
The Faculty of Engineering and Science
Aalborg University
Department of Computer Science

TITLE: Developing Mobile Lo-
cation Based Services for
Tourists

PERIOD:
01-02-2004 � 04-06-2004

GROUP:
Yan Zhao
Jasmin �atovi¢
Vedran Alikal�¢

SUPERVISOR:
Christian S. Jensen

NUMBER OF COPIES: 8

NUMBER OF PAGES: 96

ABSTRACT:

With advances of the mobile Inter-
net, location based services (LBSs) at-
tracted attention of many people. This
report presents description of a soft-
ware system that supports rapid de-
velopment of integrated, high quality
LBSs for tourists in urban areas. We
describe system architecture that di-
vides system in several parts. One
of the parts consists of reusable com-
ponents that are used to make up
LBSs. Reuse of the components allows
integration and rapid development of
LBSs. We also emphasize that LBSs
should provide correct and up to date
information. As proof of concept, we
combine components into mobile LBSs
for tourists.

ii

Preface

This report is the result of a DAT6 and KDE4 project unit at the Department
of Computer Sciences at Aalborg University. It has been written by group E4-
112. The names of the authors are stated below. The report is written within
area of Database and Programming Technologies with focus on developing a
location based service. We want to use this opportunity to thank Euman/AS,
Jevgenij Gagach, Kristian V. B. Andersen, Michael Cheng, Stardas Pakalnis,
Linas Bukauskas, Aalborg Tourist Bureau, Xuegang Huang, Wladyslaw Andrzej
Pietraszek, Kort & Matrikelstyrelsen and Aalborg Municipality for all the help
and resources provided to us throughout the semester. We also want to thank
our supervisor, Christian S. Jensen, for all guidelines and comments he provided.
Aalborg, 11th June 2004

������������ ������������
Yan Zhao Jasmin �atovi¢

������������
Vedran Alikal�¢

iv

Contents

1 Introduction 1
1.1 Location Based Services . 1
1.2 Goals and Intentions . 2
1.3 The Report Overview . 3

2 Tourists' Problems and Solutions 5
2.1 The Structure of a Tourist's Visit 5
2.2 Tourists' Problems and Tourists' Solutions 6
2.3 The Mobile Tourist Guide's Solutions to the Tourist Problems . 7

2.3.1 Pre�visit . 8
2.3.2 Visit . 10
2.3.3 Post�visit . 14

3 System Architecture Overview 17
3.1 Client Tier . 18
3.2 Server Tier . 20
3.3 Data Tier . 20

4 The Data Tier 23
4.1 The Data Sources . 23
4.2 The Data Model . 24

4.2.1 Overview . 24
4.2.2 The Internal Part . 25
4.2.3 The External Part . 34
4.2.4 The Justi�cation . 40

4.3 The Value Chain . 43
4.3.1 The Internal Part Maintenance 44
4.3.2 The External Part Maintenance 44

v

vi Contents

5 Client Application 47
5.1 Client Architecture . 47

5.1.1 ServiceInitializer . 48
5.1.2 Updater . 49
5.1.3 DataExtractor . 49

5.2 Retrieving and Handling Maps 51
5.2.1 Temporary Maps of Screen Size 51
5.2.2 Fixed Local Maps . 52
5.2.3 Dynamic Map Caching in Grid Representation 53

5.3 Limitations of SVG Browser . 53

6 Server Components and Services 59
6.1 Components . 59

6.1.1 Map Matching . 59
6.1.2 Space Filter . 60
6.1.3 Shortest Path . 60
6.1.4 SVG Encoder . 61
6.1.5 Map Handler . 63
6.1.6 Path Converter . 64
6.1.7 Logger . 65
6.1.8 Database Interface . 65

6.2 Services . 65
6.2.1 The Electronic Mobile Guidebook 66
6.2.2 The Explorer and The Advertiser 67
6.2.3 The Object Finder . 68
6.2.4 Path . 69

7 An Update Strategy 73
7.1 Computation of the Geographical Window 73
7.2 The Update Strategy . 74

8 Map Matching 77
8.1 Improvements to Map Matching 77

8.1.1 Existing Map Matching Algorithms 77
8.1.2 The Two-Step Map Matching Procedure 78
8.1.3 Weighting Factors . 79
8.1.4 Map Matching Steps . 84

8.2 Experiments and Evaluation of Map Matching 87

Contents vii

8.2.1 Experiments for Users on Bus 87
8.2.2 Experiments for Users on Foot 92
8.2.3 Evaluation of Map Matching 94

9 Conclusion 95

viii Contents

Chapter 1

Introduction

The Information revolution occurred at the beginning of 1950s when digital
computers found application in science, military, and government. This is con-
sidered to be the �rst wave of Information Technology. The revolution continued
at a slow pace until the 1980s when personal computers became available to the
general public. This was the second wave of information technology. At the
beginning of the 1990s, the information revolution occurred once more. It was
the Internet that attracted the attention of many people, made transfer of in-
formation faster, and made computers in general more attractive to the public.
Recent advances in wireless and mobile technology are beginning of a new wave:
the mobile Internet. Advances in the mobile Internet stimulate the development
of many services for mobile users. This report deals with a particular type of
services that can be delivered via the mobile Internet, namely location based
services.

1.1 Location Based Services
A location based service (LBS) is an application that is responsive to the user's
location. The response is some content associated with the location. An LBS
does not necessarily need to be delivered via the mobile Internet. LBSs can be
delivered via the Internet, Krak is an example of such a service [19], or they
can run as a stand-alone application, a car navigation systems for example [1].
Regardless of means of delivery, it is the user's location that is relevant to LBSs
since the location determines what content is delivered to the user.
Mobilein [21] categorize LBSs into four categories: location sensitive billing,
emergency services, tracking, and location�based information. They say that
one can establish di�erent zones and charge users of services at di�erent rate
for di�erent zones. They also mention that this type of LBS is useful in con-
junction with other services, e.g., prepaid wireless. Users of emergency services
could be pinpointed immediately after dialing an emergency phone number. An
application implementing such a service can make use of content. For example,
a �re department, after receiving a call, may check available entrances into the
building set on �re, where the closest hydrants are and similar. User tracking

1

2 Chapter 1. Introduction

is another application of LBS. This is an application that computes the where-
abouts of users. One application of tracking is in mobile commerce. If one wants
to o�er a product to a user, the one would need to know that a user is within
a reasonable range from the store that is o�ering the product to the user, i.e.,
tracking is needed to know where the users are located. Location�based infor-
mation in another type of LBS. Mobilein points out that a way to develop a
highly personalized LBS is to enable them to be location sensitive. To do so,
one needs user tracking and content which is associated with locations.
Concept of �push� and �pull� are applicable to variety of disciplines among which
is the Information Technology. �Push� and �pull� de�ne a relationship between
a consumer and provider. In our context, the consumer is the user of a LBS
and the provider is the LBS. Then, LBSs implemented as �pull� technologies
serve the content to a user whenever the user requests the content [14]. On the
contrary, the �push� technologies deliver the content to the user without user's
involvement; most often, the content is delivered when a certain condition is
satis�ed.
This report gives a description of a software system that implements LBSs that
integrate user tracking and location�based information. The LBSs combine pull
and push technologies, and are delivered via mobile internet.

1.2 Goals and Intentions
The main goal of this project is to develop a software system that supports rapid
development of integrated, high�quality location based services for tourists in
urban areas.
By rapid development of LBS, we mean that we provide components that can
be used as nuts and bolts for development of a LBS. The choice of possible
components re�ects on a set of possible queries that a tourist can ask in an
urban area. Examples of such queries are: what are the town's attractions, what
are the attractions in my vicinity, where are the attractions, are the attractions
available, and so on. Since a tourist in an urban area travels in a road network,
many of the components will re�ect on the queries that a traveller in a road
network can ask. This implies that the system may serve as the basis for a wider
range of LBSs for users in road networks. Examples of such queries are: where is
the user with respect to the road network, what is the nearest attraction, where
is the nearest attraction of a particular type, how does one get from a point
in a road network to a speci�c attraction, and so on. In addition, the system
provides components that allow client independence. The system architecture
separates the components from services and therefore allows reusability.
By integrated location based services, we mean that services are developed on
the top of same database, user interface has the same look and feel, and that
LBSs reuse functionality provided by the components. The last implies that the
services do not contradict each other. To understand what we mean when we
say contradict, consider a case where a user, who is not moving, queries for the
closest point of interest. The system replies with a point of interest. Then, the
user asks for the path to the closest point of interest, but the system this time
provides a path to a di�erent point of interest than point of interest from the

1.3. The Report Overview 3

�rst query.
A high�quality LBS provides accurate results. For example, consider LBS that
provides shortest route from one point in a road network to a desired point
od interest. If user requested the service, the LBS would need to compute the
nearest restaurant in terms of travelling time. To compute shortest travelling
time, the LBS needs to be aware of road distance and speed limit. Then, the
service would need to consider what transportation means the user is using in
order to give the correct route, for example a truck may not be allowed in some
parts of road network. Finally, the LBS would need to know what restaurants
are open at the time of the request because navigating a user to a point of
interest that does not satisfy user's needs is not a correct result. This simple
example illustrates what we mean when we say a high�quality LBS. In order to
provide accurate results, input data to a LBS must be up to date; hence, the
system provides a sophisticated data value chain that maintains the data in the
database up to date.
This report does not only present the system for developing LBSs, it also de-
scribes a set of LBSs for tourists in urban areas. In order to develop these
LBSs, one needs to consider the way tourists carry out tourism. We consider an
empirical study that addresses this concern [9] where the authors identify the
main tourist problems and solutions to the problems available to tourists. The
set of LBSs that we describe proposes new mobile solutions to these problems.
We refer to the set of LBSs as The Mobile Tourist Guide.
In this report we consider:

• System design � we show the separation of data, components, and ser-
vices.

• System implementation � we describe components and present imple-
mentation details for some of the components.

• We perform experiments to �nd best parameter values for the component
that answers the query �where is the user with respect to road network�

• Implementation of tourist LBSs as proof of concept � we implement a set
of LBSs through various compositions of the implemented components.

Before we leave this section, we need to note that our work focuses on the
technical aspects of the system mentioned above. There is a range of issues,
such as useability, business prosperity etc., that we do not consider.

1.3 The Report Overview
This report is structured in the following way. Chapter 2 explains tourists'
behavior. We describe the structure of tourist visit, tourists' problem and solu-
tions, and we propose a set of mobile solutions to the problems in the form of
LBSs. Chapter 3 describes system architecture. We implemented client server
architecture to separate presentation from logic. We also describe how to struc-
ture the application logic in order to obtain modularity which in turn provides

4 Chapter 1. Introduction

reusability and hence rapid development of LBS. Chapter 4 describes the data
tier. Here we present the data model used to implement the database, justify
our modeling decisions, and present the data value chain. Chapter 5 describes
client application. Chapter 6 describes the components and services. There, we
describe logics of individual components and how we combined the components
into the LBSs. Chapter 7 describes how the data on the client side changes as
the user moves in a road network. Chapter 8 describes a mechanism used to
position a user in a road network. Finally, Chapter 9 presents conclusion.

Chapter 2

Tourists' Problems and
Solutions

Researchers who studied tourism usually concentrated on the e�ect of tourism
on society and economy. Unlike others, Brown and Chalmeres [9] concentrate
on the way tourists organize their activities, use the tourists' literature and the
tourists' tools (such as maps and public transportation time tables), and �nd
solutions to the problems they face during a visit. We consider these problems
and solutions and create a set of new, mobile solutions to the problems.
There is number of projects that are implementing LBSs for tourists [3] [4] [2],
but apparently non of them considers tourist behaviors in the way Brown and
Chalmeres do.
In this chapter we �rst present a formal way of structuring tourists' visits, most
common problems that tourists face and tourists' solutions to the problems.
Then we present the solutions that The Mobile Tourist Guide provides.

2.1 The Structure of a Tourist's Visit
Most tourists follow the same pattern when visiting a destination. Tourists
�rst, in one way or the other, examine the available destinations before deciding
where to go. After deciding where to go, tourists make plans on what to do
after the arrival at the destination. During the visit, tourists try to explore the
destination and to enjoy the visit. They take photos, record home videos and
buy souvenirs that will remind them of the interesting places they visited.
The described pattern can be decomposed into three activities:

• pre�visit,
• visit,
• post�visit.

Activity of planning a trip in advance and and getting familiar with the destina-
tion is called pre�visit. The pre�visit is an important part of a tourist experience

5

6 Chapter 2. Tourists' Problems and Solutions

for two reasons. First, pre�visit has a practical purpose since the tourists get
familiar with the place they are about to visit, get ideas about what to do dur-
ing the visit and make rough plans. Second, becoming familiar with an exciting
place one is about to visit is satisfying and joyful.
Time spent at the destination is called visit. The visit is the core activity of the
tourist experience. During the visit a tourist enjoys a destination and caries out
the usual tourist activities.
Being a tourist and visiting an interesting place is joyful; however, many tourists
like to remember the visit long after the visit took place. The activity of remem-
bering a visit is called post�visit. Post�visit is an important part of a tourist
experience since it extends excitement and joy of the visit.
We decompose tourists' experience of visiting a destination into pre�visit, visit
and post�visit because the problems that tourists face and the solution to the
problems are speci�c for each phase. In the next section, we state the prob-
lems and currently available solutions. The section is based on empirical study
presented by Brown and Chalmeres [9].

2.2 Tourists' Problems and Tourists' Solutions
One of problems that tourists face is to �nd a way of how to carry out the
pre�visit. The pre�visit is usually carried out in three ways: reading the tourist
literature, copying plans provided by others, or the combination of the �rst two.
All of the methods have weaknesses. For example, tourist literature may be
out of date and usually does not provide means for organizing a trip. When
trying to copy plans of others, tourists are often limited to a small number of
opinions about particular attractions related to the destination. If a tourist that
is pre�visiting a destination has di�erent taste than the tourist that is giving
the advice, then the tourist that is pre�visiting may be mislead.
During a visit, most tourists have to deal with three problems: what to do, how
to do it and when to do it.
Tourists have to decide what to do during pre�visit and visit. They often decide
what to do in advance, during the pre�visit, because they have to �lter out a
large number of attractions. They have to balance attractions of di�erent sites,
budget, constraints such as distances between sites and public transportation
time tables, and most importantly time allocated for the visit. However, Simon
et al. state that tourists are satis�ed with rough plans to allow �exibility during
the visit [24]. Here, �exibility is needed so that tourists can adjust their plans
during the visit.
For example, we can consider a two�day visit to a city. A tourist decides to go
sight�seeing on the �rst day of the visit and to visit a museum the second day.
Also, the tourist has in mind to see several monuments the �rst day. But while
visiting one of the monuments, the tourist found out that the monument was on
a hill with a beautiful view of the city. Moreover, tourist found out that there
is a restaurant close by and decided to stay and enjoy the view while having
lunch. However, since the tourist lost some time, the tourist had to change plan
and give up visiting of one of the monuments. On the second day of visit, the

2.3. The Mobile Tourist Guide's Solutions to the Tourist Problems 7

tourist found out that the museum is very large and that it is impossible to
cover the entire museum for the allocated time. In both cases the tourist had
to alter the plan. Therefore, problem of what to visit remains even if plans are
made ahead. Tourists also keep plans rough because exploration of unknown
and uncertainty is part of the thrill.
Once a tourist decides what to do, the tourist has to know how to do it. Tourists
must be aware of behavioral norms of the places they are visiting since they di�er
from place to place. Also, tourists are often exploited in stores, restaurants and
similar. They often fail to notice this problem and consequently �nd themselves
in awkward situations.
After a tourist chooses activities and gets an idea about how to do it, the tourist
must decide when to do the chosen activities during the visit. This implies that
the tourist has to know where the chosen activities take place so the activity
hours and public transportation time tables can be coordinated.
The two most common tools that tourists use to decide what, how and when to
do are the guidebooks and friends' advices. The guidebook is often a large source
of information about the available activities, maps and photos. Some tourists
hear about an exciting trip their friends completed and want to experience the
excitement themselves; consequently, some tourists make rough copies of their
friends' plans.
The weakness of both tools, a friend or a guidebook, is that the information
provided by them can be out of date and maybe not be very practical to use
during the visit. For example, use of a guidebook during a visit may be time
consuming because a tourist has to �lter out a large amount of information.
Even when a tourist �nds a suitable attraction, the guidebook often does not
provide up to date opening hours of the attraction or its availability at that
very moment.
Traditional ways of preparing for a post�visit are: taking photos, taking videos
and buying souvenirs during a visit.

2.3 The Mobile Tourist Guide's Solutions to the
Tourist Problems

The Mobile Tourist Guide is a set of location based services (LBS) that make
trip planning easier, visits more e�cient and enjoyable, and trips recollection
better. Before we justify this claim, we need to explain what we mean by
�making a visit e�cient�.
It is important to realize that tourists are not always looking for most conve-
nient solutions to the problems presented in the previous section because prob-
lem solving is a part of the enjoyment that tourism provides. When designing
The Mobile Tourist Guide, we put the tourist enjoyment in the heart of each
LBS. The Mobile Tourist Guide often o�ers partial solutions to the problem and
leaves some room for tourist to make decisions. For example, The Object Finder
does not return a single point of interest but a set of them and leaves a tourist
to decide which point of interest is most interesting to visit. This service makes
tourists more e�cient by narrowing down choice of the point of interest that

8 Chapter 2. Tourists' Problems and Solutions

are, for example, within reasonable distance but still retains the mystery and
excitement that tourism o�ers by allowing the tourist to chose the point of in-
terest. More about this service will be presented later in Section 6.2.3. Another
way of making a tourist more e�cient is, for example, insuring that tourists
do not waste time by travelling between attractions during a visit. Following
sections justify the claim made at the beginning of this section.

2.3.1 Pre�visit
As already explained, pre�visit is the activity of getting to know the destination
and planning the trip. We extend means of pre�visit with following features:
The Electronic Mobile Guidebook, Theme�Tours and Tourist�to�Tourist. Each
feature is a LBS integrated into The Mobile Tourist Guide.

The Electronic Mobile Guidebook

The Electronic Mobile Guidebook is a digital version of the traditional guide-
book. The traditional guidebook is subject of revision and update few times
a year. Most of tourist o�ces print relevant tourist literature once a year. In
a dynamic environment, such as a popular tourist destination, tourist business
changes often and therefore information about it changes often as well. It is
obvious that one update is not enough to keep the information up to date. An-
other, weakness of the printed literature is that di�erent tourist association in
the same city print information in di�erent brochures which decentralizes the
source of information which in turn makes it more inconvenient for a tourist to
�nd interesting attractions.
The Electronic Mobile Guidebook provides means of accessing centralized, up to
date tourist information from anywhere. The information presented to tourists
via The Electronic Mobile Guidebook is retrieved from a database. This concept
makes it easier to update the guidebook since the guidebook does not have to
be reprinted but the database needs to be updated only.

Theme�Tour

Traditional way of advertising tourist destinations, via guidebooks and similar
literature, presents what attractions can be experienced at a particular des-
tination. However, the traditional literature often leaves out details on how
and when to experience the attractions. To remedy this weakness, The Mobile
Tourist Guide provides means of planing parts of a trip to a particular desti-
nation in a way that proposes plans. The suggested plans include an advice on
what, when and how to do. This feature of The Mobile Tourist Guide is called
Theme�Tour.
Theme�Tour is a prede�ned set of points of interest, a time table, a path through
a transportation infrastructure and description. This feature is di�erent from
the guidebook in a way that it organizes a set of point of interest into a trip that
can be completed for a certain time period. The points of interest are an advice
on what to do. The time period in which a theme�tour can be accomplished
is de�ned in the time table as tour length and earliest time the tour can start.

2.3. The Mobile Tourist Guide's Solutions to the Tourist Problems 9

This allows tourists to know when the theme�tour can be accomplished. As the
set of points of interest suggests what attractions to visit and the time table
suggests when to do a theme�tour, the path and the description suggest how to
accomplish the theme�tour. The path describes a subset of the transportation
infrastructure along which a tourist should travel in order to complete the trip in
time. A potential tourist may have to travel parts of the way on foot, and parts
using public transportation or a car which is described in the path. If the tourist
needs to use public transportation, then bus numbers and departure times are
provided and if a tourist has to travel in a car, the parking areas are provided
as well. The description is used to provide tourist additional information, e.g.,
information about cultural di�erences.

Tourist�to�Tourist

Tourist�to�Tourist is a similar but di�erent feature than the Theme�Tour. It
is similar in the way that organizes points of interest into a trip and proposes
the trip to tourists as a plan. But, it is di�erent from the Theme�Tour in
the way that the proposal is made by a fellow tourist and that the plan is less
detailed. Each Tourist�to�Tourist plan is recorded by a tourist while the tourist
was visiting. The plan is composed of a set of points of interest, a path and
the start time of the tour. Here, the path is simply a subset of a transportation
network. From the point of time when a tourist indicates that the Tourist�
to�Tourist feature is �ON�, The Mobile Tourist Guide starts recording tourist's
movement through the transportation infrastructure. Once the user indicates
that the Tourist�to�Tourist feature is �OFF�, the system stops recording the
tourist's movement. The sequence of coordinates recorded in the meantime is
the path. The time table is composed of two entities: the start time and the
end time. The start time provided by Tourist�to�Tourist is the time when the
feature was switched on. Similarly, the end time is the time when the feature
was switched o�. The set of points of interest are chosen by the tourist. To add
a point of interest to the set, a tourist has to click on it sometime between start
and end time.
The three LBSs, The Electronic Mobile Guidebook, Theme�Tours and Tourist�
to�Tourist, make trip planning easier. They provide tourists up to date infor-
mation about a destination via The Electronic Mobile Guidebook. Tourists are
also able to obtain advice from the local tourist bureaus and fellow tourists via
Theme�Tours and Tourist�to�Tourist respectively. Getting an advice from a
tourist o�ce is valuable because this advice comes from the experts on the local
tourism. As Brown and Chalmeres point out, tourism has collaborative nature;
tourists trust to each other and it is important to exchange opinions. The Mo-
bile Tourist Guide allows tourists to exchange opinions via Tourist�to�Tourist
feature. In a way, Theme�Tours and Tourist�to�Tourist are also means for trip
planning since they allow tourists to copy plans of other tourists.
Theme�Tour and Tourist�to�Tourist are presented to tourists in a similar way
as Remember your Visit service, see Figure 2.5.

10 Chapter 2. Tourists' Problems and Solutions

2.3.2 Visit
As mentioned above, the three problems that tourists encounter are: what
attraction to visit, when and how to visit them. The Mobile Tourist Guide
provides four LBSs that help tourists solve the problems. The four LBS are:
The Object Finder, The Explorer, The Advertiser and The Electronic Mobile
Guidebook. The Object Finder and The Electronic Mobile Guidebook are im-
plemented as pull technologies while The Explorer and The Advertiser are im-
plemented as mix of push and pull technologies.
Following the maxim that problem solving is part of the excitement, Object
Finder, The Explorer and The Advertiser act as a guide rather than a provider
of complete most convenient solutions to the tourists. They help tourists to
narrow down the number of available attractions to an apprehensible number
of choices and in this way help them decide what to do. If a tourist pursues
one of the given choices, the system implicitly or explicitly gives user hints on
how and when to carry out the activity (how and when to visit a museum for
example). The number of choices is reduced via application of di�erent �lters.
The information presented by a system like The Mobile Tourist Guide should
be applied three �lters: time, space and pro�le [16]. Application of the �lters
is a means of o�ering tourists attractions that are accessible at the time of the
enquiry, in the tourist's vicinity and relevant to the user. Technical details of the
�lters' application are covered in later chapters. Through following sections we
describe The Electronic Mobile Guidebook, The Explorer and The Advertiser,
and The Object Finder. An example of accessing these services on the client is
illustrated in Figure 2.1.

Figure 2.1: Starting The Mobile Tourist Guide

After having started the application, the log-in screen is presented to the user.
Upon inserting the user id the application switches to welcome screen. As shown
in Figure 2.1, by choosing �Options� a list of main services pops up. In the �gure
there are three of them � Mobile Guidebook, Explorer and Object Finder.

2.3. The Mobile Tourist Guide's Solutions to the Tourist Problems 11

The Electronic Mobile Guidebook

Most tourists use the tourist guidebooks throughout visit. Consequently, The
Electronic Mobile Guidebook is suitable as a tool used during the visit. The
only di�erence between the versions used during pre�visit and visit is the means
of delivery of the information. A tourist can search the The Electronic Mobile
Guidebook via a web browser or a mobile client (which in our case is a cell
phone). If the tourist, during the visit needs information from the guidebook,
then the tourist can retrieve information on the mobile client anywhere any
time. Tourist can see the same information in a web browser and a mobile
client but the presentation of the information is slightly di�erent. An example
of the guidebook service on the client is illustrated in Figure 2.2

Figure 2.2: Guidebook Service

By selecting the guidebook service, the list of all the available facility areas is
presented to the user, as shown in Figure 2.2.a. White items constituting the
list of areas are buttons. In the bottom of the screen there are two additional
buttons � �Close� and �More�. �Close� will close the current active window and
return the user to the start screen, whereas �More� indicates that there are more
items in the list and by clicking on it, brings the following items to the display.
By clicking on one of the area items, the user gets the list of facility types
within the selected area. Selecting the type of interest will get the user to
the screen similar to Figure 2.2.b which is the speci�c facilities that are within
selected type. Finally by clicking on a facility (�Aalborg Zoo�, 2.2.b) the user
gets information about selected facility, 2.2.c. At this stage �Path� button is
available as well. By clicking on it, the user requests traversable path between
current location and the selected facility.
In order for user to conceive the path and facility location correctly, this service
requires a map as a background. Hence, the application switches to �Explorer�
service, Figure 2.3.c.

The Explorer and The Advertiser

The Explorer and The Advertiser are two di�erent LBS that are designed to
work together. Unlike The Electronic Mobile Guidebook, The Explorer and The

12 Chapter 2. Tourists' Problems and Solutions

Advertiser can be push technologies that do not need to interact with tourists
in order to work.
The main objective of the The Explorer and The Advertiser is to allow tourists
to be informed of what the city can o�er without taking any input from the user.
Both LBSs extract the relevant information to a particular tourist by means of
time, space and pro�le �lters. A tourist can see the relevant information on the
client's screen which is divided in two parts.
One part of the screen is used by The Explorer. In this part, tourists can see the
relevant points of interest in their vicinity. The other part of the screen is used
by the Advertiser. A point of interest may advertise; for example, a restaurant
may advertise daily special o�ers. With each advertisement, the Mobile Tourist
Guide associates a geographical zone. If a tourist enters a zone associated with
an advertisement, then The Advertiser displays title of the advertisement in
its part of the screen if the advertisement is relevant to the tourist. From this
perspective, The Explorer and The Advertiser are push technologies.
Another objective of the two LBSs is to present detailed information about a
point of interest if a tourist pursues this option. The detailed information is
presented in the same way as in the case of The Object Finder. An example of
these services running on the client is illustrated in Figure 2.3.

Figure 2.3: Explorer Service

The Explorer service uses user's pro�le in order to display only a certain group
(type) of points of interest. In Figure 2.3.a the user has placed the mouse icon
above one of the displayed POI locations � blue icon in the mid�left part of
the screen. This action displays the name of the POI. If the user wants to know
more about the POI, one clicks on the circle, which displays further information
about the POI as already seen in �gure 2.2.c. Otherwise the name of the POI
vanishes when user moves the mouse icon away from the POI.
Figure 2.3.b shows the Advertiser service in action. Advertiser is a sub�service
that in this case is used by the Explorer. The Advertiser does not require
any direct input from the user on the client since it is a push based service.
The displaying of the information on the screen is provoked by user physically
entering the geographical ad�zone of the POI colored in red. The red header
gives short information about the ad, and three buttons described in the context
of �Guidebook� are available again. If user takes no action, the short ad is

2.3. The Mobile Tourist Guide's Solutions to the Tourist Problems 13

displayed only for a certain period of time (e.g. 30 seconds). Before this period
expires, the user can always hide the ad by pressing �Close�. �More� button gives
more information on the POI while path makes a requests for the traversable
path to the POI. Once the push�ad is hidden, it will not be displayed again.
As already mention, Figure 2.3.c shows the situation where user has requested a
path to one of the POIs. A small red dot in the upper right corner of the screen
indicates that the user has activated the tour recording service. This is also a
sub�service available from the �Options� menu of all other services. Until this
service is stopped, client cashes the traversed UTM coordinates and the POIs
for which the user has shown interest (by clicking on them). The cashed data
is periodically reported to the server and stored in the database.

The Object Finder

The Object Finder is a LBS that allow tourists to search for a particular point
of interest type, restaurants for example. When a tourist enquires a particular
point of interest type, there are two obvious solutions: the Object Finder can
respond with all points of interest or a single point of interest of the particular
type. If the Object Finder responds with a single point of interest, then a
certain criteria such as distance or customer ratings can be used to select the
point of interest. Neither of the two solutions is suitable in the context of The
Mobile Tourist Guide. If the Object Finder responds with all points of interest,
then the tourist would be overwhelmed with information, the client performance
would deteriorate and displaying a large number of points of interest on a small
client's screen would not be visually acceptable. Instead, the Object Finder
�rst extracts a subset of points of interest by applying the �lters to all points
of interest and then displays where on the map the extracted points of interest
as well as the tourist's position are. Now tourist can have an idea where the
points of interest are with respect to the tourist's position. Tourist can also get
further information about a displayed point of interest. The further information
includes four pieces of information:

• an approximation of the distance to the point of the interest,

• description of point of interest which may include advices on how to reach
the destination (by bus, by train, on foot...) and business hours

• other attractions in the vicinity of the point of interest under considera-
tion.

• an option to get the shortest path through the transportation infrastruc-
ture.

The Object Finder solves the problem of what to do by o�ering points of interest
that are available at a given moment and relevant to tourists. The description of
the attraction, provided in the further information can give tourists insights that
can help tourists decide whether it is interesting to visit the attraction or not.
Information about other attractions in vicinity of the attraction gives tourists
ideas about what can be done in that part of the city. The further information
also gives useful hints to tourists that can help solve problems of how and when

14 Chapter 2. Tourists' Problems and Solutions

to do an activity. Tourist can make decision when to visit the attraction based
on approximation of the distance and business hours. The proposed ways to
reach point of interest help solve problem on how to visit. The Object Finder
can easily extend the further information to point out behavioral norms and
similar.

2.3.3 Post�visit
The Mobile Tourist Guide provides two tools to post�visit a visited destination:
Remember Your Visit and Photo Repository.

Photo Repository

The Photo Repository is a feature that allows tourists to store a large number of
photos during the visit. In Chapter 3, we propose an architecture for developing
location based services. The architecture proposes use of a cell phone as a client.
Tourists can use camera that is integrated with the phone to record photos.
After a photo is recorded, the tourist can upload the photo. Later, the tourist
can view and download the photos via web browser, see Figure 2.4.

Figure 2.4: An Instance of Photo Repository

Remember your Visit

Remember Your Visit is a feature that allows a tourist to recollect a visit in a
comprehensive way. Using this feature a tourist can view the traveled routes

2.3. The Mobile Tourist Guide's Solutions to the Tourist Problems 15

through the town, attractions visited and photographs taken, see Figure 2.5.
The �gure illustrates a map, a path that tourist recorded, points of interest
that the tourist thought were interesting (circles on the map) and square icons
referencing the taken photos. In this particular case the user has clicked on the
left most point of interest icon bringing the textual description and the image
related to the point of interest to the right part of the screen. In case the
user clicks on one of the icons referencing personal photos, the photo will be
displayed.

Figure 2.5: An Instance of Remember your Visit

16 Chapter 2. Tourists' Problems and Solutions

Chapter 3

System Architecture
Overview

There are various di�erent types of location based service applications � e.g.
Krak.dk's [19] route planning, where users location at the time of service request
is not relevant. In such a system the user approximately knows the location that
one will be visiting in future and by simulating the location, the user can retrieve
information about location surroundings before even getting there.
Another example of location based service applications are car navigational sys-
tems such as Mobile Danmark [23]. This particular product uses a GPS receiver
in order to understand user's geographical location. Based on the location and
pre�selected destination the system can guide the user through the road net-
works and also draw attention to the user to surrounding points of interest.
However, the problem with such a line of products is that the data is provided
on a digital media at the time of purchase, and once installed on the client it
cannot be updated frequently.
In Chapter 2 we have seen examples of how users can access some provided
location based services with the system that we have developed. They use
mobile clients which according to their location, are capable of getting up to
date information about their surroundings. In order for the retrieved data to be
up to date there have to be some sources providing and maintaining the data
independently of the client. Hence, there have to be some stationary servers
providing such services for the clients. In Chapter 4 we cover the details on the
provided content and talk about the data value chain that makes our system
provide up to date data.
Such location based service applications have to have physically separated multi�
tiered architecture. Figure 3.1 illustrates the proposed application framework
for location based service applications providing up to date content. The archi-
tecture from the �gure also makes a clear separation between presentation of
the content and application logic. Following sections describe general aspects
of the framework.

17

18 Chapter 3. System Architecture Overview

GPS
Friends

Cinemas

Ads

. . .

. . .

Geo

Data

Content

Data

Client Server

Positioning

Tier

Client

Application

Tier

Service

Tier

Server Component

Tier

Data

Tier

Map Server

Figure 3.1: Application Framework

3.1 Client Tier
Cellular phones are most prominent personal digital mobile devices today. The
latest mobile technology enables development of simple applications for mobile
devices so it was natural to choose a cell phone as client hardware � more
speci�cally a Nokia 3650 cell phone. The Nokia 3650 is equipped with General
Packet Radio Service (GPRS) which enables users to access the Internet over
mobile networks [15]. Since the phone does not have an integrated GPS receiver,
it is essential that every client is equipped with an external device. Mobile
phones with integrated GPS receivers are expected to be soon available on
the market (e.g. 3GEO system from 3G, Motorola i88s, etc.). Positioning
technology will be a common feature in a couple of years leaving many potential
users of LBS [7].
Nokia 3650 is one of many mobile devices running on Symbian OS 6.1 operating
system. Series 60 System Development Kit enables application development on
such devices in C++ programming language. In order for similar devices to run
the mentioned operating system they have to meet certain hardware standards.
The developed applications are therefore not dependent on one speci�c device
but rather a larger group.
The implementation of our client services is based on the SVG browser which was
earlier developed at AAU. It provides easily accessible APIs for manipulation
of GPRS and Bluetooth [6] which are used for establishing connection to the
mobile internet and opening a communication channel with other Bluetooth
devices � GPS receivers.
Furthermore and more importantly, BitFlash Mobile Player is integrated in
the browser making it compliant with the SVG Basic standard. Scalable

3.1. Client Tier 19

Vector Graphics format (SVG) is a modularized language for describing two�
dimensional vector and mixed vector/raster graphics in XML format [22]. The
format was primarily developed for web graphics which are data�driven (not
static images) and can easily be made interactive and personalized. This means
that we can practically send any content to the browser as long as it is encoded
in SVG format. An additional bonus of using the SVG is that it is implied that
we will be using XML format for data exchange between clients and serrvers.
SVG speci�cations ensure that we are provided a parser and just have to stick
to its standards.
The features provided by the SVG browser simplify the development and there-
fore reduce probability of making mistakes in the application development. As
we mentioned at beginning of this section, clients will be exchanging data with
a server or multiple servers while a service is in use. Having agreed on the
standard of the exchange format, our work comes down to what to do with the
data and when to do it on the client side. Since what the client gets is SVG
format, we can manipulate the data through SVG DOM functions then return
the result to the client screen, or send it back to the server. Document Object
Model (DOM) is a platform and language neutral interface allowing programs
to access and update the structure and content of documents � in other words
DOM makes documents dynamic [25].
In a system as the one presented in Figure 3.1, in order for client to deliver
location based services to users there are certain general tasks that it has to be
capable of accomplishing.

• It must be able to communicate with the server over wireless network

• For most of the services client must know it's position at the time of the
request.

• It must understand services provided by the server

• Enable interaction from user's side

• Most of provided services will be using maps as background images. These
maps have to be downloaded with respect to a user's location.

The �rst criteria is met by client being able to make HTTP requests over GPRS.
Second criteria is met by client being able to communicate with external GPS
device over Bluetooth. The third criteria requires that server and client under-
stand each other, hence there must be a communication standard. In our case
third and fourth criteria are mostly covered by the SVG technology since it is up
to the server to provide services in SVG standard so that client can understand
them. As illustrated in Figure 3.1 the map�images will primarily be retrieved
over GPRS. There will not be a need to adapt image format to the application
since SVG technology is capable of encapsulating most image standards.
Details on the implementation of the client application are covered in Chapter
5

20 Chapter 3. System Architecture Overview

3.2 Server Tier
As already mentioned at the beginning of this chapter, in order for clients to
receive high quality and up to date data based on their geographical location,
a client�server architecture is essential. The server works like a big brain being
able to answer all the questions that clients ask. It has access to di�erent kinds
of data related with certain geographical locations, which is provided by the
data tier. Before answering clients' requests it retrieves relevant data only and
puts it into a context by processing it.
The web server is running on Apache Tomcat servlet container [5] which uses the
o�cial Java Servlet and JavaServer Pages technologies. The developed server
application works exclusively on Java Servlets whose main purpose is to provide
dynamic content over the web. With the help of the extensive APIs a developer
has easy access to management of loading, unloading, resource sharing and
dealing with security issues. Since all the server logic is written in Java it is also
cross�platform.
From Figure 3.1 we can see that the server logic is divided in two layers � service
layer and server component layer. Server components do the data processing
which is needed in order to provide the services (e.g. �nding a path between two
geographical locations, encoding of data according to the standard implemented
on the client, etc.). At the very bottom of the components there is a database
interface that executes queries that are needed in order for other components
to retrieve the relevant data.
The service layer implements the services as objects. They are an extension
of HttpServlet managing HTTP requests from clients. The three purposes of
service objects are listed below.

• The information provided by the client is �ltered out in order to under-
stand what it is exactly that the client is requesting

• The underlying server components are accessed for the purpose of data
processing

• Response is sent to the client

By separating services and components into two layers the system achieves bet-
ter modularity since the purpose of the components is to provide functionalities.
They are easily exchanged or their functionalities extended while new compo-
nents are easier integrated. Services are there to integrate the functionalities
provided by the components and to control the data �ow. The architecture
makes it also easier for developer to think of new services and integrate them
into the existing system. Implementation details on the services and server
components are covered in Chapter 6.

3.3 Data Tier
A location based service (LBS) is an application that is responsive to the user's
location. The response is some content or information which was derived from

3.3. Data Tier 21

the content. From de�nition of the location based services, it is obvious why
geographical and content data are needed. In our context, the user is a person
equipped with a mobile phone and user's location is a position in a road network
or a point in two dimensional space at which the user is placed at a given mo-
ment. This implies that geographical data about road network is essential with
respect to our system. When we say content, we mean speed limit, road type,
restaurants, stores, cinemas, medical clinics and similar road characteristics and
points of interest. If one needs to personalize an LBS, then data about users of
the LBS is needed.
In order to implement personalized LBSs, the following data is needed:

• geographical data

• content data

• user data

Since the system provides the infrastructure for development of high quality
LBS, the system must be supplied with up to date data. We implement a
sophisticated data value chain that maintains the data in a way that the data
is always up to date Chapter 4.

22 Chapter 3. System Architecture Overview

Chapter 4

The Data Tier

In this chapter we describe the data chain that provides up to date data to the
system. Following describes the source data, the data model used to implement
the database and an overview of the data value chain.

4.1 The Data Sources
The data stored in the database originates from four sources: Aalborg munic-
ipality, Aalborg Tourist O�ce [8], the users of The Mobile Tourist Guide and
advertisers.
The Aalborg municipality provided information about geometry of the road
network in Aalborg. The road network is described as a set of poly lines where
a poly line is a sequence of coordinates in two dimensional space. Unfortunately,
the only data provided to us is the data that describes the geometry. The data
that describe number of lanes, speed limit, allowed turns and similar were not
available to us.
The Aalborg Tourist O�ce provided information about the attractions in Aal-
borg. The data includes names, descriptions, addresses, types and similar in-
formation about the attractions. The national tourist organization maintains a
database which holds information about points of interest from all of Denmark
and distributes the data to local tourist o�ces in XML format periodically. Pe-
riodical data distribution is done as the way of update. The Aalborg Tourist
O�ce obtains data in this way as well.
The Mobile Tourist Guide is a personalized service which implies that it needs
information about its users. We have implemented a system component that
enables users to con�gure The Mobile Tourist Guide to serve them the best.
The user's preferences are obtained from a user and stored in the database
We have explained earlier that The Mobile Tourist Guide has capability to
advertise. The data needed to describe ads can be obtained from the parties
who want to advertise.

23

24 Chapter 4. The Data Tier

4.2 The Data Model
The data model that we present in this section is an extension of the data model
presented in the previous semester [26]. Then, we presented a data model that
deals mainly with modeling of the road network, content and integration of
the two. Natural questions that rise here are: how to model a road network,
associate content with a road network and how to de�ne movements through
a road network in a database. These questions have been addressed by several
people[10] [17]. All of the referenced work addresses the issues mentioned above
from road or transportation management perspective. However, many of these
ideas are suitable, at least in our opinion, in the context of LBSs. We have
incorporated some ideas from [10] and [17] into a data model that is used in our
project. The data model that we use is simpler than models in [10] and [17].
The reason for that is that many attributes needed for road and transportation
management are not needed in our context. Also, several representation of a
road network, e.g., KM-post representation or cartographic representation, are
not needed. This report extends the data model to include information about
user, user pro�les, Theme-Tour data, and Tourist-to-Tourist. Following gives
an overview of the data model.

4.2.1 Overview
Data model used in the project consists of two main parts: internal and exter-
nal. Figure 4.1 illustrates this concept. The internal part is illustrated to the
left in the �gure. This is a set of tables that describe the road network, points of
interest, integration of points of interest with the road network, users, user pro-
�les, advertisements, Theme-Tours and Tourist-to-Tourist. The external part is
illustrated in the middle of the �gure. It consists of a set of materialized views
derived from the internal part and a set of views of the internal part. All of the
LBSs, to the right in Figure 4.1, should access only the external part.

Base Tables
 LBSs

Materialized

Views

Views

The Internal Part
 The External Part
 The Database Users

The Data Tier

Figure 4.1: Data Model Overview.

The internal part is organized in a way that allows simple maintenance, i.e.
to provide a simple way of updating the existing data and extending the data
model. The external part is organized in the a way that simpli�es software
development and improves program execution e�ciency.
First we will explain the internal and external parts separately, and then we will
justify the separation.

4.2. The Data Model 25

4.2.2 The Internal Part
The internal part was partly developed in the previous semester. Then, we
presented segment representation of a road network, integration of the content
in a road network, and road network geometry.
Idea of segment representation of a road network originates from [10]. The
internal representation of a road network is described as a collection of segments
where segment represents a road section in such a way that segments are made
as long as possible while they preserve topology. Segment representation also
includes information about connections that intersect with the segments. Figure
4.2 illustrates the schema of the segment representation.

SEGMENTS

seg_id
 number
 PK

seg_length
 number

CONNECTIONS

con_
id
 number
 PK

seg_id
 number
 PK
 FK

offset
 number

Figure 4.2: Internal Representation of a Road Network Proposed by Referenced
Source.

The idea of segment representation was adopted into the data model used in
the project. We used data provided by Aalborg municipality to create segment
representation. Each segment represents a chain of one or more poly lines where
one poly line can be part of a single segment. From above, one can infer that
segments represent linear subsets of the road network. Also, segments were
created to include as many poly lines as possible. Segment representation in our
data model strongly resembles the original one. Figure 4.3 illustrate database
schema of the segment representation.

CON

con_id
 number
 PK

x
 varchar2

y
 varchar2

SEGMENT

seg_id
 number
 PK

length
 number

SEGMENT_CONNECTION

con_id
 number
 PK
 FK

seg_id
 number
 PK
 FK

offset
 number

Figure 4.3: Segment Representation of a Road Network.

Tables SEGMENT are identical in both models. Attribute seg_id is a primary
key and it is used to identify a segment. Information about length of segments
is stored in length. Table SEGMENT_CONNECTION from Figure 4.3 is similar to
table CONNECTIONS from Figure 4.2. Their attributes describe the fact that
a connection, described by attribute con_id, intersects a segment, described

26 Chapter 4. The Data Tier

by attribute seg_id, at some distance from the beginning of the segment, de-
scribed by attribute offset. Here, con_id, seg_id together make up a pri-
mary key. Attribute seg_id is a foreign key and it references SEGMENT. The
di�erence between table SEGMENT_CONNECTION from our model and CONNECTION
from the original model is that table SEGMENT_CONNECTION references table CON
via con_id. Table CON is an extra table in our model. This table is needed
if one needs to save more information about a connection than ID. Attributes
X and Y are coordinates of a connection in UTM format. Information about
connection coordinates is redundant since it could be computed by querying
SEGMENT_GEOMETRY table (SEGMENT_GEOMETRY will be described later). Because
some applications that we implemented use coordinates of the connections, we
store the coordinates in CONNECTION table for fast retrieval. Attribute con_id
is primary key. Table 4.1 shows the data in tables SEGMENT, SEGMENT_CON and
CON with respect to the road network illustrated in Figure 4.4.

conn_id = 1

conn_id = 2

conn_id = 3

conn_id = 4

seg_id = 1

seg_id = 2

seg_id = 3

Figure 4.4: A Simple Road Network

seg_id length
1 400

con_id seg_id o�set
1 1 0
2 1 70
3 1 280
4 1 400
2 2 122
3 3 320

con_id x y
1 559561 6319444
2 559639 6319763
3 559641 6319825
4 559689 6319723

a) b) c)

Table 4.1: Data in Table SEGMENT(a), SEGMENT_CON (b), and CON Describibg the
Road Network and Content from Figure 4.4.

Now that we explained the segment representation of a road network, we go on
and explain how to relate content to this representation.
As already mentioned, content is an important part of the data�tier in a LBS.
Content describes transportation infrastructure and points of interests. Here we
explain how we integrated content into the data model. We distinguish between
two types of content: content that can be associated with a point in a road
network and content that can be associated with a stretch of the road network.
Kenneth et al. [17] call these point and linear events respectively. We adopt
this terminology from this point on. Figure 4.5 illustrates schema that models
integration of content with segments.
Table CONTENT holds information about a particular content. As Figure 4.5
indicates, our model supports multiple content tables. The two attributes in
the table are the core attributes that each table must have. Depending on

4.2. The Data Model 27

SEGMENT

seg_id
 number
 PK

length
 number
 Linear Event

seg_id
 number
 PK

content_id
number
 PK

start_offset
varchar2

end_offset
varchar2

LINEAR EVENT

seg_id
 number
 PK
 FK

content_id
 number
 PK
 FK

start_offset
varchar2

end_offset
 varchar2

Content

content_id
number

description
varchar2

Content

content_id
number

description
varchar2

CONTENT

content_id
 number

description
 varchar2

Point Event

seg_id
 number
 PK

content_id
number
 PK

offset
 number

Point Event

seg_id
 number
 PK

content_id
number
 PK

offset
 number

POINT EVENT

seg_id
 number
 PK
 FK

content_id
number
 PK
 FK

offset
 number

Figure 4.5: Content Integration

type of content, CONTENT may have more then the core attributes. For ex-
ample a restaurant can be modelled as content_id, description, address,
name, business_hours. Table RESTAURANT, Table 4.2, is an example of a table
that holds point events. Attribute content_id is primary key of RESTAURANT,
description may in few sentence describe a restaurant. Meaning of attributes
name, address, business_hours is obvious. An example of a linear event is
a natural attraction that can be seen along road. Table SITE, Table 4.3, can
hold information about these attractions. Attribute type describes whether,
for example, a river, mountain peak or valley can be seen. Some of them may
be interesting only during a certain part of year and attributes season_from
and season_to describe this. Attribute name stores the name of a particular
attraction. Reader should note that attribute content_id is unique within the
same type of content.

content_id description address name business_hours
1 Pizza & Grill 23 Bella Italia 8�23

Table 4.2: Instance of Tables: RESTAURANT

content_id description type season_from season_to
1 An arti�cial river. River January 1st March 1st

Table 4.3: Instance of Tables: SITE

Tables POINT_EVENT and LINEAR_EVENT are used to position content on the seg-
ments. For each CONTENT table there is a POINT_EVENT or a LINEAR_EVENT table.
Both tables have same core attributes: seg_id, content_id which together
constitute primary key. seg_id is a foreign key and references table SEGMENT.
content_id is also a foreign key and references table CONTENT. A point event
is associated with a segment by a single point expressed as o�set from the be-
ginning of the segment. Attribute offset in table POINT_EVENT describes this.
A linear event begins at some o�set from the beginning of a segment, attribute
offset_from in the table LINEAR_EVENT, and ends at some o�set, attribute
offset_to. Tables SEG_RESTAURANT and SEG_SITE, Table 4.4, position restau-

28 Chapter 4. The Data Tier

rants and natural attractions with respect to the road and content illustrated
in Figure 4.6.

seg_id = 1

The river

Pizzeria

"Bella Italia"
A

B

C

D

Location
 Offset

A
 0
m

B
 180
m

C
 220
m

D
 320
m

Figure 4.6: A Road and Points of Interest Associated with it

seg_id con_id o�set
1 1 180m

a)

seg_id con_id start_o�set end_o�set
1 1 220 320

b)

Table 4.4: Instance of Tables: SEG_RESTAURANT (a) and SEG_SITE (b)

Schema that models geometry representation is illustrated in Figure 4.7. Ge-
ometry of the road network was preserved during segment creation. As several
poly lines were combined into segment, the coordinate sets of the corresponding
poly lines were combined into a single coordinate set representing the segment.
Attributes seg_id and corder constitute primary key. seg_id is foreign key
and it references table SEGMENT. corder preserves the order of the coordinates.
Attributes x and y represent a point in two�dimensional space. Attribute o�set
describes distance of a coordinate with respect to the beginning of the segment.

SEG_GEOMETRY

seg_id
 number
 PK
 FK

x
 number

y
 number

corder
 number
 PK

offset
 number

SEGMENT

seg_id
 number
 PK

length
 number

Figure 4.7: Geometry Representation of the Road Network.

4.2. The Data Model 29

So far we presented the part of the model that was developed in the previous
semester. Following describes an extension to it. The extension models point of
interest, user, user pro�les, advertisements, Theme�Tour, Tourist�to�Tourist.
The reader should note that the model above did not have to change in order
to add the extension. Moreover, this in a way demonstrates extensibility of the
internal part.
As mentioned above, the data about points of interest is obtained from Aalborg
Tourist Bureau. So far we described how to integrate the content (and therefore
point of interest) and we gave hypothetical examples of point of interests. Now
we show the schema that models points of interests received from the tourist
bureau. All of the points of interest are integrated into the road network as
point events. Figure 4.8 illustrates database schema that models the points of
interest and their integration into the road network.

POI

poi_id
 varchar2
 PK

status
 boolean

owner_
organization
varchar2

owner_id
 varchar2

email_address
 varchar2

contact_info
 varchar2

remark
 varchar2

creation_date
 varchar2

modification_date
varchar2

booking_url
 varchar2

info_url
 varchar2

poi_type
 varchar2
 FK

SEGMENT

seg_id
 number
 PK

length
 number

SEGMENT_POI

seg_id
 number
 PK
 FK

poi_id
 varchar2
 PK
 FK

sort_order
 varchar2
 PK
 FK

offset
 number

IMAGE

poi_id
 varchar2
 PK
 FK

image_id
 varchar2
 PK

country_code
 varchar2

encoding
 varchar2

alternate_text
varchar2

image_data
 clob

ADDRESS

poi_id
 varchar2
 PK
 FK

id
 varchar2
 PK

street
 varchar2

house_number
 varchar2

postal_code
 varchar2

city
 varchar2

x
 number

y
 number

DESCRIPTION

poi_id
 varchar2
 PK
 FK

country_code
 varchar2
 PK

text
 varchar2

NAME

poi_id
 varchar2
 PK
 FK

country_code
 varchar2
 PK

text
 varchar2

AREA

area_id
 varchar2
 PK
 FK

country_code
 varchar2
 PK

text
 varchar2

AREA_TYPE

type_id
 varchar2
 PK
 FK

area_id
 varchar2
 PK
 FK

TYPE

type_id
 varchar2
 PK
 FK

country_code
 varchar2
 PK

text
 varchar2

AREA_CORE

area_id
 varchar2
 PK

internal_name
varchar2

TYPE_CORE

type_id
 varchar2
 PK

internal_name
varchar2

BUSINESS_HOURS

poi_id
 varchar2
 FK

day
 varchar2

start_time
 varchar2

end_time
 varchar2

Figure 4.8: Integration of the Tourist Data

Attributes in table POI describe a point of interest. The data model proposed
earlier proposes di�erent entities for di�erent types of points of interest. Here

30 Chapter 4. The Data Tier

however, we model all points of interest as the same entity because only the
attributes that are common to all points of interest were available to us. The
attribute poi_id is a string of characters that uniquely identi�es a point of in-
terest and is primary key of POI. Point of interest is available if the attribute
status is set to TRUE. The LBSs can use this information to either respond
to LBS's users with this content or not. owner_organization and owner_id
are foreign keys to the remote databases from which the point of interest orig-
inates. If it is possible to make a contact with a point of interest, then the
contact information can be retrieved from the attributes contact_info and
email_address. The date of creation and the last modi�cation are recorded in
the attributes creation_date and modification_date.
Attributes inf_url and booking_url store URLs at which further information
about the points of interest can be obtained or booking can be carried out if
applicable. If the owner of a point of interest needs to make an extra remark,
the attribute remark can store this information. Finally, the attribute poi_type
describes type to which a point of interest belongs. This attribute is a foreign
key and references table TYPE_CORE.
Attributes in table TYPE_CORE describe types of points of interest. A point
of interest can be restaurant, hotel, monument or something else of sixty two
available types. Attribute type_id describes string of characters which uniquely
identi�es a type and is primary key of TYPE_CORE. Each type has a name which
is described by the attribute internal_name.
An area is a set of similar types. For example, area Transportation includes
four types: Car Hire, Coach Hire, Ship Connection and Airports. Attributes
of table AREA_CORE describe an area. Each area has id and name described by
area_id and internal_name respectively. area_id is the primary key.
Attributes in table AREA_TYPE describe which types make up an area. Attribute
area_id is a foreign key that references table AREA_CORE while type_id speci�es
what type belongs in the area. type_id references table TYPE_CORE.
The Mobile Tourist Guide is a multilingual application. Data in tables NAME,
DESCRIPTION, ADDRESS, IMAGE, AREA and TYPE are stored in di�erent languages.
This fact had an impact on the data model as illustrated in Figure 4.8. The data
model is designed to trade o� space for time. Consider table NAME. Attributes
in the table NAME describe name of a point of interest in di�erent languages.
Attribute poi_id is foreign key that references table POI. Attribute text stores
the name of a point of interest in the language described by country_code. The
tourist o�ce translates the information in two foreign languages: German and
English. An alternative design for the table NAME is illustrated in Figure 4.9.
The two designs preserve same information.
Using this design in Figure 4.9 the name is stored in one record for a single
point of interest and using design in Figure 4.8 the name is stored in up to
three records. However, design in the in Figure 4.8 allows an LBS to store the
active language in a variable and then use the variable in the �where� clause when
retrieving the data, see Table 4.5.b. If the design in Figure 4.9 was implemented,
then the logic would become more complex and time demanding, see Table 4.5.a.
The logic would have to check which language is active and then, according to
the result, retrieve information from the appropriate attribute. Attributes in
table DESCRIPTION, TYPE and AREA describe a point of interest, type and area

4.2. The Data Model 31

respectively in the similar way the attributes in the table NAME describe the
name of the a point of interest.

NAME

poi_id
 number
 FK

textDK
 varchar2

textDE
 varchar2

textUK
 varchar2

Figure 4.9: An Alternative Design for the Table NAME

if language = 'DK' then SELECT textDK FROM NAME
WHERE poi_id = poi;
else if language = 'UK' then SELECT textUK FROM NAME
WHERE poi_id = poi;
else language = 'DE' then SELECT textDE FROM NAME
WHERE poi_id = poi;

a)The Space E�cient Implementation.

SELECT text FROM NAME WHERE poi_id = poi AND country_code =
language

b) The Time E�cient Implementation.

Table 4.5: Logic Needed to Retrieve Multilingual Information

Table IMAGE holds information about the images of a point of interest. A point
of interest may have more than one image. Attribute id uniquely identi�es an
image of a single point of interest. poi_id is foreign key that references POI. If
an image is displayed in a web browser, its alternate text can be retrieved from
attribute alternate_text. Attribute image_data holds encoded image data.
Information about encoding format is stored in the attribute encoding. Some-
times, text on the images are translated into di�erent languages. Similarly as
above, the information about the language is stored in attribute country_code.
Primary key of IMAGE is combination of id, poi_id and country_code
Table ADDRESS holds information about addresses of a points of interest. A
point of interest can have more then one address. The attribute id is used to
identify di�erent addresses of a point of interest. The meaning of rest of the
attributes is intuitive.
Finally, each point of interest is projected on a segment, distance between the
beginning of the segment and the point of projection was calculated and stored
in the table SEG_POI as a point event.
The Mobile Tourist Guide is a set of personalized LBS. This fact had an impact
on the data model. The data model had to be extended to include information
about user and user's preferences. Ethical issues and user information security
issues are beyond scope of this report. We have designed the system to function
with the minimum information about user but the design is �exible to include
more information about the users. Figure 4.10, illustrates data model for the
users, user pro�ling and advertising.
The Mobile Tourist Guide requires a user to provide a password and optionally
a name which can be used by the system to display messages such as �John,
there is a 18th century monument in you vicinity�. The name provided by user

32 Chapter 4. The Data Tier

POI

poi_id
 varchar2
 PK

status
 boolean

owner_
organization
varchar2

owner_id
 varchar2

email_address
 varchar2

contact_info
 varchar2

remark
 varchar2

creation_date
 varchar2

modification_date
varchar2

booking_url
 varchar2

info_url
 varchar2

poi_type
 varchar2
 FK

POI_ADs

poi_id
 varchar2
 FK

ad_id
 number
 PK

ad_title
 varchar2(20)

ad_description
varchar2(20)

ad_area
 sdo_geometry

MTG_USER

user_id
 varchar2
 PK

name
 boolean

password
 varchar2

active_profile
 varchar2

PROFILE_DEFINITION

type_id
 varchar2
 FK

profile_id
 FK

TYPE_CORE

type_id
 varchar2
 PK

internal_name
varchar2

USER_PROFILE

user_id
 varchar2
 FK

profile_name
 varchar2

profile_id
 varchar2
 PK

AD_PERIOD

ad_id
 varchar2
 FK

start_date
 date

start_time
 date

Figure 4.10: Data Model for User, User pro�le and Advertisements

does not have to be user's real name. The information about the user is stored
in the MTG_USER (MTG stands for Mobile Tourist Guide). Attribute mtg_id
stores an integer that uniquely identi�es a user. This integer is assigned by the
system when user creates a pro�le. Password and name of preference are stored
in attributes name and password respectively. Finally, the user's active pro�le
is stored in attribute active_profile.
A user can create one or more pro�les. Attributes profile_id and
profile_name in table USER_PROFILE describe unique number that identi�es
a pro�le and a name given to a pro�le by the user during pro�le creation. At-
tribute user_id is foreign key and references table MTG_USER. Pro�le consists
of a set of types of point of interest which are speci�ed by the user at the
time of creation. The types are stored in the table PROFILE_DEFINITION. At-
tribute type_id speci�es which type belongs to the pro�le stored in the attribute
profile_id.
As we said earlier, The Mobile Tourist Guide can advertise attractions, restau-
rants, cafes, special o�ers at department stores and similar. This functionality
is achieved in the form of push�ads. Tables POI_ADs and AD_PERIOD hold data
needed to implement the functionality. Attributes title and ad_description
store information that is shown to the user. When user is made aware of the
vicinity of a point of interest, the user is shown text stored in the attribute
title. If user chooses to view details of the point of interest, text stored in
attribute ad_description is retrieved. Every ad can be uniquely identi�ed by
a number stored in attribute ad_id. Attribute poi_id is a foreign key and refer-
ences table POI. User in not shown all ads stored in POI_ADs but only a subset.
Subset is determined by �ltering content of POI_ADs. One of the �lters is user
location. User is shown an ad only if the user is within ad's active area. The
active area of an ad is stored in attribute ad_area which is of type sdo_gemetry
capable of expressing most of two�dimensional shapes. Attributes in AD_PERIOD
specify the periods during which an ad is active. Database type DATE is capable

4.2. The Data Model 33

of storing year, month, day and time in one table column. Therefore, a period
can be modeled with two columns of DATE type. Attributes start_date and
end_date specify the start and of a period respectively. An ad can have multiple
periods.
Figure 4.11 illustrates data model used to implement Theme�Tour. Table
THEME_TOUR holds some information about a Theme�Tour. The Theme�Tour
time table is stored in attributes earliest_time that indicates earliest time
the Theme�Tour can start and tt_time that indicates the time needed to
complete the theme�tour. Theme�Tour description is stored in the attribute
description. Tourists identify a theme�tour by its name stored in the at-
tribute name and the system, internally, identi�es a theme�tour by a unique
number stored in the attribute tt_id. As explained in Chapter 2, Theme�Tour
is pre�visit tool that tourists can use to obtain advice on what to do. The advice
is a set of points of interest and is stored in the table TT_POI. Attribute tt_id
describes that a point of interest, stored in poi_id, belongs to a particular
theme�tour. The points of interest are visited in an order which is preserved in
the attribute sequence_number. Attributespoi_id and tt_id are foreign keys
and they reference table POI and THEME_TOUR respectively. A theme�tour con-
tains a path that is stored in table TT_PATH. A path is sequence of coordinates.
Attributes X and Y are coordinates in UTM format. Attribute corder preserves
the order of the coordinates that form a path. All records in the table which
have the same value for attribute tt_id describe path of the same theme�tour.
Attribute tt_id is a foreign key and it references table THEME_TOUR.

TEAM-TOUR

tt_id
 number
 PK

tt_name
 varchar2

description
 varchar2

earliest_time
 varchar2

tt_time
 varchar2

TT_POI

tt_id
 number
 FK

poi_id
 varchar2
 FK

sequence_number
 number

TT_WAY

tt_id
 number
 FK

corder
 number

Y
 number

X
 number

POI

poi_id
 varchar2
 PK

status
 boolean

owner_
organization
varchar2

owner_id
 varchar2

email_address
 varchar2

contact_info
 varchar2

remark
 varchar2

creation_date
 varchar2

modification_date
varchar2

booking_url
 varchar2

info_url
 varchar2

poi_type
 varchar2
 FK

Figure 4.11: Data Model for Theme�Tour

Figure 4.12 illustrates data model used to implement Tourist�to�Tourist. At-
tributes in tables T2T_PATH and T2T_POI have identical names and meanings as
the attributes in tables TT_PATH and TT_POI. Attributes t2t_id and t2t_name
in the table TOURIST2TOURIST have same meaning as the attributes tt_id and
tt_name in the table THEME_TOUR. The time when a tourist starts recording a
Tourist�to�Tourist is stored in the attributes start_time and the time when
the recording is stopped is stored in the attribute end_time. Table T2T_USER
relates the users, attribute mgt_user, with Tourist�to�Tourist they recorded
and attribute t2t_id.

34 Chapter 4. The Data Tier

TOURIST_TO_TOURIST

t2t_id
 number
 PK

t2t_name
 varchar2

start_time
 varchar2

end_time_time
 varchar2

T2T_POI

tt_id
 number
 FK

poi_id
 varchar2
 FK

sequence_number
number

T2T_WAY

tt_id
 number
 FK

corder
 number

Y
 number

X
 number

POI

poi_id
 varchar2
 PK

status
 boolean

owner_
organization
varchar2

owner_id
 varchar2

email_address
 varchar2

contact_info
 varchar2

remark
 varchar2

creation_date
 varchar2

modification_date
varchar2

booking_url
 varchar2

info_url
 varchar2

poi_type
 varchar2
 FK

T2T_USER

t2t_id
 number
 FK

mtg_id
 varchar2
 FK

Figure 4.12: Data Model for Tourist�to�Tourist

4.2.3 The External Part
As we mentioned earlier, the external part is composed of a set of materialized
views and a set of views of the internal part. In this section we describe the in-
ternal part but before that, we �rst describe the di�erence between the database
tables, views and materialized views.

Tables, Views and Materialized Views

Generally speaking, a database is collection of related data that holds facts
about a Universe of Discourse. Universe of Discourse is composed of entities
and relationships between the entities. Entities are represented by records which
are set of attributes that describe an entity. Records that describe same entity
are combined into tables. Relationships between entities are preserved via com-
mon attributes in records that describe di�erent entities. Relational-database
theory, roughly speaking, states rules how to compose attributes into records
and how to preserve the relationships. When a database is designed according
to the rules of the theory, all facts from the Course of Universe are stored in
the database once. Motivation behind this is to have consistent and easy to
update database. The tables that store information about a Course of Universe
in the described way are called base tables. Two database tabes are shown
in Table 4.6.a, table EMPLOYEE, and Table.4.6.b, table DEPARTMENT. A record
in table EMPLOYEE holds employee number, name, surname and department in
which the employee works in attributes emp_num, name, surname and dep_num
respectively. A record in table DEPARTMENT holds information about depart-
ment number, and city, street and number where the department is located in
attributes dep_num, city, street and number respectively. Fact that an em-
ployee works in a department is captured by including attribute dep_num in the
EMPLOYEE record.
Now that we have database tables and records in them, we can retrieve informa-
tion from database via SQL queries. Typically, there is more than one database

4.2. The Data Model 35

emp_num name surname dep_num
1 John Smith 001
2 Steve McDonald 001
3 Mike Corleone 002
4 Dave Jonson 003

a)

dep_num city street number
001 Toronto Oulette Ave 11123
002 Edmonton Tecumseh Road 4691
003 Vancouver Huron Road 123

b)

Table 4.6: Tables EMPLOYEE and DEPARTMENT, a and b Respectively.

user and di�erent users may be interested in di�erent subsets of database. Even
though base tables can be queried directly, access to information in a database
is, most often, given through views. A view is a named SQL expression that
provides a user subset of data that is relevant to the particular user. Main
motivation for this is security and user friendliness. By providing only relevant
subset of data to a user, the user queries become simpler and user can not get
hold of information that is not meant for the user. For example, assume that
accounting in our imaginary company is contracted out. Moreover, accounting
for di�erent departments are handled by di�erent accounting �rms. To provide
only relevant subset of data to the accountants, we can supply three di�erent
views (see Table 4.7) to three di�erent accounting �rms. Accountants that do
accounting for department with ID of 1 do not have to query table EMPLOYEE for
employees with emp_num of 1 but they query view EMP_DEP_1 for all employees.
EMP_DEP_1 is not a table but, as pointed out, an SQL expression. Every time a
query is executed against a view, the SQL expression is executed as a subquery
of the query. However, result of an SQL expression is a table and on a high
level of abstraction, a view can be thought of as a table.

EMP_DEP_1 := CREATE VIEW AS SELECT * FROM EMPLOYEE WHERE emp_num = 1
EMP_DEP_2 := CREATE VIEW AS SELECT * FROM EMPLOYEE WHERE emp_num = 2
EMP_DEP_3 := CREATE VIEW AS SELECT * FROM EMPLOYEE WHERE emp_num = 3

Table 4.7: Di�erent Views of Table EMPLOYEE

Sometimes, regardless of database design, queries are so complex that perfor-
mance of the queries is poor. To overcome this situation, we can materialize
views. To do so, we physically store result of a an SQL expression that de�nes
a view. This way, the SQL expression is not computed each time a materialized
view is queried. Consider the query from Table 4.8.

SELECT name, surname, city, street, number

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.dep_num = DEPARTMENT.dep_num

Table 4.8: Example of a SQL Query Used to Generate a View

Now suppose that this query was executed very often. Since the query involves
a join operation, it may be a bottleneck in the system. One way to eliminate
this bottleneck is to physically store the result of the query, i.e. to provide a

36 Chapter 4. The Data Tier

materialized view. Table 4.9 shows data that is physically stored.

name surname city street number
John Smith Toronto Oulette Ave 11123
Steve McDonald Toronto Oulette Ave 11123
Mike Corleone Edmonton Tecumseh Road 4691
Dave Jonson Vancouver Huron Road 123

Table 4.9: Materialized View for the View from Table 4.8

However, one needs to be careful because by eliminating one bottleneck, one can
create another one. Materialized views are not appropriate in a volatile system
since updates to base tables have to be propagated to the materialized views.
As we describe the external part, we will point out what we modeled as views
and what as materialized views and justify the modeling decision.

The Graph Representation of a Road Network

The information about a road network is stored in segment representation tables
and content tables that describe properties of the road network. Here, we present
the graph representation of a road network which is usually used to describe
how a user can move throughout the road network. In our model, the graph
representation is a materialized view derived from the segment representation
and the tables that store the relevant content.
If the graph representation models, for example, how a car can move through
a road network, then the relevant content must include information about the
intersections, allowed turns, speed limit and similar. As already pointed out,
we do not have any content that describes the road network. The only infor-
mation we have about the road network is the geometry that we used to create
the segment representation. However, the The Mobile Tourist Guide can show
closest path through the transportation infrastructure from a given point in the
transportation infrastructure to a particular point of interest and therefore we
needed to have a graph representation.
The graph representation used in this project is derived from the segment repre-
sentation. The nodes in the graph are intersections and the edges are the roads
between the intersections. Since we do not have data that describe where the
intersections are, we assumed that intersections are:

• ends of a segment,

• the points at which two or more lines that are geometrical representation
of segments intersect.

Figure 4.13 illustrates schema that models the graph. Attribute edge_id, in
table RN_GRAPH is a number that uniquely identi�es an edge and it is primary
key. Here, an edge is modeled as an ordered pair (node_from, node_to)
Attributes node_from and node_to are foreign keys that reference table
INTERSECTION. Data stored in node_from and node_to provides information
about direction of movement; a user can move from the intersection stored in

4.2. The Data Model 37

node_from to the intersection stored in node_to. Table INTERSECTION has one
attribute, intersection_id. It is a number that uniquely identi�es an intersec-
tion. Table SEG_INTERSECTION relates the intersections, and therefore the graph
representation, to the segment representation. Attribute length describes the
length of the edge.

RN_GRAPH

edge_id
 number
 PK

node_from
 varchar2
 FK

node_to
 varchar2
 FK

length
 varchar2

INTERSECTION

intersection_id
 number
 PK

SEGMENT

seg_id
 number
 PK

length
 number

SEGMENT_INTERSECTION

node_id
 number
 PK
 FK

seg_id
 number
 PK
 FK

offset
 number

Figure 4.13: Graph Representation

A road network is an entity that changes over time: roads are modi�ed, removed
or added. However, data about roads does not change often in the magnitude
that would make the database volatile; therefore, it is appropriate to model the
graph representation as a materialized view.

The Available Points of Interest

Information about the points of interest is scattered across several tables: POI,
NAME, DESCRIPTION, ADDRESS and TYPE which have to be joined in order to
retrieve comprehensive information about a point of interest. We provided a
materialized view AVAILABLE_POI to store comprehensive information about the
available points of interest (point of interest is available if the attribute value
for status in table POI is set to �TRUE�). The data stored in AVAILABLE_POI
is data that is result of the query from Table 4.10.
Schema of AVAILABLE_POI is illustrated in the Figure 4.14. The meaning of the
attributes is identical to the meaning of corresponding attributes in the base
tables described in Section 4.2.2.
Points of interest are integrated with the road network via SEG_POI table, i.e.
they are integrated with the segment representation. We provide a materialized
view, GRAPH_POI, that integrates the points of interest with the graph represen-
tation. Figure 4.14 illustrates schema that models GRAPH_POI. Attribute poi_id
identi�es a point of interest. Each point of interest is associated with an edge
which is described by edge_id. Attribute offset indicates how far from the
beginning of the edge the point of interest is placed.
Point of interest data is not dynamic. Names, descriptions, addresses, images,
contact information, booking url and similar information about points of in-
terest do not change very often. Attribute status, which indicate availability
of a point of interest, allow dynamic change of availability. Fact that informa-
tion about availability may change at any time may seem a potential source of
volatility. But, even if points of interest were changing availability often, the
e�ort to update AVAILABLE_POI is not great. When a point of interest becomes
unavailable, the records in AVAILABLE_POI associated with that point of inter-

38 Chapter 4. The Data Tier

SELECT POI.uuid, POI.owner_organization, POI.owner_id,
POI.email_address, POI.contact_info,
POI.remark, POI.creation_date,
POI.modification_date, POI.booking_url,
POI.info_url, TYPE.text type, PRODUCT_NAME.text
name, PRODUCT_DESCRIPTION.text description,
ADDRESS.sortorder, ADDRESS.place, ADDRESS.road,
ADDRESS.housenumber, ADDRESS.subcity,
ADDRESS.floor, ADDRESS.postalcode,
ADDRESS.city, ADDRESS.country, ADDRESS.x,
ADDRESS.y, IMAGE.image_data, IMAGE.image_id,
IMAGE.alternat_text

FROM POI, NAME, DESCRIPTION, ADDRESS, TYPE, IMAGE

WHERE POI.uuid = NAME.uuid AND POI.uuid =
DESCRIPTION.uuid AND POI.uuid = ADDRESS.uuid
AND NAME.countrycode = DESCRIPTION.countrycode
AND POI.type_id = TYPE.type_id AND
TYPE.countrycode = NAME.counterycode AND
POI.statues = TRUE

Table 4.10: Logic Needed to Retrieve Multilingual Information

AVAILABLE_POI

poi_id
 varchar2
 FK

status
 boolean

owner_
organization
varchar2

owner_id
 varchar2

email_address
 varchar2

contact_info
 varchar2

remark
 varchar2

creation_date
 varchar2

modification_date
varchar2

booking_url
 varchar2

info_url
 varchar2

sortorder
 varchar2

place
 varchar2

road
 varchar2

housenumber
 varchar2

subcity
 varchar2

floor
 varchar2

postalcode
 varchar2

city
 varchar2

country
 varchar2

x
 number

y
 number

image_data
 clob

image_id
 varchar2

alternat
_text
 varchar2

type
 varchar2

GRAPH_POI

poi_id
 varchar2
 FK

edge_id
 number
 FK

offset
 number

RN_GRAPH

edge_id
 number
 PK

node_from
 varchar2
 FK

node_to
 varchar2
 FK

length
 varchar2

POI

poi_id
 varchar2
 PK

status
 boolean

owner_
organization
varchar2

owner_id
 varchar2

email_address
 varchar2

contact_info
 varchar2

remark
 varchar2

creation_date
 varchar2

modification_date
varchar2

booking_url
 varchar2

info_url
 varchar2

poi_type
 varchar2
 FK

Figure 4.14: Query for The Materialized View AVAILABLE_POI

est are simply deleted. If a point of interest becomes available, then the update
procedure does not need to recompute the entire join presented in Table 4.10.
The update procedure would be restricted only to the points od interest that

4.2. The Data Model 39

changed status from unavailable to available, i.e. the update speci�es which
points of interest to update in the �where� clause. Consequently, the perfor-
mance of the update can be tuned up via indices. The information about the
points of interest changes periodically, once a day; therefore, the materialized
view needs to be updated only once a day which is acceptable in our context.
All of the facts above indicate that modeling AVAILABLE_POI as a materialized
view is an appropriate choice. Since it is appropriate to model AVAILABLE_POI
and RN_GRAPH as materialized view, the same is true for GRAPH_POI.

Time and Pro�le Filters

Earlier we explained that The Mobile Tourist Guide uses three �lters (time,
space and pro�le) to deal with large number of points of interests. Here we
describe time and pro�le �lters.
User pro�le is a set of point of interest types. As we explained, a user can have
more than one pro�le. However, a user can have only one active pro�le. The
pro�le �lter is a set of point of interest type in the active pro�le. Table 4.11
shows the query needed to compute the pro�le �lter for a particular user. The
pro�le �lter indicates what kind of points of interest the user in interested to
see at a given point in time. The pro�le �lter is a view named PROFILE. Tables
that PROFILE uses are volatile since user can switch between pro�les and change
de�nition of individual pro�les as pleased. Therefore, it is appropriate to model
PROFILE as a view.

SELECT MTG_USER.id u_id, PROFILE_AREA.p_type p_type
FROM MTG_USER, PROFILE_AREA

WHERE PROFILE_AREA.mg_user = MTG_USER.id AND
PROFILE_AREA.id = MTG_USER.active_profile

Table 4.11: Query That Retrieves the Pro�le Filter

The time �lter can be applied to points of interest and advertisements. If the
time �lter is applied to points of interest, then the time �lter is a set of attribute
values for attribute BUSINESS_HOURS.poi_id. In this case, the time �lter is
a view named ACCESSIBLE_POI, see Table 4.12, that computes identi�cation
number of all all points of interest that are accessible at a given point in time.
If the time �lter is applied to the advertisements, then the time �lter is a set
of attribute values for attribute AD_PERIOD.ad_id. In this case, the time �lter
is view named ACCESSIBLE_ADS, see Table 4.13, that computes identi�cation
number of each advertisement that is associated with a point of interest that is
accessible at a given point in time. If ACCESSIBLE_POI and ACCESSIBLE_ADS
were modeled as materialized views, they would have to be updated very often
(for example every �ve minutes) in order to store up to date information; this
justi�es the decision to model them as views.

40 Chapter 4. The Data Tier

SELECT poi_id

FROM BUSSINESS_HOURS

WHERE day = today AND start_time ≤ sysTime AND sysTime
≤ end_time

Table 4.12: Query That Retrieves the Time Filter Applied to Points of Interest.

SELECT ad_id

FROM AD_PERIOD

WHERE start_date ≤ sysDate and sysDate ≤ end_date

Table 4.13: Query That Retrieves the Time Filter Applied to Advertisements

Active Points of Interest and Active Ads

Here we present two views that provide data about comprehensive data
about accessible points of interests, ACTIVE_POI, and advertisements,
ACTIVE_ADVERTISMENTS, to the LBSs. ACTIVE_POI provides comprehensive in-
formation about accessible points of interests that are in the active pro�le a
particular user. Table 4.14 presents the view. ACTIVE_ADVERTISMENTS pro-
vides comprehensive information about points of interest that advertise and the
associated advertisement.

SELECT u_id, uuid, owner_organization, owner_id,
email_address, contact_info, remark,
creation_date, modification_date, booking_url,
info_url, type, name, description, sortorder,
place, road, housenumber, subcity, floor,
postalcode, city, country, x, y, image_data,
image_id, alternat_text,

FROM AVAILABLE_POI, PROFILE, ACCESSIBLE_POI

WHERE AVAILABLE_POI.uuid in (SELECT
poi_id from ACCESSIBLE_POI) AND
AVAILABLE_POI.type=PROFILE.p_type

Table 4.14: View ACTIVE_POI.

4.2.4 The Justi�cation
As explained, the data model consists of two parts: the internal and the external
part. The internal part is set of tables where all facts are stored in a way that
database maintenance is simple. The external part is a set of views and materi-
alized views of the internal part. Views and materialized views are provided to

4.2. The Data Model 41

SELECT ad_area, ad_title, ad_description, u_id, uuid,
owner_organization, owner_id, email_address,
contact_info, remark, creation_date,
modification_date, booking_url, info_url,
type, name, description, sortorder, place,
road, housenumber, subcity, floor, postalcode,
city, country, x, y, image_data, image_id,
alternat_text,

FROM AVAILABLE_POI, PROFILE, ACCESSIBLE_ADS,
ACCESSIBLE_POI

WHERE AVAILABLE_POI.uuid in (SELECT poi_id from
ACCESSIBLE_POI) AND POI_ADs.ad_id in
(SELECT ad_id from ACCESSIBLE_ADS) AND
AVAILABLE_POI.type=PROFILE.p_type AND
AVAILABLE_POI.uuid=POI_ADs.poi_id

Table 4.15: View ACTIVE_ADS.

support simpler software development and more e�cient query processing. In
this section, we justify these claims.

The Internal Part

The internal part of the model supports simple update with respect to content
and position of content in a road network. In order to add to content, only two
insert operation would need to be performed: insert a record in Table CONTENT
and insert a record in Table POINT_EVENT or LINEAR_EVENT. Similar steps are
needed to delete content. Changes to a road network are somewhat more com-
plicated but road networks do not change often and most of the changes are
not signi�cant. It is important to realize that most information about road net-
work is stored as content and that changes to segment representation are made
only when geometry of the road network changes. We distinguish between two
types of changes of segment representation: adding a new road and reshaping
of the existing roads. Adding a new road would not cause a change in the exist-
ing CONTENT tables and only new tuples would need to be inserted to describe
the new segment. Modifying an existing segments is not hard either. There
are two things that need to be done here. First we need to modify tuples in
table SEGMENT. Depending on whether segments are joined or divided into sev-
eral segments, tuples are deleted or added in table SEGMENT respectively. Also,
CONTENT tables need to be updated which requires resetting seg_id and offset
attributes in the POINT_EVENT and LINEAR_EVENT tables. Reader should realize
that all of the steps needed to modify segment representation require simple
computation and single scans through the relevant database tables.
The internal part of the model is easy to extend. To add a new category of
content, one simply needs to add the new content entity to the model and a new
relationship between the content and the segment representation which will not
cause changes to the existing model. If the new content needs to be described

42 Chapter 4. The Data Tier

with more then one entity, then the entities describing it will be related to that
content and possibly to other content; but, they will not cause changes to the
existing model.

The External Part

As already mention, an LBS uses data that describes road network and content.
Development of an LBS on the top of the internal part has following weaknesses.
First, depending on purpose of an LBS, each LBS needs a subset of data from
the base tables. Consequently, developer would be exposed to the data that does
not concern the LBS. Second, the relevant subset of data may be also large and
hard to comprehend. For example, in order to compute allowed turns in a road
network, developer would need to query table SEGMENT and di�erent CONTENT
tables. Moreover, the result of the queries would need to be processed in order
to compute desirable result.
One way to avoid these pitfalls is to provide di�erent materialized views to
di�erent LBSs. Each materialized view is a di�erent representation of the road
network or content that summarizes necessary data about a road network or
content from a particular LBS perspective. It is also important that a particular
materialized view is created in a way that relevant queries become simple and
e�cient. We demonstrate this concept by an example. Consider the query
that retrieves content associated with an edge in the graph representation of a
road network. This type of query is relevant to the nearest neighbor and the
shortest path procedures. First we explain what queries are needed to retrieve
this information if the information is retrieved directly from the internal part;
then, we explain what queries are needed to retrieve the information if the
information is retrieved from a materialized view.
Suppose that a user is traveling on an edge e. Then to retrieve content associated
with the edge e, we need to go through three step. The �rst step is to associate
the edge with the segment. The query in Figure 4.15.a does this. The second
step is to compute o�sets of the two nodes associated with the edge. The
queries in Figure 4.15.b do this. At last, the query in Figure 4.15.c retrieves
content associated with the edge. If we were to retrieve the same information
from the materialized view RN_POI, then the only query needed is the query in
Figure 4.15.d. From this example one can see merits of the external part.
The graph representation of the road network has has same e�ect as the RN_POI.
For example, to compute allowed turns at an intersection, one would have to
query the segment representation of the road network and di�erent content
tables that store data about tra�c directions, tra�c signs and similar.
In Section 4.2.2 we described schema that models points of interest and in Sec-
tion 4.2.3 we described materialized view that pre-joins the information about
the point of interests in a single table AVAILABLE_POI. If a LBS queries the inter-
nal part to retrieve the information, then join in the Table 4.10 needs to be exe-
cuted every time the query is executed. But, if the LBS queries AVAILABLE_POI,
then the join is executed once a day because the information about points of
interest changes once a day.
The external part is not composed only of materialized views. If the informa-

4.3. The Value Chain 43

segId
:=

SELECT
 seg_id

FROM
 SEGMENT_TRAFFIC-NODE

WHERE
 NODE_ID
 =
node_from

INTERSECT

SELECT
 seg_id

FROM
 SEGMENT_TRAFFIC-NODE

WHERE
 NODE_ID
 =
node_to

SELECT
 *

FROM
 CONTENT_LINK

WHERE
 LINK_ID =
 link_id

SELECT
 *

FROM
 SEGMENT_RESTAURANT

WHERE
 SEG_ID
 =
 segId
 AND

 OFFSET
 £
 offsetFrom
AND

 OFFSET
 £
 offsetTo

offsetFrom
:=

SELECT
 OFFSET

FROM
 SEGMENT_TRAFFIC-NODE

WHERE
 NODE_ID
 =
 node_from

offsetTo
:=

SELECT
 OFFSET

FROM
 SEGMENT_TRAFFIC-NODE

WHERE
 NODE\ID
 =
 node_to

a)
 b)

d)
c)

Figure 4.15: Query Simpli�cation

tion in a table in the internal part is volatile, then the queries that access data
from this table should not query materialized views but only views. This is the
case with the temporal data and pro�le management. Earlier, we presented two
views that use time and pro�le �lters to provide the currently accessible adver-
tisements (ACTIVE_ADS) and currently accessible points of interest (ACTIVE_POI)
that are in the user's pro�le. These views do not improve query e�ciency but
rather provide a friendly interface to a complex queries and therefore simplify
software development.

4.3 The Value Chain
So far we presented the source data, the format in which the data are stored
and the format in which the data are delivered separately. In this section we
present the entire data value chain. The links in the data chain are either data
or procedures that keep the data up to date. The �rst link in the data chain
is the source data and the last link is the external part that serves data to a
particular LBS in the format most suitable for the particular LBS. The links in
the middle are the internal part and two sets of procedures that keep the data
up to date. Following describe the value chain in two steps:

• transformation of the source data to the internal part, Section 4.3.1

• transformation of the internal part to the external part and delivery of
the data to the location based services, Section 4.3.2.

44 Chapter 4. The Data Tier

4.3.1 The Internal Part Maintenance
As presented in Section 4.1, the system takes input from di�erent sources. The
source data is the �rst link in the value chain, see Figure 4.16. The second link
in the chain is a set of procedures that take as input the source data, process it
and store it in the database tables in the third link. The database tables in the
third link form the internal part presented earlier. The second link in the chain
is capable of generating and updating the third link.

Poly Lines

User Input

XML

Advertisers

Input

Tourist

Bureau

Tourist-to-

Tourist

CONN

SEGMENT

SEG_GEOMETRY

SEGMENT_CONNECTION

POI

TYPE

AREA

NAME

IMAGE

ADDRESS

AREA_TYPE

TYPE
_CORE

AREA_CORE

DESCRIPTION

SEGMENT_POI

BUSINESS_HOURS

MTG_USER

USER
_PROFILE

PROFILE
_DEFINITION

POI_ADs

AD_AREA

T2T_WAY

T2T_POI

TOURIST
-TO-TOURIST

TT_WAY

TT_POI

TEAM-TOUR

Link 1
 Link 3
Link 2

Advertisement

Generator and Updater

Team-Tour

Generator and Updater

Tourist-to-Tourist

Generator and Updater

Profile

 Generator and Updater

Road Network

 Generator and Updater

Point of Interest

Generator and Updater

Figure 4.16: Value Chain: Internal Maintenance

4.3.2 The External Part Maintenance
The external part is the �fth link in the chain. As described earlier, the external
part is a as set of views and materialized view that are derived form the internal
part and maintained through SQL queries and sophisticated procedures, see

4.3. The Value Chain 45

Figure 4.17. The queries and the procedures form the fourth link in the chain.
Second and and fourth links of the chain are the mechanism that keep the data
up to date.

POI

TYPE

NAME

IMAGE

ADDRESS

DESCRIPTION

CONN

SEGMENT

SEG_GEOMETRY

MTG_USER

PROFILE_FILTER

AD_PERIOD

BUSINESS_HOURS

AVAILABLE_POI

Graph Representation

 Generator and Updater

Profile Filter Query

POI Time Filter Query

POI_AD Time Filter Query

NODE

RN_GRAPH

SEGMENT_NODE

PROFILE

ACCESSIBLE_POI

ACCESSIBLE_ADS

ACTIVE_POI

ACTIVE_ADS

Generator and Updater

ACTIVE_ADS

ACTIVE_POI

Generator and Updater

SEGMENT_POI

AVAILABLE
 _POI

 Generator and Updater

GRAPH
 _POI

 Generator and Updater
 GRAPH_POI

Link 3
 Link 4
 Link 5

Figure 4.17: Value Chain: External Maintenance

As explained earlier, the LBSs mainly access the external part. Figure 4.18
illustrates the external part, LBSs and the relationship between them.

46 Chapter 4. The Data Tier

T2T_WAY

T2T_POI

TOURIST_TO_TOURIST

TT_WAY

TT_POI

TEAM_TOUR

AVAILABLE_POI

ACTIVE_ADS

ACTIVE_POI

PHOTOS

Remember Your Visit

The Photo Repository

Team Tour

The Mobile

Electronic Guidebook

The Advertiser

The Explorer

The Object Finder

Tourist-to-Tourist

NODE

RN_GRAPH

GRAPH_POI

Link 5

Figure 4.18: Value Chain: Data Delivery

Chapter 5

Client Application

In the project report from previous semester we described several general func-
tionalities of a client since our prototype was in a very early stage of develop-
ment [26]. Client's purposes were mainly to successfully communicate with a
server. The data that was exchanged were current user's position which client
had to report to the server. This was followed by server sending a scalable vector
graphics (SVG) page to the client. The SVG page contained some information
on the available services as well as references on how to access them (web links).
According to user's geographical location at the time of service request, it was
server's task to compute how client should retrieve a map from the web service
provided by Kort og Matrikelstyrelsen and generate a link that was included in
the SVG page.
We have continued working with the SVG browser on the client and extended
the functionalities to accommodate the needs described in Chapter 2. Following
sections describe the client architecture and functionalities.

5.1 Client Architecture
Figure 5.1 illustrates an extract of the implemented classes in addition to the
SVG browser. SVG browser is using BitFlash Player technology to parse and
display SVG pages. Their software development kit provides interfaces for ma-
nipulation of XML based language (SVG DOM). Furthermore the SVG browser
provides interfaces for communication with a GPS receiver over a bluetooth net-
work and connection to mobile Internet � GPRS. These functionalities provide
an architecture that is extendible with desired services.
The extract of the implemented classes from Figure 5.1 shows that we have
implemented all our services as one extension module to the SVG browser. Our
services, such as the digital guide book, tour recorder, etc. could easily be
implemented separately. However we found it much easier to implement all our
services as extensions to the general service from our previous work [26], since
it provided basics for the functionalities that all other services are based upon
� map updating, SVG page updating and reporting to the server.
Following sections describe classes that provide general functionalities of the

47

48 Chapter 5. Client Application

SVG Browser

Wireless Connector

GPS Communicator

Display

SVG Parser

ServiceInitializer

Start()

Stop()

NotifyDocumentLoading()

NotifyLoadingFinished()

GPSLoadReceiver()

GPSUnloadReceiver()

DataExtractor

ExtractPOIInfo()

ExtractPOIZones()

ExtractPOIGraphics()

ExtractButtons()

Displayer

DisplayPOILocations()

DisplayPOIInfo()

DisplayAddGraphics()

Updater

CheckMap()

CheckNewPageRequired()

ReloadPage()

NotifyServer()

EventHandler

NewCoordinateEvent()

MouseClick()

MouseOver()

MouseOut()

Figure 5.1: Class Diagram Representing Client Application

implemented extension to the SVG browser.

5.1.1 ServiceInitializer
As the name implies ServiceInitializer class is used to initialize the services.
Its purpose is to extend several interfaces provided by the SVG browser that
are needed by the rest of the client architecture. It also controls the application
�ow by making calls to the functions of the underlying classes.
When SVG browser application is started it recognizes the extended services
and prompts the user to start a service (illustrated earlier in Figure 2.2). After
user chooses a service Start() function is called and ServiceInitializer takes
over control of the browser. The GPS receiver is initialized as well.
Every time the GPS receiver reports arrival of a new coordinate, a
NewCoordinateEvent() is generated in the application. The event is handled
by the EventHandler class which pulls out the values of the retrieved GPS co-
ordinate. These values are sent to the Updater class which �nds out that no
previous coordinate exists � hence a new page has to be requested from the
server. Finally ReloadPage() collects the data that describes the current state
of the client and sends a HTTP request to the server with appropriate param-
eters, so the server knows that new user is active and requesting services. At
the initialization stage of the client state data are user's id and geographical
location.
When ReloadPage() function is called, a new page (start page) is requested and
before an answer arrives from the server (in form of a service or that the server is
down etc.) the application has nothing to do, so it is stalled for a period of time.
This means that the control is returned to the SVG browser � more exactly the
module for GPRS connection. When a server sends an answer in form of an SVG

5.1. Client Architecture 49

page, once it passes the SVG parser, ServiceInitializer gains the control of
the application again since it extends the interfaces NotifyDocumentLoading()
and NotifyLoadingFinished().
In case of no reply from the server a timeout occurs in the module for GPRS
communication which will returns control to the SeriveInitializer by gener-
ating an SVG error document � NotifyLoadingFinished() is activated.
When server answers with a document and it is completely retrieved by
the client, it is validated, parsed and SVG graphics displayed by the parser
and display module of the SVG browser. While this is taking place
ServiceInitializer perceives it as if the document was still loading � hence
it is still stalled. After the document is validated, NotifyLoadingFinished() is
invoked and control returned to the service. In case of document being invalid,
an SVG error page is generated and returned to the service. Following sections
describe how client components handle data in valid SVG pages.

5.1.2 Updater
Updater class has two purposes � to check whether an update of data or the
map is required and if so to initiate a connection to the internet in order to
retrieve new data. Map retrieval is covered in Section 5.2.
CheckNewPageRequired() function implements the part of the algorithmic
strategy related to the client that is discussed in Chapter 7. One of the objects
that DataExtractor extracts from the SVG document is the update threshold
which was decided by the continuous update method based on the density of
the points of interest, Chapter 7. Whenever points of interest are present in the
SVG page this check for update will be initiated on every coordinate event.
There are two ways of communicating with a server. Client can make reports
to the server. For instance, when in tour recording mode (see Figure 2.3) where
user's movement history is recorded by the server, client periodically reports
geographical locations to the server and facilities that were of user's interest.
On these occasions the client does not receive an answer from the server. The
reporting is implemented in the NotifyServer() function which sends all the
GPS related data that is cached in the client's main memory for the purpose of
server's recording of it.
The other way of communicating is by sending a request to the server in which
case the server responds with an SVG page. This can be initiated by one of the
functions that check for necessary update, by user requesting a path to one of
the provided points of interest or by user requesting a new service.
NotifyServer() and ReloadPage() functions are extensions to DataRetriever
interface provided by the SVG browser's module for Internet connection.

5.1.3 DataExtractor
All the data that is used by our services has to bypass the SVG parser, since
SVG parser will go through a page, �nd all graphical elements and display them.
The data needed by the implemented services must not be modi�ed in any sense
by the SVG browser in order to be delivered to the classes for data processing.

50 Chapter 5. Client Application

Once the data is passed to the classes, we can use SVG DOM API module which
is provided by the BitFlash Player to �nd the data that server has sent to the
client. SVG DOM builds up a DOM tree which is an internal representation
of data in memory that is structured as a logical tree. The root of the tree is
Document and the DOM speci�cation is mostly organized around the descen-
dants of the Document � namely Nodes. Three functions are mostly used to
traverse the nodes of the DOM tree and to extract the values of interest �
getFirstChild(), getNextChild() and getNodeValue().
DOM trees are very well known from XML technology which is widely accepted;
mostly used as a standard for data exchange between applications from di�erent
vendors or applications developed for di�erent platforms � applications using
di�erent business rules for data storage. The only way for such applications to
understand each other's data is by parsing each other's XML documents. Hence
by encoding data in SVG format and bypassing the SVG parser we are still using
the XML technology which means that our system is not strictly dependent on
the SVG browser. Many of the implemented rules for data exchange, which
are the basics for the working services, are reusable in case of other types of
clients. We know that hardware is rapidly getting stronger thus exchanged.
Our platform leaves the �eld open for future development.
DataExtractor class is mostly consisting of helper functions that traverse the
DOM tree, �nd elements of interest and extract the data from them or store
pointers to them for quicker access. In Section 6.1.4 we look at an example
of the SVG page that server returns to a client. Functions provided by the
DataExtractor go into such �elds of an SVG page.
ExtractPOIInfo() �nds title and information of points of interest. The data is
used for displaying so only pointers to the graphical representation are passed
to Displayer class.
The purpose of ExtractPOIZones() is to �nd zones of delivered push�ads. In
Section 6.1.4, Figure 6.3 we look at an example of an SVG page being sent to the
client. Geographical zones related to the points of interest are encoded within
geo�locations element. ExtractPOIZones() traverses the zones as a linked
list and checks whether user is currently in one of the ad�zones from the list.
In case that user is not in a zone it extracts the distance to the nearest zone
and remembers user's position. These values are used as a threshold for when
to perform the next check. On every coordinate event user's geo�location will
be checked against these two values. When user's distance to the remembered
location is at least the distance to the closest zone from the perspective of the
remembered location, the zone list is traversed again. In this way we minimize
the computational overhead that will otherwise occur on every coordinate event.
Flowchart in Figure 5.2 illustrates the idea behind the algorithm.
ExtractPOIGraphics() looks for the graphical representation of POIs. Just as
POI info data, once pointers for these are found they are sent to Displayer.
Furthermore mouse events are assigned to these elements (e.g. if a user clicks
on a representation of a point of interest, name and information associated to
the POI will pop up on the screen; Figure 2.3).
ExtractButtons() looks for the extra button graphics included in the SVG
pages and assigns mouse listeners on their content making it interactive.

5.2. Retrieving and Handling Maps 51

5.2 Retrieving and Handling Maps
We had four di�erent ideas on how maps could be used by the client. We have
experimented on three of them and implemented two.

• Include a link to KMS server into SVG pages that client would visit in
order to get a map that will cover the screen.

• Upload maps covering areas of interest on the client and as user moves
through the map covered areas maps are retrieved from the secondary
memory.

• Map caching algorithm that converts user's surroundings in a grid system
and keeps maps of visited areas. As user moves through the grid, cor-
responding maps are downloaded and displayed. In case user goes back
to previously visited area local map pieces covering client's screen are
retrieved from the secondary memory.

• User enters a route into a system. Route is converted into grids and
required maps downloaded before even reaching the locations. As the user
moves along the route corresponding maps are retrieved from secondary
memory.

5.2.1 Temporary Maps of Screen Size
Ideally the task of map retrieval would be client's alone, however the implemen-
tation of the top most method from above is in our case carried out on both
server and client, due to SVG browser's limitations which are covered in Section
5.3; more speci�cally SVG browser being unable to make hard modi�cations on
the retrieved page and reload it. This means that a link to an image, either
local or remote, cannot be modi�ed by the client and then processed.
In order for the method to work, client and server have to agree on three pa-
rameters � size of the image (resolution), scale (in meters per pixel) and user's
geographical location at the time of request. When client requests a page with a
map, the server will calculate correct link request for the KMS server according
to the speci�cations [18] and include it in the SVG page that is sent back to the
client. Client will parse the link and download the content. Examples of a link
and corresponding image are given in Figures 5.3 and 5.4.
In order to present user motion in this mode, movement of user�icon has to
be animated and all other objects on the screen �xed. The method is fairly
simple to implement. The client holds on to the coordinate that was used at the
map request time and by knowing the scale of the image we can calculate the
top left map coordinate and translate the image and user�icon into the screen
coordinate system.
In the examples from Figures 5.3 and 5.4 the scale is 8 m/pixel. The bbox
argument in the link is the bounding box of the image requested from the KMS
server. First two values are x and y coordinates of the lower left corner of the
image and the other two are x and y of the upper right corner in UTM format.
We can get the scale by subtracting the x coordinates and dividing them with

52 Chapter 5. Client Application

the width of the image. Hence, (560645− 559269)/172 = 8. Similarly knowing
the scale, user's position is easily translated into the screen coordinates.

userX_Screen = (userX_UTM - lowLeftX) / scale

userY_Screen = (upRightY - userY_UTM) / scale

On every coordinate event we calculate user's position with respect to the
screen's coordinate system. We keep the of track whether a user has reached
the edge of the screen and if so update the map. The drawback of this method
is that it is only suitable for pedestrians. Any faster moving user would reach
the edge of the screen very quickly. This situation can be remedied by having
maps of smaller scale, however the maps would be less detailed and only main
roads would be included. Since Mobile Internet technology is still relatively
new on the market and slow, faster moving users would spend more time on
downloading the maps rather than viewing them. As computer technology is
growing stronger and faster then ever before, so this might not even be an issue
in a near future.

5.2.2 Fixed Local Maps
Maps demand most on�line time since once the map retrieval method is chosen,
they will most likely be of �xed size and user's are very likely to exit their
covering area unless the maps are very big. It is also a service that will be used
most of the time on the client.
In order to minimize the on�line time we still wanted to provide a solution such
that maps would not need to be requested very often. Since our content data is
covering the city of Aalborg we designed a solution that will work for a speci�c
area of Aalborg. However, any other location which is of relevance to service
providers can be handled just the same. Maps of Aalborg are uploaded on the
client and used whenever applicable. In order to bypass the limitations of the
SVG browser, like in previous method server and client have to agree on map
dimensions and the area they are covering.
Simple solution for this method would be to have a single map that would cover
entire city. We discus the main and secondary memory issues of the client in
Section 5.3. By looking at Figure 5.5 it seems that it would not be a problem to
have one jpeg image of scale 8 m/px to cover 64 km2 since it will only occupy
181 kb of main memory. The problem is that all images are converted to bitmap
format before being displayed on the screen. A resolution of 600 x 600 pixels
causes already serious reductions in performance.
We strived to have approximately 800 kb of free main memory and chose to cover
approximately 50 km2 of Aalborg that are mostly covered with some content
data. This resulted in having four images of 500 x 500 px with scale of 8 m/px
taking approximately 730 kb in bitmap format.
To animate user movement in this mode, we chose to do it in the opposite way
as was described in the previous section. We �x the user�icon in the center
of the screen and translate movement of map and POIs with respect to user's

5.3. Limitations of SVG Browser 53

position.
Working with one image at a time requires that images overlap. If we chose
to cover the entire screen in every possible situation we would have very little
unique space for each map, since we simply could not have made maps bigger
because of the memory restrictions. We chose overlaps of 88 px in x axes or 704
m while y is 94 px or 752 m. The equation for overlaps is given in Figure 5.6.
Figure 5.7 illustrates 4 maps with overlapping areas. Maps' boundaries are
colored in 4 colors red, blue, green and purple. Black line between overlapping
areas is the map zone delimiter for each map. Small rectangle with the dot in
the center is the client screen and white area is the visible map area. When user
crosses the delimiting line a request for new map is sent to the server. Between
25% and 50% of the screen will be covered with map on line crossing. The worst
case occurs when user reaches crossing point of the delimiting lines.

5.2.3 Dynamic Map Caching in Grid Representation
In case of many local maps, method from Section 5.2.2 is space ine�cient, since
there is a lot of overlapping areas. Better solution is to have connected maps
�lling out the grid space like in previous method. Animation in this method
works just like in the previous one. User icon is �xed while maps and POIs are
indented.
The method works by checking whether a map has been downloaded previously,
corresponding to user's location, and if so loaded into memory. Milestones
as for how maps should be downloaded have to be determined. For instance
a map should be 2000 m x 2000 m and its top left coordinate dividable by
2000. So if user's coordinate is (559957, 6319466) a check is made whether map
named 558000_6320000.jpg exists in the local repository and if not such map
is downloaded and stored under the same name.
Next step is to cover the entire screen, and as we have seen in previous method
it is not possible with a single map with no sharing areas. The idea is to have
a map peace slightly bigger than the screen area. In this case single map can
cover the entire screen whenever user exits the map area, next map peace is
loaded into memory as well. Correct map piece is found by checking locations
of the four screen corners. They are translated to UTM coordinate system and
compared with map�grid rules. Figure 5.8 illustrates the idea.
This method gives only sense when it is server independent, since its purpose
is to minimize the connection to the internet. Otherwise whenever user reaches
a map boundary the server would be consolidated and we are back to the very
�rst method. It is also essential that the developer has complete control of the
memory resident objects in order to load and unload correct maps at any time.

5.3 Limitations of SVG Browser
SVG browser is still at a prototype stage, so even though it provided an easier
approach for our implementing of the services on the client, there are still couple
of lacks regarding its functionalities.

54 Chapter 5. Client Application

At the current stage the only way of reading a server response is through SVG
pages. This fact is a big de�ciency with respect to the size of data that is
being exchanged. Every time a new page is downloaded it is also automatically
displayed by the BitFlash's SVG Player. This means that the old page has to be
discarded, hence all the graphics are lost. So every time server has to generate
an SVG page, it has to include all the graphics that the client was displaying a
moment before requesting an update.
An SVG page must have a reference to a local image in order to display it. All
the references to local images are automatically processed on page load, hence
even if images are not visible (e.g. maps covering areas outside current view)
they will be loaded into main memory of the client. We could not �nd a way
to bypass the tight implementation of page loading in order to free up the main
memory and load only parts of data that might be needed at the moment. Hence
a map caching algorithm is not implementable without dramatically decreasing
the performance of the client.
Main and secondary memory of the client are one and same thing. In the next
version of SVG browser access to the extended memory would be desired. We
have noticed that performance of the SVG browser dramatically decreases as
the size of available main memory drops. There are approximately 3 Mb of
free memory when the browser is installed and when the application is run it
occupies approximately 1.5 Mb of main memory. When the amount of main
memory drops down to 600 kb, the client response time becomes very slow.

5.3. Limitations of SVG Browser 55

Compute user's distance

to the coordinates from

previous check (oldX, oldY)

Wait for

NewCoordinateEvent()

NewCoordinateEvent()

is ad valid?

yes

no

getAdStatus()

poiX = getPOIX()

poiY = getPOIY()

ad_radius = getAdRadius()

yes
d <= ad_radius?

no

calculate user's

distance d to POI

status = = 1?

yes

no

calculate user's distance

to the zone; distToZone

distToZone <

closestZone?

closestZone =

distToZone

yes no

currentAd = nextAd

currentAd = firstAd

Remember user's

coordinates as (oldX, oldY)

distance <= closestZone?

yes

no

change ad status to 0

and display ad info

Figure 5.2: Flowchart of ExtractPOIZone() Function

56 Chapter 5. Client Application

<svg>

 ...

 <image id="bg_map" x="2" y="2" width="172" height="184"

 xlink:href="services/aalborg_guide/srv.jpg"/>

 <text id="bg_map_url" visibility="hidden">

 http://kortforsyning.kms.dk/service?

 wmtver=1&request=map&servicename=D_50&srs=EPSG:32632&

 bbox=559269.0,6318730.0,560645.0,6320202.0

 &width=172&height=184&exceptions=INIMAGE

 &format=JPEG&jpegquality=20

 </text>

 ...

</svg>

Figure 5.3: Example of a Link to KMS Server Included in the SVG Page

Figure 5.4: Image Corresponding to the Link from the Example of Figure 5.3

px/side 125 250 375 500 625 750 875 1000

JPEG kb 4 13 29 52 79 112 148 181

BMP kb 46 184 414 733 1146 1650 2246 2930

km 1 4 9 16 25 36 49 642

Figure 5.5: Relation between Image Resolution and Size in Bitmap and Jpeg
Format with Image Scale of 8 m/px

overlapX_UTM = (screenWidth / 2) * scale

overlapY_UTM = (screenHeight / 2) * scale

Figure 5.6: Equations for Calculation of Minimal Map Overlap in UTM Format

5.3. Limitations of SVG Browser 57

Figure 5.7: Overlapping Images

Figure 5.8: Dynamic Map Caching

58 Chapter 5. Client Application

Chapter 6

Server Components and
Services

As mentioned earlier in Chapter 3, our server architecture is divided in three
tiers � data, component and service tier. We have already explained the data
tier in Chapter 4. In this chapter we cover the details of the component tier
and service tier.

6.1 Components
The purpose of the components is to provide functionalities that can be reused
to compose di�erent location based services. The choice of the components
re�ects on the queries that a tourist can ask in a road network. Examples
of these queries were given in Chapter 1. Reusability of the components allows
rapid development and integration of location based services. Following sections
describe the components providing the functionalities of the server logic.

6.1.1 Map Matching
As already mentioned, user's location is essential in context of LBSs. The sys-
tem we developed in this project serves the users in a road network. Therefore,
the system must be aware of the users location with respect to the road net-
work. In our case, the user's location is reported by a GPS receiver. Ideally, the
location provided by GPS could be used to locate where is the user in the road
network. However, there are two obstacles to carry this out: inaccuracy of GPS
receivers and inaccuracy of road networks. To deal with this problem, we de-
veloped a Map Matching component that takes GPS data as input and outputs
the user's position in the road network via public function mapMatch(GPS) that
uses map matching techniques. Since this is one of essential components in the
system, we took in consideration many factors that have in�uence on the re-
sult of this functionality and developed a sophisticate map matching techniques
that provide accurate results. Chapter 8 presents the details about the map
matching.

59

60 Chapter 6. Server Components and Services

6.1.2 Space Filter
As already mentioned, we use time, pro�le and space �lter to determine a rele-
vant subset of data for individual users. The time and pro�le �lters are described
in Chapter 4. Here, we describe the basic functionality of the space �lter.
The space �lter determines what points of interest are within a geographical
window where the user is placed in the center of the window. Here we present
three public function in component Space Filter that provide the functionality
needed to determine the geographical window and the points of interest within it.
Later in Chapter 7, we describe the techniques used in more details. The three
public functions are: getActive(), getAvailable() and getPOIAlongPath().
getActive() is used in services where users' pro�le plays a role. The func-
tion applies the space �lter to advertisements and points of interest in views
ACTIVE_ADS and ACTIVE_POI. The data from ACTIVE_ADS and ACTIVE_POI
are retrieved trough functions getActiveAds() and getActivePoi(), from
Database Interface component, described in Section 6.1.8, respectively.
getAvailable() is used in services where users' pro�le does not play any
role. The function applies space �lter to the point of interest in materialized
view AVAILABLE_POI through function getAvailablePoi() from the Database
Interface component.
getPOIAlongPath function is used to retrieves points of interest and advertise-
ments along the path in the services that use a path.

6.1.3 Shortest Path
Component Shortest Path provides functionality that computes the closest
path between two points in a road network. In the case of The Mobile Tourist
Guide, the two points are the point at which the user is placed and the point at
which the point of interest that the user requested is placed. This functionality is
provided through the public function getShortestPath(). Figure 6.1 illustrates
the component.
To compute the shortest path, the component uses the graph representation
of a road network, materialized views RN_GRAPH and GRAPH_POI that associate
points of interest with the graph representation. Two functions in the Database
Interface, getOutgoingEdges() and exploreEdge(), provide functionality
that retrieves all edges with same attribute value for attribute node_to and
content associated with an edge respectively. The �gure also illustrates the pri-
vate functions used internally by the component. getShortestPath() takes as
input point at which the user is placed and poi_id of the point of interest, and
outputs the shortest path between them.
Before we describe how the getShortestPath() functions, we de�ne path,
distance and path_record. The path describes how a user can reach from
one point to the other through the road network and is a sequence of edges
where an edge is a row of RN_GRAPH. Path also satis�es the following property:
edgei.node_from is the same value as edgei−1.node.to, where 1 < i ≤ n and n
number of edges in the path. The distance is sum all lengths of links in a path.
Path_record is record with two �elds: path and distance.

6.1. Components 61

get Shortest Path(seg_id,

offset, poi_id, x, y)
 path

removeShortest
(path_list)

append(path,
 edge.id
)

getCurrentlyShortest
(path_list)

removeLonger
(path_list, distance)

add(path_list, path, distance)

convert(path_record)

Figure 6.1: Shortest Path Component

getShortestPath() attempts to reach the point of interest by attempting to
explore all paths that can be reached from the ending nodes of the edge that
the user is traveling on. The paths are stored in the variable path_list.
When the point of interest is found, getShortestPath() stores this path in
the variable result. Then, the algorithm attempts to reach the point of in-
terest by some other path that is shorter then the path in result found so
far. getShortestPath() does this by removing all entries in the path_list
which distance �eld is greater the the distance �eld of the result and exploring
paths that are shorter that the path in result. Once the path_list is empty,
getShortestPath uses convert function to transforms the sequence of links into
format that the user can understand. For example, convert can convert a se-
quence of links into sequence of coordinates that are displayed on a map, textual
description of the path, voiced base description and so on. Table 6.1 shortest
path presents the details of the function. At last, getShortestPath returns the
path in desired format and terminates.

6.1.4 SVG Encoder
The task of the encoder component is to encode data in a format understandable
by clients. In our case since we are dealing with SVG technology, this component
will encapsulate the data processed by other components into SVG format. SVG
format is mainly used to display graphics, however as a standalone technology
the standard does not provide, capability for interaction. This means that in
order to provide interaction, the graphical and non�graphical data must be
reprocessed by the client. Hence, not only must the data comply with the SVG
standard in order to be displayed, but an additional data encoding format must
be invented so that data can easily be accessed by the client.
This component has therefore two purposes. One is to generate the SVG graph-
ics that will be displayed by the client and another one is to encode the additional
data that is processed by the client. Figure 6.2 illustrates the SVGEncoder com-
ponent.
The component provides a single public function � generatePage() � which
generates the entire page. Inputs of the component are ads and POIs objects
and user's geographical location as x and y coordinates in UTM format. Objects
ads and POIs are records of ad and POI data. ads consists of short and long ads,
while POI data record contains ids, names, descriptions and UTM coordinates
of the POIs.

62 Chapter 6. Server Components and Services

getShortesPath(seg_id number, o�set number, poi_id varchar2, X number, Y number)

path_list; list of path_records
result; a path_records
iterator; Structure capabale of holding multiples records of RN_GRAPH
content; Structure capable of holding a record of RN_POI
edge; Structure capable of holding a record of RN_GRAPH
shortest; a path_records
found := false; boolean
poi_found := false; boolean

BEGIN

1. Compute the link on which the user is travelling and store it in edge;

2. content := exploreEdge(edge)

3. if poi_id in content then RETURN portion of the edge between the user and the point of
interest;

4. add (path_listedge.id, edge.length)

5. while(NOT found)

(a) shortest:= getCurrentlyShortest(path_list);
(b) iterator := getOutgoingEdges(shortest.path.last_edge.node_to);
(c) removeShortest(path_list);
(d) while(iterator not empty)

i. edge := iterator.nextEdge;
ii. add(path_list, append(shortest, edge.id), shortest.distance + edge.length);
iii. content := exploreEdge(edge);
iv. poi_found := poi_id in content;
v. if(poi_found and result.distance > (shortest.distance + edge.length))

A. found := true;
B. result := shortest;
C. append(result.path, edge.id);
D. result.distaance := result.distaance + edge.length;

6. while(path list is not empty)

(a) removeLonger(path_list, result.distance);
(b) shortest:= getCurrentlyShortest(path_list);
(c) iterator := getOutgoingEdges(shortest.path.last_edge.node_to);
(d) removeShortest(path_list);
(e) while(iterator not empty)

i. edge := iterator.nextEdge;
ii. add(path_list, append(shortest, edge.id), shortest.distance + edge.length);
iii. content := exploreEdge(edge);
iv. poi_found := poi_id in content;
v. if(poi_found and result.distance > (shortest.distance + edge.length))

A. found := true;
B. result := shortest;
C. append(result.path, edge.id);
D. result.distaance := result.distaance + edge.length;

7. return convert(result)

END getShortesPath;

Table 6.1: getShortestPath() Function that Computes the Shortest Path be-
tween Two Points in the Road Network

6.1. Components 63

generatePage(x, y, ads, POIs)

convertName(name)

convertDescription(description)

generateButtons()

generateGraphics()

convertShortAd(shortAd)

convertLongAd(longAd)

openSVG()

closeSVG()

SVGPage

Figure 6.2: SVGEncoder Component

An example of an extract of a generated SVG page is illustrated in Figure 6.3.
In the �gure on can see that the data consists of three main elements. The top
most element background-graphics is generated by the generateGraphics()
function of the SVGEncoder. Second element poi-info contains various infor-
mation about points of interest such as names, descriptions, ads etc. Finally
the third element geo-locations contains geographical information about the
included POIs. The data is generated by combinations of calls to the convert
functions.
Considering the structure of the document it would be more logical to also
include the geographical information together with the information data (e.g. a
subelement of the poi-info element), however in our case the geographical data
will extensively be traversed by the client (comparisons of distances, conversions
to client's screen coordinate system, etc.) which was the reason for separation
of this data. This way clients can access the data much faster by traversing it
as a linked list and �nally reprocess it.
The component is exclusively adapted to our system where clients are running
on the SVG browser, however similar component is necessary for the systems of
architecture similar to the one presented in Chapter 3 since the data needs to
be encoded in the standard that the client is using. As we will see in Section
6.2 this component is run after all the data has been processed by the call to
the only public function provided, making the component easily exchangeable
in the system.

6.1.5 Map Handler
Purpose of this component is to make a map reference and encode it into SVG
format which is the reason that the component is only used by the SVGEncoder.
The references can either point to a local maps on the client or as a HTTP
request they can point to remote locations. In Section 5.2 we have covered the
map issues and also, because of some of the limitations of the SVG browser,
described why it is important to have this component on the server.
The component provides a single public function � getMapReference()� that
takes x and y coordinates as input and accordingly determines whether user is

64 Chapter 6. Server Components and Services

<svg>

 <g id="background-grapchics">...

 <g id="poi-info" transform="translate(7,8)">

 <g id="info-159">

 <text id="title" x="22" y="15" fill="white"

 font-weight="bold" font-size="16">Aalborg Zoo</text>

 <g id="info" transform="translate(12,0)" fill="black" font-size="12">

 <g id="p1">

 <text y="34">Aalborg Zoo opened in</text>

 <text y="48">1935. A lovely green garden</text>

 <text y="62">where you get close to 1600</text>

 <text y="76">exciting and endagered</text>

 ...

 </g>

 <g id="p2">

 ...

 </g>

 </g>

 <g id="push-adds" fill="black" font-size="12">

 <g id="short-add" fill="white">

 <text x="2" y="13">Aalborg Zoo, 30% off</text>

 <text x="2" y="27">rebate for students...</text>

 </g>

 <g ig="long-add">

 ...

 </g>

 </g>

 </g>

 <g id="info-3014">

 ...

 </g>

 </g>

 <g id="geo-locations">

 <g>

 <text id="stat">1</text>

 <text id="x">559500</text>

 <text id="y">6319500</text>

 <text id="radius">70</text>

 <text id="geo-id">159</text>

 </g>

 <g>

 <text id="stat">1</text>

 <text id="x">559900</text>

 <text id="y">6319800</text>

 <text id="radius">120</text>

 <text id="geo-id">3014</text>

 </g>

 </g>

</svg>

Figure 6.3: Extract Example of a Generated SVG Page

in area covered by a local map, and if not generates the HTTP request.

6.1.6 Path Converter
In this section we present the component that converts the path provided by
the Shortest Path component in the format in which the result is served to
the client. In our context the client understands SVG format. Public function

6.2. Services 65

convertToSVG provides the functionality that converts a path to SVG format. If
the format that the client understands changes, then new function that converts
the path to the new format can be added to the component without modifying
anything else.

6.1.7 Logger
The Logger component is illustrated in Figure 6.4. Its purpose is to store
data about user's movement into the database. It has a single public function
doLogging() which takes GPS object as input. The GPS object is a record
consisting of seven attributes which describe information about the user � x
and y coordinates at the time of generation of the GPS object, speed of the user,
direction of movement, time of the object generation, user_id and POI_id.
The last attribute is used in case that user is recording a route in which case
the POI_id will be id of a POI that user has showed interest for by clicking on
its icon representation.

doLogging(GPS)

getY(GPS)

getTime(GPS)

getUserId(GPS)

getPOIId(GPS)

getSpeed(GPS)

getDirection(GPS)

getX(GPS)

Figure 6.4: Black Box Model of the Logger Component

After decoupling the attributes, Logger will make a call to deposit() func-
tion of the DatabaseInterface component which will store the values into the
database.

6.1.8 Database Interface
This component provides a set of public functions that retrieves data from the
database. The database queries are made available through a component for
two reasons: the queries become reusable and queries are easier to maintain.
Figure 6.5 illustrates public functions in the Database Interface component.

6.2 Services
In Chapter 2 we described the services that make up The Mobile Tourist Guide.
In following sections we demonstrate reusability of the components by combining
them into the services.

66 Chapter 6. Server Components and Services

Name
 Input
 Query
 Used by

 exploreEdge
 edgeID

 SELECT *

 FROM RN_POI

 WHERE edge_id = edgeID

 Shortest Path

 getActiveAds
 u_id, x, y,n

 SELECT DISTINCT ads_id

 FROM ACTIVE_ADS

 WHERE user_id=u_id

 Space Filter

 getActivePOI
 u_id, x, y,n

 SELECT DISTINCT poi_id

 FROM ACTIVE_POI

 WHERE user_id=u_id

 Space Filter

 getArea/Type
 void

 SELECT A.text, T.text

 FROM AREA A, TYPE T, AREA_TYPE AT

 WHERE AT.type_id = T.type_id AND

 AT.area_id = A.area_id

 Guide Book

 getAvailablePOI

 x, y,n,

input_type

 SELECT poi_id

 FROM AVAILABLE_POI

 WHERE type =
 input_type

 Space Filter

 getAvailablePOI
 POI list

 SELECT poi_id, name, description, x, y

 FROM AVAILABLE_POI

 WHERE poi_id IN (POI list)

 Object Finder

 getAvailablePOI
 type_id

 SELECT DISTINCT poi_id, name, description, x, y

 FROM AVAILABLE_POI

 WHERE type = type_id

 Guide Book

 getConnections

 segment1,

 segment2

 SELECT a.conid

 FROM segment_connection a,

 segment_connection b

 WHERE a.seg_id!=b.seg_id

 and a.con_id=b.con_id

 and a.seg_id=segment1

 and b.seg_id=segment2

 Map Matching

 getOutgoingEdges
 nodeTo

 SELECT *

 FROM RN_GRAPH

 WHERE node_to = nodeTo

 Shortest Path

 getProjection
 x, y, geometry

 SELECT PROJECT_PT(

 geometry,SDO_GEOMETRY(x,y))

 FROM SDO_SEGMENT

 WHERE SEG_GEOMETRY=geometry

 Map Matching

 getSegment
 x, y, geometry

 SELECT seg_id, seg_geometry

 FROM SDO_SEGMENT

 WHERE SDO_WITHIN_DISTANCE(

 geometry,SDO_GEOMETRY(x,y))

 Map Matching

 deposit
 GPS list
 INSERT INTO LOGDATA VALUES (GPS list)
 Logger

Figure 6.5: Summary of the Public Functions in the DatabaseInterface

6.2.1 The Electronic Mobile Guidebook
Figure 6.6 illustrates the sequence diagram of service The Electronic Mobile
Guidebook. The service starts at the user's request, see Figure 2.1.c. To start
the service, the client makes an HTTP request to start startGuideBook()
which in turn starts the service. This service presents to the user all of the
available points of interest; to do so, the service does not need any argu-
ments. The execution starts with the call to the Database Interface com-
ponent which returns all point of interest areas and types. This is done by
getAreas/Types(). Then this information is encoded into SVG format by the
public function generatePage().
Once the information is in the SVG format, it is returned to the client. The

6.2. Services 67

client then �rst presents all of the areas to user, Figure 2.2.a. If the user selects
one of the areas, the client lists all of the types within the area.
The user can select a certain type to view all points of interest within that type.
To do this, the client makes an HTTP request to start startGuideBook(type).
Then the service makes a call to the Database Interface component which
trough getAvailablePoi() returns information about all point of interest
within this type. The information is encoded into and SVG page via public
function generatePage() in the SVGEncoder component. Once the informa-
tion is in the SVG format, the client can display it, see Figure 2.2.b. If a user
decides to view information about a speci�c point interest, then the information
is presented to the user with the option to view the path to the point of interest,
see Figure 2.2.c.

Figure 6.6: Sequence Diagram of The Electronic Mobile Guidebook Service

6.2.2 The Explorer and The Advertiser
The logics of The Explorer and The Advertiser services are illustrated through
the sequence diagram from Figure 6.7. The Advertiser service is a sub service
of The Explorer, hence depending on it. Examples of these services in use were
previously seen in Figure 2.3.
When client initiates this service a HTTP request to start startExplorer() is
made. The client will pass information about one's geographical location as GPS
object and the user id � u_id.
Explorer service will �rst make a call to the SpaceFilter in order to get a list of
surrounding POIs and ads based on the user pro�le consisting of the facility and
ad ids. Since this information is in the database, SpaceFilter will make calls

68 Chapter 6. Server Components and Services

Figure 6.7: Sequence Diagram of The Explorer and The Advertiser Service

to necessary functions in the Database Interface component which performs
the necessary queries.
Explorer now knows which POIs and ads are relevant to user's location and
interest, therefore it can retrieve all the POI and ad data by making a calls to
the database through the Database Interface. Once it retrieves the necessary
data, it is converted in a format understandable by client � in our case by the
SVGEncoder and �nally returned to the client.

6.2.3 The Object Finder
The Object Finder service provides user with all the available types. After
selecting a type and a number of facilities of interest, the user will receive n
requested POIs of the selected type in the surrounding area. The sequence
diagram in Figure 6.8 illustrates the idea.
User makes a HTTP request to the service and forwards GPS, type and n param-
eters which initiates the startObjectFinder() function. The service brakes
up the GPS object and forwards x and y coordinates altogether with the re-
quested type and the requested number of facilities to the Space Filter. The
Space Filtermakes a call to the getAvailablePOI() function in the Database
Interface which returns a list of ids of the n closest POIs with respect to the
user's location. The same list is then used by the service in order to retrieve ad
and POI data.

6.2. Services 69

Figure 6.8: Sequence Diagram of The Object Finder Service

With the service having all the data it can �nally generate the SVG page with
included map reference since the clint is supposed to display a map and highlight
the POI locations on it.

6.2.4 Path
Path service is used whenever user requests a path to some location. It is
implemented as a sub service that can be accessed from other services. An
example of Path service was given previously in Figure 2.3c. A sequence diagram
of the service logic is illustrated in Figure 6.9.
The client initiates the service by making a HTTP call to it, which then starts
the startPath() function. In order for the service to work, it must know
correct positions of the two locations between which the path will be computed.
It is therefore essential that client sends user's location and a reference to the
destination point. These two arguments are a GPS object and the id of the
destination POI (destinationPOI_ID) which can directly be used to reference
a speci�c POI in the database. Once the service has these values it calls the
mapMatch() procedure which identi�es the user's location with respect to the
road network in the database.
The Map Matching component makes necessary calls to the Database
Interface in order to compute the segment corresponding to the user's location
and the projection of the user in the network. Finally it returns projected x
and y coordinate along with the offset and the segmentID.
Path can now pass these values to the Shortest Path component which gener-
ates the path between the requested locations and returns it to the service. In
order to provide client with some POI data again, the getPOIAlongPath() of
the Space Filter component is called which returns ad and POI data to the

70 Chapter 6. Server Components and Services

Figure 6.9: Sequence Diagram of The Path Service

service.
Finally having all the data the SVG page can be generated by the SVG Encoder
component which this time also is passed the path representation. Before send-
ing the complete page to the client, the SVG Encoder must convert the path into
SVG representation and also get a reference to a map. These two operations
are performed by executing convertToSVG() function of the Path Converter

6.2. Services 71

and getMapReference() function of the Map Handler.

72 Chapter 6. Server Components and Services

Chapter 7

An Update Strategy

The system we developed supports users of LBSs that are moving in a road
network. When the user requests a service, the service responds with content.
In Chapter 2 we mentioned that a service can not respond with all of the content
from the database for the following reasons:

• Displaying all of the content would overwhelm the client's small screen.

• The transfer of large amount information over wireless connection may
take long time.

• The client's memory may be overwhelmed.

Instead, the client is presented with a subset of the content determined by time,
pro�le or/and space �lters (in this section we refer to the subset as �relevant
data�). In the Chapter 4, we demonstrated how to compute pro�le and time
�lters and we introduce the space �lter in Chapter 6. The space �lter determines
a geographical window for a particular user and determines what points of
interest are within the geographical window. The client is moving along with
the user and the client will eventually leave the geographical window. This
means that the client needs to request the service again in order to receive data
relevant with respect to the client's new geographical position. We implement a
strategy that attempts to keep the client up to date with respect to its location.
All components needed to implement the strategy were already presented. Some
of the of the components are part of the client (Updater) and some are part of
the server (Space Filter). Following �rst describes computation of the geo-
graphical window in the Space Filter and then we present the overall update
strategy.

7.1 Computation of the Geographical Window
As already pointed out, Space Filter computes the geographical window. The
size of the geographical window is determined by two factors: number of points
of interest that the client requests and the point of interest density. Figure 7.1.a

73

74 Chapter 7. An Update Strategy

illustrates computation of a geographical window. Space Filter �rst calculates
initial predetermined geographical window. Then it increases or decreases in
stepwise fashion until the number of point of interest requested by the client is
reached. If the client requested the service from an area where the density of
point of interest is high, then the geographic window will be relatively small.
Figure 7.1.a illustrates an example where the density is low and the Space
Filter needed to expend the geographical window two times before it reached
the desired number of points of interest.

a)
 b)

 t
1

 p
i

Geographical

Window

Update Threshold

 t
2

 t
1

Initial Geo Window

Attempt 1

Attempt 2

Figure 7.1: Illustrating: Computation of POI Threshold (a), and POI and
Update Thresholds (b)

7.2 The Update Strategy
After a service replies with content, the client receives, displays the content
and monitors user's movement. While the users is moving, the client performs
di�erent tasks (records a route if tourist-to-tourist feature is active, displays
advertisements and similar). One of the tasks is to check if the data in the
geographical window is still relevant to the user. A client could simply wait
until the user leaves the geographical window and then update. This strategy
does not provides data relevant to the user continually because the data is rel-
evant to the user only if the user is in the center of the window. Instead, the
client can decide that the data is irrelevant when the user violates some up-
date threshold. Figure 7.1.b illustrates an update threshold that includes 70%
of points of interest. The service provides more relevant data, if the thresh-
old is smaller. Figure 7.2 summarizes the update strategy. First the space
�lter computes the update threshold in the Space Filter. Then the Client
uses functions NewCoordinateEvent() and CheckNewPageRequired() to check
whether the update threshold was violated. If the threshold was violated, the
client requests the service again. Reader should note that Figure 7.2 shows only
subset of overall control �ow relevant to the updating strategy.
Before we leave this section, we need that point out that continues update is
well beyond scope of this project. However, if one needed to implement any

7.2. The Update Strategy 75

ReloadPage()

Space Filter Collects data

CheckNewPageRequired?

yes

no

Send SVGPage to Client

NewCoordinateEvent()

Figure 7.2: Flowchart of the Algorithm for the Update Strategy

other updating strategy di�erent than described above, then due to the system
�exibility, this could be done without any changes to the existing system. One
would simply needed to add the new functionality in the Space Filter and
Updater, and use it when needed.

76 Chapter 7. An Update Strategy

Chapter 8

Map Matching

An LBS is an application that must be aware of a user's location. In the road
network related services like nearest neighbor, user's location is the position of
the user in a digital road network. Since the user's location related information
from GPS receiver and the underlying digital road network may not always
be accurate enough and the real road network is represented as center lines of
roads, we need to reconcile the user's location with its underlying digital road
network. This process is called map matching. We use the input from a GPS
receiver and the geometries of the digital road network to project the user on
the road network.
In our previous work [26], a map matching weighting system was proposed
hypothetically. In this semester, we make improvements on weighting factors
and we propose dynamic computation window and stop aggregation. The map
matching system is proved that it successfully reconciles user's location with the
underlying digital road network, eliminates uncertainties and saves computation
time in Section 8.2. And the map matching weighting system is expanded
as a inherently �exible and versatile solution, which can incorporate various
weighting factors and therefor reconcile user's location with digital road network.
The map matching solution is designed to be capable of �tting di�erent users
e.g. users by bus and users on foot.

8.1 Improvements to Map Matching

8.1.1 Existing Map Matching Algorithms
A number of di�erent map matching algorithms have been proposed for di�erent
purposes. Bernstein and Kornhauser [13] propose a map matching algorithm
as mapping GPS positions to the closest node, shape point, or arc in a road
network. White et al. [11] reviewed some map matching algorithms and suggest
that particular attention should be paid to problems that arise at intersections.
Quddus et al. [20] propose a weighting system to assess the similarity between
the character of the road network and user's location related information. This
weighting system works well in their tests. We get the impression from those

77

78 Chapter 8. Map Matching

existing literatures that the core of map matching procedure is to identify the
correct segment from candidate segments.
Comparing with existing map matching algorithms we propose the generic map
matching solution based on weighting system proposed by Quddus et al. [20].
The generic map matching solution is designed as an inherently �exible and
versatile solution. We can incorporate various weighting factors and they can
easily be removed if we are not satis�ed with. Meanwhile the generic map
matching solution can �t di�erent kind of users e.g. people by car and people
on foot.

8.1.2 The Two-Step Map Matching Procedure
A key and common issue of existing map matching algorithms is to identify
the correct segment among candidate segments [20]. We propose a two-step
algorithm that for every GPS point:

• Find candidate segments for it.

• Identify correct segment among candidates.

The reason we choose segment as the geometry to project user's location is that
the segment has been designed to be as long as possible, and this will reduce
the number of candidates and therefore reduce processing time.
We observe that when user stops, the GPS receiver continuously outputs the
same coordinates. It seems useless to apply map matching algorithm on posi-
tions with same GPS information. So we propose to aggregate consecutive points
which have same GPS information. The stop aggregation should be taken before
the two-step map matching algorithm since it will not a�ect the map matching
accuracy. We expect that stop aggregation will improve map matching e�ciency
if the user stops frequently for example to cross the intersection.

Find out Candidate Segments

In the �rst step of �nding out candidate segments, each GPS point has a com-
putation window to associate itself with candidate segments. As Figure 8.1
demonstrates, the computation window of a GPS point is a circular window that
centers at the user's current location, the GPS point pi, to retrieve candidate
segments. Candidate segments are segments that intersect with the computa-
tion window. The radius of circle, r, a�ects the size of computation window
and therefore e�ects the map matching performance in both accuracy and time.
A small r may produce a window having no candidate at all, which leads to
inaccurate mapping but costs less time. A big r may produce a window having
too many candidates, which helps improve mapping accuracy but requires more
time.
Since di�erent roads have di�erent width and the real road network does not al-
ways reconcile with the underlying digital road network, we propose a dynamic
computation window (DCW) for GPS points, of which the radius r varies in
di�erent situations. For most of GPS positions the initial value of radius, which

8.1. Improvements to Map Matching 79

r

s
2

s
1

p
i

Figure 8.1: Computation Window

is r0, should be able to �nd out candidate segments. But in circumstances as
user's location is far away from any segments in the road network as Figure 8.2
demonstrates, the initial computation window cannot �nd out candidate seg-
ments, then r0 increments by 5 meters repeatedly until the computation window
intersects with a segment. The reason of extending computation window is to
associate the user with at least one candidate segment when one is requiring
road network related services like shortest path and is unfortunately moving
along a road which does not exist or is not properly represented in the digital
road network, and therefore eliminates uncertainties that happen with imprecise
digital road network and GPS positioning technology.

Identify Correct Segment among Candidates

In the second step of identifying correct segment among candidates, a weighting
system is proposed. We consider various factors in existing map matching algo-
rithms and make improvements on them. The factors are assigned to weighting
parameters to control their in�uence on map matching. They are normalized by
their maximum values. The weighted average of weighting factors is calculated
for each candidate segment. The selection of correct segment then is based on
the weighted average of these factors. We design the weighting system as the
candidate segment with the smallest weighted average is chosen as the correct
one. The correct segment is used as the one to project user's location.
By investigating the performance of di�erent factors, we can simply discard the
factors that do not help improve map matching performance. The criteria is
map matching accuracy and time used, which is described in Section 8.2.

8.1.3 Weighting Factors
To improve the performance of map matching, factors in existing map matching
algorithms are considered as the in�uencing factors in the weighting system.

80 Chapter 8. Map Matching

s
2

s
1

p
i

r
0

Figure 8.2: Dynamic Computation Window

E�ects of those factors are investigated in Section 8.2. Each weighting factor
is associated with weighting parameter to control their in�uence in the map
matching process. The weighting factors are described in the following.

Weighting for Perpendicular Distance

The most straightforward method is to simply map the locations obtained from
GPS receiver to the closest node, shape point, or arc in a road network [13]. We
extend the idea with calculating the perpendicular distance from a GPS point
to the appropriate line of a segment, which gives the proximity of the point to
the segment. The selection of the appropriate line of a segment is described
in Section 8.1.4. As Figure 8.3 demonstrates, d2 represents the perpendicular
distances from GPS point pi to the appropriate line of segment s2.
For each candidate segment Sj of current GPS position pi, the weighting func-
tion Wd for perpendicular distance is given as:

Wd(R,Sj , Pi) = Pddj (8.1)

Here
R is the road network
Sj is a candidate segment for pi

Pi is the GPS information for pi

Pd is the weighting parameter that controls the in�uence of Wd

dj is the perpendicular distance from pi to the appropriate line of Sj ,
its maximum value is the radius of DCW

The weighting of the perpendicular distance from a GPS point to the appro-
priate line of a segment is expected to help associate user with the road one

8.1. Improvements to Map Matching 81

s
2

s
1

p
i

d
2

r

Figure 8.3: Weighting for Perpendicular Distance

is moving along. But for the reason of imprecise road network representation
and positioning technology, we are sure that the weighting of the perpendicular
distance is not enough to identify correct segment among candidates.

Weighting for Movement Direction

s
2

s
1

p
i

Figure 8.4: Weighting for Movement Direction

As we know, the user's current movement direction is available from GPS re-
ceiver. In Figure 8.4, angle α represents user's moving direction at pi and angle
β represents the intersecting angle between the user's movement direction and
the appropriate line of candidate segment s1. Intersecting angle β also gives the
proximity of the point to the segment. For each candidate segment Sj of pi, the
weighting function Wm for user's movement direction is given as:

Wm(R, Sj , Pi) = Pmβ (8.2)

82 Chapter 8. Map Matching

Here
R is the road network
Sj is a candidate segment for pi

Pi is the GPS information for pi

Pm is the weighting parameter that controls the in�uence of Wm

β (0≤ β ≤90) is the intersecting angle between the movement direction
and the corresponding line belonging to Sj

The weighting of movement direction is expected to play a very important role in
map matching, because even the user's position deviates from the road network,
its movement direction should reconcile with the real road along which the
user is moving. But we also realize that user's movement direction will not
always follow the direction of the digital road network because of imprecise
representation of the road network.

Weighting for Road Network Topology

d
 s
2

s
1

p
i
-
1

p
i

n
1

s
3

Figure 8.5: Weighting for Road Network Topology

We know that users' movements are constrained by road networks topology
such as road type, intersection, turn restriction, and so on. So we propose the
weighting for road network topology that reduces or increases the likelihood as
a correct segment of each quali�ed candidate segments. The road network we
have at this moment provides connections among segments. So the weighting
factor is based on connections of road network. The idea can be widely applied
to other topology properties when they are ready.
In Figure 8.5, pi−1 is on the road represented by segment s2 and pi is on the
road represented by segment s1. We assume that pi−1 has successfully chosen
s2 as the correct segment to project itself. And we know that the computation
window of pi intersects with candidate segments s1, s2, and s3.
For each candidate segment of pi, if it is exactly previous selection s2 or has
connections with s2 within computation window, for example candidate segment

8.1. Improvements to Map Matching 83

s1 has connection n1 with s2 within computation window, we propose those
candidates should have more chances to be chosen as the correct one. The
candidate segments like s3 that have no connection with s2 within computation
window should have less chances. We require the connections should be within
computation window because computation window indicates the deviation of
the GPS point from the road network.
For each candidate segment Sj of pi, the weighting function Wt for road network
topology is given below as:

Wt(R, Sj , si−1) = PtT (8.3)

Here
R is the road network
Sj is acandidate segment for pi

si−1 is the previously selected segment for previous GPS position pi−1

Pt is the weighting parameter that controls the in�uence of Wt

T =
{

1 if Sj does not intersect with si−1 within computation window
0 if Sj is si−1 or intersects with si−1 within computation window

Here for T , we simply assign it 0 or 1 to distinguish two kinds of segments. The
e�ect of the topology information on map matching will be changed with the
varying value of Pt.
White et al. use road network topology to reduce the number of candidate seg-
ment [11], which means that all candidates that are not connected with previous
selection are removed from candidate array. But we use road network topology
to give the likelihood as a correct segment for each candidate segments rather
than simply remove unquali�ed candidates. The idea we propose eliminates the
errors that may occur when none of the candidates is connected with previous
selection.
We realize that the road network topology itself cannot be used alone to tell
which candidate segment is the most likely one. It only gives a hint that which
candidate segment is the less likely one comparing with other candidates.
The weighting of road network topology also helps correct inaccurate computa-
tion window. We observe that some rotaries like Figure 8.6.b are represented
as Figure 8.6.a demonstrates. If user is moving along the road in Figure 8.6.b
from west to east, then the trajectory will be like Figure 8.6.a demonstrates and
segment s2 should be the correct segment for all positions. We assume position
pi−1 successfully chooses segment s2 as correct segment, but position pi fails to
do so because the initial computation window of pi does not cover s2 at all.
The scenario is possible to happen because the initial computation window is
used to cover correct segment for most of positions not for all and we never
know how big the gap between real road network and the digital one is. In such
a circumstance initial computation window of pi violates road network topology
i.e. it does not cover even one segment that connects with previous selection in
computation window, the initial computation window of pi will increment by 5

84 Chapter 8. Map Matching

s
2

s
1

p
i

p
i
-
1

a
)

b
)

Figure 8.6: Inaccurate Computation Window

meters once only to cover more candidate segments. But if still the computation
window fails to cover such a candidate, we will not overplay the expansion and
simply assume the user truly violates road network topology even it could be
the inaccurate positioning technology.
Now, we have three weights for each segment. The criteria used to select correct
segment is determined from the weighted average. The weights are normalized
by their maximum values. The total weighting score is calculated as,

TW = Wd/md + Wm/mm + Wt/mt (8.4)

The segment with the smallest TW is chosen as the correct one. The maximum
value of Wd,md, is exactly the size of computation window. mm is 90 degrees
and mt is 1 as we assume.

8.1.4 Map Matching Steps
Figure 8.7 shows the detailed description of average weighted map matching
solution. The generic map matching solution uses the following steps to assign
each GPS position the correct segment and project it on that segment. Previous
GPS position is stored in order to apply stop aggregation. For each new arrived
GPS position:

• Initialize parameters, of which i is the index of candidate segment, seg
stores the correct segment to project current position on, average is the
current weighted average of map matching functions, and tmp stores the
smallest weighted average.

• Check whether the position has the same coordinates with the previous
one. If so, then wait for next GPS position, otherwise calculate the com-
putation window and get the number of candidate segments.

8.1. Improvements to Map Matching 85

N
e
w

G
P
S

p
o
s
i
t
i
o
n

i
=
1
,
s
e
g
=
0

a
v
e
r
a
g
e
=
0
,
t
m
p
=
0

C
a
l
l

f
u
n
c
t
i
o
n

o
f

f
a
c
t
o
r

1

C
a
l
l

f
u
n
c
t
i
o
n

o
f

f
a
c
t
o
r

2

C
a
l
l

f
u
n
c
t
i
o
n

o
f

f
a
c
t
o
r

3

W
a
i
t

f
o
r

n
e
w

G
P
S

p
o
s
i
t
i
o
n

C
a
l
l

f
u
n
c
t
i
o
n

o
f

f
a
c
t
o
r

N
.
.
.
.
.
.

i
<
=
n
?

c
a
l
c
u
l
a
t
e

c
o
m
p
u
t
a
t
i
o
n

w
i
n
d
o
w
,

g
e
t

n

c
a
n
d
i
d
a
t
e
s

Y
e
s

t
m
p
=
0
?

t
m
p
=
a
v
e
r
a
g
e

s
e
g
=
c
a
n
d
i
d
a
t
e
i

Y
e
s
N
o
c
a
l
c
u
l
a
t
e

n
e
w

w
e
i
g
h
t
e
d

a
v
e
r
a
g
e

t
m
p
>
a
v
e
r
a
g
e

Y
e
s

N
o

i
=
i
+
1

p
r
o
j
e
c
t

G
P
S

p
o
s
i
t
i
o
n

o
n

s
e
g

s
a
m
e

c
o
o
r
d
i
n
a
t
e
s

w
i
t
h

p
r
e
v
i
o
u
s

o
n
e
?

N
o

Y
e
s

Y
e
s
N
o

N
o

Figure 8.7: Flow Chart of Map Matching Algorithm

86 Chapter 8. Map Matching

• For each candidate segment, apply them functions of di�erent weighting
factors as we choose and calculate the normalized weighted average.

• Choose the segment with smallest normalized weighted average as the
correct segment and project user's location on it.

Figure 8.8: Projecting a Point onto a Geometric Segment[12]

The projection of a point along a geometric segment is achieved by Oracle Spa-
tial function SDO_LRS.PROJECT_PT. As Figure 8.8 demonstrates, this function
returns the projection point of a speci�ed point on the geometric segment with
its measure that is the distance from the start point. And if multiple projection
points exist, the �rst projection point is returned. The projected point is used
to select correct line and therefore to assess the segment it belongs to.

p
i

p

'

p
1

p
2

p
3

s
1

s
2

Figure 8.9: Selecting the Correct Line of a Segment

By projecting GPS point to a segment, we know the projection point as well
as its measurement m in the segment, which is the distance from the start of
segment. In Figure 8.9 the correct line of candidate segment s1 is the line from

8.2. Experiments and Evaluation of Map Matching 87

p1 to p2 with a start measure smaller than measure of projection point p′, which
is m, and an end measure bigger than m.

8.2 Experiments and Evaluation of Map Match-
ing

In section 8.1, a generic map matching solution is formulated and the weighting
factors are described. In this section, We evaluate the performances of the
map matching algorithms, which are implemented in PL/SQL. Experiments are
carried out on an Athlon XP 1.2GHz machine with 256 MB RAM running on
Microsoftr Windowsr XP Professional. A broad range of tuning parameters
are considered to improve the map matching accuracy. And the wall clock
time are used as one of the performance metric to choose the value of tuning
parameters. It is the elapsed time between when a process starts to run and
when it is �nished. Wall clock time is usually longer than the CPU time because
the CPU is doing other things besides running the process such as waiting for
disk I/O. But since our LBSs are developed in Windows operating system and
it is complicate to calculate CPU time in Windows, we choose wall clock time
as the performance metric.

x y speed time date direction
559963 6319477 2 14/02/52 12/12/03 191.5

Table 8.1: GPS Sample Data

There are two kinds of experiments. One is carried out on users travelling by
buses, another for users on foot. They represent two kinds of users in reality.
The experiments are carried out in Aalborg, a city in Denmark. The outputs
of GPS receiver are collected with the format in Table 8.1 so that they can be
applied to the map matching algorithms.
Table 8.1 shows the some useful GPS output after transformation . As one can
see, a GPS receiver provides more information than information about coordi-
nates. The �rst two columns of Table 8.1 hold x, y coordinates in UTM format
which is the format used in the data model. The third column holds the user's
speed measured in knots. One knot is approximately 1.85 kilometers per hour.
The forth column contains the time at which the signal is received. The format
of time is hour/minute/second. The date column indicates the date on which
the signal is received. The format used here is month/day/year. The last col-
umn indicates the direction of user's movement. The direction expresses user's
movement direction in degrees from North in clockwise.

8.2.1 Experiments for Users on Bus
Routes of bus No. 4 and No. 9 are chosen to for te experiments since they
have complex characteristics like suburb, rotaries, and urban areas where we
may meet signal interferences. Approximately 2500 GPS positions are collected
from GPS receiver. The tuning parameters and their values are summarized in

88 Chapter 8. Map Matching

Table 8.2. The default parameter values are given in bold, which indicates that
experiments reach the best performance.

Parameter Values Used
r 5,10,15,20,25,30
Pt 0.5,1,5,10,15
Pm 0.5,1,5,10,15

Table 8.2: Parameters and Values Used

Computation Window and Weighting for Perpendicular Distance

We begin by investigating how di�erent values of computation window a�ect
the performance of map matching based on perpendicular distance. r is the
radius of computation window. It re�ects the size of computation window and
therefore determines the number of candidate segments. The initial value of r
is important because a small computation window may result in a computation
window having no or less candidate segments, which in turn requires time con-
suming expansion of computation window, and a big computation window may
require more time to take care of all candidates included.

40

45

50

55

60

65

70

75

80

85

90

95

100

5
 10
 15
 20
 25
 30

Varing
r
in meters

A
c
c
u
ra

c
y

 percentage of

correct matching

Figure 8.10: Experiments Result of Size of Computation Window

In order to choose the initial value of r, we �rst evaluate the map matching
accuracy of �xed computation window, which means the window will not extend
repeatedly to cover more candidate segments when it does not cover even one
segment. Figure 8.10 demonstrates accuracy of perpendicular distance with
di�erent size of �xed computation windows. The user's movement trajectory
and the positioning results are plotted in SVG �le as Figure 8.11 demonstrates.
The red dots represent user's position from GPS receiver and the blue dots
represent the map matching results. By plotting the roads user is moving along,
which make up the yellow path, the result of map matching is easy to tell.

8.2. Experiments and Evaluation of Map Matching 89

Figure 8.11: GPS Positions and Map Matching Result

Figure 8.10 shows that the accuracy initially does not performs good because
a smaller size of computation window produces less candidate segments. With
the expansion of computation window, the accuracy increases because it covers
more candidate segments and therefore the segments of which user moves along
are more likely covered. Map matching procedure performs best at 25 meters
and the accuracy becomes unchanged after r is greater than 25 because at this
time the computation window has covered enough candidate segments to tell
which one is most likely correct.
From Figure 8.10 the initial size of computation window is assigned to 25 meters
in radius. When it does not work to �nd out candidate segments, then the radius
increments by 5 meters repeatedly until the computation window intersects with
certain segment.

Figure 8.12: Movement Cross Intersection

Note that the map matching accuracy of perpendicular distance is at most

90 Chapter 8. Map Matching

92.53144654 percent. The inaccurate mapping happens as Figure 8.12 demon-
strates. When the user is moving across intersections, since user is not moving
in the right center of road and the road network is represented as poly lines,
some positions are close the other segments rather than the one it is moving
along.

0

500

1000

1500

2000

2500

5
 10
 15
 20
 25

Varing r

T
im

e
 (

s
e
c
o
n
d
s
)

Figure 8.13: Performance of Computation Window

Figure 8.13 shows the performance of map matching in time. We observe that
map matching procedure is more expensive in time with the expansion of com-
putation window because more segments intersect with computation window,
and therefor more computations are done.

Stop Aggregation

As we know, when people stay in one position for a while, the GPS receiver will
produce the same information. From the experiments of map matching proce-
dure with stop aggregation, we note that stop aggregation saves 1050 seconds
in average for the data we collected. For the rest of the experiments, we include
stop aggregation and select 25 as the initial value of r.

Weighting for Movement Direction

The map matching accuracy of using movement direction alone is 0.94, which
is better than using Wd alone. So we conclude that movement direction plays
a very important role in map matching procedure as we expect. Because even
if the user's position deviates from the road network, the movement direction
should reconcile with the direction of the road along which the user is moving.
Figure 8.14 demonstrates the map matching accuracy of movement direction
combined with previous experiment results, which means we assign the initial
computation window with radius 25 meters and include stop aggregation. To

8.2. Experiments and Evaluation of Map Matching 91

90

91

92

93

94

95

96

97

98

99

100

0
 0.5
 1
 5
 10
 15

Varing
Pm

A
c
c
u
ra

c
y

percentage of correct

matching

Figure 8.14: Experiments Result of Movement Direction

be simplicity we assign the weighting parameter of perpendicular distance, Pd,
to 1. Figure 8.14 shows that map matching performs best when we assign Pm

to 1.

Road Network Topology

92

93

94

95

96

97

98

99

100

0
 0.5
 1
 5
 10
 15

Varing
Pt

A
c
c
u
ra

c
y

percentage of correct

matching

Figure 8.15: Experiments Result of Road Network Topology

We already mention that the road network topology itself cannot be used alone
to tell which candidate segment is the most likely one. What we can tell is
which candidate segment is the less likely one. Figure 8.15 demonstrates the
map matching accuracy of road network topology with previous results. At this
moment we only consider intersections in the road network. The map matching

92 Chapter 8. Map Matching

performs very well when we assign the weighting parameter of road network
topology Pt to 1. So we conclude that road network topology surely helps
locate user in the road network because it reduces the likelihood of unconnected
candidate segments as a correct one.

8.2.2 Experiments for Users on Foot
The source data for pedestrians are collected from a user, equipped with a GPS
receiver, walk from suburb, through rotaries, to urban areas. Approximately
4000 GPS positions are collected. The tuning parameters and their values are
summarized in Table 8.3. The same with experiments for users on bus, the
default parameter values are given in bold.

Parameter Values Used
r 5,10,15,20,25,30,35,40
Pt 0.5,1,5,10,15

Table 8.3: Parameters and Values Used

Computation Window and Weighting for Perpendicular Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5
 10
 15
 20
 25
 30
 35
 40

varing
r

A
c
c
u
ra

c
y

percentage of

correct mapping

Figure 8.16: Experiments Result of Size of Computation Window

Figure 8.16 shows that map matching procedure performs best at 35 meters
and the accuracy becomes unchanged after r is greater than 35. It is reasonable
that the best value of r for pedestrian is greater than that of users on bus
because pedestrians usually walk on the footways which is the border of roads.
Figure 8.17 shows that with the expansion of computation window, the accuracy
increases.

8.2. Experiments and Evaluation of Map Matching 93

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

5
 10
 15
 20
 25
 30
 35

varing
r

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 8.17: Performance of Computation Window

Stop Aggregation

From the experiments of map matching procedure with stop aggregation, we
note that stop aggregation saves 1700 seconds in average for the data we col-
lected. It is so because the movement speed of pedestrian is quite slow and that
leads to more consecutive same GPS positions. For the rest of the experiments
of pedestrians, we include stop aggregation and select 35 as the initial value of
r.

Weighting for Movement Direction

0.8

0.85

0.9

0.95

1

0
 0.5
 1
 5
 10
 15

varing
Pm

A
c
c
u
ra

c
y

percentage of

correct mapping

Figure 8.18: Experiments Result of Movement Direction

Figure 8.18 demonstrates the map matching accuracy of movement direction

94 Chapter 8. Map Matching

combined with previous experiment results, which means we assign the initial
computation window with radius 35 meters and include stop aggregation and
assign the weighting parameter of perpendicular distance, Pd, to 1. Figure 8.18
shows that map matching performs best when we assign Pm to 1.

Road Network Topology

The road network we have are not speci�c enough to include some alleys. Then
we are sure that user is not restricted by current road network topology, and
therefor we can not apply road network topology to project user on the road
network. The reason is that it may lead to severe mismatching and therefor
lead to incorrect LBSs.

8.2.3 Evaluation of Map Matching
From the experiments for users by bus and on foot, we observe that the map
matching solution we propose does help project GPS positions on correct seg-
ments in the road network and therefore provide accurate LBSs. The normalized
weighted system is inherently �exible and versatile. It can incorporate more
weighting factors if they are disclosed that they help improve map matching
performance. And it can be customized to meet di�erent requirements. For dif-
ferent types of users, we only need to incorporate appropriate factors and assign
them the appropriate parameters. For a poor road network representation and
poor positioning technology, we need to consider more weighting factors. For a
high-accuracy road network and a high-accuracy positioning technology, we can
incorporate less weighting factors.

Chapter 9

Conclusion

The report is based on the design of a system that supports rapid development
of highly integrative location based services. As we explained there exist various
types of location based services on the market, but what makes the documented
system stand out is that it supports providing of data of high�quality meaning
that users are provided correct and up to date data.
In Chapter 2 we are inspired by a research that studies and discusses behavioral
patterns of tourists. Based on the patterns, the study proposes how digital
technology can be used as a tool to help tourists in various situations. We let
us inspire by the ideas and propose mobile solutions to the presented problems.
Chapter 3 proposes that the system should be based on a client�server archi-
tecture that is essential for the delivery of high�quality data. Furthermore,
the server architecture is separated in two tiers � services and components.
Hereby we separate the data presentation from the internal logic. The com-
ponents provide functionality while services integrate them in order to provide
data to clients. Such a design makes the components reusable and as indepen-
dent of each other as possible, which in turn makes development of new services
and components rapid and highly integrative with the rest of the system. Data
processed by the system components is separated in the data tier for easier
management.
The data tier is described in Chapter 4. It is based on a data model that is
tailored towards location based services. We present two representations � the
internal one which is designed for easy database maintenance, and the external
one which enables easier querying through views and provides better system
performance by being based on materialized views. Furthermore, the chapter
describes the value chain which is a mechanism for data maintenance. The value
chain ensures that the data in the database is up to date which in turn makes
location based services of high�quality.
In Chapter 5 we take a look at the development of client application. Based
on the client requirements set in the architecture, we focus on extending the
functionalities of the SVG browser by integrating the mentioned client com-
ponents. Hereby we achieve a client that knows its geographical location, can
communicate with a server over wireless network, understands services provided

95

96 Chapter 9. Conclusion

by the server, enables user interaction and is capable of displaying maps used
for putting the content provided by the server into geographical context. We
also consider and describe three di�erent ways of handling maps by the client.
As we explained, the server logic is divided in two tiers � components and
services. Chapter 6 re�ects upon this decision and separately deals with the
description of the implemented components and services. As we mentioned
in the Introduction, the choice of components re�ects on the set of queries.
Following is the relationship between components and the queries:

• Map Matching � where is user with respect to the road network

• Space Filter � what are the attractions in user's vicinity

• Shortest Path�what is the shortest path from user's location to certain
position with respect to the road network

• Logger � what are the locations that user has visited

In addition we presented components that allow client independence.

• SVG Encoder which encodes data in a format understandable by the client

• Path Converter that converts the shortest path into format understand-
able by the client

• Map Handler which is needed for our application exclusively

Where applicable we give verbal examples of how individual components could
be exchanged or their functionalities extended without a�ecting the rest of the
system. Examples of the purposes of individual components were expressed
through the �ve implemented services: The Electronic Mobile Guidebook, The
Explorer, The Advertiser, The Object Finder and The Path.
In Chapter 7 we present three issues that have in�uence on the amount of data
sent to clients at one time. Since users are moving they tend to exit the areas
covered with the provided data, we present an update strategy that is dealing
with these issues.
In Chapter 8 we look more thoroughly into the details of the Map Matching
component. There are various parameters a�ecting precision and performance.
We propose best parameter�values based on the performed experiments.

Bibliography

[1] CARNAV. http://www.carnav.com/, 2004.

[2] MEXPRESS. http://mexpress.intranet.gr/, 2004.

[3] PALIO. http://www.palio.dii.unisi.it/, 2004.

[4] SCALEX. http://www.scalex.info/, 2004.

[5] The Apache Jakarta Project. http://jakarta.apache.org/tomcat/, 2004.

[6] The O�cial Bluetooth Website. http://www.bluetooth.com/, 2004.

[7] 3G. 160 Million A-GPS Wireless Phone Sales by 2008.
http://www.3g.co.uk/PR/Feb2003/4834.htm, 2003.

[8] Aalborg Tourist & Convention Bureau. Visit Aalborg.
http://www.visitaalborg.dk, 2004.

[9] Bary Brown and Mathew Chalmers. Tourisam and Mobile Technology,
2003.

[10] C. Hage, C. S. Jensen, T. B. Pedersen, L. Speicys, I. Timko. Integrated
Data Managemant for Mobile Services in the Real World. Technical
report, Department of Computer Science, AAU and Euman/AC, 1998.

[11] C.E. White, D. Bernstein, A.L. Kornhauser. Some map matching
algorithm for personal navigation assistants. Transportation Research
Part C 8,91-108, 2000.

[12] Chuck Murray. Oracle Spatial User's Guide and Reference Release 9.2.
Oracle Coporation, 2002.

[13] D. Bernstein, A. Kornhauser. An introduction to map matching for
personal navigation assistants. New Jersey TIDE Center, 1996.

[14] Elina Janssen. Gis online - location based services.
http://www.geog.uno.edu/ ejanssen/GIS, 2001.

[15] GSM World. GPRS Platform.
http://www.gsmworld.com/technology/gprs/intro.shtml, 2000.

[16] Ingemar Eriksson. Working for the Future of the European Tourism,
Must �nde out.

97

98 Bibliography

[17] Kenneth J. Dueker J. Allison Butler. GIS-T Enterprise Data Model with
Suggested Implementation Choices. Technical report, Center for Urban
Studies School For Urban and Public A�airs Portland State University,
1997.

[18] Kort & Matrikelstyrelsen. Rastertjenesten � WMS Version 1.1.1.
http://kortforsyning.kms.dk/partnerportal/Docs/v1.1/Rastertjenesten_1.2.2.pdf,
2004.

[19] Krak.dk. http://www.krak.dk, 2004.

[20] M.A. Quddus, W.Y. Ochieng, Lin Zhao, R.B. Noland. A general map
matching algorithm for transport telematics applications. Center for
Transport Studies, Dept. of Civil and Environmental Engineering,
Imperial College London, 2003.

[21] Mobilin. Locationbased Services.
http://www.mobilein.com/location_based_services.htm, 2001-2004.

[22] Ola Andersson, Phil Armstrong et al. Scalable Vector Graphics (SVG) 1.1
Speci�cation, W3C Recommendation. http://www.w3.org/TR/SVG/,
2003.

[23] Route66. Mobile Danmark. http://www.66.com/, 2004.

[24] Simon, H. A. A Behavioural Model of Rational Choice. Quarterly Journal
of Economics, vol. 69, no. 3, pp. 99-118., 1955.

[25] W3C DOM WG. Document Object Model (DOM).
http://www.w3.org/DOM/, 2004.

[26] Yan Zhao, Jasmin Catovic, Vedran Alikal�c . Developing Location Based
Services. http://www.cs.auc.dk/library/cgi-bin/detail.cgi?id=1074074275,
2003.

