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SYNOPSIS:

This report presents two agent centered
techniques for cooperation among agents.
I.e. techniques to support cooperation
among agents, without the need for the
agents to engage in negotiation. This is
for example needed to cooperate with hu-
man players in fast paced games like first-
person shooters, where the human players
only have time to send short messages to
the agent.
The two techniques presented in this report
is: Prediction, where an agent attempt to
determine what actions other agents has
or will take. This technique is used as
the primary way to support cooperation,
as it does not rely on any communication.
The second technique, called value of com-
munication, is used to determine whether
it is worth to attempt to communicate in
a given situation. This means both re-
questing information from another agent,
as well as answering a request sent by an-
other agent. This technique is used as a
secondary technique to support the predic-
tion, as it does rely on some message pass-
ing between agents.
While both techniques are general enough
to apply to most areas of cooperation, this
report focuses on strategical cooperation
among defending agents in the game ”Team
Fortress” to show, through an empirical
evaluation, that the techniques improve an
agent’s ability to achieve its goal.

The report concludes that the prediction

technique is successful in improving the ca-

pabilities of the agents, and that the value

of communication technique is capable of

determining the most profitable times to

request information from other agents.
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Reading Guide

This report is structured into three logical parts. The first part consists of
Chapters 1 - 3. Chapter 1 is an introduction to the report and the concept
of agents. Chapter 2 describes the agent environment used as test bed
for the techniques developed in the report. Chapter 3 presents an agent
architecture, called InteRRaP, with three layers (reactive, deliberative and
cooperative), which we use in a slightly modified manner as basis for the
agent implementation.

The second part of the report consists of Chapters 4 - 7 which describe the
techniques used or developed in different layers in the architecture. Chap-
ter 4 gives an description of Bayesian networks and influence diagram, which
are the foundation for the implementation of the deliberative layer, described
in Chapter 5. Chapter 6 presents the prediction and communication tech-
niques developed for use in the implementation of the cooperative layer,
described in Chapter 7.

The last part of the report consists of Chapter 8 and Chapter 9, which
are the testing and conclusion, respectively.

When this report talks about agents in plural or an agent in general,
they/it will be referred to in neuter, an agent who has assumed a defensive
role is referred to in masculine and an agent in an offensive role is referred
to in feminine. Furthermore, states of variables will be printed in bold.

The implementation can be found at [TR04], as can several pre-compiled
versions for ease of use. The web site also contains an ps version of the report,
as well as a hyperlink pdf.
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1Introduction

As the graphical quality of computer games increases, players start to expect
more and more from a game. The more real the virtual world of a game
seems, the more real the player expects the entities in the world to behave.
As computer graphics are steadily nearing photo realistic quality, players are
starting to expect entities to behave as they would in real life. Already games
as ”Black and WhiteTM” are using reinforcement learning, perceptrons and
decision trees in the attempt to create an artificial intelligence1 (AI) that
learn and behave as one would expect from a domesticated animal.

Within the domain of First Person Shooters (FPS’s), especially the
team-based ones, there is an increased expectation among gamers to expe-
rience intelligent behavior from computer-controlled agents. Already these
agents are capable of exhibiting simple cooperative behavior as following a
player and obeying simple commands as ”defend”, ”attack” etc. However,
in most games, computer-controlled agents are depending on direct orders
from human players to exhibit intelligent strategical behavior. If computer-
controlled agents where capable of intelligent strategic cooperation, without
needing orders from human players, they would appear more intelligent and
increase the player’s gaming experience. Also, it would allow agents on
a team with bots to put up a more challenging fight without resorting to
cheating.

1.1 Agent Definition

A popular metaphor is to think of each component of a system as an agent.
As a result hereof there exist a lot of different definitions of what an agent is.
However, most of these [FG96, WD99], no matter which area they originate
from, generally agree on the fact that an agent must consist of the following
four basic components:

• The information base. The agent’s information about the environment
it inhabits. E.g. a software advertising agent might know a list of
products for sale, your e-mail address and previous purchases.

1The term AI is used in computer games due to historical reasons and is not equal to
the general understanding of the term.

1
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• The sensory component. The agent’s mean of observing its environ-
ment. E.g. the advertising agent might be able to detect your activities
on a particular web-site.

• The reasoning engine. This is the agent’s means of making decisions,
process information and learning from experience. E.g. the advertising
agent might decide to send you an ad if you have bought something
over the Internet two times this week.

• The actuators. The means of the agent to influence its environment.
E.g. the advertising agents might be capable of sending e-mail.

Some also include a fifth component[WJ04].

• The social component. Agents interact with other agents via some kind
of agent-communication language. This component is close related to
the cooperation of agents, which are described in Section 1.3.1 on
page 5.

To distinguish between the class of artificial agents (like robots and pro-
grams) and that of all agents. We use the term bot2 about such agents.
Likewise we use the term human controlled agents to when referring to
agents under human control.

However, the components described above is not what makes an agent;
it is only the components agents have to consist of. When considering the
question about what makes a piece of software or robot an agent, people
seem to be divided into two different camps. One side advocates the so-
called weak notion[WJ04, WD99, FM99], which says that an agent should
have the following properties:

• Autonomy

• Reactivity

• Pro-activeness

The first property says that the agent must be autonomous; meaning
that it must be in control of itself, e.g. a light controlled by a switch is
not autonomous, whereas one with a built-in sensor, instead of a switch, is.
The second property requires the agent to react to its environment, a traffic
light that changes in predefined intervals are not reacting to its environment,
but if it were controlled by the actual traffic passing through it, it would
be. To satisfy the last property of being pro-active, the system needs to

2The word ”Bot” is often associated with computer-controlled agents in computer
games, but in this report it is used about all computer-controlled agents regardless of
domain.
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take action by itself, not just react to environment, e.g. an automated dam
should increase its production of electricity, causing the water level in its
lake to drop if, based on the weather forecast, it looks like the lake might
flood.

It is the presence of these three components that define what an (weak)
agent is. The other side, however, advocate the strong notion[WJ04, WD99,
FM99], which, besides the properties from above, also include the following
properties and mental attitudes:

• Belief, knowledge, etc. (describing information states)

• Desire, goal, etc. (describing motivational states)

• Intention, commitment, etc. (describing deliberative states)

In the strong notion (often referred to as the BDI3 architecture[Mül96]),
the agents must also poses mental attributes, like knowledge and belief. The
latter is divided into orders, if an agent uses first-order belief it means that it
has beliefs, desires etc., but no beliefs and desires about beliefs and desires.
Second-order belief is more sophisticated; here the agent has beliefs about
beliefs and desires (called meta belief), both those of others and its own.
Third-order is belief about belief about belief and so on [WJ94]. Secondly
the agent should have desires and goals, things that it wants to achieve.
Lastly it must be capable of forming intentions and commitments with the
purpose of reaching its goals and desires.

Note that even when using the weak notion, described above, a lot of
systems that might otherwise be thought to fall within the agent definition
are excluded. Take for example a normal automated air condition system;
while this has the property of autonomy and reactivity (assuming that it
is controlled by the temperature) it lacks the property of pro-activeness, as
does numerous other systems controlled solely by rules or scripts.

Throughout this report when the term agent is used, it shall refer to an
agent defined under the strong notion. The definition of an agent is based
on chapter 4 in [WD99].

1.2 Multi-Agent Environment

Now that the term agent has been defined we can define what a multi-agent
environment is. Intuition says that it must be an environment inhabited by
more than one agent. But this is not adequate; a room with two agents
playing solitaire is not a multi-agent environment. Only if the agents are
capable of interaction (possibly only indirectly) can the environment be said
to be a multi-agent one. If there is no interaction between two agents, they

3Belief-Desire-Intension.
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would effectively just consider the other agent a part of the environment and
as such not consider its belief, goals and intentions.

[WD99] identifies three key aspects of a multi-agent system.

• The environment occupied by the multi-agent system. E.g. with re-
spect to:

• Diversity - How many different elements do the environment
consist of? E.g. Chess is more diverse than checkers.

• Uncertainty.

• The agent-agent and agent-environment interactions. E.g. with re-
spect to:

• Frequency - How often do an agent interact with the world or
another agent?

• Variability - In how many ways can an agent interact?

• The agents themselves

The first aspect is the environment, where some of the most important
properties are whether it is deterministic or non-deterministic (ND). In a
deterministic environment it is always possible to foresee the consequence of
ones actions as opposed to a ND environment where the consequences of an
action are unknown. Also, there might exist elements (e.g. other agents) in
the world for which we might lack information, if this is the case we say that
our agent must reason under uncertainty. Furthermore the world must be
either static or dynamic, a static world only changes as a result of an action
on our part, whereas a dynamic world can change regardless of us. Another
important property is whether events in the environment happen in turns
or continuously, if the latter is the case we call the environment ”real-time”.
Existing in a real-time environment demands more of an agent, as the time
available to contemplate and analyze a problem might be limited in contrast
to a turn-based environment.

The second aspect is the interactions. Every time an agent use an actua-
tor it inevitable mean that the agent is interacting with the environment or
another agent. Note that this also covers communication with other agents.

The last of these three aspect gives rise to four different classifications of
multi-agent environments as it can either be homogeneous or heterogeneous,
with respect to the agents that inhabit the world (i.e. consisting of identical
or different agents), and communicating or non-communicating (i.e. are
the agents capable explicit communication or not). In this report, whenever
”multi-agent environment” is used, it is a heterogeneous communicating one.

There are many reasons for using a multi-agent environment, They are
inherently parallel in nature as each bot can be run on separate computer, as
a result a multi-agent environment is often both scalable and robust[WD99].
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Also, in a multi-agent system complex behaviors, that are very hard to
design, might emerge as a result of the agents’ interactions.

1.3 Cooperative Agents

If an agent in a multi-agent system share one or more of its goals with other
agents, it might be desirable for the agent to coordinate its effort with these
agents, as this could increase the agent’s chance of success for its own goals.
However, as each agent is independent and has its own view of the world,
which is likely to differ from that of other agents. It is unlikely that these
agents will make decisions that supports each other, even though they might
share the same decision process and both chooses the action that is expected
to maximize their utility, as they probably have different views of the world.

One way an agent can try to remedy the problem of cooperation un-
der different views is to communicate its intentions to the other agents. The
problem is that it is often not feasible to have each agent broadcast informa-
tion every time its view of the world changes (e.g. due to bandwidth limits
or information overflow for the receiving end). It is therefore desirable to
minimize the amount of explicit communication between the agents or even
completely eliminate it. Another way would be to try to infer what the in-
tentions of other agents are. As a result agents must try to coordinate their
actions in an environment with incomplete information and uncertainties.

1.3.1 What is Cooperation?

We will now give a brief discussion on what cooperation actually means in
this report.

When looking at cooperation from an action aspect, we might say that
two agents are cooperating when their actions satisfy at least one of the
following [DFJN97]:

• The agents have a (possibly implicit) goal in common, for which they
have individual motivation, and their actions tend to achieve that goal.

• The agents perform actions, which enable or achieve not only their
own goals, but also the goals of other agents.

But as [DFJN97] point out this do not require the agents to intend to
cooperate - cooperation can happen by sheer chance. We need to strengthen
this definition by demanding that the agent is deliberative about the cooper-
ation, it must reflect upon the combination of actions itself and others might
perform and then, possible after some negotiation, choose actions the leads
to convergence of its and the other agents behavior. To do this the concept
of cooperation must be explicitly present in the agents’ decision process.
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Note that even by this definition there can be cooperation between agents
without all of them necessarily knowing about it.

1.3.1.1 Failures

When working with cooperation it is also important that we understand
in what ways it may fail, so that, during testing, it is possible to identify
possible problems. [DFJN97] gives four general ways in which cooperation
can fail.

• No cooperation is possible (i.e. there is no combination of actions that
leads to cooperation).

• Cooperation is possible, but the agents cannot gather enough infor-
mation to decide when and/or what actions to perform.

• Cooperation is possible and the information present, but the decision
process is inadequate to process the information and select appropriate
actions.

• Cooperation is possible and does indeed take place, but is accompanied
by side effects that render the cooperation ineffective.

1.3.2 Level of Cooperation

In this report we focuses on the FPS’s as multi-agent systems. Cooperation
in a FPS can be divided into two different levels - A tactical level and a
strategic level. Tactical cooperation consists of decisions on how to move
and act relative to other agents in the immediate vicinity. E.g. for three
policemen, about to kick down a door to a suspects house, the tactical
decisions might be that the first policeman kick down the door, moves 3 feet
into the house and then drops to his knee, expecting that the two others will
cover each of his sides. Cooperation on the strategic level, on the other hand,
consists of decisions on where to be and what to do in the grand scheme of
things. E.g. the three policemen might know that there are another squad
who enters from the back door and therefore they proceeds to search the
first floor, leaving the ground floor to the second team.

Of course different environments require different decisions, but there is
some common ground within the FPS domain. On the tactical level there
are always decisions on how to react to a recently discovered enemy, which of
the available weapons to use and how to move and position oneself relative
to other agents. Strategically, an agent must also decide how to move and
position himself, but this time in relation to some overall plan or scheme.
Also, in many newer FPS4 an agent must decide which resources he will

4E.g. Counter-Strike, Alien vs. Predator, and Battlefield 1942.
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have access to in the game. This covers a wide range of possibilities; what
weapons are available, what ”physical” law apply and much more.

In this report we focus on cooperation on the strategic level.

1.4 Project Goals

The goal of this project is to develop techniques that support cooperation
between a bot and other agents in a FPS domain. We will focus on agent-
centered techniques that will allow an agent to choose its actions according
to the expected behavior of the other agents in the game, as opposed to
choosing actions based on negotiation between agents, as it is often impos-
sible for a bot to negotiate complex strategies with human players.

We will develop a technique for a bot to estimate what strategic deci-
sions other agents has made, so that the bot itself can take decisions that
support these. For the cases where a bot has doubts about the correctness
of the estimated decision of another agent, we will present a technique that
enables the bot to determine whether asking the other agent for information
is expected to be worth the cost of communicating. Likewise we will make a
technique to determine if it is worth to answer such a request for information
from a friendly agent.

To test if the developed techniques are working, an implementation of a
bot, faced with some realistic strategical problems (e.g. dedicated defense)
in an actual FPS, will be made. To sum up, the goals for this project is:

• Create techniques that support agent-centered strategic cooperation.

• Implement a bot in a FPS domain using the developed techniques.

• Make an empirical evaluation of the techniques based on the imple-
mentation.





2Agent Environment

One of the first FPS games to offer team multiplayer was Team Fortress. It
was a modification to ID Software’s Quake2 and it became one of the most
popular games of its time. The game software company Valve noticed this
and decided to buy Team Fortress and hire some of the people who created
it. Valve then created their own modification named Team Fortress Classic
(TFC), which was added as a free upgrade to their blockbuster hit Half-Life.
But Valve did not stop there and decided to release an SDK-kit for Half-Life
to help people create their own modifications for it. This is one of the largest
successes ever in the gaming industry; the number of modifications to Half-
Life is staggering1 and Half-Life still has the largest number of people online
here 7 years after its release. According to the ”GameSpy Arcade” lobby
program2, which is a program used to find game servers, there are currently
about 120.000 Half-Life players online, the second highest FPS game only
has around 11.000 players. Half-Life is still the only game with a complete
SDK for a commercial FPS game although that is likely to be changed when
its successor Half-Life2 is released.

The developers of Half-Life modifications usually release their code,
which enabled other people to create bots for the modifications. But some
of the largest modifications, like Counter-Strike and TFC, have decided not
to publish their code. This made it nearly impossible to create bots for
these modifications, for other than the original modification authors. Jef-
frey Broome, who reverse engineered the way Half-Life loads modifications
and created an interface for a bot, changed this. His work has been the
foundation for many bots written to modifications with no released source
code (See [bot04] for more information on the interface provided by Jeffrey
Broome).

In this project the game TFC is used as a multi-agent test environment
and throughout the rest of this report most examples will come from the TFC
domain and it is therefore important to be familiar with the terminology used
in TFC and understand its specifics, as they influences the model developed

1see www.planethalflife.com/community/hosted/mods.shtm and
www.half-life.hu/indexeng.php for 100 of the reasonable popular ones.

2GameSpy Arcade can be downloaded from www.gamespy.com.

9
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later in the report.
This chapter starts by describing the TFC environment and giving some

examples of cooperation in TFC. Next, the environments characteristics are
listed and thereafter some restrictions are imposed. Finally, reasons for using
TFC as our agent environment are summarized.

2.1 TFC Terminology

TFC is a team based game where 2 (or in some rare cases 4) teams of
agents compete against each other on various maps3. On most maps in
TFC, a certain portion of it ”belongs” to a specific team; this area is called
the team’s base. Each base has some area where an agent will respawn if
killed. These areas are called spawn points and are often situated in areas
that enemies cannot reach. Most bases also have places (called resupply

areas) with items that the agents can collect to increase their attributes.
Figure 2.1 on the next page shows the layout of a base on the map ”2Fort”.

The maps are played according to different goals called scenarios, some
of the most common scenarios in TFC include:

• ”Capture the Flag” (CTF), where each team has a flag they must
protect while trying to get the opponents flag. The winning team is
the one that captures most enemy flags; a flag is captured when it has
been carried from an enemy’s base to a predefined capture point.

• ”Attack and Defend”, where the defending team try to hold a number
of positions that the offending teams must capture before a timer runs
out.

• ”Assassination”, where one team tries to escort a VIP player to some
predefined point on the map, while the assassins on the other team try
to kill the VIP - the team that succeeds wins the match.

• ”Territorial Control”, where the teams fight to control a number of
”control points”which give the teams points according to varying rules
depending on the specific map.

All of these scenarios are good choices for our tests, as they ensure that
the agents have some clear goals in common which they can cooperate to
achieve. In this report all test are performed using the CTF scenario, as
this is the scenario used on the most appropriate map, which is described in
Section 2.3.1.

3A map is a specific game level, complete with buildings and collectable items.
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Figure 2.1: Layout of a base in ”2Fort”. All arrows show ramps/stairs and points
from lower to higher ground, and the dotted crosses show connected places where
agents can jump/fall down from a floor to the one below.
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2.2 TFC Agents

When an agent joins a TFC game, the first thing it is presented with is the
choice of what class the agent wishes to play. The agent must choose one
of 9 different classes to play, which influence how he is capable of acting
in the world. I.e. what will his actuators be. Each class will grant the
agent different characteristics such as, weapons, movement speed, health,
armor and special abilities. The choice of class can be changed in-game,
but will only take effect after the agent has been killed and respawns
(see Appendix A on page 115 for a description of the different classes or
www.planethalflife.com/tfc/ for general information). In addition to these
actuators, that are dependent on the class choice, all agents can send plain
text messages to any other agent. While it is theoretically possible to send
any kind of information this way, messages are usually of the form: I am
defending this area, I have the enemy flag, I need help etc. Of course, if the
messages are to be understood by bots, they must be in some predefined
format recognized by the bots. While, as mentioned, it is theoretic possible
to send anything, e.g. a bot could send a complete model of its behavior,
the general principle enforced is that a bot, in the name of fairness, only
must send the same kind of information as human could.

The common sensor input to a bot consists primarily of ”visual” informa-
tion, identical to what a human player gets displayed on the monitor screen.
However, the bots do not receive a picture to analyze as a human does, they
get data corresponding to what a human can infer from such a picture. The
general principal is that bots only has access to the same information as
humans have. In addition to information about the position and movement
of other agents in sight, it also includes information their class as well as
what team they belong to. This information is available since these two
factors unambiguously decide the appearance of an agent. However, agents
always know the class of any other agents who are on the same team, as this
information is available through a scoreboard.

The agent has sensors that tell it how much health, armor and ammuni-
tion it has left. Furthermore agents can see the health and armor of another
agent if they are on the same team and within visual range of each other. In
addition to these common sensors, there are some classes that gives an agent
one or more special sensors. An agent who has chosen the Engineer class
receives a sensor that enables the agent to see information about the status
of its sentry gun (A sentry gun is one of the special abilities of an engineer,
see the references above). Another noteworthy sensor comes with the scout
class, a scout can always see the general state of the current games objective
(See Section 2.1 for more details about the different types of games and their
objective). All bots are also equipped with a virtual sense of hearing, but
this has little impact in TFC as the ”hearing” actually just means that the
bot can ”see” in a small circle behind itself and is, as such, only useful to
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detect agents that are sneaking up behind the bot.

2.3 The Environment

The TFC environment is both real-time and inherently non-deterministic in
nature, as is any FPS. This means that an agent only has a limited time
to take critical decisions, as what to do if an enemy agent is encountered.
The non-determinism means that an agent might not be able to foresee the
actions of other agents nor the consequences of its own actions. E.g. if an
agent spots another agent, he do not know where the spotted agent will
move to next or if an agent fires a weapon it cannot known beforehand if
it will hit or not. Also, as with any FPS, the environment is only partial
observable, which is a great source of uncertainty as there many things in the
world that an agent simply do not see since it can only observe the part of
the world in which it is located. Another characteristic of the environment
is that all sensors are virtually noise free, except from what is caused by
lag, which means that some times an agent is not precisely where the sensor
says it is, but as the deviance is usually very small, particular when there
are enough available bandwidth, we do not deal with this.

As there, by definition, always will be other agents in a multi-agent
environment and as they will always be capable of changing it (an agent
that could not change its environment would no fulfill the requirements for
being an agent), the environment can, from a single agents perspective,
always change without the agent doing anything itself and the environment
is, as such, a dynamic one.

2.3.1 The 2Fort Map

A 3D generated overview of the ”2Fort” map can be seen in Figure 2.2.

Figure 2.2: 3D generated overview of the ”2Fort” map.



Page 14 of 137 CHAPTER 2. AGENT ENVIRONMENT

The model, which is going to be the foundation for testing the meth-
ods developed in this report, will be based specifically on this map. It is
therefore necessary to understand how the map is constructed and what its
characteristic are, as they have a big impact on the design of the model and
the understanding of the test results.

The 2Fort map is a CTF scenario for two teams. The general layout of
the map consists of two bases, one for each team, separated by a body of
water that is crossable by a bridge. Each base has a battlement overlooking
the bridge and the other base’s battlement (see Figure 2.3 and 2.4 on the
facing page). This area is usually used as a vantage point for snipers, as it
provides both cover and a good overview.

Directly below the battlement is the entrance area, which, besides the
actual entrance to the base, consists of a corridor orthogonal to the actual
entrance (see Figure 2.5).

After the entrance lies the ramp room (see Figure 2.6). This is a good
area to defend in, as it is close to a resupply room and because enemies are
very vulnerable when they try to run up the narrow ramps.

The top of the ramp room connects to a hall, which acts as a central
hub for the base, as it connects to both the battlement, the entrance area,
the aforementioned ramp room and the basement area which contains the
team’s flag (see Figure 2.7). In addition to the hall area, the ramp room also
connects directly to the basement via an elevator. However, the elevator
will only transport members of the team that own the base; an intruder
that wishes to utilize this route must jump down the elevator shaft, thereby
suffering the damage associated with such a fall.

As already mentioned the base has a basement where the team’s flag is
stored. Like the ramp room, the basement is a fairly good place to defend as
it is close to a resupply room, however if enemy forces penetrate the defense
it means that they will steal the flag (the room containing the flag can be
seen in Figure 2.8).

All tests in this report are done on the map ”2Fort” which has been
chosen because of its size and design. It relative small size facilitates testing
quite well as it does not require a large amount of agents, making it easier
to observe the different interactions. Also, its design ensures that there are
meaningful strategic decisions to be made both by defenders and attackers,
as there clearly exist areas with dissimilar properties, meaning that certain
combinations of defenders might be more appropriated in some areas than
others. E.g. the battlement might be a better position for a sniper than the
enclosed basement.
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Figure 2.3: Screenshot of the battlement on the ”2Fort” map.

Figure 2.4: Screenshot looking down from the battlement onto the bridge.

Figure 2.5: Screenshot of the entrance corridor. The actual entrance is to the
right.
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Figure 2.6: Screenshot of the ramp room. The opening in the middle of the picture
is the connection to the entrance corridor.

Figure 2.7: Screenshot of the hall. To the left the opening to the battlement can
be seen. Straight ahead is the opening to the entrance and to the right the way to
the battlement. Further to the right, just outside the bounds of the screenshot, is
the opening to the ramp room.

Figure 2.8: Screenshot of the flag room.
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2.4 Cooperation in TFC

TFC contains many possibilities for tactical cooperation. In addition to the
tactical possibilities normally found in FPSs, i.e. the agents can support
each other in combat. TFC contains a host of other options. E.g. the
medic class can restore the health of other agents by using his special ability,
the engineers can repair other agents’ armor and construct machines that
dispense ammunition to nearby agents. This report, however, concentrates
on strategic cooperation among the agents, but keep in mind that many
strategic possibilities have their root in tactical possibilities. E.g. the reason
some agents function better together than others can be that their tactical
options complement each other.

There exist different possibilities for strategic cooperation in TFC:

• Which of the available classes should the agent choose?

• Should the agent occupy an offensive or defensive role?

• Where in the world should the agent go? For defensive agents this is a
choice of position whereas for an offensive agent it is a choice of route
to the enemy flag.

None of these choices in themselves constitute cooperation, but the
choices must be coordinated with the other agents in the game. E.g. a
team with two soldiers might benefit more from having a medic on the team
than a third soldier or perhaps an engineer to defend the base while the
two soldiers attack. Remember, per the definition of cooperation 1.3.1 on
page 5, the agents can only be said to cooperate if the do so intentionally
and not by sheer chance.

2.4.1 Examples of Cooperation in TFC

An agent wants to help defend the base and is considering what class to
choose. It knows that there are two other agents on the team, what their
current class are and it believes that one of them is defending the battlement,
but it is unsure about the other agent. To get more information, it sends a
message to the agent asking it where it is.

An agent defending the flag receives a message asking where he is cur-
rently located. The agent would like the other agent to join him so they can
support each other and thus replies that he is defending the flag, believing
that this information will increase the probability that the asking agent will
join him.

A soldier has just been killed and is about to decide what to do next
and what class to respawn as. He knows that there already are 3 soldiers
defending the base, so he changes his class to Sniper and runs to the base’s
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battlements to pick of attacking agents, easing the burden on the three other
defenders.

An engineer believes that there is a friendly soldier trying to defend
the base’s entrance, so he chooses to join him, using his special abilities to
support the other agent by building a sentry gun and by repairing his armor.

2.5 Imposed Restrictions on TFC

Communication In TFC the portion of bandwidth needed to send a mes-
sage to another agent is small in relation to the bandwidth commonly avail-
able, so bandwidth is not normally a concern, especially when the messages
are between bots, as these are required to be run directly on the server ma-
chine and thus can ”send”messages to each other instantly. However, in this
report we shall impose a limit to the information that can be sent between
agents. The limitation is introduced to simulate a multi-agent environment
where agents are spread among several different machines, thus they cannot
communicate unboundedly, and to simulate that human controlled agents
cannot process and generate messages as fast as bots. The actual limita-
tion is enforced by specifying an associated cost, depending on the size of he
message, for sending the message (see Section 6.2 on page 69 for information
on how the cost limits communication).

As all messengers in TFC are plain text, an agent could potentially send
any kind of information to another agent, but as the focus in this report is
on strategic cooperation, the agents will be limited to messages stating in
which area they are and messages asking other agents where they are.

Classes As mentioned in Section 2.2 each agent in TFC must choose be-
tween 9 different classes (see Appendix A on page 115 for a description of
the classes). However, this lead to a lot of different configurations of agents
that all would have to be tested, so to make testing more feasible, agents are
restricted to three of the nine classes: ”Sniper”, ”HWGuy” and ”Engineer”
for agents in defensive roles and ”Scout”, ”Soldier” and ”Medic” for offensive
roles. These classes have been chosen based on their disposition towards the
role they are confined to. This restriction significantly lowers the necessary
amount of test results needed, but without removing the diversity of the
TFC environment.

2.6 TFC Advantages as Environment

The arguments for using TFC as a multi-agent test environment is that it is
an already working team game and as such designed to support and rewards
cooperation. It already contains an implementation of (uncooperative) bots,
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parts of which can be substituted and modified to create our own bot. Fur-
thermore, since we have complete access to the source code, we can enforce
restrictions on the game, which was not originally there, such as bandwidth
limitations.

Also, TFC contains many aspects often found in multi-agent environ-
ments. It is non-deterministic, dynamic and consists of heterogeneous agents
who must try to cooperate and coordinate with each other based on obser-
vation and communication abilities. Also, like any FPS, the environment
is only partial observable adding to the agents need to reason under uncer-
tainties.

The last, and perhaps most noticeable, advantage of using TFC, as op-
posed to another FPS, is that Jeffrey Broome’s code can be used to handle
all the agent behavior that fall outside of the project’s focus, allowing us to
focus on the coorperative aspects of the agent.





3Agent Architecture

The TFC domain described in Section 2 on page 9 is a real time multi-agent
environment; in addition, the environment is dynamic and non-deterministic
seen from a single agent’s point of view. The TFC domain is designed to
support and reward cooperation between agents.

In [Mül96], Jörg Müller set up three requirements for agents in a dynamic
real-time multi-agent environment. These characteristic describe the TFC
domain and we therefore measure agents in the TFC domain by their ability
to satisfy the three requirements:

• An agent should select and carry out its actions in real-time.

• An agent should select its actions based on the actions’ ability to
achieve the agent’s objectives.

• The agent should coordinate its actions with the other agents in order
to fulfill the second requirement.

The first requirement, henceforth known as the real-time requirement,
result in limitations of the resource requirements for the agent’s decision
process, e.g. limited amount of CPU-cycles or memory usage. The second
requirement entails that the agent should act rationally. By acting rationally
we mean making decisions that maximizes the expected utility (the so-called
normative approach). The third requirement can be seen as an addition to
the second requirement. In order to coordinate the agent’s actions with
other agents’ behavior, information about their behavior must be collected.
This could e.g. be obtained through observations of other agents or message
exchange with other agents.

Different architectures have been developed to fulfill these requirements
and a survey of such architectures can be found in [Mül96]. In the sections
below three general architectures that each fulfill one of the requirements are
described, followed by a short discussion of their strength and weaknesses.
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3.1 Reactive Architectures

The reactive architectures are the simplest architectures, as their decision
process is based solely on the current sensor input. The decision process
classifies the input into one of a predefined number of states that each has
an action attached to it, which is then executed. The action for each state
is decided at the time of implementation and it is therefore more or less an
advanced way of triggering scripting, this also means reactive architectures
have the usual disadvantages associated with scripting. E.g. complex envi-
ronments usually require a large amount of states to adequately classify the
input. Each of these states must be anticipated and manually evaluated to
attach an appropriate action, thus it scales poorly and as the actions are
determined at compile time it does not provide adaptive behavior. The ad-
vantage is that the decision process usually has low resources requirements,
since it only consist of categorizing the input, which normally is a simple
task (although the amount of input can change this).

The advantages of reactive architectures make them well suited to ful-
fill the real-time requirement. They are also capable of robust behavior1

in complex environments, however as described this often requires an enor-
mous amount predefined states and manually evaluated analysis of these, in
addition it is difficult to achieve an optimal behavior2, especially in dynamic
environments.

3.2 Deliberative Architectures

Deliberative architectures contain mental attributes, e.g. knowledge and be-
liefs. The decision process is based both on the mental attributes’ states and
inputs from the environment. A deliberative architecture has the potential
to achieve the individual optimal behavior, as its knowledge can include a
complete representation of its environment. Often however, this is often not
feasible for complex environments, although it gives the best result it also
requires enormous amounts of resources.

Deliberative architectures are therefore good at fulfilling the second re-
quirement, but they require more resources, which can give problems with
the real-time requirement, this is most apparent in situations that require
immediate actions.

1Robust behavior is the ability to recover gracefully from the whole range of exceptional
inputs and situations in a given environment. I.e. robust behavior should always be
able to carry out a reasonable action, although the input is not complete or precisely as
anticipated.

2Optimal behavior should carry out the most desirable action possible given any inputs
and situations in a given environment.
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3.3 Cooperative Architectures

Architectures that facilitate interaction between agents have primarily fo-
cused on coordination between agents. The coordination can be based on
information gathered by observations, predictions and/or communication.
The main research areas are techniques to predict other agents’ actions,
techniques for communication between agents and also coordination between
autonomous agents. These architectures can be constructed based on both
reactive and deliberative architectures, and therefore share the respective
architecture’s advantages and disadvantages.

Cooperative architectures are constructed to fulfill the third requirement,
but in order to fulfill this requirement they employ additional resources for
coordination. However, as they aim to combine the agents’ efforts, which
in some environments give a larger utility than the agents’ separate effort,
they have the possibility to further optimize the expected utility.

Discussion The three architectures each address one of the requirements,
often however, an agent is measured on its ability to fulfill all three require-
ments at the same time; in these cases none of them is suitable. Instead it
would be desirable to have an architecture that combines the advantages of
the three architectures. A logical approach is to try to combine the strength
of each architecture in a hybrid architecture. Such an architecture will be
described in the next section.

3.4 The InteRRaP Architecture

In [Mül96] Jörg Müller develops a hybrid architecture, called InteRRaP3,
that more or less combines the three described architectures into one. An
overview of the architecture can be seen on Figure 3.1 on the next page.

The InteRRaP model consists of three parts: The World Interface Com-
ponent (WIC), a Knowledge Base (KB) and a Control Component (CC).
The WIC controls the interface between the environment and the agent;
this includes actuators, communication and sensors.

The KB and the CC are each divided into three layers, where a layer in
one part has a corresponding layer in the other part. The basic idea is that
each layer handles one requirement and that the following layer represents
a higher level of knowledge abstraction than the layer below it.

Knowledge Base The KB is a hierarchical structure. This means that
a layer in the CC can access information stored in its corresponding KB
layer and the layers below it, but not layers above it. The World Model4

3Integration of Reactive Behavior and Rational Planning.
4Note that name World Model is a bit misleading as it only contains current inputs.
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InteRRaP

Control flow

Information flow

Control Component Knowledge Base

World Interface Component

Cooperative
Planing Layer
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SensorsCommunicationActuators
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Figure 3.1: The InteRRaP agent architecture, based on [int04] and [Mül96].
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is the lowest layer in the KB; it only contains the current inputs from the
WIC, and as it is the lowest layer all layers in the CC can access it. The
Mental Model contains previous experience and a representation of the en-
vironment for a specific agent. The Social Model contains descriptions of
negotiation protocols, communication protocols, methods to predict other
agents’ behavior and belief about other agents.

Control Component The lowest layer in the CC is the Behavior-based
Layer, which is a reactive layer that handles all basic situations and situa-
tions with a demand for immediate action. In practice the Behavior-based
Layer can be implemented as a number of pre-conditions for the World
Model, each pre-condition has an action that should be performed when it
is fulfilled. An action can either specify a direct interaction with the WIC or
be request to the next layer if the situation is to complex, e.g. the situation
need to handled based on previous experiences, it require interaction with
other agents.

The next layer is the Individual Planning Layer, which is a deliberative
layer that is used in situations without any need for coordination between
agents. It generates plans based on the Mental Model, which only contains
information for this specific agent. If the situation does not require interac-
tion with other agents, it specify a sequence of actions that the Behavior-
based Layer must carry out, otherwise it will pass the control to next layer.

The last and highest layer is the Cooperative Planning Layer. It gen-
erates plans that involve other agents and handles all interaction between
agents. As the Cooperative Planning Layer is the highest layer it cannot
pass the control further up, therefore it has to construct a plan based on
the Social Model and KB layers below it. The Cooperative Planning Layer
generally deals with situations that require knowledge about other agents or
coordination with other agents.

Input from either the agent’s sensors or communication are handle by
the WIC, which update the World Model accordingly. The changes in the
World Model can result in a precondition from the Behavior-based Layer
being met. This triggers the CC and the decision process is started.

3.5 Architecture for the TFC Domain

The InteRRaP architecture specifies a feasible way to combine the reactive,
deliberative and cooperative architectures into a hybrid architecture. The
agent (which will be made to fulfill a defensive role) designed in this project
will therefore use the fundamental design principles from the InteRRaP ar-
chitecture. I.e. the principles of having three layers, which each handles
one of the three requirements (see page 21). Figure 3.2 on the following
page shows the agent architecture used in this project, the difference be-
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Control flow
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Figure 3.2: The agent architecture employed in this project.

tween our agent architecture and the InteRRaP architecture is that the CC
and the KB has been combined for two upper layers, i.e. the Individual
Planning Layer and the Mental Model make the Deliberative Layer and
the Cooperative Planning Layer and the Social Model makes the Cooper-
ative Layer. The CC and KB merging is caused by the influence diagram
technique employed in the Deliberative and Cooperative Layers, influence
diagrams combine a representation of knowledge with the decision process,
the technique is described in next chapter. The next sections describe each
layer’s task assignments in the defensive agent developed in this project.

3.5.1 The Reactive Layer

The reactive layer handles situations that require instant action as well as
situations that can be resolved based on the current sensor input alone.
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In our defensive agent implementation, reactive decisions (e.g. about
how to move, what route to take when going to a destination, how to stay
near to a specific location etc.) is handled by the module provided by Jeffrey
Broome. Likewise decisions on when to invoke special abilities, such as the
engineer’s ability to repair the armor of nearby friendly agents or a medic’s
ability to heal other agents, are handled reactively. I.e. if someone is in
need of these services and the agent is close to them it will use its abilities
if appropriate. Furthermore, decisions about engaging an enemy are also
handled as reactive behavior. A bot will always engage a visible enemy,
but will not pursue them, if it takes the bot away from its current goal
(defending a zone or capturing the flag). E.g. a scout carrying the enemy
flag will fire upon enemies, but will not deviate from the route to the capture
point. Also, other minor decisions, as how much to look around and how
much to strafe5 etc., are left to the reactive layer.

In effect this means that all kinds of tactical decisions, and thereby tac-
tical cooperation (See Section 1.3.2 on page 6 for the difference between
tactical and strategic cooperation), are handled reactively. As the reactive
implementation is handled solely by Jeffrey Broome’s code, the different
techniques to implement reactive behavior will not be discussed in this re-
port.

Note that some of the decision left to the reactive layer, may not be
reactive (or tactical) decisions for all kinds of agents. E.g. as we are going to
make an implementation of a defensive agent, path finding is left to reactive
layer. Had the implementation been that of an attacking agent, this would
most likely have been a strategical decision.

3.5.2 The Deliberative Layer

The deliberative layer handles strategic decisions, which are general decisions
for an agent’s plan in the larger scheme (e.g. decisions to defend specific
locations in the map or choosing which resources are available etc.). These
decisions do not have to be made within a strict time limit and should strive
to achieve optimal behavior, in relation to the available strategical options,
which makes them suitable to a deliberative decision process. When the
deliberative layer has selected a decision, it should leave the execution to the
reactive layer. In Chapter 4 techniques for a deliberative decision process
are described, and in Chapter 5 the deliberative layer of the defensive agent
developed in this project are constructed.

3.5.3 The Cooperative Layer

In contrast to the cooperative layer in the InteRRaP architecture, the co-
operative layer task is not to produce plans for the defensive agent; instead

5Moving left or right while still facing forward.
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its main task is to produces information about other agents’ behavior. This
could be based on observations of their behavior, communication and beliefs
about their world view. The information gathered from this layer should
subsequently be used by the deliberative layer. In Chapter 6 techniques for
the cooperative layer are developed, and in Chapter 7 the cooperative layer
of the defensive agent are constructed.



4Bayesian Networks

and Influence

Diagrams

In the deliberative layer there are two major factors that influences how the
bot makes decisions. The first factor is imposed by the requirement that the
agent must make rational decisions. In our case that is, the agent must take
the actions that are expected to maximise the bot utility. The second factor
the shapes that agents deliberative decision process is the environment - the
fact that a FPS domain has built-in uncertainties places a demand on the
agent to be able to reason under these uncertainties, like determine the value
of its possible decisions without knowing for sure what the consequence of
each might be.

Bayesian networks are a tool that can be used to help an agent to reason
under uncertainties. Bayesian networks use a model of the problem domain
in order to determine the probability of different variables of interest being
in specific states.

This chapter will describe Bayesian networks and influence diagrams,
which is an extension to Bayesian networks that explicit models a decision
process. The chapter is mainly based on [Jen01].

4.1 Bayesian Networks

A Bayesian network is a tool for reasoning under uncertainty based on
the Bayesian probability calculus. A Bayesian network consists of a di-
rected acyclic graph G where each node represent a variable in the do-
main modeled by the network. Each node has a set of mutually exclusive
and exhaustive states and is associated with a conditional probability ta-
ble P (A|B1, . . . , Bn), where A is the variable and B1, . . . , Bn its parents
(pa(A)) in G. Note that if A has no parents this reduces to an unconditional
probability table P (A).

29
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When construction a Bayesian network, the edges in the graph usu-
ally represent causal relations, i.e. cause-effect relations between the nodes.
However, this is only a general advice, and not a requirement. There is no
rule that demands that edges represent causal impacts, only that they ad-
here to the d-separation properties implied by the network. The reason for
using causal relation, even though it is not required, is that it automatically
ensures that the d-separation property holds.

4.1.1 d-separation

To understand the concept of d-separation, one needs to know what evidence
on a variable means. Evidence is a statement about the certainty of a
variable A being in one or more of its states. If the evidence says that A is
certainly in some specific state ai it is called hard evidence and we say that
the node has been instantiated. If the evidence only consists of belief about
a node (e.g. it is with probability 0.4 in state 1) the evidence is called soft

evidence.
When evidence is entered into a variable in a Bayesian network it can

changes our belief about other variables in the network. E.g. in the net-
work in Figure 4.1 evidence on B will change our belief about C since the
probabilities for C depends on B, but it may also change our belief about
A as B is dependant on A. However, dependant on the structure of the
graph and what nodes in the network that have been instantiated, there are
cases where evidence about one variable never can change our belief about
another. In these cases the variables in question are said to be d-separated
or structural independent.

To determine how information can flow though the network, and thus
what variables that are d-separated, there are three types of connections
among variables that must be considered:

Serial Connections Figure 4.1 shows the first type of connection, a serial
connection. If there is evidence on the variable A, this has an influence on
the certainty of B and then on C through B. Similarly, evidence on C can
change the certainty of A through B. However, if B is instantiated, i.e. the
state of the variable is known, then variables A and C cannot influence each
other and is therefore d-separated given B.

A B C

Figure 4.1: Serial connection.
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Diverging Connections The second connection type is the diverging
connection shown in Figure 4.2. Here evidence about A can change the
belief about B which in turn can change the belief about C, and visa versa.
However, if B has been instantiated, evidence about A cannot change be-
lief about B, thus evidence on A does not tell anything about C and the
variables are d-separated.

B

CA

Figure 4.2: Diverging connection.

Converging Connections The last connection type is the converging
connection. This concept is illustrated in Figure 4.3. Here, evidence on the
variable B can change the belief about A but not about C. If, however,
there is hard evidence on A (or any of its children) the evidence about
B can tell something about the state of C and thus change the belief about it.

A

CB

Figure 4.3: Converging connection.

The ways, just described, in which evidence can block the flow of informa-
tion in a network, are reflected in the concept of conditional independence.
A variable A is independant from C given B if P (ai|bj) = P (ai|bj , ck), i.e. if
the state of B is know, information about C cannot change the belief about
A. Note that two variable can be conditional independant without being
d-separated.
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4.1.2 Joint Probability

The reason for using a joint probability table P (U) over all nodes, is that
it enables us to find the probability distribution P (A) of a variable A. For
example, if we have the joint probability table P (A,B), we can find the
probability for each state ai in A with the formula:

P (ai) =
n
∑

j=1

P (ai, bj) (4.1)

where

n is the number of states in B

We call this process marginalization and we say that B has been marginal-
ized out of A. In general marginalization is denoted as follows:

P (V ) =
∑

S/V

P (S) (4.2)

where

S is the set of variable.
P (S) is the joint probability table for S.
V is the variables for which a joint probability table is wanted.

The joint probability table can be calculated from the conditional prob-
ability tables by using the chain rule:

P (U) =
∏

i

P (Ai|pa(Ai)) (4.3)

The reason for using a Bayesian network, with all it conditional probability
table, instead of just having P (U), is that the size of P (U) grow exponen-
tially with the number of nodes in U . E.g. a joint probability table over 10
nodes, with 10 states each, would contain 10 billion probabilities. Compared
to this the Bayesian network constitute a much more compact representa-
tion of P (U). Of course this would not help if the entire joint probability
table had to be computed every time some specific probability are needed.
Fortunatly this is not necessary, the example below shows how we can find
probability distribution P (A) for a node A by using Bayes rule:

P (B|A,C) =
P (A|B,C)P (B|C)

P (A|C)
(4.4)

from which we get the fundamental rule:

P (A,B|C) = P (A|B,C)P (B|C) (4.5)
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Figure 4.4: Example of Bayesian network.

Example In the network in Figure 4.4, we would like to know the proba-
bility distribution P (D).

P (D) =
∑

U/D

P (U)⇒

P (D) =
∑

A,B,C,E,F

P (A)P (B|A)P (C|A)P (D|B)P (E|B,C)P (F |C)⇒

P (D) =
∑

A

P (A)
∑

B

P (B|A)P (D|B)
∑

C

P (C|A)
∑

E

P (E|B,C)
∑

F

P (F |C)⇒

P (D) =
∑

A

P (A)
∑

B

P (B|A)P (D|B)

The reason
∑

C P (C|A)
∑

E P (E|B,C)
∑

F P (F |C) can be disregarded
is when the variables are marginalized out the sum will be 1 and thus it do
not influence the result. The probability tables for all relevant nodes can be
seen in the three tables below.

P (D|B) b1 b2 P (B|A) a1 a2 P (A)
d1 0.2 0.4 b1 0.3 0.1 a1 0.5
d2 0.8 0.6 b2 0.7 0.9 a2 0.5

To find P (D), we must compute the joint probability table P (A,B,D) =
P (D|B)P (B|A)P (A). To do so we first calculate P (A,B) = P (B|A)P (A)
by using the fundamental rule:

P (A,B) b1 b2 P (A,B) b1 b2
a1 0.3 · 0.5 0.7 · 0.5 = a1 0.15 0.35
a2 0.1 · 0.5 0.9 · 0.5 a2 0.05 0.45

and likewise the P (A,B,D) = P (D|B)P (A,B):

P (A,B,D) b1 b2
a1 (0.15 · 0.2, 0.15 · 0.8) (0.35 · 0.4, 0.35 · 0.6) =
a2 (0.05 · 0.2, 0.05 · 0.8) (0.45 · 0.4, 0.45 · 0.6)
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P (A,B,D) b1 b2
a1 (0.03, 0.12) (0.14, 0.21)

a2 (0.01, 0.04) (0.18, 0.27)

where the parenthesis corresponds to (d1, d2). A and B can now be marginal-
ized out of P (A,B,D) by using Equation 4.2, which gives the probability:

P (D) = (0.03 + 0.14 + 0.01 + 0.18, 0.12 + 0.21 + 0.04 + 0.27) = (0.36, 0.64)

4.2 Influence Diagrams

Bayesian networks are used to calculate probabilities for subsequent decision
making. However, as making decisions is the reason for using a Bayesian
network, it could make sense to include these decisions directly in the net-
work. This is done with in extension of Bayesian networks, called influence
diagrams, that explicitly models the decisions that must be made and the
utility of the different situations.

An influence diagram is a normal Bayesian network extended with two
new types of nodes: Decision nodes and utility nodes. Where chance nodes
represent events beyond direct control of the decision maker, decision nodes
represent choices that are under complete control and thus have no proba-
bility table. All states in a decision node represent a possible decision and
must be mutually exclusive and exhaustive. Decision nodes need to follow a
strict temporal ordering, so that it is clear which decision is the first, which
is the second and so on. Structurally this means that there must be a di-
rected path in the diagram that includes all decision nodes. See Figure 4.5
for an example of an influence diagram.

A utility node N represents a real-valued function over the node’s par-
ents. I.e. a utility node map all parent configurations to a value, called the
utility, which specifies how desirable the configurations is. Note that there

D2

D1

A B C

T

V2

V1

Figure 4.5: Example of an influence diagram.
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can never be outgoing links from a utility node, i.e. it can never have any
children. Like a Bayesian network is a multiplicative decomposition of the
joint probability table, it is possible to make an additive decomposition of
the utility function. This means that it is possible to have more than one
utility node in an influence diagram. If this is the case, then the final utility
of a given configuration of parents is the summed value of all utility nodes.
This means that utility nodes, like decision nodes, are not associated with
any probability table and, unlike both decision and chance nodes; they do
not have any states.

These new types of nodes gives rise to a new type of link in addiction
to the (usually causal) links from one chance node to another. These links
always comes from a chance node or decision node (Q) and goes into a
decision node (W ). The link expresses that Q is observed or known before
W is to be made. Based on what type of node Q is the link are called either:

• Information links: These are links from a chance node into a decision
node.

• Precedence links: These are links from one decision node to another.

The precedence links are used to fulfill the requirement that there must
be a directed path that comprises all decision nodes. Note that this does not
mean that all decision nodes need to be connected with precedence links. If a
chance node that depends on decision node A is observed before decision B,
then these two decision node do not need a precedence link as B obviously
follows A. Also note that information and precedence links are to be ignored
when determining d-separation. So are links to utility nodes that, except
for this purpose, functions as a normal links.

4.2.1 Solving an Influence Diagram

Given an influence diagram, the task is to determine what decision to select
for each decision node given the past. Before describing how to determine
this, some terminology is needed.

• Let the temporal ordering of the nodes be I0 < D1 < I1 < D2 < . . . <

In−1 < Dn < In, where Di is the i’th decision, I0 is the set of initially
observed chance nodes, Ii is the chance nodes observed between Di

and Di+1 and In are the chance nodes who are observed either after
the last decision or never at all. See Figure 4.6 on the following page
for an example of the ordering for the diagram in Figure 4.5.

• A policy σ for a decision node Di is a function, which given any config-
uration of the past past(Di) = I0, D1 . . . , Di−1, Ii−1, yield a decision
for Di. An optimal policy is the policy that given past(Di) yields the
decision with the highest expected utility (EU).
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D2D1 A B CT

I D
0 1 2

I ID
1 2

Figure 4.6: The ordering for the influence diagram in Figure 4.5.

• A strategy υ for an influence diagram ID is a set with a policy for each
decision in ID. An optimal strategy (sometimes called a solution) is
the strategy consisting of optimal policies.

This means that an optimal policy for a decision Di, in an influence
diagram over the chance nodes UC , the decision nodes UD and the utility
function V =

∑

i Vi where Vi is the ith utility function, can be calculated as
follows:

σi(I0, D1, . . . , Ii−1) = argmaxDi

∑

Ii

maxDi+1 . . .maxDn

∑

In

P (UC |UD)V

To determine the EU for following σi, first consider the EU for a deci-
sion for Dn given past(Di) - This is a sum over the probability of In given
past(Di) times the associated utility.

EU(Dn|I0, D1, . . . , Dn−1, In−1) =
∑

In

P (In|I0, D1, . . . , Dn−1, In−1, Dn)V =

∑

In

P (In|I0, D1, . . . , Dn−1, In−1, Dn) · P (I0, . . . , In−1|D1, . . . , Dn)

P (I0, . . . , In−1|D1, . . . , Dn)
V =

∑

In

1

P (I0, . . . , In−1|D1, . . . , Dn−1)
P (In, I0, . . . , In−1|D1, . . . , Dn)V =

1

P (I0, . . . , In−1|D1, . . . , Dn−1)

∑

In

P (UC |UD)V

which means that the EU for making the optimal decision for the last deci-
sion must be:

ρn(I0, D1 . . .Dn−1, In−1) = (4.6)

1

P (I0, . . . , In−1|D1, . . . , Dn−1)
maxDn

∑

In

P (UC |UD)V

From Equation 4.6 it follows inductively (although we do not prove so) that:

ρi+1(I0, D1, . . . , Ii) = (4.7)

1

P (I0, . . . , Ii|D1, . . . , Di)
maxDi+1

∑

Ii+1

. . .maxDn

∑

In

P (UC |UD)V
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Now the EU for an arbitrary decision Di can compute, as this must be the
sum over Ii times the utility for taking only optimal decisions in the future.

EU(Di|I0, D1 . . .Di−1, Ii−1) =
∑

Ii

P (Ii|I0, D1, . . . , Di−1, Ii−1)ρi+1(I0, D1, . . . , Ii) =

∑

Ii

1

P (I0, . . . , Ii−1|D1, . . . , Di)
P (Ii, I0, . . . , Ii−1|D1, . . . , Di)ρi+1(I0, D1, . . . , Ii)

and if we substitute Equation 4.7 into this, we get that:

EU(Di|I0, D1 . . .Di−1, Ii−1) = (4.8)

1

P (I0, . . . , Ii−1|D1, . . . , Di−1)

∑

Ii

maxDi+1

∑

Ii+1

. . .maxDn

∑

In

P (UC |UD)V

Which means that the maximum expected utility (MEU) for an influence
diagram is:

MEU(ID) =
∑

i0

maxD1

∑

i1

maxD2
. . .maxDn

∑

in

P (UC |UD)V (4.9)

While influence diagrams could theoretically be solved using the formulas
give above, which essentially unfolds the influence diagram out to a decision
tree, there is a problem; namely the joint probability table P (UC |UD). As
already mentioned in the description of Bayesian networks, joint probability
tables grow exponentially in the number of variables. However, there exist
methods that allow us to work with much smaller domains. Describing these
are beyond the scope of this report, but an interested reader can find more
information in [Jen01].

4.3 Divorcing

When working with Bayesian networks and influence diagrams it is necessary
to consider the size of the probability tables in the diagram. The larger the
state space1 of any node, the slower the network will be to work with as the
probability table’s size influences how many computations that is required
when computing joint probability tables. Also, the larger the state space
the more probabilities will have to be specified, which can be a problem.
Consider the situation in Figure 4.7 on the next page. If the variables A, B,
C and D have 10 states each, the probability table in variable E will have
a total of 104 · n entries where n is the number of states in variable E itself.
If n = 10, the number of entries in E will have be 104 · 10 = 105 = 100.000.

1The state space of a node is the product of its number of states and that of each of
its parents.
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E

B C DA

Figure 4.7: Network before divorcing.

Now imagine that E has an extra parent, also with 10 states, this causes the
state space to grow to 106 = 1.000.000 states. This huge increase in state
space (actually the state space increases exponentially with the number of
parents, assuming that each parent must have at least two states) can quickly
make any network to computational slow for any use, especially in real-time
domains.

A way of reducing the effect of this problem is shown in Figure 4.8. The
idea is to introduce a ”divorce” variable, thereby reducing the number of
parent to the variable E. The idea is that the influence of some of the parent
variables is summed up in a new variable. E.g. assume that E is the outcome
of hitting on a girl Erica, and A, B, C and D are the length of my hair,
my complexion, who wealthy I am and how intelligent I am, respectively.
The two variables A and B could be collected into a new variable F (with,
for example, 10 states) that representing my physical appearance. This will
reduce the number of entries in E’s table to 104 and, since the number of
entries in the table for the newly introduced variable F only will be 103,
this is a reduction of 105 − (104 + 103) = 89.000 entries for the network. Of
course this technique only works if the number of states in the node F is
smaller than the product of the number of states in A and B.

Note that divorcing is not always followed by the loss of information

E

B C D

F

A

Figure 4.8: Network after divorcing.
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normally associated with the reducing the number of states. If some states
in two (or more) parent variables ”overlap” they can be combined without
loosing information. E.g. if E in Figure 4.7 represent whether my dog is
happy (states Yes and No) and A and B is whether or not I give it a bone
and a squeaky toy respectively (Also with states Yes and No). If I give
the dog anything it is certain to be happy, so A and B can be summed in
the variable F with states Nothing and Something without losing any
information in the network.

4.4 Adaptation

When working with a Bayesian network there is often some (second-order)
uncertainty associated the initially specified probabilities, and in many do-
mains the probabilities are under constant change. In most cases the second-
order uncertainty cannot be completely avoided. However, trying to adapt
the probabilities in the network over time, in an attempt to increase their cor-
rectness and thereby decreasing the second-order uncertainty, can, to some
degree, counter the problem. It can also be done to adapt to a dynamic
environment. A way of performing adaptation is by so-called fractional up-
dating, which is a statistical approach that helps automate the process of
specifying the probabilities.

4.4.1 Fractional Updating

The idea with fractional updating is to modify the probabilities gradually
when new cases arrive. To make this feasible, two simplifying assumptions
must be made:

• Global independence: The second-order uncertainty for variables is in-
dependent of each other. This means that the conditional probabilities
for the variables can be modified independently.

• Local independence: The uncertainties of the distributions for differ-
ent parent configurations are independent. In other words, given three
variables A, B and C, where A is the child of both B and C, and given
two configurations (b1, c1) and (b1, c2); then the second-order uncer-
tainty of P (A|b1, c1) is independent of the second-order uncertainty
of P (A|b1, c2), this makes it possible to modify the two distributions
independently.

Now consider P (A|B,C) with the assumption of both global and local
independence. The distribution P (A|b1, c1) = (x1, x2, x3) can now be viewed
as being derived from previous cases, where (B,C) was in state (b1, c1). The
initialization of a Bayesian network requires starting values for the proba-
bilities, which are viewed as part of the past. The idea is to measure each
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state’s frequency in the previous cases for the distribution. The certainty of
the distribution can be roughly measured by the amount of previous cases,
called the sample size. A large sample size makes a probability more resis-
tant to changes, i.e. a new case will have a smaller impact on a probability
based on a large sample size than one with a small sample size, and therefore
has a smaller second-order uncertainty. Each state in A has a count for the
number of previous cases, the sample size is simply all the states’ counts
summed up. This leads to the counts (n1, n2, n3) and a sample size s such
that s = n1 + n2 + n3 and

P (A|b1, c1) =

(

n1

s
,
n2

s
,
n3

s

)

For cases where all variables are observed, both s and the count for
the state observed is incremented by 1 and the probabilities are calculated
again. But not all new cases have evidence on the state of all variables. A
new case with P (b1, c1|e) = z will add z to s (for the cases where variables
B and C is observed to be in state b1 and c1, respectively, z will be 1).
As s = n1 + n2 + n3 the new counts for n1, n2, n3 is multiplied with z. If
the new case does not give the state of A, then the current distribution of
P (A|b1, c1) = (y1, y2, y3) is used. The probability distribution of P (A|b1, c1)
will therefore be updated by the following formula:

P (A|b1, c1) =

(

n1 + zy1

s+ z
,
n2 + zy2

s+ z
,
n3 + zy3

s+ z

)

This idea is called fractional updating. It has a large disadvantage in
the instances where new cases only give information about the parent con-
figuration of A but no information about the state of A, e.g. the evidence
e = {B = b1, C = c1} do not give any information about P (A|b1, c1), but
fractional will still increment s by 1 and use the current distribution as count,
and thereby take it as a confirmation of the current distribution. The prob-
lem is that this sample size will increase and thereby give the impression
of decreasing the second-order uncertainty and make the distribution more
resistant to changes.

The following section describes a possible solution.

4.4.2 Fading

Fractional updating will remember all the old cases and they will have the
same influence on the probability as the new cases. For each new case added
to the network the sample size will be incremented by 1. The result is that
for each case, added to the network, the next cases will have a smaller
and smaller influence on the final distribution. If the Bayesian network is
developed in a dynamic environment, the old counts will become a larger
and larger dead weight for the model’s ability to adapt to the environment.



CHAPTER 4. BAYSIAN NETWORKS AND ID’S Page 41 of 137

The logically approach to remove this drawback is to limit the size of the
sample size. An idea for a practical solution that do not require a record
over ”active” cases and their mutual order will be explained in the following
through an example.

Let the variable A have three states and a sample size s, the three states
have the corresponding counts (n1, n2, n3) given a specific parent configura-
tion for A. A new case with A in the state corresponding to the count n1

has been gathered and is ready to be added. In normal fractional updating
n1 and s would be incremented by 1, but in order to prevent the sampling
size to grew uncontrollable a fading factor q ∈ [0, 1] is introduced, the fading
factor is multiplied with the counts and the sampling size before the new
case is added (the sampling size can also be calculated again). Each update
will work this way:

s := qs+ 1;n1 := qn1 + 1;n2 := qn2;n3 := qn3

If all new cases have the same weight, the past will, for each new case, be
multiplied with the fading factor and therefore fade away with exponential
speed. The maximum sample size is reached when

s =
1

1− q

Afterwards the sample size will be constant. The fading factor q, cor-
responding to a desired maximum sample size, can be calculated with the
formula:

q =
s − 1

s

The sample size determine how fast the distribution will adapt to new
cases, i.e. the smaller sample size, the faster adapting. However, as with
normal fractional updating, a larger sample size has the possibility to be
more precise.

Example of Fractional Updating Imagine that an inexperienced player
of the renowned Rock Paper Scissors game have constructed a simple
Bayesian network to advise him. A part of the Bayesian network has two
chance nodes; a node models the opponent player’s sex and has two states
(Male, Female), and a node that represent the hand of the opponent and has
three states (Rock, Paper, Scissors). This part of the Bayesian network can
be seen in Figure 4.9 on the next page and the table containing the players
initial counts for P (H|S) can be seen in Table 4.1 on the following page, the
initial sample size is 10 for each distribution.

The player now want to train the Bayesian network with some collected
cases, the cases however, are not equivalent as they consist of different in-
formation. In the examples below only the distribution for P (H|SM ) is
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S

H

Figure 4.9: A Bayesian network for the Rock Paper Scissors game.

S = Male S = Female

H = Rock 5 3

H = Paper 3 5

H = Scissors 2 2

Table 4.1: Initial counts for P (H|S).

calculated, the initial distribution is:

P (H|SM ) =

(

5

10
,
3

10
,
2

10

)

The first new case that has been collected consists of hard evidence of all
nodes (S = Male,H = Rock). This will update the distribution as follows:

P (H|SM ) =

(

5 + 1

10 + 1
,

3

10 + 1
,

2

10 + 1

)

The sample size has increased from 10 to 11; this makes the distribution
more resistant to changes and express that the certainty of the distribution
has increased.

The second new case that has been collected has hard evidence on Sex,
but only a distribution for the player’s hand (S = Male, P (H|SM ) =
(0.2, 0.2, 0.6)). This will update the distribution as follows:

P (H|SM ) =

(

6 + 0.2

11 + 1
,
3 + 0.2

11 + 1
,
2 + 0.6

11 + 1

)

The sample size has increased from 11 to 12.
The third new case that has been collected is just the opposite, as it has

a distribution for the sex of the opponent and hard evidence for the player’s
hand (P (S) = (0.4, 0, 6), H = Scissor). This updates the distribution to:

P (H|SM ) =

(

6.2

12 + 0.4
,

3.2

12 + 0.4
,
2.6 + 0.4

12 + 0.4

)
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The sample size has only increased from 12 to 12.4, as there was only 0.4
probability of P (SM ).

The fourth new case that has been collected only has distributions for
both chance nodes (P (SM ) = 0.4, P (H|SM ) = (0.2, 0.2, 0.6)). This updates
the distribution as follows:

P (H|SM ) =

(

6.2 + 0.4 · 0.2

12.4 + 0.4
,
3.2 + 0.4 · 0.2

12.4 + 0.4
,
3 + 0.4 · 0.6

12.4 + 0.4

)

The sample size has only increased from 12.4 to 12.8.
The last new case that has been collected does not have any information

on the player’s hand, but does know his sex (S = Male). This updates the
distribution as follows:

P (H|SM ) =





6.28 +
(

6.28
12.8

)

12.8 + 1
,
3.28 +

(

3.28
12.8

)

12.8 + 1
,
3.24 +

(

3.24
12.8

)

12.8 + 1





This example is the most problematic as the sample size has been increased
from 12.8 to 13.8, which express that the certainty of the distribution has
increased, without any new information. E.g. if 1000 new cases like this
one should arrive, then the certainty of the distribution would be extremely
high and it would therefore take a huge amount of ”real” cases to correct
an error. The easy solution is simply to avoid updating with these cases,
but it is often not possible to get enough new cases, or any at all, with
evidence on all variables. In these situations it can be useful to employ
fading, as it put a ceiling on the sample size (unless the fading factor is set
to 1). However, bear in mind that until the maximum sample size has been
reached, the fading will only reduce the increase of the sample size. It is also
worth remembering that a large sample size has the possibility of being more
precise and thereby gives a higher certainty of the distribution, which is to
some degree reduced by fading. Nevertheless the harm of having an undue
certainty of a distribution can often justify fading, as can the existence of a
dynamic domain.





5Deliberative Layer

This chapter describes the implementation of the deliberative layer, which is
capable of making rational, strategic decisions. In the chapter an influence
diagram for a defending bot on the map ”2Fort” is constructed. A descrip-
tion of ”2Fort” can be found in Section 2.3.1 on page 13. As mentioned in
Chapter 3, the Individual Planning Layer and the Mental Model has been
combined into a single deliberative layer. The reason for this is that we
use influence diagrams, which in addition to making decisions, is capable of
storing knowledge about the world. The tool HuginTM[Hug04] will be used
to model and interact with the influence diagram.

Before describing how the influence diagram is constructed and how the
techniques presented in Chapter 4 is employed, let us briefly iterate the goal
of a defending bot: Prevent the attacking team from taking the flag. To
achieve this goal a bot has two strategic decisions to make; which area of
the base to defend and which class to play. In theory it does not matter
which of the decisions that are made first, but TFC requires the agents to
choose a class before commencing play, so in our model this choice is always
the first decision. As described in Appendix A on page 115, TFC has 9
different classes, but to reduce the complexity of the model, we confine our
defending agents to only 3 of the 9 classes: Heavy Weapon Guy (HWGuy),
Sniper and Engineer; which are the classes with the most defensive potential
while still possessing different strength and weaknesses.

5.1 Assumptions about TFC

Before the actual defense model for making the strategic decisions are de-
veloped, assumptions about TFC, which will influence how the model is
constructed, are discussed.

The map ”2Fort” is a CTF scenario, so the ultimate goal of a defending
agent, from a strategic point of view, is to prevent enemies from obtaining
his team’s flag. To do so, the defending agent must move to a location1

from which he can stop oncoming enemies. However, it does not make sense

1In TFC a location is an (x, y, z) coordinate.

45
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to consider each and every location in the world individually (there would
be an almost infinite number of locations, whose relative worth would have
to be learned), since it usually does not matter which location an agent
occupies within the same general area. Instead of using individual locations
we select sets of related locations with the same characteristics and group
them together in zones that an agent can use when deciding where to defend.
E.g. in ”2Fort” the flag that must be defended is situated in a room in the
basement of the base, but it does not matter much where in the room an
agent stands; if an enemy reaches the room she will be forced into combat
with the defender(s) regardless of their position. So instead of working with
the actual map, an abstract map, which only consists of zones and how they
are connected, is used. An example of an abstract map for a defending team
can be seen in Figure 5.1 on the next page. The dotted circle (”Outside”)
is used to illustrate that an enemy agent can initiate her attack in one of
two different ways - it is not a zone that can be defended. As can be seen
in the figure an enemy could always start her attack in the ”Entrance” zone
without ever going through the ”Battlement” zone, but the path from her
start location (somewhere in the ”Outside” zone) is far greater than if she
had run through the battlement. So it is quite conceivable that enemies
will indeed try to pass through the ”Battlement zone”. An abstraction of
the map that divides it into logical zones, is best constructed either by an
experienced player or on the basis of the different guides that are usually
available on the Internet. The map in Figure 5.1 on the facing page is based
on [tfc04c, tfc04d, tfc04b] and personal experience.

Another assumption about TFC (pertaining only to defending agents) is
that death in itself is not a bad thing. In TFC an agent respawns instantly
with full health and are usually within 20 (often only 10) seconds travel from
the zone he wishes to defend (assuming that he only defends zones within
the teams base, and that he uses a shortest path algorithm for navigation.
Shortest path is used, as traveling within the bot’s own base is relatively safe,
and it is important to reach the chosen zone quickly.). But the fact that he
has died means that an enemy has killed him, which in turn is troublesome
as she must be that much closer to the flag.

In TFCs it is usually suicide for an agent, who as just encountered an
enemy, to attempt to flee instead of fighting the opponent. Even though
TFC is not a one-shot-one-kill2 game, an agent can be killed within seconds.
We therefore assume that the enemies never retreat. I.e. if an enemy has
entered a zone she will never turn back and try another path.

The bot chooses a zone and a class when and only when it respawns.
This is justified as changing class can only be done if an agent dies.3

2One-shot-one-kill games are games where an agent normally is killed by a single or
two shots. Examples of such games are ”Counter-Strike” and ”Rainbow Six”.

3If an agent that is alive wishes to change class it can commit voluntary suicide, but
by doing so it incurs a 5 second penalty, where it is out of play.
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Battlement

Entrance

Ramp

Hall

Flag

Outside

5/0

50/0

7/0

5/0

3/0

10/0

10/14

Figure 5.1: Abstract zone map of ”2Fort” map. The dotted circle (”Outside”) is
used to illustrate that an enemy agent can initiate her attack in one of two different
zones. The arrows show which zones that are connected and the corresponding
number indicates the distance from the start of one zone to the start of the next.
So from the start of the ”Battlement” zone there are 7 units to the ”Entrance” zone.
The number after the / is the average environmental damage that is inflicted on an
agent that uses this path (e.g. damage from falling a long distance).

To sum up, the assumptions about TFC are:

• Related locations can be merge into groups (called zones) to create an
abstract map.

• In itself, it is not bad to die.

• An attacking enemy never retreats.

• A bot only chooses class and zone during respawn (after dying, but
before spawning).

5.2 Developing the Defense Model

Losing the Flag First consider which utilities should be used in the dia-
gram - since we have assumed that dying in itself is not bad, the only thing
affects the decision is whether the enemy takes the flag. To reflect this we
give utility -100 if the enemy takes the flag and utility 0 if she is stopped. As
this is the only thing that gives utility it do not really matter what utilities
are used as long as the utility for losing the flag is lower than the other.
To represent this we let the utility node be a child of a node call ”Takes
Flag” with the two states Yes and No, where the first state means that an
attacker has taken the flag and the second means that she was prevented
from taking it. Figure 5.2 on the next page shows the diagram so far.
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Figure 5.2: The ”Takes Flag” node with the two states Yes and No determines
the utility (-100 for Yes and 0 for No).

It is assumed, that when an enemy reaches the flag she takes it and
tries to return it to her capture point. Should she be killed before reaching
the capture point, causing her to drop the flag, it will either be picked up
be another enemy, who will attempt to capture it, or it will return to the
defender’s basement (the ”Flag” zone) after 60 seconds.

Reaching the Flag Whether the attacker reaches the flag, and thereby
takes it, is dependent on whether she reached the ”Flag” zone alive, this
again depends on whether she reached the ”Hall” Zone etc. However, this
seems to lack the structure of the abstract map, since the probability of
an enemy being alive before entering the ”Flag” zone does not only depend
on the previous zone, but also depends on the path she chose. If she has
chosen to avoid the ”Hall” zone by running around it, she is certain to be
alive before the ”Flag” zone, and if she was dead before, she will remain so
(of course, this will never happen - if an attacker is dead she will not enter
a new zone.). To account for this we introduce a chance node (”Attack Hall
or Flag”), with the two states Hall and Flag that represent her choice of
path (Table 5.1 on the facing page shows the probability for the ”Before
Flag Zone” node at this stage). For the same reason, we let the chance
node ”Attack Battlement or Entrance” represent the initial choice of coming
through the ”Battlement” zone or not. This can be seen in Figure 5.3 on the
next page. Note that the structure of the diagram reflects the assumption
that an attacker never retreats.

Understanding the semantic for the nodes in the network so far is funda-
mental for the further development of the network. Each node corresponds
to a single attacker’s status (Alive, Dead) at a certain point in an attack.
Perhaps the easiest way to understand this is to look at Figure 5.4 on the
facing page where the dotted line show the relation between the nodes in
the network and the zones (represented by squares).

Stopping an Attacker Now let us consider what influences the status
of an enemy (i.e. is she alive or dead) before a zone, i.e. what can cause
her to die in the previous zone? It seems natural that the defending bot’s
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Before Hall Zone Alive Dead

Attack Hall or Flag Hall Flag Hall Flag

Alive 0.5 1 0 0

Dead 0.5 0 1 1

Table 5.1: Example of the probability table for the ”Before Flag Zone” node. If
the attacker was alive before entering the ”Hall” zone, but choose to bypass the
”Hall” zone, she is sure to be alive before the ”Flag” zone, likewise, if she was dead
before ”Hall” zone, she certainly still is, and if she was dead before, she will remain
so.

Figure 5.3: The defense diagram extended with nodes for all zones and two nodes
that represent the enemy attacker’s choice of path.

Before Entrance

Battlement Entrance Ramp Hall Flag

Attack Battlement
or Entrance

Attack Hall
or Flag

Before Ramp Before Hall Before Flag Takes Flag

Figure 5.4: The relation between the diagram and the zones.
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choice of both zone and class matters - if he has chosen to defend the zone
the enemy is passing through, he has a chance of stopping her, which is also
influenced by his class. Some zones will be more suited for some classes
than others. E.g. the battlement is likely to be better suited for a sniper
than an engineer. We try to model this by letting the ”Before X Zone” and
”Takes Flag” nodes4 depend on the two decision nodes ”Zone” and ”Class”,
which are the defending bot’s decisions of what zone to defend and what
class to play. However, as a consequence the ”Before X Zone” nodes would
now require probabilities for the cases where the defending bot has a specific
class but is not defending zone X. Intuition tells us that if the bot is not in
a zone, his class does not influence the state of an enemy after the zone. So
to avoid the unnecessary states we create a mediating node, called ”Agent
in X”, for each zone X, with 3 states that correspond to the agent being in
the zone and having a specific class (Yes - HWGuy, Yes - Sniper, Yes -
Engineer) and the stateNo, i.e. the agent is not in this zone. Figure 5.5 on
the next page shows the diagram extended with the choice of class and zone
and Table 5.2 on the facing page show an example the probability table
P(Before Flag Zone|Agent in Hall, Before Hall Zone, Attack Hall or Flag).

The Team The defending bot might not be the only agent on the de-
fending team, so the status of an enemy should also depend on all other
defending agents’ zone and class decisions. However, this is not feasible.
Each additional agent has 5 zones and 3 classes to choose between. This
causes the state space of a ”Before X Zone”node to become 15 times as large
for each agent, which would significantly increase the time required to solve
the influence diagram. Even if we use mediating variables to combine each
agent into a single node, like the one previously introduced for the bot, each
additional agent will still quadruplet the state space. Instead we would like
the state space to be independent of the number of agents on defense. To
archive this we introduce three new nodes for each ”Before X Zone” that tells
how many agents of each class that are defending the previous zone Y. These
nodes are called ”HWGuys in Y”, ”Snipers in Y” and ”Engineers in Y” and
has the three states 0, 1 and 2+ meaning that there are none, one or two or
more agents of this class defending the zone. The reason for not using e.g.
three or more is that the state space starts to become too large to facilitate
efficient learning, because of the increased number of agent configurations
(The number of agents and their classes in a zone) that must be experienced.
A section of the diagram showing only the ”Before Hall Zone” node can be
seen in Figure 5.6 on page 52. Note that in making this abstraction we lose
information about the value of individual agent’s (with the same class) in a
zone, i.e. we essentially treat all agents as being equally skillful. This is not

4From now on whenever the ”Before X Zone” nodes are mentioned, they implicitly
includes the ”Takes Flag” node.
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Figure 5.5: The defense diagram extended, so that the status of an enemy before
a zone is dependent on whether or not the defending bot are trying to defend the
previous zone and if so, what class he is playing.

Agent in Hall Yes - HWGuy . . . No
Before Hall Zone Alive Dead . . . Alive Dead
Attack Hall or Flag Hall Flag Hall Flag . . . Hall Flag Hall Flag
Alive 0.5 1 0 0 . . . 1 1 0 0
Dead 0.5 0 1 1 . . . 0 0 1 1

Table 5.2: Example of the probability table for the ”Before Flag Zone” node with
its dependency on ”Agent in Hall”. The part of the table that has been omitted
corresponds to the states Yes - Sniper and Yes - Engineer, which is identical to
the ”Yes - HWGuy”part of the table (of course, the probabilities might be different
from 0.5.
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Figure 5.6: Part of the defense diagram, showing the ”Before Hall Zone” node and
its dependency on the number of agents of specific classes that are defending the
”Ramp” zone, which lies before the ”Hall” zone.

much of a problem with other bots that, at least given that they are using
the same reasoning engines, are identical in skill level, but it does cause
inaccuracy when dealing with human agents that inherently vary in skill.
Also, we have lost the ability to differentiate between having more than two
agents of the same class in the same zone, however in practice this should
only constitute a minor problem as, in TFC games, there are rarely more
than 6 agents dedicated to defense. Furthermore, the advantage of having
more and more agents of the same class in a zone decreases with the number
of agents.

Generalize the Agents If we look at the probability tables for the ”Be-
fore X Zone”nodes, we notice that they require us to specify the probabilities
for an enemy’s status given that the defending bot is not in the zone. This
is not something the bot can observe directly, so to avoid this we sacrifice
information about the bot’s specific worth and just count him among the
other agents defending the zone. To do this we create another ”HWGuy in
Y” node for each zone X, so that we now have a node for how many of a
specific class are defending a zone including the defending bot and one ex-
cluding him (These are prefixed with Ex). This is done for each of the three
classes. An example of this can be seen in Figure 5.7 on the facing page. In
addition this generalization results in a reduction of the state space.
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Figure 5.7: Part of the defense diagram, showing the ”Before Hall Zone” node
where the defending bot is included in the number of agents of specific classes that
are defending the ”Ramp” zone. The ”C in Y” nodes do not contain any ”real”
probabilities, they simply add the bot to the other agents.

Estimating the Team When using the influence diagram just developed
to make a decision for the agent’s class and zone. The chance nodes for what
class the other defending agents are playing and where they are located, e.g.
”Ex HWGuys in Battlement”, is intended to be given hard evidence (i.e. the
node is to be instantiated). An example can be seen in Table 5.3.

Ex HWGuys in Battlement probability

0 0

1 1

2+ 0

Table 5.3: An example of the probability table for the ”Ex HWGuys in Battlement”
node.

However, the bot might not always know where all the other agents
are located. This means that sometimes the evidence on the nodes will be
the result of an estimation, and therefore only a guess of the states of the
”Ex C in Y” nodes. To account for this, new ”sensor” nodes (prefixed with
”Guess”), that explicitly model the inaccuracy of the guesses, are introduced.
The benefit of this is that when entering the evidence, i.e. the estimations,
each guess can be associated with an uncertainty representing the bot’s
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Figure 5.8: A section of the influence diagram showing the sensor nodes, which
has been colored gray.

confidence in the estimation. A section of the influence diagram with the
sensor nodes can be seen in Figure 5.8.

Note that there should be an information link between each of these
sensor nodes and the ”Class” decision node, however this would clutter the
influence diagram. In fact, they are not needed in this specific diagram, as
they are observed before the first decision and there are no observations to
be made between the two decisions. Instead the sensor nodes have been
given a darker color to indicate that they all receive hard evidence prior
to the decisions. The exclusion of the links also constitutes a noticeable
performance improvement.

Prior Knowledge Because of the way the defending agents have been
generalized into nodes (i.e. there are no node for a specific agent), knowl-
edge about one or more agents cannot simply by entered into the influence
diagram. E.g. if the bot B knows for certain, that an agent A1 is playing
a HWGuy in the ”Ramp” Zone, and has predicted that the agent A2 is do-
ing the same, B cannot enter the knowledge about A1 into the diagram. If
B enter it into the ”Ex HWGuys in Ramp” node, it will cause the sensor
node to become d-separate from the network, eliminating the prediction of
A2. Instead we introduce nodes (called ”Known C in Y”) that represent
how many agents of a specific class B knows are in a zone and attach them
as parent to the ”C in Y” nodes. An example of this can be seen in Fig-
ure 5.9 on the next page. Note that these nodes are colored gray as they,
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HWGuys in Ramp

Before Hall

Ex HWGuys
in Ramp

Known HWGuys
in Ramp

Guess HWGuys
in Ramp

Figure 5.9: Example of knowledge node for HWGuys in the ”Ramp” zone.

like the sensor nodes, are observed before the ”Class” decision, but have had
their information links removed to avoid cluttering the influence diagram,
which can be seen in Figure 5.10 on the following page.

The Constraint Node The addition of the uncertainty of the estimation
of other agents, introduced with the sensor nodes, create a problem with
ensuring that the number of agents in the influence diagram corresponds to
the actual size of the defense team in the game. E.g. if the bot estimates
that there are two agents in some zone and the uncertainty for this estimate
is very high, it would lead to a very low probability of two agents actually
being in this zone. If this happens the two agents would be ”missing” in
the diagram, although they must be somewhere. To solve this, a constraint
node is added to the diagram as a child of all the ”Ex C in Y” nodes. This
node must always receive hard evidence, specifying how many agents that
have been predicted, and thus force the correct number of agents. Like
the information links, this node clutters the diagram significantly without
being very interesting and is therefore not drawn in the diagram show in
this chapter. A complete diagram can be seen in Appendix B on page 121.

5.2.1 Disregarded Factors

There are other factors that influence an enemy’s status before a zone, which
are not modeled in the influence diagram. There are factors for which the
bot cannot get a probability distribution and which are never observed, so he
cannot even learn the probabilities. Examples of such factors are the average
health and ammunition of the attackers. However, a change in one of these
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Figure 5.10: The influence diagram. Dark chance nodes (sensor nodes) are ob-
served before the ”Class”decision nodes. The information links have been excluded.
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factors, e.g. the average health of the attackers, will change the distribution
of the cases collected in the future (e.g. an increase in the average health of
the attackers will likely increase the share of the cases, where an attacker got
through the defenders), and thereby change the distributions in the ”Before
X Zone” as it is adapted using fractional updating.

Secondly there are factors that could be observed, like the class and
weapons of the attackers. These have been excluded to reduce the state
space and thereby the time required to solve the influence diagram, which
has been based on the factors believed to be the most important from a
cooperative point of view.

Number of Attackers At first sight the developed influence diagram only
seems to apply to an attacking team with a single attacker. However, with
the assumptions/facts that regardless of which attacker that takes the flag,
it is equally bad for the defending team, the distributions in a ”Before X

Zone” can be viewed as an attack wave’s probability to defeat the defenders
in the zone. This is feasible, since only one of the attackers in group can
actually take the flag. It is our estimate, that it is not important enough,
from a cooperative point of view, to model the attack team’s collaborated
strategy to justified the increase in state space.

5.3 Updating the Diagram

The bot collects information through two kinds of cases: Sensor cases and
combat cases, which are used to update the influence diagram through frac-
tional updating5. Note that the ”Agent in Y”, the ”C in Y” and the ”Known
C in Y nodes does not to be updated.

5.3.1 Sensor Cases

Sensor cases are used to update the uncertainty of the sensor nodes. A sensor
case is generated each time the bot enters a zone and thus gains evidence
on the configuration of agents in the zone. The update is done by entering
the bot’s estimation of the other agents into the fifteen sensor nodes and the
observed agent configuration into the nodes corresponding to entered zone.
This will result in an update of the uncertainty for all sensor nodes as well
as the probability for all ”Ex C in Y” node, which are d-connected given
evidence on the constraint node.

Sensor cases do not give any information about the probabilities for
the ”Before X Zone” nodes, so to avoid updating these, we use a set of

5Fractional updating in Hugin is not done exactly as described in Section 4.4 on page 39.
More information on this can be found in [OJ92].
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mediating variables called ”Disable Update”, which can be seen in Ap-
pendix app:fulldiagram.

Example A bot has just respawned and has decided to defend the ”Batt-
lement” zone. On his way to the zone he passes through the ”Hall” zone,
where he observes that there are no HWGuys and snipers but two engineers.
He enters this into the ”Ex HWGuys in Hall”, ”Ex Snipers in Hall” and ”Ex
Engineers in Hall” nodes. He also enters his last estimation of the agent
configuration for the five different zones into the sensor nodes, gives evidence
on the constraint node and is now ready to make the update.

5.3.2 Combat Cases

There are three types of combat cases: The cases where an attacker is killed
by the defenders in a zone, the cases where the bot is killed as the last
defending agent in a zone and the cases where the bot is killed and there
are more defenders left in the zone.

In the first cases, where an attacking agent is killed, the bot simply
enter the known evidence into the diagram, i.e. the defenders in the zone,
the status of the attacking agent before this zone (Alive) and her status
before the next zone (Dead).

The next type of case, where the bot is the only defender in a zone
and is killed, is virtually identical to the case just describes except that the
attackers status before the next zone is Alive.

However, there is a problem with the third type of case. If more than
one agent is defending a zone and an attacker kills the bot, he cannot know
if the attacker got through the zone alive or was killed. Instead he would like
to update the probability P (BeforeXZone|parents) of an attacker being
alive or dead, based on the attackers probability P (BeforeXZone|parents′)
for being alive or dead given the remaining agents (parents′). This means
that we would like to make a soft evidence update on the ”Before X Zone”
as described in Section 4.4.1 on page 39.

As mentioned, adaptation in Hugin is not exactly as detailed in sec-
tion 4.4.1, so to get this effect we instead use P (Before X Zone|parents′)
in conjunction with a randomly generated number r between one
and zero are used to guess if the attacker succeeded in defeating
the remaining agents. If r ≥ P (Before X Zone = Alive|parents′),
P (Before X Zone = Alive|parents) is updated (as if the bot had re-
ceived hard evidence on the ”Before X Zone” node) otherwise
P (Before X Zone = Dead|parents) is updated. This should be justifiable
as, given time and an appropriate effective sample size, this will cause the
probability for the agent configuration to converge on the probability for the
agent configuration ”without” the bot.
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Like the sensor cases do not say anything about the probabilities for the
”Before X Zone”, combat cases do not say anything about the certainty of the
estimations, so again we use a set of mediating variable to avoid updating
the nodes. These can also be seen in Appendix B on page 121.

Example Assume that:

P (BR|HE = 1, SE = 0, EE = 1, BE = Alive) =

(

12

20
,
8

20

)

= (0.6, 0.4)

and that:

P (BR|HE = 1, SE = 0, EE = 0, BE = Alive) =

(

16

20
,
4

20

)

= (0.8, 0.2)

where

BR = ”Before Ramp Zone”
BE = ”Before Entrance Zone”
HE = ”HWGuys in Entrance”
SE = ”Snipers in Entrance”
EE = ”Engineers in Entrance”

If a bot, playing as the engineer, dies in the ramp zone, he generates a
random number r ∈ [0, 1]. If r ≥ 0.8 he will update P (BR|HE = 1, SE =
0, EE = 1, BE = Alive) with the evidence BR = Alive, using a fading factor
of 0.975 (corresponding to an effective sample size of 40), the new probability
will be:

P (BR|HE = 1, SE = 0, EE = 1, BE = Alive) =
(

0.975 · 12 + 1

0.975 · 20 + 1
,

0.975 · 8

0.975 · 20 + 1

)

= (
12.7

20.5
,
7.8

20.5
) ≈ (0.62, 0.38)

If the bot experiences this situation repeatedly, P (BR|HE = 1, SE =
0, EE = 1, BE = Alive) will be updated with BR = Alive 80% of the time
and BR = Dead 20% of the time, and eventually converge on P (BR|HE =
1, SE = 0, EE = 0, BE = Alive). This means that the bot do not help
the team at all by standing in this zone, which will eventually cause him to
choose another zone.

5.3.3 Unbalanced Cases

When updating the diagram there is an imbalance in the cases that are
observed - a bot can only observe cases for the zone where he is. This means
that whenever he observes a combat case, an attacking agent was alive before
the zone, which will lead to updates of the probabilities for the ”Before X

Zone” nodes that precede the zone the bot occupies. This is as it should
be, however the opposite is not true. If an enemy is killed in one of these
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zones she will never reach the bot, which will be unaware of the death and
cannot make an update. Essentially this causes the bot to overestimate the
probability of an enemy getting through zone that lie before the one he is
defending. E.g. if an attacker A is killed by bot B in the ”Ramp”zone, it will
increase B’s probabilities for A getting through the preceding zones alive.
If, on the other hand, that A are killed (by other defenders) in the zones
preceding the ”Ramp” zone B will never observe this, thus the probability
for an attacker getting through zones preceding the one B occupies can only
increase.

To avoid this imbalance we sacrifices the information that an attacker
must have been alive before the bot’s zone when updating. This is done
by using the mediating variable to make sure the preceding nodes are not
updated when the bot enters a combat case.



6Prediction and Value

of Communication

In this chapter different methods to support agent-centered cooperation are
presented. Cooperation is essentially a matter of coordinating the actions
of the involved agents. In order for agents to do this, they need information
about the behavior of each other. One method of gaining this information
(where discrete observation is not possible) is to attempt to predict what
the other agents’ are doing. Another technique is to try to communicate by
sending and requesting information.

A general assumption in this chapter is that all agents behave rationally
in relation to some model, i.e. choose the action that maximizes their in-
dividual expected utility. Another assumption is that an agent can have a
model that approximates the behavior of another agent; these two assump-
tions are used repeatedly throughout the chapter.

The lack of information can sometimes cause friendly agents to uninten-
tionally counteract each other. This occurs when two or more agents decide
on actions that are individually optimal, but collectively suboptimal, e.g.
they choose to perform a task that only needs to be done once thus failing
to coordinate. This might happen if the agents use identical models and
each take the decision that maximizes their own individual expected utility
without considering other agents’ action. For example, two taxi customers,
at different locations, each order a cab at the same time. There are two cabs
at the central who both hears the dispatch and each wants to pick up the
nearest customer, as this is more profitable. If they only consider themselves
when making their decision, both will try to pickup the nearest customer.
But only one of them can actually pickup the customer, the other has just
driven in vain and could have received a higher utility if he had gone for the
second customer.

61
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6.1 Prediction in Multi-Agent Environment

A bot B’s ability to interact with a set of other agents A = {A1, . . . , An}
is a complex and important problem. In order to make decisions that take
agent Ai’s actions into account (this could also be done to obstruct Ai or
simply to avoid unintentional conflicts, instead of cooperating with it.), B
can try to predict Ai’s actions. A way to do this, is for B to put itself in A’s
position and predict what A would do in the given situation and then act
accordingly. To do this B can use a model of Ai’s reasoning to predict Ai’s
behavior. The precision of a prediction is dependent on the correctness of
the model used as well as the available information. Ideally B has an exact
copy of Ai’s world model and can use this to predict Ai’s actions. However,
this is normally not possible and B must therefore use an approximation
of Ai’s decision process. Moreover, even if B knows what model is used by
Ai, it does not necessarily follow that B can use it to predict Ai’s behavior
as Ai’s decision process may be based on information that is available to
Ai, but not to B. E.g. the model might require evidence about Ai’s own
location, which Ai properly knows, but B might not.

Given a model of Ai’s decision process (or an approximation), B can
predict the actions of all other agents and subsequently take these predic-
tions into account when making a decision by using the predicted actions as
evidence in B’s own model. A description of one approach to implementing
this procedure can be seen in the algorithm in Figure 6.1 on the next page.
The method described is assumed to be invoked initially by a bot B with
its own model M .

There is a problem with the code in Figure 6.1 on the facing page - it
has an infinite recursion embedded in line a.1 where it calls itself recursively.
This leads to a problem when trying to predict the actions of agents in A:
What level of prediction should B consider? I.e. when predicting Ai’s
actions should B take into account that Ai might be trying to predict B’s
own actions. However, if B base his prediction on what he predicts Ai has
predicted about him, Ai might be doing the same, creating the need for
B to base his prediction on this and so on. E.g. when playing checkers
my next move is based on what I think my opponents next move is going
to be, but his next move is based on what he thinks I am going to do in
my subsequent move and so on. Thus, if I do not want to (or more likely
cannot) predict the entire game from my current position, I have to base one
of my predictions of my opponents move on a heuristic. That is, to avoid
infinite reasoning chains like this, B needs to choose how many ”levels of
recursion” are feasible to his current need. When this is reached B must use
a simplified model of Ai that do not use prediction. This is illustrated by
the algorithm in Figure 6.2 on the next page.

There is a notable weakness with this technique: If the model and in-
formation B uses in his prediction for some agents A′ ⊆ A is the same, B
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Algorithm: Let E be the set of initial evidence and let A = (A1, . . . , An) be
a set of agents for which the bot B lacks information. In order to calculate
a strategy for B with model M do:
a. For i = 1 to n

1. Compute a strategy S for agent Ai by calling
the algorithm recursively with B’s model for Ai

2. Add evidence corresponding to S to E

b. Let S be the strategy determined by M given E

c. Return S

Figure 6.1: First draft of a prediction algorithm. All strategies computed are
optimal.

Algorithm: Let E be the set of initial evidence and let A = (A1, . . . , An) be
a set of agents for which the bot B lacks information. In order to calculate
a strategy for B with model M do:
a. For i = 1 to n

1. If further recursion is wanted
Compute a strategy S for agent Ai by calling
the algorithm recursively with B’s model for Ai

2. Else
Compute a strategy S for agent Ai by running
a simplified model of Ai

3. Add evidence corresponding to S to E

b. Let S be the strategy determined by M given E

c. Return S

Figure 6.2: Algorithm for prediction using a cap for the level of recursion.
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Algorithm: Let E be the initial set of evidence, let E ′ be an empty set and
let A = (A1, . . . , An) be an ordered set of all agents including the bot B. In
order to calculate a strategy for B with model M do:
a. For i = 1 to n

1. If the strategy for Ai is known
Add evidence corresponding to S to E ′

2. Else
2a. If further recursion is wanted

Compute a strategy S for agent Ai by calling
the algorithm recursively with B’s model for Ai

2b. Else
Compute a strategy S for agent Ai by running
a simplified model of Ai given E′

2c. Add evidence corresponding to S to E ′

b. Remove predicted evidence for the agents B had initial
evidence about, including itself

c. Let E = E ∪ E′

d. Let S be the strategy determined by M given E

e. Return S

Figure 6.3: Algorithm for prediction with ordering of agents. Notice that the bot
B needs three kinds of models: His own, models for all agents A, and simplified
models for all agents in A.

will predict the same action for all agents in A′. This can be remedied by
introducing a global ordering of the agents. When running the model for the
first agent in the ordering (A1), the simplified model is run just as before.
But when running the simplified model for the second agent A2 we assume
that it has made the same prediction about A1 as B just did. Likewise, A3

has predicted A1 and A2 and so on.
As a consequence of the global ordering, B must also predict the actions

of agents he initial had evidence about (including himself) and insert the
predicted strategies into the set of evidence when iterating through the set
of agents, as the prediction of the next agent’s strategy depend on all pre-
ceding agent’s predicted strategies. However, instead of making predictions
of himself and these agents, B simply uses the knowledge he has as predic-
tions of the remaining agents. Of course, when running his own model he
will use his knowledge as real knowledge, not as predictions (this happens
in line b, where these predictions are removed from E ′ and line c, where E ′

is added to the initial evidence E). The prediction algorithm utilizing the
ordering of the agents can be seen in Figure 6.3. The technique for order-
ing just described is inspired by the design conventions and social laws in
[Bou96] that expresses the need for an ordering among coordinated agents
in a multi-agent decision process.
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Example of Prediction The girl Erica has finally agreed to go bowling
with me. Unfortunately I have forgotten in which of the town’s two bowling
halls we are going to meet and I now have to decide where to go. The
influence diagram for this decision can be seen in Figure 6.4 on the next page.
The node ”Bowling Hall” represent my choice of the towns two bowling halls;
”Red Pins” and ”Balls!”. The node ”Erica” represents her choice of bowling
hall. The probability distributions P(Erica) = (0.5, 0.5). Actually I do not
like to bowl, but I do like Erica, so if I choose the same bowling hall as her
I get utility 100, otherwise -100. If I simply solve my influence diagram,
without using any prediction, I will get:

EU(RedPins) =
∑

Erica

P (Erica)P (Prediction|Erica) · Utility = 0

and likewise EU(Balls!) = 0. I.e. both decisions are equally good.
To use the prediction technique, I first modify my influence diagram to

include a prediction of ”Erica”. This node is called ”Prediction” and can be
seen in Figure 6.5 on the following page. This node is used to assign an
uncertainty to the prediction and is only needed if the probability of my
prediction being correct is less the 1. Note that the worst probability I can
have, given its parent, is that there are an equal probability for predicting
any state. The probability table P(Erica) and P(Prediction|Erica) can be
seen in Table 6.1.

Erica Prediction
Red Pins 0.5 Erica Red Pin Balls!
Balls! 0.5 Red Pins 0.75 0.25

Balls! 0.25 0.75

Table 6.1: Probability tables for the bowling problem.

In this example Erica thinks that we have agreed on a place to meet,
therefore it does not make sense to use a model for her, where she makes
predictions of me. Therefore, I use a recursion level of 0, which means that
I only need a simplified model of Erica. If, on the other hand, we had
forgotten to decide where to meet, I would need both the simplified model
and a normal model, as she would then try to predict where I would go. The
reason why we do not give such an example is that multiple recursion levels
should mostly be used for simpler, board-type games, where it is possible to
get more accurate predictions than in, for example, FPSs.

My simplified model of Erica can be seen in Figure 6.6 on the following
page. I believe that Erica also gets utility 100 if she chose that we should
meet at ”Red Pins” but only a utility of 80 if we meet at the cheaper and
less fancy ”Balls!”.
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Figure 6.4: The influence diagram for the bowling problem.

Figure 6.5: Influence diagram for the bowling problem, with the uncertainty of
the prediction explicitly modeled.

Figure 6.6: Simplified model of Erica.
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To use prediction in the decision process, I first predict what Erica will
do by solving my simplified model of her. By doing this, I get the result that
she has chosen that we should meet at ”Red Pins”, which I enter into the
”Prediction” node in my influence diagram. I now solve my own influence
diagram, which says that I should go to ”Red Pins” as this has an EU of:

EU(RedPins) =
∑

Erica

P (Erica)P (Prediction|Erica, e) · Utility = 50

where

e = the prediction

as opposed to ”Balls!” who have an EU of -50.

6.1.1 Ordering of Agents

The prediction technique presented above requires that the set of agents
are ordered, but determining the ordering among independent agents in a
dynamic multi-agent environment may not be a trivial matter. In some
dynamic multi-agent environments agents can disappear (voluntarily or due
to crashes) or join at any time. This creates the need for a robust method
to agree on the ordering.

The straightforward approach is to have one of the agents act as a cen-
tralized master, which periodically broadcast the order of the agents and
their unique numbers. If an agent does not receive the list a certain number
of times in a row, it starts the process of electing a new master.

There are several algorithms for electing the centralized master [CDK01].
One of the most utilized election algorithm is the ”bully algorithm” that is
resistant to disappearing agents. The algorithm has two requirements. First
it requires a reliable data transfer protocol [KR03]. Secondly it requires that
the processes must be synchronized with the master, as each process relies
on timeouts to determine if the master has stopped its periodic broadcasts
and therefore needs to start the election algorithm. The synchronization re-
quirement is satisfied by the periodical broadcasts by the centralized master.

The bully algorithm requires that each process have a unique identifica-
tion number (ID). The idea is that the running process with the highest ID
is elected as the master. The ”bully” comes from the fact that even though
a fully functional process is running as master, it will be ”bullied” by a new
process with a higher ID.

The fundamental principle is that each process only communicates with
processes with a higher ID. If a process has been notified that an election
is going on or the process itself has detected that the master has stopped
broadcasting, it will send an election message to all processes with a higher
ID. Each process will respond with an answer message, meaning that it has
assumed control of the election. If the process does not know any processes
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with a higher ID, or the processes fail to answer, it will take the role of
being the master, starting by broadcasting that it has won election and
subsequently beginning to periodically broadcast the order of the agents,
which the master sovereignly determines, and their unique addresses. These
messages are called coordinator messages. The number of messages required
by the algorithm to elect a new master depends on the number of processes
that have a higher ID than the process, which detected the crash. The
number of message is N 2, where N is the number of process’ with a higher
ID. The worst-case scenario is when the process with the lowest ID detects
a timeout. This requires (P − 1)2 messages, where P is the total number of
processes. The ”bully algorithm” was originally presented in the context of
computer networks.

Example of the Bully Algorithm The four agents in Figure 6.7 each
have unique ID, where Ai has a lower ID than Ai+1.

Stage 1: The coordinator A4 has crashed, A1 detects this and starts an
election. A2 and A3 receives an election message from A1 and respond with
an answer message.

Stage 2: A2 sends election messages to A3 and A4 and A3 sends to A4.
A3 then sends an answer message to A2. A1 and A2 has now received at
least one answer message and therefore wait for a coordinator message. A3

is waiting for a message from A4 and is therefore the only agent with an

Stage 1:

Stage 2:

Stage 3:

1A 2A 3A A4

1A 2A 3A A4

1A 2A 3A A4

Election messages

Answer messages
Election messages

Answer message

Coordinator messages

Figure 6.7: An example of the bully algorithm’s election process.
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active election.
Stage 3: A3 has through a timeout determined that A4 is crashed, there-

fore it elects itself as coordinator and sends a coordinator message to A1 and
A2.

6.2 Value of Communication

The second way to support coordination, and thus cooperation, is through
communication among the agents. As mentioned in Chapter 2 on page 9
there are often a cost associated with communication, and because of this the
agents need to consider if sending a specific message is worth the associated
cost.

Before discussing methods to determine whether or not a message should
be send, we consider what kind of messages that are possible:

• Requests message: This is a message sent to another agent request-
ing that it send information back to the sender S. A request do not in
itself give S any information, but hopefully the reply will. Therefore,
the worth of this type of message must depend on whether the receiver
answers and what the answer is.

• Information messages: These are messages, containing information
about S, that are send to other agents. Sending such a message gives
S the knowledge that the recipients know the information contained in
the message. Thus sending such a message can change what S predicts
the recipients are going to do.

Next the method for calculating whether an information message should
be sent is presented. But first the value of information (VoI) technique,
on which the method is inspired, is presented. The description is based on
[Jen01] where a more detailed explanation can be found.

6.2.1 Value of Information

Observations often have a cost associated with them, and even though an
observation adds valuable information to the decision process it might not
be worth to make it. Thus, it is interesting to measure the value of the
information given by the observation. One way of doing this, assuming that
it is possible to make a model of the situation the observation pertains to,
is to calculate the Maximum Expected Utility (MEU) with and without the
decision of performing the observation. If the gain in MEU is greater than
the cost of the observation, the observation should be made.

If there is more than one optional observation, and it is possible to make
any number of observations in any sequence. The MEU for all combina-
tions of observations and decisions must be calculated and subtracted the



Page 70 of 137 CHAPTER 6. PREDICTION AND VOC

cost of the performed observations to find the optimal strategy for selecting
the observations. As the number of possible combinations of observations
is
∑n

i=1

(n
i

)

, for n number of optional observations, this quickly becomes
impractical.

To avoid this a myopic solution is often used. The myopic solution is a
greedy approach: It calculates the MEU of all decisions of performing an
observation and then selects the decision with the highest MEU subtracted
the cost.

If there are any remaining optional observations the myopic approach
can used again, this time based on the new situation where the first obser-
vation has been performed. This can be repeated until there are no more
observations or none of the remaining observations increases the MEU sub-
tracted their cost. It is important to remember that the myopic approach is
not guaranteed to give the optimal sequence of observations, e.g. in the cases
where no observation by itself increase the MEU subtracted the cost, but
in connection with another observation(s) do increase the MEU subtracted
the cost, the myopic solution fails.

6.2.2 Request Messages

In the FPS domain there are rarely optional observations to be made, there
are, however, the choice of whether or not to send messages to other agents.
But this is a decision to send something, which is not the same as deciding
to make an observation. As mentioned an observation always changes a
bot’s belief about the world because the bot is certain to receive evidence,
but this is not necessarily the case when sending requests for information,
as the asked agent might not answer. Still, the general principle from value
of information might be applicable.

When deciding whether to send a request, B is interested in whether
the asked agent will respond and if the respond will result in an increases
in the bot’s MEU that is higher than the cost (note that this is related to
the myopic VoI approach). The value v (increase in expected utility) for
sending the request is calculated as the probability for receiving an answer
times the sum over the probability for receiving a specific answer multiplied
with the difference in MEU. This is done with the formula:

v = P (E|e) ·
n
∑

i=1

(

P (V = vi|E, e) ·
(

MEU(B|V = vi, e)−MEU(B|e)
)

)

− γ

(6.1)
where

e is the initial evidence
γ is the cost of sending M

E is the event that A answers
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V = the variable in B’s model for which information has been requested

The probability P (E) of whether or not A answers, can be simply be
based on the frequency of A’s previous answers. Another option is to base
P (E) on a prediction, where B tries to determine if A will gain an increase
in MEU (adjusted for the cost of replying) by replying to B’s request, thus
making it more probable that A is going to answer. Note that the proba-
bility of V being in state vi (P (V = vi|E)) is used as B’s belief about the
probability of receiving evidence e = (V = vi|E).

B can now determine if requesting information will be sensible. If the
value v is higher than zero, the request should be send to the agent A.

Note that Equation 6.1 do not take into account that the recipient of
the request might have to pay a cost γ ′ to send an answer. If this is to be
taken into consideration, γ ′ must be subtracted from the summation before
this is multiplied with P (E), as the cost is only incurred if the recipient of
the request actually answers.

Example of Request Message I am not convinced that my prediction
of Erica is correct, so I am considering sending her an SMS asking where
we should meet. Doing so however, is going to be pretty embarrassing,
causing me to get a -20 utility penalty (the cost of sending the request).
To use Equation 6.1, I need P(Erica answering) which I believe is 0.85 (she
might not check her phone). I also need the probability for the two different
possible answers given that she does answer. For this I use P(Erica).

No matter what she answers (the answer is used as evidence on the node
”Erica”, which will cause the ”Prediction” node to become d-separated from
the rest of the network) I have a MEU of 100 and if she does not answer I
have a MEU of 50, determined by using the prediction method described in
Section 6.1. Now the value v for sending an SMS to Erica can be computed:

0.85 ·
(

0.5 · (100− 50) + 0.5 · (100− 50)
)

− 20 = 22.5

I conclude that I should call Erica, even though it is embarrassing to admit
that I have forgotten where to meet her, as it increases my expected utility
by 22.5, in relation to using prediction.

6.2.3 Information Messages

The other type of message a bot B can send is an information message.
Whether such a message should be send depends on whether the EU of B,
as well as the EU of the agents receiving it, are higher than if the message
was not send. I.e. a bot can calculate the value of sending information
to another agent by comparing the bot and agents weighted average EU
(WAEU) for sending the information with the WAEU for not sending it.
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Intuitively the WAEU for a group of agents can be thought of as the
average MEU for an agent in the group weighted by its importance. Tech-
nically the WAEU for a bot B and a set of other agents A = {A1 . . . An}
is a weighted average of B’s MEU and the MEU of each agent in A. E.g.
the WAEU of three evenly weighted agents, with the MEU of 10, 20 and 30
respectively, is 1

310 +
1
320 +

1
330 = 20, but if the first agent were considered

to be twice as important as each of the other agents the WAEU would be
2
410+

1
420+

1
430 = 17.5. The reason for allowing different weights to be used

is that, while the WAEU’s is used to determine increases in EU there might
be some agents that are more important to help than others, e.g. B might
be more concerned with its own utility than that of others.

The Weights The specific weights {w,w1, . . . , wn}, where w is the weight
for B and wi is the weight for Ai, could simply be specified by a designer as
long as the weights always summarize to 1, however this scheme can make it
hard to get the desired ratio between the bot B and the other agents. E.g.
if B is to be twice as important as A1 and A2 the weight should be { 1

2 ,
1
4 ,

1
4},

but what if A1 is to twice as important as A2, while still keeping B twice
as important as both? This would require the weights { 1

2 ,
1
3 ,

1
6}. An easier

way to control the importance of agents is to specify two things: First the
level of altruism that is desired from B, which should be specified as a factor
α ∈ [0, 1]. α describes how important B’s own utility is in relation to that
of the agents in A, where an altruism factor of 0 means that B is completely
egocentric and 1 means that it is completely altruistic. An altruism of 1

2
means that B’s MEU are equally important to the average weight of the
agents, i.e. B’s weight should be 1

|A∪B| . Secondly each agent Ai should
simply be associated with a relative importance βi specifying how important
B believe this agent is compared to other agents. E.g. this makes it possible
for B to account for another agents’ skill by giving higher importance to
capable agents. The weight w for B can be computed as follows:

w =
(1− α)

(1− α) + (α · n)
(6.2)

where

n = |A|

The weight wi for each agent Ai can then be computed as follows:

wi =
βi

∑n
j=1 βj

(1− w) (6.3)

The graphs in Figure 6.8 on the next page shows different weights, based
on the agent B’s level of altruism, in a four agent scenario where the three
agents (A1, A2 and A3) have importance 1, 2 and 4 respectively (i.e. β1 =
1, β2 = 2 and β3 = 4). Note that (w +

∑n
i=1 wi) = 1.
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Figure 6.8: Weights in a four agent scenario. The x-axis is B’s altruism factor
and the y-axis is weight. The graph w correspond to the weight of agent B, the
graphs w1 is the weight for agent A1 and so on.

The Calculations The WAEU of a set of agents A = {A1 . . . An} can
now be calculated with the equation:

WAEU(B ∪ A) = w ·MEU(B|eB) +
n
∑

i=1

wi ·MEU(Ai|eAi
) (6.4)

where

eB is B’s initial evidence
eAi

⊂ eB is the evidence B knows Ai has
MEU(Ai|eAi

) is B’s estimation of the MEU for the agent Ai.

B also needs to compute the WAEU for a set of agents given that the
message M = e′ is sent, which is done with the equation:

WAEU(B ∪ A|M) = w ·MEU(B|eB, e
′) +

n
∑

i=1

wi ·MEU(Ai|eAi
, e) (6.5)

where

e ∈ eB is the information B has sent to the agents
e′ is the information that the agents in A know e
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The reason for calculating the new MEU for B, is that sending the
message M generates the evidence e′′ = The agents in A knows e’. This
may change B’s prediction of what the agents receiving M are going to do.
E.g. if B sends a message to Ai containing B’s current position, it can
change B’s prediction of Ai’s future actions because B now knows, that Ai

knows B’s position.
Now B can determine if it should send a message M = e′ to the set of

agents A = {A1, . . . , An} by calculating:

WAEU(B ∪ A)−WAEU(B ∪ A|M)− γ

This gives the weighted average increase in expected utility for the agents
in A ∪ B, and B can now determine if sending a message M will result in
an increase in WAEU that is higher than the cost γ for sending the message
M . Note that this assumes that M can be broadcasted to the agents, if this
is not the case, γ must be multiplied by n = |A|.

Example of Information Message Instead of sending a request to Erica
and admit that I have forgotten where to meet her, I am now contemplating
to just send her an SMS with the text ”See you tonight at Red Pins”. The
cost of this message is only 10, as, even if it might be wrong, she would just
think that I am changing our agreement.

To use the technique just described, to determine if I should send this
message, I need a model of Erica. This can be seen in Figure 6.9 on the
facing page. Her utility for meeting me at the two bowling halls are as
before, but if I do not show up (i.e. I have chosen the wrong place) she will
get mad, especially if she has gone to ”Red Pins”where it is more expensive
to get in. The utilities can be seen in Table 6.2 on the next page. I also need
to determine what weights to use and, since I am a nice guy, I give Erica a
weight of 0.7 and myself 0.3.

First I compute:
WAEU(Me,Erica) =

0.3 ∗MEU(Me|Prediction) + 0.7 ∗MEU(Erica) =

0.3 ∗ 50 + 0.7 ∗ 15 = 25.5

Next I compute:
WAEU(Me,Erica|SMS) =

0.3∗MEU(Me|Prediction,EricaknowSMS)+0.7∗MEU(Erica, SMS) =

0.3 ∗ 50 + 0.7 ∗ 100 = 85

I subtract the first from the second and get 85−25.5 = 54.5, which is higher
than the cost of 10 for sending the SMS, so I conclude that sending the SMS
is a good idea.
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Figure 6.9: Model of Erica.

Bowling hall Red Pins Balls!

My choice Red Pins Balls! Red Pins Balls!

Utility 100 -100 -50 80

Table 6.2: Table for the ”Utility” node from the influence diagram in Figure 6.9.





7Cooperative Layer

The cooperative layer’s purpose is to enable the deliberative layer to makes
decisions that coordinate the bot’s actions with other agents’ behavior. The
cooperative layer uses the two techniques described in Chapter 6 on page 61
(Prediction in Multi-Agent Environment and Value of Communication) to
get information about the other agents’ behavior. The prediction technique
is the primary technique, as it is certain to produce a result based on the
influence diagram and the world model. ”Value of Communication” is used
as a secondary technique as it is not guarantied to return useful information,
since it depends on communication between the agents.

The cooperative layer receives control from the deliberative layer in two
cases: When the bot is spawning and need to choose a class to play and
a zone to defend, and when another agent asks the bot about his location.
In the first case the cooperative layer uses predictions and the VoC method
for request messages. In the second case it uses predictions and the VoC
method for information messages.

7.1 Spawning

At the beginning of the game and whenever the bot is killed, he must choose
which class he will respawn as (restricted to the three classes choose in
Chapter 5 on page 45) and subsequently which zone he will defend. To do
so he first makes a prediction of all the agents for which he lacks information
and secondly he considers, for each agent individually, whether the agent
should be asked about its location.

7.1.1 Prediction

The prediction technique is use to generate evidence for the sensor nodes
introduced in Figure 5.8 on page 54; they are depicted as dark chance nodes
that are observed before making the decisions in the influence diagram seen
in Figure 5.10 on page 56. The problem with this diagram is that a bot can
only observe the other agents’ class, but not where they are located on the
map. To predict in which zones the other agents are located, the bot uses an
influence diagram identical to his own as his simplified model for the other

77
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agents (used in line 2b in the algorithm in Figure 6.3 on page 64). The bot
exist in the same environment and with the same objectives as the agents
he is trying to predict; it is therefore reasonable to assume that the bot’s
influence diagram will be a good estimation for the other agents’ decision
process.

The prediction technique requires that the set of agents is ordered. The
ordering used for the agent’s in the test environment is dictated by the
sequence in which they join the server (in the TFC environment even bots
that are running on the same host as the server, must logon to the server).
As the server only accepts one logon at a time, it means that the ordering is
well defined. A more general method for creating an ordering of agents can
be seen in Section 6.1 on page 62.

Example of Prediction Assume that five agents with the ordering
{A1, A2, A3, A4, A5} are defending the base. The engineer A3 is killed in
the ”Flag” zone and is about to decide what to do now. This is a decision
that should support the other agents on the team, so control is passed from
the deliberative layer to the cooperative. A3 already knows the classes of
the agents, which he gets from the scoreboard, and just before he died he
saw that A4 were defending the ”Flag” zone. A3 now needs to predict which
zones the other two agent are defending, so he can compute his optimal
strategy.

First agent A3 takes an influence diagram (M) identical to his own,
which is used as his approximation of the other agents. A3 then gives evi-
dence on all the ”guess” nodes (the gray nodes in Figure 5.10), guessing that
there are no agents anywhere, sets the constraint node to state 0 and enters
A1 class into the ”Class” decision node. The zone corresponding to the state
with highest EU in the ”Zone” decision node is saved as the prediction of
A1. The predictions can be seen in Table 7.1.

Class Zone

A1 Sniper Ramp

A2

A3

A4

A5

Table 7.1: Predictions after A1.

The evidence on the sensor nodes in M is now modified to account for
the prediction of A1, i.e. if A3 predicted that A1 is in the ramp zone and
A3 knew that A1’s class is ”Sniper”, the evidence on the ”Guess Snipers in
Ramp”node will be change from the state 0 to the state 1. Furthermore the
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evidence on the ”Class” decision node is changed so it corresponds to A2’s
class and the constraint node is set to 1. Now the zone decision with the
highest EU can be saved as the prediction of A2’s decision. The predictions
can be seen in Table 7.2.

Class Zone

A1 Sniper Ramp

A2 Sniper Battlement

A3

A4

A5

Table 7.2: Predictions after A2.

A3 should now predict himself - however, this is not necessary as A3

know where he was located just before he died, which is used as the other
agents prediction of his location. The predictions can be seen in Table 7.3,
where the prediction of A3 is marked in italic to show that it is not the result
of an actual prediction.

Class Zone

A1 Sniper Ramp

A2 Sniper Battlement

A3 Engineer Flag

A4

A5

Table 7.3: Predictions after himself.

The same goes for A4, as A3 just saw that it was defending the ”Flag”
zone, this is simply added to the set. This can be seen in Table 7.4.

Class Zone

A1 Sniper Ramp

A2 Sniper Battlement

A3 Engineer Flag

A4 Engineer Flag

A5

Table 7.4: Predictions after A4.

All sensor nodes are updated to accommodate the latest predictions and
a prediction of A5 is obtained. Finally A3 remove the prediction about
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himself and replaces the prediction of A4 with the evidence, which is entered
into the node ”Known Engineers in Flag” instead of the ”Guess Engineers in
Flag” sensor node. The final set of evidence can be seen in Figure 7.5. A3

can now, based on M, choose the class and zone with the highest EU.

Class Zone

A1 Sniper Ramp

A2 Sniper Battlement

A3

A4 Engineer Flag

A5 HWGuy Ramp

Table 7.5: Final evidence.

7.1.2 Request Message

When all the predictions have been made, the bot uses the VoC technique
described in Section 6.2.2 on page 70 to consider if any of the predicted
agents should be asked about its location, instead of using the prediction of
the agent. To use Equation 6.1 on page 70 for a specific agent A, the bot
need to know the following things:

• e, the initial evidence. This contains B’s knowledge about other agents
and his predictions.

• P (E|e), the probability that A will answer. In our implementation
we use a simple frequency over previous times A has been asked. I.e.
P (E) = r

n , where r is the number of times A has replied and n is the
total number of times A have been asked. The initial frequence is 20

20
and is updated every time an agent is asked (using a fading factor of
0.975, just like the influence diagram).

• P (Answer = Z|E, e), the probability of A answering that it is in
zone Z, given that it answers. There are different ways of estimating
these probabilities. As mentioned in Section 6.2.2, the probability of
the variable, for which information is being requested, could be used.
However, our influence diagram do not have an explicit variable that
representA, since specific agents have been grouped together in general
nodes. Instead we use the frequency P (Answer = Z|E) = z

r , where z
is the number of times A have replied that it were in zone Z (A fading
factor of 0.975, as described above).

• γ, the cost of sending the request. γ will be set to different values
during the testing, depending on the circumstances.

A flowchart of the spawning process can be seen in Figure 7.1.
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Figure 7.1: Flowchart of the spawning process.

7.2 Sending Information

When a bot B receives a request for information, it must determine if it
is worth the cost to answer the agent A who send the request (Note, that
this means we never consider sending information to more than one agent).
To use the method described in Section 6.2.3 on page 71, B first computes
WAEU(B ∪ A), the WAUE of itself and A by using Equation 6.4. This
equation requires a set of weights (we always use equal weights i.e. 0.5 for
both agents) and the following evidence:

• eB, B’s initial evidence. This contains B current knowledge, as well
as a prediction of all agents.

• eA, B’s evidence for A. This is the part of eB that B uses when
computing the MEU for A. This includes the part of B’s knowledge
that B knows A know, as well as the predictions of other agents.
Actually B should make new predictions for all agents, seen from A’s
perspective. However, as these would be made with the same models
as the ones’ B has already made, the predictions are simply reused.

When this is done B computes WAEU(B∪A|M), the WAEU for sending
the message M = e to A. This is done with the Equation 6.5, which requires
the following sets of evidence:
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• e, the evidence corresponding to the message M . E.g. I (B) is defend-
ing the ”Ramp” zone.

• e′, the evidence that B knows that A knows e.

• eB, B’s initial evidence. But this time with a new prediction for A|e.

• eA, B’s evidence for A. This is the same set as before.

Now B can compute the value of sending the message M by subtracting
WAEU(B ∪ A) and the cost γ from WAEU(B ∪ A|M) and determine if
replying to the request is worth the cost.

Example of Information Message The agent A has asked the bot B
where he is located and B is considering if he should reply with message
M = e. Both A and B has a weight of 0.5.

B must first compute WAEU(B ∪A). This is done in the following way:

1. Compute a set of predictions for all agents.

2. Compute MEU(B|eB).

3. Estimate MEU(A|eA). This is done by entering eA into B’s own
model (which is used as approximation of A) and giving evidence on
the decisions that correspond to B’s prediction of A.

4. Compute WAEU(B ∪A)

Next B must compute WAEU(B ∪A|M), which requires the following:

1. Compute a new prediction for A, this time with the evidence e′, i.e.
A knows e.

2. Compute MEU(B|eB, e
′).

3. Estimate MEU(A|eA, e).

4. Compute WAEU(B ∪A|M)

B now computes the weighed average increase in EU for sending the reply
and if it is higher than 0, he sends M to A.



8Test
With the implementation of the three layers in the architecture, the agent
implementation is complete and ready to be tested in the TFC environ-
ment. Since the lowest layer in the architecture, the reactive layer, has not
been developed in this report, there will not be conducted any test of it.
Therefore, the chapter starts with tests of the deliberative layer, as this is
the foundation for the cooperative layer, and finishes with the cooperative
layer. The test of the cooperative layer will test the effects of the two tech-
niques developed to support cooperation, prediction and VoC, to see how
much they improve the performance of the implemented bots.

However, before commencing with the testing, a test strategy is planned
in order to ensure that the tests are performed in a logical order, and that
the important aspects of the agent implementation are tested. The test
strategy should also ensure efficient utilization of the test resources, which
is an important aspect, as each test takes between 12 and 24 hours. Finally
the test setup is described before the actual testing can begin.

In Section 8.1 the test strategy are presented, Section 8.2 describe the
test setup and Sections 8.3 - 8.6 contain the performed tests and a discussion
of these. At the beginning of each test section is a table with the test
parameters (the abbreviation HW, SO, SN and EN are used for the classes
HWGuy, Soldier, Sniper and Engineer respectively).

8.1 Test Strategy

The test strategy is based on a bottom-up principle, i.e. simple tests are per-
formed first followed by more and more advanced ones. Due to the amount
of test data, it is necessary to present the data in a compact and compre-
hensible manner which, in this report, this is done by using graphs. Excel
sheets containing all test data can be found at [TR04].

The first set of tests will only have one defending bot, and will be per-
formed with a bot that select its strategic decisions randomly and by a bot
that is controlled by the deliberative layer. These tests should show that the
bot that is controlled by the deliberative layer adapt to the situation, and
end up performing better than the bot that selects its decisions randomly.
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In addition, it should be checked that the bot explore the available agent
configurations, and that various runs of the same test will produce similar
results.

The second set of tests will be performed with two defending bots, and
will have four tests: The first test is, again, a test where the bots select
their strategic decisions completely random. The second test is performed
with the deliberative layer enabled, but without any cooperative techniques.
The third test is performed with the deliberative layer enabled and with
prediction in the cooperative layer enabled. The last test, which is a ref-
erence test, should confirm the results obtained in the previous tests. This
test set should show the advantage of prediction, that the agents explore
the available state space, and that various runs of the same test have similar
results.

The third set of tests will be performed with four defending bots. The
purpose of this tests set is to examine the effect of estimating combat cases
when an bot is killed (see Section 5.3.2 on page 58) and to determine the
effect of VoC. The test set will consist of tests performed with no communi-
cation, tests where bots are force to exchange information, and lastly tests
that use the two methods from VoC.

At the end of the chapter, the empirical standard deviation of all test
are shown and briefly discussed. Note that many of the graph presented in
this chapter shows the cumulative number of captures in a test, which are
good to show tendencies over time, but makes it hard to see irregularities in
the different tests. Therefore, graphs showing the average capture rate, in
fixed 30 minutes interval, is shown for all tests.

8.2 Test Setup

The tests are performed on an installation of the original Half-Life installed
on Windows2000TM. The Half-Life installation is patched with patch 1.1.1.0,
which adds TFC to the game. In addition, the third-part software metamod
1.171 is installed, before our agent implementation for TFC is installed.

In all tests, unless otherwise specified, the defense agents starts with
an untrained version of the influence diagram developed in Chapter 5 on
page 45. The fading factor for all nodes are set to 0.975, corresponding to
an effective sample size of 40, and the initial experience count are set to 20
for the nodes that are updated with fractional updating.

The initial probabilities for ”Ex C in Y” have uniform distribution with
a probability of 0.3̄3 for each state, and the ”Guess C in Y” nodes have an
initial probability of 0.95 for a guess being correct.

1Metamod is a plugin/DLL manager that sits between the Half-Life Engine and an
HL Game mod, allowing the dynamic loading/unloading of mod-like DLL plugins to add
functionality to the HL server or game mod.
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The initial probabilities for ”Before X Zone” and ”Takes Flag” nodes for
the parent configuration where an attacker is alive and there is at least one
defender are all set to 0.001 and 0.999 for the ”Alive” and ”Dead” state
respectively. The reason for the high starting probabilities for an attacker
to die in an encounter is that it makes the defenders explore the available
state space. E.g. if a defender decides to defend a specific zone, sooner
or later an attacker will get through the zone alive, this will decrease the
probability for the attacker to die in the zone. The defender will therefore
select to defend a zone with a higher probability for the attacker to die. In
this way the defender will cycle through the possible decisions and decrease
the high starting values. In the end the defender will reach a state where
the probabilities do not decrease any further, and the evolution stop. The
untrained version of the influence diagram2 can be found at [TR04].

Note that, as the initial values are independent of the number of defend-
ers in a zone, the defenders will try to avoid each other in the beginning,
this have the result that the defenders mainly get cases for configurations
with one defender in a zone, when the initial high probabilities for defenders
stopping the attackers has dropped a bit, they will start exploring the con-
figurations with two defenders in a zone and so on. This is important as the
configurations with more than one defender utilize the configurations with
fewer defenders when a defender dies in a zone with remaining defenders.

8.3 Tests with One Defender

Test 1 Test 2
Defenders

Number 1 1
Available Classes HW, SN, EN HW, SN, EN

Attackers

Scouts 1 1
Soldiers 1 1
Medics 1 1

Techniques

Random no yes

Table 8.1: Test setup for tests with 1 defender against 3 attackers.

In Table 8.1 the test setup for the two test can be seen. The first test is
performed with random behavior for strategic decisions, i.e. the bot chooses
a random class and location to defend each time he spawns. The second test
is performed with the agent developed in the preceding chapters, where the
deliberative layer select the bot’s strategic decisions. Note that, as there is
only a single defending bot, the cooperative layer is never activated.

2The influence diagram is saved in Hugin’s .net v5.7 format.
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Figure 8.1: 1 defender against 3 attackers, test runs with random behavior.

Figure 8.2: 1 defender against 3 attackers, test runs with model.
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The results of the individual test runs of the two tests can be seen in
Figure 8.1 and Figure 8.2 on the facing page. These graphs is only used to
check that the test runs delivers consistent results and will not be shown for
any of the subsequent tests in this chapter. However, a examination of the
deviance in all test sets can be found in Section 8.7 on page 97 and graphs
with individual test runs for all tests can be seen in Appendix C on page 123,
which also contains all graphs shown in this chapter.

The graph shows the cumulative number of times the attacking team has
managed to capture the flag. The more captures, the worse the defending
team is doing. In the first test the number of captures vary between 700
and 800 after 12 hours, and in the second test between 500 and 600. The
graph also shows that the individual test runs follow the same pattern to
reach the end results. We judge that the deviance between the individual
test runs are acceptable (for more details see Section 8.7).

To compare the two test set directly, the averages of the 8 individual
test runs in each test set has been depicted in Figure 8.3 on the next page.
The graph shows that the defender with random behavior has a considerably
worse performance than the defender controlled by the model.

A graph over the average number of captures for each 30 minute interval
can be seen in Figure 8.4 on the following page. Note that the graph’s y-axis
starts at 20 instead of 0, as it makes it easier to see the difference between
the two tests.

From this graph it can be seen that, on average, the flag has been cap-
tured around 30 times the first 30 minutes in both test sets, but after 60
minutes the test with the model has decreased the capture rate to about 27,
and after another 30 minutes the capture rate is down to 22, however the
improvement stop after 90 minutes, as the capture rate oscillates between 20
and 25 for the remaining time of the test. The explanation of this behavior
is that in the beginning the defender tests his options. Eventually he reach
the conclusion that he should be play a HWGuy and that it do not really
matter where he stands as long as it is in one of the zones that an attacker
must pass through (an example of an influence diagram showing this can
be seen at [TR04]). When he has reached this strategy, after an hour or
so, the improvement stops. In the test with random behavior the capture
rate oscillates between 29 and 34 throughout the test, this is as anticipated.
These results indicates, that the implementation of the deliberative layer
successfully models aspects of the domain, and that the defending agent’s
performance increase over time.

When looking at the networks resulting from the test, we can see that
all parent configurations to the ”Before X Zone” and ”Takes Flag” nodes,
that are possible to achieve with one agent, have been tried several times
(determined by looking at the experience count, which has increased from
the initial count of 20). This indicates that the bot do try out all different
configurations.
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Figure 8.3: 1 defender against 3 attackers, average of the test runs with random
behavior and with model.

Figure 8.4: 1 defender against 3 attackers, average captures for each half hour
with random behavior and with model.
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8.4 Tests with Two Defenders

Test 1 Test 2 Test 3 Test 4
Defenders

Number 2 2 2 2
Available Classes HW, SN, EN HW, SN, EN HW, SN, EN HW, SN, EN

Attackers

Scouts 2 2 2 2
Soldiers 2 2 2 2
Medics 2 2 2 2

Techniques

Random Yes No No No
Prediction No No Yes Yes
Trained Diagrams No No No Yes

Table 8.2: Test setup for tests with 2 defenders against 6 attackers.

In Table 8.2 the test setup for the four tests can be seen. The first
test is performed with random behavior for strategic decisions, i.e. the two
bots chooses random classes and locations to defend. The second test is
performed with the deliberative layer enabled, but without any cooperative
techniques and the third test is performed with both the deliberative layer
and with the prediction technique enabled in the cooperative layer. The
fourth test is a reference test, which is a continuation of the third test with
prediction enabled, i.e. it has the same setup, but the bots are started with
the trained influence diagrams from the third test.

The average cumulative captures for the three tests can be seen in Fig-
ure 8.5 on page 91. The test with random behavior perform worst with over
of 450 captures after 12 hours. The second test ended with around 260 cap-
tures and the third test with 230 captures. From this it can be concluded
that the deliberative layer enable bots to perform substantially better than
bots with random behavior, which conform to the findings from the tests
with one defender. When the captures for second and the third test are
compared, it can be seen that two bots actually benefit from the prediction
technique, however the difference is rather small.

In Figure 8.6 on page 91 the three tests’ average capture rate per 30
minutes is shown. The test with random behavior has a fairly stable capture
rate throughout the test, which is expected, as the bots do not have any
adaptive behavior. The second and third test both starts with a capture
rate around 25, which during the tests falls to around 6-7 captures per 30
minutes in the end. However, the graph indicates that the capture rate in
the test with prediction enabled drops a bit faster than the test without
prediction, however the difference is rather small and should not be over-
interpreted, especially since the capture rate at the end of the two test are
almost identically.

Notice, that the test run with random behavior does considerably better
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than the other two tests during the first 30 minuets. The reason for this is
that, as described in the test setup, the initial probabilities in the influence
diagram has been set so that, at the start of the test, it is bad for agents to
be in the same zone. The random agents have no such inhibitor, as they do
not use the diagram, their probability for having more agents in the same
zone is the same at the beginning of the as at the end.

In Figure 8.7 on page 92 the cumulative captures are depicted, the de-
fense team with trained diagrams (Test 4) performs considerably better than
the defense team with untrained diagrams. The graph in Figure 8.8 on
page 92 shows that the decrease in capture rate at the beginning of all pre-
vious test, with the deliberative layer enabled, are indeed caused by the
fact that the bots learn and is not a general effect of the environment or
implementation.

Like the previous test, the networks, resulting from this test, show that
all parent configuration that correspond to one agent in a zone, as well as
the ones corresponding to two agents, have been tried several times. Thus
we conclude that the bots do try to explore all possible agent configurations.

8.5 Tests with Four Defenders

Test 1 Test 2 Test 3 Test 4
Defenders

Number 4 4 4 4
Available Classes HW, SN, EN HW, SN, EN HW, SN, EN HW, SN, EN

Attackers

Scouts 5 5 5 5
Soldiers 15 15 15 15
Medics 5 5 5 5

Techniques

Prediction No Yes No Yes
Gen. Cases Yes Yes No No

Table 8.3: Test setup for tests with 4 defenders against 25 attackers.

In Table 8.3 the test setup for the four tests can be seen. The first test is
performed with the deliberative layer enabled, but without any cooperative
techniques, the second test is performed with the deliberative layer and with
the prediction technique enabled in cooperative layer.

Test 3 and 4 are identical to test 1 and 2 except that they do not use the
technique to estimate combat case when a defending agent dies in a zone
with remaining defending agents. If a defending bot in test 3 or 4 are killed
alongside other defending agents, they instead get a cases where the attacker
succeeds in getting through the zone.

The first graph, seen in Figure 8.9 on page 94, shows that, like the previ-
ous tests with 2 defenders, the cooperative prediction technique improve the
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Figure 8.5: 2 defenders against 6 attackers, averages of the first three tests.

Figure 8.6: 2 defenders against 6 attackers, average captures for 30 minutes of the
first three tests.
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Figure 8.7: 2 defenders against 6 attackers, averages of the tests with trained and
untrained influence diagram.

Figure 8.8: 2 defenders against 6 attackers, average captures for 30 minutes of the
tests with trained and untrained influence diagram.
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defending team’s performance, but the disparity is more pronounced with
4 defenders. When comparing the tests with and without the technique for
generating cases, it can be seen that generating cases do not seem to lead
to a better strategy, it just seem to reach the same behavior faster. In ad-
dition, it can be seen in Figure 8.10 on the following page that the defense
team using prediction reach a better end strategy than the bots without
prediction.

The second test, with 4 defenders using prediction, shows that the de-
fenders make it almost impossible for the attackers to capture the flag. The
test setup is therefore not useful to demonstrate any potential advantage
of the ”Value of Communication” cooperation technique. In addition, an-
other drawback has been observed through this and the previous tests: The
defenders more or less always end up playing HWGuy, which kills the inter-
action between the different classes. It has therefore been decided to switch
the HWGuy and Soldiers classes between defense and attack respectively. In
the remaining test sets the defenders can therefore switch between Soldier,
Sniper and Engineer class.

8.6 Tests with Four Defenders - Revised

Test 1 Test 2 Test 3
Defenders

Number 4 4 4
Available Classes SO, SN, EN SO, SN, EN SO, SN, EN

Attackers

Scouts 5 5 5
HWGuys 15 15 15
Medics 5 5 5

Techniques

Prediction No Yes Yes
Request Com. None None 100% forced
Answer Com. None None 100% forced

Table 8.4: Test setup for tests with 4 defenders against 25 attackers.

In Table 8.4 the test setup for the first three tests can be seen. The
first test is performed with the deliberative layer enabled, but without any
cooperative techniques, the second test is performed with the deliberative
layer and with the prediction technique enabled in the cooperative layer.
The third test is performed with the deliberative layer enabled and with
both the prediction technique and 100% forced communication between the
agents, i.e. the agents always ask and receives answers from other agents
(effectively eliminating prediction). This test is performed to get a reference
point for comparison with other forms of communication - a sort of best
case, as all agents always know where all other agents are located.
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Figure 8.9: 4 defenders against 25 attackers, averages of the three tests.

Figure 8.10: 4 defenders against 25 attackers, average captures for 30 minutes of
tests.



CHAPTER 8. TEST Page 95 of 137

Test 4 Test 5 Test 6 Test 7
Defenders

Number 4 4 4 4
Available Classes SO, SN, EN SO, SN, EN SO, SN, EN SO, SN, EN

Attackers

Scouts 5 5 5 5
HWGuys 15 15 15 15
Medics 5 5 5 5

Techniques

Prediction Yes Yes Yes Yes
Request Com. 50% forced 48% 100% forced 64%
Answer Com. 100% forced 100% forced 53% 74%

Table 8.5: Test setup for tests with 4 defenders against 25 attackers.

The graph containing the average of the individual test sets can be seen
in Figure 8.11 on the following page. The test with only the deliberative
layer enabled, ends up with around 420 captures, which makes it the worst
of the three tests. The test with prediction, but no communication, ends up
with little over 250 captures. The test with the best result is the test with
100% forced communication with around 100 captures.

In Figure 8.12 on the next page the three tests’ average capture rate per
30 minutes is marked. It can be seen that test 2 (using prediction) perform
worse than the corresponding test in the previous section that used HWGuys
instead of Soldiers. The average capture rate oscillates between 3-5 versus
0-2, which leaves more room to examining the effects of VoC. It is also worth
noticing that test with 100% forced communication almost end up blocking
the attacking team.

In Table 8.5 the test setup for the last four tests can be seen. Test 4 is
performed with 50% forced communication (the agents randomly asks 50%
of the time and always receives an answer). This test is used to judge the
effect of all other kinds of communication. In test 5 the agents uses VoC for
evaluating if it is worth to send a request for information, which other agents
are forced to answer. The cost of sending a message set to 2.9, which has
been set to get a message exchange as close as possible to 50% and has been
obtained through trial and error. In test 6 an agent will request information
all the time, but other agents uses the method from VoC to evaluate if it
is worth answering the requests. The cost of sending a message set to 3.8.
This value has been set to get a message exchange as close as possible to
50% and has been obtained through trial and error. Test 7 is performed
using VoC for both requests and answers, the cost of sending a message set
to 2.2 for request messages and 2.7 for answering a message. These values
has again been set to the message exchange as close as possible to 50%.

Figure 8.13 on page 98 contain the cumulative captures for test 2-7.
Test 3 and 4 (Full communication and 50% Communication, respectively)
are used as reference points for the three VoC tests (test 5-7), which have had
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Figure 8.11: 4 defenders against 25 attackers, averages of the first three tests.

Figure 8.12: 4 defenders against 25 attackers, average captures for 30 minutes of
the first three tests.
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their parameters set to achieve a message exchange rate of approximately
50% (i.e. 50% of all predictions will be replaced with knowledge).

Test 5 (VoC request) is, with around 125 captures, significant better
than the 50% random communication, this indicates that the technique is
capable of determining when it is profitable to ask another agent for its
location instead of using the prediction of the agent. However, the result
of test 6 (VoC answer) is almost completely identical to the test with 50%
forced communication, which means that for some reason the technique is
incapable of computing when answering a request is going to improve the
team’s performance. Given the result of test 6, it is not surprising to see
that the last test, with agents using VoC for both requests and answers,
performs slightly worse than the test with only VoC for request. As, agents
will answer rather arbitrarily, it undermines the agents’ ability to determine
when to send requests.

It can therefore be concluded that VoC for requests is actually able to
select the cases where communication can be performed with an advantage,
but VoC for answers is not working.

The final graph shows the average captures for each 30 minutes. The
graph can be seen in Figure 8.14 on the following page (A section of this
graph, showing the last 14 hours in increased detail, can be seen in Fig-
ure 8.15 on page 99.). In the graph it can be seen that the 4 defenders with
100% forced communication or 47% VoC are almost capable of preventing
the huge attack team from taking the flag after 510 minutes. This is quite
a feat, considering that they are outnumbered 6 to 1 and that the HWGuy
class has been exchanged with the Soldier class.

8.7 Deviance

The empirical standard deviation for the end result of the different tests sets
are computed with the following equation:

deviance =

√

∑n

i=1
(ti−a)2

n

a
· 100 (8.1)

where

a is the average number of capture for the performed tests
ti is the captures for i’th test
n is the number of performed tests

The deviance for all performed test can be seen in Table 8.6 on page 99.
In general all test have a deviance of 9% or less. The two notable exceptions
are the test with 100% forced communication and the test with VoC. An
likely explanation of why these test have a higher deviance is that, as they
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Figure 8.13: 4 defenders against 25 attackers, averages of the six VoC tests.

Figure 8.14: 4 defenders against 25 attackers, average captures for 30 minutes of
the six VoC tests. A section of this graph showing only the last 14 hours can be
seen in Figure 8.15 on the next page.
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Figure 8.15: A section of the graph in Figure 8.14 showing the last 14 hours in
greater detail.

1 Defender 2 Defenders
Random 3.80% Random 5.52%
With model 4.74% Without prediction 7.35%

With prediction 6.77%
Prediction cont. 8.29%

4 Defenders 4 Defenders - Revised
Without prediction 4.49% Without prediction 9.00%
With prediction 6.02% With prediction 5.80%
No case generation 6.58% 100% Forced 16.22%
No case generation, pred. 6.50% 50% Forced 5.16%

47% VoC 9.92%
48% Request 6.86%
53% Answer 4.48%

Table 8.6: The empirical standard deviation for all test sets.

eventually becomes capable of almost completely stopping the attackers,
their final results are very sensitive to when they reach the best strategy.





9Conclusion

This chapter concludes the project with a review of the accomplished results
and by putting them into perspective. Finally, some of the possibilities for
future work is presented.

The gaming industry has so far mainly focused on advancement in graph-
ics and sound technologies. However, as these have reached a fairly high level
it is becoming increasingly harder to sell games on new graphics and sound
features. Game developers are therefore starting to look towards new areas
to differentiate their game from the competitors. One of these areas is AI
for bots that, in present games, mainly have been simple, scripted agents
with behavior that often decreased the player’s suspension of disbelief.

One the possible feasible techniques, which could be used to create
more advanced AI is Bayesian networks, has already been employed in two
projects at Aalborg University to demonstrate its applicability for FPS death
match1 games, both projects focused on constructing an adaptive agent and
demonstrate the effect of adaptation, the results of these project can be
found in [Ben04] and [LOT+04]. Agents with adaptive behavior has the
possibility of extending a game’s duration, as the player find counter-tactics
to the agent’s new tactics, thereby making the game more intriguing.

The recent batch of FPS games has focused on cooperative team-based
multiplayer game play. This poses new demands to the bots, as the gamers
now expect intelligent cooperative behavior from the bots. The most ad-
vanced bots in these games are only are capable of exhibiting simple co-
operative behavior as following a player and obeying simple commands as
”defend”, ”attack” etc. from the human players. If computer- controlled
agents where capable of intelligent strategic cooperation, without needing
orders from human players, they would appear more intelligent and increase
the player’s gaming experience.

9.1 Results

This report has presented two techniques to support agent-centered coop-
eration. These as been implemented in a adaptive bot and tested in a FPS

1The objective in FPS death match games is simply to kill the other agents.
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domain, where agent-centered cooperation is especially needed as human
players have little or no time to communicate with the agent.

The first of the techniques was prediction, which was used as the primary
techniques, as it does not rely on communication. The conducted tests have
shown that, in relation to both random behavior and normal adaptation, the
prediction technique causes a noticeable improvement in the implemented
bot’s performance.

The second technique, called VoC, was used by the bots to determine if it
was worth attempting to communicate with other agents in a given situation.
The technique actually consists of two different methods - one for messages
that requests information from other agents, and one that sends information
to other agents. The tests of VoC have shown that, when used to support
prediction, the method for request information can successfully determine
the best instances to ask other agents for information. In fact, the test shows
a significant improvement in the bot’s performance seen in relation to only
using prediction and also in relation to using a similar percentage of random
communication. However, the test also shows that the second part of VoC
- the method for sending information to other agents, seems incapable of
determining whether it is most profitable for the bot to send information.

One reason why the second method from VoC has failed, could be that
the domain or the model of the domain simply contains too many uncertain-
ties or is to inaccurate for the method to estimate the MEU of other agents.
An implementation in a less complex environment, like the sheep hunting
caveman found in [VJ04], could probably determine this. Unfortunately, we
have not had the time to do so.

9.2 Further Work

Active Information Sending The techniques presented in this report
have been focused on agent-cantered ways to support cooperation. A notable
drawback of this is that the techniques are vulnerable to local minimum and
maximum strategies, where that team finds locally optimal behaviors. E.g.
there could be a zone where one single agent will perform horrendously, but
two agents will perform very well. The agent configuration with two agents
in the zone can be very hard to achieve, since no agent want to be the first
to position itself in the zone.

To solve this kind of problem, one could attempt to merge the VoC
techniques with regular negotiation between the agents. However, this would
undermine the agent’s ability to function with human players. Remember,
that human players in FPS may not have time or the ability to negotiate
with other agents. Another idea could be to more actively try to influence
other agents by sending them information. E.g. if a bot thinks that there is
a zone where there ought to be two agents, it could tell another agent, that
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the bot is going to the zone and hope that the agent will choose to support
it.

Support for Human Players The bot implementation created in this
report, where implemented with the intention of testing it versus other bots.
Therefore, it does not support humans as players - only as observers that
can interact with the game world. It might be interesting to test the bots’
ability to support a human player.
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ATFC Classes

This appendix is a compilation of the official guide for TFC, which comes
with the installation files[tfc04a], and the fan made guide from plan-
ethalflife’s TFC section[pla04].

A.1 General Description

Scout - The perfect flag capturer

Scouts are the best flag capturers, so they are utterly essential in any map
which involves a flag (maps with objectives like Capture the Flag or Territo-
rial Control). Scouts can be effective even without firing a single shot, since
their strength lies in their speed rather than in their combat skills. If you
like moving twice as fast as everyone else, and screaming for an escort as you
escape the enemy base with the Flag and the entire enemy team pursuing
you, then the Scout is your class.

Sniper - The ultimate long-range fighter

The Sniper is the only class that can kill an enemy on the other side of the
map with almost no warning at all. Be careful though, for if the enemy
engages you at close range you’re weaker than most of the other classes. If
you like settling down into a good sniper position and methodically killing
every enemy who exits his base with a single shot to the head, then the
Sniper is for you.

Soldier - The best all-around fighter

The workhorse in any TF team, soldiers perform well at any task and special-
ize in none. If you like killing lots and lots of enemies in straight man-to-man
combat, this is the class for you. Soldiers are a core class in any offensive or
defensive squad.
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Demoman - A lethal close-range fighter

Carrying more explosive weaponry than any other class, the Demoman clears
whole rooms in seconds. He’s essential on maps where the use of high explo-
sives can destroy barriers, allowing access to more entrances into the enemy
base. His remotely-detonable bombs make him a vicious defender in enclosed
spaces. If you like watching the smoke clear and seeing bodies everywhere,
the Demoman’s your class.

Medic - The most indirectly lethal class in the game

A solid close-to-medium range fighter, the Medic moves swiftly and carries
a gun that enables him to mow down any of the weaker classes without too
much trouble. His real strength lies in his ability to heal himself and his
teammates with his medikit. If you love seeing eternal gratitude in the eyes
of your teammates, or can’t aim at all and still want to be incredibly useful
to your Team, go for the Medic class. You might not kill a lot of enemies,
but the teammates whose lives you’ve saved sure will.

Heavy Weapons Guy - A walking tank

The name says it all. A slow moving, heavily armored beast toting an
enormous assault cannon, the HWGuy can mow down any enemy in seconds.
Not a lot of finesse in this one, since the cannon spits out so much fire you
barely need to aim it. If you like picking a defensive position in a map
and saying ”No-one, and I mean no-one, is getting past here”, then the HW
Guy’s the class you want.

Pyro - Set them on fire, and watch them burn

A great first line of defense, the Pyro can easily knock chunks out of the
enemy with his flamethrower. He does not have much in the way of killing
weaponry, but he can make sure no-one gets into the base without being set
on fire, and being burned alive tends to upset people. If you like running
into a room, firing wildly, and then watching enemies run around screaming
as they roast, then the Pyro is perfect for you.

Spy - The perfect infiltrator and terrorist, all in one

A class who can disguise himself to look like anyone, the Spy can often walk
into the enemy base, right past the defenders. Able to kill an enemy in a
single hit with his knife, the Spy is someone you definitely don’t want to
turn your back on. After a few of their members have been knifed in the
back, teams tend to get fairly paranoid. You know you’re winning when
they start to shoot each other for fear they’re Spies. If you like matching
your wits with the enemy instead of your reflexes, then the Spy is your class.
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Engineer - The perfect remote defender

When your base needs some heavy defense, the Engineer comes to the rescue,
building automatic sentry guns that track enemies and kill them. Able to
repair his teammates’ armor and build machines to dispense ammunition,
the Engineer is often the core player in large defensive squads. If you need
to defend your base against all those hardcore players out there with much
better aim, the Engineer’s the perfect class.

A.2 Statistics

Scout

Special: Displays the status of each team’s flag on CTF maps
Speed: Very fast
Health: 75
Armor: 50
Weapons: Single-barrel shotgun, nail gun and crowbar
Grenades: 3 caltrop canisters and 3 concussion grenades
Abilities: Disarms detpacks set by enemy demomen by touching them; Un-
masks spies by touching them

Sniper

Special: Toggles the sniper rifle zoom
Speed: medium
Health: 90
Armor: 50
Weapons: Nailgun, auto rifle, sniper rifle, and crowbar
Grenades: 2 hand grenades

Soldier

Special: Reloads your currently selected weapon
Speed: Slow
Health: 100
Armor: 200
Weapons: Single-barrel shotgun, double-barrel shotgun, rocket launcher and
crowbar
Grenades: 4 hand grenades and 1 nail grenade

Demoman

Special: Detonates all your pipebombs
Speed: Medium
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Health: 90
Armor: 100
Weapons: Single barrel shotgun, grenade launcher, pipebomb launcher, and
crowbar
Grenades: 4 hand grenades and 4 MIRV
Abilities: Can set large explosive ”detpacks” to clear new entrances to enemy
base

Medic

Special: Selects the medkit
Speed: Fast
Health: 90
Armor: 100
Weapons: Medikit, single-barrel shotgun, double-barrel shotgun, and super
nailgun
Grenades: 3 hand grenades and 2 concussion grenades
Abilities: An heal teammates with the medikit; Can automatically heals
himself over time

Heavy Weapons Guy

Special: Selects the assault cannon
Speed: Very slow
Health: 100
Armor: 300
Weapons: Single-barrel shotgun, double-barrel shotgun, assault cannon, and
crowbar
Grenades: 4 hand grenades and 1 MIRV grenade
Abilities: Doesn’t get blown back as much by explosions

Pyro

Special: Selects the flamethrower
Speed: Medium
Health: 100
Armor: 150
Weapons: Single-barrel shotgun, flamethrower, incendiary cannon, and
crowbar
Grenades: 1 hand grenade and 4 napalm
Abilities: Wears flame retardant armor, making him impossible to set on
fire
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Spy

Special: Shows the disguise/feign menu
Speed: Medium
Health: 90
Armor: 100
Weapons: Tranquilizer gun, double-barrel shotgun, nailgun, and knife
Grenades: 2 hand grenades and 2 hallucination gas grenades
Abilities: Can disguise himself to look like any class, team or both; Can
feign death loudly or quietly; Unmasks other spies by touching them

Engineer

Special: Shows the build menu
Speed: Medium
Health: 80
Armor: 50
Weapons: Railgun, double-barrel shotgun, and wrench
Grenades: 2 hand grenades and 2 EMP grenades
Abilities: Can build automatic sentry guns; Can build ammunition and
armor dispensers; Can repair teammates armor by beating them with the
wrench; Can create ammunition





BFull Influence

Diagram

Figure B.1: Full influence diagram.
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CTest Results

C.1 Tests with One Defender

Figure C.1: 1 defender vs 3 attackers, test runs with random behavior.

Figure C.2: 1 defender vs 3 attackers, test runs with model.
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Figure C.3: 1 defender vs 3 attackers, average of the test runs with random
behavior and with model.

Figure C.4: 1 defender vs 3 attackers, average captures for each half hour with
random behavior and with model.
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C.2 Tests with Two Defenders

Figure C.5: 2 defenders vs 6 attackers, without prediction.

Figure C.6: 2 defenders vs 6 attackers, with prediction.
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Figure C.7: 2 defenders vs 6 attackers, random.

Figure C.8: 2 defenders vs 6 attackers, averages of the first three tests.
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Figure C.9: 2 defenders vs 6 attackers, average captures for 30 minutes of the first
three tests.

Figure C.10: 2 defenders vs 6 attackers, with trained influence diagram.
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Figure C.11: 2 defenders vs 6 attackers, averages of the tests with trained and
untrained influence diagram.

Figure C.12: 2 defenders vs 6 attackers, average captures for 30 minutes of the
tests with trained and untrained influence diagram.
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C.3 Tests with Four Defenders

Figure C.13: 4 defenders vs 25 attackers, without prediction.

Figure C.14: 4 defenders vs 25 attackers, without prediction and no case est.
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Figure C.15: 4 defenders vs 25 attackers, with prediction.

Figure C.16: 4 defenders vs 25 attackers, with prediction and no case est.
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Figure C.17: 4 defenders vs 25 attackers, averages of the four tests.

Figure C.18: 4 defenders vs 25 attackers, average captures for 30 minutes of tests.
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C.4 Tests with Four Defenders - Revised

Figure C.19: 4 defenders vs 25 attackers, without prediction.

Figure C.20: 4 defenders vs 25 attackers, with prediction.
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Figure C.21: 4 defenders vs 25 attackers, 100% communication.

Figure C.22: 4 defenders vs 25 attackers, averages of the first three tests.
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Figure C.23: 4 defenders vs 25 attackers, average captures for 30 minutes of the
first three tests.

Figure C.24: 4 defenders vs 25 attackers, 50% random communication.
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Figure C.25: 4 defenders vs 25 attackers, 48% request.

Figure C.26: 4 defenders vs 25 attackers, 53% answer.
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Figure C.27: 4 defenders vs 25 attackers, 47% VoC.

Figure C.28: 4 defenders vs 25 attackers, averages of the six VoC tests.
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Figure C.29: 4 defenders vs 25 attackers, average captures for 30 minutes of the
six VoC tests. A section of this graph showing only the last 14 hours can be seen
below.

Figure C.30: A section of the above graph showing the last 14 hours in greater
detail.
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