute of the time_of_day dimension for the last page event in the session.

end_time_key: An outrigger to the primary key of the time_of_day dimensionthat allows com-
bining session information with information about the end time of the session without joining
both tables with the big page_event fact table.

pages_in_session: The number of page requests in this session. Most sessions (75 percent) have
less than ten clicks but some sessions are very long and contain up to 222 pages. The average
number of pages in a session is 9.7.

book_descriptions_in_session: The number of book descriptions in this session. The average
number of book descriptions in a session is 1.4.

books_in_basket_in_session: The number of books that are put in the basket in this session.
The average number of books in the basket in a session is 0.05.

reservations_in_session: The number of reservations in this session. The average number of
reservations in a session is 0.3.

5.2 Search Schema

The main purpose of the AUBA Tool is to assist the AUB staff in finding success rates of the different
ways that users can find books with Auboline. At the moment theonly way to find a book with Aubo-
line is to make a search. Therefore a schema with a search facttable can make this kind of analysis
very easy. When the book recommendation service is integrated with Auboline it will be simple to
add a new “recommendation” search type to the search type dimension and use it to calculate the
success rate of the recommendation service. The search starschema is depicted in Figure 5.4.

5.2 Search Schema 25

date

sql_date
year
month
day
weekday
semester
day_of_semester
week_of_semester
weekend
exam
holiday
week_of_year
day_of_year
workday

date_key (PK)

search

date_key (FK)
time_of_day_key (FK)
session_key (FK)
search_type_key (FK)
audit_key (FK)
search_number
search_number_validity
number_of_book_descriptions
number_of_books_in_basket
number_of_reservations

audit

...
audit_key (PK)

search_type

type
search_type_key (PK)

field

sql_time
hour
minute
second
working_hours
period_of_day

time_of_day

time_of_day_key (PK)

session

session_tag
ip_address
browser

session_key (PK)

referrer

pages_in_session
end_time_key (FK)
end_time
end_date_key (FK)
end_date
start_time_key (FK)
start_time
start_date_key (FK)
start_date
last_page_key (FK)
last_request_url
first_page_key (FK)
first_request_url

book_descriptions_in_session
books_in_basket_in_session
reservations_in_session

Figure 5.4: Relational representation of the search star schema.

5.2.1 Fact Table

The search star schema has the date, time of day and session dimensions in common with the page
event star schema. Therefore it is possible to use these dimensions to slice and dice the data that deals
with searches [Pedersen and Jensen, 2001]. For instance it is possible to find out how the number of
reservations is distributed in the course of a semester, or which types of searches are most common
in the beginning versus the end of a semester. It would be interesting to see if there are more searches
on key words in the beginning of the semesters and then more precise searches, for instance on ISBN
number or title toward the ends of the semesters.

date_key: Foreign key to the date dimension describing the date of the search. This can be used to
join the search fact table with the date dimension to see if the most common types of searches
varies according to the different attributes of the date dimension.

time_key: Foreign key to the time dimension describing the time of the search. This can be used to
see for instance how the number of reservations vary during the course of a day.

session_key: Foreign key to the session dimension describing the sessionthat the search was made
in. This can be used to see for instance if the same types of searches are commonly used in the
same sessions or the users try different kinds of searches tofind the books that they are looking
for.

search_type_key: Foreign key to the search_type dimension describing the type of search made.
This can be used to make an analysis of what types of searches the users use and which book
attribute fields they most often search in.

26 Data Warehouse Schemas

search_number: The number of the search (degenerate dimension) either given by Auboline or
the post-processor. A degenerate dimension is neither a fact nor a foreign key to a dimension
table. It is a column that can be used to group measures. The search number can be used
to group together searches that originate from the same search. This way if a user chooses a
search from the search history, the facts can be added with the facts from when the search was
first made. The problem is that this can only be done if the valid search number, from when
the search was first made, is present. The search number is notunique so it has to be combined
with the session key to be sure that the searches with the samesearch number refer to the same
search.

search_number_validity: Describes whether the search number is valid (given by Auboline) or
temporary (given by the post-processor because the valid search number has not appeared in the
request URL). The search number only appears in the request URL after the user has clicked
on one of the search results, so the search number is not always known and therefore it is not
always possible to recognize a search that is chosen from thesearch history.

number_of_book_descriptions: The number of books found by way of this search where the
user has read the book description. This can be used to see howmany book descriptions the
users read after the different kinds of searches. If a user reads a book description it indicates
that the book looked relevant to the user.

number_of_books_in_basket: The number of books found by way of this search that the user
has put in the basket. If a user puts a book in his or her basket it is an indication that the user is
considering reserving the book later on in the session.

number_of_reservations: The number of books found by way of this search that the user re-
served. This is very central in measuring the success criteria of the different searches, since
a reservation indicates that a user has found a book that he orshe wants to borrow. Unfortu-
nately it is not possible to see if a book that has been reserved is the same book as one that was
previously put in the basket.

5.2.2 Search Type Dimension

The search_type dimension contains 80 entries. The search type dimension is a very important di-
mension in the data webhouse because it describes the kinds of searches that are made in Auboline.
Auboline has different types of searches and with some of thesearch types the user can choose one
or more fields to make the search on.

search_type_key: Surrogate primary key of the search type dimension table.

type: The type of search performed. The different types of searches in Auboline are “basic search”,
“multi-base search”, “multi-field search”, “browse index”and “CCL search”. CCL is short for
“Common Command Language”. With this function it is possible to use command language to
make a search on one or more fields at a time. An index is an alphabetical list of authors, titles,
UDK classification numbers or subjects. If a user makes a search in the author index on the
name “Andersen” she gets a list of ten author names, namely the name “Andersen” and the next
nine names in the alphabetical author index. From this page the user can go to the previous
ten or the next ten authors until he or she finds the right one. When the user uses the search
history function in Auboline it is not always possible to know which of the previous searches
in the session is used.2 Therefore the search type attribute will have the value “history” if the
user clicks on a search from the history function. Likewise the value in the type column will
be “basket” if the user clicks on a book in the basket, becausethe request URL contains no
indication of which of the previously saved books is clickedon.

field: The field that was used in the search. When a borrower wants to make a search, she can
choose which field, for instance “title” or “subject”, to search in, from a drop down box. The

2When a user clicks on a search in the search history, the search number appears in the request URL, but this number can
not always be recognized from a previous search because the search number does not appear in the request URL when the
search is made but only later, if the search results are used,i.e. a book description is read.

5.2 Search Schema 27

field column can also have the value “no value” if the user madea search without specifying a
particular field or “all fields” if the user made a multi-field search the user has chosen to search
in all fields.

type_with_field: This attribute contains a combination of the two attributesabove. For instance
if the type is “multi-base search”, and the field is “author”,then this attribute has the value
“multi-base search on author”.

The attributes of the search type dimension form a hierarchyas illustrated in Figure 5.5. The type
and field attributes can be used separately or combined.

search
basic

on author field
basic search

T

author

T

field author

type_with_field

Figure 5.5: Search type hierarchy. To the left is an example of possible values of the
attributes.

CHAPTER 6

Post-Processor Implementation

The post-processor is the main part of the implementation ofthe AUBA tool. It handles the extract-
transformation-load (ETL) processes that are necessary totransfer the information from the log files
to the database. This chapter describes how the post-processor is implemented and how it handles the
ETL processes, especially the transformation part where page functions, sessions and searches are
recognized. At the end of the chapter the performance of the post-processor is discussed.

The post-processor processes one log line at a time. The following is a summary of the tasks of the
post-processor. The tasks will be explained in the next sections.

• Split each log line up in the attributes described in Section 3.3 and convert them to the appro-
priate formats as described in Chapter 5

• Ignore image and style-sheet requests

• Ignore requests from search bots and web crawlers

• Ignore requests to administrative systems

• Transfer the information from all recognized log lines to alog line table with appropriate
columns in the database

• Find the keys of the appropriate rows in the dimension tables to describe the page event of the
particular log line

• Find the keys of the appropriate rows in the dimension tables to describe the search if the
request in the log line is a search

• Insert a new entry in the page_event table, and in the searchtable if the log line describes a
search, with the keys found

• Update the information in the record in the session table that the log line belongs to or insert a
new session record if necessary

• Update the measures of the search fact table if needed

All the processes and the database tables that are involved in the transformation of information from
the source data to the final dimensional database are also referred to as the data staging area in data
warehousing. The data presentation area contains the final tables of the dimensional database. The
post-processor has two main functions as described above. The first one, which takes care of log
line recognition and transformation to the log line table inthe database, is described in the following
section. The process of transforming the data from the log lines to the tables of the dimensional
database is described in Section 6.2. The two processes are combined in the implementation, because
it is faster to finish processing of each log line while it is inmain memory instead of saving all log
lines in the log line table and then starting over by scanningthis table to find dimension keys, etc.

6.1 Log File Recognition and Transformation

When the post-processor is started, it makes a chronological scan through all the access log files in
the directory, where these files are stored. The post-processor reads each of these files one line at
a time. For each line it calls the constructor of the LogLine java class (Section E.6) to construct a
LogLine object with the information in the log line string. If the constructor recognizes the string as

29

30 Post-Processor Implementation

a valid log line, it returns a LogLine object. This LogLine object is then used to insert a row in the
log_line table in the database using the insertLogLine method of theDatabase class in Section E.2.
The log lines are not inserted in the actual database table right away, because this would cause too
many writes to the database, which should be avoided for the sake of the performance of the log line
recognition process. Instead the log lines are written to a file, and the PostgreSQL copy command is
used to move the data from the file to the log line table in the database. This is done each time the
end of a log file is reached before the post-processor continues with the next file.

Some of the information in the log lines is adjusted before itis saved in the database. For instance,
the date is converted to an SQL date which makes it easier to sort by the column in the database. The
data definition of the log_line table can be found in Section A.2.

6.2 Transformation to Dimensional Schema

The second function of the post-processor is to transform each log line so it can be loaded into the
dimensional database. This process will be referred to as “dimensionalizing the log lines” throughout
the rest of the report. Each log line corresponds to a page event. Therefore the process of transferring
the information from each log line to the tables of the page_event star schema basically means cre-
ating a new entry in the page_event fact table with the information from the log line. In order to do
this, however, it is necessary to find out which records of thedimension tables the foreign keys in the
fact table should refer to. This is explained in the following sections.

6.2.1 Time and Date

The time and date dimension tables are preloaded with all theinformation that is needed. There is
only 24 hours in a day, so the time dimension will not have morerows added later. But when the
AUBA tool is to be used for new data with dates that are later than the preloaded dates, new rows
have to be added to the date dimension table before the new data is loaded into the database. This
has to be done manually, because the system is unable to predict all information needed to add more
dates. For instance it cannot predict all the school vacations.

The primary key of the time dimension is calculated to limit input/output between the post-processor
and the database and increase performance. The key of the date dimension could also be calculated,
but instead the post-processor checks if the date is the sameas the date of the preceding log line, and
it only fetches the date key from the database if the dates arenot the same. Since the log lines are
processed in chronological order, the date will be the same as the previous except for at most two
times in each log file where the date has changed between the two log lines.

6.2.2 Page

The page dimension has also been preloaded into the databasewith all the possible page functions,
page function types and processes. For each page event, the values of these variables are decided in
the setVariables() method of thePage class (Section E.7). It uses the variables in the query part of
the request URL as described in Section 3.3.1. After finding the values of the three columns of the
page dimension, the post-processor attempts to find the pagekey for the row of the page dimension
that has the same values for the three variables. Again the input/output to and from the database
has been limited. The contents of the page dimension is loaded into a vector at the beginning of the
dimensionalize process, and this vector is scanned to find the appropriate page key for each page
event.

6.2.3 Session

The session dimension table is the only dimension that is notpreloaded into the database. The reason
for this is that its content is not as predictable as the otherdimension tables. The content of the session
table is as dynamic as the content of the page event table since each new page event either changes a
session or creates a new session. The data is loaded into the session table in parallel with the loading

6.2 Transformation to Dimensional Schema 31

of the log line and page event tables to avoid processing eachlog line more than once.

The sessions that are active at a point in time in the post-processing process are the sessions where
the end time is less than twenty minutes before the time of thelog line that is being processed at that
moment. All active sessions are stored in a vector during thepost-processing. For each log line the
post-processor needs to check the active sessions vector tofind out if the new page event belongs
to a session that is already in progress. If a matching session is found, the session is updated with
the information from the log line and the key of this session is returned. If no matching session is
found, the post-processor must create a new session. The active sessions are stored in a vector to
avoid multiple access to the database, and whenever an inactive session is found in the vector, it is
written to a file. The file containing inactive sessions is copied to the database using the PostgreSQL
copy function at the end of the ETL process. The process is illustrated in the following algorithm.
The checkIfLogLineMatchesSession() method invoked in this algorithm can be found in Algorithm
2

Algorithm 1 Scanning the active sessions vector for matching session
ADDPAGEEVENTTOACTIVESESSIONSVECTOR()

sessionKey -1
for all active sessions in vector until match is founddo

if session is inactivethen
write session to file
remove session from vector

else
if checkIfLogLineMatchesSession(currentSession, logLine) then

update session with log line information
sessionKey currentSessionKey

end if
end if

end for
if sessionKey = -1then

create new session
sessionKey new session key

end if
return sessionKey

The advantages of using a vector to store active sessions instead of making an insert or update to the
database for every log line are clear. But other data structures, such as a hash table could also have
been used to store active sessions in main memory. A vector issimple to use while still preserving
the iteration of the elements. It is very useful to keep the sessions organized by when they were first
added to the vector. When a new page event is going to be added to a session, the activeSessions
vector is scanned to find a matching session. Because the sessions are organized by start time, the
sessions that started before the session matching the new page event, will be passed in the process
of locating the matching session. If one or more of the passedsessions ended more than 20 minutes
before the time of the new page event, it is not necessary to find out if the page event matches these
sessions, because they are no longer active. Therefore these inactive sessions are written to the copy
file and deleted from the activeSessions vector. The sessions that are inactive have a high probability
of having an earlier start time than the session matching thenew page event, and therefore it is not
necessary to search beyond the session that matches the new page event. The goal of this process is
to delete expired sessions from the vector as early as possible to make the vector as small as possible
without making extra scans through the vector. A disadvantage of using a vector for storing active
sessions is that it is slower to use compared to for instance ahash table, because it is necessary to
scan the vector from the beginning for every session that needs to be found. A hash table enables
faster access to the individual elements if there is a key to search for. When looking for a session it
is sometimes the session tag, sometimes the IP address and browser information and sometimes the
last request URL field that needs to be compared so a hash tableis not a suitable solution for storing
the active sessions.

At the end of the dimensionalization process there are most likely still sessions that are active. These

32 Post-Processor Implementation

should not be discarded, but they should not be added to the dimensional database either, because
they are unfinished and could be changed at a later time when more page events are added. Therefore
they are written to a copy file and copied to an active session table in the database at the end of the
dimensionalize process. When a new dimensionalize processstarts, the active sessions from this table
are loaded into the activeSessions vector again so new page events can be added to these sessions if
they match.

The process of finding out if a page event matches an active session or a new session should be created
from the page event is aided by the fact that Auboline is session-based. Auboline places a session
tag in the request URL to be able to differentiate between different users that are using the system
at the same time. When a user enters Auboline from the generalAUB web site, he or she does not
have a session tag. Only a third of all sessions have a sessiontag on the first page. This could, for
instance, be because the user has previously saved a link to an Auboline page in the browser favorites.
At the first click in Auboline, the user gets a session tag which she keeps for the rest of the session.
If there is more than 20 minutes between two clicks, the system automatically logs out and the user
gets a new session tag if he/she starts to use the system again. This means that the Auboline sessions
conforms to our perception of a session as an uninterrupted series of clicks by the same user, where
an interruption is a pause of more than 20 minutes between twoclicks.

As mentioned earlier, the post-processor attempts to find a matching session for each page event.
The source code of this process can be seen in thegetSessionKey() method of theDatabase class in
Section E.2 along with thematches() method of theSession class in Section E.11. The pseudo code
can be found in Algorithm 2.

Algorithm 2 Finding a matching session for a new log line
CHECKIFLOGL INEMATCHESSESSION(CURRENTSESSION, LOGL INE)

if currentSession has session tagthen
if currentSessionTag = logLineSessionTagthen

return true
else

return false
end if

else ifcurrentSessionIP = logLineIP and currentSessionBrowser =logLineBrowser and currentSes-
sionLastRequestURL = logLineReferrerthen

return true
else

return false
end if

The session tag that Auboline has placed in the request URL after the first click can be used to find
the session that a page event belongs to. The first two pages ina session, however, need to be handled
differently. If the request URL of a log line does not have a session tag, it is the first page in a session.
Therefore a new session should be created. So far the new session will only contain this page. If
the post-processor encounters a log line with a session tag in the request URL but no session tag in
the referrer field, the page is the second page of a session. Tofind the session that this page belongs
to, it is necessary to search the active sessions vector to find a session with the same IP address and
browser as the new page and where the request_url column matches the referrer of the new page. If a
matching session is not found in this way, this is an indication of a new session that has a session tag
on the first page (saved by the user in favorites of the browser). In this case the post-processor creates
a new session with this page as the only one so far. This new session will have the same session tag
as a previous session, but has a unique session key.

When looking for a matching session for a page with a session tag in the request URL but no session
tag in the referrer, there will be a certain insecurity aboutthe result. The session tag is the only certain
method of matching a page event with a session, because more than one user can have the same IP
address and the same browser at the same time. If there are twoconcurrent sessions with the same
IP address and browser there is a risk of swapping the first pages of these two sessions if they start
on the same page. The chance of two sessions starting on the same page is great, because the basic

6.2 Transformation to Dimensional Schema 33

search page, which is the page that a user comes to first if he/she enters Auboline from the general
AUB web site, is the most common start page. If the first pages of two sessions are swapped this
will not affect the result of the analyses very much. The IP address, browser and request URL of
the two pages that are swapped are the same, so the only thingsthat are different are the time and
the referrer. The time will be at most 20 minutes wrong since the post-processor only finds sessions
that ended within 20 minutes before the time of the new page event, and it will not affect the average
length of sessions since the sum of the length of the two affected sessions will stay the same. The last
information that can be affected if the start pages of two sessions are swapped, is the referrer field.
Since the two swapped pages are first in the sessions, the referrer field only has a value in 9 percent
of all cases, so this will not affect any analyses much either.

6.2.4 Search Type

The data of the search type dimension table is preloaded intothe database and when dimensional-
ization starts, it is loaded into a vector to avoid unnecessary communication with the database. A
SearchType object is created by the constructor of theSearchType class (Section E.10) if a log line
describes a search. The search type key is collected from thevector as described for the page key to
improve performance.

6.2.5 Search

In order to populate the search fact table, the post-processor needs to add a new entry whenever it
encounters a page event that is a search. Furthermore, the facts of the appropriate row in the search
fact table should be increased when a user views a book description, puts a book in the basket or
reserves a book. This process is illustrated in Algorithm 3.

Algorithm 3 Populating the search fact table and incrementing the facts
for all page eventsdo

if function type = searchthen
find search type key
add search to search fact table with search type key and keys from page_event fact

else if function type = book descriptionthen
increment number_of_book_descriptions measure of current search by 1

else if function type = book in basketthen
increment number_of_books_in_basket measure of current search by the number of books
chosen to put in basket

else if function type = reservationthen
increment number_of_reservations measure of current search by 1

end if
end for

Active searches are kept in a vector in the same way as active sessions, but they do not necessarily
become inactive after twenty minutes. A search becomes inactive when the session that it belongs to
becomes inactive or when a new search is added to the session.Therefore an active search is written
to the search copy file and removed from the active search vector when one of these events occur.

Each search in Auboline gets a search number, but the search number is not always present in the
request URL. Therefore a temporary search number sometimesneeds to be added to a search in order
to recognize it from the session that it belongs to during post-processing. The search number usually
shows in the request URL when the user clicks on a search result, so in this case the search number
of the search and the session needs to be updated to the valid search number. The search number
degenerate dimension of the search fact table can be used to group together searches with the same
valid search number so results of searches from history can be combined with results of the original
search.

34 Post-Processor Implementation

6.3 Data Staging Area

The tables that are used to keep active sessions and searchesin the data staging area of the AUBA
system are like the tables in the data presentation area, butsome of them have extra columns to help
the post-processing of the data from the log lines continue.The session table in the data staging area
has two additional columns. These are used to manage the searches as the log lines are processed by
the post-processor. Since the request URL of the log line does not always reveal the search number
that the actions of the user are related to, it is vital to keeptrack of the last search of each session
during the post-processing in order to know which search to add reservations, etc., to. The value of
this last search number attribute changes during the post-processing of a session whenever a new log
line indicates that a new search has been made. The search_number_validity column has the value
“valid” if the search number in the last_search_number column is a true search number created by
Auboline and the value “temporary” if the search number is created by the post-processor.

6.4 ETL Performance

The performance of the ETL process has been measured on a 850 MHz AMD Duron with 384 Mb
RAM running Debian Linux. On this machine, the ETL process takes three and a half hours to read
through the 391 log files with a total of 17.7 million log linesand load approximately 3,9 million valid
log lines into the log line table of the database along with 3,9 million page events, 400,000 sessions
and 826,000 searches. This is equivalent to 325 log line eachsecond or an average of 32 seconds
per log file. The part of the ETL processes that takes most of the time is the actual processing of the
log lines where the line is recognized and the dimension keysare found. After this, the process that
copies the data to the database takes the longest time. The actual execution time of the ETL processes
that would be executed each night to transform the data from the last 24 hours would probably take
around the same amount of time depending on the available resources on the machine. Half a minute
each night is very acceptable, especially because the load on the machine is very low at the time that
the processes will be running.

The following chapter discusses how audit control and quality assurance has been integrated in the
post-processor. The quality assurance parts of the ETL process are not included in the performance
estimations discussed in this section.

CHAPTER 7

Data Quality Assurance

In defining the ETL processes it is important to make sure thatthe data is extracted, transformed and
loaded correctly. There are various methods of data qualityassurance that help ensure this. These
will be discussed in this chapter.

It is important to make sure that every row in the log file is treated correctly and that the database
always contains correct information. The data quality assurance checks can be divided into three
main categories [Kimball and Ross, 2002b].

• Audit control: the database must contain as many records asare expected based on the input

• Correctness of data: the ETL process should make sure that the data in the database reflects the
true behavior of the users in Auboline

• Error handling: errors in the source code of the AUBA tool and outside errors such as system
crashes should be caught and handled to avoid flawed data in the database.

In the following sections these three categories will be discussed along with what has been done to
assure data quality in the AUBA tool.

7.1 Audit Control

The purpose of audit control is to make sure that the data flowsthrough the different stages of the
ETL process as expected. For instance, if the program is given a log file with 10,000 log lines, the
program is expected to process 10,000 log lines. If 8,000 of the processed log lines are invalid these
should be discarded and 2,000 new records should appear in the database. If these numbers do not
match, something in the ETL process is not as expected. In this case error handling should make sure
that the database is modified back to the correct state it was in before the ETL process started. Error
handling may also restart the process. This is elaborated inSection 7.3.

Audit control runs in parallel with the ETL processes in the post-processor. This way, mismatches
between the audit numbers are caught as early as possible andany updates to the database can be
rolled back. The ETL process is stopped if an audit number mismatch occurs, because it will not be
possible to end up in a correct database state if some of the audit numbers mismatch in the process.
Tables 7.1 through 7.4 list the different audit numbers thatare collected and matched through the
ETL process. The audit number column contains a descriptionof each audit number, while the check
column describes the check that is made when the particular audit number becomes available. The
numbers in the check column refer to the leftmost numbers of the table rows. These numbers are
continuous among the tables because the audit numbers are sometimes matched with numbers from
other tables.

Audit number Check

1 Lines in the log file
2 Total log lines processed 2 = 1
3 Valid log lines processed
4 Invalid log lines processed 3 + 4 = 2
5 Lines in log line copy file 5 = 3
6 New log line records in database6 = 5

Table 7.1: Log line audit numbers and checks

35

36 Data Quality Assurance

The collection of log lines can be followed through the ETL process to make sure that everything
adds up the way it should at each point in the process. The numbers that can be compared during
the process are listed in table 7.1. The number of log lines processed (2) should be the same at the
number of lines in the log file (1). This number can be divided into valid (3) and invalid (4) log lines.
The valid log lines is the interesting of these numbers. It should match the number of lines in the log
line copy file (5), which should then match the number of new log line records in the database (6).
The number of new log line records in the database is found by counting the number of records in the
log line table that refer to the same filename as the current audit record. This can take minutes when
the log line table is big, so it can be omitted if performance is more important. All updates to the
database, except for the audit table, are collected in a single transaction so if something goes wrong,
all the changes to the database will be rolled back.

Audit number Check

7 Active page events before ETL
8 New page events processed 8 = 3
9 Active page events processed
10 Lines in page event copy file 7 + 8 = 9 + 10
11 Lines in active page event copy file9 = 11
12 New page event records 10 = 12
13 New active page event records 11 = 13

Table 7.2: Page event audit numbers and checks

In the same way as for the log lines, it is possible to check if the number of page events adds up
through the ETL process. The checks, listed in Table 7.2, area bit more complex than for the log
lines because the set of page events that are handled in the ETL process is split up into active and
inactive page events. Active page events are the ones that belong to an active session and therefore
cannot be inserted into the page event table before the session has been completed and inserted into
the session table.

Because each log line corresponds to a page event, the numberof new page events processed should
be equal to the number of valid log lines processed. This number is not the same as the number of
lines in the copy file as it was for the log lines, because existing active page events and the new page
events processed are combined to the new set of page events that is again divided into active page
events and finished page events. Therefore the sum of the number of active page events before (7)
and the new page events processed (8) should equal the sum of the number of active page events
processed (9) and the number of lines in the page event copy file (10). The number of lines in the
active page event copy file (11) should be equal to the number of active page events processed (9). As
for the log lines, the number of new page event records (12) and new active page event records (13)
should be equal to the number of lines in the page event copy file (10) and the active page event copy
file (11), respectively. The number of new page event recordscan be found by counting the number
of page event records that refer to the current audit key.

Audit number Check

14 Active searches before ETL
15 New searches processed
16 Active searches processed
17 Lines in search copy file 14 + 15 = 16 + 17
18 Lines in active search copy file 16 = 18
19 New search records 17 = 19
20 New active search records 18 = 20

Table 7.3: Search audit numbers and checks

7.2 Correctness of Data 37

The audit checks for the search fact table are listed in Table7.3. Since the search table is a fact table
as well as the page event table, and they have similar characteristics, the audit checks for the two
dimensions are also the same. The only difference is that thenumber of new searches processed can
not be matched with the number of valid log lines processed, as was possible for the number of new
page events processed.

Audit number Check

21 Active sessions before ETL
22 New sessions processed
23 Active sessions processed
24 Lines in session copy file 21 + 22 = 23 + 24
25 Lines in active session copy file 23 = 25
26 New session records 24 = 26
27 New active session records 25 = 27

Table 7.4: Session audit numbers and checks

The audit checks for the session table listed in Table 7.4 arethe same as the ones for the search table.
But since the session table does not reference the audit table it is not possible to count the number of
new sessions in the same way as the numbers of new page events and searches are counted. Instead,
the counting is done by comparing the number of records in thesession table before and after the
load. The number of records before the load can be found by looking at the number of records after
the previous load in the audit table. The number of records after the load is found by counting the
records in the session dimension.

7.2 Correctness of Data

The process described above ensures that the right amount ofdata is transfered to the database in the
ETL process. This is a good way to find errors that occur duringthis process. But even if all the
numbers match, the audit control cannot guarantee that the new content of the database is correct.
This is very important as well so the results of the analyses made with the program can be trusted.
One way to test if the database contains correct data after ithas been processed by the post-processor
is to check if the output is as expected when the post-processor is given a small familiar data set. In
addition to this method, [Kimball and Ross, 2002b] lists fivedifferent ways of assuring data quality.
One of these is audit control, which has already been discussed, and the remaining four are listed
below with the manual data processing method just mentioned.

• Manual data processing

• Referential integrity

• Cross-footing

• Manual examination

• Process validation

These five methods of assuring data quality are discussed in the following sections.

7.2.1 Manual Data Processing

It is not possible to go through all the log files manually and make sure that the content of the database
is exactly as expected. However, if a part of the log files is checked up against the data in the database,
there is a good chance of finding possible errors in the program. If there is an error in the program,
chances are that this error will lead to several inconsistencies between the log files and the content

38 Data Quality Assurance

of the database. Therefore there is a good chance of finding such an error by selecting random log
file passages and testing whether the information in these passages are represented in the database
exactly as expected.

A possible test is to examine a small file and decide what the output of the post-processor should be,
if it were given this file. After the expected output has been defined, the post-processor should be run
on the file and the output should be like expected.

Another way to test if the content of the database reflects thereality that it represents is to use Aubo-
line to make a session where all clicks are known. The progress of the session and the content of the
pages in it should be recorded. When the log file for the particular day is available it can be processed
by the post-processor and then it is possible to examine if the database contains a session that reflects
the reality of the test session.

These kinds of tests should primarily be performed before the AUBA tool is integrated at AUB, but
if changes are made to the AUBA tool or to Auboline it would be agood idea to perform these kinds
of tests again to make sure that the changes do not cause the data in the database to be incorrect.

7.2.2 Referential Integrity

As mentioned in Section 7.1, audit control assures that the database contains the right number of
rows in the different tables. When this is assured, it is alsoimportant to make sure that everything
matches up in the database. Referential integrity can be ensured by placing foreign key constraints
between the fact tables and the dimensions in the data warehouse. This means, for instance, that it is
not possible to insert a record in the page_event fact table that refers to a log line that does not exist
in the log_line table or a session that does not exist in the session dimension. Placing foreign key
constraints on the tables slows down insertion into the referring tables and deletion from or updates to
the referred tables, so it is recommended to drop the constraints before insertion of large amounts of
data and place them on the tables again after the insertion. One recommendation is that foreign key
constraints should be dropped if the insert affects more than 25 % of the table [Corey et al., 2001].
Therefore, the foreign keys are dropped for the initial loadfor the AUBA tool where approximately
one year of log file data is loaded into the database, but they will be kept for incremental loads because
they only affect a very small part of the data in the database.

7.2.3 Cross-Footing

With cross-footing, the data warehouse is queried to check if the data has certain important character-
istics. For instance, the pages_in_session attribute of the session dimension must match the number
of records in the page_event fact table that have the same session key as the session. This cannot be
checked with a table constraint on the session dimension, because a session is always inserted into
the database before the page events that belong to the session, and therefore there are no page_event
records with the session key in question when the session is inserted. The following view and query
selects the session key, number of pages in session and the number of page events belonging to the
particular session for all such combinations where the two numbers are not equal.

CREATE VIEW page_count AS
SELECT session_key, COUNT(*) AS page_count
FROM page_event
GROUP BY session_key;

SELECT session.session_key, page_count.page_count, session.pages_in_session
FROM page_count, session
WHERE session.session_key = page_count.session_key AND

session.pages_in_session <> page_count.page_count

The result set of the query contains all sessions where the number of pages in the session does not
match the number of page events that reference the session key. Therefore, the result set should be
empty if everything is in order. When running the query on thedata from the initial load in the data

7.3 Error handling 39

warehouse, the result set is empty, as it should be, and the test is a success. It takes six minutes to
execute the query on the data in the initial load so it should not be executed after each load. Rather,
it could be part of a test set that is executed at a weekly or monthly basis to check if everything still
matches up. Other similar tests could also be executed within this test set.

7.2.4 Manual Examination

If unexpected numbers occur in the database it could be a signof an error in the AUBA tool or in
Auboline. Therefore it is a good idea to examine the databasefor such numbers. For instance if
there is a session with 2000 clicks or if every search made on aparticular day are ’basic searches’.
When such an out of range number is discovered, the person responsible for the AUBA tool should
investigate the cause to find out if an error has caused it or ifthere is another explanation. For instance,
an extremely long session can be caused by a web crawler that is unknown to the AUBA tool. If such
a web crawler is discovered, all log lines created by this webcrawler should be discarded from the
database, and the web crawler should be added to the list of known web crawlers so it will not affect
the analysis results in the future.

This kind of test should be performed at a regular basis. It isimportant that the person performing
the tests are familiar with what is normal and what is abnormal data in the database. This kind of test
has been used during implementation and has resulted in for instance discovery of new search bots
that were not recognized by the post-processor.

7.2.5 Process Validation

Another of the data quality assurance methods that [Kimballand Ross, 2002b] recommends is pro-
cess validation. It would be a good idea to sit down with somebody who has great knowledge about
Auboline and its underlying implementation. Preferably a process validation team would include
someone who has extensive knowledge about the values and semantics of the variables in the URLs
and someone who knows how Auboline is used at AUB. Unfortunately, it has not been possible to
get information about the underlying implementation of Auboline and the variables in the URLs, and
the underlying system is not developed by AUB, it has not beenattempted to contact the people who
have implemented it. If it had been possible to put together aprocess validation team, it would have
been used at different stages of the implementation process. First, before anything was implemented
to translate the URLs into the information that is needed forthe data warehouse, then at different
milestones in the implementation process, and finally to validate the ETL processes in the testing
phase.

7.3 Error handling

When an error has occurred it usually means that the content of the database is not as it should be.
Such a state could be caused by an error in the AUBA tool, a power outage during the ETL process,
or other problems. These kinds of problems should be taken care of by the error handling part of the
AUBA tool. Part of the responsibility of error handling is tomake sure that the database is returned to
a state where the content is valid. This can be done by rollingback the changes made to the database
during the failed ETL process. Errors should be handled automatically whenever possible so human
intervention is rarely necessary. For instance, in the event of a power outage the ETL process that
was running can be rolled back and started over by the AUBA Tool.

The Audit dimension is a very useful tool for error handling,where information about what happened
during the previous ETL processes can be found. There are twopossible scenarios that can cause error
and invoke the error handling process. Either the ETL process has been interrupted by a mismatch
between some of the audit numbers or there is another reason,such as a power outage, that has caused
the ETL process to stop before it has completed. The handlingof these two types of error is described
in the following.

40 Data Quality Assurance

7.3.1 Process Interrupted by Audit Number Mismatch

Audit number mismatches can be caused by either errors in thesource code of the AUBA tool or
by system errors, such as when the disk is full. When such an error occurs, any changes made to
the database, except for the audit table, are rolled back. Asdescribed in Section 7.1, audit number
mismatches can occur throughout the entire ETL process. Depending on when the error has occurred,
it may be beneficial to attempt to recover the process at a point when the audit numbers matched, or
maybe the process should rather be started over from scratch. Since the first parts of processing of a
log file are very fast, there will not be much gain in attempting to recover the process at an early point.
Quality assurance is one of the things that takes a lot of the loading time - especially the counting of
the number of new lines in the database tables takes much time. Since this is the final audit check and
the transaction where the changes to the database are made has to be rolled back, if there is an error
in this check, the new records have to be recounted at recovery. Therefore the process is restarted
from scratch each time there is an audit number mismatch. If an audit number mismatch occurs in
the restarted process as well, the process should not be restarted again and again. After two attempts,
the abandoned and the AUBA tool administrator should be notified of the mismatch, so the problem
can be handled manually. For instance, if the audit mismatchis caused by a lack of storage space,
the administrator will have to make more storage space available, before the ETL process should be
restarted.

If the second attempt at processing the same log file gives exactly the same audit number mismatch,
the problem could be caused by an error in the source code of the AUBA tool, that should be located
and corrected, before the process is restarted. The information about which audit numbers do not
match tells the administrator how far the process was when the error occurred, and thus can help the
administrator locate the error in the source code. New log files should not be loaded into the database
until the error has been corrected, but the AUBA tool can still be used for analysis of the data loaded
before the error, because the database will look as it did before the failed load. When the error has
been located, it is necessary to consider if it only has an effect on the log file in question of if it is
necessary to reload all previous data after the error has been corrected, because the error has caused
undetected errors in the data that are too important to the analyses to be ignored. In most cases this
would not be necessary, since the error has not been caught when processing the previous data.

7.3.2 Process Not Completed

In the event of a power outage or the like, the ETL process willbe disrupted without having the
opportunity of reporting the problem first. Therefore, it isimportant to have a process outside the
AUBA tool that can check up on the AUBA tool. This could be combined with a cron job that checks
for new log files and starts the incremental loads. If it notices that there is an audit record that has
not been completed, but no Java process is running, it may be because there has been a power outage
or because the program has ended unexpectedly. In this situation, error handling should restart the
process that was interrupted. Another good idea is to have a cron job that checks if a java process is
stalled. In the event of a stalled process, it should be killed and restarted if the changes to the database
have not been commited.

CHAPTER 8

User Interface

The AUBA tool must be easy to use. The AUB staff should not haveto take a database systems course
to get results with the AUBA tool. A graphical user interfacehas been implemented, so the users will
not have to know the underlying structure of the database or anything else about databases for that
matter. In the graphical user interface the users can choosewhich information they need from a list
of options, and this information will appear on the screen asa chart. The graphical user interface has
been implemented in J2EE and JSP and will be installed on one of the servers at AUB. This way the
users can access the tool from their own machines using a web browser instead of having to install a
program on their machines. The Servlet runs on the server, and the user interacts with it using HTTP
requests and responses, and the HTML generated by the Servlet is displayed in the user’s browser.

Figure 8.1: Screen shot of AUBA graphical user interface

There are three simple steps to go through to get an analysis result. First, the user selects the measure
that he wants information about, for instance number of clicks. Second, he needs to choose how the
information about the measure should be grouped, for instance according to date. The third step is to
select the specific attribute to use to group the measure by. This could be week of semester if the user
wants to see the distribution of clicks during the course of the semesters.

Figure 8.1 shows a screen shot of the simple user interface for the AUBA tool. In the first step, the
user chooses a measure from one of the seven possibilities inthe left frame. The two last steps take
place in the top right frame. The options in the second step depend on the measure that the user
chooses in step one. All measures can be analyzed by date and time of day. “Clicks” and “sessions”

41

42 User Interface

can further be analyzed by the different page attributes. Searches and success criteria, including
book descriptions, basket saves and reservations separately, can also be analyzed by search type and
session.

When the analysis parameters have been chosen, a query is generated based on these. This query is
sent to the database, and the chart showing the results is generated automatically from the result set
using Cewolf [Cewolf, 2004], which is an open source extension of JFreeChart [JFreeChart, 2004].

The following concrete example shows how a user would typically use the graphical interface to get
information with the AUBA tool. The prototype has a menu at the left where the user can choose
which measure to find information about. If the user chooses for instance “Antal klik”, he can get
information about the number of clicks in Auboline. When theuser has chosen a measure in the
menu, the second choice appears in the top right frame as can be seen in figure 8.2.

Figure 8.2: Selection of dimension.

Now the user has to choose if he wants to analyze the number of clicks with respect to date, time
of day, page or session characteristics. Choosing “Dato” inthe first drop down box makes a second
drop down box appear. If the user wants to see the distribution of clicks per week of semester, he
can choose “Uge i semester” in the second drop down box as illustrated in Figure 8.3. Clicking “Vis
resultat” after these choices will send a query to the database and return a chart of the result in the
bottom right frame (see figure 8.1).

Figure 8.3: Selection of attribute.

43

The graphical user interface is made as simple as possible tomake it easy to understand and use. The
predefined queries are all of the same type because this limits the number of options that the user has
and thereby simplifies the process of getting to a result. With knowledge of the tables and materialized
views in the data warehouse, the advanced users can enter anyquery if he chooses the manual query
option at the bottom of the left frame. The result of a user defined query is not guaranteed to have
the format that is required to show a chart of the result, so instead the result is shown in a table as
illustrated in Figure 8.4. The aesthetics of the graphical user interface has not been a priority. In a
possible commercial version of the AUBA tool this would haveto be improved.

Figure 8.4: Screen shot of the manual query part of the AUBA graphical user interface

CHAPTER 9

Query Performance

If the queries generated through the graphical interface access the base tables directly, the user will
have to wait several minutes in many situations before the result appears on the screen. This is due to
the amount of data in the database. If the users of the AUBA tool have to wait too long for the results
they will loose interest in using the tool. Therefore it is necessary to have interactive response times
for the queries that are generated by the graphical user interface. The two methods that are used to
improve query performance in the AUBA tool are summary tables and indexing. These methods are
discussed in the following.

9.1 Summary Tables

The results that are most often requested through the AUBA tool are either counts, sums or aver-
ages. These aggregate queries can be sped up considerably byusing summary tables. Summary
tables are materialized views where counts or sums are pre-calculated and therefore faster to access
[Harinarayan et al., 1996]. For instance, if a user requeststhe average number of clicks in Auboline
per week day, it is useful to have a summary table that contains the number of clicks per date. This
summary table can be used to calculate the average number of clicks per week day. For the data
set of the initial load this kind of query takes approximately one minute to join 3.9 million lines in
the page_event table with 393 lines in the date table and group the result by the week_day column.
It is necessary to access 86,000 disk pages to get the result.On the other hand, the summary table
contains only 393 lines. Each of these lines contain the total number of clicks for a particular date,
and grouping the summary table by the week_day column only takes 30 milliseconds, because it is
only necessary to access 32 disk pages.

The down-side of using summary tables is that they slow down the ETL process, because they need
to be updated when new information is loaded into the base tables. Having a lot of summary tables
also take up a lot of storage space. Therefore, all possible summary tables should not be created
to make sure that the queries run smoothly. It is a good idea tocreate a summary table when it
represents data that is queried often and when it takes up less storage space than 25 % of the base
table data that it represents or an existing materialized view that can be used to find the same result
[Corey et al., 2001].

9.1.1 Basis for Selection of Summary Tables

In order to choose which summary tables to include in the datawarehouse, it is important to look at
the types of queries that will be used to access the data. The queries generated by the graphical user
interface all deal with the measurements listed below.

• Number of clicks

• Number of searches

• Number of sessions

• Length of sessions

• Number of book descriptions read

• Number of books saved in basket

• Number of reservations

45

46 Query Performance

Because these measures are central in the graphical user interface, they are also central in the choice
of summary tables. But there are many possible summary tables that represent these measures in dif-
ferent ways, so it is necessary to find out which kinds of queries will be used in order to decide which
summary tables to include in the data warehouse. As mentioned, a summary table is a materialized
view of an aggregate query. Aggregate queries can be groupedby one or more of the dimension
attributes of the data warehouse. So the possible summary tables for the two star schemas in the data
warehouse are the aggregate queries grouped by all possiblecombinations of dimension attributes
for each star schema. Since there are 44 different attributes to group by in each star schema, there
are1; 76 � 1013 candidate summary tables for each star schema if all combinations of attributes are
taken into account (1 grouped by all 44 attributes, 44 grouped by 43 attributes, 946 grouped by 42
attributes, etc.). This is a total of3; 52 � 1013 possible summary tables for the whole data warehouse.
Of course, all of these candidate summary tables should not be materialized. It is necessary to find
a method of selecting which aggregate views to materialize in order to achieve acceptable query per-
formance while still keeping storage space and time to update the summary tables after new loads at
an acceptable level. Two questions need to be answered in order to make a good choice on which
summary tables to use.

1. Which queries must have good performance?

2. Which summary tables are dependent on each other, i.e. which summary tables are not as
important to use, because the same queries can be answered inacceptable time using other
summary tables?

To answer the first question, it is necessary to take a look at which queries can be executed through
the graphical user interface. There are two types of queries. The first type is the predefined queries
that are executed when a user picks measure, dimension and attribute and clicks to get the result in
a chart as described in Chapter 8. Since the users can only choose a single of a limited number of
attributes to group the result by, this type of query is an aggregate query grouped on a single attribute.
The second type of query can be any query. Since the users can enter the query text, there is no
pattern that can be predicted, but it is reasonable to assumethat each unique user defined query will
not be used as often as each predefined query. Therefore the predefined queries should be prioritized
when deciding which views to materialize.

The second question can be answered by looking at the result sets of the different queries and finding
out which result sets are subsets of other result sets. This can help to limit the number of summary
tables to use. For instance, if there is a summary table that contains the total number of reservations
per search type per date, this summary table can also be used to find the total number of reservations
per search type. This is because the result set of the latter query can be derived from that of the former.
Similarly, the total number of clicks during working hours can be derived from the total number of
clicks per hour, since it is simply the sum of the number of clicks where the hour is from 8 through
15. The knowledge of which candidate summary tables are dependent on each other is utilized in the
Greedy algorithm [Harinarayan et al., 1996]. This algorithm can be used to decide which views to
materialize as discussed in the following section.

9.1.2 The Greedy Algorithm

As explained, summary tables are very efficient for improving query performance. If every possible
summary table is materialized, query performance would be very good because every query would
just be a lookup in one of the summary tables. But the downsideto having materialized summary
tables is that they take up storage space and it takes time to update them when the base tables are
updated. Therefore it is not a good idea to materialize all possible summary tables. The best compro-
mise is to materialize enough summary tables to improve query performance to an acceptable level
and keeping storage space and ETL performance at an acceptable level as well.

The Greedy algorithm in Algorithm 4 can be used to decide which of all possible views are most
beneficial to materialize. The algorithm calculates the benefit of materializing each view. The benefit
of materializing a view is the difference between the numberof records that are necessary to access
before and after materialization of the view. In this calculation the dependencies between views are

9.1 Summary Tables 47

taken into account by adding the benefit of views that can be computed from other views. When
all benefits have been calculated, the view with the highest benefit is chosen for materialization.
After this, a new round is started where all benefits are recalculated. This is done because some
of the benefits may have changed because the views have received benefit from the prior choice
for materialization. The view with the highest benefit is again chosen for materialization. This is
continued until every view that has a benefit higher than zerohas been chosen for materialization.
The result is a list of views in the order in which they should be materialized. This list can be used
to materialize views in the specified order until an acceptable balance between query performance
and ETL performance has been reached. Materializing more views improves query performance but
slows down ETL, so the choice of how many views to materializewill have to be a compromise.

Algorithm 4 The Greedy Algorithm [Harinarayan et al., 1996]
GREEDY()

S {top view}
for all i = 1 to k do

select that view v not in S such that B(v,S) is maximized
S S union {v}

end for
resulting S is the greedy selection

It is necessary to calculate the number of records in the result set of each candidate summary table
in order to be able to calculate the benefits. As mentioned, the number of possible summary tables
is huge, so it is not possible to calculate the number of records in each possible summary table.
A possible solution to the problem is to estimate the number of records in the candidate summary
tables. This way the long time it takes to query the database to get the number of records in the
results of the candidate summary tables can be avoided. A method of estimating storage space of
different subsets of the set of possible summary tables is suggested in [Shukla et al., 1996]. The
paper also suggests limiting the set of candidate summary tables to have a maximum of one attribute
from each hierarchy in each summery table. This would decrease the maximum number of attributes
in a candidate summary table to 21, but there are still 44 different attributes, so the set of candidate
summary tables is still very large. This is because a big partof the date and session dimension
attributes cannot be organized in hierarchies.

Another method of solving the problem of limiting the time used to estimate the sizes of candidate
summary tables is to limit the number of candidate summary tables substantially by utilizing knowl-
edge about the data and how it will be used. It is known that most of the dimension tables are very
small. The search type and page dimensions each have less than 100 records and the date dimension
has less than 500 records. The dimension tables that are not as small have the potential of being
smaller because it is not likely that all of their attributeswill be used as group by attributes. The
time of day dimension has 86400 records, but it is not necessary to have summary tables where the
measures are grouped by second. Grouping by hour is sufficient because the time of day is the in-
teresting part - not the exact minute or second. Grouping thetime dimension by hour still preserves
information about period of day and working hours. This leaves only 24 aggregated records in the
time of day dimension. The session dimension is the largest dimension table. It has approximately
four hundred thousand records. In many ways, the session dimension is similar to a fact table. The
attributes pages_in_session, book_descriptions_in_session, books_in_basket_in_sessionand reserva-
tions_in_session are additive and are therefore like measures and the outriggers to the page, date and
time of day dimensions are like foreign keys from a fact tableto dimension tables. But the session
dimension also has a lot of dimension-like attributes such as browser and referrer. However, the out-
riggers and the measure-like attribute are the ones from thesession dimension that are of interest in
the GUI, so the session attributes will not be grouped with the attributes from the page event and
search fact tables. Therefore the simplest solution is to make three schemas when deciding which
combination of attributes to group by in the summary tables.The first schema is the page event star
schema, with the exception that the session table is removedand the group by attributes are the keys
from the page and date dimensions and the hour attribute fromthe time of day dimension. The search
schema looks like the page event schema, except that there isno page key, but a search type key in
stead. Since the session information has been removed from the two star schemas, there is a third

48 Query Performance

schema that contains all the session information that is of interest. It has four group by attributes -
start_date_key, hour from start_time, first_page_key and last_page_key.

In the following sections, these three parts of the data warehouse will be analyzed and the Greedy
algorithm will be used to decide which summary tables to include in the data warehouse.

Page Event Summary Tables

Each possible summary table is a combination of attributes from the dimensions of the page event star
schema. The session dimension is not considered at this point because it will be looked at separately.
To limit the enormous amount of combinations of attributes,only the most granular attribute that will
be used from each of the remaining three dimensions is considered. The most granular attributes of
both the page and the date dimension (page function and day, respectively) are of interest, so these
dimensions can be grouped by their keys. But the time of day dimension will be grouped by the hour
attribute, because minute and second information is not of interest. Figure 9.1 shows the views that
will be considered to materialize. The name of each view is anabbreviation of its group by attributes.
Thus, dpt is a view that is grouped by date_key, page_key and time_of_day.hour. The numbers in
parentheses below each view name is the number of records in the view. These numbers are used by
the Greedy algorithm to establish the benefit of materializing the different views.

dt pt

(95) (24)
p

dpt

dp

d t

none
(1)

(393)

(1720)(7716)

(214,746)

(23,510)

Figure 9.1: The combinations of page event attributes and the sizes of each of the ag-
gregated views.

Algorithm 4 is the Greedy algorithm. In each round, it calculates the benefit of materializing each
view as the difference between the number of records that were necessary to fetch to calculate the
view and its dependent views before and after materialization of the view. The result is a prioritized
list of all the views that would be beneficial to materialize.The root view of Figure 9.1 should
be materialized because all the views are dependent on it, and after that a number of views from
the prioritized list should be materialized. The Greedy algorithm has been implemented to find out
which views are most beneficial to materialize for the AUBA tool, and the source code can be found
in Appendix D. The Greedy algorithm does not consider frequencies of use of the different views,
so in its original form, it assumes that each view is used an equal number of times. Since it is
predicted that most queries will be single-attribute queries, this has been taken into consideration in
the implemented Greedy algorithm. The implemented Greedy algorithm assumes that each single-
attribute view is used ten times more often than the multi-attribute views. This is done by multiplying
the sub-benefit that relates to single-attribute views for each view by ten. For page event summary
tables, this customization of the Greedy algorithm changesthe benefits but the order in which the
views should be materialized is the same.

A method of choosing the right number of views to materializeis to materialize one view at a time
until the desired balance between query performance and storage space has been reached.

9.1 Summary Tables 49

Choice Group by attributes Benefit

1 page_key, time_of_day.hour4,473,546
2 date_key, time_of_day.hour 2,277,330
3 date_key, page_key 191,236
4 date_key 73,230
5 time_of_day.hour 16,960
6 page_key 16,250

Table 9.1: Greedy result for the page event schema without the session dimension

The order in which the page event views should be materialized and the benefit of each materialization
is listed in Table 9.1. The execution time has been tested with one single attribute query for each
attribute. When testing the execution time of different queries it is learned that single attribute group
by queries take up to five minutes to execute. This cost will beeven worse when more data is added
to the database, so it is reasonable to use summary tables. Because the dimensions are small, it is
possible to achieve good response time even though only a fewof the views are materialized. The
response time should be better than needed so it will still begood if there is much load on the machine
and it will not take up too much processor power from other processes on the machine. Therefore the
acceptable response time for each of the test queries is set to one second. The summary tables are
also fairly small due to the small dimensions and therefore query execution time is improved greatly
already at materializing of the top level view (dpt). The single value group by test queries now take up
to five seconds to execute. This is a great improvement, but itcan be even better. When materializing
the two first priorities on the list (pt and dt), query execution time drops to below 0.2 seconds for each
query in the test set. This is very satisfying, so no more views have to be materialized.

Search Summary Tables

The dependencies of the search attributes and the sizes of the views are shown in Figure 9.2. When
the customized Greedy algorithm is used on these values, theresulting materialization order is as
shown in Table 9.2. This order is not exactly the same as it would be if the Greedy algorithm had
not been customized. Before customization, the Greedy recommendation was to materialize all the
two-attribute views before the single-attribute views, but because the single-attribute views are used
more often, the benefit of materializing the view that is onlygrouped by date_key is now higher than
the ones where date_key is one of two group by attributes.

dt

d t

none
(1)

dst

ds

s

st

(53,530)

(6235) (7363) (435)

(20)(393) (24)

Figure 9.2: The combinations of search attributes and the sizes of each of these aggre-
gated views.

50 Query Performance

Choice Group by attributes Benefit

1 search_type_key, time_of_day.hour1,114,995
4 date_key 531,370
2 date_key, search_type_key 47,295
3 date_key, time_of_day_key 46,167
5 search_type_key 4150
6 time_of_day.hour 4110

Table 9.2: Greedy result for the search schema without the session dimension

The query performance for the search schema has been tested in the same way as the page event
schema. The search schema is very small so even when queryingthe base tables directly, the longest
execution time is only 32 seconds. In this case it is enough tomaterialize the top view, which brings
query execution time down below 0.6 seconds for each query inthe test set.

Session Summary Tables

The session dimension has four attributes that have been selected as interesting as group by attributes
for the summary tables. These are date_key, time_of_day.hour, first_page_key and last_page_key.
The lattice for the session part illustrated in Figure 9.3 isbigger than the two previous lattices, because
there is an extra attribute that gives more combinations. When inputting these views and sizes in the
Greedy algorithm it gives the result shown in Table 9.3. Again, the customization of the Greedy
algorithm has caused some changes in the order of the views onthe list. The smaller views have been
moved up on the list compared to where they were prior to customization.

dflt

dftdfl dlt flt

d f l t

none

dt fl ft ltdldf

(1)

(37,405) (35,004) (101,016) (6886)

(6215) (16,469) (7687) (1041) (760) (1427)

(393) (62) (81) (24)

(134,758)

Figure 9.3: The combinations of session attributes and the sizes of each of these aggre-
gated views.

The test set queries take up to two minutes to execute when querying the base tables directly. Ma-
terializing the top view (dflt) brings query execution down to a maximum of 13 seconds. After
materializing the two first priorities on the list (flt and df)as well, query execution time drops to
below 0.2 seconds for each query in the test set.

9.2 Indexing 51

Choice Group by attributes Benefit

1 first_page_key, last_page_key, time_of_day.hour4,347,648
2 date_key, first_page_key 1,420,683
3 date_key, first_page_key, time_of_day.hour 199,508
4 date_key, first_page_key, last_page_key 194,706
5 first_page_key, time_of_day.hour 121,936
6 last_page_key 68,050
7 date_key 58,220
8 date_key, last_page_key, time_of_day.hour 33,742
9 date_key, time_of_day.hour 27,317
10 date_key, last_page_key 20,936
11 time_of_day.hour 7,360
12 first_page_key 6,980
13 first_page_key, last_page_key 5,845
14 last_page_key, time_of_day.hour 5,459

Table 9.3: Greedy result for the session part of the schemas

Materializing summary tables for the AUBA tool has improvedquery execution time a great deal.
Only seven views have been chosen for materialization and storage space is not a problem, because
the summary tables are fairly small. The largest summary table is the dpt table for the page event
schema, which has 214,746 rows. The seven summary tables have a total of 425,571 rows which is
not much more than a tenth of the rows in the page event fact table. The only problem is the update
time of the summary tables. At the moment they are recalculated from scratch each time, and this
takes several minutes per view. The PL/SQL functions that handle this can be seen in Appendix C.
Optimally the materialized views should be updated incrementally. This is important in to be able to
update the materialized views regularly.

9.2 Indexing

Another way to improve query performance is to index the tables heavily. Indexing can help access
the tables faster, so to improve performance many of the columns that are constrained upon in queries
should be indexed. Indexes are good to use when only a small part of the records of a table is to
be accessed but might slow down query time if they are used to access a big part of a table. For
instance, if there is an index on the year column of the date dimension table. If the table is queried
to find records from 2003 it would not be an advantage to use theindex. This is because there are
only two different years in the data set. When the index is used to find all dates in 2003, the table will
be accessed randomly, and because more than half of the datesin the tables are from 2003, it would
be quicker to scan through the whole table. Therefore indexes should be chosen with care. Indexes
can also be used on more than one column at a time. For instance, it is possible to have an index
on the day and month columns together. Such an index can be used to access the day column or the
day and month columns together but does not improve performance on accessing the month column
alone because the index is sorted by day. Unfortunately, indexing slows down the loading of data into
the database, but this is acceptable compared to the advantages when querying the tables.

CHAPTER 10

User Behavior Survey

To find out if the result of the analyses made with the AUBA toolmatch how the users see their own
behavior in Auboline, a user survey has been carried out. A questionnaire has been constructed (see
Appendix F). 32 questionnaires have been answered by borrowers at the main department of AUB.
In this chapter, the answers given by the borrowers will be compared to the results of analysis made
with the AUBA tool.

It is expected that the same general patterns found with the AUBA tool will also be found in the user
analysis, but it cannot be expected to get exactly the same results. There are many reasons for this
[Kvale, 1994, Alvesson, 2003]. First, the 32 borrowers thatanswered the questionnaires represent
a very small part of the borrowers whose behavior is reflectedin the AUBA tool analysis. Second,
many of the answers come from borrowers that were studying physically at AUB on the day of the
survey and therefore may represent a more uniform use of Auboline than if all borrowers had been
asked. Third, there will always be a difference between how people behave and how they describe
their own behavior. Finally, some of the answers may be wrongbecause borrowers misinterpret the
questions or are not very familiar with the jargon used. Suspected misinterpretations of the questions
are discussed along with the answers in the following sections.

10.1 Frequency of Use and Entrance

In question 1 the borrowers were asked to estimate the frequency of their use. This question was
asked to get a picture of how often the borrowers use Auboline. The answers for this question are
depicted in the chart in Figure 10.1.

Figure 10.1: Answers for question 1: How often do you use Auboline?

The chart shows that none of the borrowers use Auboline everyday. Most of the borrowers use
Auboline more than once a month. This result cannot be compared to the AUBA results, since it is
not possible to recognize individual users and thereby decide how often they use Auboline.

53

54 User Behavior Survey

In question 2 the borrowers were asked how they most often enter Auboline. This is another thing that
the AUBA tool cannot give an exact answer for because of the automatic redirect from the Auboline
main page to the basic search form. Because of this redirect,it is only possible to establish the origin
of sessions that do not start on the start page of Auboline. The answers to question 2 in Figure 10.2
show that almost all users access Auboline through the AUB website. There are also a few users that
have Auboline in the favorites of their browser or use a search engine to find Auboline.

Figure 10.2: Answers for question 2: How do you enter Auboline?

10.2 Distribution of Use

In question 3 the borrowers were asked if they use Auboline mostly during working hours or in their
spare time. As the chart in Figure 10.3 illustrates, more than 80 percent of the users use Auboline
mainly during working hours and 20 percent use it more in their spare time. This is very close to
the average number of clicks in an hour outside working hours, which is 17 percent of the average
number of clicks during working hours. Actually, accordingto the AUBA results, 78.4 percent of all
clicks in Auboline occur during working hours.

Figure 10.3: Answers for question 3: What time of day do you use Auboline most?

Question 4 is about the distribution of use of Auboline during the week. This has been analyzed with
the AUBA tool as well. As illustrated in Figure 10.4, the analysis showed that Auboline is used most
in the beginning and middle of the week. On Thursdays and Fridays the use starts to decrease and it
is very low in the weekends.

10.2 Distribution of Use 55

Figure 10.4: Total weekly distribution of activity measured in page events per week
day.

When asking the users, the same general pattern formed. As illustrated in Figure 10.5 the users say
that they use Auboline most in the beginning of the weeks. Butthe chart of the user behavior shows
that their use drops steeply in the middle and end of the week as well as the weekend. The chart is
therefore different from that in Figure 10.4. There are two possible explanations for this, besides the
uncertainty that the borrowers do not remember exactly which days they use Auboline most. One
explanation is that the survey was conducted on a Tuesday andthat the borrowers that are at the
library on a Tuesday may often use the library and Auboline inthat part of the week, so if the survey
had been conducted on a Friday, the pattern might have been that the borrowers used Auboline most
toward the end of the weeks. A second explanation for the differences between the two results is the
way they have been measured. The AUBA result shows the numberof clicks on the different week
days and is therefore very precise. If it had been possible toask the borrowers to assign percentage
of use to each day of the week, the result would have been more comparable with the result from
the AUBA tool. Instead the question was simplified by not having as many options to assign values
to and by asking the borrowers to prioritize the choices instead of estimating the percentage of their
use on each week day. Therefore they were asked to rank the four possibilities “beginning of week”,
“middle of week”, “late in the week” and “weekend” accordingto which time of the week they used
Auboline most. There may be different interpretations of these values, such that some borrowers
interpret “beginning of week” as only Monday, while others may interpret it as Monday and Tuesday.

To be able to put the result of this question in a bar chart, theanswers were given points, so if a
borrower put a 1 for “weekend”, four points were given to the “weekend” answer. The second ranked
answer got three points, the third got two and the fourth got one. This way of counting points for
the four possible answers has many uncertainties, because it assumes that the use of Auboline drops
with the same amount between the answers with the different ranks. That is, if a user uses Auboline
80 percent in the middle of the week, 10 percent in the beginning, 7 percent at the end of the week
and 3 percent in weekends, the points will only show which time Auboline is used most. The points
are therefore only precise if the use is distributed with 40,30, 20 and 10 percent. The result might
have been closer to the AUBA result if the users were asked to give a percentage distribution of their
use, but this would also have been difficult to estimate. Another reason that the result shows so much
action in the beginning of the week is that some users have notranked the options but has checked
only one of the possibilities. For such an answer the checkedpossibility is given four points and the
other zero. “Beginning of week” is the answer that has most often been checked, and therefore it gets
a high score.

In Question 5 the borrowers were asked to estimate how much they use Auboline in the beginning,
middle and end of the semesters, respectively. The result isillustrated in Figure 10.6. This result
is very much like the result from the AUBA tool when the distribution of activity is measured by
week of semester. This is illustrated in Figure 10.7, and thesimilarity of the two results is even more
obvious when the activity in Auboline is grouped in three groups of ten weeks each for the beginning,

56 User Behavior Survey

Figure 10.5: Answers for question 4: What time of week do you use Auboline most?

middle and end of the semesters as illustrated in Figure 10.8.

Figure 10.6: Answers for question 5: How does your use of Auboline vary during the
semesters?

10.3 Purpose of Use

In Question 6 the borrowers were asked to check which of the central functions they use in Auboline.
The answers for this question are collected in Figure 10.9. The result is difficult to compare with
results from the AUBA tool because the users were not asked how often they use the different func-
tions. And since it is not possible to recognize borrowers inAuboline there is no method of finding
out how many users use each function on a regular basis. Instead it is possible to use the AUBA tool
to find out how often each page function is used. The result of this analysis can be seen in Figure
10.10.

10.4 Types of Searches

The borrowers were asked to check the search types that they use in Question 7. As Figure 10.11
illustrates, basic search is the search type that is used most. This is also true according to the AUBA
tool analysis, as illustrated in Figure 10.12, but in the AUBA result the difference between the fre-

10.4 Types of Searches 57

Figure 10.7: Average distribution of activity measured in page events per week of
semester.

Figure 10.8: Distribution of total activity in Auboline where the semester is split into
three periods

Figure 10.9: Answers for question 6: Which functions do you use most in Auboline?

58 User Behavior Survey

Figure 10.10: The frequency of use of different central functions in Auboline

quency of use of the basic search and the other search types isgreater than it is in the survey result.
Again, this could be because many borrowers use basic searchin most cases, but occasionally use
other search types, and therefore checked the other search types in the questionnaire as well. It is also
very reasonable to assume that some borrowers do not notice what the search types are called when
they use Auboline and therefore check the possibilities that seem familiar in the questionnaire. For
instance, five of the borrowers say that they use multi-field search. In the Danish version of Auboline
the term that is used for this search type and was also used in the questionnaire can be translated
to “search on several fields”. If the borrowers do not notice that the search that they use is called
“basic search” and they use it to make searches on different fields, they may think that they often use
multi-field search. Index search was checked by more than a third of the borrowers. This could also
be because they are not all aware of what index search means, but recognize the fields that are listed
in the parentheses (title, author, subject, etc.) because they often make searches on these fields.

Figure 10.11: Answers for question 7: Which search types do you use?

In Question 8 the borrowers were asled about which search fields they use. Figure 10.13 shows that
most borrowers make searches on all fields but that the title and author fields are also very popular.
As can be seen in the AUBA result for the same question in Figure 10.14, these three are also the
most popular according to the AUBA analysis. The main difference between the two results is that
the AUBA results shows a much more frequent use of “all fields”than the other search fields.

10.4 Types of Searches 59

Figure 10.12: The use of the different search types in Auboline measured by the num-
ber of times they are each used in the data set.

Figure 10.13: Answers for question 8: Which fields do you mostoften search?

Figure 10.14: Frequency of use of the different search fields

60 User Behavior Survey

10.5 Use of Special Features

It is known from the AUBA analysis that the special features of Auboline are not used as frequently
as the other functions, but it is not possible to use the AUBA tool to find out why they are not used.
In Question 9 and 10, the borrowers were asked about this.

Figure 10.15 shows the borrowers’ answers for Question 9 about if, why and how they use the history
function in Auboline. It is clear that most of the borrowers do not even know that the function exists
and that most of the ones that know about it do not use it. According to the AUBA results, the history
function is only used in 7 percent of all sessions.

Figure 10.15: Answers for question 9: In which way do you use the history function?

In Question 10, the borrowers were asked about their use of the basket function. According to the
AUBA results, this function is only used in 0.8 percent of allsessions. Figure 10.16 shows that five of
the borrowers who answered the questionnaires say that theyuse the basket function. This difference
might be because the users only use the basket function in a small part of their sessions.

Figure 10.16: Answers for question 10: In which way do you usethe basket function?

10.6 Different Types of User Behavior Analysis

As the results from the AUBA analysis and the survey illustrate, there are differences between the
results that can be found with different types of methods of analyzing user behavior [Kvale, 1994].

10.6 Different Types of User Behavior Analysis 61

These differences are discussed in the following.

10.6.1 The AUBA Tool

The AUBA tool deals with facts. It uses the actual clicks in Auboline, so it is very precise and can
process a large amount of data in a short period of time. The drawback to this method is that the
reasons for the results are not possible to find in the bare facts. For instance, the AUBA tool can be
used to find out that the basket function is used very rarely, but the reason for this is not available. If
the AUBA tool is the only method used for analyzing user behavior in Auboline, it is not possible to
know if the users do not know about the basket function or if they do not use it because they have no
interest in using it. The AUBA tool is very good for analyzingfacts and correlations among facts. It
is very good for asking about what happens in Auboline but needs to be combined with other methods
there is a need for knowing why.

10.6.2 Interviews

Using interviews to analyze user behavior in Auboline is very different from using the AUBA tool.
An interview takes a long time to analyze, but there is a possibility of both asking why and receiving
much more information than requested. For instance, it is possible to discuss the basket function with
a borrower and find out why she does not use the function and maybe she even has some suggestions
about what could be done to make the basket function more attractive to use. Misinterpretations
and misunderstandings are not very common in interviews because there is a chance of asking about
what is meant and asking extra questions if the answers are not fulfilling. Many of the facts that
are easy to find with the AUBA tool can not be found with interviews because it is not possible to
ask all borrowers about their behavior in Auboline and they will not be able to tell exactly how their
behavior is. But interviews would be a good method to combinewith the AUBA analysis to find
possible answers to some of the many questions that arise from the AUBA results.

10.6.3 Questionnaire

A questionnaire survey has a combination of some of the characteristics of the AUBA analysis and
interviews. The questionnaires are faster to analyze than interviews but not as fast as the AUBA
tool. Because the users are asked directly, it is possible toask them about their own opinions of their
behavior and why they behave as they do. There is, however, a risk of misinterpretations because
the borrowers answer the questionnaires alone and there is no dialog where misunderstandings can
be caught. A questionnaire is good to use in conjunction withthe AUBA tool for asking simple
questions that are aimed at understanding the reasoning behind the results of the AUBA analysis.

CHAPTER 11

Book Information Extension

There are many possible extensions to the AUBA tool. In its current state the data warehouse only
contains data collected from the web log files. To extend the AUBA tool it would be interesting to
combine the data from the web log files with data from the different AUB databases, for instance
borrowers and books. Possible extensions are discussed in this chapter, but they have not been imple-
mented, so they are not part of the current version of the AUBAtool.

11.1 Possibilities of Borrower Information

Unfortunately it is not possible to recognize borrowers in the log files. If it were possible this could
lead to much interesting information, because it would be possible to recognize borrowers from ses-
sion to session and maybe even include information about what they study and how far along they are
in their education. It would be very interesting to see if borrowers that have similar characteristics
also behave similarly in Auboline. It will not be possible toinclude borrower information in the data
warehouse in the future, because it is illegal for AUB to saveinformation about how the borrowers
use their web sites [Datatilsynet, 2005].

11.2 Possibilities of Book Information

Book information, however, is possible to include in the data warehouse and combine with the data
from the log files. In many cases it is possible to identify thebooks that the borrowers deal with in
Auboline, but it is not always possible. For instance, when aborrower clicks on a book in a search
result to see the book description, the request URL containsa number that refers to the search (the
set number) and a number that refers to the ranking of the bookin the search result (the set entry), for
instance 5 for the fifth book on the search result list. These numbers are generated by the underlying
program and refer to a temporary set of search results that can only be accessed during the duration of
the session, so they cannot be used to identify a book. However, if the user clicks to see if the book is
available, the request URL contains a so-called “doc_number”. This number can be used to identify
the book that the borrower clicked on. For some reason, each book has two different doc numbers.
One is used in some situations, such as viewing holdings1 for a book or putting it in the basket, and
the other is used on other pages, such as request for reservation or view reservations. AUB has a
database table that can be used to translate between the two different doc numbers to find out exactly
which books are dealt with in Auboline.

Adding book information to the data warehouse allows the users to combine the information already
available with the AUBA tool with information about book titles, authors, UDK classification num-
bers and publication year. Below is a few examples of questions that can be answered with the
extended AUBA tool when book information is combined with the web log information in the data
warehouse.

• Which ten authors have written most of the books that are reserved in the start of the semesters?

• Which UDK numbers do books typically have, if they are foundwith a search on UDK number?

• Which search types lead to most reservations of books that are published in 2000 or later?

1The book holdings page in Auboline gives information about the quantity, stock and placement of the book

63

64 Book Information Extension

11.3 How to Include Book Information

To include book information in the data warehouse, two questions are necessary to answer:

• Which page events deal with books?

• Which books do these page events deal with?

The first question can be answered by looking at the page functions of the page events. There are
nine different page functions where the users deal with specific books. These page functions will be
referred to as book actions. They are listed below.

• Request reservation

• Reservation

• View reservation

• Delete reservation

• Book description

• Book holdings

• Put book in basket

• View loan status

• Prolong loan

As mentioned, it is not always possible to recognize which books the users deal with in Auboline from
the request URL. As an example, a reservation is made with a POST method request, and therefore
no information except for the session tag appears in the request URL. But since a reservation can
only occur after a request for a reservation, which containsall information that is needed, the doc
number for the reservation can be collected from the referrer field of the log line instead. Similarly,
the book a user is interested in when reading a book description cannot be recognized from the request
URL because the doc number is not present. Therefore the bookwill always be unknown for book
descriptions when the particular log line is processed. Butif the user puts the book in the basket
afterwards or views book holdings, the doc number appears inthis request URL and it is possible
to go back and change the information about the book description when the doc number is known.
In 66 % of all cases, the book description page function is followed by a page function that enables
recognition of the book. As can be seen in Table 11.1, the bookcan be recognized from the request
URL for all other page functions.

Page function Book recognized How recognized

Request reservation Always Request URL
Reservation Always Referrer
View reservation Always Request URL
Delete reservation Always Request URL
Book description 66 % Later in session
Book holdings Always Request URL
Put book in basket Always Request URL
View loan status Always Request URL
Prolong loan Always Request URL

Table 11.1: Availability of book information for book functions that deal with books

11.3 How to Include Book Information 65

As mentioned above, the specific books that are dealt with in these book actions can be found using
the set numbers and doc numbers in the request URLs. The AUB book database should be converted
into a book dimension table that contains the attributes book_key, isbn, title, author, udk and year. It
is necessary to have a conversion table to translate each docnumber into the book key that references
that specific book in the book dimension table.

The book dimension cannot simply be added to the page event star schema to include book action
information in the data warehouse. It is only a small part of the page events that are book actions
(nine out of 74 page functions), and some page events can actually represent more than one book
action. This is because it is possible to put more than one book in the basket or prolong all of a user’s
current loans with just one click. Therefore it is necessaryto model the book actions with a new star
schema. In this schema the book actions will be represented in the fact table, which refers to the book
dimension table along with the date, time of day, session, search type and page dimension tables.
The page dimension table is used for this star schema even though only nine of the records will be
referred. This is done to make it clear that even though thereare not as many possible values of pages
that are book actions, it is still the same type of information that is wanted as for the page event fact
schema. The book action fact table will also refer to the audit dimension that contains information
about the load that each book action belongs to. The book action star schema is depicted in Figure
11.1.

date_key (FK)

session_key (FK)
search_type_key (FK)

time_of_day_key (FK)

book_action

book_key (FK)
audit_key (FK)

page_key (FK)

search_type

type
search_type_key (PK)

field
page

page_key (PK)
page_function
page_function_type
process

date

sql_date
year
month
day
weekday
semester
day_of_semester
week_of_semester
weekend
exam
holiday
week_of_year
day_of_year
workday

date_key (PK) sql_time
hour
minute
second
working_hours
period_of_day

time_of_day

time_of_day_key (PK)

book

book_key (PK)
isbn
title
author
udk_level_1

udk_level_3
udk_level_2

year

session

session_tag
ip_address
browser
last_request_url
start_date
start_time
end_date
end_time
pages_in_session

session_key (PK)

book_descriptions_in_session
books_in_basket_in_session
reservations_in_session

audit

audit_key (PK)
...

Figure 11.1: Relational representation of the book action star schema

66 Book Information Extension

11.4 Updating of New Books

If the book dimension table is created from the AUB book database before the AUBA tool is taken
into use, it will be static and will not automatically be updated when new books are added to the
AUB database. This is a problem because all books, includingnew books that are added to the AUB
collection later, can be found with Auboline. When the AUBA tool has been in use for a while, a book
action may appear that refers to a book that is not in the conversion table and therefore not in the book
dimension, either. In this case it is necessary to get information about the new book from the AUB
database. A possible way to get this information is to use a web service that has been implemented
at AUB. This web service uses the SOAP protocol to allow access to the information in the databases
from outside users without direct access to the databases. With this web service it is possible to query
the AUB book database to find all information about the book that has the new doc number found in
the log file. This information should be added to the conversion table and the book dimension table,
so it is available the next time the book shows up in a log file.

11.5 Future Work

When book information is integrated with the AUBA tool as described above, it is also necessary
to extend other parts of the AUBA tool. For instance, it is necessary to add information about book
actions and books to the audit dimension and extend error handling to also handle this data. The other
kinds of quality control described in Chapter 7 should also be extended to include book actions and
books.

An additional part of the AUBA tool that should be extended after integrating book actions is the
summary tables. Query performance should be measured for the book action star schema and views
should be materialized if query performance does not match expectations. This should be done in the
same way as for the page event and search star schemas.

CHAPTER 12

Conclusion

In this project a web usage mining tool has been designed and implemented. The result is a tool that
can assist analysis of the user behavior in Auboline.

Analysis of the log files and experimentation with the different functions of Auboline has lead to
knowledge about the possibilities of the analysis of the data. To store the information from the log
lines in a logical structure that is understandable and easily accessible, the data in the database has
been logically structured in two star schemas. The structure of the page event star schema is common
in data webhouses. It enables analysis of sessions and page functions as well as variations in activity
according to different time and date parameters. The searchstar schema is structured specifically
for Auboline, because searches are the central part of the system. With the search star schema it is
possible to make analyses of the use of different types of searches and relate the number of book
descriptions, basket saves and reservations to the specificsearches that lead to the activity. It is
possible to extend the data webhouse schema whenever there is a need for new types of analysis or
new information becomes available.

As the main part of the implementation, the post-processor has been implemented to handle the
ETL processes. It transforms the pure text input files to fit the format of the data webhouse. The
performance of the post-processor is satisfactory due to the limited amount of input/output activity
between the java program and the database. Extensive work has been done to assure that the data
flows through the ETL processes as expected and that the database will not contain flawed data. Each
incremental load is done in a single transaction to assure that the data is either fully loaded if there
are no problems or not loaded at all if there is an error, such as a power outage, so the process can be
restarted from scratch when the problem has been fixed.

Part of the motivation behind the implementation of the AUBAtool was to enable the AUB staff to
analyze the success of the book recommendation system to be integrated with Auboline. Therefore
one of the goals of the project has been to prepare the AUBA tool for analysis of the use of book
recommendations. The dimensional database schema has beendesigned in a way that the recommen-
dation service usage data will easily fit into. Unfortunately it has not been possible to analyze the use
of the recommendation service since it has not yet been integrated with Auboline.

A simple graphical user interface has been implemented to make sure that the AUB staff can find
results quickly without knowing the underlying structure of the database. Point-and-click can be
used to find the results of predefined queries while advanced users can query the database manually
for more complicated requests. The AUB staff can use the results that can be obtained with the
graphical user interface to gain knowledge about the behavior of the users of Auboline.

The outriggers from the session dimension to the date, time of day and page dimensions have im-
proved query performance, but the most substantial query performance improvement has been achieved
by using summary tables in the AUBA tool. This is a very important improvement because the users
of the AUBA tool will most likely loose interest if they have to wait several minutes for each re-
quested result. The materialized views have been hand codedbecause PostgreSQL dost not include
the option of materializing views. Updating the materialized views takes a long time because they are
recalculated from scratch. This is a temporary solution that is important to improve. It will be much
faster to update the summary tables incrementally instead of recalculating them.

The user survey was conducted to illustrate the difference in the kind of information that can be gained
with different methods and to compare the borrowers’ perception of their behavior in Auboline with
the results from the AUBA tool. Each method has its own advantages and drawbacks, and therefore
it is a good idea to use a combination of several methods of gathering information to get a more clear
picture of what is going on. For instance, it is a good idea to make a thorough analysis of the user
behavior in Auboline with the AUBA tool and then interview the borrowers about why they behave

67

68 Conclusion

the way they do.

Because the AUBA tool has been developed specifically for AUBit can give the staff analysis results
that are targeted directly on the structure and content of their system. The AUB staff that have been
involved in the project have shown a lot of interest in the AUBA tool, because it gives them informa-
tion that they have not previously been able to get. Furthermore, they find the future possibilities of
the tool very exciting.

There are many possibilities of improving and expanding theAUBA tool. One of the very interesting
possibilities of expanding the AUBA tool is to make a part of the system analyze user behavior in
real-time to categorize the users of Auboline while they arestill on the web site. This can be used to
make an adaptive environment in Auboline where the users areaided in their search for books. For
instance, an adaptive search tip feature could be implemented.

The possibilities of using the AUBA tool to find interesting information about the use of Auboline
will be further increased when book information is includedin the implementation. There are many
possibilities of expanding the AUBA tool to get even more information for different analyses. The
technical staff at AUB are interested in developing the AUBAtool further after it has been taken into
use and usage tests have given them an idea of which extra features will be interesting to explore.

Bibliography

[Aleph, 2004] Aleph (Current as of 30 June 2004). Aleph web site. Internet,http://www.
aleph.co.il.

[Alvesson, 2003] Alvesson, M. (2003). Beyond Neo-Positivists, Romantics and Localists - A Re-
flexive Approach to Interviews in Organization Research.Academy of Management Review, 28(1).

[Andersen et al., 2000] Andersen, J., Giversen, A., Jensen,A. H., Larsen, R. S., Pedersen, T. B.,
and Skyt, J. (2000). Analyzing clickstreams using subsessions. InProceedings of the 3rd ACM
international workshop on Data warehousing and OLAP, pages 25–32. ACM Press.

[Apache, 2004a] Apache (Current as of 30 July 2004a). Apachehttp server: Log files. Internet,
http://httpd.apache.org/docs/logs.html.

[Apache, 2004b] Apache (Current as of 30 July 2004b). Apachewebsite. Internet,http:
//httpd.apache.org/.

[AUB, 2004] AUB (Current as of 30 July 2004). Aub website. Internet,http://www.aub.auc.
dk.

[Auboline, 2004] Auboline (Current as of 30 July 2004). Auboline. Internet,http://a500.
aub.auc.dk.

[Cewolf, 2004] Cewolf (Current as of 7 December 2004). Cewolf - chart enabling web object frame-
work. Internet,http://cewolf.sourceforge.net.

[Corey et al., 2001] Corey, M. J., Abbey, M., Taub, B., and Abramson, I. (2001).Oracle8i Data
Warehousing. McGraw-Hill Companies, first edition.

[Datatilsynet, 2005] Datatilsynet (Current as of 12 January 2005). Lov om behan-
dling af personoplysninger. Internet,http://www.datatilsynet.dk/lovgivning/
personoplysninger/lovtekst.txt.

[Demiriz, 2002] Demiriz, A. (2002). webSPADE: A Parallel Sequence Mining Algorithm to Analyze
Web Log Data.2002 IEEE International Conference on Data Mining (ICDM’02), pages 755–758.

[Due, 2004] Due, L. (2004). Analyzing User Behavior in Auboline with Web Usage Mining. Pre-
master’s thesis (INF7), Department of Computer Science, Aalborg University.

[Harinarayan et al., 1996] Harinarayan, V., Rajaraman, A.,and Ullman, J. D. (1996). Implementing
Data Cubes Efficiently.In Proceedings of ACM SIGMOD ’96, pages 205–216.

[IETF, 2004] IETF (Current as of 30 July 2004). RFC1413: IDENT. Internet,http://www.
ietf.org/rfc/rfc1413.txt?number=1413.

[J2EE 1.3, 2004] J2EE 1.3 (Current as of 30 July 2004). Java 2 Platform, Enterprice Edition (J2EE)
1.3. Internet,http://java.sun.com/j2ee/1.3/.

[JFreeChart, 2004] JFreeChart (Current as of 7 December 2004). Jfreechart web site. Internet,
http://www.object-refinery.com/jfreechart/.

[Kimball, 1997] Kimball, R. (1997). A Dimensional ModelingManifesto: Drawing the Line Be-
tween Dimensional Modeling and ER Modeling Techniques.DBMS Online, 10(9).

69

70 BIBLIOGRAPHY

[Kimball and Merz, 2000] Kimball, R. and Merz, R. (2000).The Data Webhouse Toolkit: Building
the Web-Enabled Data Warehouse. Wiley Computer Publishing, first edition.

[Kimball and Ross, 2002a] Kimball, R. and Ross, M. (2002a).The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling. Wiley Computer Publishing, second edition.

[Kimball and Ross, 2002b] Kimball, R. and Ross, M. (2002b).The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling. Wiley Computer Publishing, second edition.

[Kosala and Blockeel, 2000] Kosala, R. and Blockeel, H. (2000). Web Mining Research: A Survey.
ACM SIGKDD Explorations Newsletter, 2(1):1–15.

[Kvale, 1994] Kvale, S. (1994).Interview - En introduktion til det kvalitative forskningsinterview.
Hans Reitzels Forlag.

[Levene and Loizou, 2003] Levene, M. and Loizou, G. (2003). Why is the Snowflake Schema a
Good Data Warehouse Design?Information Systems, 28(3):225–240.

[Ly et al., 2003] Ly, T. H., Mogensen, J., and Skouboe, K. R. (2003). Building a Business Intelli-
gence System for AUB. Pre-master’s thesis (DAT5), Department of Computer Science, Aalborg
University.

[Ly et al., 2004] Ly, T. H., Mogensen, J., and Skouboe, K. R. (2004). Building a Business Intel-
ligence System for AUB (second edition). Master’s thesis, Department of Computer Science,
Aalborg University.

[Pedersen and Jensen, 2001] Pedersen, T. B. and Jensen, C. S.(2001). Multidimensional Database
Technology.IEEE Computer Magazine, 34(12):40–46.

[PostgreSQL 7.4, 2004] PostgreSQL 7.4 (Current as of 30 July2004). Postgresql 7.4 documentation.
Internet,http://www.postgresql.org/docs/7.4/static/index.html.

[PostgreSQL 7.5, 2004] PostgreSQL 7.5 (Current as of 30 July2004). Postgresql on windows. In-
ternet,http://techdocs.postgresql.org/guides/Windows.

[Shukla et al., 1996] Shukla, A., Deshpande, P., Naughton, J. F., and Ramasamy, K. (1996). Storage
estimation for multidimensional aggregates in the presence of hierarchies. InThe VLDB Journal,
pages 522–531.

[Srivastava et al., 2000] Srivastava, J., Cooley, R., Deshpande, M., and Tan, P.-N. (2000). Web Usage
Mining: Discovery and Applications of Usage Patterns from Web Data.SIGKDD Explorations,
1(2).

[W3C, 2004] W3C (Current as of 30 July 2004). World wide web consortium - protocol. Internet,
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5.1.1.

[Zaharioudakis et al., 2000] Zaharioudakis, M., Cochrane,R., Lapis, G., Pirahesh, H., and Urata, M.
(2000). Answering Complex SQL Queries Using Automatic Summary Tables.Proceedings of the
2000 ACM SIGMOD international conference on Management of data, pages 105–116.

APPENDIX A

PostgreSQL data definition

A.1 page_event fact table

CREATE TABLE page_event (
log_line_key INTEGER REFERENCES log_line,
date_key INTEGER REFERENCES date,
time_of_day_key INTEGER REFERENCES time_of_day,

5 page_key INTEGER REFERENCES page,
session_key INTEGER REFERENCES session,
audit_key INTEGER REFERENCES audit

);

A.2 log_line table

CREATE TABLE log_line (
log_line_key INTEGER PRIMARY KEY ,
filename VARCHAR (19) NOT NULL ,
log_line_numberINTEGER NOT NULL ,

5 ip_address VARCHAR (15) NOT NULL ,
ident VARCHAR (1) NOT NULL ,
authuser VARCHAR (1) NOT NULL ,
date DATE NOT NULL ,
time TIME NOT NULL ,

10 timezone VARCHAR (5) NOT NULL ,
method VARCHAR (4) NOT NULL ,
request_url TEXT NOT NULL ,
session_tag VARCHAR (100)NOT NULL ,
serial VARCHAR (5) NOT NULL ,

15 query TEXT NOT NULL ,
protocol VARCHAR (8) NOT NULL ,
status INTEGER NOT NULL ,
bytes INTEGER NOT NULL ,
servername VARCHAR (15) NOT NULL ,

20 referrer TEXT NOT NULL ,
browser TEXT NOT NULL ,
CONSTRAINT unique_lineUNIQUE (filename, log_line_number)

);

A.3 date and time dimension tables

CREATE TABLE date (
date_key INTEGER PRIMARY KEY ,
sql_date DATE UNIQUE NOT NULL ,
year INTEGER ,

5 month INTEGER ,
day INTEGER ,
week_day VARCHAR (10) ,
semester VARCHAR (11) ,
day_of_semester INTEGER ,

10 week_of_semester INTEGER ,
weekend VARCHAR (10) ,
exam VARCHAR (10) ,
public_holiday VARCHAR (15) ,
school_vacation VARCHAR (20) ,

15 day_of_year INTEGER ,
week_of_year INTEGER ,
workday VARCHAR (15)

);

71

72 PostgreSQL data definition

20 CREATE TABLE time_of_day (
time_of_day_key SERIAL PRIMARY KEY ,
sql_time TIME UNIQUE NOT NULL ,
hour INTEGER ,
minute INTEGER ,

25 second INTEGER ,
working_hours VARCHAR (20) ,
period_of_day VARCHAR (20)

);

A.4 page dimension table

CREATE TABLE page (
page_key INTEGER PRIMARY KEY ,
page_function VARCHAR (100)NOT NULL DEFAULT ’unknown’,
page_function_typeVARCHAR (30) NOT NULL DEFAULT ’unknown’,

5 process VARCHAR (30) NOT NULL DEFAULT ’unknown’,
CONSTRAINT unique_pageUNIQUE (page_function, page_function_type, process)

);

A.5 session dimension table

CREATE TABLE session (
session_key INTEGER PRIMARY KEY ,
session_tag VARCHAR (100)NOT NULL DEFAULT ’unknown’,
ip_address VARCHAR (15) NOT NULL DEFAULT ’unknown’,

5 browser TEXT NOT NULL DEFAULT ’unknown’,
referrer TEXT NOT NULL DEFAULT ’unknown’,
first_request_url TEXT NOT NULL DEFAULT ’unknown’,

first_page_key INTEGER REFERENCES page,
last_request_url TEXT NOT NULL DEFAULT ’unknown’,

10 last_page_key INTEGER REFERENCES page,
start_date DATE NOT NULL ,
start_date_key INTEGER REFERENCES date,
start_time TIME NOT NULL ,
start_time_key INTEGER REFERENCES time_of_day,

15 end_date DATE NOT NULL ,
end_date_key INTEGER REFERENCES date,
end_time TIME NOT NULL ,
end_time_key INTEGER REFERENCES time_of_day,
pages_in_session INTEGER NOT NULL DEFAULT 0,

20 book_descriptions_in_session INTEGER NOT NULL DEFAULT 0,
books_in_basket_in_session INTEGER NOT NULL DEFAULT 0,
reservations_in_session INTEGER NOT NULL DEFAULT 0

);

A.6 search fact table

CREATE TABLE search (
date_key INTEGER REFERENCES date,
time_of_day_key INTEGER REFERENCES time_of_day,
session_key INTEGER REFERENCES session,

5 search_type_key INTEGER REFERENCES search_type,
search_number INTEGER NOT NULL DEFAULT 0,
search_number_validity VARCHAR (9) NOT NULL DEFAULT ’temporary’,
number_of_book_descriptions INTEGER NOT NULL DEFAULT 0,
number_of_books_in_basket INTEGER NOT NULL DEFAULT 0,

10 number_of_reservations INTEGER NOT NULL DEFAULT 0
);

A.7 search_type dimension table

CREATE TABLE search_type (
search_type_key INTEGER PRIMARY KEY ,
type VARCHAR (18) NOT NULL DEFAULT ’unknown’,
field VARCHAR (18) NOT NULL DEFAULT ’unknown’,

5 type_with_field VARCHAR (50) NOT NULL DEFAULT ’unknown’,

A.8 audit table 73

CONSTRAINT unique_typeUNIQUE (type, field)
);

A.8 audit table

CREATE TABLE audit (
audit_key INTEGER PRIMARY KEY ,
filename VARCHAR (19),
etl_start_time TIMESTAMP ,

5 etl_end_time TIMESTAMP ,

log_file_line_count INTEGER ,
total_lines_processed INTEGER ,
valid_lines_processed INTEGER ,

10 invalid_lines_processed INTEGER ,
copy_log_line_file_count INTEGER ,
new_log_line_records INTEGER ,

active_sessions_before INTEGER ,
15 session_records_before INTEGER ,

new_sessions_processed INTEGER ,
active_sessions_processed INTEGER ,
copy_session_file_count INTEGER ,
session_records_after INTEGER ,

20 new_session_records INTEGER ,

active_searches_before INTEGER ,
search_records_before INTEGER ,
new_searches_processed INTEGER ,

25 active_searches_processed INTEGER ,
copy_search_file_count INTEGER ,
search_records_after INTEGER ,

new_search_records INTEGER ,

30 active_page_events_before INTEGER ,
page_event_records_before INTEGER ,
new_page_events_processed INTEGER ,
active_page_events_processed INTEGER ,
copy_page_event_file_count INTEGER ,

35 page_event_records_after INTEGER ,
new_page_event_records INTEGER ,

success_status VARCHAR (500),
proceed VARCHAR (500)

40);

A.9 active_page_event table

CREATE TABLE active_page_event (
log_line_key INTEGER REFERENCES log_line,
date_key INTEGER REFERENCES date,
time_of_day_key INTEGER REFERENCES time_of_day,

5 page_key INTEGER REFERENCES page,
session_key INTEGER REFERENCES active_session,
audit_key INTEGER REFERENCES audit

);

A.10 active_session dimension table

CREATE TABLE active_session (
session_key INTEGER PRIMARY KEY ,
session_tag VARCHAR (100)NOT NULL DEFAULT ’unknown’,
ip_address VARCHAR (15) NOT NULL DEFAULT ’unknown’,

5 browser TEXT NOT NULL DEFAULT ’unknown’,
first_request_url TEXT NOT NULL DEFAULT ’unknown’,

first_page_key INTEGER NOT NULL DEFAULT 1,
last_request_url TEXT NOT NULL DEFAULT ’unknown’,

last_page_key INTEGER NOT NULL DEFAULT 1,

74 PostgreSQL data definition

10 referrer TEXT NOT NULL DEFAULT ’unknown’,
start_date DATE NOT NULL ,
start_date_key INTEGER NOT NULL ,
start_time TIME NOT NULL ,
start_time_key INTEGER NOT NULL ,

15 end_date DATE NOT NULL ,
end_date_key INTEGER NOT NULL ,
end_time TIME NOT NULL ,
end_time_key INTEGER NOT NULL ,
pages_in_session INTEGER NOT NULL DEFAULT 0,

20 book_descriptions_in_sessionINTEGER NOT NULL DEFAULT 0,
books_in_basket_in_session INTEGER NOT NULL DEFAULT 0,
reservations_in_session INTEGER NOT NULL DEFAULT 0,

last_search_number INTEGER NOT NULL DEFAULT 0,
search_number_validity VARCHAR (9) NOT NULL DEFAULT ’temporary’

25);

A.11 active_search fact table

CREATE TABLE active_search (
date_key INTEGER REFERENCES date,
time_of_day_key INTEGER REFERENCES time_of_day,
session_key INTEGER ,

5 search_type_key INTEGER REFERENCES search_type,
search_number INTEGER NOT NULL DEFAULT 0,
search_number_validity VARCHAR (9) NOT NULL DEFAULT ’temporary’,
number_of_book_descriptions INTEGER NOT NULL DEFAULT 0,
number_of_books_in_basket INTEGER NOT NULL DEFAULT 0,

10 number_of_reservations INTEGER NOT NULL DEFAULT 0��CONSTRAINT unique_search UNIQUE (session_key, search_type_key,�� search_number, search_number_validity)
);

APPENDIX B

PostgreSQL Views

CREATE VIEW page_event_dpt AS
SELECT date_key, page_key, time_of_day.hour,

COUNT(*) AS number_of_page_events
FROM page_event, time_of_day

5 WHERE page_event.time_of_day_key = time_of_day.time_of_day_key
GROUPBY date_key, page_key, time_of_day.hour;

CREATE VIEW page_event_dp AS
SELECT date_key, page_key, COUNT(*) AS number_of_page_events

10 FROM page_event
GROUPBY date_key, page_key;

CREATE VIEW page_event_dt AS
SELECT date_key, time_of_day.hour, COUNT(*) AS number_of_page_events

15 FROM page_event, time_of_day
WHERE page_event.time_of_day_key = time_of_day.time_of_day_key
GROUPBY date_key, time_of_day.hour;

CREATE VIEW page_event_pt AS
20 SELECT page_key, time_of_day.hour, COUNT(*) AS number_of_page_events

FROM page_event, time_of_day
WHERE page_event.time_of_day_key = time_of_day.time_of_day_key
GROUPBY page_key, time_of_day.hour;

25 CREATE VIEW page_event_d AS
SELECT date_key, COUNT(*) AS number_of_page_events
FROM page_event
GROUPBY date_key;

30 CREATE VIEW page_event_p AS
SELECT page_key, COUNT(*) AS number_of_page_events
FROM page_event
GROUPBY page_key;

35 CREATE VIEW page_event_t AS
SELECT time_of_day.hour, COUNT(*) AS number_of_page_events
FROM page_event, time_of_day
WHERE page_event.time_of_day_key = time_of_day.time_of_day_key
GROUPBY time_of_day.hour;

CREATE VIEW search_dst AS
SELECT date_key, search_type_key, time_of_day.hour,

COUNT(*) AS number_of_searches,
SUM(number_of_book_descriptions) AS total_book_descriptions ,

5 SUM(number_of_books_in_basket) AS total_books_in_basket,
SUM(number_of_reservations) AS total_reservations

FROM search, time_of_day
WHERE search.time_of_day_key = time_of_day.time_of_day_key
GROUPBY date_key, search_type_key, time_of_day.hour;

10

CREATE VIEW search_ds AS
SELECT date_key, search_type_key, COUNT(*) AS number_of_searches,

SUM(number_of_book_descriptions) AS total_book_descriptions ,
SUM(number_of_books_in_basket) AS total_books_in_basket,

15 SUM(number_of_reservations) AS total_reservations
FROM search
GROUPBY date_key, search_type_key;

CREATE VIEW search_dt AS
20 SELECT date_key, time_of_day.hour, COUNT(*) AS number_of_searches,

SUM(number_of_book_descriptions) AS total_book_descriptions ,

75

76 PostgreSQL Views

SUM(number_of_books_in_basket) AS total_books_in_basket,
SUM(number_of_reservations) AS total_reservations

FROM search, time_of_day
25 WHERE search.time_of_day_key = time_of_day.time_of_day_key

GROUPBY date_key, time_of_day.hour;

CREATE VIEW search_st AS
SELECT search_type_key, time_of_day.hour, COUNT(*) AS number_of_searches,

30 SUM(number_of_book_descriptions) AS total_book_descriptions ,
SUM(number_of_books_in_basket) AS total_books_in_basket,
SUM(number_of_reservations) AS total_reservations

FROM search, time_of_day
WHERE search.time_of_day_key = time_of_day.time_of_day_key

35 GROUPBY search_type_key, time_of_day.hour;

CREATE VIEW search_d AS
SELECT date_key, COUNT(*) AS number_of_searches,

SUM(number_of_book_descriptions) AS total_book_descriptions ,
40 SUM(number_of_books_in_basket) AS total_books_in_basket,

SUM(number_of_reservations) AS total_reservations
FROM search
GROUPBY date_key;

45 CREATE VIEW search_s AS
SELECT search_type_key, COUNT(*) AS number_of_searches,

SUM(number_of_book_descriptions) AS total_book_descriptions ,
SUM(number_of_books_in_basket) AS total_books_in_basket,
SUM(number_of_reservations) AS total_reservations

50 FROM search
GROUPBY search_type_key;

CREATE VIEW search_t AS
SELECT time_of_day.hour, COUNT(*) AS number_of_searches,

55 SUM(number_of_book_descriptions) AS total_book_descriptions ,
SUM(number_of_books_in_basket) AS total_books_in_basket,
SUM(number_of_reservations) AS total_reservations

FROM search, time_of_day
WHERE search.time_of_day_key = time_of_day.time_of_day_key

60 GROUPBY time_of_day.hour;

CREATE VIEW session_dflt AS
SELECT start_date_key, first_page_key , last_page_key , time_of_day.hour,

COUNT(*) AS number_of_sessions
FROM session, time_of_day

5 WHERE session.start_time_key = time_of_day.time_of_day_key
GROUPBY start_date_key, first_page_key , last_page_key , time_of_day.hour;

CREATE VIEW session_dfl AS
SELECT start_date_key, first_page_key , last_page_key ,

10 COUNT(*) AS number_of_sessions
FROM session
GROUPBY start_date_key, first_page_key , last_page_key , pages_in_session ;

CREATE VIEW session_dft AS
15 SELECT start_date_key, first_page_key , time_of_day.hour,

COUNT(*) AS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key = time_of_day.time_of_day_key
GROUPBY start_date_key, first_page_key , time_of_day.hour;

20

CREATE VIEW session_dlt AS
SELECT start_date_key, last_page_key , time_of_day.hour,

COUNT(*) AS number_of_sessions
FROM session, time_of_day

25 WHERE session.start_time_key = time_of_day.time_of_day_key
GROUPBY start_date_key, last_page_key , time_of_day.hour;

CREATE VIEW session_flt AS
SELECT first_page_key, last_page_key , time_of_day.hour,

30 COUNT(*) AS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key = time_of_day.time_of_day_key

77

GROUPBY first_page_key, last_page_key , time_of_day.hour;

35 CREATE VIEW session_df AS
SELECT start_date_key, first_page_key , COUNT(*) AS number_of_sessions
FROM session
GROUPBY start_date_key, first_page_key ;

40 CREATE VIEW session_dl AS
SELECT start_date_key, last_page_key , COUNT(*) AS number_of_sessions
FROM session
GROUPBY start_date_key, last_page_key;

45 CREATE VIEW session_dt AS
SELECT start_date_key, time_of_day.hour , COUNT(*) AS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key = time_of_day.time_of_day_key
GROUPBY start_date_key, time_of_day.hour;

50

CREATE VIEW session_fl AS
SELECT first_page_key, last_page_key , COUNT(*) AS number_of_sessions
FROM session
GROUPBY first_page_key, last_page_key;

55

CREATE VIEW session_ft AS
SELECT first_page_key, time_of_day.hour , COUNT(*) AS number_of_sessions
FROM session, time_of_day
WHERE session.start_time_key = time_of_day.time_of_day_key

60 GROUPBY first_page_key, time_of_day.hour;

CREATE VIEW session_lt AS
SELECT last_page_key, time_of_day.hour, COUNT(*) AS number_of_sessions
FROM session, time_of_day

65 WHERE session.start_time_key = time_of_day.time_of_day_key
GROUPBY last_page_key, time_of_day.hour;

CREATE VIEW session_d AS
SELECT start_date_key, COUNT(*) AS number_of_sessions

70 FROM session
GROUPBY start_date_key;

CREATE VIEW session_f AS
SELECT first_page_key, COUNT(*) AS number_of_sessions

75 FROM session
GROUPBY first_page_key;

CREATE VIEW session_l AS
SELECT last_page_key, COUNT(*) AS number_of_sessions

80 FROM session
GROUPBY last_page_key;

CREATE VIEW session_t AS
SELECT time_of_day.hour, COUNT(*) AS number_of_sessions

85 FROM session, time_of_day
WHERE session.start_time_key = time_of_day.time_of_day_key
GROUPBY time_of_day.hour;

APPENDIX C

PostgreSQL View Functions

C.1 Create Materialized View

CREATE OR REPLACE FUNCTION create_matview(NAME, NAME)
RETURNS VOID
SECURITY DEFINER
LANGUAGE plpgsql AS ’

5 DECLARE
matview ALIAS FOR $1;
view_name ALIAS FOR $2;
entry matviews%ROWTYPE;

BEGIN
10 SELECT * INTO entryFROM matviewsWHERE mv_name = matview;

IF FOUNDTHEN
RAISEEXCEPTION ’’Materialized view ’’’’%’’’’ already exists . ’ ’ ,

matview;
15 END IF;

EXECUTE ’’ REVOKE ALL ON ’’ || view_name || ’’FROM PUBLIC’’;

EXECUTE ’’GRANT SELECT ON ’’ || view_name || ’’ TO PUBLIC’’;
20

EXECUTE ’’ CREATE TABLE ’’ || matview || ’’ AS SELECT * FROM ’’ || view_name;

EXECUTE ’’ REVOKE ALL ON ’’ || matview || ’’ FROM PUBLIC’’;

25 EXECUTE ’’GRANT SELECT ON ’’ || matview || ’’ TO PUBLIC’’;

INSERT INTO matviews (mv_name, v_name, last_refresh)
VALUES (matview, view_name,CURRENT_TIMESTAMP);

30 RETURN;
END
’ ;

C.2 Refresh Materialized View

CREATE OR REPLACE FUNCTION refresh_matview(name) RETURNS VOID
SECURITY DEFINER
LANGUAGE plpgsql AS ’
DECLARE

5 matview ALIAS FOR $1;
entry matviews%ROWTYPE;

BEGIN

SELECT * INTO entryFROM matviewsWHERE mv_name = matview;
10

IF NOT FOUNDTHEN
RAISEEXCEPTION ’’Materialized view % does not exist.’’ , matview;

END IF;

15 EXECUTE ’’DELETE FROM ’’ || matview;
EXECUTE ’’INSERT INTO ’’ || matview

|| ’ ’ SELECT * FROM ’’ || entry.mv_view;

UPDATE matviews
20 SET last_refresh =CURRENT_TIMESTAMP

WHERE mv_name=matview;

79

80 PostgreSQL View Functions

RETURN;
END

25 ’ ;

C.3 Drop Materialized View

CREATE OR REPLACE FUNCTION drop_matview(NAME) RETURNS VOID
SECURITY DEFINER
LANGUAGE plpgsql AS ’
DECLARE

5 matview ALIAS FOR $1;
entry matviews%ROWTYPE;

BEGIN

SELECT * INTO entryFROM matviewsWHERE mv_name = matview;
10

IF NOT FOUND THEN
RAISE EXCEPTION ’’Materialized view % does not exist.’’ , matview;

END IF;

15 EXECUTE ’’ DROP TABLE ’’ || matview;
DELETEFROM matviewsWHERE mv_name=matview;

RETURN;
END

20 ’ ;

APPENDIX D

Source Code for Greedy

D.1 Greedy Class

public class Greedy {

static View[] views = null ;
static booleandone = false;

5

public static void calculateBenefit (View candidateView) {
int benefit = 0;
for (int v = 0; v < views. length ; v++) {

booleandependency =true ;
10 for (int d = 0; d < views[v]. getViewName().length (); d++) {

if (candidateView .getViewName().indexOf(views[v].getViewName()
.charAt(d)) ==�1) {

dependency =false;
}

15 }
if (dependency) {

int costBefore = views[v]. getCost ();
int costAfter = candidateView . getSize ();
int gain = costBefore� costAfter ;

20 if (gain > 0) {
if (views[v]. getViewName().length () == 1) {

gain *= 10;
}
benefit += gain ;

25 }
}

}
candidateView . setBenefit (benefit);

}
30

public static void materializeBestView () {
View bestView = views [0];
for (int v = 1; v < views. length ; v++) {

if (views[v]. getBenefit () > bestView. getBenefit ()) {
35 bestView = views[v];

}
}
if (bestView. getBenefit () == 0) {

done =true ;
40 }

else {
bestView. materialize ();
System.out . println (" Materializing " + bestView.getViewName() +

" (benefit : " + bestView. getBenefit () + ")");
45 for (int v = 0; v < views. length ; v++) {

booleandependency =true ;
for (int d = 0; d < views[v].getViewName().length (); d++) {

if (bestView.getViewName().indexOf(views[v].getViewName()
.charAt(d)) ==�1) {

50 dependency =false;
}

}
if (dependency) {

if (views[v]. getCost () > bestView. getSize ()) {
55 views[v]. setCost (bestView. getSize ());

}
}

}

81

82 Source Code for Greedy

}
60 }

public static void main (String [] args) {
String schema = args [0];

65 if (schema ==null || schema.equals("")) {
System.out . println ("Error:schemaname must be input");

}
else if (schema.equals("pageevent")) {

// page event without session with time grouped by hour
70 views = new View[] { new View("dpt" , 214746, 214746),

new View("dp", 23510, 214746),
new View("dt" , 7716, 214746),
new View("pt" , 1720, 214746),
new View("d", 393, 214746),

75 new View("p", 95, 214746),
new View("t" , 24, 214746)};

views [0]. materialize ();
}
else if (schema.equals("search")) {

80 // search without session with time grouped by hour
views = new View[] { new View("dst" , 53530, 53530),

new View("ds", 6235, 53530),
new View("dt" , 7363, 53530),
new View("st" , 435, 53530),

85 new View("d", 393, 53530),
new View("s" , 20, 53530),
new View("t" , 24, 53530)};

views [0]. materialize ();
}

90 else if (schema.equals(" session ")) {
// session with time grouped by hour
views = new View[] { new View("dflt" , 134758, 134758),

new View("dfl" , 37405, 134758),
new View("dft" , 35004, 134758),

95 new View("dlt" , 101016, 134758),
new View("flt " , 6886, 134758),
new View("df" , 6215, 134758),
new View("dl" , 16469, 134758),
new View("dt" , 7687, 134758),

100 new View("fl" , 1041, 134758),
new View("ft" , 760, 134758),
new View("lt" , 1427, 134758),
new View("d", 393, 134758),
new View("f" , 62, 134758),

105 new View("l" , 81, 134758),
new View("t" , 24, 134758)};

views [0]. materialize ();
}
else {

110 System.out . println ("Schemaname not recognized.Should be one of:");
System.out . println ("basicpageevent ");
System.out . println (" pageeventwithsession ");
System.out . println ("pageevent");
System.out . println ("search");

115 System.out . println (" session ");
return ;

}

int choice = 0;
120

while (! done) {
boolean allViewsMaterialized =true ;
for (int v = 0; v < views. length ; v++) {

if (! views[v]. isMaterialized ()) {
125 allViewsMaterialized = false;

}
}

if (! allViewsMaterialized) {

D.2 View Class 83

130 choice++;
System.out . print ("CHOICE" + choice + ": ");

for (int v = 0; v < views. length ; v++) {
if (! views[v]. isMaterialized ()) {

135 calculateBenefit (views[v]);
}
else {

views[v]. setBenefit (0);
}

140 }
materializeBestView ();

}
else {

done =true ;
145 }

}
System.out . println (" \n\n");

}
}

D.2 View Class

public class View {

private String _viewName, _parentViewName, _dimensions;
private int _size , _cost , _benefit ;

5 private boolean _materialized ;

public View (String viewName,int size , int cost) {
_viewName = viewName;
_size = size ;

10 _cost = cost ;
_benefit = size ;
_materialized =false;

}

15 public String getViewName() {
return _viewName;

}

public int getSize () {
20 return _size ;

}

public int getCost () {
return _cost ;

25 }

public int getBenefit () {
return _benefit ;

}
30

public boolean isMaterialized () {
return _materialized ;

}

35 public void materialize () {
_materialized =true ;

}

public void setBenefit (int newBenefit) {
40 _benefit = newBenefit ;

}

public void setCost (int newCost) {
_cost = newCost;

45 }
}

APPENDIX E

Source Code for Java Classes

85

86
S

ource
C

ode
for

Java
C

lasses

E.1 PostProcessor Servlet Class

packageaub;

import java . io .IOException;
import java . io . PrintWriter ;

5 import java . io .BufferedReader;
import java . io .FileOutputStream;
import java . io . FileReader ;
import java . io .FileNotFoundException;
import java . net .MalformedURLException;

10 import java . sql .Time;
import java . sql . ResultSet ;
import java . sql .ResultSetMetaData;
import java . util .GregorianCalendar;
import java . util . Vector ;

15 import javax . servlet . ServletException ;
import javax . servlet . http . HttpServlet ;
import javax . servlet . http . HttpServletRequest ;
import javax . servlet . http . HttpServletResponse ;

20 public class PostProcessorextends HttpServlet {

PrintWriter _out;
int _numberOfLogLinesTogether = 100;
String _runningOn = "baerbar" ;

25 // String _runningOn = " stationaer ";
String _filePath = "" ;
String _pathToCopyFiles = "" ;
Database _database ;
int _tempSearchNumber = 0;

30 int _logLineKey = 0;
int _lastEmptiedLogLineKey = 0;
int _auditKey = 0;
int _sessionRecordsBefore = 0;
int _searchRecordsBefore = 0;

35 int _pageEventRecordsBefore = 0;
int _activeSessionsBefore = 0;
int _activeSearchesBefore = 0;
int _activePageEventsBefore = 0;
String _successStatus = "" ;

40 java . util .Date _etlStartDate =null ;
String _logFileName = "" ;
int _fileLineCount = 0;
int _totalLinesProcessed = 0;
int _validLinesProcessed = 0;

45 int _invalidLinesProcessed = 0;
int _sessionRecordsAfter = 0;
int _searchRecordsAfter = 0;

int _pageEventRecordsAfter = 0;
int _newSessionsProcessed, _newSearchesProcessed, _newPageEventsProcessed;

50 int _activeSessionsProcessed , _activeSearchesProcessed , _activePageEventsProcessed ;
int _newSessionRecords, _newSearchRecords, _newPageEventRecords;
int _linesInCopyFile = 0;
int _copySessionFileCount = 0;
int _copySearchFileCount = 0;

55 int _copyPageEventFileCount = 0;
int _newLogLineRecords = 0;
int _numberOfLogLines = 0;
java . util .Date _etlEndDate =null ;
boolean _etlSuccess =true ;

60 private String [] _ignoreList = { " . jpg" , " . gif " , " . ico" , " . css"};
private String [] _searchBotList = { "Ant Movie Catalog using Indy Library",

"Gigabot" , " Girafabot " , "Googlebot",
"Microsoft Data Access Internet Publishing",
"Microsoft URL Control",

65 "MicrosoftPrototypeCrawler " ,
"MS Search 4.0 Robot", "MSIECrawler", "MSNBOT",
"NaverRobot", "NPBot", "NutchOrg", "Openbot",
"psbot" , "RPT�HTTPClient/0.3�3", "TurnitinBot",
" Tutorial Crawler" , "VoilaBot" , "Web Crawler",

70 "WebCrawler", "www.troutfarmer.dk",
"Xenu Link Sleuth", "Xenu’s Link Sleuth",
"ZyBorg"};

private String [] _filenames =null ;
private String [] _columnNames =null ;

75 private String [] _columnValues =null ;

public PostProcessor (Database database ,int auditKey , int logLineKey,
String filePath , String pathToCopyFiles) {

_database = database ;
80 _auditKey = auditKey;

_logLineKey = logLineKey;
_filePath = filePath ;
_pathToCopyFiles = pathToCopyFiles;

}
85

void countLinesInLogFile(String filePath , String filename) {
try {

_fileLineCount = 0;
BufferedReader logLineReader =newBufferedReader(new FileReader

90 (filePath +
filename));

while (logLineReader.readLine () !=null) {
_fileLineCount++;

}
95

logLineReader. close ();

E
.1

P
ostP

rocessor
S

ervletC
lass

87

_columnNames =newString[] {" log_file_line_count "};
_columnValues =new String [] { Integer . toString (_fileLineCount)};

100 _database .updateAuditDimension(_auditKey, _columnNames,
_columnValues,
"Lines in log file counted");

}
catch (Exception e) {

105 System.out . println (e);
System.out . println (e.getMessage());
System.out . println ("Errorcounting lines in log file .");

}
}

110

void getActiveInfo () {
_activePageEventsBefore = _database . getActivePageEvents ();
_activeSearchesBefore = _database . getActiveSearches ();

115 _activeSessionsBefore = _database . getActiveSessions ();

_columnNames =new String[] {" active_sessions_before " ,
" active_searches_before " ,
" active_page_events_before "};

120 _columnValues =new String [] { Integer . toString (_activeSessionsBefore),
Integer . toString (_activeSearchesBefore),
Integer . toString (_activePageEventsBefore)};

_database .updateAuditDimension(_auditKey, _columnNames, _columnValues,
" active info collected ");

125

_database .getPages ();
_database .getSearchTypes ();

}

130 private BufferedReader [] getBufferedLogFileReaders(String filePath) {
// boolean stillMoreFiles = true ;
Vector fileReaders =newVector ();
Vector filenameVector =new Vector ();
String filename ;

135 BufferedReader reader =null ;
try {

for (GregorianCalendar date =newGregorianCalendar (2003, 1, 25);
true ; date .add(date .DAY_OF_MONTH, 1)) {

// filename = " accesstest .20030225";
140

filename = "access_log ." + date . get (date .YEAR);
if (date . get (date .MONTH) < 9) {

filename += "0";
}

145 filename += (date . get (date .MONTH) + 1);

if (date . get (date .DAY_OF_MONTH) < 10) {
filename += "0";

}
filename += date . get (date .DAY_OF_MONTH);

150 reader =new BufferedReader(newFileReader(filePath +
filename));

filenameVector .add(filename);
fileReaders .add(reader);
if (date . get (date .DAY_OF_MONTH) == 26) {

155 throw new FileNotFoundException("");
}

}
}
catch (FileNotFoundException fnfe) {

160 // System.out . println (" File not found : " + filename);
// stillMoreFiles = false ;

}
catch (Exception e) {

System.out . println ("Exceptionin PostProcessor .getFilenames ()");
165 System.out . println (e);

}
BufferedReader [] readerArray =new BufferedReader[fileReaders . size ()];
for (int r = 0; r < readerArray . length ; r++) {

readerArray [r] = (BufferedReader) fileReaders . get (r);
170 }

_filenames =new String[filenameVector . size ()];
for (int f = 0; f < _filenames . length ; f++) {

_filenames [f] = (String) filenameVector . get (f);
}

175 return readerArray ;
}

int getCopyPageEventFileCount() {
return _copyPageEventFileCount;

180 }

int getCopySessionFileCount () {
return _copySessionFileCount;

}
185

int getCopySearchFileCount() {
return _copySearchFileCount;

}

190 int [] getRecordCountsAfterLoad() {
_pageEventRecordsAfter = _database .getNumberOfPageEventsAfter(_auditKey);
_searchRecordsAfter = _database .getNumberOfSearchesAfter(_auditKey);
_sessionRecordsAfter = _database .getNumberOfSessionsAfter(_auditKey);

88
S

ource
C

ode
for

Java
C

lasses

195 _columnNames =newString[] {" session_records_after " ,
" search_records_after " ,
" page_event_records_after "};

_columnValues =new String [] { Integer . toString (_sessionRecordsAfter),
Integer . toString (_searchRecordsAfter),

200 Integer . toString (_pageEventRecordsAfter)};
_database .updateAuditDimension(_auditKey, _columnNames, _columnValues,

" records after counted");
return new int [] { _pageEventRecordsAfter,

_searchRecordsAfter ,
205 _sessionRecordsAfter };

}

int [] getRecordCountsBeforeLoad() {
_pageEventRecordsBefore = _database.getNumberOfPageEventsBefore();

210 _searchRecordsBefore = _database .getNumberOfSearchesBefore();
_sessionRecordsBefore = _database .getNumberOfSessionsBefore();
System.out . println ("Recordsbefore: page event: " + _pageEventRecordsBefore +

". search: " + _searchRecordsBefore + ".session : "
+ _sessionRecordsBefore);

215

_columnNames =newString[] {" session_records_before " ,
" search_records_before " ,
" page_event_records_before "};

_columnValues =new String [] { Integer . toString (_sessionRecordsBefore),
220 Integer . toString (_searchRecordsBefore),

Integer . toString (_pageEventRecordsBefore)};
_database .updateAuditDimension(_auditKey, _columnNames, _columnValues,

" records before load counted");
return new int [] { _pageEventRecordsBefore,

225 _searchRecordsBefore,
_sessionRecordsBefore};

}

private boolean isOnIgnoreList (String requestUrl) {
230 for (int i = 0; i < _ignoreList . length ; i++)

if (requestUrl . indexOf(_ignoreList [i]) !=�1) {
return true ;

}
return false ;

235 }

private boolean isSearchBot (String browser) {
for (int b = 0; b < _searchBotList . length ; b++)

if (browser.indexOf(_searchBotList [b]) !=�1) {
240 return true ;

}
return false ;

}

245 private void loadAndDimensionalize(String filePath) {
BufferedReader [] fileReaders = getBufferedLogFileReaders(filePath);
_database . prepareStatements ();

long _numberOfLogLines = 0;
250

for (int f = 0; f < fileReaders . length ; f++) {
_auditKey = _database .newAuditRecord(_filenames[f],

"New audit record created",
"Recover");

255

System.out. println ("Filename:" + _filenames [f]);
getActiveInfo ();
getRecordCountsBeforeLoad();

260 countLinesInLogFile(filePath , _filenames [f]);

_database . resetFiles ();
processLogFile (fileReaders [f], _filenames [f]);
// getRecordCountsAfterLoad();

265

_newPageEventRecords = _pageEventRecordsAfter� _pageEventRecordsBefore;
String pageEventSuccess = "" ;
if (_newPageEventRecords != _copyPageEventFileCount) {

pageEventSuccess =
270 " Number of new page event records does not "+

"match number of lines in copy file.";
_etlSuccess =false;

}
_newSessionRecords = _sessionRecordsAfter� _sessionRecordsBefore;

275 String sessionSuccess = "" ;
if (_newSessionRecords != _copySessionFileCount) {

sessionSuccess =
" Number of new sessionrecords does not "+
"match number of lines in copy file.";

280 _etlSuccess =false;
}
_newSearchRecords = _searchRecordsAfter� _searchRecordsBefore;
String searchSuccess = "" ;
if (_newSearchRecords != _copySearchFileCount) {

285 searchSuccess =
" Number of new search records does not "+
"match number of lines in copy file.";

_etlSuccess =false;
}

290

_columnNames =newString[] {"new_session_records" ,
"new_search_records",

E
.1

P
ostP

rocessor
S

ervletC
lass

89

"new_page_event_records"};
_columnValues =new String [] { Integer . toString (_newSessionRecords),

295 Integer . toString (_newSearchRecords),
Integer . toString (_newPageEventRecords)};

_database .updateAuditDimension(_auditKey, _columnNames, _columnValues,
"number of new session,search and " +

300 "page event records counted." +
pageEventSuccess + sessionSuccess +
searchSuccess);

if (_etlSuccess) {
305 _successStatus = "ETLprocesscompleted succesfully";

}
else {

_successStatus = " Failure " ;

310 System.out . println ("Successstatus : " + _successStatus);
System.out . println ();

}
}

}
315

/**
* Preloads all dates between fromDate and toDate to the date dimension table .

* Only dates that are defined as vacations or public holidays inthe Date class

* will be recognized as vacations or public holidays .
320 * /

private void loadDates(java . sql .Date fromDate, java . sql .Date toDate) {
try {

GregorianCalendar currentDate =newGregorianCalendar ();
GregorianCalendar endDate =new GregorianCalendar();

325 endDate.setTime(toDate);
int dateKey = 0;

for (currentDate .setTime(fromDate); ! currentDate . after (endDate);
currentDate .add(currentDate .DAY_OF_YEAR, 1)) {

330 dateKey++;
Date date =new Date(dateKey, currentDate);
_database . insertDate (date);

}
_database .copyToDatabase("date");

335 }
catch (Exception e) {

System.out . println (e);
}

}
340

/**

* Preloads a row into the time of day dimension for each second in a 24 hour day.

* /
private void loadTimes ()throws java . io .IOException {

345 long startLoadingTime =new java. util .Date (). getTime ();
GregorianCalendar currentTime =new GregorianCalendar();
GregorianCalendar endTime =newGregorianCalendar();
endTime.setTimeInMillis (Time.valueOf("23:59:59"). getTime ());

350 for (currentTime. setTimeInMillis (Time.valueOf("00:00:00"). getTime ());
!currentTime. after (endTime); currentTime.add(currentTime .SECOND, 1)) {

Time sqlTime =new Time(currentTime.getTimeInMillis ());
int hour = currentTime. get (currentTime.HOUR_OF_DAY);
int minute = currentTime . get (currentTime.MINUTE);

355 int second = currentTime . get (currentTime.SECOND);

String workingHours = "notworking hours";
if (8 <= hour && hour < 16) {

workingHours = "working hours";
360 }

String periodOfDay;
if (0 <= hour && hour < 6) {

periodOfDay = "night " ;
365 }

else if (6 <= hour && hour < 12) {
periodOfDay = "morning";

}
else if (12 <= hour && hour < 18) {

370 periodOfDay = "afternoon ";
}
else {

periodOfDay = "evening" ;
}

375 _database . insertTime (sqlTime , hour , minute , second,
workingHours, periodOfDay);

}
_database .copyToDatabase("time_of_day");
long endLoadingTime =new java. util .Date (). getTime();

380 long loadingTimeInMillis = endLoadingTime� startLoadingTime;
String loadingTime = millisecondsToTime(loadingTimeInMillis);
// System.out . println ("Time to load time_of_day : " + loadingTimeInMillis +
// " milliseconds (" + loadingTime + ").");

}
385

/**
* Takes a long millisecond value as input and returns a string in hh:mm:ss.mmm
* format representing a more human readable value of the time represented by

* the millisecond value .
390 * /

90
S

ource
C

ode
for

Java
C

lasses

private String millisecondsToTime(long milliseconds) {
long millisecond = milliseconds % 1000;
long timeInSeconds = milliseconds / 1000;
long second = timeInSeconds % 60;

395 long timeInMinutes = timeInSeconds / 60;
long minute = timeInMinutes % 60;
long hour = timeInMinutes / 60;
return "" + hour + " :" + minute + " :" + second + " ." + millisecond ;

}
400

booleanprocessLogFile(BufferedReader logFile , String filename){
try {

int currentLineNumber = 0;
_totalLinesProcessed = 0;

405 _validLinesProcessed = 0;
_invalidLinesProcessed = 0;
_database .resetNewInfo ();

// BufferedReader reader = new BufferedReader
410 //(new FileReader(_filePath + _filenames [f]));

LogLine logLine = null ;
String line = null ;

while ((line = logFile . readLine ()) != null) {
415 currentLineNumber++;

_totalLinesProcessed ++;

try {
if (! isOnIgnoreList (line) && !isSearchBot(line) &&

420 line . indexOf(" /F/") !=�1) {
logLine = new LogLine(_logLineKey, filename,

currentLineNumber, line);
_logLineKey++;
_validLinesProcessed++;

425 if (! _database . insertLogLine (logLine)) {
_logLineKey��;
_validLinesProcessed��;
_invalidLinesProcessed ++;
System.out . println ("Error inserting log line " +

430 currentLineNumber);
}

int dateKey = 0;
int timeKey, pageKey, sessionKey;

435 java . sql .Date date =null ;

if (logLine != null) {
_numberOfLogLines++;
UrlQuery urlQuery =new UrlQuery(logLine.getQuery ());

440

// page_event schema
int logLineKey = logLine .getLogLineKey();

if (! logLine .getDate (). equals (date)) {
445 date = logLine .getDate ();

dateKey = _database .getDateKey(date);
if (dateKey ==�1) {

System.out . println ("Nonew log files " +
"can be added until " +

450 "new dates have been " +
" specified ");

throw new Exception("Add new dates to " +
"system before new " +
"log lines can be " +

455 " input ");
}

}

timeKey = _database .getTimeKey(logLine.getTime ());
460

Page page =new Page(logLine);
pageKey = _database.getPageKey(page);

sessionKey = _database .getSessionKey(logLine , pageKey,
465 dateKey, timeKey);

PageEvent pageEvent =newPageEvent(logLineKey,
dateKey,
timeKey,

470 pageKey,
sessionKey,
_auditKey);

_database . insertPageEvent (pageEvent , logLine);

475 // search schema
String searchNumberValidity = "temporary";
int searchNumber = urlQuery. getIntValue

("set_number");
if (searchNumber !=�1) {

480 searchNumberValidity = " valid " ;
}

try {
SearchType searchType =newSearchType

485 (newUrlQuery(logLine.getQuery ()));
int searchTypeKey = _database

.getSearchTypeKey(searchType);

E
.1

P
ostP

rocessor
S

ervletC
lass

91

int numberOfBookDescriptions = 0;
490 int numberOfBooksInBasket = 0;

int numberOfReservations = 0;

if (searchNumber ==�1) {
_tempSearchNumber++;

495 searchNumber = _tempSearchNumber;
searchNumberValidity = "temporary";

}

Search search =new Search(dateKey,
500 timeKey, sessionKey,

searchTypeKey,
searchNumber,
searchNumberValidity ,
numberOfBookDescriptions,

505 numberOfBooksInBasket,
numberOfReservations);

_database . insertSearch (search);
}
catch (NotSearchTypeException e) {

510 if (searchNumberValidity. equals (" valid ")) {
_database .setLastSearchNumber(sessionKey,

searchNumber,
searchNumberValidity);

}
515 }

catch (Exception e) {
System.out . println ("Exceptionin search " +

" part of dimensionalize .");
System.out . println (e);

520 System.out . println (e.getMessage());
}

String pageFunctionType = page
.getPageFunctionType ();

525 if (pageFunctionType.equals ("bookdescription")) {
_database . incrementBookDescriptions(sessionKey);

}
else if (pageFunctionType.equals ("bookin basket")) {

_database . incrementBooksInBasket
530 (sessionKey , page.getNumberOfCheckedBoxes());

}
else if (pageFunctionType.equals (" reservation ")) {

_database . incrementReservations (sessionKey);
}

535 }
}
else {

_invalidLinesProcessed ++;
}

540 } catch (InvalidLogLineException ille) {
// fejl i oprettelse af logline objekt
_invalidLinesProcessed ++;

} catch (MalformedURLException mue) {
// fejl i oprettelse af logline objekt

545 _invalidLinesProcessed ++;
System.out . println ("MalformedURL in " + filename +

", line " + currentLineNumber);
}

}
550

logFile . close ();

_columnNames =newString[] {" total_lines_processed " ,
" valid_lines_processed " ,

555 " invalid_lines_processed "};
_columnValues =new String [] { Integer . toString (_totalLinesProcessed),

Integer . toString (_validLinesProcessed),
Integer . toString (_invalidLinesProcessed)};

booleanmatch = false;
560

if (_fileLineCount == _totalLinesProcessed) {
if (_totalLinesProcessed == _validLinesProcessed +

_invalidLinesProcessed) {
_successStatus = "Processingof log lines complete";

565 match =true ;
}
else {

_successStatus = "Mismatchbetween total number of lines " +
"processedand sum of valid and invalid lines processed";

570 _database .completeAuditRecord(_auditKey, _successStatus , "Proceed");
}

}
else {

if (_totalLinesProcessed == _validLinesProcessed +
575 _invalidLinesProcessed) {

_successStatus = "Sumof valid and invalid lines processed" +
" is equal to total lines processed,but this is not " +
"equal to number of lines in log file";

_database .completeAuditRecord(_auditKey, _successStatus , "Proceed");
580 }

else {
_successStatus = "Thetotal lines processedis neither " +

"equal to the number of lines in the log file or the " +
"sum of valid and invalid log lines processed";

585 _database .completeAuditRecord(_auditKey, _successStatus , "Proceed");
}

92
S

ource
C

ode
for

Java
C

lasses

}

_database .updateAuditDimension(_auditKey, _columnNames, _columnValues,
590 _successStatus);

/*
System.out. println (" Total number of log lines processed :" +
_totalLinesProcessed);
System.out. println ("Number of valid log lines processed :" +

595 _validLinesProcessed);
System.out. println ("Number of invalid log lines processed : " +
_invalidLinesProcessed);* /

if (! match) {
600 throw new AuditMismatchException(_successStatus);

}

_newSessionsProcessed = _database .getNumberOfNewSessions();
_newSearchesProcessed = _database .getNumberOfNewSearches();

605 _newPageEventsProcessed = _database.getNumberOfNewPageEvents();

_columnNames =new String[] {"new_sessions_processed",
"new_searches_processed",
"new_page_events_processed"};

610 _columnValues =new String [] { Integer . toString (_newSessionsProcessed),
Integer . toString (_newSearchesProcessed),
Integer . toString (_newPageEventsProcessed)};

_database .updateAuditDimension(_auditKey, _columnNames, _columnValues,
615 "number of new sessions,searchesand " +

"page events processedcounted");

int _activeSessionsProcessed = _database . saveActiveSessions ();
620 int _activeSearchesProcessed = _database . saveActiveSearches ();

int _activePageEventsProcessed = _database .saveActivePageEvents ();

_columnNames =new String[] {" active_sessions_processed " ,
" active_searches_processed " ,

625 " active_page_events_processed "};
_columnValues =new String [] { Integer . toString (_activeSessionsProcessed),

Integer . toString (_activeSearchesProcessed),
Integer .
toString (_activePageEventsProcessed)};

630 _successStatus = "Activesessions,searchesand page events saved";

_database .updateAuditDimension(_auditKey, _columnNames,
_columnValues, _successStatus);

635 try {

// count number of lines in log line copy file
BufferedReader copyFileReader =newBufferedReader

(new FileReader(_pathToCopyFiles + " log_line . data"));
_linesInCopyFile = 0;

640 _database . flushFile (" log_line . data");
while (copyFileReader. readLine () !=null) {

_linesInCopyFile ++;
}

645 _columnNames =new String[] {" copy_log_line_file_count "};
_columnValues =new String [] { Integer . toString (_linesInCopyFile)};

if (_linesInCopyFile == _validLinesProcessed) {
_successStatus = "Linesin log line copy file counted";

650 }
else {

_successStatus = "Numberof lines in log line copy file does " +
"not match number of valid lines processed";

_etlSuccess =false;
655 match = false;

}

_database .updateAuditDimension(_auditKey, _columnNames,
_columnValues, _successStatus);

660 if (! match) {
throw new AuditMismatchException (_successStatus);

}

// count number of lines in session copy file
665 copyFileReader. close ();

copyFileReader =new BufferedReader
(new FileReader(_pathToCopyFiles + " session . data"));

_copySessionFileCount = 0;
_database . flushFile (" session . data");

670 while (copyFileReader. readLine () !=null) {
_copySessionFileCount++;

}

_columnNames =new String[] {" copy_session_file_count "};
675 _columnValues =new String [] { Integer . toString (_copySessionFileCount)};

_database .setCopySessionFileCount(_copySessionFileCount);

if (_activeSessionsBefore + _newSessionsProcessed ==
680 _activeSessionsProcessed + _copySessionFileCount) {

_successStatus = "Linesin sessioncopy file counted";
}
else {

_successStatus = "Numberof lines in sessioncopy file does " +

E
.1

P
ostP

rocessor
S

ervletC
lass

93

685 "not match number of sessionsprocessed";
_etlSuccess =false;
match = false;

}

690 _database .updateAuditDimension(_auditKey, _columnNames,
_columnValues, _successStatus);

if (! match) {
_etlSuccess =false;
throw new AuditMismatchException (_successStatus);

695 }

// count number of lines in search copy file
copyFileReader. close ();
copyFileReader =new BufferedReader

700 (new FileReader(_pathToCopyFiles + "search . data"));
_copySearchFileCount = 0;
_database . flushFile ("search . data");
while (copyFileReader. readLine () !=null) {

_copySearchFileCount++;
705 }

_columnNames =new String[] {" copy_search_file_count "};
_columnValues =new String [] { Integer . toString (_copySearchFileCount)};

710 _database .setCopySearchFileCount(_copySearchFileCount);

if (_activeSearchesBefore + _newSearchesProcessed ==
_activeSearchesProcessed + _copySearchFileCount) {
_successStatus = "Linesin search copy file counted";

715 }
else {

_successStatus = "Numberof lines in search copy file does " +
"not match number of valid searchesprocessed";

_etlSuccess =false;
720 match = false;

}

_database .updateAuditDimension(_auditKey, _columnNames,
_columnValues, _successStatus);

725 if (! match) {
_etlSuccess =false;
throw new AuditMismatchException (_successStatus);

}

730 // count number of lines in page event copy file
copyFileReader. close ();
copyFileReader =new BufferedReader

(new FileReader(_pathToCopyFiles + "page_event. data"));

_copyPageEventFileCount = 0;
735 _database . flushFile ("page_event. data");

while (copyFileReader. readLine () !=null) {
_copyPageEventFileCount++;

}

740 copyFileReader. close ();
_database .setCopyPageEventFileCount(_copyPageEventFileCount);

_columnNames =new String[] {"copy_page_event_file_count "};
_columnValues =new String [] { Integer . toString (_copyPageEventFileCount)};

745

_database .setCopyPageEventFileCount(_copyPageEventFileCount);

if (_activePageEventsBefore + _newPageEventsProcessed ==
_activePageEventsProcessed + _copyPageEventFileCount){

750 _successStatus = "Linesin page_eventcopy file counted";
}
else {

_successStatus = "Numberof lines in page_eventcopy file " +
"does not match number of valid page events processed";

755 _etlSuccess =false;
match = false;

}

_database .updateAuditDimension(_auditKey, _columnNames,
760 _columnValues, _successStatus);

if (! match) {
_etlSuccess =false;
throw new AuditMismatchException (_successStatus);

}
765 }

catch (Exception e) {
System.out . println (e);

}

770 // return currentLineNumber;
// Skriv fÃ¸rst antallet af gyldige og ugyldige processerede log
// linier i stabil hukommelse, eller send med.

System.out . println (" Startcopying to database");
775

String [] tablesToCopy =new String [] { " log_line " , " session" ,
"page_event" , "search" ,
" active_session " , " active_search " ,
" active_page_event "};

780 _etlSuccess = _database .copyToDatabase(tablesToCopy, _auditKey);

System.out . println ("Endcopying to database");

94
S

ource
C

ode
for

Java
C

lasses

// count new records in log_line table
785 _newLogLineRecords = _database.getNumberOfLogLinesFromFile(filename);

_columnNames =new String[] {"new_log_line_records"};
_columnValues =new String [] { Integer . toString (_newLogLineRecords)};

790 if (_validLinesProcessed == _newLogLineRecords) {
_successStatus = "Newrecords in log_line table counted";

}
else {

_successStatus = "Numberof new records in log_line table does " +
795 "not match number of valid log lines processed";

_etlSuccess =false;
match = false;

}

800 _database .updateAuditDimension(_auditKey, _columnNames, _columnValues,
_successStatus);

if (! match) {
_etlSuccess =false;
throw new AuditMismatchException(_successStatus);

805 }

// count new records in session table
/*

_newSessionRecords = _database.getNumberOfSessionsFromRun(auditKey);
810

_columnNames = new String[] {"new_log_line_records "};
_columnValues = new String [] { Integer . toString (_newLogLineRecords)};

if (_validLinesProcessed == _newLogLineRecords) {
815 _successStatus = " New records in log_line table counted";

}
else {
_successStatus = " Number of new records in log_line table does " +
"not match number of valid log lines processed ";

820 match = false ;
}

_database .updateAuditDimension(_auditKey, _columnNames, _columnValues,
_successStatus);

825 if (! match) {
throw new AuditMismatchException(_successStatus);
}

// count new records in search table
830 _newLogLineRecords = _database.getNumberOfLogLinesFromFile(filename);

_columnNames = new String[] {"new_log_line_records "};
_columnValues = new String [] { Integer . toString (_newLogLineRecords)};

835 if (_validLinesProcessed == _newLogLineRecords) {
_successStatus = " New records in log_line table counted";
}
else {
_successStatus = " Number of new records in log_line table does " +

840 "not match number of valid log lines processed ";
match = false ;
}

_database .updateAuditDimension(_auditKey, _columnNames, _columnValues,
845 _successStatus);

if (! match) {
throw new AuditMismatchException(_successStatus);
}

850 // count new records in page_event table
_newLogLineRecords = _database.getNumberOfLogLinesFromFile(filename);

_columnNames = new String[] {"new_log_line_records "};
_columnValues = new String [] { Integer . toString (_newLogLineRecords)};

855

if (_validLinesProcessed == _newLogLineRecords) {
_successStatus = " New records in log_line table counted";
}
else {

860 _successStatus = " Number of new records in log_line table does " +
"not match number of valid log lines processed ";
match = false ;
}

865 _database .updateAuditDimension(_auditKey, _columnNames, _columnValues,
_successStatus);
if (! match) {
throw new AuditMismatchException(_successStatus);
}

870 * /

// System.out . println ("Number of new lines in the log_linetable : " +
// _newLogLineRecords);

875 /* boolean noProblems = _fileLineCount == _totalLinesProcessed &&
_totalLinesProcessed == (_validLinesProcessed +
_invalidLinesProcessed) &&
_validLinesProcessed == _linesInCopyFile &&
_linesInCopyFile ==_newLogLineRecords;

880

E
.1

P
ostP

rocessor
S

ervletC
lass

95

if (noProblems) {
_successStatus = " ETL process succesfully finished .";
}
else {

885 _successStatus = " Problem during ETL process . Data not correct .";
} * /

}
catch (AuditMismatchException ame) {

System.out . println ("Auditmismatch");
890 errorHandling (" audit mismatch");

}
catch (Exception e) { // hvis der sker en fejl i læsningen af en fil

System.out . println (" PostProcessor . insertLogFile ()failed ...");
System.out . println (e);

895 for (int s = 0; s < e. getStackTrace (). length ; s++)
System.out . println (e. getStackTrace ()[s]);

}
return _etlSuccess ;

}
900

void setAuditKey(int newAuditKey) {
_auditKey = newAuditKey;

}

905 /**
* Presents the query result as a table in html.

* /
private void viewQueryResult(String query) {

try {
910 ResultSet resultSet = _database .query(query);

if (resultSet !=null) {
ResultSetMetaData metaData = resultSet .getMetaData();

915 _out . println ("<table border=\"1\" cellspacing =\"0\">");
_out . println ("<tr>");
for (int c = 1; c <= metaData.getColumnCount(); c++) {

_out . println ("<th>" + metaData.getColumnName(c) + "</th>");
}

920 _out . println ("</ tr >");
while (resultSet . next ()) {

_out . println ("<tr>");
for (int c = 1; c <= metaData.getColumnCount(); c++) {

_out . println ("<td>" + resultSet . getString (c) + "</td>");
925 }

_out . println ("</ tr >");
}
_out . println ("</ table >");

}

930 } catch (Exception e) {
_out . println (" PostProcessor .viewQueryResultfailed ...");
_out . println (e);

}
}

935

public void doGet(HttpServletRequest request , HttpServletResponseresponse)
throws ServletException , IOException {

long startTime = System. currentTimeMillis ();
940 System.out . println (" \n\n\nNEWRUN AT " + (new java.util.Date(startTime)));

System.out . println ();

response .setContentType(" text /html");
_out = response . getWriter ();

945

if (_runningOn.equals("baerbar")) {
System.out . println ("Runningon baerbar");
_pathToCopyFiles = " / var / lib / pgsql /" ;
// _database = new Database(" test ", " louise ", _pathToCopyFiles);

950 _database =new Database("aub" , "aub" , _pathToCopyFiles);
_filePath = "/home/louise / projekt / logfiles2 /" ;

}
else if (_runningOn.equals(" stationaer ")) {

System.out . println ("Runningon stationaer");
955 _pathToCopyFiles = " /pack/ postgres /" ;

_database =new Database("aub" , " louise " , _pathToCopyFiles);
// _database = new Database(" aubtest ", " louise ", _pathToCopyFiles);
// _database = new Database(" test ", " louise ", _pathToCopyFiles);
_filePath = "/pack/ louise / projekt / logfiles /" ;

960 }
else {

System.out . println ("ERROR!WHERE AM I RUNNING???");
}

965 String task = (String) request . getParameter (" task");
String query = (String) request . getParameter ("query");
if (query ==null) {

query = "SELECT * FROM log_line";
}

970 String filename = (String) request . getParameter ("filename");
if (filename ==null)

filename = "access_log.20030225";

int logLineFromLine = 0;
975 int logLineToLine = 1000;

String logLineFromLineString = request . getParameter ("loglinesfromrow");
if (logLineFromLineString !=null)

logLineFromLine = Integer . parseInt (logLineFromLineString);

96
S

ource
C

ode
for

Java
C

lasses

String logLineToLineString = request . getParameter (" loglinestorow ");
980 if (logLineToLineString != null)

logLineToLine = Integer . parseInt (logLineToLineString);

String fromDateString = request . getParameter ("fromdate");
if (fromDateString ==null)

985 fromDateString = "2003�02�25";
java . sql .Date fromDate = java . sql .Date.valueOf(fromDateString);
String toDateString = request . getParameter (" todate ");
if (toDateString ==null)

toDateString = "2004�07�01";
990 java . sql .Date toDate = java . sql .Date.valueOf(toDateString);

_out . println ("<html>");
_out . println ("<head><title >PostProcessoron " + _runningOn + "</ title ></head>");
_out . println ("<body>");

995 _out . println ("<table cellpadding=\"10\" border=\"1\">");
_out . println ("<tr>");
_out . println ("<td>");
_out . println ("<form action=\"PostProcessor\"method=\"get\">");
_out . println ("<input type=\"hidden\" name=\"task\" value=\" insertloglines \">");

1000 _out . println (" Insert rows from <input type=\"text\" " +
"name=\"loglinesfromrow\"value=\"" +
logLineFromLine + "\" size =\"10\">" +
" to <input type=\" text \" name=\"loglinestorow\"value=\"" +
logLineToLine + "\" size =\"10\">");

1005 _out . println (" from file <input type=\" text \" name=\"filename\"value=\"" +
filename + "\">");

_out . println ("<input type=\"submit\" value=\" Insert \">");
_out . println ("</form>");
_out . println ("</td>");

1010 _out . println ("<td align=\" center \">");
_out . println ("<form action=\"PostProcessor\"method=\"get\">");
_out . println ("<input type=\"hidden\" name=\"task\" value=\" emptyloglines \">");
_out . println ("<input type=\"submit\" value=\"Empty log lines\">");
_out . println ("</form>");

1015 _out . println ("</td>");
_out . println ("</ tr >");
_out . println ("<tr>");
_out . println ("<td colspan=\"2\">");
_out . println ("<form action=\"PostProcessor\"method=\"get\">");

1020 _out . println ("<input type=\"hidden\" name=\"task\" " +
"value=\" insertallloglines \">");

_out . println ("<input type=\"submit\" value=\" Insert All Log Files\">");
_out . println ("</form>");
_out . println ("</td>");

1025 _out . println ("</ tr >");
_out . println ("<tr>");
_out . println ("<td colspan=\"2\">");

_out . println ("<form action=\"PostProcessor \"method=\"get\">");
_out . println ("<input type=\"hidden\" name=\"task\" value=\"query\">");

1030 _out . println ("< textareaname=\"query\"cols=\"50\" rows=\"5\">" +
query + "</ textarea >");

_out . println ("<input type=\"submit\" value=\"Query\">");
_out . println ("</form>");
_out . println ("</td>");

1035 _out . println ("</ tr >");
_out . println ("<tr>");
_out . println ("<td>");
_out . println ("<form action=\"PostProcessor \"method=\"get\">");
_out . println ("<input type=\"hidden\" name=\"task\" value=\" loaddates \">");

1040 _out . println ("<input type=\" text \" name=\"fromdate\"value=\"2003�02�25\">");
_out . println ("<input type=\" text \" name=\"todate\"value=\"2004�07�01\">");
_out . println ("<input type=\"submit\" value=\"Load dates\">");
_out . println ("</form>");
_out . println ("</td>");

1045 _out . println ("<td>");
_out . println ("<form action=\"PostProcessor \"method=\"get\">");
_out . println ("<input type=\"hidden\" name=\"task\" value=\" loadtimes \">");
_out . println ("<input type=\"submit\" value=\"Load times\">");
_out . println ("</form>");

1050 _out . println ("</td>");
_out . println ("</ tr >");
_out . println ("<tr>");
_out . println ("<td>");
_out . println ("<form action=\"PostProcessor \"method=\"get\">");

1055 _out . println ("<input type=\"hidden\" name=\"task\" value=\" dimensionalize \">");
_out . println ("<input type=\"submit\" value=\"Dimensionalize\">");
_out . println ("</form>");
_out . println ("</td>");
_out . println ("<td>");

1060 _out . println ("<form action=\"PostProcessor \"method=\"get\">");
_out . println ("<input type=\"hidden\" name=\"task\" value=\" reconnect \">");
_out . println ("<input type=\"submit\" value=\"Reconnectto database\">");
_out . println ("</form>");
_out . println ("</td>");

1065 _out . println ("</ tr >");
_out . println ("<tr>");
_out . println ("<td colspan=\"2\">");
_out . println ("<form action=\"PostProcessor \"method=\"get\">");
_out . println ("<input type=\"hidden\" name=\"task\" " +

1070 "value=\" insertanddimensionalize \">");
_out . println ("<input type=\"submit\" value=\" Insert and Dimensionalize\">");
_out . println ("</form>");
_out . println ("</td>");
_out . println ("</ tr >");

1075 _out . println ("</ table >");
_out . flush ();

E
.2

D
atabase

C
lass

97

if (_database .openConnection ()) {
if (task != null) {

if (task . equals (" insertloglines ")) {
1080 System.out . println (" task insertloglines not available ");

/*
_logLineKey = _database .getMaxLogLineKey() + 1;
// _lastEmptiedLogLineKey = 0;
try {

1085 BufferedReader reader = new BufferedReader(new FileReader
(_filePath +
filename));
int linesInserted = insertLogFile (reader , filename ,
logLineFromLine,

1090 logLineToLine);
_out . println ("Read to line " + linesInserted +
" in the log file .");
}
catch (FileNotFoundException fnfe) {

1095 _out . println (" File " + filename + " not found in " +
_filePath);
}

* /
}

1100 else if (task . equals (" insertallloglines ")) {
System.out . println (" task insertallloglines not available ");
/*

_logLineKey = _database .getMaxLogLineKey() + 1;
// _lastEmptiedLogLineKey = 0;

1105 BufferedReader [] fileReaders = getBufferedLogFileReaders
(_filePath);
for (int r = 0; r < fileReaders . length ; r++) {
// BufferedReader reader = new BufferedReader(new FileReader
// (_filePath +

1110 // _filenames [s]));
insertLogFile (fileReaders [r], _filenames [r], 0, 10000000);
}

* /
}

1115 else if (task . equals (" insertanddimensionalize ")) {
_logLineKey = _database .getMaxLogLineKey() + 1;
_database .setSessionKey ();
loadAndDimensionalize(_filePath);
// BufferedReader [] fileReaders =

1120 // getBufferedLogFileReaders(_filePath);
// for (int r = 0; r < fileReaders . length ; r++) {
// BufferedReader reader = new BufferedReader(new FileReader
// (_filePath +
// _filenames [s]));

1125 // insertLogFile (fileReaders [r], _filenames [r], 0, 10000000);

//}
}
else if (task . equals ("query")) {

viewQueryResult(query);
1130 }

else if (task . equals (" loaddates ")) {
loadDates(fromDate, toDate);

}
else if (task . equals (" loadtimes")) {

1135 loadTimes ();
}
else if (task . equals (" dimensionalize ")) {

System.out . println (" taskdimensionalizenot available ");
/*

1140 _out . flush ();
dimensionalizeLogLines ();

* /
}
else if (task . equals (" reconnect")) {

1145 _database .closeConnection ();
_database .openConnection();

}
else

_out . println ("Error! Task does not exist.
");
1150 }

_database . closeConnection ();
}
else {

_out . println ("Connectionto databasefailed
");
1155 }

_out . println ("</body></html>");

_out . close ();
long endTime = System.currentTimeMillis ();

1160 System.out . println (" \n\nFINISHEDAT " + (new java.util.Date(endTime)));
long totalTime = endTime� startTime;
System.out . println ("Totaltime: " + totalTime + " milliseconds (" +

millisecondsToTime(totalTime) + ").");
}

1165 }

E.2 Database Class
packageaub;

import java . io .* ;
import java . lang .* ;

5 import java . net .* ;

98
S

ource
C

ode
for

Java
C

lasses

import java . sql .* ;
import java . util .* ;

public class Database {
10 String _databaseName, _username;

Connection _connection ;
Statement _statement ;
ResultSet _resultSet ;
int _numberOfOvermathedLogLines;

15 int _sessionKey , _pageKey;
Vector _activePageEvents , _activeSessions , _activeSearches , _pages , _searchTypes;
FileOutputStream _fileOutputStream ;
OutputStreamWriter _outputStreamWriter ;
PrintWriter _logLineFile , _sessionFile , _pageEventFile, _searchFile ,

20 _searchTypeFile , _dateFile , _timeOfDayFile, _activePageEventFile ,
_activeSessionFile , _activeSearchFile ; //, _pageFile ;

String _pathToCopyFiles;
int _copyPageEventFileCount, _copySessionFileCount , _copySearchFileCount;
int _newSessions, _newSearches, _newPageEvents;

25 int _newSessionRecords, _newSearchRecords, _newPageEventRecords;
int _sessionRecordsBefore , _searchRecordsBefore , _pageEventRecordsBefore;
int _sessionRecordsAfter , _searchRecordsAfter , _pageEventRecordsAfter;
String [] _columnNames, _columnValues;

30 public Database (String databaseName, String username, String pathToCopyFiles) {
_databaseName = databaseName;
_username = username;
_sessionKey = 0;
_pageKey = 0;

35 _numberOfOvermathedLogLines = 0;
_activePageEvents =new Vector ();
_activeSessions =new Vector ();
_activeSearches =new Vector ();
_pages =newVector ();

40 _searchTypes =newVector ();
_pathToCopyFiles = pathToCopyFiles;

try {
resetFiles ();

45

// _fileOutputStream = new FileOutputStream(_pathToCopyFiles +
// "page.data ");
// _outputStreamWriter = new OutputStreamWriter(_fileOutputStream , " UTF�8");
// _pageFile = new PrintWriter (new BufferedWriter(_outputStreamWriter));

50

_fileOutputStream =newFileOutputStream(_pathToCopyFiles + "date . data");
_outputStreamWriter =new OutputStreamWriter(_fileOutputStream , "UTF�8");
_dateFile =new PrintWriter (new BufferedWriter(_outputStreamWriter));

55 _fileOutputStream =new FileOutputStream(_pathToCopyFiles +
"time_of_day.data");

_outputStreamWriter =new OutputStreamWriter(_fileOutputStream , "UTF�8");
_timeOfDayFile =new PrintWriter (new BufferedWriter(_outputStreamWriter));

}
60 catch (Exception e) {

System.out. println ("Databaseconstructor failed ...");
System.out. println ("Exception:" + e);
System.out. println (e.getMessage());

}
65 }

public booleanopenConnection() {
booleansuccess =false;
try {

70 Class .forName("org. postgresql . Driver");
_connection = DriverManager.getConnection("jdbc : postgresql :" +

_databaseName,
_username, "");

if (_connection !=null) {
75 System.out . println ("Connectionopen");

System.out . println ("dababaseName:" + _databaseName +
", username:" + _username);

success =true ;
}

80 _statement = _connection . createStatement ();
} catch (SQLException se) {

System.out. println ("Database.openConnection()failed ...");
System.out. println ("SQLException:" + se.getMessage());
System.out. println ("SQLState: " + se.getSQLState());

85 System.out. println ("VendorError: " + se .getErrorCode ());
} catch (Exception e) {

System.out. println ("Database.openConnection()failed ...");
System.out. println (e);

}
90 return success ;

}

public void closeConnection () {
try {

95 _connection . close ();
} catch (SQLException se) {

System.out. println ("Database.closeConnection()failed ...");
System.out. println ("SQLException:" + se.getMessage());
System.out. println ("SQLState: " + se.getSQLState());

100 System.out. println ("VendorError: " + se .getErrorCode ());
} catch (Exception e) {

System.out. println ("Database.closeConnection()failed ...");
System.out. println (e);

E
.2

D
atabase

C
lass

99

System.out . println (e.getMessage());
105 }

}

public void copyToDatabase(String table) {
try {

110 PrintWriter file = null ;
if (table . equals (" log_line ")) {

file = _logLineFile ;
}
else if (table . equals (" session ")) {

115 file = _sessionFile ;
System.out . println ("SESSIONFILE");

}
else if (table . equals ("page_event")) {

file = _pageEventFile ;
120 }

else if (table . equals ("search")) {
file = _searchFile ;

}
else if (table . equals ("search_type")) {

125 file = _searchTypeFile ;
}
else if (table . equals ("time_of_day")) {

file = _timeOfDayFile;
}

130 else if (table . equals ("date")) {
file = _dateFile ;

}
else if (table . equals (" active_page_event ")) {

file = _activePageEventFile ;
135 }

else if (table . equals (" active_session ")) {
file = _activeSessionFile ;

}
else if (table . equals (" active_search ")) {

140 file = _activeSearchFile ;
}
// else if (table . equals ("page ")) {
// file = _pageFile ;
//}

145 file . write (" \\.\ n");
file . flush ();
file . close ();
update("COPY" + table + " FROM ’"

+ _pathToCopyFiles + table + " . data ’");
150 }

catch (Exception e) {
System.out . println ("Database.copyToDatabasefailed ...");

System.out . println (e);
System.out . println (e.getMessage ());

155 }
}

public booleancopyToDatabase(String [] tables ,int auditKey) {
booleansuccess =true ;

160 try {
_connection .setAutoCommit(false);
deleteActiveInfo ();
for (int t = 0; t < tables . length ; t++) {

PrintWriter file = null ;
165 if (tables [t]. equals (" log_line ")) {

file = _logLineFile ;
}
else if (tables [t]. equals (" session ")) {

file = _sessionFile ;
170 }

else if (tables [t]. equals ("page_event")) {
file = _pageEventFile ;

}
else if (tables [t]. equals ("search")) {

175 file = _searchFile ;
}
else if (tables [t]. equals ("search_type")) {

file = _searchTypeFile ;
}

180 else if (tables [t]. equals ("time_of_day")) {
file = _timeOfDayFile;

}
else if (tables [t]. equals ("date")) {

file = _dateFile ;
185 }

else if (tables [t]. equals (" active_page_event ")) {
file = _activePageEventFile ;
// throw new SQLException("Interrupted by user ");

}
190 else if (tables [t]. equals (" active_session ")) {

file = _activeSessionFile ;
}
else if (tables [t]. equals (" active_search ")) {

file = _activeSearchFile ;
195 }

// else if (tables [t]. equals ("page ")) {
// file = _pageFile ;
//}

file . write (" \\.\ n");
200 file . flush ();

file . close ();

100
S

ource
C

ode
for

Java
C

lasses

_statement .addBatch("COPY" + tables[t] + " FROM ’" +
_pathToCopyFiles + tables [t] + " . data ’");

}
205 _statement .executeBatch ();

if (success) {
completeAuditRecord(auditKey, "ETLprocess" +

"completed succesfully" , "Proceed");
210 _connection .commit();

}
else {

_connection . rollback ();
}

215 }
catch (SQLException sqle) {

try {
success =false;
System.out . println ("Rollback");

220 _connection . rollback ();
}
catch (Exception e) {

System.out . println (e);
}

225 success =false;
System.out . println ("Database.copyToDatabasefailed ...");
System.out . println (sqle);
System.out . println (sqle .getMessage ());
System.out . println (sqle .getNextException ());

230 }
catch (Exception e) {

success =false;
System.out . println ("Database.copyToDatabasefailed ...");
System.out . println (e);

235 System.out . println (e.getMessage());
}
try {

_connection .setAutoCommit(true);
}

240 catch (Exception e) {
System.out . println (e);

}
return success ;

}
245

private void deleteActiveInfo () {
update("DELETEFROM active_page_event");
update("DELETEFROM active_search");
update("DELETEFROM active_session");

250 }

/*
public void emptyCopyFiles() {
try {

255 copyToDatabase("page_event");
// _fileOutputStream = new FileOutputStream(_pathToCopyFiles +
// "page_event. data ");
// _outputStreamWriter = new OutputStreamWriter(_fileOutputStream , " UTF�8");
// _pageEventFile = new PrintWriter (new BufferedWriter(_outputStreamWriter));

260

copyToDatabase("search ");
// _fileOutputStream = new FileOutputStream(_pathToCopyFiles + " search . data ");
// _outputStreamWriter = new OutputStreamWriter(_fileOutputStream , " UTF�8");
// _searchFile = new PrintWriter (new BufferedWriter(_outputStreamWriter));

265

copyToDatabase("session ");
// _fileOutputStream = new FileOutputStream(_pathToCopyFiles +
// " session . data ");
// _outputStreamWriter = new OutputStreamWriter(_fileOutputStream , " UTF�8");

270 // _sessionFile = new PrintWriter (new BufferedWriter(_outputStreamWriter));
}
catch (Exception e) {
System.out. println ("Database.emptyCopyFiles() failed...");
System.out. println (e);

275 System.out. println (e.getMessage());
}
}

* /

280 public void emptyLogLineFile() {
try {

copyToDatabase("log_line");
_fileOutputStream =new FileOutputStream(_pathToCopyFiles +

" log_line . data");
285 _outputStreamWriter =new OutputStreamWriter(_fileOutputStream , "UTF�8");

_logLineFile =new PrintWriter (newBufferedWriter(_outputStreamWriter));
}
catch (Exception e) {

System.out. println ("Database.emptyLogLineFile()failed ...");
290 System.out. println (e);

System.out. println (e.getMessage());
}

}

295 public void execute (String executeString) {
try {

_statement = _connection . createStatement ();
_statement . execute (executeString);

} catch (SQLException se) {

E
.2

D
atabase

C
lass

101

300 System.out . println ("Database.execute()failed ...");
System.out . println ("ExecuteString :" + executeString);
System.out . println ("SQLException:" + se.getMessage());
System.out . println ("SQLState: " + se.getSQLState());
System.out . println ("VendorError: " + se .getErrorCode ());

305 } catch (Exception e) {
System.out . println ("Database.execute()failed ...");
System.out . println ("ExecuteString :" + executeString);
System.out . println ("Statement:" + _statement);
System.out . println (e);

310 System.out . println (e.getMessage());
}

}

public void flushFile (String filename) {
315 try {

if (filename . equals (" log_line . data")) {
_logLineFile . flush ();

}
else if (filename . equals (" session . data")) {

320 _sessionFile . flush ();
}
else if (filename . equals ("page_event. data")) {

_pageEventFile . flush ();
}

325 else if (filename . equals ("search . data")) {
_searchFile . flush ();

}
else if (filename . equals ("search_type . data")) {

_searchTypeFile . flush ();
330 }

else if (filename . equals ("time_of_day.data")) {
_timeOfDayFile.flush ();

}
else if (filename . equals ("date . data")) {

335 _dateFile . flush ();
}
else if (filename . equals (" active_page_event . data")) {

_activePageEventFile . flush ();
}

340 else if (filename . equals (" active_session . data")) {
_activeSessionFile . flush ();

}
else if (filename . equals (" active_search . data")) {

_activeSearchFile . flush ();
345 }

// else if (filename . equals ("page.data ")) {
// _pageFile . flush ();
//}

}
350 catch (Exception e) {

System.out . println ("Database. flushFilefailed ...");
System.out . println (e);
System.out . println (e.getMessage ());

}
355 }

public booleancompleteAuditRecord(int auditKey , String successStatus ,
String proceed) {

update("UPDATEaudit SET etl_end_time= CURRENT_TIMESTAMP, " +
360 " success_status= ’" + successStatus + " ’,proceed = ’" +

proceed + "’ WHERE audit_key = " + auditKey);
System.out . println ("Successstatus : " + successStatus);
return true ;

}
365

public int getActivePageEvents () {
try {

query("EXECUTE select_active_page_events");

370 while (_resultSet . next ()) {
_activePageEvents .add(getPageEventFromResultSet ());

}
// update("DELETE FROM active_page_event");
_resultSet . close ();

375 }
catch (Exception e) {

System.out . println ("Database.getActivePageEvents()failed ...");
System.out . println (e);
System.out . println (e.getMessage ());

380 }
return _activePageEvents . size ();

}

public int getActiveSearches () {
385 try {

query("EXECUTE select_active_searches");

while (_resultSet . next ()) {
_activeSearches .add(getSearchFromResultSet ());

390 }
// update("DELETE FROM active_search");
_resultSet . close ();

}
catch (Exception e) {

395 System.out . println ("Database. getActiveSearches ()failed ...");
System.out . println (e);
System.out . println (e.getMessage ());

102
S

ource
C

ode
for

Java
C

lasses

}
return _activeSearches . size ();

400 }

public int getActiveSessions () {
try {

query("EXECUTE select_active_sessions");
405

while (_resultSet . next ()) {
_activeSessions .add(getSessionFromResultSet ());

}
_resultSet . close ();

410 }
catch (Exception e) {

System.out . println ("Database. getActiveSessions ()failed ...");
System.out . println (e);
System.out . println (e.getMessage());

415 }
return _activeSessions . size ();

}

public Audit getAudit (int auditKey) {
420 Audit audit = null ;

try {
query("EXECUTE select_audit");

if (_resultSet . next ()) {
425 audit = newAudit(auditKey,

_resultSet . getString ("filename"),
_resultSet . getString (" etl_start_time "),
_resultSet . getString ("etl_end_time"),
_resultSet . getInt (" log_file_line_count "),

430 _resultSet . getInt (" total_lines_processed "),
_resultSet . getInt (" valid_lines_processed "),
_resultSet . getInt (" invalid_lines_processed "),
_resultSet . getInt (" copy_log_line_file_count "),
_resultSet . getInt ("new_log_line_records"),

435 _resultSet . getString (" success_status "),
_resultSet . getString ("proceed"),
_resultSet . getInt ("min_log_line_key"),
_resultSet . getInt ("max_log_line_key"));

}
440 _resultSet . close ();

}
catch (Exception e) {

System.out . println ("Database.getAudit ...");
System.out . println (e);

445 System.out . println (e.getMessage());
}

return audit ;
}

450 public Audit [] getAuditForUnfinishedLoads () {
Audit [] audits = null ;
try {

query("SELECT * FROM audit WHERE proceed = ’fix this before proceeding’");

455 _resultSet . last ();
int numberOfRows = _resultSet.getRow();
audits =new Audit[numberOfRows];
_resultSet . beforeFirst ();

460 int row = 0;
while (_resultSet . next ()) {

audits [row] =newAudit(_resultSet . getInt ("audit_key"),
_resultSet . getString ("filename"),
_resultSet . getString (" etl_start_time "),

465 _resultSet . getString ("etl_end_time"),
_resultSet . getInt (" log_file_line_count "),
_resultSet . getInt (" total_lines_processed "),
_resultSet . getInt (" valid_lines_processed "),
_resultSet . getInt (" invalid_lines_processed "),

470 _resultSet . getInt (" copy_log_line_file_count "),
_resultSet . getInt ("new_log_line_records"),
_resultSet . getString (" success_status "),
_resultSet . getString ("proceed"),
_resultSet . getInt ("min_log_line_key"),

475 _resultSet . getInt ("max_log_line_key"));
row++;

}
_resultSet . close ();

}
480 catch (Exception e) {

System.out. println ("Database.getAuditForUnfinishedLoads ()...");
System.out. println (e);
System.out. println (e.getMessage());

}
485 return audits ;

}

public int getDateKey(java . sql .Date date) {
int dateKey =�1;

490

try {
query("EXECUTE select_date_key(’" + date + "’)");

if (_resultSet . next ()) {
495 dateKey = _resultSet . getInt ("date_key");

E
.2

D
atabase

C
lass

103

}
_resultSet . close ();

} catch (Exception e) {
System.out . println ("Database.getDateKey()failed ...");

500 System.out . println (e);
System.out . println (e.getMessage());

}
return dateKey;

}
505

public String getLastSuccessfulLoadFilename () {
String filename =null ;
try {

query("SELECT filename FROM audit WHERE proceed = ’Proceed’ "+
510 "ORDER BY audit_key DESC LIMIT 1");

if (_resultSet . next ()) {
filename = _resultSet . getString (1);

}
515 }

catch (Exception e) {
System.out . println ("Database.getLastSuccessfulLoadFilename() failed ...");
System.out . println (e);
System.out . println (e.getMessage());

520 }
return filename ;

}

public String [] getLoadedLogFileNames() {
525 String [] filenames =null ;

try {
query("SELECT filename FROM audit WHERE proceed = ’Proceed’ "+

"ORDER BY audit_key");

530 _resultSet . last ();
int numberOfRows = _resultSet.getRow();
filenames =new String [numberOfRows];
_resultSet . beforeFirst ();

535 for (int f = 0; f < numberOfRows && _resultSet.next(); f++) {
filenames [f] = _resultSet . getString (1);

}
}
catch (Exception e) {

540 System.out . println ("Exceptionin Database.getLoadedLogFileNames...");
System.out . println (e);
System.out . println (e.getMessage());

}
return filenames ;

545 }

public LogLine getLogLine(int logLineKey) {
LogLine logLine = null ;
try {

550 query("EXECUTE select_log_line(" + logLineKey + ")");

if (_resultSet . next ()) {
logLine = getLogLineFromResultSet();

}
555 _resultSet . close ();

} catch (Exception e) {
System.out . println ("Database.getLogLine()failed ...");
System.out . println (e);
System.out . println (e.getMessage ());

560 }
return logLine;

}

public LogLine[] getLogLines(int numberOfLogLines,int firstLogLineKey) {
565 LogLine[] logLineArray = new LogLine[numberOfLogLines];

try {
int lastLogLineKey = ((firstLogLineKey / numberOfLogLines)*

numberOfLogLines) + numberOfLogLines� 1;
query("EXECUTE select_log_lines(" + firstLogLineKey + ", " +

570 lastLogLineKey + ")");
for (int l = firstLogLineKey ; l <= lastLogLineKey; l++) {

if (_resultSet . next ()) {
logLineArray[l%numberOfLogLines] = getLogLineFromResultSet();

}
575 }

_resultSet . close ();
} catch (Exception e) {

System.out . println ("Database.getLogLine()failed ...");
System.out . println (e);

580 System.out . println (e.getMessage ());
}
return logLineArray;

}

585 private LogLine getLogLineFromResultSet() {
LogLine logLine = null ;
try {

int logLineKey = _resultSet . getInt (" log_line_key ");
String filename = _resultSet . getString ("filename");

590 int logLineNumber = _resultSet . getInt ("log_line_number");
String ipAddress = _resultSet . getString (" ip_address");
String ident = _resultSet . getString (" ident ");
String authuser = _resultSet . getString ("authuser ");

104
S

ource
C

ode
for

Java
C

lasses

java . sql .Date date = _resultSet .getDate("date");
595 Time time = _resultSet .getTime("time");

String timezone = _resultSet . getString ("timezone");
String method = _resultSet . getString ("method");
String requestUrl = _resultSet . getString (" request_url ");
String sessionTag = _resultSet . getString (" session_tag ");

600 String serial = _resultSet . getString (" serial ");
String query = _resultSet . getString ("query");
String protocol = _resultSet . getString (" protocol ");
int status = _resultSet . getInt (" status ");
int bytes = _resultSet . getInt ("bytes");

605 String servername = _resultSet . getString ("servername");
String referrer = _resultSet . getString (" referrer ");
String browser = _resultSet . getString ("browser");

logLine = new LogLine(logLineKey, filename , logLineNumber, ipAddress,
610 ident , authuser , date , time , timezone , method,

requestUrl , sessionTag , serial , query , protocol ,
status , bytes , servername , referrer , browser);

}
catch (Exception e) {

615 System.out . println ("Database.getLogLineFromResultSet() failed ...");
System.out . println (e);
System.out . println (e.getMessage());

}
return logLine;

620 }

public int getMaxAuditKey() {
int maxAuditKey = 0;
try {

625 query("SELECT max(audit_key)FROM audit");
if (_resultSet . next ()) {

maxAuditKey = _resultSet . getInt (1);
}
_resultSet . close ();

630 } catch (Exception e) {
System.out . println ("Database.getMaxAuditKeyfailed ...");
System.out . println (e);
System.out . println (e.getMessage());

}
635 return maxAuditKey;

}

public int getMaxLogLineKey() {
int maxLogLineKey =�1;

640 try {
query("SELECT max(log_line_key)FROM log_line");
if (_resultSet . next ()) {

maxLogLineKey = _resultSet. getInt (1);
}

645 _resultSet . close ();
} catch (Exception e) {

System.out. println ("Database.getMaxLogLineKeyfailed...");
System.out. println (e);
System.out. println (e.getMessage());

650 }
return maxLogLineKey;

}

public int getMaxLogLineNumber() {
655 int maxLogLineNumber =�1;

try {
query("SELECT max(log_line_number)FROM log_line");
if (_resultSet . next ()) {

maxLogLineNumber = _resultSet.getInt (1);
660 }

_resultSet . close ();
} catch (Exception e) {

System.out. println ("Database.getMaxLogLineNumberfailed...");
System.out. println (e);

665 System.out. println (e.getMessage());
}
return maxLogLineNumber;

}

670 public void setSessionKey () {
int maxSessionKey = 0;
int maxActiveSessionKey = 0;
try {

query("SELECT max(session_key)FROM session");
675 if (_resultSet . next ()) {

maxSessionKey = _resultSet . getInt (1);
}
query("SELECT max(session_key)FROM active_session");
if (_resultSet . next ()) {

680 maxActiveSessionKey = _resultSet . getInt (1);
}

}
catch (Exception e) {

System.out. println ("Database.getMaxSessionKeyfailed ...");
685 System.out. println (e);

System.out. println (e.getMessage());
}
if (maxSessionKey > maxActiveSessionKey) {//brug max�funktion

_sessionKey = maxSessionKey;
690 }

else {

E
.2

D
atabase

C
lass

105

_sessionKey = maxActiveSessionKey;
}

}
695

public int [] getMinAndMaxLogLineKey() {
int [] minAndMax = {0, 0};
try {

query("SELECT min(log_line_key), max(log_line_key)FROM log_line");
700 if (_resultSet . next ()) {

minAndMax[0] = _resultSet. getInt (1);
minAndMax[1] = _resultSet. getInt (2);

}
_resultSet . close ();

705 } catch (Exception e) {
System.out . println ("Database.getMinLogLineKeyfailed...");
System.out . println (e);
System.out . println (e.getMessage());

}
710 return minAndMax;

}

public int getNumberOfLogLinesFromFile(String filename) {
int numberOfLogLines = 0;

715 try {
query("SELECT count(*) FROM log_line WHERE filename = ’" +

filename + "’");
if (_resultSet . next ()) {

numberOfLogLines = _resultSet . getInt (1);
720 }

}
catch (Exception e) {

System.out . println ("Database.getNumberOfLogLinesFromFile failed...");
System.out . println (e);

725 System.out . println (e.getMessage());
}
return numberOfLogLines;

}

730 public int getNumberOfNewPageEvents() {
return _newPageEvents;

}

public int getNumberOfNewSearches() {
735 return _newSearches;

}

public int getNumberOfNewSessions() {
return _newSessions;

740 }

public int getNumberOfPageEventsAfter(int auditKey) {
_pageEventRecordsAfter = 0;
try {

745 query("SELECT count(*) FROM page_event");
if (_resultSet . next ()) {

_pageEventRecordsAfter = _resultSet . getInt (1);
}

}
750 catch (Exception e) {

System.out . println ("Database.getNumberOfPageEventsAfter failed ...");
System.out . println (e);
System.out . println (e.getMessage ());

}
755 return _pageEventRecordsAfter;

}

public int getNumberOfSearchesAfter(int auditKey) {
_searchRecordsAfter = 0;

760 try {
query("SELECT count(*) FROM search");
if (_resultSet . next ()) {

_searchRecordsAfter = _resultSet . getInt (1);
}

765 }
catch (Exception e) {

System.out . println ("Database.getNumberOfSearchesAfter failed ...");
System.out . println (e);
System.out . println (e.getMessage ());

770 }
return _searchRecordsAfter ;

}

775 public int getNumberOfSessionsAfter(int auditKey) {
int _sessionRecordsAfter = 0;
try {

query("SELECT count(*) FROM session");
if (_resultSet . next ()) {

780 _sessionRecordsAfter = _resultSet . getInt (1);
}

}
catch (Exception e) {

System.out . println ("Database.getNumberOfSessionsAfter failed ...");
785 System.out . println (e);

System.out . println (e.getMessage ());
}
return _sessionRecordsAfter ;

106
S

ource
C

ode
for

Java
C

lasses

790 }

public int getNumberOfPageEventsBefore() {
_pageEventRecordsBefore = 0;
try {

795 query("SELECT page_event_records_afterFROM audit WHERE proceed = " +
"’Proceed’ ORDER BY audit_key DESC LIMIT 1");

if (_resultSet . next ()) {
_pageEventRecordsBefore = _resultSet . getInt (" page_event_records_after ");

}
800 }

catch (Exception e) {
System.out . println ("Database.getNumberOfPageEventsBefore failed...");
System.out . println (e);
System.out . println (e.getMessage());

805 }
return _pageEventRecordsBefore;

}

public int getNumberOfSearchesBefore() {
810 _searchRecordsBefore = 0;

try {
query("SELECT search_records_afterFROM audit WHERE proceed = " +

"’Proceed’ ORDER BY audit_key DESC LIMIT 1");
if (_resultSet . next ()) {

815 _searchRecordsBefore = _resultSet . getInt (" search_records_after ");
}

}
catch (Exception e) {

System.out . println ("Database.getNumberOfSearchesBefore failed ...");
820 System.out . println (e);

System.out . println (e.getMessage());
}
return _searchRecordsBefore;

825 }

public int getNumberOfSessionsBefore() {
_sessionRecordsBefore = 0;
try {

830 query("SELECT session_records_afterFROM audit WHERE proceed = " +
"’proceed’ ORDER BY audit_key DESC LIMIT 1");

if (_resultSet . next ()) {
_sessionRecordsBefore = _resultSet . getInt (" session_records_after ");

}
835 }

catch (Exception e) {
System.out . println ("Database.getNumberOfSessionsBefore failed ...");
System.out . println (e);

System.out. println (e.getMessage());
840 }

return _sessionRecordsBefore;

}

845 public PageEvent getPageEventFromResultSet() {
PageEvent pageEvent =null ;
try {

int logLineKey = _resultSet . getInt (" log_line_key ");
int dateKey = _resultSet . getInt ("date_key");

850 int timeOfDayKey = _resultSet . getInt ("time_of_day_key");
int pageKey = _resultSet . getInt ("page_key");
int sessionKey = _resultSet . getInt ("session_key");
int auditKey = _resultSet . getInt ("audit_key");

855 pageEvent =newPageEvent(logLineKey, dateKey, timeOfDayKey,
pageKey, sessionKey , auditKey);

}
catch (Exception e) {

System.out. println ("Database.getPageEventFromResultSet() failed ...");
860 System.out. println (e);

System.out. println (e.getMessage());
}
return pageEvent;

}
865

public int getPageKey(Page page) {
try {

870 for (int p = 0; p < _pages. size (); p++) {
Page pageInVector = (Page) _pages.get (p);
if (page.getPageFunction (). equals (pageInVector .getPageFunction()) &&

page.getPageFunctionType (). equals (pageInVector
.getPageFunctionType()) &&

875 page. getProcess (). equals (pageInVector . getProcess ())) {
return pageInVector .getPageKey();

}
}
_pageKey++;

880 page.setPageKey(_pageKey);
_pages.add(page);
System.out. println ("Noentry for page \"" + page + "\" in database.");
// _pageFile . write (page. toString () + "\ n ");
return 1; // _pageKey;

885 }
catch (Exception e) {

System.out. println ("Database.getPageKey(Page)failed ...");

E
.2

D
atabase

C
lass

107

System.out . println (e);
System.out . println (e.getMessage());

890 }
return �1;

}

public void getPages () {
895 try {

query("EXECUTE select_pages");
while (_resultSet . next ()) {

Page newPage =newPage(_resultSet . getInt ("page_key"),
_resultSet . getString ("page_function"),

900 _resultSet . getString ("page_function_type"),
_resultSet . getString ("process"));

_pages.add(newPage);
if (newPage.getPageKey() > _pageKey) {

_pageKey = newPage.getPageKey();
905 }

}
}
catch (Exception e) {

System.out . println ("Database.getPages()failed ...");
910 System.out . println (e);

System.out . println (e.getMessage());
}

}

915 public QueryQuestion[] getQueryQuestions () {
QueryQuestion[] queryQuestions =new QueryQuestion[0];
try {

query(" select_query_questionsAS SELECT * FROM " +
"query_questionsORDER BY id");

920

_resultSet . last ();
int numberOfRows = _resultSet.getRow();
queryQuestions =newQueryQuestion[numberOfRows];
_resultSet . beforeFirst ();

925

while (_resultSet . next ()) {
QueryQuestion newQueryQuestion =

new QueryQuestion(_resultSet . getInt ("id"),
_resultSet . getString ("question "),

930 _resultSet . getString ("query"));
queryQuestions[_resultSet .getRow()� 1] = newQueryQuestion;

}
}
catch (Exception e) {

935 System.out . println ("Database.getQueryQuestions()failed ...");
System.out . println (e);

System.out . println (e.getMessage ());
}
return queryQuestions;

940 }

public Search getSearch(int sessionKey) {
Search search =null ;
try {

945 for (int s = 0; s < _activeSearches . size (); s++) {
search = (Search) _activeSearches . get (s);

// Tjek evt . at den ikke er null
if (search .getSessionKey () == sessionKey) {

950 return search ;
}

}
} catch (Exception e) {

System.out . println ("Database.getSearch(sessionKey)failed ...");
955 System.out . println (e);

System.out . println (e.getMessage ());
}
return null ;

}
960

public Search getSearch(int sessionKey ,int searchNumber,
String searchNumberValidity) {

Search search =null ;
try {

965 for (int s = 0; s < _activeSearches . size (); s++) {
search = (Search) _activeSearches . get (s);
if (search .getSessionKey () == sessionKey &&

search .getSearchNumber() == searchNumber &&
search .getSearchNumberValidity (). equals (searchNumberValidity)) {

970 return search ;
}

}
} catch (Exception e) {

System.out . println ("Database.getSearch(sessionKey,searchNumber," +
975 "searchNumberValidity) failed ...");

System.out . println (e);
System.out . println (e.getMessage ());

}
return null ;

980 }

private Search getSearchFromResultSet () {
Search search =null ;
try {

985 int dateKey = _resultSet . getInt ("date_key");

108
S

ource
C

ode
for

Java
C

lasses

int timeOfDayKey = _resultSet . getInt ("time_of_day_key");
int sessionKey = _resultSet . getInt ("session_key");
int searchTypeKey = _resultSet . getInt ("search_type_key");
int searchNumber = _resultSet . getInt ("search_number");

990 String searchNumberValidity = _resultSet . getString
(" search_number_validity ");

int numberOfBookDescriptions = _resultSet . getInt
("number_of_book_descriptions");

int numberOfBooksInBasket = _resultSet . getInt ("number_of_books_in_basket");
995 int numberOfReservations = _resultSet . getInt ("number_of_reservations");

search =new Search(dateKey, timeOfDayKey, sessionKey, searchTypeKey,
searchNumber, searchNumberValidity,
numberOfBookDescriptions, numberOfBooksInBasket,

1000 numberOfReservations);
}
catch (Exception e) {

System.out . println ("Database.getSearchFromResultSet() failed ...");
System.out . println (e);

1005 System.out . println (e.getMessage());
}
return search ;

}

1010 public int getSearchTypeKey(SearchType searchType) {
try {

for (int s = 0; s < _searchTypes. size (); s++) {
SearchType searchTypeInVector = (SearchType) _searchTypes. get (s);
if (searchTypeInVector .getTypeWithField ()

1015 . equals (searchType.getTypeWithField ())) {
return searchTypeInVector .getSearchTypeKey();

}
}

} catch (Exception e) {
1020 System.out . println ("Database.getSearchTypeKey()failed ...");

System.out . println (e);
System.out . println (e.getMessage());

}
return 1;

1025 }

public void getSearchTypes () {
try {

query("EXECUTE select_search_types");
1030 while (_resultSet . next ()) {

SearchType searchType =
new SearchType(_resultSet

. getInt ("search_type_key"),
_resultSet . getString ("type"),

1035 _resultSet . getString (" field "),
_resultSet
. getString (" type_with_field "));

_searchTypes.add(searchType);
}

1040 }
catch (Exception e) {

System.out. println ("Database.getSearchTypes()failed ...");
System.out. println (e);
System.out. println (e.getMessage());

1045 }
}

public Session getSession (int sessionKey) {
Session session =null ;

1050

try {
for (int s = 0; s < _activeSessions . size() && session ==null ; s++) {

if (((Session) _activeSessions . get (s)). getSessionKey () == sessionKey) {
session = (Session) _activeSessions . get (s);

1055 }
}

} catch (Exception e) {
System.out. println ("Database. getSession ()failed ...");
System.out. println (e);

1060 System.out. println (e.getMessage());
}
return session ;

}

1065 private Session getSessionFromResultSet () {
Session session =null ;
try {

int sessionKey = _resultSet . getInt ("session_key");
String sessionTag = _resultSet . getString (" session_tag ");

1070 String ipAddress = _resultSet . getString (" ip_address");
String browser = _resultSet . getString ("browser");
String firstRequestUrl = _resultSet . getString (" first_request_url ");
int firstPageKey = _resultSet . getInt (" first_page_key ");
String lastRequestUrl = _resultSet . getString (" last_request_url ");

1075 int lastPageKey = _resultSet . getInt (" last_page_key");
String referrer = _resultSet . getString (" referrer ");
java . sql .Date startDate = _resultSet .getDate(" start_date ");
int startDateKey = _resultSet . getInt (" start_date_key ");
Time startTime = _resultSet .getTime(" start_time ");

1080 int startTimeKey = _resultSet . getInt (" start_time_key ");
java . sql .Date endDate = _resultSet .getDate("end_date");
int endDateKey = _resultSet . getInt ("end_date_key");
Time endTime = _resultSet .getTime("end_time");

E
.2

D
atabase

C
lass

109

int endTimeKey = _resultSet . getInt ("end_time_key");
1085 int pagesInSession = _resultSet . getInt (" pages_in_session ");

int bookDescriptionsInSession =
_resultSet . getInt (" book_descriptions_in_session ");

int booksInBasketInSession =
_resultSet . getInt (" books_in_basket_in_session ");

1090 int reservationsInSession = _resultSet . getInt (" reservations_in_session ");
int lastSearchNumber = _resultSet . getInt ("last_search_number");
String searchNumberValid = _resultSet . getString (" search_number_validity ");

session =newSession(sessionKey , sessionTag , ipAddress , browser,
1095 firstRequestUrl , firstPageKey , lastRequestUrl ,

lastPageKey , referrer , startDate , startDateKey ,
startTime , startTimeKey , endDate, endDateKey,
endTime, endTimeKey, pagesInSession,
bookDescriptionsInSession ,

1100 booksInBasketInSession , reservationsInSession ,
lastSearchNumber, searchNumberValid);

}
catch (Exception e) {

System.out . println ("Database.getSessionFromResultSet() failed ...");
1105 System.out . println (e);

System.out . println (e.getMessage());
}
return session ;

}
1110

public int getSessionKey(LogLine logLine ,int pageKey,int dateKey, int timeKey) {
int logLineSessionKey =�1;
Session currentSession ;
if (logLine == null) {

1115 return �1;
}
try {

if (! logLine .hasSessionTag ()) {
_sessionKey++;

1120 _activeSessions .add(newSession(_sessionKey , logLine , pageKey,
dateKey, timeKey));

_newSessions++;
logLineSessionKey = _sessionKey;

}
1125 else {

long longLogLineTime = logLine.getDate (). getTime() +
logLine .getTime (). getTime();

for (int v = 0; v < _activeSessions . size () &&
logLineSessionKey ==�1; v++) {

1130 currentSession = (Session) _activeSessions . get (v);
if (currentSession .getEndLong() < longLogLineTime� 1200000) {

// Terminated session found

_sessionFile . write (currentSession . toString () + " \n");
removeInactivePageEvents(currentSession .getSessionKey ());

1135 removeInactiveSearches (currentSession .getSessionKey());
_activeSessions .remove(v);
v��;
Search inactiveSearch = getSearch

(currentSession .getSessionKey (),
1140 currentSession .getLastSearchNumber(),

currentSession .getSearchNumberValidity ());
if (inactiveSearch !=null) {

_searchFile . write (inactiveSearch . toString () + " \n");
_activeSearches .remove(inactiveSearch);

1145 }
}
else if (currentSession .matches(logLine)) {

currentSession .addPageEvent(logLine , pageKey,
dateKey, timeKey);

1150 logLineSessionKey = currentSession .getSessionKey ();
}

}
if (logLineSessionKey ==�1) {

_sessionKey++;
1155 _activeSessions .add(new Session(_sessionKey , logLine , pageKey,

dateKey, timeKey));
_newSessions++;
logLineSessionKey = _sessionKey;

}
1160 }

} catch (Exception e) {
System.out . println ("Database.getSessionKey()failed ...");
System.out . println (e);
System.out . println (e.getMessage ());

1165 }
return logLineSessionKey;

}

public int getTimeKey(Time sqlTime) {
1170 try {

String timeString = sqlTime. toString ();
int hour = Integer . parseInt (timeString . substring (0,2));
int minute = Integer . parseInt (timeString . substring (3,5));
int second = Integer . parseInt (timeString . substring (6));

1175

int timeKey = 1 + second + (60* minute) + (60* 60* hour);
return timeKey;

}
catch (Exception e) {

1180 System.out . println ("Database.getTimeKey()failed ...");
System.out . println (e);

110
S

ource
C

ode
for

Java
C

lasses

System.out . println (e.getMessage());
}
return �1;

1185 }

public boolean incrementBookDescriptions(int sessionKey) {
booleansuccess =false;
try {

1190 Session session = getSession (sessionKey);
if (session ==null) {

System.out . println ("Sessionis null in " +
"incrementNumberOfBookDescriptions(" +
sessionKey + ")");

1195 }
else {

int searchNumber = session .getLastSearchNumber();
String searchNumberValidity = session .getSearchNumberValidity ();
Search search = getSearch(sessionKey , searchNumber,

1200 searchNumberValidity);
if (search !=null) {

search . incrementNumberOfBookDescriptions(1);
session . incrementBookDescriptionsInSession (1);
return true ;

1205 }
}

}
catch (Exception e) {

System.out . println ("Database.incrementNumberOfBookDescriptions() " +
1210 " failed ...");

System.out . println (e);
System.out . println (e.getMessage());

}
return false ;

1215 }

public boolean incrementBooksInBasket(int sessionKey ,int amount) {
booleansuccess =false;
try {

1220 Session session = getSession (sessionKey);
int searchNumber = session .getLastSearchNumber();
String searchNumberValidity = session .getSearchNumberValidity ();

Search search = getSearch(sessionKey , searchNumber, searchNumberValidity);
1225 if (search !=null) {

search . incrementNumberOfBooksInBasket(amount);
session . incrementBooksInBasketInSession(amount);
return true ;

}
1230 }

catch (Exception e) {
System.out. println ("Database.incrementNumberOfBooksInBasket() " +

" failed ...");
System.out. println (e);

1235 System.out. println (e.getMessage());
}
return false ;

}

1240 public boolean incrementReservations (int sessionKey) {
booleansuccess =false;
try {

Session session = getSession (sessionKey);
int searchNumber = session .getLastSearchNumber();

1245 String searchNumberValidity = session .getSearchNumberValidity ();

Search search = getSearch(sessionKey , searchNumber, searchNumberValidity);
if (search !=null) {

search . incrementNumberOfReservations(1);
1250 session . incrementReservationsInSession (1);

return true ;
}

}
catch (Exception e) {

1255 System.out. println ("Database.incrementNumberOfReservations" +
" failed ...");

System.out. println (e);
System.out. println (e.getMessage());

}
1260 return success ;

}

public boolean insertDate (Date date) {
booleansuccess =false;

1265 try {
_dateFile . write (date . toString () + " \n");

} catch (Exception e) {
System.out. println ("Database. insertDate ()failed ...");
System.out. println (e);

1270 System.out. println (e.getMessage());
}
return success ;

}

1275 public boolean insertLogLine (LogLine logLine) {
booleansuccess =false;
try {

if (logLine .getLogLineKey() % 1000 == 0) {
System.out . println ("Logline key: " + logLine.getLogLineKey());

E
.2

D
atabase

C
lass

111

1280 }
_logLineFile . write (logLine . toString () + " \n");
success =true ;

} catch (Exception e) {
System.out . println ("Database. insertLogLine()failed ...");

1285 System.out . println (e);
System.out . println (e.getMessage());

}
return success ;

}
1290

public boolean insertPageEvent (PageEvent pageEvent , LogLine logLine) {
booleansuccess =false;
try {

_activePageEvents .add(pageEvent);
1295 _newPageEvents++;

success =true ;
} catch (Exception e) {

System.out . println ("Database. insertPageEvent ()failed ...");
System.out . println (e);

1300 System.out . println (e.getMessage());
}
return success ;

}

1305 public boolean insertSearch (Search search) {
try {

Session activeSession = getSession (search .getSessionKey ());
if (activeSession !=null && activeSession .getLastSearchNumber() !=�1) {

Search activeSearch = getSearch(search .getSessionKey ());
1310 if (activeSearch !=null) {

activeSearch . deactivate ();
}

}
_activeSearches .add(search);

1315 _newSearches++;
activeSession .setLastSearchNumber(search.getSearchNumber());
activeSession .setSearchNumberValidity

(search .getSearchNumberValidity ());
activeSession . incrementSearchesInSession (1);

1320 return true ;
} catch (Exception e) {

System.out . println ("Database. insertSearch ()failed ...");
System.out . println (e);
System.out . println (e.getMessage());

1325 }
return false ;

}

public boolean insertTime (Time sqlTime,int hour , int minute , int second,
1330 String workingHours, String periodOfDay) {

booleansuccess =false;
try {

int timeKey = getTimeKey(sqlTime);
_timeOfDayFile.write (timeKey + "\ t " +

1335 sqlTime + "\ t " +
hour + " \ t" +
minute +" \ t" +
second +"\ t" +
workingHours +"\t" +

1340 periodOfDay + "\n");
return true ;

}
catch(Exception e) {

System.out . println ("database . insertTime ()failed ...");
1345 System.out . println (e);

System.out . println (e.getMessage ());
}
return false ;

}
1350

public int newAuditRecord(String filename , String successStatus ,
String proceed) {

int maxAuditKey = getMaxAuditKey();
update("INSERTINTO audit (audit_key, filename, etl_start_time," +

1355 " success_status ,proceed) VALUES (" + (maxAuditKey + 1) + ", ’" +
filename + "’, CURRENT_TIMESTAMP, ’" + successStatus + "’,’"
+ proceed + " ’)");

return (maxAuditKey + 1);
}

1360

public void prepareStatements () {
try {

execute ("PREPAREselect_date_key(DATE) AS SELECT date_key FROM date " +
"WHERE sql_date = $1");

1365 execute ("PREPAREselect_time_of_day_key(TIME) AS " +
"SELECT time_of_day_keyFROM time_of_day WHERE sql_time = $1");

execute ("PREPAREselect_log_line(INTEGER) AS SELECT * FROM log_line " +
"WHERE log_line_key = $1");

execute ("PREPAREselect_log_lines(INTEGER, INTEGER) AS SELECT * FROM " +
1370 " log_line WHERE log_line_key BETWEEN $1 AND $2");

execute ("PREPAREselect_pagesAS SELECT * FROM page");
execute ("PREPAREselect_search_typesAS SELECT * FROM search_type");
execute ("PREPAREselect_page_key(VARCHAR(60), VARCHAR(30), VARCHAR(30))" +

" AS SELECT page_keyFROM page WHERE page_function= $1 AND " +
1375 "page_function_type= $2 AND process= $3");

execute ("PREPAREselect_search_type_key(VARCHAR(18), VARCHAR(18)) AS " +
"SELECT search_type_keyFROM search_type" +

112
S

ource
C

ode
for

Java
C

lasses

"WHERE type = $1 AND field = $2");
execute("PREPAREselect_audit(INTEGER) AS SELECT filename, " +

1380 " etl_start_time , etl_end_time, log_file_line_count ," +
" total_lines_processed ,valid_lines_processed ," +
" invalid_lines_processed ,copy_log_line_file_count ," +
"new_log_line_records,success_status ,proceed " +
"FROM audit " +

1385 "WHERE audit_key = $1");
execute("PREPAREselect_active_searchesAS SELECT * FROM active_search" +

"ORDER BY date_key, time_of_day_key");
execute("PREPAREselect_active_sessionsAS SELECT * FROM active_session" +

"ORDER BY end_date,end_time");
1390 execute("PREPAREselect_active_page_eventsAS SELECT * FROM " +

" active_page_eventORDER BY date_key, time_of_day_key");
// execute ("PREPARE select_query_questions AS SELECT* FROM " +
// "query_questions ORDER BY id");

}
1395 catch (Exception e) {

System.out . println ("database . prepareStatementsfailed ...");
System.out . println (e);
System.out . println (e.getMessage());

}
1400 }

public ResultSet query(String queryString) {
try {

_statement = _connection . createStatement ();
1405 _resultSet = _statement .executeQuery(queryString);

}
catch (SQLException se) {

System.out . println ("Database.query()failed ...");
System.out . println ("SQLException:" + se.getMessage());

1410 System.out . println ("SQLState: " + se.getSQLState());
System.out . println ("VendorError: " + se .getErrorCode ());
System.out . println ("query:" + queryString);

}
catch (Exception e) {

1415 System.out . println ("Database.query()failed ...");
System.out . println (e);
System.out . println (e.getMessage());
System.out . println ("Query:" + queryString);

}
1420 return _resultSet ;

}

public void removeInactivePageEvents(int inactiveSessionKey) {
// System.out . println ("RemoveInactivePageEvents(" + inactiveSessionKey + ")");

1425 PageEvent pageEvent =null ;
try {

for (int p = 0; p < _activePageEvents . size (); p++) {
pageEvent = (PageEvent) _activePageEvents . get (p);
if (pageEvent.getSessionKey () == inactiveSessionKey) {

1430 _pageEventFile . write (pageEvent. toString () + " \n");
_activePageEvents .remove(p);
p��;

}
}

1435 }
catch (Exception e) {

System.out. println ("Database.removeInactivePageEvents() failed ...");
System.out. println (e);
System.out. println (e.getMessage());

1440 }
}

public void removeInactiveSearches (int inactiveSessionKey) {
// System.out . println ("RemoveInactiveSearches (" + inactiveSessionKey + ")");

1445 Search search =null ;
try {

for (int s = 0; s < _activeSearches . size (); s++) {
search = (Search) _activeSearches . get (s);

1450 // Tjek evt . at den ikke er null
if (search .getSessionKey () == inactiveSessionKey) {

_searchFile . write (search . toString () + " \n");
_activeSearches . remove(s);
s��;

1455 }
}

}
catch (Exception e) {

System.out. println ("Database. removeInactiveSearches() failed ...");
1460 System.out. println (e);

System.out. println (e.getMessage());
}

}

1465 public void resetFiles () {
try {

if (_logLineFile != null) {
_logLineFile . close ();

}
1470 _fileOutputStream =new FileOutputStream(_pathToCopyFiles +

" log_line . data");
_outputStreamWriter =new OutputStreamWriter(_fileOutputStream , "UTF�8");
_logLineFile =new PrintWriter (newBufferedWriter(_outputStreamWriter));

1475 if (_sessionFile !=null) {

E
.2

D
atabase

C
lass

113

_sessionFile . close ();
}
_fileOutputStream =new FileOutputStream(_pathToCopyFiles +

" session . data");
1480 _outputStreamWriter =new OutputStreamWriter(_fileOutputStream , "UTF�8");

_sessionFile =new PrintWriter (newBufferedWriter(_outputStreamWriter));

if (_pageEventFile !=null) {
_pageEventFile . close ();

1485 }
_fileOutputStream =new FileOutputStream(_pathToCopyFiles +

"page_event. data");
_outputStreamWriter =new OutputStreamWriter(_fileOutputStream , "UTF�8");
_pageEventFile =new PrintWriter (new BufferedWriter(_outputStreamWriter));

1490

if (_searchFile !=null) {
_searchFile . close ();

}
_fileOutputStream =new FileOutputStream(_pathToCopyFiles + "search . data");

1495 _outputStreamWriter =new OutputStreamWriter(_fileOutputStream , "UTF�8");
_searchFile =new PrintWriter (newBufferedWriter(_outputStreamWriter));

if (_activePageEventFile !=null) {
_activePageEventFile . close ();

1500 }
_fileOutputStream =new FileOutputStream(_pathToCopyFiles +

" active_page_event . data");
_outputStreamWriter =new OutputStreamWriter(_fileOutputStream , "UTF�8");
_activePageEventFile =new PrintWriter (new BufferedWriter

1505 (_outputStreamWriter));

if (_activeSessionFile !=null) {
_activeSessionFile . close ();

}
1510 _fileOutputStream =new FileOutputStream(_pathToCopyFiles +

" active_session . data");
_outputStreamWriter =new OutputStreamWriter(_fileOutputStream , "UTF�8");
_activeSessionFile =new PrintWriter (newBufferedWriter

(_outputStreamWriter));
1515

if (_activeSearchFile !=null) {
_activeSearchFile . close ();

}
_fileOutputStream =new FileOutputStream(_pathToCopyFiles +

1520 " active_search . data");
_outputStreamWriter =new OutputStreamWriter(_fileOutputStream , "UTF�8");
_activeSearchFile =new PrintWriter (new BufferedWriter

(_outputStreamWriter));
}

1525 catch (Exception e) {
System.out . println ("database . resetFiles ()failed ...");
System.out . println ("Exception:" + e);
System.out . println (e.getMessage ());

}
1530 }

public void resetNewInfo () {
_newSessions = 0;
_newSearches = 0;

1535 _newPageEvents = 0;
}

public int saveActivePageEvents () {
// System.out . println ("Number of active page events :" + _activePageEvents . size ());

1540 int activePageEvents = 0;
try {

while (_activePageEvents . size () > 0) {
_activePageEventFile . write (((PageEvent) _activePageEvents . get (0)). toString () +

" \n");
1545 _activePageEvents . remove(0);

activePageEvents++;
}

}
catch (Exception e) {

1550 System.out . println ("Database.saveActivePageEvents()failed ...");
System.out . println (e);
System.out . println (e.getMessage ());

}
return activePageEvents ;

1555 }

public int saveActiveSearches () {
int activeSearches = 0;
try {

1560 while (_activeSearches . size () > 0) {
_activeSearchFile . write (((Search) _activeSearches . get (0)). toString () +

" \n");
_activeSearches .remove(0);
activeSearches ++;

1565 }
}
catch (Exception e) {

System.out . println ("Database. saveActiveSearches()failed ...");
System.out . println (e);

1570 System.out . println (e.getMessage ());
}
return activeSearches ;

}

114
S

ource
C

ode
for

Java
C

lasses

1575 public int saveActiveSessions () {
int activeSessions = 0;
try {

while (_activeSessions . size () > 0) {
_activeSessionFile . write (((Session) _activeSessions .get (0))

1580 . activeSessionToString () + "\n");
_activeSessions .remove(0);
activeSessions ++;

}
}

1585 catch (Exception e) {
System.out . println ("Database. saveActiveSessions ()failed ...");
System.out . println (e);
System.out . println (e.getMessage());

}
1590 return activeSessions ;

}

public void setCopyPageEventFileCount(int newFileCount) {
_copyPageEventFileCount = newFileCount;

1595 }

public void setCopySearchFileCount(int newFileCount) {
_copySearchFileCount = newFileCount;

}
1600

public void setCopySessionFileCount(int newFileCount) {
_copySessionFileCount = newFileCount;

}

1605 public booleansetLastSearchNumber(int sessionKey ,int searchNumber,
String searchNumberValidity) {

booleansuccess =false;
try {

Session session = getSession (sessionKey);
1610 int sessionSearchNumber =�1;

String sessionSearchNumberValidity = "" ;
if (session ==null) {

System.out . println ("Errorin setLastSearchNumber:Can not find " +
" session with key " + sessionKey);

1615 return false ;
}
else {

sessionSearchNumber = session .getLastSearchNumber();
sessionSearchNumberValidity = session .getSearchNumberValidity ();

1620 if ((searchNumberValidity . equals (" valid ") &&
sessionSearchNumberValidity . equals ("temporary")) ||

(searchNumberValidity . equals (" valid ") &&

sessionSearchNumberValidity . equals (" valid ") &&
searchNumber != sessionSearchNumber)) {

1625 session .setLastSearchNumber(searchNumber);
session . setSearchNumberValidity(searchNumberValidity);

}
else {

return false ;
1630 }

}
Search search = getSearch(sessionKey , sessionSearchNumber,

sessionSearchNumberValidity);
if (search ==null) {

1635 if (sessionSearchNumber !=�1) {
System.out . println ("Errorin setLastSearchNumber:Can not find " +

"search with sessionKey" + sessionKey +
", search number " + sessionSearchNumber +
" and searchNumberValidity" +

1640 sessionSearchNumberValidity);
}
return false ;

}
else {

1645 search .setSearchNumber(searchNumber);
search . setSearchNumberValidity(searchNumberValidity);

}
return true ;

} catch (Exception e) {
1650 System.out. println ("Database.getSearch(setLastSearchNumber() failed ...");

System.out. println (e);
System.out. println (e.getMessage());

}
return false ;

1655 }

public int update(String updateString) {
int rowsUpdated = 0;
try {

1660 // System.out. println (updateString);
rowsUpdated = _statement .executeUpdate(updateString);

} catch (SQLException se) {
System.out. println ("Database.update()failed ...");
System.out. println ("UpdateString:" + updateString);

1665 System.out. println ("SQLException:" + se.getMessage());
System.out. println ("SQLState: " + se.getSQLState());
System.out. println ("VendorError: " + se .getErrorCode ());

} catch (Exception e) {
System.out. println ("Database.update()failed ...");

1670 System.out. println ("UpdateString:" + updateString);
System.out. println ("Statement:" + _statement);

E
.3

D
ataE

xtractor
C

lass
115

System.out . println (e);
System.out . println (e.getMessage());

}
1675 return rowsUpdated;

}

public int updateAuditDimension(int auditKey , String [] columnNames,
String [] newValues, String newSuccessStatus) {

1680 /* System.out . println ("updateAuditDimension:");
for (int c = 0; c < columnNames.length; c++) {
System.out . println (columnNames[c] + ": " + newValues[c]);
} * /

System.out . println ("Successstatus : " + newSuccessStatus);
1685

String updateString = "UPDATEaudit SET";
// try {
for (int c = 0; c < columnNames.length; c++) {

updateString += "" + columnNames[c] + "= ’" + newValues[c] + " ’," ;
1690 }

updateString += " success_status= ’" + newSuccessStatus +
"’ WHERE audit_key = " + auditKey;

// System.out . println (updateString);
return update(updateString);

1695 /* }
catch (SQLException se) {
System.out . println ("Database.update () failed ...");
System.out . println ("UpdateString : " + updateString);
System.out . println ("SQLException: " + se .getMessage());

1700 System.out . println ("SQLState: " + se .getSQLState ());
System.out . println ("VendorError : " + se .getErrorCode ());
} catch (Exception e) {
System.out . println ("Database.update () failed ...");
System.out . println ("UpdateString : " + updateString);

1705 System.out . println ("Statement : " + _statement);
System.out . println (e);
System.out . println (e.getMessage());
} * /

}
1710 }

E.3 DataExtractor Class
packageaub;

import java . text .SimpleDateFormat;
import java . util .Date;

5 import java . util .Map;
import java . io . Serializable ;

import org. jfree . data . CategoryDataset ;
import org. jfree . data . DefaultCategoryDataset ;
import de. laures .cewolf .DatasetProduceException;

10 import de. laures .cewolf . DatasetProducer ;
import de. laures .cewolf .CategoryItemLinkGenerator;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

15 import org. jfree . chart . entity . CategoryItemEntity ;
import org. jfree . chart . tooltips .CategoryToolTipGenerator;

import aub.* ;
import java . sql .* ;

20 import java . io .* ;

public class DataExtractorimplementsDatasetProducer , Serializable {

// These values would normally not be hard coded but producedby
25 // some kind of data source like a database or a file

private String [] categories ;
private String [] seriesNames;
private String xAxisLabel = "X axis";
private ResultSet resultSet ;

30 private String _resultDescription = "nodescription " ;
private String _query = " default query";
private Database _database =null ;

35 private Database getDatabase () {
if (_database ==null) {

// _database = new Database("aub ", " aub ", "/ var / lib /pgsql/");// baerbar
_database =new Database("aub" , " louise " , " /pack/ postgres /"); // stationaer
_database .openConnection();

40 System.out . println (_database);
}

return _database ;

45 }

private void closeDatabase () {
if (_database !=null) {

System.out . println ("Closingdatabaseconnection");
50 _database . closeConnection ();

_database =null ;
}

}

55 public void setGraphParameters () {

116
S

ource
C

ode
for

Java
C

lasses

try {
Database database = getDatabase ();

System.out . println (_query);
60 resultSet = database .query(_query);

System.out . println (resultSet);

resultSet . last ();
int numberOfRows = resultSet.getRow();

65 categories =new String [numberOfRows];
System.out . println (numberOfRows);
resultSet . beforeFirst ();

ResultSetMetaData metaData = resultSet .getMetaData();
70 int numberOfColumns = metaData.getColumnCount();

if (numberOfColumns < 2) {
throw (newException("Error! The resultset must have at least two columns"));

}
xAxisLabel = metaData.getColumnName(1);

75 seriesNames =new String [numberOfColumns� 1];
for (int s = 1; s < numberOfColumns; s++) {

seriesNames[s� 1] = metaData.getColumnName(s + 1);
}

}
80 catch (SQLException sqle) {

System.out . println ("SQLExceptioncaught: " + sqle.getMessage ());
}
catch (NullPointerException npe) {

System.out . println (" NullPointerExceptioncaught: " + npe.getMessage ());
85 }

catch (Exception e) {
System.out . println ("Exceptioncaught: " + e.getMessage());

}

90 }

public Object produceDataset(Map params)throws DatasetProduceException {
DefaultCategoryDataset dataset =new DefaultCategoryDataset ();
try {

95 int c = 0;
while (resultSet . next ()) {

// for (int c = 0; c < columnNames.length; c++) {
System.out . println ("Value:" + resultSet . getFloat (2));
categories [c] = resultSet . getString (1);

100 dataset .addValue((double) resultSet . getFloat (2), seriesNames [0], categories [c]);
c++;

}
}
catch (SQLException sqle) {

105 System.out. println ("SQLExceptioncaught: " + sqle.getMessage());
sqle . printStackTrace ();

}
catch (NullPointerException npe) {

System.out. println (" NullPointerExceptioncaught: " + npe.getMessage());
110 }

catch (Exception e) {
System.out. println ("Exceptioncaught: " + e.getMessage());

}

115 closeDatabase ();
return dataset ;

}

public booleanhasExpired(Map params, Date since) {
120 // log .debug(getClass (). getName() + "hasExpired ()");

return (System. currentTimeMillis ()� since .getTime ()) > 5000;
}

public String getProducerId () {
125 return "PageViewCountDataDatasetProducer";

}

public String getType () {
130 return " verticalbar ";

}

public String getXAxis() {
return xAxisLabel;

135 }

public String getYAxis () {
return "Antal" ;

}
140

public void setResultDescription (String r) {
_resultDescription = r ;

}
145

public String getResultDescription () {
return _resultDescription ;

}

150 public void setQuery(String q) {
_query = q;
System.out . println ("queryhas been set");

}

E
.4

D
ate

C
lass

117

155 public void setQueryKeys(String measure, String dimension , String attribute) {
Database database = getDatabase (); // The database is closed by produceDataset

String query =
" select result ,query from gui_querieswhere measure=’"+measure+"’"+

160 " and dimension=’"+dimension+"’"+
" and attribute =’"+ attribute +" ’;" ;

System.out . println (query);

165 try {

ResultSet result = database .query(query);
System.out . println (result);

170 if (result . first ()) {
String resultDescription = result . getString (" result ");
setResultDescription (resultDescription);

String graphQuery = result . getString ("query");
175 setQuery(graphQuery);

} else {
System.out . println ("Noquery has been set");

}
180

} catch (SQLException sqle) {
System.out . println ("SQLExceptioncaught: " + sqle.getMessage());
sqle . printStackTrace ();

}
185 catch (NullPointerException npe) {

System.out . println (" NullPointerExceptioncaught: " + npe.getMessage());
npe. printStackTrace ();

}
catch (Exception e) {

190 System.out . println ("Exceptioncaught: " + e.getMessage());
e. printStackTrace ();

}

195

}

}

E.4 Date Class

packageaub;

import java . util .* ;

5 public class Date {

private GregorianCalendar _calendar , _firstDayOfSemester ;
private String _weekDay, _semester, _weekend, _exam, _publicHoliday ,

_schoolVacation , _workday;
10 private int _dateKey, _year , _month, _day,_dayOfSemester, _weekOfSemester,

_dayOfYear, _weekOfYear;
long _millisIntoSemester ;
private java . sql .Date _sqlDate;

15 public Date (int dateKey, GregorianCalendar calendar) {
_dateKey = dateKey;
_calendar = calendar ;

}

20 public java . sql .Date getSqlDate () {
_sqlDate =new java. sql .Date(_calendar . getTimeInMillis ());
return _sqlDate;

}

25 public int getYear () {
_year = _calendar . get (_calendar .YEAR);
return _year;

}

30 public int getMonth() {
_month = _calendar . get (_calendar .MONTH) + 1;
return _month;

}

35 public int getDay() {
_day = _calendar . get (_calendar .DAY_OF_MONTH);
return _day;

}

40 public String getWeekDay() {
if (_calendar . get (_calendar .DAY_OF_WEEK) == _calendar.MONDAY) {

_weekDay = "monday";
}
else if (_calendar . get (_calendar .DAY_OF_WEEK) == _calendar.TUESDAY) {

45 _weekDay = "tuesday";
}
else if (_calendar . get (_calendar .DAY_OF_WEEK) == _calendar.WEDNESDAY) {

118
S

ource
C

ode
for

Java
C

lasses

_weekDay = "wednesday";
}

50 else if (_calendar . get (_calendar .DAY_OF_WEEK) == _calendar.THURSDAY) {
_weekDay = "thursday";

}
else if (_calendar . get (_calendar .DAY_OF_WEEK) == _calendar.FRIDAY) {

_weekDay = "friday";
55 }

else if (_calendar . get (_calendar .DAY_OF_WEEK) == _calendar.SATURDAY) {
_weekDay = "saturday";

}
else if (_calendar . get (_calendar .DAY_OF_WEEK) == _calendar.SUNDAY) {

60 _weekDay = "sunday";
}
else {

_weekDay = "unknown";
}

65 return _weekDay;
}

public String getSemester () {
if (_calendar . after (new GregorianCalendar(2003, 0, 31)) &&

70 _calendar . before (new GregorianCalendar (2003, 8, 1))) {
_semester = "spring2003";

}
else if (_calendar . after (new GregorianCalendar(2003, 7, 31)) &&

_calendar . before (new GregorianCalendar (2004, 1, 1))) {
75 _semester = " fall 2003";

}
else if (_calendar . after (new GregorianCalendar(2004, 0, 31)) &&

_calendar . before (new GregorianCalendar (2004, 8, 1))) {
_semester = "spring2004";

80 }
else {

_semester = "unknown";
}
return _semester;

85 }

public GregorianCalendar getFirstDayOfSemester () {
if (_calendar . after (new GregorianCalendar(2003, 0, 31)) &&

_calendar . before (new GregorianCalendar (2003, 8, 1))) {
90 _firstDayOfSemester =new GregorianCalendar (2003, 1, 1);

}
else if (_calendar . after (new GregorianCalendar(2003, 7, 31)) &&

_calendar . before (new GregorianCalendar (2004, 1, 1))) {
_firstDayOfSemester =new GregorianCalendar (2003, 8, 1);

95 }
else if (_calendar . after (new GregorianCalendar(2004, 0, 31)) &&

_calendar . before (new GregorianCalendar (2004, 8, 1))) {
_firstDayOfSemester =new GregorianCalendar (2004, 1, 1);

}
100 else {

_firstDayOfSemester =null ;
}
return _firstDayOfSemester ;

}
105

public int getDayOfSemester() {
_millisIntoSemester = _calendar .getTime (). getTime()�

getFirstDayOfSemester (). getTime (). getTime();
_dayOfSemester = (int) (_millisIntoSemester / (24*60*60*1000)) + 1;

110 return _dayOfSemester;
}

public int getWeekOfSemester() {
_weekOfSemester = ((getDayOfSemester ()� 1) / 7) + 1;

115 return _weekOfSemester;
}

public String getWeekend() {
getWeekDay();

120 if (_weekDay.equals("saturday") || _weekDay.equals("sunday")) {
_weekend = "weekend";

}
else {

_weekend = "weekday";
125 }

return _weekend;
}

public String getExam() {
130 getMonth();

if (_month == 1 || _month == 6) {
_exam = "exam";

}
else if (_month == 8) {

135 _exam = "reexam";
}
else {

_exam = "no exam";
}

140 return _exam;
}

public String getPublicHoliday () {
GregorianCalendar [] publicHolidays = {new GregorianCalendar (2003, 0, 1),

145 new GregorianCalendar (2003, 3, 13),

E
.5

Increm
entalLoad

C
lass

119

new GregorianCalendar (2003, 3, 17),
new GregorianCalendar (2003, 3, 18),
new GregorianCalendar (2003, 3, 20),
new GregorianCalendar (2003, 3, 21),

150 new GregorianCalendar (2003, 4, 16),
new GregorianCalendar (2003, 4, 29),
new GregorianCalendar (2003, 5, 5),
new GregorianCalendar (2003, 5, 8),
new GregorianCalendar (2003, 5, 9),

155 new GregorianCalendar (2003, 11, 25),
new GregorianCalendar (2003, 11, 26),
new GregorianCalendar (2004, 0, 1),
new GregorianCalendar (2004, 3, 4),
new GregorianCalendar (2004, 3, 8),

160 new GregorianCalendar (2004, 3, 9),
new GregorianCalendar (2004, 3, 11),
new GregorianCalendar (2004, 3, 12),
new GregorianCalendar (2004, 4, 7),
new GregorianCalendar (2004, 4, 20),

165 new GregorianCalendar (2004, 4, 30),
new GregorianCalendar (2004, 4, 31),
new GregorianCalendar (2004, 5, 5)};

for (int g = 0; g < publicHolidays . length && _publicHoliday ==null ; g++) {
if (_calendar . equals (publicHolidays [g])) {

170 _publicHoliday = "holiday" ;
}

}
if (_publicHoliday ==null) {

_publicHoliday = "no holiday";
175 }

return _publicHoliday ;
}

public String getSchoolVacation () {
180 if ((_calendar . after (newGregorianCalendar(2003, 5, 30)) &&

_calendar . before (newGregorianCalendar (2003, 7, 1))) ||
(_calendar . after (newGregorianCalendar(2004, 5, 30)) &&
_calendar . before (newGregorianCalendar (2004, 7, 1)))){

_schoolVacation = " vacation" ;
185 }

else {
_schoolVacation = "novacation" ;

}
return _schoolVacation ;

190 }

public int getDayOfYear() {
_dayOfYear = _calendar . get (_calendar .DAY_OF_YEAR);
return _dayOfYear;

195 }

public int getWeekOfYear() {
_calendar .setMinimalDaysInFirstWeek(4);
_weekOfYear = _calendar.get (_calendar .WEEK_OF_YEAR);

200 return _weekOfYear;
}

public String getWorkday() {
_workday = "workday";

205 if (getWeekend().equals ("weekend") ||
getPublicHoliday (). equals ("holiday") ||
getSchoolVacation (). equals (" vacation ")) {
_workday = "no workday";

}
210 return _workday;

}

public String toString () {
StringBuffer buffer =new StringBuffer ();

215 buffer = buffer .append(_dateKey + "\ t");
buffer = buffer .append(getSqlDate () + "\ t ");
buffer = buffer .append(getYear () + " \ t ");
buffer = buffer .append(getMonth() + " \ t ");
buffer = buffer .append(getDay () + " \ t ");

220 buffer = buffer .append(getWeekDay() + "\ t ");
buffer = buffer .append(getSemester () + " \ t ");
buffer = buffer .append(getDayOfSemester() + " \ t ");
buffer = buffer .append(getWeekOfSemester() + "\ t ");
buffer = buffer .append(getWeekend() + "\ t ");

225 buffer = buffer .append(getExam() + " \ t ");
buffer = buffer .append(getPublicHoliday () + " \ t ");
buffer = buffer .append(getSchoolVacation () + " \ t ");
buffer = buffer .append(getDayOfYear() + " \ t ");
buffer = buffer .append(getWeekOfYear() + "\ t ");

230 buffer = buffer .append(getWorkday());
return buffer . toString ();

}
}

E.5 IncrementalLoad Class
packageaub;

import java . io .BufferedReader;
import java . util . Vector ;

5 import java . util .GregorianCalendar;
import java . io . FileReader ;

120
S

ource
C

ode
for

Java
C

lasses

import java . io .FileNotFoundException;

public class IncrementalLoad {
10 static Database _database ;

static int _logLineKey;
// static String _pathToCopyFiles = "/ var / lib / pgsql /";//baerbar
static String _pathToCopyFiles = " /pack/ postgres /" ; // stationaer
// static String _filePath = "/ home/louise / projekt / logfiles2 /";// baerbar

15 static String _filePath = "/pack/ louise / projekt / logfiles /" ;
static String [] _filenames ;
static PostProcessor _postProcessor ;
static int _auditKey;
static String _successStatus ;

20 static String [] _columnNames;
static String [] _columnValues;
static boolean_etlSuccess ;
static int _newSessionRecords;
static int _newSearchRecords;

25 static int _newPageEventRecords;
static int _pageEventRecordsBefore;
static int _pageEventRecordsAfter;
static int _searchRecordsBefore;
static int _searchRecordsAfter ;

30 static int _sessionRecordsBefore;
static int _sessionRecordsAfter ;
static int _copyPageEventFileCount;
static int _copySessionFileCount;
static int _copySearchFileCount;

35

public static BufferedReader [] getUnprocessedFileReaders(String filePath) {
System.out . println ("getUnprocessedFileReaders ()");
Vector fileReaders =new Vector ();
Vector filenameVector =newVector ();

40 String filename = "" ;
BufferedReader reader =null ;
String [] loadedFiles = _database .getLoadedLogFileNames();
String lastLoadedFilename = _database .getLastSuccessfulLoadFilename ();
GregorianCalendar date =new GregorianCalendar (2003, 1, 25);

45 if (lastLoadedFilename !=null) {
int year = Integer . parseInt (lastLoadedFilename. substring (11, 15));
int month = Integer . parseInt (lastLoadedFilename. substring(15, 17));
int day = Integer . parseInt (lastLoadedFilename. substring (17));
date =new GregorianCalendar(year , month� 1, day);

50 }
try {

while (true) {
date .add(date .DAY_OF_MONTH, 1);

// filename = " accesstest .20030225";
55

filename = "access_log ." + date . get (date .YEAR);
if (date . get (date .MONTH) < 9) {

filename += "0";
}

60 filename += (date . get (date .MONTH) + 1);
if (date . get (date .DAY_OF_MONTH) < 10) {

filename += "0";
}
filename += date . get (date .DAY_OF_MONTH);

65 System.out . println (filename);

boolean fileLoaded = false;
for (int f = 0; f < loadedFiles . length && !fileLoaded ; f++) {

fileLoaded = filename . equals (loadedFiles [f]);
70 }

if (! fileLoaded) {
System.out . println (" File is not loaded");
reader =newBufferedReader(new FileReader(filePath +

filename));
75 filenameVector .add(filename);

fileReaders .add(reader);
}
else {

System.out . println (" Filehas already been loaded.");
80 }

}
}
catch (FileNotFoundException fnfe) {

System.out. println (" Filenot found: " + filename);
85 // stillMoreFiles = false ;

}
catch (Exception e) {

System.out. println ("Exceptionin IncrementalLoad.getUnprocessedFileReaders ()");
System.out. println (e);

90 }
BufferedReader [] readerArray =new BufferedReader[fileReaders . size ()];
for (int r = 0; r < readerArray . length ; r++) {

readerArray [r] = (BufferedReader) fileReaders . get (r);
}

95 _filenames =new String [filenameVector . size ()];
for (int f = 0; f < _filenames . length ; f++) {

_filenames [f] = (String) filenameVector . get (f);
}
return readerArray ;

100 }

public static booleannoOtherLoadsRunning() {
return true ;

}

E
.5

Increm
entalLoad

C
lass

121

105

public static void main (String [] args) {
if (noOtherLoadsRunning()) {

_etlSuccess =true ;
// _database = new Database("aub ", " aub ", _pathToCopyFiles);

110 _database =newDatabase("aub" , " louise " , _pathToCopyFiles);
_database .openConnection();
_database .setSessionKey ();
_logLineKey = _database .getMaxLogLineKey() + 1;
_postProcessor =new PostProcessor(_database , _auditKey , _logLineKey,

115 _filePath , _pathToCopyFiles);
BufferedReader [] fileReaders = getUnprocessedFileReaders(_filePath);
if (fileReaders . length > 0) {

_database . prepareStatements ();
}

120 long _numberOfLogLines = 0;
for (int f = 0; f < fileReaders . length && _etlSuccess ; f++) {

_auditKey = _database .newAuditRecord(_filenames[f],
"New audit record created",
"Recover");

125 _postProcessor .setAuditKey(_auditKey);
System.out . println ("Filename:" + _filenames [f]);
_postProcessor . getActiveInfo ();
int [] recordsBeforeLoad = _postProcessor .getRecordCountsBeforeLoad();
// _pageEventRecordsBefore = recordsBeforeLoad[0];

130 // _searchRecordsBefore = recordsBeforeLoad [1];
// _sessionRecordsBefore = recordsBeforeLoad[2];

_postProcessor . countLinesInLogFile(_filePath , _filenames [f]);

135 _database . resetFiles ();
_etlSuccess = _postProcessor . processLogFile (fileReaders [f], _filenames [f]);
// int [] recordsAfterLoad = _postProcessor .getRecordCountsAfterLoad();
// _pageEventRecordsAfter = recordsAfterLoad [0];
// _searchRecordsAfter = recordsAfterLoad [1];

140 // _sessionRecordsAfter = recordsAfterLoad [2];

/*
_newPageEventRecords = _pageEventRecordsAfter� _pageEventRecordsBefore;
System.out . println ("_newPageEventRecords: " + _newPageEventRecords);

145 String pageEventSuccess = "";
_copyPageEventFileCount = _postProcessor .getCopyPageEventFileCount();
if (_newPageEventRecords != _copyPageEventFileCount) {
pageEventSuccess =

" Number of new page event records does not "+
150 "match number of lines in copy file . _newPageEventRecords: "+

_newPageEventRecords;
_etlSuccess = false ;
}

_newSessionRecords = _sessionRecordsAfter� _sessionRecordsBefore;
155 System.out. println ("_newSessionRecords : " + _newSessionRecords);

String sessionSuccess = "";
_copySessionFileCount = _postProcessor .getCopySessionFileCount ();
if (_newSessionRecords != _copySessionFileCount) {
sessionSuccess =

160 " Number of new session records does not "+
"match number of lines in copy file .";

_etlSuccess = false ;
}
_newSearchRecords = _searchRecordsAfter� _searchRecordsBefore;

165 System.out. println ("_newSearchRecords: " + _newSearchRecords);
String searchSuccess = "";
_copySearchFileCount = _postProcessor .getCopySearchFileCount ();
if (_newSearchRecords != _copySearchFileCount) {
searchSuccess =

170 " Number of new search records does not "+
"match number of lines in copy file .";

_etlSuccess = false ;
}

175 _columnNames = new String[] {"new_session_records ",
"new_search_records",
"new_page_event_records"};
_columnValues = new String [] { Integer . toString (_newSessionRecords),
Integer . toString (_newSearchRecords),

180 Integer . toString (_newPageEventRecords)};

_database .updateAuditDimension(_auditKey, _columnNames, _columnValues,
"number of new session , search and " +
"page event records counted ." +

185 pageEventSuccess + sessionSuccess +
searchSuccess);

* /

if (_etlSuccess) {
190 _successStatus = "ETLprocesscompleted succesfully";

_database .completeAuditRecord(_auditKey, _successStatus , "Proceed");
}

// System.out. println ("Success status : " + _successStatus);
195 System.out . println ();

}
}

}
}

122
S

ource
C

ode
for

Java
C

lasses

E.6 LogLine Class

packageaub;

import java . io .* ;
import java . sql .* ;

5 import java . text .* ;
import java . net .* ;

public class LogLine {

10 private int _logLineKey, _logLineNumber, _status , _bytes ;
private String _filename , _ipAddress , _ident , _authuser , _timeZone, _method,

_sessionTag , _serial , _query , _protocol , _serverName, _browser;
private java . sql .Date _date ;
private Time _time;

15 private URL _requestUrl, _referrer ;
private boolean _logLineValid ;
// private FileWriter _irregularLines ;

public LogLine(int logLineKey, String filename ,int logLineNumber,
20 String ipAddress , String ident , String authuser ,

java . sql .Date date , Time time , String timeZone,
String method, String requestUrl , String sessionTag , String serial ,
String query , String protocol ,int status , int bytes ,
String serverName, String referrer , String browser) {

25 _logLineKey = logLineKey;
_filename = filename ;
_logLineNumber = logLineNumber;
_ipAddress = ipAddress;
_ident = ident ;

30 _authuser = authuser ;
_date = date ;
_time = time;
_timeZone = timeZone;
_method = method;

35

try {
_requestUrl =new URL(requestUrl);

} catch (MalformedURLException mue) {}

40 _sessionTag = sessionTag ;
_serial = serial ;
_query = query;
_protocol = protocol ;
_status = status ;

45 _bytes = bytes ;
_serverName = serverName;

try {
_referrer =newURL(referrer);

50 } catch (MalformedURLException mue) {}

_browser = browser;
}

55 /**
* Constructs a LogLine object using the filename , linenumber and log line

* string . Throws InvalidLogLineException if the log line is not accepted
* as valid .

* /
60 public LogLine(int logLineKey, String filename ,int logLineNumber,

String logLine) throws InvalidLogLineException ,
MalformedURLException {

_logLineKey = logLineKey;
_filename = filename ;

65 _logLineNumber = logLineNumber;

try {
// _irregularLines = new FileWriter ("/ home/louise/ projekt / logfiles /" +
// " irregularlines . txt ", true);

70 // System.out . println (" irregularLines created ");

// Escape backslashes and apostrophes
logLine = logLine. replaceAll (" \\\\", " \\\\\\\\ ");
logLine = logLine. replaceAll (" ’" , " \\\\’");

75

// remove multible spaces
while (logLine . indexOf(" ") != �1) {

logLine = logLine . replaceAll (" ", " ");
}

80

int firstBracket = logLine . indexOf("[");
int secondBracket = logLine . indexOf("]");
int requestStart = logLine . indexOf(" \"" , secondBracket);
int requestEnd = logLine. indexOf(" \"" , requestStart + 1);

85 int referrerStart = logLine . indexOf(" \"" , requestEnd + 1);
int referrerEnd = logLine . indexOf(" \"" , referrerStart + 1);

// split log line into six major parts
String ipIdentAuthuser = logLine . substring (0, firstBracket � 1);

90 String timestamp = logLine . substring (firstBracket + 1, secondBracket);
String request = logLine. substring (requestStart + 1, requestEnd);
String statusBytesServer = logLine . substring (requestEnd + 2,

referrerStart � 1);

95 try {
_referrer =new URL(logLine.substring(referrerStart + 1, referrerEnd));

E
.6

LogLine
C

lass
123

} catch (MalformedURLException mue) {
_referrer =null ;

}
100

_browser = logLine . substring (referrerEnd + 3, logLine . length ()� 1);

String [] ipIdentAuthuserParts = ipIdentAuthuser . split (" \\ s");
_ipAddress = ipIdentAuthuserParts [0];

105 _ident = ipIdentAuthuserParts [1];
_authuser = ipIdentAuthuser . substring (_ipAddress. length () +

_ident . length () + 2);

String dateString = timestamp. substring (0, 11);
110 _date = sqlDateFormat(dateString);

_time = Time.valueOf(timestamp. substring (12, 20));
_timeZone = timestamp. substring (21);

String [] requestParts = request . split (" \\ s");
115 if (requestParts . length != 3) {

// _irregularLines . write (logLine + "\ n ");
throw new InvalidLogLineException(" requesttoo short");

}

120 _method = requestParts [0];

if (_method.equals("HEAD")) {
throw new InvalidLogLineException("HEADmethod not acceptedas " +

"user request");
125 }

_requestUrl =new URL("http://a500.aub.auc.dk" + requestParts [1]);
if (_requestUrl . toString (). endsWith("/?func=logout")) {

throw new InvalidLogLineException("sessiontime�out");
130 }

_protocol = requestParts [2];
_sessionTag =null ;
_serial = "" ;

135 if (_requestUrl != null && _requestUrl. getPath () !=null &&
_requestUrl . getPath (). indexOf(" /F/") ==�1) {
throw new InvalidLogLineException("notauboline user function");

}

140 int endOfSessionTag = _requestUrl . getPath (). indexOf("�");
if (endOfSessionTag ==�1) {

endOfSessionTag = _requestUrl . getPath (). length ();
}
if (_requestUrl . getPath (). length () > 3) {

145 _sessionTag = _requestUrl . getPath (). substring (3, endOfSessionTag);

if (_sessionTag. length () > 50) {
System.out . println (" sessiontag too long: " + _sessionTag);

}
}

150 if (endOfSessionTag != _requestUrl . getPath (). length ()) {
_serial = _requestUrl . getPath (). substring (endOfSessionTag + 1);
if (_serial . length () != 5) {

_serial = "" ;
}

155 }
_query = _requestUrl .getQuery ();
if (_query ==null) {

_query = "";
}

160

String [] statusBytesServerParts = statusBytesServer . split (" \\ s");
if (statusBytesServerParts . length != 3) {

// _irregularLines . write (logLine + "\ n ");
throw new InvalidLogLineException(" status ,bytes or server missing");

165 }

_status = Integer . parseInt (statusBytesServerParts [0]);
if (statusBytesServerParts [1]. equals ("�")) {

throw new InvalidLogLineException("thebytes attribute has no value");
170 }

else {
_bytes = Integer . parseInt (statusBytesServerParts [1]);

}
_serverName = statusBytesServerParts [2];

175

} catch (StringIndexOutOfBoundsException stringEx) {
System.out . println (stringEx);
System.out . println ("Logline " + logLineNumber + ": " + logLine);

} catch (IOException ioe) {
180 System.out . println (ioe);

}
}

public int getLogLineKey() {
185 return _logLineKey;

}

public String getFilename () {
return _filename ;

190 }

public int getLogLineNumber() {
return _logLineNumber;

}

124
S

ource
C

ode
for

Java
C

lasses

195

public int getStatus () {
return _status ;

}

200 public int getBytes () {
return _bytes ;

}

public String getIpAddress () {
205 return _ipAddress;

}

public String getIdent () {
return _ident ;

210 }

public String getAuthuser () {
return _authuser ;

}
215

public String getTimeZone() {
return _timeZone;

}

220 public String getMethod() {
return _method;

}

public URL getRequestUrl() {
225 return _requestUrl ;

}

public String getSessionTag () {
return _sessionTag;

230 }

public String getSerial () {
return _serial ;

}
235

public String getQuery () {
return _query;

}

240 public String getProtocol () {
return _protocol ;

}

public String getServerName() {
245 return _serverName;

}

public URL getReferrer () {
return _referrer ;

250 }

public String getBrowser () {
return _browser;

}
255

public java . sql .Date getDate () {
return _date ;

}

260 public Time getTime() {
return _time;

}

public long getLongTime() {
265 return _date .getTime () + _time.getTime();

}

public boolean referrerHasSessionTag () {
String referrerSessionTag =null ;

270 if (_referrer != null && _referrer . getPath () !=null &&
_requestUrl . getPath (). indexOf(" /F/") !=�1) {

int endOfSessionTag = _referrer . getPath (). indexOf("�");
if (endOfSessionTag ==�1) {

275 endOfSessionTag = _referrer . getPath (). length ();
}
if (_referrer . getPath (). length () > 3) {

referrerSessionTag = _referrer . getPath (). substring (3,endOfSessionTag);
}

280 }
return (referrerSessionTag !=null && referrerSessionTag . length () == 50);

}

public booleanhasSessionTag () {
285 return _sessionTag !=null && !_sessionTag. equals ("");

}

public boolean isValid () {
return _logLineValid ;

290 }

public void setFilename(String newFilename) {

E
.6

LogLine
C

lass
125

_filename = newFilename;
}

295

public void setLogLineNumber(int newLogLineNumber) {
_logLineNumber = newLogLineNumber;

}

300 public void setStatus (int newStatus) {
_status = newStatus;

}

public void setBytes (int newBytes) {
305 _bytes = newBytes;

}

public void setIpAddress (String newIpAddress) {
_ipAddress = newIpAddress;

310 }

public void setIdent (String newIdent) {
_ident = newIdent;

}
315

public void setAuthuser (String newAuthuser) {
_authuser = newAuthuser;

}

320 public void setTimeZone(String newTimeZone) {
_timeZone = newTimeZone;

}

public void setMethod(String newMethod) {
325 _method = newMethod;

}

public void setRequestUrl (String newRequestUrl) {
try {

330 _requestUrl =new URL(newRequestUrl);
} catch (Exception e) {}

}

public void setRequestUrl (URL newRequestUrl) {
335 _requestUrl = newRequestUrl;

}

public void setSessionTag (String newSessionTag) {
_sessionTag = newSessionTag;

340 }

public void setProtocol (String newProtocol) {
_protocol = newProtocol;

}
345

public void setServerName(String newServerName) {
_serverName = newServerName;

}

350 public void setReferrer (String newReferrer) {
try {

_referrer =new URL(newReferrer);
} catch (Exception e) {}

}
355

public void setReferrer (URL newReferrer) {
_referrer = newReferrer;

}

360 public void setBrowser(String newBrowser) {
_browser = newBrowser;

}

public void setDate (java . sql .Date newDate) {
365 _date = newDate;

}

public void setTime(Time newTime) {
_time = newTime;

370 }

private java . sql .Date sqlDateFormat(String dateInLogFormat) {
SimpleDateFormat dateFormat =new SimpleDateFormat("dd/MMM/yyyy");
java . sql .Date dateInSqlFormat =null ;

375 try {
dateInSqlFormat =new java. sql .Date

(dateFormat. parse(dateInLogFormat).getTime ());
} catch (ParseException pe) {

System.out . println (" TestServlet .sqlDateFormat()failed ...");
380 System.out . println (pe);

} catch (Exception e) {
System.out . println (" TestServlet .sqlDateFormat()failed ...");
System.out . println (e);

}
385 return dateInSqlFormat ;

}

public String toString () {
StringBuffer buffer =new StringBuffer ();

390 buffer .append(_logLineKey + "\ t");

126
S

ource
C

ode
for

Java
C

lasses

buffer .append(_filename + "\ t ");
buffer .append(_logLineNumber + "\t");
buffer .append(_ipAddress + "\ t");
buffer .append(_ident + " \ t ");

395 buffer .append(_authuser + " \ t ");
buffer .append(_date + "\ t");
buffer .append(_time + "\ t");
buffer .append(_timeZone + "\ t ");
buffer .append(_method + "\ t ");

400 buffer .append(_requestUrl + " \ t ");
buffer .append(_sessionTag + "\ t");
buffer .append(_serial + " \ t ");
buffer .append(_query + " \ t");
buffer .append(_protocol + " \ t ");

405 buffer .append(_status + "\ t ");
buffer .append(_bytes + "\ t");
buffer .append(_serverName + "\ t");
if (_referrer ==null) {

buffer .append("novalue\t ");
410 }

else {
buffer .append(_referrer + " \ t ");

}
buffer .append(_browser);

415 return buffer . toString ();
}

}

E.7 Page Class
packageaub;

import java . net .* ;
import java . util .* ;

5

public class Page {

private int _pageKey, _numberOfCheckedBoxes;
private String _method, _func , _fileName , _findCode , // _funcOption,

10 _scanCode, _action , _pageFunction , _pageFunctionType,
_process , _field , _referrerFunc , _referrerQuery ;

public Page (LogLine logLine) {
UrlQuery urlQuery =new UrlQuery(logLine.getQuery ());

15 _pageKey =�1;
_method = logLine.getMethod();
_func = urlQuery . getValue("func");
_fileName = urlQuery. getValue("file_name");

_findCode = urlQuery . getValue("find_code");
20 _scanCode = urlQuery.getValue("scan_code");

_action = "unknown";
if (urlQuery. getValue("action_view .x") !=null) {

_action = "view";
}

25 if (urlQuery. getValue(" action_delete .x") !=null) {
_action = " delete " ;

}
if (urlQuery. getValue(" action_cross .x") !=null) {

_action = "cross" ;
30 }

if (urlQuery. getValue(" action_short_basket_store .x") !=null) {
_action = " store in basket";

}
URL referrer = logLine . getReferrer ();

35 if (referrer != null) {
_referrerQuery = referrer .getQuery ();

}
if (_referrerQuery !=null) {

_referrerFunc = (newUrlQuery(_referrerQuery). getValue("func"));
40 }

_numberOfCheckedBoxes = 0;
String query = logLine .getQuery ();
while (query.indexOf("=on") !=�1) {

_numberOfCheckedBoxes++;
45 query = query. substring (query. indexOf("=on") + 1);

}
setVariables ();

}

50 public Page (int pageKey, String method, String func , String fileName,
String findCode , String scanCode, String action , String field ,
String pageFunction , String pageFunctionType, String process) {

_pageKey = pageKey;
_method = method;

55 _func = func;
_fileName = fileName;
_findCode = findCode;
_scanCode = scanCode;
_action = action ;

60 _field = field ;
_pageFunction = pageFunction;
_pageFunctionType = pageFunctionType;
_process = process ;

}
65

public Page (int pageKey, String pageFunction , String pageFunctionType,
String process) {

E
.7

P
age

C
lass

127

_pageKey = pageKey;
_pageFunction = pageFunction;

70 _pageFunctionType = pageFunctionType;
_process = process ;

}

public int getPageKey() {
75 return _pageKey;

}

public String getMethod() {
return _method;

80 }

public String getFunc () {
if (_func == null || _func. equals ("")) {

_func = "unknown";
85 }

return _func;
}

public String getFileName() {
90 if (_fileName ==null || _fileName.equals ("")) {

_fileName = "unknown";
}
return _fileName;

}
95

public String getFindCode() {
if (_findCode ==null || _findCode.equals ("")) {

_findCode = "unknown";
}

100 return _findCode;
}

public String getScanCode() {
if (_scanCode ==null || _scanCode.equals("")) {

105 _scanCode = "unknown";
}
return _scanCode;

}

110 public String getAction () {
return _action ;

}

public String getField () {
115 if (_field == null) {

if ("WRD".equals(_findCode)) {

_field = " all fields " ;
}
else if ("WTI".equals(_findCode) || "LTI". equals (_scanCode)) {

120 _field = " title " ;
}
else if ("WFO".equals(_findCode) || "LFO".equals(_scanCode)) {

_field = "author" ;
}

125 else if ("WKE".equals(_findCode)) {
_field = " controlled subject" ;

}
else if ("WEM".equals(_findCode)) {

_field = " all subjects " ;
130 }

else if ("WIS".equals(_findCode)) {
_field = " title " ;

}
else if ("WAN".equals(_findCode)) {

135 _field = " title " ;
}
else if ("LEM".equals(_scanCode)) {

_field = "keyword";
}

140 else if ("LCL".equals(_scanCode)) {
_field = "UDK�classification";

}
else if ("WTI".equals(_scanCode)) {

_field = "words in title " ;
145 }

else {
_field = "no value";

}
}

150 return _field ;
}

public String getReferrerFunc () {
if (_method.equals("POST")) {

155 return _referrerFunc ;
}
else {

return ("no relevance");
}

160 }

public int getNumberOfCheckedBoxes() {
if (_numberOfCheckedBoxes == 0) {

return 1;
165 }

128
S

ource
C

ode
for

Java
C

lasses

else {
return _numberOfCheckedBoxes;

}
}

170

private void setVariables () {
_pageFunction = "unknown";
_pageFunctionType = "unknown";
_process = "unknown";

175 if (_func == null || _func. equals ("unknown") ||
_func. equals (" null ") || _func. equals ("")) {
if (_method.equals("POST") && "item�hold�request".equals(_referrerFunc)) {

_pageFunction = " reservebook";
_pageFunctionType = " reservation ";

180 _process = " reservation " ;
}
if (_method.equals("POST") &&

("BOR�LOGIN".equals(_referrerFunc) || "login" . equals (_referrerFunc))) {
_pageFunction = " login" ;

185 _pageFunctionType = " login " ;
_process = " login" ;

}
}
else if (_func. equals ("basket�delete")) {

190 _pageFunction = " deleteitem from basket";
_pageFunctionType = "basketfunction";
_process = "basket" ;

}
else if (_func. equals ("basket�delete�all")) {

195 _pageFunction = " deleteall items from basket";
_pageFunctionType = "basketfunction";
_process = "basket" ;

}
else if (_func. equals ("basket�full")) {

200 _pageFunction = " full format information on book from basket";
_pageFunctionType = "bookdescription" ;
_process = "basket" ;

}
else if (_func. equals ("basket�note")) {

205 _pageFunction = "enterednote for item to save in basket";
_pageFunctionType = "bookin basket";
_process = "basket" ;

}
else if (_func. equals ("basket�note�0")) {

210 _pageFunction = " enternote before saving item in basket";
_pageFunctionType = "basketfunction";
_process = "basket" ;

}
else if (_func. equals ("basket�short")) {

215 _pageFunction = "showbooks saved in basket";
_pageFunctionType = "basketfunction" ;
_process = "basket" ;

}
else if (_func. equals ("bor�hold")) {

220 _pageFunction = " reservationslist " ;
_pageFunctionType = " reservationfunction" ;
_process = " reservation " ;

}
else if (_func. equals ("BOR�HOLD�DELETE")) {

225 _pageFunction = " deletereservation " ;
_pageFunctionType = " reservationfunction" ;
_process = " reservation " ;

}
else if (_func. equals ("BOR�HOLD�EXP")) {

230 _pageFunction = "espandedinformation on a reservation";
_pageFunctionType = " reservationfunction" ;
_process = " reservation " ;

}
else if (_func. equals ("bor�info")) {

235 _pageFunction = "borrowerinformation" ;
_pageFunctionType = "borrowerinformation" ;
_process = "borrowerinformation" ;

}
else if (_func. equals ("bor�loan")) {

240 _pageFunction = "loanslist " ;
_pageFunctionType = "borrowerinformation" ;
_process = "borrowerinformation" ;

}
else if (_func. equals ("BOR�LOAN�EXP")) {

245 _pageFunction = "expandedview of a loan";
_pageFunctionType = "borrowerinformation" ;
_process = "borrowerinformation" ;

}
else if (_func. equals ("BOR�LOAN�RENEW")) {

250 _pageFunction = "renewloan";
_pageFunctionType = "renewloan";
_process = "borrowerinformation" ;

}
else if (_func. equals ("BOR�LOGIN")) {

255 _pageFunction = " loginbefore borrower information";
_pageFunctionType = " login" ;
_process = " login" ;

}
else if (_func. equals ("bor�renew�all")) {

260 _pageFunction = "renewall loans" ;
_pageFunctionType = "renewloan";
_process = "borrowerinformation" ;

}

E
.7

P
age

C
lass

129

else if (_func. equals ("bor�update")) {
265 _pageFunction = " enterinformation for addressupdate";

_pageFunctionType = "borrowerinformation" ;
_process = "borrowerinformation" ;

}
else if (_func. equals ("bor�update�1")) {

270 _pageFunction = "addressinformation updated";
_pageFunctionType = "borrowerinformation" ;
_process = "borrowerinformation" ;

}
else if (_func. equals (" direct�set")) {

275 _pageFunction = " full format (after scan)" ;
_pageFunctionType = "bookdescription" ;
_process = "search" ;

}
else if (_func. equals (" file ")) {

280 if ("base� list" . equals (_fileName)) {
_pageFunction = " list of databases" ;
_pageFunctionType = " listdatabases" ;
_process = "search";

}
285 else if ("bor�update�password".equals(_fileName)) {

_pageFunction = " fieldsto update passwordon old library card";
_pageFunctionType = "borrowerinformation" ;
_process = "borrowerinformation" ;

}
290 else if ("feedback" . equals (_fileName)) {

_pageFunction = "feedbackform";
_pageFunctionType = "feedback" ;
_process = "feedback" ;

}
295 else if (" find�b".equals(_fileName)) {

_pageFunction = "basicsearch form";
_pageFunctionType = " enterdata for search" ;
_process = "search";

}
300 else if (" logout" . equals (_fileName)) {

_pageFunction = " clickgo to logout";
_pageFunctionType = "logout" ;
_process = " logout";

}
305 }

else if (_func. equals (" find�a")) {
_pageFunction = "multi�field search";
_pageFunctionType = "search" ;
_process = "search" ;

310 }
else if (_func. equals (" find�acc")) {

_pageFunction = " full view of record (maybe only from scan)";

_pageFunctionType = "bookdescription" ;
_process = "search" ;

315 }
else if (_func. equals (" find�b")) {

_pageFunctionType = "search" ;
_process = "search" ;
if (getField (). equals ("novalue")) {

320 _pageFunction = "basicsearch";
}
else {

_pageFunction = "basicsearch on " + _field ;
}

325 }
else if (_func. equals (" find�c")) {

_pageFunction = "CommonCommand Languagesearch";
_pageFunctionType = "search" ;
_process = "search" ;

330 }
else if (_func. equals (" find�m")) {

_pageFunctionType = "search" ;
_process = "search" ;
if (getField (). equals ("novalue")) {

335 _pageFunction = "multi�base search";
}
else {

_pageFunction = "multi�base search on " + _field;
}

340 }
else if (_func. equals (" find�word")) {

_pageFunction = "searchword not found, choosenother word from list";
_pageFunctionType = "search" ;
_process = "search" ;

345 }
else if (_func. equals (" full�mail")) {

_pageFunction = "sentrecords in mail";
_pageFunctionType = "mail" ;
_process = "mail" ;

350 }
else if (_func. equals (" full�mail�0")) {

_pageFunction = " entertext to mail records";
_pageFunctionType = " enterdata";
_process = "mail" ;

355 }
else if (_func. equals (" full�set")) {

_pageFunction = " full view of record after reservation " ;
_pageFunctionType = "bookdescription" ;
_process = "search" ;

360 }
else if (_func. equals (" full�set�set")) {

130
S

ource
C

ode
for

Java
C

lasses

_pageFunction = " full view of record (different formats)" ;
_pageFunctionType = "bookdescription" ;
_process = "search" ;

365 }
else if (_func. equals (" history ")) {

_pageFunction = "showhistory options" ;
_pageFunctionType = " history " ;
_process = " history " ;

370 }
else if (_func. equals (" history�action")) {

_pageFunctionType = " historyfunction" ;
_process = " history " ;
if ("view". equals (_action)) {

375 _pageFunction = "viewsearch result from history";
_pageFunctionType = "search" ;

}
else if (" delete " . equals (_action)) {

_pageFunction = " deletesearch result from history";
380 }

else if ("cross" . equals (_action)) {
_pageFunction = "choosehow to cross search results";

}
else {

385 _pageFunction = "unknownhistory action";
}

}
else if (_func. equals (" history�cross")) {

_pageFunction = "crossseveral search results from history";
390 _pageFunctionType = " historyfunction" ;

_process = " history " ;
}
else if (_func. equals (" ill�request�1")) {

_pageFunction = " illegal request" ;
395 _pageFunctionType = " illegal " ;

}
else if (_func. equals ("item�global")) {

_pageFunction = "showall copies of a book";
_pageFunctionType = "showcopies";

400 _process = "search" ;
}
else if (_func. equals ("item�global�exp")) {

_pageFunction = "itemrecord expand view";
_pageFunctionType = "bookdescription" ;

405 _process = "search" ;
}
else if (_func. equals ("item�hold�request")) {

_pageFunction = " reservationprocess";
_pageFunctionType = "beforereservation " ;

410 _process = " reservation ";

}
else if (_func. equals (" login")) {

_pageFunction = " login " ;
_pageFunctionType = " login" ;

415 _process = " login" ;
}
else if (_func. equals (" logout")) {

_pageFunction = " sessiontime�out � start over with search or login";
_pageFunctionType = "logout" ;

420 _process = "logout" ;
}
else if (_func. equals ("option�show")) {

_pageFunction = "showformats";
_pageFunctionType = "showformats";

425 _process = "search" ;
}
else if (_func. equals ("option�update")) {

_pageFunction = "changeformats";
_pageFunctionType = "changeformats";

430 _process = "search" ;
}
else if (_func. equals ("option�update�lng")) {

_pageFunction = "changelanguageor base";
_pageFunctionType = "changelanguageor base";

435 _process = "search" ;
}
else if (_func. equals ("scan")) {

_pageFunctionType = "search" ;
_process = "search" ;

440 if (getField (). equals ("novalue")) {
_pageFunction = "browseunknown index";

}
else {

_pageFunction = "browse" + _field + " index";
445 }

}
else if (_func. equals ("scan�list")) {

_pageFunction = "browseindex";
_pageFunctionType = " enterdata for search" ;

450 _process = "search" ;
}
else if (_func. equals (" service ")) {

_pageFunction = "lookupin other index (placement,author, or ISBN)";
_pageFunctionType = "search" ;

455 _process = "search" ;
}
else if (_func. equals (" short ")) {

_pageFunction = " results list " ;
_pageFunctionType = " resultslist " ;

E
.8

P
ageE

ventC
lass

131

460 _process = "search" ;
}
else if (_func. equals (" short�action")) {

_pageFunction = " actionafter search " +
"(e.g. filter or mail search results)" ;

465 _pageFunctionType = "searchfunction" ;
_process = "search" ;
if (" store in basket" . equals (_action)) {

_pageFunction = " storebook(s) in basket";
_pageFunctionType = "bookin basket";

470 _process = "basket";
}

}
else if (_func. equals (" short� filter�3")) {

_pageFunction = " filter :show only available items";
475 _pageFunctionType = " filter " ;

_process = "search" ;
}
else if (_func. equals (" short� filter�y")) {

_pageFunction = " filter by year";
480 _pageFunctionType = " filter " ;

_process = "search" ;
}
else if (_func. equals (" short�mail")) {

_pageFunction = "sentlist by mail";
485 _pageFunctionType = "mail" ;

_process = "mail" ;
}
else if (_func. equals (" short�refine�exec")) {

_pageFunction = " refinesearch" ;
490 _pageFunctionType = " refinesearch" ;

_process = "search" ;
}
else if (_func. equals (" short�sort")) {

_pageFunction = "changesort order";
495 _pageFunctionType = " sort " ;

_process = "search" ;
}
else if (_func. equals ("unknown")) {

_pageFunction = "funcis unknown";
500 }

else {
_pageFunction = "newpage function: " + _func;

}
}

505

public String getPageFunction () {
if (_pageFunction ==null) {

setVariables ();

}
510 return _pageFunction;

}

public String getPageFunctionType () {
if (_pageFunctionType ==null) {

515 setVariables ();
}
return _pageFunctionType;

}

520 public String getProcess () {
if (_process ==null) {

setVariables ();
}
return _process ;

525 }

public void setPageKey(int newPageKey) {
_pageKey = newPageKey;

}
530

public String toString () {
StringBuffer buffer =new StringBuffer ();
buffer .append(_pageKey + "\ t");
buffer .append(_pageFunction + "\ t ");

535 buffer .append(_pageFunctionType + "\ t");
buffer .append(_process);
return buffer . toString ();

}

540

}

E.8 PageEvent Class
packageaub;

public class PageEvent {

5 int _logLineKey, _dateKey, _timeOfDayKey, _pageKey, _sessionKey, _auditKey;

public PageEvent (int logLineKey, int dateKey, int timeOfDayKey,
int pageKey,int sessionKey ,int auditKey) {

_logLineKey = logLineKey;
10 _dateKey = dateKey;

_timeOfDayKey = timeOfDayKey;
_pageKey = pageKey;

132
S

ource
C

ode
for

Java
C

lasses

_sessionKey = sessionKey;
_auditKey = auditKey;

15 }

public int getLogLineKey() {
return _logLineKey;

}
20

public int getDateKey() {
return _dateKey;

}

25 public int getTimeKey() {
return _timeOfDayKey;

}

public int getPageKey() {
30 return _pageKey;

}

public int getSessionKey () {
return _sessionKey;

35 }

public int getAuditKey() {
return _auditKey;

}
40

public String toString () {
StringBuffer buffer =new StringBuffer ();
buffer .append(_logLineKey + "\ t");
buffer .append(_dateKey + "\ t ");

45 buffer .append(_timeOfDayKey + "\t");
buffer .append(_pageKey + "\t ");
buffer .append(_sessionKey + "\ t");
buffer .append(_auditKey);
return buffer . toString ();

50 }
}

E.9 Search Class
packageaub;

public class Search {

5 private int _dateKey, _timeOfDayKey, _sessionKey, _searchTypeKey, _searchNumber,
_numberOfBookDescriptions, _numberOfBooksInBasket, _numberOfReservations;

private String _searchNumberValidity;
private boolean _active ;

10 public Search (int dateKey, int timeOfDayKey,int sessionKey ,int searchTypeKey,
int searchNumber, String searchNumberValidity ,
int numberOfBookDescriptions,int numberOfBooksInBasket,
int numberOfReservations) {

_dateKey = dateKey;
15 _timeOfDayKey = timeOfDayKey;

_sessionKey = sessionKey;
_searchTypeKey = searchTypeKey;
_searchNumber = searchNumber;
_searchNumberValidity = searchNumberValidity;

20 _numberOfBookDescriptions = numberOfBookDescriptions;
_numberOfBooksInBasket = numberOfBooksInBasket;
_numberOfReservations = numberOfReservations;
_active = true ;

}
25

public int getDateKey() {
return _dateKey;

}

30 public int getTimeOfDayKey() {
return _timeOfDayKey;

}

public int getSessionKey () {
35 return _sessionKey;

}

public int getSearchTypeKey() {
return _searchTypeKey;

40 }

public int getSearchNumber() {
return _searchNumber;

}
45

public String getSearchNumberValidity () {
return _searchNumberValidity;

}

50 public int getNumberOfBookDescriptions() {
return _numberOfBookDescriptions;

}

public int getNumberOfBooksInBasket() {
55 return _numberOfBooksInBasket;

E
.10

S
earchType

C
lass

133

}

public int getNumberOfReservations() {
return _numberOfReservations;

60 }

public boolean getActive () {
return _active ;

}
65

public void deactivate () {
_active = false;

}

70 public void incrementNumberOfBookDescriptions(int amount) {
_numberOfBookDescriptions = _numberOfBookDescriptions+ amount;

}

public void incrementNumberOfBooksInBasket(int amount) {
75 _numberOfBooksInBasket = _numberOfBooksInBasket + amount;

}

public void incrementNumberOfReservations(int amount) {
_numberOfReservations = _numberOfReservations + amount;

80 }

public void setSearchNumber(int newSearchNumber) {
_searchNumber = newSearchNumber;

}
85

public void setSearchNumberValidity(String newSearchNumberValidity) {
_searchNumberValidity = newSearchNumberValidity;

}

90 public String toString () {
StringBuffer buffer =new StringBuffer ();
buffer .append(_dateKey + "\ t ");
buffer .append(_timeOfDayKey + "\t");
buffer .append(_sessionKey + "\ t");

95 buffer .append(_searchTypeKey + "\ t ");
buffer .append(_searchNumber + "\t");
buffer .append(_searchNumberValidity + " \ t ");
buffer .append(_numberOfBookDescriptions + "\t");
buffer .append(_numberOfBooksInBasket + "\t");

100 buffer .append(_numberOfReservations);
return buffer . toString ();

}
}

E.10 SearchType Class

packageaub;

public class SearchType {

5 private int _searchTypeKey;
private String _type , _findCode , _scanCode, _field , _typeWithField;

public SearchType (int searchTypeKey, String type , String field ,
String typeWithField) {

10 _searchTypeKey = searchTypeKey;
_type = type ;
_field = field ;
_typeWithField = typeWithField ;

}
15

public SearchType (UrlQuery urlQuery)throws NotSearchTypeException {
if (urlQuery == null) {

System.out . println ("urlQueryis null");
throw new NotSearchTypeException("urlQueryis null");

20 }
String func = urlQuery. getValue("func");
// System.out . println (" func : " + func);
if (func == null) {

throw new NotSearchTypeException("funcis null");
25 }

_searchTypeKey = 0;
_type = "unknown";
_findCode = urlQuery . getValue("find_code");

30 _scanCode = urlQuery.getValue("scan_code");

if (func . equals (" find�a")) {
_type = "multi�field search";

}
35 else if (func. equals (" find�b")) {

_type = "basic search" ;
}
else if (func. equals (" find�c")) {

_type = "CCL search";
40 }

else if (func. equals (" find�m")) {
_type = "multi�base search";

}
else if (func. equals ("scan�list") || func . equals ("scan")) {

45 _type = "browseindex";
}
else if (func. equals (" history�action") &&

134
S

ource
C

ode
for

Java
C

lasses

urlQuery. getValue("action_view .x") !=null) {
_type = " history " ;

50 }
else if (func . equals ("basket�full")) {

_type = "basket" ;
}
else {

55 throw new NotSearchTypeException("urlQuerydoes not indicate search");
}

_field = getField ();

60 _typeWithField = _type + "on " + _field + " field " ;
}

public int getSearchTypeKey() {
return _searchTypeKey;

65 }

public String getType () {
return _type;

}
70

public String getTypeWithField () {
return _typeWithField ;

}

75 public String getFindCode() {
return _findCode;

}

public String getField () {
80 if ("WRD".equals(_findCode) || "multi�field search" . equals (_type)) {

_field = " all " ;
}
else if ("WTI".equals(_findCode) || "LTI". equals (_scanCode)) {

_field = " title " ;
85 }

else if ("WFO".equals(_findCode) || "LFO".equals(_scanCode)) {
_field = "author" ;

}
else if ("WKE".equals(_findCode)) {

90 _field = " controlled subject" ;
}
else if ("WEM".equals(_findCode)) {

_field = " all subjects " ;
}

95 else if ("WIS".equals(_findCode)) {
_field = " title " ;

}
else if ("WAN".equals(_findCode)) {

_field = " title ";
100 }

else if ("LEM".equals(_scanCode)) {
_field = "keyword";

}
else if ("LCL".equals(_scanCode)) {

105 _field = "UDK�classification";
}
else if ("WTI".equals(_scanCode)) {

_field = "words in title " ;
}

110 else {
_field = "no value";

}
return _field ;

}
115 }

E.11 Session Class
packageaub;

import java . sql .* ;
import java . net .* ;

5

public class Session {

private int _sessionKey , _pagesInSession , _lastSearchNumber, _firstPageKey ,
_lastPageKey , _startDateKey , _startTimeKey , _endDateKey, _endTimeKey,

10 _searchesInSession , _bookDescriptionsInSession , _booksInBasketInSession,
_reservationsInSession ;

private String _sessionTag , _ipAddress , _browser , _searchNumberValidity;
private java . sql .Date _startDate , _endDate;
private Time _startTime , _endTime;

15 private URL _firstRequestUrl , _lastRequestUrl , _referrer ;

public Session(int sessionKey , String sessionTag , String ipAddress , String browser,
String firstRequestUrl ,int firstPageKey , String lastRequestUrl ,
int lastPageKey , String referrer , java . sql .Date startDate ,

20 int startDateKey , Time startTime ,int startTimeKey,
java . sql .Date endDate,int endDateKey, Time endTime,int endTimeKey,
int pagesInSession ,int _bookDescriptionsInSession ,
int _booksInBasketInSession ,int _reservationsInSession ,
int lastSearchNumber, String searchNumberValidity) {

25 _sessionKey = sessionKey;
_sessionTag = sessionTag;

E
.11

S
ession

C
lass

135

_ipAddress = ipAddress;
_browser = browser;

30 try {
_firstRequestUrl =newURL(firstRequestUrl);

} catch (MalformedURLException mue) {}

_firstPageKey = firstPageKey ;
35

try {
_lastRequestUrl =newURL(lastRequestUrl);

} catch (MalformedURLException mue) {}

40 _lastPageKey = lastPageKey;

try {
_referrer =newURL(referrer);

} catch (MalformedURLException mue) {}
45

_startDate = startDate ;
_startDateKey = startDateKey ;
_startTime = startTime ;
_startTimeKey = startTimeKey;

50 _endDate = endDate;
_endDateKey = endDateKey;
_endTime = endTime;
_endTimeKey = endTimeKey;
_pagesInSession = pagesInSession ;

55 _searchesInSession = 0;
_bookDescriptionsInSession = 0;
_booksInBasketInSession = 0;
_reservationsInSession = 0;

_lastSearchNumber = lastSearchNumber;
60 _searchNumberValidity = searchNumberValidity;

}

public Session(int sessionKey , String sessionTag , String ipAddress , String browser,
URL firstRequestUrl ,int firstPageKey , URL lastRequestUrl,

65 int lastPageKey , URL referrer , java . sql .Date startDate ,
int startDateKey , Time startTime ,int startTimeKey,
java . sql .Date endDate,int endDateKey, Time endTime,int endTimeKey,
int pagesInSession ,int _bookDescriptionsInSession ,
int _booksInBasketInSession ,int _reservationsInSession ,

70 int lastSearchNumber, String searchNumberValidity) {
_sessionKey = sessionKey;
_sessionTag = sessionTag ;
_ipAddress = ipAddress;
_browser = browser;

75 _firstRequestUrl = firstRequestUrl ;

_firstPageKey = firstPageKey ;
_lastRequestUrl = lastRequestUrl ;
_lastPageKey = lastPageKey;
_referrer = referrer ;

80 _startDate = startDate ;
_startDateKey = startDateKey ;
_startTime = startTime ;
_startTimeKey = startTimeKey;
_endDate = endDate;

85 _endDateKey = endDateKey;
_endTime = endTime;
_endTimeKey = endTimeKey;
_pagesInSession = pagesInSession ;
_lastSearchNumber = lastSearchNumber;

90 _searchNumberValidity = searchNumberValidity;
}

public Session(int sessionKey , LogLine logLine ,int pageKey,int dateKey,
int timeKey) {

95 _sessionKey = sessionKey;
_sessionTag = logLine . getSessionTag ();
_ipAddress = logLine. getIpAddress ();
_browser = logLine .getBrowser ();
_firstRequestUrl = logLine. getRequestUrl ();

100 _firstPageKey = pageKey;
_lastRequestUrl = _firstRequestUrl ;
_lastPageKey = _firstPageKey ;
_referrer = logLine. getReferrer ();
_startDate = logLine.getDate ();

105 _startDateKey = dateKey;
_startTime = logLine.getTime();
_startTimeKey = timeKey;
_endDate = _startDate ;
_endDateKey = _startDateKey;

110 _endTime = _startTime;
_endTimeKey = _startTimeKey;
_pagesInSession = 1;
_lastSearchNumber =�1;
_searchNumberValidity = "temporary";

115 }

public void addPageEvent(LogLine logLine,int pageKey,int dateKey, int timeKey) {
if (! hasSessionTag ()) {

_sessionTag = logLine . getSessionTag ();
120 }

_lastRequestUrl = logLine . getRequestUrl ();
_lastPageKey = pageKey;
_endDate = logLine .getDate ();
_endDateKey = dateKey;

136
S

ource
C

ode
for

Java
C

lasses

125 _endTime = logLine.getTime();
_endTimeKey = timeKey;
_pagesInSession++;

}

130 public void addSearch(Search search) {
_searchesInSession++;
_bookDescriptionsInSession++;
_booksInBasketInSession++;
_reservationsInSession ++;

135 }

public String getSessionTag () {
return _sessionTag;

}
140

public booleanhasSessionTag () {
return (getSessionTag () !=null && !getSessionTag (). equals (" null ") &&

!getSessionTag (). equals (""));
}

145

public int getSessionKey () {
return _sessionKey;

}

150 public String getIpAddress () {
return _ipAddress;

}

public String getBrowser () {
155 return _browser;

}

public URL getFirstRequestUrl () {
return _firstRequestUrl ;

160 }

public int getFirstPageKey () {
return _firstPageKey ;

}
165

public URL getLastRequestUrl() {
return _lastRequestUrl ;

}

170 public int getLastPageKey() {
return _lastPageKey;

}

public URL getReferrer () {
175 return _referrer ;

}

public java . sql .Date getStartDate () {
return _startDate ;

180 }

public int getStartDateKey () {
return _startDateKey;

}
185

public Time getStartTime () {
return _startTime ;

}

190 public int getStartTimeKey () {
return _startTimeKey;

}

public java . sql .Date getEndDate() {
195 return _endDate;

}

public int getEndDateKey() {
return _endDateKey;

200 }

public Time getEndTime() {
return _endTime;

}
205

public int getEndTimeKey() {
return _endTimeKey;

}

210 public int getPagesInSession () {
return _pagesInSession ;

}

public int getLastSearchNumber() {
215 return _lastSearchNumber;

}

public boolean isLastSearchNumberKnown() {
return (_lastSearchNumber != 0);

220 }

public String getSearchNumberValidity () {

E
.11

S
ession

C
lass

137

return _searchNumberValidity;
}

225

public void incrementSearchesInSession (int amount) {
_searchesInSession += amount;

}

230 public void incrementBookDescriptionsInSession (int amount) {
_bookDescriptionsInSession += amount;

}

public void incrementBooksInBasketInSession(int amount) {
235 _booksInBasketInSession += amount;

}

public void incrementReservationsInSession (int amount) {
_reservationsInSession += amount;

240 }

public boolean isLastSearchNumberValid () {
return _searchNumberValidity. equals (" valid ");

}
245

public long getEndLong() {
long endLong = _endDate.getTime() + _endTime.getTime();
return endLong;

}
250

public long getStartLong () {
long startLong = _startDate .getTime () + _startTime .getTime();
return startLong ;

}
255

public booleanmatches(LogLine logLine) {
booleanmatchFound =false;
try {

if (hasSessionTag ()) {
260 if (_sessionTag. equals (logLine . getSessionTag()) &&

getEndLong() > logLine.getLongTime()� 1200000) {
matchFound =true;

}
else if (_ipAddress. equals (logLine .getIpAddress()) &&

265 logLine . getReferrer () !=null &&
_lastRequestUrl . toString (). equals (logLine . getReferrer ()

. toString ()) &&
_browser.equals (logLine.getBrowser()) &&
getEndLong() < logLine .getLongTime()� (20*60*1000)) {

270 matchFound =true;
}

}
else {

if (! logLine. referrerHasSessionTag ()) {
275 matchFound = (_ipAddress.equals (logLine .getIpAddress()) &&

logLine. getReferrer () !=null &&
_lastRequestUrl . toString ()
. equals (logLine . getReferrer (). toString ()) &&
_browser.equals (logLine .getBrowser()) &&

280 getEndLong() > logLine .getLongTime()� (20*60*1000));
}

}
}
catch (Exception e) {

285 System.out . println ("Session .matches()failed ...");
System.out . println (e);
System.out . println (e.getMessage ());

}
return matchFound;

290 }

public void setLastSearchNumber(int newSearchNumber) {
_lastSearchNumber = newSearchNumber;

}
295

public void setSearchNumberValidity(String newValidity) {
_searchNumberValidity = newValidity ;

}

300 public String toString () {
StringBuffer buffer =new StringBuffer ();
try {

buffer .append(_sessionKey + "\ t");
buffer .append(_sessionTag + "\ t");

305 buffer .append(_ipAddress + "\ t");
buffer .append(_browser + " \ t ");
if (_referrer ==null) {

buffer .append("novalue\t ");
}

310 else {
if (_referrer . toString (). endsWith(" \\")){

_referrer =new URL(_referrer. toString (). replaceAll (" \\\\"," "));
}
buffer .append(_referrer + " \ t ");

315 }
buffer .append(_firstRequestUrl + " \ t ");
buffer .append(_firstPageKey + "\ t");
buffer .append(_lastRequestUrl + " \ t ");
buffer .append(_lastPageKey + "\ t");

320 buffer .append(_startDate + "\ t");

138
S

ource
C

ode
for

Java
C

lasses

buffer .append(_startDateKey + "\ t");
buffer .append(_startTime + "\ t ");
buffer .append(_startTimeKey + "\ t");
buffer .append(_endDate + "\ t");

325 buffer .append(_endDateKey + "\t");
buffer .append(_endTime + "\t");
buffer .append(_endTimeKey + "\t");
buffer .append(_pagesInSession + "\ t");
buffer .append(_bookDescriptionsInSession + "\ t");

330 buffer .append(_booksInBasketInSession + "\ t ");
buffer .append(_reservationsInSession);

}
catch (Exception e) {

System.out . println ("Session . toString ()failed ...");
335 System.out . println (e);

}
return buffer . toString ();

}

340 public String activeSessionToString () {
StringBuffer buffer =new StringBuffer ();
try {

buffer .append(_sessionKey + "\ t ");
buffer .append(_sessionTag + "\ t ");

345 buffer .append(_ipAddress + "\ t ");
buffer .append(_browser + " \ t");
buffer .append(_firstRequestUrl + " \ t ");
buffer .append(_firstPageKey + "\ t");
buffer .append(_lastRequestUrl + " \ t ");

350 buffer .append(_lastPageKey + "\ t");
if (_referrer ==null) {

buffer .append("novalue\t");
}
else {

355 if (_referrer . toString (). endsWith(" \\")){
_referrer =newURL(_referrer. toString (). replaceAll (" \\\\"," "));

}
buffer .append(_referrer + " \ t ");

}
360 buffer .append(_startDate + "\ t ");

buffer .append(_startDateKey + "\ t");
buffer .append(_startTime + "\ t ");
buffer .append(_startTimeKey + "\ t");
buffer .append(_endDate + "\ t");

365 buffer .append(_endDateKey + "\t");
buffer .append(_endTime + "\t");
buffer .append(_endTimeKey + "\t");
buffer .append(_pagesInSession + "\ t");
buffer .append(_bookDescriptionsInSession + "\ t");

370 buffer .append(_booksInBasketInSession + "\ t ");
buffer .append(_reservationsInSession + "\ t ");
buffer .append(_lastSearchNumber + "\ t");
buffer .append(_searchNumberValidity);

}
375 catch (Exception e) {

System.out. println ("Session . activeSessionToString ()failed ...");
System.out. println (e);

}
return buffer . toString ();

380 }
}

E.12 UrlQuery Class
packageaub;

public class UrlQuery {

5 private String [] variables , values ;

public UrlQuery(String query) {
String [] variablesAndValues = query. split ("&");
variables =new String [variablesAndValues . length];

10 values =new String [variablesAndValues . length];

for (int v = 0; v < variablesAndValues . length ; v++) {
int equals = variablesAndValues[v]. indexOf("=");
if (equals !=�1) {

15 variables [v] = variablesAndValues[v]. substring (0, equals);
values [v] = variablesAndValues[v]. substring (equals + 1);

}
else {

variables [v] = "" ;
20 values [v] = "" ;

}
}

}

25 public int getIntValue (String variable) {
String stringValue = getValue(variable);
try {

return Integer . parseInt (stringValue);
} catch (Exception e) {

30 return �1;
}

}

E
.12

U
rlQ

uery
C

lass
139

public String getValue(String variable) {
35 String value =null ;

for (int v = 0; v < variables . length && value ==null ; v++) {
if (variables [v]. equals (variable)) {

value = values [v];

}
40 }

return value ;
}

}

APPENDIX F

Questionnaire

141

142 Questionnaire

APPENDIX G

Summary

In this project a web usage mining tool has been designed and implemented. The AUBA tool has been
implemented to aid the staff at Aalborg University Library (Aalborg UniversitesBibliotek, AUB) in
analyzing the behavior of the users of Auboline, the library’s on-line system that borrowers can use
to search for books. The library staff is interested in analyzing user behavior because they can use
the information to improve their services to the borrowers and thereby increase the loan numbers to
improve the economy of the library.

The input for the AUBA tool is a collection of web server log files. Analysis of the log files and
experimentation with the different functions of Auboline has lead to knowledge about the possibilities
of the analysis of the data. To store the information from thelog lines in a logical structure that is
understandable and easily accessible, the data in the database has been logically structured in two
star schemas, page_event and search. The structure of the page event star schema is common in
data webhouses. It enables analysis of sessions and page functions as well as variations in activity
according to different time and date parameters. The searchstar schema is structured specifically
for Auboline, because searches are the central part of the system. With the search star schema it
is possible to make analyses of the use of different types of search types and relate the number of
book descriptions, basket saves and reservations to the specific searches that lead to the activity. It is
possible to extend the data webhouse schema whenever there is a need for new types of analysis or
new information becomes available.

As the main part of the implementation, the post-processor has been implemented to handle the
ETL processes. It transforms the pure text input files to fit the format of the data webhouse. The
performance of the post-processor is satisfactory due to the limited amount of input/output activity
between the java program and the database. Extensive work has been done to assure that the data
flows through the ETL processes as expected and that the database will not contain flawed data. Each
incremental load is done in a single transaction to assure that the data is either fully loaded if there
are no problems or not loaded at all if there is an error, such as a power outage, so the process can be
restarted from scratch when the problem has been fixed.

Part of the motivation behind the implementation of the AUBAtool was to enable the AUB staff to
analyze the success of the book recommendation system to be integrated with Auboline. Therefore
one of the goals of the project has been to prepare the AUBA tool for analysis of the use of book
recommendations. The dimensional database schema has beendesigned in a way that the recommen-
dation service usage data will easily fit into. Unfortunately it has not been possible to analyze the use
of the recommendation service since it has not yet been integrated with Auboline.

A simple graphical user interface has been implemented to make sure that the AUB staff can find
results quickly without knowing the underlying structure of the database. Point-and-click can be
used to find the results of predefined queries while advanced users can query the database manually
for more complicated requests. The results that can be obtained with the graphical user interface can
be used by the AUB staff to gain knowledge about the behavior of the users of Auboline.

Different steps have been taken to improve performance. Forthe loading of the data, communication
with the database has been kept at a minimum. For the query part, performance have been optimized
in several ways. Outriggers have been placed between dimension tables to avoid joining with the
fact table whenever possible. Indexing is also used, but themost substantial query performance
improvement has been achieved by using summary tables in theAUBA tool. This is a very important
improvement because the users of the AUBA tool will most likely loose interest if they have to wait 20
minutes for each requested result. The materialized views have been hand coded because PostgreSQL
dost not include the option of materializing views. Updating the materialized views takes a long time
because they are recalculated from scratch. This is a temporary solution that is important to improve.
It will be much faster to update the summary tables incrementally instead of recalculating them.

143

144 Summary

A user survey has been conducted to illustrate the difference in the kind of information that can be
gained with different methods and to compare the borrowers’perception of their behavior in Auboline
with the results from the AUBA tool. Each method has its own advantages and drawbacks, and
therefore it is a good idea to use a combination of several methods of gathering information to get a
more clear picture of what is going on. For instance, it is a good idea to make a thorough analysis of
the user behavior in Auboline with the AUBA tool and then interview the borrowers about why they
behave the way they do.

Because the AUBA tool has been developed specifically for AUBit can give the staff analysis results
that are targeted directly on the structure and content of their system. The AUB staff that have been
involved in the project have shown a lot of interest in the AUBA tool, because it gives them informa-
tion that they have not previously been able to get. Furthermore they find the future possibilities of
the tool very exciting.

