Faculty of Engineering and Science

University of Aalborg

K

TITLE:
Relational Reinforcement Learning

PROJEKT PERIOD:
DATS,
February 2004 - July 2004

PROJECT GROUP:
d633a

GROUP MEMBERS:
KIaUS \]ensenantakj@cs.auc.dk

SUPERVISOR:
Uﬁe Kjarulﬁ, uk@cs.auc.dk

NUMBER OF COPIES: 4
NUMBER OF PAGES: 66

Department of Computer Science

SYNOPSIS:

Many machine learning problems are hard
solve due to the size of the state space u
in the application. In such a case, finding t
optimal solution requires a lot of computatio
This report is part of a project, where foct
lies on finding ways to decrease the size
state spaces used in small computer gan
A commonly used machine learning techniq
known as Reinforcement Learning has a h
time dealing with large state spaces, beca
of the table-base@)-learning used to learn
given environment. Relational interpretatig
is then used to extend conventional Reinfor
ment Learning with relational representatio
through first order logic, yielding the Relg
tional Reinforcement Learning technique. T
Blocks World is used as example for sho
ing the strengths and weaknesses of Relatig
Reinforcement Learning. Finally, Tetfi$p,
a reduced version of the well-known puzz
game of Tetris is presented and implemen
using Reinforcement Learning.

to
sed
he
n.
IS
of
nes.
ue
ard
use
;]
DN
ce-
ns
l-
he
N_
nal

le
ted

Summary

Many machine learning problems prove hard to solve due taitteeof their state
space. Having to visit every single state present simplytsanfeasible solution.
Instead, attention should be drawn towards representatibames capable of de-
creasing the size of a given state space.

Such schemes are concerned with finding patterns within#te space that makes
it possible to derive a generalized subspace. This subgpanevorks as a repre-
sentation of the total state space, which again can be useshjnnction with a
machine learning technique.

In this report, focus lies on finding a proper representagipproach for small com-
puter games to be learnt by means of the machine learningiteeh known as
Reinforcement Learning. Here, table-baggdearning is used to learn the optimal
policy of a given environment.

However, the table-based approach of storing state infibomas only convenient
for applications with a small state space. Also, in many €asere expressive
ways than simple state enumeration are needed to repregemirestate.

It has therefore been necessary to come up with a bettersesusgion method

for states and actions as they appear in the environmentier®ift approaches
such as propositional and Deictic representations areisisc through examples,
along with structural representations such as relatiartatpretations and labelled
directed graphs.

Relational interpretation is then used to extend the caimeal reinforcement
learning technique with relational representations tglothe use of first order
logic, yielding the Relational Reinforcement Learningheique.

Relational reinforcement learning is capable of decrepgie size of a given state
space through means of generalization. Using the Blockdd/® example, the
concept of relational reinforcement learning is introddieéong with its advantages
and disadvantages.

Among the advantages are the fact that relational reinfoerd learning now is
capable of learning a much wider array of applications, Whdo suffer from a
large state space and the problems that follow. And to doiftgua much more
expressive representation.

However, there are disadvantages. Some domains are haeddole relationally,

or do not work well with first order logic results. Also, sontate spaces are likely
to have less frequent patterns, making it hard for relatiogiaforcement learning

to learn the optimal policy of the environment effectively.

The well-known puzzle game of Tetris is then discussed wigtigl emphasis on
how to solve the Tetris problem with reinforcement learnieghniques. Realizing
the high complexity of the standard game of Tetris with sediierent pieces, a
reduced version, Tetrigp, is then implemented.

The implementation, though not fully operational, maddegc that even simple
domains can be hard to learn. Currently, the applicatiofesuifrom being able
to select the next best optimal policy from a given state.sTimfortunate feature
makes the agent more willing to stack the tetrominoes thamttomplete a bottom
row.

Conclusively, reinforcement learning is a good choice éarhing small computer
games. On the other hand, relational reinforcement legrisicapable of handling
more complex domains. Still, more live examples of appilae outside the area
of games need to be developed and evaluated.

Contents

1 Introduction 1
1.1 Intelligence 1
1.2 MachinelLearning 2
1.3 ProjectOutline, 2
1.4 ContentsoftheReport 3
2 Reinforcement Learning 5
21 Terminology 6
2.2 Markov Decision Processes 8
23 Q-learning 10
3 Representing States and Actions 17
3.1 State Enumeration. o 17
3.2 Propositional Representations 8 1
3.3 Deictic Representations 19
3.4 Structural Representations L. 20
4 Relational Reinforcement Learning 25
4.1 Introducing the BlocksWorld 26

4.2 Generalization e 27

Vi CONTENTS
4.3 Representing States And Actions 28
4.4 Relational Markov Decision Processes 30
45 GoalStatesAndRewards L. 31
4.6 RelationaQ-learning oL 32
4.7 RelationalP-learning 41
48 ACE e 44

5 Tetris 49
51 TheBoard e 49
5.2 TheTetrominoPieces 50
5.3 Rulesandrestrictions 50
5.4 Solving Tetris with Reinforcement Learning 51

6 Implementation 59
6.1 Tetrigrp . . . o e e 59

7 Conclusion 63
7.1 FutureWork 64
Bibliography 64

1::Introduction

Parents are often marbled by the learning abilities of thgants when growing
up. Humans, as well as animals to a certain extent, have eapedinary talent for
learning by interacting with their environment and using ktnowledge to handle
new, unforeseen situations. A term invented by humans fsrakact process is
calledintelligencewhich is one of the key elements in the basic foundation of all
most lifeforms.

1.1 Intelligence

By exploring the natural context of cause and effect, undadsng the conse-
guences of our actions as well as the chronology of the wavkel,are able to
use this understanding in order to benefit ourselves. Thosvalus to achieve a
higher goal such as learning to drive a car, walk on stiltv@n learn a new lan-
guage. In fact, often we do not even need an explicit teachkrairn about new
things. Instead we rely on our senses to observe, feel, stagié and listen to the
environment in order to better understand it.

Throughout our lives, we are greatly aware of how our actiffesct our surround-
ings and as such, we often exercise a concrete behaviousdb&st to influence
what happens around us. However, now and then we stumblgsavesy unforseen
situations that challenge, trick and amaze us, because veerftaknowledge of,
nor any experience that applies to them.

Being faced with such new situations does not always havesdiy@ outcome.
We tend to make a fool of ourselves, end up hurt, shockedinfasel or simply
intrigued by them. It is not by coincidence that sayings sagtyou cannot make
an omelet without breaking a few egg®'"you must crawl before you can walk
exist, implying that it often takes a few bad attempts befgeting it right. Itis

only human to make mistakes, because making mistakes is apefWinding the

right path or solution to a given problem.

Itis said that knowledge is power. And knowledge itself maykbovided througout
life in many different ways and through many different sasc listening to a
school teacher, reading a book, observing the behavioueople and animals,
touching an electric fence, taking apart a taperecordetuysits inside, and so
forth. Here, the natural curiosity of humans is often whates us.

2 Introduction

1.2 Machine Learning

An exciting field in the science of computers deals with lgagron a machine

level. For decades attempts have been made to come up whihidees for de-

veloping computer systems capable of learning and impgptiremselves from

experience. Influenced by areas involving mathematicdogphy, statistics, ar-
tificial intelligence, biology and many others, some att&sriave been succesful,
others have not.

The field of machine learning is of special interest to us husnhecause the re-
quirements to have computers help us in our daily life hasvgrérom simple,
mathematical calculating tasks to more complex ones. Toeskl include data
mining tools to help find consumer purchase patterns in ldegabases, learning a
car to drive on its own, to classify and filter out unwanted gnaad so forth.

Recently, the computer game industry has shown a lot oféstén machine learn-
ing with the sole purpose of providing challenging and emgitnew games and
simulators for the always demanding game playing consun@ten, the problem
with a given computer game is that once it has been played #rfesg, the game
becomes predictable and boring. In such a case, applyingineatearning tech-
niques could help in building a computer-based opponentatiapts itself to the
moves made by the human player and the current state of the.gam

As with any application, being an intelligent game or a dataimg tool, the prob-
lem is to find a suitable learning method. This method shoeldltie to learn all,
or at least a representative part, of a given domain, ergitie computer to han-
dle certain amounts of input, possibly with distorted datad produce a good end
result. And more importantly, the learning method shouldcapable of doing it
all within an acceptable time limit.

Obviously, this is almost never the case. Problem domamseldom small, rarely
simple nor noncomplicated. And coming up with a succesflitsm that performs
learning in an optimal way is not an easy thing to accompl@fien, the amounts
of data to be handled proves itself too big, and it can be harfintd ways of

covering the entire domain space, or even representative qft.

1.3 Project Outline

Many machine learning problems are difficult to solve beeanfsthe size of the
state space of the given application. In such a case, fintdimgptimal solution
requires a lot of computation, because the learning systetheiory has to visit
every state at least once. This project is concerned witlinfgna proper represen-

1.4 Contents of the Report 3

tation method, which has enough expressive power to destristates of a small
computer game related domain. At the same time the methodastign, should
be able to decrease the state space without losing any istatenation.

1.4 Contents of the Report

This report concerns a study in the area of a machine leareicignique known
as"Reinforcement Learning"A detailed description of this learning technique is
provided in Chapter 2, which explains the basic concepinefes and terminology
used. Realising a weakness of reinforcement learning irtable-based way of
representing state-action information, a variety of mogeressive representation
approaches is presented in Chapter 3.

In Chapter 4, the standard reinforcement learning teclmiguextended with a
relational representation of states and actions. This eatvanced form of rein-
forcement learning referred to as "relational reinforcaeimlearning” is then de-
scribed using the example of the Blocks World. Also, the AGEadmining tool is
presented and discussed with particular emphasis on cetisyy relational rein-
forcement learning applications.

Later, in Chapter 5, a presentation of the gamé& efris is given, and Chapter 6
includes the implementation of a limited version of the garakkedT'etris;rp IS
described. This is done in the context of standard reinfoss® learning. Chapter
6 concludes on the project work and provides ideas for funtak.

2 Rein-
forcement
Learning

Reinforcement learning (RL) is a computational approacteasning by interac-
tion with the environment. This way of learning is a foundatl idea of many
theories concerning intelligence and learning inspiredhtaynan nature. The main
difference between RL and other approaches to machineimgaisithat focus in
RL lies mainly on goal-directed learning achieved throughiad-and-error pro-
cess.

The history of reinforcement learning has its beginninghimitthe psychological
studies of animal learning[SB98a]. Combined with the 19%@=arch in optimal
control, these studies lead to some of the earliest worktificat intelligence in
the 1980s. This work has evolved over the years into what weytoefer to as
"reinforcement learning".

Unlike most forms of machine learning, the learning entityeinforcement learn-
ing is not told directly what to do. That is, to execute theiropd behaviour with
respect to a given domain and a given decision problem. Tdrade must discover
the optimal behaviour itself by exploring the world and naieting with it. At first,
the learner behaves irrationally due to a lack of knowledye: after a while it be-
comes smarter and better suited for selecting an optimabapp in solving the
decision problem.

The optimal behaviour corresponds to a sequence of moveseps that leads to
the answer or goal of the decision problem. A goal is reachdi#cause a system
based on RL is rewarded whenever it has made a "good" chottg@uamshed if
not. However, the system must find its own way to achievingvare by trying out
different possibilities. Hence, RL is different from trédnal supervised learning,
where learning is performed by means of examples providedrbgxperienced
supervisor.

In order to illustrate the main difference between reindonent learning and su-
pervised learning, the following examples can be used:

6 Reinforcement Learning

e A student watches a teacher solve exercises on the blackbaad learns
how to imitate this behavior for his own home-work (Supeedd_earning)

e When picking up and handing over the newspaper from the weyethe
dog receives a treat from its owner. The dog quickly learnsefeat this
behaviour (Reinforcement Learning)

The argument for not using the supervised approach is ttanitbe difficult to

provide enough examples that represent all the differeletactive situations an
agent can end up in. In such cases it proves very useful ifeuming entity in a
reinforcement learning problem is able to learn from its @xperience.

2.1 Terminology

A specific terminology is used when describing the elemehi r@inforcement
learning problem scenario. Here, agentconstitutes the learner, e.g. the abstract
user that is trying to solve the reinforcement learning feobwithin the bound-
aries of a given domain. In this domain, the agent can carradtions that affect
and changes the state of it. Thevironment is an abstraction over the domain in
which the agent exists, can perceive, and act in.

In the context of this report, the concept of RL involves Binify an agent capable of
sensing as well as interacting with the environment in witichplaced. The agent
must find the optimal approach, called a policy to a given f@mwbby selecting a

sequence of actions which leads to states with the greatesilative reward.

A policy defines the learning agent’'s way of behaving by mapping frerogived
states of the environment to actions to be taken when in thiages. Araction is

a well-defined atomic step or move performed by an agent, atatais merely a
snapshot of the state of the environment along with the nustate of the agent at
a given timet.

For every action an agent performs, a reward function assagnimmediate reward

to the agent. Aeward is a scalar value which represents the degree to which a
state is desirable. In the simplest form using a game as drathp function could
provide a positive reward when a game was won, a negativerde{panishment)
when the game was lost, and provide a neutral reward of zeamyrnother game
state.

Commonly, states as well as actions are represented usitlgea simple approach
such as enumeration or similar. However, some reinforcéreamning problems
demand the use of a better representation form. In Chaptdie® avidely used
approaches to describing information about states andrectire explained.

2.1 Terminology 7

1 Environment: You are in state 65
2 You have 4 possible actions
3 Agent: I'll take action 2
4 Environment: You received a reward of 7
5 You are now in state 15
6 You have 2 possible actions
7 Agent: I'll take action 1
8 Environment: You received a reward of -4
9 You are now in state 65
10 You have 4 possible actions
11

Table 2.1: An example of the dialog between an agent and visoeiment

Imagine for a second the well-known game of Tic-Tac-Toe a $e Figure 2.1.
Here the goal of the reinforcement learning agent is to filthmee adjacent cells,
connected either vertically, horizontally or diagonallytlwidentical symbols of
eitherO’s or X''s. If this goal is reached, the agent has won the game.

X|0|0
OX|X
X

Figure 2.1: The game of Tic-Tac-Toe

Here, the enviroment would correspond to the 3 x 3 board dicly the(0’s and
X''s. The two players would constitute the agents, an actiaihddoe to "put a mark

on the board at positian, y", and a state would be the state of the environment after
any move by an agent. In the simplest form the reward coulddf8epbints for
filling up three horisontally, vertically or diagonally coected cells and winning,
-100 for letting the opposing agent win and a reinforceméiitia any other state.
The policy to be learned could be to find the sequence of mdasrt the end,
results in most winning situations.

An example of a natural language dialog between a given agehthe environ-
ment in which it exists can be seen in Table 2.1. Here, the@mvient presents to
the agent a list of possible actions to choose between aldihgtive current state
of the agent. The agent then selects an action from the Itz environment

8 Reinforcement Learning

rewards the agent with respect to the new state.

Reinforcement learning has been used in a large varietyfvfaie solutions. It has
succesfully been implemented in applications ranging fpath finding systems
and computer-based opponents in simple boardgames suatt BactToe[SB98b]
and Backgammon[SB98c], to larger, industrial applicagiorcluding control sys-
tems for elevators[SB98d], robotics[SB98e] and even sdeat warfare for the
military[KHI94].

2.2 Markov Decision Processes

A sequential decision problem can be formalized using Matkecision Processes
(MDPs). An MDP is a model of a decision problem, where an agentperceive a
given set of states in its environment. Also, the agent hessacto a set of actions,
from which it can select and perform its next action at eactetstept. If the set
S of states and set of actions are finite, the MDP is also called finite.

The current state and action of the agent determines a piibpalistribution on
future states. If the resulting next state only depends erctinrent state as well as
the action of the agent, the decision process obeys whdeised to as the Markov

property.

Definition 2.1 A Markov Decision Proceq81DP) is a 4-tuple, 5, A, r, 0), where
S and A are finite sets and

1. Sis the set of states,
2. A s the set of actions,
3. r7r: 58 x A— Risthe reward function, and

4, 6: S x A— Sisthe transistion function

An MDP consists of a sef of states of an environment, which the agent can
assume, and a set of actions, from which the agent can choose its next move.
At any time step, the agent uses its sensory system to retrieve the statiethe
environment, selects its next actiapfrom A and executes it.

An immediate reward; = (s, a;) is returned from the environment, letting the
agent know whether the chosen action was "good" or "bad"hé&same time, the
environment deterministically selects and puts the ageiat mew state using the
transition functions;1 = d(s¢, a¢). This means that the new state solely depends
on the current state and the action of the agent.

2.2 Markov Decision Processes 9

The job of the agent is now to learn an optimal poligy; S — A. Based on its

current states;, it must select its next actiom,(s;) = a;, and find the policy that

produces the greatest cumulative rewkrd, shown in equation 2.1 with an infinite
horizon.

0.9}

VT (st) = 1+ res1 + 7 T2 + o = ZWiTtJri (2.1)
i=0

The infinite horizon reward solution considers the long-run reward of the agent
influenced by the discount facter, a constant weight between 0 and 1. Mathe-
matically, using the infinite horizon model, as opposed ®fthite one, is more
tractable in most applications. This is because an apjgitain theory, can run
forever. Or at least, because the lifetime length of an aigamtknown.

A finite horizon reward solutiony_" r,,;, is an alternative to the infinite one that
considers the undiscounted sum of rewards over a finite nuofteteps denoted
by h. The finite horizon solution is applicable when the lifetimiethe agent is
known. The only thing the agent needs to think about is tha given time it
should optimize its expected reward for the nkxdteps. It does not need to worry
about what will happen afterwards. However, the problene heithat the actual
lifetime length of the agent may not always be known in adeanc

As an alternative to finite and infinite horizon rewards, #éiverage rewardmodel
can be used. The expressiimy, ., % Z?:o r¢1; considers the average reward
per time stept over the lifetime of the agent. Again, the precise lengthhaf t
lifetime of the agent has to be known in advance, before theage reward solution
can be taken into consideration.

In this report, a restriction to using the infinite horizomiside, where the reward
is discounted by the factoy. Future rewards are often discounted more than im-
mediate ones, since it is only natural to seek to be rewardedes as opposed to
later. The more the future matters, the higher the value@fiiscount factor.

If v = 0 only the immediate reward is taken into consideration. @tise, rewards
are discounted exponentially by the factémwherei denotes a given time step into
the future. Ify < 1 the greatest cumulative rewavtr is known as the "discounted
cumulative reward".

The optimal policy that maximizeg™ (s) for all statess is denoted byr* :

" = arg max V™ (s), (Vs) (2.2)

10 Reinforcement Learning

To simplify notation the value functiolr™ (s) of an optimal policy is often de-
notedV*(s). In other words, this is the reward an agent will receive Ifdeing
the optimal policy beginning at a given stateThe requirement here is, however,
that the transistion function as well as the reward functtoknown to the agent.
This is not always the case. Fortunatelylearning is helpful here.

2.3 (Q-learning

Q-learning is a reinforcement learning algorithm for leagnhow to estimate long-
term expected reward for any given state-action pair, wkieeaeward functiorn

and the transistion functiof are unknown to the agent. One of its advantages is
that it does not need a model of the environment and as suchajfiplicable for
on-line learning situations. It is, however, dependenttendize of the state space
since concentional)-learning uses a look-up table as representation of it. eFabl
based))-learning is therefore mainly feasible for problems of a Benacale.

An evaluation functionQ(s, a) is used to retrieve the values of the state-action
pairs. Using this function, it is possible to find the maximdiscounted cumulative
reward achievable by beginning in statand selecting: as the first action. Here,
the value returned frony) is the reward given when executing the action, together
with the value of following the optimal policy afterwardgsdounted byy:

Q(s,a) =r(s,a) +yV*(d(s,a)) (2.3)

The equation is rewritable with respect to the similaritiegart of the equation
from earlier. This means that a given agent is capable ofse¢ea global, optimal
action a despite lack of knowledge of the reward and transistion tion¢ and
despite using only the local values@f All it has to do is to learn th€) function,
and use it to select the maximum-valuedn any given states. ((s,a) can be
rewritten into the following:

" (s) = arg max Q(s,a) (2.4)

Figures 2.2, 2.3, 2.4 and 2.5 illustrates an example of sglaideterministic MDP
using(learning. Here, the environment used is a small grid worlierg each cell
in the grid depicts a state. The arrows pointing from onesdtatinother represents
the actions, which the agent can select in order to changeeketthe states of the
world. The cells in the grids marked corresponds to the goal state of the world.
In this example the goal state is referred to as "absorbisigte it does not have
any transistion arrows leading away from it.

2.3(Q)-learning 11

0 10 0
A 004 p *Q

o ¥ [0l ¥ 00l
Up U
7 g

Figure 2.2:r(s, a) values (immediate reward)

In Figure 2.2 each arrow is associated with a number. Thiesgmts the immedi-
ate reward-(s, a) an agent would receive when changing between the two states i
the direction of the arrow, executing the action stated leyatrow. In this world,
the only reward given is when the agent selects an actiorighds directly to the
goal state. Every other transition between states is resdamt "punished”, with a
value of zero.

—»>

G
t
—»> >

Figure 2.3: An optimal policy

Given a discount factoy = 0.9, the optimal policyr* as well as its corresponding
value functionV *(s) can be determined. Figure 2.3 shows what an optimal policy
could look like in this case in any given state of the grid-\doiThis corresponds

to the agent selecting the optimal "path” that will lead ithie goal state.

The values ofV* for each state can be seen in Figure 2.4. Here, each cell now
holds a discounted reward according to the optimal policthat particular state.

In the case of the bottom right state in the grid, the value i$0he immediate
reward received from selecting the optimal policy, whiclihis state is the action

to "move-up”. Using the bottom center state, the optimaicgdb reach the goal
state@ is first to "move-right", receiving the immediate reward efa, and then

to "move-up", generating a reward of 100.

12 Reinforcement Learning

100 1
90 > 100 > GO
A | A | A
v | T w | |

81 g™ 90 [*100

Figure 2.4:V*(s) values

The actual calculation is the sum of discounted future rds/aver an infinite
future is :

0 + 100 + 420 + 430 + ... = 90 (2.5)

Figure 2.5 illustrates thé values for any state-action transition in the grid-world
example. This corresponds to adding the value @r the particular transistion
and the value of/* for the resulting state together, discounting them by tletofa
~. The optimal policy here is the same as selecting the actigtisthe maximum
(2-values in any state in the grid.

0
23 100ly, GQ

e

a1 30 100
3_1_., 9_[3_.,
= g

Figure 2.5:Q(s, a) values

2.3.1 The@-learning Algorithm

The algorithm for learning th&)-function uses iterative approximation in order
to learn the optimal policy. Approximation is needed, siocdy the sequence of
immediate rewards is given. The relationship betweep and V* is, however,
very useful in finding a reliable way to estimate the trainadues forQ). Using :

2.3(Q)-learning 13

V*(s) = max Q(s,a') (2.6)

yields a rewriting to the following, recursive definition Q.

Qls,a) = r(s,a) + 7 max Q(5(s,a),) @7

With this equation it is possible to use iterative approxiomain learning theQ-
function. The actual algorithm using a pseudo code baseation} can be seen in
Table 2.2. The symbd) refers to the approximation of the actgifunction and is
represented as a look-up table. Each entry in the tablesmmorels to a state-action
pair (s, a), in which the value forQ(s,a) is stored. The look-up table therefore
holds the current hypothesis for each actual, yet unknovuevaf Q (s,).

1 for each state-action pafg, a) do

2 setcurrent table entrg(s,a) = 0

3 observe current state

4 doforever

choose an actiom and execute it
receive immediate reward

observe new staté

updateQ (s, a) < r + v maxy Q(s',a’)
PRy

© 00 N O O

Table 2.2: The standar@-learning algorithm

Initially, each entry in the table is reset to zero. Duringle#eration, the agent
perceives its current stateand selects an action After executinga, the agent
receives: = r(s, a) from the reward function as well a§ = 4(s, a) from the tran-

sistion function. Next, it updates the current hypothé}s@s, a) using the following

update rule:

Q(s, a) < r+ 7 max Q(s', a') (2.8)

2.3.2 The Action Selection Problem

An important aspect of reinforcement learning lies in sefgcan experimentation
approach that produces most effective learning. Here, geatandirectly affects
the effectiveness through the distribution of the trainexgmples since the actual

14 Reinforcement Learning

sequence of actions determines the immediate succes. Aeprpknown as the
exploitation/exploration proble[®B98a] deals with the dilemma of choosing be-
tween having the agent focus on two different experimeoradipproaches, namely
that of exploitation or exploration.

The exploitation approach is important when the agent seeksaximize its cu-
mulative reward. This is true because the agent is forcekptor what it has
already learned. That is, to visit states and select actlwatst already knows will
provide a high reinforcement. On the other hand, using thxoeation approach
will give the agent the opportunity to explore unknown stadad actions. This ap-
proach will make the agent focus on exploring the environmerder to gather
new information, while hoping to find a state or action wittsa,far, undiscovered
high reward.

Selecting an action in states is commonly done probabilistically i@-learning
instead of just having the agent select the action that rriang(s,a). The
problem here is that the agent will begin a tendency of ekiplpiits current ap-
proximation(, hence favoring early states and actions that the agersdireas
learned will provide a reward.

On the other hand, it is not favorable for the agent to haventoch focus on
exploring new states and actions, seeking rewards in time &b higherQ-value.
A balance between the risk of favorizing either exploitatmr exploration can be
made using a probabilistic approach in solving the actidecten problem:

kQ(saai)

Plals) = ————
(az|3) Zj LQ(s.a5)

(2.9)

A probability is assigned to actions based on h&alues, and no action must be
assigned a probability of 0. A nonzero probability ensutes the action can in
fact be chosen, since an action with a probability of zeronmteresting to the
agent. In the abovementioned equatiftiq;|s) yields the probability of selecting
actiona; given the current state

A constant denoteé wherek > 0 is included to help determine how strongly the
action selection process favors actions that have a Qiglalue associated with
them. If£ holds a high value, the agent will tend to exploit what it hieaay
learned, because actions with above aver@geill be asigned a high probability.

Contrary to this, a small value @f will assign a high probability to other actions,
causing the agent to explore the ones currently holding # gpagalue in the hope
of finding a higher.

An alternative to a constart-value, k£ can be adjusted with the number of itera-

2.3(Q)-learning 15

tions. This will allow the agent to change its behaviour dgrits lifetime. In some
cases it is favorable for the agent to start out using an exfidm approach and
later on, to focus more on exploitation.

Using this particular strategy makes sense in applicatiehsre a more natural
process of learning is requested. When dealing with a newadurit seems only
logical to initially to explore the boundaries of it in ord&y discover and learn
the overall environment. Later on, when the basic surrcwysliare known to the
agent, it should try to explore new things and learn detdatsuiit.

In the following chapter, a series of different approacteesepresenting state and
action related information is presented and discussedo$ihg a proper represen-
tation method is an important part of the development of asliegtion, because
it often directly affects its success. That is, how well tipplecation in question is
able to solve a given problem.

3::Representing
States and
Actions

When dealing with reinforcement learning problems, it isessary to find a proper
way of representing the states and actions involved. Angesgmtation form can
be as good as the next one, as long as it represents the damgurestion, has
acceptable performance and sufficient expressive poweelfdtarify and solve

the problem given.

In the following, a few methods applicable to representitades and actions are
explained according to their level of expressiveness,rimgg with the low level
ones. These representation forms[DriO4a] include :

e State Enumeration
e Propositional Representations
e Deictic Representations

e Structural Representations

3.1 State Enumeration

In traditional reinforcement learnidgstates are usually represented using simple
state enumeration. This representation form has a very éwel lof expressive
power since a state merely is represented and identified @simique, numerical
index value. Still, it is a sufficient choice in many situasowhere little informa-
tion about states and actions and their context is kept amskce

State enumeration yields the use of anonymity in the semgét@ individual states
and their unique role in solving the reinforcement learrpngblem is of little inter-
est. Instead, states are stored in table-based form, wheessis gained through

IReinforcement learning using table-baggdearning

18 Representing States and Actions

the use of their index. Here, knowing the index suffices andirext interpretation
of states or actions is needed.

The main strength of using state enumeration is simplicy. the same time,
simplicity is also the main weakness. This is because it mmayeptoo simple to
use in some applications that does not settle for idengifgiiates and actions using
just simple numbers. In Table 2.1 the dialog between theremvient and the
agent is based on a represention form like state enumeration

3.2 Propositional Representations

Propositional representation is a representation forrha¢beresponds to describ-
ing a state as a so-called feature vector. This vector théafshen attribute for

each possible property of the environment of the agent. &ibbate here could be
Boolean, an enumerable range, a continuous value, andtko for

The game of Tic-Tac-Toe, as seen in Figure 2.1, is a good dofoaimaking use
of a propositional representation form. Each of the ninésasn either be empty
or hold theX or O-symbol. This simple domain can be represented using aréeatu
vector of length nine, where each attribute € {empty, X, O}.

Using Figure 2.1 the feature vectorfis= { X, 0,0, O, X, X, empty, empty, X }
when representing the Tic-Tac-Toe board from left to righp to bottom. The
X-agent could then use this representation form to learngleing aX in the
center of the board witlf = {X, 0,0, O, empty, X, empty, empty, X } would
make it win the game.

Also, the agent could use the feature vector to determineptigtions of the
board that makes it impossible for it to win. An example heveld be a situa-
tion f = {?,0,7,7,0,7,7, empty, 7}, where? denotes an insignificant attribute
value, independent of the outcome. In any case Xhagent would lose and re-
ceive a negative reward if it left such a board configuratmthe opposing player.
Obviously, the agent should here learn how to avoid endinim gpich a situation.

A weakness of using a propositional representation apprémc¢hat a problem
arises when trying to describe attribute properties anatimeis that may/may not
exist between different states. An example here could beri@em of not being
able to represent that not placing &nnext toanytwo adjacent)’s would result in
the agent losing the game. Also, propositional representafail when applied to
a dynamic domain where the number of objects being repredesichanged over
time, or unknown at first.

Propositional representation methods can be used inisitigatwhere a more ex-

3.3 Deictic Representations 19

pressive representation form than state enumeration isreshj It can be used in
smaller domains where state blacklisting is an acceptableovexpressing, for in-
stance, undesirable states. Blacklisting here solelysééethe concept of keeping
track of all the states in the state space that present aasisiiliation. Blacklist-

ing states may work in domains with limited size state spat&svever, a more

generalized approach is more convenient and scales better.

In the simple Tic-Tac-Toe example, the agent needs to leayrcambination of
two adjacentD’s in order to have a complete blacklist of the possible ttzeén

the end, the blacklist would here consist of all the 16 défércombinations of
placing two adjacen®’s on the board. The basic rule for any of these combinations
is, however, exactly the sam&Any combination of two adjacert?’s should be
avoided" This simple rule yields the use of a more general approach.

3.3 Deictic Representations

A deictic representation form deals with representing gimarnumber of objects
in a dynamic environment. Basically, it offers a solutionttie problem exposed
in propositional representation methods, by providingagent with &ocal point
This focal point is then used to define the rest of the enviremire.g. the environ-
ment is defined in relation to the focal point.

This particular approach is very similar to what most peapdein many situa-
tions in real life. A good example here is giving directiomssbmeone, because
the world here is described in relation to where the personiging directions is
standing at that exact time. Providing the person who isuvattt a deictic repre-
sentation of the environment might not even include spesifeet names. It could
be based on constructs such as the following:

e Two floors up
e The second crossroad

e The street on your left

Such direction constructs only make sense when appliedlatior to the focal
point in question. The destination point would clearly elifif the exact same set of
directions were to be provided in two different locations uch, the focal point is
similar to the starting point of the agent. Or, the end poirfolowing a previous
set of directions. Deictic representations can also be usdlde description of
objects:

20 Representing States and Actions

e The last person you talked to
e The glove on your right hand

e The movie you are watching

Although the deictic approach in representing states atidrecmay seem a nat-
ural choice for many applications, it suffers from the peshlof complexity. In
basicQ-learning, the agent has to explore the entire state spabe ehvironment
by means of state-action pairs. If a deictic representatiotine state space was
used, every possible focal point in the environment alsotbdm explored, hence
causing a substantial increase in the complexity of thergiearning problem.

3.4 Structural Representations

The main idea behind structural representation methodsaisthe real world is
filled with relationally connected objects, each displgytertain properties. So,
in order to fully describe a relational world, a relationaégentation of it must be
deduced, involving the available states and actions asappgar to the agent in
the environment.

Role playing games are excellent applications for usingcstiral representations.
Typically, the player here controls a dynamic amount of abtars with different
characteristics, e.g. belong to a certain race, possesarcabilities, strengths
and weaknesses, and so forth. The job of the player is to aevtkese different
characters by, among others, leading them into battle egdiblpful objects and
complete certain quests.

A role playing game presents a very complex world to the eg¥ément learning
task. The requirement here is to come up with a suitable septation form that is
capable of describing not just basic state and action irdition, but also the many
different objects, their characteristics and individuglhtionships.

The complexity of describing the battle part of a role playgame could involve:

e Dynamic character amount (some characters die while o#tierlsorn during
game play)

e Unique characters (characters are of different types anel &different num-
ber of abilities)

¢ Individual character behaviour (the behaviour of a chamistdependent on
the situation, current abilities etc)

3.4 Structural Representations 21

e Relative character strength (a character can be strongénsigertain types
of enemies)

e Generic actions (a magic spell might have multiple targets)

These features are very difficult to represent using anyefépresentation meth-
ods mentioned so far without ending up with a lossy desoniptif the game states.
In order to reach an acceptable, lossless representatiehvii¢th enough expres-
sive power to describe a role playing game, a relational @gugr can be used.

3.4.1 Relational Interpretations

Using a relational interpretation approach involves reprging each state-action
pairs as sets of relational facts. The notation used hererisdifferent from the
ones mentioned earlier because a high-level represemtatiguage is used in the
description of an environment, e.g. objects, states andrect

Consider the small domain of the package delivery robot as & Figure 3.1.

The task of the robot is to deliver the packages to their iddi&l destinations as
quickly as possible. The robot is capable of carrying sdymakages all at once,
dependent on their accumulated, physical size.

Figure 3.1: The package delivery robot domain

The delivery robot carries navigational equipment to hefmd its way round the
rooms of the building in question. At random intervals, akasae may appear in
any of the rooms for the robot to pick up and deliver elsewh@&tee set of actions
available to the robot consists df = {move(D), pickup(P), dropof f (P)}, with
the set of directiond) = {North, South, East, West} and the set of packages

P={p1,....,pon}

22 Representing States and Actions

The relational facts used in the representation respegetmoning of First-Order
Logic[Mit97]. In first-order logic each statement is a canst which basically can
be broken up into a predicate and a subject. The predicateededir modifies the
properties of the subject. The forf(z) is a construct of the predicafe and the
subjectz, here represented as a variable.

Other useful expressions includgx), whereF is a function instead of a predi-
cate. In first-order logic, the difference between a predi@nd a function is that
a predicate can only take on values of true or false. A functimwever, may take
on any value.

Table 3.1 shows the relational facts about the current sfetee robot as depicted
in Figure 3.1. Each fact is a construct consisting of the gyfoelation, and one or
more embedded variables. The variablollowed by a number denotes a given
room, whilep followed by a number denotes a certain package.

The relational interpretation shown in Table 3.1 providesugh state knowledge
to describe the current location of the robot as well as tli&ach package, the
individual size of the packages, and the maximum loadinglogipes of the robot.

1 location(r2). destination(pl,r3).
2 carrying(p2). destination(p2,r4).
3 maximumload(5). destination(p4,r3).
4

5 package(pl). size(pl,3)

6 package(p2). size(p2,1).

7 package(p3). size(p4,3).

9

10 location(pl,r4).

11 location(p2,r2).
12 location(p4,r2).

Table 3.1: Arelational interpretation of the state of théwéey robot in Figure 3.1

In this case, the navigational equipment is aware of howrt&idual rooms are

connected. This information, however, could easily beesented using relational
facts such asonnected(rl,r2)., connected(rl,r3). and so forth. Whenever a
new package arrives in a room, new facts concerning itsilmtatlestination and

size is simply added to the current representation.

A big advantage of using relational interpretation is thiag@neralization. Using
simple relational facts even a complex world of objectstestand actions can be
described. Furthermore, the high level description lagguean easily be read
and understood by humans, providing the developer with tebetverview of the

3.4 Structural Representations 23

reinforcement learning problem.

Also, this approach scales rather well as opposed to otlpeesentation forms.
Adding new state information is simply a matter of providingw facts to the
current representation. Another advantage is that it isiptesto derive new facts
from current ones without explicitly adding them to the esg@ntation. This is
explained in more detail in the part of Section 4.2 of Chagtérat deals with the
concept of Logic Programming.

3.4.2 Labelled Directed Graphs

Another possible representation method for describingtigial information is
through the use of a graph. A graph is a useful format for digply structural in-
formation between objects in a given domain. Here, a nodeemgtaph represents
the object, while an edge between two nodes describes #iaiianship.

A common use of graphs is in applications involving navigadil tasks, where the
graph becomes a representation of a roadmap or similar.clm &case the nodes
could represent location points in the world, and the edgeddcrepresent a path
or road connecting the location points to one another. Tleatdg then able to find

its way round the environment, using the graph as a direaliomap.

Current

Figure 3.2: Aroad map and its representation as a graph

One-way streets could be represented using directionasedgthe graph, and
any additional travelling information such as speed liroitsild be supplied using
a labelled graph. Figure 3.2 shows a piece of a Nevada roadafag with its
representation as a labelled graph. The agent is positiahéde node labelled
{curpos} and must select the optimal path which will lead it to the goatle
labelled{goal}.

The graph approach is an exciting alternative to relati@marpretation. Though
a graph seems to be closer to the language of a computertilt &bte to provide
a developer with good overview. The main differences bebhmedational inter-
pretation and a graph representation include maintenamtehe ability to scale.
Though it may seem a bit more complex to adapt a graph to a neshanging

24 Representing States and Actions

environment, the graph does not need to be interpretedrikiee relational inter-
pretation approach.

The following chapter introduces the area of relationahfi@icement learning, a
variant of reinforcement learning that uses generalipatibstate space informa-
tion through relational representations. This feature esathe learning method
applicable for many applications that suffer from largdestpaces.

4::Relational
Reinforcement
Learning

Using relations in the description of a given domain seemasoois in many situ-
ations. As an example, an intelligent vacuum cleaning rainet its environment
can be used. Here, it might not be interesting for a robottu&now its exact lo-
cation, i.e. its XYZ-coordinate in the three-dimensionalrid. More importantly
could be the relations that exist between the robot and thieomment in which it
exists at a given time.

For instance, it might be crucial for the robot to know thatutrently is operating
behind a table in the middle of the room located at the lefhdt@ the hall. Or that
the charging facility of the robot is located behind it, apoged to in front of or to
the left/right of it. Being aware of absolute positions ino@m where furniture is
moved around may cause great confusing to the robot. Alsaaihot itself might
not always know its actual starting position. In reality, yhd solution is most
likely to be used.

Relational reinforcement learning (RRL) is an alternatiseconventional rein-

forcement learning that uses a different form of represgnthe ()-values than

that of a simple, tabular one. Through the use of relatioratdptors and general-
ization, RRL is able to decrease the size of the state spduig particular approach
makes reinforcement learning better suited for applicetithat have to deal with
a large state space and the problems that follow.

In the following, a description of the basic Blocks World daim is presented.
This domain will serve as example throughout the reportltsitate the concept
of relational reinforcement learning.

26 Relational Reinforcement Learning

4.1 Introducing the Blocks World

The Blocks World comprises a domain of floor along with a canshumber of
blocks that can be either stacked or unstacked. A block invibrdd can either be
on top of another or be on the floor. In this simplistic use@, $ktB of blocks
available to the agent iB = {a, b, c}. Itis assumed that the blocks are of similar
size and shape. Also, a stack can only be neatly built, iie nidt possible to place
a block on top of two or more neighboring blocks.

%]

o

Figure 4.1: An example of a stack of blocks in the blocks world

Here, a relational representation of states becomes ohvi@zause a block object
can be described using its position in the stack relativéstoeighboring objects.
Using Figure 4.1 as a reference, the stack could be desaetaibnally (in natural
language) as depicted in Table 4.1.

BLOCK DESCRIPTION

a "on the floor" and "below b"
b "on top of a" and "below c"
c "on top of b" and "below (none)"

Table 4.1: A relational description of the stack of blocks-igure 4.1

The number of possible states available in the Blocks Woith yust the three
blocksa, b, andcis 3! + 3! 4+ 1! = 13 as seen in Figure 4.2. The arrows represent
transistions used to move between the different statesoraqt here is that dupli-
cate and mirrored configurations such as the concrete ofd#ocks on the floor,

or blocks moved to the floor on either the lefthand or righthaite of the stack,
are excluded from the problem description.

4.2 Generalization 27

2] . . b
— c — — al +— B
E |ab alble |bc
[c]
ab| c|

A

b
2]

Figure 4.2: The 13 different configurations of stacking 3ck®in the Blocks
World

[ofefo] «— [o]»]

4.2 Generalization

The main idea in relational reinforcement learning is tordase the size of the
state space through the reuse of generalized state infemdathis approach, how-
ever, is only convenient when working with domains wher@infation is in fact
reusable and can be described using a relational languasieniter.

For instance, the results of learning how to stack bleda top of blockbs, would
be similar to the one of stacking bloékon top ofa. Also, generalization could
be feasible if going from a block domain with only three bledk a domain with
four or more. Obviously, the full generalization approashmainly usable if the
different blocks used have the same properties, e.g. tlzeirasd shape is exactly
the same and the basic rules that make up the world remairanged.

In relational reinforcement learning generalization cstattes is essential for build-

28 Relational Reinforcement Learning

ing applications that are able to perform well when dealinthwstate spaces of a
considerable size. Generalization of state and actiorrmmédtion in a domain is
possible if the state space contains patterns that can leeajieed and reused.

If the states and actions share the same set of relationsasuichthe example of
stacking blocks onb and blockb on a respectively, generalization is most likely to
be feasible. The patterns can be exploited by describirig stBprmation relation-
ally, as known in the field oogic programming

Logic programming[Spi02] is a declarative and relationtglesof programming in
which facts and relationships between variables can beridedcusing boolean
statements called predicates. Besides simply evaludtegiedicates, these can
be used to infer new facts about the variables in questioe. sliplistic example
given below states two facts about the varialllamanandsocratesvhich can be
used to infer a third: Socrates is mortal.

1. Socrates is human

2. All humans are mortal

A more detailed description of the logical programming jiégen will not be pro-
vided here. Relational reinforcement learning mainly ubsespredicate approach
from logic programming as a way of representing informatdnout states as well
as actions.

4.3 Representing States And Actions

Relational reinforcement learning uses th&ational interpretationapproach (see
Section 3.4.1) in the representation of information conicey states and actions. In
RRL, a state is described and represented as a set of basithatchold in the state.
In the case of the Blocks World example, a fact could be thdipage on(a,b),
hence implying that, currently is positioned on top @f The facts (presented in
Prologt syntax) concerning the stateof the stack depicted in Figure 4.1 would
be:

s = {on(a, floor),on(b,a),on(c,b), clear(c)}

Prolog is a programming language based on the logical pnomiag paradigm

4.3 Representing States And Actions 29

Here, on(a, floor) proclaims that blocks currently is positioned on the floor,
on(b,a) thatb resides oru, on(c,b) that blocke can be found on top of and
clear(c) refers to the fact that no other block currently is placedamaf blocke.
Combined, this set of facts provides a relational snapshstription of the state
of the stack at a given time.

The below relation mentioned earlier in the natural language exampl€able
4.1 is discarded here, since it does not bring forth any ndarnmation about the
relationship between two blocks in a stack. Using tleand clear predicates
is enough to represent the configuration of a given stack.e Hes an example,
the predicaten (b, a) implicitly expresses that if block is on top of blocka, the
predicatebelow(a, b) stating that block: is below blockb, can be derived.

The setA of actions available to the agent in the world with three k#oconsists
only of a single actiond = {move(z,y)}, wherex € B andy is either a block or
the floor. Also,z # y in order to ensure that a block cannot be moved onto itself,
e.g.move(a,a).

The actions ofA are also represented relationally and covers the possitiena
exisiting in a given domain. Using the Block World again, ami@ could be
move(a, floor), which moves block: from a stack of blocks to the floor. When
encountering a given state, only the actions currentlylalvls in it can be seen by
the agent. Also, not every action may be applicable in a gstate if the overall
domain rules forbid it, e.g. trying to move a block which cahbe moved because
it currently is placed beneath another one.

In relational reinforcement learning, a given agent carceteean actiom in state

s if the preconditions of executingin s are satisfied, i.epre(s,a) = true. Def-
initions involving preconditionsas well as theffectsof actions has to be supplied
along with the relational representation of state-actiam mformation in order to
check and control the dynamics of the environment.

Table 4.2 shows a piece of Prolog code containing the donuéess of the Blocks
World, where the predicatgre is used to define the preconditions for the action
move(X,Y) with variablesX € {a,b,c}, Y € {a,b,c, floor} andY # X.
The predicatedelta(S, A, S1) representing the relational transistion functién
defines the effect of executing the actiotwve(X,Y). If 6(S,A) = S1 then
delta(S, A, S1) = true. The transistion function can be seen in Definition 4.1.

If the state of the stack is; = {on(a, floor), on(b,a),on(c,b),clear(c)} as seen

in Figure 4.1 and the agent selects theve(c, floor) action, the precondition
pre(s1, move(c, floor)) in line 3 is evaluated. This precondition checks that the
statementolds(sy, [clear(c), not on(c, floor)]) can be evaluated as true. In the
case of the actiomove(c, floor), the predicate holds becaugear(c) = true
andnot on(c, floor) = true.

30 Relational Reinforcement Learning

1 pre(S,move(X,Y)) .- holds(S,[clear(X), clear(Y),
not X=Y, not on(X,floor)]).

2 pre(S,move(X,Y)) .- holds(S,[clear(X), clear(Y),
not X=Y, on(X,floor)]).

3 pre(S,move(X,floor)) - holds(S,[clear(X), not on(X,fpP.

4

5 holds(S,[]).

6 holds(S,[not X=Y| R]) - not X=Y, !, holds(S,R).

7 holds(S,[not AR]) - not member(A,S), holds(S,R).

8 holds(S,[A| R]) - member(A,R), holds(S,R).

9

10 delta(S,move(X,Y), NextS) - holds(S, [clear(X), clggr

not X=Y, not on(X,floor)]),
delete([clear(Y), on(X,2)], S, S1),
add([clear(Z), on(X,Y)],S1, NextS).
11 delta(S,move(X,Y), NextS) - holds(S, [clear(X), clggr not X=Y,
on(X,floor)]),delete([clear(Y),
on(X,floor)], S, S1), add(Jon(X,Y)],
S1, NextS).
12 delta(S,move(X,floor), NextS) :- holds(S, [clear(X)toa(X,floor)]),
delete([on(X,2)],
S, S1), add([clear(Z), on(X,floor)],
S1, NextS).

Table 4.2: Prolog definitions of preconditions and effedtaations in the blocks
world

The delta(s1, move(c, floor), s3) in line 12 defines the state situation after the
actionmove(a, floor) has been executed from state This statements becomes
true, if the predicate to delete the current predicatéc, b) from the state infor-
mation is true, and if the predicate to add the new predicatgs, floor) and
clear(b), as well as change the stateto s, 1, are true.

4.4 Relational Markov Decision Processes

In regular reinforcement learning the decision learninglpem could be solved
using an MDP. The problem of solving a relational reinforegriearning problem
is very similar, except for the two different ways of repretsging state-action
information. Therefore, the basic MDP can be extended tolatiReal Markov

Decision Process (R-MDP).

4.5 Goal States And Rewards 31

Definition 4.1 A Relational Markov Decision Proce$R-MDP) is a 5-tuple, 6,
A, K, r,0), whereS, A and K are finite sets and

1. Sis the set of states represented in a relational format,
2. Aisthe set of actions represented in a relational format,

3. K is an optional set of background knowledge in a relationairfat gener-
ally valid about the environment,

4. r: S x A — Risthe reward function, and

5.0: 5 x A— Sisthe transistion function

Like a regular MDP, the R-MDP consists of a $ebf states that the agent can
assume, and a sett of actions, from which the agent can select its next move at
a given timet. Also, the reward functiom and the transistion functiof are no
different from a standard MDP. The goal is still to find theioytl policy 7 : S —

A that will provide the agent with the greatest cumulativeaspossible.

The setK is, however, different from regular MDPs. Here, extra baokgd
knowledge helpful in solving the relational reinforcemé&arning task can be sup-
plied. Every piece of background knowledge needs to be gealvin relational
form and could include predicates concerning the size ostaek, the number of
blocks used in the domain, the number of individual stackd,so forth.

45 Goal States And Rewards

In the Blocks World there are three different goal statestfar agent to reach
during gameplay:

1. Stackall blocks (using one big stack)

2. Unstackall blocks (move all blocks from the stack to the floor)

3. Put a specific block on top of another
If the agent manages to reach a goal state, the reward fancti® x A — R will

grant the agent a reward of 100. The agent will receive a ré@w&® for any other
action that does not result in the agent reaching a goal. state

32 Relational Reinforcement Learning

An episodeconstitutes the sequence of action and state changes.eddaydan
agent, until a given goal state is reached. In the Blocks &exbmple, the syntax
used for representing a goal statgisl(on(z,y)). Thatis, to reach a state where
block z is on top of blocky.

4.6 Relational@-learning

Dealing with an infinite or very large state space create®blem when using tab-
ular Q-learning. Though some sort of indexing method could be tisedcrease
performance, keeping a large table is seldomly feasiblee @roblem here is the
size of the look-up table needed to represent@healues as the number of actions
and states increase:

Q-table size = number of statesnumber of actions per state

Relational reinforcement learning accomodates this protidy trying to minimize
the state size problem through the useeheralization In its basic form, tabular
Q-learning is used strictly for storin@-values. Being just a "container" of numer-
ical values, a look-up table does not hold the expressiveepoeeded to represent
the -values in a more general form.

The idea of relational reinforcement learning is to use ati@hal approach in
representing, storing, retrieving and updating g,) values. This is achieved
through the use of a so-calleg-tree[DRDO1], which stores general state-action
information using a tree representation. Tpdree is then used to learnfatree,
which is an abstraction of th@-values and only represents the policy.

4.6.1 Regression Trees

In relational reinforcement learning, th@-tree is used to generalize over state
and action information supplied in a relational format. Skay, it is no longer
necessary to retrain everything over from scratch if smallenges are made to
the domain, e.g. increasing the number of blocks from thogfeur, or changing
the overall goal fromgoal(on(a,b)) to goal(on(b,a)). Also, using theQ-tree
enables the system to cover a large state space in a moreabptay than with
table-based)-learning, because it partly reuses experience.

The Q-tree used to represent thg-values is a so-calledelational regression
tregDri04b]. A regression tree is a variant of a decision tree[ll], which is a

4.6 Relational Q-learning 33

common way of representing a decision making process. Eesipnilarities with
the physical structure of a decision tree, a regressionisrelesigned to approx-
imate real-valued functions instead of being used for theroon decision tree
purpose of classification.

Definition 4.2 A Relational Regression TréBRT) is a binary, 3-tupled decision
tree variant (O, T', O), whereD andT are finite sets of nodes§) is a finite set of
Booleart decision test outcomes and

1. D is the set of decision nodes containing tests in a relatidéoahat,

2. T is the set of terminal nodes containirgrvalues in a relational format,
and

3. O = [yes, no]

In machine learning, regression is concerned with findipyeximating a real-
valued target function that fits a given set of observatiers, to construct a model
of a process using examples of that process. In the caseatibredl reinforcement
learning, the model used is the relational regression treationed above. The
term "relational" is used, because the information storethe tree is provided
using a relational representation approach.

The structure of a regression tree is based on a hierarchpadésand is built
using three basic componentdecision nodesterminal nodesand decision test
outcomes Each decision node in the tree contains a logical test Wethoutcome
yesor no. A terminal node comprises a leaf in the tree that holds tlediption of
the model, i.e. a numerical value.

The nodes of a regression tree are connected through possiitomes of the
decision nodes that connects two nodes to each other. Eadotletest outcome
leads to a lower level of nodes in the tree model until a teaniode is finally

reached. A terminal node is a significant part of a regressesmodel since the
prediction of it is located there.

Any path followed from root to leaf is hence a conjunction e$ts that works as
representations of subareas of the overall regressioacaitieing approximated.
For each of these subareas different values of the goél-yalue) is predicted.

The set of subareas obtained by the regression tree shoutditumlly exclusive,

so that each training example only falls into one of thesasare

An example of a relational regression tree used in the Bldksd can be seen
in Figure 4.3. Here, a decision test is represented as aeqaataining a test

The notation 'yes/no’ is used instead of 'true/false’ toresent the outcome of a decision node
test

34 Relational Reinforcement Learning

onfa, h)

ves no

i)

Figure 4.3: An example of a relational regression tre€)(&ree) as used in the
Blocks World

in a relational format. The connections between two nodesléal 'yes/no’ are

the possible outcomes of the decision test in the topmost nbthe connection.

The elipses comprises the leaves of the tree and are termodak that contain the
prediction of the model.

4.6.2 Learning theQ-tree

In relational reinforcement learning, the values to pred&ing the regression tree
are theQ)-values in the form of &)-tree (see Figure 4.3 again). The actual con-
struction of the tree is achieved through the use of a regmesdgorithm which as
input receives state-action information organized in agpeformat. This input,
conveniently referred to as dexample"covers the state of the agent, the action
chosen and the relateg-value along with any background knowledge such as the
goal or similar. Table 4.3 shows the contents of a randomepaénput.

Q-value Action Goal Facts
gvalue(0.81)| action(move(c,floor))| goal(on(a,b))| on(a,floor)

on(b,a)

on(c,b)

clear(c)

Table 4.3: The different parts of the input to tetree

4.6 Relational Q-learning 35

Once provided to thé)-tree, the training example is sorted down through @he
tree. Starting at the root the path through the tree is giwemdiing according
to the result of the tests in the decision nodes encountargtieoway. This pro-
cess continues until a terminal node is reached and thespanneling@-value is
updated.

A test in the()-tree is performed by running the example input containingdgj-
facts such asn(a,b), clear(b) and so forth against the test in the decision node
encountered. The decision node test which basically is bbgquery then exe-
cutes the test and looks at the result. If the test failedeianple is sorted down
the no-branch of the relational regression tree. If the test waseasful theyes
branch is chosen instead.

Whenever a training example cannot be fully sorted, e.g. enmihal node for

it exist, the@-tree is expanded with a branch of new decision nodes and a new
terminal node corresponding to the contents of the exammgati The tree is
considered to be complete or learned, when no new branchess tnebe added.
That is, when the tree is capable of succesfully sorting awy example provided
without making any changes to the physical structure.

The learning approach mentioned above is, obviously, a glaice for large scale
domains. Here, every new example is rather "carelesslgried into the tree until

it ends up covering the entire state space. In other wor@sretbult is now pretty
much similar to table-base@-learning except for the relational regression tree
representation of)-values. Keeping track of all state-action pair informatie
not optimal.

Instead of struggling with building a complete tree, a gah&ee can in many
cases be constructed as an alternative. In a general tkégg the Blocks World as
example, a block is not referred to individually except tigh the variables stated
in the goal. This is of course necessary in order to check ldnet concrete goal
has in fact been reached or not. Instead of referring to tbwiotual blocks, an
abstraction of them is utilized.

Using the general approach now makes it possible for thettraepresent the
optimal policy for several similar goals all at once, suchtlzs goal of reaching
on(a,b), on(b,c) andon(c,a). In the following a description of two known al-
gorithms for learning a generé)-tree is presented and analyzed. The algorithms
which will be described includ& /LD E-RT andTG.

36 Relational Reinforcement Learning

4.6.3 TheTILDE-RT Algorithm

The TILD E-RT[vOO01] algorithm conceived by Hendrik Blockeel and Luc De
Raedt in 1998 requires all training examples to be availablence, yielding a
non-incremental learning system. Should any additionalmgde input become
available later on, the algorithm has to rebuild the entiracsure of the tree all
over from root to leaf. In order to do this, the algorithm haskéep track of both
old and new examples.

When a given RRL-application is running, experience isem#d and stored as
examples of the type seen in Table 4.3. During an episodeeimiplication, i.e.
from a given start state to a given goal state, the agenttsedetions according to
the current policy and currer-values. Any new state-action pair visited is kept
in a new example, while th@-value of old ones are updated directly in the tree.

1 Initialize Q to assign 0 to al(s, a) state-action pairs
2 Initialize Examples to the empty set
3 e:=0
4 doforever
5 e:=e+1
6 i:=0
7 generate a random staig
8 while not goal;) do
9 choose an actiom; and execute it
10 receive immediate reward = r(s;, a;)
11 observe new statg
12 =i+l
13 endwhile
14 for j=i-1to 0do
15 generate example= (s;, a;, G;)
whereg; := rj + ymaxy Qe(sj41,a)
16 if an exampl€s;, a;, §oiq) €XiSts in Examplethen
17 replace the example with
18 else
19 addz to Examples

20 updatd), using TILDE-RT to produce). ; using Examples

Table 4.4: TILDE-RT base@-learning

When an episode comes to an eitd,L D E-RT is used to induce a new, updated
Q-tree, using both old as well as new examples. During indagthe computation

4.6 Relational Q-learning 37

of possible tests in a node may depend on variables in noghksttin the regression
tree. Tests higher in the tree must also be taken into acesben determining
whether an example input satisfies a test in a given node.

In the Blocks World variables are used to represent genaalract blocks instead
of concrete ones. This way, the tree becomes a general omgewbncrete goals
still can be used. A variable represents the same block dowmgh the branches
of the tree and as such can be used to represent any genatialngthips with other
blocks. Important here is that different nodes can sharedhables of the tree.

Once theQ)-tree has been trained using the current example set, ag°iKeiowl-
edge Base (KB) can be constructed. A KB merely containg)tieee along with
all the relational facts in the state including the actiod &me goal. This KB can
easily be transformed into a Prolog program, which can bd asex)-function to
retrieve the()-values from.

on(C,D)

no

acton(move(C,D))

1o

action{move(D,B J)

Figure 4.4: Th&)-tree induced byf'/ LD E-RT from the examples in Table 4.5

The Q-learning algorithm integrated witi'/ LD E-RT can be seen in Table 4.4.
Basically, the standar@-learning algorithm from Table 2.2, Chapter 2 is reused
with a small extension. The main difference between the saia the last part of
the algorithm, line 14-20, containing thfer-loop and theupdate, which traverses
the example set generated, and induces the actual tree.

Initially, in line 1 theQ-value of all state-action pairs in tiig-treeQ, is set to zero
like in standard table-baseg-learning. Line 2 clears the set of current examples,
so it does not contain examples from a previous run. The ihgorthen starts

38 Relational Reinforcement Learning

learning by selecting actions, executing them, receiviagards, and changing
states correspondingly (line 9-11).

Whenever the new state reached is a goal state, the expegaited during that
episode is stored. In line 14, this experience is traverse@tWwards, and in line 15
the temporary example is generated. If the state-action pair in this new example
is already existing in thé)-tree, i.e. the state-action pair has alread been visited
at least once, then thg-value of the old example currently in the tree is updated
with the new one. If not, the examplewill not be included in the tree until the
next rebuilding of it is scheduled.

Example 1 Example 2 Example 3 Example 4
gvalue(0.81) gvalue(0.9) gvalue(1.0) gvalue(0.0)
move(c,floor) move(b,c) move(a,b) move(a,floor)
goal(on(a,b)) goal(on(a,b)) goal(on(a,b)) goal(on{a,b)
clear(c) clear(b) clear(a) clear(a)
on(c,b) clear(c) clear(b) on(a,b)
on(b,a) on(b,a) on(b,c) on(b,c)
on(a,floor) on(a,floor) on(a,floor) on(c,floor)

on(c,floor) on(c,floor)

Table 4.5: Examples generated for achieviiagl(on(a, b)) as seen in Figure 4.5

When the current experience has been fully traversed, [ngeals with inducing
the new tree)), according to thel'TLD E-RT regression algorithm, the current
episode, and the current examples available, both the aleehisis the new ones.
Table 4.5 shows the example set generated after a givendepistor the goal
on(a,b).

This set contains the examples 1-4, where each examplespomds to each step
towards the goal state as seen in Figure 4.5. Here, each &xawmptains the
currentQ-value, the action chosen as well as the current goal, ancliinent state
of the block stack. Figure 4.5 also lists the individual @c$i, the corresponding
rewards denoted and the()-values, here denote&d.

Unfortunately, the non-incremental algorithm 6f L D E- RT suffers from a num-
ber of rather serious problems. These include :

1. Rebuilding the entiré)-tree after each episode
2. A constant growing number of examples has to be memorized

3. Updating existingl-values requires searching through the entire example
set

4.6 Relational Q-learning 39

mowve(cfloor) movelb.c) mowve(a,) maowve(a.floor)
r=0 r=0 r=1 r=0
Q=0.81 Q=049 Q=1 Q=0

c a

b|—» b|—» |b —» |b| —

a cla c|a c| 4+

Figure 4.5: The states visited for reaching the goalsiate, b). The correspond-
ing examples are available in Table 4.5

It is considered a big problem that for each new episodeitiieee has to be re-
built all over again, in order to fully represent both old amelv state-action pair
information. However, the tree improves itself this way lejrig able to change the
overall physical structure completely after each episdddially, the Q-tree will
only cover a small fraction of the entire regression aredoreereaching a certain
level of experience as the tree grows.

However, rebuilding the entire tree after each and everglsiepisode quickly
becomes a problem as the number of generated examplesegasect. These ex-
amples have to be stored in memory or in a flat file, searchediaaity inserted
into the Q-tree. No old example can be removed from the example setias it
needed in the rebuilding of the tree after each episode.

Another problem is that of updating th@-values of already experienced state-
action pairs. Here, the entire set of examples has to betsshimefore an optimal
update can be performed. And for each new example added textraple set,
this search becomes even more extensive, affecting thalbperformance of the
application.

As an alternative t@'I LD E-RT, the incrementdl’G-algorithm can be used. This
algorithm deals with all the above-mentioned problems effili LD E-RT algo-
rithm.

4.6.4 TheTG Algorithm

TheT G-algorithm[DRBO02] developed in 2001 by Driessen, Ramon Blu¢keel

is a first order extension of th&-algorithm[CK91] created by Chapman and Kael-
bling in 1991. TheG-algorithm is a learning algorithm for decision trees which
is updated incrementally. That is, it is updated every tinmew training example

is provided as input. Th&G-algorithm shares the incremental feature with the

40 Relational Reinforcement Learning

1 initialize by creating a tree with a single leaf with emptstistics
2 for each learning example that becomes availdole
3 sort the example down the tree using the tests of the irteoues
until it reaches a leaf
4 update the statistics in the leaf according to the new el@amp
5 if the statistics in the leaf indicate that a new split is negtied
6 generate an internal node using the indicated test
7 grow 2 new leaves with empty statistics
Table 4.6: Th&l’G-algorithm
G-algorithm.

The main difference between tlie and theT'G-algorithm is thatl'G' uses rela-
tional interpretation in the description of example inpatan the description of
the tree itself. The7-algorithm, on the other hand, only works for propositional
representations, e.g. problems that can be described viggsaexpressive repre-
sentation form than a relational one. The kind(@ftrees built byT' I LD E-RT
andT'G are essentially the same.

Table 4.6 shows a high-level view of th#G-algorithm without theQ-learning
part. The algorithm is used after each episode like With. D £-RT. However,
instead of rebuilding the tree over from scratch, the newrgas available are
simply inserted directly into the growing tree. Or updatiéthe given state-action
pair has already been visited.

In line 1, the algorithm creates the root node of the tree.ohg las the application
is running, line 2 checks to see if any new examples have coaitable. If so,
the given example is sorted down the tree in line 3 accordintpé outcomes of
the tests in the decision nodes the example encounters waytthrough the tree.
When a leaf is reached (line 4), the statistics of the leapdated with the results
of the sorting process of the new example.

If the new statistics show that a new split is necessary feretkample to find its
permanent place in the tree, a new decision node is creatiuki® to hold the
new test. At the same time, two new leaves with empty stegistie generated and
connected to the new decision node. This takes place in liié@& algorithm then
returns to line 2 and continues until no new examples aravede

Besides keeping th@-value to predict, each leaf in the tree stores, for each de-
cision node test, the number of examples for which the testemded, the sum
of their related()-value along with the sum of squarégtvalues. The same three
values are kept for the set of examples for which the testdailKeeping these
six values enable¥ G to compute thesignificanceof a test in a leaf and to decide

4.7 Relational P-learning 41

whether to split the leaf in question or not.

If a given test is significant, the variance of thevalues supplied in the exam-
ples would be reduced sufficiently by splitting the node gghre test in question.
Splitting a node is carried out after some minimal numberxa@maples has been
collected and some test becomes significant with a high camdil

The T'G-algorithm has an obvious advantage fram LD FE-RT: since it incre-
mentally adds new example input, it does not have to rebhéd)ttree over from
scratch after each episode. This means that Witlh. D E-RT it is necessary to
keep track of an increasing number of examples and storeithememory, as well
as replace currer®-values with new, whenever a state-action pair is encoadter
again. These capabilities prov€ss as a much faster algorithm thdW LD E-RT.

A problem with the incrementél’G-algorithm is to select a goaahinimal sample
size The minimal sample size determines when exactly to perfarsplit on a
given node, effecting the size of the tree and the convemeate. Since the tree is
induced incrementally, one or more bad splits performechiial nodes will make
later branches suffer from it as well. OpposeditbL D E-RT the T'G-algorithm
cannot reverse a bad split by totally rebuilding the tree nvhre experience is
collected.

4.7 Relational P-learning

The P-tree[DRB02] works as an abstraction of tQevalues in the)-tree. Instead
of mapping state-action pairs to thévalues, aP-tree performs a mapping from
state-action pairs to the optimal or non-optimal polici@sP-tree is hence a rep-
resentation of the optimality of a given state-action pahe P-tree itself is built
after each episode once thetree has been learned.

The P-learning proces is typically less complex than ¢idearning one. Basically,

a P-tree is a representation of a function that returns true given actiona is
considered optimal in a given state and false otherwiseif a € 7*(s) then
P(s,a) = true else P(s,a) = false. In general, &-function can be represented
in a more compact way than(@-function, because it does not assign different real
values to state-action pairs.

Whereas-learning deals with the distance to, and the amount of nedtlater
rewards,P-learning usually leads to a further improvement of the@ogienerated.
Or leads to a faster convergence of the optimal policy. Orother hand, the&)-
function implicitly knows the distance from a current stat® the goal state.

The P-function is defined using the optimal poliey, which again can be defined

42 Relational Reinforcement Learning

1 |Initialize @, to assign 0 to al(s, a) pairs

2 Initialize Examples to the empty set

3 e=0

4 while true

5 generate an episode consisting of state® s; and actions, to a; 1
(wherea; is the action taken in statg) through the use of a standard
Q-learning algorithm and the current approximation ¢ar

6 forj=i-1to0do

7 generate example = (s;, a;, ¢;),
whereg; :=r; + v maxgy Q3(8j+1, a')
8 if an examplds;, a;, goq) €XiSts in Examplethen
9 replace it withe
10 else
11 addz to Examples

12 updatey, using?’ILDE-RT to produceQ.. using Examples
13 for j=i-1to 0do

14 for all actionsa;, possible in state; do

15 if state-action paifs;, ;) is optimal according t@).. then
16 generate examplg;, ax, c) wherec = true

17 else

19 generate examplg;, ax, ¢) wherec = false

20 updateP, usingTILDE to produceP,, using these examplés;, a, c)
21 e:=e+l

Table 4.7: The algorithm for learning thié-tree

as a function of th&)-function. Therefore, thé-function can also be expressed in
terms of theQ-function, yielding:if a € arg max, Q(s,a) then P(s,a) = true

else P(s,a) = false. This again means that any approximationof) has a
corresponding approximatioR of P, hence the algorithm faf)-learning can be
extended to includé’-learning. This is achieved by adding an additional step at

the end of the)-learning algorithm. This extra step then defines fhim terms of

0.

Constructing theP-tree is strongly dependent on tigetree and will not work if
the ()-tree does not work. Though thie-tree is not vital for the relational rein-
forcement learning problem to be solved, it does boost timeigdization process
a bit, especially when, for example, the number of blockfienBlocks World gets
larger than the number used during training.

The algorithm for learning thé-tree in conjunction with standai@-learning and

4.7 Relational P-learning 43

TILDE® can be seen in Table 4.7. The initial parts, lines 1-12, andai to the
algorithm used fofl'/ LD E-RT, where the system is initialized and episodes are
carried out, and corresponding examples of the type, ¢) are generated, and
updated immediately in thé-tree if a given state-action pair already has been
visited.

The lines 13-20 cover the actuBHearning process: For each state visited during
an episode P-learning looks at all possible actions available to thenage that
particular state as well as tlig-value predicted by thé&-tree for these actions. If
the state-action pair is optimal, the exampdea, true) is generated in line 16. If
not, the examplés, a, false) is generated instead in line 19.

When all the examples have been covered, line 20 deals withtung the current
approximation ofP-tree P, with the new examples, yielding the new approxima-
tion, PEAH. Instead of the non-increment@ll LD E, a classification tree building
T'G-algorithm could have been used to induce an incrementatlyded P-tree.
The resulting trees would have little differences, if any.

The P-tree, as opposed to thg-tree, is a relational classification tree. The only
difference between the regression tree and the classificate, is the information
stored in the leaves. Instead of containing real valued rmusjlihe leaves of a
classification tree contain classes. In the case offfieee, the classes used are
optimalandnonoptimal The initial P-tree induced from the example 1 generated
by the Q-tree can be seen in Figure 4.6. The episode used foRtlree and the
P-tree is the one illustrated in Figure 4.5.

Figure 4.6: TheP-tree generated from example 1 in Table 4.8 for the action
move(c, floor) and the goal of reachingn(a, b)

*TILDE is merely the classification tree building versioniof LD E-RT

44 Relational Reinforcement Learning

Example 1 Example 2-1 Example 2-2 Example 2-3

optimal. optimal. optimal. nonoptimal.
move(c,floor). move(b,c). move(b,floor). move(c,b).
goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(dma
clear(c). clear(b). clear(b). clear(b).
on(c,b). clear(c). clear(c). clear(c).
on(b,a). on(b,a). on(b,a). on(b,a).
on(a,floor). on(a,floor). on(a,floor). on(a,floor).
on(c,floor). on(c,floor). on(c,floor).
Example 3-1 Example 3-2 Example 3-3 Example 4
optimal. nonoptimal. optimal. nonoptimal.
move(a,b). move(b,a). move(b,floor). move(a,floor).
goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(doa
clear(a). clear(a). clear(a). clear(a).
clear(b). clear(b). clear(b). on(a,b).
on(b,c). on(b,c). on(b,c). on(b,c).
on(a,floor). on(a,floor). on(a,floor). on(c,floor).

Table 4.8: Examples for learning tlietree by7'I LD E generated from the exam-
ples for the Blocks World episode in Figure 4.5

4.8 ACE

ACE[BDRSO04] is a data mining tool developed in 2001 covernligrge variety
of relational data mining algorithms, includin/ LDE-RT andTG. A large

number of people has been involved in the proces of buildegtool, including

Hendrik Blockeel, Luc Deshaspe, Jan Ramon, Luc De Raedt, VeimLaer and
Jan Struyf. Each contribution works as an independent panecsystem and ACE
is merely providing a common interface to these parts.

Over the years the ACE-tool has been improved and widelynebe®. The system
is based on an underlying Prolog engine to handle the rakdtioput and gener-
ate corresponding Prolog programs. Currently, ACE incoafes the algorithms
depicted in Table 4.9.

4.8.1 Input Files

Depending on the system part envoked, a generel ACE sessiimown in Figure
4.7 involves three input files with the file extensiorame.kbname.bgandname.s
wherenamerefers to a concrete name of the application in question,th@dx-
tension refers to the actual type of input. The contents efridividual input files

4.8 ACE 45

TILDE An upgrade of the C4.5. decision tree learner
towards relational data mining

WARMR | An upgrade of the APRIORI-algorithm towards
relational data mining

ICL A relational rule learner based on the rule learne
C'N2 and upgraded towards relational data mining
RegRules | A system for performing linear regression with
relational features

=

KBR A system for learning first order kernels

NLP A system for learning neural logic programs
RIB3 A relational instance based learning system

TG An incremental version of ILDFE

RRL A system for performing relational reinforcement

learning that can use the following incremental
regression system& BR, NLP, RIB3 andTG.

Table 4.9: The current algorithms covered by the ACE datanygitool

must all be Prolog-based, so the so-called ILProlog[BDR] engine that runs in-
side ACE can handle the input. Each input file has a certaitecbras well as
purpose.

The Knowledge Base File

The*.kb file or knowledge baséle contains examples generated by a running ap-
plication such as the blocks world. The examples cover lrathihg examples as
well as examples for test purposes. In order to differeatistween the individual
examples supplied in the example set,iiedelsformat can be used as a delimiter.

Here, each example must be described using a model delimier each ex-
ample must begin with the the lingegin(model([name])and end with the line
end(model([name])) Thenamecan be used to identify a given example, but unique
names are not a requirement. In between the delimitersaeth used to describe
the properties of a single example must be provided.

The contents of the knowledge base file and the contents dEitikground knowl-
edge file may seem quite similar. However, a relation or waadi should be put
in the background knowledge if adding the example to the sekamples does
not cause any change to the definition of that predicate. tifinbelongs in the
knowledge base.

46 Relational Reinforcement Learning

The Background Knowledge File

The file extensiort.bg reveals aackground knowledggle. This particular file
should contain information generally valid about the damfaom which the ex-
amples to use in ACE are generated. If no such informatiost etkie file may be
left blank. Making use of the background knowledge file iSarsl.

The Settings File

The*.sfile, also referred to as theettings includes the actual settings of the ACE-
tool as supplied by the user. The contents of this file willuafice the way the
system handles the input, computes the output and whiclopdrthat should be
run. The settings file can be rather complex to use becaus&Gaetool provides

a large variety of different settings to use.

Among the more important settings are: system paramesergubge bias, control
settings on input as well as output, output informationamptiand pruning methods
for decision and regression tree structures. Furthermse#ings involving the
choice of algorithms to use, the part of the system to use®imfiut, which values
to predict, classes to use for classification, how to perfoiustering and so forth.

4.8.2 Output File

The contents of the generel output flleut depends on the settings as defined in
the settings file. The file is basically used to display thérgg as chosen by the
user along with statistics and the results concerning thgoeation which has just
taken place.

In the case of the blocks world statistics could include thmant of time used
to induce the)-tree as well as thé-tree, the number of nodes in the trees, the
number of nodes present in the trees after post-pruning trermany more. The
results would be the trees themselves, displayed in a dgegtanotation format
and their derived Prolog programs.

The resulting)-tree induced by the examples from Table 4.5 along with its\eq
alent Prolog program can be seen in Table 4.10 and Table dshectively. The
regression algorithm used to induce this particular tree WALDE-RT. The
ACE-tool is capable of generating quite a lot of output besithe generel output
file once specified in the settings file.

One of the main problems with the ACE data mining tool is thétdtaf different

4.8 ACE a7

1 action(move(A,B) , goal(on(C,D))

2 on(CD)~?

3 +-yes: [0]

4 +-no: action(move(C,D)) ?

5 +-yes: [1]

6 +-no: action(move(D,B)) ?
7 +-yes: [0.9]

8 +-no: [0.81]

Table 4.10: The)-tree induced byl'lIL D E-RT using the examples from Table
4.5

1 qvalue(0) .- action(move(A,B)) , goal(on(C,D)) , on(C,I)

2 qgvalue(l) .- action(move(A,B)) , goal(on(C,D)) , actiomdve(C,D)), !.
3 qvalue(0.9) :- action(move(A,B)), goal(on(C,D)), aciimove(D,B)), !.
4 qgvalue(0.81).

Table 4.11: The Prolog program derived from teree displayed in Table 4.10

name.s ACE
\. TILDE

name. kb > » Name.out
/ WARMR

name.bg

Figure 4.7: The general input/output scenario of using ACE

developers has been working on the system over a long pefidche. Now, it
basically works as a big black box system that is fed witheseittypes of input. The
system then processes the input and stores the result irakeugput files. What
happens during computation of the input inside the toolfiise unfortunately,
rather poorly documented in the user manual. Some parésthi integrated’G-
algorithm is not even covered.

Another problem is how the tool handles the many differemtspaf the system. It
becomes a rather complex task of setting up the system fqratie one needs to
actually use. Not only is it necessary to define which partwanut to use and how
exactly you want it to work, but you also explicitly need t8 iiewhich parts you do
not want make use of. Also, helpful error-related inforroatis quite insufficient.

48 Relational Reinforcement Learning

The ACE-system was supposed to be used in conjunction wighptioject, but
unfortunately it appears that the current version does eeinsto run properly.
Even the enclosed examples used for regression will notysedhe necessary
output, i.e. aQ-tree and aP-tree. Instead the user is presented with an non-
informative error and support for the tool is no longer pond.

Attempts to fix the problem are limited by the lack of docunagion of theRRL,
the T'G' and theT'ILDE-RT systems. And trying to produce a similar tool is
directly related to a massive work load, which unfortunatibes not comply with
the time limit. In comparison, the complete ACE-tool itselbk about four years
to finish.

In the next chapter, the well-known puzzle game of Tetrigésented. This seem-
ingly simple game is discussed in detail with speciel emighais how to solve it
through the use of reinforcement learning techniques.

5. Tetris

The original video game of Tetris[TTC02] was invented by &las mathematician
Alexey Pajitnov in 1985 on an Electronica 6t the Moscow Academy of Sci-
ence’s Computer Center. Later ported to the IBM PC, Applend &ommodore
64, it became one of the most popular games of the late 80s asdawon running
on almost every computer platform and game console availabl

The popularity of Tetris, however, lead to the downfall of @mber of software
companies due to a legal rights dispute concerning the gigyownership of the
game. Many variations of the original game exist. In thisorgphowever, the
specification[Fah03] of Tetris is as presented in the faltmisections.

M Standard Tetris (version 2003JUNE11)

Figure 5.1: One of the many Tetris implementations avaglgdbburtesy of Colin
Fahey, www.colinfahey.com)

5.1 The Board

The board of Tetris constitutesvaell in which the player must stack dropping
pieces. The well is a matrix, 10 columns wide and 20 rows deéh,a wall at the
bottom, and at the right- and lefthand side of the board. Takswor barriers of
the board cannot be exceeded by any piece. This means, thatmaat, including

1A terminal computer made in the Soviet Union

50 Tetris

rotation, of a piece must proceed according to the barrietiseowell. Neither can
be performed if doing so will move the piece outside the board

The board itself is rowbased and filled from bottom to top asdhme forwards

in time. In order to avoid flooding the well with pieces, thaysgr must complete
the rows, which removes them from the board. Completing fows all at once is
referred to as detris, hence the name of the game (see Figure 5.2). If the player
fails to remove any rows, or the stacking of pieces is unamghand incoherent,
the well will quickly flood as the gravity of the game pulls thieces towards the
bottom of it.

Figure 5.2: Using the vertically rotated I-piece to scordettis"

5.2 The Tetromino Pieces

A piece used in the game of Tetris is called a tetrorjnehich is a geometric
shape composed of four orthogonally connected squaresndrne itself is taken
from the Greek word for the number fougtra. With respect to the connectivity,
using this number as inspiration for constructing diffeleishaped pieces yields
seven combinations as seen in figure 5.3. The pieces areedeletters from the
alphabet due to their characteristic similarities.

5.3 Rules and restrictions

Deceptively, Tetris is a rather simple puzzle game. The tdske player is to
organize and stack falling puzzle pieces of different skap an orderly manner

2Tetromino is sometimes spelled tetramino or tetrimino

5.4 Solving Tetris with Reinforcement Learning 51

Figure 5.3: The seven tetrominoes, ([, S, Z, L, J, T) used in Tetris

so that they fit the bottom of a board. The stacking must beechout in such a
way that holes, canyons and peaks in the heap of pieces adedvdf not, the
heap will end up too high and new pieces will quicky cram uptdpeof the board,
ending the game. Each time a player manages to fill a row cdetyld is removed
from the board and the pile on top of it, if any, collapses #yame row.

During each iteration of the game, a controlling timer witl dne or more of the
following, depending on the status of the game:

Spawna new piece when necessary

Collapserows that are complete

Drop current piece one row

Check statusof the game

A random generator selects the next puzzle piece in a canitfhisequence of
pieces as long as the game is running. The piece is spawnée &b of the

board and drops one row at a given time interval. The playerotate and move
the current piece to the right, to the left and downwards enbtbard with respect
to an underlying coordinate system and the possible otientaf the different

pieces.

When the current piece reaches and settles at the bottom anymiven row,

completed or uncompleted, the player loses all control @i it must remain
there until, if ever, the row is completed later in the gameserly time a piece
comes to a halt, a new piece is spawned. This event will coatio take place as
long as the board still has enough empty space left on it.

5.4 Solving Tetris with Reinforcement Learning

In the following an MDP of a Tetris game is conceived and dgvedl. In order to
use reinforcement learning techniques with respect to tbpgsties of Tetris and

52 Tetris

MDPs, it is necessary to decompose the game and describéffdrerd parts of
the it.

The MDP for a Tetris game contains the following parts of iest:

The size of the Tetris state space (involving theet of states)

The actions availableA)

The unknown reward function(: S x A — R)

The unknown transistion function ¢ S x A — 5)

5.4.1 The Tetris State Space

The size of the state space of Tetris is important for devetpp succesful appli-
cation. If the state space proves too larg@elearning will have great difficulties in
reaching each and every single state of the game, at least dihe policy found
might therefore, in fact not be the optimal one.

The factors that affect the size of the state space include:

1. The physical size of the board
2. The number of actions available

3. The number of tetrominoes and their orientations

Physical Board Size

The board of a conventional Tetris game consists of a 20 owW® columns ma-
trix, providing a total of 200 cells. Each piece in the gameasls covers exactly
4 of these cells, except for pieces that have been disassdrdbk to completed
rows being removed from the board.

Available actions

Tetris is a very limited game when it comes to the number ofiids actions each
piece can execute in a given state. Still, this is enoughdduyme a rather complex
and difficult game to solve regarding reinforcement leagnihhe limitations of the

5.4 Solving Tetris with Reinforcement Learning 53

board constituted by the walls of the well, however, presehe use of all actions
in every state of the board.

The set of actions! available to a Tetris playing agent is:

A = {moveleft, moveright, movedown, rotate}

On the lefthand side of the board, one cannot usentbhecle ft-action, since it
will push the piece outside the board. Naturally, the samndtditions exist with
moveright on the righthand side along withovedown when the bottom of the
well has been reached. Similar problems arise when tryirexézute the-otate
action on a piece in a given state.

Also, these limitations are present if an attempt to movesagbn top of any other
piece is made. In any such event, a collision will take plate @revent the action
from being executed.

Tetrominoes and Orientations

There are atotal of seven pieces in the standard game of. TEach piece, though
sharing the same physical area, have distinct differentebape and orientation.
The pieces and their shapes can be viewed in Figure 5.3.

Not all pieces have the same possibilities for rotation. mtmmber of orientations
for each piece is shown in Table 5.4.1. Since each oriemt&isically provides a
new tetromino, the actual number of pieces used is henc®+2+4+4+4 = 17
instead of just the 7. This greatly affects the complexityvad as the size of the
state space.

PIECE | ORIENTATIONS
1

—Al o | Nwn —|O
ININNE STH ST N

Figure 5.4: Orientations available to the Tetris pieces

54 Tetris

5.4.2 The reward function

The reward functiorr : S x A — R is an important part of the MDP. An agent
should be rewarded when entering states that brings it closthe goal of the
game. A goal, however, in Tetris is somewhat unclear. Olshgthe overall goal
of the game for the agent is to stay alive for the longest pesicime possible by
completing and hence removing rows from the board.

This, however, is not a satisfactory goal in the sense offosiement learning.

A way of rewarding a player during game play is needed, sihoeti acceptable
to wait until the agent loses or "not loses" before a rewargiven. Such a goal
would be infeasible to try to learn and would not make muchssemyway, In
theory, the goal state afot losingmight never be reached, since a game could
continue forever.

The reward function should reward the positioning of tetimorpieces at the bot-
tom, which do nomess ugthe pile, and punish the ones who do. The term "messed
up" is, however, not a very useable condition to check in ahim&clearning con-
text.

Instead it is necessary to give a more clear definition of wégaile in Tetris is
messed up along with just how messed up it is before and akemgent executes
an action and changes states. Then, a comparison betweapshsehof the pile
before and after the positioning of the piece in questioraah, be exploited and
used to reward or punish the player.

First, a proper representation of a pile needs to be condeildis can be done
in numerous ways, but a common characteristica should baftgy to represent
information about:

e Canyons
e Holes
e Peaks

e Pile contour

Canyons

A canyon (see Figure 5.5) is a disruption in the surfamfthe pile. Canyons are
important in the game, since they are necessary in the hgildhd completion of

3The surface constitutes the upper layer of the pile in thé, welending from the left to the right
of the board

5.4 Solving Tetris with Reinforcement Learning 55

rows. Creating canyons should and cannot be avoided.

Figure 5.5: A canyon present in the pile of pieces

One should, however, limit the depth of a canyon, becauspi#ite(s) required to
fill up the canyon might not be spawned right away. This wouolcté the player
to try to fill it with incompatible pieces, which most likelyauld cause holes and
oddly shaped subcanyons. All in all, canyons themselvesldlomly bepunished
when of a certain depth.

Holes

A hole (illustrated in Figure 5.6) is an unreachable partha board beneath the
pile surface. Before this space can be reached and filletklihecompleting the
row(s) that makes up the hole, access to the it must be achigVves can be done
by removing any blocks of pieces that cover up the hole todfteright or top of
it.

Figure 5.6: A hole in the pile prevents completion of rows

Holes are probably the main reason for messing up the pileeshey temporarily
prevent rows from being completed and removed. This makegpita grow high
and the end result is a flooding of the well. Although holesa¢s are unavoidable,
the player should seek to have them removed as soon as godsdéice, a reward
for creating a hole in the pile should benagativeone.

56 Tetris

Peaks

A peak is an abrupt extension of the surface of the pile. Pagekslike canyons,
impossible to avoid since they are a natural element in tbegss of the stacking
of Tetronimo pieces. Figure 5.7 shows an example of a pea@trés game.

Figure 5.7: A peak extending from the surface of the pile

Tall peaks are usually the result of a non-optimal way ofraginag the pieces in
the pile. The taller the peak, the higher the risc of the gaomeieg to a quick end,
because the peak will reach the top of the well. In generalkpef a certain height
should be avoided, hence suggestingegativereward.

Skyline

Defining the elements responsible for creating a messed lapgpnot enough.
A way of representing the pile as a whole is required if a camspzent using a
"before-and-after" snapshot is to be possible.

One approach could be to describe the upper contowskgline of the pile by
counting the height of the columns and storing each value @ordgour setC,

starting with the leftmost column and moving across the thoanding with the
rightmost one.

Using the example illustrated in Figure 5.8, the membershefdontour seC’
would containC = {1,2,6,2,3,3,3,3,1,1}. The problem with this particular
approach is that it lacks information about holes in the.pile

Evaluating whether the agent has made a good move or not ispossible, if

the snapshot of the skyline taken before the move and theaies afterwards,
are compared. If the resulting skyline is worse than thdahine, the agent is
punished. And rewarded otherwise.

5.4 Solving Tetris with Reinforcement Learning 57

Figure 5.8: A pile with the contouf’ = {1,2,6,2,3,3,3,3,1,1}

If the skyline produced reveals the presence of 1, 2, 3, omdptete rows, these
are consideres subgoals in the game, and should be rewardediagly. Since
the Tetris, i.e. completing four rows, removes the most réems the board, the
biggest reward should be provided here.

In the following chapter, a reinforcement learning impleragion of the game of
Tetris is described. The implementation is largely basetherideas and conclu-
sions made in the abovementioned text.

6::Imple-
mentation

The following chapter of this report is concerned with aruattmplementation of
the puzzle game of Tetris, based on conventional reinfoecerearning. Due to
the high complexity of the full size Tetris game, a limitatiof it is presented and
implemented.

6.1 TetriSLTD

Tetris,p is a drastically reduced version of the Tetris game desdribe&Chapter

5. Implementation has been done using Microsoft Visual C6+ &énd the source
code is available on the enclosed CDROM. In order to limit ¢benplexity, the

amount of tetronimoes used are cut down from seven to one.pigoe which is

used comprises a quadratic, single cell based tetronimo.

Figure 6.1: The 40-cell board used in the Tetfip implementation

The Tetris Board

The Tetris board used in the implementation is a 5 x 8 celldbased on a simple
list containing the 40 elements as seen in Figure 6.1. Easheasit can be either
? (unoccupied) B (occupied by a tetromino) ok (occupied by the agent tetro-
mino, i.e. the current tetromino handled by the agent). Tag state of the agent

60 Implementation

tetronimo can be found in the cell labeled "37" in the cenfahe top row of the
board.

The Reward Function

In Tetrispp, the reward function is based on thkyline approach as described
in Section 5.4.2. Here, a contour gedescribes the height of every column on the
board at any given time during game play. This represemdtom is particular
useful in this case, because the problem with making holag)uke quadratic
tetronimo simply is not present.

Figure 6.2: The screen menu of the Tetiigy game

Also, representing canyons and peaks is extremely easyjust a matter of keep-
ing track of every column height and its adjacents neighbawross the board. In
Figure 6.3 the column heights can be seen right below thedéxersion of the

Tetris,p board.

Whenever a tetronimo piece is added to the pile on the bohed¢cdrresponding
column is increased. If the affected column was not amongitiedlest columns in
C, the agent will receive a negative reward of 10 for each teino in the column,
i.e. —10 x columnheight.

If the agent manages to place a piece such that the bottom frolae doard is
complete, a Tetris has been scored. In such a case, the adjeateive a positive
reward of 100 for entering the goal state. After the rewarsl len given, the row
collapses and any other pieces left on the board drops one row

6.1 TetrisLTD 61

Output

Running the Tetrisyp application will generate two log-fileRQlearning.txtand
Gamestates.txfThe first file contains data such as states, actions ch@sealues
calculated, and a textual version of the current board, athered during thé)-
learning proces. An excerpt of a singlelearning step can be seen in Figure 6.3.

=)
-
-
-
I
Il

column heights
Current state
Current <olumn
Left wall

Right wall
Tetrises

Elocks

zames

Chosen action
Mew state
Immediate reward
Gamma

Max reward 0]

2 _hat wvalue -20 (=20 + 0.9 % 0

0

PECuwmned -

Mo e_cown
7

20

0.5

Figure 6.3: Output from a single step in table-bagktearning in Tetrigp

Using the application is fairly straightforward. The memntaining 4 different
options appears as seen in Figure 6.2. Option 1 perf@patsarning for a given
number of steps supplied by the user. Once(hlearning process has committed,
the user can select option 2 and three. Selecting 2 will pi@tentire contents of
the Q-table on the screen, while option 3 will start a concretei3gt, game.

Once the game is finished, the Gamestates.txt file can be di@see what exactly
happened during the game play. And last but not least, ga&egption number 4
can be used to exit the application.

62 Implementation

Results

The game of Tetrigrp is, however, not yet fully operational. A current problem
when playing the game involves in having the agent follow steps as guided
by the optimal policy from the start state 37. Once the firgbtaino has been
positioned at the bottom of the board, the next one will felthe same path.

This will make the agent end up in a position right above therious piece and
try to enter the same state of it. Consequently, the new p@ads up right on top
of the first instead of selecting the action which will leadhto a state with second
highestQ-value.

7. Conclusion

Learning a machine the skills to play a game or just to find dg around in a given
environment is not an easy task, even for the simplest andleshaf domains.

Usually, finding the optimal solution to a problem requiresrmmense amount of
computation to be done.

This project has been concerned with a study of differentasgntation methods
feasible to use in conjunction with machine learning tegbhas for applications
which suffer from large state spaces.

In the context of small computer games, the particular afeailsforcement learn-
ing was introduced and discussed. Reinforcement learr@ams like an obvious
choice for many domains, but seemingly table-ba@el@arning does have a prob-
lem with learning environments that involves a lot of diéfat states.

Different approaches for decreasing a state space waddheteoked into. The
purpose here was extend conventional reinforcement leguwith a better, and
more expressive representation form. Here, it was fountsinactural represen-
tations such as relational interpretation are among thet mqwessive methods
known today.

Extending reinforcement learning with a relational, fired@r logic representation
yields a relational reinforcement learning technique.sTihiprovement of the tra-
ditional MDP into a R-MDP makes it possible to describe awgistate space in a
much more general way.

The strengths and weaknesses of using relational reinfegoelearning was then
investigated through the use of the Blocks World example.oAgithe strengths
were the possibility of generalizing over state space mfion, which could de-
crease the size of a given state space considerably.

Also, using first order logic, it is actually possible to dernew facts from existing
ones, making it a very expressive learning method. Amongwb@knesses it was
found that not all applications could make use of relatioaaiforcement learning.
If no patterns in the state space can be found and generalizezhnot solve the
problem.

Unfortunately, it was not possible to get a running examgle celational rein-
forcement learning application, since the ACE-tool neagsfor training a@)-tree
and aP-tree was not usable due to internal faults and lack of suppom the

64 Conclusion

developers.

Instead, conventional reinforcement learning was usednfdement Tetrigy,r,
a reduced version of the well-known puzzle game of Tetrise Téduction was
needed in order to be able to use table-bagdeéarning in the game. Tethig;/r
was, however, not fully completed due to time related issues

Conclusively, reinforcement learning is a good choice foal applications such
as board games, mobile robots, and other simplistic systBelational reinforce-
ment learning on the other hand, can be applied to a much vaigday of more
complex domains which can be described relationally.

7.1 Future Work

Several ideas and thoughts related to the area of reinf@oel@arning have come
to mind while working on this particular project. Some of timore interesting
includes:

e Extending relational representations with the aspect ofaring state infor-
mation. In games like Tetris, many states can be mirroreticadly on the
board. This particular approach could be used to decreasst#ite space
even further

e Moving beyond the area of games. What other applicationsddoenefit
from reinforcement learning? And perhaps more importantlizich ones
cannot?

e Extending the expressive power of first order logic used lati@nal rein-
forcement learing. A problem with logic is that is basicadlges the world
as being either black or white. Some problems cannot be gaohie way, or
will at least provide poor results

¢ Investigate the possibilities of using relational reicment learning in con-
junction with other relational techniques. These couldude working with
XML, relational databases and similar. What do one gain ahdtware the
advantages/disadvantages?

Bibliography

[BDD*02] Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda &smssslan
Ramon, and Henk Vandecasteelmproving the Effeciency of Induc-
tive Logic Programming Through the Use of Query Pa@@02.

[BDRS04] H. Blockeel, L. Deshaspe, J. Ramon, and J. Strdyfe ACE Data
Mining System - User's Manua2004.

[CK91] David Chapman and Leslie P. Kaeblingput Generalization In De-
layed Reinforcement Learning: An Algorithm and Performa@oen-
parisons Proceedings of the International Joint Conference orfiArti
cial Intelligence, 1991.

[DRB02] Kurt Driessens, Jan Ramon, and Hendrik Blocké&geeding up Re-
lational Reinforcement Learning Through the Use of an In@etal
First Order Decision Tree Learner2002.

[DRDO1] S&o Dzeroski, Luc De Raedt, and Kurt DriesserRelational Rein-
forcement Learning2001.

[Dri] Kurt Driessens.Relational Reinforcement Learning

[Dri04a] Kurt Driessens. Relational Reinforcement Learning, Ph.D. Thesis
chapter 3, pages 25-36. 2004.

[Dri04b] Kurt Driessens. Relational Reinforcement Learning, Ph.D. Thesis
chapter 5, pages 53-70. 2004.

[Fah03] Colin P. FaheyTetris AL Colin P. Fahey, 2003.

[Jen01] Finn V. JensenBayesian Networks and Decision GraptSpringer-
Verlag, 2001.

[KHI94] Dr. A. Harry Kloph, Lt Mance E. Harmon, and Capt LeemG. Baird
lll. Reinforcement Learning: An Alternative Approach To Machine
Intelligence 1994.

[Mit97] Tom M. Mitchell. Machine Learning McGraw-Hill, 1997.

66

BIBLIOGRAPHY

[SB98a]

[SB98D]

[SB98C]

[SB98d]

[SBYSe]

[Spi02]

[TTCO2]
[vOO1]

Richard S. Sutton and Andrew G. BafReinforcement Learning - An
Introduction The MIT Press, 1998.

Richard S. Sutton and Andrew G. BarReinforcement Learning - An
Introduction chapter 1.4, pages 10-15. The MIT Press, 1998.

Richard S. Sutton and Andrew G. BarReinforcement Learning - An
Introduction chapter 11.1, pages 261-267. The MIT Press, 1998.

Richard S. Sutton and Andrew G. BarReinforcement Learning - An
Introduction chapter 11.4, pages 274—-279. The MIT Press, 1998.

Richard S. Sutton and Andrew G. BafReinforcement Learning - An
Introduction chapter 11.3, pages 270-274. The MIT Press, 1998.

Michael SpiveyAn Introduction to Logic Programming Through Pro-
log. Prentice Hall Europe, 2002.

LLC The Tetris CompanyTetris The Tetris Company, LLC, 2002.

Martijn van Otterlo. Relational Representations in Reinforcement
Learning: Review and Open Problen001.

