
Faculty of Engineering and Science
University of Aalborg

Department of Computer Science

TITLE:
Relational Reinforcement Learning

PROJEKT PERIOD:
DAT6,
February 2004 - July 2004

PROJECT GROUP:
d633a

GROUP MEMBERS:
Klaus Jensen,santakj@cs.auc.dk

SUPERVISOR:
Uffe Kjærulff, uk@cs.auc.dk

NUMBER OF COPIES: 4

NUMBER OF PAGES: 66

SYNOPSIS:

Many machine learning problems are hard to
solve due to the size of the state space used
in the application. In such a case, finding the
optimal solution requires a lot of computation.
This report is part of a project, where focus
lies on finding ways to decrease the size of
state spaces used in small computer games.
A commonly used machine learning technique
known as Reinforcement Learning has a hard
time dealing with large state spaces, because
of the table-basedQ-learning used to learn a
given environment. Relational interpretation
is then used to extend conventional Reinforce-
ment Learning with relational representations
through first order logic, yielding the Rela-
tional Reinforcement Learning technique. The
Blocks World is used as example for show-
ing the strengths and weaknesses of Relational
Reinforcement Learning. Finally, TetrisLTD,
a reduced version of the well-known puzzle
game of Tetris is presented and implemented
using Reinforcement Learning.

Summary

Many machine learning problems prove hard to solve due to thesize of their state
space. Having to visit every single state present simply is not a feasible solution.
Instead, attention should be drawn towards representationschemes capable of de-
creasing the size of a given state space.

Such schemes are concerned with finding patterns within the state space that makes
it possible to derive a generalized subspace. This subspacethen works as a repre-
sentation of the total state space, which again can be used inconjunction with a
machine learning technique.

In this report, focus lies on finding a proper representationapproach for small com-
puter games to be learnt by means of the machine learning technique known as
Reinforcement Learning. Here, table-basedQ-learning is used to learn the optimal
policy of a given environment.

However, the table-based approach of storing state information is only convenient
for applications with a small state space. Also, in many cases more expressive
ways than simple state enumeration are needed to represent agiven state.

It has therefore been necessary to come up with a better representation method
for states and actions as they appear in the environment. Different approaches
such as propositional and Deictic representations are discussed through examples,
along with structural representations such as relational interpretations and labelled
directed graphs.

Relational interpretation is then used to extend the conventional reinforcement
learning technique with relational representations through the use of first order
logic, yielding the Relational Reinforcement Learning technique.

Relational reinforcement learning is capable of decreasing the size of a given state
space through means of generalization. Using the Blocks World as example, the
concept of relational reinforcement learning is introduced along with its advantages
and disadvantages.

Among the advantages are the fact that relational reinforcement learning now is
capable of learning a much wider array of applications, which do suffer from a
large state space and the problems that follow. And to do it using a much more
expressive representation.

iv

However, there are disadvantages. Some domains are hard to describe relationally,
or do not work well with first order logic results. Also, some state spaces are likely
to have less frequent patterns, making it hard for relational reinforcement learning
to learn the optimal policy of the environment effectively.

The well-known puzzle game of Tetris is then discussed with special emphasis on
how to solve the Tetris problem with reinforcement learningtechniques. Realizing
the high complexity of the standard game of Tetris with sevendifferent pieces, a
reduced version, TetrisLTD, is then implemented.

The implementation, though not fully operational, made it clear that even simple
domains can be hard to learn. Currently, the application suffers from being able
to select the next best optimal policy from a given state. This unfortunate feature
makes the agent more willing to stack the tetrominoes than try to complete a bottom
row.

Conclusively, reinforcement learning is a good choice for learning small computer
games. On the other hand, relational reinforcement learning is capable of handling
more complex domains. Still, more live examples of applications outside the area
of games need to be developed and evaluated.

Contents

1 Introduction 1

1.1 Intelligence . 1

1.2 Machine Learning . 2

1.3 Project Outline . 2

1.4 Contents of the Report . 3

2 Reinforcement Learning 5

2.1 Terminology . 6

2.2 Markov Decision Processes . 8

2.3 Q-learning . 10

3 Representing States and Actions 17

3.1 State Enumeration . 17

3.2 Propositional Representations 18

3.3 Deictic Representations . 19

3.4 Structural Representations . 20

4 Relational Reinforcement Learning 25

4.1 Introducing the Blocks World . 26

4.2 Generalization . 27

vi CONTENTS

4.3 Representing States And Actions 28

4.4 Relational Markov Decision Processes30

4.5 Goal States And Rewards . 31

4.6 RelationalQ-learning . 32

4.7 RelationalP -learning . 41

4.8 ACE . 44

5 Tetris 49

5.1 The Board . 49

5.2 The Tetromino Pieces . 50

5.3 Rules and restrictions . 50

5.4 Solving Tetris with Reinforcement Learning 51

6 Implementation 59

6.1 TetrisLTD . 59

7 Conclusion 63

7.1 Future Work . 64

Bibliography 64

1 Introduction

Parents are often marbled by the learning abilities of theirinfants when growing
up. Humans, as well as animals to a certain extent, have an extraordinary talent for
learning by interacting with their environment and using this knowledge to handle
new, unforeseen situations. A term invented by humans for this exact process is
called intelligencewhich is one of the key elements in the basic foundation of all
most lifeforms.

1.1 Intelligence

By exploring the natural context of cause and effect, understanding the conse-
quences of our actions as well as the chronology of the world,we are able to
use this understanding in order to benefit ourselves. This allows us to achieve a
higher goal such as learning to drive a car, walk on stilts, oreven learn a new lan-
guage. In fact, often we do not even need an explicit teacher to learn about new
things. Instead we rely on our senses to observe, feel, smell, taste and listen to the
environment in order to better understand it.

Throughout our lives, we are greatly aware of how our actionseffect our surround-
ings and as such, we often exercise a concrete behaviour thatseeks to influence
what happens around us. However, now and then we stumble across new unforseen
situations that challenge, trick and amaze us, because we have no knowledge of,
nor any experience that applies to them.

Being faced with such new situations does not always have a positive outcome.
We tend to make a fool of ourselves, end up hurt, shocked, fascinated or simply
intrigued by them. It is not by coincidence that sayings suchas"you cannot make
an omelet without breaking a few eggs"or "you must crawl before you can walk"
exist, implying that it often takes a few bad attempts beforegetting it right. It is
only human to make mistakes, because making mistakes is one way of finding the
right path or solution to a given problem.

It is said that knowledge is power. And knowledge itself may be provided througout
life in many different ways and through many different sources: listening to a
school teacher, reading a book, observing the behaviour of people and animals,
touching an electric fence, taking apart a taperecorder to study its inside, and so
forth. Here, the natural curiosity of humans is often what drives us.

2 Introduction

1.2 Machine Learning

An exciting field in the science of computers deals with learning on a machine
level. For decades attempts have been made to come up with techniques for de-
veloping computer systems capable of learning and improving themselves from
experience. Influenced by areas involving mathematics, philosophy, statistics, ar-
tificial intelligence, biology and many others, some attempts have been succesful,
others have not.

The field of machine learning is of special interest to us humans, because the re-
quirements to have computers help us in our daily life has grown from simple,
mathematical calculating tasks to more complex ones. Thesecould include data
mining tools to help find consumer purchase patterns in largedatabases, learning a
car to drive on its own, to classify and filter out unwanted email, and so forth.

Recently, the computer game industry has shown a lot of interest in machine learn-
ing with the sole purpose of providing challenging and exciting new games and
simulators for the always demanding game playing consumers. Often, the problem
with a given computer game is that once it has been played a fewtimes, the game
becomes predictable and boring. In such a case, applying machine learning tech-
niques could help in building a computer-based opponent that adapts itself to the
moves made by the human player and the current state of the game.

As with any application, being an intelligent game or a data mining tool, the prob-
lem is to find a suitable learning method. This method should be able to learn all,
or at least a representative part, of a given domain, enabling the computer to han-
dle certain amounts of input, possibly with distorted data,and produce a good end
result. And more importantly, the learning method should becapable of doing it
all within an acceptable time limit.

Obviously, this is almost never the case. Problem domains are seldom small, rarely
simple nor noncomplicated. And coming up with a succesful solution that performs
learning in an optimal way is not an easy thing to accomplish.Often, the amounts
of data to be handled proves itself too big, and it can be hard to find ways of
covering the entire domain space, or even representative parts of it.

1.3 Project Outline

Many machine learning problems are difficult to solve because of the size of the
state space of the given application. In such a case, finding the optimal solution
requires a lot of computation, because the learning system in theory has to visit
every state at least once. This project is concerned with finding a proper represen-

1.4 Contents of the Report 3

tation method, which has enough expressive power to describe the states of a small
computer game related domain. At the same time the method in question, should
be able to decrease the state space without losing any state information.

1.4 Contents of the Report

This report concerns a study in the area of a machine learningtechnique known
as"Reinforcement Learning". A detailed description of this learning technique is
provided in Chapter 2, which explains the basic concept, elements and terminology
used. Realising a weakness of reinforcement learning in thetable-based way of
representing state-action information, a variety of more expressive representation
approaches is presented in Chapter 3.

In Chapter 4, the standard reinforcement learning technique is extended with a
relational representation of states and actions. This new,enhanced form of rein-
forcement learning referred to as "relational reinforcement learning" is then de-
scribed using the example of the Blocks World. Also, the ACE data mining tool is
presented and discussed with particular emphasis on constructing relational rein-
forcement learning applications.

Later, in Chapter 5, a presentation of the game ofTetris is given, and Chapter 6
includes the implementation of a limited version of the gamecalledTetrisLTD is
described. This is done in the context of standard reinforcement learning. Chapter
6 concludes on the project work and provides ideas for further work.

2 Rein-
forcement
Learning

Reinforcement learning (RL) is a computational approach tolearning by interac-
tion with the environment. This way of learning is a foundational idea of many
theories concerning intelligence and learning inspired byhuman nature. The main
difference between RL and other approaches to machine learning is that focus in
RL lies mainly on goal-directed learning achieved through atrial-and-error pro-
cess.

The history of reinforcement learning has its beginning within the psychological
studies of animal learning[SB98a]. Combined with the 1950sresearch in optimal
control, these studies lead to some of the earliest work in artifical intelligence in
the 1980s. This work has evolved over the years into what we today refer to as
"reinforcement learning".

Unlike most forms of machine learning, the learning entity in reinforcement learn-
ing is not told directly what to do. That is, to execute the optimal behaviour with
respect to a given domain and a given decision problem. The learner must discover
the optimal behaviour itself by exploring the world and interacting with it. At first,
the learner behaves irrationally due to a lack of knowledge,but after a while it be-
comes smarter and better suited for selecting an optimal approach in solving the
decision problem.

The optimal behaviour corresponds to a sequence of moves, orsteps that leads to
the answer or goal of the decision problem. A goal is reachable, because a system
based on RL is rewarded whenever it has made a "good" choice and punished if
not. However, the system must find its own way to achieving a reward by trying out
different possibilities. Hence, RL is different from traditional supervised learning,
where learning is performed by means of examples provided byan experienced
supervisor.

In order to illustrate the main difference between reinforcement learning and su-
pervised learning, the following examples can be used:

6 Reinforcement Learning� A student watches a teacher solve exercises on the blackboard, and learns
how to imitate this behavior for his own home-work (Supervised Learning)� When picking up and handing over the newspaper from the driveway, the
dog receives a treat from its owner. The dog quickly learns torepeat this
behaviour (Reinforcement Learning)

The argument for not using the supervised approach is that itcan be difficult to
provide enough examples that represent all the different interactive situations an
agent can end up in. In such cases it proves very useful if the learning entity in a
reinforcement learning problem is able to learn from its ownexperience.

2.1 Terminology

A specific terminology is used when describing the elements of a reinforcement
learning problem scenario. Here, anagentconstitutes the learner, e.g. the abstract
user that is trying to solve the reinforcement learning problem within the bound-
aries of a given domain. In this domain, the agent can carry out actions that affect
and changes the state of it. Theenvironment is an abstraction over the domain in
which the agent exists, can perceive, and act in.

In the context of this report, the concept of RL involves building an agent capable of
sensing as well as interacting with the environment in whichit is placed. The agent
must find the optimal approach, called a policy to a given problem by selecting a
sequence of actions which leads to states with the greatest cumulative reward.

A policy defines the learning agent’s way of behaving by mapping from perceived
states of the environment to actions to be taken when in thosestates. Anaction is
a well-defined atomic step or move performed by an agent, and astate is merely a
snapshot of the state of the environment along with the current state of the agent at
a given timet.
For every action an agent performs, a reward function assigns an immediate reward
to the agent. Areward is a scalar value which represents the degree to which a
state is desirable. In the simplest form using a game as example, the function could
provide a positive reward when a game was won, a negative reward (punishment)
when the game was lost, and provide a neutral reward of zero inany other game
state.

Commonly, states as well as actions are represented using a rather simple approach
such as enumeration or similar. However, some reinforcement learning problems
demand the use of a better representation form. In Chapter 3 afew widely used
approaches to describing information about states and actions are explained.

2.1 Terminology 7

1 Environment: You are in state 65
2 You have 4 possible actions
3 Agent: I’ll take action 2
4 Environment: You received a reward of 7
5 You are now in state 15
6 You have 2 possible actions
7 Agent: I’ll take action 1
8 Environment: You received a reward of -4
9 You are now in state 65

10 You have 4 possible actions
11

Table 2.1: An example of the dialog between an agent and its environment

Imagine for a second the well-known game of Tic-Tac-Toe as seen in Figure 2.1.
Here the goal of the reinforcement learning agent is to fill upthree adjacent cells,
connected either vertically, horizontally or diagonally with identical symbols of
eitherO’s orX ’s. If this goal is reached, the agent has won the game.

Figure 2.1: The game of Tic-Tac-Toe

Here, the enviroment would correspond to the 3 x 3 board including the0’s andX ’s. The two players would constitute the agents, an action could be to "put a mark
on the board at positionx; y", and a state would be the state of the environment after
any move by an agent. In the simplest form the reward could be 100 points for
filling up three horisontally, vertically or diagonally connected cells and winning,
-100 for letting the opposing agent win and a reinforcement of 0 in any other state.
The policy to be learned could be to find the sequence of moves that in the end,
results in most winning situations.

An example of a natural language dialog between a given agentand the environ-
ment in which it exists can be seen in Table 2.1. Here, the environment presents to
the agent a list of possible actions to choose between along with the current state
of the agent. The agent then selects an action from the list and the environment

8 Reinforcement Learning

rewards the agent with respect to the new state.

Reinforcement learning has been used in a large variety of software solutions. It has
succesfully been implemented in applications ranging frompath finding systems
and computer-based opponents in simple boardgames such as Tic-Tac-Toe[SB98b]
and Backgammon[SB98c], to larger, industrial applications including control sys-
tems for elevators[SB98d], robotics[SB98e] and even electronic warfare for the
military[KHI94].

2.2 Markov Decision Processes

A sequential decision problem can be formalized using Markov Decision Processes
(MDPs). An MDP is a model of a decision problem, where an agentcan perceive a
given set of states in its environment. Also, the agent has access to a set of actions,
from which it can select and perform its next action at each time stept. If the setS of states and setA of actions are finite, the MDP is also called finite.

The current state and action of the agent determines a probability distribution on
future states. If the resulting next state only depends on the current state as well as
the action of the agent, the decision process obeys what is referred to as the Markov
property.

Definition 2.1 A Markov Decision Process(MDP) is a 4-tuple, (S,A, r, Æ), whereS andA are finite sets and

1. S is the set of states,

2. A is the set of actions,

3. r : S �A! R is the reward function, and

4. Æ : S �A! S is the transistion function

An MDP consists of a setS of states of an environment, which the agent can
assume, and a setA of actions, from which the agent can choose its next move.
At any time stept, the agent uses its sensory system to retrieve the statest of the
environment, selects its next actionat fromA and executes it.

An immediate rewardrt = r(st; at) is returned from the environment, letting the
agent know whether the chosen action was "good" or "bad". At the same time, the
environment deterministically selects and puts the agent in a new state using the
transition functionst+1 = Æ(st; at). This means that the new state solely depends
on the current state and the action of the agent.

2.2 Markov Decision Processes 9

The job of the agent is now to learn an optimal policy,� : S ! A. Based on its
current statest, it must select its next action,�(st) = at, and find the policy that
produces the greatest cumulative rewardV �, shown in equation 2.1 with an infinite
horizon. V �(st) � rt +
rt+1 +
2rt+2 + ::: � 1Xi=0
irt+i (2.1)

The infinite horizon reward solution considers the long-run reward of the agent
influenced by the discount factor
, a constant weight between 0 and 1. Mathe-
matically, using the infinite horizon model, as opposed to the finite one, is more
tractable in most applications. This is because an application, in theory, can run
forever. Or at least, because the lifetime length of an agentis unknown.

A finite horizon reward solution,
Phi=0 rt+i, is an alternative to the infinite one that

considers the undiscounted sum of rewards over a finite number of steps denoted
by h. The finite horizon solution is applicable when the lifetimeof the agent is
known. The only thing the agent needs to think about is that ata given time it
should optimize its expected reward for the nexth steps. It does not need to worry
about what will happen afterwards. However, the problem here is that the actual
lifetime length of the agent may not always be known in advance.

As an alternative to finite and infinite horizon rewards, theaverage rewardmodel
can be used. The expressionlimh!1 1hPhi=0 rt+i considers the average reward
per time stept over the lifetime of the agent. Again, the precise length of the
lifetime of the agent has to be known in advance, before the average reward solution
can be taken into consideration.

In this report, a restriction to using the infinite horizon ismade, where the reward
is discounted by the factor
. Future rewards are often discounted more than im-
mediate ones, since it is only natural to seek to be rewarded sooner as opposed to
later. The more the future matters, the higher the value of the discount factor.

If
 = 0 only the immediate reward is taken into consideration. Otherwise, rewards
are discounted exponentially by the factor
i wherei denotes a given time step into
the future. If
 < 1 the greatest cumulative rewardV � is known as the "discounted
cumulative reward".

The optimal policy that maximizesV �(s) for all statess is denoted by�� :�� � argmax� V �(s); (8s) (2.2)

10 Reinforcement Learning

To simplify notation the value functionV ��(s) of an optimal policy is often de-
notedV �(s). In other words, this is the reward an agent will receive if following
the optimal policy beginning at a given states. The requirement here is, however,
that the transistion function as well as the reward functionis known to the agent.
This is not always the case. Fortunately,Q-learning is helpful here.

2.3 Q-learningQ-learning is a reinforcement learning algorithm for learning how to estimate long-
term expected reward for any given state-action pair, wherethe reward functionr
and the transistion functionÆ are unknown to the agent. One of its advantages is
that it does not need a model of the environment and as such, itis applicable for
on-line learning situations. It is, however, dependent on the size of the state space
since concentionalQ-learning uses a look-up table as representation of it. Table-
basedQ-learning is therefore mainly feasible for problems of a smaller scale.

An evaluation functionQ(s; a) is used to retrieve the values of the state-action
pairs. Using this function, it is possible to find the maximumdiscounted cumulative
reward achievable by beginning in states and selectinga as the first action. Here,
the value returned fromQ is the reward given when executing the action, together
with the value of following the optimal policy afterwards, discounted by
:Q(s; a) � r(s; a) +
V �(Æ(s; a)) (2.3)

The equation is rewritable with respect to the similaritiesto part of the equation
from earlier. This means that a given agent is capable of selecting a global, optimal
action a despite lack of knowledge of the reward and transistion function, and
despite using only the local values ofQ. All it has to do is to learn theQ function,
and use it to select the maximum-valueda in any given states. Q(s; a) can be
rewritten into the following:��(s) = argmaxa Q(s; a) (2.4)

Figures 2.2, 2.3, 2.4 and 2.5 illustrates an example of solving a deterministic MDP
usingQ learning. Here, the environment used is a small grid world, where each cell
in the grid depicts a state. The arrows pointing from one state to another represents
the actions, which the agent can select in order to change between the states of the
world. The cells in the grids markedG corresponds to the goal state of the world.
In this example the goal state is referred to as "absorbing",since it does not have
any transistion arrows leading away from it.

2.3Q-learning 11

Figure 2.2:r(s; a) values (immediate reward)

In Figure 2.2 each arrow is associated with a number. This represents the immedi-
ate rewardr(s; a) an agent would receive when changing between the two states in
the direction of the arrow, executing the action stated by the arrow. In this world,
the only reward given is when the agent selects an action thatleads directly to the
goal state. Every other transition between states is rewarded, or "punished", with a
value of zero.

Figure 2.3: An optimal policy

Given a discount factor
 = 0:9, the optimal policy�� as well as its corresponding
value functionV �(s) can be determined. Figure 2.3 shows what an optimal policy
could look like in this case in any given state of the grid-world. This corresponds
to the agent selecting the optimal "path" that will lead it tothe goal state.

The values ofV � for each state can be seen in Figure 2.4. Here, each cell now
holds a discounted reward according to the optimal policy inthat particular state.
In the case of the bottom right state in the grid, the value 100is the immediate
reward received from selecting the optimal policy, which inthis state is the action
to "move-up". Using the bottom center state, the optimal policy to reach the goal
stateG is first to "move-right", receiving the immediate reward of zero, and then
to "move-up", generating a reward of 100.

12 Reinforcement Learning

Figure 2.4:V �(s) values

The actual calculation is the sum of discounted future rewards over an infinite
future is : 0 +
100 +
20 +
30 + ::: = 90 (2.5)

Figure 2.5 illustrates theQ values for any state-action transition in the grid-world
example. This corresponds to adding the value ofr for the particular transistion
and the value ofV � for the resulting state together, discounting them by the factor
. The optimal policy here is the same as selecting the actionswith the maximumQ-values in any state in the grid.

Figure 2.5:Q(s; a) values

2.3.1 TheQ-learning Algorithm

The algorithm for learning theQ-function uses iterative approximation in order
to learn the optimal policy. Approximation is needed, sinceonly the sequence of
immediate rewardsr is given. The relationship betweenQ andV � is, however,
very useful in finding a reliable way to estimate the trainingvalues forQ. Using :

2.3Q-learning 13V �(s) = maxa0 Q(s; a0) (2.6)

yields a rewriting to the following, recursive definition ofQ:Q(s; a) = r(s; a) +
maxa0 Q(Æ(s; a); a0) (2.7)

With this equation it is possible to use iterative approximation in learning theQ-
function. The actual algorithm using a pseudo code based notation, can be seen in
Table 2.2. The symbol̂Q refers to the approximation of the actualQ-function and is
represented as a look-up table. Each entry in the table corresponds to a state-action
pair hs; ai, in which the value forQ̂(s; a) is stored. The look-up table therefore
holds the current hypothesis for each actual, yet unknown value ofQ(s; a).

1 for each state-action pair(s; a) do
2 set current table entrŷQ(s; a) = 0
3 observe current states
4 do forever
5 choose an actiona and execute it
6 receive immediate rewardr
7 observe new states0
8 updateQ̂(s; a) r +
maxa0 Q̂(s0; a0)
9 s s0
Table 2.2: The standardQ-learning algorithm

Initially, each entry in the table is reset to zero. During each iteration, the agent
perceives its current states and selects an actiona. After executinga, the agent
receivesr = r(s; a) from the reward function as well ass0 = Æ(s; a) from the tran-
sistion function. Next, it updates the current hypothesisQ̂(s; a) using the following
update rule: Q̂(s; a) r +
maxa0 Q̂(s0; a0) (2.8)

2.3.2 The Action Selection Problem

An important aspect of reinforcement learning lies in selecting an experimentation
approach that produces most effective learning. Here, the agent indirectly affects
the effectiveness through the distribution of the trainingexamples since the actual

14 Reinforcement Learning

sequence of actions determines the immediate succes. A problem, known as the
exploitation/exploration problem[SB98a] deals with the dilemma of choosing be-
tween having the agent focus on two different experimentation approaches, namely
that of exploitation or exploration.

The exploitation approach is important when the agent seeksto maximize its cu-
mulative reward. This is true because the agent is forced to exploit what it has
already learned. That is, to visit states and select actionsthat it already knows will
provide a high reinforcement. On the other hand, using the exploration approach
will give the agent the opportunity to explore unknown states and actions. This ap-
proach will make the agent focus on exploring the environment in order to gather
new information, while hoping to find a state or action with a,so far, undiscovered
high reward.

Selecting an actiona in states is commonly done probabilistically inQ-learning
instead of just having the agent select the action that maximizes Q̂(s; a). The
problem here is that the agent will begin a tendency of exploiting its current ap-
proximationQ̂, hence favoring early states and actions that the agent already has
learned will provide a reward.

On the other hand, it is not favorable for the agent to have toomuch focus on
exploring new states and actions, seeking rewards in the form of a higherQ-value.
A balance between the risk of favorizing either exploitation or exploration can be
made using a probabilistic approach in solving the action selection problem:P (aijs) = kQ̂(s;ai)Pj kQ̂(s;aj) (2.9)

A probability is assigned to actions based on theQ-values, and no action must be
assigned a probability of 0. A nonzero probability ensures that the action can in
fact be chosen, since an action with a probability of zero is uninteresting to the
agent. In the abovementioned equation,P (aijs) yields the probability of selecting
actionai given the current states.
A constant denotedk wherek > 0 is included to help determine how strongly the
action selection process favors actions that have a highQ-value associated with
them. If k holds a high value, the agent will tend to exploit what it has already
learned, because actions with above averageQ̂ will be asigned a high probability.

Contrary to this, a small value ofk will assign a high probability to other actions,
causing the agent to explore the ones currently holding a small Q-value in the hope
of finding a higher.

An alternative to a constantk-value,k can be adjusted with the number of itera-

2.3Q-learning 15

tions. This will allow the agent to change its behaviour during its lifetime. In some
cases it is favorable for the agent to start out using an exploration approach and
later on, to focus more on exploitation.

Using this particular strategy makes sense in applicationswhere a more natural
process of learning is requested. When dealing with a new domain, it seems only
logical to initially to explore the boundaries of it in orderto discover and learn
the overall environment. Later on, when the basic surroundings are known to the
agent, it should try to explore new things and learn details about it.

In the following chapter, a series of different approaches to representing state and
action related information is presented and discussed. Choosing a proper represen-
tation method is an important part of the development of an application, because
it often directly affects its success. That is, how well the application in question is
able to solve a given problem.

3 Representing
States and
Actions

When dealing with reinforcement learning problems, it is necessary to find a proper
way of representing the states and actions involved. Any representation form can
be as good as the next one, as long as it represents the domain in question, has
acceptable performance and sufficient expressive power to help clarify and solve
the problem given.

In the following, a few methods applicable to representing states and actions are
explained according to their level of expressiveness, beginning with the low level
ones. These representation forms[Dri04a] include :� State Enumeration� Propositional Representations� Deictic Representations� Structural Representations

3.1 State Enumeration

In traditional reinforcement learning1 states are usually represented using simple
state enumeration. This representation form has a very low level of expressive
power since a state merely is represented and identified using a unique, numerical
index value. Still, it is a sufficient choice in many situations where little informa-
tion about states and actions and their context is kept and reused.

State enumeration yields the use of anonymity in the sense that the individual states
and their unique role in solving the reinforcement learningproblem is of little inter-
est. Instead, states are stored in table-based form, where access is gained through

1Reinforcement learning using table-basedQ-learning

18 Representing States and Actions

the use of their index. Here, knowing the index suffices and nodirect interpretation
of states or actions is needed.

The main strength of using state enumeration is simplicity.At the same time,
simplicity is also the main weakness. This is because it may prove too simple to
use in some applications that does not settle for identifying states and actions using
just simple numbers. In Table 2.1 the dialog between the environment and the
agent is based on a represention form like state enumeration.

3.2 Propositional Representations

Propositional representation is a representation form that corresponds to describ-
ing a state as a so-called feature vector. This vector then holds an attribute for
each possible property of the environment of the agent. An attribute here could be
Boolean, an enumerable range, a continuous value, and so forth.

The game of Tic-Tac-Toe, as seen in Figure 2.1, is a good domain for making use
of a propositional representation form. Each of the nine cells can either be empty
or hold theX orO-symbol. This simple domain can be represented using a feature
vector of length nine, where each attributeatt 2 fempty;X;Og.
Using Figure 2.1 the feature vector isf = fX;O;O;O;X;X; empty; empty;Xg
when representing the Tic-Tac-Toe board from left to right,top to bottom. TheX-agent could then use this representation form to learn thatplacing aX in the
center of the board withf = fX;O;O;O; empty;X; empty; empty;Xg would
make it win the game.

Also, the agent could use the feature vector to determine thepositions of the
board that makes it impossible for it to win. An example here could be a situa-
tion f = f?; O; ?; ?; O; ?; ?; empty; ?g, where? denotes an insignificant attribute
value, independent of the outcome. In any case, theX-agent would lose and re-
ceive a negative reward if it left such a board configuration to the opposing player.
Obviously, the agent should here learn how to avoid ending upin such a situation.

A weakness of using a propositional representation approach is that a problem
arises when trying to describe attribute properties and relations that may/may not
exist between different states. An example here could be theproblem of not being
able to represent that not placing anX next toanytwo adjacentO’s would result in
the agent losing the game. Also, propositional representations fail when applied to
a dynamic domain where the number of objects being represented is changed over
time, or unknown at first.

Propositional representation methods can be used in situations, where a more ex-

3.3 Deictic Representations 19

pressive representation form than state enumeration is required. It can be used in
smaller domains where state blacklisting is an acceptable way of expressing, for in-
stance, undesirable states. Blacklisting here solely refers to the concept of keeping
track of all the states in the state space that present a similar situation. Blacklist-
ing states may work in domains with limited size state spaces. However, a more
generalized approach is more convenient and scales better.

In the simple Tic-Tac-Toe example, the agent needs to learn any combination of
two adjacentO’s in order to have a complete blacklist of the possible threats. In
the end, the blacklist would here consist of all the 16 different combinations of
placing two adjacentO’s on the board. The basic rule for any of these combinations
is, however, exactly the same:"Any combination of two adjacentO’s should be
avoided". This simple rule yields the use of a more general approach.

3.3 Deictic Representations

A deictic representation form deals with representing a varying number of objects
in a dynamic environment. Basically, it offers a solution tothe problem exposed
in propositional representation methods, by providing theagent with afocal point.
This focal point is then used to define the rest of the environment, e.g. the environ-
ment is defined in relation to the focal point.

This particular approach is very similar to what most peopledo in many situa-
tions in real life. A good example here is giving directions to someone, because
the world here is described in relation to where the person providing directions is
standing at that exact time. Providing the person who is lostwith a deictic repre-
sentation of the environment might not even include specificstreet names. It could
be based on constructs such as the following:� Two floors up� The second crossroad� The street on your left

Such direction constructs only make sense when applied in relation to the focal
point in question. The destination point would clearly differ if the exact same set of
directions were to be provided in two different locations. As such, the focal point is
similar to the starting point of the agent. Or, the end point of following a previous
set of directions. Deictic representations can also be usedin the description of
objects:

20 Representing States and Actions� The last person you talked to� The glove on your right hand� The movie you are watching

Although the deictic approach in representing states and actions may seem a nat-
ural choice for many applications, it suffers from the problem of complexity. In
basicQ-learning, the agent has to explore the entire state space ofthe environment
by means of state-action pairs. If a deictic representationof the state space was
used, every possible focal point in the environment also hadto be explored, hence
causing a substantial increase in the complexity of the given learning problem.

3.4 Structural Representations

The main idea behind structural representation methods is that the real world is
filled with relationally connected objects, each displaying certain properties. So,
in order to fully describe a relational world, a relational presentation of it must be
deduced, involving the available states and actions as theyappear to the agent in
the environment.

Role playing games are excellent applications for using structural representations.
Typically, the player here controls a dynamic amount of characters with different
characteristics, e.g. belong to a certain race, possess certain abilities, strengths
and weaknesses, and so forth. The job of the player is to develop these different
characters by, among others, leading them into battle, gather helpful objects and
complete certain quests.

A role playing game presents a very complex world to the reinforcement learning
task. The requirement here is to come up with a suitable representation form that is
capable of describing not just basic state and action information, but also the many
different objects, their characteristics and individual relationships.

The complexity of describing the battle part of a role playing game could involve:� Dynamic character amount (some characters die while othersare born during
game play)� Unique characters (characters are of different types and have a different num-
ber of abilities)� Individual character behaviour (the behaviour of a character is dependent on
the situation, current abilities etc)

3.4 Structural Representations 21� Relative character strength (a character can be stronger against certain types
of enemies)� Generic actions (a magic spell might have multiple targets)

These features are very difficult to represent using any of the representation meth-
ods mentioned so far without ending up with a lossy description of the game states.
In order to reach an acceptable, lossless representation level with enough expres-
sive power to describe a role playing game, a relational approach can be used.

3.4.1 Relational Interpretations

Using a relational interpretation approach involves representing each state-action
pairs as sets of relational facts. The notation used here is very different from the
ones mentioned earlier because a high-level representation language is used in the
description of an environment, e.g. objects, states and actions.

Consider the small domain of the package delivery robot as seen in Figure 3.1.
The task of the robot is to deliver the packages to their individual destinations as
quickly as possible. The robot is capable of carrying several packages all at once,
dependent on their accumulated, physical size.

Figure 3.1: The package delivery robot domain

The delivery robot carries navigational equipment to help it find its way round the
rooms of the building in question. At random intervals, a package may appear in
any of the rooms for the robot to pick up and deliver elsewhere. The set of actions
available to the robot consists ofA = fmove(D); pi
kup(P); dropoff(P)g, with
the set of directionsD = fNorth; South;East;Westg and the set of packagesP = fp1; :::; png.

22 Representing States and Actions

The relational facts used in the representation respect thereasoning of First-Order
Logic[Mit97]. In first-order logic each statement is a construct which basically can
be broken up into a predicate and a subject. The predicate defines or modifies the
properties of the subject. The formP (x) is a construct of the predicateP and the
subjectx, here represented as a variable.

Other useful expressions includeF (x), whereF is a function instead of a predi-
cate. In first-order logic, the difference between a predicate and a function is that
a predicate can only take on values of true or false. A function, however, may take
on any value.

Table 3.1 shows the relational facts about the current stateof the robot as depicted
in Figure 3.1. Each fact is a construct consisting of the typeof relation, and one or
more embedded variables. The variabler followed by a number denotes a given
room, whilep followed by a number denotes a certain package.

The relational interpretation shown in Table 3.1 provides enough state knowledge
to describe the current location of the robot as well as that of each package, the
individual size of the packages, and the maximum loading capabilities of the robot.

1 location(r2). destination(p1,r3).
2 carrying(p2). destination(p2,r4).
3 maximumload(5). destination(p4,r3).
4
5 package(p1). size(p1,3)
6 package(p2). size(p2,1).
7 package(p3). size(p4,3).
9

10 location(p1,r4).
11 location(p2,r2).
12 location(p4,r2).

Table 3.1: A relational interpretation of the state of the delivery robot in Figure 3.1

In this case, the navigational equipment is aware of how the individual rooms are
connected. This information, however, could easily be represented using relational
facts such as
onne
ted(r1; r2):,
onne
ted(r1; r3): and so forth. Whenever a
new package arrives in a room, new facts concerning its location, destination and
size is simply added to the current representation.

A big advantage of using relational interpretation is that of generalization. Using
simple relational facts even a complex world of objects, states and actions can be
described. Furthermore, the high level description language can easily be read
and understood by humans, providing the developer with a better overview of the

3.4 Structural Representations 23

reinforcement learning problem.

Also, this approach scales rather well as opposed to other representation forms.
Adding new state information is simply a matter of providingnew facts to the
current representation. Another advantage is that it is possible to derive new facts
from current ones without explicitly adding them to the representation. This is
explained in more detail in the part of Section 4.2 of Chapter4 that deals with the
concept of Logic Programming.

3.4.2 Labelled Directed Graphs

Another possible representation method for describing relational information is
through the use of a graph. A graph is a useful format for displaying structural in-
formation between objects in a given domain. Here, a node in the graph represents
the object, while an edge between two nodes describes their relationship.

A common use of graphs is in applications involving navigational tasks, where the
graph becomes a representation of a roadmap or similar. In such a case the nodes
could represent location points in the world, and the edges could represent a path
or road connecting the location points to one another. The agent is then able to find
its way round the environment, using the graph as a directional map.

Figure 3.2: A road map and its representation as a graph

One-way streets could be represented using directional edges in the graph, and
any additional travelling information such as speed limitscould be supplied using
a labelled graph. Figure 3.2 shows a piece of a Nevada road mapalong with its
representation as a labelled graph. The agent is positionedat the node labelledf
urposg and must select the optimal path which will lead it to the goalnode
labelledfgoalg.
The graph approach is an exciting alternative to relationalinterpretation. Though
a graph seems to be closer to the language of a computer, it is still able to provide
a developer with good overview. The main differences between relational inter-
pretation and a graph representation include maintenance and the ability to scale.
Though it may seem a bit more complex to adapt a graph to a new orchanging

24 Representing States and Actions

environment, the graph does not need to be interpreted like in the relational inter-
pretation approach.

The following chapter introduces the area of relational reinforcement learning, a
variant of reinforcement learning that uses generalization of state space informa-
tion through relational representations. This feature makes the learning method
applicable for many applications that suffer from large state spaces.

4 Relational
Reinforcement

Learning

Using relations in the description of a given domain seems obvious in many situ-
ations. As an example, an intelligent vacuum cleaning robotand its environment
can be used. Here, it might not be interesting for a robot justto know its exact lo-
cation, i.e. its XYZ-coordinate in the three-dimensional world. More importantly
could be the relations that exist between the robot and the environment in which it
exists at a given time.

For instance, it might be crucial for the robot to know that itcurrently is operating
behind a table in the middle of the room located at the left at end of the hall. Or that
the charging facility of the robot is located behind it, as opposed to in front of or to
the left/right of it. Being aware of absolute positions in a room where furniture is
moved around may cause great confusing to the robot. Also, the robot itself might
not always know its actual starting position. In reality, a hybrid solution is most
likely to be used.

Relational reinforcement learning (RRL) is an alternativeto conventional rein-
forcement learning that uses a different form of representing theQ-values than
that of a simple, tabular one. Through the use of relational descriptors and general-
ization, RRL is able to decrease the size of the state space. This particular approach
makes reinforcement learning better suited for applications that have to deal with
a large state space and the problems that follow.

In the following, a description of the basic Blocks World domain is presented.
This domain will serve as example throughout the report to illustrate the concept
of relational reinforcement learning.

26 Relational Reinforcement Learning

4.1 Introducing the Blocks World

The Blocks World comprises a domain of floor along with a constant number of
blocks that can be either stacked or unstacked. A block in theworld can either be
on top of another or be on the floor. In this simplistic used, the setB of blocks
available to the agent isB = fa; b;
g. It is assumed that the blocks are of similar
size and shape. Also, a stack can only be neatly built, i.e. itis not possible to place
a block on top of two or more neighboring blocks.

Figure 4.1: An example of a stack of blocks in the blocks world

Here, a relational representation of states becomes obvious, because a block object
can be described using its position in the stack relative to its neighboring objects.
Using Figure 4.1 as a reference, the stack could be describedrelationally (in natural
language) as depicted in Table 4.1.

BLOCK DESCRIPTION

a "on the floor" and "below b"

b "on top of a" and "below c"

c "on top of b" and "below (none)"

Table 4.1: A relational description of the stack of blocks inFigure 4.1

The number of possible states available in the Blocks World with just the three
blocksa, b, and
 is 3! + 3! + 1! = 13 as seen in Figure 4.2. The arrows represent
transistions used to move between the different states. Important here is that dupli-
cate and mirrored configurations such as the concrete order of blocks on the floor,
or blocks moved to the floor on either the lefthand or righthand side of the stack,
are excluded from the problem description.

4.2 Generalization 27

Figure 4.2: The 13 different configurations of stacking 3 blocks in the Blocks
World

4.2 Generalization

The main idea in relational reinforcement learning is to decrease the size of the
state space through the reuse of generalized state information. This approach, how-
ever, is only convenient when working with domains where information is in fact
reusable and can be described using a relational language orsimilar.

For instance, the results of learning how to stack blocka on top of blockb, would
be similar to the one of stacking blockb on top ofa. Also, generalization could
be feasible if going from a block domain with only three blocks to a domain with
four or more. Obviously, the full generalization approach is mainly usable if the
different blocks used have the same properties, e.g. their size and shape is exactly
the same and the basic rules that make up the world remain unchanged.

In relational reinforcement learning generalization overstates is essential for build-

28 Relational Reinforcement Learning

ing applications that are able to perform well when dealing with state spaces of a
considerable size. Generalization of state and action information in a domain is
possible if the state space contains patterns that can be generalized and reused.

If the states and actions share the same set of relations suchas in the example of
stacking blocka onb and blockb ona respectively, generalization is most likely to
be feasible. The patterns can be exploited by describing state information relation-
ally, as known in the field oflogic programming.

Logic programming[Spi02] is a declarative and relational style of programming in
which facts and relationships between variables can be described using boolean
statements called predicates. Besides simply evaluating the predicates, these can
be used to infer new facts about the variables in question. The simplistic example
given below states two facts about the variableshumanandsocrateswhich can be
used to infer a third: Socrates is mortal.

1. Socrates is human

2. All humans are mortal

A more detailed description of the logical programming paradigm will not be pro-
vided here. Relational reinforcement learning mainly usesthe predicate approach
from logic programming as a way of representing informationabout states as well
as actions.

4.3 Representing States And Actions

Relational reinforcement learning uses therelational interpretationapproach (see
Section 3.4.1) in the representation of information concerning states and actions. In
RRL, a state is described and represented as a set of basic facts that hold in the state.
In the case of the Blocks World example, a fact could be the predicateon(a; b),
hence implying thata currently is positioned on top ofb. The facts (presented in
Prolog1 syntax) concerning the states of the stack depicted in Figure 4.1 would
be:

s = fon(a; floor); on(b; a); on(
; b);
lear(
)g
1Prolog is a programming language based on the logical programming paradigm

4.3 Representing States And Actions 29

Here, on(a; floor) proclaims that blocka currently is positioned on the floor,on(b; a) that b resides ona, on(
; b) that block
 can be found on top ofb and
lear(
) refers to the fact that no other block currently is placed on top of block
.
Combined, this set of facts provides a relational snapshot description of the state
of the stack at a given time.

The below relation mentioned earlier in the natural language examplein Table
4.1 is discarded here, since it does not bring forth any new information about the
relationship between two blocks in a stack. Using theon and
lear predicates
is enough to represent the configuration of a given stack. Here, as an example,
the predicateon(b; a) implicitly expresses that if blockb is on top of blocka, the
predicatebelow(a; b) stating that blocka is below blockb, can be derived.

The setA of actions available to the agent in the world with three blocks consists
only of a single action,A = fmove(x; y)g, wherex 2 B andy is either a block or
the floor. Also,x 6= y in order to ensure that a block cannot be moved onto itself,
e.g.move(a; a).
The actions ofA are also represented relationally and covers the possible actions
exisiting in a given domain. Using the Block World again, an action could bemove(a; floor), which moves blocka from a stack of blocks to the floor. When
encountering a given state, only the actions currently available in it can be seen by
the agent. Also, not every action may be applicable in a givenstate if the overall
domain rules forbid it, e.g. trying to move a block which cannot be moved because
it currently is placed beneath another one.

In relational reinforcement learning, a given agent can execute an actiona in states if the preconditions of executinga in s are satisfied, i.e.pre(s; a) = true. Def-
initions involvingpreconditionsas well as theeffectsof actions has to be supplied
along with the relational representation of state-action pair information in order to
check and control the dynamics of the environment.

Table 4.2 shows a piece of Prolog code containing the domain rules of the Blocks
World, where the predicatepre is used to define the preconditions for the actionmove(X;Y) with variablesX 2 fa; b;
g, Y 2 fa; b;
; f loorg andY 6= X.
The predicatedelta(S;A; S1) representing the relational transistion functionÆ
defines the effect of executing the actionmove(X;Y). If Æ(S;A) = S1 thendelta(S;A; S1) = true. The transistion function can be seen in Definition 4.1.

If the state of the stack iss1 = fon(a; floor); on(b; a); on(
; b);
lear(
)g as seen
in Figure 4.1 and the agent selects themove(
; f loor) action, the preconditionpre(s1;move(
; f loor)) in line 3 is evaluated. This precondition checks that the
statementholds(s1; [
lear(
); not on(
; f loor)℄) can be evaluated as true. In the
case of the actionmove(
; f loor), the predicate holds because
lear(
) = true
andnot on(
; f loor) = true.

30 Relational Reinforcement Learning

1 pre(S,move(X,Y)) :- holds(S,[clear(X), clear(Y),
not X=Y, not on(X,floor)]).

2 pre(S,move(X,Y)) :- holds(S,[clear(X), clear(Y),
not X=Y, on(X,floor)]).

3 pre(S,move(X,floor)) :- holds(S,[clear(X), not on(X,floor)]).
4
5 holds(S,[]).
6 holds(S,[not X=Yj R]) :- not X=Y, !, holds(S,R).
7 holds(S,[not Aj R]) :- not member(A,S), holds(S,R).
8 holds(S,[Aj R]) :- member(A,R), holds(S,R).
9

10 delta(S,move(X,Y), NextS) :- holds(S, [clear(X), clear(Y),
not X=Y, not on(X,floor)]),
delete([clear(Y), on(X,Z)], S, S1),
add([clear(Z), on(X,Y)],S1, NextS).

11 delta(S,move(X,Y), NextS) :- holds(S, [clear(X), clear(Y), not X=Y,
on(X,floor)]),delete([clear(Y),
on(X,floor)], S, S1), add([on(X,Y)],
S1, NextS).

12 delta(S,move(X,floor), NextS) :- holds(S, [clear(X), not on(X,floor)]),
delete([on(X,Z)],
S, S1), add([clear(Z), on(X,floor)],
S1, NextS).

Table 4.2: Prolog definitions of preconditions and effects of actions in the blocks
world

The delta(s1;move(
; f loor); s2) in line 12 defines the state situation after the
actionmove(a; floor) has been executed from states1. This statements becomes
true, if the predicate to delete the current predicateon(
; b) from the state infor-
mation is true, and if the predicate to add the new predicateson(
; f loor) and
lear(b), as well as change the states1 to s1+1, are true.

4.4 Relational Markov Decision Processes

In regular reinforcement learning the decision learning problem could be solved
using an MDP. The problem of solving a relational reinforcement learning problem
is very similar, except for the two different ways of representating state-action
information. Therefore, the basic MDP can be extended to a Relational Markov
Decision Process (R-MDP).

4.5 Goal States And Rewards 31

Definition 4.1 A Relational Markov Decision Process(R-MDP) is a 5-tuple, (S,A, K, r, Æ), whereS, A andK are finite sets and

1. S is the set of states represented in a relational format,

2. A is the set of actions represented in a relational format,

3. K is an optional set of background knowledge in a relational format gener-
ally valid about the environment,

4. r : S �A! R is the reward function, and

5. Æ : S �A! S is the transistion function

Like a regular MDP, the R-MDP consists of a setS of states that the agent can
assume, and a setA of actions, from which the agent can select its next move at
a given timet. Also, the reward functionr and the transistion functionÆ are no
different from a standard MDP. The goal is still to find the optimal policy� : S !A that will provide the agent with the greatest cumulative reward possible.

The setK is, however, different from regular MDPs. Here, extra background
knowledge helpful in solving the relational reinforcementlearning task can be sup-
plied. Every piece of background knowledge needs to be provided in relational
form and could include predicates concerning the size of thestack, the number of
blocks used in the domain, the number of individual stacks, and so forth.

4.5 Goal States And Rewards

In the Blocks World there are three different goal states forthe agent to reach
during gameplay:

1. Stack all blocks (using one big stack)

2. Unstack all blocks (move all blocks from the stack to the floor)

3. Put a specific block on top of another

If the agent manages to reach a goal state, the reward function r : S�A! R will
grant the agent a reward of 100. The agent will receive a reward of 0 for any other
action that does not result in the agent reaching a goal state.

32 Relational Reinforcement Learning

An episodeconstitutes the sequence of action and state changes, decided by an
agent, until a given goal state is reached. In the Blocks World example, the syntax
used for representing a goal state isgoal(on(x; y)). That is, to reach a state where
blockx is on top of blocky.

4.6 RelationalQ-learning

Dealing with an infinite or very large state space creates a problem when using tab-
ularQ-learning. Though some sort of indexing method could be usedto increase
performance, keeping a large table is seldomly feasible. The problem here is the
size of the look-up table needed to represent theQ-values as the number of actions
and states increase:Q-table size = number of states� number of actions per state

Relational reinforcement learning accomodates this problem by trying to minimize
the state size problem through the use ofgeneralization. In its basic form, tabularQ-learning is used strictly for storingQ-values. Being just a "container" of numer-
ical values, a look-up table does not hold the expressive power needed to represent
theQ-values in a more general form.

The idea of relational reinforcement learning is to use a relational approach in
representing, storing, retrieving and updating theQ(s; a) values. This is achieved
through the use of a so-calledQ-tree[DRD01], which stores general state-action
information using a tree representation. TheQ-tree is then used to learn aP -tree,
which is an abstraction of theQ-values and only represents the policy.

4.6.1 Regression Trees

In relational reinforcement learning, theQ-tree is used to generalize over state
and action information supplied in a relational format. This way, it is no longer
necessary to retrain everything over from scratch if smaller changes are made to
the domain, e.g. increasing the number of blocks from three to four, or changing
the overall goal fromgoal(on(a; b)) to goal(on(b; a)). Also, using theQ-tree
enables the system to cover a large state space in a more optimal way than with
table-basedQ-learning, because it partly reuses experience.

The Q-tree used to represent theQ-values is a so-calledrelational regression
tree[Dri04b]. A regression tree is a variant of a decision tree[Jen01], which is a

4.6 RelationalQ-learning 33

common way of representing a decision making process. Despite similarities with
the physical structure of a decision tree, a regression treeis designed to approx-
imate real-valued functions instead of being used for the common decision tree
purpose of classification.

Definition 4.2 A Relational Regression Tree(RRT) is a binary, 3-tupled decision
tree variant (D, T , O), whereD andT are finite sets of nodes,O is a finite set of
Boolean2 decision test outcomes and

1. D is the set of decision nodes containing tests in a relationalformat,

2. T is the set of terminal nodes containingQ-values in a relational format,
and

3. O ! [yes; no℄
In machine learning, regression is concerned with finding/approximating a real-
valued target function that fits a given set of observations,e.g. to construct a model
of a process using examples of that process. In the case of relational reinforcement
learning, the model used is the relational regression tree mentioned above. The
term "relational" is used, because the information stored in the tree is provided
using a relational representation approach.

The structure of a regression tree is based on a hierarchy of nodes and is built
using three basic components:decision nodes, terminal nodesanddecision test
outcomes. Each decision node in the tree contains a logical test with the outcome
yesor no. A terminal node comprises a leaf in the tree that holds the prediction of
the model, i.e. a numerical value.

The nodes of a regression tree are connected through possible outcomes of the
decision nodes that connects two nodes to each other. Each decision test outcome
leads to a lower level of nodes in the tree model until a terminal node is finally
reached. A terminal node is a significant part of a regressiontree model since the
prediction of it is located there.

Any path followed from root to leaf is hence a conjunction of tests that works as
representations of subareas of the overall regression surface being approximated.
For each of these subareas different values of the goal (aQ-value) is predicted.
The set of subareas obtained by the regression tree should bemutually exclusive,
so that each training example only falls into one of these areas.

An example of a relational regression tree used in the BlocksWorld can be seen
in Figure 4.3. Here, a decision test is represented as a square containing a test

2The notation ’yes/no’ is used instead of ’true/false’ to represent the outcome of a decision node
test

34 Relational Reinforcement Learning

Figure 4.3: An example of a relational regression tree (aQ-tree) as used in the
Blocks World

in a relational format. The connections between two nodes labeled ’yes/no’ are
the possible outcomes of the decision test in the topmost node of the connection.
The elipses comprises the leaves of the tree and are terminalnodes that contain the
prediction of the model.

4.6.2 Learning theQ-tree

In relational reinforcement learning, the values to predict using the regression tree
are theQ-values in the form of aQ-tree (see Figure 4.3 again). The actual con-
struction of the tree is achieved through the use of a regression algorithm which as
input receives state-action information organized in a specific format. This input,
conveniently referred to as an"example"covers the state of the agent, the action
chosen and the relatedQ-value along with any background knowledge such as the
goal or similar. Table 4.3 shows the contents of a random piece of input.Q-value Action Goal Facts

qvalue(0.81) action(move(c,floor)) goal(on(a,b)) on(a,floor)
on(b,a)
on(c,b)
clear(c)

Table 4.3: The different parts of the input to theQ-tree

4.6 RelationalQ-learning 35

Once provided to theQ-tree, the training example is sorted down through theQ-
tree. Starting at the root the path through the tree is given by acting according
to the result of the tests in the decision nodes encountered on the way. This pro-
cess continues until a terminal node is reached and the correspondingQ-value is
updated.

A test in theQ-tree is performed by running the example input containing Prolog-
facts such ason(a; b),
lear(b) and so forth against the test in the decision node
encountered. The decision node test which basically is a Prolog-query then exe-
cutes the test and looks at the result. If the test failed, theexample is sorted down
the no-branch of the relational regression tree. If the test was succesful theyes-
branch is chosen instead.

Whenever a training example cannot be fully sorted, e.g. no terminal node for
it exist, theQ-tree is expanded with a branch of new decision nodes and a new
terminal node corresponding to the contents of the example input. The tree is
considered to be complete or learned, when no new branches need to be added.
That is, when the tree is capable of succesfully sorting any new example provided
without making any changes to the physical structure.

The learning approach mentioned above is, obviously, a poorchoice for large scale
domains. Here, every new example is rather "carelessly" inserted into the tree until
it ends up covering the entire state space. In other words, the result is now pretty
much similar to table-basedQ-learning except for the relational regression tree
representation ofQ-values. Keeping track of all state-action pair information is
not optimal.

Instead of struggling with building a complete tree, a general tree can in many
cases be constructed as an alternative. In a general tree, taking the Blocks World as
example, a block is not referred to individually except through the variables stated
in the goal. This is of course necessary in order to check whether a concrete goal
has in fact been reached or not. Instead of referring to the individual blocks, an
abstraction of them is utilized.

Using the general approach now makes it possible for the treeto represent the
optimal policy for several similar goals all at once, such asthe goal of reachingon(a; b), on(b;
) andon(
; a). In the following a description of two known al-
gorithms for learning a generalQ-tree is presented and analyzed. The algorithms
which will be described includeTILDE-RT andTG.

36 Relational Reinforcement Learning

4.6.3 TheTILDE-RT Algorithm

The TILDE-RT [vO01] algorithm conceived by Hendrik Blockeel and Luc De
Raedt in 1998 requires all training examples to be availableat once, yielding a
non-incremental learning system. Should any additional example input become
available later on, the algorithm has to rebuild the entire structure of the tree all
over from root to leaf. In order to do this, the algorithm has to keep track of both
old and new examples.

When a given RRL-application is running, experience is collected and stored as
examples of the type seen in Table 4.3. During an episode in the application, i.e.
from a given start state to a given goal state, the agent selects actions according to
the current policy and currentQ-values. Any new state-action pair visited is kept
in a new example, while theQ-value of old ones are updated directly in the tree.

1 Initialize Q̂0 to assign 0 to all(s; a) state-action pairs
2 Initialize Examples to the empty set
3 e := 0
4 do forever
5 e := e+ 1
6 i := 0
7 generate a random states0
8 while not goal(si) do
9 choose an actionai and execute it

10 receive immediate rewardri = r(si; ai)
11 observe new statesi+1
12 i := i + 1
13 endwhile
14 for j = i-1 to 0 do
15 generate examplex = (sj; aj ; q̂j)

whereq̂j := rj +
maxa0 Q̂e(sj+1; a0)
16 if an example(sj; aj ; q̂old) exists in Examplesthen
17 replace the example withx
18 else
19 addx to Examples
20 updateQ̂e using TILDE-RT to producêQe+1 using Examples

Table 4.4: TILDE-RT basedQ-learning

When an episode comes to an end,TILDE-RT is used to induce a new, updatedQ-tree, using both old as well as new examples. During induction, the computation

4.6 RelationalQ-learning 37

of possible tests in a node may depend on variables in nodes higher in the regression
tree. Tests higher in the tree must also be taken into accountwhen determining
whether an example input satisfies a test in a given node.

In the Blocks World variables are used to represent general,abstract blocks instead
of concrete ones. This way, the tree becomes a general one, where concrete goals
still can be used. A variable represents the same block down through the branches
of the tree and as such can be used to represent any general relationships with other
blocks. Important here is that different nodes can share thevariables of the tree.

Once theQ-tree has been trained using the current example set, a Prolog Knowl-
edge Base (KB) can be constructed. A KB merely contains theQ-tree along with
all the relational facts in the state including the action and the goal. This KB can
easily be transformed into a Prolog program, which can be used as aQ-function to
retrieve theQ-values from.

Figure 4.4: TheQ-tree induced byTILDE-RT from the examples in Table 4.5

TheQ-learning algorithm integrated withTILDE-RT can be seen in Table 4.4.
Basically, the standardQ-learning algorithm from Table 2.2, Chapter 2 is reused
with a small extension. The main difference between the two is in the last part of
the algorithm, line 14-20, containing thefor-loop and theupdate, which traverses
the example set generated, and induces the actual tree.

Initially, in line 1 theQ-value of all state-action pairs in theQ-treeQ̂0 is set to zero
like in standard table-basedQ-learning. Line 2 clears the set of current examples,
so it does not contain examples from a previous run. The algorithm then starts

38 Relational Reinforcement Learning

learning by selecting actions, executing them, receiving rewards, and changing
states correspondingly (line 9-11).

Whenever the new state reached is a goal state, the experience gained during that
episode is stored. In line 14, this experience is traversed backwards, and in line 15
the temporary examplex is generated. If the state-action pair in this new example
is already existing in theQ-tree, i.e. the state-action pair has alread been visited
at least once, then theQ-value of the old example currently in the tree is updated
with the new one. If not, the examplex will not be included in the tree until the
next rebuilding of it is scheduled.

Example 1 Example 2 Example 3 Example 4
qvalue(0.81) qvalue(0.9) qvalue(1.0) qvalue(0.0)

move(c,floor) move(b,c) move(a,b) move(a,floor)
goal(on(a,b)) goal(on(a,b)) goal(on(a,b)) goal(on(a,b))

clear(c) clear(b) clear(a) clear(a)
on(c,b) clear(c) clear(b) on(a,b)
on(b,a) on(b,a) on(b,c) on(b,c)

on(a,floor) on(a,floor) on(a,floor) on(c,floor)
on(c,floor) on(c,floor)

Table 4.5: Examples generated for achievinggoal(on(a; b)) as seen in Figure 4.5

When the current experience has been fully traversed, line 20 deals with inducing
the new treeQ̂e according to theTILDE-RT regression algorithm, the current
episode, and the current examples available, both the old aswell as the new ones.
Table 4.5 shows the example set generated after a given episode e for the goalon(a; b).
This set contains the examples 1-4, where each example corresponds to each step
towards the goal state as seen in Figure 4.5. Here, each example contains the
currentQ-value, the action chosen as well as the current goal, and thecurrent state
of the block stack. Figure 4.5 also lists the individual actions, the corresponding
rewards denotedr and theQ-values, here denotedQ.

Unfortunately, the non-incremental algorithm forTILDE-RT suffers from a num-
ber of rather serious problems. These include :

1. Rebuilding the entireQ-tree after each episode

2. A constant growing number of examples has to be memorized

3. Updating existingQ-values requires searching through the entire example
set

4.6 RelationalQ-learning 39

Figure 4.5: The states visited for reaching the goalstateon(a; b). The correspond-
ing examples are available in Table 4.5

It is considered a big problem that for each new episode theQ-tree has to be re-
built all over again, in order to fully represent both old andnew state-action pair
information. However, the tree improves itself this way by being able to change the
overall physical structure completely after each episode.Initially, theQ-tree will
only cover a small fraction of the entire regression area, before reaching a certain
level of experience as the tree grows.

However, rebuilding the entire tree after each and every single episode quickly
becomes a problem as the number of generated examples is increased. These ex-
amples have to be stored in memory or in a flat file, searched andfinally inserted
into theQ-tree. No old example can be removed from the example set as itis
needed in the rebuilding of the tree after each episode.

Another problem is that of updating theQ-values of already experienced state-
action pairs. Here, the entire set of examples has to be searched before an optimal
update can be performed. And for each new example added to theexample set,
this search becomes even more extensive, affecting the overall performance of the
application.

As an alternative toTILDE-RT , the incrementalTG-algorithm can be used. This
algorithm deals with all the above-mentioned problems of theTILDE-RT algo-
rithm.

4.6.4 TheTG Algorithm

TheTG-algorithm[DRB02] developed in 2001 by Driessen, Ramon andBlockeel
is a first order extension of theG-algorithm[CK91] created by Chapman and Kael-
bling in 1991. TheG-algorithm is a learning algorithm for decision trees which
is updated incrementally. That is, it is updated every time anew training example
is provided as input. TheTG-algorithm shares the incremental feature with the

40 Relational Reinforcement Learning

1 initialize by creating a tree with a single leaf with empty statistics
2 for each learning example that becomes availabledo
3 sort the example down the tree using the tests of the internal nodes

until it reaches a leaf
4 update the statistics in the leaf according to the new example
5 if the statistics in the leaf indicate that a new split is neededthen
6 generate an internal node using the indicated test
7 grow 2 new leaves with empty statistics

Table 4.6: TheTG-algorithmG-algorithm.

The main difference between theG and theTG-algorithm is thatTG uses rela-
tional interpretation in the description of example input and in the description of
the tree itself. TheG-algorithm, on the other hand, only works for propositional
representations, e.g. problems that can be described with aless expressive repre-
sentation form than a relational one. The kind ofQ-trees built byTILDE-RT
andTG are essentially the same.

Table 4.6 shows a high-level view of theTG-algorithm without theQ-learning
part. The algorithm is used after each episode like withTILDE-RT . However,
instead of rebuilding the tree over from scratch, the new examples available are
simply inserted directly into the growing tree. Or updated,if the given state-action
pair has already been visited.

In line 1, the algorithm creates the root node of the tree. As long as the application
is running, line 2 checks to see if any new examples have come available. If so,
the given example is sorted down the tree in line 3 according to the outcomes of
the tests in the decision nodes the example encounters on itsway through the tree.
When a leaf is reached (line 4), the statistics of the leaf is updated with the results
of the sorting process of the new example.

If the new statistics show that a new split is necessary for the example to find its
permanent place in the tree, a new decision node is created inline 6 to hold the
new test. At the same time, two new leaves with empty statistics are generated and
connected to the new decision node. This takes place in line 7. The algorithm then
returns to line 2 and continues until no new examples are received.

Besides keeping theQ-value to predict, each leaf in the tree stores, for each de-
cision node test, the number of examples for which the test succeeded, the sum
of their relatedQ-value along with the sum of squaredQ-values. The same three
values are kept for the set of examples for which the test failed. Keeping these
six values enablesTG to compute thesignificanceof a test in a leaf and to decide

4.7 RelationalP -learning 41

whether to split the leaf in question or not.

If a given test is significant, the variance of theQ-values supplied in the exam-
ples would be reduced sufficiently by splitting the node using the test in question.
Splitting a node is carried out after some minimal number of examples has been
collected and some test becomes significant with a high confidence.

The TG-algorithm has an obvious advantage fromTILDE-RT : since it incre-
mentally adds new example input, it does not have to rebuild theQ-tree over from
scratch after each episode. This means that withTILDE-RT it is necessary to
keep track of an increasing number of examples and store themin memory, as well
as replace currentQ-values with new, whenever a state-action pair is encountered
again. These capabilities provesTG as a much faster algorithm thanTILDE-RT .

A problem with the incrementalTG-algorithm is to select a goodminimal sample
size. The minimal sample size determines when exactly to performa split on a
given node, effecting the size of the tree and the convergence rate. Since the tree is
induced incrementally, one or more bad splits performed on initial nodes will make
later branches suffer from it as well. Opposed toTILDE-RT theTG-algorithm
cannot reverse a bad split by totally rebuilding the tree when more experience is
collected.

4.7 RelationalP -learning

TheP -tree[DRB02] works as an abstraction of theQ-values in theQ-tree. Instead
of mapping state-action pairs to theirQ-values, aP -tree performs a mapping from
state-action pairs to the optimal or non-optimal policies.A P -tree is hence a rep-
resentation of the optimality of a given state-action pair.TheP -tree itself is built
after each episode once theQ-tree has been learned.

TheP -learning proces is typically less complex than theQ-learning one. Basically,
a P -tree is a representation of a function that returns true if agiven actiona is
considered optimal in a given states, and false otherwise:if a 2 ��(s) thenP (s; a) = true else P (s; a) = false. In general, aP -function can be represented
in a more compact way than aQ-function, because it does not assign different real
values to state-action pairs.

WhereasQ-learning deals with the distance to, and the amount of next and later
rewards,P -learning usually leads to a further improvement of the policy generated.
Or leads to a faster convergence of the optimal policy. On theother hand, theQ-
function implicitly knows the distance from a current states to the goal state.

TheP -function is defined using the optimal policy��, which again can be defined

42 Relational Reinforcement Learning

1 Initialize Q̂0 to assign 0 to all(s; a) pairs
2 Initialize Examples to the empty set
3 e := 0
4 while true
5 generate an episode consisting of statess0 to si and actionsao to ai�1

(whereaj is the action taken in statesj) through the use of a standardQ-learning algorithm and the current approximation forQ̂e
6 for j = i - 1 to 0 do
7 generate examplex = (sj ; aj ; q̂j),

whereq̂j := rj +
maxa0 Q̂e(sj+1; a0)
8 if an example(sj ; aj ; ^qold) exists in Examplesthen
9 replace it withx

10 else
11 addx to Examples
12 updateQ̂e usingTILDE-RT to produce ^Qe+1 using Examples
13 for j = i-1 to 0 do
14 for all actionsak possible in statesj do
15 if state-action pair(sj; ak) is optimal according to ^Qe+1 then
16 generate example(sj ; ak;
) where
 = true
17 else
19 generate example(sj; ak;
) where
 = false
20 updateP̂e usingTILDE to produce ^Pe+1 using these examples(sj ; ak;
)
21 e := e+1

Table 4.7: The algorithm for learning theP -tree

as a function of theQ-function. Therefore, theP -function can also be expressed in
terms of theQ-function, yielding:if a 2 argmaxaQ(s; a) then P (s; a) = trueelse P (s; a) = false. This again means that any approximationQ̂ of Q has a
corresponding approximation̂P of P , hence the algorithm forQ-learning can be
extended to includeP -learning. This is achieved by adding an additional step at
the end of theQ-learning algorithm. This extra step then defines theP̂ in terms ofQ̂.

Constructing theP -tree is strongly dependent on theQ-tree and will not work if
theQ-tree does not work. Though theP -tree is not vital for the relational rein-
forcement learning problem to be solved, it does boost the generalization process
a bit, especially when, for example, the number of blocks in the Blocks World gets
larger than the number used during training.

The algorithm for learning theP -tree in conjunction with standardQ-learning and

4.7 RelationalP -learning 43TILDE3 can be seen in Table 4.7. The initial parts, lines 1-12, are similar to the
algorithm used forTILDE-RT , where the system is initialized and episodes are
carried out, and corresponding examples of the type(s; a; q) are generated, and
updated immediately in theQ-tree if a given state-action pair already has been
visited.

The lines 13-20 cover the actualP -learning process: For each state visited during
an episode,P -learning looks at all possible actions available to the agent in that
particular state as well as theQ-value predicted by theQ-tree for these actions. If
the state-action pair is optimal, the example(s; a; true) is generated in line 16. If
not, the example(s; a; false) is generated instead in line 19.

When all the examples have been covered, line 20 deals with updating the current
approximation ofP -treeP̂e with the new examples, yielding the new approxima-
tion, ^Pe+1. Instead of the non-incrementalTILDE, a classification tree buildingTG-algorithm could have been used to induce an incrementally inducedP -tree.
The resulting trees would have little differences, if any.

TheP -tree, as opposed to theQ-tree, is a relational classification tree. The only
difference between the regression tree and the classification tree, is the information
stored in the leaves. Instead of containing real valued numbers, the leaves of a
classification tree contain classes. In the case of theP -tree, the classes used are
optimalandnonoptimal. The initialP -tree induced from the example 1 generated
by theQ-tree can be seen in Figure 4.6. The episode used for theQ-tree and theP -tree is the one illustrated in Figure 4.5.

Figure 4.6: TheP -tree generated from example 1 in Table 4.8 for the actionmove(
; f loor) and the goal of reachingon(a; b)
3TILDE is merely the classification tree building version ofTILDE-RT

44 Relational Reinforcement Learning

Example 1 Example 2-1 Example 2-2 Example 2-3
optimal. optimal. optimal. nonoptimal.

move(c,floor). move(b,c). move(b,floor). move(c,b).
goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(on(a,b)).

clear(c). clear(b). clear(b). clear(b).
on(c,b). clear(c). clear(c). clear(c).
on(b,a). on(b,a). on(b,a). on(b,a).

on(a,floor). on(a,floor). on(a,floor). on(a,floor).
on(c,floor). on(c,floor). on(c,floor).

Example 3-1 Example 3-2 Example 3-3 Example 4
optimal. nonoptimal. optimal. nonoptimal.

move(a,b). move(b,a). move(b,floor). move(a,floor).
goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(on(a,b)).

clear(a). clear(a). clear(a). clear(a).
clear(b). clear(b). clear(b). on(a,b).
on(b,c). on(b,c). on(b,c). on(b,c).

on(a,floor). on(a,floor). on(a,floor). on(c,floor).

Table 4.8: Examples for learning theP -tree byTILDE generated from the exam-
ples for the Blocks World episode in Figure 4.5

4.8 ACE

ACE[BDRS04] is a data mining tool developed in 2001 coveringa large variety
of relational data mining algorithms, includingTILDE-RT andTG. A large
number of people has been involved in the proces of building the tool, including
Hendrik Blockeel, Luc Deshaspe, Jan Ramon, Luc De Raedt, WimVan Laer and
Jan Struyf. Each contribution works as an independent part of the system and ACE
is merely providing a common interface to these parts.

Over the years the ACE-tool has been improved and widely extended. The system
is based on an underlying Prolog engine to handle the relational input and gener-
ate corresponding Prolog programs. Currently, ACE incorporates the algorithms
depicted in Table 4.9.

4.8.1 Input Files

Depending on the system part envoked, a generel ACE session as shown in Figure
4.7 involves three input files with the file extensionsname.kb, name.bgandname.s
wherenamerefers to a concrete name of the application in question, andthe ex-
tension refers to the actual type of input. The contents of the individual input files

4.8 ACE 45TILDE An upgrade of the C4.5. decision tree learner
towards relational data miningWARMR An upgrade of the APRIORI-algorithm towards
relational data miningICL A relational rule learner based on the rule learnerCN2 and upgraded towards relational data miningRegRules A system for performing linear regression with
relational featuresKBR A system for learning first order kernelsNLP A system for learning neural logic programsRIB3 A relational instance based learning systemTG An incremental version ofTILDERRL A system for performing relational reinforcement
learning that can use the following incremental
regression systems:KBR,NLP ,RIB3 andTG.

Table 4.9: The current algorithms covered by the ACE data mining tool

must all be Prolog-based, so the so-called ILProlog[BDD+02] engine that runs in-
side ACE can handle the input. Each input file has a certain content as well as
purpose.

The Knowledge Base File

The*.kb file or knowledge basefile contains examples generated by a running ap-
plication such as the blocks world. The examples cover both training examples as
well as examples for test purposes. In order to differentiate between the individual
examples supplied in the example set, themodelsformat can be used as a delimiter.

Here, each example must be described using a model delimiter, i.e. each ex-
ample must begin with the the linebegin(model([name]))and end with the line
end(model([name])). Thenamecan be used to identify a given example, but unique
names are not a requirement. In between the delimiters, all facts used to describe
the properties of a single example must be provided.

The contents of the knowledge base file and the contents of thebackground knowl-
edge file may seem quite similar. However, a relation or predicate should be put
in the background knowledge if adding the example to the set of examples does
not cause any change to the definition of that predicate. If not, it belongs in the
knowledge base.

46 Relational Reinforcement Learning

The Background Knowledge File

The file extension*.bg reveals abackground knowledgefile. This particular file
should contain information generally valid about the domain from which the ex-
amples to use in ACE are generated. If no such information exist, the file may be
left blank. Making use of the background knowledge file is optional.

The Settings File

The*.s file, also referred to as thesettings, includes the actual settings of the ACE-
tool as supplied by the user. The contents of this file will influence the way the
system handles the input, computes the output and which partof it that should be
run. The settings file can be rather complex to use because theACE-tool provides
a large variety of different settings to use.

Among the more important settings are: system parameters, language bias, control
settings on input as well as output, output information options and pruning methods
for decision and regression tree structures. Furthermore,settings involving the
choice of algorithms to use, the part of the system to use on the input, which values
to predict, classes to use for classification, how to performclustering and so forth.

4.8.2 Output File

The contents of the generel output file*.out depends on the settings as defined in
the settings file. The file is basically used to display the settings as chosen by the
user along with statistics and the results concerning the computation which has just
taken place.

In the case of the blocks world statistics could include the amount of time used
to induce theQ-tree as well as theP -tree, the number of nodes in the trees, the
number of nodes present in the trees after post-pruning themand many more. The
results would be the trees themselves, displayed in a special text-notation format
and their derived Prolog programs.

The resultingQ-tree induced by the examples from Table 4.5 along with its equiv-
alent Prolog program can be seen in Table 4.10 and Table 4.11 respectively. The
regression algorithm used to induce this particular tree was TILDE-RT . The
ACE-tool is capable of generating quite a lot of output besides the generel output
file once specified in the settings file.

One of the main problems with the ACE data mining tool is that alot of different

4.8 ACE 47

1 action(move(A,B) , goal(on(C,D))
2 on(C,D) ?
3 +–yes: [0]
4 +–no: action(move(C,D)) ?
5 +–yes: [1]
6 +–no: action(move(D,B)) ?
7 +–yes: [0.9]
8 +–no: [0.81]

Table 4.10: TheQ-tree induced byTILDE-RT using the examples from Table
4.5

1 qvalue(0) :- action(move(A,B)) , goal(on(C,D)) , on(C,D), !.
2 qvalue(1) :- action(move(A,B)) , goal(on(C,D)) , action(move(C,D)), !.
3 qvalue(0.9) :- action(move(A,B)) , goal(on(C,D)) , action(move(D,B)), !.
4 qvalue(0.81).

Table 4.11: The Prolog program derived from theQ-tree displayed in Table 4.10

Figure 4.7: The general input/output scenario of using ACE

developers has been working on the system over a long period of time. Now, it
basically works as a big black box system that is fed with certain types of input. The
system then processes the input and stores the result in several output files. What
happens during computation of the input inside the tool itself is, unfortunately,
rather poorly documented in the user manual. Some parts, like the integratedTG-
algorithm is not even covered.

Another problem is how the tool handles the many different parts of the system. It
becomes a rather complex task of setting up the system for theparts one needs to
actually use. Not only is it necessary to define which part youwant to use and how
exactly you want it to work, but you also explicitly need to tell it which parts you do
not want make use of. Also, helpful error-related information is quite insufficient.

48 Relational Reinforcement Learning

The ACE-system was supposed to be used in conjunction with this project, but
unfortunately it appears that the current version does not seem to run properly.
Even the enclosed examples used for regression will not produce the necessary
output, i.e. aQ-tree and aP -tree. Instead the user is presented with an non-
informative error and support for the tool is no longer provided.

Attempts to fix the problem are limited by the lack of documentation of theRRL,
the TG and theTILDE-RT systems. And trying to produce a similar tool is
directly related to a massive work load, which unfortunately does not comply with
the time limit. In comparison, the complete ACE-tool itselftook about four years
to finish.

In the next chapter, the well-known puzzle game of Tetris is presented. This seem-
ingly simple game is discussed in detail with speciel emphasis on how to solve it
through the use of reinforcement learning techniques.

5 Tetris

The original video game of Tetris[TTC02] was invented by Russian mathematician
Alexey Pajitnov in 1985 on an Electronica 601 at the Moscow Academy of Sci-
ence’s Computer Center. Later ported to the IBM PC, Apple II and Commodore
64, it became one of the most popular games of the late 80s and was soon running
on almost every computer platform and game console available.

The popularity of Tetris, however, lead to the downfall of a number of software
companies due to a legal rights dispute concerning the copyright ownership of the
game. Many variations of the original game exist. In this report, however, the
specification[Fah03] of Tetris is as presented in the following sections.

Figure 5.1: One of the many Tetris implementations available (courtesy of Colin
Fahey, www.colinfahey.com)

5.1 The Board

The board of Tetris constitutes awell in which the player must stack dropping
pieces. The well is a matrix, 10 columns wide and 20 rows deep,with a wall at the
bottom, and at the right- and lefthand side of the board. The walls, or barriers of
the board cannot be exceeded by any piece. This means, that movement, including

1A terminal computer made in the Soviet Union

50 Tetris

rotation, of a piece must proceed according to the barriers of the well. Neither can
be performed if doing so will move the piece outside the board.

The board itself is rowbased and filled from bottom to top as the game forwards
in time. In order to avoid flooding the well with pieces, the player must complete
the rows, which removes them from the board. Completing fourrows all at once is
referred to as aTetris, hence the name of the game (see Figure 5.2). If the player
fails to remove any rows, or the stacking of pieces is unorganized and incoherent,
the well will quickly flood as the gravity of the game pulls thepieces towards the
bottom of it.

Figure 5.2: Using the vertically rotated I-piece to score a "Tetris"

5.2 The Tetromino Pieces

A piece used in the game of Tetris is called a tetromino2, which is a geometric
shape composed of four orthogonally connected squares. Thename itself is taken
from the Greek word for the number four,tetra. With respect to the connectivity,
using this number as inspiration for constructing differently shaped pieces yields
seven combinations as seen in figure 5.3. The pieces are denoted letters from the
alphabet due to their characteristic similarities.

5.3 Rules and restrictions

Deceptively, Tetris is a rather simple puzzle game. The taskof the player is to
organize and stack falling puzzle pieces of different shapes into an orderly manner

2Tetromino is sometimes spelled tetramino or tetrimino

5.4 Solving Tetris with Reinforcement Learning 51

Figure 5.3: The seven tetrominoes (O, I, S, Z, L, J , T) used in Tetris

so that they fit the bottom of a board. The stacking must be carried out in such a
way that holes, canyons and peaks in the heap of pieces are avoided. If not, the
heap will end up too high and new pieces will quicky cram up thetop of the board,
ending the game. Each time a player manages to fill a row completely, it is removed
from the board and the pile on top of it, if any, collapses exactly one row.

During each iteration of the game, a controlling timer will do one or more of the
following, depending on the status of the game:� Spawna new piece when necessary� Collapserows that are complete� Drop current piece one row� Check statusof the game

A random generator selects the next puzzle piece in a continuous sequence of
pieces as long as the game is running. The piece is spawned at the top of the
board and drops one row at a given time interval. The player can rotate and move
the current piece to the right, to the left and downwards on the board with respect
to an underlying coordinate system and the possible orientation of the different
pieces.

When the current piece reaches and settles at the bottom or onany given row,
completed or uncompleted, the player loses all control of itand it must remain
there until, if ever, the row is completed later in the game. Every time a piece
comes to a halt, a new piece is spawned. This event will continue to take place as
long as the board still has enough empty space left on it.

5.4 Solving Tetris with Reinforcement Learning

In the following an MDP of a Tetris game is conceived and developed. In order to
use reinforcement learning techniques with respect to the properties of Tetris and

52 Tetris

MDPs, it is necessary to decompose the game and describe the different parts of
the it.

The MDP for a Tetris game contains the following parts of interest:� The size of the Tetris state space (involving theS set of states)� The actions available (A)� The unknown reward function (r : S �A! R)� The unknown transistion function (Æ : S �A! S)

5.4.1 The Tetris State Space

The size of the state space of Tetris is important for developing a succesful appli-
cation. If the state space proves too large,Q-learning will have great difficulties in
reaching each and every single state of the game, at least once. The policy found
might therefore, in fact not be the optimal one.

The factors that affect the size of the state space include:

1. The physical size of the board

2. The number of actions available

3. The number of tetrominoes and their orientations

Physical Board Size

The board of a conventional Tetris game consists of a 20 rows� 10 columns ma-
trix, providing a total of 200 cells. Each piece in the game always covers exactly
4 of these cells, except for pieces that have been disassembled due to completed
rows being removed from the board.

Available actions

Tetris is a very limited game when it comes to the number of possible actions each
piece can execute in a given state. Still, this is enough to produce a rather complex
and difficult game to solve regarding reinforcement learning. The limitations of the

5.4 Solving Tetris with Reinforcement Learning 53

board constituted by the walls of the well, however, prevents the use of all actions
in every state of the board.

The set of actionsA available to a Tetris playing agent is:A = fmoveleft;moveright;movedown; rotateg
On the lefthand side of the board, one cannot use themoveleft-action, since it
will push the piece outside the board. Naturally, the same limitations exist withmoveright on the righthand side along withmovedown when the bottom of the
well has been reached. Similar problems arise when trying toexecute therotate
action on a piece in a given state.

Also, these limitations are present if an attempt to move a piece on top of any other
piece is made. In any such event, a collision will take place and prevent the action
from being executed.

Tetrominoes and Orientations

There are a total of seven pieces in the standard game of Tetris. Each piece, though
sharing the same physical area, have distinct differences in shape and orientation.
The pieces and their shapes can be viewed in Figure 5.3.

Not all pieces have the same possibilities for rotation. Thenumber of orientations
for each piece is shown in Table 5.4.1. Since each orientation basically provides a
new tetromino, the actual number of pieces used is hence1+2+2+4+4+4 = 17
instead of just the 7. This greatly affects the complexity aswell as the size of the
state space.

PIECE ORIENTATIONS
O 1
I 2
S 2
Z 2
L 4
J 4
T 4

Figure 5.4: Orientations available to the Tetris pieces

54 Tetris

5.4.2 The reward function

The reward functionr : S � A ! R is an important part of the MDP. An agent
should be rewarded when entering states that brings it closer to the goal of the
game. A goal, however, in Tetris is somewhat unclear. Obviously, the overall goal
of the game for the agent is to stay alive for the longest period of time possible by
completing and hence removing rows from the board.

This, however, is not a satisfactory goal in the sense of reinforcement learning.
A way of rewarding a player during game play is needed, since it not acceptable
to wait until the agent loses or "not loses" before a reward isgiven. Such a goal
would be infeasible to try to learn and would not make much sense anyway, In
theory, the goal state ofnot losingmight never be reached, since a game could
continue forever.

The reward function should reward the positioning of tetromino pieces at the bot-
tom, which do notmess upthe pile, and punish the ones who do. The term "messed
up" is, however, not a very useable condition to check in a machine learning con-
text.

Instead it is necessary to give a more clear definition of whena pile in Tetris is
messed up along with just how messed up it is before and after the agent executes
an action and changes states. Then, a comparison between a snapshot of the pile
before and after the positioning of the piece in questioned,can be exploited and
used to reward or punish the player.

First, a proper representation of a pile needs to be conceived. This can be done
in numerous ways, but a common characteristica should be theability to represent
information about:� Canyons� Holes� Peaks� Pile contour

Canyons

A canyon (see Figure 5.5) is a disruption in the surface3 of the pile. Canyons are
important in the game, since they are necessary in the building and completion of

3The surface constitutes the upper layer of the pile in the well, extending from the left to the right
of the board

5.4 Solving Tetris with Reinforcement Learning 55

rows. Creating canyons should and cannot be avoided.

Figure 5.5: A canyon present in the pile of pieces

One should, however, limit the depth of a canyon, because thepiece(s) required to
fill up the canyon might not be spawned right away. This would force the player
to try to fill it with incompatible pieces, which most likely would cause holes and
oddly shaped subcanyons. All in all, canyons themselves should only bepunished
when of a certain depth.

Holes

A hole (illustrated in Figure 5.6) is an unreachable part of the board beneath the
pile surface. Before this space can be reached and filled, thereby completing the
row(s) that makes up the hole, access to the it must be achieved. This can be done
by removing any blocks of pieces that cover up the hole to the left, right or top of
it.

Figure 5.6: A hole in the pile prevents completion of rows

Holes are probably the main reason for messing up the pile, since they temporarily
prevent rows from being completed and removed. This makes the pile grow high
and the end result is a flooding of the well. Although holes at times are unavoidable,
the player should seek to have them removed as soon as possible. Hence, a reward
for creating a hole in the pile should be anegativeone.

56 Tetris

Peaks

A peak is an abrupt extension of the surface of the pile. Peaksare, like canyons,
impossible to avoid since they are a natural element in the process of the stacking
of Tetronimo pieces. Figure 5.7 shows an example of a peak in aTetris game.

Figure 5.7: A peak extending from the surface of the pile

Tall peaks are usually the result of a non-optimal way of arranging the pieces in
the pile. The taller the peak, the higher the risc of the game coming to a quick end,
because the peak will reach the top of the well. In general, peaks of a certain height
should be avoided, hence suggesting anegativereward.

Skyline

Defining the elements responsible for creating a messed up pile is not enough.
A way of representing the pile as a whole is required if a comparisment using a
"before-and-after" snapshot is to be possible.

One approach could be to describe the upper contour orskyline of the pile by
counting the height of the columns and storing each value in acontour setC,
starting with the leftmost column and moving across the board, ending with the
rightmost one.

Using the example illustrated in Figure 5.8, the members of the contour setC
would containC = f1; 2; 6; 2; 3; 3; 3; 3; 1; 1g. The problem with this particular
approach is that it lacks information about holes in the pile.

Evaluating whether the agent has made a good move or not is nowpossible, if
the snapshot of the skyline taken before the move and the one taken afterwards,
are compared. If the resulting skyline is worse than the initial one, the agent is
punished. And rewarded otherwise.

5.4 Solving Tetris with Reinforcement Learning 57

Figure 5.8: A pile with the contourC = f1; 2; 6; 2; 3; 3; 3; 3; 1; 1g
If the skyline produced reveals the presence of 1, 2, 3, or 4 complete rows, these
are consideres subgoals in the game, and should be rewarded accordingly. Since
the Tetris, i.e. completing four rows, removes the most rowsfrom the board, the
biggest reward should be provided here.

In the following chapter, a reinforcement learning implementation of the game of
Tetris is described. The implementation is largely based onthe ideas and conclu-
sions made in the abovementioned text.

6 Imple-
mentation

The following chapter of this report is concerned with an actual implementation of
the puzzle game of Tetris, based on conventional reinforcement learning. Due to
the high complexity of the full size Tetris game, a limitation of it is presented and
implemented.

6.1 TetrisLTD
TetrisLTD is a drastically reduced version of the Tetris game described in Chapter
5. Implementation has been done using Microsoft Visual C++ 6.0. and the source
code is available on the enclosed CDROM. In order to limit thecomplexity, the
amount of tetronimoes used are cut down from seven to one. Thepiece which is
used comprises a quadratic, single cell based tetronimo.

Figure 6.1: The 40-cell board used in the TetrisLTD implementation

The Tetris Board

The Tetris board used in the implementation is a 5 x 8 cell board based on a simple
list containing the 40 elements as seen in Figure 6.1. Each element can be either
? (unoccupied),B (occupied by a tetromino) orA (occupied by the agent tetro-
mino, i.e. the current tetromino handled by the agent). The start state of the agent

60 Implementation

tetronimo can be found in the cell labeled "37" in the center of the top row of the
board.

The Reward Function

In TetrisLTD, the reward function is based on theskyline approach as described
in Section 5.4.2. Here, a contour setC describes the height of every column on the
board at any given time during game play. This representation form is particular
useful in this case, because the problem with making holes using the quadratic
tetronimo simply is not present.

Figure 6.2: The screen menu of the TetrisLTD game

Also, representing canyons and peaks is extremely easy. It is just a matter of keep-
ing track of every column height and its adjacents neighbours across the board. In
Figure 6.3 the column heights can be seen right below the textual version of the
TetrisLTD board.

Whenever a tetronimo piece is added to the pile on the board, the corresponding
column is increased. If the affected column was not among thesmallest columns inC, the agent will receive a negative reward of 10 for each tetromino in the column,
i.e.�10�
olumnheight.
If the agent manages to place a piece such that the bottom row of the board is
complete, a Tetris has been scored. In such a case, the agent will receive a positive
reward of 100 for entering the goal state. After the reward has been given, the row
collapses and any other pieces left on the board drops one row.

6.1 TetrisLTD 61

Output

Running the TetrisLTD application will generate two log-files:Qlearning.txtand
Gamestates.txt. The first file contains data such as states, actions chosen,Q-values
calculated, and a textual version of the current board, all gathered during theQ-
learning proces. An excerpt of a singleQ-learning step can be seen in Figure 6.3.

Figure 6.3: Output from a single step in table-basedQ-learning in TetrisLTD
Using the application is fairly straightforward. The menu containing 4 different
options appears as seen in Figure 6.2. Option 1 performsQ-learning for a given
number of steps supplied by the user. Once theQ-learning process has committed,
the user can select option 2 and three. Selecting 2 will printthe entire contents of
theQ-table on the screen, while option 3 will start a concrete TetrisLTD game.

Once the game is finished, the Gamestates.txt file can be viewed to see what exactly
happened during the game play. And last but not least, selecting option number 4
can be used to exit the application.

62 Implementation

Results

The game of TetrisLTD is, however, not yet fully operational. A current problem
when playing the game involves in having the agent follow thesteps as guided
by the optimal policy from the start state 37. Once the first tetromino has been
positioned at the bottom of the board, the next one will follow the same path.

This will make the agent end up in a position right above the previous piece and
try to enter the same state of it. Consequently, the new pieceends up right on top
of the first instead of selecting the action which will lead itinto a state with second
highestQ-value.

7 Conclusion

Learning a machine the skills to play a game or just to find its way around in a given
environment is not an easy task, even for the simplest and smallest of domains.
Usually, finding the optimal solution to a problem requires an immense amount of
computation to be done.

This project has been concerned with a study of different representation methods
feasible to use in conjunction with machine learning techniques for applications
which suffer from large state spaces.

In the context of small computer games, the particular area of reinforcement learn-
ing was introduced and discussed. Reinforcement learning seems like an obvious
choice for many domains, but seemingly table-basedQ-learning does have a prob-
lem with learning environments that involves a lot of different states.

Different approaches for decreasing a state space was therefore looked into. The
purpose here was extend conventional reinforcement learning with a better, and
more expressive representation form. Here, it was found that structural represen-
tations such as relational interpretation are among the most expressive methods
known today.

Extending reinforcement learning with a relational, first order logic representation
yields a relational reinforcement learning technique. This improvement of the tra-
ditional MDP into a R-MDP makes it possible to describe a given state space in a
much more general way.

The strengths and weaknesses of using relational reinforcement learning was then
investigated through the use of the Blocks World example. Among the strengths
were the possibility of generalizing over state space information, which could de-
crease the size of a given state space considerably.

Also, using first order logic, it is actually possible to derive new facts from existing
ones, making it a very expressive learning method. Among theweaknesses it was
found that not all applications could make use of relationalreinforcement learning.
If no patterns in the state space can be found and generalized, it cannot solve the
problem.

Unfortunately, it was not possible to get a running example of a relational rein-
forcement learning application, since the ACE-tool necessary for training aQ-tree
and aP -tree was not usable due to internal faults and lack of support from the

64 Conclusion

developers.

Instead, conventional reinforcement learning was used to implement TetrisLMT ,
a reduced version of the well-known puzzle game of Tetris. The reduction was
needed in order to be able to use table-basedQ-learning in the game. TetrisLMT
was, however, not fully completed due to time related issues.

Conclusively, reinforcement learning is a good choice for small applications such
as board games, mobile robots, and other simplistic systems. Relational reinforce-
ment learning on the other hand, can be applied to a much widerarray of more
complex domains which can be described relationally.

7.1 Future Work

Several ideas and thoughts related to the area of reinforcement learning have come
to mind while working on this particular project. Some of themore interesting
includes:� Extending relational representations with the aspect of mirroring state infor-

mation. In games like Tetris, many states can be mirrored vertically on the
board. This particular approach could be used to decrease the state space
even further� Moving beyond the area of games. What other applications could benefit
from reinforcement learning? And perhaps more importantly, which ones
cannot?� Extending the expressive power of first order logic used in relational rein-
forcement learing. A problem with logic is that is basicallysees the world
as being either black or white. Some problems cannot be solved this way, or
will at least provide poor results� Investigate the possibilities of using relational reinforcement learning in con-
junction with other relational techniques. These could include working with
XML, relational databases and similar. What do one gain and what are the
advantages/disadvantages?

Bibliography

[BDD+02] Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda Janssens, Jan
Ramon, and Henk Vandecasteele.Improving the Effeciency of Induc-
tive Logic Programming Through the Use of Query Packs. 2002.

[BDRS04] H. Blockeel, L. Deshaspe, J. Ramon, and J. Struyf.The ACE Data
Mining System - User’s Manual. 2004.

[CK91] David Chapman and Leslie P. Kaebling.Input Generalization In De-
layed Reinforcement Learning: An Algorithm and PerformanceCom-
parisons. Proceedings of the International Joint Conference on Artifi-
cial Intelligence, 1991.

[DRB02] Kurt Driessens, Jan Ramon, and Hendrik Blockeel.Speeding up Re-
lational Reinforcement Learning Through the Use of an Incremental
First Order Decision Tree Learner. 2002.

[DRD01] Sâso D̂zeroski, Luc De Raedt, and Kurt Driessens.Relational Rein-
forcement Learning. 2001.

[Dri] Kurt Driessens.Relational Reinforcement Learning.

[Dri04a] Kurt Driessens. Relational Reinforcement Learning, Ph.D. Thesis,
chapter 3, pages 25–36. 2004.

[Dri04b] Kurt Driessens. Relational Reinforcement Learning, Ph.D. Thesis,
chapter 5, pages 53–70. 2004.

[Fah03] Colin P. Fahey.Tetris AI. Colin P. Fahey, 2003.

[Jen01] Finn V. Jensen.Bayesian Networks and Decision Graphs. Springer-
Verlag, 2001.

[KHI94] Dr. A. Harry Kloph, Lt Mance E. Harmon, and Capt Leemon C. Baird
III. Reinforcement Learning: An Alternative Approach To Machine
Intelligence. 1994.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

66 BIBLIOGRAPHY

[SB98a] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning - An
Introduction. The MIT Press, 1998.

[SB98b] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning - An
Introduction, chapter 1.4, pages 10–15. The MIT Press, 1998.

[SB98c] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning - An
Introduction, chapter 11.1, pages 261–267. The MIT Press, 1998.

[SB98d] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning - An
Introduction, chapter 11.4, pages 274–279. The MIT Press, 1998.

[SB98e] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning - An
Introduction, chapter 11.3, pages 270–274. The MIT Press, 1998.

[Spi02] Michael Spivey.An Introduction to Logic Programming Through Pro-
log. Prentice Hall Europe, 2002.

[TTC02] LLC The Tetris Company.Tetris. The Tetris Company, LLC, 2002.

[vO01] Martijn van Otterlo. Relational Representations in Reinforcement
Learning: Review and Open Problems. 2001.

