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SYNOPSIS:

In this Thesis I investigate the ability of
an agent, implemented using reinforcement
learning, to learn and to adapt to a chang-
ing environment. I do this using two differ-
ent methods of reinforcement learning, basic
Q learning and a hierarchical method, MaxQ
learning.
In order to test the agent implemented using
these methods, I first design Flag Hunter, a
simple turnbased game that forms the basis for
the testing of the agent in different situations.
Flag Hunter requires the agent to go to the op-
ponent’s base, pick up its flag, and return it to
the agent’s homebase.
In order to test the agents ability to learn, they
were trained, first by playing the game with-
out an opponent, and second, to play the game
against opponents of different levels of ran-
domness. It was found that the agent using
the MaxQ method, would reach the goal sig-
nificantly faster than the basic Q learning, but
converge at about the same rate. The reasons
for this was found and discussed.
To examine the agents ability to adapt to a
changing situation, the agents were trained
without an opponent, and then set to play
against the opponent. It was found that neither
was very succesful at adapting.





i

Summary

Though the computer games industry has risen to become a multimillion dollar
industry the area of game intelligence has not been much developed. Today most
computer controlled agents are implemented using finite state machines, that does
not allow them to learn anything about the players ability toplay the game. A
common learning method is reinforcement learning that doesallow learning from
the players behaviour. Reinforcement learning has been used in computer games
in path finding, and for playing various board games.

It was decided to investigate the performance of reinforcement learning with re-
gards to learning and adapting in a game environment. To investigate reinforce-
ment learning it was decided to select two methods, and compare them, based on
their performance in a game scenerio. To be able to test the methods in a game,
Flag Hunter, a sequential, turn based game was designed. Flag Hunter contain two
actors who, to win, has to capture the opponents flag and return it to its homebase
to win. An opponent for this game was designed. The agent was implemented
using reaction rules, and will select an action based on an optimal policy. To make
the agent play less optimally, a randomness function is applied that with a given
probability will make the opponent select a random action.

It was chosen to use the traditional method of Q learning as one of the methods to
compare. Two hierarchical methods were discussed, and it was found that MaxQ
learning, using functional decompositioning could fit the problem of solving the
Flag Hunter game. In order to test the reinforcement learning methods ability to
learn and adapt, agents were implemented using the methods,and made to play the
game. However, it was found that the MaxQ learning algorithmrequired a pseudo
reward in order to learn.

To investigate the methods ability to learn, both agents were first, trained in the
game, by playing without an opponent, and second playing against an opponent.
Playing without an opponent will test how fast the agent can learn to find the goal
state, and second how many games it takes before it converges. It was also tested
how dependent the different methods are on the rewards givenin the game. The test
showed that the Q learning was very dependent on the rewards,whereas the MaxQ,
apart from the pseudo reward in order to learn, was independent on the rewards.
The agents were trained against opponents, with different levels of randomness.
Playing against an opponent required the agent to both navigate to avoid being
shot, and to learn to shoot. In order to make the MaxQ agent shoot it should be
expanded with a sub-task that would allow it to shoot. This was not implemented,
and the MaxQ agent could only learn to avoid being shot. The training showed
that the best solution for learning to play against an opponent, it with a primarily
explorative strategy for Q learning.
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To examine how the methods could adapt to a changing situation, the agents were
trained without an opponent. Using that policy, the agent was set to play against an
opponent. The test showed that neither method was very succesful in adapting its
behaviour, though they fairly succesfully managed to avoidgetting shot.

The conclusion of the report was that each method had their strengths and weak-
nesses, but that neither could live up to the original demandof being adaptable.



Contents

1 Introduction 1

1.1 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of report . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The Game 5

2.1 Rules of the game . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The opponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Reinforcement Learning 11

3.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Exploitation vs. Exploration . . . . . . . . . . . . . . . . . . . . 16

3.4 Hierarchical Reinforcement Learning . . . . . . . . . . . . . . .17

4 Q model 23

4.1 No opponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Playing against the opponent . . . . . . . . . . . . . . . . . . . . 29

5 MaxQ model 37



iv CONTENTS

5.1 No opponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Playing against opponent . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Implementation 49

6.1 Implementation of the game . . . . . . . . . . . . . . . . . . . . 49

6.2 Q learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 MaxQ learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Conclusion 53

Bibliography 54



Chapter 1

Introduction

In recent years the computer game industry has blossomed worldwide and become
big business. Annully, millions of dollars worth of trade isproduced during the
development and marketing of computer games. Producing a computer game is
usually a complex and time-consuming process, requiring large teams of game
developers. This is necessary in order to meet the great demand for entertaining
computer games with new and revolutionary graphics as well as great sound, and
challenging computer opponents of extremely high quality.

However, focus has mainly been towards the graphics and sound parts of a game,
at the expense of the quality of the intelligence of the computer-based opponents.
Their behaviour in a game is often easy to predict, or so random and illogical that
little sense is to be found in it.

Only few mainstream games actually contain opponents that are able to change
their behaviour dependent on the behaviour of the human players. Here, the most
common approach for controlling a computer-based opponentis through the use
of a so-called Finite State Machine. Usually, this approachprovides less credible
opponent behaviour, making them look less intelligent during game play.

1.1 Learning

Reinforcement learning is a commonly used learning technique with similarities to
the way most children and animals learn. This is achieved through the concept of
learning by mistakes: if a child gets burned by a flame, it willshun fire in the future.
In the case of animals, dogs can be trained to do the right thing by rewarding them
with crackers. And punishing them by pulling the leash or shouting when they are
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behaving badly.

Reinforcement learning in a more computational sense can beused to find a solu-
tion to a specific problem with clearly defined goals. A commonly used example
is that of a robot learning to find its way around a house. Here,the robot will at
first bump into walls or run low on power before eventually learning its way round.
After some time, it will know where and how far it can go, before having to turn
back to its docking station[SB98].

Witin computer games, the use of reinforcement learning techniques has found
a niche. Here, it can be used to teach a computer-based playerhow to find its
way round through the use of the A*-algorithm[Rab02]. This algorithm learn by
estimating a value for the next possible steps and by rewarding the player when
reaching its goal, or punishing it when meeting a dead end. Another example is
the TD-Gammon program, which has learned to play the game of backgammon at
a world class level[SB98].

A problem with many learning techniques is the rate of learning. Some er slow and
require a great many training cases in order to achieve a certain level of expertise,
e.g. playing a game well against a human player. Another problem is the depen-
dency on information available. If only little is present, learning optimal behaviour
can be quite difficult.

1.2 Problem formulation

The purpose of this report is to examine and evaluate reinforcement learning tech-
niques in the context of the game of Flag Hunter.

In order to do this, a comparison of traditional reinforcement learning methods, and
reinforcement learning methods using hierarchical decomposition of the original
problem, is made.

Different hierarchical approaches are discussed and compared. Based on the ability
to learn to learn and adapt to new situations, the best methodis selected and imple-
mented for learning in the Flag Hunter game. The end result isthen evaluated and
discussed along with comments on encountered problems.

1.3 Outline of report

In Chapter 2 the design of the game of Flag Hunter along with the design of the
opponent is provided. The Flag Hunter game is used for training and testing the
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reinforcement learning methods.

Chapter 3 explains the theory of reinforcement learning. Included here is the basic
theory as well as a discussion of two concrete methods for hierarchical reinforce-
ment learning. Following this, one of the methods is selected for training.

The actual training of the computer-based opponent using the concept ofQ learn-
ing is provided in Chapter 4.

In Chapter 5 the opponent is trained usingMaxQ, the hierarchical method selected
in Chapter 3. The performance of training usingQ andMaxQ is then compared
based on the above-mentioned criteria.

Finally, Chapter 6 deals with the implementation or the FlagHunter game, along
with a description of the learning algorithms.





Chapter 2

The Game

In this chapter the game Flag Hunter, which will be used as thescenario in the
project, is presented. This will be done by first defining the game’s, goal and rules,
and second, specifying the opponent in the game.

2.1 Rules of the game

In this section the specific rules of Flag Hunter are described. Listed below are the
overall rules, and in the following subsections a detailed description of the rules
for movement and scoring is presented, along with the map of the game.� The game consist of two actors, playing against each other. An actor can

either be an agent or an opponent. Throughout the report the term agent will
be used about the actor being trained.� The goal of the game is to capture the opponents flag, and bringit back to
the homebase.� The actors start the game at their homebases.� The game ends when an actor reenters its own base with the opponent’s flag.

Map

The map the game is played on can be seen in Figure 2.1. It is divided into10� 10
tiles. The map is also divided up into five distinct rooms, which can only be reached
through a number of doors. The actor’s homebases are placed at opposite ends of
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the map, why an actor must navigate through other rooms to reach the opponent’s
homebase.

The map has 100 different positions. With two actors that cannot occupy the same
tile, this gives100 � 99 = 9900 different states of the board. The actors can shoot
in the direction they face. This expands the state space to9900� 4� 4 = 158; 400
different states. Adding the flags, this number is quadrubled, as both actors can
have the flag, one, or the other, can have it, or neither can have it. This gives a total
of 158; 400 � 4 = 633; 400 possible states.

B

A

Figure 2.1: The map of the game

Actions

The game is turnbased, and a turn consists of one action. Actions in the game
include both movement and specialized actions for picking up and putting down
the flag, as well as shooting. The actors act sequentially. This means that the agent
acts based on the board configuration, and following, the opponent acts based on
the new board configuration. The actions are divided into movement actions, and
’behaviour’ actions.

There are four movement actions,north; south; east andwest. A move action
will move the actor in the specified direction, and afterwards the actor will be
facing in that direction. Two actors cannot occupy the same tile, but can push each
other. Therefore, the agent moving into a tile already occupied by the opponent
results in the agent pushing the opponent out of the tile, in the direction the agent
is moving, and the agent will occupy the tile. The ’behaviour’ actions are pickup,
putdown and shoot. These actions can be performed at any timeduring the game,
but will only have a positive effect in certain states.

Shoot makes the agent shoot forward, in the direction it is facing.A shot will
continue forward until it hits a wall, a base or the opponent.If an agent
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carrying a flag is hit, the flag is returned to the base. An agentnot carrying a
flag is uneffected by being hit.

Pickup allows the agent to pickup the flag at the opponent’s base. When the flag
has been picked up, it disappears from the base, and is only returned if the
agent loses it. If the agent performs the pickup action when not standing on
the flag, the action has no effect.

Putdown allows the agent to put down the flag. If it is performed while not hold-
ing the flag, it will have no effect. If the agent holds the opponent’s flag and
puts it down while standing on its own base the game is won. If the agent
puts down the flag at another position the flag is returned to the opponents
base.

2.2 The opponent

In this section the opponent that is be used to test/train theagent in this project is
specified. The goal of the opponent is to get the agent’s flag and return it to its own
base, thereby winning the game. The opponent is not meant to hunt the agent, but
should still be able to shoot. Since a simple policy for a deterministic opponent in
this game, given the above requirements, is optimal, the agent will not be able to
beat it. Therefore, it is necessary to be able to weaken the opponent. This is by
done specifying a probabilityprandom for the opponent executing a random action.
This means that ifprandom = 0:1, the opponent will be almost optimal, but that one
of ten actions will be selected at random. An opponent withprandom = 0:9 will,
on the other hand, be almost random with only one in ten actions being according
to the policy.

Adding a degree of randomness in the opponents behaviour means that it is neces-
sary for it to be able to navigate at all positions on the map, instead of just going
from base to flag to base. This opponent is therefore designedusing a set of reac-
tion rules[Rab02]. This will allow the opponent to decide anoptimal action based
on the state it is in following a, possibly random, move.

The opponent will reach the flag, by passing a number of checkpoints on the way,
one for each side of a door, and one for each base. The checkpoints are the des-
ignated tiles on the map that the opponent will have to pass toget to where it is
going. Checkpoint are used because the map does not allow navigating from base
A to base B by comparing the horizontal and vertical positions. However, because
the checkpoints are all on the inside of room this approach ispossible for navi-
gating to them. To select an action, the opponent first checksif it can shoot the
agent, second if it has the flag, third what room it is in, and fourth if it is standing
on the rooms checkpoint. If the agent is standing on the checkpoint, it selects the
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A

B

C1

C2

D1

D2 F2

E1

E2

F1

Room 3

Room 1 Room 2

Room 4 Room 5

Figure 2.2: The checkpoints the opponent use to navigate

designated action, otherwise selects to go towards the checkpoint. The rules of the
opponent’s policy are shown in Figure 2.3, and the checkpoints positions on the
map in Figure 2.2.



� if shoot agent possible thenshoot� else if has not flag

– if in room 1� if at E1 thensouthelse goto(E1)

– if in room 2� if at C1 thensouthelse goto(C1)

– if in room 3� if at D1 thensouthelse goto(D1)

– if in room 4� if at A thenpickup else goto(A)

– if in room 5� if at F2 thennorth else goto(F2)� else if has flag

– if in room 1� if at E1 thensouthelse goto(E1)

– if in room 2� if at B thenputdown else goto(B)

– if in room 3� if at C2 thennorth else goto(C2)

– if in room 4� if at D2 thennorth else goto(D2)

– if in room 5� if at F2 thennorth else goto(F2)

Figure 2.3: The rules for the opponent





Chapter 3

Reinforcement Learning

In this chapter I go through the basics of reinforcement learning, Markov Decision
Processes and Q-learning. Thereafter, two hierarchical methods will be compared,
and the MaxQ method is described.

3.1 Markov Decision Process

A Markov Decision Process (MDP) is a 4-tuple(S;A; T; r).� S is the set of states� A is the set of actions� T : S �A! S is the transition function� R : S �A! < is the reward function

An MDP respects the Markov property that states that all transitions in any given
state only depend on the current state, and that the history of states therefore is
irrelevant [RN03].

An MDP works in discrete time. This means that each state can be marked by a
time t, and the following state as timet + 1. Since the game is turnbased it will
function in discrete time. A move is made a timet, and, because all agents move
at the same time, the following at timet+ 1.

Since the game is turnbased, and as such runs in discrete time, a state is the position
and direction of all players, and whether the flags have been picked up or not, at the
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given time. In Figure 3.1 an agent in states with A = fnorth; south; east; westg
performs the actioneast and goes to the states0.

!
s s’

Figure 3.1: A state and an action

When dealing with a deterministic scenarioT andR are deterministic. This means
that an agent in states performing actiona always will go to the same states0.
The agent movingeast in Figure 3.1, with no opponent, can only reach the state
positioning it one tile east of where it was before. However,in a non-deterministic
scenario an agent performing an actiona in states only knows a probability dis-
tribution of what states0 to reach. This means that an agent in a scenario with
an opponent making a simultaneus move, can reach one of four possible states,
depending on the opponents action, this is shown in Figure 3.2. Therefore, it is
necessary to extend the transistion functions with the probability of reaching each
possible state.

There are different notations for expressing the probability of the resulting state
[SB98] [Mit97], but in this report the notation used in [Die00] is chosen. Equation
(3.1) gives the probability that when in the current statest is s, and the current
actionat is a, the next statest+1 is s0.P (s0js; a) = Prfst+1 = s0 j st = s; at = ag (3.1)

Though the reward function is, usually, deterministic, theexpected reward is de-
pendent on the state the agent will reach. Therefore, as the transition function in
the non-deterministic scenario returns a probability distribution, can be expressed
as Ras!s0 = Efrt+1 j st = s; at = a; st+1 = s0g (3.2)

In Figure 3.2 agent A, can get a reward by movingnorth and theneast, if agent
B movessouth. However, if agent B does not movesouth, the reward will be
zero. IfB is an ’intelligent’ agent it will most likely choose not to move south, but
the agent described in Section 2.2, will not react dependingon the position of the
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agent. The expected reward, following anorth action, but before the opponent’s
move, is given as the sum of the products of probability of reaching that state and
the reward of reaching it:E(s; �(s)) =Xs02S P �(s0js; a)V �(s0)

B

A ! BA

Figure 3.2: A state with two agents

A non-deterministic MDP will create a tree of states, since every action can lead to
several different states. Therefore it is not possible to find a fixed path to the goal,
and it is therefore necessary to have a policy that considersall possible states. The
situation of the game is illustrated in the backup diagram inFigure 3.3. Because
there is an opponent in the game, following each action the agent can be in four
different states when making its next move.

own
move

opponent
move

own
move

Figure 3.3: Back-up diagram for the game in this report

3.2 Reinforcement Learning

Reinforcement learning is based on the principles oftrial-and-error. This implies
that the agent will update its behaviour based on its performance. The performance
is here quantified as a reward which can be either positive or negative [Mit97].

The purpose of reinforcement learning is to learn a policy,� : S ! A, which will
tell the agent what to do when in a specific state. The aim of a policy is to get the
highest possible reward, by reaching a goal state. In the example in Figure 3.2 a
goal state for agent A could be a state where it could shoot at agent B.
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To be able to deal with delayed reward it is necessary to be able to calculate the
present value of a future reward. Therefore the reward discount factor,�, is intro-
duced. The discount factor is a value between 0 and 1, which gives the discounted
reward dependent on the number of steps to the goal state. Theaccumulated dis-
counted reward for following a policy with infinite horizon beginning in statest is
given by V �(st) � rt + 
rt+1 + 
2rt+2 � � � � 1Xi=0 
irt+i (3.3)
 can be used to determine whether to prioritize a fast reward or go for the future,
but greater reward. A small
 value will make the agent go for the faster reward,
since the discounted rewards are small due to the factor. A large
 value will make
the agent more prone to go for a greater, but later, reward, asthe discounted rewards
are not as diminished.

Whereas (3.3) deals with an infinite horizon, scenarios exist that deals with other
situations. Tic-Tac-Toe is played with a maximum of 9 turns,which fills the board
[SB98]. This means that the value function should deal with afinite horizon, as
shown in (3.4). V �(st) = hXi=0 rt+i (3.4)

Solving the FlagHunter game will, in its pure form, deal witha infinite horizon, as
it can, theoretically, continue forever.

The optimal policy is the policy that returns the greatest accumulated value.�� � argmax� V �(s); (8s) (3.5)

Figure 3.4 shows an optimal strategy for a single agent in a simplified and deter-
ministic scenario. Agent A have to get to Base B to pick up the flag, therefore the
optimal policy is the policy that gets it there the fastest, i.e. in the fewest steps. The
value for performing the strategy, given
 = 0.9 isV � = 0 + 0:9 � 0 + 0:92 � 100
A problem with theV � value function is that it requires knowledge of the next state,s0, given an actions. SinceT , in the non-deterministic case, returns a probability
distribution rather than the resulting state, theV � function cannot be used. There-
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Base
B

Base
B

A

(a) (b)

Figure 3.4: (a) An optimal policy for a single agent (b) the optimal behaviour for
agent A

fore it is necessary to examine another, more appropriate reinforcement learning
method. The following section will examine Q-learning.

3.2.1 Q-learning

Q-learning is a reinforcement learning method that allows an agent to learn an
optimal policy without knowing theT andR functions [Mit97]. The Q function
evaluates the immediate reward of an action, and the discounted reward of follow-
ing the optimal strategy afterwards.Q(s; a) � r(s; a) + 
V �(Æ(s; a)) (3.6)

This means that the optimal policy can be rewritten as:��(s) = argmaxs Q(s; a) (3.7)

From (3.5) and (3.7), (3.6) can be written as a recursive funtion.Q(s; a) = r(s; a) + 
maxa0 Q(Æ(s; a); a0) (3.8)

The recursive behaviour of (3.8), means that it is only necessary to maintain in-
formation about theQ values for each state. This can be done using a table with
entries for each individual state. Therefore, when selecting the optimal action in
figure 3.5, theQ value is given as, with a reward for pickup of 100, and a
 of 0.9:Q(s; a) = 0 + 
100 = 0 + 0:9 � 100 = 90
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When learning, theQ training rule (3.9) is the learners estimate of theQ value,
since the actual value is not necessarily known. The values of Q̂(s; a) are stored,
and serve as the learners hypothesis of the world.Q̂(s; a) r + 
maxs Q̂(s0; a0) (3.9)

There are different ways of selecting the next action, depending on whether to
explore or exploit. This is discussed in the next section. Also, alternatively, the
table can be initialized with random numbers instead of zeroes. This can make the
agent more prone to explore the far reaches of the game, sincetheQ values of the
unexplored states are comparable to the known.

Base
B

A

Figure 3.5: The evaluation for the optimal action

3.3 Exploitation vs. Exploration

When an agent is training to learn a policy for a given scenario, the strategy for
selecting an action can determine how much of the statespacethe agent actually
meets. This is generally referred to as the exploitation/exploration dilemma.

Exploration is to explore the lesser known states of the scenario.

Exploitation is to exploit the known states, to maximize the immediate reward.

Selecting the action with the greatestQ value will make the agent prone to go
for the immediate reward, and not explore. This can be a problem, if the table
is initialized with zeros, as it can make the agent repeatedly return to the first
reward/goal state it encounters. Also, even with a fully updated table, the agent
can ignore a greater reward for a smaller, but closer one.

An alternative method for selecting an action is choosing a way to allow it to occa-
sionally select an immediately less desirable action [Mit97].P (aijs) = kQ(s;ai)Pj kQ(s;aj) (3.10)
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This gives a probability P for choosingai from states, based on thek. Thek,k > 0, value is a constant value, determining the agent prone for choosing large
or below averageQ values. A largek will give a larger probability to selecting an
action with a largeQ, and a smallk will give a larger probability for choosing an
action with a smallerQ value.

The need for exploration, however, is mainly present, when the agent is still learn-
ing. If the agent already has learned an optimal policy, an exploratory strategy for
action selection will only make the agent perform less than optimal. When the
agent has obtained an optimal policy, it should use an exploitive strategy for action
selection, to take advantage of the optimal policy.

3.4 Hierarchical Reinforcement Learning

The methods discussed above, all basically regard the statespace as a simple table.
Therefore, a long sequence of actions can be necessary to go from a start state to a
goal state. A way to limit the number of actions necessary to learn a policy is by
using hierarchical methods. In the following, two different hierarchical reinforce-
ment learning methods will be presented and discussed for their relevance in this
project.

Using macro-actions

Solving a MDP using macro-actions uses a ’flat’ hierarchicalstructure, with two
layers[HMK+98]. This is done by dividing the state space up into smaller regions,
and solving an abstract MDP totraversethe state space.

A macro-action is a local policy found for each individual region, which is executed
when the agent is in the region. The borders between individual regions are defined
as peripheries. The entrance peripheries are the states leading into the region, and
the exit peripheries are the peripheries leading out of the region.

The abstract MDP consist of the periphery states, and uses the macro-actions as
transition functions between them, leading from an exit periphery state to an en-
trance periphery state. A policy for the abstract MDP, then constitutes a macro
policy for the original MDP.

In [HMK+98], a11 � 11 map consisting of 11 rooms in a maze structure, is used
to test the method. A non-uniform cost is assigned to each state, except the goal
state. The purpose is minimizing the expected cost of reaching the goal state. A
solution using macro actions and an abstract MDP is comparedto a solution using
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a flat MDP. The results show that the solution using an abstract MDP converges
much faster than the solution using the flat MDP. However, theabstract MDP did
not find an optimal policy.

MaxQ

The MaxQ method uses functional decompositioning to reducethe original prob-
lem into a number of smaller tasks, that are hierarchically connected. This pro-
duces a tree of tasks where all leafs are the primitive actions of the original prob-
lem.

A task in the tree regards all child nodes as actions. A policyfor each task is
found, and executed by traversing the tree until a leaf node is met, and the action is
executed.

In [Die00], the MaxQ method is tested with an example of a taxiand a passenger
on a5 � 5 map. The purpose of the test is for the taxi to pick up the passenger
and transport it to a designated location and putting him down. The solution using
MaxQ is compared to a solution using Q learning, which shows that the MaxQ
converges to the optimal solution more twice as fast.

The two methods presented above, both appear to be faster than traditional rein-
forcement learning. The choice of what method to use, is based on the perceived
gain by decompositioning the Flag Hunter game, using eithermethod. The solu-
tion using macro-actions seems to give a huge advantage, compared to using a flat
MDP, however, may not be equally advantageous for Flag Hunter. The example
used in [HMK+98] uses many rooms, which gives it very small sub-MDPs. The
functional decomposing of MaxQ, it more comparable to Flag Hunter. The goal
of Flag Hunter is practical to divide into a number of discreet subtasks, to solve
individually. It is chosen to use the MaxQ method to train theagent to play Flag
Hunter.

3.4.1 MaxQ

MaxQ divides the problem to be solved into a number of hierarchical subproblems.
Each subproblem is then again divided into subtasks until itcomprises of only the
actions available in the original problem.

The MDPM = fS;A; T;Rg is divided into a finite number of sub-MDPsfM0; : : : Mng
representing the subtasks. The subtaksM0 is the root subtask, such that solving it
will solve the original MDPM . Throughout this report the subtask indexi, will
be used to denote the subtask. The hierarchical policy for M,is a set containing a
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policy for each of the subtasks in M,� = f�0 : : : �ng
The subtask is defined as a 3 tupleTi; Ai; ~Ri.� Ti 2 Si is a set of termination states. The subtaskMi is only executed if in

a states in Si. If s is in Ti the subtask is terminated. A terminatition state
need not be a goal state.� Ai is the set of actions that can be executed inMi. The action inAi can
either be actions inA, or other subtasks.� ~Ri is a pseudo reward function.~Ri specifies a pseudo reward for an action to
a terminal states0 2 Ti. The pseudo rewards are used to rate the desirability
of terminal states, by giving a low pseudo reward to a undesirable terminal
state, and a high to a goal terminal state.

Due toAi, the set of subtasksM0 : : :Mn can be represented in a tree structure,
with M0 at the root. Representing the set of subtasks as a tree, the individual tasks
are divided into two part; A maxnode that represents the actual task, and a qnode
that represents the action inAi a task can execute.

Decomposing the Flag Hunter game, the problem of getting theopponent’s flag can
be divided into the subtasks ofmoving to the flagandpicking up the flag. Picking
up the flaginvolves executing the actionpickup, andmoving to the flaginvolves
navigating to the flag by executing a sequence of navigating actions. The tree for
getting the opponent’s flag is shown in Figure 3.6.

MaxPickup MaxNavigate

MaxNorth MasSouth MaxEast MaxWest

QNorth QSouth QEast QWest

QPickup QNavigateForGet

MaxGet

Figure 3.6: A tree decomposing the task of getting the opponent’s flag. The trian-
gles represent the maxnodes, and the squares represent the qnodes

The policy for every task, uses aQ value function to represent the expected value
of every actiona in Ai. TheQ function for the taski, gives the discounted value
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for executing an actiona in states. The MaxQ decomposes the Q function into two
parts.V (s; a) the immediate reward for executing an actiona in s, andC(i; s; a)
the expected reward for finishing the taski.Q(i; s; a) = V (s; a) + C(i; s; a) (3.11)

If the actiona is a primitive action, i.e.a 2 A, V (s; a) is the immediate reward
received in the states0. In getting the opponent’s flag, selecting the pickup action
will return the reward for picking up the flag, if the agent is standing on it.V (s; a) =XP (s0js; a)R(s0js; a) (3.12)

If the agent selects themove to flag, theV (s; a) returns the value for navigating to
the opponent’s base. This means that it will return the maximumQ value for the
subtask. V (s; a) = max[V (s; a) + C(i; s; a)℄ (3.13)

Therefore, the value forQ(getflag; s; navigate) is written as the following, where
the actiona is the primitive action inAnavigate.Q(getflag; s; navigate) = max[V (s; a)+C(navigate; s; a)℄+C(getflag; s; navigate)
Learning algorithm

Learning a hierarchical policy using the MaxQ method means findingQ values for
all tasks, in order for the agent to reach its goal. The learning algorithms for the
MaxQ method work by applying the hierarchical structure. The task at root level
selects an actiona in A0 in states. This again selects an action and continues till a
primitive action is selected. The chosen task continues until it meets a terminating
state for either itself, or any ancestor task, in which case it terminates.

The MaxQ-0 algorithm is shown in Figure 5.1. This works recursively, and is
called with the maxnodei, and the states. If the maxnode is a primitive action, the
immediate reward is stored. It returns the number of actionsrequired to perform
the task, which for a primitive action is one.

If the maxnode is a sub-task, it will select an action, and receive the numberN of
primitive actions required to execute it. TheC(i; s; a) is calculated as
NV (i; s),
which is the discounted value for reaching the terminating state.

A problem with this approach is that the information will always flow upwards in
the tree. In the Flag Hunter game, the agent will have to move to the flag and then
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function MaxQ-0(maxnode i, state s)

if i is a primitive Maxnode

executei, receiver, observe states0Vt+1(i; s) = (1� �t(i))Vt(i; s) + �t(i)rt
return 1

else

let 
ount =0

while Ti(s) is false

choose action a

let N=MaxQ-0(s,a)

observes0Ct+1(i; s; a) = (1� �t(i))Ct(i; s; a) + �t(i)
NVt(i; s0)
ount = 
ount+ 1s = s0
return count

Figure 3.7: The MaxQ-0 learning algorithm [Die00]

pick it up. Using the MaxQ-0 algorithm for this, with the decomposition, shown in
Figure 3.6, the agent will enter the navigate task, and remain there until it reaches
a termininating task, by standing at the flag. It will then return to the getflag node,
where it will choose between navigate and pickup flag. The reward for picking up
the flag, will propagate up the tree, but not down to the navigate task. Therefore, it
is necessary to add a reward for reaching the goal state, for the method to converge.

In [Die00], this is done by applying the pseudo reward specified for the subtask.
The pseudo reward is a value given to the desirability of the terminating states.
A ~C is calculated, adding the~R to the value for for executing the action, thereby
allowing the taski to influence the value for executing the actiona.~C(i; s; a) = 
N [ ~R(s0) + ~C(i; s0; a�) + V (a�; s)℄
The action selecton is then selected based on the~Ca� = argmaxa0 [ ~C(i; s0; s0) + V (a0; s0)℄
The principal difference between adding the formal description of a pseudo reward,
and adding a reward to the game is considered to be negligible. As they both require
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a specification of the importance of the affected state, it ischosen to use the MaxQ-
0 algorithm for testing the MaxQ method in this project. The model for testing the
Flag Hunter game using the MaxQ method for training the agent, is presented in
Chapter 5.



Chapter 4

Q model

In this chapter the agent is trained using theQ learning method described in Section
3.2.1. In this chapter I will first explore the influence of theindividual rewards inQ
learning, by training the agent playing without an opponent. Second, based on the
optimal set of rewards found, the agent is trained by playingagainst the opponent.
The algorithm used for training the agent is shown in Figure 4.1[Mit97].

For each states, a initialize the table entrŷQ(s; a) to zero

Observe the current states
do forever

Select an actiona and execute it

Receive immediate rewardr
Observe the new states0
Update the table entry for̂Q(s; a) as:Q̂(s; a) r + 
maxs Q̂(s0; a0)s s0

Figure 4.1: The Q-learning algorithm

The agent is trained playing on the map shown in Figure 2.1, inSection 2.1. This
consists of10 � 10 positions, which are considered as states. However, since the
agent is also dependent on the direction it is facing, there are four states for each
position on the map, as shown in Figure 4.2. This also means that a north facing
state can only be reached by anorth action.
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G
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72

Figure 4.2: The resulting state of a movement action in the game. The number are
Q values, propagating from the goal state G, with reward 100,and
 0.9. The cross
symbolises the four directions the agent can face

4.1 No opponent

The purpose of training in this section is to examine the importance of the indi-
vidual rewards given throughout the game. The graphs in thischapter, if nothing
else is stated, shows the accumulated number of actions of for the agent to finish a
game.

When playing without an opponent, the state space for the agent is its position, its
direction and whether it has the flag or not. This gives100 � 4 � 2 = 800 states.
As there is no opponent, theshootaction is not necessary, therefore, the actions
available for the agent are:north, south, east, west, pickupandputdown. The tests
are made with different sets of increasing numbers of rewards. The sets are:

a: � Reward for putting down flag at base = 100

b: � Reward for putting down flag at base = 100� Reward for losing flag = -10

c: � Reward for putting down flag at base = 100� Reward for losing flag = -10� Reward for picking up flag = 10

d: � Reward for putting down flag at base = 100� Reward for losing flag = -10� Reward for picking up flag = 10� Reward for hitting wall = -1
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Though the exact values of the individual rewards are not important, some of the
relative values can have an influence on the learning. If the reward forlosing the
flag is smaller than the reward forpicking up the flagthe agent will, most likely,
learn that the best policy is to stand at the opponent’s base and repeatedly pickup
and drop the flag, as it will give the highest Q value.

4.1.1 Exploitation

The exploitation strategy for training the agent works by always selecting the action
that returns the highest Q value, and if two or more gives the same highest value, a
random of these is selected. This means that the agent will always seek the known
way to the goal state. The agent is trained with the sets of rewards listed above
using an exploitive action selection strategy. Figure 4.3 shows the test results for
all sets. Figure 4.4 shows the test results for setsb, c andd. Figure 4.5 shows a
closeup of the converging of the four sets.
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Figure 4.3: Result from training the agent without an opponent using exploitation.
The results for setsb, c andd are hardly visible, becausea take far more actions to
finish. The graph fora is made from an average of 10 trials, and the rest are made
from 50 trials

Comparing Figure 4.3 and Figure 4.4, there is a noticiable difference. The agent
training with seta stands clearly out, by needing several million actions to finish
the first few games. This is because the agent playing with seta will only learn
when it finishes the game. Playing with setb finishes the first game with far less
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Figure 4.4: Results from training the agent without an opponent using exploitation.
The sets shown areb, c andd. The graphs are made from an average of 50 trials
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Figure 4.5: Closeup of the point of converging for all set using exploitation.

actions, but it takes more games to converge. Asb learns to not putdown the flag at
other positions than the agent’s own base, it will always reach the base after fewer
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actions, but it does not propagate the information faster. That a converges faster
thanb, may be explained as the test fora was made with fewer trials, and may
therefore, to some extent, be noise.

However, the main difference is made by the reward for picking up the flag,c. Not
only does it finish the first game much faster than without the reward for picking
up the flag, it also converges in about half the number of games. This can be
explained as the agent will potentially learn the way to the flag during the first
game, as it, everytime it puts down the flag at another position than its own base,
can propagate the reward for picking up. Therefore, after a few games, the agent
may only have to learn the way from the flag to its base. The difference betweenc
andd is insignificant, which indicates that the effect for the reward for hitting the
wall is minimal.

4.1.2 Exploration

The explorative strategy for selecting an action allows theselection of an action
that does not have the highestQ value. For training in this section the method
described in section 3.3 is used.P (aijs) = kQ̂(s;ai)Pj kQ̂(s;aj)
Figure 4.6 shows a result of training the agent with the setd, using values ofk
of 5, 10 and 20. The graphs show the number of actions to finish the game. The
graph fork = 20 shows that the agent, having reached the goal, does not choose to
explore, why the behaviour is basically exploitive. The graph fork = 5 shows that
the agent does require less actions to finish, but still explores extensively. During
the tests, ak value is set to 5. This favours exploration, and does only exploit
the known information slightly. Since the purpose of an explorative strategy for
selecting an action is to explore, it may, depending onk, not converge in the sense
that it will settle on a constant number of actions for reaching the goal. Therefore,
the tests are made, such that the first 125 games use an explorative strategy, and
thereafter an exploitive strategy.

The agent is trained with the sets of rewards listed above using an explorative
action selection strategy. Given the poor performance ofa, only b, c andd are
used. Figure 4.7 shows the results for setsb, c andd. Figure 4.8 shows a closeup
of the point of convergence for all three sets.

The overall results from training using an explorative action selection strategy are
very similar to the results from using the exploitive strategy. Though training with
neither set, converges to a fixed value,c andd appear to converge after about 40
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Figure 4.6: Comparing the behaviour of exploration with different values for k
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Figure 4.7: Results from training the agent without an opponent using exploration.
The graphs are made from an average of 50 trials

finished games. Againb is slower to converge thanc andd. However, Figure 4.8
shows that there is a great difference between using the explorative strategy for
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Figure 4.8: A closeup of the converging of the test using an explorative strategy

action selection (first 125 games), and the exploitive (from125 games). However,
the figure also shows that the policy found by exploring is notnecessarily better
that the exploitive.

Based on the results, it is clear that thepickup reward has a great impact on the
performance, by, more or less, halfing the number of trials necessary to converge.
Therefore, and though thehit wall reward shows little importance, it is chosen to
use all available rewards in the following section. The difference between using ex-
ploitation and exploration for selecting an action, seems very small, as the policies
obtained converges at about the same amount of executed actions.

4.2 Playing against the opponent

Training the agent against the opponent will show both how the agent performs in
a changing environment, and also how it can perform against an opponent that can
try to win, and will interfere with the agent. When playing against the opponent,
the state space is expanded with the position, direction andflag of the opponent.
This means that the statespace includes800� 100� 4� 2 = 640000 states. When
playing against the opponent, the shooting action is also included.

The results of training the agent against an opponent, are compared to the results
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of having a trained agent play against the opponent. This is done by using a policy
for the agent found by training it without an opponent, and expanding it to cover
all positions of the opponent for each state. The policies for used are trained with
the rewards in setd. Playing against the opponent using a known policy, will also
indicate the usefulness of the action selection policies ina non training scenario.

The Q̂ learning rule in Figure 4.1 will always overwrite the oldQ(s; a), and is
therefore mainly suitable when the agent plays without the opponent. Therefore,
to be able to handle the uncertainty of the, non-optimal, agent’s shooting, it is
necessary to expand thêQ(s; a) expression with the learning rate�.Q̂(s; a) (1� �)Q(s; a) + �[r + 
maxs Q̂(s0; a0)℄ (4.1)� = 11 + visits
This will make the agent update theQ value depending on the number of times
the agent has been in the state. This means that if playing against a very random
opponent, i.e. an agent with high probability for selectinga random action, the
agent can cross the opponent’s line of fire a number of times without being shot.
Without using (4.1), being shot in that situation will ignore the number of succes-
ful crossings, and make all but the most determined explorative agent avoid the
situation.

The tests made training the agent by playing it against the opponent are made with
the reward setd. Added to this are the rewards for both shooting the opponentand
being shot by the opponent. This means that the set used when training against the
opponent are:

e: Training by playing against an opponent, with rewards� Rewards in setd� Reward for being shot = -10� Reward for shooting opponent = 10

f: Adopting a policy learned when not playing against an opponent, with rewards� Rewards in setd� Reward for being shot = -10� Reward for shooting opponent = 10

The tests are again performed by using both exploitation andexploration.
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Since the agent cannot compete with an opponent with an optimal strategy, it will
instead play against opponents that are at different levelsfrom begin optimal. This
is done by using opponents that have 5 and 9 random actions out10, as described
in Section 2.2.

4.2.1 Exploitation

The exploitive strategy for training the agent is similar tothe one described in
section 4.1. The results from sete, training without previous knowledge is shown
in Figure 4.14. The results from setf, playing using a known policy if shown in
Figure 4.11. In both cases, the number indicates the randomness of the opponent.
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Figure 4.9: Result from training the agent against an opponent using exploitation.
The graphs are made from an average of 50 trials

Training the agent, Figure 4.14, shows that the agent performs sligthly better against
the most random opponent,e5. Though it is counter-intuitive, that the agent play-
ing against the most random opponent should converge the fastest, an explanation
can be that the agent get to perform many actions in the early part of the game, and
therefore may manage to update enough states to be able to enter them again, re-
gardless of the opponent’s action. However, it may convergefaster, because it plays
many initial games. Another explanation can be that the lessrandom agent simply
plays better, and therefore wins the games faster, and thereby gives the agent less
time to learn.
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Figure 4.10: Number of games lost, during training against opponent with 1 ran-
dom action. The graphs are made from an average of 50 trials

The results from playing with a policy obtained by training without an opponent,
shows that the agent performs best against the near-optimalopponent. This can be
explained, as the games were played using the same policy, and may not bring the
agent and the opponent together. Comparing the graphs for the other opponents,
shows that the agent performs slightly better against the least random. This can
be explained by the least random will spend more time near thepath of the agent,
and therefore cause more interaction. Figure 4.12 shows that the agent was shot
most by during sete5, which was the set that performed worst. Both Figure 4.11
and Figure 4.12, also shows that the agent has not improved its performance while
playing against an opponent. That the agent does not learn toavoid being shot, can
partly be explained by the use of the learning rate,�. This will make the change
more gradual, and can therefore inhibit the negative rewardin a state.

4.2.2 Exploration

The explorative policy used to train the agent to play against the opponent, is sim-
ilar to the one described in section 4.1. The results from sete, training the agent
against the opponent, are shown in Figure 4.13. The results from playing against
the opponent using a known policy, are shown in Figure 4.15.

The results for training the agent against the opponent using exploration are su-
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Figure 4.11: Result from playing with a policy obtained by training without an
opponent, and using an exploitative action selection policy.
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Figure 4.12: Number of times the agent has been shot, while playing with a policy
obtained by training without opponent.
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Figure 4.13: Result from training the agent against an opponent using exploration.
The graph is a average of 50 trials
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Figure 4.15: Result from playing the agent against an opponent using a policy
obtained by training without an opponent.

perior to the similar results for exploitation. The best performance is against the
least random opponent, which is because this allows it to more often reach a known
state, and therefore propagate the information of the rewards. The setse1ande5
appear to converge after a number of games comparable to not having an opponent,
wherease9does not appear to have converged after 200 won games. The reason for
the explorative agent performing so well, is that the exploraitive action selection
allows it to explore several new states, during a single game.

Playing against the opponent using a known strategy is comparable to the perfor-
mance using exploitation. Though the agent finishes all games after no more than
about twice the number of actions as for playing against no opponent, it does not
appear to learn adapt. Because the policy was trained against no opponent, it did
not include rewards for shooting. However, the agent, even using an explorative
policy, did not select to shoot the opponent.

Based on the performance of the agent in playing against an opponent, it can be
concluded, both that there is a difference between using an explorative strategy
for action selection, and an exploitive strategy. Another point for concluding is
that it is not advantageous to train the agent without an opponent. The results in
Figure 4.15 show that the agent does not manage to alter its behaviour to include
the opponent. Therefore, even though the number of actions used with the known
policy, the best way to train the agent, is to let it learn to play against the opponent,
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and thereby learn to interact with it.

4.2.3 Summary

The Q learning method was examined regarding its ability to learn and to adapt.
The ability to learn was tested by seeing how dependent it is on the rewards avail-
able, and the difference in learning between using an exploitive action selection
policy and an explorative policy. It was found that the agentimplemented with the
Q learning method was very dependent on the rewards available, but also that ap-
plying rewards to divide the learning into smaller parts canmore or less make the
agent converge twice as fast, and finish the first game much faster. Comparing the
importance of the action selection strategy showed that there was little difference
in the obtained policy without an opponent, and that neitherwas optimal. However,
when training against an opponent, the explorative policy proved superior, by con-
verging about twice as fast for against a mostly random opponent, and even faster
against more less random opponent. The ability to adapt was tested by training the
agent without an opponent, and then playing it against an opponent. Neither the
agent using an exploitive action selection policy, nor the one using an explorative
policy learned to adapt to the opponent. The explorative agent did not manage to
shoot.



Chapter 5

MaxQ model

In this chapter the agent is trained using the MaxQ method. This is done by first
training it without an opponent, and secondly playing against the opponent intro-
duced in Section 2.2, at different levels of randomness.

The MaxQ algorithm used is the MaxQ-0 algorithm, which is shown in Figure
5.1 [Die00]. The MaxQ-0 algorithm distinguishes between primitive and non-
primitive tasks. The primitive tasks, or the actions, are executed immediately, and
the immediate rewardV (a; s) is stored for the state. The non-primitive tasks are
made up of other tasks, which are executed. This continues until a primitive task is
reached and executed.

The non-primitive task updates the value till terminating.This means that informa-
tion travels upwards in the tree. This also means that a task will require a reward
for reaching the terminating state to be able to learn a policy. This can be seen as
an unfair advantage compared to theQ learning, and all comparisons between the
two should be done with the set forQ learning where there is a reward for pickup.
However, it also reflects the difference between the two methods. Because the
MaxQ method uses functional decomposition it is already limited to performing
the given subtask. Therefore, even if it is not learning, it will always terminate the
navigation task when reaching the terminal state.

The action selection is done using pure exploitation by chosing the actiona that
has the highestQ-value. TheQ value, is the sum ofV , the immediate value of
executing an action, andC, the value for completing the task aftera has been
executed. Q(i; s; a) = V (a; s) +C(i; s; a)
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function MaxQ-0(maxnode i, state s)

if i is a primitive Maxnode

executei, receiver, observe states0V (i; s) = rt
return 1

else

let 
ount =0

while Ti(s) is false

choose action a

let N=MaxQ-0(s,a)

observes0C(i; s; a) = 
NVt(i; s0)
ount = 
ount+ 1s = s0
return count

Figure 5.1: The MaxQ-0 learning algorithm [Die00]

If a is a primitive action,V (a; s) is the reward for executing it. Ifa is a non-
primitive action,V is the highestQ value for the subtask. This means, given the
tree in Figure 3.6,V (a; s) for Getflag isV (get; s) = maxa [V (a; s) + C(get; s; a)℄
If the the highest value was for navigate,V (get; s) isV (get; s) = maxa [maxanav [V (anav; s) + C(nav; s; anav)℄ + C(get; s; a)℄
5.1 No opponent

The purpose of training the agent to play without an opponentis to examine the
influence of the individual rewards available for the agent.This is done by training
the agent with different rewards. Training the agent to playthe game using the
MaxQ method, requires creating a task tree. The tasks neededare listed below,
along with the terminating states and actions available foreach.
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Capture flag: � A
aptureflag = fGetflag; returnflagtobaseg� T = fputdownflagatbaseg
Get the flag: � Agetflag = fNavigatetoflag; pi
kupflagg� T = fpi
kupflagg
Return flag to base: � Areturnflagtobase = fnavigatetobase; putdownflagg� T = fnotholdingflagg
Navigate to flag: � Anavigatetoflag = fnorth; south; east; westg� T = frea
hing=standingatbaseg
Navigate to base: � Anavigatetobase = fnorth; south; east; westg� Tnavigatetobase = frea
hing=standingatbaseg
Ordering the tasks into a tree, gives MaxQ tree shown in Figure 5.2.

QPickup

QGet

MaxPickup MaxDropMaxNavigate

QNavigateForReturnQNavigateForGet QDrop

MaxGet

MaxNorth MasSouth MaxEast

QNorth QSouth QEast

MaxWest

QWest

MaxCapture

QReturn

MaxReturn

Figure 5.2: MaxQ tree for playing with no opponent

The sets of rewards used in the training are listed below. Theindividual rewards
are the same as was used in chapter 4, except for thereach reward. Thereach
reward is given for reaching the terminate state for navigating. This is added to
enable the agent to learn to navigate, as it would otherwise not be able to propagate
information back through the navigation policy.

a: � Win = 100
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b: � Win = 100� reach = 1� pickup flag = 10

c: � Win = 100� reach = 1� pickup flag = 10� lose flag = -10

d: � Win = 100� reach = 1� pickup flag = 10� lose flag = -10� hit wall = -1

The results for training the agent with the rewards in seta and b are shown in
Figure 5.3 and the results for setsc andd are shown in Figure 5.4.
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Figure 5.3: Training the agent with no opponent. The graphs were made from an
average of 50 trials

The results for training the agent using the MaxQ algorithm show that the agent
using all sets,a to d, converge after a number of games comparable to the better Q
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Figure 5.4: Training the agent with no opponent. The graphs were made from an
average of 50 trials

learning tests. This can be explained as the MaxQ method, much like the Q learning
with a reward for pickup, learns a policy for reaching a subgoal. It does not learn
noticably faster than the Q learning, because the agent cannot drop the flag unless
standing at either base. Therefore, the agent will only learn a new step towards the
base, after putting it down at the base, and only propagate the information one step
at the time.

The number of actions needed to finish the first game, using allsets of rewards, is
a vast improvement compared to the Q learning. That they all finish the first game
in less than 3000 executed actions, compared to 100,000 or even millions for Q
learning, is because of the division into subtasks. Becausethe agent, after finishing
reaching the flag, can only put it down while choosing betweennavigating to its
own base, or putting down the flag, the agent can only lose the flag while standing
at either base. Therefore, because an action is only performed when a primitive
task is selected, the only ’vasted’ action possible is thepickupaction in theget the
flag task, while standing at the agent’s own base.
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5.2 Playing against opponent

The purpose of playing against the opponent is both to examine how the agent
can learn given the enlarged statespace, and also how it willperform against an
adversary that will interfere with the agent. Whereas the first of these is primarily
a navigation task that can be performed with the given model,the second requires
a modification of the model to accomodate the interaction betwen the actors.

Specifying the model

The MaxQ tree in Figure 5.2 does not allow the agent to shoot. Therefore, it is
necessary to expand that tree with another subtask,Hunt opponentat the same level
af Get the flagandReturn flag to base. Hunt opponentalso requires a subtasks for
navigating to a position that allows shooting at the opponent. This can be done by
adding a QNodeQNavigate to opponentwhich points to the Maxnode Navigate.
Hunt opponentalso requires the primitive actionshoot.

The problem with adding another subtask is that the termination conditions for all
the other subtasks will change to allow the new task to be chosen. In this case it is
necessary to consider both the distance to the opponent, theopponent’s distance to
its base and the distance to the agent’s own goal when giving chase. If the agent is
too far away from a near optimal opponent it may not be able to reach the opponent
before it has returned to its base, and the game is lost. If theagent gives chase every
time the opponent holds the flag, and is closer to its homebasethan the agent, the
agent playing against a near optimal opponent is dependent on its ability to hunt the
opponent to win. This means that if every time the opponent isclose to winning,
the agent stops trying to return, it will not benefit from the rare random action by
the opponent, and instead attempt to learn to shoot the opponent.

The tasks for playing against and hunting an opponent are shown below. The re-
lated MaxQ tree is shown in Figure 5.5. This was not implemented.

Capture flag: � A
aptureflag = fGetflag; returnflagtobaseg� T = fputdownflagatbaseg
Get the flag: � Agetflag = fNavigatetoflag; pi
kupflagg� T = fpi
kupflagg
Return flag to base: � Areturnflagtobase = fnavigatetobase; putdownflagg� T = fnotholdingflagg
Hunt opponent: � Ahuntopponent = fnavigatetoopponent; shootg
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Navigate to flag: � Anavigatetoflag = fnorth; south; east; westg� T = frea
hing=standingatbaseg
Navigate to base: � Anavigatetobase = fnorth; south; east; westg� Tnavigatetobase = frea
hing=standingatbaseg
Navigate to opponent: � Anavigatetoopponent = fnorth; south; east; westg� T = finpositionallowingtoshoottheopponentg

QPickup

QGet

MaxPickup MaxDropMaxNavigate

QNavigateForReturnQNavigateForGet QDrop

MaxGet

MaxNorth MasSouth MaxEast

QNorth QSouth QEast

MaxWest

QWest

MaxCapture

QReturnQShoot opponent

MaxReturn

Figure 5.5: MaxQ tree for playing with an reactive agent

Testing

In this section the agent is tested, first by training it against opponents with 5 and 9
random actions out of 10. This is to examine how well the MaxQ deals with a larger
statespace. Second, by applying it with a policy obtained bytraining without an
opponent. This will show how well the MaxQ model adopts the policy to include
the opponent. The tests in this section are performed using the model specified in
section 5.1.
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5.2.1 Without previous knowledge

As the agent cannot shoot the opponent, training it against the opponent, should
make the agent try to win the game, and avoiding being hit. Training the agent to
play against an agent is done with full set of rewards, and thereward for being shot.

e: Training the agent against an opponent� reward setd� being shot = -10

Figure 5.6 shows the number of actions to win a game for training the agent playing
against an opponent with 5 random actions. Figure 5.7 shows the similar results
for training the agent against an opponent with 9 random actions. Figure 5.8 shows
the number of times the agent lost before begin able to win a game.
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Figure 5.6: Results from training the agent against an opponent with 5 random
actions. The graph was made from an average of 50 trials

Comparing Figure 5.6 and Figure 5.7 shows that the agent moves towards converg-
ing faster for the least random agent. It requires more states in the initial games,
because the least random actions will finish the game faster than the most random,
and therefore the game is restarted more often. However, bacause the opponent is
less random, the agent will more often meet known states.
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Figure 5.7: Results from training the agent against an opponent with 9 random
actions
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Figure 5.8: Number of lost games, while training the agent against an opponent

5.2.2 With previous knowledge

Playing with an agent that has been trained without an opponent, will show how
the agent can adapt to a new situation. The policy for the agent was obtained by
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training it with the full set of rewards,d, as it was found to be the set that gave
the best performance. The set of rewards used for playing against the opponent is
shown below.

f: � win = 100� reach 1� pickup flag = 10� lose flag = -10� being shot = -10

Figure 5.9 shows the number of primitive actions executed before the agent finishes
a game, when playing against the opponent with 5 random action. Figure 5.10
shows the number of primitive actions for playing against the opponent with 9
random actions. Figure 5.11 shows the number of times the agent was shot before
finishing a game, playing against the opponent with 5 random actions.
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Figure 5.9: Results from playing the agent, with a policy forno opponent, againt
an opponent, with 5 random actions. The graph was made from anaverage of 50
trials

Figure 5.9 shows that the agent does not adapt well to the addition for the opponent.
Compared to Figure 5.10, it is seen that the agent performs best against the most
random opponent. Figure 5.11 shows that the agent appeared to adapt to avoiding
being shot. The many actions may be explained as the known policy is weakened
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Figure 5.10: Results for playing the agent, with a policy forno opponent, against
an opponent with 9 random action. The graph was made from an average of 50
trials

because the agent is shot at different positions on it, and therefore try to avoid
those.

5.3 Summary

The MaxQ was found to need ar extra reward to be able to learn tonavigate. This
reward was given for reaching a terminal state in the navigating subtask. The MaxQ
learning method was examined regarding its ability to learn, and to adapt. The abil-
ity to learn was examined be testing the it without an opponent, with different sets
of rewards, and against an opponent with the full set of rewards. This showed that
the MaxQ is not very dependent on the rewards, though it wouldnot be able to
converge without the reward for terminating the navigate subtask. Playing against
an opponent required adding a new subtask, to allow the agentto shoot the op-
ponent. However, this has not been implemented. Playing against the opponent,
showed that the MaxQ performed comparable with the Q learning agent using an
exploitive strategy for action selecition. The ability to adapt was tested by training
the agent without an opponent, and using that policy to play against an opponent.
This showed that the agent could adapt to avoid being shot, but did not appear to
converge to a fixed level of actions.
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Figure 5.11: Number of times the agent, with a policy for no opponent, was shot
while playing against the opponent with 5 random action. Thegraph was made as
an average of 5 trials



Chapter 6

Implementation

In this chapter I will describe the implementation of the game, and the learning
methods used. I will first go through the overall structure ofthe game, and second
describe the Q learning, and third the MaxQ learning.

6.1 Implementation of the game

The game has been implemented to function as simple as possible, as it is not part
of the problem to be solved. The game consists of the board, the opponent, and a
class for handling the graphics.

The board class is the central class, which handles the actions made bythe actors,
and returns the rewards. To be able to handle collisions, pushing and shoot-
ing, the board stores the positions, direction and flag status of both agent and
opponent.

The opponent is called with the positions of both actors. Based on this, itse-
lects an action based on the rules in Figure 2.3 in Section 2.2. The go to
checkpoint function is shown in Figure 6.1.

The game was implemented using C++. This was chosen both because it is a
language I have had some experience in using, and, because itis object oriented,
was suitable for handling the task.
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Figure 6.1: Pseudocode for the goto function used to navigate the opponent towards
a checkpoint
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Figure 6.2: Overview of game process for Q learning

6.2 Q learning

The agent usingQ learning is implemented as a single class. It maintains the
statespace as an array of State structs, which again contains a the number of visits
to the state, and an array for storing theQ values for each action. The statespace
is ordered by the positions, direction and flag status of eachactor, and before se-
lecting an action, the agent requests these positions from the board. The flow of
information between the agent and the board is shown in Figure 6.2.

The individual points in Figure 6.3 are specified below.
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1. The agent method requests the statest
2. The board returns the statest
3. The agent method executes its actiona
4. The board returns the rewardr, and resulting statest+1
5. The agent method requests the opponent to execute an action

6. The board sends the statest+1 to the opponent, and requests its actiona
7. The opponent returns its actiona
8. The agent requests the possible reward of the opponent’s action

9. The board returns the possible reward

6.3 MaxQ learning

The MaxQ learning method is implemented in a single class. Therein, the Max and
Q nodes are put together and represented as methods. To maintain the structure
of the Max Q tree, the navigate Q nodes are represented as individual methods,
that calls the navigate method, with the task it has to perform. The statespace in
implemented as an array of structs representing the individual states. The state
includes the individualC- tables, andV (s; a) for the primitive actions.

Running the game in a number of subtasks, makes it important to ensure that the
opponent move in only executed once per turn in the game. To ensure this, the
game processes the information as shown in Figure 6.3.

The individual points in Figure 6.3 are specified below.

1. An agent task requests the statest
2. The board returns the statest
3. The agent task selects an action. This is continued until aprimitive action is

selected

4. A primitive action executes an actiona
5. The board returns the rewardr and statest+ 1
6. The primitive actions returns the number of executed action to parent task

7. If subtask is not terminated, it requests an opponent move
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Q Board Opponent
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Figure 6.3: Overview of game process for MaxQ

8. The board requests an opponent move

9. The opponent returns an action



Chapter 7

Conclusion

The purpose of the project was to investigate the performance of reinforcement
learning in a computer game context. This was specified to concern an agent’s,
implemented using reinforcement learning, ability to learn and to adapt to a new
situation. It was decided to compare the performance of a traditional reinforce-
ment learning method, Q learning, to a hierarchical method.Following a brief
comparison, the MaxQ method was chosen.

A game, Flag Hunter, was designed to function as an environment for the agent to
function in. Flag Hunter was made to be a sequential and turn based game, which
is played against an opponent. The purpose of the game was to capture the flag
from the opponent’s base and return it the agent’s own base. Since it would not be
possible to beat an opponent using an optimal policy, it was made possible to set
the degree of randomness of the opponent.

Implementing the agent with both reinforcement learning methods, the ability to
learn was tested by training the agent to navigate in the map of the game using
different rewards, and by training it against different opponents. For Q learning, the
difference between using an exploitive and an explorative action selection strategy
was also examined. Training the agent to reach the base usingdifferent rewards
showed clearly that the MaxQ needed far less actions to reacha goal state. By
dividing the problem into smaller subproblems it reached the first goal state more
than 10 times faster than the Q learning. For the Q learning itwas clear that the
number of rewards played a large role for the performance. Training with only a
reward in the goal state of the game, proved very hard to finish. However, both
methods converges after about the same number of games.

Playing against an opponent showed that the agent using Q learning with an ex-
plorative strategy for action selection, converges significantly faster than both the
exploitive Q learning agent, and the agent implemented using MaxQ, though the
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MaxQ again finished the first games faster. To allow the agent using the MaxQ
method to shoot, would require the addition of a new subtask to the model. This
subtask was not implemented, and it was therefore only possible to test the MaxQ
agent’s ability to avoid being hit.

The ability to adapt was tested by letting an agent that was trained in a scenario
without an opponent play against an opponent. This would require the agent to
be able to change its behaviour if interacting with the opponent. Since being shot
gives a negative reward, it should be able to avoid the situation that can lead to
being shot. Neither method proved very successful in avoiding the opponent.

Based on the performance of the methods in the different test, in can be concluded
that they have their different strenghts and weaknesses. MaxQ finishes the initial
games very fast compared to Q learning, but does not appear tohandle playing
against an opponent as well as Q learning, with a explorativeaction selection strat-
egy. However, it must also be concluded that none of the methods were able to
adapt satisfiably.
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