Henrik Thostrup Jensen
Jesper Ryge Leth

A Job Manager for the
NorduGrid ARC

Dat6 Project

February 2004 - June 2004
To be evaluated June ¥2004

Department of Computer Science
Aalborg University
Fredrik Bajersvej 7E
DK-9220 Aalborg
DENMARK

Faculty of Engineering and Science ‘&

Aalborg University

Department of Computer Science

TITLE:

A Job Manager for the
NorduGrid ARC

PROJECT PERIOD:
Dat6,
18t February 2004 -
14" June 2004

PROJECT GROUP:
B2-201/d603a

GROUP MEMBERS:
Henrik Thostrup Jensen
Jesper Ryge Leth

SUPERVISOR:

Josva Kleist
NUMBER OF COPIES: 6
REPORT PAGES: 102
APPENDIX PAGES: 18
TOTAL PAGES: 120

SYNOPSIS:

This report describes the development of a sys-
tem capable of managing jobs in NorduGrid. The
project is a continuation of a former project, [n
which a daemon capable of resubmitting jobs were
developed.

The report starts by giving an introduction to grids,
what they are, and how resource sharing is orga-
nized by creating virtual organizations. Hereafter
a general grid model is presented, along with ex-
amples of three different grid architectures. The
NorduGrid project is then described with regards|to
its political structure and architecture of the toolkjt.

After the description of the NorduGrid project, olrr
initial considerations for the project is describgd.
The need for a job manager is analyzed, our de-
sign philosophy is presented and features of the Job
Manager discussed.

Hereafter an overview of the Job Manager is pfe-
sented, where after the small modules in the Job
Manager are discussed. The next chapter descijibes
how Job Management is done by separating book-
keeping of jobs and actions into different modules,
making it possible to redefine the way jobs are dealt
with. Itis then described how to avoid the Job Man-
ager becoming a single point of failure, by making
other Job Managers acting as failover. Lastly a fu-
ture work chapter presents further ideas.

Finally we conclude that the Job Manager delivers
a framework for production systems while also pro-
viding applications with a simple interface to access
the grid.

Project Summary

This report describes the development of system capabl@apéging jobs in computa-
tional grids running the NorduGrid Advanced Resource Catorg NorduGrid ARC)
middleware.

Computational grids are a way of interconnecting high panfance computational
(HPC) resources, in order to be able to solve larger prohlEngsgeneral idea is based
on an analogy to the electric power grid, and that it shoulddmsible to connect to the
grid to use computational power. However grid technology iather new technology
and there is a long way to go before it will mature it into sudhaasparent system.

Most modern grids reminds of the batch systems from the tiofig®re, where a
job is submitted to a queue and executed, without interaaiothe part of the user.
Upon completion the user collects the output from the joker€rare however systems
that tries to implement a grid that are more similar to thecet of a supercomputer.

On of the most popular toolkits for constructing grids are @lobus toolkit and the
NorduGrid ARC is build on top of Globus extending and reptaseme of the Globus
components. The main elements of NorduGrid ARC is the In&diom System, the
Grid Manager and the User Interface. The Information Systeskes it possible to
monitor the grid and query the resources for informationutloe resources. The Grid
Manager runs on the frontend of the resources managing teeation between the
grid and the local resources and adheres to policies sdijotae User Interface is a
command line interface for the standard Unix shell; it makpsessible to submit batch
jobs to the resources connected to the grid and retrieve data

When a job is submitted it is possible to check the statuaitiita command line
interface or through a web portal. However in its currentridhe user interface does
not deliver any means of automatically responding to changthe state of the grid or
jobs without user intervention and neither does it providérgerface for applications
to interact with. It is these problems this project addresse

The decision to develop a Job Manager was based on expefiemea set of
experiments to evaluate if grids connected by the NorduBR€ was mature enough
to be used for processing and analyzing data from the LargidiaCollider, which
is being build at the European research center for high gnehgsics (CERN). In
this experiment a lot of time was spent monitoring jobs arslibenitting failed jobs
manually.

The job manager developed in this project delivers a todlrtf@nitors the grid and
responds to changes in the jobs and resources. It is thenceditidevelopment of a
former project, also developed by us, where we made a dadmadnduld monitor and
automatically resubmit jobs if the failed.

The goal of the project is to create a complete Job Managaratitomates tedious
tasks, is extensible, and delivers a clean interface makiegsier for application de-
velopers to take advantage of the underlying grid infradtmee. In addition the Job

Manager provides failover and supports caching and userattfiandlers (plug-ins)

The Job manager is constructed as a layer between the dppliead the grid.
It runs continuously, making it capable of monitoring jolmlaeacting to changes in
the grid. The Job Manager delivers the necessary functiomnth& application to use
the grid through an XML-RPC protocol, which lays on top of @B&L. The standard
NorduGrid credentials, i.e., X.509 proxy certificates, fameauthentication.

To use the Job Manager, the application submits a job, indha bf an xRSL
description, over XML-RPC. The Job Manager performs thesasary steps to submit
the job to a cluster fitting the description.

The NorduGrid ARC is single execution oriented, and eacle tnjob is submitted
it is assigned a unique jobid, as identifier. This means tiettare no way of tracking
a job through several executions. For the Job Manager to,wioikhad to be changed
and the concept of a job tag was introduced, in addition t@#igting job id. The job
tag does not change and is used by the Job Manager as a conssyeto keep track
of the job. Furthermore a lot of meta data is collected abdabae.g., resubmission
attempts, failed executions, and successful executions.

In addition to the basic features of the Job Manager, it hapatt for handlers,
which are plug-ins that extend or change the way the managetiés jobs. An exam-
ple of this is that it is possible to change the default sclerdwith a scheduler written
by the user.

Since grids are highly distributed and dynamic systems aiglriot desirable to
have single points of failure. In order to prevent the Job Bger from becoming
such, it is possible to start several managers to act ayailnanagers taking over the
management of the users jobs, if one should fail.

The Job Manager was developed in the programming languagei®Pfor two pur-
poses; to make it platform independent and to speed up tredajeuent process. Most
of the NorduGrid ARC is developed in either C or C++, breakivith this tradition
meant that time was spent writing wrappers and generatindirgs to the existing
NorduGrid ARC code base.

The project has focused on the development of the Job Majtagehere are some
changes to the NorduGrid ARC that are necessary for the neaub@éunction properly
in a production grid. Among these are; the Information Systhould be changed to
integrate the Job Manager like other resources in the grikdmgat possible to identify
and locate Job Manager running. The description of jobs énltifiormation System
should likewise be extended to support job tags. It would aks preferable to have
the Job Manager support multiple users, but due to Globusrdimcies, this would
require a massive reworking to make possible.

The project has showed that it is possible to provide mor@aced jobs control
for the NorduGrid ARC without many changes. Should the Jomadger be used in
a production system, some of the changes should be condidenethermore the Job
Manager makes it simpler to develop applications for thd,giue to the choice of a
protocol that is supported on a multitude of platforms amdjleages. The possibility of
using handlers with the Job Manager also makes it an exc¢elietiorm for performing
experiments with grid middleware, e.g., the performancditdérent schedulers.

Contents

1 Introduction 1
1.1 ExperiencesFromNGProxy 2
1.2 Scopeoftheproject., 3
2 Computational Grids 5
2.1 Why The World Need Computational Grids 6
2.2 Resource Sharing and Virtual Organizations 7
2.3 Grid Architectures 8
2.4 The need for Interoperability 10
2.5 A Generic Model for a Grid Architecture. 10
2.6 Grid Environments L L 12
2.7 SUMMANY . . oo e 16
3 The NorduGrid Advanced Resource Connector 19
3.1 The NorduGrid Design Philosophy 02
3.2 TaskFlowinthe NorduGridARC 20
3.3 NorduGrid Middleware Components 32
3.4 The Future of the NorduGridARC 28
4 Initial Considerations 31
4.1 TheNeedforaJobManager 32
4.2 Design Philosophy 33
4.3 FeaturesoftheJobManager 34
4.4 LanguageChoice 37
4,5 OtherConsiderations i 37
4.6 SUMMANY e e e 38
5 The Job Manager 39
5.1 JobManagerOverview 40
5.2 External Job Manager Dependencies 42
6 Job Manager Modules 45
6.1 Configuration and Session Management 45
6.2 Logger. 48
6.3 RPCServer e 49
6.4 InformationSystem 52
6.5 DataManagement. 55

6.6 Summary e 55

Vi

CONTENTS

10

Managing Jobs 57
7.1 Considerations
7.2 IntroducingJobTags
7.3 JobControl
7.4 Scheduling
75 Handlers.
7.6 JobManagement
T.7 SUMMANY . . o o e e e e e e e e e e e e e

Distributing the Job Manager 73
8.1 ISsues
8.2 Models for Distribution L
8.3 JobInformationandJobData.
8.4 DiscoveryMethods
8.5 Model for Distributing the Job Manager 83
8.6 Implementation
8.7 Summary e e e

Future Work 91

Conclusion 93
10.1 AchievingtheGoals.
10.2 Extendingthe NorduGridARC
10.3 Caching e
10.4 Language Choice e
105 InConclusion e

Proposal for a new User Interface in the NorduGrid Toolkit 97
A.l Introduction
A.2 The Existing UserInterface 79
A.3 Goalsand Requirements
A.4 NewUserinterface

A5 Roadmap e 100

The NorduGrid Command Line Interface 101

Generating SWIG Wrappers 103

C.l USINgSWIZ e 103

C.2 WrapperFunctions
NorduGrid Wrapper Interface 107

Application Protocol 109
E.1 Resource Management

E.2 InformationServices 110

E.3 DataManagement.

Analysis of deadlock when using Globus concurrently 113

Preface

This report is a master thesis written at The Department ah@Qer Science at Aal-
borg University. The main topic of study is distributed gyas and the project is con-
cerned about the development of an automatic job manageowior the NorduGrid
Advanced Resource Connector (ARC).

The projectis a continuation of work initiated in a previgueject, and builds upon
experience gained from this. Even though this project isrdinaation, knowledge of
the previous project is not a prerequisite, as the relevantepts and ideas will be
introduced and explained in this report as well. Readershé#wve already read the first
report can skip Chapter 2 and Chapter 3.

The reader is presumed to have knowledge of distributecesystand computer
science in general. Knowledge of computational grids ordd@rid ARC is not nec-
essary, as the concepts are explained in the report as thepap

The project is written under the supervision of Associateféssor Josva Kleist,
and we would like to thank him for input and constructiveici#m as well as making
it possible to meet the developers of the NorduGrid ARC. Iditah we would like
to thank Niels Elgaard Larsen, Jakob Langaard Nielsen arefniwaananen for be-
ing of valuable assistance and providing us with input, a, \ae the people on the
nordugrid-dicuss mailing list for assisting us and ansagmuestions regarding the
middleware.

Henrik Thostrup Jensen Jesper Ryge Leth

Chapter 1

Introduction

This project is in some respect a continuation of a profetbmatic Job Resubmission
in the NorduGrid Middlewar§40], which was completed in January 2004. That project
serves as the preliminary work to this project. In the prasgiproject a client which
handled resubmission in tHéorduGrid Advanced Resource Connec{bdiorduGrid
ARC), was developed and tested. This was mainly done as &pfamncept, setting
the stage for the development of a more advanced job manageood This project
describes the design and development of a full featuredcemdble of managing jobs
running on a grid, providing extended functionality and g@ntrol to the user.

The NorduGrid ARC is a middleware used for connecting higtiqyenance com-
puting resources to form a grid. By connecting resourcesangrid, the entire range
of resources resembles a giant batch system. This makessitp@to take advantage
of all the resources by enabling the user to submit jobs,éadlsources connected to
the grid, through a uniform interface. Computational gags a rather new technology
being used in the roughly same areas as traditional supeputimg, but other areas
are starting to appear. A more in depth discussion of thegecés as well as grid
technologies and the NorduGrid ARC can be found in Chapterd2Ghapter 3.

The NorduGrid ARC is primarily being developed to be usedhia area of high
energy physics and NorduGrid is one of several projectstiestto meet the challenge
of creating an infrastructure, to analyze data from the kadadron Collider being
build at CERN. In order to test the different middlewares being developesderies
of test-scenarios, known as The Atlas Data Challenge, haga devised [24]. Two
of these, Atlas Data Challenge 0 and Atlas Data Challengave heen completed. It
was the experience from this experiment that demonstraedéed for an automatic
production management system [49].

The problems found by the users of NorduGrid ARC was, thatis Whe respon-
sibility of the user to monitor the jobs running on the grid. dase of failure or other
abnormal circumstances, it is the users responsibilitske the appropriate action [49].
During NorduGrids participation in the Atlas Data Challerlg a lot of time was spent
manually keeping track of jobs, especially which jobs thad fiailed, and resubmit-
ting them. This is a task that should not require human irtetion and should be
automated.

Using this problem as a basis for our work in the previousexjwe developed a
daemon, NG Prox that was able to monitor jobs and automatically resubreitrtfin

1The European research center for high energy physics
2| ater renamed to NG Job Manager, due the general confusimit #ie word proxy in grid terminology.

2 Introduction

case of failure. The project and the development processsisrithed in [40].

1.1 Experiences From NG Proxy

The development of NG Proxy, provided us with experiencardigg the software,
and the usage of grid systems, especially the NorduGrid AREse lessons can help
us and since we do not have to learn the basics of grid and thdui&eid ARC; we
can use the time to focus on creating a more usable solution.

If grid computing is to have success it needs users, aftevidibut users, their is
no interest in the grid. therefore no grid. Easy access t@tlieis necessary for wide
adoption of the technology by the end users. The problenaisubers does not appear
simply because the technology is there, even though theylbmagfit from it. They
need some incentive or easy access in order for them to toyt tiod determine if it is
useful to them.

The introduction of a automatic production system on whiah dapplications and
users can rely for easy access to the grid, would bring theswsstep closer to the
grid. The need for this type of production system is also tvpruseful in many other
application areas than high energy physics. Also it allopgliaation developers to
“gridify” their applications faster, as a clean interfacgngple protocol and API) to
the grid is provided, delivering a higher abstraction layEine general idea of such a
production management system is shown on Figure 1.1. Thespstem should be a

Application Application | Application U| Apphcauon

Grid code Grid code ng user interface D

—SZ
7 R R

NorduGrid ARC middleware NorduGrid ARC middleware

() (b)

Figure 1.1: The Job Manager introduces an abstraction layer betweegrithand the applica-
tion, providing a clean interface to the application pragnaer and ease the development of grid
applications by providing easy access to common functignal

supplement to the existing user interface and not force a&rmomplex system upon
uses who have no need for it.

This approach of providing a tool working as a tier betweea dpplication an
the grid software have been proposed and used with varyeigres and degrees of
success by other grid projects such as PROGRESS [9], Ni@rfld/ and the EDG
Resource broker [21].

As previously discussed, NG Proxy was only developed as aeffmfeconcept and
thus there are some concerns regarding the further develojpom it, since it is not
geared for this. Therefore an implementation should starhfscratch. The need to
start from scratch is also made apparent by the fact thahdulie development of
NG Proxy, the list of wanted features grew; from conversaiaith people on the
NorduGrid discussion mailing list. The list of features\wyrgom a simple question of
resubmission, to more intricate aspects of job control. ¥tealso included features

1.2 Scope of the project 3

such as controlling NG Proxy remotely and handling diffeddnds of failure. How-
ever, NG Proxy was created primarily as a proof-of-concegtthus it is not designed
to handle the implementation of the features on the list.

1.2 Scope of the project

The project was started with a meeting with, the Danish paite NorduGrid ARC
developers. The ideas and thoughts from this meeting waewras a proposal for
a Job Manager for the NorduGrid ARC, see Appendix A, and pbsiehe Nordu-
Grid discussion mailing list for further ideas and commeritke feedback from this
posting made it clear, that there was different expectatand use patterns for an au-
tomatic production system, but it helped determining thesmimportant features and
requirement imposed on such a system.

The overall idea of the design and implementation presentiis report is to pro-
vide a better interface to the NorduGrid Toolkit for apptiocas to use and providing
extended functionality for them. Currently applicationgstuse a suite of simple com-
mand line tools, described in Appendix B, to interact witk tiorduGrid ARC. This
approach have several advantages due to its simplicityit bigo imposes significant
limitations on the task, a user without any programmingiskd able to perform. Itis
in light of this discussion, that we determine the scope ad$ of this project:

“To design and implement a general way of managing jobs artdraa-
tizing control over them and provide a clean and simple ifates for ap-
plications to use for interaction with the NorduGrid ARC.dkgbnally the
Job Manager should provide extended functionality alorth wiitomation
of trivial tasks, and provide assisting functionality togdipations (clients)
wherever possible”

Having determining the scope of the project, a introductiotihhe concept of computa-
tional grids, and a tour of the NorduGrid ARC is given in thexnghapters. Following
this, the design and implementation of the Job Manager im&qd and discussed.

Chapter 2

Computational Grids

This reportis focused on the concept of computational gedd in this chapter we will
clarify and explain the main concepts and ideas, one may finidg an exploration of
the jungle of computational grids and industry buzzwords.

At the moment it is quite possible that the word grid meansetbing different to
everyone. Over the last couple of years it has been hypedee@nybody seems to
have their own idea or understanding of what grids are. THees seem to be some
consensus, though, that is has something to do with teconthat utilizes distributed
and/or parallel computing. For instance, when Sun Micrtesys talks about grid, they
primarily mean clustering and load balancing [46, 47]. kg Oracle mainly mean
distributed databases [15, 48]. Because of this discrgpiamdll be explained what
we mean when talking about grids.

The term grid was coined in 1998, in the book “The Grid: Bluepfor a New
Computing Infrastructure” by lan Foster and Carl Kesselpzard it was used to de-
scribe a new computing infrastructure [31]. At the time thé&dGvas defined as:

“A computational grid is a hardware and software infrasttuce that pro-
vides dependable, consistent, pervasive, and inexpeasdass to high
end computational capabilities[29]

This was the beginning of the idea of “The Grid” a supercorepuatade up of every
computer on the Internet. An idea which still lurks in the ti@ha some people.

The name grid came from an analogy to the electric power grid,the idea was to
consider computational power as a resource, that couldddedrin the same manner
as electric power. On a historical note we observe that it matsthe discovery of
electricity, but the invention of the power grid that lauedhthe electrical revolution
and made electrical devices for everyone to own. The powediegrabled everybody to
get as much power as they needed without having to pay large slimoney for their
own generator.

A power grid is a dynamic heterogeneous infrastructure tvbansists of a network
with a lot of different producers and consumers connectdte groducers are power
plants which vary with respect to price and contributionenfra nuclear power plant
to a farmer with a single windmill in his back yard. The prodtcand consumers can
appear and disappear from the grid without notice. When durer disappears others
take over, without disruption in the service from the conswpoint of view. The
power grid serves all types of consumers, from private hbolkks to million dollar
corporations. All the consumers are connected to the samwempgrid, and uses as

6 Computational Grids

much of power they need, and only pay for the amount being.uBkid is one of the
key points to the success of the power grid; even though apoiamet is very expensive
and a large investment, the power is still relatively cheagne consumer [30].

The original vision was to view super computers (computalaycles) and other
expensive equipment such as analytical and special equipaseesources which ev-
eryone could have access to, by subscribing to the grid. gridswould consist of ev-
ery computer connected to the Internet, essentially aetingne supercomputer which
everyone could connect to, in order to use or contributeuess. By running soft-
ware on the grid, CPU cycles and other resources can be tjadelike power, and
consumers are being billed for what they use, and producerbeing paid for what
they contribute.

But — analogies can be a dangerous thing, and computationarps not electric-
ity, as they differ in several respects [30]. This is impatt# note this for a number of
reasons. First computational power is a highly volatil@tese and it cannot be stored
for future use as electricity. This is partly true for sompesg of electricity as well, e.g.,
wind mills which produce power when the wind is blowing, bitea the production
of electricity can be reduced by delaying conversion of gnée.g., coal and oil), until
needed. This cannot be done for CPU cycles that are lostyifdahlenot used immedi-
ately. This serves as a large incitement for developing i@aysde idle computational
power, but also speaks against the analogy to electricitg.ahalogy to the grid is also
not accurate in other aspects as there can be a number otdiffesources connected
to the grid, not just computational power, but at wide ranféifferent equipment.

Despite the difference, this was the vision of the peopldrukthe idea of com-
putational grids. Grid technology today is “a work in proggéand there are issues
regarding distribution, security, scheduling, scalajitand almost every other problem
imaginable when dealing with distributed systems on a laogde that has to be solved
to implement the vision of “The Grid”. Because of the the fediave shifted today,
from trying to create one large grid toward constructing kenand more specialized
grids. An example of this is sharing of resources among snghoups collaborating,
but spread geographically, to try to solve a subset of thblprmas and make a grid that
works, even though it is on a smaller scale and with a speaifipgse in mind. Some
predict that we will have a working grid, with these issuelvad, in a matter of a few
years, while others are not so optimistic.

2.1 Why The World Need Computational Grids

Under this rather pretentious heading, we will explain why think that grids serves
a purpose and are not just “hot air”. We will do this by depagtfrom the idea of a
global supercomputer, and look at computational grids feomore pragmatic point of
view.

The ordinary home user does not need a lot of computationetpeery often, and
they have no real need for high performance computing faslimost of the time. In
fact 70% of the time, a typical workstation in a corporateiemvment are idle [30].
However, in some situations even the ordinary user may neaska to a lot of comput-
ing power, e.g., when checking his or her stock portfolicasimilar demanding task,
a lot of CPU time is needed to make more precise predictiorikefate of change.
Here a subscription to a grid would come in handy by supplginglemand compu-
tational power. Looking beyond the ordinary home user, thditional users of high
performance computing (HPC), would benefit from the addedpmaational power of

2.2 Resource Sharing and Virtual Organizations 7

a grid. This benefit comes from the grid enabling the sharinexpensive equipment
between groups and organizations, for instance sciemtistédéed around the world to
ease collaboration and lower costs. Below we have sumnthwbat seems to be the
main reasons for developing computational grids.

e \We have bigger problems- The computational problems that needs to be solved
have become bigger, or the idea of solving problems comipuiaty has become
more wide spread leading to problems which needs more resstw be solved.
Even though we have bigger problems, our own resources dralways fully
used, but costs almost the same amount of money to operatevies idle.

e We need to save money HPC resources are expensive, and the acquisition and
operation costs can be brought down by sharing these resour@ grid. The
use of grid technology also enables users to solve problastsrfthan before,
due to extended use of resources. If institutions with sinfiroblems is given
the ability to pool their resources they can solve a giverbfam faster.

e We do not always have computational power at hand- PDAs and other em-
bedded devices have become more widespread during the gast, yand this
trend seems to continue. However PDAs still has limited cating power, and
having an infrastructure that enables access to HPC resetmam a PDA would
be beneficial and enable pervasive use of high performamogeting.

One of the requirements for these areas are the sharingainess and we will look
further into the concept of virtual organizations. A way teaéle corporation and
sharing of resources.

2.2 Resource Sharing and Virtual Organizations

The vision of creating an infrastructure that would bindetiger every computer on the
Internet into a single giant supercomputer is ambitiousnian administrative point
it raises a number of issues regarding security and shafingsources. Not only do
we need to share our resources, but we also needs to alloigriazede to run on our
machines without a chance to review it. Not everyone woushgjeveryone access to
their computational resources, and controlling accesssingle giant grid can become
troublesome, due to disagreement of who will get accessaawtiat. This concernwas
addressed by lan Foster and Steven Tuecke [31] and they sl grid definition
to take political and social issues into account.

“The sharing that we are concerned with is not primarily filkkchange
but rather direct access to computers, software, data, dhdraesources,
as is required by a range of collaborative problem solvingl a@source-
brokering strategies emerging in industry, science, angiregering. This
sharing is necessarily, highly controlled, with resourecevyiders and con-
sumers defining clearly and carefully just what is sharedp vehallowed
to share, and the conditions under which the sharing occArset of in-
dividuals and/or institutions defined by such sharing rutesn what we
call a virtual organizatiori [29]

This definition introduces the concept of a virtual orgati@a which has become a
fundamental concept of resource sharing in modern grids.

8 Computational Grids

A virtual organization is a group of institutions and userjo have decided to
share resources with each other. To do so they form a virtgalrozation, thereby es-
tablishing a relation of trust between the users and orgdioizs, forming a grid. The
users in the organization is able to use resources sharddsivittual organization.
An institution, user or resource is not necessarily tied single virtual organization,
since an institution may choose be a part of several virttgdmmizations, sharing some
resources to one, some to another, and some resources tedhmarone virtual orga-
nization [31]. This is illustrated on Figure 2.1.

Figure 2.1: A virtual organization consists of users an resources fremeal organizations, that
may not have anything in common on the organizational lapst from belonging to the same
virtual organization.

A running grid will have resources disappearing (e.g., e failure or resource
withdrawal), and appearing. The situation is the same fergjssince users can get
access to a grid, and have it revoked as well. This means tli gill have users
and resources appearing and disappearing, yielding ayhityimamic structure. Some
virtual organizations will be more dynamic than others, eaggroup of scientists may
form a grid to analyze data. The duration of such a virtuahaigation could last for
years, and only have a few users entering or leaving, whilerotirtual organizations
may be far more dynamic, e.g., a virtual organization couthyyaccess to every stu-
dent at a certain institute. This dynamic nature impose&icerequirements upon the
infrastructure. It must support an easy and automated wesgistering new users and
resources, while being able to cope with disappearanceso$ @sd resources.

Virtual organizations will most certainly play an importamle in the future of
grids, since they concern two of the most important thinggrids: Users and the
sharing of resources. Making virtual organizations easyréate and maintain are an
important aspect, among many, to have in a grid infrastrectfithey are to become
widely spread.

From this short explanation of a line of fundamental compaitel grid concepts,
we now examine the fundamental architecture of computatigrids.

2.3 Grid Architectures

This section discuss various grid architectures and censfibns that arise when build-
ing grids. We start by looking at a general model of a grid &@ectiure and move on to

2.3 Grid Architectures 9

issues that must be considered when building a grid. We finyshiving examples of
existing grid environments. The discussion in this secisdmsed on the discussion in
the previous chapter along with the models and discussi@septed in [30, 31, 35]. It
outlines a set of basic properties and capabilities thaitdbeagchitecture must provide.

One of the things to be aware of when designing a grid ardhitecis the entities
in a grid environment. In principle the main entities of irgst in a grid are users,
resources, and jobs. These entities have characteristiceeguirements which must
be taken into considerations.

e Users— are geographically spread, they are in complex shariregiogiships
with organizations and other users. They require easesef-authorization, au-
thentication, trust, and needs access to several gridsieba certain quality of
service.

e Resources- are heterogeneous, dynamic, and geographically spredsa); dre
not necessarily dedicated to grid jobs and requires finangthaccess control.

e Jobs— belongs to different users and may consist of mobile caatejdn to the
computing element. They may have secret content imposiisgneeds and
may need specific runtime environments to be installed.

The above list is only some of the characteristics and neddbe entities involved in
a running computational grid, but they illustrate the coaxgtly of such a system.

Looking at the definitions from the previous chapter, it iviolis that some of the
key elements in a grid is sharing, decentralization of aan@nd heterogeneous re-
sources. As an example of the problems and complexities wiraming in a grid envi-
ronment, a thing as the simple operation of executing a pragrn a grid is nontrivial,
as the input, output, and data has to be set up prior to theiggad35]. Fundamental
requirements for computational grids are.

e Scalable— The fundamental idea behind computational grids are tieat are,
or at least will become very large. Thus it is important the architecture and
technology upon which grids are build scale very well.

e Robust— As for other distributed systems the architecture musbbast. A grid
must be fault tolerant and cope gracefully with network aesburce failures,
providing consistent and dependable quality of service.

e Secure— A grid architecture raises almost any security issue ceabée. Since
a grid has no central control, and may span over several astnaitive domains,
the security requirements upon the architecture are impartThis is empha-
sized by the fact that the resource owners allows users tougxdoreign code
their resources.

e Pervasive access This covers several issues of grid access. Access must be
easy, with respect to user credentials (e.g., single signAeccess must be pro-
vided from a wide range of computational devices and mushéegensive.

e Accounting — There must be a reliable accounting system keeping tracg-of
source usage, making it possible to charge the users. Ttliglies accounting
with respect to resource usage and contribution. Accograimd payment raises
issues about quality of service, and a grid should facditvay to measure and
assure this.

10 Computational Grids

These are only some of the issues and list goes on, other famégsues are: control,
interoperability, open protocols, consistency of servared scheduling policies.

The main purpose for the architecture are to conceal thedggaeity and com-
plexity of the underlying resources. Foster and Kessel88hjoints out that a grid
architecture is first and foremost a protocol architecturd @s goal is to ensure in-
teroperability. Furthermore the architecture must féatié fine grained access control
over the sharing of resources. There are discussions [3Df3ðer new program-
ming models is needed and if these should be implementedermghof basic grid
protocols.

2.4 The need for Interoperability

Since users and resources can be members of several virgaalipations, there is a
clear need to have common protocols [31]. Having separai®gols for each grid
middleware is not a feasible option if virtual organizascare to be created quickly
and maintained easily. Furthermore a user or resource dmlchember of several
virtual organization, making interoperability almost ingsible without common pro-
tocols. Additionally these protocols should be standadiguch that different grid
middlewares can be created, while still being able to tafjetber; much like the IP
protocol works today.

Writing such a middleware is not an easy task, so most gridsusgél use an ex-
isting middleware to create their grid application. Someragrobably want to extend
their middleware, with some specialized services or act@ssicommon resources.
Such users should not have to create their own middlewateather extend existing
middleware to fit their needs. This means that the code, fleest some middlewares,
should be open.

Given that there will exist several middlewares for grid bgagions, these should
be accessible in a uniform way. This means that they showaldge a similar API to
the application programmer. However, as described aboidglewares will differ in
functionality. Due to these differences it would be impreaitfor all middlewares to
provide the same API. Instead they should aim to provide #sicbAPI. This would
mean that grid applications could be ported between diffengiddlewares, without
too much effort. This may not be a realistic goal since theeenaany different ways
of solving the grid problems as we will see in the next chaptewever standards are
being developed which should ensure interoperability.

2.5 A Generic Model for a Grid Architecture

To address the issues just described, a grid environmenbealescribed as a set of
abstract levels. These can roughly be divided into thretsp@ore grid, services and
user interface [35]. The core grid consists of the resouaoesapplications running on
the resources. The services provides a homogeneous taddahe resources, as well
as facilitating discovery and resource brokering. The ursterface supplies the user
with a way to interact with the grid services. This interanttan be facilitated in many
ways, ranging from a standard Unix shell augmented to supipefunctionality of the
grid, to a web portal interfacing to the grid services. Farthore a grid environment
should fulfill two main functions: Provide user-side progwaing and control the user
interaction.

2.5 A Generic Model for a Grid Architecture 11

We will now take a look at a more detailed model of a grid aettiire, and identify
the features necessary at the different levels. The modebwginally presented in the
article “The Anatomy of the grid” [31] and can be seen on FgRr5. This model is

Application |

v

| Collective |

v v

| Resource |

v v

| Connectivity |

v

| Fabric |

Figure 2.2: A generic model of a grid architecture showing the differabstraction layers
common for many grid architectures.

made up of a set of abstraction levels as previously disdustarting at the bottom we
have the Fabric. This is the level that interfaces with tl@loesources and provides
shared access. The resources in this level may be eithersicphgr a logical entity,
e.g., a cluster or distributed file system. The fabric leugimorts local resource specific
operations which are dependent on the operations of theshigkiels of the model.
There is a trade off concerning functionality on this lev&lkicher set of functionality
may make advanced sharing functionalities available fertttyher level, but at the
same time making deployment of new resources more complexa minimum, this
level should support a mechanism enabling discovery ofiseswand capabilities and a
resource management mechanism delivering some controtlovguality of service.

The connectivity layer defines the grid related protocolsvjating the necessary
grid specific functionality like communication and authieation protocols. The com-
munication protocols should enable exchange of data beta®ic resources, in-
cluding routing, naming, and transport. Much of this can bleieved trough existing
protocols, e.g., TCP/IP, and DNS. The authenticationsopm$ should also, due to
complexity and security issues, rely on existing protoewld provide support for vir-
tual organizations, supporting single sign on, trust reteghips, and delegation. The
authentication protocols should integrate well with drigfrotocols and systems.

The resource layer is relying on the connectivity layer syipg protocols for ne-
gotiation, monitoring, control, and accounting operasi@m the individual resources.
The functionality of this layer can be split into two classegormation protocol and
management protocol. The protocol layers form a bottlemetke model and should
therefore be kept as small and simple as possible whilesstilplying the needed func-
tionality.

The collective layer are focused on the global resource @ed contains services
and protocols not associated with any single resource. dhective deals with rela-
tionships and interactions between resources. This laypleiments services, includ-
ing directory services, scheduling, monitoring, and actimg. These protocols are
general in nature and rely on the services of the underlyaygrs to implement the

12 Computational Grids

needed functionality with respect to the individual res@ms: The functions in this
layer can be implemented as services with associated mistamr as software devel-
opment kits with associated APls. The collective can be ldges for specific use
(e.g., specific VO requirements) or for a more general pugpos

The application layer is the applications that run withirpadfic VO environment
and applications at this level makes use of the servicesedbtlier levels by means of
well defined protocols and APIs. We can now specify what wemvelaen we use the
term grid, we mean:

An infrastructure that enables controlled sharing of conapional re-

sources across sites and trust boundaries. Between usersdifferent
organizations and institutions which may be geographicafiread. The
resources belongs to the institutions and users who renmagontrol of

their own resources. The users of the grid have the podsilbdisecurely
run jobs on the shared resources and the resource ownershlesahility

to charge the users for usage of the resources.

Ultimately all of these requirements are needed in ordeettatking about grid, How-
ever if a fairly large subset are met, e.g., support for antiog could be absent, we still
use the term grid. This is reasonable because not many — Eamid environments
support all the requirement mentioned.

2.6 Grid Environments

This section examines existing types of grid toolkits that ia use today. We have
selected examples among the many that exists today. Thaenréarsselecting the ones
described in this section is, that they represent some ahtiger different approaches
for constructing grids. For a more extensive list and a dpson of the grid environ-
ments available today, we refer to [35].

Before discussing the various environments, we start leflgrilescribing the Open
Grid Server Architecture. Even though there are much disonsabout standards for
computational grid protocol, there are surprisingly fewe®f them is the Open Grid
Service Architecture (OGSA), which is an attempt to estibkh common standard
for grid architectures. OGSA is based on web services andrildeservices provided
by OGSA follows the Open Grid Service Infrastructure (OGEH], meaning that
every service is a web service Many projects seems to embrace the standard and
develop their toolkits accordingly [48, 56]. The newestiistfamily is theWeb Service
Resource Frameworf?/RSF) which has just recently been proposed, it should &e se
as a successor to OGSA/OGSI, but the specifications has betftoished.

2.6.1 The Globus Alliance

The Globus Alliance is a research and development projabtperticipation by seve-
ral universities and large companies around the world [5gy do not produce a grid
environment, but instead the main focus of the project iseteetbp fundamental grid
technologies needed to build a grid. The result of the ptagem grid toolkit called the

1web services provide a standard means of inter operatingeeet different software applications, run-
ning on a variety of platforms and/or frameworks. The intécn is made possible by using protocols and
technologies such as SOAP and XML [13].

2.6 Grid Environments 13

Globus Toolkit. This toolkit is a set of building blocks foreating grid middleware,
meaning that it is not a complete grid solution, but ratheaanework for building grid
applications and solutions.

At the time of writing, there exists two major versions of @&bus Toolkit; ver-
sion 2 and 3. Lately a fourth version has been announcedj hatsiyet to reach a
stable incarnation [3]. The toolkits and the code for themfagely available on The
Globus Alliance web pade In the following sections, the different version of the
Globus Toolkits is described.

2.6.2 The Globus Toolkit 2

The Globus Toolkit 2 was a continuation of version 1, and & had major revisions in
several areas [56]. The toolkit defines its own set of comeation protocols, meaning
that it cannot easy communicate with other grid middlewatewever over the past
six years the Globus Toolkit 2, has evolved into becomingdédacto standard for
computational grids [29]. This is likely due the large numbkginstitutions which has
build their grid solutions on the Globus Toolkit and todaisibne of the most mature
grid toolkits. The reasons for basing a grid solution on tHeb@s Toolkit are, that
the toolkit can be downloaded for free, and that the codesislyravailable, making it
possible to tailor it to suit your needs.

The toolkit it build of three major parts [59]: Resource mgement, information
services and data management. Resource management ist@heéh allocation and
management of resources. Information services is the pattprovides information
about the resources in a grid, making it possible to queryrtfoeemation needed. The
last part, data management, is concerned with access arajeraent of data. As of
this writing the Globus Toolkit 2, is in version 2.4.3, whiglas released September
11, 2003.

2.6.3 The Globus Toolkit 3

The Globus Toolkit 3 is relatively new as its first release wagduly 2003. This ver-
sion is a major redesign of the previous Globus Toolkit. Iswedesigned to create
an implementation compliant with OGSA standard [28]. Thectionality of the ser-
vices provided by Globus Toolkit 3 corresponds to the sewjarovided by the Globus
Toolkit 2, but they are implemented as web services in oreomply with the stan-
dard. The reason for implementing grid services as web ses\vare extensibility and
manageability in contrast to the services in Globus Todkiwvhich are separated and
independent. This means that it takes a significant amoumb € to implement a new
service or change an existing one. The Globus Toolkit 3 jplesa framework for this,
so existing OGSI services can be modified more easily and eevices can be cre-
ated faster [58]. Furthermore using and managing grid sesvhas become uniform
through the use of web services.

To accommodate migration from Globus Toolkit 2, severgpsteas been taken.
Globus Toolkit 3 contains the same components as versiomZhas API compatibil-
ity and the same form of authentication is use@his makes it possible for existing
authentication and authorization mechanisms and creademdi be used.

2Homepage at http://www.globus.org
3X.509A certificates, which is a widely used certificate samd[27]

14 Computational Grids

Globus Toolkit 3, is currently in version 3.2. The additiaishis release compared
to 3.0 is bug fixes, performance improvements, new featurdsaaew documentation
structure [4].

Even though Globus Toolkit 3 has been released, there istinced development
on Globus Toolkit 2. This is due to the many existing projedtsch has been based on
version 2, and that version 3 is still relatively new. Howetve links to Globus Toolkit
2, on the Globus homepage, are becoming increasingly difficdind, indicating a
desire to move people from Globus Toolkit 2 to Globus Tookitor more likely;
Globus Toolkit 4).

2.6.4 The Globus Toolkit 4

On January 20, 2004, the WS-Resource Framework (WSRF) was introduced [3]
WSREF is basically a refactored version of OGSI, an additibsoone new features in
web services [26]. Furthermore the specification has bekhirsio six parts, where
drafts exist for three of them [6]. Although WSRF is heavitgpired by OGSl it is not
compatible with it [6]. The Globus Alliance has not yet predd a working toolkit for
the WSRF, but work is underway to port the Globus Toolkit 3ir@GSI to WSRF. We
believe that the introduction of WS-Resource Frameworkkeiep grid projects away
from using the Globus Toolkit 3, since OGSl is essentiallgdiafter the introduction

of WSRF, although the Globus Alliance says that this is netdhse [6].

Whether or not grid computing will converge to web serviaesng OGSI, WSRF
or a third possibility, still remains an open question. Heer if the Globus Alliance
wants their Toolkit to succeed they will surely need to setth a standard and produce
a stable toolkit.

2.6.5 Enabling Grids for E-science in Europe

Enabling Grids for E-science in Eurdp@EGEE) is the successor of the European Data-
grid (EDG), which is an example of a grid environment basedhenGlobus Toolkit
2. EDG was an initiative, doing research in building a comr&omopean grid solu-
tion. It was funded by the European union and has a budgeeiretinge of 10 million
euro. EDG was led by CERN, and it was a collaborative effothvgeveral Euro-
pean research agencies including the European Space Agadayational agencies
from several European countries [21]. EDG was trying to tats, not just a toolkit,
but a complete grid suite and did work on applications in sEvareas. The devel-
opment was divided into four major areas: Testbed and lirfreire, Applications,
Computational and Data Grid Middleware, and Managementzssemination. The
application areas that EDG was aiming at is High Energy RisySiology and Medical
Image processing, and Earth Observations.

The EDG projectwas finished as of March 2004 and many of thenteogies have
passed to EGEE, who are creating a grid infrastructure tpatithe research area. The
EGEE solution is not based on any existing middleware anelsreh a SOAP interface
defined by the EGEE.

4WWW.eu-egee.0rg

2.6 Grid Environments 15

2.6.6 The NorduGrid ARC

The NorduGrid Advanced Resource ConnetidtorduGrid ARC) will be examined
in detalil in the next chapter, but for the sake of completermeshort description fol-
lows. The NorduGrid ARC is a grid solution based on GlobuslKib&. It is the result
of a collaboration between the Scandinavian countrieseaterand operate a Nordic
computational grid. The purpose of the NorduGrid projecs teacreate a testbed for a
Nordic grid infrastructure and is a collaborative effortvparticipating research cen-
ters from Denmark, Norway, Sweden, and Finland. The focustovareate an infras-
tructure for future high energy physics experiments, big tfoal has been expanded
over time. Even though the main focus still is high energygits; the possibility of
running other applications on NorduGrid is being examinéd the time of writing
NorduGrid consists of clusters located at the particigatirganizations, but more and
more sites and countries are participating. Since the surofr003 up till today the
number of CPUs on the grid monitor has gone up from below 1600dre than 2400.
In this time frame, NorduGrid has moved from being a testloea production grid.

The NorduGrid approach is to base the toolkit on Globus Tib@lkeusing as many
components as possible. However it has been necessaryetudesame of the Globus
components and replace others in order to get the desiradidnality. Contrary to
many other grid toolkits in existence NorduGrid is not plangha move to Globus 3,
although it has been discussed.

Due to the collaboration and the creation of the NorduGridCARhe local grid
research centers in the Nordic countries, including Da@ishter for Grid Computing
(DCGC) and Swedish National Computational Resources (RiBJ; are basing their
research and work on the NorduGrid ARC. This has an impactogiwice of toolkit,
making NorduGrid the natural choice, since we can get adoagsources running the
NorduGrid ARC through DCGC.

After having looked at Globus and two toolkits based upowé,move on to look-
ing at Legion, representing a radically different approschuilding a grid .

2.6.7 Legion

Legiorf is described as a world wide virtual computer. The Legiorjgnbis based at
the University of Virginia; the goal of the project is:

“Users working on their home machines see the illusion ofrglsi com-
puter, with access to all kinds of data and physical resosirsich as
digital libraries, physical simulations, cameras, lineaccelerators, and
video streams. Groups of users can construct shared virtaak spaces,
to collaborate research and exchange information.”

This is very much in accordance with the original vision ofeT@rid, making many
computers act as one supercomputer. As opposed to Globgisylis trying to created
an integrated solution and does not use preexisting seraicd technologies. Instead
Legion are using an object oriented philosophy toward degsgyand constructing a
grid. Legion is build on top of a unified object model develdpecifically for Le-
gion [54]. In Legion everything is an object, and Legion defirthe message format
and high-level protocol for object interaction, but not gm@gramming language or

5NorduGrid ARC was formerly known as the NorduGrid Toolkititlit was feared that this name would
prevent it from getting acceptance outside Scandinavia.
SHomepage at http:/legion.virginia.edu.

16 Computational Grids

the communications protocols. It is possible for users twvigle their own classes,
since the common services are implemented by core objeditidnally Legion of-
fers PVM and MPI libraries which applications can be compidgainst in order for
the application to take advance of the infrastructure.

The main objectives of the Legion project has a lot in commath wther grid
projects. The aim is to create a scalable and fault tolenaitacture that takes care
of the management and utilization of resource heterogen®ithen running Legion
the user has, what Legion refers to, as a context space irhveti@pplications, be-
longing to that user is executed. That, along with a virtualdystem and a resource
management system allows the user to run processes on the.ggion does this by
extending the basic capabilities of the Unix shell to workhwihe distributed object
file system [35].

The project lists a set of constraints under which the Legioftware must run.
These are very common for grid projects. For instance thé bpsrating systems
cannot be replaced, as well as changes to the interconnewtavork cannot be legis-
lated by Legion. Furthermore Legion cannot be required i@tsuperuser privileges
and Legion should work while keeping site autonomy and ensecurity for users
and resource owners. Legion works on top of the users opesasiystem and negoti-
ates security and scheduling policies with the differetetssaccording to their policies.
These requirements ensures that site autonomy are kept ioyaining and adhering
to the local policies, whether it is being security, res@yiar other policies.

These objectives and constraints are very similar to manstmiad projects, and
when examining NorduGrid design philosophy in section 3elwill see that many of
the same objectives and constraints are valid for Nordu@sidvell. The main diffe-
rence is that the approach to solving the problems thatrdifiad not the fundamental
goals as many of these goals are paramount when dealing isittbdted systems that
cross trust boundaries.

2.7 Summary

We have been looking at several different grid environmants toolkits. They each
use different approaches trying to solve “the grid problenthese approaches has
their advantages and disadvantages. One of the main diffesebetween Globus 2
and Legion is that Globus 2 does not have an underlying coemt@rchitecture [53].
This approach yields advantages as well as disadvantages.

The main problem with the Legion approach is that every p@csoftware ever
to run on Legion must be build specifically for Legion or othvese ported and linked
against specific Legion libraries. Legion tries to accomatedhis by providing special
Legion enabled versions of a number of well know APIs such &.Mowever hav-
ing a unified name space and resource abstraction wheretlewegrys an object makes
grid specific application development easier. It also seasga basis for tighter inte-
gration between the applications, and the grid middlewaaking this approach closer
to becoming “The Grid". This closer integration should afsake the construction of
interactive grid applications possible. A thing that isydifficult within Globus based
grid environments, however this comes at the price of monepiex deployment.

The Globus Toolkit however, is not without advantages. lioglat NorduGrid it it
in principle a very large batch system and resource brokeis Batch like behavior is
enough for a number of applications, especially in the afdeaditional high perfor-
mance computing, where the problems and applications csily & distributed, e.g.,

2.7 Summary 17

parameter studies. These types of applications does ndtmewan interaction, but
raw computational power. In this case the advantage isotieg the job is submitted
to the grid, no extra communication is needed, and the conation overhead in

tighter integrated system is reduced. Additionally a loeristing applications can be
brought to run on this type of grid without significant modifions.

Thirdly there is the web service model as introduced by OGBAwsed in Globus
Toolkit 3 and 4. This model can in some way be considered tlgimiground between
the two other toolkit models. It offers tighter integratitran Globus 2, by supplying an
object model. This modelis not as tightly integrated as begbecause the interactions
between the components is defined on a lower level using atdifotocols (SOAP)
and common data descriptions (XML). The looser integratiompared to Legion can
be seen by, e.g., the lack of a distributed file system anddaakuniform name space.

It is hard to say if there are a “right” way to build grids, an@ Wwelieve that the
world is big enough for all three types of models, especiilige they address different
type of user and application needs. In this project we woitk \WiorduGrid ARC due
to reasons already explained. Therefore we will descrilsettiolkit in further detail in
the next chapter.

Chapter 3

The NorduGrid Advanced
Resource Connector

This section takes a deeper look into the NorduGrid AdvariReslource Connector
(ARC), and examines the individual components, in ordeettagoetter understanding
of how the toolkit works.

The NorduGrid ARC was first known as tiNordic Testbed for Wide Area Com-
puting and Data Handlingor the shorter name NorduGrid. The toolkit developed
by NorduGrid, the NorduGrid ARC, is the grid middleware, wiiwe have chosen
as the basis for our work in this project. NorduGrid startedaatestbed, but have
since gone through reorganization of the organizatiorrattire in order to become
a production grid rather than a testbed. The NorduGrid amgdion has changed its
name to Nordic Data Grid Facility (NDGF) and the NorduGridliat has changed its
name to NorduGrid Advanced Resource Connector (NorduGRECA NDGF is part
of North European Grid Consortium, its job is to coordinad@mection and usage of
the Nordic grid, and control the agreements with organizetiwho wish to use the
Nordic grid [11]. Internally NDGF coordinates the contritmns to the Nordic grid by
the various national grid facilities and serve as certifaratiuthority handling authen-
tication, authorization, and accounting issues. The groamtaining and developing
ARC is still be called NorduGrid [52].

The purpose of the NorduGrid project was to create a testbed Nordic grid
infrastructure, and is a collaborative effort with panpiating research centers from
Denmark, Norway, Sweden, and Finland. At the time of writhgrduGrid consists of
clusters located at the participating organizations indifferent countries. The main
purpose was to create an infrastructure able to handle aalgzendata from high-
energy physics experiments.

The NorduGrid project was started in May 2001, in respongd@cATLAS Data
Challenge. The ATLAS Data Challenge (DC) is the name of trst firrge Hadron
Collider (LHC) application to be executed in a computatigra environment. Itis a
series of challenges to test the computing infrastructire ATLAS Data Challenge
was created in order to prepare for the intaking of data froenltHC being build at
CERN, when it goes into commission in April 2007. The LHC lgebuild at CERN
is the largest of it's kind and sets new standards for the arnhofidata generated by
high-energy physics experiments. When operational the idH#Xpected to generate
data in the magnitude from 100 Mb to 1 Gh/sec adding up to niane 1 Pb/year [50].

20 The NorduGrid Advanced Resource Connector

The first two parts, the ATLAS DCO and DC1, have already beenpieted. DC1
was initiated in July 2002 and ran through the first part of20uring this time more
than 2 TB input data was processed and more than 2.5 TB oudpautnéhs produced by
more than 4750 grid jobs [24]. DC2 have been delayed but it iseatime of writing
in preparation and expected to start during June 2004.

3.1 The NorduGrid Design Philosophy

We start by outlining the fundamental design philosophyifiéiNorduGrid, as it was
formulated when the project was started. NorduGrid shotdd sut by being build
on tools and technologies that actually works and procesa there, in an effort to
construct a scalable grid architecture, without singlenfgoof failure. For NorduGrid
to be dynamic in creation of VOs, and to run on sites that isdeaticated to grid
jobs, it is important that the owners of the respective resesiretains full control over
their own resources, local policies and configurations. diieve this, the NorduGrid
middleware should impose as few site requirements as gessi., there should be
no dictation of cluster configuration or install method. fhermore no dependencies
on particular hardware should exist and NorduGrid shoultsecthe existing system
installation as much as possible. The computational urghofce in NorduGrid is the
cluster. The NorduGrid ARC software should only be requivedront end machines
and the computing nodes nodes should not be required to bepoiblae accessible
network [50]. To summarize the goals.

e Avoid single points of failure.

e The architecture should be scalable and able to cope witgtdyhdynamic re-
source pool.

e Resource owners should retain full control over their reses.

In the initial phase of the project, existing grid middlee@ackages was examined.
The two main candidates where Globus Toolkit 2 and EDGs Daid. G’ hese were
analyzed further, and both of them found to be inadequate. Globus Toolkit 2 did
not support resource brokering, and it also lacked the reiddite for staging large
input and output data files. The EU Data Grid seemed to addnese issues, but
was at the time (early 2002) considered to premature to bédkes for NorduGrid.
In addition it had a centralized resource broker which washses a bottleneck and a
single point of failure.

In light of the result of the analysis it was decided to buhié grid infrastructure
from scratch. In practice the developers have been usin@Gtbleus Toolkit 2 as the
basis of the development, addressing the various issudsadding components that
either replace, extends, or complement existing Globuspoorants.

3.2 Task Flow in the NorduGrid ARC

This section describes how the NorduGrid ARC is usually afest from the users
perspective. This is done to give the reader a “feel” for hbevtbolkit works. We will
go through the preparation, submission, and retrieval b$ jand job data. The first
section goes quickly through the usage of the NorduGrid ARi@out explaining in

3.2 Task Flow in the NorduGrid ARC 21

detail how the elements work. This is done later in this ceagven though we will
not go through the installation procedure, we will note thatinstallation of the entire
Globus Toolkit is necessary for the NorduGrid user integfe@work.

3.2.1 Job Preparation

The first thing needed in order to submit a job to the grid, ifdwe access to one or
more resources, i.e., the user must be a member of a virtgah@ration with access
to a set of resources. The access is based on a user ceriggage by the certificate
authority.

In order to execute a job to a cluster connected by the Nordu8RC middleware,
the user must first prepare a job description. This desongupplies information to
the user interface, which is used to locate a cluster on wluiaxecute the job. The
description contains information needed to run the job ofuater, including name
of the executable, input data, location of input data, fileas, and location of output
data, as well as other requirements, e.g., libraries requw run the job. The descrip-
tion is created in a language, the Extended Resource Spdicfid.anguage (XRSL),
designed for describing grid jobs. Since there are no saetrminal to display input
or output, when executing the job on the grid, all input filasstrbe specified as files,
and all output must be redirected to files. The job descripsioecifies the input files
and to which files the output must be redirected.

3.2.2 Job Submission

Before submitting a job to the grid, the user interface neatess to the proxy certifi-
cate, to be able to authenticate the users against theafiffgrid services. This is done
by running the prograngrid-proxy-init . Contrary to what may be suspected by
the name, it does not start a program (a proxy), but genesat¥s509 proxy certificate
which expires after a predefined amount of time. The proxjifaeate is used to sign
the job description to determine the identity, and creddsif the user. By using a
time limited certificate the severity of a compromised dixdite is lessened, because it
will eventually expire. The job is submitted via a commametluser interface, which
locates a suitable cluster for the job, i.e., one which falfthe jobs requirements, and
where the user has the privileges to execute jobs. When geclissfound, the job is
submitted. The submission process consist of uploadingpthelescription and any
local input files, and the user interfaces terminates.

3.2.3 Job Processing

Once the job description is uploaded to the cluster, the Madager checks every two
minutes (default) for the arrival of new jobs. The grid maaagubmits the job to the
Local Resource Management System (LRMS), and waits forfinish. When a job

is completed or failed, the user can choose to be notified baileor can check the
status of the job manually, either through the grid monitottte NorduGrid website, or
through the command line interface, which queries the mftion system. When the
job is completed, the grid manager does the post processitng gob data according
to the job description and optionally moves the output files tstorage element for
later retrieval by the user. The task flow in the job submisgimcess is as follows:

1. The user creates a job description in xRSL.

22 The NorduGrid Advanced Resource Connector

2. The User Interface interprets the job description in otdeperform resource
brokering. It queries the information system to locate auese to which the
job can be submitted.

3. The job description is submitted to the grid manager onctiesen cluster via
GridFTP.

4. The grid manager creates a session directory for the jabatathe cluster.

5. The grid manager handles the preprocessing of the job tfdtze job descrip-
tion states that data should be fetched from a storage etethergrid manager
fetches the data, and makes them available within the sedsictory.

6. The job is submitted to the local resource managemergrsydtRMS) for exe-
cution.

7. The grid manager performs post processing of the outgat d&e grid manager
can optionally register the data with a Replica Manager. rjpb completion
the user can be notified by email.

8. The user downloads the data from the cluster, using the lbserface or by
GridFTP.

9. The grid manager deletes the job within a given time fraife user has not
removed it.

On Figure 3.1 task flown and the various protocols in the cominations in the Nordu-
Grid ARC are illustrated. Along with the protocols used fhetdifferent task. The
details of the components will be discussed in detail in &g of this chapter.

GRRP

User
Interface

GRRP

GRIP System

|

GridfFTP
(Data)

Element

GridFTP (xRSL)

GridFTP (Data)

Grid Manager

GRRP

A

GridFTP (Data)

A 4

GridFTP

Figure 3.1: The communication and the various protocols handling thamaanication in
NorduGrid. GRRP is the protocol used by resources for regigj contact information with
the information system (MDS), and GRIP is the protocol usedjtierying resources for status
information. GridFTP is used for both transfer of job datad éhe job description itself.

3.3 NorduGrid Middleware Components 23

3.3 NorduGrid Middleware Components

In this section the components of the NorduGrid toolkit iplained. This is done in
the same order as they show up in the task flow just describedadin by looking at
the extended resource specification language.

3.3.1 Extended Resource Specification Language

Extended Resource Specification Language (XRSL) is an sixtero the Resource
Specification Language supplied by Globus. It has been @gtefor use with Nordu-
Grid and not all Globus attributes are supported. This mpgséirtains to attributes
concerning Globus Resource Allocation Manager (GRAM),chihiEs replaced in the
NorduGrid ARC with the Grid Manager. The language is dividet two levels:
User-side XRSL and grid manager-side xRSL [68]. The user gait of the language
is the description which is prepared by the user and sendetausier interface. This
part describes the job and its attributes. An example of sudbscription can be seen
below.

&(executable=/bin/luname)
(arguments=-a)
(stdout="out.txt")
(stderr="err.txt")
(outputfiles=

("out.txt" ")
("err.txt" "))

This description shows a very simple job, executing the Woimmandiname that
prints various information about the node it is executed ©he first attribute is the
name of the executable, and the second is the parametersuitddie executed with.
If the executable is not native to the cluster and has to esteared, this can also be
specified. The next two attributes states where the outpuat the program should
be redirected and the last two are the files that the user wetligve after the job
is finished, or optionally that the Grid Manager should udit@a storage element or
register with a replica catalog. Apart from the attributeshie example, other attributes
concerning disk space, runtime environment, middlewarsiom, cluster, and many
other attributes can be described [68].

The grid manager side of XRSL is used internally when the inderface submits
the job to a cluster. It specifies attributes pertaining te tietwork, the submitting
user, etc. Some of these attributes can also be specifiecehystr, though, this is not
advised.

3.3.2 The User Interface

The User Interface is the major new component added by thdl@nid ARC. It de-

livers the high level functionality needed by NorduGridt kthich is not supplied by
Globus. The user supplies functionality for handling reseuwdiscovery, resource bro-
kering, job submission, status querying, retrieval of jaiad job control, and other
necessary functions for interacting with the grid. Whenlaipsubmitted through the
user interface, it parses the accompanying XRSL job desmmijin order to locate a
suitable cluster to submit the job to. After retrieving d 6§ available clusters from the

24 The NorduGrid Advanced Resource Connector

information system, the user interface queries the infeéionasystem, to check if the
user are allowed to submit a job to the cluster and if the ehfgt the job requirements.
Then the user interface determines which cluster to sultraifab to, using an internal
scheduling algorithm, based on the number of total and fiee<on the clusters.

When a suitable cluster is found, the xRSL job descripti@tripped for user inter-
face information, and Grid Manager-side information isedltb the description. After
this, the job is uploaded to the cluster using GridFTP. There need for additional
services in order for resource brokering to work. Optioyalttra data can be uploaded
by the user interface, or it can be left to the Grid Manageretat it from a storage
element, by writing this in the job description.

3.3.3 Information System

For a system as complex as the NorduGrid ARC to work, it is irtgpd to have a
robust, scalable and reliable information system, to sittimation about users, re-
sources, and jobs. The information system in NorduGrid iplémented as a dis-
tributed service, serving information to the other Nordid&ervices and components.
It is build upon the Monitoring and Discovery Service (MD&) information system
framework supplied by the Globus Toolkit. The informatigrstem is essential to the
NorduGrid ARC, and it takes care of all information relatadks. MDS is an exten-
sible framework, provided by Globus, for creating grid infation systems based on
OpenLDAP. The information system consists of the following

e An information model described by a LDAP schema.

e Local information providers.

Local databases.

Soft registration mechanisms.

Information indicies.

The information model supplied by Globus is single machinented, and not
suited to describe clusters very welso an information model was created specially
for NorduGrid. The NorduGrid information model is a mirrarthe architecture, and
it describes the main components of the grid, i.e., clusfelss, and users. These
elements are mapped onto an LDAP tree that forms a hieraic$tizcicture of queues
where every user and every job has an entry. Replica managdrstorage elements
are described similar, but in a simplistic manner.

The Information System consist of a dynamic set of distebidatabases which are
coupled to information providers residing on the clustémdNorduGrid a single MDS
service is run per resource, and the task of this servicepsdeide status information
about the specific resource on which it is located. Each resooperates its own
Grid Resource Information Service (GRIS). These resouraesbe grouped together
in order to form a virtual organization. This VO structurecelled an MDS-tree and it
is the actual mapping of the resources in the grid onto tharméation service.

The information providers are small programs that gensrhf2AP entries in the
database upon search request. The NorduGrid ARC providesnaih information

1The EDG information model was also considered, becausesitostier at describing clusters, but there
were doubts about its practical use.

3.3 NorduGrid Middleware Components 25

providers. They serve as interfaces to local systems, atoig information about the
status of a job from the clusters LRMS and the grid manages ifformation can be
used to find information about the resource, such as avail@blUs, disk space, and
effective queue length. NorduGrid provides access to tweugs: NorduGrid-authuser
and NorduGrid-jobs. Authuser contains information abbet €PUs available for the
user, disk space and effective queue length. The job queaseides the jobs submitted
to the cluster, i.e., status, job id, certificate, and owrar.example of an MDS tree
containing information about users and jobs queues is tipan Figure 3.2.

Cluster

1
|]

Queue Queue

Figure 3.2: The organization of a LDAP MDS-subtree for a cluster, shandifferent queues of
a cluster.

The information is gathered via LDAP queries, either thiotlge NorduGrid Web
Interfacé or the user interface, this information is used to serve #eessary infor-
mation to the brokering functions of the user interface. Téguested information is
generated locally on the resources, but it can optionallyamed for subsequent use.

NorduGrid has an indexing service, used to get the contdotriration for the
resources in the grid. Even though, Globus provides higeegl$ of caching, this
function is not used in the NorduGrid ARC, where the indexaegvice consists of
simple dynamic link catalogs. The main function of theseslis to reduce the overall
load on the information system. The resource informatioorgered, in a topology,
according to their national and geographical locationsis Biructure is depicted on
Figure 3.3.

The last part of the information system is the soft statestegfion mechanism
which is used by the local resources to register their cantdormation. Soft state
is necessary because the amount of resources are not doasththus no constant
database of resources can exist. The resources must reélgésteselves with the service
as they appear on the grid, and they must subsequently kgegtering themselves
continually, otherwise the monitoring system purges tha&act information.

2located at http://www.nordugrid.org

26 The NorduGrid Advanced Resource Connector

Top Level GIIS

Country Level GIIS

Local Site GRIS

Figure 3.3: The structure of the GIIS topology in the NorduGrid ARC. Thedl information
providers (GRIS) on the clusters registers with the coutgvel indexing service (GIIS) which
in turn registers the information with the top level indexiservices.

3.3.4 Grid Manager

The Grid Manager is the gatekeeper on the local resourcenton the front-end of a
cluster where it handles incoming job submissions and lesrttie interaction between
the grid and the local resource management system. The Guhlyer is implemented
as a layer above the Globus toolkit. It replaces GRAM dedidevith Globus in order to
provide additional functionality which were not supportgdGRAM. This is primarily
job and data pre- and post-staging functionality but alsegrated support for Replica
Catalogs and sharing of cached files among users.

The main responsibility of the grid manager is to procesaiiapd output data from
jobs and submit the jobs to the local batch system. Figuresi3ofvs the interaction
between the Grid Manager and the cluster software, whickssiibed in the following.
When a job is submitted to a cluster, a session directoryeiated. This directory holds
all the files associated with the job. The grid manager ch#eksession directories, at
a certain interval, to see if new jobs have been uploadecwfjobs have arrived, the
job description is parsed to see if any additional data isledelt is the responsibility
of the grid manager to gather all the data necessary for thégjde executed. This
data can be uploaded by the user or downloaded from a stotaigemt, by the grid
manager. When the needed data is downloaded, it is plackd Bession directory for
the job. Optionally any downloaded data can be registerd¢id aieplica catalog.

When all input data is collected the grid manager submitgdbeto the LRMS
running on the clustér Once submitted, the grid manager, periodically checkeédfs
the job has finished. When the job is finished, the grid manegkacts the output data.
The user is notified by email if this is stated in the job dg#@wn, otherwise the job
status can be monitored by using the user interface or theintelface. Furthermore
data can automatically be uploaded to a storage elementegistared with a replica
catalog. When a job is submitted to a cluster it can be in orsewéral states [44].

3Currently the NorduGrid ARC only supports the batch syst@psn PBS, Scalable PBS, and PBS Pro,
but support for others are being planned.

3.3 NorduGrid Middleware Components 27

Cluster
o | - Session Directory 1
PR . h Session Directory 2 i —— Node1
'
- d GridFTP
l — Node 2
GlIS(VO))
» Auth. modules Control Session Directory n
Directory
“ : Node 3
Replica Catalog N lode
< <
)l Networked
Grid Manager «
Storage Element o) FS
» <
» « ¢
GRIP
» <
w Information 3
GRIS » LRMS < ’
GRRP « Provider L Node n
& >]
<« <

Figure 3.4: Closeup of the front end and nodes of a cluster, and how théleviére interacts.
When the job description is uploaded by GridFTP, it is plagethe control directory. The
grid manager reads the job description, an creates a sedisémtory, and downloads any data
needed. The job is then submitted to the LRMS and executetleonddes, which have access
to the session directory through a distributed file systerhe hformation providers collects
information, about the jobs, from the LRMS and session timrges.

e ACCEPTED - The job has been submitted and accepted, but no processieg h
been done.

e PREPARING - The Grid Manager is collecting the data needed for the job to
run.

e SUBMITTING - The job is being submitted to the local batch system.

e INLRMS - The job is submitted to the Local Resource Management Byste
When the job is in the LRMS it can be in a number of sub-statek as queued
or running.

e FINISHING - The output data is being processed and optionally moved to a
storage element or registered with a replica catalog.

e FINISHED - The job is finished and the user can download the data. Tlee dat
are deleted after a certain amount of time.

The Grid Manager handles jobs by creating a separate diyeatrere it stores the
input files. There is no single point where all jobs in the drass to pass and thus no
single point of failure.

3.3.5 GridFTP Server

A job is submitted by uploading the job description to a @ustsing GridFTP which
is used for almost all data transfer within the NorduGrid ARRZIdFTP is a modified
FTP server provided by the Globus Toolkit, however therdde a special NorduGrid
implementation of the software that has been extended ttetiateroperability with
NorduGrid.

28 The NorduGrid Advanced Resource Connector

The main differences compared to the Globus supplied Giigaftware is that it
supports a virtual directory tree, that can be configuredyser and that local access
is implemented through plug-ins. These plug-ins come in tyyes: A local files
system access plug-in and a job submission plug-in thathiexface for submission.
Additionally there is support for GACL, a scratch area fanmorary data accessible
through GridFTP via a plug-in.

3.3.6 Computational Cluster

A cluster is the main computational element in the Nordu@riahitecture, even though
other computational resources can run on the grid, as logeysrtin a batch systen
A cluster consist of several machines, where one is the feadtdividing the work
between the other computational nodes, often through @ lsgtstem. In NorduGrid
all clusters run some flavor of Lindx

In order to add a cluster to the grid, the NorduGrid softwaae to be installed on
the front end machine and have permission to interact wihdbal batch system. It is
not necessary for the other nodes to run the NorduGrid soéwaut there must exist
some form of distributed file system within the cluster inertbr the nodes to get the
job data. This goes a long way of making NorduGrid an add-aitesy and it respects
local security and configuration policies.

3.3.7 Storage Element

A Storage Element is, as the name states, an element thes stata in the grid. A
job description can specify that some data for the job shbaltetched from a storage
element. Itis implemented as a GridFTP server; either aGtitF-TP server delivered
as part of The Globus Toolkit or as the GridFTP server supggieNorduGrid.

At the moment, a smart storage element is being developed.tifje of storage
element is planned to support of data replication, autamatjistration of incoming
content, automatic up and download of data, and failurevexyd43].

3.3.8 Replica Catalog

The Replica Catalog is used for registering and locating datirces. NorduGrid uses
the replica catalog supplied by the Globus Toolkit, but witimor changes to improve
functionality. The information contained in the replicaalag is primarily used and
maintained by the grid managers, but it can also be used byseinterface for the
purpose of resource brokering. The replica catalog is basedpenLDAP and is used
without modifications, other than patching it to better copth transferring of large
files and adding the possibility to perform securely autloatéd connections based on
the Globus Security Infrastructure (GSI).

3.4 The Future of the NorduGrid ARC

On the NorduGrid website, is a list of things that the develspf the NorduGrid ARC
would like to see implemented. Several of these tasks aeadyrbeing developed

“There is actually a VCR on the grid, where jobs can be subditieecord TV-programs, which can the
be downloaded.
5Support for other Unixes is underway.

3.4 The Future of the NorduGrid ARC 29

while others are just suggestions. From this list it is olbgithat there is still a lot of
work to be done in order for the NorduGrid ARC to be “completeven though, it is
considered ready for production by the developers. It has lised with success in the
first ATLAS data challenge, where it completed up to 15% ofttital jobs completed,
even though the participating NorduGrid sites only suppfie’ % of the total CPU time
in the second data challenge [49]. This demonstrates thatUGrid works well, but
DC1 also showed some problems with NorduGrid ARC. The mande was that a
lot of time was spent babysitting jobs and resubmittingefdjobs to ensure that all the
jobs completed correctly. This was done manually by the ld@ers and physicists,
giving to a lot of extra work. This lead to the conclusion ttteg NorduGrid ARC need
a way of providing more automated control of the entire jobraission and execution
process to scale to the level needed by high energy physiedsd demonstrates the
need for an automated production system for all the gridsritriing to the ATLAS
Data Challenge.

At the 8" NorduGrid Workshop, a talk was given by Brian Vinter abouw thture
usage of NorduGrid. A discussion of how to get users to therangbthe toolkit was
initiated. At the moment there are initiatives to get apgiiens other than HPC appli-
cations to run on the toolkit. These are applications in tieasof biology, chemistry,
and visualizations. Even if the applications are develdpeadn on the grid, one of the
challenges NorduGrid faces, is the problem of getting useeslapt the middleware.
There are several reasons for this:

e The middleware is not necessarily compatible with the usgigting systems.

e At the moment the users are not getting anything from usirgNrduGrid
middleware, which they do not already have. And why instathe middle-
ware which could have an impact on the stability of their prcttbn system. A
lightweight front end is being developed for non Linux/PBStems to accom-
modate this problem.

e Thereis no real HPC resources available on the grid run by RESen though
there are two former top 500 machines on the grid, inspecéweeals that only a
limited number of CPUs are available to NorduGrid.

e Itis only possible to run the grid manager as a root user, act @b runs as the
same local user; having an impact on both security and searmet scares the
security aware system administrator.

e Accounting, Accommodation, and Authentication, are state the three most
important requirements in order to get new users to the tbolccounting are
still missing, so the grid is basically “paid” for by the resoe owners who
contribute it.

To get users interested in grid, the plan is to “gridify” soapplications which could

benefit from computational grids. Examples of applicatibeisg ported to the Nordu-
Grid ARC are: Dalton, a chemistry tool creating huge jobse Plovray raytracer as an
example of something that is easy to explain to people nowkrganything about grid

and HPC in general. Finally BLAST, a genome sequencing egidin, which has a lot
of security requirements as it is dealing with datasetsithatrth a lot of money and

thus secrecy is a must. These examples are not only relevaniorduGrid context,

but for most of the grid research today.

Chapter 4

Initial Considerations

We have already been looking at some of the reasons for dangla production sys-
tem for the NorduGrid ARC. This chapter provides a deepetutision of what an
actual production system should provide. Concepts andideaounding a produc-
tion system are introduced by identifying the necessartufea such a system should
provide. This chapter also provides considerations réggitie design and implemen-
tation. We start by looking at the general aspects of theegyste are developing.

The main function of the system proposed and developed ipribject, is to pro-
vide tools to enhance the management of jobs being executeleogrid, thus we
choose the name Job Manager for the system.

The idea of creating a job manager is not new. In the intradodhree projects
that have some parallels of the system we are proposing, wasoned. We will look
closer on these projects to get inspiration and to steer ofe@mmmon pitfalls.

The PROGRESS project is a Polish grid project aiming at ergat complete grid
solution. It is build on Globus and the grid engine from SUN [Fhe method for
interacting with the grid is through portals. These portinmunicate with the grid
through a Grid Service Provider, which mediates betweepdnal and the grid [9]. It
does not provide the autonomous job control functions tiatlbb Manager does. The
common goal between PROGRESS and this project is the gosdatiicg more flexible
user interfaces for the grid by introducing an extra layento the grid architecture.

Nimrod is a tool for parametric modelihgNimrod/G is a grid enabled version of
Nimrod, and it addresses issues related with running Nirimgadid environments, e.g.,
coping with a dynamic resource pool and access to a multiddidgid environments
(Globus, Legion, and Condor). Nimrod/G is a layer in top of trid middleware
and it is similar to our Job Manager in some aspects. They bivtbn top of the
grid middleware, where it manages the access, dispatchexaaiition of jobs on the
underlying grid toolkits. However Nimrod/G is limited to gametric modeling, and
therefore not as flexible as the Job Manager. Nimrod runs emttrkstation where
pre- and post-processing of the jobs are handled. Nimrot§Gwaorks as a resource
broker and supports different schedulers and accounting [1

Lastly we will look at the EDG. The EDG middleware had had at@@mesource
broker, in order to handle scheduling better. Furthermoweas hiding the underlying
protocols, providing a well defined interface to programiagia The problem was that
the central resource broker was a point where all jobs and staduld pass through

1An application which is run several times, but with differémput parameters.

32 Initial Considerations

when being submitted. This was a bottleneck in the subnrigziocess and did never
fully work? and should be avoided in the Job Manager.

The difference is that the above mentioned applicatiorsralmade with a specific
purpose in mind. Either for a specific application or it is agbb manager in the sense
we use it in this project.

4.1 The Need for a Job Manager

In the introduction, Chapter 1, some of the reasons for @@t a more advanced
application interface to the grid, where outlined. Thistegettakes a deeper look
into the most important reasons for creating a Job Managéhubrovides such an
interface.

The current user interface in the NorduGrid ARC is a suiteahmand line tools
called from a standard Unix shell. These commands are destin Appendix B.
This interface along with the grid monitor on the web is usethterface with the grid.
However this interface is difficult to use internally in thepdications and applications
that are intended to use the grid has to do so by calling thexamd line interface.
This approach is not suitable for application use and matkbard for applications
to use internally. An example of this is; when submitting b jsingngsuban error
code, indicating whether the job submission was succesesfiibt, is returned. If the
application wants to know the job id of the submitted job, it have to parse the output
of ngsul which is rather inelegant. Some applications using thibriggue have been
developed for NorduGrid ARC. One of these is a frontend fenttell known raytracer
Povray? but it primarily used to demonstrate the possibilities ofrring different types
of software on the NorduGrid ARC.

The existing user interface fills the need for a simple irstegfthat can be used to
quickly submit jobs from the command line, but it became appaduring the first
Atlas Data Challenge that it lacks the capabilities needeallarge scale production
system. One of the things missing is the ability to monitaarades in the job. Funda-
mentally there is a need to monitor the entities in the grid sract to changes when
they occur.

There are several reasons for creating the Job Manager. thero is, as just
described, to extend the functionality of the interactioithwthe grid for users and
applications. To reduce the complexity of grid usage ther@so a need to automate
trivial tasks and provide functionality to assist the useajoplication with complicated
tasks. By providing these functions the usage and developbezomes simpler and
should facilitate a faster adoption of grid technology. fehare several trivial tasks
concerning job preparation that could be automated in dwlease the usage of the
grid for the user/application.

Another reason is that of high level control over the exemutf jobs on the grid.
Examples of this, is resubmission or movement of jobs, stdpo different sched-
ulers, and data management. This said, the problem is nptoihlave easy access to
the grid. The problems must also be suitable to a grid saluytie., it must be able to
parallelize them and they must be solvable without to mueh inderaction.

The Job Manager is being designed as a separate applicagipnsed to a soft-
ware development kit with libraries to link against. The megason for this choice is

2This claim has been discussed on the NorduGrid discussidingiist and there seem to be consensus
about this (http://mail.nordugrid.org/mailman/privéterdugrid-discuss/2004q1/012396.html).
SHomepage at http://www.povray.org/

4.2 Design Philosophy 33

flexibility. There are of course advantages of both appreachnd it may be that the
functionality of the Job Manager should also be provided lgwary for developers to
develop against. Software development kits have the dé#dyge of being bound to
one particular language in contrast to a client-server rhaite a specified protocol
can be used by several languajes

The flexibility of having the Job Manager as a separate agipioc manifests itself
in different areas. From an application programmers petsgeit is difficult to im-
plement grid functionality into the applications since mdtware development kit for
NorduGrid ARC exists. Development of a SDK does not solvéhaiproblems since
many applications would have to implement the same funstionjob control leading
to duplicate program logic across applications. Anotheguonant aspect of the sep-
aration of the Job Manager from the application, is that ikesait easier to adapt to
changes in the underlying grid software without having tarale the application. This
is important as development for grid is somewhat a movinggealthough NorduGrid
is more stable than most. The fact that grid development isng target is obvious
from the number of changes in names and technology durinfatest years, but this
will probably change in the future as the grid technologiegures and gets adopted
by a larger base of users.

From a user perspective embedding the job control in the@gtin leads to other
problems. In order to do resubmission and other tasks, iladvaquire that the work-
station running the application should be kept turned od,lmave the application run-
ning, as long as jobs are running. In many cases this may ndésieable. The sepa-
ration of job managementinto a separate application, woake it possible to access
the jobs from different workstations and in different wagsy., through an application
or aweb portal. It also makes it possible to start managesifjain foreign computers,
e.g., from a web cafe or through a portal and have them managedlob Manager
running remotely.

4.2 Design Philosophy

When creating NG Proxy one of our goals was to change as éittlpossible in the
NorduGrid code, and only to extend the functionality. Thé Manager is not just
an extension, although backward compatibility is retajrimd is a new interface for
applications to use.

In the development of the Job Manager we intend to create aledendesign. The
focus of the implementation should be on the Job Manager ahtbrchange major
components of the NorduGrid ARC. This is to help adaptatibtihe Job Manager in
the NorduGrid ARC, for previewing and testing purposes. Téeson is that it will
make it harder to get acceptance of the Job Manager if it chnbenused on sites that
run a modified version of the NorduGrid ARC. This is only a prehary requirement
and the necessary changes should be made to the NorduGridfAlRCIob Manager
proves to be a success. Keeping this focus will hopefullidyaegeneral Job Manager,
which may be less difficult to adapt to changes in the Nordd@RC in the future.
This is important since the NorduGrid ARC is in a state of\actilevelopment. To
further accommodate this, the design of the Job Managerdhmmuas modular and
extensible as possible, limiting the assumptions andicéisins and dependencies on
other components in the middleware.

4In theory this has the same implications as with an SDK, buewgraging an widely adopted protocol
we do not have to implement it in several languages.

34 Initial Considerations

With this in mind, we start by considering the features theNlanager should have
and in the next section, the necessary features, compotiegitsdesign, and intended
functionality, are discussed.

4.3 Features of the Job Manager

To design the Job Manager we need to determine what feahedsb Manager should
provide. One way to go about this is to examine the currentingerface to see what
functionality it provides. It is important for the adaptiofthe Job Manager, that it is
able to perform all of the tasks the existing user interfaceaipable of, along with the
added functionality.

The existing user interface, i.e., the ng family, along vitidFTP is currently the
only way which the user currently can interact with the gri@ihe functionality of the
existing user interface is listed in Appendix B. These fiorts can roughly be divided
into three categories: Job control, information queryiagg data management. The
Job Manager must provide a set of capabilities, in whichdhesgegories are repre-
sented. Those sets are presented below:

e Job control — The functions in this section deals with submission of a job,
must be possible to specify cluster and queue. Furthernmhonest be possible
to cancel and clean jobs.

¢ Information querying and retrieval — This has more to do with the grid as a
whole, i.e., new and departing clusters, storage elemeaghica catalogs. Clus-
ter specific information, i.e., cluster load, queue lengtt eformation about a
specific job, e.g., status.

e Data management-The transfer of data to and from local machine and between
storage elements but also registering files at replica@gsednd deleting files.

The list is used as the basis for identifying the basic fuorality of the Job Man-
ager. However the Job Manager will provide more functidgathan is provided by
the existing user interface tools. This functionality skiblie used as a basis for the
protocol designed to support applications use.

4.3.1 Application Interface

We have already discussed the implications of choosingmifft types of interfaces
between an application and the Job Manager. The Job Mangg@rages the function-
ality of the user interface and the grid, by creating a prot@etween the two. This
makes it possible to have several frontends using the sam®ldnager and function-
ality without having to implement it themselves. In turnstishould make it easier to
develop several frontends, e.g., a portal, or an applinatio

An example of a better application interface fuysubwould be to return the job
id, or raise an exception if an error occurs during the jobrsission. However not
all languages supports exceptions, and languages eachhwwreguirks and way of
doing things. Making an API that is consistent between alyjleages is therefore not
a very feasible option. Preferable a protocol between theMlanager and application
is a better solution and it allows the Job Manager and agjgicdo be at different

5There is also the grid monitor, but it delivers only inforisatand does provide any means of interaction

4.3 Features of the Job Manager 35

machines. What is needed for the application protocol, ahatwechnologies should
it be used is discussed later in this report, see Section 6.3.

4.3.2 Extended Features

Some of the features wanted for NG Proxy, e.g., the abilitagtomatically fetch
output files from a finished a job to the machine on which theMabhager is running
on, does not have any direct relevance for an automatic ptausystem. However it
is a desirable feature for a scientist to have on his or hekstation. One can imagine
other domain specific extensions could be desirable asfraih a users point of view.

Extended functionality is possible since the Job Managsttea ability to contin-
uously monitor the grid and most importantly, react to cresm it. The ability to
autonomously react to changes, e.g., the status of a jolhas @nables the Job Man-
ager to automatize tasks for the user. This is not limiteceBubmitting jobs if they
fail or to automatically retrieve output data upon job coatjan. Another example of
functionality is to move a job, if a new and better suited thusppear.

Having the ability to continuously monitor the grid allowstJob Manager to react
statefully because the Job Manager has knowledge about #imjob which is not
known by the existing interface. An example is the abilitkéep track of jobs through
a series of submissions and resubmissions.

As we have already discussed other areas than high energycphgpplications
may benefit from the grid. One of the reasons that high enehnggips is one of the
areas where grid has been adopted is because it is an areaeheted to using HPC
resources and the shift to grids are not that a big step. lerdodattract new users to
grid - and in this case, NorduGrid - the complexity of writiagplications and running
jobs on the grid must be reduced. The difference in user needspplication types,
gives rise to new issues. Since grid is a complex topic it ispussible to predict
every users need. In order to prevent imposing limitationthe user, the Job Manager
should be extensible, by providing some form of plug-in stuwe that allows users to
customize the behavior of the Job Manager if this is needadinfportant aspect is
that users can use not only the existing plug-ins in the Johadar, but is able to write
their own, and extend the Job Manager. Examples of plugrmfod resubmission in
the case of failure or fetching output files from finished jobs

4.3.3 Failure Handling

In order to prevent the Job Manager becoming a single poifaibfre, measures to
prevent a crashed Job Manager leading to failure must be tdke=se measures could
range from a cron job monitoring the Job Manager and restéritifails, to making
a distributed system of Job Managers managing the jobgliienaking it possible is
to have Several Job Managers working together managing jdiis feature is mostly
geared toward production systems where large portiondxsféoe handled, and failure
of a Job Manager would result in jobs not being submitted drb@ing monitored.
Making it possible for Job Managers to take over from eacleotian greatly reduce
human intervention in the case of a crash.

The first solution is a bad idea as it does not help if the hostluioh the Job Man-
ager is running on crashes. The last solution of distrilgutite Job Manager provides
a much more fault tolerant system, and is discussed in det@ihapter 8.

36 Initial Considerations

4.3.4 Multi User Job Manager

It should be possible for the Job Manager to support multyslers. This makes it
possible to run a Job Manager, managing the jobs for seveeabu Having the Job
Manager to run on behalf of several users would be a nice iaddisince it could
dramatically reduce the number of Job Managers runningause users can share
them.

This features is however hard to obtain for two reasons. Tiseii that it would
become hard for users to write their own plug-ins and extegthe Job Manager. This
would mean that they could possibly have access to infoonatbout other peoples job
and could also jeopardize the stability of the Job Managerdiyg their own plug-ins,
making it harder for people to expect that the Job Managetahost work.

The other reason is that the Globus and NorduGrid Toolkitosgeared toward
shifting users at runtime. Usually the toolkits look for tfile /tmp/x509up_uUID
whereUID is the users Unix user id [42] as the proxy certificate. Aleively the user
can specify the location by setting the X509 _USER_PROXYirenment variable.
However when the user proxy certificate has first been salgittie being used implic-
itly, and there are no direct way of changing it. Even if it bbe changed at runtime
it would only be possible to submit jobs from one user at a tisngce submitting jobs
on behalf of another user would require a change of proxyfmetes. Changing the
toolkits to allow changing user proxy certificates or beibtedo handle several of them
simultaneously would require a significant amount of chartgeGlobus. Due to the
these two obstacles, we have chosen not to make Job Mangmparsmultiple users
per instance, but if the dependency upon Globus would bevethdhe possibility of
a multiuser Job Manager should be investigated further.

4.3.5 Feature List

The examination of the current user interface, along withdther features and needs
previously discussed, have lead to the following list otdiees.

e Provide interface to applications —Deliver a clean and easy to use interface to
application developers.

e Provide the same possibilities as the old user interface Fhis is important as
the functions are necessary when using the NorduGrid AR@hEmmore it is
also important if we want users to start using the Job Manager

e Automatize tasks for the user/application —To automate tasks that do not need
user interaction, like fetch data, prepare jobs.

e Extend the Job Manager —Making it possible to extend the functionality using
plug-ins.

e Provide high availability — Implement mechanisms to prevent the Job Manager
to become a single point of failure.

e Multiuser — make it possible for several users to use the same Job Matwager
monitor jobs without giving access to other users jobs omtaeager.

This list is the basis for the design of the Job Manager. Aaiogluestion is whether
to continue the development of NG Proxy, or to start ovess figssible that NG Proxy

4.4 Language Choice 37

could be extended, but integrating all these features intmuld quickly turn it into
a giant mess because NG Proxy was never designed with thpegaiin mind. As a
consequence it is better to start over and rethink the whesigd. Needless to say,
things which are working in NG Proxy should be reused whersibdes, but the focus
should be on a complete design and not the extension of NG/Romsupport the new
features.

4.4 Language Choice

After having implemented NG Proxy in C++ [69], our experiensas that a lot of
development time had gone into investigating bugs and migalith interesting perks
of the language. While C++ is certainly a powerful language found development
in it rather cumbersome and unnecessarily complex for tek. talherefore it was
decided to implement the Job Manager in a high level languBgémplementing the
Job Manager in a high level language we expect to reduce tedatenent time and
making it easier to modify and for other to understand.

When implementing in high level languages speed is oftenneef. The data
and data structures on which the Job Manager should workeoexqrected to be rela-
tive simple, and the performance requirements on the Jolalyrare relatively small.
Furthermore the Job Manager will primarily be 1/0 bound,, veaiting for network and
not be CPU bound. This means that the Job Manager will spesti@fids time wait-
ing for events to happen, since none of its tasks includehamytCPU intensive. As
performance is not an issue we have the luxury of being abietide the implemen-
tation language freely. The only constraint is that is mespbssible to use C and C++
code; either directly or through bindings, otherwise we idowot be able to use the
existing NorduGrid ARC code base, meaning that we would mexMeplement a lot
of functionality, which should not be necessary.

For our implementation language we decided to use Pythdrt¢3@eate the Job
Manager. Python is a interpreted high-level object oridt@guage, supporting mul-
tiple paradigms. The language is known for combining rerablé& power with very
clear syntax [34]. It it possible for Python to interface wi€ and C++, by creating
wrappers, as will be explained in section 5.2.3. Code wriRgthon usually runs on
all the platforms on which the Python interpreter runs, mgki highly portable. Porta-
bility is a desirable feature in a grid environment, sinde #asier to support and create
heterogeneous grids. Finally development in Python isllysoeagnitudes faster than
developing in low level languages such as C and C++.

4.5 Other Considerations

There may also be problems introducing a new layer, as it &mldse overall com-

plexity, but by making it optional, this can somewhat be winvented. It follows

the modularity of the rest of the grid. Another concern cobddthe impact that the
Job Manager have on the rest of the NorduGrid ARC componarterims of added
communication and queries. However, this should not be blgnoif we rely on the

information system for the distribution of information. B demonstrates that the
communication introduced by the Job Manager should be keptminimum and the
possibility of caching should be explored.

6Although this concern is usually more cultural than techhic

38 Initial Considerations

4.6 Summary

This chapter has presented the considerations made be®oehstruction of the Job
Manager. Figure 4.1 illustrates how we envision the Job Manaould work in a
grid, giving the reader a feel for the Job Manager in the bagye, before presenting
an overview of the Job Manager in the next chapter.

Q/ Job Manager

Laptop

Job Manager

(failover) il

a—

Job Manager We»] Storage
-
Element

Figure 4.1: How the Job Manager interacts with the grid, acting as mitidter between appli-
cation and the grid. Here a Job Manager acts a backend fota pame as a production system
for a work system, with a fail over Job Manager.

Work Station

Chapter 5

The Job Manager

The chapter describes the Job Manager. It starts by givirigtesduction to the Job
Manager, outlining the concept of it. Hereafter an overvawhe construction and
which modules it contains is given. After this the dependemand modules will be
briefly described; giving the reader a feel for the workinfthe Job Manager.

As described in Chapter 1 the Job Manager introduces aniaaitayer between
the grid middleware and applications using the grid. Thidlistrated in Figure 5.1.
The purpose of this layer is to hide the complexity of using ghnid by providing the
application with a clean API to facilitate the use of the gridhile also removing grid
code from the applications.

4) 4)
Application
Applicaton | =0 |e-cccccccaaea==-

Grid Grid
Middleware Middleware
Resources Resources

(e.g. cluster) (e.g. cluster)
\ J \ J

Figure 5.1: The Job Manager introduces an extra layer between the gddleware and appli-
cation, hiding complexity of grid usage from the applicatio

Besides providing easier access to the grid the Job Managealso aid the ap-
plication by assisting it with various tasks, such as buaidjobs and automatically
retrieving output data from finished jobs.

The Job Manager can also simplify the use of the grid and gitlie application
in solving tasks on the grid. It also features handlers, Wiaie plug-ins that allows
the user to change the functionality of the Job Manager. Iliitahas the ability to
communicate with other Job Managers, making it able to reafadl over, in the case
of a crashed Job Manager. This feature is desirable to haypeoduction systems
where a crash would often result in manual reconstructing liét containing which
jobs that had finished, failed, or still running.

40 The Job Manager

5.1 Job Manager Overview

On Figure 5.2 an overview of the Job Manager is depicted. Tihetfonality has been
divided into logical modules illustrated as boxes withie thob Manager. Each of
these modules covers a specific aspect of the Job Managewikute discussed in
the following chapters. To make the figure less complicaeéffort has been made
to illustrate dependencies or information flow within theduntes. The figure merely
serves as a reference point for the further discussion afibdules and their function.

Starting from the bottom, the Job Manager has several depenss, for which it
relies for its functionality. The two major dependencies @re NorduGrid ARC [10]
and Globus 2 [59] toolkits. Since the NorduGrid ARC is depamtdon the Globus
Toolkit, it lays on top of Globus. The Globus and NorduGrid @Rre written in
C [41] and C++ respectively, whereas the Job Manager isemritython. As Python
does not interface directly with these languages, wrappassto be created. Fortu-
nately we only needed wrappers to the NorduGrid ARC, sineeltib Manager does
not access the Globus library directly. The creation of éhesappers is described in
Section 5.2.3, later in this chapter, and in Appendix C. AleJob Manager depends
on M2Crypto [66] for its RPC server. Moving up the Job Manageonsists of several
modules, each representing a functionality aspect. Indhewing, each module will
be briefly described, starting with the information system.

The information system module deals with querying the goidfiformation, usu-
ally getting cluster lists from the top GIIS servers, or gettinformation from clusters.
Additionally it is able to cache the information it retries/éor a certain time interval.
Data management handles data related tasks such as the amdv#data to and from
storage elements, and registration data with replica egsal The RPC server is the
module which talks to applications. It does authenticaéind authorization of incom-
ing requests, and translates messages into function &ailsnission, cancellation and
other job manipulation is done from the job management meadlihis module also
deals with scheduling of jobs and is able to help the appindtuild jobs. The JM
communication module handles the communication with ofloér Managers, i.e., it
coordinates the replication, and handover of jobs, so iflaManager fails the jobs
will continue being monitored by another Job Manager. Ebeugh a Job Manager is
meant to be run continuously, it must also be able to saveiifiguration and session
data; the last being list of jobs being monitored. This isessary if the Job Manager
must be shutdown and started again. This saving and regtsridone by the con-
figuration and session management module. The Job Managefeaitures a logging
capability, whereto it logs its events, decisions, and smalfy the handler module
deals with configuration and plugging in any handlers whighuser plugs in the Job
Manager.

Some of the modules are self contained, while other rely beranodules to com-
plete their functionality. The RPC server, data managerardtinformations system
are self contained, i.e, they do not rely on any other moduiée job control module
is dependent on the information system to find the resoutce=eid, and furthermore
needs the data management module to move data. To repohdp Jitb Managers
the JM communication needs to gather information from thenmnagement module,
and it needs the data management module to transfer dataavédtse configuration
and session, the configuration and session managementearisdigipendent on all the
other modules, even though it does not rely on them for itgtionality. The logging
module is independent of any other modules, but require€tmdiguration module to
be started. Finally the handler module is dependent on thégroation and session

5.1 Job Manager Overview 41

Job Manager Application Web Portal
(example) (example) (example)

Job Manager
ymmm———

TR

]] N\ (() ' H
Configuration RPC Server Handler Manager ' a : Scheduler
and Session Authentication Configuration L ' (example)

Management Authorization H d

) |

Logging H '

L J L J Poe !

Voo

— N (: :

JM communication Job Management Data Management YA ! Resubmitter
Replication Submission Data Movement ' p ' (example)
Handover Cancelation RC registration . '

'
Failover Building Scratch area ' '
'
Capability Discovery Scheduling | SS—m—m—m—m—e—e—e—e—m———————— | === '
. /L
Information System
MDS Querying
State Cache
~—
NG Bindings
NorduGrid M2Crypto
Globus 2

Figure 5.2: Overview of the Job Manager showing the different modulesoitsists of, the
placement of applications and handlers, and external dpeies.

42 The Job Manager

management, but not directly dependent on any other modTUitey will however use
other modules since they are plug-ins and need access to aiothe Job Manager
internal functions to perform work.

5.2 External Job Manager Dependencies

The Job Manager depends on the functionality on other softpackages. On Figure
5.2 the dependencies of the Job Manager is displayed beloihé& most notable de-
pendency is the NorduGrid ARC, from which the Job Manages usech functionality
for its basic operations. The NorduGrid ARC again dependherGlobus Toolkit for
much of its functionality.

This next section describes the external dependencieg dfoih Manager, starting
with M2Crypto. Hereafter the dependency of the NorduGridGAR described, and
finally the wrappers for this.

5.2.1 MZ2Crypto

The Job Manager needs a way to authenticate its clientsestblish their identity.
In NorduGrid ARC this is done using using X.509 certificat2g][To make the Job
Manager easy to use, it should also be capable of doing aithgon using these cer-
tificates. Fortunately X.509 certificates is a widely useshdard, and is supported by
the SSL protocol [36]. The OpenSSL [61] library is an impleration of the SSL pro-
tocol, supports X.509 certificates and comes with most Lidiskibutions. Therefore
it was a natural choice to use for authentication protocahfdtunately Python did
not have direct support OpenSSL, and therefore no suppausfog X.509 certificates
for authentication. Fortunately the M2Crypto project dets these [66]. M2Crypto
delivers an object oriented interface to most of the Open&BL. including the ability
to do authentication using X.509 certificates. Thereforedwto is a dependency on
the Job Manager, as it is needed for our authentication seh@&ire use of M2Crypto
is covered in Section 6.3.

5.2.2 The NorduGrid ARC

The Job Manager uses much of the functionality from the iegshe user interface
in the NorduGrid ARC. As mentioned in Section 4.3, the usé&riiace functionality
can roughly be divided into three parts: Job control, infation retrieval and data
management. The Job Manager uses functionality from aktpearts, to build its own
enhanced functionality, which it provides to applications

5.2.3 Wrappers

Since the user interface in NorduGrid is written in C++, wyaps must be created for
interfacing with it from Python. Wrappers for the ng commaradready exist, and
are used by the NorduGrid ExecutorHowever since the Job Manager provides an
API which surpasses the ng commands, access to the inteRiahAhe NorduGrid
ARC is needed. Therefore it is necessary to create bindorgsifictionality needed in
NorduGrid. Writing such wrappers by hand is relatively edsyt tedious for a large

INo reference for this exists, it is part of the productiontegs for the Atlas Data Challenges

5.2 External Job Manager Dependencies 43

amount of code, as much of it is of a repetitive nature andistsmmostly of type and
error checking.

Hence we decided to auto generate the wrappers needed fdolihdanager. For
this we choose the Simplified Wrapper and Interface Genef8WIG) [25]. The rea-
son for using SWIG is that it is able to generate wrappers docfions and classes
for C++ classes, making it possible to instantiate objecisfC++ classes in Python.
Furthermore it is possible define templates so that vectutother C/C++ data struc-
tures can be accesses from within Python. This gives sonegiaet interfaces around
calls to the NorduGrid ARC functionality, but wrappers tatee interfaces are easily
created in Python. For an in depth explanations of how toter8&VIG bindings see
Appendix C.

Having given an overview of the Job Manager and its exterepkeddencies, the
next chapter will describe the small modules in the Job Manag

Chapter 6

Job Manager Modules

This chapter describes the smaller modules in the Job Mayisgethe modules which
are not big or complex enough to justify giving them a sepachgpter. These modules
also form the the basis of much the functionality in the Jombtger. The modules that
will be described in the chapter are, in order: Configuratiod session management,
Logging, RPC server, Information system, and Data manageme

6.1 Configuration and Session Management

This module handles the loading and saving of configuratimhsssion during startup
and shutdown of the Job Manager. Configuration managemeis déth saving and
loading configuration options, e.g., which port to use farlistener. Session manage-
ment handles saving and restoring of job information, saJtteManager can continue
monitoring jobs after having been shut down and started.

While configuration and session management are somewlnettgamal topics, as
they handle the settings of the Job Manager and its intetai@. they make it possible
for the Job Manager to regain it previous state when resta@enfiguration change is
not a common event, so it can be saved each time a change is Fadgession man-
agement saving the session each time a change occurs is almoréng task, since
the status of jobs can change quite often. It is not neces$sagve the session every
time a status change occur, since this information can beegligom the information
system. The only time when it is necessary to save the seissidmen a client submits
a new job to the Job Manager, since this information canndbbed elsewhere. In
addition the session should be saved at a regular intenaiaoges to the meta data of
a job is not lost.

The next two sections describes how the configuration argisew/orks, presents
their API, and how they are used.

6.1.1 Configuration

The configuration module, handles the user defined settorghé Job Manager and is
similar to configuration handling in other applications.€lthain purpose is to read and
write changes to the configuration and settings of the Jobagen The user must be
able to change the settings by changing the configuratiorefilevell as change some
settings through the application interface.

46 Job Manager Modules

The configuration consists of several sections each spegifettings for various
areas of the Job Manager. The configuration file has a serggstibns which holds the
configuration for the different areas of the Job Manager. géténgs which it should
be able to change are the following.

e User settings— Username and credentials (password or certificate) and if i
should be possible to poll the Job Manager for informatioorgmously (useful
for portals).

e Connection settings- The port on which the Job Manager should listen.

e Job Manager Group — Group which the manager belongs to. Needed to find
failover managers

e Logging and paths— Location of log file and log level. Paths to session direc-
tory.

e Handlers — Which handlers should be enabled along with handler spefi-
figuration. The configuration should contain sections tratl$ individual set-
tings for the handlers.

e Miscellaneous— Settings that does not fit anywhere else, e.g., what shauld b
done with jobs on shutdown.

e Internal settings — Settings that the user may not need to change, but may be
necessary to change for debugging purposes or for futungtiadao changes.
Examples are: Local timeouts and bind attempts, what methade when en-
countering duplicate jobs.

Apart from reading and writing the configuration there shiboé methods for updating
the configuration system wide. This is used when the Job Mamstgrts and all the
modules should be configured, but it is also necessary if Hee needs to have the
configuration reloaded without stopping the Job Manager.

The module itself is based on the Python modtoefigParser which provides
basic configuration handling. There are other modules thatige this, but Config-
Parser is part of the Python standard library and should &ésgmt on most installations.
The module is implemented by extending the ConfigParsemdlbalob Manager spe-
cific functions.

When the Job Manager starts, the first module to be activatdtkeiconfiguration
module. When initializing it tries to locate the configuaatifile in the following order.
First it checks if the location has been explicitly specifiedthe command line. If this
is not the case it reads the environment variables for thebig$JM_HOMHEor the
location of the configuration file, if this variable is not se¢n$HOMEHS consulted and
the default locatioSHOME/.jm . If no configuration file can be found in the locations
above, a default configuration file is created and the usenedharlf none of the loca-
tions or environment variables above is found, the Job Manfaijs, and the user must
correct the situation in order to start it again.

When the configuration file is located it is possible to set ng start the logger,
as the location of the log file can read from the configuratita or it can be placed
in the default location. In order for the configuration maeltd function properly, it is
necessary to add some additional functions to the ConfigPenterface.

Lhttp://docs.python.org/lib/module-ConfigParser.html

6.1 Configuration and Session Management a7

e _ init_ (filename = None)
Initializes the configuration module and tries to read thefiguration from the
configuration file and sets up logging.

e reload_config()
This function is called if the Job Manager receives a calkload its configura-
tion and restart. This is typical behavior in Unix if the s&dSIGHUPIs received.

e set_defaults()
When called this function sets some reasonable defaulthéaronfiguration. It
is used for generating a new configuration file if it does nastex

A part from these methods, the standard methods and dattus&s fronConfigParser

is used for the other modules to read the configuration fraaréispective sections. If
the Job Manager receives a signal to reread the configuratiermain thread must
make sure thateload_config is called, and that all modules call the configuration
module and reads the new configuration settings.

6.1.2 Session

The session module keeps track of the state of the Job Marlagethe responsibility
of the session module to return the Job Manager to a consitae after a shutdown
or a crash. If it is not possible to return to a consistentestéite manager should be
started as a new manager, forgetting about its id and prelionanaged jobs, in order
to prevent jobs from becoming orphans, see the discussiSadtion 8.5.

In order to restore a session, there are some data that meatbd to nonvolatile
storage. This includes information about: The id of the Jankyer, the jobs currently
being managed, and meta data associated with the jobs. $teftbe information is
static and could be taken from the configuration file. Thislead to problems in the
case where the user edits the configuration before regjaht@rxJob Manager. But only
a few options can have and impact on the session, and thetiefsithe responsibility
of the user to exhibit caution when editing the configuratietween executions. For
this reason it should be possible for the user to start theVliager without restoring
the previous setting.

In order to prevent jobs from disappearing in case of a fajljob information must
be written to disk before the information is propagated ® fhilover managers. All
the information should be written to a session directory.

The session handler is implemented as a simple module @apéabtoring the job
data structure, along with the data structures of the Jobagancommunication mod-
ule. Itis called when a new job is submitted to the Job Managebefore it is regis-
tered at the failover managers. The interface to the Sessamtule is rather simple, as
it has only two functions:

e update_session()
Updates and saves the session to the session directory.

e restore_session()
Restores the previously saved session.

48 Job Manager Modules

6.2 Logger

Since the Job Manager is a daemon, and runs continuouslyt igeasible to have
a human monitor it. Especially if used as a production systie quantity of jobs
may be large, making it infeasible to supervise it. Howeveareatain times it may be
necessary to inspect the events that has happened and thieremade, i.e., history
of these must be kept. Usually this is done by writing thigdristo a file, which can
be inspected if necessary. Therefore the Job Manager mustipra logging function.
The Job Manager features a logging mechanism, wheretostitdgrmation. Ex-
amples of this information could be events such as a job ssgiam, incoming RPC
calls or any errors that could occur. The module uses theihggmodule that comes
with Python [33], from which all the functionality in the makk, except the setup,
comes from. The API to use the logging feature in the Job Maniag

e SetupLogger(logger_file) This functions sets up the logger. The only ar-
gument is the location of which file to log to, which must begwbalong. If not
set, an exception will be raised.

e Logger() Returns a logging object, which can be used for logging evelit
the logger has not yet been setup an exception will be raised.

The logging object returned hyogger() has several methods which can be used
forlogging. Each of these methods represents a categoghvitie logged information
should adhere to. Furthermore each of these methods alsdbaging level and when
creating the logger, a desired logging level should be settir§y this will cause any
logging information below that level to be omitted when logg The logging module
in the Job Manager outputs all logging information. The loggnethods all take an
arbitrary numbers of strings and are as follows:

e debug() Used to emit debug information, such as contents of varsahled
entering certain parts of the program, making it possiblede this information
to debug the program with. The debug method has the lowegirigdevel, i.e.,
the one that will be filtered away first.

e exception() The exception method is used for logging exceptions, andldho
only be used within exception handlers. Normally only uriied exceptions
should be logged since exceptions are a normal part of thgramo flow in
Python. The method has the same logging level as debug.

e info() Info is used for normal events, such as a successfully jomg&sion
or an incoming connection from a client, i.e, informationigrhrepresent the
intended behavior of the program. The logging level for iisfabove debug and
exception.

e warning() Warnings should be issued when an unintended behaviorsarise
such as the inability to contact a cluster, but was handledefully and the
program can continue working. Warnings are the level abofa i

e error() The error logging level should be used for errors which carbye
handled gracefully, such as assertion errors or unhandiegptions. The error
level follows the warning level.

6.3 RPC Server 49

e critical() Critical logging events should be used when a fatal condéigses
within the program, that disallows it to continue doing soonell of it work. A
critical logging event would often be followed by an actiartk as restarting or
quitting part, of, or the whole program.

The above descriptions of how to use the logging levels abgestive to the de-
veloper, e.g., no clear limit exists between issuing wagramd error messages, but
consistency should be enforced by logging the same typeserite to the same log
level in the entire Job Manager.

Having explained the logging module, the RPC server, ine module which ac-
cepts incoming remote procedure calls to the Job Managkb&/ixplained.

6.3 RPC Server

The Job Manager must feature a way to communicate with agifgits. Since we
cannot assume that the Job Manager and application are csathe machine, the
communication must be able to work on a network, and in a seoanner. Secure is a
rather vague definition; in this context is means that theroamication must be confi-
dential, integrity must be assured and it must support atittegtion and authorization.
Confidentiality is that the message is private, i.e., ondyréteiver can decrypt the con-
tents. Integrity, means that no one can tamper with the ngessauthentication is to
establish the identity of the peer and authorization isdiagiif the peer should have
access. Furthermore is important the user can authentictie Job Manager as other
resources in the also identify themselves. The standardtwagtablish the identity
in NorduGrid is to create a X.509 proxy certificate by usingublc/private key pair,
where the public key has been signed by a NorduGrid certifiaathority. This means
that X.509 certificates should be used for authenticatidre protocol used for com-
munication must be standardized, since creating a newgubtmr which no libraries
exists will not help move code out the application. Furtherenthe protocol should
support a relatively high level of abstraction; after alidguse is supposed to become
easier. A common concept for high level protocols is remategdure calls (RPC),
i.e., communication happens transparently by making alsimpmcedure call. This
abstraction has proved to be a good way to do high level conuation, therefore a
RPC protocol should be used.

To summarize the requirement for the server and the protesed in the Job Man-
ager:

e It must be secure, i.e., confidentiality, integrity, auttieated and authorization.
e Authentication must be based on the X.509 certificate.

e |t should use a standard RPC protocol with a high level ofrabsbn.

Given the two first requirements it is almost apparent thdt B8] or something
build on top of it, will have to be used. This is since the SSkeigarded as the stan-
dard for doing secure communication on the Internet andetgputhentication using
X.509 certificates. Also it provides a standard BSD sockfrface [7], meaning that
it does not dictate the protocol and basically any protosoigi TCP can be based upon
it. This gives us freedom to chose the protocol that we waithout having to worry
about security aspects, since these concerns can be sgparat

50 Job Manager Modules

6.3.1 RPC-Protocols

For RPC we considered several options. The two notable wak-RFC [75] and
SOAP [14]. XML-RPC is a simple and lightweight way of doing ®PAs its name
suggest it uses XML for encoding its data. Furthermore it edsbits request and
replies within a HTTP header making it possible to use it tigtoweb proxies. What
shines about XML-RPC is that it is really simple. Its speaifion [75] is seven pages
long; it supports only six basic data types along with stitees and arrays. In [63], a
comparison of XML-RPC and SOAP it is said that:

Any competent programnteshould find no difficulty whatsoever in imple-
menting XML-RPC in their software after reading its spec.

SOAP reminds a lot of XML-RPC, since it also based on XML andapable of
doing RPC, however it is really a protocol to transfer olgecthe latest SOAP spec-
ification [12], is about 40 pages, and presents a rather cangiject system. SOAP
makes it possible for users to define their own types, andded esoteric features such
as sparse and partial arrays. SOAP is transport independeaning that it does not
dictate how the underlaying system should work. This mehatsa SOAP object can
be transferred over almost anything, e.g., over SMS tramsfembedded into HTTP.
Finally SOAP is a part of web services, which has gained soramemtum within
grid software lately (see Section 2.6.3 and 2.6.4). We vdtl gebate on whether web
services it the thing or not for grids, since this out of scégrahis report.

When choosing between XML-RPC and SOAP it is important td laowhat one
needs. If there is a need to be able to define data types, SQA&dhoice. However if
a simple system supporting the most basic stuff is enough,-R®C should fulfill the
need. Since our need for the Job Manager was relatively sim@ choose XML-RPC
as our primary candidate for an RPC protocol.

As mentioned we considered primarily XML-RPC and SOAP. ©tandidates to
do RPC could Java RMI [70] or CORBA [51]. However as the Job &gar is written
in Python, Java RMI is not really an option, since it is Javecsfic. CORBA is much
more than just an RPC system, and is everything but lightweigd simple. Therefore
we decided not to go with any of these.

6.3.2 Selecting a Protocol

Even though XML-RPC was our first choice for an RPC protodwd, first RPC server
we used was a SOAP server. The reason for this was that thepy&[39], which
provides a Python interface to Globus, had a SOAP serverSO#P server was based
SOAPpy [62] which is a SOAP [14] RPC implementation in Pythdie SOAPpy
module in pyGlobus has been augmented with GSI [5] suppo8l iSan extension
to SSL making it easier to use in grid contexts, mostly begragng it into various
application. This meant that we could easily create a SOARséor the Job Manager
to use, since it was possible to do authenticated RPC caisSWAP using X.509 [27]
proxy certificates.

Therefore SOAP became our natural choice for doing comnatioic since it in-
tegrated nicely with GSI. Also SOAP is a good abstractiondiwing distributed com-
munication, since it just resembles a normal function cdlhfortunately, during the
development of the Job Manager, we discovered what appé&aiszideadlock, when

2Whatever that means.

6.3 RPC Server 51

using callback from Globus. An analysis of this is given inp&pdix F. The result
of this was that we either had to throw out NorduGrid ARC or jpfteis. Dropping
NorduGrid ARC was not really an option, since the Job Managhighly dependent
on it, so pyGlobus had to go. This meant that we had find anethgrof doing RPC.
However, first we had to find another way to use SSL within Pythidere are two li-
braries which provides SSL interfaces to Python: M2Cryp®&)] pnd pyOpenSSL [67].
Both are based on OpenSSL library [61]. Since the last updgbyOpenSSL was in
2002 [67], we choose to use M2Crypto since this project wégedg maintained. For
RPC protocol we selected XML-RPC [75], since this is alreadgported in Python
and M2Crypto provided the necessary extensions to use X/RG-Bver SSL.

Even though M2Crypto has some support for XML-RPC, some waukt be done
to create the server. Most notably one must construct thvesand setup the OpenSSL
context [60] oneself. With knowledge of Python the condinrcof the server is rel-
atively straight forward. Constructing a proper SSL-cahteowever is not trivial,
and requires in-depth knowledge of OpenSSL to set up cdyrg@]. Fortunately the
XML-RPC server worked well, after having been setup prope®lwitching to XML-
RPC also removed our biggest dependency on pyGlobus, amdrefting rewritten
some code in the Job Manager we where able to remove the dapsndompletely.
For the client this means that the Globus libraries are netled, since GSl is not used.
This means that a client using the Job Manager only needs dn-RRIC client capa-
ble of using SSL as transport. This makes it possible to wetigats to a multitude of
platforms.

The API of the XML-RPC server, is rather large, due to deegifitAnce, however
the following methods should explain how to use it, and innmalrcases all that is
required.

e _ init_ (addr, ssl_context)
aConstructor for the XML-RPC serveaddris the address to bind, specified in a
tuple containing host name and port, €:fpcalhost’, 9443) . ssl_context
is the SSL context for the server and specifies host certfjgatvate key, cer-
tificate requirements for client, etc.

e register_function(function)
aRegisters a function into the server making it availabtecfients to call. Note
that Python supports the functional paradigm, making itsfie to treat func-
tions as data. Everything regarding types and number ohaegis is handled by
the introspectiohcapabilities of Python. This makes it easy to extend thesserv
since all that is needed to add an additional function, isglsiline telling the
server to make the function available.

e register_instance(object)
Does the same thing asgister_function except that this method takes an
object and makes all of the methods on the object availabtb@gerver.

e register_introspection_methods()
aThis method makes three additional function availablderserveriistMethods
methodHelp and

3The ability to “look into” objects at runtime, getting comtaal information, such as name of functions
and methods available on an object.

52 Job Manager Modules

methodSignature . These functions allows the client to do some simple intro-
spection of the server, e.g., to get the available functamthe server, giving a
simple form of capability discovery.

e serve_forever_thread()
Starts a new thread, which starts the server. The objeatsepting the thread is
returned to the caller, which regains control after the, @lbwing it to continue
working.

Summarizing these calls, a typical use of the RPC serverfisilasys:

server = SecureXMLRPCServer(('localhost’, 9443), ssl_co ntext)
server.register_function(submitJob)
server.serve_forever_thread()

After having explained how the XML-RPC server of Job Managerks, and
which interfaces it has, the focus will shift toward the inf@mtion system in the Job
Manager.

6.4 Information System

To make decisions such as to which cluster to submit a jolh&Job Manager must
have knowledge about the state of grid. To get this knowledge&ob Manager, must
guery the information system of grid. The information sysi&f NorduGrid is covered
in section 3.3.3. Itis the purpose of the information systeadule to provide an API to
access the information system. In NorduGrid ARC, the infation system is consists
of an LDAP [38] server running on each of the clusters. Exasplf queries are listing
of jobs which the users is currently running, or retrievigster information for job
submission. The information system module must query th&tets and transform the
received data into data structures, making it easy to usitbemation system. These
data structures must represent the information querieceréfbre it makes sense to
map the LDAP schema, depicted on Figure 3.2, on page 25, bjerts, which can
be used by the caller of the information system. These objae: Cluster, queue,
and job, each containing information about their respecgitity in the grid. These
objects are then created, packaged together and returagdnBtely this functionality
is already in the NorduGrid ARC, and the classes has beermpedai Python, making
them usable by the Job Manager. When the module has retuneed it is up the
caller, to do any further abstraction.

The API of the module reminds a lot of the one already existirthe user interface
of the NorduGrid ARC. The main changes are the hiding of th&@bncept, and the
introduction of caching. The reason for hiding the GIIS awsyhat it does not matter,
for the user of the information system how the cluster listeisieved, just that it is
retrieved. The next section discusses the issues surnogitite cache. The API for the
information system module is:

e GetGiis(use_cache=True) Returns a list of the top GIIS servers. This func-
tion is usually not needed since tlxetClusters call retrieves this automati-
cally, hiding the GIIS concept away from the programmer. ldeer if the devel-
oper for some reason need a list of the GIIS servers, it isiplest® getit. The
use_cache flag sets whether a cached version should be used. Note #raifev
use_cache is set to True, and it has expired, a new list lilbstretrieved.

6.4 Information System 53

e GetClusters(mds_filter="JOB_SUBMISSION’,anonymous=T rue,
timeout=40,debug=0,sn=None,use_cache=True) Thisreturns a list of clus-
ters, each containing a list of queue objects, each of thas&ining a list of job
objects. Thends_filter ~ flag specifies what kind of query that should be done.
There are four possible valueSBUSTER_INFQJOB_INFO, JOB_SUBMISSION
and JOB_MANIPULATION Depending on which value is passed along, differ-
ent information is returned. FAELUSTER_INFOonly information about the
clusters is retrieved, foJOB_INFO information about jobs are returned. For
JOB_SUBMISSIONrelevant information about clusters and queues for submit-
ting jobs. Finally, forJOB_MANIPULATIONonly jobs that can by manipulated,
i.e., the ones the caller owns, are returned. If an invalidesés passed along,
an exception will be raised. The remaining parameters are steaightforward.
The anonymous flag specifies whether or not to use authesdicaieries. Time-
out specifies the maximum interval in which the cluster staabpond, before
the query is aborted. Debug increases the verbosity of thaifon. Thesn argu-
ment specifies the subject name used for certain queriesj@gnanipulation
where only the jobs of certain user is wanted. Finallyibe cache flag allows
the caller to bypass the information system cache, whickeésl by default.

e GetValidTargets(clusters=None,debug=0) Returns a list of targets which
jobs can be submitted too. A target is composed of a clusttaayueue. This is
used as a convenience function when submitting jobs, siecare/interested in
targets in that case.

The criteria for a target to be valid is:

— Must have public keys, which are signed by a trusted authorit
— Queue must have active status.

— User must be authorized.

— Queue must be non-full.

— Queue must have CPUs available.

Note that this does not say anything about having enough C&Usaving the

correct runtime environment for a job. The reason for thithet such require-
ments are specific from job to job. Creating a list of validyets, but not wor-

rying about whether it meets a job requirement allows thadi®e reused when
dispatching several jobs. It also separates the two thifitfering targets which

does not meet jobs requirements are of course done, butrates process of a
job submission.

e ClearCache() Clears the cache in the information system.

6.4.1 State Cache

Doing queries to all clusters within a grid can take a suligbamount of time since all
the clusters must be contacted. This is especially a problieen a lot of information
is updated sequentially, e.g., updating the status of akjdrs. A solution to this is to
retrieve the information once and used this for all the ugslathis can be done in the
following way (pseudo code).

54 Job Manager Modules

job_info_list = RetriveAllJobinfo()
foreach job_info in job_info_list
if job_info in job_list
update status for job in job_list

Which is good, since it saves a lot of queries. However theltieg code is subop-
timal, since it is not really intuitive; at least not compaie:

foreach job in job_list
job.state = GetState(job.id)

Which is more obvious. However if th@etState function contacts the cluster
each time, such an update can take quite a while. A way to soilyg@roblem is to let
GetState cache the results for reuse. Doing caching transparerdlysl¢éo less and
more readable code than doing explicitly.

Caching allows certain things, like sequential job submissto be done signifi-
cantly faster, but caching is also a delicate task, as therseveral issues to take into
account. Not all information about the grid can be cachethifeisame amount of time.
E.g., a list of clusters are usually usable for longer amairiime than information
about queue status or jobs. One of downsides of using cadhatishe information
used is older, than if it would be retrieved right before udewever, such retrieval can
take some time, if there are non responsive servers, makagdb Manager wait for
the information. It should be noted that information abdat grid will always be a bit
old and inconsistent, since it is not realistically possitd get a consistent snapshot
of the state of the grid, since this would require an enormsyuhronization effort
between the clusters. Since it is not possible to get fullysgsient information from
grid, it might as well be cached for a while. What is importetio make sure that the
information is purged from the cache before it gets too irsistent.

The Job Manager does transparent caching, as descried pretieus, thereby
hiding it away from the users of the information system medulhe caching is done
on two functionsGetGiis andGetClusters . Itis not done orGetValidTargets
since this useSetClusters to build its list, and doing caching here would lead to
double bookkeeping. Even though there are only cache onunatibns, there are five
caches internally in the module. One for tBetGiis , and four forGetClusters
One for each of thends_filter ~ options.

Cache expiration is done by having different expire timedtie two functions. For
the GIIS list it is one hour, and for cluster information 3@skads. Even though the
information system in NorduGrid has a valid-from and vatidfields which marks the
validity period of the data, it is not used. In an ideal sitoiatthis would be used to
mark the end of life for the information, however it is not iyasetrievable through the
NorduGrid interface, so it was decided to use a simple timdbéunecessary the cache
can be cleared manually by calling t&arCache function. If the cache has expired
it is first retrieved when a one of the functions using cachéncplled. This decreases
load on the grid, since information is only retrieved wherded, instead of having a
thread retrieve the information at a constant interval.

There are certain downsides of caching information this.Wéne cache system has
no idea what data the caller want, making this operation regpensive than the same
task performed bygstat in some cases. An example is that for retrieving the status
of a single job, will result iNOB_INFO queries to all clusters in the grid. However we
have chosen to do it this way, since it is simpler, and pravasimple API to use.

After having explained the workings of the information grstmodules, the focus
will shift toward the final module in this chapter; data maeagnt.

6.5 Data Management 55

6.5 Data Management

The task of Data Management module is to provide the Job Manaigh an API to
handle the transferring of data. Data transfers can happesveral different ways:
From the Job Manager to the grid, from the grid to the Job Manaand finally from
the grid to the grid. Since the NorduGrid ARC does not prodadeopying” service,
copying from a grid location to another must happen by copyhe file to the Job
Manager and to the wanted destination. This functionasithasically the same as
ngcopyprovides, i.e., copying from one URL to another, and the ni@dses the same
functions as this.

Data Management does not have anything to do with movingtdada from the
client. Moving data to or from the client is done over XML-RBi@ce the Job Manager
should not force the application to support grid protoc@lhen transferring files from
the client and to the grid, or the other way around, the Jobadanwill work like a
proxy. To avoid overloading the Job Manager only small fileewdd be transferred
this way, since the whole file will be kept in memory in the JolarMger when using
XML-RPC.

As mentioned the Data Management module has the same foalityoasngcopy
Therefore the API reminds a lot of the command. The Data Mamagt module only
supports a single function, displayed here:

e URLCopy(from_url, to_url, confidential = False, blocking =True)
Copies a file from one location to another. It supports séyaocols, which
are listed here:

file:// Local file.

rc:// Replica catalog.

ris:// Replica Location Service.
se:// Storage Element.

gsiftp:// GridFTP.

— ftp:l FTP.

The copying uses message integrity as default, but is neypted. Encryption
can be used by setting tlvenfidential argument tofrue . Note that using
encrypted transfers will cause a heavy load on the CPU. Eurtbre it has the
ability to act as a “copying service” by specifying théocking parameter to
false. This makes the Job Manager start a new thread anch retatrol to the
application before the copying is done.

The Data Management module does not feature advancesdgdilug creating a col-
lection in Replicate catalogs and such. These are not ofteh, @nd has therefore been
not implemented.

6.6 Summary

This chapter has presented some of the smaller modules dbth&lanager. These
modules are, regardless of their size, necessary for thdldolager to function prop-
erly, however due their size they did not warrant their owatler. The two next
chapters describes the modules that did; the managing efgob distribution of the
Job Manager.

Chapter 7

Managing Jobs

Managing jobs is the heart of the Job Manager (hence its navteing management
of jobs robust and flexible is a critical aspect if the Job Mgeras to become a usable
tool. This chapter describes the considerations takemleisign and the construction
of job management in the Job Manager. First an overview oféhjairements for job
management is presented. Hereafter the different parteeafdb Management module
will be identified.

7.1 Considerations

As explained in Section 5.1, the user of the Job Manager ghmeilable to extend or
override the way jobs are dealt with, by the use of handlevenEhough handlers and
job management are separate modules, as illustrated omeFig®, they are closely
connected, since handlers must be able to decide what haipparjob. Therefore the
modules are closely related, and their interaction shoelddrefully considered, since
this is an important aspect of the Job Manager. So far theleandncept has been
described as a plug-in concept to the Job Manager, whictvalibe users to redefine
and extend the way jobs are handled. Although this conceptiges the user with

much flexibility and power, it is also vague in its details.ercome this we will start

by analyzing how handlers should work and what implicatithrey have on the rest of
the Job Manager.

7.1.1 Handlers and Their Implications

To identify what handlers should be capable of, and how tiheylsl work, three ex-
amples of handlers will be analyzed. These three exampésAarother scheduler
when submitting jobs, resubmitting jobs in case of failusesd automatic fetching of
files from a completed job. These three examples all haveinheammon that they
should be invoked when a certain state of the job arises. lstibmitter it is the
presence of the job in the Job Manager that should triggérhe two last should be
invoked when the job has finished. Of course the resubmitieulsl only be invoked
if the job has failed, and the fetcher only if the job has fieidlsuccessfully. Gener-
alizing this; a handler should be invoked when a certairustaf a job arises. For the
handler interface to be as general as possible it shouldvio&ea every time a change
in the state of jobs happens. Since handlers should be idwwken a change occurs

58 Managing Jobs

in the state of the job, something external from the handiglishave to monitor to
the jobs, and invoke the handlers when necessary. Bastballg are two changes that
can occur: The application calling the Job Manager or thd gpdates information
about the job. The first happens when the application makd¥rkah call to the Job
Manager, e.g., a job submission or cancellation. Since @ Ealls are translated into
functions, these will have to invoke the right handler. Uggdao the job in grid, will
usually be updated job statuses. Unlike RPC calls, the Jatalykr will not be notified
of these updates, it will have to fetch them from the inforimaystem. Therefore
the Job Manager should fetch the status of the jobs it is niagaqg a regular interval
and invoke handlers if those jobs whose status has beenaghd&ummarizing the
conclusions so far: Handlers are plug-ins that should bekiedt when a change in a
job occurs. This change can either be an RPC call from anagijah or an update to
the status of the job. When one of these are invoked the Jolagéament modules will
invoke the handler. This is depicted on Figure 7.1.

Handler | Job Management |
Submitter I Status updater |
I Handler
4 Invokation . RPC Calls
File fetcher I

Figure 7.1: Overview of the handler invocation from the Job Managemendutes. When an
RPC call is received or the status of a job is updated the kaimslinvoked. The boxes within
the handler are examples.

Since handlers should be able to overwrite the default hehafithe Job Manager,
the default behavior should be implemented as handlers. Willimake them easier to
change or overwrite, since they can be overwritten by wgitiew handlers, or even be
taken out.

For now the focus has been on the interaction between Job déament and han-
dlers and when they should be invoked. Now we will turn towaaod handlers should
be constructed in the Job Manager. Since handlers are pygve will start by looking
at other plug-in structures. Drawing programs such as Skig¥¢ and The Gimp [72]
feature plug-ins allowing the user to create various efféztbe applied to the picture.
These plug-ins usually work by either loading the plug-irstrtup or runtime. The
plug-ins are then invoked when requested by the user, andtaxids passed along.
This context usually represents the canvas. The plug-im thenipulates the canvas,
and returns control to the caller. Retrofitting this to thé Jdanager, the context to
pass along is of course the job description, e.g., an objgtaming information about
the job, such as jobid and xrsl. Unfortunately this deswipalone is not enough. The
handler will need to have access to the grid and be able topukate instantiations of
job running on the grid. This is the difference between theyph structure and han-
dlers, handlers causes side effects on the grid, they dusbbdperate on a description.
To control job on the grid a library containing functionglfor this is needed. As ex-
plained in Section 4.1 there exist no proper API for appiars to use the NorduGrid
ARC. Therefore a reimplementation of the job controllingdtions is necessary. An-
other reason for such a reimplementation is that it is pdssibseparate the scheduling

7.1 Considerations 59

from the rest of the job controlling functions. Such a seflaramakes it far easier to
make a handler which overwrites the submission to use a nieedsier. Therefore this
separation should be done when constructing the new jolsadibrary. Creating this
library would allow handlers to manipulate the job, by giyithem the necessary tools
to work.

When handlers has the functionality to manipulate jobs|sio aneans that they
can cause certain side effects when doing this. An exampllei®is a resubmission
handler. Such a handler will resubmit a failed job, and thgrgive it a new jobid.
Since the handler has access to the job description it mwkitaghe jobid within,
however if other parts of the Job Manager or the applicati@nraferring to the job
using the jobid they will not be able locate it. This meang thgobids cannot be
used as a consistent way of identifying jobs, since they epeddent on where the job
is executing. Therefore an alternative way to identify joinéquely must be created.
Such a representation are allowed to change during inatats between jobs. A
consistent way to identify jobs, which are not directly tethto anything on the grid,
will allow handlers to manipulate jobs without having to \woabout side effects. Such
an identification mechanism is therefore necessary if leandire to work properly.

The plug-in structure have far reaching consequences asatdie module should
work, and dictates much of how the structure should be in tbdute. Also a need
to identify jobs consistently between instantiations wesoduced. This need will be
addressed shortly; first the parts of the Job Managemenbwiltlentified in the next
section. There it will be clarified how the modules interatarifying the requirements
and concepts presented in this section.

7.1.2 Identifying Modules

This section will identify the modules that are needed fdr jpanagement. From the
previous it is already clear that two modules are needed:Mamagement and Han-
dlers. Furthermore a need for a job controlling library wasaduced, which consti-
tutes a third module. Finally a separate scheduling modhdals be created, to keep it
separate from job submission. The job control library arttesler are both invoked
from the handler module, while handlers are invoked fromnjmmagement. Starting
from the bottom, we will explain the modules, starting witle tJob Control module.

The task of the Job Control module is to provide job contngjlifunctionality to
handlers, making them able to manipulate jobs on the grice Jdb Control module
will basically be a reimplementation of job control fungt®in NorduGrid ARC, and
will provide an API instead of a command line interface. Thedule will provide
functionality such as job submission and cancellation, fuenctions that performs a
specific actions on a job. The module will not do anything enatcally, nor will it do
any kind of bookkeeping, this is entirely left to callers bétmodules. The Job Control
module does not do scheduling; this is left to the schedutiogule.

The reason for separating scheduling from job control is &kenit easier for han-
dlers to provide and invoke their own scheduler. Therefoqgr@per interface for
scheduling will have to be created. It is also our hope thasdyarating the sched-
uler, will make it easier to experiment with scheduling. @utly this is rather hard,
because the scheduling functions in NorduGrid ARC are dudeep in the job submis-
sion code. Since the scheduling module will only contairesictiers and perhaps some
helper functions, the module will be relatively small, bubyides important function-
ality.

60 Managing Jobs

The handler module will contain several handlers each spieed to perform one
action, e.g, submission, resubmission, or fetching of wuffes. The handler will
use the Job Control module to control its jobs, while the hensdwill be invoked
from the Job Management modules. This makes the handlingile®dhe middle
layer between bookkeeping (Job Management) and the a¢tiobsControl), and the
handler module ties these layers together. This, combingdtiae ability to override
or extend the handlers makes this layer very powerful, aitidairfor the success of the
Job Manager. Updates to jobs are most likely to come in chungs, the status of all
the jobs has been updated, or the application has submittetla jobs. Handling all
these jobs at once may cause the Job Manager, to becomeyHeaditd for a while,
if dealing with large sets of jobs. Therefore the Handler mledshould feature some
form of queue making it possible to enqueue work, and allogvitndler module to
do the work as it sees fits. Additionally the handler modulélddorm sub-queues for,
e.g., submission or resubmission if needed.

The task of the Job Management module is to do bookkeepirdpefgnd to invoke
the handler when an update to a job occurs. The module ceradist of all the jobs
and a description of each jobs. In this description infoforasuch as jobid and xRSL
description should be stored. Furthermore since the useraflers cannot be predicted
each job should have a data structure which handlers maysere and manipulate
their information in, e.g., resubmission attempts. Suchat dtructure could be a
dictionary or list.

As mentioned earlier updates to jobs can happen in two waysnBRPC call from
an application or by an updated status on the grid. Sinceabhélanager is only noti-
fied when receiving RPC calls, it will have to pull the statfithe jobs it manages at a
regular interval. If any change occurs in the status of thegjioan RPC call is received,
the module will invoke the handler, which will threat the jabcordingly. When in-
voking the handler the job description will need to passem@| and the handler will
need to update it, e.g., if doing a resubmission, a new jolilichave to be set and the
old saved. This means that bookkeeping is not done entinelyi$ modules, but also
in the handlers. However it is necessary since the Job Managemodule does not
know what the handlers does.

Summarizing this section, there is the Job Management reaglich does book-
keeping of jobs. It provides functions for the RPC server alisd updates the status of
the jobs at a regular interval. When a status of a job is uplj#te job is pushed into a
gueue at the handler, which then goes over each job, cheakyiiiing must be done
with it, and dispatches the job accordingly, e.g., submif§a control jobs the Handler
module uses the Job Control and Scheduling Modules. Thimges illustrated on
Figure 7.2.

7.2 Introducing Job Tags

Having explained the modules, we will turn the problem ofqurly identifying jobs
and our solutions to it: Job tags. In NorduGrid terminologgla represents a single
execution of an executable. Each job is described by an xRStription which is up-
loaded to the cluster to execute the job. When submittindpagainique id is returned
as an identifier of the job, this is called a job id. An example i

gsiftp://benedict.aau.dk:2811/jobs/2126821746118942 5804

7.2 Introducing Job Tags 61

RPC Call

Handler | Job Management |

Handler Queue
O Jobs Jobs | Updater |

Submitter | Resubmitter | 4— O

Submission Job submission Status retrieval
Scheduler
Scheduling | v Job Control |
Scheduler 1 Job Submission
Scheduler 2 Job Cancelation
DefaultScheduler Job Cleaning
Job Status retrieval

Figure 7.2: Overview of the module in job management and their inteomcti The ellipses
are jobs, and the circles with arrows threads. It is illusiiahow jobs are pushed from Job
Management to the Handler module which manipulates therjdbhe grid.

From this id, the cluster on which the job is being executsdyell, as the location of
output data can be extracted. This representation workswnitblthe NorduGrid ARC,
however it is less suited within the context of the Job Manalga job is resubmitted,
or moved to another cluster, its job id will change, i.e.,o¢és any reference to the
previous job, even though it is the same job, only in anotbetext.

Therefore, to support the features of the Job Manager, anathy of representing
jobs will have to developed. This representation must ramahstant during several
executions. In order to do so, the concept gblatagis introduced. A job tag is an
unique identifier for a job, which remains constant durirg@mtiations of the job. This
makes communication between the Job Manager and appiisatiore consistent, as
nothing needs to be changed if the job is resubmitted. Reraethbt an application
can be also be another Job Manager. The job still has the sgpnesentation for the
application. If the application needs the jobid of a job d@haetrieve it by doing a call
to the Job Manager. Communication between Job Managerdajgzen using tags,
to identify the jobs that they, e.g., monitor for each otAdris communication will be
described in Chapter 8. On Figure 7.3, itis illustrated veltee Job Manager uses tags
and ids respectively for communication.

Since a tag must identify a job it is important it is unique eféfore when creating
a job tag, it should be ensured that it is as unique as possifiethis random and
unigue data are collected for entropy. From this data a SH&ghH23] is created.
The values used for entropy are: The pid of the job manager,idof the user which
the job manager runs, the host name of the machine, the ¢dimes and a random
number. Generating a hash that collides with this is stediby very improbable [22].

62 Managing Jobs

Tag Fail over)
Tag Job Manager

[Application Job Manager
Id Grid)

Figure 7.3: Where the Job Manager uses tags and ids in communication.afagised between
Job Managers and application making job representatioristmmt between job instances. Ids
are used when communicating with grid.

We decided not to embed any information into the tag, sina saformation
would be likely to change, requiring a change to the tag, agoitld be with, e.g.,
resubmission attempts. It is tempting to include informasuch as Job Manager con-
tact information into the tag, but since a job can change éetwJob Managers, e.g,
during a failover, thereby rendering the information wrofigerefore the best solution
is to simply generate a hash to represent the job. If any iadditinformation must
follow the job, it must be in another way than embedding ibitlite tag.

The tag must follow each instantiation of the job into themfation system, mak-
ing it possible to do external queries to get the tag. Unfuataly the information
system in NorduGrid has no support for tags, or extensioaisdain be used.

Fortunately there are certain job attributes in the infaiorasystem that can be set
in the job description when uploading the job. These attébwean be queried through
the information system. This means that there certain figtldscan be controlled by
the Job Manager. One of these is the job name, which is seifablthe purpose.
When a Job Manager receives a job, it modifies the name of theyjappending three
and the tag hash generated as mention in the previous. sTthis tag of the job. An
example of a tag is listed here:

My_job_name###3dbba9cddce6c55526af4a2353e632a6b126f 660

Setting the tag to be the name of the job, makes it possiblet@gd query for tag

through the information system. However job ids are sti#l iimary abstraction when
manipulating jobs on the grid, since job names are not gti@ato be be unique in the
information system. However when creating tags as destrish collisions should
be very unlikely. This does not assure that a tag cannot lee@ted since a tag is
just a job name in the information system. Therefore whencéérag and comparing

tags in the information system, subject name of the subnstieuld be compared as
well, to ensure that only the jobs of the right users is com&d. If this comparison is

not done, it opens the system to “tag poisoning” where jolik igientical job tags are

submitted into the system.

Finally it should be noted that tags are not replacementgofuids, but comple-
ments it. Using only tags it is not possible, e.g., to idgndifcertain instance of a job,
which is possible using jobids. The argument can be reveisdavor tags. Addi-
tionally an extension to the Information System, where #tedould be kept, could be
considered. However to make it more useful than the namecepient, there would
have to be a guarantee to keep the tag unique for every iretians of the job. This
would certainly add to the complexity of the information,isis not fully clear if this
would be an advantage. After having explained tags, the fleedn job management
will be discussed; starting with Job Control.

7.3 Job Control 63

7.3 Job Control

The purpose of Job Control is to provide low level controliofgge jobs. Basically the
module does four things: Job submission, cancellatiomnitey, and retrieval of sta-
tus. This functionality is the same as the command line fater offer for controlling
jobs, and the module is basically a reimplementation of timetionality in this. How-
ever the API has been reworked, making use of, e.g., exceptto handling failures.
Also, instead of the functions spanning hundreds of linesy have converted to small
functions, where the different functionality has beentdptio different functions. An
example of this is that it is easy to replace the scheduleat irsa job submission, by
writing a new scheduler in a different function and changangingle line where job
submission is invoked. The scheduler interface will be ceddully in Section 7.4.
Such separation has been done throughout the code to makedtaomprehensible
and modular. Hopefully this modularization will make it easor people new to the
NorduGrid ARC or the Job Manager to understand the code, aamkerit easier to
replace part of the code, thereby making it easier to do deveént and experiments.

7.3.1 Job Control API

Since the Job Control module is a reimplementation of coddoirduGrid ARC, jobids
are the primary abstraction. Keeping tags out of the modelens that the module can
be used as a replacement for some of the existing code in RoidlhRC, provided
that a command line interface is build to use the API of the mb@dThis is strength-
ened by the fact that the module does no bookkeeping; it mugbhe be the caller.
The design and implementation of the Job Control is relbtistraight forward since
it is mostly a reimplementation with the purpose of proviglam API for controlling
jobs. The APl is:

e SubmitJob(xrsl, scheduler = None, dryrun = False, dumpxrsl =
False, debug = 0)
This is the high level function that submits a job. It takesxesh description.
The functions retrieves a list of clusters in the grid, cesa list of valid targets.
Hereafter it useSetSubmittableTargets to get the targets which fulfills the
requirements of job. Hereaft®ispatchJob s called with the new target list
and xrsl description. Furthermore teheduling , dryrun , dumpxrsl and
debug parameters are passed along to it. The meaning of these argsimill
be explained in the following.

— GetSubmittableTargets(target_list, xrsl, timeout = 40,
debug = 0)
Given atarget_list , 1.e., targets that have passed the validity test de-
scribed in Section 6.4 and amsl object, this function returns a new list
of the targets which fulfills the requirements of the jobs.aBwples of re-
quirements are runtime environments, number of CPUs, diske or a
specific architectureTimeout is only used in an internal function in the
NorduGrid ARC, which calculates the needed file size, and doerying.
Thedebug parameter make the function more verbose.

— DispatchJob(target_list, xrsl, scheduler = None, dryrun =
False, dumpxrsl = False, debug = 0)
This function takes a list of targets and an xrsl descriptidhe target list

64 Managing Jobs

will then be sorted, either using the scheduler providedsimgithe default
scheduler if none is provided. After this, submission wél &ttempted for
each target in the list, halting if the submission succedfisubmission
fails to all targets an exception is raised. If thempxrsl is set, the xrsl to
be uploaded will be printed to standard out. The functidpalf dryrun

is explained in the next.

— PrepareSubmissionTarget(target, xrsl, dryrun = False)

Given a target and an xrsl description, this functions @gatnew xrsl ob-
ject within the target. This xrsl object is prepared for sugsion, i.e., the
relevant attributes from the xrsl are added, along withrimfation such as
which queue the job should go to. The reason for creating ahokiject
for each attempted target is that each target is differedttha informa-
tion to embed into the xrsl is different. Modifying the onigil description
would destroy its state. Ildiryrun is set, an attribute will added to the
xrsl, indicating that the job should not be started wheniwecEby the Grid
Manager.

— UploadJob(target, debug = 0)
Uploads an xrsl description to the given target. The xrstdption is in the
target object already. If the upload fails an exception ise@d. Figure 7.4
illustrates the calls made to submit a job.

SubmitJob

GetCluster
GetValidTargets
GetSubmittableTargets DispatchJob

Scheduler PrepareSubmissionTarget UploadJob

Figure 7.4: The call graph for SubmitJob, showing the APlscalade during a job submission.

e GetJobStatus(jobid, debug = 0)
This function returns a string containing the status of tig given gobid . If
debug is set, the function is more verbose. If the job is not founderception
is raised.

e CancelJob(jobid, debug = 0)
Given gjobid , the function will cancel the job, i.e., kill it. If the job isot found
or is no longer running an exception is raised. Note that tirerpay already
have finished, even though information system says otherwi$erefore the
exception is merely a notification to the caller.débug is set, the function is
more verbose.

7.4 Scheduling 65

e CleanJob(jobid, debug = 0)
After a job has finished, its session catalog will contairioaas files, i.e., output
data. Given gobid this function will clean up the session catalog of the job,
i.e., remove everything in its session catalog. If the job hat yet finished an
exception is raised (the job is not cancele@)ebug make the function more
verbose.

Having discussed the Job Control module and explained its W& will turn to the
other module used by the handlers; scheduling.

7.4 Scheduling

The scheduling module is the smallest of the four moduleslimdanagement. Its only
task is to provide a scheduling interface and at least onedsdhr, to use as default. In
Section 7.3 it was already outlined how scheduling workse OikpatchJob function
is provided with a scheduling function as its arguments.sTanction is called with
the target list as argument, and must return it, where thetéirget is believed to be
the best and the last the wor&ispatchJob will try each target in this list, starting
with the best. This means that writing a scheduler corredpaa writing a function
that sorts a list of targets in descending order.

7.4.1 A Scheduling Example

The Scheduling module does not have any real API, since iissq collection of
functions. It must however contain an object cali®sfaultScheduler containing
the default scheduling function. Instead of an API, an edarapa simple scheduler is
given, i.e., one that sorts the target list after how mang €& Us the target has:
def MostFreeCPUsScheduler(target_list):

def MostFreeCPUs(targetl, target2):

cpus_freel = targetl.queue.GetUserFreeCpus()
cpus_free2 = target2.queue.GetUserFreeCpus()

if cpus_freel > cpus_free2:
return -1

elif cpus_freel == cpus_free2:
return 0O

else
return 1

target_list.sort(MostFreeCPUSs)

DefaultScheduler = MostFreeCPUsScheduler

The example contains a nested function, which is used to aoeargets and return
a value indicating which is the best. The built-in sort raetontarget_list will
then use this function to sort the list. Finally tbefaultScheduler is set to point
at theMostFreeCPUsScheduler function, making it the default scheduler. It might
seem tempting to always use a comparing function like theiomieis example since
it is a rather nice way to sort the targets. This however, @dihit the flexibility of
the scheduler functions, and we do not wish to dictate howstréng should work.
Returning toDispatchJob the target list will now be sorted, and job submission can
begin.

66 Managing Jobs

This form of scheduling is only applicable to one job at a tinTderefore when
submitting multiple jobs, the scheduler must be invokechdaane a job is submitted.
This is not a problem since an average job submission ski#sa lot longer time
than sorting a target list It might be tempting to construct a mass scheduler, when
submitting several jobs. However, jobs has different regquents and will therefore
only work when the jobs have similar requirement, i.e, pafim modeling. Instead
of making a scheduler handling several jobs, the curreetfiate can be expanded to
handle multiple submissions in a better way. With the abozarple the target with
the most free CPUs are always put first, i.e., the best tageies first. However,
remember that the Job Manager uses caching in its informatistem, and that this
information will be reused when submitting jobs sequehtiabiven the scheduler in
the previous example, all the jobs will be submitted to theegarget. Therefore a bit
of randomness should be added to a scheduler function. Tdtedrget should have
the highest probability of coming first, however other tasgghould have a chance of
getting first as well. This probability should fit accordigigb how “good” the target
is. Adding this randomness will make a scheduler distrijols more evenly when
submitting multiple jobs.

Another way of solving this problem is to modify the data ttvadule by after
a submission. For instance when submitting a job requinva €PUs, the target to
which the job gets submitted will have two subtracted frosnfiee CPU count. This
method has two problems. First of all it is hard to do in a cstesit manner, since
some CPUs may appear on several targets, making it not abvitich targets to
manipulate. Secondly it only accounts for the submissiangedoy one self. Other
submissions cannot be accounted for, unless pulling frenmfiormation system again.
And when received, the information is still a outdated. Hiere it is doubtful whether
this manipulation can provide something that the previoeshod cannot. A better
solution would be to monitor the grid, and move jobs betweaeugs as new clusters
appears as queue skew becomes apparent.

Having introduced the scheduler interface, given an exarmphk scheduler, and
explained for its workings, the focus will shift toward areora complicated matter
within job management; Handlers.

7.5 Handlers

The Handler module is the glue that binds job managementhegeBeneath it is
the Job Control and Scheduling modules which it it uses tdrobjobs on the grid.

Over it, sits the Job Management module which invokes thelleasy The task of the
Handler module is to decide what to do, when invoked. An exaropthis is when

a job appears in the Job Manager, Job Management will invo&kdnandler, and the
handler will submit the job to the grid.

7.5.1 Handler Invocation

As already mentioned, there are two kind of events that mhkelob Management
module invoke the handler: RPC calls and new status of jabwa$ also mentioned
that a status updater was needed, since the Job Managemistifigd of this; it must
be pulled from the information system. In this section itlvay identified how the

1At least as long as the target list remains under a coupleonisénd entities.

7.5 Handlers 67

Handler module will work. To do this we will start by looking e when and how the
Handler should be invoked.

e Updated Job Status “When the updater queries the status of the jobs from the
information system, it should update the status in the jadrdetion and then
invoke the handler system with this job. The handler readsdw status of the
job, and handles it accordingly.

e Application RPC call — Whenever an application calls the Job Manager, and the
call manipulates a job, the handler system will need to bekad. There exists
three such calls, listed here:

— Submit job request —When the Job Manager receives a job submission
request the Job Management module should setup the necgsisate-
scription, and call the handler. The normal case for thisiest would
be to just submit the job, however if no suitable resourcesaamilable,

a handler may decide to postpone the submission until a luss=faurce
appear.

— Cancel job request When a job cancellation call is received the Job Man-
ager should cancel the job on grid. This situation is conapéid, since the
Job Manager may be doing something else with the job, e gubraitting
it. Also if the job has just been submitted, it may not yet happeared
in the information system. If this is the case the Job Managiéhave to
wait for this to happen before canceling the job.

— Cleanjobrequest-fthe application request that the job should be cleaned,
i.e, have its output files and session catalogs deleted atheiér should be
invoked. Such a request can also be complicated to carryraléncertain
conditions, e.g., if a handler is downloading the files frorinished job,
the request would have to wait before being carried out.

At each invocation it is the task of Handler module to decidmtshould be done
with the job. As mentioned, many of these invocations cad teaace conditions, e.g.,
what happens if a cancellation request arrives before thevgs submitted. The im-
plication of this is that the Handler module will have to keegek of what is currently
happening to a job, and either cancel that action or waitfeiandler to finish, before
performing the requested action. These conditions ardylikebe a concern when a
cancel or clean request is received, since the Job Manadjdrave to stop what it is
doing and perform the request. A job submission call is nohprto this, since it is
not a change to a job, but the creation of one. Related todhithat happens when the
application asks for the state of the job, and the job has ebbgen submitted or ap-
peared in the information system. To solve this problem tiieManager introduces to
new statusesiN_JOB_MANAGERNJSUBMITTED:cluster@queue . The first marks
that the job has entered the Job Manager, but has not yet bbeariteed. The second
indicates that the job has been submitted, but has not yetapg in the information
system. Furthermore it displays to which cluster and queuté job has been sub-
mitted, i.e., a cluster and a queue name. These two statg&xists between the Job
Manager and application, no extension to the informaticsiesy is necessary. This
addition removes the problem of getting a status for a jolicivhas not yet gotten a
status from the information system, a problem whichrbstat command line tool
is suffering from.

68 Managing Jobs

In Section 7.1.2 it was mentioned that a lot of updates oregisnt RPC calls,
would invoke a lot of handlers at once. To solve this problaedoncept of a handler
gueue was introduced. Having such a queue means the Hanoltkdenwill have at
least one thread to do work, since it is not directly calledlblp Management. Having
such a thread would also allow the caller of Handler modutdinue without having
to wait for the Handler module to finish. This is a good, sinome of the handlers
can potentially take substantial amount of time to completg., fetching of output
files. Giving the Handler module its own thread might not elserenough, since the
thread can only handle the jobs in the queue sequentiallthelHandler module is
to fetch output files from a set of finished jobs, this will patity congest. Therefore
the Handler module should spawn new threads for tasks thattake a significant
amount of time. This will allow to main handler thread to dane its work. It might
also be feasible to create sub-queues within the modulg fergubmission. However
each thread added, will add to the complexity of the modueddling threads should
only be done in the case of congestion problems. Even thdwgmbdule will contain
several threads, simplicity of use should be kept, makirgggire that the internal
complexity of the module is not exposed. An example of a hemidlillustrated on
Figure 7.5.

Handler |
File fetcher | 4

OO foeow

Handler Queue

File fetcher | Submitter | Resubmitter |

Figure 7.5: The Handler module with a thread handling jobs. Two file fetsthave been started
and two sub queues are started. One for submission and onestdimission. The ellipses are
jobs, and the circles with arrows threads.

Moving on to the construction of the module we will look at whiprinciples
should be used when constructing the handlers. There asradeequirements for
what should be possible:

e Creating new handlers —The user should be able to create his or her own han-
dlers and incorporate them into the module.

e Overriding existing handlers — It should be possible to override the default
handlers with other handlers.

e Selecting between existing handlers Fhe user should be able to mix and
match the handlers, both the handlers provided with the Jahader and ex-
ternally provided.

7.6 Job Management 69

Given the two first requirements it is natural suggest thatradter should be imple-
mented as a class. From this class the user can create a resywwehach inherits from
the provided class. This makes the user capable of creatiegvehandler by writing
a method in the class, which are called when a certain typaodler is invoked. It
would also allow to user to overwrite the existing handleysusing polymorphism.
For the third requirement, something more flexible than iithece and polymorphism
is needed: Mixin& Mixin allows each handler to be implemented in a separatsscl
containing only one method which name corresponds to whihteiinvoked for a
certain condition, e.g., a job submission. Putting eacldlearin a separate class, al-
lows the user to select the handlers that should be used kyitinly from the desired
classes into a new class using multiple inheritance. Fertthivork there needs to be a
super class, which the users class should inherit from. dlass should define the in-
terface for Job Managementto use, along with setting up trk gueue. The methods
provided to the Job Management module should then invokethadelepending on
which action should be taken. The superclass should coatapty methods for each
of these actions, since these are the methods meant be atemiay subclasses, the
real handlers.

After having given an explanation of how the Handler modulélve implemented,
the section will be finalized by listing the API of the handieodule:

e StatusUpdate(job)
Used when a job has received a new status. The status of theljdie read and
the handler for this status invoked. Usually called by thdatpr, after updating
the status of a job, and the job had a different status than &sould also be
invoked for new jobs, since theii_JOB_MANAGERtatus will make them go to
the submitter handler.

e CancelJob(job)
Should be called when a request for job cancellation has begte. If the job
is in any if the handler queues it will be removed from theranHlers running
with this job will either be killed, or the function will wafior them to complete.

e CleanJob(job)
When invoked the session catalog of the job will be deletkeainy handlers with
the job is running, the method will allow them to finish, sirtbey could be using
the session catalog, e.g., downloading from it.

Note that the complexity of handler has been hidden by a sntalfface which should
be simple to use for the caller. Having explained the API eflilandler module, we
will turn to the last module in described in this chapter: Jdnagement.

7.6 Job Management

The task of the Job Management module is to do bookkeepingpsfand invoke the
handler module when necessary. Furthermore it providdslkigel functions concern-
ing jobs, many of them provided directly to the RPC serveisieans that the module
binds together RPC calls with the internal data structuepsasenting the jobs. The
module does not decide how to threat the jobs; this is theda#tke handler module.

2Mixins is a concept using multiple inheritance to augmeetfimctionality of other inherited classes;
the difference between regular classes and mixin classehatr mixin classes cannot stand by them selves.

70 Managing Jobs

This section will start by explaining how jobs are descrilzed how these are kept
track of. Hereafter the job status updater will be descrjlzadl finally the API of the
Job Manager will be listed.

7.6.1 Describing Jobs

Previous in this chapter, there has been several hints aliwita job description should
contain. The basic contents of a job description are: job ttagy xrsl| description, its
status, and a jobid, if submitted. Furthermore handlerd imaxse a way to store various
informations aboutthe job, e.g., resubmission attempigpagvious clusters. Since this
datais related to the object, it should be stored along withtierefore a job description
should have a container for handlers to use. Also, a flag atitdig whether or not the
job is currently is being handled is needed. As the Job Maniaddghly threaded a
lock to protect access to the job is also needed. This locldalso be used to protect
access to the object while it is being handled, however tlisledvcause the lock to be
held for long periods of time. To overcome this it would be @&sary to attempt lock
grabbing in a non blocking manner. Doing this would compéaauch of the code,
making the Job Manager harder to understand and more premets. Therefore both
the lock and handled flag should be kept. The descriptioryldhmaturally be kept in
an object, which ties the data together. The code for thes ¢ddssten here:

class Joblinfo:
def __init_ (self, tag, xrsl_string, jobid = "):

self.tag = tag

self.lock = threading.Lock()
self.xrsl_string = xrsl_string
self.xrsl = Xrsl(xrsl_string)

self.jobid = jobid
self.status = NOT_SUBMITTED_STATUS
self.handled = False

self.local_input_files = {}
self.handler_info = {}

The code has a few extra items not mentioned. Since the Xrslgscription is send as
a string to the Job Manageéy it converts the string to an xrsl object, and the string is
kept, should be needed later. Also a dictiofas/input files are created. This is used
when one or more of the input files to the job are local. Sincetlie Job Manager that
submits the job, these are needed. h&w&dler_info is for the handlers to store infor-
mation in. Finally, note that the status of the job is set ®O&_SUBMITTED_STATUS
This makes the handler module submit the job when invoked.

Having a suitable job description is not enough; there mlsst be kept track of
these descriptions. For this the Job Manager uses a dicfiomaere the tags are used
as indexing keys, and a job object as the value. Since agedisistis dictionary also
happen concurrently a lock must be acquired before readimgadlifying it. Given
that each job and the tag dictionary has a lock, it is clear sbane constraints for
doing locking is needed to avoid deadlocks within the Job aggn. These locking
constraints are:

e One must grab the lock of a job / the tag dictionary before irgadr modifying

SRemember that XML-RPC does not support user defined types
4An associative array in Python

7.6 Job Management 71

it. This ensures consistency of the object, so that an ogetdt modified and
read at the same time or being modified by more than one thteatirae.

¢ If the handler flag is set, you are allowed to read from the @bfaut not modify
it, except if you set the flag. The reason for this constraitihat when a handler
is running it has the exclusive rights to the object.

e You are allowed to grab one job lock anytime, however if twarmre job locks
are needed you must drop any job lock holding, grab the tatjodary lock,
and grab the lock of the jobs. If more than one thread is altbteegrab more
than one job lock at a time without going through tag dictigrlack, the Job
Manager can deadlock. This constraints ensures that itriiates

These constraints ensures that the data in the Job Managein®consistent, and
that the threads does not disturb each other or deadlockrefidre it is critical that
these constraints are not broken. We will now turn to othgtask of the Job Manage-
ment module: Updating the statuses of jobs.

7.6.2 The Status Updater

When a job receives a new status, e.g., it is markedlMSIHED, the Job Manager
should invoke its handler. However the Job Manager is nafiedtof these updates, it
must pull them from the information system. These updatest foer done at a regular
interval, since the status of jobs is updated continuoustié information system. In
the Job Manager, this updating is done by status updatechwhia part of the Job
Management module. The updater is a thread, which will upttee statuses of the
jobs in the Job Manager and sleep for a while. This procedt®eis tepeated. It uses
the following procedure for updating the statuses of thejob

1. Collect the jobids of the jobs in the Job Manager. If theigpbeing handled or
the status of it indicating that is has already finished, tiei$ skipped.

2. The status of the jobids representing the jobs is fetchau the information
system.

3. The updater will reiterate over the jobs, comparing theds of the jobs with the
ones that it fetched statuses from the information systerhgs comparison is
necessary since the job lock is not held during the polliognfthe information
system. If the jobid is exists, the status of the job id updafespecial condition
is for finished jobs, where the status will be set to eithAi®iSHED ERRORand

FINISHED_SUCESSFULLY These states are necessary for the handler to recog-

nize whether the job was successfully finished or not. Hniélthe status is
updated, the handler will be invoked.

Continuing doing this the updater will update the statudebhejobs, making the Job
Manager able to react to changes regarding the job.

7.6.3 Job Management API

This section explains the API of the Job Management modulach\Vbf this API is
exported directly to the server, and a large part of also bsetthe Job Manager com-
munication module. The APl is:

72 Managing Jobs

e NewJob(xrsl_string, input_files = None)
This creates a new job descriptions with a new tag. The xstggtion is sent as
a string as explained in Section 7.6.1. Furthermore morénget files are sent
a long as well. Thénput_file should be a dictionary, with the paths as keys
and the files as values. From this a job description is creathith is inserted
into the tag dictionary and th&tatusUpdate method on the handler is called.

e CancelJob(tag)
Given a tag, and that a job instance is running, this job wélldanceled. The
job description is not removed. If the tag does not exits erjtb has already
finished, an exception is raised.

e ClearJob(tag)
Cleans up after a job on the grid, i.e., removes its sessitaioza If the job has
not finished or the tag is invalid an exception is raised.

e InjectJob(job)
This function injects a job into the system, i.e., the jobniserted into the tag
dictionary, but nothing more will be done. The updater wlhilidat this as any
other job though.

e RemoveJob(tag)
Given a tag, the job description representing this tag wélrémoved and any
running handlers, will be killed or be allowed complete.Hétjob is running on
the grid, it is not canceled. The job removed will be returnéd exception will
be raised if the tag does not exists.

e GetJobStatus(tag)
Returns the status of a job, given its tag. If the tag doesxist an exception is
raised.

e GetJobidFromTag(tag)
Given a job tag this function returns the jobid, if any, to tadler. If the tag does
not exist an exceptions is raised.

These functions provide a high level interface for job mamagnt for application to
use. While the functions correspond much to those in the d@ritl ARC command
line interface, the jobs are managed, e.g., they have hawdieh can resubmit them
if failed.

7.7 Summary

This chapter has described, what is perhaps the most tptcaof the Job Manager,
Job Management. Initially an analysis of how handler shouddk was made. The

result of this analysis was that handlers would dictate mbkbw the construction of

the Job Management should be. The analysis made it cleathindbb Management
was not just one module, but four: Job Control, Schedulirapdier, and Job Manage-
ment. This separation works well since it provided muchdreteparation of concern,
and made it easier replacing parts.

Chapter 8

Distributing the Job Manager

This chapter discusses how to make several Job Managerstagekher managing
jobs. The purpose of distributing the Job Manager is the sasrfer many other dis-
tributed systems, where the system needs to keep workingwekien failure occurs.
We need to cope gracefully with failure. Therefore the Jombtger should deliver
failure transparency. A way to achieve failure transpayeigto replicate the data
and/or services in order to avoid a single point of failur&,[18]. Depending on the
method, distribution of the Job Manager could also lead foravement in availability.
Ideally total location and failure transparency, from tlsers/applications perspective,
is preferable, but due to constraints discussed in thistenaipis will not be achieved
in full.

To make the Job Manager resilient to failure there should dsingle point of
failure. Distributing the Job Manager allows for the useirimoduce redundancy by
starting several Job Managers to manage the jobs. This leasksveral interesting
problems which will be discussed in this chapter. The prolsieliscussed are already
known within the realm of distributed systems so we startdnking at some general
issues.

8.1 Issues

In order to distribute the Job Manager, several questiodsssues must be resolved.
The items on the list spring from the requirements and theufea of the Job Manager
and they need to be resolved for the Job Manager to functioveased. The list are,
for the sake of readability, divided into two sections. Thstftategory has to do with
failure, location, and replication transparency.

e Failover — How to make the other managers aware of a failure in one of the
managers, and decide which manager has to take over and Isow #ithieved,
e.g., election algorithms, discovery, and soft regisbratiFurthermore a failure
detector is needed and the requirements and type shouldédrm@nieed.

e Handover — The ability to explicit push a job to another Job Manager,ifie
stance, if the load on the manager gets to high or if the Jobalglanin question
does not have the capabilities to manage a particular jolbeTable to hand a
job over to another Job Manager, it must be possible to tearaf information
and data the job needs to execute properly.

74 Distributing the Job Manager

¢ Availability of data — The data and information necessary to manage a job needs
to be available to all Job Managers, depending on the failmachanism, for
failover to function properly. A scheme for making this datailable has to be
developed.

e Job Manager Discovery- Itis necessary to have a mechanism for new Job Man-
agers to locate other Job Managers already running, in dediecate failover
managers. This concerns the location of data and the amageof the Job
Managers, e.g., MDS, hierarchy or P2P, explicit list of ngera, user provided
list.

¢ Unique identification of jobs—Itis necessary to be able to identify jobs uniquely
over time, even when job ids change due to resubmissiortectudisappear, etc.
This has already been discussed in Section 7.2.

The rest of the problems are of a more general nature, ands®f¢he pertains to the
integration of the Job Manager into the NorduGrid ARC.

e User authentication and transfer of credentials— Depends on whether mul-
tiple users are able to run on the same Job Manager. If so there explicit
need for credential handling. The issue of transferringlendial to a new man-
ager could be explored, as well as the security implicatsuth a scheme would
have.

e Scalability and availability — The solution should be scalable, at least to a cer-
tain degree, depending on the expected usage. If the Jobgdaimastarted
per user, scalability is not a big issue, as most users piplogity needs a few
Job Managers to satisfy their need for failover capabditiéf a Job Manager
can serve several users the scalability requirements @yer/as many Job Man-
agers will have several users and handover managers. Tihus fdetection may
include any number of Job Managers.

The problems regarding multiple users will be ignored sitheeJob Manager is used
on a per user basis as explained in Section 4.3.4. Furthertherscalability issues
may not be severe, as it is unlikely that more than a few Jobagars will be started

by each user. However, if Globus is replaced, making it fdsgor the Job Manager
to handle several identities and manage jobs for severas,ugen all of the above

mentioned issues becomes concerns regarding the sdglabiti robustness of the Job
Manager.

All of the issues listed have an impact on the choice of comoation protocol
between the Job Managers, and it helps determine the typerofenication and
protocol should be used for the different tasks. In the negtisns we take a deeper
look at the issues listed in this section.

8.2 Models for Distribution

There are several ways to distribute the Job Manager. Insthison we look at two
general ways of providing failure transparency and dis¢heg pros and cons with
respect to the Job Manager.

Every Job Manager holds some information about the jobslwihimanages. In
order to make Job Managers work together, this informatiastrbe propagated to the

8.2 Models for Distribution 75

other managers. The objective is to determine the best astisimople solution that are
working with the rest of the NorduGrid ARC and delivers theessary failsafe mech-
anisms. There are several schemes for handling the comatiori@and replication of
data between the Job Managers. Two possible solutionsssipied below.

e Active replication — A job is managed collectively by a pool of job managers.
When a request arrives from a client or the job changes itastthe request is
multicast to call managers which handles the request. Thkcaftion receives
the result from the fastest manager.

e Primary-Backup/ Passive Replication- A job is managed by one Job Manager
which remains in control of the job unless the manager failsis means that
control is only transferred automatically to another Jobnisliger in the case of
failure.

There are pros and cons for each approach. Common for bothesétmodels are
the need for some form of mechanism to detect if a particdarManager has failed.

One type of failure detector is some form of registrationtponl with timeouts, a push

model. Another failure detector is a pull model, where thie M@nager asks the other
Job Managers if they are alive. In a asynchronous distribsystem like the Internet,

is impossible to implement a reliable failure detector oy message passing [17].
The choice of failure detector will be discussed furtheedan this chapter.

8.2.1 Active Replication

Active replication provides a high level of fault toleranaed in addition it also pro-
vides high availability since all the Job Managers can radp requests from the
client. Basically every request is processed by all marsaged in this way a consis-
tent state is maintained in every manager. In order for agtyplication to work there
is a need for total ordered multicast, to ensure that evemnyager reaches the same
state [17].

The main argument for using active replication is robusdreesd availability since
the bottle neck of having one manager to handle all jobs doesxist in this model.
There are two problems with the approach in the context adtteManager. First of all
we cannot deliver total ordered multicast since the netvimdsynchronous. Thereby
we cannot ensure that all managers agree on a consistensistae the requests can
arrive in a different order at the different managers. Setpifor this approach to
work all operations on jobs would have to be idempotent ireotd prevent multi-
ple submissions of jobs from the managers. There are no obwiay to implement
job submission as an idempotent operation in the NorduGR&€CABecause of these
inherent problems of using this model in our context we loblpassive replication
instead.

8.2.2 Passive Replication

A solution using passive replication imposes a orderingvben the Job Managers.
One manager is the primary, accepting request and perfgrthajob management. It
is only in the case where it fails, that another Job Manaderstaver.

Passive replication is traditionally associated with atieé large overhead, since
data is replicated between the primary and the backup, \ekehe active replication
performs the same functions concurrently. The overheadats# teplication between

76 Distributing the Job Manager

the primary and the backups, is small because it is only the jol information, e.g.,
the job description, that has to be distributed, and not #ia dssociated with the job.

The small amount of data that needs to be replicated, malsssvpareplication
preferable. Furthermore it is simpler to implement. Theadvack is that this method
does not increase availability as active replication déémwever since the Job Man-
ager is expected to spend most of the time sleeping, whikegob being executed at a
cluster, this is not a major issue.

This model is not free of communication between the backupagers since this
model requires explicit failure detection. If the primaranager fail there is an explicit
need to reach consensus of which manager should take overdén to do this, the
failover managers should continuously be able to checkefrttaster is running. Ad-
ditionally the failover managers should know of each othesrider to reach consensus
regarding the new primary manager.

8.2.3 Discussion

The two models just discussed are focused on high avatlabilidata. A lot of the
requirements that makes it difficult to use them in our corgéem from this. In the job
managers case a lot of the data are actually stored out&@d®thManager. In addition
to this, is the fact that most of the data stored at the Job Fr@oes not change once
the job has been submitted. An example of this is the xRSL gdeidption, which does
not change once it has been transferred to the Job Managedaka that are subject to
changes, are the meta data concerning the job, i.e., resatamiattempts and previous
clusters. Even if the meta data are inconsistent, it is natastrophe that prevents the
jobs from being managéd The important job information such as the current cluster
the job is running on, is accessible through the informasigsiem. This means that
the requirements of consistency can be relaxed a bit andrnhli®s the distribution of
the Job Manager simpler.

8.2.4 Job Manager Failure Considerations

Generally the Job Manager has to cope with two types of filarthis type of sys-
tem: Job Manager failure and network failure. Job Managertameans that the Job
Manager or the host on which it is running fails or crash.

Networks can falil, e.g., a router can crash causing the rm&ttaobecomes par-
titioned. In a partitioned network the route between someesadn disappears. It is
important to note that network failures can be both intréwvesiand non-commutative
with respect to routes between nodes in the network [17].

A similar problem is network congestion. The network is wiatkbut it is very
slow preventing packages from reaching their destinatefore timeout. Though this
is not an error in the strictest sense, it is impossible temeine if the network is
slow or a host has crashed. This observation illustratesxdamnental problem with
asynchronous distributed systems and explains why thera@may to implement a
reliable failure detector by the means of message passimgaEven though we use
TCP, which is a reliable transport and the message is almastgteed to reach the
manager eventually, because TCP cannot recover from neagsiwork failure [71].
This have an impact on the use of passive replication.

11t may actually not be preferable to merge the meta data iftaeagement of jobs have branched, due
to network failure, since the meta data should follow theviidial executions.

8.3 Job Information and Job Data 77

Since we cannot prevent failure, we will examine three tygféaconsistent states
failure can result in. The three problems are lost jobs, jablidation, and jobs that are
managed by multiple managers. These will be discussed matepth in the actual
model used for distributing the Job Manager.

The failure conditions means that additional measuresldhmeiimplemented to
detect and correct these problems, i.e., there should be swchanism for detecting
duplicated jobs. Depending on the method, we run the riskllirids all instances of a
job in case of failure. A solution could be to check if the jskaiready running, before
submitting making job submission somewhat idempotent. lAdan be identified by
the job tag, and therefore duplicates can be identified usiadag.

The main function is the soft-state registration mechanisrhe manager must
register with its failover managers, or the failover mamragaust check the master,
periodically. Furthermore the master must push any updatds jobs meta data to
the failovers. In order for another Job Manager to take ovemhanagement of a job,
it needs to have the job information.

In this section we disregard the byzantine failures, cautire Job Manager lies
about the jobs which it is managing. This have we done for ®asons; the mangers
get most of their info from the information system, and thiuis iconsidered correct.
Furthermore, if the Job Manager lies about the job tag, thecpnnot be located, and
a manager cannot do anything about jobs it cannot locates Williresult in identical
jobs running under different tags, an undesirable situdbiat difficult to prevent.

8.3 Job Information and Job Data

This section discusses how to ensure that the informatidrnlata associated with a job
is propagated between the managers. For a manager to beahletcontrol over a
job originating at another Job Manager it must have accetgetipb information, i.e.,
job tag, job description (xRSL), and current job id. Furthere, the manager must
have access to job meta information (submission attemat$,and job data.

The main job data should be available as it has already bessustied, but the
manager also needs the job description, along with the natta 8trictly speaking the
meta data is not necessary, since it only for informatiorppses and has no impact on
the possibility to submit jobs. However in the case of fadlitrwould be preferable to
the user if this had been transfered along with the job detori.

It is not possible to keep a consistent “state” of the grid [A& discussed in Sec-
tion 8.2, the only information in the current informatiorssgnt is the job id, and there
are no support for job tags. Furthermore all meta infornrategarding a job is not
available in the information system either. There are sdwsays to solve this prob-
lem. The information system could be modified to provide a Wwegcquire the needed
information. The main problem with changing the informat&ystem, is that the in-
formation system is a core component of NorduGrid ARC, andeiNorduGrid is a
production grid, it is unlikely that changes to the inforinatsystem will be accepted.
This imposes severe restraints on our possibility to testitth Manager and thus forc-
ing us to consider this during the design phase. One solttidhis predicament is
to let the Job Manager assume the role of information provideside the scope of
the information system, for the purpose of job specific infation. The problem with
this solution is, that it leads to ambiguity with respecthe tocation of information

2Actually the information is stored on the resources in thd.gFhe information system merely holds the
contact information of the contending resources

78 Distributing the Job Manager

in NorduGrid, as there are suddenly two places to locatertfogmation. The proper
solution would be to extend the information system, butesitiés is not possible the
necessary job information should be transferred betweerddh Managers by other
means. One way of doing this is to transfer the informatioorugegistration, and then
subsequent push updates to the failover Job Managers upoige$ in the jobs meta
data.

If the information was to be included in the information gt an LDAP schema
describing the Job Manager should be developed. As for h#ératesources in the
NorduGrid ARC, the information system would only hold thentaxct information and
the Job Manager should implement a service provider to angueries about the Job
Manager as well as queries about jobs meta data.

8.3.1 Storage of Job Data

Another issue is the storage and availability of data assediwith a job. For the Job
Manager to be able to submit a job it needs to have access toghedata needed
by the job. This has to be ensured. Furthermore since thesjebbimitted by the Job
Manager all data residing on the client should be transfiecoehe Job Manager or the
grid before submitting. Several solutions to this problediss:

e Have a storage area at every Job Manager where job datagsl stauich a storage
area may be necessary anyway for storing temporary dataitiéwally the Job
Manager could register itself as a storage element and #ysalowing data to
be transferred using the normal operations.

e Use some alternate mean outside the grid for storing daja,Fereenet, Pastry,
or Coda.

e Always use SE/RC to store job data, including input and oudlata, thereby
removing the problem of having the Job Manager manage treatat letting
the Grid Manager fetch the data.

All of these solutions raise some concerns. A storage arexeay Job Manager is
necessary under all circumstances, to store temporarywihtn submitting jobs. But
registering it as a storage element and using it when suibgnitata does not improve
fault tolerance, since other Job Managers are not able tmisube job if the Job
Manager, holding the input files, crash. Also, since apfibices executed in a grid
environment can have rather large input data sets, it ischsw that job data cannot be
distributed between every Job Manager, as it would put wateble high load on the
network and require a lot of storage and bandwidth.

By using a storage element to store job data, the Job Managenies reliant on
another entity in the grid, thus substituting on single poirfailure with another. If the
storage element becomes unavailable, for some reasomlh@anager is unable to
submit jobs until the storage element is available agaiiis ptoblem can be countered
by replicating the data on several locations in the gridhatdost of additional traffic
and space.

The solution of going outside the standard grid element asidgua foreign stor-
age partially solves the availability problems are solvétis idea poses yet another
problem, as the grid software becomes dependent on othécegrsuch as a peer to
peer network, like Pastry or the Coda filesystem. It is imaiatrto consider quality of
service of the external services, e.g., the two examplds gpadrantees availability of

8.3 Job Information and Job Data 79

data and upper limits for searches, whereas Freenet dogshd@4]. But the idea of
doing this outside the grid is not preferable, especiallgxisting grid resources can
already be used.

Replication is already possible in NorduGrid ARC, by meaithe replica catalog,
the only drawback is that this method requires the expléptication of data. However,
work is under way to develop a Smart Storage Element (SSEghwdhould provide
support for automatic replication [45]. Though the timefefor the development is
not known.

In our opinion, the best solution is to use a storage elemBuoing so prevents
the Job Manager of becoming dependent on other serviceslewusNorduGrid, es-
pecially since the needed replication is planned. Thistemideads to relatively high
availability, but it has a problem since the storage elenb@cbmes a single point of
failure. This does however not lead to big concerns since ofdbe storage elements
are high performance computing resources, which have datd administrators, and
therefore the availability can be expected to be high. Nbedess it is still a single
point of failure and are subject to failure. As already disaxt it is possible to replicate
the data manually on several storage elements using thieaegltalog. Furthermore
the advent of the smart storage element delivers a solutidinig problem and thus it
would be a waste of resources to solve this problem twice.

This imposes further requirements on the Job Manager, ierdod this solution to
work, the Job Manager must check the job description to sektiie needed data are
located at a storage element. If this is not the case, it isabgonsibility of the Job
Manager to upload the files, if available, and modify the jelkatiption accordingly.

8.3.2 Two Models

In this section we examine two models for distributing thé ddanager. The first
model takes some of the ideas described under active réplicghough it uses a
primary-backup solution for replicating data.

In this model all Job Managers can handle request from tleatclit differs from
the active replication, since the request are not submitieall the mangers to keep
a consistent state. Instead data are replicated betweeglnlthiglanagers. This makes
the model more communication intensive and raises con@oat the consistency
of data, since the data is not replicated instantly, i.e Jbb Managers does not have
a complete picture of the state of the grid. The model ilatetl on Figure 8.1, is a
rather “naive” approach and it is unnecessarily ineffexbut none the less it serves to
illustrate the basic idea.

This model is rather communication intensive since job ndata of every job must
be propagated to every Job Manager running, every time agehaocur. Since the
requests can only be handled by one manager, to preventéahg submitted multiple
times, the model requires that the managers coordinaty eation performed on a
job. This requires that every Job Manager knows of each a@hdrthey have a way
of reaching consensus. Even though consensus cannottiballydoe reached [17], it
should be possible to implement a satisfactory solutioniincase, since the duplicated
jobs can be handled by other mechanisms.

However, this scheme also has problems in larger persjgesitice it does not scale
well. The problem is that any decision about a job must bedinated between all the
managers. In addition to the distribution of the job datae Problem with the coordi-
nation of job management may not appear to be a problem sibsegften require no
attention between the time when they are submitted unt éine finished. This usage

80 Distributing the Job Manager

’ < » Job Information

Figure 8.1: A naive network of Job Managers. All information about jobsldob Managers are
shared among all of the nodes in the network, resulting inreecessary high network load.

pattern may, however, change, as the introduction of a Johakfler, which provides
more control of the management process. A rise in the acted for managing jobs
may lead to problems with management overhead.

A way to minimize the data transfer between the Job Managéestise a model
based on passive replication. Furthermore we can also thkengage of the informa-
tion system. In this model we introduce the concept of a masssger. In this model
the master manger is the only one accepting requests frooliém, it then distributes
the data to the failover managers on the network.

Information System

Master

Job Information
Alive check

Figure 8.2: The master is the frontend, which the clients contact. THerimation about the
jobs are propagated to the clients through the informaty@tesn (some in formation has to be
pushed explicitly, e.g., the xRSL description, in the cotraformation system). The failover
managers checks periodically if the master is alive.

By using the latter scheme, the scalability issues are m&ss. Though the repli-
cation is still the same amount, there is only need for coatitbn if the master fails.
Furthermore, by taking advantage of the information systieenamount of job infor-
mation that has to be transferred directly between the memsagn be brought further
down, by only distributing the most necessary data contisiyo(e.g., list of managed
jobs), and let the failover get the rest from the informatsystem only when needed.
This model is illustrated on Figure 8.2.

8.4 Discovery Methods 81

There are some problems with the approach of using the irdtbom system. The
first is a practical obstacle: The NorduGrid informationtsys does not support all the
information necessary, e.g., there are no support for ssdion attempts, old clusters,
job tags, and location of data. In order to support this mattiel information system
therefore has to be extended. Changing the informatioesystill have a tremendous
impact on the entire NorduGrid, and it will be hard to conwrtbe developers and
users that this change is necessary without having denatedtthat the Job Manager
approach works.

This leaves us in a situation where the information systeiy bald job names
and current job status. The rest of the information needstpropagated between
the master and the failover managers. If this scheme is @eséuhigues to reduce the
amount of traffic between the Job Managers, should be used.p@ssible technique
is to lessen the number of failover managers which a padraulster registers with.
This comes at the price of lesser robustness, all thoughthis not be noticeable in
practice. This modification brings us closer to the previouslel.

The fact that the improvements considered brings the matizde together, makes
us consider a hybrid model combining the two, could be carsid, where a pool of
manages work together following the first scheme. At a higtestraction level, the
pool is treated as one manager and the second scheme ishisedptel could have
the advantages of both models, and make the system morélscala

8.4 Discovery Methods

In order to achieve location transparency, mechanismsstigiort automatic location
and discovery of the Job Managers should be in place. Thigibave two sides:

Mechanisms for the application to locate a Job Manager whestarted, and methods
for the Job Managers to locate each other.

8.4.1 Application

From the clients perspective, the problem is the bootstrapprocess of locating the
first Job Manager. When the first Job Manager is located resbeaautomated. Ba-
sically the discovery can be done in two ways, either for theruo explicitly identify
the Job Manager, by address or hostname, or to query theegadirces.

The first approach is by far the simplest and it has some adgast as well as some
disadvantages. The advantages are that it is likely thatiskee know where the Job
Manager is running and therefore it is not a problem. Thid isoirse a disadvantage
if the user do not know where the Job Manager is located, d¢reiflob Manager has
crashed and the user does not know of any other managers. sEnenay also have
some explicit knowledge of the capabilities (e.g., handédsa particular manager,
and thus wants to have the jobs managed by this manager amdvebne selected
automatically.

The disadvantage is that this solution does not provide limtation transparency
for neither the user or the application. This problem is nbigissue since the Job
Manager is most likely to be started by the user who uses itthekfor knows the
location of it. The Job Manager have the mechanisms for aatioaily locate other
Job Managers, so when the application has located and ¢edtaclob Manager, a
list of known Job Managers can be fetched the applications $t could be stored
and used subsequently to automatically locate the new mastase of failure. It is

82 Distributing the Job Manager

important that the client locates the master manager, sing¢he only one which are
able to make decisions about jobs running on the grid.

If the client should be able to locate the first Job Managesraatically, it would
need some way of querying the information system, to locaa@agers running on
behalf of the user. This solution constitutes a problemesihgoes against the idea of
separating the grid functionality from the application lwtng it into the Job Manager.
To be able to query the information system, the applicatiecolnes highly dependent
on Globus and NorduGrid ARC, which is not desirable. Anotbelution could be
to implement an LDAP module able to talk to the informatiosteyn and have the
application link against it. The last solution my be feasjlidut would require a lot of
work with relatively little gain.

8.4.2 Job Managers

The Job Manager should be able to run without user intereentind support auto-
matic failover. Therefore it is necessary that Job Managarsdiscover and locate
each other automatically.

When a new Job Manager is started, it needs some way to lottederaanagers
belonging to the user. In Section 8.3 several solutions éopttoblem of information
sharing was proposed, one was the storing of contact infiloma the information
system. This solution would solve the problem, as a new Jofelder could query the
information system, getting a list of job managers it coddister with.

This solution is not without problems. One of them, the iroalions of modifying
the information system have already been discussed. Additly the selection of Job
Manager to register with may have consequences of how flaitea system becomes.
As an example, itis not a good idea to register with a Job Manamning on the same
host as the registering Job Managddaut also to have the manager running at different
geographical locations. This illustrates that the netwopology is important, but it
most likely not possible to ensure a geographical distidoautomatically. Some sim-
ple heuristics taking domain names and ip-ranges into atamuld be developed, but
the user should have the possibility of overriding the diefaehavior of the registration
process.

If the Job Manager is to be used in a production grid, the méttion system should
be changed to be able to describe the Job Manager. This isossibfe for test pur-
poses, but we have been able to place the contact inforniatiba information system
in a slightly odd way, as we will see in the following.

8.4.3 Job Manager Contact Information

This section describes two things: The contact informatieeded for a Job Manager,
and how we will to use the information system for Job Manageitact information.

To contact a Job Manager the location, in the form of a hoséema a port number,
is needed. This is the least amount of information neede@dditional information
to make selection process simpler should also be provided.ififormation includes,
the user which is running the Job Manager and which Job Margrgep it belongs
to, see Section 8.5, and possibly a list of capabilities.tfermore some additional
information regarding multiple users and certificates maynbcessary in the future.
This includes, the users allowed and the certificate of theManager.

3The idea of running two managers at the same host may seembiké idea, but there can be arguments
for doing it, e.g., different capabilities to support spdemands of some jobs.

8.5 Model for Distributing the Job Manager 83

If the Job Manager was to be regarded as the other resourbksduGrid it would
be described in an LDAP schema in the information system.olild/serve as a part
of the information system responding to queries and progdiontact information to
the information system. Since this is not possible withootifications, we push the
information provider responsibility to the informationgwider on a random resource.

To do so, we exploit the fact that job information can be qeefrom the infor-
mation system, until the jobs session directory is cleamethe cluster. This is done
automatically by the Grid Manager after a specified timeallgi24 hours. By having
the Job Manager submit a “contact job” to the grid as one ofitbeactions it performs
when it is started, the information abut this job is placedtws cluster to which the
job was submitted and can be queried through the informatystem. The job itself
does nothing, e.g., sleeps for one second and exits, bug isetime way as job tags, see
Section 7.2, the name carries the information needed tacbtite Job Manager.

To register with a Job Manager a query is sent to the infoirwnagiystem to locate
contact jobs. Since job information can live for a long tintds important that the
contact jobs are time stamped in order to identify the newEst/o or more identical
jobs. Additionally the Job Manager should clean up its oldtaot information when
possible. This means that old contact jobs should be cleahed shutting down, and
when reregistering after a crash, if possible.

This method is only for testing purposes but should work,cengjlas the cluster
holding the job information is still on the grid.

8.5 Model for Distributing the Job Manager

We now look at the specific model used for distributing the Mamager. This model
takes the previous discussion into consideration and & trseinformation system as
the basis for discovering other Job Managers. The Job Masage grouped together
and one manager in the group is designated as the master. dsternaccepts and
handles all request. If the master should fail another Johadar takes over the man-
agement of the jobs.

Without a reliable failure detector there is a risk of job toation. As an example,
consider the situation where a manager is suspected to hiée@, out it has in fact been
separated from some of the others due to a network partiti@omgestion preventing
the registration message to reach the failover in due time.disregard that a sepa-
ration would likely also have separated some the Job Masdgen the grid and the
jobs being managed. A network failure can be both intrareseind non-commutative,
causing an election to be called on the one side of the manitit). This election would
result in a new manager in charge of the jobs. There are twapous of this scenario,
see Figure 8.3. Either the same job is being managed by twageas, which can see
the job but not each other. The other situation is that a daf#ijob is being spawned
by the new manager, because it cannot locate the job, anthiissddetermined to have
failed.

It may be unlikely, but possible that the Job Manager anduresocould be sepa-
rated from the other Job Managers. In order for this to happere has to be a GIIS
on every side of the network partition. An example could b&éadwe a Job Manager
running in Sweden and one in Denmark. If the connection betviZzenmark and Swe-
den breaks down, there is still a GIIS on both sides of the.splie jobs managed by
the manager is duplicated on both sides of the partition. ldtienwhat side the client
runs on it still have access to the job, though one of them heaea resubmitted.

84 Distributing the Job Manager

Job Manager 1 Job Manager 2 Job Manager 1 Job Manager 2

(a) Before (b) One job multiple man-
agers

(c) Job duplicated

Figure 8.3: A network partitioning can have different results. (a) skale initial situation,
where the manages can soft register with each other. In éjatlite between them have disap-
peared, but the job can still be located by both. Manager Rlaotally thinks manager 1 has
crashed and begins to manage the job. In (c) the informadiont available across the partition
and results in the job being duplicated.

8.5.1 Election

If there are several managers, that can take over the mamagefithe jobs belonging
to the failed manager, a mechanism for determining whichaganshould be elected
is needed. To determine how this should be done we look atiastdralgorithms for
leader election in distributed system [17]. This is of cadependent on the level of
distribution. If the relationships between the Job Managee one-to-one, then the
method for eliminating duplicate jobs are pretty straigiftifard as the manager which
took charge of the management just returns it to the ownerubisexjuent registra-
tions. In this case the original owner determines if the jaswuplicated and kills the
duplicate that has run for the least amount of time.

We look at the “bully” algorithm, since it is fairly simplet allows managers to
crash during an election, and it can handle concurrentietext The algorithm is
described in detail in [17]. The algorithm requires that pgrecesses knows how to
communicate with all the other mangers. In addition the mgarmshould have a total
ordering and the managers know of this ordering. This ondgshould be based on the
Job Manager id.

8.5 Model for Distributing the Job Manager 85

An election algorithm should have two properties, which viklook at briefly [17]:

e Safety— All participating processes eventually agrees on elgdtie (non-crashed)
process with the highest identifier.

e Liveness— All processes patrticipate and eventually elects a processash.

The algorithm is as follows, if a manager has determinedtti@imaster has failed it
checks to see which manager has the highest identifier. Tinagea then sends an
election messages to the managers with higher identifietheh waits for acknowl-
edgments from the managers it has just contacted. If the geamaceives no replies
before a timeout it assumes that the managers with highetifies have failed. It
then elects itself as the new master and sends a coordinatsage to all managers
with lower identifiers. If the manager already has the higidentifier, it sends a co-
ordinator message to all the other Job Managers. This englaeemanager with the
highest identifier gets elected and there are no ambitjuifpere is another problem
though, the process cannot guarantee, the safety proieatyonly the manager with
the highest identifier gets elected. If a new manager isestait calls an election, if
it has the highest identifier it becomes the master. The #ignrassumes the system
is synchronous because it uses timeouts to detect manalgee féut it has a prob-
lem: If a manager is restarted with the same identifier asamhent for a crashed
one before the end of the election, it may announce itseli@asiaster, but since there
are no ordering in the message delivery, the clients can élaeted different masters.
This problem is similar to the problem with network failutespecially in the election
process, where a manager is presumed to have failed if itmate®ply to an election
message.

However, the problems that may arise from failure may be doofanaged jobs
or multiple identical jobs running on the grid. These probéewill be handled by the
master manger.

8.5.2 Master Manager

To counter the problem of job duplication we introduce thaaapt of a master man-
ager. Every job has a master manager assigned to it. If theenrasnager fails, then

job control is transferred to another as described abowvdf the master subsequently
registers again, job control is transferred back to the eragdtosen by election. This
scheme ensures that there are only one mafdganake decisions regarding a job.
The situation where the response to an election, did nohradailover, causing a job

to be managed by two managers, will remedy itself, when thetenaegisters again.

When this happens the failover must call an election to fexaontrol back to the

master, which is then the sole manager of the job.

If the managers have been separated by a network partitisirgaa job to be du-
plicated, the duplicated jobs run concurrently until théwogk gets reconnected. This
can actually be a good thing, since the client can be locateéither side, and the
duration of the network partition may be very long. Wheneer network partition
disappears, control of the duplicate job is returned to thster — remember that dupli-
cates can be identified since they have identical job tagsnliw the responsibility of
the master manager to eliminate one of the jobs. The mogglstf@rward heuristic is

4This is true in a synchronous system with known upper bouadmgssage round trip times.
5A part from the some failure conditions which can result inrenthan one manager. But we will deal
with these later.

86 Distributing the Job Manager

to cancel the job that have been running for the least amduirhe, but other factors
may be taken into account. Due to the complexity of this sttbjae behavior of the
Job Manager should be configurable.

Another problem is that a network partition may result in ubmission of a lot
of jobs. There is currently no way to prevent this, but heigssto determine the type
of failure may be a solution. However this is not somethirgf time allows us to dig
deeper into, as it is a project in its&lf

The introduction of a master manager does not in itself salviiae problems asso-
ciated with duplicate jobs. Imagine if the failover manageanaging a job on behalf
of a master assumed to have failed. If this manager alsg &itbanother manager has
to take over the management of the jobs.

The manages periodically polls the information system &ifsthere are new mem-
bers of the group. Doing so would also make the failover discd the original master
reappears. If the master reappears the failover (and theenifig was restarted) calls
an election, which should result in the master being ele@atte the information sys-
tem is not changed, the failover has no way of determiningefc¢ontact information
is old, or the master never failed. To account for this, thkvar must periodically
check if the old master still responds, and if so call an @ecto ensure that there is
agreement about which is the master.

Whenever a master is reelected, the failover should trankséemeta data back,
and the master should check duplicates of jobs. If the mdgiearot fail, it can safely
discard the meta data, but if it was restarted the meta datddbe considered valid.
The process is illustrated on Figure 8.4. This design putsrésponsibility on the
master to handle cases of duplication. By putting it on orezific manager makes it
easier to write handlers to specify what to do in differetiaiions. For this scheme to
work, it is important to ensure that the master cannot foageut jobs it have managed,
this can be done by the session managefent

As an alternative a list of managed jobs could be piggy badkedcknowledge
messages sent to the failover managers. This requires auoinecessary bandwidth
since the list does not change as often as the manager registe

The best solution is to make sure the manager does not “faapeut a job. This
means that the master must save the settings before distghbe information about
the job. This makes election of a new master the event thatldtiagger handling of
duplicate jobs.

If a manager for some reason does not want to be the masteobfsaymore, e.g.,
it is shutting down, it should be possible to transfer jobteolrto another manager by
pushing it onto one of its failover managers. To do so, thetenaslls an election,
by sending an election message to the failover manager hathotvest id. The elec-
tion runs as normal, but the original master does not respotite election message,
thereby ensuring that another manager gets elected.

8.5.3 Manager Groups

The idea of letting all Job Managers belonging to a user be lbeemf one group is
generally fine, but there are some scalability issues @iV the job data are to be

6Some experiments with benchmarking are being performell &ri@l it may provide be a tool to develop
better heuristics for determining which duplicate to Kkill.

"This is guaranteed even if the session is alway saved prwhmitting jobs. It is, however, reasonable
to assume that if a Job Manager fails in a way that destroysehsion, then it has also forgotten about its
prior id, and will be considered a new manager by the othetsergroup.

8.5 Model for Distributing the Job Manager 87

E Failover 1

v
Bl ruioven E R *

N LN A
= e aster
Failover 2 See " . ,
Failover 2 RN
E ----------------------- - T 2 R |
------------ aster T Tl

= | Failover 1

o c * L .
o s C . .
E y 3 N Master I . Master
Ll Failover 2 Y E Failover 2 .

Failover 3 Failover 3

© (d)

Figure 8.4: How failure is handled by the Job Managers in a group. Thevail managers
periodically checks if the master is responding (a). If ilsfan election is called by the failover
that detects it. The election is done by sending an electiessage to the managers with higher
identifiers (b). If the manager receives an answer from a gnaith a higher identifier it waits
for a coordinator message (c). The manager with the higliesitifier sends a coordination
message to the managers in the group (d).

replicated on a lot of managers. This is not a problem if a osdy starts a handful
there should be no problem with the messages sent betwe@bthenagers.

Another purpose of groups is to provide a way of separatitgn@nagers from
each others, making it possible for the user to start gro@ipsamagers with different
capabilities, without disturbing each other.

8.5.4 Other Considerations

For this design to work, there is some requirements to theMabager contact in-
formation. This information includes the identifier of thebJManager and the Job
Manager group to which it belongs. The id is generated likebaag, see Section 7.2.
With a few differences; it is prefixed by three % signs, themnlame of the Job Man-
ager group, and lastly a hash to ensure different valueshiidentifier. The hash
is used as the identifier on which the election is based. Ieralbe able to dictate
the master, the hash is prefixed by a value. By using a higle\asdwa prefix, it should
be possible to generate the highestidentifier in the grdwgoeby becoming the master.

jm-name%%%jm-group%oprefix(hash)

88 Distributing the Job Manager

If the master fails, the application should have some wayttdact the failover man-
ager. This means that information about failover manageist ine propagated back to
the application. This should be done the first time the cleamttacts the master man-
ager. The contact information should be a list of possibl@agers to contact if the
master fails. This list should be ordered according to tleaiifiers, so the application
can query them in turn, to locate the one which is managingpthe

The communication protocol the managers use internallulshalso be based on
the XML-RPC server, since it is already implemented in the Ntanager and there is
no need to add to the complexity of the Job Manager.

8.6 Implementation

This section describes some of the implementation detéifeeaJob Manager commu-
nication module. We start by examining the interface to oflod Managers.

e alive()
Used to check if the Job Manager is alive. Returfis 0

e update_status()
Called from the master to explicitly update the job datah# job is not known
by the callee, then the job is added to the list of jobs to maiifahe master fails.

e coordinator(identifier)
When this function is called the manager sets the currentaeator to this. If
the identifier is lower than the managers own identifier, hapglection is called.

e election(identifier)
When this function is called the manager setster = None and callselection
on managers in the group with higher identifiers. If all thibsctm election times
out, the managers are assumed to have failed. In this casmahager sets
master to its own identifier, and callsoordinator() to managers with lower
identifiers. When this is donemove_duplicates() are called.

The election is based on the timeouts in the XML_RPC, andtiimisout is used to
determine if other managers have failed.

Internally there are functions to perform the tasks of updpthe information sys-
tem and monitoring jobs.

e initialize()
Calls the configuration and session modules and updatestdreal settings.

e submit_contact_job(target_list = None)
Called when the manager restarts. It creates a job desuariptith name set to
the identifier and submits it to the targetstémget_list . If no targets are
provided it submits a job to a random cluster.

e remove_duplicates()
Called upon election this function queries all jobs beloggio the group and
tests if there are jobs with identical job tags. If this is taese the one that has
been running for the least amount of time.

8XML-RPC calls are not allowed to return the empty value.

8.7 Summary 89

e start_election()
When this functionis called. The manager starts an eletiyarallingelection
on managers which has a higher identifier than itself.

e |ocate_managers()
Queries the information system to for contact jobs. Onceenstd, the list is
sorted to hold only managers from the same group as indidstgd group .

e generate_id()
Generated an unique identifier, if master is set in the cordigpn it tries to
generate a higher identifier than the managers running, efixprg the hash
with a large value.

e job_info_update()
When this function is called, the Job Manager updates thenfobmation if the
job is known, if not, the the job is added.

The module has internal data structures used to keep trabtle @ither managers.
e managers — Holds a list of manager objects ordered by identifiers.
e jmgroup — The group to which the manager belongs.

e master — Variable holding the identifier of the current master maaradf an
election is in progress this variable is set to None.

8.7 Summary

This chapter displays the problems when working with asymicbusly distributed sys-
tems. We have seen that, there are no way to prevent jobs fearg duplicated or the
loss of management due to byzantine failures. This is notgrise since it is founded
on well known results of research in distributed systemswéieer, the scheme we have
proposed improve availability and if it is implemented @mtrmakes it less probable
that a failure will result in lost jobs, but may cause resaltduplicated or multiple
managed jobs. This is not as big a problem in the current Naridi) but in a grid
with accounting, the risk of occasionally loosing a job, nieypreferable to having
the same job run multiple times. This scheme will be hard foree with the current
algorithm since it does not guarantee that only one mastdedted.

From this chapter it is clear that the information systemuithdoe extended to
support the Job Manager. Furthermore if the Job Managerrbesa resource like
other resources in NorduGrid it is possible to use the inffom system for failure
detection, since a soft registration mechanism is alreagpldmented here. In this
case the Job Managers would check if its failover managerstdralive by sending a
guery to the information system. If the contact informati®present, the Job Manager
has checked in recently and can be considered to be working.

This does not have much impact on the implementation, exdegiging the regis-
tration mechanism to register with the information systand implement an additional
check for live managers against the information systems Than be combined with
the discovery of new managers without much trouble.

Chapter 9

Future Work

This chapter presents ideas and suggestions for improvi@agaob Manager further.
These ideas where either cut out due to time constrainisedriater in the develope-
ment process or was not considered to be a part of the Job Mandogn creating it,
leaving it out. The ideas presented in this chapter is: Usinigtabase for job infor-
mation, the extensions to NorduGrid ARC to support the Jobagar, multi user Job
Manager and finally meta jobs.

Currently the Job Manager serializes the job list to diskegutar intervals. This is
done as a form of check pointing, making it possible for thie Manager to recreate
its former state after a crash or restart and recover grigefunfortunately such a
serialization can become invalid if the Job Manager crasitéle performing it. In-
stead of using this technique to store job data, a databade lse used. Most database
systems has what is called ACID properties [65]. The A in AGIBnds for atomicity,
which means that something is either updated or not, no stasts between the two.
Having this property when writing the session it would alwde consistent, ensuring
that the Job Manager would always return to a consisterg.sfehis state would be
relatively new since the job descriptions are keptin thabase, and not just serialized
at a certain interval. Using a fully fledged database systdhmake the Job Manager
quite heavy, so the database system should be light weigh&xAmple of such is the
Zope Object Database [16], which is written in Python, megithat no wrappers are
necessary, making it a good choice.

As mentioned several times in the report, it would be nicexterd the XRSL
language and the information system to have support for dheManager. For the
XRSL language, this would be an extension that makes it ples® carry meta data
with the job, such as previous clusters and submissionsiptte The information sys-
tem should also make this information available; perhapg ttmough authenticated
queries, since it is not all users that wants job meta datasegh The information
should also have support for tags, as a way to identify imgtsiof the same job. Fur-
thermore the information system should support the Job ganas a resource, making
it possible to query the information directly for Job Manegyénstead of the current
method, which submits “contact jobs”, for the other Job Mgera to query after. This
solutions is hack. For any of these changes to happen, th&dobger would first
have to prove it worth, becoming an integrated part of thedW@rid ARC, proving its
worth. Even if this would happen it is unlikely that such sagpvould come, unless a
part of the NorduGrid ARC would be redesigned.

It was mentioned in Section 4.3.4 that it was not possiblgHerJob Manager to

92 Future Work

support multi user due to constraints in Globus and the NerdUARC. The limita-

tions in NorduGrid ARC are mostly due to the constraints iitbd from Globus. If the
NorduGrid ARC was to be leveraged from the Globus dependérslyould be possi-
ble to make the Job Manager work for multiple users. Howevisnwould remove the
ability for the users to make their own handler, since woelnpjardize the stability of
the Job Manager. However it could be imagined that both singer and multi user
Job Managers could co exits, providing the best of both veorld

Finally the idea of meta jobs will be presented. The Job Manafready makes
it possible to submit jobs and monitor jobs. If any of thedesjhas dependencies on
each other, e.g., some jobs need the output files of othergslisput files, the user
or application will have to coordinate this. Meta jobs makegsossible to describe
dependencies between jobs. To make meta jobs possible @ngudge which makes
it possible describing dependencies, and splitting a job fiarts automatically would
have to be created. Devising such a language is a major taghkt iz not clear for us
how useful this feature is. However Job Managers and metagoda perfect match
since the a Job Manager can continuously monitor jobs arud teéhem; relieving the
user or application to do this themselves. If this idea isdadalized it should first be
investigated whether or not there is a need for this, sineatitrg such a system is not
simple task.

Besides the specific ideas presented, it is possible thatemuirements may arise
if the Job Manager is used. We hope that the Job Manager caplade in a production
system, where it is used to monitor jobs. If this is the case reguirements will
certainly arise, but we hope that the handler concept wikenia easy to extend the
way jobs will be handled.

Chapter 10

Conclusion

In this project we have constructed an advanced flexible jahagement system. To
create this system we drew from the experience gained wlestiog NG Proxy. The
main experience from NG Proxy was that it was possible toraate tasks by provid-
ing a daemon. However NG Proxy was very inflexible, and wasgeatred to fulfill
the wishes of feature request. Ranging from migration o jmbautomatic data man-
agement. Another problem with NG Proxy was its interfacejciwtwas extremely
inflexible. Furthermore NG Proxy was a single point of fadpa feature unwanted in
production systems.

With these issues in mind we designed the Job Manager, to be filegible than
NG Proxy. Furthermore we wanted to create a way for appbeat use the grid, since
the existing command line interface is not suited toward.thie decided that the Job
Manager should feature a protocol as its interface. To coifie fwature request we
designed the Job Manager to be extensible. Therefore aiplstgacture was created,
making it possible for users to extend the functionalityniselves. Finally the possi-
bility of having a failover Job Manager was introduced; alng the single point of
failure existing in NG Proxy.

Part of a production system is to automate trivial tasksatad to monitor the grid
and react to changes. By making the Job Manager aware ofdtee aitthe grid by
collecting information it is possible to make the Job Marragact autonomously.

10.1 Achieving the Goals

One of the main purposes of the Job Manager was to provide @esityet powerful
interface to the NorduGrid ARC. The reason for this was to endknore simple for
applications to interact with the grid. We wanted to make stiimg complex simple,
to attract users to the grid.

Making the functions available to applications could be@antwo ways, either
through an API or through a protocol to a separate applinatile opted for the sec-
ond since it makes it possible to move general grid logic afkam the application.
By having the Job Manager deliver an API through a standawtbpol, XML-RPC,
applications can use the Job Manager as an interface torgddcing the amount of
grid code in application.

Also, the Job Manager can keep running when the applicagishut down and in
addition different applications can be used to connect ¢osdme Job Manager, e.g.,

94 Conclusion

an application, a web portal, or a lightweight client for atpble device.

All these features makes the Job Manager a platform for eajadin development
and delivers a simpler view of the grid to the applicationkimg it simpler to develop
applications for the grid.

The Job Manager provides flexibility through handlers, whénables the user to
redefine what actions should be done to a job when a state ebarithis makes it
possible to specialize the Job Manager to different typgshs and applications, e.g.,
requiring only resubmissions in special cases. This gis possibilities to users,
since they can tailor the Job Manager to fit any special needs.

In a highly distributed system as grid it is important thagrémare no single points
of failure that can bring the system down. We have extendisdpthilosophy to also
include the Job Manager. In order to make it resilient toufa it is possible start
several managers and having them work as failover managers.

This introduces some complexity into the design of the Jobager but it has been
necessary to provide resistance to failure. We chose pyibackup solution because
of its simplicity, and because we believe that it is enougéuoport the needs of most
users. There are scalability issues, but due to the expastage we do not foresee this
to be a problem, i.e., most users will only have one or two rgargrunning,

To make the distribution work we have had to make some “hadgarding dis-
covery of job managers. This have made the solution more Goated than if the
necessary information had been in the information systeim.necessary to make the
Job Manager integrate better into the NorduGrid ARC if itdsbe used for produc-
tion. However we feel that the current solution is adequatgain some first real life
experience with the Job Manager.

There are still some problems distributing certain infotioralike the job descrip-
tion, and meta data. These data are distributed directlydst the Job Manager, but
this may not be preferable in the long run and another way ppar this information
may be a good idea.

10.2 Extending the NorduGrid ARC

During the design of the Job Manager it became clear that treldNGrid ARC had
to be extended in order to make the Job Manager integratelssslyninto the toolkit.
However instead of rewriting NorduGrid ARC components, weused on making the
Job Manager work. This has led to ad hoc solutions in somesavbare we decided
not to change NorduGrid ARC components. This was done becaadelt that the
Job Manager should prove its worth, before making changéetblorduGrid ARC. If
so, the developers would have an incentive for integratinga the toolkit.

There was parts of the NorduGrid ARC that it was necessaryddify in order
for to create the Job Manager. This was mainly minor changes, adding empty
constructors to classes, in order to be able to create wraggeperly. It should not
pose a problem to integrate these changes into the Nord &l

During the development of the Job Manager, several shoitgggmwhere found
in the NorduGrid ARC with respect to the desired functiotyatif the Job Manager.
One of them is that there are no way of determining if two ragrjobs are different
instances of the same job, which the Job Manager need. Intorgeovide the needed
functionality this had to be possible. Therefore we introeldithe concept of job tags to
accommodate this. Tags expand the job concept in NorduByidyaking it possible
to track a job through several executions from the same jaerigstion, since tags

10.3 Caching 95

are persistent between submissions. This stands in comdréige single instance job
concept in the current NorduGrid architecture. Tags als&erthe communication
between the Job Manager and the application more consisteaé one identifier can
be used even though the job gets moved or resubmitted.

Another limitation was that it is not possible to introduaantypes of resources
to the grid. This became a problem since the Job Manager ghmiregarded as
a resource, and need to be discoverable. We came up with @osobi submitting
contact jobs. This is not the right solution, but it is enofgtesting the Job Manager.

If the Job Manager is to be used in a production system, thaggsaproposed
should be incorporated into the NorduGrid ARC, but this dieci is up to the users
and the developers. For the time being the Job Manager wikwas it is supposed to
though.

Other changes to the NorduGrid ARC, is that it should be a@sid to phase out
the Globus dependency, even though some components relijyheait. The infor-
mation system might as well be based on standard OpenLDARharalithentication
could be achieved through other means. Removing the Glodpsndiency would be
the first step toward supporting multiple users at a singteManager.

10.3 Caching

The Job Manager delivers a simple caching functionalitgvahg it to reuse former
gueries. The need arose since no caching is done in Nordu&nde the Job Manager
can potentially monitor and manipulate large sets of jolis, inight have lead to Job
Manager using large amount of time querying the grid. Theestve decided to cache
information into the Job Manager.

Caching is by some regarded as a problem, but in a largetligtid system caching
is almost necessary for it to be scalable. The Job Managey doeuse the valid-
from and valid-from fields in the information system, sinbege are hard obtain in
the present system. This, however, is not a problem the Jalalye only uses the
information for a short while, before throwing it away. Alluis fits along with what
we believe is the most common use pattern for informationotAd needed over short
amounts of time, for then not be needed for a large amounira.ti

The the interface to NorduGrid Information System and threheasystem in the Job
Manager, may be to simple. The problem is that the module bagay of knowing
what information the caller needs. This makes the moduteb fextensive amounts of
information, which may not be necessary.

10.4 Language Choice

As described we decided to implement the Job Manager in Byive have been very
satisfied with this choice as developmentin this languagerigrapid. Python supplies
a great module collection, relieving the developer of impdating basic functionality
and focusing on getting the application to work. It is ouriéfethat such high level
languages offers more compared to low level languageseEdjs a concern, one can
often implement a part of the program in a low level prograreate bindings and use
a high level language for the rest.

Some of functionality in NorduGrid ARC has been reimpleneerin Python. This
has mostly been the monolithic functions, which where nesgsto reimplement to

96 Conclusion

get the desired functionality. This was refactored into enmodularized code, mak-
ing it possible to extend certain parts of the NorduGrid dme®. Some of the code
developed for the Job Manager can be used to replace some existing NorduGrid
code since it implements the same functionality, but in aemoodularized way, e.g.,
pluggable schedulers.

10.5 In Conclusion

The purpose of the Job Manager has been twofold. FirstlyabeMlanager addresses
the need for an automated production system, deliveringeeéunctionality to the
users. We have addressed part of the need for a productitamsyasd the Job Manager
delivers a framework, or a platform, for a production syste&econdly it addresses
another issue concerning the difficulties of developindiapfions by making a cleaner
interface working over a standard protocol. We have maddrtefacing with the
NorduGrid ARC more accessible and made it possible to dpvepplications on a
multitude of platforms.

By providing a simple interface to the grid, the Job Manag®ivers a host of new
possibilities for the usage of the grid. If this is enoughliré” users and applications
to the grid remains to be seen, but hopefully it will attracirmapplications and users,
as grid technology offers new possibilities in several a@ecomputing.

Appendix A

Proposal for a new User
Interface in the NorduGrid
Toolkit

A.1 Introduction

This paper presents a proposal for a new design for a usefanéeand job manager for
the NorduGrid Toolkit. It presents the goals and requiretmehthe new user interface,
describes what capabilities it should provide, and whagathges it gives compared
to the existing user interface. We start by describing tle¥ipus user interface in the
NorduGrid Toolkit. Its features and short comings are désdh, explaining what it
does and why a new architecture is required.

Hereafter the new design is presented. First an overallrightien is given, where
after each logic part of the design is explained. An impdrpemt of the design is that it
can (and must) co-exist with the existing NorduGrid commiameltools. This criteria
was important during the design, and the design can be cenesidoth a new design
or an extension to the existing. Finally a road map for thel@mgntation is presented.

For those not familiar with the job manageihe job manageris a daemon, running
on the client side, monitoring jobs and acting on changedein state. In its current
functionality it is able to resubmit jobs if the fail.

A.2 The Existing User Interface

The existing user interface in the NorduGrid Toolkit is agpaf command line tools.
A brief overview of these tools are given in appendix B. Thexss are invoked by
the user, to submit jobs, query the status of existing jobs &t is not possible to
automatize actions like fetching output files after job céetipn. This is due to the
commands only acts when explicitly told to do so by the usdre NorduGrid Job
Manager has delivered proof-of-concept that an autonthtieactions on events are
possible, making the client side in NorduGrid more awarehefdtate of the grid and
acting on changes in the job status.

1Formerly NG Proxy

98 Proposal for a new User Interface in the NorduGrid Toolkit

Also no sane API for submitting jobs and querying informatabout them are
available for applications, making it hard for applicaoio reuse parts of the exist-
ing user interface. This makes development of applicatwimgh wishes to actively
integrate with NorduGrid somewhat hard.

All these issues and examples of improvements makes itaddsito develop a new
user interface that facilitates a more feature rich intéoadoetween the user (applica-
tion) and the grid.

A.3 Goals and Requirements

The section describes the motivation for creating a new interface. These reasons
can be expressed in the term of goals for a new user interfadeage summarized
below.

e Flexible job control - The user interface should support a more fine grained
control over the different aspects of job control (e.g.,estiling, submission,
resubmission, and data management)

e Application interface - It should be possible for applications to access and use
the functionality provided by the user interface and thgiieteract more closely
with the grid.

These goals give rise to several requirements which the sewinterface must meet in
order to achieve the goals just described. These requirsmes summarized below:

e Modular User Interface - To make it possible to extend, or add parts of the
underlying functionality, the current user interface mioistmade more modular,
providing easier access and more flexibility from a develquént of view. This
modularity will, e.g., allow different schedulers to coistx

e Providing an API/Protocol to applications Currently the primary way of sub-
mitting jobs is to use the command line tagjsub . This makes it hard for
applications to use the user interface. Giving applicaiomPI or a protocol
which they can use to communicate will make it easier for igptibns to use
the NorduGrid Toolkit.

e Back wards compatibility - In order for a new user interface to be used, the
existing command line user interfaces, i.e., ngsub anddgenust continue to
work as they did before, while notimposing any new requiretsen their users.

e Job Manager - Integrating the Job Manager into the user interface, gitire
user a way to supervise jobs and fetching output files auicaiitetc.

e Handlers - The user interface should support the possibility of edieg or re-
placing existing functionality in the job manager by cragthandlers for differ-
ent aspects of job control and using these as modules saghg user interface
with new or extended functionality.

To meet these requirements we must create a new design. &hgndwill be discussed
in the next section, along with the implications it may hawetee existing NorduGrid
implementation.

A.4 New User Interface 99

A.4 New User Interface

Application Application Advanced Existing
User Interface command line
tools(ngsub)

UDS / Net Listener

Job Manager

Ul functionality
(e.g., submitjob, query, upload, download)

Figure A.1:Overview of the design.

On figure A.1 an overview over the new design is presented.lder layer cor-
responds to the current functionality in the existing uségiface, made modular. This
makes it possible to extend or add parts of the user interfame® easily, while also
making a more fine grained API. Such a change will give appitioa and the job man-
ager more flexibility, since it can use more fine grained fiord, and not monolithic
functions spanning several hundred lines of code.

Above the Ul functionality sits the existing command lin®lg These will use
the functionality provided by the lower layer. To access diheerlying functionality
language bindings will be created, making the functiogaicessible for applications
using a high level language. These bindings should be abte$om several lan-
guages, meaning that generated bindings should be préferre

A special application will be the job manager, which will beantinuation of the
existing job manager.The job manager will be probably beriteam in a high level
language like python, using the language bindings justrdest. The job manager
should have support for various handlers, that is, reaaiimgertain events, like job
completion or failure, making it possible to collect outfilés or resubmit jobs auto-
matically. We aim to make an interface for implementing shahdlers, so it will be
possible to write new handlers (especially since people ladot of ides for use of the
job manager) and choose between the existing ones.

The job manager will listen for commands, either on a Unix domsocket and on
a net listener, enabling applications to use the functipnaf the job manager. One
of the major problems with the current job manager is thatalexist no real protocol
between it and its applications. Itis clean that an exigbirgocol should be used. The
protocol should support the needed functionelity and bepkno use and program

100 Proposal for a new User Interface in the NorduGrid Toolki

against. Requirements for the protocol should be examisetdedl as a way of doing
authentication.

The first application to use the job manager should be a newred line user
interface, which will have the functionality of current useterface, but will also be
able to use the functionality provided the job manager. Odipplications building on
top of the job manager could be a web interface / portal. Ongdcalso imagine a
WRSF job submission service to run on top of the job manager.

A.4.1 Issues with the design

So far, the design is very general and a lot of details haseenIset in stone. A list of
some of the most critical issues are listed.

e InterfacesA lot of interfaces for, e.g., handlers and schedulers hageidheen
defined. This interfaces are important if it is to become fisgo plug-in new
schedulers and handlers. Must be flexible and relatively &agode against.
Feedback on this is very welcome.

e Protocol We have not decided on a protocol yet, but it will probably ecslown
to XML-RPC or web services. Other options are CORBA and Jakb@RBA
seems like overkill though. The protocol must support antication with X.509
certificates. Jabber does not appear to support this. Désgayf capabilities
should also be supported (XML-RPC and web services suppiert t

e Remote use of Job ManageA lot of issues arise when using the job manager
remotely. E.g. should upload of files go through the job manag happen
directly from the submitter to the cluster.

A.5 Road map

The new user interface build on the existing user interfadheé toolkit. The user inter-
face currently contains almost 12.000 lines of code; thnowthis out, and starting all
over is a daunting task. Instead we aim to change the usefdoéinto something that
meets the requirements, using an evolutionary approadctafng the components
over time while keeping the old tools and maintaining a derkavel of back wards

compatibility.

1. Design (your reading it). Determine the structure of teevmiser interface, how
it interacts with other components. Locating critical gsim the design.

2. Post the document to the nordugrid-discuss mailing listpefully get some
constructive feedback, second opinions and flames :-).

3. Modularize the functionality of existing the user intaé, thereby creating (and
determining) an API for the user interface to export.

4. Create bindings for the user interface, making it posdibluse the functionality
from other languages.

5. Determine the protocol for the job manager to use.

6. Implement job manager with lots of new features and ogtibiew job manager
will be written in python (most of the new functionality will

Appendix B

The NorduGrid Command Line
Interface

The command line interface in NorduGrid.

ngacl Get and set access rules for remote files on gridftp servehsgaicl sup-
port.

ngcat Shows output of job

ngcleanCleans up after a job by removing files on the cluster.
ngcopyCopy from URL to URL.

nggetDownloads output files of a job

ngkill Kills a job on a computing element.

ngls Lists contents and attributes of objects on a rc.
ngremoveRemove file at URL (replica catalog).
ngrenewRenews proxy certificates of jobs
ngresubResubmits a job.

ngstat Obtains status of jobs

ngsub Submits jobs

ngsyncSynchronizes local job list with global list.

Appendix C

Generating SWIG Wrappers

This appendix describe the creation of Python languageitgsdto the underlying
NorduGrid ARC code. This appendix describes how we have tisedool Swig to
create bindings to this.

Basically there are two ways to create binding to anotheguage; either writing
them by hand, or using a tool to automatically generate th@emerally the creation
of bindings require a lot of code, but it is rather simple armah ¢herefor easily be
automatically generated. Since we have no special neetiethdre that we write the
bindings our selves, we have chosen to generate the negesshe.

There are several tools which can be used for automaticioreat bindings; one
of the most popular are the Simplified Wrapper and Interfaead®ator (Swig. It is
a popular tool for creating C/C++ language bindings to Pgthevhich is one of the
reasons for choosing it to create bindings to the NorduGriti@lobus code.

C.1 Using Swig

When using Swig there are two ways of generating bindingsitations classes and
their respective methods, written in C++ file. Either by slypyg it with the header file
letting it generate bindings to everything specified in teadter file. This approach may
not, as in our case, always be preferable. Either becauseowetdvant bindings to
everything, or because there are some statements in thetfdadvhich Swig cannot
handle. Swig have no problem with most of C with some few etioap concerning the
more esoteric features of the language. It does not behawelswhen it comes to the
features of C++. These features include namespaces, dasqiassed as arguments.

The other way to create bindings is to create an interfacewiligten in a language
resembling C, and include the functions, classes, metlaodistypedefs to which bind-
ings should be created. The functions that should be wrappedefined in the same
way as a prototype i a normal C header file, and the interfageafi feed to Swig to
create bindings. This is also the method used for wrappiagsels, in order for objects
to be passed as parameters between the languages. Swigtgsree€ file to compile
and a Python file to include in programs that makes use of thdifgs. An example
of and interface file is shown below.

http://www.swig.org
2Swig can in fact be used to create binding to several langumgéuding; C#, Guile, Java, MzScheme,
OCAML, Python, Perl, Ruby, Tcl/Tk, and Tcl

104 Generating SWIG Wrappers

%module ngbindings
%{

#include "DateTime.h"
#include "MdsQuery.h"
#include "Certinfo.h"
#include "LdapQuery.h"
#include <globus_common.h>
#include <globus_rsl.h>
#include "MdsQuery.h"
#include "Target.h"
#include "Xrsl.h"
#include "time.h"
#include "Preferences.h"

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "Environment.h"
#include "wrappers.h"
90}

%include "std_string.i"
%include "std_vector.i"
%include "std_map.i"

%include "wrappers.h"

%template(string_vector) std::vector<std::string>;
Y%template(giis_vector) std::vector< Giis >;
Y%template(job_vector) std::vector< Job >;
%template(cluster_vector) std::vector< Cluster >;
%template(queue_vector) std::vector < Queue >;
Y%template(target_vector) std::ivector < Target >;

In the interface file, there are two types of includes. ®helude directive in the
beginning of the interface file is copied directly to the geted wrapper file and works
in the same way as a normal include. This ensures that it isifdesto compile the
generated wrapper file. Thainclude directive is used to include other Swig interface
files. In our case we use the interface files for the Standamtplae Library, and the
file wrapper.h, which contains the classes that needs to apped.

There are things to pay attention to when it comes to usingySWihen it comes
to pointers, Swig will wrap most pointers in C correctly. Aipter is encoded as an
address and type information and it is important to notetthiatrepresentation cannot
be dereferenced in the target language. This may sound atld,dnables the target
language to pass pointers to other wrapped functions.

Another thing to note is that Swig does not handle composite §pes natively.
To handle these types, Swig works with a concept called tygpsywhich is code that
are wrapped around the C++ code making it possible to créadkngs to the types and
use them in the target language. Swig 1.3 delivers typenmpwost of the Standard
Template Library (STL3. This somewhat solves the problem of dealing with strings in
C (char pointers) as we can use the C++ STL equivalent instead

When using container classes they too must be defined in twdmacess the el-
ements contained in such a class. This is done by defininglagesgn the interface

3The Standard Template Library, is a library of standard tees and types.

C.2 Wrapper Functions 105

file and defining the types for the functions in the interfate fio create bindings to
STL types containing other STL types e.g., a vector of sijregtemplate should be
defined in the interface file, in order to get access to the efesof the type (vector)
from within Python. If no template is created the type carm@accessed from Python,
but it can still be passed, though Python in the same way am&epas a parameter to
other methods written in C++. An example of this could be allrig to a method re-
turning a vector of objects, this vector may not be accessibPython in a meaningful
way, but can be passed on to another method written in C++tivitldesired result.

The use of typemaps and templates are important when wovkithgthe Nordu-
Grid code since it is primarily written in C++ and makes useSdl types, pointers,
and objects as parameters and return types of the functidrere are however some
problems that Swig cannot handle satisfactory for our uskiorder to counter this
problem some wrapper functions are created.

C.2 Wrapper Functions

The wrapper functions are functions that does not add newtifumality to the inter-
face, but it merely “wraps” the functions into a method ordtian that can more easily
be wrapped by Swig.

To counter these as well as problems with pointer to poirgfarences and prob-
lems with references as parameters to some of the methode iNarduGrid code
base, it has been necessary to write wrapper functions te sbithe methods in order
to make some of the bindings. The wrapper functions doesdtbfmctionality or fea-
tures to the methods, but serves only as an other interfaitetmethods in question.
Below is an example of a wrapper function. Notice the coriverbetween C++ and C
strings.

/* Wapper for ../grid-manager/ui_uploader.h */

string ui_upload(string resource,
string rsl,
string session_url,
string job_id,
int act,
vector<string> filenames,
int debug,
int timeout) {

char* jobid;
strcpy(jobid,job_id.c_str());

int result = ui_uploader(resource.c_str(), rsl.c_str(),
&jobid, session_url.c_str(),
(rsl_action) act, filenames,
debug, timeout);
if (result == 0) {
return string(jobid);

else {
stringstream ss;
ss << result;
return ss.str();

This example also demonstrates, that often it is necessaigcess a value returned
as pointer, or to pass a value as an argument. And we havedtedance or reference

106 Generating SWIG Wrappers

the pointers to access the values when passing them betheEmguages.

One of the problems handled in this way is the passing of fanstas a parameter
as well as problems with C++ namespaces. But these problsiths i is generally
fairly easy to use Swig once you have the hang of it.

Appendix D

NorduGrid Wrapper Interface

This appendix describes the NorduGrid ARC interface wrappePython. This inter-

face serves a basis for the functionality of the Job Mandgany of the functions and
classes in NorduGrid ARC and C++ has been directly wrappédelytbon. However

it was necessary to write wrappers to some of the functiodsnaethods, mostly due
to the inability to pass pointers to C++ from Python. The iif&tee reminds much of
the one in NorduGrid ARC, and will therefore not be describgténsively. This also

means that methods are not described, since this would talia extensive amount of
space. The wrapped interface is listed below:

e Shadow classes Shadow classes are C++ classes wrapped to Python, making it
possible to instantiate objects from C++ classes from wikhithon. This makes
it easy to operate with C++ classes in Python. The wrappedetaare:

— Certinfo Represent a proxy certificate.

— Giis Represents a GIIS server.

— Cluster Contains information about a cluster. Also contains theugue
objects of the cluster.

— Queue Contains information about a queue. Also contains job dbjtar
the queue.

— Job Contains information about a job.
— Target Represent a target, i.e., a cluster and queue.
— Xrsl Represent a job description.

e Functions — The functions are the ones wrapped directly from the NorddiGr
ARC without any separate wrapper functions between.

— ActivateGlobus Acticates the Globus modules, making the NorduGrid
ARC and Globus ready to use.

— DeactivateGlobus Deactivate the Globus modules.

— TimeStamp Returns a timestamp.

e Wrapped Functions —These functions are wrapped functions which call sim-
ilar functions in NorduGrid ARC. These functions are creltie avoid passing
pointers from Python into C++. Furthermore there are soneblpms with C++
namespaces that must avoided as well.

108 NorduGrid Wrapper Interface

— ngFindClusterinfo Wrapper for FindClusterinfo.
— ngFindClusters ~ Wrapper for FindClusters

— ngGetGiises Wrapper for GetGiises

— ui_download Worapper for ui_downloader.

— ui_upload Wrapper for ui_uploader.

— ui_upload_cancel_job Specific wrapper for ui_uploader when using it
to cancel jobs.

— ui_upload_clean_job Specific wrapper for ui_uploader when using it
clean jobs.

— ui_upload_submit_job Specific wrapper for ui_uploader when using it
submit jobs

e Templates —These classes are C++ STL classes wrapped to Python, making i
possible to create these for wrapped functions and methatsaéed these types
as argument. The only difference between these and shad®sed are these
classes are provided by the STL library (even though they beagontainers for
NorduGrid ARC classes).

— cluster_vector A Vector of Clusters.
— giis_vector A Vector of GlISes.
— job_vector A Vector of Jobs.
— queue_vector A Vector of Queues.
— string_vector A Vector of Strings.
— target_vector A Vector of Targets.
These wrappers provides an APl which makes it possible tpatithe needed fea-

tures for the Job Manager. All the interfaces describes aapped using SWIG [25],
which use was explained in Appendix C

Appendix E

Application Protocol

This chapter defines the protocol through which the apptioatcommunicates with
the Job Manager. The primary source for determining thegaatcan be found by
looking at the NorduGrid command line interface. Also, adbtequirements emerged
throughout the report, in order to control different asgewitthe Job Manager. Since
the application interface is the only way to communicatélite Job Manager (apart
from sending signals to it) the interface must be rich enadiogbupport every type of
interaction with the manager.

The functions can be divided into three categories, sintdathe three pillars of
the Globus Toolkit version 2, resource management, inftionaservices, and data
management [2]. All of the calls will raise an XML-RPC faulpe if used inproperly,
e.g., if using a tag that does not exist. For brevity it is nescfibed when these are
raised. However some contraints will be mentioned.

E.1 Resource Management

This section presents the functions that have to do withumesomanagement. These
are primarily functions that do with job control:

wn

e buildJob(executable, arguments =
output_files = None)
Builds an XxRSL job description for the application. SinceStRsupports a mul-
titude of options only the simplest attributes are suppbri®eturns a string
containing XRSL job description.

, input_files = None,

e submitJob(xrsl_string, input_files = None)
Submits a job, provided a proper xrsl description. If the fi@s any local input
files, they must be passed along in an array. A job tag is return

e cancelJob(tag)
Cancels a job given its tag. The job must be running to cancel i

e cleanJob(tag)
Cleans a job given its tag. The job must finished to clean it.

e getJobStatus(tag)
Returns the status of a job given its tag.

110

Application Protocol

getJobld(tag)
Given a tag, the jobid (if submitted) of the job instance tsineed

The Job Manager can also be regarded as resource on the distianld therefore
be controllable. The functions for this is placed here.

E.2

listManagers()
Returns a list of structs/tuples each containing a hostreardea port number of
the other Job Managers, that the Job Manager knows.

getFailOverJobManagers()
Returns a list of structs/types containing the hostnamésgparts numbers of the
fail over managmers.

getMaster()
Returns contact information about the master of the Job ana

isMaster()
Returns true if the Job Manager is master, false otherwise.

registerManager((hosname, port))
Provides the Job Manager with a contact string to anotheMitager.

handoverJobs((job_manager, port) = None
Hands over the jobs to another Job Manager. A Job Managerecspdtified, if
not the Job Manager chooses one of itself.

shutdown()
Makes the Job Manager shutdown. It does not handover jolis mtst be done
with thehandoverJobs() call first if this is desired.

restart()
Restarts the Job Manager. Session will be saved beforetresta

renewProxy(proxy)
Sends a new proxy certificate to the Job Manager, overwiittingrevious proxy
certificate.

destroyProxy()

Makes the Job Manager destroy, i.e., delete its proxy caatéi This will cut if
off from the rest of the grid, including the client, since @ longer can be veried
that it runs on behalf of the user.

Information Services

Functions in information services are pertaining to getiimformation about the grid,
but also getting information about the Job Manager. Thermé&dion service functions

are:

getJobList()
Returns a list tags representing the jobs in the Job Manager

clearCache()
Clears the information system cache in the Job Manager.

E.3 Data Management 111

getGlobalJoblList()
Get a list of all the jobs of the user running on the grid.

E.3 Data Management

The functions in data managament concerns handling dataeogrid. The functions
are mostly related to the movement of files, but also funetlibynlike setting access
control lists are supported.

downloadFile(url)
Downloads a file to the client, using the Job Manager as Proxy.

uploadFile(file, url)
Uploads a file to the grid, using the Job Manager as proxy.

copyFile(from_url, to_url, blocking = True)

Copies a file from one url to antoher. If blocking is set thd eall first return
when the copying is done; if set to false the call will retummediately, making
the Job Manager act as copying service.

deleteFile(url)
Deletes a file on the grid.

getOutput(tag)
Returns standard output of a job, given its tag.

getAcl(url)
Returns an access control list from the given url.

setAcl(url, acl)
Sets an access control list for the url.

Appendix F

Analysis of deadlock when using
Globus concurrently

During the development of the Job Manager, it was discoviiradunder certain cir-
comstances the functiam uploader in NorduGrid ARC would block, i.e., wait for-
ever and not return. Sinaé_uploader handles job submission, cancelation, clean-
ing and renewal of remote proxy certificates, the functiorstralways work; the Job
Manager is highly dependent on it. Investigating the pnobteeper, lead to the dis-
covery thaui_uploader would never block the first time, but usually the second time
it was called, and sometimes the third time. Since the problas not deterministic,
we believed that the cause of the blocking was a race condégding to a deadlock,
makingui_uploader block.

A race condition is an unwanted behaviour in concurrentsysivhere the actions
of the threads of processes must happen in a specific ordé¢hji®order is not enforced
by the synchronization mechanisms [20]. The result of a cacelition us usually that
data can be modified by two or more threads (or processesgatame time. Race
conditions can be notoriously hard to find and debug for stheg often require very
special circumstances to trigger. A deadlock is when one arerthreads each have
acquired one or more locks, and are waiting to acquire andtioi, which is held
by another thread (this thread may be itself). This causesvtiiting thread to sleep
forever, since they are waiting for each other [19]. Styidpeaking a deadlock is
not a race condition, however when a deadlock cannot be geavdeterministically
it has the same charistica of a race condition, and if the thatmust be protected
by the synchronization mechanisms is a set of locks, buetheks are not properly
protected, they can be subject to a race condition, whichezathto a deadlock.

Our initial thoughts concerning the deadlock was thatiploader ~ could be trig-
gered to not cleaning up properly after it. However this wat ¢onsistent with the
fact thatngsub was able to submit several jobs when calliigupload iteratively.
Investigating the problem further is was discovered thafdtoblem only existed when
using the SOAP server delivered with pyGlobus for RPC calithen disabling the
RPC server and using the API of the Job Manager directly ¢y worked fine.
This turned the attention towards pyGlobus instead. HowagepyGlobus library is
used by the Access Grid Project[55], to create their griddigdlare. Also we had used
functions in Globus through pyGlobus which worked fine. Hegrevhen recieving an
RPC call a certain program technique is used heavily: Callb@allback is method in

114 Analysis of deadlock when using Globus concurrently

which function as passed along to other functions, to beddditer. Callbacks are com-
mon for event natification, authorization or connectiondianry in servers. The last is
used in the SOAP server in pyGlobus, which builds upon a G&bled TCP server
in Globus. When this server recives an incoming connectidrgndler in pyGlobus is
called, which again call a function in the Job Manager, whscballsui_uploader

in NorduGrid ARC, which again calls Globus. This is vhere deadlock happens. On
Figure F.1 an example of regular calls from the Job Managpy@lobus and Nordu-
Grid ARC, and down to Globus is depicted. When calls happewiy, everything
works fine. On Figure F.2 the scheme where the deadlock happelepicted. Here a
callback from Globus results in a new library call to Globliss our belief that this is
what is causing the deadlock, i.e., the cause is an erroeiGtbbus library.

Job Manager

(pyGlobus J (NG ARC J

Globus

il

[

Figure F.1: Noramlly the Job Manager make calls to globus through py@amnd the Nordu-
Grid ARC. The scheme works fine.

Job Manager

[pyGlobus J (NG ARC)

Globus

il

I

Figure F.2: Deadlock when a Globus callback exits the library and cgliieelf, resulting in a
deadlock.

After having reached this conclusion we decided to leaveutfeeof pyGlobus and
use XML-RPC [75] over OpenSSL [61] using M2Crypto [66], exkaugh this would
require some additional work. The alternatives was to hagedure or non working
RPC, or to fix the Globus framework, and we simply did not hawe time to start
debugging pyGlobus and Globus to find deadlocks. FinallyiteppyGlobus would
also allow for much easier deployment for a Job Manager glgnce no Globus in-
stallation would be required on the client side.

Bibliography

[1] David Abramson, Jon Giddy, and Lew Kotler. High performea parametric
modeling with nimrod/G: Killer application for the globatig?, 2000.

[2] The Globus Alliance. Guide to globus toolkit 2.0 softwar
http://www.globus.org/gt2/install/download-guidentit

[3] The Globus Alliance. The globus alliance: Ws-resouragrfework.
http://www.globus.org/wsrf, April 2004.

[4] The Globus Alliance. The globus toolkit. http://www-drglobus.org/toolkit/,
May 2004.

[5] The Globus Alliance. Grid security infrastructure (gsi
http://www-unix.globus.org/security/, April 2004.

[6] The Globus Alliance. Ws-resource framework: Frequgatiked questions.
http://www.globus.org/wsrf/fag.asp, January 2004.

[7] Lawrence Besaw. Bsd socket reference.
http://www.cs.iastate.eduwts586/f03/notes/Socket_Reference.pdf, January
1991.

[8] Maciej Bogdanski, Michal Kosiedowski, Cezary Mazurakd Malgorzata
Wolniewicz. Progress — access environment to computdtsemaices
performed by cluster of sun systems. http://progress.p#&nglish/cgw02.pdf,
December 2002.

[9] Maciej Bogdanski, Michal Kosiedowski, Cezary Mazurakd Malgorzata
Wolniewicz. Grid service provider: How to improve flexiltjliof grid user
interfaces? http://progress.psnc.pl/English/petamshurogress.pdf, June 2003.

[10] The NorduGrid Collaboration. Nordugrid middlewarketadvanced resource
connector. http://www.nordugrid.org/middleware/.

[11] The NorduGrid Collaboration. Nordugrid general infaation.
http://www.nordugrid.org/about.html, May 2004.

[12] World Wide Web Consortium. Soap version 1.2 part 1: Mesgsg framework.
http://www.w3.0rg/TR/soapl12-partl/, June 2003.

[13] World Wide Web Consortium. Web services architecture.
http://www.w3.0org/TR/ws-arch/, August 2003.

116 BIBLIOGRAPHY

[14] World Wide Web Consortium. Soap specifications.
http://www.w3.0org/TR/soap/, May 2004.

[15] Oracle Corporation. Oracle grid computing.
http://www.oracle.com/solutions/grid.

[16] Zope Corporation. Zope object database. http://zmgé?roducts/ZODB3.2,
June 2004.

[17] George Coulouris, Jean Dollimore, and Tim KindbeRgstributed Systems -
Concept and DesigrPearson Education Ltd., 3rd edition, 2003.

[18] Jon Crowcroft.Open Distributed SystemgCL Press Limited, 1st edition, 1996.

[19] Inc. Cunningham & Cunningham. Dead lock. http://c2n¢ogi/wiki?DeadLock,
May 2004.

[20] Inc. Cunningham & Cunningham. Race condition.
http://c2.com/cgi/wiki?RaceCondition, May 2004.

[21] The European Datagrid. The datagrid project.
http://eu-datagrid.web.cern.ch/eu-datagrid.

[22] Philip A. DesAutels. Shal version 1.0.
http://iwww.w3.0rg/PICS/DSig/SHAL1_1_0.html, Octobe©¥9

[23] D. Eastlake and P. Jones. Rfc 3174 - us secure hashtalgadti(shal).
http://lwww.fags.org/rfcs/rfc3174.html, September 2001

[24] P. Eerola, T. Ekelof, M. Ellert, J. R. Hansen, S. HellmAnKonstantinov,
B. Konya, T. Myklebust, J. L. Nielsen, F. Ould-Saada, O. $owva, and
A. Waananen. Atlas data-challenge 1 on nordugflEP’03 2003.

[25] Dave Beazley et al. Simplified wrapper and interfaceayator.
http://lwww.swig.org/, April 2004.

[26] Karl Czajkowski et al. From open grid service infragiiure to ws-resource
framework: Refactoring and evolution.
http://www.ibm.com/developerworks/library/wsresoetmgsi_to_wsrf_1.0.pdf,
March 2004.

[27] Internet Engineering Task Force. Internet x.509 prikéy infrastructure.
http://www.ietf.org/rfc/rfc2459.txt, January 1999.

[28] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Theiplogy of the grid: An
open grid services architecture for distributed systertegiration, 2002.

[29] lan Foster. What is the grid? a three point checklidy 2002.

[30] lan Foster and Carl Kesselmahhe Grid: Blueprint for a New Computing
Infrastructure chapter 2. Morgan Kaufmann, 1998.

[31] lan Foster, Carl Kesselman, and Steven Tuecke. Thewmyatf the Grid:
Enabling scalable virtual organizatiorisecture Notes in Computer Science
2001.

BIBLIOGRAPHY 117

[32] Python Software Foundation. Python programming laggu http://python.org/,
April 2004.

[33] The Python Software Foundation. logging - logging liacfor python.
http://docs.python.org/lib/module-logging.html, Dedeer 2003.

[34] The Python Software Foundation. What is python?
http://python.org/doc/Summary.html, May 2004.

[35] G. Fox, M. Pierce, D. Gannon, and M. Thomas. Overviewraf gomputing
environments, Febuary 2003.

[36] Alan O. Freier, Philip Karlton, and Paul C. Kocher. S4) 3pecification.
http://wp.netscape.com/eng/ssl|3/, May 2004.

[37] Bernhard Herzog. Skencil: Homepage. http://sketmlirseforge.net/, June
2004.

[38] T. Howes, S. Kille, and M. Wahl. Rfc 2251 - lightweightectory access
protocol (v3). http://www.fags.org/rfcs/rfc2251.htrBlecember 1997.

[39] Keith R. Jackson. Python globus(pyglobus).
http://www-itg.lbl.gov/gtg/projects/pyGlobus/.

[40] Henrik Thostrup Jensen and Jesper Ryge Leth. Autorjaticesubmission in
the nordugrid middleware. http://www.cs.auc.dktj/nordugrid/dat5_report.ps,
January 2004.

[41] Brian W. Kerninghan and Dennis M. Ritchi€he C Programming Language
Prentice Hall, 2nd edition, 1988.

[42] Carl Kesselman. Gssapi_ssleay for globus security.
http://lwww-fp.globus.org/presentations/retreat98isy/, Juli 1998.

[43] A. Konstantinov. The http and soap framework.
http://www.nordugrid.org/documents/HTTP_SOAP.pdftaher 2003.

[44] A. Konstantinov. The nordugrid grid manager and gpdferver - description
and administrators manual. http://www.nordugrid.orgigments/GM.pdf, July
2003.

[45] Alexander Konstantinov. The nordugrid smart storaigenent.
http://grid.uio.no/cvs/cvsweb.cgitheckout-/nordugrid/doc/httpsd/SE. pdf,
March 2004.

[46] Sun Microsystems. Grid computing solutions.
http://wwws.sun.com/software/grid.

[47] Sun Microsystems. What is grid computing?
http://www.sun.com/2003-1118/feature/grid.html.

[48] Oracle Technological Network. Oracle grid computieghinologies.
http://otn.oracle.com/products/oracle9i/grid _conipgindex.html.

[49] Jakob Nielsen and Oxana Smirnova. Nordugrid / datalehgeés.
http://www.nordugrid.org/slides/20031127-jakob.pyovember 2003.

118 BIBLIOGRAPHY

[50] Nordugrid. Nordic testbed for wide area computing aatbchandling
(nordugrid), September 2001.

[51] Inc. Object Management Group. Welcome to the omg’s aavbbsite.
http://www.corba.org/, May 2004.

[52] Farid Ould-Saada. Nordugrid sg meeting.
http://www.nordugrid.org/slides/20031127-farid.9pvember 2003.

[53] Legion Project. Legion a world wide virtual computer.
http://legion.virginia.edu/.

[54] Legion Project. Legion: Frequently asked questions.
http://legion.virginia.edu/FAQ.html.

[55] The Access Grid Project. Access grid. http://www.asgrid.org/, May 2004.

[56] The Globus Project. About the globus toolkit.
http://www-unix.globus.org/toolkit/about.html.

[57] The Globus Project. Globus collaborators.
http://www.globus.org/about/collaborators.html.

[58] The Globus Project. Globus toolkit 3.0 fact sheet.
http://www.globus.org/toolkit/gt3-factsheet.html.

[59] The Globus Project. Globus toolk¥2.4 overview.
http://www.globus.org/gt2.4/overview.html.

[60] The OpenSSL Project. Openssl: Documents ssl(3).
http://www.openssl.org/docs/ssl/ssl.html, May 2004.

[61] The OpenSSL Project. Openssl: The open source toakgdl/tls.
http://www.openssl.org/, May 2004.

[62] The pywebsvcs meta project. Python web services.
http://pywebsvcs.sourceforge.net/.

[63] Kate Rhodes. Xml-rpc vs. soap.
http://weblog.masukomi.org/writings/xml-rpc_vs_sdam, May 2004.

[64] Anthony Rowstron and Peter Druschel. Pastry: Scalatd@eentralized object
location and routing for large-scale peer-to-peer systems
http://research.microsoft.comantr/PAST/pastry.pdf, November 2001.

[65] Abraham Silberschatz, Henry F Korth, and S Sudarsbeatabase System
Concepts McGraw-Hill, 4th edition, 2002.

[66] Ng Pheng Siong. M2crypto - a python crypto and ssl tdolki
http://sandbox.rulemaker.net/ngps/m2/, May 2004.

[67] Martin Sjogren. pyopenssl - a python interface to therggsl library.
http://pyopenssl.sourceforge.net/, May 2004.

[68] O. Smirnova. Extended resource specification language
http://www.nordugrid.org/documents/xrsl.pdf, Octo2€103.

BIBLIOGRAPHY 119

[69] Bjarne StroustrupThe C++ Programming Language (Special Edition)
Addison Wesley, 3rd edition, 1997.

[70] Inc. Sun Microsystems. Java remote method invokag@ava(rmi).
http://java.sun.com/products/jdk/rmi/, May 2004.

[71] Andrew S. TanenbaunComputer NetworksPrentice-Hall Inc., 3rd edition,
1996.

[72] The GIMP Team. Gimp: The gnu image manipulation program
http://www.gimp.org, June 2004.

[73] Johan Tordsson. Resource brokering for grid enviromisie
http://www.cs.umu.se/ tordsson/thesis/, May 2004.

[74] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Grah@nrKesselman,
T. Maguire, T. Sandholm, P. Vanderbilt, and D. Snelling. @pg&d services
infrastructure (ogsi) version 1.0, 2003.

[75] Inc UserLand Software. Xml-rpc specification. httaw.xmlrpc.com/spec,
May 2004.

[76] Jon Viega, Matt Messier, and Pravir Chandx&twork Security with OpenSSL
O’Reilly and Associates, Inc., 1st edition, 2002.

