
A Multi User Unit Test Framework for Testing Database Applications

Project Period: Dat6, February 1st, 2004 � June 1st, 2004

Supervisor: Kristian Torp

A Multi User Unit Test Framework

for Testing Database Applications

Claus Abildgaard Christensen Steen Gundersborg
Kristian de Linde Jacob Richard Thornber

Department of Computer Science, Aalborg University, Denmark
{cac,eraser,kdl,jrt}@cs.auc.dk

31st May 2004

Abstract

Unit testing is the foundation for building correct and
robust applications. Unit testing of database appli-
cations di�ers from traditional unit testing because
of persistency and foreign key constraints. Before ex-
ecuting a test case, data associated via foreign keys
must exist. Furthermore, after each test case it is
necessary to clean up any modi�cations made to the
database. Failure to do so will cause the second unit
test to fail.

Existing test frameworks assume independency be-
tween test cases. Retaining this assumption when
testing database applications, results in a high test
�xture. Therefore, a new approach is preferable. We
propose that test cases and unit tests should be al-
lowed to depend on each other. This enables us to
reuse test �xture and avoid redundant code. Further-
more, as test �xture is only set up and torn down once
per unit test, as opposed to once per test case, our
framework o�ers a signi�cant performance improve-
ment compared to existing frameworks.

We have designed and implemented the proposed
test framework, minimizing test �xtures and provid-
ing automatic cleanup of the database, also in the
case of a system crash. We conclude that the test
framework is simpler to use than existing frameworks.
It allows for faster execution of unit tests, requires
less work from developers, and it can be integrated
with an existing framework.

1 Introduction

The eXtreme Programming (XP) methodology [2]
is becoming increasingly popular among developers
[17]. To ensure the correctness of the produced soft-
ware, an important aspect of XP is the use of auto-
mated unit testing. Moreover, to guarantee the cor-

rectness of software, even after the addition of new
functionality or test cases, regression testing is rec-
ommended.

Furthermore, development moves more and more
towards using databases, e.g., in ERP systems and
in e-commerce. As competition in the software mar-
ket increases, it is important to ensure correctness of
applications. To ensure this, it is preferable to intro-
duce unit testing in this domain.

Integrity constraints bind database tables together.
Therefore, it is, in some cases, necessary to insert
data in one table before being able to test meth-
ods implemented on another table. These integrity
constraints make some unit tests dependent on each
other.

Current unit test frameworks as JUnit [12] and ut-
PLSQL [9] all share the common assumption, that
test cases are independent, as described in the XP
methodology. This article settles with this assump-
tion. We argue that, when testing database appli-
cations or programs using associations and aggrega-
tions, it is bene�cial to allow both unit tests and test
cases to be dependent.

Testing of database applications di�ers from test-
ing traditionally software in that most stored pro-
cedures have persistent side e�ects where as testing
traditional applications has data stored in main mem-
ory and is cleaned up by the test framework at pro-
gram termination. For example an insert method
cannot typically insert the same row twice in a ta-
ble, without violating the integrity constraints in the
database. Therefore, it is typically not possible to ex-
ecute the same test methods twice, without cleanup
between the executions of the tests. This makes re-
gression testing of database applications more di�-
cult as clean up of the database also have to be con-
sidered.

The contributions of this article are in the �eld of
testing database applications. First, it presents a new

1

approach for testing database applications that can
be combined with existing frameworks. Secondly, it
explains the ideas behind a partially automatic test
�xture setup and teardown methods. Furthermore, our
framework allows for reuse of the text �xture and au-
tomatic clean up of the database in case of malfunc-
tioning test cases or a system crash. Thus, the time
spent before and after testing is minimized. Hereby,
we avoid the repetitive test code that is necessary in
existing unit test frameworks. The article gives de-
sign and implementation details of the proposed test
framework. Finally, we present an extension to the
test framework that allows for multi-user support.

The paper is structured as follows. Section 2 looks
at the related work done in the �eld of database test-
ing. In Section 3, we present the test setup environ-
ment, i.e., a sample database schema used through-
out the article as basis for examples. Section 4
presents the ideas behind the test framework. Section
5 describes the multiple user extension to the frame-
work. It presents how the single user test framework
has to be extended in order to support for multiple
users testing simultaneously. Section 6 describes how
the test �xture is reduced by ordering the unit test,
and allowing for concepts to remain set up during
several unit tests. In Section 7, the utPLSQL frame-
work is examined. Section 8 explains how the test
framework could exploit Oracle speci�c functional-
ity. In Section 9, implementation details of the single
user framework are given. Furthermore, an approach
for combining our framework with utPLSQL is given.
Section 10 gives a performance analysis of three test
approaches. Finally, in 11 the conclusion and future
work are given.

2 Related Work

The JUnit testing framework [7, 12] has become the
de facto standard for implementing Java unit tests.
JUnit supports for the selective retesting, also know
as regression testing [8], of a software system that has
been modi�ed as a result of a bug. Moreover, no pre-
viously working functions is failing as a result of the
reparations made. Also, to ensure that newly added
functions does not cause previously de�ned functions
to fail. Bottom line, JUnit is a testing framework
that de�nes classes for testing. The main class is
known as the TestCase class. A developer uses JU-
nit by extending this class and de�nes assertions and
test methods denoted by the pre�x test. These test
methods are responsible for the calls to the applica-
tion that the developer wants to test. If any of the
assertions fails, it is displayed. JUnit's test �xture
is a common set of test data and objects, which is
shared by all tests. It is instantiated by the means

of two special methods, the setUp and the tearDown
methods. Once the test �xture has been setup, JU-
nit allows for easily testing the application. The test
case, or a collection of test cases also known as a test
suite, can easily be run.

The DbUnit testing framework [1] is a JUnit [12]
extension that is aimed speci�cally at database-
driven applications. Before a test case is executed,
the framework puts the database in a known state,
which per default is the empty state. This is done by
truncating all tables. Therefore, test cases that fail
cannot corrupt the database. Several best practices
are proposed, e.g., all testing should be conducted
on a dedicated test server. As with all frameworks
build on the JUnit framework, DbUnit also make the
assumption that test cases are independent.

In [4], Chays et al. present a design of a frame-
work for testing database applications. They discuss
the role of the database state which makes testing
database application di�erent from testing applica-
tions that do not store data persistently. They pro-
pose a tool-set architecture consisting of four tools,
including a prototype implementation of the �rst
tool. This tool populates a given database with data
satisfying integrity constraints.

Books on traditional software testing [2, 11, 16]
provide no speci�c handling of testing of database
applications. In [13], Lewis does consider testing of
database applications. However, Lewis only considers
how to test if integrity constraints are ful�lled, e.g.,
how to see if all primary keys are valid, something
most RDBMSs do automatically.

In [2], Beck advocate for automatic testing, how-
ever, as with JUnit [12] an important assumption is
that all test cases are independent. In this article we
claim that when testing database applications it is
bene�cial to let test cases depend on each other.

The utPLSQL framework described in [9] is an
Oracle PL/SQL unit-testing framework. The frame-
work is modeled on the JUnit [12] framework. The
utPLSQL framework enables testing of each package
automatically. However, utPLSQL is developed for
testing PL/SQL applications, where our framework
focuses on testing the interaction between the appli-
cation and the database.

In [10], Daou et. al categorize the problems that
SQL in�icts on regression testing into three groups:
control dependencies, data �ow dependencies, and
component dependencies. They suggest a method
for performing regression testing on database applica-
tions. According to Daou et. al, programming with
SQL and database triggers often involves exception
handling, that is many exceptions have to be caught
and handled. As traditional control �ow modeling
does not contain a way of modeling exception han-
dling, Daou et. al propose a way of doing this. Each

2

statement is represented as a node, each node has two
exits one for successful endings the other for unhan-
dled exceptions. If no exception handling is available,
all exception links will be linked to an unhandled ex-
ception node. A speci�c exception is modeled by a
predicate node, which has two exits, the �rst links to
the start node of the exception block, the other to the
next handled exception. The regression test method
is split into two parts, part one consists of modi�ca-
tion detection, and impact analysis, i.e., estimating
what will be a�ected if a change in the software is
made. As a change in one component often a�ects
other components, because the state of the database
is altered, it is necessary to �nd all dependencies be-
tween components of the application in order to de-
termine which components should be tested. A com-
ponent is marked as modi�ed and placed in a list of
modi�ed components, called the component �rewall ,
if either itself has been modi�ed or deleted, or if it is
dependent on a modi�ed or deleted component. All
test cases that involves components in the �rewall
are selected for regression testing. This article di�ers
from [10] by Daou et. al in that we consider unit test-
ing, whereas Daou et. al strictly considers regression
testing, i.e., it is not discussed how a single test case
should be set up.

3 The Test Setup

This section introduces a small database schema that
will be used as an example throughout the article.
Hereafter, the used terminology is explained. The
schema depicted in Figure 1 is used as an example
schema when describing the test framework.

Figure 1: The University Example Schema. At-
tributes in italics denotes the primary key of a table

The example schema represents a small university.
The university has a number of students, information
on these is stored in the student table. The course ta-
ble stores the courseidenti�er (cid), the course name

and the foreign key teacher identi�er (tid). The par-
ticipant table is a relationship between the student
and the course tables. The primary key of the par-
ticipant table are the sid and cid attributes, which
are also foreign keys referencing the student and the
course tables, respectively. In addition, the partici-
pant has three additional attributes. First, enrolled
that describes when the student is enrolled to the
course. Secondly, a type attribute that describes if
the student is following the course in the traditional
manner or if he is distant learning. Finally, the status
attribute describes if the student is active or inac-
tive in the course. As depicted in the ER-diagram in
Figure 1, a student can follow zero or many courses
and a course can have zero or many students. Re-
call the foreign key tid in the course table, this key
references the teacher table. Each course has exactly
one teacher associated. A teacher can teach zero or
many courses. A teacher can act as a supervisor for
other teachers. This is modeled by the self-reference
and the bossid attribute on the teacher table. Fi-
nally, each teacher is situated in exactly one o�ce.
This is modelled through the composite foreign key
consisting of building and room, which references the
o�ce table. The semester table is used to connect
students and courses to speci�c semesters, e.g., an
introductory semester. The primary key of the ta-
ble is the semid attribute, which is used as a foreign
key in the student and course tables. Moreover, the
semester table has two date attributes indicating the
start and end date of a semester.

The terminology used in [5] is also used in this
article. Meaning that a concept is equivalent to a
class in an object-oriented language or a table in the
database. A record corresponds to an instance of a
concept or a row of a database table. Finally, a record
id is a unique identi�er of a record, corresponding to
the primary key of a database table.

4 Test Framework

In the following section a framework for unit testing
database applications is designed. It aims at correct-
ness testing and not performance testing. Further-
more, the framework aims at minimizing test �xture
[3], also known as the amount of work needed before
after doing actual testing. The framework consists of
a set of methods associated with each concept and a
persistent stack containing the concepts active dur-
ing each step of the testing. These will be described
individually. Hereafter, a set of conventions are de-
scribed. These conventions are necessary for the de-
veloper to follow for the framework to work. Finally,
examples of the test framework are presented.

3

4.1 The idea of the framework
Traditionally, when testing code, test cases are run,
errors found are corrected and the test cases are re-
run. Moreover, they might be executed every night to
ensure any modi�cations made to the code during the
day do not violate any test cases. Several tools like
JUnit [12] and utPLSQL [9] exist that are well suited
for this task � when persistency is not considered.
Generally, test cases are grouped into unit tests,

each testing a speci�c part of the given application.
The entire collection of unit tests is again grouped
together, forming a test suite for testing the entire
application. Using a part of the schema depicted in
Figure 1, Figure 2(a) shows an example of a test suite
comprised of three unit tests. The example shows an
execution of the test suite, running the three unit
tests. It is important to note that the unit tests can
be run independently, and furthermore, that each test
case can be run independent from other test cases.
This is due to the fact that each test case only uses
main memory data structures. When the test is com-
pleted the data is simply discarded because the pro-
gram exits. At a higher level of abstraction this can
be viewed as testing functions, i.e., on a given input,
compare the output with the expected output.

Figure 2: Di�erence from standard unit testing to
unit testing of database applications. Part A is the
standard way of testing. Part B test of database ap-
plications, where test cases are dependent of each
other, i.e., to test course relies on tests on teacher
which requires o�ce to be tested �rst.

When testing code that uses data stored persis-
tently in a database things are more di�cult because
the outcome of a test case depends on the state of the
database. Furthermore, each test case may have per-
sistent side e�ects, altering the state of the database.
This can be viewed as testing procedures. Since there
is no output it is testing for side e�ects, in contrast
to existing test frameworks.
Testing database applications poses two main

problems: Persistency and foreign keys. The persis-
tent side e�ect of a unit test is already an issue when

testing an independent concept. Since connected con-
cepts require several concepts to be set up in order
to test a single concept, foreign keys pose a prob-
lem when testing these. In the following, solutions to
both problems are proposed.

4.1.1 Persistency

When testing database applications data used in the
test cases are stored persistently in the database.
Hence, without proper cleanup after running a test
case, a second execution might not yield the same
result or fail. Thus, to preserve the property of test
cases being independent, proper cleanup must be per-
formed after each test case. However, since this im-
poses a high performance overhead we suggest an-
other approach, where we allow test cases within a
unit test to depend on each other, making room for
reuse of code. This implies that test cases no longer
are independent since any modi�cations made by one
test case a�ects all succeeding test cases. Hence, in
general, single test cases cannot be run individually
but only as a part of executing a unit test. This im-
plies that cleanup is only necessary after running the
unit test.
To be able to do the cleanup of the database after

running a unit test, it is necessary to setup some rules
for what is allowed when modifying data and keep
track of what needs to be undone. These rules are
the following.

• Primary keys or any other candidate keys used
in the unit test must be public.

• It is only allowed to change the data that the
test itself has inserted. This includes primary
keys and candidate keys.

If these rules are followed then the framework ensures
that it can clean up, even if the test crashes.

4.1.2 Foreign keys

In database schemas there can be dependencies
among data. Concepts may rely on data from other
concepts, posing a problem when testing. Proper
setup is required such that all needed concepts valid
data.
Traditional testing methods dictate that unit tests

must be self containing. Using this idea, imagine a
unit test for the teacher concept. Figure 3 shows that
concepts are associated to each other via foreign keys
between tables, and unit test for these concepts are
therefore also associated. Since the concept associ-
ated with the unit test for teacher depends on the
o�ce concept. Thus, the unit test must supply valid
data for the table associated with the o�ce concept
to remain independent. Now imagine a unit test for

4

the course concept. The course concept depends on
the teacher concept and on the o�ce concept via
transitivity. Therefore, the unit test for the course
concept must supply valid data, not only for the ta-
ble associated with the teacher concept, but also for
the table connected with the o�ce concept. Hence,
repetitive code for creating valid data for table con-
nected to the o�ce concept exists in the unit tests
for both the teacher � and the course concept.

Figure 3: The coherence between tables, concepts
and unit tests.

This is only a simple example schema. Real
schemas are much more complex, thus the amount
of redundant code becomes very high. Similarly, the
problem with repetitive occurs when cleaning up.
Figure 2(b) shows a test suite comprising of three
unit tests. This �gure illustrates how the unit tests in
Figure 3 depends on each other. Using our approach,
reconsider the unit test for the teacher concept. In-
stead of supplying valid data for the o�ce concept,
we reuse the code already in a unit test for the o�ce
concept. When testing the course concept, the code
from a unit test for teacher is reused, which again
reuses code from a unit test for o�ce. This way, a
unit test must only supply valid data for the concept
it is testing, reusing code from unit tests belonging to
the concepts, the current concept is directly related
to. Again, the same approach is applied when clean-
ing up. Compared to the traditional approach this
gives a signi�cantly lower test �xture.

4.2 Extending the idea
The idea of the test framework can be utilized in
other contexts than database applications. Testing
programs with associations or aggregations, e.g., in
the Java programming language, pose some of the
same problems. Thinking of references between con-
cepts as foreign-key dependencies, there is a major
di�erence. Associations and aggregations result in
main-memory structures only. Hence, cleanup is not
necessary between test runs since data placed in main

memory is removed at unit test termination. In other
words, persistency is not an issue. However, populat-
ing main memory with references to valid concepts
prior to running a given unit test is conceptually the
same as supplying valid data for tables related to con-
cepts needed for a given unit test. Thus, the exam-
ple given in Section 4.1.2 is just as relevant to testing
associations and aggregations as testing database ap-
plications. However, since they only pose a subset of
the problems associated with testing database appli-
cations, we choose to focus only on the latter.

4.3 The Framework
The framework consists of a set of methods, public
constants and a persistent stack: A setup method, a
teardown method, a run method, a group of test meth-
ods, public constants and �nally a table containing
the active concepts, i.e., the concepts needed for the
current test. This is depicted in Figure 4. The con-
structs will now be described in further detail.

Figure 4: An UML class diagram of the framework.

4.4 Framework Constructs
In the following, each of the methods supplied by the
framework will be described.

Setup: The setup method is used to ensure that
there is a valid foundation for testing, i.e., the
database is put in a known state. Recall Figure
3, in order to test the course concept it is
necessary to have data in the teacher concept.
The purpose of the setup method is to ensure
that for the given concept there is valid data in
the table related to it. Since tables can have
foreign keys to other tables these also need to
contain valid data. This is achieved by having
the setup method call the setup method on all
concepts the current concept is related to via
foreign key constraints.

If the setup method is on the concept currently
being tested then it only calls the setup on other
connected concepts. Thus, it does not insert any
data. However, if the setup is not on the concept
being tested then other needed setup methods are

5

called and data is inserted. This is done because
the inserts is a part of the tests themselves. The
setup method is schema dependent.

Teardown: The teardown method is the reverse of
the setup method. It ensures that modi�cations
made to the table related to a given concept dur-
ing setup and testing is undone, leaving the ta-
ble in the state it was in before testing begun.
As the setup method, the teardown method reuses
teardown code from other unit tests. When sev-
eral concepts have been setup for a given test,
teardown must be called in the reverse order, e.g.,
the last concept that is setup is the �rst to be
torn down. This is also illustrated in Figure 2b.
Here, course was the last to be setup, thus it is
the �rst to be torn down. The teardown method
is schema dependent.

Run: The run method is the method called for exe-
cuting the unit test itself. The run method en-
sures that there are valid data in all required ta-
bles by calling the setup method. The test itself
is done by calling all the test methods, in the cor-
rect order. Finally, the cleaning of the database
is done by calling the teardown method. The run
method is schema independent.

4.4.1 Active concepts

A persistent stack of the concepts currently active is
maintained. This information ensures the robustness
of the framework, since in case of a system break-
down any modi�cations made to the database can be
undone using the cleanup method, when the system
again is up and running. Whenever the setup method
have been called on a concept, this concept is pushed
onto the stack using the push method. As soon as the
teardown method is called on a concept, this concept
is popped o� the stack, via the pop method. However,
the concept is only popped if it is on top of the stack,
and this is checked by the top method. To determine
if a concept already is active we allow looking at all
the elements of the stack, not being able to modify
them, however. The isActive method o�ers this func-
tionality. The methods using the persistent stack are
executed in an autonomous transaction. The stack is
schema independent.

4.5 Conventions

This section describes the conventions that the de-
veloper has to follow in order for the test framework
to work.

4.5.1 Public constants

The public constants are used by the test frame-
work to refer to primary keys. These are not only
on the concept which is currently being tested, but
also on the concepts that are connected via foreign
keys. There are three types of these constants.

1. The �rst type is mandatory and used to insert
data. Thereby, they are available as foreign keys
when inserting in other tables. These primary
keys are valid and used in the database.

2. The second type is optional and used to enable
modi�cations of primary keys and insertion of
additional data in the actual test methods be-
tween the setup and the teardown phases of the
test.

3. The third type is optional and consists of pri-
mary keys that are valid and does not exist in
the database. These are not to be used for in-
sertion, but for testing for non-existing rows.

The public constants are schema dependent and
are created by the developer.

4.5.2 Ordering of Tests

It is necessary to enforce a bottom-up approach when
testing concepts. The developer has to start by test-
ing concepts that other concept does not reference.
In the university example, this means that the de-
veloper should start by testing either the semester
or the o�ce concepts. When the semester concept
has been tested, the developer can continue on to the
student concept and so forth.
As test cases are dependent, it is also important

that the developer consider this, when designing a
unit test. For example, it would be natural to in-
sert data in a concept, before testing, e.g., an exist
method.

4.5.3 Naming conventions

Packages and methods that are to be tested, are by
default pre�xed with test_. Then, the test framework
will automatically execute these tests. Naturally, the
default pre�x can be rede�ned by the user. Without
a pre�x, the framework would execute every method,
which often would not be desirable.

4.6 Reuse of code
The framework reuses code for setup and teardown to
minimize the test �xture. The following example
sequence diagram in Figure 5 shows the process of
setting up the database for a test and the following

6

sequence diagram in Figure 6 shows the process of
cleaning up the database after the test. The exam-
ple diagrams use a subsection of the schema shown in
Figure 1. The subsection of the schema only contains
the tables student, participants, course and semester.

4.6.1 Setting up the database

Figure 5: Sequence diagram showing the process of
setting up the database for a test run. The abbrevi-
ations P: participants unit test, S: student unit test,
Sem: semester unit test and C: course unit test.

The example sequence diagram in Figure 5 shows
the process of setting up the database for a unit test
on the participants concept. The test is initiated
by calling the run method on the participants unit
test. The run method ensures that all the needed
methods are called in the correct order. Hereafter,
the run method calls the setup method on the par-
ticipants unit test. The setup method is called with
the boolean value true that tells the setup method
that it is this unit test being executed now. The
setup knows from the data dictionary [14] that data
is needed in both the student table and the course
table. Therefore, setup calls the setup method on the
student unit test. However, setup on student needs
data from the semester table. Therefore, it calls the
setup method on the semester unit test and the �rst
data is inserted. The setup method from the semester
unit test returns after inserting the data and setup on
student is now able to insert data and return. As
the participants table dependens on the course ta-
ble, setup is still not ready to insert data, so setup on
the course unit test is called. The course setup needs
data from the semester table and, therefore, calls the
setup method on semester. The semester setup returns
without doing anything since data is already inserted.
The course setup now inserts data and returns. The
participants setup method is now �nished and returns
to the run method which initiates the unit test.

Figure 6: Sequence diagram showing the process of
cleaning up the database after a test run. The ab-
breviations P: participants unit test, S: student unit
test, Sem: semester unit test and C: course unit test.

4.6.2 Cleaning up the database

The example sequence diagram in Figure 6 shows the
process of cleaning up the database after running the
unit test on the participants concept. The cleanup
is initiated by the run method calling the teardown
method on the participants unit test. The teardown
method removes all test data from the participants
table and calls the teardown method on the course
unit test. The course teardown removes the test data
from the course table and calls the teardown method
on the semester unit test. The teardown on semester
returns without removing any data, because its data
is still in use and the teardown on course returns. The
participants teardown now calls the teardown method
on the student unit test. The student teardown re-
moves the test data for the student table and calls
the teardown method on the semester unit test. The
semester teardown removes test data and returns to
the student teardown which returns to the participants
teardown method which returns. This concludes the
cleanup of the database.

4.7 Examples
In this section we give two examples of how the test
framework functions. Initially, we consider a test in-
volving only one concept. Hereafter, we consider a
case involving two concepts.

4.7.1 Testing an independent concept

In this section, we consider a scenario where we wish
to test a single concept, in this case the o�ce concept
from the small university scheme depicted in Figure
1. The test is initiated by calling the run method.
The run method starts by calling the setup method.
The run method is shown in Listing 1.

1 procedure run is
2 begin

7

3 setup(true);
4 test ();
5 teardown();
6 end;

Listing 1: The run method when testing on a single
concept.

As the o�ce concept has no dependencies to other
concepts, no setup of any other concepts are nec-
essary. When only one concept is tested, the setup
method does not insert data, this is left to the devel-
oper. Instead, the setup method initializes the public
constants that are available to the developer. These
constants include those that are to be used as primary
keys and primary keys that the developer are allowed
to update, as described in Section 4.5.1. Hereafter,
the setup method returns to the run method, which
calls the test methods. The setup method is shown in
Listing 2.

1 −− package header
2 building constant := 'E4';
3 room constant := '110';
4 building_update constant := 'E3';
5 room_update constant := '210';
6
7 −− package body
8 procedure setup(self_test boolean) is
9 begin

10 if (not stack. is_active(' ' o�ce ' ')) then
11 stack. push('' o�ce ' ');
12
13 if (not self_test) then
14 insert (building, room);
15 end if ;
16 end if ;
17 end;

Listing 2: The setup method when testing on a single
concept.

In lines 2-5 of Listing 2 the public constants are set
up. Note that in PL/SQL this is done the header of
a package. In line 10, we check if the o�ce concept
is already on the persistent stack. If this is not the
case, the concept is set up. In line 11, we push the
o�ce concept onto the persistent stack. This enables
cleanup of the database, should an error occur. As
this is a test of the o�ce concept, the setup method
does not insert any records into the o�ce table. The
developer will have to do this manually in the test
methods. Here it is important to note that the de-
veloper should use the de�ned constants.
An example of a test method written in pseudo

code is shown in Listing 3.

1 procedure test
2 begin
3 insert (building, room);
4 assert . eq(' Building not found!' ,
5 exist (building, room), TRUE);
6
7 update(building, room
8 building_update, room_update);
9 assert . eq(' Building_update not found!',

10 exist (building_update,

11 room_update), TRUE);
12 end;

Listing 3: The test method for testing the o�ce con-
cept.

In line 3 of Listing 3 a record is inserted into the
o�ce table, and the public constants de�ned in the
setup method is used. Immediately after the insertion,
in lines 4 and 5, an exist method is used to check if the
new record in fact is inserted. Should this not be the
case, the assert method will return the error string
' Bulding not found'. In line 7 we update the primary
key of the record inserted in line 3. Hereafter, the
exist method and the assert . eq method is used to check
if the record has been updated. Again an error string
is returned if the record does not exist.
As shown in Listing 2, the setup method calls the

teardown method immediately after the test method
completes its execution. The teardown method is
shown in Listing 4.

1 procedure teardown
2 begin
3 if (stack. top(' o�ce ')) then
4 delete (building_update, room_update);
5 delete (building, room);
6 commit();
7 stack. pop();
8 end if ;
9 end;

Listing 4: The teardown method for testing the o�ce
concept.

First, the teardown method checks that the o�ce
concept is on top of the stack, in line 3. If not, other
concepts still depend on it, and the teardown method
does nothing. If the o�ce concept is on top of the
stack, all records inserted into the o�ce concept are
removed, in lines 4 and 5. Please note that the trans-
action is commited in line 6. This is done to ensure
that any concepts that have not been cleaned up are
removed from the stack. Finally, line 7 pops the of-
�ce concept of the persistent stack as it is no longer
in use, and the o�ce concept has been properly re-
stored to it's default state.
In the next section we consider unit test, where we

are to test the teacher concept. The interesting thing
here is that in order to test the teacher concept we
need data from the o�ce concept.

4.7.2 Testing connected concepts

In this section we show an example of a unit test on
the teacher concept. As mentioned previously, the
interesting thing here is that the teacher concept is
connected through foreign keys to the o�ce concept.
The unit test initiates in the same way as described in
the previous section, by calling the run method. The
di�erence lies in the setup method and the teardown
method. The setup method is depicted in Listing 5.

8

1 −− package header
2 tid constant := 1;
3 tid_update constant := 10;
4
5 −− package body
6 procedure setup(self_test boolean) is
7 begin
8 if (not stack. is_active(' teacher')) then
9 o�ce . setup(false);

10 stack. push('teacher');
11
12 if (not self_test) then
13 insert (tid , o�ce . building, o�ce . room);
14 end if ;
15 end if ;
16 end;

Listing 5: The setup method used to test the teacher
concept.

As in the previous section the public constants are
de�ned in the package header. The �rst things that
happen in the setup method is that we check if the
teacher concept is active. If this is not the case, the
setup method on the o�ce concept is called with the
boolean value false. The false value indicates that
the setup method on o�ce should load data into the
o�ce table, as another concept is using it for testing
purposes. As described in the previous section, the
o�ce concept is also pushed onto the persistent stack,
indicating that the concept is now active and should
be restored to its default state upon completion of the
unit test. Hereafter, in line 10, the teacher interface
is pushed onto the persistent stack. All concepts are
now properly set up and, we are ready to run the test
methods, that is shown in Listing 6.

1 procedure test
2 begin
3 insert (tid , o�ce . building, o�ce . room);
4 assert . eq(' Teacher not found!',
5 exist (tid , o�ce . building,
6 o�ce . room), TRUE);
7 end;

Listing 6: An example test method on the teacher
concept.

In line 3, a record is inserted into the teacher con-
cept. Note here that some attributes have been omit-
ted for brevity � naturally they should be included in
a real test case. The values used in the insertion are
the publically de�ned tid, and the public constant
building and room from the o�ce concept. In lines 4
and 5, the exist and the assert . eq methods are used to
check if the record is in fact inserted. Should this not
be the case an error string is printed. After comple-
tion of the test, control is returned to the run method
that calls the teardown method on the teacher concept.
The teardown method is shown in Listing 7.

1 procedure teardown
2 begin
3 if (stack. top(' teacher')) then
4 delete (tid_update);
5 delete (tid);

6 commit();
7 stack. pop();
8 o�ce . teardown(false);
9 end if ;

10 end;

Listing 7: The teardown method of the teacher con-
cept.

First, the teardown method checks that the teacher
concept is on top of the stack, in line 3. If not, the
teardown method does nothing. If the teacher concept
is on top of the stack, all records inserted into the
teacher concept are removed, in lines 4 and 5. Note
that the transaction is committed in line 6. This is
done to ensure that any concepts that have not been
cleaned up are removed from the stack. In line 7, the
teacher concept is popped of the persistent stack as
it is no longer in use, and has been properly restored
to the default state. In line 8, the teardown method
on the o�ce concept is called. When that method
has �nished executing, all a�ected concepts have been
restored and all elements have been popped o� the
stack.

4.7.3 Summary

The above examples show how to use the test frame-
work. There are some advantages of using the test
framework. The framework provides a systematic
way of setting up the database for a unit test and
an automatic cleanup after testing. Furthermore, the
framework is able to cleanup test data when exposed
to system crashes. Additionally, the framework has a
little test �xture. However, these advantages come at
a cost that comes in the form of some requirements
to the user of the test framework. The user must
publish primary keys and call methods in the cor-
rect order. Furthermore, the user may only change
data that the test itself had inserted and only modify
speci�c primary keys. Furthermore, the framework
requires that the schema must exist.

5 Multi User Framework

The framework is extended to support multiple users.
In the following section, the challenges on the multi-
ple user extension are discussed. First, an overview
of the proposed solution is given. Then, limitations
of that solution are discussed. Hereafter, details of
the extension are presented. Finally, an example of
two users testing simultaneously is given.

5.1 Challenges
When extending the framework to support multiple
users the following challenges arise.

9

Concurrency Several users could try to test the
same concept at the same time. This is a prob-
lem because both users would try to insert data
using the same primary keys, which would lead
to primary key violations.

Dependent concepts Users could try to test con-
cepts that depend on each other. For exam-
ple, the student and the course concepts can
be tested simultaneously. However, the student
and the semester cannot be tested simultane-
ously, because the test on the semester concept
might change the data of the semester table and
thereby corrupting the student test.

Clean up Cleaning up after a unit test is more dif-
�cult, since several concepts being tested can
share data inserted into other concepts. Hence,
when one unit test has �nished, data inserted
into other concepts might still be used by other
unit tests. Therefore, it cannot be removed yet.
As an example, consider unit testing both the
student and the course concepts. If the unit test
of student is completed, data inserted into the
semester concept cannot be removed until after
the unit test of the course concept also is com-
pleted.

As a solution to the challenges above, we propose
three extensions. The solution to the �rst challenge
is not to allow several users to test the same concept
at the same time. To solve the second challenge, we
propose that users cannot test concepts that depend
on each other, at the same time. As a solution to the
third challenge, we propose that users must supply
the maximum running time of a unit test.

Figure 7: Illustration of the worst case idle time sce-
nario with two testers.

Figure 7 shows a possible scenario with two testers,
A and B, testing two dependent concepts. At time
1, A initiates a unit test. A expects his unit test to
terminate no later than at time 3. At time 2, A's unit
test crashes. Since A's unit test has crashed and A
does not clean up the database afterwards, B cannot
start testing before time 3 even though A's unit test
is no longer executing. B has to wait unnecessarily
as the maximum execution time deviates from the ac-
tual test time. The larger this deviation is the longer
B has to wait unnecessarily. Thus, it is important

not to over-estimate the maximum execution time.
At time 4, B's unit test is �nished.

The following section describes the proposed ex-
tensions needed to the test framework and their con-
sequences in detail.

5.2 The Extensions
The underlying table for the stack is extended with
four columns. The �rst is the user name of the user
that is testing a concept. This enables us to clean
up after a unit test from one user, while leaving unit
test from other users una�ected. This implies that
if the data inserted by a unit test is shared between
several unit tests, the data inserted is removed when
the last unit test is �nished. The second column is a
time stamp describing when data inserted by the setup
method for the given concept is invalidated. This en-
sures that if a test crashes and the user does not ini-
tiate a cleanup afterwards, other tests must not wait
inde�nitely for the crashed test to �nish. This im-
plies that users must provide reasonable time stamps.
This is the only additional convention needed when
going from the single-user framework to the multi-
user framework. The third column describes if the
concept itself is being tested, in the following this is
denoted as a self test. This is necessary because if it
is the concept itself that is being tested, it cannot be
used by any other tests, since data in the underlying
table may be modi�ed. The last column describes
if the concept is in the process of setting up, or it
has been setup already. This ensures that a test set-
ting up will not be aborted on account of one of the
concepts which are being setup. For example, when
testing the participant concept the �rst row inserted
on the stack will indicate that the participant concept
is being setup for a self test by this user. The time
stamp will indicate the maximum time boundary of
the test. When this test reaches the setup of the stu-
dent concept another row is put on the stack. This
row indicates that the student concept is being setup
for a test and will prevent other users from starting
testing the student concept itself, and thereby abort-
ing the participant test.

The cleanup method is extended to remove all data
inserted by the current user, by calling the teardown
method on all concepts the user has on the stack.
Furthermore, any data invalidated by the time stamp,
for any user, is removed as well.

The top method is extended to consider only the
current user.

The isActive method is modi�ed to return the status
of a concept, instead of a boolean value. This makes
it possible to di�erentiate between several states of
a concept. The �rst state is that the concept is not
on the stack. The second state is that the concept

10

currently is being setup. The third state is that the
concept is setup already. The last state is that the
concept is undergoing test.
The push method is extended such that it takes

the user name of the given user, a time stamp, if
the concept is being used or tested itself, and if the
concept is being setup or has been already. These
parameters correspond to the new attributes of the
stack table.
The only extension needed to the pop method is

the addition of the user name, such that the stack
not necessarily pops the top element, but the top
element for that user.
The setup method needs to be modi�ed, to avoid

problems with two tests wanting to setup the same
concept for a self test, and one test trying to setup
a concept another wants to test, concurrently. When
accessing the stack to check the current state of the
given concept, a lock on the stack table must be es-
tablished beforehand. This is because, depending on
the state of the concept, a new row is pushed on the
stack, or another row is altered. This must happen
without any other users accessing the stack. Other-
wise, it could be possible for a concept to be tested
itself and be used by other unit tests at the same
time. If the concept depends on other concepts, it
is marked as being setup on the stack, and the ac-
tual insertion of data is deferred until the dependant
concepts have been setup. If the concept does not
depend on other concepts, data is inserted immedi-
ately. It should be noted that the lock on the stack
table is held while data is inserted in the concept.
The teardown method needs modi�cation as well.

When tearing down, inserted data should not be re-
moved if other unit tests are using the concept. As
with the setup method, the stack is locked before ac-
cessing it and until after the inserted data has been
removed.
The run method is only extended by calling the

cleanup method before starting the test.

5.3 Testing Concepts Simultaneously
The example sequence diagram in Figure 8 shows the
process of two users testing the student concept and
the course concept simultaneously. The example di-
agram uses a subsection of the schema shown in Fig-
ure 1. The subsection of the schema only contains
the concepts student, course, and semester.
The two tests are initiated by two di�erent users

that independently execute the run methods of the
student unit test and the course unit test. First,
the student unit test is initiated by when the run
method is executed. Then, the run method of the
student unit test cleans up the database by removing
any data owned by the user and any data containing

Figure 8: Sequence diagram showing the process of
testing the student concept and the course concept
simultaneously. The abbreviations S: student unit
test, Sem: semester unit test and C: course unit test.

an invalid time stamp. After the clean up, the setup
method of the student unit test is called. The setup
method checks that the concept is not in use. Then,
a row is pushed onto the stack, declaring that the
concept is being setup for a self test. Hereafter, the
setup of the semester unit test is called. The semester
setup checks that it is not in use and inserts the test
data into the concept. Then, a row is pushed onto
the stack. This row indicates that the �rst user has
setup the semester concept, and that it is not for a
self test. Afterwards, the semester setup returns. Si-
multaneously, the second unit test is initiated, and
the run method of the course unit test cleans up the
database and calls the setup of the course unit test.
The setup method of the course unit test puts a row
onto the stack, indicating that the concept is being
setup for a self test. Then, the setup method of the
semester unit test is called. The setup method of
the semester unit test checks the stack. Because the
semester concept is already setup, the setup method
just puts a row onto the stack indicating that the
concept is also used in the second unit test, and the
setup method returns. At the same time, the �rst unit
test is at the setup of the student unit test. Here, the
row on the stack is updated so it indicates that it is
setup for a self test. Then, the row is moved to the
top of the stack and the setup method returns to the
run method. The run method executes the test cases
from the student unit test. Meanwhile, the second
test is in the setup method of the course unit test.
Here, the row on the stack is updated such that it is
moved to the top of the stack, and the setup method
returns. The run method of the course unit test ex-
ecutes the test cases of the course unit test. After
they have �nished, the teardown method of the course
unit test is called. The teardown methods checks the
stack and removes the test data from the concept.

11

Then, the teardown method of the semester unit test
is called. The teardown method of the semester unit
test checks the stack. Since another unit test is using
the concept, only the row on the stack used in this
unit test is removed. Hereafter, the teardown method
returns. The teardown of the course unit test returns,
and the second unit test is over. Simultaneously, the
�rst unit test has �nished its test cases and calls the
teardown method of the student unit test. The teardown
method removes all the test data from the concept
and the row on the stack. Then, the teardown method
of the semester unit test is called. Now, no other unit
tests are using the semester concept, so both the row
on the stack and the test data is removed, and the
teardown method returns. The teardown method of the
student unit test returns, and the �rst unit test is
�nished.

5.4 Generalization
The stack is locked during all access to it and all inser-
tion of test data. This ensures that only one change
can be made to the system at the time. Therefore, it
is impossible to set up more than one concept at the
time. Thus, two users cannot test the same concept
at the same time, since one user will always be the
�rst to lock the stack and hereby be able to set up a
concept. The same argument applies when multiple
users tries to test the same concept. Furthermore,
this applies for dependent concepts as well. Hence,
the idea of the framework holds when scaling from
two to several users.

5.5 Limitations
This section describes the limitations of the multi-
user framework. First, users cannot test the same
concept at the same time. Furthermore, dependent
concepts cannot be tested by more than one user at
a time. This is because that the two unit tests would
try to insert the same data twice, which will cause a
primary key violation. Secondly, it is important to
provide reasonable estimates of the maximum execu-
tion time of the unit tests. If the developer makes too
optimistic an estimate, other unit tests will remove
his unit test data while the unit test is still execut-
ing. On the other hand, a too pessimistic estimate
will cause other unit tests to wait unnecessarily in
case of a unit test crash.

6 Performance Optimization of

the Test Framework

Time spent waiting for tests to complete reduces the
amount of time the developer can devote to other

aspects of the development.

This section describes how the performance of the
test framework can be improved when testing large
test suites. This is done by minimizing the number
of calls to the setup and teardown methods. For ex-
ample, consider a scenario where a developer want
to test the student concept and hereafter the partic-
ipant concept. Following the approach described in
Section 4.7, all concepts would be restored to their
initial state, by calling the teardown method on the
student concept, after completion of the unit test on
the student concept. Hereafter, the setup method on
the participant concept would start by loading data,
�rst into the semester concept and hereafter the stu-
dent concept. In this scenario it would be bene�cial
if only the student concept is torn down and setup,
while the semester concept remains unchanged. In
this way, one call to a setup and one call to a teardown
method are removed, thus the time spend setting up
the test �xture is minimized. To optimize the test-
ing process it is necessary to �nd an ordering of the
unit test. The following section describes how this is
done.

6.1 Ordering Unit Tests

To �nd the order in which the test suites should be
executed, we create a directed graph representing the
concepts and their dependencies from the underlying
schema. The graph is created by querying the Oracle
data dictionary. Then we check if the graph is acyclic.
If this is the case, the unit test can be ordered. Other-
wise, no optimizations can be performed. A directed
acyclic graph (DAG) representation of the database
example schema from Figure 1 is shown in Figure 9.
The concepts are vertices and the foreign keys be-
tween them are edges.

Figure 9: Directed acyclic graph representing the uni-
versity schema of Figure 1.

Hereafter, a topological sort [6] is performed on
this graph. Topological sort only works on DAGs,
therefore, we ignore self-references as the reference
from teacher to teacher. The result of a topological
sort on Figure 9 could look as depicted in Figure 10.

12

Figure 10: Topological sort of Figure 9.

The topological sort de�nes the order in which the
unit tests in the test suite should be executed. For
instance, we see from Figure 10 that the semester
concept is the �rst1 concept to be tested.

Furthermore, the teardown methods are simpli�ed
such that they only clean up the concept on which
they are implemented. For instance, the teardown
method on the student concept cleans up the student
interface and terminates. In the former implemen-
tation the teardown method of the student concept,
would call the teardown method on the semester con-
cept.

As mentioned, the semester concept is the �rst to
be tested. On completion of the test, the teardown
method cleans up the concept. Hereafter, the o�ce
concept is to be tested. Upon completion of the test,
the o�ce concept is cleaned up. Then, the student
concept is to be tested. The setup method automati-
cally sets up the semester concept. The test on stu-
dent concept is then performed. Hereafter, the mod-
i�ed teardown method cleans the student concept, but
leaves the semester concept active. The teacher con-
cept requires the o�ce concept, thus this is setup.
Upon completion of the teacher unit test, the o�ce
concept remains setup, and only the teacher concept
is torn down. Then, the course concept is tested. The
course concept sets up the teacher semester. The of-
�ce semester is already active, and is therefore not
setup again. Finally, the test continues by setting
up the participant concept. The setup method on the
participant concept sets up the student concept. Note
that the semester concept already was setup, from
when the student concept began testing.

The task of ordering the unit test is handled by the
test framework without user involvement.

Please note, that when a concept is tested, the unit
test data is setup, test cases are executed, and the
data is torn down again. When the test data for
this concept is used by other unit tests, the test data
is setup but teardown is deferred until completion of
the test suite. Therefore, subsequent calls to the setup
method simply returns because the concept already
has been setup.

1Please note that a topological sort on the university
schema could also yield a result where the o�ce concept is
the �rst to be tested.

7 The utPLSQL Framework

In this section the popular unit test framework ut-
PLSQL is examined. First, it is described how a
single concept is tested using the utPLSQL frame-
work. Hereafter, an example of testing a dependent
concept is presented. Then, the test approach taken
by utPLSQL is compared to our approach.

7.1 utPLSQL
The utPLSQL framework is a test framework for the
Oracle PL/SQL programming language. It is mod-
elled on the JUnit framework following the extreme
programming approach. This means that all test
cases and unit tests should be independent.
For the utPLSQL framework to execute a test case

it has to conform to certain requirements. For each
package the developer wish to test, a separate test
package has to be developed. The test package should
contain a setup and a teardown method. These are,
similarly to the approach proposed in this article,
used to create and remove data structures used in
the tests. Furthermore, the test package should con-
tain all test cases for the methods to be tested. Each
test case consists of a call to one of the functions or
procedures to be tested and a call to an assert pack-
age. The assert package is used to ensure that certain
conditions hold. If all assertions for a test package
hold the test cases are successful.

7.1.1 Testing an Independent Concept

This section describes how to perform the test from
Section 4.7.1 using the utPLSQL framework. The
test is conducted on a package wrapping the o�ce
table. The method to be tested is the insert method.
The PL/SQL code for the insert method is shown in
Listing 8.

1 procedure insert(rec o�ce_rec) is
2 begin
3 insert into o�ce
4 values(rec. building, rec. room, rec.size)
5 end;

Listing 8: The insert method.

The insert method takes a record as input. The of-
�ce_rec parameter contains all attributes in the o�ce
table. Lines 3 to 4 insert a new row into the o�ce
table.
As the insert method does not return any value,

it is harder to check the correctness of the method.
Therefore, we use an auxiliary method to check if a
row has been inserted. The exist method is listed in
Listing 9.

1 function exist (rec o�ce_rec)
2 return boolean is
3 b_exist boolean;

13

4 count_number integer;
5 begin
6 select count(∗)
7 into count_number
8 from o�ce
9 where building = rec.building

10 and room = rec.room;
11 if (count_number > 0) then
12 b_exist := true;
13 else
14 b_exist := false ;
15 end if ;
16 return b_exist;
17 end;

Listing 9: The exist method.

Lines 6 to 10 count the number of records that
matches the input given to the method. If this num-
ber is greater than 0, the method returns true, oth-
erwise false is returned.

To test the insert method we create a test package
as shown in Listing 10.

1 create or replace package body ut_insert is
2 procedure ut_setup is
3 begin null ; end;
4
5 procedure ut_teardown is
6 begin
7 execute immediate
8 ' delete from o�ce
9 where room = 'B2'

10 and building = '110a''
11 end;
12
13 procedure ut_insert is
14 begin
15 insert (' B2',' 110a',15);
16
17 ut.Assert.eq(
18 exist (' B2',' 110',15),
19 TRUE
20);
21 end;
22 end;

Listing 10: A utPLSQL unit test package for testing
the insert method.

All utPLSQL test packages have a setup and a
teardown method. However, in this example no setup
is needed. Therefore, the body of the setup method
is empty (null). The teardown method is automati-
cally called after completion of the test. The teardown
method removes the row inserted by the ut_insert
method. In line 15 a row is inserted into the o�ce
table. In line 17 the eq method, supplied by the ut-
PLSQL framework, is used to validate if the correct
row is inserted into the o�ce table. In line 18 the exist
method, that was described in Listing 9, is called to
check if the row inserted in line 15 exist. In line 19
the expected return value from the exist method is
given. If the exist method returns true the test case
is considered a success, otherwise it is a failure. The
test completes by calling the teardown method that
cleans up the o�ce table.

7.1.2 Testing connected concepts

This section will show how to test a concept that is
connected to another concept through foreign keys.
As in Section 4.7.2 the subject of the test is the
teacher table. As in the previous section, the method
to be tested is the insert method2. Recall from Figure
1 that the teacher table is connected to the o�ce ta-
ble. In other words, we cannot insert a row into the
teacher table without the o�ce table is populated.
The test package is shown in Listing 11.

1 create or replace package body ut_insert is
2 procedure ut_setup is
3 begin
4 execute immediate
5 ' insert into o�ce
6 value(' B2',' 110a',15) ' ;
7 end;
8
9 procedure ut_teardown is

10 begin
11 execute immediate
12 ' delete from teacher
13 where tid = 10';
14
15 execute immediate
16 ' delete from o�ce
17 where room = 'B2'
18 and building = '110a''
19 end;
20
21 procedure ut_insert is
22 begin
23 insert (10, ' Hans','Jensen',
24 null , ' B2',' 110a');
25
26 ut.Assert.eq(
27 exist (10, ' Hans','Jensen',
28 null , ' B2',' 110a'),
29 TRUE
30);
31 end;
32 end;

Listing 11: A utPLSQL unit test package for testing
the teacher concept.

As opposed to the previous section, the setup
method is not empty. In lines 2-7, a row is inserted
into the o�ce table. The primary key of this row
will be used when inserting into the teacher table. In
line 9, the teardown method is declared. In line 12,
the row inserted into the teacher concept is removed.
Lines 15-18 cleans up the o�ce table, by deleting
the row inserted by the setup method. Please note
that it is important to remove the inserted rows in a
speci�c order, to avoid breaking referential integrity
constraints. The ut_insert method in lines 21-30 in-
serts a row into the teacher table using the primary
key from the row inserted into the o�ce table. As
in the previous section, the Assert package is used to
validate the result from the exist method.

2The code for the insert and the exist methods are the
same as in Section 7.1.1, except that the table is no longer
o�ce but teacher. Thus, the attributes have changed.

14

7.1.3 Comparison

This section provides a series of guidelines describ-
ing when it is bene�cial to use the utPLSQL frame-
work, and when the approach described in this article
should be preferred.
As shown in Listings 10 and 11 the setup and

teardown methods quickly become larger. Imagine,
a unit test conducted on the participant table from
Figure 1. The test �xture quickly increases when a
table is dependent on more than one other table. Us-
ing utPLSQL, the developer has to create the test
�xture in the setup method by copying and pasting
code from existing unit tests. Similarly, the teardown
method have to be constructed manually. This is
not the case in the approach proposed in this article.
Section 4.6 described how the the presented frame-
work could reuse setup and teardown methods. Thus,
the workload for the developer is minimized. There-
fore, it is bene�cial to use the approach proposed in
this article, when testing connected concepts. The
framework proposed in this article gives a partially
automatically creation of setup and teardown meth-
ods. However, the utPLSQL framework is well-suited
when a limited test �xture is needed. Especially, the
assert package allows the developer to easily test the
correctness of programs.

8 Oracle Speci�c Functionality

This section describes how to use Oracle speci�c func-
tionality that could aid to achieve the goals of the
database unit test framework. This functionality in-
cludes the �ashback query and workspace manage-
ment. Although the design criteria specify a vendor
independent unit test framework, this section looks
at what could have been exploited in Oracle DBMS
in order to make the implementation easier.

8.1 The Flashback Query
The Oracle DBMS o�ers the possibility to query data
at a point in time. By default, database operations
query the most recently committed data. However,
the �ashback query can be used to query data from
a previous database state. There are two ways to
achieve this, either by using a special system change
number or by specifying a point in time. To query
historical data could prove bene�cial in the unit test
framework as it allows for the database to return to
its state before the unit tests were executed. Us-
ing the �ashback functionality does not eliminate the
need for creating the test �xture. However, it would
make the teardown method unnessesary. This �ash-
back functionality is well-suited when the unit test
framework is only considered to be in a single-user

environment. If the testing environment is a multi-
user environment the framework cannot �ashback in
time when one of the testers is �nished testing, as
test �xture may be used by another test.

8.2 Workspace Management
Workspace Management allows for multiple versions
of rows in user-tables. The versioning infrastruc-
ture is not visible to the users of the database. SQL
select, insert, update, and delete statements continue
to operate as normal. New row versions are logically
group in each workspace until these versions are ex-
plicitly merged into production data or simply dis-
carded. Users in a workspace always see a transac-
tionally consistent view of the entire database, i.e.,
they see changes made in their current workspace
plus the rest of the data in the database. This data
either existed when the workspace was created or
when the workspace was most recently refreshed with
changes from the parent workspace. The workspace
management could be exploited in a multi-user unit
test framework environment. By allowing each user
to test in their own workspace, i.e., they have their
own version of the tables or rows they want to test.
Their testing activity does not a�ect any other con-
current tester. By performing the unit tests in a vir-
tual environment without committing the changes to
the parent workspace o�ers maximum concurrency as
it isolates the multiple testers completely.

9 Implementation

This section describes core implementation issues of
the test framework. It should be noted that this sec-
tion only covers the implementation of the single user
version of the framework, because the changes to the
setup and teardown methods are limited, and have al-
ready been described in Section 5. The framework
is implemented on the Oracle 9i platform. Initially,
the generation of setup and teardown methods are de-
scribed. Hereafter, the implementation of the run
method is described. By auto generating the setup
and teardown methods, the framework becomes more
resistant to changes in the database schema. For ex-
ample, should a new concept be added to the schema,
the developer simply generates a new set of setup and
teardown methods. Thus, the workload required to ac-
commodate changes is reduced. Finally, an approach
for coupling our framework and the utPLSQL frame-
work is proposed.

9.1 The setup and teardown methods
The generator for the setup and teardown methods
is written in C#. Furthermore, the object-oriented

15

framework to represent PL/SQL constructs presented
in [5] is used to output PL/SQL source code. As de-
scribed in Section 4.7 the setup and teardown methods
automatically call other setup and teardown methods as
needed. The dependencies between concepts are de-
termined using the RDBMS meta data. It is therefore
necessary to have access to information about foreign
keys. As an example, to �nd the dependencies of the
participant concept from Figure 1 on the Oracle 9i
platform, the query in Listing 12 is executed.

1 select distinct
2 ucc.table_name as table_name,
3 uc2.table_name as references_table
4 from
5 user_cons_columns ucc
6 inner join
7 user_constraints uc
8 on
9 ucc.constraint_name = uc.constraint_name

10 inner join
11 user_constraints uc2
12 on
13 uc.r_constraint_name = uc2.constraint_name
14 where
15 uc.constraint_type = 'R' −− foreign key
16 and ucc.table_name <> uc2.table_name
17 and ucc.table_name = 'PARTICIPANT';

Listing 12: Finding dependencies for the participant
concept.

The distinct clause in line 1 ensures multiple ref-
erences to the same concept are ignored. With-
out the distinct clause the teacher concept would re-
turn two references, one for the building attribute
and one for the room attributes. Lines 2 and
3 project the attributes needed. Lines 4 to 14
join the tables needed to �nd the referenced con-
cepts. The user_cons_columns view contains in-
formation of the constraints on a given attribute.
The user_constraints view is used to �nd the at-
tributes a given constraint references. Line 15 states
that only constraints of type 'R' are interesting. In
the Oracle data dictionary 'R' indicates that a con-
straint is a foreign key. Recall from Figure 1 that
the teacher concept has a self-reference. Line 16 re-
moves self-references in the result. If self-references
were not removed, the setup method on the teacher
concept would contain a call to the setup method on
the teacher concept. This would generate a recursive
method that never terminates. Line 17 speci�es for
which concept the setup and teardown are being gen-
erated.
Note that the query �nds dependencies between

tables and not between unit tests. It could also be
done between unit tests. The result of the query in
Listing 12 is the concepts student and teacher. Thus,
the setup method for the participant concept looks as
shown in Listing 13.

1 procedure setup(self_test) is
2 begin

3 if (not stack. is_active(' participant ')) then
4 student.setup(false);
5 teacher. setup(false);
6 stack. push('participant ');
7
8 if (not self_test) then
9 −− insert data here

10 end if ;
11 end if ;
12 end;

Listing 13: The auto generated setup method of the
participant concept.

In line 3, it is checked whether the participant con-
cept is already on the persistent stack. If the partic-
ipant concept is not active, the student and teacher
concept are setup. In line 6, the participant concept
is pushed onto the stack. In line 9, the developer
should make a call to the methods that inserts data
using the public constants.
Similarly, the teardown method is auto generated

such that proper cleanup is performed.

9.2 The run method
As described in Section 4.4 the tester calls the run
method to initiate a test. Thus, the task of the run
method is to setup up the test �xture, execute the
test methods, and perform the necessary clean up.
For example, to test the participant concept, the run
method calls the setup method on the participant con-
cept. Hereafter, all test methods on the participant
concept are executed. Finally, the teardown method
on the participant concept cleans the database. This
section describes how the run method locates all test
methods on a concept.
As with the setup and teardown methods, access to

meta data is also required for the run method to �nd
test methods. On the Oracle 9i platform the views
user_procedures and user_source are used. The
user_procedures view contains all the active meth-
ods. Unfortunately, the methods are sorted alpha-
betically according to the method names. As test
methods are dependent it is necessary to join the
user_procedure with the user_source in order to pre-
serve the same ordering of methods as in the source
code. The join between the to views is shown in List-
ing 14.

1 select procedure_name from (
2 select distinct
3 up.procedure_name,
4 us. line
5 from
6 user_procedures up
7 inner join
8 user_source us
9 on

10 (ltrim(lower(us. text)) like ' function %'
11 or ltrim(lower(us. text)) like ' procedure %')
12 and (lower(us.text) like
13 ' %' || lower(up.procedure_name) || ' %'
14 or lower(us. text) like

16

15 ' %' || lower(up.procedure_name) || '(%'
16 or lower(us. text) like
17 ' %' || lower(up.procedure_name) || ';%')
18 where
19 up.object_name = sought_package_name
20 and up.object_name = us.name
21 and us.type = PACKAGE
22 order by us.line);

Listing 14: The SQL statement used to �nd all active
procedures and functions in a package.

Lines 9-17 contain the join clause. Two things need
to be satis�ed to ful�ll the join clause. First, a row in
the user_source view has to contain either the word
function or the word procedure. This is checked in
lines 10 and 11. Second, the method name from the
user_procedures view has to match the name found
in the user_source view. The procedure name should
be followed by a white space, an opening parenthe-
sis or a semicolon. Lines 19 and 20, speci�es which
PL/SQL packages the methods should be found in.
Line 21 ensures that only the package header is con-
sidered.

9.3 Integration with utPLSQL

As described in the previous section, the utPLSQL
framework provides an assert library that helps the
developer in testing his programs. However, as de-
scribed the utPLSQL requires the developer to copy
and paste source code between setup and teardown
methods when testing dependent concepts. There-
fore, it is interesting to combine the two frameworks
to achieve the best from both worlds, namely the
assert library and the large user community from the
utPLSQL world, and the extensive reuse of code from
our world. This section describes how the two frame-
works can, with very little e�ort, be combined.

As described in Section 7.1.3 the primary di�er-
ence between the two frameworks is the setup and
teardown methods. The overall strategy for combin-
ing the frameworks is to modify our framework such
that utPLSQL follows our test strategy, i.e., reuse the
setup and teardown methods instead of copying them.

First, the generator from Section 9 is modi�ed such
that the source code produced follows the conven-
tions of the utPLSQL framework. This means that
procedure names should have the ut_ pre�x. The de-
veloper will now use the generated setup and teardown
methods as described in 4.4. This implies that the
developer should follow all conventions described in
Section 4.5 except for the naming conventions, that
now should conform to the utPLSQL naming con-
ventions. Thus, the public constants must be pub-
lished. Furthermore, the developer should remember
that test cases are dependent. Moreover, the stack
and the methods associated with it must be included.

Hereafter, the developer follows the standard ut-
PLSQL way of writing test cases using the assert li-
brary. Again the developer should recall the con-
ventions from Section 4.5, as the order in which test
suites and test cases are executed is now important.
With this slight modi�cation of the generator, the

two frameworks have been combined to achieve the
best of both.

10 Performance Analysis

This section describes the performance improvement
gained by using the test methods proposed in this ar-
ticle. Initially, the di�erent approaches to testing are
described. Hereafter, the cost of testing the univer-
sity schema is evaluated.

10.1 The simple approach
The simple approach uses the same bottom-up ap-
proach as the approach proposed in this article. The
di�erence is that not only the setup and teardown meth-
ods are executed, but also the actual test cases. For
example, to test the semester concept from Figure
1, the test is setup, the test cases are executed, and
�nally the test �xture is torn down. If the student
concept is to be tested, the entire semester test, in-
cluding the setup and teardown methods, are executed.
Hereafter, the student concept is setup, tested and
torn down. For each concept to be tested, all con-
cepts that the current concept depends upon are also
tested. Thus, to test the entire university schema
from Figure 1 the tests in Table 1 are performed.

Test Dependencies

Semester
O�ce
Student Semester
Teacher O�ce
Course Semester, O�ce, Teacher
Participant Semester, O�ce, Teacher, Course,

Student

Table 1: The tests of the university schema and their
dependencies.

The �rst column in Table 1 shows the concept to be
tested. The second column shows the dependencies
of that test. For example, to test the teacher concept,
the o�ce concept is also tested.

10.2 Our approach
The approach proposed in this article resembles the
approach in the previous section. The di�erence is
that the test cases are not executed for depending

17

concepts when they are setup. Only the setup and
teardown methods are reused. For example, to test
the student concept the setup method on the semester
is used. The test cases for the student concept is
executed. Then the student concept is torn down.
Finally, the semester is torn down as well. Thus,
compared to the simple approach, the test cases for
dependant concepts are not executed. However, the
same number of setup and teardown methods is used.

10.3 Using topological sort
As described in Section 6 our approach is further op-
timized by specifying the order of the unit tests and
by modifying the teardown methods. Table 2 shows
the steps performed in testing the university schema.

Test Steps performed

Semester sem.setup, sem.test, sem.teardown
O�ce o�.setup, o�.test, o�.teardown
Student stu.setup, sem.setup,

stu.test, stu.teardown
Teacher tea.setup, o�.setup, tea.test,

tea.teardown
Course cou.setup, tea.setup, o�.setup,

sem.setup, cou.test, cou.teardown
Participant par.setup, cou.setup, tea.setup,

o�.setup, stud.setup, sem.setup,
par.test, par.teardown

Clean up par.teardown, cou.teardown,
tea.teardown, stu.teardown,
o�.teardown, sem.teardown

Table 2: The steps taken by the topological approach.

10.4 Comparison
This section compares the performance of the three
approaches presented. The performance is measured
according to the number of calls to the setup and
teardown methods, and to the number of unit tests
performed when the entire university schema is to be
tested. The number of unit tests refers to the number
of times all the test cases for a concept is executed.
Table 3 show a comparison of the three approaches.

setups # teardowns # tests
Simple 16 16 16
Our appr. 16 16 6
Topologic 15 12 6

Table 3: Number of methods call when testing the
university example schema

From Table 3 we see that the number of times each
concept is tested drops dramatically from the simple
approach to the two alternative approaches. As the

test cases typically carry more lines of code than the
setup and teardown methods, this reduction is most
likely causing a bigger performance gain than the re-
duction of setup and teardown methods. Note that ex-
ecuting six tests are minimal. Using the topologi-
cal sort approach, it is possible to cut o� one setup
method and four teardown methods and thus, further
improving the performance of the test framework.

The reduction of one setup method is caused when
the setup method from the participant concept is ex-
ecuted. The setup method of the teacher concept re-
turns immediately and skips the setup of the o�ce
concept, as the teacher concept already has been set
up. Hence, the o�ce concept must have been set
up already as well. The di�erence between the num-
ber of teardown methods executed is caused by the
deferral of teardown in the topological approach. In
general, the more relations between the concepts in
the database schema the greater the bene�t is from
using topological sorting.

11 Conclusion

In this paper, we presented and discussed the issues
of designing and implementing a unit test framework.
Alternative approaches for testing database applica-
tions require that all test cases should be indepen-
dent. In this article we argue that it is an advantage
for test cases to depend on each other.

The contribution of this paper is a design and an
implementation of a unit test framework. The frame-
work supports multiple users testing simultaneously
when the conventions of the framework are followed.
Compared to existing frameworks, the approach pro-
posed in this article minimizes the test �xture. The
minimal test �xture is achieved by only having setup
and teardown code in a single place, whereas exist-
ing frameworks requires the developer to copy source
code between test packages. Furthermore, because
existing frameworks require that test cases must be
independent, they must perform setup and teardown
between every test case. In our framework, this is
only done once per unit test. Moreover, the test �x-
ture is further minimized by allowing concepts to re-
main set up through several unit tests.

The framework gives the possibility of automatic
cleanup of the database, in case of a system crash or
a malfunctioning test case.

The ideas presented in this article, are not only
applicable in a database setting. It was shown how
references between objects using collections resemble
the foreign keys in databases. Thus, the ideas of the
framework are also applicable to programs using as-
sociation or aggregation.

With slight modi�cations of the generator pre-

18

sented, we are able to apply the ideas from this article
into the utPLSQL framework and hereby achieve the
best features from both frameworks.
In the following, future work is discussed. A spe-

ci�c problem is that some tables have surrogate pri-
mary keys that automatically increment. This poses
a problem because the next key value is unknown at
compile-time. This makes it more di�cult for the
test programmer to satisfy the constraints given by
the test framework, namely that usable primary keys
must be available at compile-time.
At this moment, the framework does not allow test-

ing of real-time constraints. Imagine a conveyor belt
in an airport transporting luggage from passengers
to their planes. Here, it might be desirable to specify
and test a constraint, stating that a piece of luggage
should reach the airplane no later than one minute
after the passenger checked it in.

Acknowledgements

For providing us with references to related work, we
thank Brian Nielsen of CISS, Aalborg University.

References

[1] Dbunit. http://dbunit.sourceforge.net/. As of
31.05.2004.

[2] Kent Beck. Extreme Programming Explained -
Embrace Change. Addison-Wesley, 2000.

[3] Kent Beck and Erich Gamma. Junit cookbook.
http://junit.sourceforge.net/doc/cookbook
/cookbook.htm. As of 31.05.2004.

[4] David Chays, Saikat Dan, Phyllis G. Frankl,
Filippos I. Vokolos, and Elaine J. Weber. A
framework for testing database applications. In
Proceedings of the International Symposium on
Software Testing and Analysis , pages 147�157,
2000.

[5] Claus Abildgaard Christensen, Steen
Gundersborg, Kristian de Linde, and
Jacob Richard Thornber. A generic and
portable database api.
http://www.cs.aau.dk/∼kdl/master/, 2004.
Aalborg University.

[6] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Cli�ord Stein.
Introduction to Algorithms . MIT press, 2001.

[7] Haifa University Software Engineering Course.
http://cs.haifa.ac.il/courses/softe/JUnit.ppt.
As of 31.05.2004.

[8] Webopedia Regression Testing De�nition.
http://www.webopedia.com/TERM/R/regression_testing.html.
As of 31.05.2004.

[9] Steven Feuerstein. utPLSQL project.
http://utplsql.sourceforge.net/. As of
31.05.2004.

[10] Ramzi A. Haraty, Nash'at Mansour, and Bassel
Daou. Regression testing of database
applications. In Proceedings of the 2001 ACM
SAC, pages 285�289, 2001.

[11] Paul C. Jorgensen. Software Testing - A
Craftsman's Approach . CRC Press LLC, second
edition, 2002.

[12] JUnit. http://www.junit.org. As of 31.05.2004.

[13] Willian E. Lewis. Software Testing and
Continuous Quality Improvement . Auerbach,
2000.

[14] Oracle. Catalog Views / Data Dictionary
Views. http://otn.oracle.com/pls/db901/
db901.catalog_views?remark=homepage. As of
31.05.2004.

[15] Oracle. Managing Viws, Sequences, and
Synonyms.
http://download-west.oracle.com/docs/
cd/B10501_01/server.920/a96521/
views.htm#581. As of 31.05.2004.

[16] William Perry. E�ective Methods for Software
Testing. John Wiley & Sons, Inc., 1995.

[17] Don Wells. Extreme programming: A gentle
introduction.
http://www.extremeprogramming.org/people.html.
As of 31.05.2004.

19

