Linkage Analysis with PDGs

Group E1-117a, DAT6

Aalborg Universitet
Department of Computer Science

8th of June 2004

Mads D. Thrane
Mette Thogersen

Faculty of Engineering and Science ﬂ

Aalborg University

Department of Computer Science, Fredrik Bajersvej 7E, DK-9220 Aalborg

TITLE:
Linkage Analysis with PDGs

TOPIC:

Linkage Analysis,

Graphical Representation,
Probabilistic Approaches, Proba-
bilistic Decision Graph.

PROJECT PERIOD:
DATS5-6,
September 1st, 2003 -
June 8th, 2004

PROJECT GROUP:
E1-117a

GROUP MEMBERS:
Mads D. Thrane
Mette Thogersen

SUPERVISOR:
Manfred Jaeger

NUMBER OF COPIES: 7 (+ 1 online)
REPORT PAGES: 84

APPENDIX PAGES: 16

TOTAL PAGES: 104

SYNOPSIS:

This is a linkage analysis project. Link-
age analysis is a tool for locating genes
on DNA strings. The motivation has been
to investigate possible optimization of an
existing linkage analysis algorithm FAST-
TREETRAVERSAL, developed by a medi-
cal company DeCode Genetics in Iceland,
using probabilistic graphical models. The
current implementation of the FASTTREE-
TRAVERSAL Algorithm uses MTBDDs.
The project is divided into three parts. The
first part is an introduction to the field of
linkage analysis, written to create a better
understanding of the subject. The second
part is an investigation into some of the
currently available linkage analysis algo-
rithms, and the third part is development
of a new linkage analysis algorithm using
PDGs.

We have implemented a single point link-
age analysis algorithm which gives an
RFG as output. To use the output as in-
put to a multi point algorithm the RFG
must be normalized into a PDG. The im-
plementation has been tested using data
from the Superlink homepage. Super-
link is another linkage analysis algorithm,
which uses probabilistic graphical mod-
els, in this case Bayesian networks. Giv-
ing this data to the implementation the re-
sulting RFG contains 105 nodes, which is
quite small compared to the possible 442
nodes.

Contents

1 Introduction
1.1 Collaboration
12 ReportStructure,

2 Human Genetics

3 Linkage Analysis
3.1 Two Approaches to Linkage Analysis
3.2 Measuring Linkage
3.3 Definition of Linkage Analysis

4 Algorithms for Linkage Analysis
41 A Small Example Pedigree
42 The Elston-Stewart Approach
43 The Lander-Green Algorithm
4.4 The Fast Tree Traversal Algorithm
45 Superlinko oL o

5 Linkage Analysis Algorithm Design
5.1 Lander-Green EliminationOrder

5.2 Elston-Stewart Elimination Order

6 Probabilistic Decision Graphs
6.1 Real FunctionGraphs
6.2 Linkage OperationsonRFGs

12
14
15

19
19
20
24
31
37

46
50
52

CONTENTS

Page 1 of 104

7 PDG Linkage Algorithm

7.1 Preprocessing
7.2 Linkage PDG Structure
7.3 Single Point Algorithm
74 Multi Point Algorithm

8 Implementation

8.1 Filereader
8.2 Single Point Algorithm
83 Optimization.

9 Conclusion

A Publicly Available Linkage Analysis Tools
B Bayesian Networks

C Binary Decision Diagrams

D Pedigree Data File

References

64

........ 65
........ 66
........ 69
........ 71

75

........ 75
........ 75
........ 79

83

85

88

95

99

102

CONTENTS

Page 2 of 104

Introduction

The motivation behind this project originates form a question asked by
Anna Ingolfsdéttir, Associate Professor at Aalborg University, and asso-
ciated with BRICS (Basic Research in Computer Science). She asked us to
investigate whether Bayesian networks or other graphical models might be
useful in linkage analysis. To answer this question we first had to establish
an understanding of what linkage analysis is and the algorithms currently
in use.

We chose to apply Probabilistic Decision Graphs (PDG) to the linkage anal-
ysis algorithm. PDGs were chosen because the current algorithms indicate
that the two best data structures are Bayesian networks and Binary Deci-
sion Diagrams (BDD), and PDGs as a data structure give us a combination
of the best features of these.

1.1 Collaboration

This project was made in collaboration with DeCode Genetics of Iceland.
DeCode is a pharmaceutical company. They use linkage analysis as a part
of the process of locating disease genes for inherited diseases.

DeCode works with a network of doctors in Iceland, and through this net-
work they have access to the genetic material of the living Icelandic pop-
ulation. The population of Iceland is particularly suited for doing linkage
analysis because:

1. The church records hold a full account of family relations, dating all
the way back to the 9th century.

2. It is a very homogeneous population, where very few new individ-
uals have been added over the generations. This means that the col-

CHAPTER 1. INTRODUCTION

1.2. REPORT STRUCTURE Page 3 of 104

lective genetic material is a constant factor, and it is easier to estimate
the frequency of traits over the population.

When the doctors in the network come in contact with a patient with a spe-
cific trait or disease currently under investigation, blood samples are col-
lected. Both from the patient and the living relatives of the patient. These
blood samples are sent to DeCode together with information on the fam-
ily relations!. DeCode then analyzes the blood samples using biological
methods, to get the information needed for performing genetic analysis.

Through linkage analysis possible areas of location?, for the trait under in-
vestigation, are located for further investigation. The located areas are still
quite large, with respect to the size of genes, and a more detailed search
method is applied to find the exact location of the gene. This method is
called association.

Association compares the segments found by linkage analysis, one little
DNA sequence at a time. The DNA on these segments encode different
not yet identified genes. The segments stem from several people who has
the trait under investigation, and in association they search for identical
DNA sequences. In families the DNA is very similar, and therefor locating
the genetic code for a specific trait is easier the more the rest of the DNA
differs. Because the genes are compared in pairs using biological means
of investigation, the method of association is slow and expensive. Linkage
analysis is faster and cheaper, and is therefor an important tool to narrow
down the segment of DNA which will undergo closer investigation.

Finally when a promising gene has been found, it is examined by bombard-
ing it with different proteins to discover the behavior of the gene, which in
turn helps to create medicine that cure the given trait.

1.2 Report Structure

The report consists roughly of three parts: First part is the fundamental
theory needed for understanding what linkage analysis is. This includes
an introduction to human genetics in Chapter 2, and the definition of link-
age analysis in Chapter 3. The second part is an investigation into the
existing algorithms for linkage analysis going into the details of four of
the algorithms in Chapter 4, and describing the differences between these
by direction of inference in Chapter 5. The third and final part is design
and implementation of a new linkage analysis algorithm using PDGs. In
Chapter 6 PDGs are defined and the operations needed for doing linkage

1Pedigree information.
2Segmen’cs of DNA of a chromosome.

CHAPTER 1. INTRODUCTION

1.2. REPORT STRUCTURE Page 4 of 104

analysis are described. The new linkage analysis algorithms are discussed
in Chapter 7, and some of the details of the implementation of the single
point algorithm is given in Chapter 8.

CHAPTER 1. INTRODUCTION

Page 5 of 104

Human Genetics

The following is a brief introduction to the very basics in human genetics.
To delve further into the subject of human genetics with respect to genetic
analysis see [17].

Human beings are diploids meaning that every individual carries two copies

of each chromosome, such that each cell in the human body contains 23

chromosome pairs'.

Figure 2.1: A small part of a DNA string. (A = blue, T = green, G = yellow, C = red)

A chromosome is a long string of DNA (deoxyribonucleic acid). DNA is a
double helix molecule with two sugar-phosphate backbones and four ni-
trogenous bases: adenine (A), thymine (T), cytosine (C) and guanine (G).
These bases fit together two and two in base pairs (bps): (A,T), (C,G) and
thereby bind the two backbones together, see Figure 2.1. Three base pairs
encode an amino acid or a stop code. A sequence of amino acids form a

protein molecule, which we term a gene?. Each chromosome contains a

1992 autosomes, and 1 pair of sex chromosomes.
There are some discussions into the correct usage of the word gene.

CHAPTER 2. HUMAN GENETICS

Page 6 of 104

large number of genes.

Each pair of chromosomes consist of one maternal and one paternal chro-
mosome. The maternal chromosome of an individual is derived from the
DNA of his or her mother. The paternal is derived from the father.

Sex cells (sperm- and egg cells) consist of only 23 single chromosomes, one
for each pair in the parent. During the creation of the sex cells, the two
chromosomes of a pair mix in a process called meiosis, such that the result-
ing chromosome consist of segments of DNA from each chromosome in the
pair, see Figure 2.2. Where DNA from one chromosome is inserted in the
DNA of the other, we say that a crossover has occurred.

a A
B B
c C

Figure 2.2: The single chromosome passed to an individual from a parent can be build from
different pieces of the two chromosomes of the original pair of the parent.

o

The position of a gene on a chromosome pair is called the locus of the gene.
The genetic distance between two loci is defined as the expected number
of crossovers taking place in a single meiosis between those two loci. The
unit of genetic distance? is called a Morgan, which is the average number of
crossovers, [3].

Different variants of DNA that can be assumed at a locus, are called alleles.
The pair of alleles at any locus is known as the genotype of that locus. If
both alleles at the locus are of the same type, the genotype is said to be
homozygous. If they are of different type, it is said to be heterozygous.

A phenotype is the observable characteristic of a gene. The difference be-
tween phenotype and genotype stems in part from that alleles can be dom-
inant, co-dominant or recessive.

®Note! Genetic distance is not the same as physical distance.

CHAPTER 2. HUMAN GENETICS

Page 7 of 104

A genetic trait for which the expressed phenotype corresponds to the geno-
type at a single locus is often called a Mendelian or single-locus trait. The
human ABO blood group is an example of such a trait (ignoring the Rhe-
sus factor), see Table 2.1. When talking about a blood type of a person, we
actually refer to the phenotype.

m\p| A | B |O
A A |AB| A
B AB| B | B
0 A| B |0

Table 2.1: The top row is the allele located on the paternal chromosome. The left most
column is the allele located on the maternal chromosome. The table holds the phenotypes
given the combined alleles.

If a person is of blood type A, the actual genotype will be either AA or
AQ. This is because A and B are dominant over 0. Thereby is 0 a recessive
gene, which only is observable in blood type 0 of an individual who is of
homozygous genotype (00). A and B are co-dominant to each other, i.e. non
of them suppress the other.

Some traits has a phenotype, which is affected by the simultaneous segre-
gation of many genes at many loci, i.e. the encoding of the trait is shared
between several loci. These are called quantitative traits. They may in ad-
dition have some non-genetic variation superimposed, i.e. the underlying
genotype effects on the trait phenotype may vary with age and sex and
various environmental factors. Quantitative traits can exhibit variation on
a continuous scale, but can also be discrete as in threshold traits. A quanti-
tative trait locus can be thought of as a segment of chromosome affecting a
quantitative trait but whose effect is not large enough to cause an observ-
able discontinuity and is hence not detectable using Mendelian methods.

Summary

In this chapter we have given a very brief introduction to human genetics.
In short we have found that:

e Human beings are diploids meaning that every individual carries two
copies of each chromosome, such that each cell in the human body
contains 23 chromosome pairs.

e A chromosome is a long string of DNA. DNA is a long string of genes.

e Each pair of chromosomes consist of one maternal and one paternal
chromosome.

CHAPTER 2. HUMAN GENETICS

Page 8 of 104

Sex cells (sperm- and egg cells) consist of only 23 single chromo-
somes, one for each pair in the parent.

During the creation of the sex cells, the chromosomes mix in meiosis,
such that the resulting chromosome consist of segments of DNA from
each chromosome in the pair. Such a switch is called a crossover.

The position of a gene on a chromosome pair is called the locus of the
gene.

The genetic distance between two loci is defined as the expected num-
ber of crossovers to occur in a single meiosis between the two loci.

Different variants of DNA that can be assumed at a locus, are called
alleles.

The pair of alleles at any locus is known as the genotype of that locus.

— If both alleles at the locus are of the same type, the genotype is
said to be homozygous.

— If they are of different type, it is said to be heterozygous.

A phenotype is the observable characteristic of a gene, where alleles
can be:

— dominant,

- co-dominant or

— recessive.
A genetic trait for which the expressed phenotype corresponds to the

genotype at a single locus is often called a Mendelian or single-locus
trait.

A phenotype which is affected by the simultaneous segregation of
many genes at many loci, i.e. the encoding of the trait is shared be-
tween several loci, are called quantitative traits.

CHAPTER 2. HUMAN GENETICS

Page 9 of 104

Linkage Analysis

In genetic linkage studies, the aim is to locate the genes for some trait of
interest by mapping their positions relative to known marker loci within
the pedigrees being studied!.

Traits for which the locus, all alleles and their population frequencies are
known are called markers in linkage analysis. The allele frequency in a popu-
lation is given as the percentage of the population, which has this allele.

Definition 1 A marker can be defined as M = (I, A, w(A)) where:

e [is the locus of a gene.
o A is the set of all possible alleles of a gene.

o w(A) is the frequency of the alleles over the population.

The idea behind linkage analysis is to compare the inheritance pattern of
the trait under investigation to inheritance patterns at the markers. If two
inheritance patterns are very similar, there is a high probability of the genes
being located close to each other. If two genes are located close to each other
they are said to be linked, hence the name linkage analysis.

Linkage analysis is performed on a pedigree, which is a group of individuals
together with a full specification of all the familial relationships between
them, see Figure 3.1. A pair of pedigree members are defined to be spouses
only if they have mutual offspring in the pedigree and every such pairing is
called a marriage. The individuals without parents in the pedigree are called
founders of the pedigree and these, by definition, are unrelated. Those with
parents in the pedigree are called non-founders.

"Marker loci are assumed to have no effect on the trait under consideration.

CHAPTER 3. LINKAGE ANALYSIS

Page 10 of 104

Figure 3.1: A example pedigree. Squares are males, circles are females. The left allele is the
paternal allele, the right the maternal allele. The dotted lines depicts an example inheritance
pattern, in this case every one has inherited the paternal alleles of their parents.

Definition 2 A pedigree is P = (I, F, E) where the following hold:

o 1 is the set of individuals in the pedigree.
o F is the set of individuals with no parents in the pedigree, F C 1.
— N = I\{F} is the set of non-founders.

o E is the set of family relations between the individuals, which are defined
such that

— No one can be their own ancestor.

— No one can be both a mother and a father.

An inheritance pattern describes how the genes have been passed from gen-
eration to generation, down through the pedigree. See Figure 3.1.

In reality there is one true inheritance pattern for each pedigree at each
marker. This cannot directly be read from the biological examinations how-
ever, so in linkage analysis we deduce a set of possible or compatible patterns,
and of these consider the most probable pattern to be the true pattern. This
means that in linkage analysis we work with sets of inheritance patterns of
a marker in a pedigree.

In Figure 3.2 the same pedigree with the same genotype information is
given, resulting in two possible inheritance patterns.

CHAPTER 3. LINKAGE ANALYSIS

Page 11 of 104

3 =70

Ala Ala AI% Ala

3|/
\A:Ta/ .';TA

Figure 3.2: Two possible inheritance patterns of a small pedigree.

Inheritance patterns for two different loci indicate whether the alleles come
from the same grandparent, if so they are said to be in phase. In Figure 3.3 a
cross over has occurred from individual 3 to individual 5, the two paternal
alleles of individual 5 are therefore not in phase.

4G
ﬂ

I~

()
I
b

Figure 3.3: An example inheritance pattern is given for each of the two loci. A cross over
must have occurred for the paternal chromosome of individual 5.

The given genotype information is unordered. This means that given the
information that a person is of genotype Aa in Figure 3.2, it is not possible
to determine which parent provided the A allele and which provided the
a, until a specific inheritance pattern is deduced.

If the most probable inheritance patterns of two loci are very similar, few
crossovers are assumed to have occurred, which could indicate that the
alleles are in linkage.

Establishing the number of crossovers between two loci is very difficult,
because crossovers generally cannot be observed. The only way to mea-
sure crossovers is to observe the differences in the inheritance patterns of
known markers. In Figure 3.3 more crossovers might have occurred, than
the ones that can be observed directly in the graph. It is not possible to

CHAPTER 3. LINKAGE ANALYSIS

3.1. TWO APPROACHES TO LINKAGE ANALYSIS Page 12 of 104

detect crossovers which have occurred for homozygous genes, or to dif-
ferentiate between one crossover occurring or any other odd number of
crossovers. It is also not possible to differentiate between no crossover oc-
curring and any even number of crossover occurring, see Figure 3.4.

b

Figure 3.4: It is only observable when an odd number of crossovers have occurred between
two markers.

In linkage analysis an odd number of crossovers is called a recombination,
and an even number is no recombination.

odd = recombination
even or 0 = no recombination

#crossover = {

The genetic distance between two loci is in linkage analysis defined to be
the probability of a recombination occurring between the loci. This is called
the recombination fraction or recombination frequency, [13].

A generally applied equation for calculating the relationship between the
distance in Morgans? d between two loci and the recombination frequency
0 is:

i - —%ln(l—%) (3.1)

0 = %(1—6—2‘1) (3.2)

Where 0 < 6 < 1. If § ~ 0 the loci are very close to each other, and will tend
to be in phase®. If § = 3 the two loci are said to be unlinked, independent
of each other. Possibly even on different chromosomes[17].

3.1 Two Approaches to Linkage Analysis

There are generally two classes of approaches to linkage analysis: single
point and multi point linkage analysis. In single point analysis only one

2The mean number of crossovers.
3Inherited from the same grandparent.

CHAPTER 3. LINKAGE ANALYSIS

3.1. TWO APPROACHES TO LINKAGE ANALYSIS Page 13 of 104

marker is investigated at a time, independently of other markers, and the
resulting most probable inheritance pattern is compared to the inheritance
pattern of the trait. In multi point analysis the probability distributions of
the inheritance patterns deduced on adjacent markers influence each other
dependent on the genetic distance between said markers, see Figure 3.5.

Figure 3.5: The probability distributions at the different loci influence each other. V; is the
set of inheritance patterns of marker M;, and G; is the genotype information given for M;.

If two loci are close, some of the inheritance patterns at these loci might
be identical. These inheritance patterns are more probable than the other
inheritance patterns at the given loci. This is due to the fact that the closer
the two loci are, the lower is the number of expected recombinations.

The genetic distance between two markers is a important factor when do-
ing linkage analysis, especially multi point analysis. The distance between
any two markers is recorded in a genetic map*. The genetic map describes
the distance between the different markers by estimation of the amount of
recombinations occurring between the neighboring markers. When a gene
has been located and all possible alleles identified, this information com-
bines into a new marker, and the genetic map is expanded.

Definition 3 A genetic map of a chromosome can be defined as Gp,q,(C) = (M, ©),
where

o (C is a chromosome,
o M is the set of markers on C, and

e O is the set of recombination fractions, where 0; is the recombination fraction
between M; and M; 4.

The genetic maps can be faulty in several ways [20]. Markers might be in
the wrong place on the map, resulting in linkage analysis indicating areas
of interest, which in fact are not interesting at all, because the estimated
recombination fraction between two markers is based on the assumption
that these two markers in fact are located next to each other. To complicate

“Maps over chromosomes.

CHAPTER 3. LINKAGE ANALYSIS

3.2. MEASURING LINKAGE Page 14 of 104

matters even more, for different parts of the population, markers can be
placed at different loci of the chromosome.

Another error in the genetic map is the possibility of additional (unknown)
alleles at markers. This means that the population frequencies at such a
marker are wrong. If there are high discrepancy in the estimation of the
allele frequency, this can have an impact on the probability calculation of
inheritance patterns.

In this report we will however focus only on the linkage analysis problem
areas, and save the problems of the genetic map to other projects.

3.2 Measuring Linkage

When the most probable inheritance pattern for a given locus is discovered,
the distance between the locus and the trait is estimated.

One method for calculating linkage distances is called the LOD Score Method
developed by Newton E. Morton. This method is described in [30] and [6]
and is the most widely used method for calculating the linkage distance.
Calculating the LOD score is an iterative process, where a series of LOD
scores are calculated from a number of proposed linkage distances between
two loci. The highest LOD score is considered to be the correct linkage dis-

tance estimate.
(Uz|0 < 0.5,Ut)
(Uz|0 = 0.5,Ut)
where v; is the most probable inheritance pattern for a locus, and v; is a

proposed inheritance pattern of the trait. In effect what is counted is the
number of recombinations which have occurred between v; and v;.

LOD = log <77Z (3.3)

Example: Consider inheritance patterns of the two genes in Figure 3.6. In
most of the individuals of the pedigree, it seems that the two alleles A and
X move as a block when passed to the children. In individual 9 however
a recombination has occurred and A now resides on the same chromosome
as z. (In the example we only look at the inheritance pattern of the 3rd
generation, because recombination cannot be observed in the higher gen-
erations.)

If the first estimate of the recombination fraction (linkage distance) is 0.125.
The probability of no recombination occurring is then (1 — 0.125).

In the 3rd generation of the pedigree there is a total of seven individuals
where no recombination seems to have occurred, and one individual with
a recombination, so the total probability of the inheritance patterns based
on a recombination frequency of 0.125 is given by:

(0.875)7(0.125)! = 0.0491

CHAPTER 3. LINKAGE ANALYSIS

3.3. DEFINITION OF LINKAGE ANALYSIS Page 15 of 104

1 H(2)
Aa aa
XX XX

IO
Aa Ba
XX XX

alatolnl 1ol

Aa Aa Aa Ba Aa Ba Aa Ba
Xx Xx Xx XX XX XX XX

Figure 3.6: An example pedigree, showing the inheritance of two genes. The pedigree
implies linkage between the two, with recombination occurring only for individual 9.

The probability of the unlinked inheritance patterns are then:
(0.50)® = 0.00391

The LOD score is then the logarithmic value of the linkage probability di-
vided by the independent probability:

0.0491
0.00391

LODq 195 = log < > = 1log(12.566) = 1.099

This calculation is repeated for a series of recombination frequency esti-
mates, and the largest LOD score is picked to be the distance between the
two genes.

A LOD score of 1 indicates that the likelihood of linkage occurring is 10
times the likelihood of no linkage. If the score is 2 then it is a 100 times big-
ger. In practice a LOD score is preferred to be higher than 3, which means
that the likelihood of linkage occurring at the given estimated distance is
1000 times greater than that of no linkage.

3.3 Definition of Linkage Analysis

The approaches to linkage analysis are many and diverse, see Appendix A.
We therefore create a common definition to pinpoint the similarities and
diversities of the different approaches.

Linkage analysis is based on analyzing the existing genotype information
given for some or all of the people in the pedigree °.

Sometimes phenotype information is given, this can be seen as partial genotype infor-
mation.

CHAPTER 3. LINKAGE ANALYSIS

3.3. DEFINITION OF LINKAGE ANALYSIS Page 16 of 104

Definition 4 Genotype information available for all individuals in the pedigree
can be defined as G(M) where:

e M is a set of markers,
o G;(M), the genotype information available for individual i, is given by

- G(M) = {(a1,,01,), - - -, (my , sy) } where each (o, , o) is either
the unordered genotype of marker j, or (x;1,;2) = (0,0) representing
that no genotype information is available for marker j.

So far we have described linkage analysis as three steps:

1. The probabilistic step, where the probability distribution for the in-
heritance patterns of the markers is found.

2. The LOD score calculation, where linkage with respect to the trait
under investigation is calculated.

3. The evaluation step, where the most probable areas of the DNA string
are picked for further analysis.

Note: From here on when we are talking about linkage analysis we mean
the probabilistic step in linkage analysis.

We thereby define linkage analysis as a function of a pedigree, a set of
markers and genotype information given on the markers for the pedigree.

Definition 5 Linkage analysis can be seen as a function L(P, G(M)), which out-
put P (v |G(M)) where:

e P isa pedigree

e G(M) is the genotype information available for set of markers under inves-
tigation M, for the individuals in P.

e P(vm,;|G(M)) is the probability distribution of the set of inheritance pat-
terns for each marker given the genotype information.

In reality the genotype information given is filled with holes, both because
the biological methods for extracting the information can smudge, but mainly
because the methods for gaining the information is quite new, and therefor
only the younger generations are available for genotyping.

CHAPTER 3. LINKAGE ANALYSIS

3.3. DEFINITION OF LINKAGE ANALYSIS Page 17 of 104

Summary

In this chapter we have given a introduction to linkage analysis. In short
we have found that:

Linkage analysis is investigation of the inheritance patterns for given
markers in a pedigree, and comparing these to the inheritance pattern
of the trait under investigation.

A marker is a locus where all the possible alleles, the population fre-
quencies of these and the biological function of the gene are known.

A pedigree is a group of individuals together with a full specification
of all the familial relationships between them.

— Those without parents in the pedigree are called founders of the
pedigree and these, by definition, are unrelated. Those with par-
ents in the pedigree are called non-founders.

An inheritance pattern describes how the genes have been passed from
generation to generation, down through the pedigree.

If two inheritance patterns are very similar, there is a high probability
of the genes being located close to each other. If two genes are located
close to each other they are said to be linked.

The true inheritance pattern cannot be directly read from the biolog-
ical examinations however, so in linkage analysis we deduce a set of
possible patterns, and of these consider the most probable pattern to be
the true pattern.

If two inheritance patterns of two loci are very similar, few crossovers
are assumed to have occurred, which could indicate that the alleles
are linked.

In linkage analysis an odd number of crossovers is defined to be a
recombination, and an even number to be no recombination.

The genetic distance between two loci is in linkage analysis defined
to be the probability of a recombination occurring between the loci.
This is called the recombination fraction.

There are generally two classes of approaches to linkage analysis: sin-
gle point linkage analysis and multi point linkage analysis.

- Insingle point analysis only one marker is investigated at a time,
independently of other markers, and the resulting inheritance
patterns are compared to the inheritance pattern of the trait.

CHAPTER 3. LINKAGE ANALYSIS

3.3. DEFINITION OF LINKAGE ANALYSIS Page 18 of 104

— In multi point analysis the information given on adjacent mark-
ers influence each other dependent on the genetic distance be-
tween said markers.

e Linkage analysis can be seen as three steps:

1. The probabilistic step, where the probability distribution for the
inheritance patterns of the markers is found.

2. The LOD score calculation, where the linkage with respect to the
trait under investigation is calculated.

3. The evaluation step, where the most probable areas of the DNA
string are picked for further analysis.

From here on when we are talking about linkage analysis we mean
the probabilistic step in linkage analysis.

e We define linkage analysis as a function of a pedigree, a set of mark-
ers and genotype information given on the markers for the pedigree:

L(P,G(M)).

CHAPTER 3. LINKAGE ANALYSIS

Page 19 of 104

Algorithms for
Linkage Analysis

There are many different algorithms and tools, which have been developed
for doing linkage analysis using computers. See Appendix A for a list of
the most popular publicly available tools. We have chosen four linkage
analysis approaches for scrutiny and comparison:

e the Elston-Stewart Algorithm [8], which was written in 1971 and the
ideas of which many linkage analysis tools have been developed,

e the Lander-Green Algorithm [23][21], which is one of the fundamen-
tal algorithms specifically for linkage analysis,

e FastTreeTraversal which is based on the ideas from Lander-Green,
and implemented in the Allegro software package developed by De-
Code [16], and

e Superlink [9] which utilized Bayesian networks.
First we introduce a small example pedigree. Then each approach will be

described and applied to the example for clarification.

4.1 A Small Example Pedigree

The example pedigree in Figure 4.1 consist of three generations of in all 8
individuals. Four founders (two top-level and two spouses in the second
generation) and four non-founders.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.2. THE ELSTON-STEWART APPROACH Page 20 of 104

G

7 8
f13 f14 fis fie

Figure 4.1: An example pedigree of three generations, which will be run through the dif-
ferent approaches for clarification purposes. In reality of course the pedigree is too small to
provide any reliable information.

The example include a set of markers M = {M;, My} with two possible
alleles per marker:

e the set of possible alleles Ay = {a, A} for M;, with population fre-
quency 7(a = .75, A = .25) and

e the set of possible alleles Ay = {b, B} for My, with population fre-
quency 7(b = .95, B = .05).

We have genotype information given for all the individuals of the two
lower generations of the pedigree, see Table 4.1. The two founders in the
topmost generation have no genotype information. This is to illustrate that
usually these are not genotyped due to the fact that founders are usually
long dead.

I 3| 4 5 6 7 8
M |aa | Aa | aa | AA | aa | Aa
My | bb | Bb| bb | bb | Bb | bb

Table 4.1: The unordered genotype information given for the example pedigree.

4.2 The Elston-Stewart Approach

In 1971 R. C. Elston and]. Stewart [8] developed an approach for finding
the likelihood of genotypes of pedigree data based on population distribu-
tion of genotypes, phenotype distribution for the different genotypes, and
offspring distribution given the genotype of the parents. The approach is
based on their backgrounds in genetics and statistics and therefor need a bit

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.2. THE ELSTON-STEWART APPROACH Page 21 of 104

of restructuring to be compared to the approaches developed by computer
scientists.

The approach was not developed for linkage analysis, however the archi-
tecture and ideas developed in this approach have been the basis of many
genetic analysis algorithms developed at a later time. In the following
we will apply Bayesian networks to the approach to provide better under-
standing. For an introduction to Bayesian networks see Appendix B.

The Elston-Stewart algorithm calculates the likelihood for one nuclear fam-
ily at a time. The likelihood of a single sibship of n individuals with phe-
notypes 1, ...,x,, given that the parents have genotype s and ¢, and the
probability of an individual having genotype u (where s, t and u can be of
values 1,2, ..., k) is in [8] given by equation 4.1.

n k
H Zpstugu(xi) (4.1)

i=1u=1

We translate equation 4.1 to Bayesian terminology, one variable at a time.
gu(z;) is the probability of a phenotype trait given the genotype, P(z = i|u),
where x might be a quantitative trait, and the genotype in that case is given
as a segregation of several loci. If x is a single loci trait such as blood type,
and u is the genotype, then

(i) = 1 if z; is determined by u

Jul®i) =90 otherwise

Moving on in equation 4.1, ps, is the probability of the genotype of indi-
vidual u given the parents s, t. This is in Bayesian terms written P(uls, t).

Likelihood computation of founder genotypes is based on population fre-
quency. Elston-Stewart introduces the probability 1, of a given founder
being of the v-th genotype, i.e. v, is the proportion of individuals in the
population who have the v-th genotype. The likelihood of observing a
founder being of a specific genotype, is in Elston-Stewart then given by
equation 4.2.

k
> ugo(w:) (4.2)
v=1

In Bayesian networks the probability distribution is P(S) where each entry
in the probability table is given by:

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.2. THE ELSTON-STEWART APPROACH Page 22 of 104

Summing up the probability distribution of each nuclear family is given by:

e P(G,) the probability of the genotype of a founder y, based on popu-
lation frequency,

e P(Phy,|G,) the conditional probability distribution of the phenotype
of individual n given the genotype of n, and

e P(G,|Gm,Gp) the conditional probability distribution of a genotype of
a child n given the genotypes of the parents m, p.

Together all these the probabilistic elements for a single nuclear family
can be represented in a graphical manner as seen in Figure 4.2, giving a
Bayesian network.

P(Gs) P(GrT)

P(Phs|Gs) P(Pht|GT)
P(Gu|Gs, G,7)

P(Phu|Gu)

Figure 4.2: A graphical representation of the Elston-Stewart probability distributions given
for a single child and its parents. Together with the probability distributions of each variable
this is a Bayesian network, see Appendix B.

In Elston-Stewart the genotype of an individual is seen as a string of in-
formation, which can represent several markers or traits. This means that
the length of the genotype information for each individual is two times
the number of markers under investigation. The number of possible geno-
type configurations under investigation grow exponentially in the number
of markers, and thereby so does the probability table for each node in the
Bayesian network. It means however that whenever the approach operates
on a variable for an individual, it works across all the markers of that one
individual at the same time. Thereby is the complexity of the algorithm lin-
ear in the number of people in the pedigree and exponential in the number
of markers.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.2. THE ELSTON-STEWART APPROACH Page 23 of 104

4.2.1 Elston-Stewart Example

In Elston-Stewart the most natural graphical description of a pedigree is a
relationship graph [28], which for the example given in Section 4.1 can be
seen in Figure 4.3. The pedigree is translated into the genotype graph given
in Figure 4.4.

Figure 4.3: In Elston-Stewart the most ap-

propriate description of a pedigree is given Figure 4.4: An example of a Bayesian net-

using a relationship graph. work describing the probabilistic depend-
ability of the genotype and phenotype of
the specific individuals, and between the
genotypes of the three generations in the
pedigree of Figure 4.3.

When running the example we ignore the phenotype nodes, because the
given information is genotype information, thereby either totally separat-
ing the phenotype nodes from the rest of the network, or leaving the phe-
notype nodes barren.

Each founder genotype probability table will consist of nine probability
entries, one for each detectable genotype combination of the two mark-
ers. The genotype information is unordered, and therefor the genotypes
{AaBB} and {aABB} are considered to be the same. The non-founder
genotype probability tables will be consist of 9 entries. One for each the
probability of each possible genotype of the child given each possible geno-
type combination at the two parents.

For the evidence given many configurations become impossible, i.e. are set
to probability zero. Elston-Stewart never takes these into account and we
model this by reducing the tables by removing all columns and rows for
impossible values. For each impossible genotype combination in a parent,
an entire column is impossible for the child.

When the genotype information from Table 4.1 has been entered as evi-

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.3. THE LANDER-GREEN ALGORITHM Page 24 of 104

dence the probability tables are reduced to size 1 for each of the two geno-
typed founders and the non-founders of 3rd generation, and size 9% (an
entire row) for each of the non-founders of 2nd generation. The probability
tables of the two 1st generation founders are only reduced by removal of a
single entry { AABB}. This entry is impossible because of the genotype of
individual 5. Entering the given genotype information thereby reduces the
total size of the probability tables from 2953 to 164 entries.

4.3 The Lander-Green Algorithm

Lander-Green takes a somewhat different approach to linkage analysis.
Where Elston-Stewart peels one nuclear family at a time for all markers
on the chromosome, Lander-Green peels one entire pedigree for a single
marker at a time. Actually Lander-Green starts by doing single point anal-
ysis for each marker, and then proceeds to update the probability distribu-
tion of inheritance patterns at one marker with respect to the neighboring
markers, as described in Section 3.1.

Lander-Green encodes inheritance patterns as binary vectors, where each
bit denotes one inherited allele of a non-founder, and the value of each bit
describes whether the inherited allele is the maternal or paternal allele of
the parent.

Definition 6 Inheritance vector v; of individual i is a pair of bits (b, bz), where
by is the paternally inherited allele of i, and by is the maternally inherited allele of
i. The value of the bits correspond to the paternal or maternal allele of the parent,
p and m respectively.

As an example consider the inheritance vector v; = (m, p) for individual :.
This means that individual ¢ inherited one allele from its father’s mother,
and one allele from its mother’s father.

The total inheritance vector v of a pedigree is a concatenation of bit pairs
for each non-founder. This means that for a pedigree of n non-founders the
inheritance vector is 2n long.

Algorithm LANDER-GREEN(P, G(M))
foreachm e M

do (A,U,E) « PARTITIONFOUNDERALLELES(G(m))
foreachv e v

do P(v|G(m)) « CALCULATEPROBABILITY(v, (A,U,E),G(m))
P(vm|G(m)) < UPDATEPROBABILITY Vi, Vin—1, Vin+1)

Ol @D =

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.3. THE LANDER-GREEN ALGORITHM Page 25 of 104

Where (A, U, £) denotes the sets of assignment of alleles to the founder loci,
v is the set of possible inheritance vectors of the pedigree at all markers.

For each marker the LANDER-GREEN Algorithm takes as input a pedigree,
the set of all the possible inheritance vectors, and the genotype informa-
tion given for this marker. It then calculates the probability of all founder
allele assignments, where the probability of inheritance vectors leading to
incompatible founder allele assignments is zero. In LANDER-GREEN’s ap-
proach we talk about the loci as the founder variables, that are given alleles
as values. The compatible founder allele assignments are found by ap-
plying each possible inheritance vector to the pedigree and for each geno-
typed non-founder assign the appropriate allele to the inherited founder
loci. The inheritance vectors are then rated by probability. Finally when
linkage analysis have been applied to each marker, the probability of each
inheritance vector for a marker is updated with respect to the set of inheri-
tance vectors at the neighboring markers.

For each marker the LANDER-GREEN Algorithm checks each possible in-
heritance vector. The number of possible inheritance vectors is 22" where
n is the number of non-founders in the pedigree. This means that the al-
gorithm is exponential in the number of persons in the pedigree. However
for each additional marker the algorithm is only called once, so it is linear
in the number of markers.!

The founder loci are divided into three sets in the LANDER-GREEN Algo-
rithm (A,U,), where:

A is the set of unambiguously assigned loci, corresponding to loci for which
the allele is known; ex f1 = ag;

U 1is the set of free loci, corresponding to loci with no given constraints.
This means that either the inheritance vector is not pointing to the
loci, or that no genotyped non-founders have inherited the loci; and

£ is the set of ambiguously assigned loci, corresponding to loci that can be
assigned one of two different alleles; ex. fi = ayV fi = aa. Thelociin
£ will always be connected in components of two or more loci, where
the edge between two loci means that an allele can be inherited from
one loci or the other;ex. (f1 = a1 A fo = ag)V(fi = ag A fa =), this
we write f; <—> f2. There is no maximum length of the component

“chains” in €&, but if one locus of the chain is moved to 4, the entire
chain can be unambiguously assigned alleles and moved to A.

'Remember that in the Elston-Stewart approach described previously, the complexity
was flipped: exponential in markers and linear in the number of individuals.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.3. THE LANDER-GREEN ALGORITHM Page 26 of 104

Algorithm PARTITIONFOUNDERALLELES(G(m))
1. foreachn € F

2 ifnel

3. a1, ag < alleles(n)

4. A—fi=a,fa=m

5 else U — f1, fo

6. return (A,U,¢E)

PARTITIONFOUNDERALLELES is the preprocessing step of assigning alle-
les to founders, where £ denotes the set of genotyped individuals in the
pedigree, o1, o are the allele variables, alleles(n) is the observed genotype
information on individual n, and f1, f5 are the founder loci variables inher-
ited by individual n.

For each inheritance vector the probability given genotype information on
the non-foundersis calculated in Algorithm CALCULATEPROBABILITY. This
calculation is based on the placement of founder loci into the three afore-
mentioned sets. If the inheritance vector is incompatible with the genotype
information given, the probability of said vector is zero, i.e. impossible.

Algorithm CALCULATEPROBABILITY(v, (A,U, E),G(m))
)

1 (AU, E) «— COMPARENONFOUNDERS(v, (A, U, E),G(m))
2. if (AU LEN=0

3. P(v[G(m)) =0

4 else P(v|G(m)) = [lecc D ser P(5)

5. return P(v|G(m))

Where C' is the set of components of the graph, s is a solution to a compo-
nent, P(s) is the product of frequency with which the alleles assigned to
the founder loci occur in the population.

4.3.1 Probability Calculation in Lander-Green

When calculating the probability of the founder allele assignment, we think
of the founder loci as being members of a component (c), for which we cal-
culate the probability. The probability of the inheritance vector is then cal-
culated on the basis of the combination and solution of these components.
A solution to a component is a way of compatibly assigning alleles to the
component with respect to the constraints given. The components created
by the founder loci in the sets ¢/ and A are all components of one founder
variable f;. A component from the set £ is a chain as described previously:
a chain of founder variables which can be assigned one of two alleles. The
probability of a component is then calculated as follows, where 7 (f,, = a;)

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.3. THE LANDER-GREEN ALGORITHM Page 27 of 104

denotes the allele frequency of (7(«;)) indicating that locus f; have been
assigned the value ;.

A The probability of an unambiguously assigned locus is given by the pop-
ulation frequency of the allele, assigned to that locus. This assures
that inheritance vectors which assigns rare alleles to many founders
are rated by a lower probability than inheritance vectors with less
assignments of rare alleles. The probability of a unambiguously as-
signed locus f, is then given by 7(f, = «).

U A locus in this set can be assigned any allele. The probability of a given
loci is the sum of the population frequencies of the possible alleles at
said loci. The total probability of each free locus is therefore

Zw(fu = ai) =1

=1

where {1,2,...,k} are all the alleles possible for the entire popula-
tion, and f,, is a free loci.

& A solution to a chain is given by assigning the possible alleles in to the
loci of the chain in the two possible configurations, and summing the
probabilities of the two possible solutions. Ex. for the component
(f1 <Z—;> fo <Z—;> f3), the probability is given by

m(fi = a)m(fo = ag)n(fs = a1) + 7(f1 = az)7(fo = a1)7(f3 = a2)

4.3.2 Multi Point in Lander-Green

M+ M2
Vi Wi
V2 W2
V3 W3
va
Vi Wm

Figure 4.5: The calculation of the left-conditioned probability of one inheritance vector
given the inheritance vectors at the marker to the left. Where the m in v, is given by
m = 2*" and n is the number of non-founders.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.3. THE LANDER-GREEN ALGORITHM Page 28 of 104

When the inheritance vectors at each marker has been given a probability
distribution, this is updated with respect to the neighboring markers, see
Figure 4.5. This means that if we have observed the exact inheritance vec-
tor at M; to be vz (that is P(v; = v3|G;) = 1), then the probability of all
inheritance vectors at M; close to v3 get increased probability, whereas in-
heritance vectors far from vz get decreased probability. When describing
the distance between two inheritance vectors, the binary encoding of in-
heritance vectors comes in handy, because the difference? between two in-
heritance vectors can be expressed as the Hamming distance between the
two. The Hamming distance is the minimum number of bits that must be
changed in order to convert one bit string into another.

More precisely, the contribution from any state v; of M; is given by the
probability of the v; conditioned on the genotype information at that locus,
P(v;|Gi), times the transition probability P(wy|v;). The transition probabil-
ity is given by the Hamming distance between the two inheritance vectors.
The probability of d recombinations occurring between two markers with
an inheritance vector of length m is given by equation 4.3.

Plwifeg) =07 - (1-6") (43)

2

where wy, is an inheritance vector at marker M; 1, v; a vector at marker M;,
d; is the Hamming distance between (wy,v;) and 6; is the recombination
fraction between the two markers.

We then sum over the contribution to wy, of every vector v;, which corre-
sponds to marginalizing out v; (the set of inheritance vectors at M/;). The
sum is then multiplied with the conditional probability of w;, given G; 1.
This product is proportional to P(wg|Gi, Git1)-

We compute this product for every inheritance vector at marker M;; to
get the full probability distribution, P(v;11|G;, Git1)?, see equation 4.4.

Pl =Pl D PEilG)P(vipalvi), 1 < i <m (4.4)

Vi

The updated probability distribution of marker M, can then be used to
calculate the left-conditioned probability at marker i 4+ 2 and so forth. The
right-conditioned probability is calculated in a similar fashion. Using this
procedure we can compute P(v;|G,;) for any v;, see equation 4.5. These
values can then be used in the scoring functions, i.e. LOD score, to deter-
mine linkage between markers and traits.

P(vilGan) o< P - P(vi|G;) - PE (4.5)

?Caused by recombination.
3Given the assumption that the result is normalized

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.3. THE LANDER-GREEN ALGORITHM Page 29 of 104

4.3.3 Lander-Green Example

For the example in Section 4.1 the LANDER-GREEN takes in the pedigree,
the genotype information given and a set of possible inheritance vectors of
size 28. To clarify the run of the algorithm we run two vectors:

vy = pppppppp and vy = ppmppmmyp on marker M;. In Figure 4.6 vy is
shown.

1 2
| X J
5 6
o0 X
aa AA
9
(X J
aa Aa

Figure 4.6: The pedigree of the example, with inheritance vector v, applied.

First we calculate probability of v; (everyone was given the paternal allele
from their parents):

Step 1: PARTITIONFOUNDERALLELES. The genotyped founders are assigned
alleles giving the (A,U, &) sets:

o A={fs=a,fo=a,fi1=A, fio=A}
° Z/[:{flvf27f37f4}
e &=

Step 2: CALCULATEPROBABILITY. To calculate the probability we compare
the genotype information given on the non-founders, one individual
at a time. The founder loci are assigned allele values and divided into
sets of loci with different constraints.

1. Individual 4 is given genotype information G4 = {Aa}, for inher-
itance vector pp, which gives individual 4 the founder variables
(f1, f3)- The (A, U, E) sets are now:

e A={fs=a,fo=a,fu1=A, fia=A}
o U={fo, fa}
e &={hN % f3}

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.3. THE LANDER-GREEN ALGORITHM Page 30 of 104

2. Individual 5 is given genotype information G5 = {aa}, for inher-
itance vector pp, which gives individual 5 the founder variables
(f1, f3), but this would mean that both f; and f3 should be as-
signed a, and this cannot be. The inheritance vector is incompat-
ible and

o (A,U,E) = 0 and the probability P(vy = v1) = 0.
Now the probability of v,:

Step 1: PARTITIONFOUNDERALLELES. Again the genotyped founders are
assigned alleles, and (A, U, &) are:

o A={fs=a,fo=a,fi1=A, fio=A}
o U= {f17f27f37f4}
e £E=10

Step 2: CALCULATEPROBABILITY.

1. Individual 4 is given genotype information G4 = {Aa}, for in-
heritance vector pp
e A={fs=a,fe =a,fu=A4 fn=A4}
o U={fo, fa}
e &£={h % fs}

2. Individual 5 is given genotype information G5 = {aa}, for inher-
itance vector mp.
e A={fi=Afa=qa,fs=0a,f5=0a,fs=0a f1=A4,
fi2 = A}
o U={fa}
e £ = () etc. the founder set will not change through adding
more information from non-founders.

3. The probability calculation is given by
m(fi = A)r(fa = a)n(fs = a)r(fs = a)n(fs = a) -
m(fu = A)r(f12 = A4)
= (0.25)3(0.75)* = 0.004943

Actually the inheritance vectors end up dividing into three sets of equiprob-
able vectors.

1. Vinvatid = 0,
2. View = 0.00308 and
3. Vpigh = 0.004943

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.4. THE FAST TREE TRAVERSAL ALGORITHM Page 31 of 104

4.4 The Fast Tree Traversal Algorithm

Allegro is the software package for genetic analysis developed by DeCode.
The algorithm used for linkage analysis is called FASTTREETRAVERSAL.
It traverses through the pedigree, and builds a BDD structure (see Ap-
pendix C) of possible inheritance vectors. The algorithm is a modification
of the approach developed by Lander-Green. Our knowledge of the algo-
rithm is based on [16].

Algorithm FASTTREETRAVERSAL(P, G(M))

1. foreachm e M

2 do foreachn € F

3 do PARTIONTIONFOUNDERALLELES(n, (U, E, .A))
4 foreachn € N

5. do for each (z,y) € {(p,p), (p,m), (Mm,p), (m,m)}
6 do v —{v e vljv(n,p) =z Av(n,m) =y}
7 (AU E — (AU E)

8

. ifnel
9. (AU E) —
10. PARTITIONFORNONFOUNDERS(v', n, (A", U, E"))
11. if (A", U, E") # incompatible
12. FASTTREETRAVERSAL(Y, (A, U', E"))

13. P(vp|G(m)) < UPDATEPROBABILITY(Vyp,, Vin—1, Vint1)

Where z is the locus inherited from the father of n, and y is the locus inher-
ited from the mother of n, and (z, y) indicates the two bits of the inheritance
vector which depicts the inheritance pattern of n. (A,U,£) are the sets of
founder loci, as described in the previous section.

The overall structure of the FASTTREETRAVERSAL Algorithm is identical to
the LANDER-GREEN Algorithm, however instead of checking all the possi-
ble inheritance vectors of the pedigree, it builds only the compatible inheri-
tance vectors.

The algorithm traverses through the pedigree, and for each non-founder n
the genotype information given for n (G,), is checked for compatibility with
the current division of founder loci into the three (A, U, £) sets. In this fash-
ion a tree-structure of inheritance vectors are build one non-founder at a
time, terminating a path if it shows incompatibility. In reality many inheri-
tance vectors at each marker are incompatible, and therefore aborting these
as soon as incompatibility is discovered saves a lot of time, in comparison
to the Algorithm LANDER-GREEN*. However in the worst case scenario
the FASTTREETRAVERSAL Algorithm will still build all possible inheritance

“This is based on the average case.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.4. THE FAST TREE TRAVERSAL ALGORITHM Page 32 of 104

vectors of the markers, and the complexity is therefore still exponential in
the number of non-founders of the pedigree. Markers where that many of
the possible inheritance vectors are compatible are called highly uninforma-
tive markers. A highly uninformative marker indicate that a low percent-
age of individuals (or none) have been genotyped for this marker or most
individuals have the same genotype. At highly informative markers most
inheritance vectors are incompatible.

The first step of the FASTTREETRAVERSAL Algorithm is (as in LANDER-
GREEN) to divide the founder loci into the three sets, based on the genotype
information given at founder level.

Then for each genotyped non-founder n of the pedigree the inherited founder
loci fi, f2 is compared with the given genotype information for n, and ei-
ther the constraints on the sets are tightenedS, stays the same or found
incompatible, and the path is discarded. The set constraints are updated
through a call to PartitionForNonFounders. PartitionForNonFounders han-
dles the new genotype information, with respect to six possible configura-
tions of the inherited founder loci:

1. Both founder loci are in ¢/. See Figure 4.7.

(@) If n is homozygous (o; = az2), then fi = a1 and fo = oy are
moved to A.
(b) If n is heterozygous the component f; <~ f5 is moved to £.
a2

(&

ail = az A

n = (a1, a2)

y €
U, o \ai#az

(f2

N -

Figure 4.7: Initially both the founder loci
are in Y. If the genotype of the non-
founder n is homozygous, then the two
loci are assigned alleles, and moved to A.
If n is heterozygous they are combined in
a component and assigned to £.

n # (a1, a2)

Figure 4.8: Initially both the founder loci
are in A. If the genotype of the non-
founder n is not compatible with the possi-
ble alleles assigned to the two loci, the path
is terminated.

2. Both founder loci are in A. See Figure 4.8.

(a) The genotype of n is compared to the assigned alleles of the
founder loci. If they are incompatible the path is terminated.

5 Moving founder loci from ¢/ to &, or £ to A, tightens the constraints.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.4. THE FAST TREE TRAVERSAL ALGORITHM Page 33 of 104

3. Both founder loci are in €. See Figure 4.9.

(a) If nis homozygous (a; = a2), and «; is a possible value for both
loci, then f1 = a7 and fo = a7 moved to A, as are the loci in the
same components as f; and f», and so forth.

(b) If n is heterozygous and oy and ay are possible values of both
founder loci, the algorithm do a split and generates two paths,
one with f; = a1, fo = as moved to A and one with f; = as,
fo = a1 moved to A. This means that there are two versions of
the same inheritance vector, but resulting in two different sets of
constraints on the (A, U, £) sets. Later in this chapter we will go
into the split operation in more detail.

(c) If ay is a possible assignment of f; but not fs, and a4 is a possible
assignment of fy, the f; = a1 and f3 = oy are moved to A.

(d) If one of the alleles does not correspond to any legal assignment
of any of the two loci, the path is terminated.

A

n=(az, a3)Nai =as

n = (as, as)

as# a1 N\az
. as # a3\ aa

Figure 4.9: Initially both the founder loci are in £. If the genotype of the non-founder n is
not compatible with any one of the loci, the path is terminated. Else the loci are moved to

A.

4. One locus is in A and the other is in ¢/. See Figure 4.10.

(a) If one allele of n corresponds to the allele of the locus in A, then
the locus in U can be assigned a specific allele, and moved to A.
Ex. take n = aj,a9; (fi = aq) € Aand fo € U. Then fo = ay
and is moved to A.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.4. THE FAST TREE TRAVERSAL ALGORITHM

Page 34 of 104

(b) If no allele of n corresponds to the value of f; € A, the path is

terminated.

5. One locus is in A and one is in €. See Figure 4.11.

(@) If (fi = au) € A and the a3 corresponds to one of the possible
alleles of f5 € £, then fo = ay is moved to A.

(b) The path is terminated if none of the alleles of n correspond to
the possible alleles of either f; € Aor fy € £.

6. One locus is in £ and one is in Y. See Figure 4.12.

(a) If both alleles of n are possible values of f; € £ a split is made,

as in 3.

(b) If only one allele o is a possible assignment of f; € &, then
fi = aq and fy = ap are moved to A together with a all the other
loci of the component of f;, as in 3a.

(c) If there are no possible allele assignment of f; the path is termi-

nated.

n=(az, a3) \ (a1 #az2V as)

Figure 4.10: Initially one founder locus is
in A and one is in U. If the genotype of
the non-founder n is incompatible with the
assigned allele of the locus in A the path is
terminated. Else the locus in U is assigned
an allele and moved to A.

Figure 4.11: Initially one founder locus is
in A and one is in £. If the genotype of n
is incompatible with either the allele of the
locus in A or both the possible alleles of the
locus in &, the inheritance vector is termi-
nated. Else both alleles are now unambigu-
ously assigned alleles, as are all loci in the
affected component in £.

The calculation of the probability distributions for the inheritance vectors
and the multi point update of the probability distributions are calculated

as in Section 4.3.

In reality it turns out that not only are there many incompatible inheritance
vectors that go straight to a terminal node of value = 0, the compatible in-

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.4. THE FAST TREE TRAVERSAL ALGORITHM Page 35 of 104

Figure 4.12: Initially one locus is in £ and one is in U. If the genotype of n is incompatible
with both possible alleles of the locus in £ the inheritance vector is terminated, else both
founder loci are unambiguously assigned alleles, as are all loci in the affected component
in€.

heritance vectors also come together in sets of equiprobable vectors®. This
is an intuitive feature, which is based on the fact that the probability of an
inheritance vector is calculated as the probability of the compatible founder
allele assignment.

DD data structures have proven successful in exploiting symmetries for
compact symbolic representation of large state spaces, as for instance iden-
tifying inheritance vectors with probabilities. The worst case running time
of algorithms on DD data structures are no better than the fastest algo-
rithms using explicit representation, but they have proven highly efficient
in real-life examples. See Appendix C for an introduction to BDDs and
MTBDDs.

FASTTREETRAVERSAL takes advantage of the symmetries of the inheritance
vectors by reducing the inheritance vector trees to Multi Terminal BDDs
(MTBDD). FASTTREETRAVERSAL actually dynamically builds the MTBDD
version of the inheritance vector tree, and reuses thereby identical sub-
trees. However it is conceptually easier to think of the structure being build
as a tree and then merged bottom-up.

°As in the example in Section 4.3.3.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.4. THE FAST TREE TRAVERSAL ALGORITHM Page 36 of 104

4.4.1 Split Operation

In the FASTTREETRAVERSAL Algorithm, they in two cases incorporate a
split operation.

e Both founder variables are in the set £, the genotyped individual n is
heterozygous and «; and «ay are possible values of both founder loci.

e One founder variable is in &, the other is in ¢/, and both alleles of
individual n are possible values of f; € £.

The split operation creates two copies of the same inheritance vector. For
each copy of the inheritance vector, the implicated founder variables are all
moved to the set A. In one copy f1 = a1, fa = az and so forth. In the other
fi = aa, fa2 = ay. This means that for every node in the set of inheritance
vector a list of possible A, U, £) sets are maintained, and that the maximum
length of a component ¢ € £ is |¢| = 2.

4.4.2 Founder Reduction

The FASTTREETRAVERSAL Algorithm also employs another way of reduc-
ing the number of inheritance vectors, known as founder reduction. The in-
tuitive idea is that since we do not have any information on the parents
or sibling relations of the founders, we cannot deduce any knowledge on
the phase of the founder alleles. This means that all the inheritance vec-
tors which describe the same founder allele as being inherited from the
founders mother or from the founders father, are equiprobable and cannot
be differentiated. Replacing all different inheritance vectors which stem
from this phenomenon with a single vector, reduces the amount of inheri-
tance vectors under investigation. This is not really a reduction of possible
inheritance vectors, but an exploitation of the symmetric nature of the vec-
tors.

4.4.3 Fast Tree Traversal Example

When building the set of possible inheritance vectors for marker A, on the
pedigree in the example given in Section 4.1 the FASTTREETRAVERSAL runs
as follows :

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.5. SUPERLINK Page 37 of 104

Step 1: PARTITIONFOUNDERALLELES. The genotyped founders are assigned
alleles.

o A={fs=a,fo=a,fi1=A, fio=A}
° Z/[:{flvf27f37f4}
e £=10

Step 2: PartitionForNonFounders. By assigning and comparing the geno-
type information given on the non-founders, one individual at a time,
the founder loci are assigned allele values and divided into sets of loci
with different constraints.

1. Individual 4 is given genotype information G, = {Aa}, and
starts by building inheritance vector pp

e A={fs=a,fe=a,fii=A, fio=A}
L u:{f27f4}
° 5={f1<%>f3}

2. Individual 5 is given genotype information G5 = {aa}, and the
algorithm starts by adding pp to the inheritance vector. This
however is incompatible, and the path lead to terminal node 0.

3. Then the algorithm tries to add pm to the inheritance vector. This
is also incompatible, and the path is terminated, and lead to 0.

4. When it tries to add mp the path is valid and further constraints
are made to the founder sets:

i A:{fl :Af2:a7f3:a7f5:a7f6:a7fll:A7fl2:A}
o U={fu}
o &=10etc

In LANDER-GREEN we saw that the inheritance vectors of the example are
divided into three sets of equiprobable inheritance vectors, which is why
building the vectors as a MTBDD reduces the space needed for the inher-
itance vectors. Taking a closer look at the inheritance vectors we see that
all the non-founder of the 3rd generation does not contribute to any prob-
ability information, see Figure 4.13. However the compatible inheritance
vectors are actually saved in the MTBDD.

4.5 Superlink

Superlink [9] was developed at Haifa university in Israel by Dan Geiger et
al. It uses Bayesian networks to perform linkage analysis.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.5. SUPERLINK Page 38 of 104

Figure 4.13: The MTBDD of inheritance vectors build for marker M; of the example, when
doing linkage analysis using the LANDER-GREEN Algorithm. The MTBDD has been greatly
reduced, because no new constraints are added to the three sets, by any of the non-founders
of the 3rd generation. In reality however the inheritance vectors for all the non-founders
are saved in the MTBDD, we only reduced the size for simplicity.

Superlink can perform linkage analysis on a broad variation of pedigrees.
From small pedigrees with many loci to big pedigrees which fewer loci.
When they have a small pedigree they use an approach like the one used in
the LANDER-GREEN Algorithm, Section 4.3, peeling one locus at a time. If it
is a big pedigree it uses a approach more like the Elston-Stewart approach
in Section 4.2, peeling one nuclear family at a time. Generally Superlink
utilizes a mix of both.

Superlink uses a segregation network to represent the inheritance pattern in
the pedigree [28]. For each individual ¢ at a marker we have two nodes
which represent the maternally and paternally inherited alleles respectively.
The underlying random variables can assume any of the allele types at that
marker. Additional nodes representing the meiosis indicators are added as
parents to each allele node. These are binary nodes assuming the value 1
to denote that a copy of the paternal allele of the corresponding parent was
inherited and 0 to indicate inheritance of the maternal allele.

Although the genotypes may be observable in many cases, in some situa-
tions only phenotype information is available. This is modelled in a phe-
notype node, which is a child of the two allele nodes for each individual.
The local Markov property of the Bayesian network augmented with phe-
notypic information is ensured by the phenotype Y; of any individual be-
ing conditionally independent of other variables in the network, given the
genotype G; of said individual.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.5. SUPERLINK Page 39 of 104

Figure 4.14: An example network for Superlink given a pedigree of three individuals, two
founders and one non-founder. The node labels are read as follows: 1,,4 is the maternal
genotype node, individual 1, marker A. 14 is the phenotype node for individual 1. SA; 3
is the selector node between individuals 1 and 3, at marker A.

To sum up: the variable types in Superlink are:

e Genetic loci: For each individual 7 on each locus j two random vari-
able G; j, and G; j, are defined, where G, ;,, defines the paternal allele
for individual 7 on locus j, and §; ;,, defines the maternal allele.

e Phenotypes: For each individual 7 and each locus j a variable Ph; ; is
defined to denote the phenotype of individual 7 on locus j.

e Selector variable: This variable describes the inheritance patterns of
the pedigree, corresponding to the vectors of the LANDER-GREEN Al-
gorithm, see Section 4.3. The variables S; ;, and S; j,, are used to de-
scribe the probabilities of inheriting the parental maternal and pater-
nal alleles. These variables are binary, and are interpreted as follows:
if a denotes i’s father, then:

G . =] Gaip Sijp=0
P ga,jm if Si,jp =1

Gi jm is defined in similar fashion.

The probability tables of the Bayesian network is of the following form:

e Transmission models: P(G; jp|Ga.ips Ga,jm: Siip)r P(Gijm|Gb.ips G jm» Sijm)»
where a and b are i’s parents. Le. the probability of the genotype of
given ¢’s parents.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.5. SUPERLINK Page 40 of 104

e Penetrance models: P(Ph; ;|G; jp,Gi jm). The probability of pheno-
type of i given the genotype of i.

e Recombination models: P(S; ;,|S; j—1p, 0j—1) and P(S; jm |Si j—1m,0—-1),
where 0;_; is the recombination frequency between locus j and j — 1.
Le. the probability of inheriting parental alleles given the inheritance
pattern at the neighboring locus, and the recombination fraction be-
tween the two loci. At locus 1 there is an equal probability of inherit-
ing the one or the other parental allele;

’P(Sz',lp) = 'P(Sz',lm) = (0.5,0.5).

e General population allele probabilities: P(G; j,), P(Gi jm), where i
is a founder. The probability of the founder alleles are given by the
allele population frequencies.

There are four modules in the Superlink Algorithm: UPDATEPEDIGREE,
VARIABLETRIMMING, MERGEVARIABLES and MARGINALIZATION.

At firstin UPDATEPEDIGREE the genotype information is propagated through
the pedigree. This is done into two phases. First the information of the
network is updated, such that nodes without information are updated ac-
cording to the evidence entered at other nodes of the network. For instance

if the genetic evidence is entered for a parent, constraints can be put on the
possible genotypes of the child, and so forth. The second phase is reduc-
tion of the probability tables, where rows and columns consisting only of
invalid values are removed. An example, if P(x,y,z) = 0 for all values of

y and z of Y, Z then the value x is not valid for the variable X.

Algorithm UPDATEPEDIGREE(P, G)

1. foreachn e P

2 do if informationOnParents A nolnformationOnChildren
3. updateChildrenInformaion();

4. if noInformationOnParents A informationOnChildren
5 updateParentsInformation();

6 if InvalidValue
7 removelnvalid Value();

When the information has been propagated through the segregational net-
work the barren phenotype variables can be removed, see Appendix B.
These are either phenotype nodes without evidence, or phenotype nodes
for which both the genotype nodes have been given evidence. These vari-
ables do not add any information to the calculations of probability distri-
bution of the possible inheritance patterns.

In VARTABLETRIMMING the leaves of the network are checked for evidence.
The leaves without evidence are removed. This is a recursive step, meaning

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.5. SUPERLINK Page 41 of 104

that when a leaf is deleted, the new leaves are also checked to see if they
had been given evidence and so forth.

Algorithm VARIABLETRIMMING(P, G)
1. foreachn eP

2. if n € leaf A nolnformationOnLeaf
3. delete leaf;

4 if G, =0V Ph, ==10

5 deletePhenotypeNode();

Then all redundant variables are merged in MERGEVARIABLES. An exam-
ple of variables which are redundant are the paternal and maternal al-
leles at the founder level. This corresponds to founder reduction i the
LANDER-GREEN Algorithm. If there is no genotype information given for
the founder, it is not possible to calculate the inheritance pattern of a child
of the founder so the selector variable of the child is also redundant.

Algorithm MERGEVARIABLES(P, G)

1. foreachn e P

ifneFAG,==10
merge(founderLocilnformation);
delete(S,, for children);

= LN

Now Superlink projects down on each marker to find the most probable
inheritance pattern, i.e. the most probable configuration of the Bayesian
network. This is done either by variable elimination or conditioning, see
Algorithm MARGINALIZATION. Variable elimination is a very expensive
process to perform, i.e.it requires a lot of space, but it is faster than condi-
tioning. Conditioning however is not as expensive with respect to space.
Therefore variable elimination is used as much as possible. To determine,
wether it is too expensive to perform variable elimination, the maximum
cost of removing a given variable is calculated and compared to a prede-
fined threshold.

The segregation graph is non-triangulated, and a greedy algorithm is used
to find the best elimination order’. Superlink uses either a deterministic
greedy algorithm or a stochastic greedy algorithm. The deterministic algo-
rithm finds a good? fill-in combination for the entire graph, before it starts
to eliminate variables. The stochastic algorithm calculates fill-in sizes ran-
domly in the network and starts variable elimination if the fill-in size is
below a predefined threshold [10].

"The elimination order resulting in the cheapest fill-ins, see Appendix B.
SHowever probably not the optimal.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.5. SUPERLINK Page 42 of 104

Algorithm MARGINALIZATION(P, G)
if ™%n(v)EC(v) <threshold
if deterministiskTime < C,,,;,,
DeterministiskGreedy();
else
StochasticGreedy();
PerformVariableElimination();
else
Conditioning();

NN LN

451 Superlink Example

Given the example pedigree in Section 4.1, Superlink builds a segregation
graph as in Figure 4.15. In the beginning the graph contains 64 nodes (5
per non-founder per marker, and 3 per founder per marker), compared to
Elston-Stewart’s graph containing 18 nodes. However the total size of the
joined probability table is (when ignoring the phenotype nodes) in Super-
link 232, and in Elston-Stewart 9'¢ (about 431,440 times bigger than Super-
link). The size of the joined table is given by taking the product of the
number of possible values of each variable, for all the variables, which is
shown in equation 4.6.

k
size = Hri(\a|) (4.6)
i=1

where i is the number of variables in the graph and || is the number of
possible values of the variable.

When evidence has been entered and the impossible values have been re-
moved the joined table for the segregation graph is reduced to 2*. In the
example there is no phenotype information given for any of the persons,
therefore all the phenotype nodes are removed in VARIABLETRIMMING.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.5. SUPERLINK Page 43 of 104

Figure 4.15: The segregation graph in Superlink for the example pedigree. The phenotype
nodes have been left out, to simplify the picture. They are all barren and therefore removed
anyway. The only time a phenotype node is left in the graph is when it has been given
evidence, and the genotype nodes have not.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.5. SUPERLINK Page 44 of 104

Summary

In this chapter we have looked at four linkage analysis approaches:

e the Elston-Stewart Algorithm,
e the Lander-Green Algorithm,
e The Fast Tree Traversal Algorithm, and

e the Superlink Algorithm.

The Elston-Stewart Algorithm was not developed for linkage analysis,
however the architecture and ideas developed in this approach have been
the basis of many genetic analysis algorithms developed at a later time.

The Elston-Stewart algorithm calculates the likelihood for one nuclear fam-
ily at a time. The genotype of an individual is seen as a string of informa-
tion, which can represent several markers or traits. The number of possi-
ble genotype configurations under investigation grow exponentially in the
number of markers. Thereby is the complexity of the algorithm linear in
the number of people in the pedigree and exponential in the number of
markers.

The Lander-Green Algorithm peels one entire pedigree for a single marker
at a time.

Lander-Green starts by doing single point analysis for each marker, and
then proceeds to update the probability distribution of inheritance patterns
at one marker with respect to the neighboring markers.

Lander-Green encodes inheritance patterns as binary vectors, where each
bit denotes one inherited allele of a non-founder, and the value of each bit
describes whether the inherited allele is the maternal or paternal allele of
the parent. The total inheritance vector v of a pedigree is a concatenation
of bit pairs for each non-founder.

The compatible founder allele assignments are found by applying each pos-
sible inheritance vector to the pedigree and for each genotyped non-founder
assign the appropriate allele to the inherited founder loci.

Finally when linkage analysis have been applied to each marker, the prob-
ability of each inheritance vector for a marker is updated with respect to
the set of inheritance vectors at the neighboring markers.

The LANDER-GREEN Algorithm is exponential in the number of persons in
the pedigree and linear in the number of markers.

The Fast Tree Traversal Algorithm traverses through the pedigree, and
builds a BDD structure of possible inheritance vectors.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

4.5. SUPERLINK Page 45 of 104

The overall structure of the FASTTREETRAVERSAL Algorithm is identical to
the LANDER-GREEN Algorithm, however instead of checking all the possi-
ble inheritance vectors of the pedigree, it builds only the compatible inher-
itance vectors. This is a great optimization compared to LANDER-GREEN,
however the worst case compatibility is the same.

The Superlink Algorithm can perform linkage analysis on a broad varia-
tion of pedigrees. From small pedigrees with many loci to big pedigrees
which fewer loci. For a small pedigree they use an approach like the one
used in the LANDER-GREEN Algorithm. For a big pedigree it uses a ap-
proach like the Elston-Stewart approach. This diversity comes from Super-
link using Bayesian networks.

CHAPTER 4. ALGORITHMS FOR LINKAGE ANALYSIS

Page 46 of 104

Linkage Analysis
Algorithm Design

Generally speaking the task of doing linkage analysis follow the same struc-
ture for all the algorithms. The goal is to find the set of inheritance pat-
terns for a marker, given some genotype information on the individuals
of a pedigree, and rate these inheritance patterns by the probability of
the compatible founder allele assignments. Thereby there are four basic
components in linkage analysis: pedigree founder genotype information
Fg, genotype information on the non-founders G, phenotype information!
Ph and finally the sets of inheritance patterns /. Figure 5.1 illustrates the
dependencies between these four components, using a Bayesian Network
(BN) [19]. The phenotypes of the individuals are dependent on their geno-
types, which in turn are dependent on the genotypes of the founders and

the inheritance patterns.

Figure 5.1: Linkage Analysis as a Bayesian Network (BN) [19]. Note: each node holds all
the information for all individuals of the set across all markers.

!'Phenotype information is often regarded as partial genotype information.

CHAPTER 5. LINKAGE ANALYSIS ALGORITHM DESIGN

Page 47 of 104

The probability distributions of the inheritance patterns are calculated on
basis of observations given on Fg, G and Ph. However in practise the prob-
ability tables at this abstraction level are impossibly large, and therefore no
feasible solutions exists using only the four basic variables.

There are two major branches or types of algorithms for doing linkage anal-
ysis. These are defined by their inference flow, which either run across
markers or across nuclear families?. The branches are named after the
first algorithms created in each: the Lander-Green branch and the Elston-
Stewart branch. The algorithms are described in Sections 4.3 and 4.2 re-
spectively. When other algorithms refer to these, they are actually referring
to the inference flow.

The Lander-Green Branch: In Lander-Green based approaches the inheri-
tance patterns are first built for each marker in single point analysis.
When doing multi point analysis the inheritance patterns are updated
with information given on the neighboring markers, see Figure 5.2.

Marker 1

Figure 5.2: Linkage analysis is performed in a single point fashion at each marker. Multi
point dependencies only exists between the inheritance patterns of neighboring markers.
Each variable node holds information only for a single marker, but across sets of founders
and non-founders.

The Elston-Stewart Branch: The Elston-Stewart based algorithms focus on
each individual in the pedigree. The genotype dependencies are now
specified between parents and children, and not as direct dependency
between founders and non-founders, see Figure 5.3. In multi point
linkage analysis each node contains genotype information across all
the markers.

The inference flow of the algorithms is based on which order the variables
are marginalize out of the graph. The marginalization order is also called

2 A nuclear family is a set of parents and their kids.

CHAPTER 5. LINKAGE ANALYSIS ALGORITHM DESIGN

Page 48 of 104

Figure 5.3: Each node holds information across all markers for a single individual. This
means that linkage analysis is performed in a multi point fashion, but only for one nuclear
family at a time.

the elimination order. The inference flow of an algorithm is illustrated us-
ing a junction tree, which is an inference tool for Bayesian networks, see
Appendix B.

In single point analysis each node, in the Bayesian network for Elston-
Stewart, only holds information on a single marker. This results in an infer-
ence flow across nuclear families as in Lander-Green. This is demonstrated
graphically by the junction tree which is identical for the two algorithms in
single point analysis. As an example see the junction tree in Figure 5.5 for
the pedigree in Figure 5.4.

Figure 5.4: An example pedigree.

General for all the algorithms is that the nodes of the founders are triangu-
lated, and that additional edges between the nodes of the non-founders are
needed to triangulate these. The additional edges are called fill-ins.

The selector nodes encode the inheritance patterns, and therefor the goal
of the algorithms is to calculate the probability distribution of the selector
nodes. The joint distributions of the inheritance patterns are given by push-
ing the values of the rest of the graph into the selector nodes. The major
difference in the inference flow of the different algorithms is seen in respect
to the selector nodes.

CHAPTER 5. LINKAGE ANALYSIS ALGORITHM DESIGN

Page 49 of 104

G5p, SSp

Figure 5.5: The single point junction tree given the pedigree in Figure 5.4.

In multi point analysis the choice of which type of algorithm to employ
depends on the input data. Superlink incorporates both branches by build-
ing a large Bayesian network, where each node only holds information on
a single individual at a single marker, see Figure 5.6. Actually Superlink
divides the information even further such that for each individual there are
5 nodes, see Section 4.5, but with respect to the direction of the inference
flow this is un-important. The large Bayesian network built by Superlink
lets the inference flow run both across markers and across nuclear families.

Figure 5.6: Each stippled box holds information for a single individual. Each pair of nodes
in a box holds information on a single marker. The genotype of a child is only dependent
on the genotypes of the parents, and the selector nodes, which encodes the inheritance
patterns.

In the following we look at the inference flow of the Bayesian network in
Figure 5.6. To clarify the difference we describe the flow in the two ex-
tremes: Elston-Stewart and Lander-Green style inference.

CHAPTER 5. LINKAGE ANALYSIS ALGORITHM DESIGN

5.1. LANDER-GREEN ELIMINATION ORDER Page 50 of 104

The order with which the nodes are marginalized out of the network, i.e.
the elimination order, is found by creating the moral graph of the network,
triangulating the graph by adding fill-ins and constructing the junction tree
for inference calculations. The choice of which nodes should be connected
by the fill-ins is described in Appendix B.

A moral graph is created by removing the edge directions in the origi-
nal network. Then edges are added between nodes with common graph-
children®, see Figure 5.7. The edge between G, and G 1., is one such
additional edge.

Figure 5.7: The moral graph for the Figure 5.8: The triangulated cliques for

Bayesian network in Figure 5.6. marker one is removed. This leaves the
two selector variables and the genotype
information for individual 3 at the first
marker.

5.1 Lander-Green Elimination Order

The Lander-Green branch algorithms eliminates one marker at a time. In
Figure 5.8 the triangulated cliques for marker 1 are removed, leaving the
two selector nodes S3 1, and S3 1,,,, and the two genotype nodes G3 1, and
G3,1m-

To eliminate the last four variables at the first marker fill-ins have to be
added. The first variables which are eliminated are the genotype nodes, as
this adds the fewest fill-ins, and as the interesting4 nodes are the selector
nodes. The genotype nodes can be eliminated in any order. In Figure 5.9
the node G731, is the first to be removed. This creates a fill-in between S3 1,

*We have to differentiate between children and parents in the pedigree, and the expres-
sion of talking about child- and parent nodes of a graphical structure.
“With respect to linkage analysis.

CHAPTER 5. LINKAGE ANALYSIS ALGORITHM DESIGN

5.1. LANDER-GREEN ELIMINATION ORDER Page 51 of 104

and G3 1,,. Then the next genotype node G3 1, is removed, adding a fill-in
between S3 1, and S3 1., see Figure 5.10.

This leaves the two selector nodes on the first marker. As for the genotype
nodes, it does not matter in which order the selector nodes are eliminated.
In Figure 5.11 the paternal selector node S3 1, is removed first. This creates
a fill-in between the paternal selector node on the second maker S35, and
the maternal selector node on the first marker S3 1,,. Only one node is left
for the first marker. Elimination of S3 1, creates a fill-in between the two
selector nodes on the second marker S35, and S5 2, see Figure 5.12. The
nodes at the other markers are eliminated in a similar fashion.

Figure 5.9: The first genotype node G, 1, Figure 5.10: The second genotype G3,1m
is removed. node is removed.

Figure 5.11: The first selector node Ss,1, is Figure 5.12: The second selector node
removed. S3,1m is removed.

The junction tree generated by this triangulation is shown in Figure 5.13.
Comparing this with the junction tree for single point, there are some sim-
ilarities.

The junction tree has the same basic structure for all three markers. In a
way it preforms the same operation three times, one for each marker. The
three subtrees marked by dotted lines in Figure 5.13, preform the same op-
eration repeated once for each marker. The nodes outside the dotted lines

CHAPTER 5. LINKAGE ANALYSIS ALGORITHM DESIGN

5.2. ELSTON-STEWART ELIMINATION ORDER Page 52 of 104

are nodes for selector node elimination; basically updating one marker with
information from another marker.

In Section 4.3 we claimed that the Lander-Green algorithm is exponential in
the number of people in the pedigree. Looking at the junction tree it is clear
why. For each marker added to the Lander-Green algorithm, the junction
tree gets an extra subtree. If another person is added to the pedigree then
two nodes are added to each of the subtrees for the markers.

| I I
1 [1 '
1 Gt.1p, G1.1m| Ga1p, Ga.tm :
S
-] I o
! i i o
' [Ga.rp, o1 Gs1p, Gaim Gs.1m, S3.1m |

1

! 1

! 1

: Crie Grin @ Sazp, Goom " [Goim Somp Sam ,‘
" —

! 1

G125, Gram, Ga 29, S32p 1 :ll h

1 e _w_ e

1

\ |

! 1

1

Gazam, S32m -

[Ga.2p, S3.20]

G320, Ga2m l ! l
[I
! 1
S ~a - v
R --" < X

I
' 1

Gs,2m, S3.20, S3.2m

------ . 1] G335, Gan| [
1
% g — 1
Sa2p, Sa N S Gaam, s“:,’ .
~. — -

~ 1

~ Ga3p, Goam, S33p, Soam
~ 1
\
1
\
| \]

i \ i

S3.2p, S3.1m| V' [Gasm, Sazp, Saam
\

\
S3.2m, S33p, S3am vCGaam, Sap, Saam) !
1

|
1

S3.3p, S3.3m)

Figure 5.13: A the junction tree for the Bayesian network in Figure 5.6, using the Lander-
Green type elimination order.

5.2 Elston-Stewart Elimination Order

Variable elimination in the Elston-Stewart type algorithms are very differ-
ent from the variable elimination in the Lander-Green type algorithms. In
Elston-Stewart the variables are eliminated for one person at a time. Again

CHAPTER 5. LINKAGE ANALYSIS ALGORITHM DESIGN

5.2. ELSTON-STEWART ELIMINATION ORDER Page 53 of 104

we use the moral graph in Figure 5.7 for illustration of the elimination or-
der.

First step is to eliminate person p;. This is relatively easy as p; is a founder
and thereby the nodes are triangulated without adding fill-ins, see Fig-
ure 5.14. The same goes for person p; in the pedigree, see Figure 5.15.

Now there is only one person left in the graph. Person p3 is a non-founder,
and the nodes are not triangulated, except for the phenotype nodes, which
can be easily eliminated. See Figure 5.16.

Figure 5.14: The moral graph after elimi- Figure 5.15: The moral graph after elimi-
nating the nodes for person 1. nating the nodes for person 2.

Figure 5.16: The phenotype nodes for person 3 are eliminated.

For the selector nodes and genotype nodes of ps, fill-ins must be added.
We are interested in "pushing" all the information down on the selector
nodes for each marker. Therefor it makes sense to eliminate all the geno-
type nodes first. The fill-ins created are shown in Figure 5.17.

The only nodes remaining are the selector nodes. The fill-ins needed for
eliminating these are shown in Figure 5.18, however the fill-ins are here
added at random. Dependent on the size of the probability tables at each
selector node, other fill-ins might be more optimal.

CHAPTER 5. LINKAGE ANALYSIS ALGORITHM DESIGN

5.2. ELSTON-STEWART ELIMINATION ORDER Page 54 of 104

Figure 5.17: The fill-ins needed to elimi- Figure 5.18: The fill-ins needed to elimi-
nate the genotype nodes of person 3. nate the last nodes in the graph.

The resulting junction tree for the Elston-Stewart type inference flow can
be seen in Figure 5.19. The Elston-Stewart junction tree consists of rela-
tively few but very big cliques. For each person there are two nodes in
the junction tree. One node for the elimination of the phenotypes and one
node eliminating the genotype variables. When adding another marker to
the Elston-Stewart algorithm no new nodes are added to the junction tree,
the cliques in each node only grow larger. Therefor is the algorithm expo-
nential in the number of markers, as claimed in Section 4.2. For each new
person added to the pedigree, two new nodes will be added to the junction
tree.

CHAPTER 5. LINKAGE ANALYSIS ALGORITHM DESIGN

5.2. ELSTON-STEWART ELIMINATION ORDER

P11, G1,1p, G1,1m
P12, G1,2p, G1,2m
P13, G1,3p, G1,3m

P21, G2,1p, G2,1m
P22, G2.2p, G2.2m
P23, G2,3p, G2,3m

[

|

I

G1.1p, G1,1m G2,1p, G2.1m
Gt1.2p, G1.2m G2,2p, G22m
G1.3p, G1.3m G23p, G23m

G1,1p, G1,1m
G1,2p, G1,2m
G1,3p, G1,3m
G3,1p, G3,2p, G3,3p
S3,1m, S3.2m, S3,31

G2,1p, G2,1m
G22p, G2.2m
G2.3p, G2,3m
G3,1m, G3,2m, G3,3m
S3,1p, S3,2p, S3.3p

[

I

I

G3,1m, G3,2m, G3,3m
S3.1p, S3.2p, S3.3p

Gs,1p, G3,2p, G3,3p
S3,1m, S3.2m, S3,3m|

G3,1p, G3,1m
Gs,2p, Gazm
Gs,3p, G3am
S3,1p, S3,2p, S3,3p

S3,1m, S3,2m, S3,3m

[

1

Page 55 of 104

G3,1p, G3,1m
Gs,2p, G32m
Ga.p, G3.3m

P31, G3,1p, G3,1m
P32, G3,2p, G3,2m
P33, G3,3p, G3,3m

Figure 5.19: A the junction tree for the Bayesian network in Figure 5.6, using the Elston-
Stewart type elimination order.

CHAPTER 5. LINKAGE ANALYSIS ALGORITHM DESIGN

5.2. ELSTON-STEWART ELIMINATION ORDER Page 56 of 104

Summary

There are generally two sets of linkage analysis approaches. One is expo-
nential in the size of the pedigree and linear in the number of markers; the
other vice versa.

Looking at the two junction trees for the multi point algorithms the differ-
ences are striking. The Lander-Green tree is very large but with small joint
tables, the Elston-Stewart is small with large joint tables. There are however
some similarities. They both eliminate the phenotype and founder nodes
as one of the first steps of the algorithm. This makes sense as these are
the nodes which are triangulated in the original moral graph without ad-
ditional fill-ins. Then they remove the genotype nodes and last the selector
nodes.

The major difference in the elimination order is seen with respect to the se-
lector nodes. The joint distributions of the inheritance patterns are given
by pushing the values of the rest of the graph into the selector nodes. In
Lander-Green type algorithms two selector nodes are marginalized out to-
gether with the rest if the nodes tied to a marker. In Elston-Stewart type al-
gorithms all the other nodes are marginalize out, leaving the selector nodes
for last.

CHAPTER 5. LINKAGE ANALYSIS ALGORITHM DESIGN

Page 57 of 104

Probabilistic
Decision Graphs

Probabilistic Decision Graphs (PDG) were developed by Marius Bozga and
Oded Maler [2], and further developed into Real Function Graphs (RFG) by
Manfred Jaeger [18].

The following is an introduction to PDGs together with a description of the
operations we need to create our linkage analysis algorithm.

Bayesian networks and BDD-based representation frameworks of proba-
bility distribution are developed with similar goals: to obtain compact rep-
resentations of probability distributions on which certain basic operations
can be performed efficiently [18]. BDDs were however created for equal-
ity testing, and Bayesian networks and PDGs were created specifically for
probabilistic inference problems, which is why we at first got the idea that
PDGs could provide a better data structure for linkage analysis than MTB-
DDs, which are used in the Allegro linkage algorithm in Section 4.4.

The purpose of PDGs is a probabilistic system, which have some of the
same properties as Binary Decision Diagrams (BDD), see Appendix C. The
desired properties of BDDs are:

1. Canonic - there exist a unique BDD representation for each boolean
function.

2. Relatively efficient algorithms for manipulating BDDs

3. Performs well in the analysis of many structured systems: the size of
the BDD remains small relative to the size of the state-space.

CHAPTER 6. PROBABILISTIC DECISION GRAPHS

6.1. REAL FUNCTION GRAPHS Page 58 of 104

6.1 Real Function Graphs

Manfred Jaeger introduced a generalization of PDGs called Real Function
Graphs (RFG), and we find that his definition of RFGs is a good basis for
the definition of PDGs.

Definition 7 Let F' = {T1,...,T}} be a forest over X, i.e. each T} is a rooted,
directed tree whose nodes are a subset of X, and the union of all nodes in the Tj is
X. Let Er denote the edge relation in F. A Real Function Graph Structure for
X with respect to the forest F is a rooted directed acyclic graph G = (V, E), such
that

e cach node v € V is labelled with a variable X; € X.

e For each node v labelled with X;, each x; ,, € R(X;), and each X; € X with
(X, Xj) € Ep there exists one edge e (labelled with X; ;) in E leading from
v to a node v' € V labelled with X;.

Definition 8 A Real Function Graph Structure is turned into a Real Function
Graph (RFG) if

e cach node v labelled with X; also is labelled with a value vector p¥ =
(pY.....p}) € RF(i=1,...,n).

We denote the resulting RFG with G = (V, E, p).

Definition 9 A RFG G is called a probabilistic decision graph (PDG) if
o for all nodes v with label X; : p; € [0, 1] and
® 22;1 pp =1

The variable structure or variable order of a PDG is given by an underly-
ing tree structure 7. As an example see Figure 6.1, which is the variable
structure of the PDG in Figure 6.2. The structure of a PDG encodes certain
(conditional) dependency relations in the distribution FPg. Different PDG
structures (for a given F') encode different probabilistic models, i.e. the sets
of probability distributions that can be represented over the structures are
different.

6.2 Linkage Operations on RFGs

In this section we will give a description of the PDG / RFG operations we
need for the linkage analysis algorithm. The operations needed are multi-

CHAPTER 6. PROBABILISTIC DECISION GRAPHS

6.2. LINKAGE OPERATIONS ON RFGS Page 59 of 104

(V)

NG
ONO
VASRAN

D L L !
o

Figure 6.1: The tree structure 1" over the Figure 6.2: A binary PDG over T'. A dotted
variables A, B,C, D, with edge relations line = 0, a full line = 1.
Er ={(A,B),(A,C),(C,D)}.

plications of various kind, normalization, marginalization and finding the
maximum configuration.

6.2.1 Multiplication

When performing any sort of multiplication on RFGs and PDGs, the result
is an RFG. In the example figures of this section the RFGs given are actu-
ally PDGs, to illustrate that the multiplication operations are applied in the
same fashion to the specialized form of RFGs.

Multiplying a RFG with a constant, each entry in the value vector of the
root is multiplied with the constant, see Figure 6.3. The probability of each
path in an RFG is found by multiplying all the values of the path, and
multiplying with a constant is the same as multiplying each path with the
constant. It is therefor only necessary to multiply the constant to the root
values. This operation is of time complexity O(k), where k is the number
of possible values of the root variables.

A A
(0.06, 0.14)

*0.2 = VALY

a0 @0

Figure 6.3: When multiplying a constant to a RFG, the constant is multiplied to each value
of the root node.

When multiplying two RFGs of the same underlying tree structure 7, the
multiplication is a recursive function starting at the root. For each vari-
able node in T the vector values at the same positions of the vectors are
multiplied, and the child nodes of the corresponding outgoing edges in the
two RFGs are multiplied and so forth, see Figure 6.4. This operation is of
quadratic time complexity in the size of the (largest) REG, O(n - e) ~ O(n?)
if n > e. The size of an RFG is the number of edges in the RFG.

CHAPTER 6. PROBABILISTIC DECISION GRAPHS

6.2. LINKAGE OPERATIONS ON RFGS Page 60 of 104

A A
104, 0.6} 10.18, 0.28}
*

J = /L,

B L T B
10.8,0.2) 01,09 10.05, 0.45

Figure 6.4: When multiplying two RFGs, the values of each corresponding node pair are
multiplied.

856

When multiplying two RFGs with the same general tree structures, differ-
ing only in missing variable nodes, first dummy nodes are added to rep-
resent the missing nodes and thereby create identical tree structures. The
resulting RFGs are then multiplied as above, see Figure 6.5. The operation
of adding dummy nodes is of quadratic complexity O(v - w), where v is the
size the RFG and w is the number of variables to be added. This makes the
multiplication operation of time complexity O((v - w) - (v - w')) ~ O(n?),
where v/, w' is the corresponding variables in the other RFG.

A A
102,08
*

VAR VAR =
C ~ B —~
[~¢ |

A

.[N ‘/ A
B B

A ~ = /
C . Y N

Figure 6.5: When multiplying two RFGs (or PDGs) with different tree structures, first

dummy nodes are added to create identical structures, then the trees are multiplied as
above.

6.2.2 Max Configuration

The maximum configuration of an RFG / PDG, i.e. the path which has the
highest probability, is found by:

!
maz F” = max val(A) - max F’
A,B,C,D A B,C,D

where F¥ is an instantiation of the graph, i.e. a path in the graph, with the
underlying tree structure 7" of variables A, B, C, D.

CHAPTER 6. PROBABILISTIC DECISION GRAPHS

6.2. LINKAGE OPERATIONS ON RFGS Page 61 of 104

The result given is in general the probability of the max configuration.
Finding the maximum configuration of an RFG is done through one sweep
of the graph, and is therefor of linear time complexity O(e), where e is the
number of edges in the graph.

6.2.3 Marginalization

When marginalizing out a variable node X in the tree structure 7', from a
RFG the value-nodes above ¥ are left untouched. We can therefor think of
each we think of each value-node ¥ of X as being the root node, which we
want to remove. For clarification we depict the RFG as a tree in Figure 6.6.

Figure 6.6: When marginalizing out a node, each subtree under the node is weighted by the
corresponding value in the node. Then the subtrees are combined by addition.

When marginalizing out a root node, the subtrees are multiplied in the
same fashion as when multiplying two PDGs of the same tree structure.
Se previous Subsection 6.2.1 on multiplication. However, the general func-
tion is as follows:

T3:’U1'T1+U2'T2
Where v1, v9 are the values of the root node which combines the two sub-
trees T4, T5.

When multiplying two nodes the resulting RFG is dynamically reduced,
such that resulting nodes with identical values are merged. In regular mul-
tiplication if a node 6, is to be multiplied with another node 6,, and both
61 and 60 are on several paths of their respective RFGs, the multiplication
is only done once, and at all other times the first resulting node is set. In
marginalization however the two nodes will be weighted, quite possibly
by different weights for each multiplication, thereby resulting in different
resultant nodes. To quote Manfred Jaeger in [18], on marginalization in
PDGs:

While algorithmically not very difficult, this procedure can cause
an exponential blowup in the size of the PDG ...

CHAPTER 6. PROBABILISTIC DECISION GRAPHS

6.2. LINKAGE OPERATIONS ON RFGS Page 62 of 104

6.2.4 Normalization

An RFG can be turned into a PDG, by normalizing the value vector of each
node. Normalization of the nodes are calculated not only on the basis of
the values of the individual nodes, but also on the outflow (ofl) of in the
child nodes.

v; - ofl(chy;)

,Uinorm = k
vj - ofl(chy;)
=1

J

The outflow of a node ¥ is given by adopting the node as a root, and sum-
ming over all the possible values of the subtree, see Figure 6.7. In a PDG
the outflow of each node is 1. Normalization of a RFG is done in one sweep
of the graph, and is thereby of linear time complexity O(e), where e is the
number of edges in the graph.

of i)=Y all F’

XY, Z,U

where FV = (X = 2,Y =y, Z = 2,U = u) is an instantiation of the subtree
consisting of the four variables X,Y, Z,U.

Figure 6.7: The outflow of a node ¥} is given by summing over the values of the subtrees for
which ¥ is root.

Summary

This chapter was introduction to Probabilistic Decision Graphs (PDG) to-
gether with a description of the operations, which we must apply to these
to create a linkage analysis algorithm using PDGs.

The purpose of PDGs is a probabilistic system, which have the same prop-
erties as Binary Decision Diagrams (BDD).

Real Function Graphs (RFG) are a generalized form of PDGs. In PDGs the
value vector of each node sum up to one, i.e. Zl‘;'o v; € V,, = 1, where V,, is

CHAPTER 6. PROBABILISTIC DECISION GRAPHS

6.2. LINKAGE OPERATIONS ON RFGS Page 63 of 104

the value vector of node n. In RFGs there are no constraints on the values
which can be saved in the nodes.

The operations we need for the linkage analysis algorithm are:
e multiplication,
e normalization,
e marginalization and

e maximum configuration.

CHAPTER 6. PROBABILISTIC DECISION GRAPHS

Page 64 of 104

PDG Linkage
Algorithm

In this chapter we will describe our linkage algorithms and the data struc-
ture used. The algorithm is a Lander-Green type algorithm, see Section 4.3,
which means that first single point analysis is done at each marker, and
multi point analysis is done by updating the probabilities of the sets of in-
heritance patterns at each marker, with respect to the neighboring markers.

The goal was to create an optimized version of DeCode’s FASTTREETRAVER-
SAL Algorithm using probabilistic graphical models; we have chosen PDGs.

Therefor is our algorithm conceptually very close to this algorithm, which

is described in Section 4.4. Besides using a different data structure for stor-

ing and manipulating the sets of inheritance vectors and their probability

distributions, we have made a few additional changes.

We have incorporated a few preprocessing steps inspired by Superlink.
These steps helps create more and ordered genotype information deduced
from the original input data. The new information would originally be
found as a part of the linkage analysis, but with preprocessing some in-
valid inheritance patterns are discovered earlier, which reduces the size of
the PDG.

The changes we have made to the FASTTREETRAVERSAL Algorithm are due
to the use of PDGs instead of MTBDDs, except for one case. We have ex-
panded the concept of components in the set £ of ambiguously assigned
founder alleles.

CHAPTER 7. PDG LINKAGE ALGORITHM

7.1. PREPROCESSING Page 65 of 104

7.1 Preprocessing

Before doing the actual linkage analysis, we preprocess the pedigree to get
as much genotype information as possible. As mentioned in Chapter 3 the
genotype information is often filled with holes. This is one of the major
reasons for exponential blowups of the algorithms, as no inheritance pat-
terns are impossible when no genotype information is given. However
often times many of the holes can be filled by deducing the possible geno-
types from the given information. More genotype information given the
algorithm means less possible inheritance patterns, and earlier detection
of incompatible inheritance patterns. It is possible to order or even fill in
genotype information for the following cases:

e If both parents and the child have full genotype information, and they
do not have the same heterozygous genotype. See Figure 7.1.

e Given a child with parents (p1, p2), with full genotype information on
p1 and either none or partial information on p;. If only one value
of the child’s genotype matches a value of p;, the genotype of the
child can be ordered, and additional additional information might be
assigned to ps. See Figure 7.2

o If the child is homozygously assigned, the genotype is already or-
dered, and each of the parents can be assigned additional genotype
information, if this is missing. See Figure 7.3.

e If one or both parents are homozygously assigned, and the child is
given no genotype information. Genotype! information on the child
can be deduced. If both parents are homozygous the information on
the child will even be ordered. See Figure 7.4.

e If there is partial genotype information on the child, and one of the
parents p; is homozygously assigned. If the information on the child
does not match the information on p;, the child can be given full
genotype information. If the other parent p, is given genotype in-
formation, the genotype of the child can be ordered. If p; is missing
genotype information, it might be updated based on the new infor-
mation given the child. See Figure 7.5

e If there is no information on the child, the child is a leaf node and
the parents are heterogenous the child can be removed. This is done
in a recursive manner, such that all uninformative individuals are
trimmed from the pedigree. This operation is similar to one of the
pre-processing steps in the Superlink algorithm. See Figure 7.6.

!Or phenotype in the case of only one parent being homozygous.

CHAPTER 7. PDG LINKAGE ALGORITHM

7.2. LINKAGE PDG STRUCTURE

Page 66 of 104

o
oo

1 .
3
b ¢
o0

Figure 7.1: The genotype
information on the child,
person number 3, can be
ordered, because the only
possible inheritance pattern
given the genotype infor-
mation is such that person 3
inherits the b allele from his
father and the c allele from
his mother.

1 2
a a
LK]

(TS
oo

Figure 7.4: Both parents are
homozygous (they could
have been homozygous, but
of different genotype). The
genotype of the child can be
deduced and ordered.

i

3
b ¢
oo

Figure 7.2: The genotype in-
formation of person 1 can be
updated, because the infor-
mation given on persons 2
and 3, is such that the miss-
ing allele must be a b.

o~
oc

w—
(e
®o°

Figure 7.5: The information
given on parents and child,
makes it clear that the miss-
ing allele on the child is a
¢ passed from the mother,
and that the given b was
passed from the father.

1
b
LK]

3
a a
o0

Figure 7.3: The information
given on the child, person
3, can update both the in-
formation given on both the
mother and the farther.

oo X
3
o0
Figure 7.6: A leaf child

(with no children of it'’s
own) can be removed when
it has not been given geno-
type information. It will not
add any new constraints on
the possible inheritance pat-

tern, and can therefor be ig-
nored.

7.2 Linkage PDG Structure

Asin the FASTTREETRAVERSAL Algorithm the underlying tree structure, or
variable order, is actually a sequence of the non-founders of the pedigree.
The non-founders are added to the sequence such that both parents are
either founders or already added to the sequence. The order of the non-
founders is the same for each marker.

We represent sets of inheritance vectors at each marker as a PDG, where
each node has four outgoing edges {mm, mp, pm, pp} with a corresponding
vector of probability values. Each of the nodes are labelled with a set of
compatible founder allele assignments (A, U, £) as described in Section 4.3.
We denote a (A, U, £) set compatible with an inheritance vector v, F(v) for
short.

For each child node v’ of the parent node v, the set F'(v') is a subset of
F(v), because more constraints have been added given the genotype infor-
mation of the child, and thereby there are less compatible founder allele
assignments. Le. the set of compatible founder allele assignments F will

CHAPTER 7. PDG LINKAGE ALGORITHM

7.2. LINKAGE PDG STRUCTURE Page 67 of 104

Figure 7.7: An example linkage PDG for one non-founder. The leaf nodes are dummy
nodes, holding only the (A,U,E) set of the inheritance vector including the final non-
founder.

be smaller the further towards the leaf nodes of the PDG. Therefor can we
build the probability distribution of the PDG in a top down fashion by

P(F (") = P(F(v)) P(F(v")| F(v))

The major difference between using MTBDDs and PDGs, is that in the
MTBDDs of the FASTTREETRAVERSAL Algorithm the structure is boolean,
with the probability of each finished path given in the terminal node. Whereas
in PDGs the probability of a path is given by multiplying the probability
values on the path.

7.2.1 Probability Calculation

Generally for all the algorithms the probability of an inheritance pattern is
calculated as the probability of the consistent founder allele assignments
given the inheritance pattern. Several inheritance patterns will however
share common consistent founder allele assignments. The probability of
a specific inheritance pattern being the resulting factor in a founder allele
assignment, will therefor only be a fraction of the probability of the assign-
ment, see Figure 7.8.

Example: Say we have four founder alleles { f1, f2, f3, f4}, and two inher-
itance patterns v and v/, where F(v) = {f1 A, fo,fs = 0,fs = A} and

FW)y={fi=4,f=a,f3 A, fa}. The consistent founder allele assign-

ments are shown in Table 7.1, where the identical assignments are high-
lighted.

The probability we really are interested in is the probability of an inheri-
tance pattern given the genotype information, P(v|G). This is proportional
to a constant to the probability of the set of consistent founder allele assign-

CHAPTER 7. PDG LINKAGE ALGORITHM

7.2. LINKAGE PDG STRUCTURE Page 68 of 104

Figure 7.8: A compatible founder allele assignment, can be the result of several inheritance
patterns.

F(v) F(')
fi fo f3 falfi fo [f3 [a
A a a A|lA a a A
A a A AJA a A a
a A a A
a A A A

Table 7.1: An example of two sets of compatible founder allele assignments that have an
assignment in common.

ments P(F(v)) for the given inheritance pattern.

PlG) = P(Gl)P(v)
= P(F(u)P(v)
= P(F()c

Where the probability of the genotype given the inheritance pattern is the
same as saying the set of compatible founder allele assignments given the
inheritance pattern. The probability of the inheritance pattern can be treated
as a constant because all inheritance patterns in themselves are equiproba-
ble.

This means that when using the founder allele assignment probability as
inheritance vector probability, the probabilities do not sum up to 1, but to a
constant and must therefore be normalized when a PDG is needed instead
of an RFG.

The probability of the founder allele assignments are calculated on basis of
the population frequency, under a couple of assumptions:

1. We assume that all possible genotype combinations are viable (mean-
ing they do not lead to embryos which cannot be born or grow up to
adulthood).

CHAPTER 7. PDG LINKAGE ALGORITHM

7.3. SINGLE POINT ALGORITHM Page 69 of 104

2. We assume that the genetic material have been mixed over the popu-
lation over many generations, such that even though the markers are
located relatively close to one another, the different combinations are
equally spread over the population.

With this general picture of the calculation of the probability distributions
for the algorithm, we proceed to describe the single point construction of
the inheritance patterns.

7.3 Single Point Algorithm

There are three general steps in the single point algorithm for finding the
most probable inheritance vector at a marker:

1. Create the Real Function Graph Structure (RFGS).
2. Calculate the probability values of the PDG.

3. Find the most probable inheritance pattern.

7.3.1 The Real Function Graph Structure

The basic algorithm used for building the Real Function Graph Structure
(RFGS) is the FASTTREETRAVERSAL. The general tree structure 7' is a se-
quence of variables. For each non-founder a new variable is added as a leaf
to the tree structure. The variable node is populated with rfgs-nodes, where
for each rfgs-node in the parent variable, i.e. the old leaf, the founder set
(A, U, E) is updated with respect to the given genotype information on the
non-founder, and the inheritance pattern leading to the node. The RFGS is
built and reduced dynamically top-down. Two rfgs-nodes of the leaf vari-
able are merged if they have equal (A, U, £) sets and assignment of founder
alleles to the pedigree-parents of the leaf individual. If nodes full-fill this we
know that the subtrees will be identical to. In reality this only guaranties a
merge of the rfgs-nodes for invalid paths, i.e. paths leading to incompatible
founder allele assignments.

When all the non-founders are included, the RFGS is reduced bottom-up by
merging nodes with identical (A, U, £) sets and graph-child nodes, ignoring
the pedigree parent assignments.

7.3.2 The Merge Operation

As mentioned previously we have decided to change the structure of the
founder allele components in £ described in FASTTREETRAVERSAL. The

CHAPTER 7. PDG LINKAGE ALGORITHM

7.3. SINGLE POINT ALGORITHM Page 70 of 104

split operation described in Subsection 4.4.1 enforces a maximum compo-
nent length of 2, but results in multiple copies of the same inheritance pat-
tern. We replace the split operation with a merge operation. The merge
operation combines the two existing founder components to a single com-
ponent, by adding an edge between the two implicated founder alleles.
This creates chains or graphs of connected founder variables with no size
limit, but keeps only one copy of the inheritance pattern.

In the split operation checking whether an allele assignment is consistent is
just alook up at the possible values of current founder variable. Whereas in
the merge operation it takes linear time to assign the chain of founder vari-
ables in set £ and check for compatibility for each assignment. However
the split operation creates several copies of the same inheritance pattern,
which then must be combined at a later time, where the merge operation
saves all the compatible founder allele assignments in one set on the inher-
itance pattern.

7.3.3 Calculating the Probability Values and
the Maximum Configuration

The probability values calculated on basis of the sets of compatible founder
allele assignments does not sum up to one, as described in Section 7.2.1.
The first result for each marker is therefor a RFG.

The values of the nodes of the RFG are calculated based on the compatible
founder sets at the child nodes, in a top-down fashion. When the values
have been calculated for the final non-founder based on the founder sets at
the dummy leaf nodes, the dummy nodes are discarded.

The RFG is reduced once again, based this time only on the values of the
nodes. Le. in a bottom-up fashion the nodes with identical value vectors
and children are merged. The RFG is then normalized to a PDG, as de-
scribed in Subsection 6.2.4, and reduced again if possible.

The final step in single point analysis is finding the maximum configuration
of the PDG, and thereby finding the most probable inheritance pattern at
the given marker. The operation of finding the maximum configuration is
described in Subsection 6.2.2.

Ordinarily when finding the maximum configuration of a PDG, the result
is a probability value. In linkage analysis however it is not enough to know
the value, we must also remember the exact configuration of the graph?,
and this additional information must be stored at each node.

If we are doing single point analysis the algorithm is finished, and the out-
put is the maximum configuration of the PDG. If however we are doing

2To know the inheritance pattern.

CHAPTER 7. PDG LINKAGE ALGORITHM

7.4. MULTI POINT ALGORITHM Page 71 of 104

multi point analysis, the maximum configuration operation is not called
until the PDGs at each marker has been updated with respect to the PDGs
at the neighboring markers.

7.4 Multi Point Algorithm

In the multi point algorithm the PDGs created in the single point analysis
are updated with respect to the PDGs at the neighboring markers and the
recombination fraction between these. The influence of the recombination
fractions are encoded in an RFG which we term the recombination graph R;,
where i is the index of the leftmost marker.

O

Figure 7.9: The PDGs built at each marker is first updated with respect to each other in a
left to right fashion.

The PDGs are updated first left to right, as seen in Figure 7.9, then right to
left. The left update between markers M; and M5 is done by first multiply-
ing the PDG for M; with the recombination graph R;, then multiplying the
result with the PDG for M,.

7.4.1 Recombination Graph

The recombination graph is constructed such that the underlying tree struc-
ture T'r is a sequence {vy, wy, v2, w2, . . . , Uy, Wy }, Where v; is the non-founder
1 at My and w; is the non-founder 7 at M.

For each v; there is only one pdg-node, and for each w; there is four, one
for each value attribute {mm, mp, pm,pp} of v;. The value vectors of the
pdg-nodes are constructed as follows:

e For v; the value vector is {1,1,1,1}, because no recombination has
occurred between a marker and itself.

e For w; the value vectors are constructed such that:

— if no recombination has occurred between the two markers the
probability is (1 — 6)?,
— if one recombination has occurred the probability is (1 —6)68, and

— if two recombinations have occurred the probability is 62.

CHAPTER 7. PDG LINKAGE ALGORITHM

7.4. MULTI POINT ALGORITHM Page 72 of 104

This means that for each of the pdg-nodes for w;, following the given
edge from v;, the value vectors are:

mm = {(1-0)%(1-0)0,(1—06)0,0%
mp = {(1-0)0,(1—-0)202%(1-0)0}
pm = {(1 _9)97927(1 _9)27()9}

pp = {0%,(1-0)0,(1-0)0,(1-6)*}

A recombination graph for one set of v;, w; is shown in Figure 7.10. The re-
combination graphs for each non-founder are combined into one big graph
by letting all outgoing edges from the w; nodes, go to the node v;,1, i.e. the
v node for the next non-founder.

{(1-6):((1-0)8),((1-6)8),6%}

Figure 7.10: A recombination graph for one non-founder.

{((1-6)8),(1-6),6%((1-6)8) D C{((1-6)6).6%,(1-6)*,((1-8)8)1 D ({6*.((1-6)8).((1-6)8),(1-6)7> Wi

7.4.2 Updating the PDGs

As described previously, the left recursive update is done by first multi-
plying the PDG built for marker M; with the recombination graph R;, and
then multiplying the resulting RFG \S; with the PDG built for marker M; ;.
In Figure 7.11 a recombination graph and two neighboring markers are
shown.

Marker 1 Recombination PDG Marker 2

Q)
OO0
(00000000

W

0000

Figure 7.11: Two PDGs for two markers and the recombination graph between them.

The multiplication of the PDG at M; and the RFG R; is done as in Subsec-
tion 6.2.1. The two tree structures Ty, and T,, are such that the variable

CHAPTER 7. PDG LINKAGE ALGORITHM

7.4. MULTI POINT ALGORITHM Page 73 of 104

order of the variables which they have in common is the same. Therefor
the first step is to add dummy nodes to the PDG, see Figure 7.12.

After the multiplication, the variable nodes v of the PDG at MM, are marginal-
ized out of the RFG S;, as described in Subsection 6.2.3. The resulting S
only contains variable nodes of the second marker A; ;. Finally S/ and the
PDG for M;; are multiplied, resulting in an RFG which is normalized into
a PDG, leaving M, left-updated. The right-update is performed in a sim-
ilar fashion. Finally the maximum configuration is found at each marker,
as described in Subsection 7.3.3.

Marker 1 Recombination PDG

IQQQOQOQDI
Ol w

Figure 7.12: Dummy nodes added to the PDG of the first marker, so it can be multiplied
with the recombination RFG.

Summary

The algorithm created is a modification of the FASTTREETRAVERSAL Algo-
rithm described in Section 4.4. Instead of MTBDDs, the final output is a set
of PDGs, one for each known marker. The underlying tree structure of the
PDGs is a sequence of non-founders, ordered such that when one is added
the parents are either founders or already in the sequence.

Additional to the algorithm we have incorporated a few preprocessing
steps inspired by Superlink, where the genotype information is updated
and ordered when possible.

In the basic algorithm the only thing changed is the structure and creation
of components in the set of ambiguously assigned founder alleles &, ex-
changing FASTTREETRAVERSAL'’s split operation with a merge operation.

Generally the single point algorithm runs in three steps:

1. Create the structure of the PDG. The structure of the PDG is build in
the same fashion as described in FASTTREETRAVERSAL.

CHAPTER 7. PDG LINKAGE ALGORITHM

7.4. MULTI POINT ALGORITHM Page 74 of 104

2. Calculate the probability values of the PDG.

3. Find the most probable inheritance pattern by calculating the maxi-
mum configuration of the PDG.

The multi point update with respect to the neighboring markers and the
recombination frequency between these, is done by multiplying the PDGs
at two neighboring markers and a recombination graph. The PDGs are
updated first left to right, then right to left.

CHAPTER 7. PDG LINKAGE ALGORITHM

Page 75 of 104

Implementation

In this chapter we go more in detail with the implementation of the single
point algorithm described in the previous chapter. The different parts of
implementation includes the format of the input data, the Linkage Java
package created and a couple of implementation details from the single
point algorithm.

8.1 Filereader

The data read by the Filereader is saved in two files: a pedigree file hold-
ing all the information of the individuals of the pedigrees, and a data file
holding the allele population frequencies for each marker. These input files
are used by other linkage analysis programs such as Superlink. A detailed
description of the files can be found on the Superlink homepage [15]. An
example pedigree file can be found in Appendix D, this is a data file found
at the Superlink homepage. Table 8.1 is a short description of the different
data columns in the file, where each row contains the data of one individ-
ual.

The file reader reads the pedigree file one line at a time. For every new
line it reads it generates a new person object. These objects creates a pedi-
gree graph, which contains all the information given by the input file. The
pedigree graph is run through preprocessing as described in Section 7.1.

8.2 Single Point Algorithm

The single point algorithm takes as input the pedigree graph described pre-
viously, and as described in Section 7.3. First the RFGS, i.e. the structure, is

CHAPTER 8. IMPLEMENTATION

8.2. SINGLE POINT ALGORITHM Page 76 of 104

Column | Description

1 Holds the id of the pedigree to which the individual be-
longs.
Holds the id of the individual described by this row.
Holds the id of the father of the person.
Holds the id of the mother of the person.
Holds the id of the first child of this person.
Holds the id of the next sibling with the same father as this
individual.
7 Holds the id of the next sibling with the same mother as
this individual.
8 Holds the sex of the person. This is information is only used
when looking at sex-linked traits.
9 Does not contain any information in the example file in Ap-
pendix D. This column exist because previous linkage algo-
rithms used it for storing system specific data.
10 — | The rows are paired. Such that row 10 and 11 contain the
unordered genotype information on marker 1, 12 and 13
contain information on marker 2 and so forth.

S| O | W N

Table 8.1: The different columns in the pedigree data file.

created. Then the values of the RFG are calculated. The RFG is at present
time the output of the algorithm.

8.2.1 The Linkage Java package

We write the algorithm in Java, and this subsection is meant as a very short
introduction to the main classes used for building the RFGS described in
Subsection 7.3.1. The classes for the PDG Linkage Algorithm is a Java pack-
age called Linkage. The Linkage Java package includes classes for building
the RFGS and a PDGBui | der that takes in the RFGS and spits out a PDG.
The PDGBuI | der uses a PDG Java package developed by Manfred Jaeger
and Jens Dalgaard Nielsen, at Aalborg University.

The classes included in Linkage package for constructing the RFGS, are
Struct Tree, Struct TreeNode and St ruct Node. The St ruct Tr ee is
a RFGS for one marker, consisting of St r uct Tr eeNodes. The

St ruct Tr eeNodes correspond to the variable nodes of the tree structure
of a PDG. Each St r uct Tr eeNode contains a set of St r uct Nodes. These
are the actual rfgs-nodes. See Figure 8.1.

CHAPTER 8. IMPLEMENTATION

8.2. SINGLE POINT ALGORITHM

Page 77 of 104

StructTree
mi StructTreeNode
N*[StructNode
F
[TI11
StructTreeNod v
N2IStructNode | [StructNode
0] F’
‘Dummy’ || FEES
StructTreeNode / \
“Dummy” [StructNode | [StructNode [[StructNode | [StructNode
F17 F2"" Fs™” Fa”
“‘Dummy” [| “Dummy” [[“Dummy” || “Dummy”

Figure 8.1: The RFGS for marker M; is build as a Struct Tr ee, consisting of N + 1
Struct TreeNodes, where N is the number of non-founders in the pedigree. The
St ruct Tr eeNodes are populated by St r uct Nodes, where inheritance patterns leading
to invalid founder allele assignments are dummy nodes with no descendants.

8.2.2 Founders and Non-founders

The very first step in creating the RFGS is dividing the individuals of the
pedigree into founders and non-founders, and creating the first (A,U,)
set.

For each founder, two loci variables (f,,, f,) are created. If any genotype
information was given to a founder, this is assigned to the variables. The
given genotype information is unordered, and since there is no way of de-
termining wether one or the other is the maternal or the paternal allele,
we assign the genotype information at random. Phenotype information is
treated as partial genotype information!, and only one of the loci variables
is then assigned a value. As the founder loci are assigned value they are
divided in DIVIDEFOUNDERS into the first set of compatible founder allele
assignments (A,U,E), which is the root information for the single point
algorithm later in this chapter.

Algorithm DIVIDEFOUNDERS(P, GF)

1. foreach f € F withalleles {a¢,ass} and unordered genotype { g ¢, g2¢
2. doif giy == 0

3. U — a;f = 0

'We can do this because we only are working with Mandelian traits, i.e. single locus
traits.

CHAPTER 8. IMPLEMENTATION

8.2. SINGLE POINT ALGORITHM Page 78 of 104

5. ifgip ==x
6. A—ajp ==z
7.

The (A,U,E) sets are held in Founder Set objects. Each St ruct Node is
labelled with such an object, which hold the constrains of the compatible
founder allele assignments given all the founders and the non-founders
which come before this in the variable order. The sets of compatible founder
allele assignments are updated as described in Section 4.3, substituting
the split operation with the merge operation described in Subsection 7.3.2.
When all the non-founders are included in the RFGS, a dummy variable is
added containing only the compatible founder allele assignment sets, for
the last non-founder.

8.2.3 PDGBuilder

As mentioned previously the PDGBui | der takes the RGFS as input, cre-
ates a RFG by calculating the probability values based on the compatible
founder allele sets in the rfgs-nodes, as described in Subsection 7.2.1. The
RFGS is not mapped directly to the RFG. All the dummy nodes are re-
moved, they only exist to calculated the corresponding values of their par-
ents. The dummy nodes corresponding to invalid sets result in a probabil-
ity value of zero, and the corresponding out edge is lead to a random child
node. See Figure 8.2.

PDGTree
m1 PDGTreeNode
N"[PDGNode
fo,o,o,v}
PDGTreeNode
nz PDGNode
{v1",v2",v3",va’}

Figure 8.2: The resulting PDG given by the PDGBui | der when this has been given
the RFGS in Figure 8.1. The PDG for marker M; is build as a PDGIr ee, consisting
of N PDGIr eeNodes, where N is the number of non-founders in the pedigree. The
PDGTr eeNodes are populated by PDGNodes, where the probability values of inheritance
patterns leading to invalid founder allele assignments are zero.

CHAPTER 8. IMPLEMENTATION

8.3. OPTIMIZATION Page 79 of 104

8.2.4 Example Test Run

The following is a description of the pedigree input data we have given
our linkage analysis program. The pedigree data file can be seen in Ap-
pendix D. The data files can be found at the Superlink homepage [15].

The data file only holds one pedigree consisting of 57 individuals, where
15 are founders and 42 are non-founders. The pedigree is graphically rep-
resented in Appendix D Figure D.1.

The RFGS built by the algorithm given this input data consists of 184 nodes,
mapping to a RFG of 105 nodes. In the first version of the algorithm we only
merged the invalid nodes, such that only one such existed for each variable
node, but all valid founder sets resulted in a new rfgs-node. This created a
structure too big to handle. By the 30th non-founder the number of nodes
was in the 3-thousands and the computer was out of memory. If instead of
FASTTREETRAVERSAL we had implemented LANDER-GREEN, the size of
the RFGS would be 4°0.

Unfortunately we have not been able to get more data for testing, or run
some of the other linkage algorithms to do space and time comparisons.
The only result our test has provided is that our single point algorithm
works, and that it is of reasonable size compared to the input.

8.3 Optimization

The current implementation of the single point algorithm is very basic.
Many of the optimizations described in Section 7.3, have been omitted due
to time constraints. First of all the only reductions of the different graph
structures is the dynamic reduction at creation time, and the reduction of
the RFG. This implementation have given us experience in programming
these types of algorithms, but most important it gave us a feel of how big
the RFGS becomes. The size of the RFGS is the bottleneck of the entire algo-
rithm, because this is the largest graph the algorithm builds. The interme-
diate reductions reduces the number of computations to perform, however
the size of the final PDG will be the same with or without those reductions.

Another omission of the implementation is normalization of the RFG into
a PDG. Therefor is the return value of the PD@GBui | der a RFG, and not the
PDG that a multi point algorithm would need as input.

Besides the omissions of optimizations included in the algorithm as it was
described in Chapter 7, there exist a couple of other ways of reducing the
intermediate graphs even further. These optimizations include checking
for founder set equality, reduction in the number of pedigree parent as-
signments to remember and changing the variable order from a sequence

CHAPTER 8. IMPLEMENTATION

8.3. OPTIMIZATION Page 80 of 104

to a tree.

8.3.1 Founder Set Equality

As described in Section 7.3 the RFGS is twice reduced with respect to the
sets of compatible founder allele assignments. First dynamically at creation
time, where the nodes are merged both with respect to equality of founder
sets and pedigree parent assignments, second when the entire RFGS is
build the pedigree parent assignments are ignored, and the graph is merged
bottom-up based only on equality of the founder allele assignments.

The equality of sets of founder allele assignments is one problem to which
we have not found a satisfying solution. At the moment equivalence is
tested by creating a St ri ng of all the founder alleles and their assigned
values. The information in the St ri ng is ordered, and in this fashion if
two sets are exactly identical the St ri ngs are identical. However this so-
lution is not optimal, because we only find the identical sets and not the
equivalent sets.

The idea behind founder set equality is intuitively the same as Founder Re-
duction described by Daniel Gudbjartsson in [12]. The idea is that consis-
tently changing the allele pointing to a founder, from paternal to maternal
and vice versa for all children, this will give an inheritance pattern of the
exact same probability of the original. This is due to it being impossible to
distinguish between the maternal and the paternal allele of the founders.
Daniel Gudbjartsson created the FASTTREETRAVERSAL and when describ-
ing Founder Reduction he was thinking in terms of binary inheritance vec-
tors and MTBDDs. With PDGs creating a normal form for testing the equal-
ity of the sets of consistent founder allele assignment, more nodes will be
merged, reducing the number of calculations.

8.3.2 Reduction by Pedigree Structure

As mentioned above when the RFGS is first created it is dynamically re-
duced based partly on the founder allele assignments to the pedigree par-
ents.

We can minimize the number of pedigree parent assignments by incor-
porating the original pedigree structure. The sequential variable order of
the non-founder means that there are dependencies between non-founders
which are in different subgraphs of the pedigree. Whenever a rfgs-node is
created for a non-founder an array of four pedigree parent assignments are
created, corresponding to the edges {mm, mp, pm, pp}. These are the pedi-
gree parent assignments are saved at each rfgs-node of the graph children
of the current node. If the current node is a leaf node in the pedigree, the

CHAPTER 8. IMPLEMENTATION

8.3. OPTIMIZATION Page 81 of 104

graph-children can be the roots of sub-graphs with identical sets of compat-
ible founder allele assignments, and the only difference being the pedigree
parent assignment of the current node. This is an inconsequential differ-
ence, as the assignment will not be used again, the node being a leaf with
no decedents.

The founder allele assignments to pedigree parents are reduced based on
the structure of the pedigree, such that leafs of the pedigree are never in-
cluded, and parents where all children have been analyzed are removed.
This means that the only assignments saved, are assignments on pedigree-
parents with descendants still to be analyzed.

8.3.3 Variable Ordering

Another way of exploiting the pedigree structure to decrease the number
of pedigree parent assignments to be remembered, is to change the vari-
able order, or the tree structure 7' of the PDG, where instead of using the
sequence of non-founders used by FASTTREETRAVERSAL, we create an tree
structure of the non-founders more like the pedigree structure, see Fig-
ure 8.3. This would also take advantage of the PDGs, because they were
created to model dependencies between variables, and with the sequence
we are creating dependencies which did not exists in the original pedigree.

1@ ®
HOHE® @ &
10HO QOO ®

Figure 8.3: An alternative tree structure for the PDG linkage algorithm. This structure
would map closer to the pedigree and thereby we would not need to manually control
which pedigree parent assignments to remember.

However pedigrees containing loops will be a problem. Loops are created
for instance by cousins marrying each other. The tree structure of the RFG
must be a acyclic graph, and therefor a strategy for handling such loops
must be figured out.

CHAPTER 8. IMPLEMENTATION

8.3. OPTIMIZATION Page 82 of 104

Summary

In this chapter we have described some of the details of the implemented
single point algorithm together with a description of the format of the input
data, the Linkage Java package created and a couple of optimization ideas
for further development.

The data is given in two files: a pedigree file holding all the information of
the individuals of the pedigrees, and a data file holding the allele popula-
tion frequencies for each marker.

The single point algorithm takes as input a pedigree graph created from
the input data. First the RFGS, i.e. the structure, is created and the values
of the RFG are calculated. The RFG being the output of the single point
algorithm at present time.

The RFGS built for our test data consists of 184 nodes, resulting in a RFG of
105 nodes.

The current implementation of the single point algorithm is very basic.
Most importantly the only reductions of the different graph structures is
the dynamic reduction at creation time.

CHAPTER 8. IMPLEMENTATION

Page 83 of 104

Conclusion

For two semesters we have worked with linkage analysis. In the first semester
we gathered information to understand the problem of linkage analysis. In
the second semester we have worked on creating our own linkage analysis
program using PDGs.

Linkage analysis can be divided into three steps: The probabilistic step,
where the probability distribution for the inheritance patterns of the mark-
ers is found. The LOD score calculation, where the linkage with respect to
the trait under investigation is calculated, and the evaluation step, where
the most probable areas of the DNA string are picked for further analysis.
Generally algorithms for doing linkage analysis only perform the proba-
bilistic step, and as output returns the most probable inheritance pattern(s)
for each marker.

Many different algorithms for linkage analysis exists. We chose four for
further investigation: the FASTTREETRAVERSAL as this is the algorithm we
wished to optimized, Superlink because it uses Bayesian networks, which
is a graphical model, and the Elston-Stewart and the Lander-Green algo-
rithms because these are fundamental algorithms, upon which the other
two are based. The algorithms have been examined closely both with re-
spect to the details of the algorithms and their inference flows. Through the
understanding gained by this examination we have defined linkage analy-
sis to be a function £(P, G(M)), taking a pedigree P and genotype informa-
tion for the individuals in the pedigree as input, and giving a set of most
probable inheritance vectors for the set of markers M as output.

We have created both a single point and a multi point linkage analysis al-
gorithms using PDGs. Conceptually the algorithms are very close to the
FASTTREETRAVERSAL Algorithm developed by DeCode, however chang-
ing the data structure of course changes the actual implementation. The
FASTTREETRAVERSAL is a Lander-Green type algorithm, which means it

CHAPTER 9. CONCLUSION

Page 84 of 104

first does single point analysis, and then multi point analysis is done by
updating the probability distributions of the inheritance patterns with re-
spect to neighboring markers.

We implemented the single point algorithm and Superlink inspired pre-
processing. The preprocessing orders and fills in holes in the genotype
information, when possible. This creates more genotype information and
reduces the number of nodes in the PDG, because the inheritance patterns
leading to invalid founder allele assignments are discovered earlier than
they would have without preprocessing.

Running the single point algorithm on example data from the Superlink
homepage, containing a pedigree of 42 non-founders, the size of the output
RFG is 105 nodes. This final graph could possibly be reduced even further
by merging nodes with the same probability vector values and child nodes.
The largest structure build is the Real Function Graph Structure, which is
of 184 nodes for the given data. Unfortunately we have not been able to
compare the new algorithm with the original FASTTREETRAVERSAL, but it
must be said to be a fair optimization of the LANDER-GREEN Algorithm,
as this would have built a structure of 42 nodes containing all the possible
inheritance patterns.

CHAPTER 9. CONCLUSION

Page 85 of 104

Publicly
Available
Linkage

Analysis Tools

ASPEX

A set of programs for performing multi point exclusion
mapping of affected sibling pair data for discrete traits. [14]

ftp:/ /lahmed.stanford.edu/pub/aspex/

CRI-MAP

For rapid, largely automated construction of genetic link-
age maps, generates LOD tables, and detects data errors.
[11]

http:/ /compgen.rutgers.edu/multimap/crimap/

EH

A linkage utility program to test and estimate linkage dise-
quilibrium between different markers or between a disease
locus and markers. [35]

ftp:/ /linkage.rockefeller.edu/software/eh/

FASTLINK

A faster version of the general pedigree program LINK-
AGE. [25], [24], [26]

ttp:/ /softlib.cs.rice.edu

Table A.1: A table over publicly available linkage analysis tools and where to find them.

APPENDIX A. PUBLICLY AVAILABLE LINKAGE ANALYSIS TOOLS

Page 86 of 104

GeneHunter

A program to do multipoint linkage analysis. Was written
by Leonid Kruglyak, Mark Daly, Mary Pat Reeve-Daly and
Eric Lander in 1998. [22][5]

http:/ /www.fhcrc.org/labs /kruglyak /Downloads/

HOMOG

Programs to analyze heterogeneity (two or more disease
loci) with respect to single marker loci or known maps of
markers. [32]

ftp:/ /linkage.rockefeller.edu/software /homog/

HOMOZ

A is a program for rapid multipoint mapping of recessively
inheritede disease genes in nuclear families including ho-
mozygosity mapping. Was written by Leonid Kruglyak,
Mark Daly and Eric Lander in 1995.

ftp:/ /ftp-genome.wi.mit.edu/distribution/software
/homoz

LINKAGE

The core of the LINKAGE package is a series of programs
for maximum likelihood estimation of recombnation rates,
caculation of LOD score tables, and analysis of genetic
risks. [27]

ftp:/ /linkage.rockefeller.edu/software/linkage/

LINKUTIL

A set of programs useful in linkage analysis. [34]

ftp:/ /linkage.rockefeller.edu/software /utilities

LIPED

The program carries out genetic linkage analysis, by calcu-
lating pedigree likelihoods for various assumed values of
the recombination fraction. Can only handle two loci at a
time. [31]

ftp:/ /linkage.rockefeller.edu/software/liped /

Loki

Analyzes quantitative traits observed on large pedigrees
using Markov chains, Monte Carlo, multipoint linkage and
segregation analysis. Written by Simon C. Heath.

http:/ /loki.homeunix.net

MAP+

Was written to construct high resolution linkage maps. Re-
quires pairwise sex specific LOD scores, and a trial map
containing trial locations for all the loci to be included in
the analysis. Written by Dr. A. Collins, J. Teague and Pro-
fessor N. E. Morton at University of Southampton.

http:/ /cedar.genetics.soton.ac.uk/pub/PROGRAMS
/map+/

MAPMAKER

A software package which performs multipoint linkage
analysis. [29]

ftp:/ /ftp-genome.wi.mit.edu/distribution/software
/mapmaker3

Table A.2: Table A.1 continued.

APPENDIX A. PUBLICLY AVAILABLE LINKAGE ANALYSIS TOOLS

Page 87 of 104

Mendel

Does genetic analysis of human pedigree data under mod-
els involving a small number of loci. Written by Professor
Kenneth Lange at UCLA.

http:/ /www.biomath.medsch.ucla.edu/faculty /klange
/software.html

MERLIN

Linkage analysis tests for co-segregation of a chromosomal
region and a trait of interest. [1]

http:/ /www.sph.umich.edu/csg/abecasis /Merlin
/download/

MultiMap

A program which does automated construction of genetic
maps, primary for large-scale linkage mapping. [4]

http://compgen.rutgers.edu/multimap
/multimapdist.html

Anal-
Package

Pedigree
ysis
(PAP)

May be used for segregation analysis, variance components
analysis, linkage analysis, measured genotype analysis or
genetic model fitting. Written by Associate Professor San-
dra J. Hasstedt, University of Utah.

ftp:/ / ftp.genetics.utah.edu/pub/software/pap

SIMULATE

Simulates genotypes in family members for a map of linked
markers unlinked to a given affection status locus. [33]

ftp:/ /linkage.rockefeller.edu/software/simulate/

Superlink

Does multipoint linkage analysis by variable elimination
and conditioning of variables by use of Bayesian Networks.

4]

http:/ /bioinfo.cs.technion.ac.il/superlink

VITESSE

A software package that computes likelihoods. Uses the al-
gorithms of set-recoding and fuzzy inheritance to reduce
the number of genotypes needed for exact computation
of the likelihood. Written by Associate Professor Dan E.
Weeks at the University of Pittsburgh.

ftp:/ /watson.hgen.pitt.edu/pub/vitesse/

Table A.3: Table A.2 continued.

APPENDIX A. PUBLICLY AVAILABLE LINKAGE ANALYSIS TOOLS

Page 88 of 104

Bayesian
Networks

This appendix is a short introduction to Bayesian networks and Junction
trees, which are applied to genetic analysis in two of the algorithms in this
report. It is a short resume of the relevant chapters in [19].

Definition 10 A Bayesian Network consist of:

o A set of variables and a set of directed edges between variables.
o Each variable has a finite set of mutually exclusive states.
o The variables and the edges form a directed acyclic graph (DAG).

o To each variable A with parents By, ..., B, there is attached the potential
table P(A|B, ..., By)

A Bayesian network is a Causal network with node set V', where the nodes
represent random variables, X = (X,),cy, having some joint probability
distribution function of the form:

f@) =TT F@ol2pa)) (B.1)

veV

with pa(v) denoting the set of parent nodes of the node v. Or said in an-
other way: a Bayesian network is as a graphical representation of the joint
probability of all events/variables in the network, see Figure B.1.

The most fundamental property of Bayesian networks are the d-separation
properties or rules. The d-separation properties are rules of information

APPENDIX B. BAYESIAN NETWORKS

Page 89 of 104

Figure B.1: An example of a Bayesian net.

flow between the nodes of the network. That two nodes are d-separated,
means that information given on one node, does not influence our belief in
the other, i.e. give us new information which will change the probability
distribution of the other node.

The information flow (and blocking of such) between nodes depends on
the connection in which the node is situated. There are three different types
of connections in a Bayesian network: serial, diverging and converging con-
nection.

Bayesian networks are used for calculating new probabilities when you
achieve new particular information. This information is called evidence.
Evidence is given as binary values, which are multiplied with the origi-
nal probability tables, such that the impossible values are reset to 0 and the
other values are normalized.!

In a serial connection, as shown in Figure B.2, A and C' are d-separated
given evidence on B.

In a diverging connection, as shown in Figure B.3, the children of A are
d-separated given evidence on A.

In a converging connection, as shown in Figure B.4, the parents variables
are d-separated, if there is no evidence given on a common descendant, i.e.
in this case evidens opens the information flow between the parent nodes.

Probability updating in Bayesian networks can be performed by using the
chain rule in equation B.2 to calculated P(U); the joined probability of all
the variables in the network.

PU) = HP(Ai Ipa(A;)) (B.2)

!Sometimes it is easier to wait until after the evidence propagation is completed to nor-
malize the tables.

APPENDIX B. BAYESIAN NETWORKS

Page 90 of 104

@fE

Figure B.2: A serial con- Figure B.3: A diverging Figure B.4: A converging
nection. connection. connection.

where pa(A4;) is the parents of A;. However the joint probability table in-
crease exponentially in the number of variables, and usually what we really
want is to know the effect of the given evidence on a specific variable. The
probability updating can be done without ever calculating the full join ta-
ble, by use of the distributive law which states:

If A¢ dom(¢r), then " , dp1d2 = p1 Y 4 P2

where dom(¢1) is the domain of potential ¢;2, and), means that we
marginalize A out of the potentials. Marginalization is also called elimi-
nation, or if we marginalize A and B out of potential ¢(A, B, C), we say
that we project onto C, written ¢!V The order in which we eliminate out the
variables also have an effect on the size of the intermediate potentials.

The first step in deciding the right elimination order (we will get back to
this in a bit) is creating a domain graph (also called the moral graph) of the
Bayesian network. The domain graph is created by removing the directions
on the edges of the Bayesian network, and adding edges between parent
nodes with common children. These are called moral edges.?> The domain
graph of the Bayesian network in Figure B.1 is shown in Figure B.5.

When we eliminate a variable X we work with the product of all poten-
tials with X in the domain. The domain of this product consist of X and
its neighbors in the domain graph, and when X is eliminated, the result-
ing potential has all of X’s neighbors in its domain. In a perfect elimination
sequence no new domain potentials are created when a variable is elimi-
nated, or said in another way: a bad elimination sequence is an order that
result in the need to add extra edges to the domain graph. These edges
are called fill-ins, and are in Figure B.6 shown as dotted lines. For existing
edges the potentials with domain of the connected variables already exist.
When adding fill-ins new potentials are created.

Definition 11 A triangulated graph is an undirected graph with a perfect elimi-
nation sequence, meaning no fill-ins are introduced when eliminating variables.

2A potential is a general term for a probability table.
%It is called a moral graph because the parents of common children are married.

APPENDIX B. BAYESIAN NETWORKS

Page 91 of 104

Figure B.5: The domain graph for the Figure B.6: We want to calculate P(F') and

Bayesian network in figure B.1. start by eliminating the variable C'. This in-
troduces fill-ins between all the neighbors
of C, and a probability table over four vari-
ables which did not exist before.

If there is a perfect elimination sequence for one variable in a graph, then
there is a perfect elimination sequence for each variable in the graph.

Definition 12 Let G be a set of cliques from an undirected graph and let the
cliques be organized in a tree T. T is a join tree if for any pair of nodes v, w
all nodes on the path from v to w contain the intersection of v and w.

If the undirected graph G is triangulated, then the cliques of G can be or-
ganized into a join tree.

Definition 13 A junction tree is a join tree with separators attached to each link.
Separators consist of the potentials after variable elimination and two mailboxes;
one for each direction in the graph.

Usually when belief updating a network you project down onto every vari-
able to update with respect to the given evidence. When projection onto
several of the variables of a graph, marginalizing out the other variables
will often be the same calculations done many times. The benefit of us-
ing junction trees is that each variable elimination is done only once, and
when calculating P for each variable in a graph, the results of the variable
elimination is only a look up in a mailbox, see Figure B.1.

The big problem is that most graphs are non-triangulated, and our opti-
mized solution using Junction trees is based on triangulated graphs. We
need to make our non-triangulated graphs triangulated. This we do by
adding fill-ins, but we want to add these in such a fashion that they result
in the potentials of the smallest potentials. See Figures B.8 and B.9 for an
example of a non-triangulated Bayesian network and its domain graph.

APPENDIX B. BAYESIAN NETWORKS

Page 92 of 104

A B, C

ew

B,C E

Figure B.7: A junction tree for the Bayesian network in figure B.1.

@beee GQGGO

GNNO. (F—©)
F o &0 %

Figure B.8: An example of a Bayesian net Figure B.9: The moral graph of the
and its moral graph. It is clear that the non-triangulated Bayesian network in fig-
graph is non-triangulated, because it is not ure B.8.

possible to eliminate any of the variables

B, D, E, F, G without introducing fill-ins.

Adding the optimal fill-ins are unfortunately an NP problem, but the best
solution so far is given by the greedy algorithm. The greedy algorithm
basically adds one fill-in at a time and adds the fill-in giving the smallest
table. See Figures B.12 and B.13.

Another way of propagating evidence in a DAG with multiple paths, is to
reduce the DAG to a set of singly connected DAGs. This method is called
conditioning. Consider the network in Figure B.10, with P(A), P(B|A),
P(C|A), P(D|B,C) We now assume that A = a. The DAG is now reduced
as shown in Figure B.11 with P(B, a), P(C, a) and P(D|B, C'). Now assume
that for all states a of A we have a reduced DAG as in Figure B.11. Let
evidence e be entered and propagated in all the reduced DAGs, yielding
P(B,a,e),P(C,a,e),

P(D,a,e) for all a. Then calculate P(B,e) and P(A,e). This procedure is
called conditioning on A.

APPENDIX B. BAYESIAN NETWORKS

Page 93 of 104

Figure B.10: A Bayesian network with Figure B.11: The reduced DAG when con-
multiple paths. ditioning on A.

O— ®) O]
(2*4*5) + (4*5™6) + (5*6*7) = 370 (2*6*7) + (2*4*6) + (2*5*7) = 202
Figure B.12: The dotted lines are the added Figure B.13: The dotted lines are optimal

fill-ins to the graph in Figure B.8 using the solutions to add fill-ins to the graph in Fig-
greedy algorithm. ure B.8.

(F)
(8) (B (©)«esc
®» © ©

Figure B.14: An example of barren nodes in a bayesian networks. In this example E is a
barren node because it does not receive any evidence

The previously described d-separation properties of a Bayesian Network
result in another way of reducing calculations. If a node in a Bayesian net-
work has not received evidence and the children of the node has not re-
ceived evidence, it is called a barren node. This is illustrated in Figure B.14,
where evidence is given at node GG. Because of the d-separation rules nodes

APPENDIX B. BAYESIAN NETWORKS

Page 94 of 104

A and B are barren nodes, providing no influence on the calculations of
P(F).

Barren node rule. Let ¢ be a set of potentials, and assume that we calculate
YV, If A ¢ V, and the only potential in ¢ with A in the domain is of the
form P(A|W), then A is marginalized out by discarding P(A|WV).

APPENDIX B. BAYESIAN NETWORKS

Page 95 of 104

Binary Decision
Diagrams

This appendix is an introduction to Binary Decision Diagrams. The pur-
pose of this appendix is to create the basic knowledge needed for under-
standing the data structure which is used in the current implementation of
the linkage analysis algorithm of Allegro, the genetic software package of
DeCode.

The following is a short introduction into BDD’s which basically is a very
short summary over [36]. For more information see [7].

BDDs (Binary Decision Diagrams) can be used as a fast way of determin-
ing whether a boolean expression is satisfiable. A boolean expression is
satisfiable if it yields true for at least one truth assignment. In general de-
termining whether a boolean expression is satisfiable is NP-complete, but
using BDD'’s reduces this to constant time.

All boolean expressions can be expressed using an if-then-else operator

(x — yo,y1) and the constants 0 and 1. The operator is read: if then yy else
y1. If a boolean expression is built entirely from the if-then-else operator
and the constants 0 and 1, it is said to be in If-then-else normal form (INF).
A boolean expression written in INF can be displayed graphically as a tree,
see Figure C.1. The branches corresponding to the then part of the operator
are called high-branches, and the branches corresponding to the else part
are called low-branches.

If all equal subexpressions are identified it is no longer a tree of boolean
expressions, but a directed acyclic graph called a binary decision diagram
(BDD), see Figure C.2. The definition of a BDD is:

APPENDIX C. BINARY DECISION DIAGRAMS

Page 96 of 104

Figure C.1: A decision tree for the expression (z A y) V z.

Definition 14 A binary decision diagram (BDD) is a rooted, directed acyclic
graph with

e one or two terminal nodes of out-degree zero labelled 0 or 1, and

e a set of variable nodes u of out-degree two. The two outgoing edges are given
by two functions low(u) and high(u). A variable var(u) is associated with
each variable node.

Figure C.2: The BDD of the binary tree in Figure C.3: The reduced version of the
Figure C.1. graph in Figure C.2.

APPENDIX C. BINARY DECISION DIAGRAMS

Page 97 of 104

If the variables occur in the same order on all paths from the root to the leafs
of the BDD, it is said to be ordered. The size of a BDD is heavily dependent
on the order of the variables.

An (O)BDD is said to be reduced if

e no two distinct nodes u and v have the same variable name and low-
and high-successor, i.e.

var(u) = var(v) A low(u) = low(v) A high(u) = high(v) = u = v,

¢ and no variable node u has identical low- and high-successor, i.e.

low(u) # high(u)

When people speak about BDDs they most often mean ROBDDs. Fig-
ure C.3 is the reduced version of the BDD in Figure C.2. An important
note is that for any boolean function there is exactly one ROBDD which
represents it, meaning there is exactly one ROBDD for the constant true or
false function.

A Multi Terminal Binary Decision Diagram (MTBDD) is a version of BDD’s
where instead of two possible terminal nodes of value 0 and 1, there can be

several terminal nodes of constant values, see Figure C.4 for an example
MTBDD.

/
/
0.4 0.25 0.1 0.4 0.25 0.1
Figure C.4: An example MTBDD. Figure C.5: The diagram in Figure C.4 re-

stricted on the truth value t“[1/ f2].

Given some truth assignment restricting a ROMT)BDD u is to compute the
new ROBDD t* under the restriction. As an example let u be the MTBDD

APPENDIX C. BINARY DECISION DIAGRAMS

Page 98 of 104

shown in Figure C.4. Given the truth assignment t“[1/ f>] we get the graph
in Figure C.5.

APPENDIX C. BINARY DECISION DIAGRAMS

Page 99 of 104

Pedigree
Data File

01 0 2 4 1 2
0 2 0 2 4 2 3
5 2 0 2 4 1 3
01 01 4 00
01 01 4 00
0 2 0 2 4 15
9 2 0 2 3 3 4
01013 2 2
11 2 0 2 3 0 O
01 01 3 00

0
0
5
0
0
0
9
0

11

3

0

5 1 2 21
6 0 0 21
7 4 3 26
8 0 0 26
9 4 3 31
10 0 0 31

1
1
1
1
1
1

0

0 12 12 2 0 2 3 1 5

1 11 4 3

1

12 4 3 34 14 14 2 0 2 3 1 4

0 01 01 3 00

1 13 0 0 34

1

0 15 15 1 0 1 3 0 O

14 4 3

1 15 4 3 40 17 17 2 0 2 3 0 O

1

01 01 3 21

0

l6 0 0 40

1 17 4 3 43 19 19 2 0 2 3 0 O

1 18 0 0 43

01 01 3 3 3

0

APPENDIX D. PEDIGREE DATA FILE

Page 100 of 104

0 201 3 0O
01 0 0 3 2 5

0
0

19
20
21

47
6 47 22 22 2 0 2 3 0 O

0

0
5
5
0
5

6 48 24 24 2 0 2 3 3 5

0
6

22
23
24
25
26
27
28
29
30
31
1 32 10

01 01 3 0O

0

48

0 256 251 0 1 3 2 1

01 01 3 2 5

0
0 27271 01 2 00

7

8
8
0
8
0
10

7 53 29 29 1 01 2 3 2

0
7
0
9
9
9

1 34 13 12
1 35 13 12
1 36 13 12
1 37 13 12
1 38 13 12
1 39 13 12
1 40 16 15

1 41

0 201 2 1 3

0
0
0

53
56
56

01 0 1 2 2 4
0201 2 00

0 32 32 1 01 2 4 5

0 3 3 2 01 2 1 5

0

0o 01 01 2 1 3

1 33 10

0 3 3 2 01 2 0 0

0 36 36 1 0 1 2 0 0

0 37 37 2 01 2 1 2

0 38 38 2 0 1 2 4 2

0 39 39 1 01 2 4 2

0

01 01 2 1 5

0

0 4 41 1 0 1 2 2 5

0
52

01 01 2 1 2
0201 2 00

0
0

16 15

0

0

42
1 43 18 17 52 44 4 1 0 1 2 3 4

1 44 18 17
1 45 18 17
1 46 18 17
1 47 20 21
1 48 23 22

0 4 45 1 01 2 0 O

0 46 46 2 0 1 2 0 O

0
0

0 201 2 00
01 01 2 2 2

0
0

0 50 50 1 0 1 2 3 4

51

02 0 0 2 21
01 01 2 4 5

0
0
0
0

0

49 0
1 50 23 22 51
1 51 50 49
1 52 43 42
1 53 27 28
1 54 27 28
1 55 27 28
1 5 29 30
1 57 29 30

5
5
3
3
0
5
3

2
3
2
1
0
2
4

1
1
1
1
1
1
1

01 0 1

01 0 1

0
0

0 54 54 2 0 1

0 5 55 2 0 1

0

01 0 1

0

0 57 57 2 0 1

0

01 0 1

0

APPENDIX D. PEDIGREE DATA FILE

HT1I VIVA H349Iddd "d XIAN3IddV

‘Gurssaooxdard Surop

‘[ENPIATPUT Yded I0j

Aq paonpap uoneurtojur ad£jousd are sore)r ur uspLm sadAjousn)

UMOUS ST 1a3prew auo jo adAjousg ayy, “eyep ndur oy uaard ydeid sax8rpad oy :1°(21nS1g

0,04
3.2}

21} {25

0.0

(0 0) {0,0}

3.3}

(4 3} 2.2 <0 0} (o 0} (1 5} (0 0}

{1,4} {2,5}

3.5}

0,0
7 7

{0,0} {0,0}
{0,4} {4,0}

0,0 {32 {1.3} {45} {1,5} {1 3} (00} (00} (1 2} {42} (42} 34} {00} {00} {00}

%:g} G4 21

23 {13 {00 (2.5} (4,3} 25y {12

$0T J0 10T 2Seg

BIBLIOGRAPHY Page 102 of 104

Bibliography

[1] G.R. Abecasis, S. S. Cherny, W. O. Cookson, and L. R. Cardon. Merlin
- rapid analysis of dence genetic maps using sparse gene flow trees.
Nat. Genet., 30:97-101, 2002.

[2] M. Bozga and O. Maler. On the representation of probabilities over
structured domains. pages 261-273. CAV’99, Springer, 1999.

[3] Karl W. Broman. Meiosis, recombination and interference. Timestamp:
December 5th, 2003.

[4] Aravinda Chakravarti and Tara Cox Matise. The multimap program
for construction of linkage maps. Timestamp: Dec. 10th 2003.

[6] Mark J. Daly, Leonid Kruglyak, Stephen Pratt, Nick Houstis, Mary P.
Reeve, A. Kirby, and Eric S. Lander. GENEHUNTER documentation.
Whitehead Institute, MIT, 1998.

[6] David Duffy. Lod score linkage analysis.

[7] Randal E. Bryant. Symbolic boolean manipulation with ordered bi-
nary decision diagrams. ACM Computing Surveys, 1992.

[8] R.C. Elston and J. Stewart. A general model for the genetic analysis of
pedigree data. Human Heredity, 21:523-542, 1971.

[9] M. Fishelson and D. Geiger. Exact genetic linkage computations for
general pedigrees. Bioinformatics Vol. 18, 2002.

[10] M. Fishelson and D. Geiger. Optimizing exact genetic linkage compu-
tations. In Statistics for Engineering and Information Science, 2003.

[11] Phil Green. The cri-map program for construction of linkage maps.
Timestamp: Dec. 10th 2003.

[12] Daniel Gudbjartsson. Multipoint linkage analysis based on allele shar-
ing models. Technical report, 2000.

BIBLIOGRAPHY

BIBLIOGRAPHY Page 103 of 104

[13] Daniel Gudbjartsson, Gunnar Gunnarsson, and Anna Ingdlfsdoéttir.
Bdd-based algorithms in genetic linkage analysis. Technical report,
BRICS & deCODE, ?

[14] D. A. Hind and N. Risch. The aspex package: affected sib-pair exclu-
sion mapping, 1996.

[15] Superlink homepage. Timestamp: May 25th, 2004.

[16] Anna Ingolfsdéttir, Anders Lyhne Christensen, Jens Alsted Hansen,
Jacob Johnsen, John Knudsen, and Jacob Illum Rasmussen. A formal-
ization of linkage analysis. Technical report, BRICS, 2002.

[17] Anthony]. F. Griffiths, Jeffrey H. Miller, David T. Suzuki, Richard
C. Lewontin, and William M. Gelbart. An Introduction to Genetic Anal-
ysis. W H Freeman, 2000.

[18] M. Jaeger. Probabilistic decision graphs - combining verification and
ai techniques for probabilistic inference. To appear in Int. J. of Uncer-
tainty, Fuzziness and Knowledge-based Systems (special issue with selected
articles from PGM-02).

[19] Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2001.

[20] Augustine Kong, Daniel F. Gudbjartsson, Jesus Sainz, Gudrun M.
Jonsdottir, Sigurjon A. Gudjonsson, Bjorgvin Richardsson, Sigrun
Sigurddardottir, John Barnard, Bjorn Hallbeck, Gisli Masson, Adam
Schlien, Stefan T. Palsson, Michael L. Frigge, Thorgeir E. Thorgeirsson,
Jeffrey R. Gulcher, and Kari Steffansson. A high-resolution recombi-
nation map of the human genome. Nature Genetics, 31, 2002.

[21] L. Kruglyak, M.J. Daly, and E.S. Lander. Rapid multipoint linkage
analysis of reccessive traits in nuclear families including homozygos-
ity mapping. Am. |. Hum. Genet., 51:519-527, 1995.

[22] L. Kruglyak, M.]. Daly, M.P. Reeve-Daly, and E.S. Lander. Parametric
and nonparametric linkage analysis: a unified multipoint approach.
Am. |. Hum. Genet., 58:1347-1363.

[23] E.S. Lander and P. Green. Construction of multilocus genetic maps in
humans. Proc. Natl. Acad. Sci., 84:2363-2367, 1987.

[24] G. M. Lathrop and J.-M. Lalouel. Easy calculations of lod scores and
genetic risks on small computers. American Journal of Human Genetics,
36:460-465, 1984.

[25] G. M. Lathrop,]J.-M. Lalouel, C Julier, and J. Ott. Strategies for multi-
locus analysis in humans. PNAS, 81:3443-3446, 1984.

BIBLIOGRAPHY

BIBLIOGRAPHY Page 104 of 104

[26] G. M. Lathrop,].-M. Lalouel, and R. L. White. Construction of human
genetic linkage maps: Linkelihood calculations for multilocus analy-
sis. Genetic Epidemiology, 3:39-52, 1986.

[27] Mark Lathrop and Jurg Ott. LINKAGE User’s Guide, 1997.

[28] Steffen L. Lauritzen and Nuala A. Sheehan. Graphical models for ge-
netic analyses. Research Report R-02-2020.

[29] E. Lincoln, Stephen, Mark J. Daly, and Eric S. Lander. MAPMAKER: A
Tutorial and Reference Manual, 1993.

[30] Philip McClean. Lod score method of estimating linkage distances,
1998.

[31] Jurg Ott. LIPED Computer Program for 2-point linkage, 1995.
[32] Jurg Ott. Documentation to Homogeneity Programs, 1999.

[33] Jurg Ott. Documentation to the SIMULATE program, 2002.

[34] Jurg Ott. Documentation to LINKAGE UTILITY programs, 2003.
[35] Jurg Ott. User’s Guide to the EH Program, 2003.

[36] Henrik Reif Andersen. An introduction to binary decision diagrams.
Lecture notes, Department of Information Technology, Technical Uni-
versity of Denmark, Lyngby.

BIBLIOGRAPHY

