“Ambients makes Business Processes Mobile”

Mikkel Refsgaard Bech

Department of Computer Science
Aalborg University

February 10, 2004

Aalborg University

Department of Computer Science

Title: Ambients makes Business Processes Mobile

Author:
Mikkel Refsgaard Bech

Supervisor:
Bent Thomsen

Abstract

In a competitive world, business process outsourcing
promises to reduce costs. Unfortunately business pro-
cesses are not yet prepared to be moved around to take
advantage of outsourcing. The stumbling point is the
foundation that underlies the business processes. They
do not support mobility. This thesis proposes a new foun-
dation, mobile ambients, that enables the fine grained
mobility that is needed to make outsourcing efficient.
The problem of making business processes mobile is an-
alyzed and a design based on mobile ambients is made
that fulfills the requirements found. A working prototype
that supports mobile business processes is implemented
based on the design.

Aalborg University - Fredrik Bajers Vej 7TE - DK-9220 Aalborg - Phone +45 96 35 80 80

Preface

This thesis is the result of my work with Business Processes and formally
founded Mobility. The work has been ongoing between the August 1st 2003
and February 10th 2004.

Readers of this thesis is assumed to have basic knowledge of computer science.
Knowledge of the topics workflow modeling and business process modeling is an
advantage.

This thesis and the source code developed is available at http://www.cs.auc.
dk/“mrb/thesis/.

I would like to thank my supervisor Bent Thomsen for his guidance, advices and
encouragement. Also I want to thank Jimmy Juncker for reviewing the thesis
and giving valuable feedback.

Aalborg, February 10, 2004

Mikkel Refsgaard Bech

Contents

Introduction

1.1 Business Process Outsourcing
1.2 Business Process Management
1.3 The Future of Business Process Outsourcing
1.4 Mobile Ambients o
1.5 Problem Statement L oL
1.6 Thesis Overview

Mobile Ambients
2.1 Implementations of Mobile Ambients
2.2 SUmMMAary e e

Business Process Management

3.1 Dissecting Business Process Management
3.2 Workflows
3.3 Summaryo e

Workflow Patterns
4.1 Description of the Workflow Patterns
4.2 SUmmaryo i e

Analysis

5.1 Mobile Ambients
5.2 Supporting the Workflow Patterns
5.3 SUMIATY . .+« v v e e e e e e e

Design

6.1 The Basic System Lo
6.2 Meeting the Requirements
6.3 Results of the Design
6.4 Summary

Implementation

7.1 Software to Build Upon
7.2 The Movement Requirement
7.3 The Complete State Requirement
7.4 The Execution Environment Requirement
7.5 Results of the Implementation
7.6 SUmMmMAary e

15
17
17

19
19
22
23

25
25
31

33
33
34
39

41
41
47
50
50

8 Conclusion
8.1 Future Works

Bibliography

Chapter 1

Introduction

The future of business is changing. Globalization increases trade and communi-
cation which results in stronger competition. This increased competition causes
a focus on price, which in turn drives focus on cutting costs. Therefore busi-
nesses look to find ways to bring down costs and one way is outsourcing of its
business processes; Business Process Outsourcing (BPO).

1.1 Business Process Outsourcing

Gartner defines BPO as: delegation of one or more IT-intensive business pro-
cesses to an external provider that, in turn, owns, administrates and manages
the selected process(es) based on defined and measurable performance metrics.

[4]
This definition requires some explanation, which I will give here:

To understand BPO, you have to understand what a business process (BP) is.
They are processes that happen repeatedly, are supported by IT, but need hu-
man interaction. The characteristic business process targeted for outsourcing
is, IT-intensive, administrative and is not a core process to the business. Ex-
amples are finance and accounting, human resource management, supply chain
integration and costumer relationship services like help desks. These processes
can be outsourced, this is BPO.

BPO reduces cost because the external provider has a mass production advan-
tage. Outsourcing can help a business to focus on its core competence because
it releases in-house resources and it gives the possibility to buy knowledge that
does not exist in-house. Both the buyer of the service and the provider of the
service are being more efficient, as they both do what they are best at.

There is more to BPO than just outsourcing of business processes. Outsourcing
of a business process is not just outsourcing of the actual work within the pro-
cess, it is also outsourcing of the work with the process. This means analyzing,

measuring and evolving the process to make it more efficient to execute and
thus cheaper to run.

BPO is not a trend that will go away anytime soon, according to internet.com,
BPO is a market in growth: In 2003, the worldwide business process outsourcing
(BPO) market is expected to grow 10.5 percent - to $122 billion - up from $110
billion in 2002, according to Gartner Inc., and the Aberdeen Group predicts 13
percent annual growth until 2005 when the market will reach $248 billion. [1]

Outsourcing a business process requires that you have detailed knowledge of the
process. Getting detailed knowledge about business processes is part of doing
business process management (BPM).

1.2 Business Process Management

BPM is about breaking down a business in to manageable chunks called business
processes, that defines: what the business does, who does it and with what it is
done. Historically this has been done in both natural language and in ad-hoc
workflow languages. Today, BP’s are defined in languages that are, more or
less, founded in formalisms as the pi-calculus[19] and petri-nets[20]. Examples
of these languages are BPML[6] or XLANG][7]. The formalisms provide a firm
foundation for workflow languages, and the workflow languages are becoming
the de facto tool for describing BP’s.

BP’s are run on a business process management system (BPMS). A BPMS is
a program that interpret BP’s and execute them. It also provides interfaces to
humans and interface with other software. BPMS’s also support modeling and
management of BP’s.

Having defined the business processes, by using BPM, enables outsourcing of
processes that previously were impossible to outsource because the process was
not fully understood or known because of its complexity or deep integration in
the organization. BPM is a prerequisite for BPO.

The current trend in BPM is to make BP’s available as a web service. A web
service is a BP which interface is made available on the Internet for others to use.
This can be regarded as outsourcing, but it happens either by using someone
else’s business process or by moving your entire BP to an external provider,
that runs them for you.

While this all-or-nothing approach is fine for many purposes its not as fine
grained as it could be. Maybe you only want a part of your BP run by an
external provider because you want to protect your intellectual property as a
business process can be (it could be patented), or you want to keep control of
parts of it because you do it better yourself or it is a particular sensitive activity
for your competences.

10

1.3 The Future of Business Process Outsourcing

BPO can change the business of the future. Next step in this trend is a genera-
tion of businesses that provide only one or a few services. This business is then
a part of a patchwork of services, that is used by others or again part of a new
service. This new generation of businesses could be characterized as wvertical
businesses, because they build on top of each other and complement each other,
as opposed to todays horizontal businesses, which offer a wide range of services.
Competition will not disappear, because the businesses that have similar core
competences will compete even harder, because it is their only competence.

In the ideal environment for BP’s, BP’s are fine grained entities that float freely
around among service providers that can execute the BP at different service
levels, which could be parameters as reliability, speed or price. The market will
be driven by the market forces on a day-to-day basis (or even finer grained).
The market will be a virtual stock market where services are sold and bought
at prices influenced by demand. At the same time it will be highly automated
as BP’s and providers agree on a Service Level Agreements (SLA) so that re-
quirements are exactly matched and prices is automatically negotiated. Also
smaller services are automatically composed to match a certain needed service,
that way partnerships between service providers can be established fast, auto-
matically and even on short terms. BPO could enable this future.

To reach this future, some challenges must be overcome, e.g. the description and
negotiation of SLA’s, the description of services and automatic composition of
services. I will not look in to these problems. Another problem is mobility. Busi-
ness processes must be able to move from one system to another, e.g. from the
service buyer to the service provider. To use BPO efficiently, moving business
processes must happen efficiently and unobstructed.

Unfortunately current business process management systems (BPMS) does not
support moving business processes. The reason for this is found in the very
foundation of the business process; its workflow.

The workflows are described in a workflow language. These are typically based
on either pi-calculus or petri-nets neither of which has any notion of mobile
entities or places. They can model this, as they are Turing complete, but they
does not intuitively support mobility.

Therefore are the current BPMS’s implemented as centralized systems. Al-
though some BPMS’es support running on clusters it does not achieve whats
needed; mobile business processes. Some other foundation is needed to intu-
itively support mobile BP’s. Candidates for this are the CCS[18] extension
CHOCS[22] or 7m-calculus derivative “Higher Order m-calculus[21]. The problem
with these calculi is that they simulate mobility by sending the process descrip-
tion, not a live process. Mobile Ambients[15] is a different calculi, that moves
the process while is alive.

11

1.4 Mobile Ambients

Mobile ambients[15] is a calculus of mobile processes made by Luca Cardelli
and Andrew D. Gordon. An ambient is a place where computations take place.
Ambients are bounded and can contain other ambients, this structure forms
a tree. They navigate the tree by moving in and out of each other. When
ambients move, their subambients move along as they are within the bounds of
the moving ambient. Their navigation in the tree can represent mobility.

I want to use ideas from mobile ambients to make business processes mobile,
therefore I have chosen to let mobile ambients inspire and influence the founda-
tion of my system for mobility.

1.5 Problem Statement

The main goal of this thesis is to demonstrate that mobile ambients can provide
a solid foundation for mobile business processes.

By solid I mean that mobile ambients should support mobility for all kinds of
business processes.

My approach is in three steps:

First, I will analyze the requirements to build such a system based on mobile
ambients. To make the analysis exhaustive I will use workflow patterns that
represents the common workflows business processes use.

Second, based on the requirements I will design a system, where BP’s are con-
tained in mobile ambients. The design will make sure that BP’s work as expected
even when they are mobile, hence that the system is solid.

Third, I will implement a limited prototype of the design to demonstrate that
it is realizable.

Although it is important to show that a working system is attainable, there are
other factors that influences its success. I have called these factors subgoals and
provide a number of them here (in no particular order):

Transparent to BP’s. Developing and maintaining good BP’s requires a con-
siderable effort, therefore scrapping BP’s is hardly acceptable and if chang-
ing them is unavoidable, change should be minimal.

Complementing current BPMS’s. The system should not require an entire
rewrite of the BPMS to run.

Usable. The new features added by mobility should be easy to use and under-
stand for those who develop and maintain BP’s.

Understandable. Going from a centralized system to a distributed system
requires a change of the perception of the system. It should be possible

12

to explain how the system works in simple terms.

Deployable. Going from a centralized system to a distributed system is some-
thing that requires a careful roll out, therefore the system should support
this.

Efficient. The system should gain efficiency and scalability over a centralized
system.

Reliable. Information in the system should be accessible anytime.

Secure. It should be possible to keep information confidential.

These subgoals are not necessarily required to be fulfilled for the system to be
successful, but they are useful to keep in mind while working toward the main
goal.

I have chosen to call the system AmbProMo, freely derived from the sentence:
Ambients makes Business Processes Mobile. AmbProMo means that ambients
are promoted (as in advertising) by me for this use. It also means that ambients
are promoted (as in rank) by me, to be used in a relevant application. And, it
also means that ambients are used pro (for) mobility.

1.6 Thesis Overview

The following three chapters, Mobile Ambients, Business Process Management
and Workflow Patterns provides necessary background information for my work.
The Analysis chapter contains the requirements for the system, which the Design
chapter answers. My implementation of the design is in the Implementation
chapter. The chapter Conclusion concludes on my work and presents topics for
future works.

13

14

Chapter 2

Mobile Ambients

Mobile ambients is a calculi of mobile processes made by Luca Cardelli and
Andrew D. Gordon presented in “Mobile Ambients”[15]. The calculi was made
to model mobility, both logical, like processes in a machine, and physical, like
processes on a network and on mobile devices. Like many process calculi it is
reducible[15] to Pi-calculus.

An ambient is a bounded place where computation happens. Bounded means
that processes in ambients can not communicate outside the ambient. To make
processes communicate, they must be in the same ambient. To achieve this, am-
bients can enter each other and dissolve so that processes are brought together.

The fact that ambient can be inside each other, makes nested ambients look like
a tree, structure wise. This is illustrated in Figure 2.1.

In the ambient calculus names are denoted by small letters and processes by
capitals. The following is an ambient by the name “n” that contains a process
HP??:

n[P]

The configuration of the ambients in Figure 2.1 on calculus form would be:

Figure 2.1: A number of ambients represented as being within each other and
as a tree.

15

Figure 2.2: Illustration of results of the commands IN and OUT.

albld[e[E]]]|c[f[F]lg[l]]

Entering an ambient is done by a command called IN. Ambients can also exit
each other by a command oUT and dissolve by a command OPEN. The IN and
OUT commands are illustrated in Figure 2.2. In the figure, the process E make
the ambient E go out of D and the process F make the ambient F go into G. The
commands IN and OUT are good commands for modeling mobility. They simply
mean moving down or up the tree, respectively.

The reduction rule for IN are:
nlin m.P|Q]|m[R] — m[n[P|Q]|R)

The reduction above means that in the ambient “n” there is a process “P”, that
commands the “n” ambient to move into the ambient “m”.

The following reduction for OPEN does the opposite; ambient “n” is told to move
out of “m”, by the process “P”.

mnlout m.P|Q]|R] — n[P|Q]|m[R]

The command OPEN is different, it tells an ambient to dissolve. In the following
the process “P” tells the ambient “m” to open:

open m.Plm[Q] — P|Q
As an example the reduction of the configuration in Figure 2.2 is given here:

albldle[out d.El]]|c[f[in g-Fllg[l]] — albldl]|e[E]}|c[g[f[F]]

As ambients are nested inside each other, moving an ambient means moving the
entire branch of ambients. Therefore the branches of the tree can be thought
of as domains. This feature is good for mobility because it delegates control
clearly and movement is ’inclusive’, meaning that whatever is included in an
ambient, follows that ambient when it moves.

Ambients must dissolve for processes to communicate. Castagna et. al. found
this to be counterintuitive as communication between processes in distributed
systems had to be modeled by using temporary ambients as carriers for messages
and therefore introduced boxed ambients.

In Boxed Ambients[13] communication up and down the tree, between parents
and children, is allowed. This makes it easier to model communication between

16

processes. This new way of communicating meant that the “open” command
could be dropped. It was found to be a security concern in distributed applica-
tions.

I will also not use this command in AmbProMo, for the reasons given above and
elaborated on in the analysis. I think that allowing communication over the
bounds means that the “boundedness” of ambients is somewhat diluted, but it
makes sense that the bounds are open for communication.

Although I will not use boxed ambients the calculus inspired me to change the
communication in AmbProMo, instead of using plain mobile ambients.

Another calculus related to ambients is the Calculus of Mobile Resources[17] by
Godskesen et. al. This calculus was made to model mobile capacity constrained
resources. It introduces “slots” as containers of resources and processes. Slots
can be nested like ambients. An interesting feature of this calculus is that both
communication and movement can be done through multiple levels of the tree.
This feature has inspired the way mobility works in AmbProMo.

2.1 Implementations of Mobile Ambients

Cardelli implemented[14] a centralized version of Mobile Ambients. As this
implementation locks objects on remote machines it is not efficient. Fournet et.
al. implemented and proved the correctness[16] of a protocol for mobile ambients
in a distributed environment. The protocol is message based and requires only
local synchronization which means that its efficient in a distributed environment.

The protocol is in three steps. In the first step, the “delegate” step, the ambient
that wants to move notifies its parent. In the second step, “relocate”, the parent
ambient gives the address of the moving ambients new parent. The third step,
“register”, the moving ambient notifies its new parent about itself. I will use
this protocol in my implementation.

2.2 Summary

Ambients form a tree structure because they can be nested inside each other.
Ambient can move in and out of each other, and when they do, their subambients
follow them. In this way processes can move from a place to another modeling
mobility.

There exist a protocol for efficient use of ambients in distributed applications
which I will use in the implementation of AmbProMo.

The alternative calculi for mobility, boxed ambients and calculus of mobile re-
sources, has inspired the work on AmbProMo.

17

18

Chapter 3

Business Process
Management

There are two primes uses for BPM, first, it helps understanding business, sec-
ond, by understanding business, you can manage and change it. In [24] van
der Aalst et. al. defines BPM as: Supporting business processes using meth-
ods, techniques, and software to design, enact, control, and analyze operational
processes involving humans, organizations, applications, documents and other
sources of information. In the following chapter an overview of how BPM helps
understanding, managing and changing business will be given.

Often software is made to fit the business as the business looks at the point in
time where the software is developed. Therefore when the business environment
change, the business is not able to cope with the change, because its software is
not made to change with the business needs. Therefore the software becomes a
hindrance for change instead of a supporting system for the business.

BPM is an attempt to make software for businesses as dynamic as the business
itself. By building a generic software that can support business processes and by
handling business processes as yet another type of data, the business processes
can be examined and evaluated and evolved. Lets step further into what BPM
is.

3.1 Dissecting Business Process Management

Dissecting 'Business Process Management’ gives ’business processes’ and 'man-
agement’.

A business can be viewed and modeled as a number of interacting parallel pro-
cesses. These processes can be purely internal to the organization, but many
also interacts with external processes. These are the business processes. These
processes make the business what it is, differentiating it from the competitors

19

employee

boss

exclusive
choice

approve disapprove

parallel
employee

employee HR

Figure 3.1: A business process to request a holiday.

and providing value to the business customers. An example of a business pro-
cess could be an order from a costumer, an inquiry to the stock or simply an
order from one person to another to do something. A process could also involve
persons interacting with software systems or software systems communicating
with each other.

A concrete example of a model of a BP is shown in Figure 3.1. This BP models
the process of requesting a holiday. It works this way: An employee that wants a
holiday, starts this process and enters when he want his holiday. This request is
then presented to his boss, whom then makes the decision whether to allow the
holiday or not. If he approves, the employee and human resource department
are notified, otherwise only the employee is notified. This example will be used
throughout the thesis.

Looking up 'Management’ in a dictionary gives: “the conducting or supervising
of something”. Mapping this to management of business processes would give
words like enacting and examining. But in BPM, management also means
evaluating and evolving business processes. A method called ’Organizational
Process Modeling’ for doing BPM is described in the book of Warboys et. al.
[25]. This book describes the main ideas of BPM:

1. Making the specification of business processes more business specific.
2. Integrating existing software systems.
3. Making specifications of business processes active.

4. Supporting reevaluation of the business processes.

We will look at these ideas in turn in the following.

20

:

Coordination Layer 1 3

User Interfaces e)

Applications

Data 2 ’ A

Figure 3.2: The coordination layer is introduced by BPM in the software model
[25, p. 77].

3.1.1 Making the Specification more Business Specific

Instead of describing the business from the implementation perspective, it is
described from the business perspective. E.g. instead of modeling data, as ER-
diagrams, or modeling workflow through the software system, the business pro-
cesses are modeled as a process of the business. The business is the 'machine’
on which the business processes are executed.

Business process management works with terms that are familiar to business
language. This is because BPM is supposed to support business persons doing
modeling, as opposed to other modeling techniques where the model is a tool
for communicating between business individuals and system implementors.

3.1.2 Integrating Existing Software Systems

Business Process Management (BPM) is the introduction of a new layer in the
traditional software model. This new layer concerns the coordination of the
business’ resources and is therefore called the coordination layer. As shown on
Figure 3.2 from [25, p. 77], the layer is placed between the user interface level
and the application level. Its purpose is to coordinate the flow of business pro-
cesses throughout the business between people and people (1), between people
and tools (2) and between tools and tools (3).

Adding another software system to a business already having lots of systems is
not desirable. The idea is not to introduce another new application in the busi-
ness. Rather it is to make the existing applications work together and integrate
the already existing resources with each other. Since the coordination layer
spans all applications in the business, it has access to all data. It can bridge the

21

gap between incompatible applications and synchronize data between different
databases. It can provide a uniform user interface for the people interacting with
the system. Of course there has to be some software on the coordination layer.
But by design, the coordination layer does not manipulate data as applications
would.

3.1.3 Making Specifications Active

Modeling is often used in software development. When modeling a business
many modeling techniques exist such as ER-modeling, Dataflow-modeling, Workflow-
modeling etc. They all model a part of the business in some defined way. Be-
cause they describe something, they are called descriptive models. The models
that are the outcome of the modeling by these techniques, are used in the de-
velopment of the actual software. They serve as a basis for the structure of the
software. If the software needs changing later, ideally one would take a look

at the model, change the model, then change the software to reflect the new
model.

BPM does more than modeling. When a model is made, the model is also the
specification for the software, that is - the model is executable. The model is
executed, when the business process that the model reflect is started. There is
no need to keep the model and the business process synchronized, they are the
same. These models are called active models, because they actually control the
process that they describe.

3.1.4 Supporting Reevaluation

To support reevaluation of business processes, a special process can be made.
This process uses the other business processes as its data and does evaluation of
these processes. This process becomes a meta process for the business processes.
In this way the design of a business process becomes a continuous process as the
development of the business as a whole is, instead of being a one time event.

3.2 Workflows

Workflows are a method to design a process and its interactions. The following
definitions are based on the definitions in [23]. A workflow is a specification of
activities and their order. An activity is an atomic piece of work. Activities are
connected through transitions. The activities are undertaken by roles. Roles
are to be understood broadly. It could be the function of a person or a group of
persons. It could also be the specific activity of a software system serving the
business. A case is a specific instance of a workflow. A case can be executed
concurrently which means that is has threads.

Many workflow languages exists, some based on formal foundations. Also many
implementations of workflow engines exist. Aalst et. al. investigates languages

22

and implementations of workflow engines. They have collected a set of common
workflows that can model the usual situations in workflows, these situations are
called workflow patterns.

3.3 Summary

The BPM method makes the modeling of business processes approachable by
business people by using business terms to describe business processes. There-
fore is it easier for business people to understand their business processes. By
using existing software systems and integrating them instead of introducing an-
other, redundant work and data is avoided and the software systems become
more manageable. The direct approach of executing the business models in a
software system makes it possible to find flaws in the models and makes changes
fast to deploy. This makes the business manageable.

23

24

Chapter 4

Workflow Patterns

In an article called “Workflow Patterns”[23], Aalst et. al. have collected, a set
of common workflows that can model the usual situations in workflows, these
situations are called workflow patterns (WfP’s). The work by Aalst etc. is
highly regarded and spoken off as the ’design patterns’ of workflows, referring
to the famous design patterns identified in object oriented programming.

I have chosen to use these workflow patterns as a kind of requirement specifi-
cation for what my system must support to be complete, workflow wise. These
descriptions will be useful to analyze and understand whats required to build a
BPMS with mobile BP’s.

In this chapter I will describe the W{P’s and explain how they work. The
description, examples and figures are my own, but are inspired by the “Workflow
Patterns” article and the workflow patterns homepage[3].

4.1 Description of the Workflow Patterns

Here follows the descriptions of the individual workflow patterns.

4.1.1 Sequence

When an activity is complete, the next is started. Activities are chained together
by transitions. This is shown in Figure 4.1 where activity B follows activity A
and activity C follows activity B.

Figure 4.1: Workflow Pattern: Sequence

25

parallel
split

synchronization d

Figure 4.2: Workflow Patterns: Parallel Split and Synchronization.

4.1.2 Parallel Split

When an activity is complete, two or more activities are started and execute in
parallel. This is shown in Figure 4.2 where activity B and C are started after
A has completed.

Example of a use of this pattern: When an order has arrived, simultaneously
package the goods and print a delivery note.

4.1.3 Synchronization

After a split, this activity waits for both (all) activities to complete, before
continuing. This is shown in Figure 4.2 where activity C is not started before
both A and B has completed.

Example use: When goods has been packaged and delivery note has been
printed, ship the package.

4.1.4 Exclusive Choice

This pattern gives exclusive choice functionality like a switch-statement of an
imperative programming language. Figure 4.3 shows two routes the BP can
take, either B or C.

Example use: When a request for holiday comes in, either approve or disapprove
it.

4.1.5 Simple Merge

After an exclusive choice the paths of execution are merged and execution con-
tinues. There is no need for synchronization as only one of the paths will actually
be used. Figure 4.3 shows a simple merge where activity C is executed when
only one of A or B has completed.

Example use: Regardless of the response to the request for holiday, notify the
requester.

26

exclusive simple

A — d
choice merge

Figure 4.3: Workflow Patterns: Exclusive Choice and Simple Merge.

a Multi Choice Sync Merge d

Figure 4.4: Workflow Pattern: Synchronizing Merge

4.1.6 Multiple Choice

Similar to parallel split this pattern can split into one or more parts which
execute in parallel. Unlike parallel split this pattern does not necessarily have
to take all of the paths, it can choose one or more or all of them. Figure 4.4
shows two paths, B and C, where either B, C or B and C can be taken.

4.1.7 Synchronizing Merge

As parallel split has synchronization, multiple choice has synchronizing merge.
This pattern merges the threads the multiple choice makes. Implicitly it knows
how many threads it must merge. Figure 4.4 shows synchronizing merge after
a multiple choice.

4.1.8 Multiple Merge

After a parallel split a multiple merge can be convenient, if both threads have
to finish with the same activities. There is no synchronization as the threads
just run the same activities, they do not communicate. Figure 4.5 shows a
case where the two threads, that execute B and C respectively, both will run D
thereafter, i.e. D is executed twice.

a Parallel split Multi merge d

Figure 4.5: Workflow Pattern: Multiple Merge

27

a Parallel split Discriminiator d

Figure 4.6: Workflow Pattern: Discriminator

a Parallel split c 2-out-of-3 join e

Figure 4.7: Workflow Pattern: N-out-of-M Join

4.1.9 Discriminator

A different kind of merge can be done with the discriminator. In this merge
the following activity is activated only once and that is when the first thread
reaches the merge. The remaining threads are ignored. Figure 4.6 shows a case
where activity D is activated once, when either B or C is done.

4.1.10 N-out-of-M Join

The pattern n-out-of-m join is a variation of the discriminator pattern, as this
pattern requires n activations before the following activity is activated. Figure
4.7 shows a 2-out-of-3 join where two of the activities B, C and D must be done
before E is activated.

4.1.11 Arbitrary Cycles

This pattern supports the case where one or more activities are repeated arbi-
trarily. Figure 4.8 shows a workflow where activities B and C and activities C
and D can be repeated arbitrarily.

Figure 4.8: Workflow Pattern: Arbitrary Cycles

28

a AND

Figure 4.9: Workflow Pattern: Implicit Termination

C

Figure 4.10: Workflow Pattern: MI Without Synchronization

4.1.12 Implicit Termination

This pattern simply states that when there are no more activities, the workflow
is terminated. Figure 4.9 shows a workflow where there is a parallel split. This
workflow should not terminate before both threads have terminated, i.e. both
activity D and E are complete. This does not mean that the individual threads
can not terminate, just that the BP exists as long as there are threads in it.

4.1.13 Multiple Instances Without Synchronization

Multiple instances are when a case can start new cases, and therefore a case
consist of multiple instances of cases. This pattern allows the creation of a
number of cases independent of the current case. Figure 4.10 shows a workflow
wherein activity B creates a number of cases.

4.1.14 Multiple Instances With Synchronization

This patterns describes a BP wherein a BP is repeated a number of times and
the parent BP must wait for it to terminate.

4.1.15 Deferred Choice

This pattern is a mix of exclusive choice and parallel split. It models the sit-
uation where two (or more) roles can make a choice but only one has to make
it.

Example use: Only one of two persons has to approve a travel expense, both
are offered the opportunity to approve it, until one of them actually approves
it, then the other does not have to bothered and the opportunity is withdrawn
for him.

29

a Deferred choice

Figure 4.11: Workflow Pattern: Deferred Choice

a Start interleaving c End interleaving e

Figure 4.12: Workflow Pattern: Interleaved Parallel Routing

4.1.16 Interleaved Parallel Routing

This pattern makes it possible to have a set of activities, which all must be
executed once, but not at the same time, executed in any order. Figure 4.12
shows a case where B, C and D can be executed in any order.

4.1.17 Milestone

The milestone pattern makes it possible to have an activity check on the state
of the case. Figure 4.13 shows a case where activity D checks if the case has
reached its milestone M, between activity B and C.

The thread that checks if the milestone has been reached is called the measuring
thread, the other is called the measured thread.

4.1.18 Cancel Activity

In this pattern a single activity can be canceled, which means that the thread
running the case is terminated. Figure 4.14 shows a case where activity B can

b @ c
BN G I

Figure 4.13: Workflow Pattern: Milestone

30

a

Figure 4.14: Workflow Pattern: Cancel Activity

a b c

E 4

Figure 4.15: Workflow Pattern: Cancel Case

be canceled.

4.1.19 Cancel Case

This pattern enables gives the possibility of canceling an entire BP. This means
that child BP of the BP are canceled. Figure 4.15 shows a case that can be
canceled.

4.2 Summary

The workflow patterns are fundamental building blocks of workflows that spans
the most usual situations that workflows has to model. These descriptions will
be used to analyze the requirements to build a BPMS with mobile BP’s.

31

32

Chapter 5
Analysis

In this chapter I will analyze the requirements to build AmbProMo. The re-
quirement basically comes from two sources, namely the foundation on which
I build the system, mobile ambients, and the application that will run on the
system, represented by WfP’s.

First I will take a look into the features and limitations of mobile ambients.
Then I will consider each WP and whats required to make it work when in an
environment where BP’s are mobile.

The requirements found in the analysis will be considered and answered in the
design.

5.1 Mobile Ambients

As any model, the foundation which I have chosen, brings some features and
some limitations to AmbProMo. I will look into those in the following.

5.1.1 Features of Ambients

Mobile ambients gives some features that are nice in a distributed system. First
of all, mobile ambients gives a platform for mobile processes. Processes can,
encapsulated in ambients, move in and out of other ambients, thereby model-
ing mobility. This was the reason for choosing ambients as the foundation for
AmbProMo.

Second, the fact that the ambients encapsulates the process(es) is convenient to
secure and package the process. Access to the processes are under some control
and it is well defined what is inside the ambient and what is not.

33

5.1.2 Limitations of Ambients

Mobile ambients also have some limitations that are a by design. I provide
workarounds for some of the limitations that I find too restricting.

The fundamental structure of ambients, the tree, comes from the fact that am-
bients are nested inside each other. Having such a structure has its advantages
and its disadvantages. The advantage is that a structure gives some kind of
order that can be relied on and the disadvantage is that this requires that some
rules are obeyed. E.g. in a tree you can rely on the facts that there are only
one root, each node has max one parent, there are no cycles etc. Some of the
rules that must be obeyed are that siblings must not be connected, a node must
be connected to the tree etc. It is a limiting structure because it requires more
moves to navigate the tree, than it would have, if the structure had been a
fully connected graph, e.g. like the Internet is. This structure is accepted in my
system, when it comes to movement of the ambients.

Communication is also limited. Processes can only communicate when they are
in the same ambient. To my use, this is too limiting, therefore is this limit
relaxed as it will be apparent in the design chapter.

5.1.3 Undesired Features

One thing that mobile ambients have that is not desired in my system is the
open capability. The open capability dissolves an ambient into its subambients.
This means that when a process in an ambient wants to talk to another pro-
cess in another ambient, one of the ambients must enter the other and open
thereby dissolving itself. Since it is not rare that processes need to talk to each
other, this becomes an issue, because dissolving ambients, and thereby busi-
ness processes, while communicating, is counterintuitive in a business process
management system. Business processes does not dissolve themselves, although
they terminate at some point and are removed.

5.2 Supporting the Workflow Patterns

Workflow languages were made to describe the order in which some activities
are executed. Therefore it is crucial to examine how the workflows can be
made mobile and which workarounds there are needed to make sure that the
workflows work as in a centralized environment. To do this I will take van der
Aalst’s “Workflow Patterns” as a starting point. These workflow patterns are
regarded the basic building blocks of workflows and therefore serve as a testing
ground for the design of workflow languages and thus they must be supported
in some way by the underlying system that executes these workflows.

For each workflow pattern I will explain what the problems are of using it in a
mobile environment (if any). I will name each of these requirements to be able
to refer to them during the rest of the report. How to overcome these problems

34

will be discussed in the design chapter.

This section will therefore be used to determine the requirements that my system
must meet to be successful workflow wise.

5.2.1 Sequence

Since each activity of a sequence can happen on different machines there must
be some way to move a BP from one computer to another. This means that the
BP must be packaged and shipped to another machine. This requirement will
be called the movement requirement.

The BP must be moved in its entirety, that means the state of the workflow
and the data in the BP. This requirement will be called the complete state
requirement.

Since the BP can be executed on the machines it visits, there must be an
environment on each machine that can execute the BP. This requirement will
be called the execution environment requirement.

These are major requirements for the system because they require much func-
tionality to work, but they are also a kind of baseline requirements because
they are quite obvious. In a distributed system something must be able to move
between the machines for it to be called a distributed system, also the machines
in the system must be able to do work, otherwise it would just be a distributed
storage. So the above requirements where not unexpected and must off course
be met by AmbProMo. The above requirements are together called the base
requirements.

5.2.2 Parallel Split

To support this WP the BP must be able to make copies of a BP. The BP is
copied for each branch in the split. This requirement will be called the copyable
requirement. Copying the BP is not a problem, but synchronizing is. This
situation is considered in the next WP, synchronization.

After the copy, there are a number of instances of BP with each their workflow.
In this workflow the next transition must be enabled, so that each one of the
BP goes to one of the next activities, the one corresponding to the enabled
transition. This requirement will be called the manipulatable requirement.

5.2.3 Synchronization

After a split of a BP, like after a parallel split, there are two or more copies
of the BP, which may contain different data. When these copies of the BP
meet again and synchronize their states must also be synchronized. The state
of the workflow is already the same, as they meet in the same activity, thus this

35

does not need any treatment. But the data that they carry also needs to be
synchronized.

In a centralized system all data and all processes are in one place and all com-
munication happen internally and cannot fail. So there is no concern whether
something is available or accessible, either everything runs, or it does not. In
a distributed system, single machines can fail, multiple machines can fail, ma-
chines can be transient unreachable, networks can split and it is difficult (if
not impossible) to determine the state of the entire system. Also clocks in a
distributed system can not be synchronized.

Several strategies can be used to synchronize the data:

e Updated data can be flagged, so that flagged data overwrites non-flagged
data. But in case the same data is flagged more than once, this scheme
does not always work.

e Last updated data can overwrite the older data. Since clocks may not be
fully synchronized, this scheme fails in some cases.

e Data can be marked as read-only and writable for one of the threads. This
scheme only works, if the sharing of the data can be agreed on, before the
BP is copied.

e Each thread can have a priority, that determines which data is overwritten.
The priorities must then be assigned somehow.

e The synchronization of the data can be done manually.
e The synchronization could be done by communicating between the copies

of the BP.

Which of the above schemes are chosen depends on a factors as how likely is it
that the data is updated? what are the different threads doing? Therefore, the
choice should be made on a case by case basis and therefore it is wise to support
as many of these schemes as possible. This requirement will be called the data
synchronizing requirement.

5.2.4 Exclusive Choice

This WP does not add any requirements, but falls back on the base require-
ments, as the BP only needs to moved in the correct direction determined by
the BP.

5.2.5 Simple Merge

This WP does not add any requirements, but falls back on the base require-
ments.

36

5.2.6 Multiple Choice

This WP is similar to the parallel split, only not all of the possible transitions
are necessarily taken. Therefore does this WfP not add any requirements, but
falls back on the base requirements and those of the parallel split, the copyable
requirement and the manipulatable requirement.

5.2.7 Synchronizing Merge

This WI{P is similar to the synchronization pattern and the counterpart to the
multiple choice pattern. It adds no new requirements, but falls back on the base
requirements and that of the synchronization pattern, the data synchronizing
requirement.

5.2.8 Multiple Merge

This W{P is similar to the sequence pattern, since the threads that merge,
does not actually merge data or synchronize in any way. This add no new
requirements, but falls back on the base requirements.

5.2.9 Discriminator

To make this WP work there must be something that makes sure that the
following activity is activated only when the first thread reaches the discrimi-
nator. Therefore some message must be left behind at the discriminator to stop
the threads that arrive after the first thread. This message is deleted when all
the threads have been stopped, because if the discriminator is in a loop, the
next iteration must also be able to launch the following activity once. This
requirement will be called the discriminator requirement.

5.2.10 Arbitrary Cycles

Since the BP’s moves in a tree, they can not move arbitrarily like they should
in this pattern. It must somehow be possible to make arbitrarily moves to
make this pattern work. This requirement will be called the arbitrary move
requirement.

As the workflow languages are Turing complete and there can be more than one
thread of execution, live- and deadlocks are possible. But as AmbProMois being
based on a formal foundation, chances are that workflows can be analyzed and
verified on correctness as opposed to the ad-hoc languages and implementations.

37

5.2.11 Implicit Termination

This pattern does not give any new requirements.

5.2.12 MI without synchronization

In this WIP a case, the parent, creates new cases, child cases. The new child
cases can be of any BP, it does not have to be the same as its parent. This
requires that the there must be some mechanism to take care of these new
cases. This requirement will be called the child case requirement.

As the new cases can be of any BP it is also necessary to move these new cases
to the machine where their first activity should be executed. This is taken care
off by the the arbitrary move requirement.

5.2.13 MI with synchronization

I have called the WfP’s: MI with a priori known design time knowledge, MI with
a priori known runtime knowledge and MI with no a priori runtime knowledge
collectively for MI with synchronization.

I have gathered these WfP because their only difference is in when they know
how many child cases there shall be created. The number does not matter to
AmbProMo, and the child BP’s are taken care of by the child case requirement it
only has to make sure that the cases can be synchronized with the parent case.
The requirement here is to make sure that the workflow is not continued before
all the child cases have returned to the parent case. When all have returned,
the parent case can continue its workflow. This requirement will be called the
synchronizing child case requirement.

This WIP is similar to the above except that the child cases must be brought
back to the parent when they are done, so that the parent can synchronize with
them before it continues its workflow. This is taken care off by the the arbitrary
move requirement.

5.2.14 Deferred Choice

This pattern first copies the case like in a parallel split. The copies are moved
to the next activity. When one of the copies are executed, the others must
be withdrawn. This can be done by communicating between the copies. The
problem is that if the activity executed is on two (or more) different machines at
the same time, there must be some algorithm to decide which copy came first.
This requirement will be called the deferred choice requirement.

38

5.2.15 Interleaved Parallel Routing

To make this pattern work, there must be some mechanism on both sides of the
parallel routes that communicates. When a route is taken, the other routes are
disabled until it is complete, i.e. the thread arrives at the other side of the routes.
This requirement will be called the interleaved parallel routing requirement.

5.2.16 Milestone

To make this WP work there must be some way for the measuring thread, to
find out where the measured thread is in the workflow. This requirement will
be called the milestone requirement.

This could be done by leaving a message at the entry and the exit of the mile-
stone area. These messages must then be removed when the case terminates.
This requirement will be called the garbage collection requirement.

5.2.17 Cancel Activity

This WP would be trivial to support if there never was more than one thread
in a case. To support this, it must be carefully considered when a canceled
thread was ’expected’ to arrive at a synchronizing activity. In this case, some
action must be taken to make sure that the thread is not expected after its been
canceled. This requirement will be called the thread cleanup requirement.

5.2.18 Cancel Case

To cancel a case, all threads belonging to the case and all child cases it has must
be stopped. Therefore it must be possible to locate and stop all child cases and
threads. This requirement will be called the case cleanup requirement.

5.3 Summary

The analysis revealed a number of requirements, some of which where expected
and general in nature like, the basic requirements, and some more specific to
the individual workflow pattern, like the milestone requirement.

The requirements are influenced by the foundation the underlies them, ambients,
this influence has been taken into account.

To realize a system that supports all the W{P’s all the requirements has to be
fulfilled. For each of the requirements there may exist different solutions, I will
look into these in the next chapter, the design.

39

40

Chapter 6
Design

The analysis brings forth a collection of requirements that must be met, to make
a system based on mobile ambients that will support the W{P’s.

These requirements are given both by the foundation on which the system is
build and by the application that must run on it, represented by the W{P.

In this chapter I will show how the basic system is designed and how the re-
quirements are met.

6.1 The Basic System

As stated in the introduction, the system I build is based on ambients. In this
section I will describe how I have designed the relation between ambients and
BP’s. This design will be referred to as the basic system.

For each role in a business process, there must be somewhere for the ’keeper’
of the role, to access the business processes that belongs to that role. E.g. if
the boss must approve each request for holiday, the boss must be able to access
these requests. Naturally the boss wants to make this decision in his office, at
his desk, through his desktop computer. Therefore there is a mapping between
the role (boss) and a machine (his desktop). I have chosen to make this mapping
explicit, so that for each role there must be a mapping to a machine. As an
example, the holiday request BP introduced in chapter 3, reproduced in Figure
6.1, the mapping could look like this:

machine | role

peter.sales.abc.com | employee
boss.sales.abc.com | boss
hr.abc.com hr

Depending on the actual execution of a single case of the BP, one or more of
these machines are visited. Therefore must the machines be available to visit

41

employee

boss

exclusive
choice

approve disapprove

parallel
employee

employee HR

Figure 6.1: A business process to request a holiday.

for the BP. For the purpose of having machines available I have made a special
kind of ambient: the ambientnode.

6.1.1 Ambientnodes

An ambientnode is an ambient with some special properties. First, it cannot
move. The ambientnodes are meant to represent infrastructure, not processes,
therefore I found that it would be counterintuitive if a process could include
e.g. a machine and move it around. Also the ambientnodes can represent re-
sources such as databases and special software or hardware. These may also be
unmovable or undesirable to move.

Second, as the ambientnodes represent infrastructure, it would be intuitive if
they were connected, therefore can ambientnodes contain other ambientnodes.

And third, as it is an ambient, it can contain other ambients. The ambientnodes
has the special property of being a place where ambients can execute. Therefore
it is also a place where BP’s are executed.

The Figure 6.2 illustrates a couple of ambientnodes and a few ambients on these
nodes. In all of the following figures the ambientnodes are represented by a big
circle and ambients by a small circle, relative to each other.

As stated in the analysis the communication in the ambient tree is restricted to
happen only between processes in the same ambient. I found this too restrict-
ing and counterintuitive as the BP’s would have to dissolve to communicate.
Inspired by boxed ambients, that allows communication between parents and
children, I decided to allow communication between sibling ambients. This

42

Figure 6.2: Ambientnodes and ambients.

means that ambients on the same ambientnode can communicate freely.

Every BP has a workflow that decides which roles it has to visit to make progress
in its execution. The roles are mapped to a machine where the "keeper’ of the
role can access the BP. This does not mean that the system forces the need
for a computer for each person in a business or that it forces a one-to-one
mapping of computers and roles. What it does mean is that any given role can
be mapped to any computer and that whoever must interact with a business
process know where it is and can access it via that computer. This does not
mean the person or process that interact with the BP must be located at/in the
computer, interaction could happen remotely, e.g. via a web interface.

To make progress the business processes must follow their workflow. To do this
they must make themselves available to the roles that need to interact with
them. Therefore they must navigate around the tree to visit the ambientnodes
where the roles are that must interact with them. The actual structure of the
tree of ambientnodes can be laid out in different ways.

6.1.2 Layout of Ambientnodes

The tree structure is useful because it complements many already existing struc-
tures in a business. People are organized in trees when responsibility and work
are delegated, the organizational tree. Parts of the business are organized as
trees into subparts like divisions and departments. There are many ways this
structure can be put to good use, here I present two ideas:

First Idea - One Tree

Let the tree follow the already made structures of the business; divisions, de-
partments, individuals. Let each of them be a node in the tree. So when a
business process executes it travels up and down the organizational hierarchy.
Pros and cons are:

43

production

Figure 6.3: Example of a tree structured like the business.

Simple, as this only gives a tree as complex as the business organizational
structure itself.

Maintainable, as this structure seldom change.

Counterintuitive, as business processes not necessarily follow this structure.

An example of this structure is given in Figure 6.3.

Second Idea - Many Trees

Let each business process have its own structure dictated by the requirements
of it and including only the nodes it potentially could use. Pros and cons are:

Demanding, because when a business process is made, a tree must be designed
for that business process.

Efficient, because the business process does not have to traverse unnecessary
nodes.

Intuitive, as the tree is described to suit the business process instead of busi-
ness process is “fitted” to suit some other structure.

An example is given in Figure 6.4.

I have chosen the last idea as basis for my implementation. Since I am focusing
on mobility of business processes, this was chosen because of its efficiency and
intuitive approach. The first idea make the business processes travel over com-
puters/nodes that it will never interact with, although this can happen in the
last idea, it is less likely to happen, as only nodes which are interacted with are
included in the tree.

For the holiday request business process the tree could like in Figure 6.5. This
figure shows three ambientnodes where the “boss” and “HR” are inside “em”
(employee). These three ambientnodes represent the three roles and thereby the
three machines as the previous table showed.

44

production

shipping

Figure 6.4: Example of a tree structured by the workflow of the business process.

Figure 6.5: The holiday request process laid out as ambientnodes.

Any layout of the tree is allowed, but not all layouts would not be efficient. By
efficient is meant that the number of moves should be minimal. T will not go
into details on making an efficient layout of the tree.

With the tree in Figure 6.5 and the workflow from Figure 6.1 we can make a
new version of the workflow with the movement commands of the BP inserted.

To make the movement of the BP happen, a part of its workflow is translated to
a simple ambient-tree navigation language. Every time the BP changes activity
it is considered whether it must move to another ambientnode, because when it
changes activity, it could also change role. The ambient-tree navigation language
consists of only to commands, in X and out X where X is the name of an ambient.
The semantic meaning of these command corresponds to the semantics of IN and
oUT of ambient calculus.

The first role of the holiday request workflow is the employee. Therefore I have
made the employee root of the tree of ambientnodes. The next activity belongs
to the role of the “boss”, therefore the BP has to move from the ambientnode
“em” to the “boss”, this is simply done with an IN BOsS see (1) on Figure 6.6.
Figure 6.7 shows the corresponding moves on the ambient tree. When the boss
has made his decision two things can happen. If the boss disapproves the request
the BP either moves back to “em” (2). If the boss approves the BP splits and
one part moves back to “em” (3) and the other part moves to “HR” passing
“em” on the way (4).

45

employee

in boss (1)

exclusive
choice
out boss (2)

parallel
anpl i
out boss (3) \ out boss & in HR (4)

employee HR

Figure 6.6: The holiday request workflow with movement commands.

Figure 6.7: Movement of the holiday request BP on the ambientnodes.

46

Figure 6.8: Workflow Pattern: Sequence. Translated to ambient navigation.

Ambientnodes can serve as more than a simple container for ambients. Some
special ambientnodes can be made, e.g. one that contains a database which can
not be moved. These uses are outside the scope of this project, but the idea
will be elaborated on in the “Future Works” section of the conclusion.

6.2 Meeting the Requirements

In this section I will show how the requirements, found on basis of the W{P’s
in the analysis, are met.

In the following, the activities of the workflow patterns are named alphabetically.
The figures with trees of ambients are also named alphabetically, this is not
to create confusion but to exemplify the worst case of a workflow where each
activity is located on a different computer than the activity before. Therefore
when a workflow has activities A, B and C, the activities are executed on the
computers A, B and C, unless otherwise noted.

6.2.1 The Movement Requirement

As shown in the previous section, ambients can model mobility and the basic
structure outlined allows ambients to represent machines as ambientnodes. To
make cases of BP’s move, the cases are simply put in an ambient. This ambient
is a child of the ambientnode where it was created and is ready to navigate the
tree of ambients.

An example of this functionality is illustrated in Figure 6.8 where the sequence
WIP is implemented. When the BP is done with activity A, the ambient exe-
cutes a in b which transfers it to computer B as, when activity B is done, the
ambient executes a in ¢ which transfers it to computer C.

This functionality is a basic foundation of the design. Most of the following
requirements will use this functionality in some way.
6.2.2 The Execution Environment Requirement

To meet this requirement a full BPMS must be running on each of the ambi-
entnodes in the tree. This is required so that the case can be executed and sent
forward to the next ambientnode.

47

Figure 6.9: Workflow Pattern: Parallel Split. Translated to ambient navigation.

6.2.3 The Complete State Requirement

To reliably move a case, its entire state must be moved, to maintain its integrity.
Therefore must the entire case be removed from the BPMS and the ambientnode
it leaves and put in respectively in the destination ambientnode.

6.2.4 The Copyable Requirement

Copying a BP is not a problem on a computer. A case consists of a workflow
and some data, which can be copied exactly, so that any number of similar BP’s
can be made. Each copy of the case is put in a ambient for themselves. These
ambients can now take their own path in the ambient tree, determined by the
workflow of the case they are carrying.

An example of this feature is given in the next section.

6.2.5 The Manipulatable Requirement

When a copy is made of a case, it must be possible to manipulate the workflow to
make the case take the right transition next. Therefore the layer that distributes
the cases must be able to understand and manipulate the workflow.

An example of the manipulatable requirement and the copyable requirement is
given in Figure 6.9 where the WP parallel split is implemented. Each ambient
takes it own path through the ambient tree as shown in the figure where one
executes in b and the other executes in c.

6.2.6 The Data Synchronizing Requirement

To synchronize the data one or more of the schemes suggested in the analysis
must be applied. This requires, unfortunately that the workflow of the BP
is extended with information about what scheme is chosen. Furthermore it
requires that the BPMS can handle these schemes or that it supports manual
synchronization, or both.

48

6.2.7 The Discriminator Requirement

To make sure that the activity after the discriminator is not activated twice,
a ’blocking ambient’ is left behind after the discriminator by the first thread
the reaches it. The thread continues to activate the following activity. Threads
that arrive after are stopped by the ’blocking ambient’. When the last thread
arrives, it is stopped and the ’blocking ambient’ is removed.

6.2.8 The Arbitrary Move Requirement

Since moving in a tree is restricted to moving up and down, arbitrary are not
possible. Instead it is simulated, by making several moves look like one move,
an atomic move, where the BP is unaware that it moves through a number of
other nodes on its way. This was inspired by the Calculus of Mobile Resources
mentioned in chapter 2. Also the ambient should be able to do an atomic move
before and after it has executed its BP. In that way it can be 'programmed’ to
start at an arbitrary ambientnode and return when it is done.

6.2.9 The Child Case Requirement

To fulfill this requirement a new ambient is simply made for the child case. The
ambient containing the parent case must keep track of the names of the ambients
with child cases, to enable location of these in the event of the canceling of the
case.

6.2.10 The Synchronizing Child Case Requirement

After a child case terminates, the parent must somehow be notified so that it
can continues its execution. Therefore there must be some event mechanism
that wakes up the waiting ambient when a child case has returned.

6.2.11 The Deferred Choice Requirement

To fulfill this requirement, an ambient is sent to each of the ambientnodes that
can make the deferred choice. There is unfortunately no method in AmbProMo
to synchronize ambients on different nodes. Therefore is this requirement left
unfulfilled.

6.2.12 The Interleaved Parallel Routing Requirement

The first thread that reaches 'the other side’ of the 'structure’ waits there and
sends back a message to signal that a new thread can begin. When the last
route has been taken, the thread continues.

49

6.2.13 The Milestone Requirement

To fulfill this requirement, an ambient is left at the activity where the milestone
area begins and one is left where the milestone area ends, when they are reached.
The thread that checks whether the milestone has been reached, can check if
the milestone area has been entered, and if it has, can check if it has been left
again, thereby determining if the measured thread has reached the milestone.

6.2.14 The Garbage Collection Requirement

If ambients are left behind, as in the milestone requirement, they must be
cleaned up, when the case terminates. Therefore when an ambient is left behind
it must be recorded so that it can be removed when it is no longer needed.

6.2.15 The Thread Cleanup Requirement

If the thread is part of a split, a message must be forwarded to synchronization
point, so that the thread is not waited for in vain.

6.2.16 The Case Cleanup Requirement

To cancel an entire case the ambients must keep track of which ambients are
created. These must be located and canceled.

6.3 Results of the Design

All except one of the requirements of the analysis has been answered by a design.
The deferred choice requirement is not fulfilled, as there is no way to synchronize
ambients on different ambientnodes.

The rest of the requirements are fulfilled by using ambients as synchronizers,
messages or as medium for communication.

I belive that the basic structure I have designed, is adequate to support most
Wi{P’s and it is therefore fairly solid, in my definition.

6.4 Summary

This chapter has answered all but one of the requirements found in the analysis,
by a number of designs. The designs are based on the basic structure described
in the first section of the chapter.

50

The design is solid on paper, but to demonstrate its realizability, an implemen-
tation is needed. An implementation would reveal flaws, if any, in the design.
Therefore I have chosen to implement a prototype of the design, which is de-
scribed in the next chapter.

51

52

Chapter 7

Implementation

To demonstrate the realizability of AmbProMo I have chosen to implement a
part of the system. The design in the previous chapter answers the list of
requirements found in the analysis, with a list of designs to the requirements.
I have chosen to implement the designs that answer the base requirements;
the movement requirement, the execution environment requirement and the
complete state requirement. These requirements have been chosen because they
represent the most interesting problem of realizing AmbProMo, mobility.

7.1 Software to Build Upon

To ease the effort of implementing the prototype and to avoid writing code
unrelated to this thesis I have used some existing software packages to build
upon. I needed a BPMS that supports various WfP’s to execute the BP’s. 1
also needed a framework to move objects between machines.

For the BPMS package I needed the source code so I could add support for
mobility, therefore I only considered open source packages.

The packages I looked at will be presented in the following two sections along
with the reasons for my choices.

7.1.1 Choosing a Mobility Framework

I searched for frameworks that could provide mobility of state and processes. I
found a number of frameworks of which I looked further into: Pathwalker[11]
by Fujitsu, FlexiNet[5] by ANSA and uCode[2] by Gian Pietro Picco.

FlexiNet looked promising at first, because of its extensive API. Unfortunately
it did not work well with the current versions of Java and since it apparently
no longer is being maintained, I abandoned it.

53

jBpm
AmbProMo | JBoss

muCode Hibernate

Figure 7.1: The layers of the implementation.

Pathwalker was more lightweight than FlexiNet and was based on simple mes-
sage passing. Unfortunately it too gave a mysterious runtime error. The source
was not available, so I could not fix it.

1Code turned out to be usable. Despite a problem with serialization in Java
1.4 it worked flawlessly with Java 1.3.

1Code is a small framework for mobility of code and state. It is made by Gian
Pietro Picco and it is meant to be used in research and teaching.

It provides primitives for mobility of objects and classes. In its core it provides
a basic unit of mobility, called a group and a place where groups execute, called
a uServer.

7.1.2 Choosing a BPMS

To build the prototype I needed a BPMS to execute the BP’s. I looked at two
BPMS’s: XFlow[12] and jBpm[10].

XFlow does not have a strong support of WfP’s, it only supports exclusive
choice, parallel split, synchronization, discriminator, multiple instances without
synchronization and multiple instances with a priori design time knowledge.

jBpm has more focus on the W{P’s, but does not support many directly either.
I chose jBpm for the prototype because of the authors commitment to support
the WP and because it has the least worst developers documentation and the
most professional 'feel’ of the two.

jBpm is a workflow management system that can execute BP’s described in a
language called jBpm Process definition language (jPdl). It is a complete BPMS
that have interfaces to both external applications and users.

It is build to run on JBoss[9], a java application server and uses an Object/Re-
lational Persistence system called Hibernate[8] for its data storage needs. The
relation between jBpm, JBoss and Hibernate are illustrated in Figure 7.1.

54

7.2 The Movement Requirement

In the following sections I describe the implementation of the design that answers
the base requirements.

The movement requirement, is the requirement of the ability to move a BP from
a machine to another; mobility of BP’s.

To support mobility I used the uCode framework which provides basic mobility
primitives. On top of this framework I have implemented the ambients that
provide mobility of BP’s in AmbProMo.

7.2.1 Mobile Ambients in Code

My implementation of Mobile Ambients use the group primitive of uCode to
move between machines. This is illustrated in Figure 7.1 where AmbProMo is
located on top of pCode which means that AmbProMo depends on features of
nCode.

An ambient class is implemented from which ambients can be instantiated. The
ambients can have a parent, which is an ambient, and children, which also are
ambients. They can move in and out of ambients and can carry a BP.

Ambientnodes inherits from ambients. They can not move, but ambients can
move into and out of ambientnodes.

This part of the implementation gives ambients that lives on ambientnodes and
carry a BP. They can move in and out of other ambients thereby bringing
mobility to BP’s.

The most important classes of the implementation of ambients are Ambient,
AmbientHost and ShadowAmbient. I will describe these classes in the following.

The Ambient class is the base class of ambients. It contains methods to move
in and out of other ambients. These methods rely on the distributed imple-
mentation of mobile ambients described in chapter 2. To use the class and the
ambient capabilities a new class must be made that inherits from Ambient.

The AmbientHost (corresponds to an ambientnode) class inherits from the Am-
bient class. This class is used to make environments for ambients to execute
in. It has a “ship” method that can be used to send ambients to another ambi-
entnode. The class overloads some of the methods of the Ambient class to make
ambients move from one ambientnode to another, by using its “ship” method.

The ShadowAmbient is a placeholder that represents an ambientnode. It is
used to make the ambient tree look like one tree. All it does is that it holds the
address of another ambientnode, so that when an ambient moves into another
ambientnode, the address of that node is fetched from the ShadowAmbient.

The following is a walk-through of how an ambient is moved from an ambientn-
ode to another. Specifically I will show how an IN is performed. The first code

95

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

77

78

79

17

18

19

20

listing is from the Ambient class. When an ambient calls the IN command, it
sends a “delegate” message to its parent asking for permission to move into one
of the parents children. The message is implemented as a method call (line 242)
because an ambient will always be on the same machine as its parent.

public void in (String inA) {

Ambient newparent = null;

try {
newparent = parent.delegateIn(this, inA);
if (newparent != null) {

newparent . register (this);

} catch (Exception e) {
e.printStackTrace ();
}

The delegateIn method is in the class HostAmbient. It checks, whether the
destination ambient exists (line 63) and fetches the address of destination ambi-
entnode from the ShadowAmbient (line 65). Before shipping the ambient (line
67) it makes sure that the ambient does not have references to the local machine
that will ruin serialization. The “ship” call wraps up the ambient in a wrapper
that can unpack the ambient at the destination.

public Ambient delegateln(Ambient child, String into)

throws MuAException {

Ambient intoA = getChildAmbient (into);

if (children.contains(child)) {

if (children.contains (intoA)) {
if (intoA.getClass ().equals(ShadowAmbient.class)) {

ShadowAmbient dest = (ShadowAmbient) intoA;
child . prepareSerialize ();
ship (child , dest);

}
} else {
throw new MuAException (” Destination ambient”
+ 7does not exist”);

}
} else {

throw new MuAException (” Moving ambient not”
+ 7registered as child of this ambient”);

}

children .removeElement(child);
return null;

When the ambient wrapper arrives at the destination, the ambient is unwrapped
(line 18), registered at the ambientnode (line 32) and pointed toward its new
parent (line 33).

public Thread unpack (Group g) {
Ambient a = (Ambient) g.getObject (" _AMBIENT_”);
String position = (String) g.getObject (” _POSITION.”);
MuAmbientServer m = (MuAmbientServer) g.getServer ();

56

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

HostAmbient ha = m.getAmbient ();

if (position != null
&& position.equalsIgnoreCase (” parent”)) {
ha.setParent (a);
a.register (ha);
a.setHost (ha);
} else if (position != null
&& position.equalsIignoreCase (” host”)) {
m.setAmbient ((HostAmbient) a);

} else {
ha.register (a);
a.setParent (ha);

}

return new Thread(a);

The ambient is now in place at the new ambientnode.

7.3 The Complete State Requirement

The complete state requirement is the requirement of moving the entire BP
from one machine to another.

Figure 7.1 show the relation between AmbProMo and jBpm. jBpm is placed on
top of AmbProMo which means that jBpm depends on features in AmbProMo.

Since jBpm was build on Hibernate, I could, by looking at the ’database schema’
deduce that the entire case was stored in Hibernate and therefore take the object
and move it to another instance of the BPMS without complications, as there
were no object references from the BPMS to the case left behind.

7.4 The Execution Environment Requirement

The execution environment requirement is the requirement of having a BPMS
that can execute the BP’s on the machine.

As jBpm is a complete BPMS it also provides an environment for execution of
BP’s.

To hook into this environment I found the code in jBpm that stores the cases in
Hibernate. Recall that when an activity in a workflow is done, the next activity
may “belong” to somebody else to work on. Therefore when an activity is done,
it may be time for the case to move to another machine. Therefore when a
case is saved, it is a good time to check whether it should be moved to another
machine (also I am sure that the case is in a consistent state). Therefore the
case is inspected at this point and if it should move, it is packaged in an ambient

o7

and sent to its destination, then removed from the execution environment on
the machine.

This part of the implementation provides a safe execution environment for the
BP’s.

7.5 Results of the Implementation

The implementation is the realization of the base requirements. The base re-
quirements are those requirements that collectively enables business processes
to be mobile.

The implementation uses two software packages to reduce the need for writ-
ing code unrelated to the problem of making business processes mobile. The
experiences with these packages have been mixed.

The implementation of ambients was made on top of the uCode framework.
This framework has minimal primitives for mobility but I found these simple
primitives hard to use, but as an overall the package save time on the imple-
mentation.

The jBpm package provided a good framework for implementation, although it
was complicated to straighten out its relations to JBoss and Hibernate.

7.6 Summary
With the implementation described above I have realized the selected part of the
design, which in turn was an answer to the requirements found in the analysis.

This implementation shows that mobility of BP’s is feasible with the foundation
I use and based on the design I have made.

Although this implementation only realizes a part of the design, it demonstrates
that the base requirements for mobility are fulfilled.

58

Chapter 8

Conclusion

Business Process Outsourcing gives the possibility of reducing costs and regain-
ing focus on core competences of a business. To use BPO, business processes
must be defined by a workflow language. Unfortunately current workflow lan-
guages does not support mobility of business processes, which is needed to out-
source business processes efficiently. Therefore I propose a new foundation for
the workflow languages that support mobility; mobile ambients. My problem
statement was:

The main goal of this thesis is to demonstrate that mobile ambients can provide
a solid foundation for mobile business processes.

In the introduction I gave my definition of solid: By solid I mean that mobile
ambients should support mobility for all kinds of business processes.

To demonstrate this I have analyzed mobile ambients and WfP’s to find the
requirements to build such system. The analysis finds a set of requirements
that must be fulfilled to support all the W{P in a system based on ambients.

In the design chapter I take the set of requirements found in the analysis and
make a design that takes the requirements into account. All except one of the
requirements are answered by the design and I believe that the system, is fairly
solid. The design takes into consideration the common workflow patterns that
are used in workflows and the possibilities and limitations that mobile ambients
inflict on the system.

To demonstrate that the design is realizable I have implemented a working
prototype that supports the most important requirement, that of mobility. The
prototype revealed no flaws in the design, but as the prototype does not cover
the entire design, it can only answer for the implemented part.

A more exhaustive implementation would give a better basis for demonstrating
that the design is realizable when it comes to supporting all workflow patterns.

59

8.1 Future Works

As the foundation, Mobile Ambients, have been sliced and diced to fit the ap-
plication of mobile business processes, it would be nice to collect the pieces and
determine what would make a calculus of mobile business processes. Or, to take
another approach, determine how to extend a calculus or a workflow language
that supports relevant concepts for mobile business processes, like the concept
of location or roles.

To further demonstrate that the design is realizable a complete implementation
would be desirable. This would also give further experiences with mobile BP’s
in general.

The ambientnodes leaves room for flexibility. One thing they would be suited for
is to control the domain they naturally have by being the parent of a branch.
They could enforce security, e.g. deciding which BP’s are allow to enter and
which information is allowed to leave.

Another use of the ambientnodes are for special unmovable ambients like am-
bients that control physical things, ambients that control special software that
runs on special hardware or simply ambients that control processes that unde-
sirable to move, like a large databases or data warehouses.

60

Bibliography

[16]

See: http://cyberatlas.internet.com/markets/b2b/article/0,
,10091_2220371,00.%html, 2004-02-10.

See: http://mucode.sourceforge.net.
See http://tmitwww.tm.tue.nl/research/patterns/.

See: http://www3.gartner.com/teleconferences/attributes/attr_
46768_115.pdf.

See: http://www.ansa.co.uk/.
See: http://wuw.bpmi.org.

See: http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/
default.htm.

See: http://www.hibernate.org.

See: http://www.jboss.org.

See: http://wuw.jbpm.org.

See: http://www.labs.fujitsu.com/en/freesoft/paw/.
See: http://xflow.sourceforge.net/.

M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In In Proceedings
of the 4th International Conference on Theoretical Aspects of Computer
Science (TACS’01), volume 2215 of LNCS. Springer-Verlag, 2001.

Luca Cardelli. http://www.luca.demon.co.uk/Ambit/
AmbitPkgRelease\%201.1/AmbitIntro.htm¥l.

Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations
of Software Science and Computation Structures: First International Con-
ference, FOSSACS ’98. Springer-Verlag, Berlin Germany, 1998.

Cedric Fournet, Jean-Jacques Levy, and Alan Schmitt. An asynchronous,
distributed implementation of mobile ambients. In IFIP TCS, pages 348—
364, 2000.

61

[17]

Jens Christian Godskesen, Thomas Hildebrandt, and Vladimiro Sassone.
A calculus of mobile resources. Technical Report TR-2002-16, The IT
University of Copenhagen, 2002.

Robin Milner. ”a calculus of communicating systems”. In ”Lecture Notes
in Computer Science”; volume ”92”. ”Springer-Verlag”, 7 1980”.

Robin Milner. The polyadic pi-calculus: a tutorial. 1991.

C.A. Petri. Kommunikation mit automaten. Doctoral thesis, University of
Bonn, 1962.

Davide Sangiorgi. From pi-calculus to higher-order pi-calculus - and back.
In TAPSOFT, pages 151-166, 1993.

Bent Thomsen. A Calculus of Higher Order Communcating Systems. PhD
thesis, Imperial College of Science and Technology, 1989.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(3):5—
51, July 2003.

W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske. Business
process management: A survey.

B.C. Warboys, P. Kawalek, I. Robertson, and R.M. Greenwood. Business
Information Systems: a Process Approach. McGraw-Hill, first edition, 1999.

62

