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Summary

Though the computer games industry has risen to become @milligin dollar
industry the area of game intelligence has not been mucHajea Today most
computer controlled agents are implemented using finite steachines, that does
not allow them to learn anything about the players abilityptay the game. A
common learning method is reinforcement learning that @dlesv learning from
the players behaviour. Reinforcement learning has beeth inseomputer games
in path finding, and for playing various board games.

It was decided to investigate the performance of reinfoeintearning with re-
gards to learning and adapting in a game environment. Tcsiigage reinforce-
ment learning it was decided to select two methods, and camtpam, based on
their performance in a game scenerio. To be able to test tlleote in a game,
Flag Hunter, a sequential, turn based game was designegiHElzter contain two
actors who, to win, has to capture the opponents flag andrétto its homebase
to win. An opponent for this game was designed. The agent matemented
using reaction rules, and will select an action based on &mappolicy. To make
the agent play less optimally, a randomness function isieghphat with a given
probability will make the opponent select a random action.

It was chosen to use the traditional method of Q learning asobthe methods to
compare. Two hierarchical methods were discussed, andsifoumd that MaxQ
learning, using functional decompositioning could fit thelgem of solving the
Flag Hunter game. In order to test the reinforcement legrmirethods ability to
learn and adapt, agents were implemented using the methiodsyade to play the
game. However, it was found that the MaxQ learning algoritequired a pseudo
reward in order to learn.

To investigate the methods ability to learn, both agentsewiest, trained in the
game, by playing without an opponent, and second playinghagan opponent.
Playing without an opponent will test how fast the agent e to find the goal
state, and second how many games it takes before it convdtgeas also tested
how dependent the different methods are on the rewards giibe game. The test
showed that the Q learning was very dependent on the rewahgseas the MaxQ,
apart from the pseudo reward in order to learn, was indepenale the rewards.
The agents were trained against opponents, with diffemrel$ of randomness.
Playing against an opponent required the agent to both aivig avoid being
shot, and to learn to shoot. In order to make the MaxQ agerdgtshehould be
expanded with a sub-task that would allow it to shoot. This wat implemented,
and the MaxQ agent could only learn to avoid being shot. Taitrg showed
that the best solution for learning to play against an oppgriewith a primarily
explorative strategy for Q learning.



To examine how the methods could adapt to a changing sitydtie agents were
trained without an opponent. Using that policy, the agert 8& to play against an
opponent. The test showed that neither method was very siutde adapting its
behaviour, though they fairly succesfully managed to agatling shot.

The conclusion of the report was that each method had theingths and weak-
nesses, but that neither could live up to the original denwdrmting adaptable.
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Chapter 1

Introduction

In recent years the computer game industry has blossomddwide and become
big business. Annully, millions of dollars worth of tradepsoduced during the
development and marketing of computer games. Producingrgputr game is
usually a complex and time-consuming process, requiringeldeams of game
developers. This is necessary in order to meet the greatmifioa entertaining

computer games with new and revolutionary graphics as vgajraat sound, and
challenging computer opponents of extremely high quality.

However, focus has mainly been towards the graphics anddspaims of a game,
at the expense of the quality of the intelligence of the campliased opponents.
Their behaviour in a game is often easy to predict, or so randod illogical that
little sense is to be found in it.

Only few mainstream games actually contain opponents tleatlkle to change
their behaviour dependent on the behaviour of the humare@ayHere, the most
common approach for controlling a computer-based oppoisetirough the use
of a so-called Finite State Machine. Usually, this approavides less credible
opponent behaviour, making them look less intelligentmygame play.

1.1 Learning

Reinforcement learning is a commonly used learning tecienigith similarities to

the way most children and animals learn. This is achieveoltyin the concept of
learning by mistakes: if a child gets burned by a flame, it shillin fire in the future.
In the case of animals, dogs can be trained to do the righg thjrrewarding them
with crackers. And punishing them by pulling the leash onaimy when they are
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behaving badly.

Reinforcement learning in a more computational sense carsée to find a solu-
tion to a specific problem with clearly defined goals. A comigyarsed example
is that of a robot learning to find its way around a house. Hime robot will at

first bump into walls or run low on power before eventuallyrieéag its way round.

After some time, it will know where and how far it can go, befdraving to turn
back to its docking station[SB98].

Witin computer games, the use of reinforcement learningpriepies has found
a niche. Here, it can be used to teach a computer-based glayeto find its

way round through the use of the A*-algorithm[Rab02]. THhigogithm learn by

estimating a value for the next possible steps and by rewgurttie player when
reaching its goal, or punishing it when meeting a dead endoti#ar example is
the TD-Gammon program, which has learned to play the gamaakdammon at
a world class level[SB98].

A problem with many learning techniques is the rate of laagniSome er slow and
require a great many training cases in order to achieve aindgvel of expertise,
e.g. playing a game well against a human player. Anotherl@mols the depen-
dency on information available. If only little is presergatning optimal behaviour
can be quite difficult.

1.2 Problem formulation

The purpose of this report is to examine and evaluate raiafoent learning tech-
niques in the context of the game of Flag Hunter.

In order to do this, a comparison of traditional reinforcertearning methods, and
reinforcement learning methods using hierarchical deamsitipn of the original
problem, is made.

Different hierarchical approaches are discussed and cadpBased on the ability
to learn to learn and adapt to new situations, the best mésremlected and imple-
mented for learning in the Flag Hunter game. The end restiieis evaluated and
discussed along with comments on encountered problems.

1.3 Outline of report

In Chapter 2 the design of the game of Flag Hunter along wighdissign of the
opponent is provided. The Flag Hunter game is used for trgimind testing the
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reinforcement learning methods.

Chapter 3 explains the theory of reinforcement learningluded here is the basic
theory as well as a discussion of two concrete methods foatukical reinforce-
ment learning. Following this, one of the methods is seté@e training.

The actual training of the computer-based opponent usieagadhncept of) learn-
ing is provided in Chapter 4.

In Chapter 5 the opponent is trained usitigiz (), the hierarchical method selected
in Chapter 3. The performance of training usi@gand M az() is then compared
based on the above-mentioned criteria.

Finally, Chapter 6 deals with the implementation or the Famter game, along
with a description of the learning algorithms.






Chapter 2

The Game

In this chapter the game Flag Hunter, which will be used asst®mario in the
project, is presented. This will be done by first defining theng’s, goal and rules,
and second, specifying the opponent in the game.

2.1 Rules of the game

In this section the specific rules of Flag Hunter are desdrilhésted below are the
overall rules, and in the following subsections a detailedatiption of the rules
for movement and scoring is presented, along with the mapeofame.

The game consist of two actors, playing against each otharadkor can
either be an agent or an opponent. Throughout the reporetheagent will
be used about the actor being trained.

The goal of the game is to capture the opponents flag, and trbagk to
the homebase.

The actors start the game at their homebases.

The game ends when an actor reenters its own base with theepiwoflag.

Map

The map the game is played on can be seen in Figure 2.1. ltidedinto10 x 10
tiles. The map is also divided up into five distinct rooms, ethtan only be reached
through a number of doors. The actor's homebases are placggpasite ends of



6 The Game

the map, why an actor must navigate through other rooms thréee opponent’s
homebase.

The map has 100 different positions. With two actors thahoaoccupy the same
tile, this gives100 x 99 = 9900 different states of the board. The actors can shoot
in the direction they face. This expands the state spag@i®x 4 x 4 = 158,400
different states. Adding the flags, this number is quadidibées both actors can
have the flag, one, or the other, can have it, or neither cam ihavhis gives a total

of 158,400 x 4 = 633, 400 possible states.

Figure 2.1: The map of the game

Actions

The game is turnbased, and a turn consists of one action.omsctn the game
include both movement and specialized actions for pickipgand putting down
the flag, as well as shooting. The actors act sequentiallis Mieans that the agent
acts based on the board configuration, and following, theooept acts based on
the new board configuration. The actions are divided into enwent actions, and
'behaviour’ actions.

There are four movement actionserth, south, east andwest. A move action

will move the actor in the specified direction, and aftervgatile actor will be

facing in that direction. Two actors cannot occupy the sataghtut can push each
other. Therefore, the agent moving into a tile already omlijpy the opponent
results in the agent pushing the opponent out of the tilehendirection the agent
is moving, and the agent will occupy the tile. The 'behavi@ations are pickup,

putdown and shoot. These actions can be performed at anydtinrgy the game,
but will only have a positive effect in certain states.

Shoot makes the agent shoot forward, in the direction it is facidgshot will
continue forward until it hits a wall, a base or the opponelitan agent



2.2 The opponent 7

carrying a flag is hit, the flag is returned to the base. An agentarrying a
flag is uneffected by being hit.

Pickup allows the agent to pickup the flag at the opponent’s base.nwhieesflag
has been picked up, it disappears from the base, and is duiyeel if the
agent loses it. If the agent performs the pickup action wherstanding on
the flag, the action has no effect.

Putdown allows the agent to put down the flag. If it is performed white hold-
ing the flag, it will have no effect. If the agent holds the opgot’s flag and
puts it down while standing on its own base the game is wonhdfagent
puts down the flag at another position the flag is returned écothponents
base.

2.2 The opponent

In this section the opponent that is be used to test/traimdfemt in this project is
specified. The goal of the opponent is to get the agent’s fldgetnrn it to its own
base, thereby winning the game. The opponent is not meaniriotie agent, but
should still be able to shoot. Since a simple policy for a wheteistic opponent in
this game, given the above requirements, is optimal, thatag@l not be able to
beat it. Therefore, it is necessary to be able to weaken thermmt. This is by
done specifying a probability, .,.4.m for the opponent executing a random action.
This means that ip,4,,40m = 0.1, the opponent will be almost optimal, but that one
of ten actions will be selected at random. An opponent With, 4o, = 0.9 will,

on the other hand, be almost random with only one in ten agti@ing according
to the policy.

Adding a degree of randomness in the opponents behavioursleat it is neces-
sary for it to be able to navigate at all positions on the magigiad of just going
from base to flag to base. This opponent is therefore desigsied a set of reac-
tion rules[Rab02]. This will allow the opponent to decidegatimal action based
on the state it is in following a, possibly random, move.

The opponent will reach the flag, by passing a number of chenigpon the way,
one for each side of a door, and one for each base. The chet&@oe the des-
ignated tiles on the map that the opponent will have to paggtdo where it is
going. Checkpoint are used because the map does not allogatiag from base
A to base B by comparing the horizontal and vertical posgiddowever, because
the checkpoints are all on the inside of room this approagtossible for navi-
gating to them. To select an action, the opponent first chédkgan shoot the
agent, second if it has the flag, third what room it is in, anatto if it is standing
on the rooms checkpoint. If the agent is standing on the @®ok it selects the



The Game

Room 1
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D2
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Cc2

Room 3 —

F1
F2

Room 5

Figure 2.2: The checkpoints the opponent use to navigate

designated action, otherwise selects to go towards thépbett. The rules of the
opponent’s policy are shown in Figure 2.3, and the checkpgiositions on the
map in Figure 2.2.



¢ if shoot agent possible thesmoot

e elseif has not flag

if in room 1

x if at E1 thensouth else goto(E1)
if in room 2

x if at C1 thensouthelse goto(C1)
if in room 3

x if at D1 thensouth else goto(D1)
ifin room 4

x if at A thenpickup else goto(A)

if in room 5
x if at F2 thennorth else goto(F2)
e elseif has flag
— ifinroom1

x if at E1 thensouth else goto(E1)
if in room 2

x if at B thenputdown else goto(B)
ifin room 3

x if at C2 thennorth else goto(C2)
ifin room 4

x if at D2 thennorth else goto(D2)
if in room 5

x if at F2 thennorth else goto(F2)

Figure 2.3: The rules for the opponent







Chapter 3

Reinforcement Learning

In this chapter | go through the basics of reinforcementrlieay, Markov Decision
Processes and Q-learning. Thereafter, two hierarchic#thads will be compared,
and the MaxQ method is described.

3.1 Markov Decision Process

A Markov Decision Process (MDP) is a 4-tudlg, A, T', ).

S is the set of states

A is the set of actions

T:85 x A— Sisthe transition function

e R:S x A— Risthe reward function

An MDP respects the Markov property that states that allsiteoms in any given
state only depend on the current state, and that the histosyates therefore is
irrelevant [RNO3].

An MDP works in discrete time. This means that each state eamdwked by a
time ¢, and the following state as time+ 1. Since the game is turnbased it will
function in discrete time. A move is made a timeand, because all agents move
at the same time, the following at tindet- 1.

Since the game is turnbased, and as such runs in discreteatstage is the position
and direction of all players, and whether the flags have beeg up or not, at the
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given time. In Figure 3.1 an agent in stateiith A = {north, south, east, west}
performs the actiomast and goes to the staté.

|
4=

!

]

Figure 3.1: A state and an action

When dealing with a deterministic scenaficand R are deterministic. This means
that an agent in state performing actiona always will go to the same staté.

The agent movingast in Figure 3.1, with no opponent, can only reach the state
positioning it one tile east of where it was before. Howeireg non-deterministic
scenario an agent performing an actoim states only knows a probability dis-
tribution of what states’ to reach. This means that an agent in a scenario with
an opponent making a simultaneus move, can reach one of tmgiljle states,
depending on the opponents action, this is shown in Figute Bherefore, it is
necessary to extend the transistion functions with the gty of reaching each
possible state.

There are different notations for expressing the probigbdf the resulting state
[SB98] [Mit97], but in this report the notation used in [D@ds chosen. Equation
(3.1) gives the probability that when in the current stgteés s, and the current
actionay is a, the next state; , ; is s'.

P(s']s,a) = Prisi1 = s'| st = s,a; = a} (3.1)

Though the reward function is, usually, deterministic, #xpected reward is de-
pendent on the state the agent will reach. Therefore, agdhsition function in
the non-deterministic scenario returns a probabilityritistion, can be expressed
as

Re g = E{rii1 | st =s,a0 = a,8141 = 51} (3.2)
In Figure 3.2 agent A, can get a reward by moving-th and thereast, if agent
B movessouth. However, if agent B does not moveuth, the reward will be
zero. If B is an ’intelligent’ agent it will most likely choose not to m® south, but
the agent described in Section 2.2, will not react dependmthe position of the
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agent. The expected reward, followingharth action, but before the opponent’s
move, is given as the sum of the products of probability o€ingag that state and
the reward of reaching it:

E(s,m(s)) = Y P"(s'|s,a)V"(s')

s'esS

Figure 3.2: A state with two agents

A non-deterministic MDP will create a tree of states, sinoerg action can lead to
several different states. Therefore it is not possible td &rfixed path to the goal,
and it is therefore necessary to have a policy that consalepossible states. The
situation of the game is illustrated in the backup diagrarfigure 3.3. Because
there is an opponent in the game, following each action tleatagan be in four

different states when making its next move.

own  opponent own
move move move

Figure 3.3: Back-up diagram for the game in this report

3.2 Reinforcement Learning

Reinforcement learning is based on the principletriaf-and-error. This implies
that the agent will update its behaviour based on its perdioice. The performance
is here quantified as a reward which can be either positivegative [Mit97].

The purpose of reinforcement learning is to learn a policy,S — A, which will
tell the agent what to do when in a specific state. The aim ofliaypis to get the
highest possible reward, by reaching a goal state. In thepbeain Figure 3.2 a
goal state for agent A could be a state where it could shoajeaiteB.
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To be able to deal with delayed reward it is necessary to be tabtalculate the
present value of a future reward. Therefore the reward disctactor, ), is intro-
duced. The discount factor is a value between 0 and 1, whigsghe discounted
reward dependent on the number of steps to the goal stateacduenulated dis-
counted reward for following a policy with infinite horizoreginning in state; is
given by

(0.0)
VT (s¢) =714+ yree1 + 742 = Z YTt (3.3)
i=0

~ can be used to determine whether to prioritize a fast rewagbdor the future,
but greater reward. A small value will make the agent go for the faster reward,
since the discounted rewards are small due to the factongk tavalue will make
the agent more prone to go for a greater, but later, rewartheagiscounted rewards
are not as diminished.

Whereas (3.3) deals with an infinite horizon, scenariostéiat deals with other
situations. Tic-Tac-Toe is played with a maximum of 9 tunukijch fills the board
[SB98]. This means that the value function should deal wifmiée horizon, as
shown in (3.4).

h
V(1) = D reg (3.4)
i

Solving the FlagHunter game will, in its pure form, deal watinfinite horizon, as
it can, theoretically, continue forever.

The optimal policy is the policy that returns the greatesiuaculated value.

™ = arg max V7(s), (Vs) (3.5)

Figure 3.4 shows an optimal strategy for a single agent imglgied and deter-
ministic scenario. Agent A have to get to Base B to pick up thg,ftherefore the
optimal policy is the policy that gets it there the fastest, in the fewest steps. The
value for performing the strategy, givern= 0.9 is

VT=040.9-0+0.9%-100

A problem with thel/* value function is that it requires knowledge of the nextestat
', given an actiors. SinceT', in the non-deterministic case, returns a probability
distribution rather than the resulting state, #héfunction cannot be used. There-
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T

gl el i

4+ A

T -] |
(@) (b)

Figure 3.4: (a) An optimal policy for a single agent (b) theim@l behaviour for
agent A

fore it is necessary to examine another, more appropriatéoreement learning
method. The following section will examine Q-learning.

3.2.1 Q-learning

Q-learning is a reinforcement learning method that allowsagent to learn an
optimal policy without knowing thd” and R functions [Mit97]. The Q function
evaluates the immediate reward of an action, and the diseduaward of follow-

ing the optimal strategy afterwards.

Q(s,a) =r(s,a) +yV*(d(s,a)) (3.6)

This means that the optimal policy can be rewritten as:

7 (s) = arg max Q(s,a) (3.7)

From (3.5) and (3.7), (3.6) can be written as a recursiveidant

Q(s.a) = r(s,0) + ymax Q(3(s,a), ) (3.8)

The recursive behaviour of (3.8), means that it is only nemgsto maintain in-
formation about the&) values for each state. This can be done using a table with
entries for each individual state. Therefore, when saigcthe optimal action in
figure 3.5, the) value is given as, with a reward for pickup of 100, and af 0.9:

Q(s,a) =0+ ~v100 =040.9 - 100 = 90
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When learning, the&) training rule (3.9) is the learners estimate of evalue,
since the actual value is not necessarily known. The valtiéy(e a) are stored,
and serve as the learners hypothesis of the world.

Q(s,a) — 7“+7msaxQ(s',a') (3.9

There are different ways of selecting the next action, ddipgnon whether to

explore or exploit. This is discussed in the next sectionsoAklternatively, the
table can be initialized with random numbers instead ofeerd his can make the
agent more prone to explore the far reaches of the game, ia¢g values of the

unexplored states are comparable to the known.

Figure 3.5: The evaluation for the optimal action

3.3 Exploitation vs. Exploration

When an agent is training to learn a policy for a given scendtie strategy for
selecting an action can determine how much of the stategpacagent actually
meets. This is generally referred to as the exploitatiquigmation dilemma.

Exploration is to explore the lesser known states of the scenario.

Exploitation is to exploit the known states, to maximize the immediatearelw

Selecting the action with the greate3tvalue will make the agent prone to go
for the immediate reward, and not explore. This can be a probif the table
is initialized with zeros, as it can make the agent repewteeturn to the first
reward/goal state it encounters. Also, even with a fullyatpd table, the agent
can ignore a greater reward for a smaller, but closer one.

An alternative method for selecting an action is choosingag te allow it to occa-
sionally select an immediately less desirable action [Vit9

Q(s,a:)
Plafs) = (3.10)
Z] kQ(S:a])
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This gives a probability P for choosing from states, based on thé&. Thek,

k > 0, value is a constant value, determining the agent pronehoosing large
or below averagé) values. A large: will give a larger probability to selecting an
action with a large), and a smalk will give a larger probability for choosing an
action with a smallef) value.

The need for exploration, however, is mainly present, wihenaigent is still learn-
ing. If the agent already has learned an optimal policy, alogatory strategy for
action selection will only make the agent perform less thptineal. When the
agent has obtained an optimal policy, it should use an gimatrategy for action
selection, to take advantage of the optimal policy.

3.4 Hierarchical Reinforcement Learning

The methods discussed above, all basically regard thesgiate as a simple table.
Therefore, a long sequence of actions can be necessary torg@fstart state to a
goal state. A way to limit the number of actions necessargaor a policy is by
using hierarchical methods. In the following, two diffetdmerarchical reinforce-
ment learning methods will be presented and discussed éar iflevance in this
project.

Using macro-actions

Solving a MDP using macro-actions uses a 'flat’ hierarchgtelcture, with two
layers[HMK*98]. This is done by dividing the state space up into smatigions,
and solving an abstract MDP taversethe state space.

A macro-action is a local policy found for each individuagien, which is executed
when the agent is in the region. The borders between indwiegions are defined
as peripheries. The entrance peripheries are the statdindgeato the region, and
the exit peripheries are the peripheries leading out of égén.

The abstract MDP consist of the periphery states, and uses#tro-actions as
transition functions between them, leading from an exitghery state to an en-
trance periphery state. A policy for the abstract MDP, thenstitutes a macro
policy for the original MDP.

In [HMK 98], a1l x 11 map consisting of 11 rooms in a maze structure, is used
to test the method. A non-uniform cost is assigned to eadh, &cept the goal
state. The purpose is minimizing the expected cost of regctiie goal state. A
solution using macro actions and an abstract MDP is comparadolution using
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a flat MDP. The results show that the solution using an akisii@&xP converges
much faster than the solution using the flat MDP. Howeveratbstract MDP did
not find an optimal policy.

MaxQ

The MaxQ method uses functional decompositioning to rediieeriginal prob-
lem into a number of smaller tasks, that are hierarchicatlgnected. This pro-
duces a tree of tasks where all leafs are the primitive astadrthe original prob-
lem.

A task in the tree regards all child nodes as actions. A pdiicyeach task is
found, and executed by traversing the tree until a leaf nedest, and the action is
executed.

In [Die00], the MaxQ method is tested with an example of a &ad a passenger
on a5 x 5 map. The purpose of the test is for the taxi to pick up the pagse
and transport it to a designated location and putting himrdolie solution using
MaxQ is compared to a solution using Q learning, which shdves the MaxQ
converges to the optimal solution more twice as fast.

The two methods presented above, both appear to be fastetréttitional rein-
forcement learning. The choice of what method to use, iscbasehe perceived
gain by decompositioning the Flag Hunter game, using eitiethod. The solu-
tion using macro-actions seems to give a huge advantaggarenhto using a flat
MDP, however, may not be equally advantageous for Flag Hufiee example
used in [HMK"98] uses many rooms, which gives it very small sub-MDPs. The
functional decomposing of MaxQ, it more comparable to Flagtdr. The goal

of Flag Hunter is practical to divide into a number of dis¢reebtasks, to solve
individually. It is chosen to use the MaxQ method to train dgent to play Flag
Hunter.

3.4.1 MaxQ

MaxQ divides the problem to be solved into a number of hidriaed subproblems.
Each subproblem is then again divided into subtasks urddntprises of only the
actions available in the original problem.

The MDPM = {S, A, T, R} is divided into a finite number of sub-MDR&/, . .. M, }
representing the subtasks. The subtaksis the root subtask, such that solving it
will solve the original MDPM . Throughout this report the subtask indgxwill

be used to denote the subtask. The hierarchical policy fasM,set containing a
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policy for each of the subtasks in M,= {7 ...7m,}

The subtask is defined as a 3 tuffle 4;, R;.

e T; € S;is a set of termination states. The subtdgkis only executed if in
a states in S;. If s is inT; the subtask is terminated. A terminatition state
need not be a goal state.

e A; is the set of actions that can be executeddn The action inA; can
either be actions im, or other subtasks.

e R, is apseudo reward functiot; specifies a pseudo reward for an action to
a terminal state’ € T;. The pseudo rewards are used to rate the desirability
of terminal states, by giving a low pseudo reward to a undbgrterminal
state, and a high to a goal terminal state.

Due to A;, the set of subtasks/, ... M, can be represented in a tree structure,
with M, at the root. Representing the set of subtasks as a tree divedumal tasks
are divided into two part; A maxnode that represents theah¢aisk, and a gnode
that represents the action iy a task can execute.

Decomposing the Flag Hunter game, the problem of gettingpipenent’s flag can
be divided into the subtasks pfoving to the flagindpicking up the flagPicking
up the flaginvolves executing the actiopickup andmoving to the flagnvolves
navigating to the flag by executing a sequence of navigaiitigres. The tree for
getting the opponent’s flag is shown in Figure 3.6.

QNavigateForGet|

()

MaxEast MaxWesht

MaxPickup

MaxNorth

Figure 3.6: A tree decomposing the task of getting the opptméag. The trian-
gles represent the maxnodes, and the squares represenbiiesq

The policy for every task, uses(@ value function to represent the expected value
of every actionz in A;. The @ function for the task, gives the discounted value
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for executing an action in states. The MaxQ decomposes the Q function into two
parts. V (s, a) the immediate reward for executing an actiom s, andC|(i, s, a)
the expected reward for finishing the taisk

Q(i,s,a) = V(s,a) + C(i,s,a) (3.11)

If the actiona is a primitive action, i.e.a € A, V(s,a) is the immediate reward
received in the state’. In getting the opponent’s flagelecting the pickup action
will return the reward for picking up the flag, if the agent farsding on it.

V(s,a) = ZP(3'|3,a)R(s'|s,a) (3.12)

If the agent selects thmove to flagthe V (s, a) returns the value for navigating to
the opponent’s base. This means that it will return the maxring) value for the
subtask.

V(s,a) = mazxlV(s,a) + C(i,s,a)] (3.13)

Therefore, the value fap(get flag, s, navigate) is written as the following, where
the actiona is the primitive action inA,qvigate -

Q(getflag, s, navigate) = maz|V (s,a)+C(navigate, s,a)|+C(getflag, s, navigate)

Learning algorithm

Learning a hierarchical policy using the MaxQ method meardirig () values for

all tasks, in order for the agent to reach its goal. The leagymilgorithms for the
MaxQ method work by applying the hierarchical structure.e Task at root level
selects an action in Ay in states. This again selects an action and continues till a
primitive action is selected. The chosen task continuet itinteets a terminating
state for either itself, or any ancestor task, in which caserininates.

The MaxQ-0 algorithm is shown in Figure 5.1. This works retgly, and is
called with the maxnodg and the state. If the maxnode is a primitive action, the
immediate reward is stored. It returns the number of actresiired to perform
the task, which for a primitive action is one.

If the maxnode is a sub-task, it will select an action, aneikecthe numbeN of
primitive actions required to execute it. T, s, a) is calculated ag™ V (4, s),
which is the discounted value for reaching the terminatiiages

A problem with this approach is that the information will @ys flow upwards in
the tree. In the Flag Hunter game, the agent will have to movkd flag and then
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function MaxQ-0(maxnode i, state s)
if ¢ is a primitive Maxnode

execute, receiver, observe state’
V;H—l (Z, S) = (1 — at(z))Vt(z, S) + at(i)rt
return 1

else

let count =0
while T;(s) is false
choose action a
let N=MaxQ-0(s,a)
observes’
Crs1(iy8,a) = (1 — ay(i))Ci (4, 5, a) + ar(i)yV Vi (i, 8")
count = count + 1
s=s'
return count

Figure 3.7: The MaxQ-0 learning algorithm [Die00]

pick it up. Using the MaxQ-0 algorithm for this, with the deaposition, shown in
Figure 3.6, the agent will enter the navigate task, and rertiegre until it reaches
a termininating task, by standing at the flag. It will theruratto the getflag node,
where it will choose between navigate and pickup flag. Therevior picking up
the flag, will propagate up the tree, but not down to the naei¢msk. Therefore, it
is necessary to add a reward for reaching the goal statdydanethod to converge.

In [Die00], this is done by applying the pseudo reward spedifor the subtask.
The pseudo reward is a value given to the desirability of greninating states.
A C is calculated, adding th& to the value for for executing the action, thereby
allowing the task to influence the value for executing the actian

Cli,s,a) =YV [R(s') + C(i,s',a*) + V(a*, 5)]
The action selecton is then selected based othe
a* = arg mz}x[é(i, s+ Vid,s)

The principal difference between adding the formal desionipof a pseudo reward,
and adding a reward to the game is considered to be neglighslthey both require
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a specification of the importance of the affected state dh@sen to use the MaxQ-
0 algorithm for testing the MaxQ method in this project. Thedwal for testing the
Flag Hunter game using the MaxQ method for training the ggermiresented in
Chapter 5.



Chapter 4

Q model

In this chapter the agent is trained using h&=arning method described in Section
3.2.1. In this chapter | will first explore the influence of thdividual rewards ir)
learning, by training the agent playing without an oppon&scond, based on the
optimal set of rewards found, the agent is trained by plaggginst the opponent.
The algorithm used for training the agent is shown in FigulgMit97].

For each state, « initialize the table entry)(s, a) to zero
Observe the current state
do forever
Select an action and execute it
Receive immediate reward
Observe the new staté
Update the table entry fap (s, a) as:Q(s,a) < r + v max, Q(s', a’)
5« s

Figure 4.1: The Q-learning algorithm

The agent is trained playing on the map shown in Figure 2.8giction 2.1. This
consists ofl0 x 10 positions, which are considered as states. However, diece t
agent is also dependent on the direction it is facing, thexdaur states for each
position on the map, as shown in Figure 4.2. This also meatsathorth facing
state can only be reached byarth action.
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X%

Figure 4.2: The resulting state of a movement action in tlreegal he number are
Q values, propagating from the goal state G, with reward &06@;y 0.9. The cross
symbolises the four directions the agent can face

4.1 No opponent

The purpose of training in this section is to examine the irgrwe of the indi-
vidual rewards given throughout the game. The graphs inctégpter, if nothing
else is stated, shows the accumulated number of actions tifdagent to finish a
game.

When playing without an opponent, the state space for thetagé@s position, its
direction and whether it has the flag or not. This giv88 x 4 x 2 = 800 states.
As there is no opponent, thehootaction is not necessary, therefore, the actions
available for the agent ar@orth, south, east, west, pickapdputdown The tests
are made with different sets of increasing numbers of regvartie sets are:

a: e Reward for putting down flag at base = 100

b: e Reward for putting down flag at base = 100
e Reward for losing flag = -10

c: e Reward for putting down flag at base = 100
e Reward for losing flag = -10
e Reward for picking up flag = 10

d: e Reward for putting down flag at base = 100
e Reward for losing flag = -10
e Reward for picking up flag = 10
e Reward for hitting wall = -1
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Though the exact values of the individual rewards are noomamt, some of the
relative values can have an influence on the learning. Iféerd forlosing the

flag is smaller than the reward fgicking up the flaghe agent will, most likely,
learn that the best policy is to stand at the opponent’s badeepeatedly pickup
and drop the flag, as it will give the highest Q value.

4.1.1 Exploitation

The exploitation strategy for training the agent works hyaals selecting the action
that returns the highest Q value, and if two or more gives #imeshighest value, a
random of these is selected. This means that the agent wdlyal seek the known
way to the goal state. The agent is trained with the sets candsvlisted above
using an exploitive action selection strategy. Figure f#@ass the test results for
all sets. Figure 4.4 shows the test results for setsandd. Figure 4.5 shows a
closeup of the converging of the four sets.

1le+08 T T T T

8e+07 B

6e+07 B

4e+07 | b

Number of executed actions

2e+07 B

0 1 1 1 1
0 20 40 60 80 100

Number of completed games

Figure 4.3: Result from training the agent without an oppnssing exploitation.
The results for sets, candd are hardly visible, becausetake far more actions to

finish. The graph fom is made from an average of 10 trials, and the rest are made

from 50 trials

Comparing Figure 4.3 and Figure 4.4, there is a noticiabiferdince. The agent
training with seta stands clearly out, by needing several million actions tisfin
the first few games. This is because the agent playing witla géll only learn
when it finishes the game. Playing with $efinishes the first game with far less
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Figure 4.4: Results from training the agent without an ogpdmising exploitation.
The sets shown ate c andd. The graphs are made from an average of 50 trials
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Figure 4.5: Closeup of the point of converging for all sengsexploitation.

actions, but it takes more games to convergebAearns to not putdown the flag at
other positions than the agent’s own base, it will alwayshehe base after fewer
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actions, but it does not propagate the information fastérat® converges faster
thanb, may be explained as the test fawas made with fewer trials, and may
therefore, to some extent, be noise.

However, the main difference is made by the reward for pigkip the flagc. Not
only does it finish the first game much faster than without gveard for picking
up the flag, it also converges in about half the number of ganié¢ss can be
explained as the agent will potentially learn the way to tlag ftluring the first
game, as it, everytime it puts down the flag at another posttian its own base,
can propagate the reward for picking up. Therefore, aftavadames, the agent
may only have to learn the way from the flag to its base. Theuifice betweea
andd is insignificant, which indicates that the effect for the asd/for hitting the
wall is minimal.

4.1.2 Exploration

The explorative strategy for selecting an action allowsdékection of an action
that does not have the higheStvalue. For training in this section the method
described in section 3.3 is used.

kQ(saai)

Plajls) = ———————
(az|3) Zj kQ(S,aj)

Figure 4.6 shows a result of training the agent with thedsaising values of
of 5, 10 and 20. The graphs show the number of actions to fihislgame. The
graph fork = 20 shows that the agent, having reached the goal, does notetmos
explore, why the behaviour is basically exploitive. Thegrdor &k = 5 shows that
the agent does require less actions to finish, but still egplextensively. During
the tests, & value is set to 5. This favours exploration, and does onlhiaixp
the known information slightly. Since the purpose of an exgiive strategy for
selecting an action is to explore, it may, depending:pnot converge in the sense
that it will settle on a constant number of actions for reagthe goal. Therefore,
the tests are made, such that the first 125 games use an ¢xplataategy, and
thereafter an exploitive strategy.

The agent is trained with the sets of rewards listed aboveguan explorative
action selection strategy. Given the poor performance, ainly b, c andd are
used. Figure 4.7 shows the results for dgts andd. Figure 4.8 shows a closeup
of the point of convergence for all three sets.

The overall results from training using an explorative @ctselection strategy are
very similar to the results from using the exploitive stggteThough training with
neither set, converges to a fixed valeeandd appear to converge after about 40
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Figure 4.6: Comparing the behaviour of exploration witHetiént values for k
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Figure 4.7: Results from training the agent without an ogpdmusing exploration.
The graphs are made from an average of 50 trials

finished games. Agaih is slower to converge thamandd. However, Figure 4.8
shows that there is a great difference between using thexple strategy for



4.2 Playing against the opponent 29

60 T

55 |

45

40

Number of executed actions

35 |

30 + [

25 L L L L L L L
0 20 40 60 80 100 120 140

Number of completed games

Figure 4.8: A closeup of the converging of the test using aicative strategy

action selection (first 125 games), and the exploitive (fitb games). However,
the figure also shows that the policy found by exploring is metessarily better
that the exploitive.

Based on the results, it is clear that fhiekup reward has a great impact on the
performance, by, more or less, halfing the number of triatsessary to converge.
Therefore, and though that wall reward shows little importance, it is chosen to
use all available rewards in the following section. Theeati#hce between using ex-
ploitation and exploration for selecting an action, seesry gmall, as the policies
obtained converges at about the same amount of executedscti

4.2 Playing against the opponent

Training the agent against the opponent will show both heatlent performs in
a changing environment, and also how it can perform agamspponent that can
try to win, and will interfere with the agent. When playingaégst the opponent,
the state space is expanded with the position, directionflagdof the opponent.
This means that the statespace inclugl#sx 100 x 4 x 2 = 640000 states. When
playing against the opponent, the shooting action is alslodged.

The results of training the agent against an opponent, argared to the results



30 Q model

of having a trained agent play against the opponent. Thisrig @y using a policy
for the agent found by training it without an opponent, andasding it to cover
all positions of the opponent for each state. The policiesifed are trained with
the rewards in sal. Playing against the opponent using a known policy, wilbals
indicate the usefulness of the action selection policiesrion training scenario.

The ) learning rule in Figure 4.1 will always overwrite the olgl(s,a), and is

therefore mainly suitable when the agent plays without ggooent. Therefore,
to be able to handle the uncertainty of the, non-optimalnggehooting, it is

necessary to expand ti&s, a) expression with the learning rate

Q(s,0) (1 - )Q(s.) + afr + y max Q(s', )] (4.)
1
YT 1T visit,

This will make the agent update tti¢ value depending on the number of times
the agent has been in the state. This means that if playingsigavery random
opponent, i.e. an agent with high probability for selectmmgandom action, the
agent can cross the opponent’s line of fire a number of timésowt being shot.
Without using (4.1), being shot in that situation will igeahe number of succes-
ful crossings, and make all but the most determined expleratgent avoid the
situation.

The tests made training the agent by playing it against tipeognt are made with
the reward setl. Added to this are the rewards for both shooting the oppoardt
being shot by the opponent. This means that the set used vieimg against the
opponent are:

e: Training by playing against an opponent, with rewards

e Rewards in sed
e Reward for being shot =-10
e Reward for shooting opponent = 10

f: Adopting a policy learned when not playing against an oppgneith rewards

e Rewards in sed
e Reward for being shot =-10
e Reward for shooting opponent = 10

The tests are again performed by using both exploitationeaptbration.
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Since the agent cannot compete with an opponent with an apsirategy, it will
instead play against opponents that are at different Iékais begin optimal. This
is done by using opponents that have 5 and 9 random actioriOpat described
in Section 2.2.

4.2.1 Exploitation

The exploitive strategy for training the agent is similartbe one described in
section 4.1. The results from settraining without previous knowledge is shown
in Figure 4.14. The results from si&tplaying using a known policy if shown in
Figure 4.11. In both cases, the number indicates the randssof the opponent.
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Figure 4.9: Result from training the agent against an oppbuasing exploitation.
The graphs are made from an average of 50 trials

Training the agent, Figure 4.14, shows that the agent padaiigthly better against
the most random opponerb. Though it is counter-intuitive, that the agent play-
ing against the most random opponent should converge ttestaan explanation
can be that the agent get to perform many actions in the eartyopthe game, and
therefore may manage to update enough states to be ablestattesin again, re-
gardless of the opponent’s action. However, it may conveagier, because it plays
many initial games. Another explanation can be that theresdom agent simply
plays better, and therefore wins the games faster, andihejiees the agent less
time to learn.
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Figure 4.10: Number of games lost, during training agaimpgtoment with 1 ran-
dom action. The graphs are made from an average of 50 trials

The results from playing with a policy obtained by traininghwut an opponent,
shows that the agent performs best against the near-optippainent. This can be
explained, as the games were played using the same politynan not bring the
agent and the opponent together. Comparing the graphsdanthier opponents,
shows that the agent performs slightly better against tastlandom. This can
be explained by the least random will spend more time neapditfe of the agent,
and therefore cause more interaction. Figure 4.12 showstiraagent was shot
most by during see5 which was the set that performed worst. Both Figure 4.11
and Figure 4.12, also shows that the agent has not improv@eitormance while
playing against an opponent. That the agent does not leawotd being shot, can
partly be explained by the use of the learning rate,This will make the change
more gradual, and can therefore inhibit the negative rewagdstate.

4.2.2 Exploration

The explorative policy used to train the agent to play adahmes opponent, is sim-
ilar to the one described in section 4.1. The results fromesehining the agent
against the opponent, are shown in Figure 4.13. The resolts playing against
the opponent using a known policy, are shown in Figure 4.15.

The results for training the agent against the opponentguskploration are su-



33

4.2 Playing against the opponent

SUONoe PaINIaXa 40 JaquinN

200 300 400 600 700 800 900 1000
Number of completed games

100

Figure 4.11: Result from playing with a policy obtained bgiting without an

opponent, and using an exploitative action selection polic

10ys Sawi Jo JaquinN

500 600 700 800 900 1000

00
Number of completed games

300 4

200

Figure 4.12: Number of times the agent has been shot, wtalgng with a policy

obtained by training without opponent.
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Figure 4.13: Result from training the agent against an oppbusing exploration.
The graph is a average of 50 trials
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Figure 4.15: Result from playing the agent against an opponsing a policy
obtained by training without an opponent.

perior to the similar results for exploitation. The bestfpanance is against the
least random opponent, which is because this allows it teeraften reach a known
state, and therefore propagate the information of the msvafrhe setgelandeb
appear to converge after a number of games comparable t@awioghan opponent,
whereae9does not appear to have converged after 200 won games. THuarfea
the explorative agent performing so well, is that the exgtore action selection
allows it to explore several new states, during a single game

Playing against the opponent using a known strategy is cabfgato the perfor-
mance using exploitation. Though the agent finishes all gaafter no more than
about twice the number of actions as for playing against mmopnt, it does not
appear to learn adapt. Because the policy was trained ageairgpponent, it did
not include rewards for shooting. However, the agent, ev&nguan explorative
policy, did not select to shoot the opponent.

Based on the performance of the agent in playing against pongmt, it can be
concluded, both that there is a difference between usingxplomtive strategy
for action selection, and an exploitive strategy. Anotheinpfor concluding is
that it is not advantageous to train the agent without an oppb The results in
Figure 4.15 show that the agent does not manage to alterhts/imair to include
the opponent. Therefore, even though the number of actised with the known
policy, the best way to train the agent, is to let it learn @yphgainst the opponent,



36 Q model

and thereby learn to interact with it.

4.2.3 Summary

The Q learning method was examined regarding its abilityetori and to adapt.
The ability to learn was tested by seeing how dependent it e rewards avail-
able, and the difference in learning between using an ey#oaction selection

policy and an explorative policy. It was found that the agemilemented with the

Q learning method was very dependent on the rewards avajlabt also that ap-
plying rewards to divide the learning into smaller parts ocaore or less make the
agent converge twice as fast, and finish the first game mutdrf&@omparing the

importance of the action selection strategy showed thaethvas little difference

in the obtained policy without an opponent, and that neitvees optimal. However,

when training against an opponent, the explorative polroyed superior, by con-
verging about twice as fast for against a mostly random oppprand even faster
against more less random opponent. The ability to adaptesssd by training the
agent without an opponent, and then playing it against aomgmu. Neither the

agent using an exploitive action selection policy, nor the asing an explorative
policy learned to adapt to the opponent. The explorativaniadiel not manage to
shoot.
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MaxQ model

In this chapter the agent is trained using the MaxQ methods iidone by first
training it without an opponent, and secondly playing agiaihe opponent intro-
duced in Section 2.2, at different levels of randomness.

The MaxQ algorithm used is the MaxQ-0 algorithm, which isvghadn Figure
5.1 [Die00]. The MaxQ-0 algorithm distinguishes betweemyive and non-
primitive tasks. The primitive tasks, or the actions, areaexed immediately, and
the immediate reward (a, s) is stored for the state. The non-primitive tasks are
made up of other tasks, which are executed. This continudsayprimitive task is
reached and executed.

The non-primitive task updates the value till terminatifi@is means that informa-
tion travels upwards in the tree. This also means that a télskeguire a reward
for reaching the terminating state to be able to learn a politiis can be seen as
an unfair advantage compared to tjdearning, and all comparisons between the
two should be done with the set f@rlearning where there is a reward for pickup.
However, it also reflects the difference between the two ough Because the
MaxQ method uses functional decomposition it is alreadytéichto performing
the given subtask. Therefore, even if it is not learning,ilt always terminate the
navigation task when reaching the terminal state.

The action selection is done using pure exploitation by icigpthe actiona that
has the highesf)-value. The() value, is the sum o¥/, the immediate value of
executing an action, and’, the value for completing the task afterhas been
executed.

Q(i,s,a) = V(a,s) + C(i, s,a)
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function MaxQ-0(maxnode i, state s)
if 7 is a primitive Maxnode
execute, receiver, observe state’
Vi,s) =r¢
return 1
else

let count =0

while T;(s) is false
choose action a
let N=MaxQ-0(s,a)
observes’
C(i,s,a) = vV (i, ")
count = count + 1
s=s'
return count

Figure 5.1: The MaxQ-0 learning algorithm [Die00Q]

If @ is a primitive action,V (a, s) is the reward for executing it. If is a non-
primitive action,V is the highest) value for the subtask. This means, given the
tree in Figure 3.6V (a, s) for Getflag is

V(get,s) = max[V (a, s) + C(get, s, a)]
If the the highest value was for navigaié(get, s) is
V(get,s) = max{max[V (apqy, s) + C(nav, s, anq)] + Clget, s, a)]

a Anav

5.1 No opponent

The purpose of training the agent to play without an oppoigetd examine the
influence of the individual rewards available for the agdifis is done by training
the agent with different rewards. Training the agent to glas game using the
MaxQ method, requires creating a task tree. The tasks nem@elisted below,
along with the terminating states and actions availableéah.
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Capture flag: o Acyprurefiag = {Get flag, return flagtobase}
o T = {putdown flagatbase}

Getthe flag: e Ageifiag = {Navigatetoflag, pickupflag}
o T = {pickupflag}

Return flag to base: e A,ciurnfiagiobase = {navigatetobase, putdown flag}
e T = {notholdingflag}

Navigate to flag: e A, upigatetofiag = {n0rth, south, east, west}

e T = {reaching/standingatbase}

Navigate to base: e A, qyigatetobase = {n0rth, south, east, west}

o Thavigatetobase = {reaching/standingatbase}

Ordering the tasks into a tree, gives MaxQ tree shown in EiGL2.

MaxGet
[QNavigateForGe} [QNavigateForp

MaxNorth MaxEast MaxWest

Figure 5.2: MaxQ tree for playing with no opponent

The sets of rewards used in the training are listed below. iftligidual rewards
are the same as was used in chapter 4, except foredoeh reward. Thereach
reward is given for reaching the terminate state for nauiggat This is added to
enable the agent to learn to navigate, as it would otherwoseeable to propagate
information back through the navigation policy.

a. e Win =100
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e reach=1

b: e Win =100
e reach=1
e pickup flag = 10

C: e Win =100
e reach=1
e pickup flag = 10
e lose flag =-10

d: e Win =100
e reach=1
e pickup flag = 10
e |ose flag =-10
e hitwall =-1

The results for training the agent with the rewards in @eind b are shown in
Figure 5.3 and the results for setandd are shown in Figure 5.4.
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Figure 5.3: Training the agent with no opponent. The grapbsewnade from an
average of 50 trials

The results for training the agent using the MaxQ algorithrave that the agent
using all setsato d, converge after a number of games comparable to the better Q
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Figure 5.4: Training the agent with no opponent. The grapbesewnade from an
average of 50 trials

learning tests. This can be explained as the MaxQ method fikecthe Q learning
with a reward for pickup, learns a policy for reaching a suddgdt does not learn
noticably faster than the Q learning, because the agenotanop the flag unless
standing at either base. Therefore, the agent will onlynl@amnew step towards the
base, after putting it down at the base, and only propagatstbrmation one step
at the time.

The number of actions needed to finish the first game, usirggtdlof rewards, is
a vast improvement compared to the Q learning. That theyradlHithe first game
in less than 3000 executed actions, compared to 100,000eor rilions for Q

learning, is because of the division into subtasks. Bectugsagent, after finishing
reaching the flag, can only put it down while choosing betweavigating to its

own base, or putting down the flag, the agent can only lose dlgenthile standing
at either base. Therefore, because an action is only pegtbrnvhen a primitive
task is selected, the only ‘'vasted’ action possible igpilckupaction in theget the

flag task, while standing at the agent’s own base.
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5.2 Playing against opponent

The purpose of playing against the opponent is both to exarmow the agent
can learn given the enlarged statespace, and also how iparibrm against an
adversary that will interfere with the agent. Whereas thst of these is primarily
a navigation task that can be performed with the given mdhbelsecond requires
a modification of the model to accomodate the interactioméetthe actors.

Specifying the model

The MaxQ tree in Figure 5.2 does not allow the agent to shoberéfore, it is
necessary to expand that tree with another subtdsii opponenat the same level
af Get the flagandReturn flag to baseHunt opponentlso requires a subtasks for
navigating to a position that allows shooting at the opptin€his can be done by
adding a QNod&Navigate to opponenvhich points to the Maxnode Navigate.
Hunt opponenalso requires the primitive acticshoot

The problem with adding another subtask is that the terntinatonditions for all
the other subtasks will change to allow the new task to bearhds this case it is
necessary to consider both the distance to the opponergpffanent’s distance to
its base and the distance to the agent’s own goal when giViagec If the agent is
too far away from a near optimal opponent it may not be ableaah the opponent
before it has returned to its base, and the game is lost. Hdkat gives chase every
time the opponent holds the flag, and is closer to its hometbasethe agent, the
agent playing against a near optimal opponent is dependetg ability to hunt the
opponent to win. This means that if every time the opponentadse to winning,
the agent stops trying to return, it will not benefit from tlaee random action by
the opponent, and instead attempt to learn to shoot the eppon

The tasks for playing against and hunting an opponent arershelow. The re-
lated MaxQ tree is shown in Figure 5.5. This was not implement

Capture flag: e Acyprurefiag = {Get flag, return flagtobase}
o T = {putdown flagatbase}

Getthe flag: o Ageipi0g = {Navigatetoflag, pickup flag}
o T = {pickupflag}

Return flag to base: e A,ciurnfiagiobase = {navigatetobase, putdown flag}
e T = {notholdingflag}

Hunt opponent: e Apyniopponent = {navigatetoopponent, shoot}
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e T = {notholdingflag}

Navigate to flag: e A, qvigatetofiag = {n0rth, south, east, west}

e T = {reaching/standingatbase}

Navigate to base: e A, qyigatetobase = {n0rth, south, east, west}

® Thavigatetobase = {reaching/standingatbase}

Navigate to opponent: e A, igatetoopponent = {north, south, east, west}

e T = {inpositionallowingtoshoottheopponent}

QShoot opponent

MaxGet M
[QNavigateForGe} [QNavigateForp

MaxNorth MaxEast MaxWest

Figure 5.5: MaxQ tree for playing with an reactive agent

Testing

In this section the agent is tested, first by training it agbapponents with 5 and 9
random actions out of 10. This is to examine how well the Mar@islwith a larger
statespace. Second, by applying it with a policy obtainedrdiyning without an
opponent. This will show how well the MaxQ model adopts thécydo include
the opponent. The tests in this section are performed ubmgnodel specified in
section 5.1.
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5.2.1 Without previous knowledge

As the agent cannot shoot the opponent, training it agamsbpponent, should
make the agent try to win the game, and avoiding being hitinifrg the agent to
play against an agent is done with full set of rewards, ande¥vard for being shot.

e: Training the agent against an opponent

e reward set

e being shot =-10

Figure 5.6 shows the number of actions to win a game for tgitiie agent playing
against an opponent with 5 random actions. Figure 5.7 shiogvsimilar results

for training the agent against an opponent with 9 randonoastiFigure 5.8 shows
the number of times the agent lost before begin able to wimaega

35000 T T T T T T T T T
e5

30000 1

25000 1

20000 R

15000

Number of executed actions

10000

5000

0 Muﬂllhhuhﬂul‘l\mdh l‘l..m il “JLLMM.HI}JM LA U‘.nnimh L il 4l .‘lhmuh AT

0 100 200 300 400 500 600 700 800 900 1000
Number of completed games

Figure 5.6: Results from training the agent against an oppobwith 5 random
actions. The graph was made from an average of 50 trials

Comparing Figure 5.6 and Figure 5.7 shows that the agent srtoweards converg-

ing faster for the least random agent. It requires more stat¢he initial games,

because the least random actions will finish the game fastarthe most random,
and therefore the game is restarted more often. Howevesausache opponent is
less random, the agent will more often meet known states.
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Figure 5.7: Results from training the agent against an oppbwith 9 random
actions
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Figure 5.8: Number of lost games, while training the agemiresi an opponent

5.2.2 With previous knowledge

Playing with an agent that has been trained without an opgpmall show how
the agent can adapt to a new situation. The policy for thetagea obtained by
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training it with the full set of rewardsd, as it was found to be the set that gave
the best performance. The set of rewards used for playinosigdie opponent is
shown below.

f: e win =100
e reach 1
e pickup flag = 10
e lose flag =-10
e being shot =-10

Figure 5.9 shows the number of primitive actions executddrbe¢he agent finishes
a game, when playing against the opponent with 5 randomractiégure 5.10

shows the number of primitive actions for playing againg tpponent with 9

random actions. Figure 5.11 shows the number of times thet agges shot before
finishing a game, playing against the opponent with 5 randctiorzs.
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Figure 5.9: Results from playing the agent, with a policy fioropponent, againt
an opponent, with 5 random actions. The graph was made froavenage of 50
trials

Figure 5.9 shows that the agent does not adapt well to théi@aétr the opponent.
Compared to Figure 5.10, it is seen that the agent perforrsisdgainst the most
random opponent. Figure 5.11 shows that the agent appeasethpt to avoiding
being shot. The many actions may be explained as the knovicypsiweakened
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Figure 5.10: Results for playing the agent, with a policyrioropponent, against
an opponent with 9 random action. The graph was made from erag® of 50
trials

because the agent is shot at different positions on it, aecefibre try to avoid
those.

5.3 Summary

The MaxQ was found to need ar extra reward to be able to leamavimate. This

reward was given for reaching a terminal state in the nawigagubtask. The MaxQ
learning method was examined regarding its ability to leand to adapt. The abil-
ity to learn was examined be testing the it without an oppgneith different sets

of rewards, and against an opponent with the full set of rdaafhis showed that
the MaxQ is not very dependent on the rewards, though it wooldbe able to

converge without the reward for terminating the navigatetask. Playing against
an opponent required adding a new subtask, to allow the dgestioot the op-

ponent. However, this has not been implemented. Playinmsigdie opponent,
showed that the MaxQ performed comparable with the Q legragent using an
exploitive strategy for action selecition. The ability tdegt was tested by training
the agent without an opponent, and using that policy to ptmrest an opponent.
This showed that the agent could adapt to avoid being shogitdunot appear to

converge to a fixed level of actions.
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Figure 5.11: Number of times the agent, with a policy for npapent, was shot
while playing against the opponent with 5 random action. gitagph was made as
an average of 5 trials



Chapter 6

Implementation

In this chapter | will describe the implementation of the garand the learning
methods used. | will first go through the overall structurehaf game, and second
describe the Q learning, and third the MaxQ learning.

6.1 Implementation of the game

The game has been implemented to function as simple as [gssslit is not part
of the problem to be solved. The game consists of the boaedppbonent, and a
class for handling the graphics.

The board class is the central class, which handles the actions matteelactors,
and returns the rewards. To be able to handle collisiondiipgsand shoot-
ing, the board stores the positions, direction and flag statboth agent and
opponent.

The opponent is called with the positions of both actors. Based on thiseit
lects an action based on the rules in Figure 2.3 in Section Pi& go to
checkpoint function is shown in Figure 6.1.

The game was implemented using C++. This was chosen botlusedtis a
language | have had some experience in using, and, becagsgbject oriented,
was suitable for handling the task.
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if south of checkpoint and north possible thsaorth

else if north of checkpoint and south possible tmuth

else if east of checkpoint and west possible thexst

else if west of checkpoint and east possible thast

Figure 6.1: Pseudocode for the goto function used to nawity@t opponent towards
a checkpoint

Q Board Opponer
1 -
4 —=
5 -
6 L
7 -
8 >
9 <

Figure 6.2: Overview of game process for Q learning

6.2 Q learning

The agent using) learning is implemented as a single class. It maintains the
statespace as an array of State structs, which again certdire number of visits

to the state, and an array for storing thevalues for each action. The statespace
is ordered by the positions, direction and flag status of eatbr, and before se-
lecting an action, the agent requests these positions fnenbdard. The flow of
information between the agent and the board is shown in Ei§La.

The individual points in Figure 6.3 are specified below.
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The agent method requests the state

The board returns the state

The agent method executes its action

The board returns the rewardand resulting state; |

The agent method requests the opponent to execute an actio

The board sends the state ; to the opponent, and requests its acton
The opponent returns its actien

The agent requests the possible reward of the opponetitsa

© © N o g &M w0 NP

The board returns the possible reward

6.3 MaxQ learning

The MaxQ learning method is implemented in a single claserdih, the Max and

Q nodes are put together and represented as methods. Taimdtm structure

of the Max Q tree, the navigate Q nodes are represented addinali methods,

that calls the navigate method, with the task it has to perfofhe statespace in
implemented as an array of structs representing the ingilidtates. The state
includes the individual- tables, and/ (s, a) for the primitive actions.

Running the game in a number of subtasks, makes it importesnsure that the
opponent move in only executed once per turn in the game. Sorerthis, the
game processes the information as shown in Figure 6.3.

The individual points in Figure 6.3 are specified below.

1. An agent task requests the state

2. The board returns the state

w

The agent task selects an action. This is continued uptihative action is
selected

A primitive action executes an actian
The board returns the rewardhnd statest + 1

The primitive actions returns the number of executedadi parent task

S L

If subtask is not terminated, it requests an opponent move
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Q Board Opponer
1 -
4 —=
5 -
6 L
7 -4

©
y

A

Figure 6.3: Overview of game process for MaxQ

8. The board requests an opponent move

9. The opponent returns an action



Chapter 7

Conclusion

The purpose of the project was to investigate the performariaeinforcement
learning in a computer game context. This was specified tceronan agent’s,
implemented using reinforcement learning, ability to teand to adapt to a new
situation. It was decided to compare the performance of ditimaal reinforce-
ment learning method, Q learning, to a hierarchical methBdllowing a brief
comparison, the MaxQ method was chosen.

A game, Flag Hunter, was designed to function as an envirabfoethe agent to
function in. Flag Hunter was made to be a sequential and tasedgame, which
is played against an opponent. The purpose of the game wasptore the flag
from the opponent’s base and return it the agent’s own basee & would not be
possible to beat an opponent using an optimal policy, it waderpossible to set
the degree of randomness of the opponent.

Implementing the agent with both reinforcement learninghuds, the ability to
learn was tested by training the agent to navigate in the nidpeogame using
different rewards, and by training it against different oppnts. For Q learning, the
difference between using an exploitive and an exploratdt®a selection strategy
was also examined. Training the agent to reach the base dgfagent rewards
showed clearly that the MaxQ needed far less actions to reagpbal state. By
dividing the problem into smaller subproblems it reachealfttst goal state more
than 10 times faster than the Q learning. For the Q learnimgp# clear that the
number of rewards played a large role for the performancaining with only a
reward in the goal state of the game, proved very hard to finisbwever, both
methods converges after about the same number of games.

Playing against an opponent showed that the agent usingr@rgawith an ex-
plorative strategy for action selection, converges sigaiftly faster than both the
exploitive Q learning agent, and the agent implementedguslaxQ, though the
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MaxQ again finished the first games faster. To allow the agsimguthe MaxQ
method to shoot, would require the addition of a new subtagkdé model. This
subtask was not implemented, and it was therefore only lplest test the MaxQ
agent’s ability to avoid being hit.

The ability to adapt was tested by letting an agent that waiedd in a scenario
without an opponent play against an opponent. This wouldireghe agent to
be able to change its behaviour if interacting with the ogmin Since being shot
gives a negative reward, it should be able to avoid the sttmahat can lead to
being shot. Neither method proved very successful in amgithe opponent.

Based on the performance of the methods in the differentiteséin be concluded
that they have their different strenghts and weaknessesQMiaishes the initial
games very fast compared to Q learning, but does not appdaaridle playing
against an opponent as well as Q learning, with a exploratitien selection strat-
egy. However, it must also be concluded that none of the rdstigere able to
adapt satisfiably.
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