A Generic and Portable Database API

Project Period: Dat6, February 2nd, 2004 — June 1st, 2004

Supervisor: Kristian Torp

Clans Abildgaard Christzreen Steen Gundes borg

Foristian de Linde Jacob Richard Thomber

A Generic and Portable Database API

Claus Abildgaard Christensen

Kristian de Linde

Steen Gundersborg
Jacob Richard Thornber

Department of Computer Science, Aalborg University, Denmark

{cac,eraser,kdl, jrt}@cs.auc.dk

1st June 2004

Abstract

Most application developers do not fully master SQL
as well as their favorite programming language, e.g.,
Java or C++. Furthermore, repetitive or equivalent
SQL statements make it problematic and time con-
suming to test database interactions spread through-
out an entire application. Hence, a need for a
database abstraction layer exists. We suggest encap-
sulating SQL and database access via an Application
Programming Interface (API).

We design and implement a generic and portable
API. Generic refers to the fact that no vendor spe-
cific features, like Oracle’s embedded Java, have been
used in the design of the API. It aims at providing
most used functionality in application development.
To accommodate needs for extending the API, the de-
sign is modular. The goal of being portable is being
independent from programming-language paradigms.
Two versions of the API have been proposed: A static
and a dynamic one. The static API catches many er-
rors at compile-time, increasing the number of meth-
ods. In contrast, the dynamic APT has fewer methods
but most error checking is deferred until run-time.

Furthermore, a generator for the API has been de-
signed and implemented. Currently, the generator
is capable of generating a PL/SQL specific API for
the Oracle platform. The generated API covers most
commonly used functionalities in database applica-
tion development.

1 Introduction

The advent use of relational database management
systems in application development calls for the use
of an abstraction layer. Such an abstraction layer
eases the task of ensuring correctness and robustness
of database applications. Therefore, it is preferable
to introduce this abstraction layer as a uniform and
testable Application Programming Interface (APT).

The most commonly used language for interact-
ing with databases is SQL. Most application devel-
opers fully masters one or more high-level program-
ming languages such as Java or C++-. However, they
do not consider SQL to be one of these languages.
Therefore, there is a basis for encapsulating SQL from
the developers and hereby ease the task of developing
software.

This article presents a generic API design for wrap-
ping SQL code in an object-oriented or procedural
programming language. To the best of our knowl-
edge such a design does not exist in the field of API
and database research. A design that is indepen-
dent of the underlying schema, the Database Man-
agement System (DBMS), and the programming lan-
guage. Furthermore, the article presents a tool that
enables developers to generate the proposed API. The
generator enables developers to specify precisely what
the generated API will contain. The overall design of
the generator is modular. This minimizes the effort
of changing DBMS and programming language.

The contributions of this article are the following.
First, design and implementation details on the pro-
posed language independent APIs is presented. Sec-
ondly, a generic, comprehensive, and modular design
of the APIs is given. Next, we give design details and
implementation of a generator for the API.

The article presents two versions of the API. The
first is a static version containing many and more
specific methods, allowing for a high level of compile-
time error detection. The second is a dynamic version
containing fewer and more generic methods. Generic
methods are more difficult to check for errors during
compile-time. Thereby, the risk of encountering run-
time errors is increased.

The paper is structured as follows. Section 2 looks
at the related work. Section 3 presents the design of
the proposed API. Section 4 gives an elaborate exam-
ple of how to enforce business rules using the APIL. In
Section 5, the article presents the difficulties encoun-
tered during the implementation of the API. Section

6 presents the design of the API generator. Then,
Section 7 compares the performance of the static and
the dynamic APIs. Finally, in Section 8 the conclu-
sion and the directions of future research directions
are given.

2 Related Work

The Hibernate framework [3] is an object /relational
mapping tool. Hibernate provides a dynamic Java
API for RDBMSs. Dynamic refers to the fact that
the actual SQL statements are generated at run-time,
the SQL strings are build during program execution.
The goal of the framework is to develop persistent, ob-
jects following common object oriented aspects — in-
cluding association, inheritance, polymorphism, and
composition.

Hibernate provides tools to auto-generate a
database schema from a mapping file. Furthermore,
it provides a tool that is able to auto-generate Java
classes with object-level get and set methods from the
mapping files. However, before using the features of
Hibernate, the developer has to create a mapping file
that describes in which tables an object should be
stored and how objects are associated.

When the XML files containing the mapping infor-
mation have been created, the Hibernate framework
allows the developer to store objects persistently with
a single method call. If the object to be stored is as-
sociated with other objects, these will also be stored
in the database.

Symmetrically, the framework supports retrieval
of either single objects or web of objects. Objects
can be retrieved either by using a load method, that
takes the object identifier (primary key) as input or
by providing a list-method with a query written in
the Hibernate Query Language (HQL). The HQL is
an object-oriented query language with many simi-
larities to SQL. The HQL supports the most com-
mon constructs known from SQL but also aggregate
functions, subselects, inner and outer joins, as well
as some features from the object-oriented paradigm
— inheritance, polymorphism and associations. By
having a high-level language like HQL, developers are
able to move between RDBMSs simply by changing a
string in a configuration file; provided the underlying
RDBMS support the features used.

Hibernate provides an object-oriented Java spe-
cific API whereas this paper presents a generic de-
sign portable to all programming languages and a
PL/SQL specific implementation. Furthermore, this
paper presents both a static and a dynamic API.

In [9], Nink et al. present a study on how to ex-
ploit maximum schema independence while maintain-
ing the highest level of compile-time error detection

possible. They suggest an architecture consisting of
a call-level interface (CLI) compiler, a cache module,
and a configuration language used to ease applica-
tion customization. While the CLI compiler stands
for prefetching and pointer swizzling, e.g., it also gen-
erates a Run-Time System (RTS). Here, session con-
trol and database access are provided. Moreover, the
CLI compiler utilizes the database schema and query
knowledge along with a configuration language to
compile, i.e., to generate the RTS that is late in terms
of schema binding time, but late in terms of methods
names to achieve a high error detection rate during
compile-time. Also, in [9], they introduce an interest-
ing compromise between the interface and the actual
implementation. They conclude that even though the
interface may be generic, i.e., late bound, the imple-
mentation may still be generated. This combination,
introduced as wvirtual late binding, does not capture
compile-time errors completely, however they claim
that it ensures a good performance instead and max-
imizes the schema independence.

Nink et al. provide sparse implementation details,
and is in general more abstract in their presentation.
We focus on creating an API that is comprehensive
and modular. However, we do not consider cache
modules, pointer swizzling and so forth.

A technology becoming increasingly popular is En-
terprise JavaBeans (EJB) [4, 6]. One type of beans,
namely the entity beans, abstracts the underlying
database. In a simple setting, an entity bean maps
to a single row in a table. The entity bean provides
access to the data through get/set methods for each
attribute and finder methods that wrap SQL select-
statements. Furthermore, the EJB layer handles per-
sistency, concurrency, business rules, and security is-
sues.

The API proposed in this article is also a database
abstraction layer. However, the functionality of the
methods offered by the entity beans is only a sub-
set of the functionality of our API. Specifically, the
get /set methods are covered by our attribute get/set
interface and the functionality of the finder methods
is covered by our list interface. Since our API does
not consider handling persistency, concurrency, busi-
ness rules, or security issues, our abstraction layer is
thinner than the EJB abstraction layer.

In [1], Ege et al. describe a Java based API for
object-oriented databases. The goal of the research
is to provide the application programmer with seam-
less access to objects no matter if they reside in main
memory or they are stored in a database. To achieve
this, the authors propose a four layer architecture
consisting of a Java front end, a facilitator, a commu-
nication protocol, and a database server. The authors
create an abstract superclass. Any Java class that in-
herits from this superclass can be stored persistently

in a database. The developer can store any object by
calling a persist method, that is inherited from the
superclass. As with the Hibernate framework [3], any
objects associated with the object to be stored, are
also stored with a call to the persist method. Ege et
al. only allows for retrieval of named objects. There-
fore, the developer has to give each object a unique
name using a so-called bind method. This name is
used when the developer retrieves objects from the
database.

The task of the facilitator is to translate the com-
mands issued in the Java program into IceCubes,
which are transmitted using the communication pro-
tocol. A command issued in the Java program could
for instance be to retrieve a specific object or to cre-
ate a new one. An IceCube is a bytestream that
describes exactly what object that is to be manipu-
lated and what sort of operation the database should
perform. In order to decode an IceCube Ege et al.
implements a so-called engine interface, that resides
on the database. The sole purpose of this interface is
to decode the IceCubes and perform the operations
specified in these.

Unlike the APT designed by Ege et al. the API pro-
posed in this article is implementable in both a proce-
dural and an object-oriented language. Furthermore,
Ege et al. only provides methods for retrieving a sin-
gle object, whereas this article also proposes methods
to retrieve multiple rows from the database.

In [5], McLellan et al. describe how to build user-
friendly APIs. The authors argue that when com-
panies purchase APIs or program libraries the pro-
grammers become users too. Therefore, it is neces-
sary to develop guidelines of how an APT should be
documented to support ease of use. McLellan et al.
develops an example API and monitor actual pro-
grammers’ use of this API. Through this investiga-
tion the authors are able to conclude that pseudo
code, along with actual examples of how to use the
code, are essential in order to make a user-friendly
APIL McLellan et al. solely focuses on building an
API for testing its user-friendliness. We present an
API where user-friendliness is only one of our design
criteria.

The design and implementation of APIs have been
explored in many contexts, e.g., in the biometric
world. In [12], Tilton describes how the creation of a
standard generic biometric API, would allow for easy
substitution of biometric technologies and simple in-
tegration among biometric technologies.

3 Design of the API

This section describes a static and a dynamic APT for
database programming. The idea of the APIs is to

increase abstraction by providing a number of meth-
ods for the application programmer. This is done by
providing him with a set of interfaces with methods
for manipulating the database. These interfaces are
to be thought of as Java interfaces [8]. Like in Java,
each interface guarantees certain functionality.

This section only covers the purpose and ideas
of the interfaces. Formore details see appendix A.
In the following,examples are shown in PL/SQL-like
pseudo code. Error handling has beenomitted to keep
focus on the idea of the API First, we will consid-
era small university schema that is used as an exam-
ple throughout thearticle. Next, terminology needed
is introduced. Hereafter theassumptions made be-
fore design and implementation is presented. In-
Section 3.3, the design criteria for the APIsare dis-
cussed. Then, Section 3.4 elaborates on thedesign
of the static API by presenting several interfaces. In
Section3.5, the dynamic AP is illustrated by present-
ing twointerfaces that differ from their static version.
Section3.6 evaluates the design criteria withrespect
to the interfaces presented. Finally, Section3.7 com-
pares the overall differences between thestatic and
dynamic APIs.

The schema depicted in Figure 1 is used as an ex-
ample schema when describing the API.

student participant
sid 0.n 1.1 sid 1.1
name cid
cpr enralled
semid type
1.1 status
semaster office

1.1
semid building
staridate room
enddate size

Figure 1: The University Example Schema. At-

tributes in italics denotes the primary key of a table

The example schema represents a small university.
The university has anumber of students, information
on these is stored in the student table. The course ta-
ble stores thecourseidentifier (cid), the course name
and the foreign keyteacher identifier (¢tid). The par-
tictpant table is arelationship between the student
and the course tables.The primary key of the par-
ticipant table are the sid andcid attributes, which
are also foreign keys referencing the student and the
course tables, respectively. Inaddition, the partic-
tpant has three additional attributes.First, enrolled
that describes when the student is enrolled tothe
course. Secondly, a type attribute that describes if

thestudent is following the course in the traditional
manner or if he isdistant learning. Finally, the sta-
tus attribute describes ifthe student is active or inac-
tive in the course. As depicted in theER-diagram in
Figure 1, a student can follow zeroor many courses
and a course can have zero or many students. Re-
callthe foreign key tid in the course table, this keyref-
erences the teacher table. Fach course has exactly
oneteacher associated. A teacher can teach zero or
many courses. Ateacher can act as a supervisor for
other teachers. This is modeled bythe self-reference
and the bossid attribute on theteacher table. Finally,
each teacher is situated in exactlyone office. This is
modeled through the composite foreign keyconsisting
of building and room, which references the office table.
The semester table is used to connect studentsand
courses to specific semesters, e.g., an introductory
semester. Theprimary key of the table is the semid
attribute, which is usedas a foreign key in the student
and course tables.Moreover, the semester table has
two date attributes indicatingthe start and end date
of a semester.

3.1 Terminology

This section introduces the terms static and dynamic
API. Moreover,three data structures, which are used
when describing the design andimplementation of
the API, are introduced. Finally, the terms attribute
name and attribute value are explained. The term
static denotes that the API utilizes static SQL. This
meansthat every SQL statement is known at compile-
time of the API. The termdynamic indicates that the
SQL statements are not known untilrun-time. The
first data structure is the concept which corresponds
to aheader file in an imperative language, a class in an
object-orientedlanguage or a table in the database. A
concept could be thestudent table in Figure 1. The
second data structure is the record which is an in-
stance ofa concept; it denotes a set of attribute val-
ues. A record correspondsto a row in a table. A
record from the student concept iscomposed of the
attributes sid, name, cpr, andsemid. The third data
structure is the record id which is the primaryiden-
tification of the record. A record id is a subset of
theattributes of the record. This could be the sid
on thestudent concept. The attribute name denotes
all attribute names on a givenconcept. The attribute
value denotes a value of the typeassociated with at-
tribute name.

3.2 Assumptions

This section describes the assumptions made in this
article. Theseassumptions are made to focus the
scope of the article.

The database schema exists The APIs cannot
be generated if the schema does not exist.
The generator does not support generating the
database schema given an API as the Hibernate
framework does.

Schema manipulation The APIs does not support
any schema manipulating operations. The APIs
focus solely on doing data manipulation.

All concepts have a record id Most methods of
the APIs require a record id for unique identi-
fication of records.

Database meta-data must be accessible Meta-
data is required for determining the return types
for methods. Attribute names are needed for
method naming when generating the static API.
Information about primary keys is required by
most methods. Furthermore, information about
unique and foreign keys is necessary for some
methods.

3.3 Design Criteria

To guide the process of designing the APIs, a collec-
tion of designcriteria have been specified. Further-
more, these criteria aresubsequently used to evaluate
the design of the APIs. This sectionwill describe each
design criterion in turn.

Comprehensive As most developers do not favor
SQL, the APIs have to provide an alternative
that is easy to comprehend. This also implies
that the naming conventions used should be in-
tuitive, allowing the developer to guess the func-
tionality of methods without having to read the
actual code. The fact that the APIs are designed
to be comprehensive also implies a “read-once —
understand anywhere” mechanism, i.e., once the
functionality of an interface on one concept is
understood, understanding the functionality of
the interface on any other concept is straightfor-
ward.

Auto-generation Through the generator and an
XML input the developer should be able to spec-
ify exactly which methods and interfaces are to
be generated. Furthermore, methods that are
not supported on a given concept should not be
generated. This increases the comprehensibility
of the APIs. Moreover, meta-data available from
the database should be exploited during the gen-
eration of the APIs.

Symmetric The APIs are designed to be symmet-
ric. This means that if a get method exists, so

does a set method. Similarly, the APIs pro-
vide an output interface and thus an input inter-
face performing the exact opposite functionality.
Again, this is a criterion that improves the com-
prehensibility of the APIs, and hereby making
them more appealing for a developer to use.

Orthogonal The fact that the APIs are orthogonal
means that redundant functionality does not ex-
ist. For example, the APIs only provide an exist
method, not a has nor an in method that are
semantically equivalent. The orthogonal design
also improves the comprehensibility of the APIs
in that the developer only has to look for specific
functionality one place.

Support frequent use An important goal of the
APIs is to provide the application developer with
the most used functionality, without resorting to
writing SQL code. This implies that the APIs
should contain methods for the most commonly
used functionality. Naturally, complete APIs can
never be developed. Should a developer require
very specific or highly specialized functionality,
the developer has to extend the API himself.

Modular The design of the APIs should be highly
modular. This makes it easier to extend the
APIs with new functionality.

3.4 Static API Design

In this section the interfaces contained in the static
APT are described. Each interface will be presented
as follows. Initially, the purpose of the interface is
given. Hereafter, a list of methods constituting the
interface is given. Then each method is described
in turn. When considering overloaded methods only
one is presented. Appendix A lists the entire APIL.
Finally, considerations for each interface are given. If
an interface face has been designed with special at-
tention to some design criteria, this is also discussed.

In Figure 2 all interfaces of the APT are depicted.
Most interfaces are independent from each other.
An example could be the interfaces record lock and
walker. However, some interfaces utilize functionality
provided by other interfaces. As an example, the sta-
tus interface uses the attribute get/set interface. In
Figure 2 some interfaces are marked by (i). This de-
notes that these can be implemented as interfaces in
the Java programming language [8]. For example, the
names of the methods constituting the status inter-
face remain the same regardless of the concept they
are implemented on. In contrast, the names of the
methods in the get/set interface changes depending
on the concept. Thus, this is not implementable as a
Java interface.

Statws (i) | Type (i) [Modification (i}

Attribute getiset General (i} List Record Lock (i) Table Lock (i) Cﬂn’f,?,wn \npu\[i)| Walker ‘ Output (i)

Figure 2: Relationship between the interfaces of the
APL

3.4.1 Attribute Get/Set Interface

The purpose of the attribute get/set interface is to
provide access to single attributes. Listing 1 shows
the implementation of the getName method.

1 function getName(record id) return varchar is
2 result student.name%type

3 begin

4 select name

5 into result

6 from student

7 where sid = record id;

8 return result ;

o end;

Listing 1: Implementation of the get method.

Line 1 defines the method signature and return
type. Line 2 denotes the type of the result variable
to be the same type as the name attribute of the stu-
dent concept from Figure 1. The SQL statement in
lines 4-7 retrieves the mame attribute into the result
variable that is returned in line 8.

The interface contains the following methods.

® get<attribute name>(<record id>)
return <attribute value>

® set <attribute name>(<record id>, <attribute value>)

Explanation It is important to note that the API
provides a method for each column in a table, i.e.,
if we consider the student concept on Figure 1 the
API provides three get methods getName(<record id>),
getCpr(<record id>), and getSemlId(<record id>). Equiv-
alently, the following three set methods are provided:
setName(<record id>,name) , setCpr(<record id>, cpr), and
setSemlId(<record id>, semid). All get methods are im-
plemented using SQL select statements, similarly
all set methods are implemented using SQL update
statements.

Considerations As we can see from Figure 2 the
attribute get/set interface is one of the basic inter-
faces on which both the status and type interface
builds upon.

Allowing a programmer to retrieve an attribute
using the get method, could lead to inconsistencies.
Therefore, the get methods also support locking the
record from which attributes are retrieved. Two
methods for locking a record are implemented.

The programmer has the option of calling the get
method with the addition of a boolean parameter. If
the parameter is set to true, as in Listing 2, then the

record is locked. If the boolean parameter is not given,
the parameter defaults to false, i.e., locking of records
is disabled.

1 —— record id number 1 is locked

2 name := getName(1,true)
Listing 2: Enabling locking when retrieving records
by using and additional parameter.

Alternatively, the programmer can use the
auxiliary method enableLocking(locking boolean) which
changes the default behavior of the get methods. An
example is shown in Listing 3.

—— change the default behavior of the get —methods
enableLocking(true)

—— record id 1 is locked
name := getName(1)

Bow N =

Listing 3: Changing the default locking behavior.

Reflecting on the design criteria in Section 3.3,
this interface has been designed to be comprehensive,
symmetric and to support frequent use. The interface
is quite similar to a standard Java bean. Thus, de-
velopers accustomed to object oriented programming
should find this interface easy to use. The function-
ality of this interface could be covered by simply re-
trieving an entire <record>. However, developers ac-
customed to object oriented programming are used
to getting and setting single attributes.

3.4.2 Type Interface

The idea behind the type interface is to provide spe-
cial access to one particular attribute, namely the
type attribute. The motivation for providing this
functionality is that data of different types is often
stored in a single concept. Then a type attribute is
used to differentiate between the different types. Ex-
amples of such a concept could be the participant con-
cept that has a type attribute, that describes whether
the student follows the course on a normal basis, or
if he is learning remotely. Another example from Or-
acle’s data dictionary [10] views could be the column
all_tables.temporary which is used to specify whether
the concept is of type temporary or a persistent con-
cept, or the all_objects.object type which describes
the type of the objects stored, e.g., Java object, pack-
age or package body.

The methods provided by the type interface are the
following.

® getType(<record id>) return <attribute value>
® setType(<record id>, <attribute value>)
Explanation The getType method is used to select

the type attribute from a <record>. The implementa-
tion of this is a select statement.

The setType method is implemented using an
update statement as shown in Listing 4, here we use
the participant concept as an example.

procedure setType(sidIn, cidIn, newType) is

1
2
3 begin

4 update participant set
5 type = newType

6 where sid = sidIn

7 and cid = cidIn

s end;

Listing 4: Implementation of the setStatus method.

Considerations As depicted on Figure 2 the type
interface builds on top of the attribute get/set inter-
face. The get and set methods provided by the type
interface are exactly the same as the methods in the
attribute get/set interface. However, using the type
interface it is only possible to manipulate a single
attribute, namely the type attribute.

With respect to the design criteria, this interface
has been designed mainly to accommodate the fre-
quent use of the type attribute. If the get/set inter-
face is implemented on the concept then the function-
ality of the type interface is already covered.

3.4.3 Status Interface

The status interface is similar to the type interface,
in that it provides special access to one particular
attribute, in this case the status attribute. Recall
the participant concept in Figure 1. Here the sta-
tus attribute indicates whether or not the student is
active or inactive. An additional example, from Or-
acles data dictionary views [10] could be the column
all_triggers.status that gives the status of triggers
that can be enabled or disabled.

The status interface provides the following meth-
ods.

® getStatus(<record id>) return <attribute value>

® setStatus(<record id>, <attribute value>)

Explanation As the status interface is almost sim-
ilar to the type interface. The getStatus method is im-
plemented using a select statement, and the setStatus
method is implemented using an update statement.

Considerations The implementation of the inter-
face relies on the attribute get/set interface. In fact
if the get/set interface is implemented on the con-
cept then the functionality of the status interface is
already covered. As with the type interface, the sta-
tus interface also supports the frequent use design
criteria.

3.4.4 General Interface

The interface is inspired by the
java.lang.Object class [7] known from the Java
programming language. The methods of the inter-
face only queries the database, i.e., no modification
of the underlying data is done. Furthermore, the
interface provides a method to retrieve a single
<record>.
The methods provided are the following.

general

® toString(<record id>) return string
® exist (<record id>) return boolean
® ecqual(<record id>, <record id>) return boolean

® cequal(<record id 1>, <record id 2>, predicate)

returns boolean
® clone(<record id>) return <record>

® get(<record id>) return <record>

Explanation The first method is the
method that takes a <record id> as input and con-
vert, the row identified by the <record id> to a string.
The method is implemented as a select statement.

The exist method accepts a <record id> as input.
The method determines if the <record id> is all ready
in the table. The method returns a boolean value in-
dicating if this is the case or not.

The interface also provides an equal method. The
input to this method is two <record id>s. The two
<record>s identified by the <record id>s are retrieved
from the database and compared. In order for this
method to return true, every attribute of the two
<record>s must be equal, except for the attributes
constituting the primary key and any candidate keys.
For example consider Table 1.

toString

sid mame cpr

3 Finn Jensen 1505801357
4 Hans Kjeldsen 0709783579
5 Hans Kjeldsen 2412815237

Table 1: sid is the primary key.

If we use equal on <record>s identified by sid 4 and 5
in the Table 1 the method returns true. The reason for
this is, that the only attribute used in the comparison
is name. If we included the sid, which is the primary
key or the c¢pr, which is a candidate key, we would
never have two identical <record>s.

The equal method is overloaded such that it also
takes an additional parameter. The additional pa-
rameter is a predicate. The predicate describes
which attributes are compared for equality. The equal

method returns true if the attributes, described in the
predicate, of the two rows identified by their respec-
tive <record id>s are equal.

The clone method provides a mechanism for mak-
ing copies of a <record>. Naturally, a cloned record
cannot be inserted into a concept as this would cause
a duplicate key error.

As opposed to the get methods in the attribute
get/set interface, that are used to retrieve single at-
tributes, the get method in the general interface is
used to retrieve an entire <record>. The method is
implemented as a select statement that selects all at-
tributes into a <record> and returns it.

Considerations The general interface is, like the
attribute get /set interface, one of the fundamental in-
terfaces, which other interfaces build upon. As with
the attribute get/set interface, the general interface
also allows the programmer to lock the record that
is being retrieved. Thus, potential consistency prob-
lems are eliminated. As in the get/set interface this
is implemented by adding a boolean parameter.

The general interface has been designed focusing
on frequent use design criteria. Developers accus-
tomed to the Java programming language will find
the general interface very comprehendible as the in-
terface is very similar to the functionality provided
by java.lang. Object

3.4.5 Modification Interface

The modification interface provides methods for in-
serting, updating, and deleting <record>s in a con-
cept.

The interface provides the following public meth-
ods.

® iinsert (<record>)

® uupdate(<record>)

® uupdate(<record id>, <record>)

o ddelete(<record>)

® canlnsert(<record>) return boolean

e canUpdate(<record>) return boolean

e canUpdate(<record id>, <record>) return boolean

e canDelete(<record>) return boolean

Explanation The iinsert method takes a <record>,
and inserts it into the concept on which it is imple-
mented. The method is implemented as a insertion
SQL statement.

The interface provides two uupdate methods. The
first one takes a <record> as input and updates the

<record> identified by the <record id> in the <record>
parameter to the new values, i.e., the method does
not update the <record id>.

The second uupdate method takes a <record id> and
<record> as input. All attributes, including the pri-
mary key, in the <record> identified by the <record id>
are updated with the values specified in the <record>
parameter.

The caninsert method determines if a given <record>
can be inserted into the concept. It returns true if the
concept is not locked. Furthermore, it is checked that
the <record> to be inserted does not violate any for-
eign key constraints. As an example, the canTnsert
method implemented on the teacher concept from
Figure 1, checks if the building and room attributes
specified in the <record> in fact exists in the office
concept, such that the foreign key constraints are not
violated. However, the data to be inserted is not vali-
dated against check-constraints. Hence, even though
this method returns true is not guarantied that the
record can be inserted. Check-constraints can still fail
and the state of the concept may change immediately
after the canlnsert method has completed.

The canUpdate, canUpdate, and canDelete methods
checks the same conditions as the canlnsert method,
namely if the concept is locked and if any foreign key
constraints will be violated by performing a given ac-
tion.

Considerations It is debatable whether the
database application programmer should be allowed
to update primary keys.

3.4.6 Output Interface

The output interface is used for printing information
onto different sources.
The interface provides the following public method:

® output(<record id>, <target>, <format>)

e output(list <record id>, <target>, <format>)

Explanation The output method takes three pa-
rameters. First, the object to print. Second parame-
ter is the source onto which the <record>s should be
printed. The third parameter describes the format in
which the objects should be printed. At this time the
possible values are comma separatet which is shown
in Table 2, header-value is shown in Table 3, and
name-value which is shown in Table 4. In each of the
tables the row identified by the sid 4 from Table 1 is
used. The second and third parameter are optional, if
they are left out, they default to screen and a comma
separated string. If more than a single <record> is to
be printed, the output method also accepts a list of
<record id>s as input.

4,Hans Kjeldsen,0987654321

Table 2: The comma separated format

std name
4 Hans Kjeldsen

cpr
0987654321

Table 3: The header-value format

sid: 4
name: Hans Kjeldsen
cpr: 0987654321

Table 4: The name-value format

Considerations When designing this interface
limiting the number of possible output formats has
been a consideration.

3.4.7 Input Interface

The purpose of the input interface is to allow the ap-
plication programmer to load data from files directly
into concepts.

The interface provides the following method:

e input(<filename>, <path>, <format>)

Explanation The input method accepts three pa-
rameters; the filename to open, the path to the file,
and the format of the file. The method opens the
file and inserts all rows into a concept. As an exam-
ple, we could use the output method from the output
interface to write a comma separated file containing
all the entries from the student concept. Hereafter,
we could use the input method to insert the data from
the file into the student concept again. Naturally, the
input method accepts the same formats, as the output
method from the output interface.

Considerations A natural extension to the input
interface would be to allow input from other sources.

Together with the output interface, this interface
is symmetric in the sense that everything outputted
can also be inputted and vice versa.

3.4.8 Walker Interface

The purpose of the walker interface is to retrieve
<record>s that are connected via foreign keys to the
current <record>. The walker interface could, e.g., be
used to retrieve the web of connected <record>s using
foreign-key information. As an example, the method
in Listing 5 shows how a teacher is found using a cid.

1 function getForeignTeacher(courseld)
2 return teacher%rowtype is

3 resRecord teacher%rowtype;

2 begin

5 select teacher.x into resRecord

6 from teacher, course

7 where teacher.tid = course.tid

8 and course.cid = courseld;

9 return resRecord;

10 end;

Listing 5: Implementation of the getForeignTeacher

method.

The %rowtype in line 2 and 3 results in a record
variable containing the all attributes in the teacher
concept. The method is a select statement joining
the course and teacher concepts, as seen in line 6.
Line 7 ensures that each teacher only is associated
with courses containing that specific #id, and line 8
states that only a specific course is of interest.

The interface contains the following methods:

e getForeign<concept>(<record id>)
return <concept> list of <record>

® get<Concept>sFor<Foreign concept>
(<record id>)
return <concept> type <record>

Explanation The getForeign<Concept> method is
used to retrieve the <record> corresponding to
the foreign key in the <record> denoted by the
<record id>. The get<Concept>sFor<Foreign Concept>
method is used to retrieve all the <record>s point-
ing to a specific foreign key value. As an example the
getCoursesForTeacher yields a list of course records for
which the course.tid is equal to the <record id> given
as input.

Considerations Using the walker interface an ap-
plication programmer can join multiple concepts
without writing any SQL. For example, to list all
students and the name of the courses they are fol-
lowing, if they are following any, the programmer
would, without the API, have to write a query involv-
ing two left outer joins. Using the API, the program-
mer could use the list method to retrieve all students.
Then, for each student use the getForeignParticipant
method, to get a list of cid’s for courses the stu-
dent is following. Finally, the getForeignTeacher is used
for each <record> returned by the previous method
called. Now the desired result is achieved, a list of
all students and the courses, if any, the students are
following is produced.

3.4.9 Key Conversion Interface

The key conversion interface is used to convert a pri-
mary key to a candidate key and vice versa. The
methods provided by the interface are the following.

® <candidate key 1>2<candidate key 2>
(candidate key 1 value)
return <candidate 2 value>

Explanation Recall Figure 1 and focus on the
student concept. Here, this interface would
provide the methods sid2cpr(<attribute value>) and
cpr2sid (<attribute value>).

Considerations Notice the symmetry between the
methods. When conversion done from one candidate
key to another, it is always possible to go the other
way as well.

3.4.10 Record Lock Interface

The record lock interface is for row locking. The lock
mode can be either a shared lock or an exclusive lock.
The interface contains one method that is listed be-
low.

e recordLock(<record id>,<lock mode>)

Explanation The method recordLock takes in as
input the <record id> of the concept together with
a <lock mode>. This interface does not contain a
releaseLock method, however. Releasing a record lock
can be accomplished in two ways. First, the user can
call the commit method to actually commit changes
made during the record lock session. Secondly, the
rollback method can be called to undo all changes in
the present rollback segment.

3.4.11 Table Lock Interface

The table lock interface allows the user to lock an
entire table in either a shared lock or in an exclusive
lock. It has the same commit /rollback behavior as used
in the record lock interface. The table lock interface
could be used to ensure consistency during a critical
update of a system.

3.4.12 Predicate Package

The predicate needs to be introduced now because
it is used by the next two interfaces, namely the
count and the list interfaces. Before going into
details with the methods of the predicate package
an example of its use will be presented. Say we
want to count the number of students in the stu-
dent concept where their names is either Hans or Ole.
Here, the SQL where clause would be the following.
where name = ’Hans’ or name = *Ole’. This is modelled
this using the binary tree depicted in Figure 3.

Figure 3: Binary tree denoting the where clause

name = ’Hans’ or name = ’Ole’.

This tree can be build using the composite design
pattern [2]. Using this design pattern it is possible to
model all where clauses. Such a tree can be built at
compile-time using the two methods supplied by this
package.

The interface contains the following methods.

e createPredicate(<attribute name>,
<checkValue>, <op>)
return compositePredicate

e combinePredicates(<compositePredicate>,
<compositePredicate>, <op>)
return compositePredicate

Explanation The createPredicate method makes it
possible to create predicates, and it has three param-
eters. <attribute name> is the name of the attribute
to be used for comparison. <checkValue> is the value
the attribute is compared to. It should be noted that
this can also be another attribute. Lastly, the param-
eter <op> is the operator used in the comparison,
e.g., the equality operator. The method returns a
compositePredicate, which maps to a where-clause con-
dition, e.g., name — ’Hans’.

Since the attributes of concepts can have many dif-
ferent types <checkValue> is passed as a string. Then
the DBMS implicitly converts the string to the re-
quired type. <attribute name> is also passed as a
string. This means that the compiler is unable to
check that the string contains a valid attribute name.
In order to make this check possible, a string constant
with the name of the attribute is created for each
attribute of a concept. E.g., for the student con-
cept a constant named cpr exists, representing the
string ’cpr’. Then the application programmer can
use these constants when requiring attribute names,
making the compiler able to detect typos and invalid
attribute names.

The same idea is used for the <op> parameter.
However, the operator constants reside in the pred-
icate package, as they are not associated with any
single concept. The operator constants are shown in
Table 5.

opAnd | and

opOr or

opEq equal

opNeq | not equal

opLt less than

opGt greater than

opLte | less than or equal
opGte | greater than or equal

Table 5: The semantics of the predicate package’s
constant to operator mapping

The other method of the predicate package is
combinePredicates. This method makes it possible to
combine predicates, in order to form larger predi-
cates. The method has three arguments. The two
first is the two predicates to be combined, and the
last is the operator to use. Note that it is only pos-
sible to conjunct and disjoint predicates, no other
operators are allowed.

Considerations The idea behind the predicate
package can easily be used to model other clauses
than where clauses, e.g., from-, order by-, group by-
, and having-clauses. The idea of using string
constants to enable compile-time syntax-checking is
somewhat inelegant, but chosen for the API to re-
main general. Specific programming language con-
structs can be utilised instead, e.g., inheritance in ob-
ject oriented languages with a general attribute class
with specific attributes as subclasses, or PL/SQL
types and subtypes.

3.4.13 Count Interface

The count interface offers two methods both called
count. A count method that counts the number of
elements without considering any predicate, and a
method that does consider a predicate.

The interface contains the following methods.

® count() return integer

® count(<compositePredicate>) return integer

Explanation The plain count method executes the
select count(x) SQL statement. This simply results in
the number of records in a concept.

The other way to use count is by adding a
predicate as the method’s in-variable such that
count(<compositePredicate>) would be the method call.
The predicate allows for select count(x) statements
with a where clause explicitly defined by the pred-
icate. As an example one might want the number
of all students whose names are “Hans” or “Ole”. In
other words, the SQL-statement in Listing 6 must be
executed.

10

select count(x)

from student

where name = "Hans"
or name = "Ole"

Bow e

Listing 6: A count SQL statement containing a where
clause.

Lines 1-2 counts the number of records in the stu-
dent concept. Lines 3-4 indicates that only records
containing either 'Hans’ or ’Ole’ are counted. The
equivalent count method to the SQL statement in List-
ing 6 is shown in Listing 7.

1 function count(predicate) return integer

2 begin

3 select count(x)

4 into result

5 from student

6 where predicate.toString()

7 return result ;

s end;

Listing 7: Implementation of the count with predicate
method.

Lines 3-5 counts the number of records in the stu-
dent concept. In line 6 the predicate is turned into
a string equivalent to the where clause in line 3 and
4 in Listing 6. The process of building a predicate
is facilitated by the predicate package as explained
previously in Section 3.4.12. To implement the count
method in Listing 6 a predicate must be devised. This
predicate is devised in Listing 8.

1 procedure example is

2 compositePredicate hansPred;

3 compositePredicate olePred;

4 compositePredicate combiPred;

5 integer result ;

6 begin

7 —— assign values

8 hansPred =

9 createPredicate(student.name,"Hans",0pEq);
10

11 olePred =

12 createPredicate(student.name,"Ole" ,0pEq);
13

14 —— combine predicates

15 combiPred =

16 combinePredicates(hansPred,olePred,opOr);
17

18 —— run the count method with the

19 —— combiPred as in —variable.

20 result = student.count(combiPred);

21 end;

Listing 8: Sample use of the count with predicate
method.

In lines 2-5 the variables are declared. In lines 9
and 10 the first predicate is devised. The HansPred
variable is equivalent to the name = ’Hans’ part of
the where clause. Similarly, in lines 11 and 12 the
name = ’Ole’ part of the where clause is devised. Lines
15 and 16 combines the two predicates using the
combinePredicates method. Thus, the complete where
clause is created.

Here the SQL has been completely encapsulated, a
high level of compile-time error detection is achieved,
and hence; possible runtime-errors are reduced.

Considerations The predicate package provides
compile time error detection when building any of
the where-based syntax clauses. However, this where
clause encapsulation comes at a price. The four-
line SQL statement in Listing 6 are replaced by the
PL/SQL code fragment in Listing 8. In general, the
predicate approach calls for more implementation ef-
fort. In fact, the addition of one condition to the
where clause yields the creation of two new predi-
cates. This results in 2n — 1 predicates needed to
represent an SQL where clause with n conditions.

Conceptually, the count interface also belongs to
the general interface as this interface does not ma-
nipulate data in the underlying concept.

3.4.14 List Interface

The list interface is used to retrieve a list of records.
It offers three methods to facilitate this. One method
to do plain queries, and one to use the select opera-
tor with a where clause. The interface contains the
following methods.

e list () return list of records

e list <attribute name>()
return list of <attribute value>s

® list (<compositePredicate>) return list of <record>s

Explanation Similar to the two count methods im-
plemented in the count interface, the list interface
uses the predicate package to form the where clause.
The implementation is quite similar to that shown in
Listing 7. The only difference is that list returns a
list of records, instead of the number of records.

Considerations The similarity between the count
and the list method allows for implementation-reuse.
Once a predicate has been declared, it can be used
either by list or by count to either return the list of
records that satisfies the where clause or to simply
return the number of records that satisfies the pred-
icate in the particular concept.

The list interface also provides locking facilities in
the same manner as the attribute get/set and general
interface. However, it is important to remember that
enabling locking and calling the list method, is equiv-
alent to performing a table lock which could result in
the disadvantages described in Section 3.4.11.

11

3.5 Dynamic Design

This section describes the get /set and the key conver-
sion interfaces that illustrate the difference between a
static and a dynamic design and implementation. It
will focus on the benefits and disadvantages on each
of the designs. The dynamic API contains the same
interfaces as the static API. The interfaces not de-
scribed in the section are available in Appendix A.2.
As with the static APT design, some details have been
omitted from the discussion, all the details are avail-
able in Appendix A.2.

3.5.1 Attribute Get/Set Interface

As described in Section 3.4.1, one could choose to
design the get/set interface statically. However, in
this section a dynamic approach is presented. The
dynamic get/set attribute interface consists of two
methods.

® get(<attribute name>, <record id>)
return <attribute value>

® set (<attribute name>, <record id>,
<attribute value>)

Explanation These methods look very similar to
those of the static API in Section 3.4.1. The only
difference is that the <attribute name> is now a pa-
rameter and not a part of the method name. The
method names are intuitive. The get method retrieves
the <attribute name> identified by the <record id>.
The set method sets the <attribute value> to the
<attribute name> identified by <record id>. Listing 9
shows how to use the dynamic get method for retriev-
ing the name attribute from the student concept.
function get(attributeName, recordId)
return varchar is
result varchar
begin
select attributeName
into result
from student
where sid = recordld;

return result ;
end;

1
2
3
4
5
6
7
8
9

11
attributeName = 'name’;
recordld = 1;

get(attributeName, recordId);

Listing 9: Implementation of how to use the dynamic
get method on the student concept.

In lines 1-10 the name attribute is retrieved and
returned. It is important to note that the name of
the attribute needed is sent as a parameter and the
result always is cast to a varchar. In lines 12-13 the
variable needed is set and in line 15 the get method
is called.

12

Considerations A benefit of the dynamic version
of the get/set interface is that it reduces the number
of methods compared to the static version. However,
the risk of exceptions increases. For instance, the
application programmer may declare an invalid type
of <attribute value> for the <attribute name> that he is
trying to set. Furthermore, the application program-
mer may try to either get or set an <attribute name>
that does not exist; hence, also invoking an exception.

3.5.2 Key Conversion Interface

In the dynamic version of the key conversion inter-
face, the candidate keys are no longer hard wired to
the method names it provides. Instead, the dynamic
key conversion interface provides only one method
that is listed below.

® key2key(<key in>,<key value>,<key out>>)

Explanation The key2key method takes three ar-
guments. The <key in> describes the name of the
known candidate key where <key value> is the value
of this key. <key out> is the name of the desired can-
didate key. Listing 10 shows how to use the dynamic
key2key method for converting the cpr attribute to
sid attribute in the student concept.

function key2key(keyInkeyValuekeyOut)
return varchar is
result varchar
begin
select keyOut into result
from student
where keyIn = keyValue;
return result ;
end

© 0 N DU AW N e

e
= o

keyIn = ’cpr’;
keyValue = ’1505801357;
keyOut = ’sid’;

=R
oW N

15 key2key(keyIn,keyValue,keyOut);

Listing 10: Implementation of the key2key method on
the student concept.

In lines 1-9 the new keyOut is found according to the
keyIn and the keyValue. It is important to note that
the name of the known key as well as the name of the
desired key is given as a parameter. Furthermore,
both the keyValue and the result has to be upcasted
to a varchar. In lines 11-13 the variables needed is
set and in line 15 the key2key method is called.

Considerations This interface provides a much
more flexible way of doing key conversion. How-
ever, it comes with the price of possible run-time er-
rors. The application programmer may pass invalid
<attribute name>s for keys. Also, it requires that the
programmer knows exactly which <attribute name>s
that are candidate keys. In addition, the dynamic

way is also more schema independent. The static ver-
sion is not. For example, to generate the static API
the attribute names are needed in order to create the
method names. This is not needed when generating
the dynamic API.

3.6 Evaluating design criteria

This section will evaluate the design criteria from Sec-
tion 3.3. Each of the criteria will be discussed with
respect to both the static and the dynamic API.

Comprehensive Method names for both the static
and the dynamic API are designed to be intu-
itive for the developer. This means that the de-
veloper can guess the functionality of a method
simply by looking at the name. As it was shown
in Section 3.5 the get/set and the list interface
use different naming conventions in the two API
versions. The fact that the attribute name is not
incorporated in the method name in the dynamic
API, means that developer has to know what
attributes exists on a given concept. This could
make the dynamic AP] less comprehendible com-
pared to the static API.

Auto-generation In order to generate the static
API, access to meta data is necessary. For in-
stance, the return type of the methods in the
get/set interface are found using meta data.
When considering the get/set interface in the
dynamic implementation, only meta data about
primary keys is needed. As described in Section
3.7 the return types in the dynamic APT are cast
to the varchar type. Thus, when the developer
utilized the dynamic APT type information will
be lost.

Symmetric Most methods with exception of the
methods in the record lock and table lock inter-
faces have a symmetric counterpart. This means
that if the developer can output something, then
he can input it again. As described in Section 3.3
this also improves the comprehensibility of the
APIs. As described in Sections 3.4.10 and 3.4.11
no counterpart to the recordLock and lockTable ex-
ists. To unlock a record or a table the devel-
oper will have to commit or rollback the current
transaction.

Orthogonal Both the static and the dynamic API
have been implemented to avoid overlapping
functionality between methods. However, one
could argue that the recordGet method overlaps
with the methods provided by the get/set in-
terface. Since developers used to the object-
oriented paradigm are accustomed to get and set
methods that works attribute level, the existence

13

of the get/set interface aids both the compre-
hensibility of the APT as well as the support for
frequent use.

Support frequent use As described in Section 3.3
the APIs are designed to provide the most of-
ten used functionality. To achieve this goal the
design has been validated through visits to two
danish software houses, Atira ApS and Logi-
matic Software A/S.

Modular Both design and implementation of the
APIs are highly modular. This enables users to
generate just the interfaces needed.

3.7 Comparison

In this section we are going to look at the differences
from the static to the dynamic API. The differences
that will be discussed are listed in Table 6.

Static SQL Dynamic SQL

Run-time errors
Explicit type cast

Less schema dependent
Fewer methods
Generic methods

Compile time errors

No type casting

More schema dependent
Many methods

Specific methods

Table 6: Differences between static and dynamic SQL

A major difference between static and dynamic
SQL is when errors are caught. When using the static
interface many errors will be found on compile time.
As an example consider the teacher concept from Fig-
ure 1. If a programmer by accident call the method
getFlame, that does not exist, instead of the getFname
method, a compilation error would occur. Consider
this example using the dynamic API, now he calls the
get method specifying that he wants the ’flame’ col-
umn. As shown in Figure 1 the flame attribute does
not exist, however, this error will not surface until
run-time.

Considering the return type of the get methods
in the dynamic APT a risk for errors occur. When
calling, for example, the static getCPR method on
the student concept, the programmer knows that the
method returns an integer. When using the static
API the return type of a method is always known.
This is not the case with the dynamic API. As the
dynamic APT only provides a single get method used
to retrieve attributes, all values have to be upcasted
to a general value, e.g., a varchar in the PL/SQL
programming language or an Object [7] in the Java
programming language.

Obviously, the static API requires more informa-
tion about the underlying schema than dynamic API.
For example, in order to create the static attribute

get /set interface all attributes in a concept have to be
known. The dynamic attribute get/set interface only
requires information about the primary keys of the
underlying schema, the same situation applies for the
key conversion interface. The schema independence
increases the risk for run-time errors due to the loss
of type information and the ability to specify false
attribute names.

As a result of the nature of dynamic SQL, the dy-
namic API has very few generic methods opposed
to the static API that has many specific methods.
Again, the attribute get/set interface provides a valu-
able example. The implementation of the attribute
get/set interface on the teacher concept, yields a to-
tal of five get and five set methods (excluding a get
and set method for the <record id>), whereas the same
interface in the dynamic version always provides ex-
actly one get method and one set method.

3.8 Views

In this section the API treatment of views will be de-
scribed. Three types of views are considered. Views
that are read-only, views that can be updated but
does not allow insertions, and views where it is possi-
ble to both update and insert rows. These three types
of views are the ones that can occur and therefore the
ones that must be handled. The read-only views are
handled by only allowing methods that does not up-
date or insert rows in the database. The views that
can be updated are handled by excluding methods
that inserts rows into the database. The views where
both updates and insertions of rows are possible are
handled as an ordinary table.

The challenge is to classify as one of the three types
described above. Currently, the user must supply the
information needed to determine which category the
view belongs to.

4 An Elaborated Example

Most companies value business rules to be of utmost
importance. This section illustrates how to imple-
ment business logic using the static API and our
sample university schema. Below, two examples of
imaginable business rules are presented. However,
implementation details are only provided for one of
them.

Business rules in our example university schema
described in Section 3 could be something like “The
database course on a given semester must have
at least 20 students participating” and “a teacher
may teach no more than three courses on a given
semester”. These rules are implementable using
object-oriented or procedural programming language

14

and the APIs. A possible solution to the first rule is
shown in Listing 11.

begin
compl := predicate.create predicate(
’semid’,1, predicate. OP _EQ);
comp?2 := predicate.create predicate(
’coursename’,’database’, predicate. OP _EQ);
composite := predicate.combine predicates(
compl, comp2, predicate.OP AND);
cid_tab := courseinterface. list_cid (composite);
for i in cid_tab.first .. cid tab.last loop
comp3 := predicate.create predicate(
‘cid’,cid_tab(i),predicate. OP _EQ);
stud number := participantinterface.ccount(
comp3);
if (stud number > 20) then
print (’ Sufficient students’);
else
print (’ Insufficient
end if;
end loop;
end;

Listing 11: Business rule example: The database

course on a given semester must have at least 20 stu-
dents participating.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

students’);

In lines 2-7, a predicate corresponding to the SQL
where clause semid = 1 and coursename = ’database’ is
created. The predicate and the list method on the
course interface is then, in line 8, used to retrieve all
the relevant cids from the course concept. The loop
in lines 9-19 creates a new where clause predicate and
it is used in the count method on the participant in-
terface. The result is then used to decide if there are
a sufficient number of students.

In the above manner, business rules can be en-
forced using the API and some object-oriented or
procedural code.

The above example was created using the static
API. Naturally, it is possible to create the same ex-
ample using the dynamic API.

5 Implementation Issues

In this section important implementation issues are
described. To the best of our knowledge, there ex-
ists no related work that explains the implementa-
tion difficulties encountered during their development
process. Initially, a choice had to be made between
an object-oriented and a procedural programming
language. Furthermore, problems experienced with
database permissions are discussed. The implemen-
tation is performed in PL/SQL on the Oracle 9i plat-
form. The experiences developing the APIs using the
PL/SQL programming language are presented, and
we discuss if choosing another programming language
would have been more beneficial.

Object-oriented versus procedural paradigm
The design aimed at being programming

language independent in respect to the object-
oriented paradigm and the procedural paradigm.
However, parts of the APIs could more easily
have been implemented in an object-oriented
language, e.g., the predicate package in Sec-
tion 3.4.12. This package is implemented
using the composite design pattern that is an
object-oriented pattern [2]. However, it is not
easily implemented in a procedural language
like PL/SQL; yet, it was still possible to use
PL/SQL types to successfully implement it.
This is mainly because PL/SQL types resemble
object-oriented language constructs. More
specifically they support inheritance.

Permissions It is important to note that when us-
ing PL/SQL and in particular the utl_file package
[11], files are written on the server, instead of on
the client. In other words, the application pro-
grammer needs to have write permission on the
database server. Permissions in general can be
an issue, for instance in the table lock interface.

Database Platform Although the design of the
APIs is generic the actual APIs are implemented
on the Oracle 9i database platform. Due to the
advantages of the generic design of the APIs they
are implementable on other database platforms
as well.

PL/SQL implementation As mentioned above,
the database platform used was the Oracle 9i.
Therefore, it was very appealing to use Oracle’s
own programming language PL/SQL. Except for
the problems during the implementation of the
predicate package, we encountered no problems
using PL/SQL. By using the %type language
construct it is possible to completely avoid the
type impedance mismatch problem. If the API
were implemented in another programming lan-
guage, e.g., Java there would be a mismatch be-
tween the types used by the DBMS and the types
used in the programming language. For example
the Oracle DBMS has several types to represent,
a string, e.g., varchar, varchar2, nvarchar, or clob
types, whereas the Java programming language
is able to encapsulate all of these types in the
string type.

6 Auto Generation of the API

Auto generation of the API is time saving for the
developer, since he is spared developing the API
from scratch. Furthermore, the API is resistant to
schema changes, as the API only has to be regener-
ated. Therefore, the APT is applicable to different
schemas instantaneously. This section describes the

15

design of our API generator. Initially, the core com-
ponents that are used to represent the API code are
described. Hereafter, the overall customization pro-
cess is described. This generator generates PL/SQL
code for the Oracle platform and is implemented in
C+#.

If the generator was to produce source code in an-
other language than PL/SQL, at the very least all
toString methods in the components would have to be
re-implemented. The toString methods are the only
methods that produce source code. The remaining
methods are only used internally in the generator.
Furthermore, components for language specific con-
structs should be added. Currently, the generator
supports for the generation of all interfaces except
the interfaces listed below.

e Qutput interface

List interface

Modification interface

Record lock interface

e Table lock interface

e Input interface

With an additional effort these interfaces could eas-
ily be implemented.

6.1 The Components in the Genera-

tor

In this section each component of the generator will
be described. A UML diagram of the generator is
depicted in Figure 4. These components are designed
to represent an entire PL/SQL package, including all
the constructs of a package; procedures, functions,
variables, constants, type, and subtype declarations.

DatabaseObject The DatabaseObject is an ab-
stract superclass representing any object stored
in the DBMS. The class contains a name describ-
ing the object, and a comment attached to that
particular object. All other classes inherit from
DatabaseObject.

Class The class Class represents a PL/SQL pack-
age. The class contains lists of all objects re-
quired to build a package. This includes inter-
faces, variables, constants and type declarations.
The toString method on this class produces all
PL/SQL source code for a package, i.e., both the
header and the body of the package. More pre-
cisely the toString method iterates through each
of its lists and calls the toString method on each
of the objects in the lists.

Method

- DatabaseObject Types - ArrayList = new
[Fname : siring Constants - ArrayList = new
[Feomment : string Fariables : ArayList = new
+DatabaseObject(in n : string, in c : string) FreturmType © string = null
+Gathame() : string Fbady : string = null
+GelComment() : string <|1 :P ferlist = new

[+SatName(in name : string) [+Method(in name : string, In comment : string, In bady : skring, In retumType - siring)
+SetComment(in commeant @ string) +Add Typelin t : Type)

+AddMethod{in ¢ : Method)

+AaddVariabledin v - Variable)

H+SetParameterList(in p : Parameterlist)

(+GetParameterList() | ParameterList

+ToSiring(in spec : boal) : string

Class Parameter
Hinterfaces : AmrayList = new ArrayList{)
FTypes : ArrayList = new AmayList() [+Parameter(in name : string, in comment : string)

-Constants : ArrayList = new AmrayList()
-Variables - ArraylList = new Arraylist()
HClass(in name : string, in comment ; string)

-Ganerate{in spec : bool) : string Interface

+Addinterface(in | : Interface) _Methods 1 AmrayList = new ArrayList()

:mﬂ:ﬂ?ﬁegg(ﬁn -[I‘,—ypl\:llathod] +Interface(in name - siring. in comment : siring)

L AddVariableii -'\J' iable) +AddMethodiin m: Method) 1
ariable(in v : Variable +ToString(in spec : bool) ; sting

+ToString() @ string

— [+GetType() : string

Declaration

-isPublic ; bool

+Declaration{in name : string, In comment | steing, in isPublic | bool)

+lzPublic() : bool

Variable Type
Ltype : string Ltype : sfring
H+\arable(in name : siring. in comment : siring, in type : string, in isPublic : bool) #Type(in name : string, in comment : string, in type : string, in isPublic - bool)
+GetType() : sting H+GetType() © sting
H+SetType(in type : siring) +SetTypea(in lype | sting)
H+ToString() : string #+ToString() - siring
Constant

Ltype @ string
-constantValue @ string
HConstant(in name string, in comment : string, in type : siring, in constantValue : string, in isPublic : bool) SubType

+SetType(in type - siring)
+GetValue() : siring

+SetValue(in constantValue : string)
HToString() © string

Figure 4: UML diagram depicting the APT generator.

16

Interface The Interface class represents for exam-
ple the general interface, that was described in
Section 3.4.4. As shown in Figure 4, the Inter-
face class has aggregation to the Method, Types,
Constants and Variable classes. Note that the
interface notion does not exist in the PL/SQL
language. In the generator, this class merely
functions as a container for methods in an API
interface. If the generator was to generate an
object-oriented language this class would be nec-
essary.

Method The Method class is used to represent a
PL/SQL procedure or function. The class has
aggregations to Type, SubType, Variables, Pa-
rameters, and Constants. The return type of
the method is given as input to the constructor
of the Method class. The body of the method is
setup through the constructor of the class. An
alternative way of specifying the body could have
been to model this through classes too. However,
this would require a large number of additional
classes to represent control structure and flow
control mechanisms and, therefore, it was not
chosen.

Declaration The Declaration class is an abstract
super class. The Variable, Constant and Pa-
rameter classes inherits from this class. Com-
mon for these clagses is that they are repre-
sented by a name, a comment, and a type. The
name and comment attributes are inherited from
DatabaseObject. The Declaration class provides
the type attribute.

Variable This class is used to represent a variable.
A variable might be initialized with a value;
therefore, the constructor of Variable is over-
loaded in order to handle this case. As a variable
can be declared in a package header, a package
body, or in a method body the attribute access-
Modifier is added. The possible values of this
variable are public, protected, and private, indi-
cating where the attribute should be declared.
In PL/SQL public corresponds to declaring the
variable in the package header. A protected vari-
able is declared in the package body. Thus, the
variable is only accessible internally in the pack-
age. Finally, a private variable is declared inter-
nally in a method.

Constant The Constant class is used to model con-
stants. The difference between a variable and a
constant is that a constant has to be initialized
to some value.

Parameter A parameter is a variable without an

17

initialization. The class represents the parame-
ters given as input to a method.

Type The Type class is used to represent a
PL/SQL type. For example a table of
students defined from the student concept:
type stud_tab is table of student%rowtype. As
with the Variable and Constant classes the Type
also have an accessModifier attribute, that de-
scribes where the type is to be defined.

SubType This class represents a PL/SQL
subtype. For example a student record
defined from the student concept:
subtype stud rec is student%rowtype. The

SubType class also has an accessModifier to
that specifies where the SubType should be
declared.

In the following section the customization possibil-
ities of the API is described.

6.2 Customization

An important aspect of auto generating the API
is being able to customize what is actually gener-
ated, tailoring the APT to specific needs. For exam-
ple, some administrators might not want to include
the table lock interface due to potential performance
problems. Other administrators would like to exclude
other interfaces, or even specific methods due to se-
curity considerations, company policies etc.

The generator utilizes an XML file for configuring
what is generated. By default, all interfaces are fully
generated for each concept. If another behavior is
wanted it must be specified for each concept though
the XML file. As the number of concepts grows, this
task becomes increasingly time-consuming. There-
fore, it is reasonable to permit reconfiguring the de-
fault template for the concepts to a specific template
matching the overall API requirements. Thus, it is
only necessary to define special requirements for spe-
cific concepts, greatly reducing the amount of work
needed to configure the generation of the API.

7 Performance Study

This section compares the performance of the static
and the dynamic API. Initially, the both the technical
and test setup are presented. Hereafter, the actual
tests performed are discussed in detail. The tests
consist of comparing the auto generated get and list
methods of both APIs. Finally, the overhead imposed
by the APT is discussed. These methods are chosen
to have both data vague and data intensive methods.

7.1 Setup

This section presents the technical setup of the tests.

The database in use is an Oracle9i Enterprise Edi-
tion Release 9.2.0.2.0, running on a PC with dual
466MHz Intel Celeron processors with 384MB of
RAM using the Microsoft Windows 2000 professional
operating system. As mentioned in Section 5 the im-
plementation of the APIs is done in Oracles PL/SQL
language. During testing only the user performing
tests is using the PC.

The test is conducted on a single table. This table
has 18 columns and contains 50.000 rows. Each row
takes up an average space of 249 bytes. The types of
the columns are numbers, dates, and varchars. The
primary is indexed.

Two tests are performed. Before each test the
database is restarted to clear any cached data, and to
ensure each test has the same preconditions. More-
over, each test is run three times, and the resulting
time is an average of the three.

The first test illustrates the possible performance
gain achieved by knowing the SQL statement at
compile-time. For this purpose, the get methods are
used. Each method is executed 5.000 times with dif-
ferent <record id>s.

The second test compares the performance of data-
intensive operations. Here, the list methods are used.
Each method is executed 10 times. Every execution
retrieves all rows from the table into main memory.

7.2 Performance Test

In Figure 5 the running times of the methods are
shown. From the figure we see that the static get
method is more than twice as fast as the dynamic get
method. This clearly illustrates that there is a sub-
stancial advantage in knowing the SQL statement at
compile-time. However, it should be noted that not
all languages are capable of utilizing this advantage.
For example, in the Java programming language ev-
ery SQL query would degenerate to dynamic SQL,
via the JDBC database driver.

18

60

50

o Static
o Dynamic

List

Figure 5: A comparison of the two APIs

From the figure we also see that the list meth-
ods perform nearly on par. The difference of almost
one second is most likely due to small interferences
from the operating system and background processes.
Thus, for data intensive methods the possible perfor-
mance gain of static SQL is negligible.

7.3 Evaluating API overhead

There are several factors involved when evaluating
the overhead imposed by the API. As a minimum,
an extra method needs to be called, compared to
executing an SQL statement directly. Furthermore,
methods like the dynamic list and count, that both
take a predicate as input uses dynamic SQL. This
makes it necessary to typecast the returned result.
If the API is not used and the predicate is known
at compile-time, languages like PL/SQL or SQLJ
can take advantage of knowing the SQL statement
at compile-time, which avoids type casts and allows
for performance gains as discussed in Section 7.2. In
other languages that use a database API like JDBC,
this makes no difference as only dynamic SQL is sup-
ported.

8 Conclusion

In this paper, we presented and discussed the issues
of designing and implementing a generic API. Fur-
thermore, we presented an generator, that generates
the database API in the PL/SQL language. The de-
sign of the API is generic and independent of the un-
derlying DBMS, database schema and programming-
language paradigm, i.e., the API is implementable
in both an object oriented or a procedural program-
ming language. Databases become more and more
used, and the fact that most developers do not have
SQL as a primary language, creates the need for a
database abstraction layer, i.e., an APT to allow eas-
ier development.

As described in Section 3.7 a benefit of the static
API are that, compared to the dynamic version,
many errors are caught at compile-time. Further-
more, the static API preserves type information,
whereas the dynamic API always upcasts the return
type to a more general type. On the other hand,
the dynamic API offers fewer but more generic meth-
ods. Futhermore, the dynamic API is more resistant
to changes in the underlying schema. This means
that the dynamic API can withstand the addition
or removal of attributes, as long as the <record id>
is unchanged. Whereas the static API requires re-
compilation upon changes to the database schema.

As shown in Section 7 the static API is, in some
cases, twice as fast as the dynamic APL

Future work includes several issues. The API does
not offer special services the eases the job of adding
additional interfaces or methods. The ability to eas-
ily add methods and interfaces would make it eas-
ier to use on existing applications. The generator
should also be available for additional language. Fur-
thermore, the generator is currently only capable of
generation the static version of the API. The current
implementation of the API generator does not offer a
GUI for customising the API generated. This would
minimize the effort needed to use the API generator.

Acknowledgements

We would like to thank System administrator Wla-
dyslaw Andrzej Pietraszek and the Junta, from the
Department of Computer Science at Aalborg Univer-
sity, for borrowing us their schema.

Furthermore, we thank Atira ApS and Logimatic
Software A /S for their comments and suggestions to
our initial API design.

References

[1] Raimund K. Ege, Yaman Battikhi, Philippe
Pardo, Jinny Uppal, and Naphtali Rishe. A
modular java API for object-oriented
databases. In COMPSAC ’98 - 22nd
International Computer Software and
Applications Conference, pages 5560, 1998.

[2] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns - Elements
of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[3] Hibernate. http://www.hibernate.org. As of
31.05.2004.

[4] jGuru. Enterprise JavaBeans Fundamentals.
http://java.sun.com/developer/onlineTraining/

[5]

[6]

7]

18]

[9]

[10]

[11]

[12]

EJBIntro/EJBIntro.html. As of 31.05.2004.

Samuel G. McLellan, Alvin W. Roesler,
Joseph T. Tempest, and Clay Spinuzzi.
Building more usable APls. IEEE Software,
15(3), 1998.

Sun Microsystems. Enterprise JavaBeans
Technology.
http://java.sun.com/products/ejb/. As of
31.05.2004.

Sun Microsystems. J2SE 1.4.2 API
Specification.
http://java.sun.com/j2se/1.4.2 /docs/
api/java/lang/Object.html. As of 31.05.2004.

Sun Microsystems. The Java Tutorial.
http://java.sun.com/docs/books/tutorial /
java/interpack /interfaces.html. As of
31.05.2004.

Udo Nink, Theo Harder, and Norbert Ritter.
Generating call-level interfaces for advanced
database application programming. In
VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, pages
575-586, 1999.

Oracle. Catalog Views / Data Dictionary
Views. http://otn.oracle.com/pls/db901/
db901.catalog views?remark=homepage. As of
31.05.2004.

Oracle. Oracle9i supplied PL/SQL packages
and types reference. http://download-
west.oracle.com/docs/cd/B10501_01/
appdev.920/a96612/u_file.htm. As of
31.05.2004.

Catherine J. Tilton. An emerging biometric
API industry standard. IEEE Computer, 33(2),
2000.

A APIs

The following sections present the static and the dynamic API for interacting with the database.

The APIs will be presented in the following format. Initially each a short description of the purpose of the
interface will be given. Then each of the methods included in the interface will be described.

Each method description will contain the following: A method name, the method signature, a short
description, the return value, pre- and postconditions and finally exceptions.

A.1 Static API

In this section the complete generic static API is presented.

A.1.1 Attribute Get/Set Interface

Description: The attribute get/set interface is used to retrieve single attributes from the database. A get
and a set method is provided for each attribute in a record, e.g., getName() and getPrice().

get methods

get<attribute name>(<record id>) return <attribute value>

<record id> is the unique identifier, equivalent to a primary key of a table. The get methods retrieves the
value of the of the <attribute name> attribute identified by the <record id>. It should be noted that
there are get and set methods for each attribute in a concept.

Returns

The <attribute value> of the <attribute name>.

Preconditions

<record id> not null.

<record id> exist in the database.

Postconditions

<attribute value> unchanged in the database.

set methods

set<attribute name>(<record id>, <attribute value>)

Sets the value of <attribute name> in the row identified by <record id> to <attribute value>.
Returns

Nothing.

Preconditions

<record id> not null.

<record id> exists in the database.

<attribute value> not null if declared mandatory in the database.

<attribute value> in the correct domain.

Postconditions

The value of <attribute name> is updated to the supplied <attribute value>.

A.1.2 GGeneral Interface

Description: The general interface provides a series of general methods. None of these methods alters the
underlying database. The interface is inspired by the java.lang.Object class [7] known from the Java
programming language. Additionally, a method for retrieving a single record is provided.

toString method

toString(<record id>) return String

Retrieves the <record> identified by <record id> and convert it to a string.
Returns

A string representation of a <record>, i.e., all attributes are printed.
Preconditions

<record id> not null.

<record id> exists in the database.

20

Postconditions The returned string is not null.

toString method

toString(<record>) return String

Converts a record to a string.

Returns

A string representation of a record, i.e., all attributes of the a record are returned.
Preconditions

<record id> not null.

<record id> exists in the database.

Postconditions

None.

exist method

exist(<record id>) return boolean

Checks if the record identified by <record id> exists in the database.
Returns

True if the record exists, false otherwise.

Preconditions

<record id> not null.

Postconditions The returned string is not null.

exist method

exist(<record>) return boolean

Checks if the record identified by the <record id>, in the <record>, exists in the database.
Returns

True if the record exists, false otherwise.

Preconditions

<record id> of the <record> is not null.

Postconditions

None.

equal method

equal (<record id>, <record id>) return boolean

Checks whether two records are equal, i.e., every attribute of the two records are compared.
Returns

True if the <record>s are identical, false otherwise.

Preconditions

<record>s are not null.

<record id>s exists in the database.

Postconditions

None.

equal method

equal (<record>, <record>) return boolean

Checks whether two records are equal.

Returns

True if the records are equal, false otherwise.
Preconditions

<record>s are not null.

<record id>s from the <record> exists in the database.
Postconditions

None.

clone method
clone(<record id>) return <record>

21

Makes a copy of the record. The <record id> is also copied, which means that the new copy cannot be
inserted directly into the database. Since the keys are copied as well, the insertion of the newly created
record would result in a duplicate key error.

Returns

A copy of the record given to the method.

Preconditions

<record>s are not null.

<record id> exists in the database.

Postconditions The returned <record> must be equal to the original <record>.

clone method

clone(<record>) return <record>

Makes a copy of the record. The <record id> is also copied, which means that the new copy cannot be
inserted directly into the database. Since the keys are copied as well, the insertion of the newly created
record would result in a duplicate key error.

Returns

A copy of the record given to the method.

Preconditions

<record>s are not null.

<record id> from the <record> exists in the database.

Postconditions The returned <record> must be equal to the original <record>.

Count method

count () return integer

Counts the number of rows in the underlaying concept. This method is good for post-condition checking in
the modification interface.

Returns

Integer, the number of rows in the underlaying concept.

Preconditions

None.

Postconditions

None.

Count with predicate method

count(<predicate>) return integer

Counts the number of rows in the underlaying concept that satisfy the given predicate.
Returns

Integer, the number of rows in the underlaying concept.

Preconditions

None.

Postconditions

None.

get method

get (<record id>) return <record>

Gets the <record> identified by the <record id>.
Returns

The <record> identified by <record id>.
Preconditions

<record id> not null.

<record id> exist in the database.
Postconditions

None.

A.1.3 The Type Interface

Description: Data of different type is often stored in a single table. Then a type attribute is used to
indicate which type the data represents. The type interface provides special access to this information.

22

Naturally, the same functionality could have been achieved by using the attribute get/set interface. If
one chose to implement the get/set interface, then it is not necessary to implement the type interface.

get method

getType(<record id>) return <record type>
Gets the <record type> of the <record> identified by <record id>.
Returns

The value of the type field.

Preconditions

<record id> not null.

<record id> exists in the database.

<record type> exists on the concept.
Postconditions

None.

set method

setType(<record id>, <record type>)

Sets the value of the type attribute in the row identified by <record id> to <record type>.
Returns

Nothing.

Preconditions

<record id> not null.

<record id> exists in the database.

<record type> exists on the concept.

<record type> is in the correct domain.
Postconditions The type attribute is updated.

A.1.4 The Status Interface

Description: The status interface is similar to the type interface, in that it provides special access to
special attributes, in this case the status attribute. As with the type interface, it is optional to
implement this interface, as the same functionality can be achieved by using the standard attribute
get/set interface.

get method

getStatus (<record id>) return <record status>
Gets the <record status> of the record identified by <record id>.
Returns

The value of the status attribute.

Preconditions

<record id> not null.

<record id> exists in the database.

<record status> exists on the concept.
Postconditions

None.

set method

setStatus (<record id>, <record status>)
Returns

Nothing.

Preconditions

<record id> not null.

<record id> exists in the database.

<record status> exists on the concept.
<record status> is in the correct domain.
Postconditions The type attribute is updated.

23

A.1.5 Output Interface

Description: The output interface is build on top of the general interface. In particular, the to_string
method. The interface is used for printing information to various sources such as screen, file, a pipe,
and so on. Non-terminals introduced:

<target> ::= <screen> | <file> | <table>
<format> ::= <header-value> | <name-value> | <xml> | <html> | <comma separated>

<header-value> example

id name address

1001 Kim New Orleans

<name-value> example, in the next section we refer to this example as the employee example.

id: 1001
name: Kim
address: New Orleans

<comma separated> example

1001,Kim,New Orleans

Print method

print (<record id>)

Prints the <record> containing <record id> to <target> using <format>. <screen> is the default
<target> and <comma separated> is the default <format>.
Returns

Nothing.

Precondition

<record id> is not null.

<record id> must exist in the database table.

<target> is a valid target.

<format> is a valid format.

Postcondition

<record> is printed to <target> using <format>.

Print method

print (<record>, <target>, <format>)

Prints the <record> to <target> using <format>. <screen> is the default <target> and <comma
separated> is the default <format>.

Returns

Nothing.

Precondition

<target> is a valid target.

<format> is a valid format.

Postcondition

<record> is printed to <target> using <format>.

Print method

print(list <record id>, <target>, <format>)

Prints the <record>s containing a <record id> in the list of <record id>s to <target> using <format>.
<screen> is the default <target> and <comma separated> is the default <format>.

24

Returns

Nothing.

Precondition

<record id>s not null.

The <record id>s in the list of <record id>s must exist in the database table.
<target> is a valid target.

<format> is a valid format.

Postcondition

The list of <record>s is printed to <target> using <format>.

Print method

print(list <record>, <target>, <format>)

Prints the list of <record>s to <target> using <format>. <screen> is the default <target> and <comma
separated> is the default <format>.

Returns

Nothing.

Precondition

<target> is a valid target.

<format> is a valid format.

Postcondition

The list of <record>s is printed to <target> using <format>.

A.1.6 List Interface

Description: The get interface is used to retrieve single <record>s or single <attribute value>s. In
contrast the list interface is used for retrieving multiple <record>s or <attribute value>s.

By using the list interface the application programmers avoid having to declare most SQL cursors in
the programming language such as Java, Python or PL/SQL. The most commonly used cursors are
encapsulated by the list interface and directly available for the application programmer. Naturally,
specialized cursors must still be defined and implemented by the application programmer.

List method

list() return list of <record>

Used to retrieve a list of all <record>s in the concept.

Returns

A list containing all the <record>s from the concept.

Preconditions

None.

Postconditions

list of <record> must corrospond to the contens of the underlying table.

List method

list<attribute name>(Boolean) return list of <attribute value>

Returns a list of <attribute values>s. If the boolean is set to true duplicates are eliminated.

Returns

A list containing the (possibly unique) <attribute value>s of the specified <attribute name> from the
concept.

Preconditions

None.

Postconditions

list of <attribute value>s must correspond to the contens of the column named <attribute name> in
the concept. If the boolean is true there must be no duplicates.

List method
list(<predicate>) return list of <record>

25

Returns a list of <records>s satisfying the given <predicate>.

Returns

A list containing the <record>s satisfying the given <predicate> from the concept.
Preconditions

None.

Postconditions

Each record in the list of <record>s must satisfy the <predicate> given.

List method

list<attribute name>() return list of <attribute value>
Returns a list of <attribute values>.

Returns

A list of all <attribute values> from the concept.
Preconditions

None.

Postconditions

None.

A.1.7 Modification Interface

Description: The modification interface provides methods for manipulating the underlying schema, by
means of insert, update, and delete methods.

Insert method

insert (<record>) return <record id>

Inserts the record, and returns the new <record id>to identify the inserted record.
Returns

Returns the new <record id> of the inserted record, possibly a automatically incremented integer value.
Preconditions

The <record> must satisfy all constraints.

<record id> is not already in the table.

The table is updateable, i.e. not locked.

Postconditions

The <record> is inserted

Update method

update (<record>)

Updates the <record> in the database identified by the <record id> in the specified <record>.
Returns

Nothing.

Preconditions

The <record> is updateable and not locked.
The <record id> exists.

The <record> satisfy all constraints.
Postconditions

The <record> has been updated.

Update method

update(<record id>, <record>)

Updates the <record> identified by the specified <record id> with the new record given as the second
argument Note that this can also be used to update the <record id>.

Returns

Nothing.

Preconditions

The <record> is updateable and not locked.

The <record id> given as the first argument exists.

26

The <record> satisfies all constraints.
Postconditions
The <record> has been updated.

Delete method

delete(<record>)

Deletes the <record> identified by the <record id> of the supplied <record> from the database.
Returns

Nothing.

Preconditions

The <record id> exists.

The table is not locked.

The <record> is not locked.

Postconditions The <record> identified by the supplied <record id> of the <record> has been deleted.

Delete method

delete(<record id>)

Deletes the <record> identified by the supplied <record id> from the database.
Returns

Nothing.

Preconditions

The specifed record exists.

The table is not locked.

The <record> is not locked.

Postconditions

The <record> identified by the <record id> has been deleted.

A.1.8 Record Lock Interface

Description: The record lock interface is for record locking. The lock mode kan be either a shared lock or
an exclusive lock.

Record lock method

record_lock(<record id>, <lock mode>) return <record>

Locks the specified <record> identified by <record id> supplied in the given lock mode.
Returns

The locked <record>

Preconditions

The record exists.

The lock mode is not null.

The lock mode exists.

Postconditions

The <record> identified by <record id> in the database is locked according to the mode specified.

Can_lock record method

can_lock_record(<record id>, <lock mode>) return boolean

Tests if the specified <record> identified by <record id> supplied can be locked in the given lock mode.
It should be noted that this method only gives an indication of the possibility to lock the <record>. On
succes, a subsequent call to the record_lock method can still fail.

Returns

Whether or not the <record> identified by <record id> could be locked.

Preconditions

The record exists.

The lock mode is not null.

The lock mode exists.

Postconditions

27

The <record> identified by <record id> in the database is not modified.

A.1.9 Table Lock Interface

Description: The table lock interface is for table locking.

Table lock method

lock_table<table name>(<lock mode>) return boolean
Locks the table name according to the lock mode specified.
Returns

A boolean indicating whether or not the table could be locked.
Preconditions

The <table name> is not null.

The table exists.

The <lock mode> is valid.

The <lock mode> is not null.

Postconditions

Table is locked in the database in the <lock mode> specified.

Can_lock table method

can_lock_table<table name>(<lock mode>) return boolean

Tests if the table can be locked in the given lock mode. It should be noted that this method only gives an
indication of the possibility to lock the table. On succes, a subsequent call to the lock_table method can
still fail.

Returns

Whether or not the table could be locked.

Preconditions

The <table name> is not null.

The table exists.

The <lock mode> is valid.

The <lock mode> is not null.

Postconditions

The <record>> identified by <record id> in the database is not modified.

A.1.10 Key Conversion Interface

Description: The key conversion interface is used to convert the primary key to unique keys and vice
versa.

1d2UniqueKey method

id2<first unique key name>(<record id>) return <record first unique key>.
Converts the <record id> to a record of the <record first unique key>.
Returns

The record containing the first unique key

Preconditions

<record id> not null.

<record id> exist in the database.

Postconditions

None.

uniqueKey2Id method

<first unique key name>2id(<first unique key>) return <record id>.
Converts the <first unique key name> to the <record id>.

Returns

<record id>.

Preconditions

28

<first unique key> not null.

<first unique key> exist in the database.
Postconditions

None.

A.1.11 Input Interface

Description: The input interface is used to load data from files into the database. As we have an output
interface we must also have an input interface to be symmetric.

InputFile method

input(<file>, <format>)

Bulk loads a file. The format is the same as defined in the output interface.
Returns

Nothing.

Preconditions

<file> not null.

<file> exist.

Postconditions

None.

A.1.12 Walker Interface

Description: The walker interface is used to get other <record>s from the <record> that is currently
used. The Walker interface could, e.g., be used to retrieve the web of connected records using foreign
key information.

getForeignConcept method

getForeign<concept>(<record id>) return <concept> type <record>
Retrieves the <concept> type <record> associated with the <record> identified by <record id>.
Returns

concept type <record>

Preconditions

Knowledge about foreign keys.

<record id> not null.

<record id> exist in the database.

Postconditions

None.

getConceptsForForeignConcept method

get<Concept>sFor<Foreign concept>(<record id>) return <concept> type <record>
Retrieves the list of <concept> type <record>s associated with the <foreign concept> <record>
identified by <record id>.

Returns

list of foreign concept type <record>s

Preconditions

Knowledge about foreign keys.

<record id> not null.

<record id> exist in the database.

Postconditions

None.

A.2 Partial Generic Dynamic API

In this section the dynamic APT is presented. As most interfaces are similar to those found in the section
on the static API, only a few interfaces that illustrates the differences are included.

29

A.2.1 Attribute get/set Interface

Description: The attribute get/set interface is used to retrieve single attributes from the database. Two
general methods are provided get() and set().

Get method get(<attribute name>, <record id>) return String

Returns The String containing the value of the <attribute name> from the record identified by
<record id>.

Preconditions

<record id> not null.

<record id> exist in the database.

<attribute name> must exist in the database.

Postconditions

The value of <attribute name> for the <record> identified by <record id> remains unchanged in the
database.

Set method set(<attribute name>, <record id>, <attribute value>)

Sets the value of <attribute name> in the record identified by <record id> to <attribute value>.
Returns

Nothing.

Preconditions

<record id> not null.

<record id> exists in the database.

<attribute name> must exist in the database.

<attribute value> not null if declared mandatory in the database.

<attribute value> must be in the correct domain.

Postconditions

The value of <attribute name> have been updated to the value <attribute value>.

A.2.2 Key Conversion Interface

Description: The key conversion interface is used to convert a candidate key to another candidate key.

key2key method

key2key(<key_in name>, <key value>, <key_out name>) return <key_out value>.
Converts the value <key value> of candidate key <key_in name> to a candidate key <key_out name>.
Returns

A string containing the value of the converted candidate key.

Preconditions

<record id> not null.

<record id> exist in the database.

<key_in name> exist in the database.

<key_out name> exist in the database.

Postconditions

None.

30

