A Verification System

Rasa Bonyadlou

8th August 2003



AALBORG UNIVERSITY

Department of Computer Science

TITLE: A Verification System

SEMESTER PERIOD:
SSEA4,
2nd of February 2003- 8th of August 2003

PROJECT GROUP:
B1-207c

AUTHOR:
Rasa Bonyadlou, rasa2@cs.auc.dk

SUPERVISOR:
Anders P. Ravn, apr@Qcs.auc.dk

NUMBER OF PAGES: 98
TOTAL NUMBER OF COPIES: 5 and 1 online
APPENDIXES: PVS Grammar, CD ROM



Preface

This project is submitted as a final Master Thesis in Software System Engineering in the Department
of Computer Science at Aalborg University, Denmark, within the Distributed System and Semantic
unit, August 2003. The purpose of the project is to implement the PVS (Prototype Verification
System). For the implementation of this project JavaCC and Jbuilder will be used. Enclosed within
this project report is a CD ROM with the source code for PVS GUI, parser, compiler and type
checker, which is implemented in Java, and several PVS theories.

Rasa Bonyadlou

Aalborg University, August 2003.



Abstract

The Prototyping Verification System (PVS) developed by Stanford Research Institute (SRI), is an
interactive theorem prover for a typed higher order logic. PVS is a system for writing specifications
and constructing proofs. PVS provides an integrated environment for the development and analysis
of formal specifications, and supports a wide range of activities involved in creating, analyzing
and documenting theories and proofs. The aim of this project is to describe the PVS system and
re-implement it in Java.
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Chapter 1

Introduction

In a theorem proving approach to verification, a system and its properties are described by means
of logical formula and the system is verified by means of a logical proof of the desired properties.

A popular support tool for the formal specification and verification activities is the theorem prover
PVS or Prototyping Verification System. PVS supports both a highly expressive specification lan-
guage and a very effective interactive theorem prover in which most of the low-level proof steps are
automated, [2].

Although PVS provides some simple proof combinators, PVS is mainly used for development and
analysis of formal specifications. The PVS system consists of a specification language, a parser
for the language, a type checker, a prover, specification libraries, and various browsing tools. Its
theorem prover, or proof checker, is both interactive and highly mechanized: the user chooses each
step that is to be applied and PVS performs it, displays the results, and then waits for the next
command. Furthermore, PVS is designed to help in the detection of errors and confirmation of
correctness, by type checking. Many formal specifications contain significant errors when first writ-
ten, and automated proof checking can be one of the fastest ways to detect errors. PVS is the
most recent in the line of specification languages, theorem provers, and verification system, and it
is implemented in Lisp. PVS is an interactive theorem prover, it is not automate theorem prover,
because decidable logic often not rich enough, or inconvenient. Semi- automated theorem provers
usually don’t tell what is wrong, experience and knowledge about internals are required.

This project consists of two main parts, the aim of the first part of the project is to describe the
initial steps towards the re-implementation of PVS, the main concepts of the theorem prover and
logic system and development of the PVS parser. And the aim of the second part of the project is
to develop PVS GUI and type checker. The major goals of this project are:

e Document the architecture of a verification system.
e Implement it in a portable language.

e Have an open source implementation of PVS parser, compiler, type checker and graphical user
interface.
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Application of PVS

PVS is mainly intended for the formalization of requirements and design-level specifications, and
for the analysis of intricate and difficult problems. It (and its predecessors) have been applied to
algorithms and architectures for fault-tolerant flight control systems, and to problems in hardware
and real-time system design. Collaborative projects involving PVS are ongoing with NASA and
several aerospace companies; applications include a microprocessor for aircraft flight-control, diag-
nosis and scheduling algorithms for fault-tolerant architectures, and requirements specification for
portions of the Space Shuttle flight-control system.

PVS has been installed at hundreds of sites in North America, Europe, and Asia; current work is
developing PVS methodologies for highly automated hardware verification (including integration
with model checkers), and for concurrent and real-time systems (including a transparent embedding
of the duration calculus).

PVS Work flow

Generally there are two main steps in PVS work flow, that can be used in PVS system.

e The system (programs, circuit, protocol,...) and their properties can be converted to the PVS
system. Conversion can be automated or done manually.

e Proof constructions, which are interaction with the theorem prover.

Figure 1.1 is the work flow for PVS.

PVS File - PROOFS

N

Properties

Figure 1.1: PVS Flow
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Report Structure

The structure of the report includes eight main chapters. The following chapter introduces the PVS
system architecture and shows the main parts of PVS and the abstract way of constructing PVS
proofs, it also contains the main concepts of the PVS languages. The third chapter describes the
PVS parser, lexical analysis and the lexical structure in PVS. The fourth chapter covers the main
concepts of the logic and the theorem prover, it introduces the first order and propositional logic,
binary decision trees and PVS tactics. The type checking chapter covers the PVS type system and
PVS prelude file. The design chapter covers internal representation of PVS parser which will be
implemented according to the PVS grammar in JavaCC, the GUI for PVS system and the internal
representation of PVS type checker and theorem prover. The testing chapter contains the test
specification, instructions and outputs for PVS parser, GUI and type checker. The summary of the
project is in the conclusion chapter. Appendix A contains the whole grammar of PVS and appendix
B contains the source code of the PVS parser, type checker and GUI, and some examples for testing.
Mainly this project will discus and implement the PVS parser, type checker, GUI and the main
concepts of the logic and theorem prover.

Aalborg University Rasa Bonyadlou 9



Chapter 2

Architecture Of PVS

This chapter introduce the PVS parts and the initial steps for proving a theorem in PVS. It will give
basic concepts of the proofs and proof goals in PVS with an example proof. The PVS languages is
discussed in the last part of the chapter.

PVS consists of a specification language, a number of predefined theories, a theorem prover, various
utilities, documentation, and several examples that illustrate different methods of using the system
in several application areas. The main parts of the PVS are: editor, parser, theorem prover with
proof checking and type checker. Figure 2.1 shows use cases for PVS parts.

27| Edi ter

ot

Theory
designer

/ ~{} N

0 h

1 1
| Par eser ISl |Typeckecker ISl

f A¥
-
Verifier
TACTICS

Figure 2.1: PVS-Architecture

The actors in the figure are:
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e Theory Designer: This user specifies the theory or theories in the PVS specification language,
where it is parsed and typed checked.

e Verifier: This user constructs a proof of the theorems. The proof is recorded in a proof script.

1 A Simple Example Of a PVS Specification

A PVS specification consists of a number of files, which contains some theories. Each theory takes
a list of theory parameters and provides a list of declarations or definitions for variables, individual
constants, types and formulas. All the specification files in PVS must have a .pvs extension. As
specifications are developed, their proofs are kept in files of the same name with .prf extension.
Consider a simple example specification:

sum: THEORY

BEGIN

n: VAR nat

sum(n) : RECURSIVE nat=

(IF n=0 THEN O ELSE n + sum (n-1)ENDIF)

MEASURE (LAMBDA n:n)

closed_form:THEOREM sum(n)= (n* (n+1)) / 2

END sum

The user is supposed to enter the theory and start PVS to prove the theorem, (user guide for PVS
specification [10]). Following are steps for starting PVS to prove the theorems:

1.1 Creating The Specification

The first step is, to enter the sum theory with an editor, e.g., the PVS emacs based editor and then
save it with a .pvs extension. This simple theory has no parameters and contains three declarations.
The first declares n to be a logical variable of type nat, the built-in type of natural numbers. The
next declaration is a definition of the function sum(n), whose value is the sum of the first n natural
numbers. Associated with this definition is a measure function, following the MEASURE key word.
A measure function is a function from the arguments of the recursive function into the natural
numbers. In order to make the recursion well-formed one must prove that the measure is strictly
decreasing for recursive calls. Here, the MEASURE is the identity function. The final declaration is a
formula, a THEOREM which gives the closed form of the sum.

1.2 Parsing

The sum specification can be parsed and if there is any problem during parsing, the system will show
an error message in an error window. Then, the user should fix the error and parse it once again.
The parsing starts with a lexical analysis for all parts of the theory and it generates the parse tree
for it. The details of the parsing will be discussed in chapter 3.
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1.3 Type Checking

Type checking is a simple and effective way to discover errors in specifications. Type checking checks
for semantic errors, such as undeclared names and ambiguous types. Type checking may build a
new file or internal structure with Type Correctness Condition (TCC)s [9]. The user is expected to
discharge these proof obligations with the PVS prover. Proof of TCCs can be postponed, but the
system keeps track of all undischarged proof obligations and the affected theories and theorems are
marked as incompletely proved. When the theory has been type checked, a message will display
any TCCs generated.

2 Proving

The user supplies the steps in the argument and PVS applies them to the goal of the proof, breaking
them into simpler subgoals or obvious truths. If all the subgoals are reduced to obvious truths, the
proof attempt has succeeded. Otherwise, the proof attempt fails either because the argument or
the conjecture is incorrect. The main property of the design assumptions in PVS are:

e The purpose of an automated proof checker is not only to prove theorems but also to provide
useful feedback from failed and partial proofs.

e Automation should also be used to capture repetitive patterns of argumentation.

e The end product of a proof attempt should be a proof that, with only a small amount of work,
can be made humanly readable so that it can be subjected to the process of mathematical
scrutiny.

2.1 The Structure Of PVS Proofs

This section is based on the description in the PVS prover guide[7]. The prover maintains a proof
tree, and the goal of the proofs is to construct a proof tree which is complete, in the sense that all
of the leaves are recognized as true. The nodes of the proof tree are sequents, and the proving parts
will always be looking for unproved branches. Each proof goal is a sequent consisting of a sequence
of formulas called antecedents and a sequence of formulas called consequents. In PVS such a sequent
is displayed as:

{-1} A
{—2} A
[-3] A3
[
1l B
{2t B
{3} Bs

12 Rasa Bonyadlou Aalborg University



where the A; and Bj are PVS formulas collectively referred to as sequent formulas: the A; are
the antecedents and the Bj; are the consequents; the row of dashes separates the antecedents from
the consequents. The sequence of antecedents or consequents (but not both) may be empty. The
intuitive interpretation of a sequent is that the conjunction of the antecedents implies the disjunction
of the consequents, it means that

(A]_/\AQ/\A?,/\...) D(Bl\/BQVB?,...) (21)

The proof tree starts off with a root node of the form - A, where A is the theorem to be proved. PVS
proof steps build a proof tree by adding subtrees to leaf nodes as directed by the proof commands.
A sequent is true if any antecedent is the same as any consequent, if any antecedent is false, or if
any consequent is true. Other sequents can also be recognized as true. Once a sequent is recognized
as true, that branch of the proof tree is terminated. The goal is to build a proof tree whose branches
have all been terminated in this way.

The figure 2.2 is an example of the proof tree.

proof tree

Al-B

a

Al |_ Bl

e 1 N

All |_ Bll AIZ |_ BIZ A13 |_ B13

Figure 2.2: ProofTree

In this proof tree the goal is breaking up to subgoals. Validity of subgoals must imply parent goal
validity.

A PVS proof focuses on some sequent that is a leaf node in the current proof tree. This is the
sequent that is displayed by the PVS prover while waiting for the user’s command. The numbers
in brackets, e.g.,[—3|, and braces, e.g., {3}, before each formula in the displayed sequent are used
to name the corresponding formulas. The formula numbers in square brackets (e.g., [-3] above)
indicate formulas that are unchanged in a subgoal from the parent goal where the numbers in braces
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(e.g., {2} in the example above), are those formulas that are either new or different from those of
the parent sequent.

2.2 Sequent Representation Of Proof

Each goal or subgoal in a PVS proof attempt is a sequent of the form I' - A, where T is a sequence
of antecedent formulas and A is a sequence of consequent formulas.

PVS interactive commands allow the user to shift the proof (using the postpone command) to a
sibling of the current sequent (if any), or to abandon (using the fail or undo command) a portion
of the proof containing the current sequent in order to return to some ancestor node representing
an earlier point in the proof. For example, one proof step (called split in PVS) takes a sequent of

the form
I'FAAB (2.2)

where I' is any sequence of formulas and creates the pair of child sequents.

'rA and TH+HB (2.3)

Below is the tree representation of formula (2.2):

r

N

''rA T'HB

A PVS proof command when applied to a sequent provides the means to construct proof trees.
These commands can be used to introduce lemmas, expand definitions, apply decision procedures,
eliminate quantifiers, and so on; they affect the proof tree, and are saved when the proof is saved.
Proof commands may be invoked directly by the user, or as the result of executing a strategy.

The proof commands that define the PVS logic are called the primitive rules; they either recognize
the current sequent as true and terminate that branch of the proof tree, or they add one or more
child nodes to the current sequent and then focus on one of these children. PVS strategies are
combinations of proof steps that can add a subtree of any depth to the current node (i.e., the step
may invoke sub steps and so on).

PVS proof commands can:

e Cause control to be transferred to next proof sequent in the tree (postpone);

e Undo a subtree by causing control to move up to some ancestor node in the proof tree (undo);

Prove the current sequent causing control to move to the next remaining leaf sequent in the
tree;

Generate subgoals so that control moves to the first of these subgoals;

e Leave the proof tree unchanged while proving some useful status information.

A proof is completed when there are no remaining unproved leaf sequents in the proof tree. The
resulting proof script is saved and can be edited and reused on the same or a different conjecture.

14 Rasa Bonyadlou Aalborg University



An Example Proof

A simple example of a PVS proof using induction to show that when given two functions f and g
on the natural numbers, the sum of the first n values of f and g is the same as the sum of the first
n values of the function An : f(n) + f(g)

The theory sum below defines the operator sum and states the desired theorem as sum plus. The
main goal of proof is displayed in the *pvs* buffer followed by a Rule? prompt. The user commands
are typed in at this prompt.

sum: THEORY
BEGIN
n: VAR nat
sum(n) : RECURSIVE nat=
(IF n=0 THEN O ELSE n + sum (n-1)ENDIF)
MEASURE (LAMBDA n:n)
closed_form:THEOREM sum(n)= (n* (n+1))/2
END sum

PVS starts up by showing :

sum_plus :

{1} (FORALL (f: [nat -> nat], g: [nat -> natl], n: nat):
sum( (LAMBDA (n: nat): f(n) + g(n)), n) = sum(f, n) + sum(g, n))

Rule? (skolem!)

The first command, skolem!, introduces Skolem constants £!1, g!1, and n!1 for the universally quantified
variables in the theorem.

PVS replies as:
Skolemizing,
this simplifies to:

sum_plus :

{1} sum( (LAMBDA (n: nat): f!1(n) + g!1(n)), n!'l)
= sum(f!'1, n!'1) + sum(g!l, n!'1)

Rule? (lemma "nat_induction")

The second command, lemma, introduces the induction scheme for natural numbers nat- induction as an
antecedent formula. This induction scheme is proved as a lemma in the theory natural numbers in the PVS.

Aalborg University Rasa Bonyadlou 15



Applying nat_induction where
this simplifies to:
sum_plus :
{-1} (FORALL (p: pred[nat]):
(p(0) AND (FORALL (j: mat): p(j) IMPLIES p(j + 1)))
IMPLIES (FORALL (i: nat): p(i)))

[1] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n'l)

= sum(f!1, n!1) + sum(g!l, n!1)

The next step is to instantiate the induction scheme with a suitable induction predicate.

Rule? (inst - "(LAMBDA n: sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n)
= sum(f!1, n) + sum(g!l, n))")
Instantiating the top quantifier in - with the terms:
(LAMBDA n: sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n)
= sum(f!1, n) + sum(g!l, n)),

this simplifies to:

The inst command generates a subgoal where the universally quantified variable p has been replaced by the
given induction predicate.

sum_plus :

{-1} ((LAMBDA n:

sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n)
= sum(f!1, n) + sum(g!l, n)) (0)

AND
(FORALL (j: nat):
(LAMBDA n:
sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n)
= sum(f!1, n) + sum(g!1l, n))(j)
IMPLIES
(LAMBDA n:
sum((LAMBDA (n: mnat): f!1(n) + g!1(n)), n)
= sum(f!1, n) + sum(g!l, n))(G+ 1)))
IMPLIES
(FORALL (i: nat):
(LAMBDA n:

sum( (LAMBDA (n: nat): f!1(n) + g!1(n)), n)

16 Rasa Bonyadlou Aalborg University



= sum(f!1, n) + sum(g!l, n))(i))

[1] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!l)
= sum(f!1, n!1) + sum(g!l, n!l)

Rule? (beta)
Applying beta-reduction,

this simplifies to:

sum_plus :

{-1} (sum((LAMBDA (n: nat): f!1(n) + g!1(n)), 0) = sum(f!1l, 0) +
sum(g!1, 0)
AND
(FORALL (j: nat):
sum( (LAMBDA (n: nat): f!1(n) + g!1(n)), j)
= sum(f!1, j) + sum(g!l, j)
IMPLIES sum((LAMBDA (n: nat): f!i(n) + g!1i(n)), j + 1)
= sum(f!1, j + 1) + sum(g!l, j + 1)))

IMPLIES
(FORALL (i: nat):
sum((LAMBDA (n: nat): f!1(n) + g!1(n)), 1)
= sum(f!1, i) + sum(g!l, 1))

[1] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)
= sum(f!1, n!1) + sum(g!l, n!l)

Apply the conjunctive splitting command split to the goal yields three subgoals. The first goal is to
demonstrate that the conclusion of the instantiated induction scheme implies the original conjecture following
the introduction of Skolem constants. The second subgoal is the base case, and the third subgoal is the
induction step. The first subgoal is easily proved by using the heuristic instantiation command inst?.

Rule? (split)
Splitting conjunctions,
this yields 3 subgoals:
sum_plus.1 :
{-1} (FORALL (i: nat):
sum((LAMBDA (n: nat): f!1(n) + g!1(n)), i) = sum(f!1, i) + sum(g!l, 1))

[1] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)
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= sum(f!1, n!1) + sum(g!l, n!'l)

Rule? (inst?)

Found substitution:

i gets n!1,

Using template: sum((LAMBDA (n: nat): f!1(n) + g!1(n)), i) =

sum(f!1, i) + sum(g!l, i)

Instantiating quantified variables,

This completes the proof of sum_plus.1.

The second subgoal, contains a formula numbered 2 which was used for the first subgoal proved above. This
formula can be suppressed with the hide command. The hidden formulas can be examined using the PVS
command M-x show-hidden-formulas.

{1} sum((LAMBDA (n: mnat): f!1(n) + g!1(n)), 0) = sum(f!1, 0) + sum(g!l, 0)
[2] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!'1)
= sum(f!1, n!1) + sum(g!l, n!l)

Rule? (hide 2)
Hiding formulas: 2,
this simplifies to:

sum_plus.2 :

[1] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), 0) = sum(f!1, 0) + sum(g!l, 0)

The formula numbered 1 is easily proved by expanding the definition of sum using the expand command.
This command uses the PVS decision procedures to simplify the definition of sum and to reduce the equality
to TRUE.

Rule? (expand "sum")
Expanding the definition of sum,
this simplifies to:

sum_plus.2 :
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{1} TRUE
which is trivially true.

The remaining subgoal is the induction step. It contains the formula numbered 2.

sum_plus.

{1} (FORALL (j: nat):
sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j) = sum(£f!1, j) + sum(g!l, j)
IMPLIES sum((LAMBDA (n: nat): f!'i1(n) + g!1(n)), j + 1)
= sum(f!1, j + 1) + sum(g!l, j + 1))
[2] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)
= sum(f'1, n!1) + sum(g!l, n!'1)

Rule? (hide 2)
Hiding formulas: 2,
this simplifies to:

sum_plus.

[1] (FORALL (j: nat):
sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j) = sum(£f!1, j) + sum(g!l, j)
IMPLIES sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j + 1)
= sum(f!1, j + 1) + sum(g!l, j + 1))

The skosimp command, is a compound of the skolem! and flatten commands, the resulting simplified

sequent contains an antecedent formula, the induction hypothesis, and a consequent formula, the induction
conclusion.

Rule?  (skosimp)
Skolemizing and flattening,
this simplifies to:

sum_plus.3 :

{-1} sum((LAMBDA (m: mnat): f!1(n) + g!1(n)), j!'1)
= sum(f!1, j!1) + sum(g!l, j!'1)
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{1} sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j!1 + 1)
= sum(f!1, j!'1 + 1) + sum(g!l, j!'1 + 1)

By applying the expand command selectively to expand occurrences of sum on the consequent side, a true
sequent is obtained.

Rule? (expand "sum" +) Expanding the

definition of sum, this simplifies to:

sum_plus.3 :
[-1]  sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j'1)
= sum(f!1, j!1) + sum(g!l, j!'1)

{1} sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j'1)
= sum(f!1, j!1) + sum(g!l, j!'1)

which is trivially true.

This completes the proof of sum_plus.3.

This successfully completes the proof attempt.

3 PVS Languages

3.1 Theories

A PVS specification consists of a collection of theories. A theory consists of a sequence of declarations,
which provide names for types, constants, variables and formulas. A theory can build on other theories:
for example, a theory for ordered binary trees could build on the theory of binary trees. Also a theory
can be parametric in certain specified types and values, e.g., a theory of queues can be parametric in the
maximum queue length, and a theory of ordered binary trees can be parametric in the element type as well
as ordering relation. Figure 2.3 is the general template form of the PVS theories. Theorems must be proved
in the context of former declarations and definitions. Specifications in PVS are built from theories, which
provide reusability and structuring. A theory consists of a theory identifier, a list of formal parameters, an
EXPORTING clause, an assuming part, a theory body and an ending id. The syntax for theories in shown in
Appendix A (PVS grammar).

Everything is optional expect the identifiers and the keywords. The simplest theory has the form:

namel :THEORY
BEGIN
END namel
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theories

o

n: THEORY[D]
BEGIN ASSUMING

A
END ASSUMING
BEGIN

B

END n

Figure 2.3: PVS Theories Template

The formal parameters, assuming and theory body consist of declarations and IMPORTING. Names declared
in a theory may be available to other theories in the same context by means of the EXPORTING clause. Names
exported by a given theory may be imported into a second theory by means of IMPORTING clause. The
assuming part precedes the theory part, so the theory part may refer to entities declared in the assuming
part. The purpose of assuming part is to provide constraints on the use of the theory, by means of the
ASSUMING.

Theory Identifiers

The theory identifier introduces a name for a theory. In the PVS system, the sets of theories from a context.
Within the context theory names must be unique. Prelude is the initial available context, which provides
the Boolean operators, equality, and the real, rational, integer, and naturalnumbers types and their
associated properties. The only differences between the prelude and user defined theories is that the prelude
is automatically imported in the theory, without requiring an explicit IMPORTING clause. The identifier at
the end, must match the theory identifier, otherwise there will be an error message in the PVS system.

Theory Parameters

Theory parameters can be types, subtypes or constants, and IMPORTINGs. The parameters must have unique
identifiers. The parameters are ordered, allowing later parameters to refer to earlier ones.
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3.2 PVS Type System

PVS is a strongly typed specification language. The simply typed fragment includes types constructed
from the base types by the function and product type constructions, and expressions constructed from the
constants and variables by means of application, abstraction, and tupling. Expressions are checked to be
well typed under a context, which is a partial function that assigns a kind (one of the TYPE, CONSTANT
or VARIABLE), and a type to the constant and variable symbols. There are type constructors for subtypes,
function types, tuple types, and record types. Function, record, and tuple types may also be dependent.

Simple Types

PVS includes primitive types such as booleans or real, and classic constructors for forming functions and
tuples types. For example:

e [real, real -> bool] is the types of functions from pairs of reals to the booleans.

e [nat, nat, nat] is the type of triples of natural numbers.

There are also other constructions for record types and built in support for abstract data types.

Subtypes

Subtyping is one of the main features of the PVS specification language. Subtyping in PVS corresponds to
the set theoretic notation of subset. In the simple type fragment, each type corresponds to a set of values
that is structurally different from the set of values for another type, so that a term has at most one type.
Subtyping makes it possible to introduce the natural numbers as a subtype of the reals. With subtyping a
term can have several possible types, but the typechecking function 7 may return only a single type. The
function 7 can consider to return a natural canonical type of an expression that is given by the declaration
of the symbols in the expression. If the expression is used in a context where the expected type is a super-
type of its canonical type, then the type correctness is straightforward. If the expected type is a subtype
that is compatible with the canonical type of the expression, then typechecking generates a proof obligation
asserting that the expression satisfies the predicate constraints imposed by expected type.

Given an arbitrary function p of type [t->bool], one can define the subtype of ¢ consisting of all the elements
which satisfy p. This type is denoted by {z : t|p(z)} or equivalently (p). More generally, subtypes can be
constructed using arbitrary boolean expressions. For example:

nzreal:TYPE = {x:real |x/=0}

declares the type nzreal whose elements are the non-null reals. Subtypes can also be declared as follows:
s: TYPE FROM t;

This defines s as an uninterpreted subtype of t. With this declaration PVS automatically associates a
predicate s(pred) : [t— > bool] characteristic of s: the two expressions s and s(pred) denote the same
subtype of t. By default, PVS does not assume that types are non empty but the user can assert that types
are inhabited as follows:
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s: NONEMPTY_ TYPE FROM t

Function Types

Function types are introduced by specifying their domain and range types: for example binary arithmetic
operations such as addition and multiplication have type [[real, real]l -> reall, and can also written

as real, real -> real].

Furthermore function types have three equivalent forms:

[ ] [t17. - tn'> t]
e FUNCTION [ty, ..., t, -> ]

o ARRAY [t1, ldots,-> t]

where each t; is a type expression. An element of this type is simply a function whose domain is the sequence
of types ti, ..., t,, and whose range is t. A function type is empty if the range is empty and the domain
is not. There is no difference in meaning between these three forms; they are provided to support different
intensional uses of the type. For example the two forms pred [t] and setof [t] are both provided in the
prelude as shorthand for [t— > bool]. There is no differences in semantics, as sets in PVS are represented as
predicates. The different keywords are provided to support different intentions; pred focuses on properties
while setof tends to emphasize elements. A function type [t1,...,t,— > t] is a subtype of [s1,..., 8, — > 9]
iff s is a subtype of t, n =m, and 1 <i < n.

Record Types

Record types are a list of label type pairs, for example, [# age:nat, years- employed:nat #J]. The a;
are called record accessors or fields and the t; are types. Record types are similar to tuple types, except that
the order is unimportant and accessors are used instead of projections. Record types are empty if any of the
component types is empty.

Tuple Types

Tuples, such as [nat, booll, are similar to records excepts that fields are accesses by the order of their
appearance rather than by labels. Tuple types have the form [t1,...,t,], where the t; are type expressions.
Note that the 0-array tuple is not allowed. Elements of this type are tuples whose components are elements
of the corresponding types. For example, (1, TRUE, (LAMBDA (x:int): x+1)) is an expression of type
[int, bool, [int— > int]]. A tuple type is empty if any of its component types is empty. Function type domain
and tuple types are closely related, as the types [t1,...,t,— > t] and [[t1,...,t,]— > t] are equivalent.

Dependent Types

Function, tuple, and record types may be dependent; in other words, some of the type components may
depend on earlier comopents. Following are some examples:
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rem: [nat, d : {d: nat | n /= 0} -> {r:nat | r < d}]
pfn: [d: pred [dom]l, [(d) -> ranl]

stack: [# size: nat, elements: [{n:nat | n< size} -> t ]#]

The declaration for rem indicates explicitly the range of the remainder function, which depends on the second
argument. Function types may also have dependencies within the domain types; e.g. the second domain
type may depend on the first. Note that for function and tuple dependent types, local identifiers need to be
associated only with those types on which later types depend.

3.3 Declarations

Entities of PVS are introduced by means of declarations, which are the main constituents of PVS specifi-
cations. Declarations are used to introduce type, variables, constants and formulas. Each declaration has
an identifier and belongs to a unique theory. Declarations also have a body which indicates the kind of
the declaration and provides the signature and definition of the declaration. Declarations introduced in one
theory may be referenced in another by means of the IMPORTING and EXPORTING clauses. The EXPORTING
clauses of a theory indicates those entities that may be referenced from outside the theory. The IMPORTING
clauses provide access to the entities exported by another theory. Declaration consists of an identifier, an
optional list of bindings, and a body. The body determines the kind of the declaration, and the binding and
body together determine the signature and definition of the declared entity. Multiple declarations may be
given in compressed form in which one body is specified for multiple identifiers; for example:

X, ¥, z: VAR int

The above is equivalent to :

x: VAR int
y: VAR int
z: VAR int

3.4 Type Declarations

Type declarations are used to introduce new type names to the context. There are four kinds of type
declaration:

o Uninterpreted type declarations: T: TYPE
o Uninterpreted subtype declaration S: TYPE FROM T
o Interpreted type declarations: T: TYPE= [int->int]

o Enumeration type declarations: T: TYPE= {r, g, b}
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Uninterpreted type declarations

Uninterpreted types support abstraction by proving a means of introducing a type with a minimum of
assumptions on the type. An uninterpreted type has almost no constraints on an implementation of the
specification. The only assumption made on an uninterpreted type T is that it is disjoint from all other
types, except for subtypes of T. For example,

Ti, T2, T3: TYPE

This is introduces three new pairwise disjoint types.

Uninterpreted subtype declaration

Uninterpreted subtype declaration are the form of:

s: TYPE FROM t

This introduces an uninterpreted subtype s of the supertype t. This has the same meaning as :

s_pred: [t->]
s: TYPE= (s_pred)

in which a new predicate is introduced in the first line and type s is declared as a predicated subtype in the
second line.

Interpreted type declarations
Interpreted type declarations are primarily a means for providing names for type expressions. For example,
intfun: TYPE = [int->int]

introduces the type name intfun as an abbreviation for the type of functions with integer domain and range.
Interpreted type declarations may be given parameters. For example, the type of integer subranges may be

given as:

subrange (m, n: int): TYPE = {i: int | m<=i AND i <=n}

and subrange with two integer parameters may subsequently be used wherever a type is expected. Note
that subrange may be used to declare a different type without any ambiguity, as long as the number of
parameters is different.

Enumeration type declarations

Enumeration type declarations are of the form:
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enum: TYPE= {e_1,..., e_n}

where the e; are distinct identifiers which are taken to completely enumerate the type. This is actually a
shorthand for the datatype specification:

enum: DATATYPE

e1:e”?

en:en?
END enum

Types in specification languages are often interpreted as sets of values, and it has a association of subtype
with subset: one type is a subtype of another if the set interpreting the first is a subset of that interpreting
the second. Predicate subtypes provide a characterization by associating a predicate or property with the
subtype. For example, the natural numbers are subtype of the integers characterized by the predicate"greater
than or equal to zero". Predicate subtypes can help make specifications more succinct by allowing information
to be moved into the types, rather than stated repeatedly in conditional formulas. For example, instead of:

V(i,j:int) ;i >0Aj>0Di+j >4
where D is logical implication, we can write
V(i,7:nat) :i+j >

because ¢ > 0 and j > 0 are recorded in the type nat for ¢ and j. Theorem proving can be required
in typechecking some constructions involving predicate subtypes. For example, if half is a function that
requires an even number as its argument, then the formula:

V(i:int):half(i+i+2) =i+1

is well typed only if we can prove that the integer expression i + i + 2 satisfies the predicate for the subtype
even: that is, if we can discharge the following proof obligation.

Vi:int) 3 (G:int):i+i+2=2x%xj

In the theory definition, types can be defined starting from base types (booleans, numbers, etc) using the
function, record and tuple type constructions. The language supports modularity and reuse by the means
of parameterized theories, and has a type system including the notation of a predicate subtype.

PVS specifications are structured into parameterized theories that can have constraints attached to the
parameters. Constraints can also be attached to the types in a PVS specification. For instance, the division
operation is typed so that it is constrained to nonzero divisors. Constraints are attached to types in PVS
using predicate subtypes, so that the signature for division can be given as:

nonzero : TYPE= {x: ratiomnal | x/=0}

/: [rational, nonzero -> rational]
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where rational is the type of rational numbers, and nonzero is defined here to be the subtype of the rational
numbers different from zero. When the PVS type checker is invoked on the formula:

x/=y IMPLIES (y-x)/(x-y)<0
it recognizes the divisor (x-y) must be shown to be nonzero and generates a TCCs of the form:

(FORALL (y, x:ratiomal): x /= y IMPLIES (x-y) /=0)

3.5 Partial Functions

PVS only works with total functions: given sets A and B and a relation R C A x B, then R is a total
function from A to B, if for every member of A there is exactly one member of B that is related to it. In
order to deal with the partial functions in PVS, there should be a restriction in the domain.

For example: {a,b: real|b > a}

Since functions, are total in PVS, the relations can be used to represent the partial functions. There are
simple functions that turn a PVS function f:[A— > B] into a relation R:[A, B— > bool] which is a total
function, and conversely, a total relation R:[A, B— > bool] into a PVS function f:[A— > B].

Overview

This chapter gave a general introduction to PVS and the initial steps to start a proof in PVS: creating
the specification, parsing, type checking and proving parts. Furthermore the structure of the PVS proof
and general concepts about proof goals and an example proof were discussed. The last part of the chapter
covered the PVS languages.
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Chapter 3

Parser

This chapter deals with the concepts of the parser and the lexical structure in PVS and the example of
lexical structure according to the PVS grammar in JavaCC.

A parser for a grammar is a program which takes the language string as its input and produces either a
corresponding parse tree or an error. The rules which tell whether a string is a valid program or not are
called the syntax and the rules which give meaning to programs are called the semantics of a language. When
a string representing a program is broken into a sequence of substrings, such that each substring represents
a constant, identifier, operator, keyword, etc of the language, these substrings are called the tokens of the
language. Parsing a PVS specification has two main parts:

e Check that the specification is syntactically correct (e.g., satisfy the PVS grammar).

e Build the internal data structures representing a theory.

1 Lexical Analysis

To translate a program from one language to another, a compiler must first understand its structure and
meaning. The analysis is usually broken up into:

e Lexical analysis: breaking the input program into individual words or tokens.
e Syntax analysis: parsing the phrase structure of the program.

e Semantic analysis: defining the program’s meaning.

The function of a lexical analyzer is to read the input stream representing the source program, one character
at time, and to translate it into valid tokens. The tokens in a language are represented by a set of regular
expressions; it is thus possible to implement lexical analyzer by deterministic finite automata. A regular
expression specifies a set of strings to be matched. It contains text characters and operator characters. The
tokens which are represented by a regular expression are recognized in an input string by means of a finite
automaton. The lexical analysis can store all the recognized tokens in an intermediate file and give it to the
parser as an input. The PVS specification are text files, each composed of a sequence of lexical elements
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which in turn are made up of characters. The programming languages which will use to develop of the PVS
parser is JavaCC (stands for Java Compiler Complier). Figures 3.1 and 3.2 show the relationship between
a JavaCC generated lexical analyzer (token manager) and a JavaCC generated parser. The token manager
reads in a sequence of characters and produces a sequence of tokens. The parser uses the sequence of tokens,
analyses its structure, and produces the parse tree.

mai n'y'fwretuyrne"y

1@ O

Token Manager

N %

ECF

s LPAR || RPAR | [LBR | RER
won upn return e iy
{ j { . G 1

e H@ Tokens headed to the parser @

INT
int

Figure 3.1: Token Manager

1.1 The Lexical Structure In PVS

The lexical elements of PVS are the identifiers, reserved words, special symbols, numbers and comments.
Identifiers are composed of letters, digits, and the characters _ and ?; they begin with a letter. Identifiers
in PVS are different for upper and lower case; e.g., FO0, Foo and foo are different identifiers.

The lexical syntax of PVS is as follows:

Ids 1= id ++7,?

Id ::= letter idchar+
Number ::= Digit’+?

String ::= "ASCII-characterx*"
IdChar ::= Letter | Digit|_| 7
Letter ::= A |...|Zlal...|z
Digit ::= 0l...19

The iteration of a clause one or more times is indicated by a plus sign. Repetition zero or more times is
indicated by an asterisk instead of the plus sign. Reserved words are not case sensitive. Identifiers may have
reserved words embedded in them. For example, ARRAYALL is a valid identifier and will not be confused with
two embedded reserved words.
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Figure 3.2: Parser

1.2 An Example For PVS Lexical Structure

Appendix A provides the whole PVS grammar, which is used to generate the parser and lexical analyzer.
Following is one example for generating the lexical analyzer according to the PVS grammar for specification
part and the corresponding JavaCC code. The PVS grammar for specification part:

Specification
specification ::= {theory |datatypel} ’+’
theory ::= id [theory-formals] :THEORY
[exportings]
BEGIN
[assuming-part]
[theory-part]
END id
theory-formals ::= [theory-formal++ ?,’]
theory-formal ::=[(importing)] theory-formal-decl
theory-formal-decl ::= idops : {TYPE | NONEMPTY_TYPE |TYPE +}

[FROM type-expr]
| idops :type-expr
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The JavaCC code corresponding with the grammar should be as follows:

Specification part, which is any number of either a Theories or a Datatypes.

TreeRoot Specification() :

{
Node v,
java.util.Vector vect = new java.util.Vector();
}
{
( ( LOOKAHEAD(3) v=Theory() | v=Datatype() ) { vect.addElement(v); } )
+ <EOF>
{
return new TreeRoot(vect);
}
}

If it is Theory part then:

NodeTheory Theory ()

{
Node a;
Node b = new NodeEmpty();
Node c = new NodeEmpty();
Node d = new NodeEmpty();
Node e = new NodeEmpty();
Node f;
}
{
a=Id() [ b=TheoryFormals() ] <COLON> <THEORY>
[ c=Exporting() 1
<BEGIN>
[ d=AssumingPart() ]
[ e=TheoryPart() ]
<END> £=Id()
{
return new NodeTheory(a,b,c,d,e,f);
}
}

The theory formals part will be:

NodeTheoryFormals TheoryFormals()
{
Node v;

java.util.Vector vect = new java.util.Vector();
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{
<LBRAC> v=TheoryFormal() {vect.addElement(v);}
(<COMMA> v=TheoryFormal () {vect.addElement (v) ;})* <RBRAC>
{
return new NodeTheoryFormals(vect);
}
}

The part for the theory formal will be:

NodeTheoryFormal TheoryFormal() :

{
Node a = new NodeEmpty(Q);
Node b;
}
{
[ LOOKAHEAD(2) <LPARAN> a=Importing() <RPARAN> ] b=TheoryFormalDecl()
{
return new NodeTheoryFormal(a,b);
}
}

The theory formal declaration part:

NodeTheoryFormalDecl TheoryFormalDecl ()

{

Node a;
}
{

LOOKAHEAD(3) a=TheoryFormalType() {return new NodeTheoryFormalDecl(a) ;}
| a=TheoryFormalConst() {return new NodeTheoryFormalDecl(a);}
}

NodeTheoryFormalType TheoryFormalType()

{

Node a;

Token t;

Node b = new NodeEmpty();
}
{

a=Ids() <COLON> (t=<TYPE>|t=<NONEMPTY_TYPE>|t=<TYPEP>)
[ <FROM> b=TypeExpr() ]
{
return new NodeTheoryFormalType(a,new NodeToken(t),b);
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Theory formal constant part:

NodeTheoryFormalConst TheoryFormalConst() :

{
Node a;
Node b;
}
{
a=I1d0ps() <COLON> b=TypeExpr ()
{
return new NodeTheoryFormalConst(a,b);
}
}

It was the whole JavaCC code for the specification part. The details of the look ahead and PVS parser
will be given in chapter6 (Design).

Overview

This chapter covered the main concepts of the parser and lexical analysis. It also gave the description of
PVS lexical structure and JavaCC. The last part of the chapter gave an example for the specification part
in PVS grammar and the corresponding JavaCC code.

Aalborg University Rasa Bonyadlou 33



Chapter 4

Theorem Prover

This chapter focuses on the theorem prover and the basic concepts behind the logic system and theorem
prover in PVS. The last part of the chapter will give a short introduction to derived rules as a tactic for
theorem proving in PVS.

A theorem prover consists of a proof language and a mechanical proof checking mechanism. There are
different ways of defining a proof system. In general a proof is a finite sequence of a formulae, where the last
formula is the theorem to be proved, and each formula in the sequence is either an axiom or derived from
previous formulas by rules of logical inference.

The life cycle to a mechanically proof checking is:

e Exploratory phase of proof development: mainly interest is in debugging the specification and putative
theorems and in testing and revising the key, high level ideas in the proof. An important requirement
in this phase is early and useful feedback when a purported theorem is false.

e Development phase: construct the proof in large steps. Once the basic intuitions have been acquired
and the formalization is stable, the proof checking enters a development phase.

e Generalization: where the proof should carefully analyze and finish, weaken and generalize the as-
sumptions, extract the key insights and proof techniques, and make it easier to carry out subsequent

verification of a similar nature.

e Maintenance: is a special application of generalization, where we adapt a verification to slightly

changed assumptions or requirements.

The goal of PVS proof checker is to support the efficient development of readable proofs in all stage of the
proof development life cycle. The proof checker implements a small set of powerful primitive inference rules,
a mechanism for composing these into proof strategies, a facility for rerunning proofs, and another to check
that all secondary proof obligations (such as type correctness conditions) have been discharged.

1 Logic

A logic system consists of a language of symbols, a proof system for manipulating the symbols and an
associated model theory giving meaning to the symbols. Symbolic logic considers languages whose essential
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purpose is to symbolize reasoning encountered in mathematics. There are different sorts of logic: Higher
order, first order and propositional Logic.

2 Propositional Logic

In the propositional logic all statements are definitely true or false. They don’t depend on any variables or
parameters. Propositional logic deals with truth values and logical connectives ’and’, ’or’, 'not’, etc.

2.1 Syntax Of Propositional Logic

The formulas of propositional logic are strings of symbols build up from basic elements called propositions
which are denoted P, @, R,. .., including the truth constants 7" and F'. A formula consisting of a propositional
symbol is called atomic. Formula are constructed from atomic formula using the logical connectives = (not),
A (and), V (or), — (implies), <> (if and only if). These are listed in order of precedence; — is highest. The
syntax of propositional logic is:

proposition ::= pg|p1|p2| - -
bin-connective = A|V | = | &

formula ::=proposition |- formula | formula bin-connective formula

2.2 Semantics Of Propositional Logic

Propositional logic is a formal language. Each formula has a meaning (or semantic) either true or false
relative to the meaning of the propositional symbols.

An interpretation, or truth assignment, for a set of formula is a function from its set of propositional symbols
to {t, f}. An interpretation satisfies a formula if the formula evaluates to ¢ under the interpretation.

A set S of formula is wvalid if every interpretation for S satisfies every formula in S. A set of formula is
satisfiable if there is some interpretation for S that satisfies every formula in S.

A set of formula is unsatisfiable if it is not satisfiable. A set S of formula is entails A if every interpretation
that satisfies all elements of S, also satisfies A. It write S F A.

Formula A and B are equivalent, A ~ B, provide A+ B and B + A. In propositional logic, a valid formula
is also called a tautology. Some examples of valid formulas:

e The formulas A — A and ~(A V —A) are valid for every formula A.

e The formulas P and PV (P — @) are satisfiable: they are both true under the interpretation that
maps P and @ to t. But they are not valid: they are both false under the interpretation that maps
P and Q to f.

e The formula —A is unsatisfiable for every valid formula A.

Aalborg University Rasa Bonyadlou 35



2.3 Equivalences

Below is the list of the basic equivalences of the propositional logic. There can be useful for transforming

one proposition into an equivalent one.

Rule name Rulel Rule2
Idempotency ANA~A AVA~A
Commutative rules ANB~BAA AvVvB~BVA

Associative rule (AABYAC~=ANAN(BACQ) (AVB)VC~ AV (BVC()
Distributive rules | AV (BAC) =~ (AVB)AN(AVC) | ANBVC)~(AAB)V(AAC)

De Morgan rules -(AAB)~-AV-B -(AVB)~-AA-B
Connectives rules | A<+ B~ (A— B)A(B— A) A—-B~-AVB
Negation rules -(A—> B)~AA-B “(A+ B)~(-A) o B~A& (0B)

In propositional, logic for every equivalence A ~ B there is another equivalence A~ B, where A and B are
derived from A and B by exchanging A with V and t with f.

2.4 Normal Forms

The language of propositional logic is redundant: many of the connectives can be defined in term of others.
By repeatedly applying certain equivalences, we can transform a formula into a normal form. A typical
normal form eliminates certain connectives entirely, and uses others in a restricted manner. The restricted
structure makes the formula easy to process, although the normal form may be exponentially larger than
the original formula. A literal is a proposition or its negation. Let K, L, ﬁ,. ..stand for literals:

e A formula is in Negation Normal Form (NNF) if the only connectives in it are A, V and -, where — is
only applied to a proposition.

e A formula is in Conjunctive Normal Form (CNF) if it has the form A; A ... A A,,, where each A; is a

maxterm (A maxterm is a literal or a disjunction of literals).

o A formula is in Disjunctive Normal Form (DNF) if it has form A; V...V A,,, where each A; is a

minterm (A minterm is a literal or conjunction of literals).

2.5 Examples

P is an atomic formula so it will be in all normal forms: NNF, CNF and DNF. The example for CNF
will be like:

(PVQ)A(-PVQ)AR
and by exchanging A and V the formula will be in the DN F' form:

(PANQ)V(-PAQ)VR
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There are some rules for translation to normal forms, every formula can be translated into an equivalent
formula in NNF, CNF or DNF by following steps:

Step 1. Eliminate «» and — repeatedly applying the following equivalences:

A& B~(A-> B)A(B— A)
A—-B~-AVB

Step 2. More negation inwards until it applies only to atoms, repeatedly replacing by the equivalences:
Now the formula is in Negation Normal Form:

——A~A
—|(A/\B)2—|AV—|B
—|(AVB)2—|A/\—|B

Step 3. Now the formula is in Negation Normal Form, for getting C N F' form, the disjunction must pushed
in until it applies to literals, repeatedly use by the equivalences:

AV(BAC)~(AVB)A(AVCO)
(BAC)VA~=(BVA)A(CVA)

These two equivalences are the same, because of the commutatively of the disjunction. Then the following
formula is obtained:

(AAB)V(CAD)~(AVC)A(AVD)A(BVC)A(BVD)

Step 4. Simplify the result of the C N F' by deleting any maxterm that contains both a literal and a negation
of the same literal (=P and P), since it is always t. Also delete any maxterm that includes another maxterm:
AN (AV B) ~ A. Finally two maxterms of the form PV A and =P V A can be replaced by A.

(PVAYAN(-PVA)~A

2.6 A Method For Theorem Proving In Propositional Logic

To prove A, reduce it to CNF. If the simplified CNF formula is t then A is valid, because each transfor-
mation preserves logical equivalences. If the CNF formula is not t, then A is not valid. If A3 A... A A,
is CNF formula and if A is valid then each A; must also be valid. The literal A; can be as Ly V...V L,,
where the L; are literals, then interpretation I can be made that falsifies every L; and therefore falsifies A;.
I is defines as follows, for every propositional letter P:

I(P)= £ if L; is P for some j and I(P)= t if L; is ~P for some j. This definition is correct because there
are no literals L; and L such that L; is L. If they exist, then simplification would have deleted the
disjunction A;. The method for theorem proving in propositional logic starts by using an if-then-else data
structure, an ordering on the propositional letters.

Example

Start with :
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PVQ—->QVR
Step 1, eliminate —, gives:
~(PVQ)V(QVR)
Step 2, push negation in, gives:
(PA=Q)V(QVR)

Step 3, push disjunctions in, gives:
(-PVQVR)A(-QV QVR)

Simplifying :

("PVQVR)AL
-PVQVR

The interpretation P — t, Q — £, R — f falsifies the formula, which is equivalent to the original formula.
So the original formula is not valid.

3 Binary Decision Trees

The propositional formula can represented by a binary decision tree. A binary decision tree is a rooted,

directed tree with two types of vertices, terminal vertices and nonterminal vertices.

e Each nonterminal vertex v is labeled by a variable var(v) and has two successors:

— low(v): corresponding to the case where the variable v is assigned 0.

— high(v): corresponding to the case where the variable v is assigned 1.

e Each terminal vertex v is labeled by value (v) which is either 0 or 1 (false or true).

Example

A binary decision tree for the below formula:

(anb)V (cAd)

is shown in the figure 4.1. A dashed line corresponds to value 0, a plain line to value 1. The decision tree is
ordered by a < b < ¢ < d.
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c&o\cfg od\o?\ csd\o?\ fd\?\

Figure 4.1: BDT Diagram

3.1 Binary Decision Diagram

A BDD is a rooted, directed acyclic graph with two types of vertices, terminal vertices and nonterminal

vertices:

e Each nonterminal vertex:

— is labeled by a variable var(v).

— it has two successors, low (v) and hight(v).
e Each terminal vertex:
— is labeled by either 0 or 1.

Every BDD with root v determines a boolean function f,(Xi,...,X,) in the following manner:

1. If v is a terminal vertex:

(a) If (v)=1 then f,(X1,...,Xn)=1
(b) If (v)=0 then f,(X1,...,X,)=0.

2. If v is a nonterminal vertex with var (v)=X; then f, is the function:
fv ("1:17 N 7"1:”) = (_LTEi /\flow(v) (:ch s 7':Un) \ (.’IJ, A fhigh(v) (.731, EERE .’L'n)))

Following are transformation rules to avoid redundancy of the vertices in the diagram:
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3.2 The Transformation Rules

1. All duplicate terminals should removed.

2. All duplicate nonterminals should removed:

(a) If two nonterminals u and v have var(u) = var(v), low(u) = low(v) and high(u) = high(v), then
u or v should be eliminated and all the incoming arcs to the other vertex should be redirected.

3. All the redundant tests should be eliminated:

(a) If nonterminal v has low(v) = high(v), then eliminate v and redirect all incoming arcs to low(v).

3.3 Ordered Binary Decision Diagrams

Binary decision diagram is a directed graph. In the ordered binary decision diagram (OBDD) the variables
are ordered, they must be tested in order, for example:

a<bh <...<ap<by,

There is a corresponding between each propositional formula and a unique OBDD, for a given ordering. The
conditions which should satisfy by OBDD are:

e Ordering: if P is tested before ), then P < Q.

e Uniqueness: identical subgraphs are stored only once.

e Redundancy: no test leads to identical subgraphs in the t and £ cases.

Ordering of OBDDs

The size of an OBDD can depend on the variable ordering. If the ordering of a; < b; < as < by is chosen
then the OBDD will as the figure 4.2.

In general, finding an optimal ordering for the variables is infeasible: in fact, it can be shown that even
checking that a particular ordering is optimal is NP-complete. Furthermore, there are boolean functions
that have exponential size OBDDs for any variable ordering.

Several heuristic algorithms have been developed for finding a good variable ordering when such an ordering
exists.
o If the boolean function is given by a combinational circuit, then heuristics based on a depth-first
traversal of the circuit diagram generally give good results.

e The intuition for these heuristics comes form the observation that OBDDs tend to be small when
related variables are close together in the ordering.

e A technique called dynamic reordering appears to be useful in those situations where no obvious
ordering heuristics apply.

e The reordering method is designed to save time rather than to find an optimal ordering.

In order to know that if two formula are logically equivalent or not, they can be convert to their OBDD form
and then by using the uniqueness rule they can be checked.
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Figure 4.2: OBDD Diagram

4 First Order Logic

First- order logic extends propositional logic to allow reasoning about members (such as numbers) of some
non-empty universes. It uses the quantifiers V (for all) and 3 (there exists). First-order logic replaces the
set of propositional atoms of propositional logic with sets of predicates, functions, and variables, and allows

variable quantification.

4.1 Syntax Of First-Order Logic

Terms stand for individual values while formula stand for truth values. A first-order language L contains,
for all n > o, a set of n-place function symbols, f, g,... and n-place predicate symbols P, @), ... These sets
may be empty, finite, or infinite.

The terms t, u, ... of a first-order language are define recursively as follows:

e A variable is a term.
e A constant symbol is a term.

o If ty, ..., t, are terms and f is an n-place function symbol then f(t1,...,2).
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4.2 Formal Semantic Of First-Order Logic

An interpretation of a language maps its function symbols to actual functions, and its relation symbols to
actual relations. For example the predicate ’student’ can be map to the set of all students currently enrolled
at the university.

Definition

Let I be a first-order language. An interpretation 7 of lis a pair (D, ). D is a domain of nonempty set. The
operation I maps symbols to individuals, functions or sets:

e if ¢ is a constant symbol of [ then I[c] € D.

e if f is an n-place function symbol then I[f] € D™ — D (which means I[f] is an n-place function on
D.

e if P is an n-place relation symbol then I[P] C D™ (which means I[p] is an n-place relation on D).

Vz(p), evaluates to true if any assignment of a value to x, makes p true. And Jz(p) evaluates to true if some
assignment of a value to x, makes p true.

5 The Sequent Calculus

The sequent calculus, makes the set of assumptions explicit, thus it is more concrete.

A sequent has the form I' H A, where I and A are finite set of formulas. The sequent :
Ay, A+ By, B,

is trueif Ay A--- AN A,, implies B, V ---V B,. In other words, we assume that each of 4,,---, A, are true
and try to show that at least one of By,---, B, is true. A basic sequent is one in which the same formula
appears on both sides, as in P, B F B, R. This sequent is true because, if all the formula on the left side are
true, then in particular B is; so at least one right-side formula (B again) is true. Every basic sequent might
be written in the form:

{A}uTl+ {A}UA

where A is the common formula and I and A are the left-and right-side formula.

The sequent calculus identifies the one-element set {A} with its element A and denotes union by a comma.
Thus, the usual notation for the general form of a basic sequent is A,I' - A, A. Sequent rules are almost
always used backwards. We start with the sequent that we would like to prove and, working backwards and
reduce it to simpler sequents. Sequents rules are classified as right or left, indicating which side of the F
symbol they operate on.

. B )
vs v g 2

The analogue of the pair (vil) and (vi2) is the single rule:
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T+AAB

T a4ive 7

This breaks down some disjunction on the right side, replacing it by both disjunctions. The sequent rules
for propositional logic are:

basic sequent : A, T'F A, A

Negation rules:

PEAA o TEAA THAB
“CATFA TFA,AAB ’
Conjunction rules:
ABTEA - TEAA TEAB
AANB,TFA TFA, AAB 4
Disjunction rules:
ATHA BTEA 0 TEA AB
AVB,TFA TFA ,AVB

Implication rules:
rAJA B,THA ) ATHAB (= 1)
ASBTFA TFA Ao B ’

The weakening rules allow additional formulas to be inserted on the left or right side. If T' - A holds, then
the sequent continues to hold after further assumptions or goals are added:

| VAN kA

ATFA (weaken : 1) TFAA (weaken : 1)

Contraction rules allow formula to be used more than once:

AATFA THAAA

TATFA Tra,a (contract:r)

(contract : 1)
The cut rule allows the use of lemmas. Some formula A is proved in the first premise, and assumed in the
second premise. The use of the cut rule can be removed from any proof, but the proof could get exponentially

large:
r'AA ATEA
r-A

The lemma A can be proved from I' and use A and I'" together to reach the conclusion B.

(cut)

6 PVS Tactics

PVS is an interactive theorem prover. The interactive theorem prover can have a mechanism to allow users
to prove some statement in advance and then reuse the derivation later in the further proofs.
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6.1 Derived Rules

If a mechanism for establishing a derived rule is not available, one alternative is to construct a proof script
or tactic that can be reapplied whenever a derivation is needed. There are several problems with this. First,
it is inefficient instead of applying the derived rule in a single step, the system has to run through the whole
proof each time. Second, by looking at a proof script or a tactic code, it may be hard to see what exactly it
does, while a derived rule is essentially self-documenting. This suggests a need for a derived rules mechanism
that would allow users to derive new inference rules in a system and then use them as if they were primitive
rules (i.e. axioms) of the system. Ideally, such mechanism would be general enough not to depend on a
particular logical theory being used. Besides being a great abstraction mechanism, derived rules facilitate
the proof development by making proofs and partial proofs easily reusable. Also, a derived rule contains
some information on how it is supposed to be used and such information can be made available to the system
itself [3].

The idea of this approach is using a special higher-order languages for specifying rules, or sequent schema
language. Tt means that some logical theory can taken and express its rules using sequent schema. Next step
is adding the same languages of the sequent schema to the theory itself.

Overview

This chapter gave the concepts of the theorem prover and the theory behind logic systems. It discussed
about the different sorts of the logic and finally a short introduction to PVS tactics and derived rules.
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Chapter 5

Type Checking

This chapter describes the PVS type system and the semantic analysis of PVS types. It contains sections
on PVS type theory, pretypes, preterms, contexts, and type rules. The PVS prelude is discussed at the end
of the chapter. This chapter is based on the descriptions in the formal semantic of PVS, [5].

1 PVS Type System

A type system for a language is a collection of rules for assigning type expressions to various parts of the
program. Usually, this can be implemented using a syntax directed definition. An implementation of a type
system is called a type checker.

The type system of PVS is not algorithmically decidable; theorem proving may be required to establish the
type-consistency of a PVS specification. The theorems that need to be proved are called type-correctness
conditions (TCCs). TCCs are attached to the internal representation of the theory and displayed on request.
There are commands available that attempt to prove the TCCs using built-in prover strategies. The PVS
system automatically tracks the status of theories (whether they have been changed, parsed, typechecked
etc.) and also takes care of the dependencies among theories. For example, if the specification text of a
theory is changed and then a command is issued that requires semantic information, PVS will parse and
typecheck the theory automatically. It is often necessary to make changes in theories on which long chains
of other theories depend, and frequent reparsing and retypechecking of such theory chains can be very
time-consuming. Therefore PVS provides commands which allow limited additions and modifications of
declarations without requiring that the associated theories be re-typechecked.

Types serves as a powerful mechanism for detecting semantic errors through typechecking.

e Types impose a useful discipline on the specification.
e Types lead to easy and early detection of a large class of syntactic and semantic errors.

e Types information is useful in mechanized reasoning.

The semantic of PVS will be given by considering a sequence of increasingly expressive fragments of PVS.
The semantic of each fragment of PVS will be presented in three steps:

e The first step is to define a set theoretic universe containing enough sets to represent the PVS types.
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e The second step is to define a typechecking operation that determines whether a given PVS expression
is well typed.

e The third step is to define a semantic function that assigns a representation in the semantic universe
to each well-typed PVS type and term.

Type checking checks whether the input program is type-correct. This is a part of the semantic analysis.
During type checking, a compiler checks whether the use of names (such as variables, functions, type names)
is consistent with their definition in the program. For example, if a variable z has been defined to be of
type int, then x + 1 is correct since it adds two integers while z[1] is wrong. When the type checker detects
an inconsistency, it reports an error. Another example of an inconsistency is calling a function with fewer
or more parameters or passing parameters of the wrong type. Consequently, it is necessary to remember
declarations so that we can detect inconsistencies and misuses during type checking. This is the task of a
symbol table. Mainly the symbol table will be used to answer two questions:

e Given a declaration of a name, is there already a declaration of the same name in the current context.

e Given a use of a name, to which declaration does it correspond, or it is undeclared?

Formally, a symbol table maps names into declarations (called attributes), such as mapping the variable
name z to its type int. More specifically, a symbol table stores:

e For each type name, its type definition.

e For each variable name, its type.

e For each constant name, its type and value.
PVS is a strongly typed specification language, which means that the compiler can verify that the program
will execute without any type errors. Types serves a powerful mechanism for detecting syntactic and semantic
errors through typecheckig. The main purpose of type checking are:

e Types impose a useful discipline on the specification.

e Types lead to easy and early detection of a large class of syntactic and semantic errors.

e Types information is useful in mechanized reasoning.
The semantic of higher order logic is given by mapping the well-formed types of the logic to sets, and the
well- formed terms of the logic to elements of the sets representing their type. PVS also has predicate
subtypes that are to be interpreted over the subsets of the set representing the parent type. The base type
in PVS consists of the boolean (bool)and the real numbers (real). The booleans can be modeled by any

two elements set e.g., 2 consisting of the elements 0 and 1, where 0 is empty set and the only element of the
set 1.

2 The Type Theory

The simply typed fragment includes types constructed from the base types by the function and product
type constructions, and expressions constructed from the constants and variables by means of application,
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abstraction and tupling. Expressions are checked to be well type under a context, which is a partial function
that assigns a kind (TYPE, CONSTANT, or VARIABLE) to each symbol.

2.1 The Simple Type Theory

The PVS specification language is based on simply typed higher-order logic, in which the simple theory of
types is augmented by dependent types and predicate subtypes. Type constructors include functions, tuples,
records, and abstract data types. There is a large collection of standard theories provided as libraries in
PVS. PVS is a strongly typed specification languages. The simply typed fragment include types constructed
from the base types by the function and product type constructions and expressions constructed from the
constants and variables by means of application, abstraction and tupling. Expressions are checked to be
well typed under a context, which is a partial function that assigns a kind (one of TYPE, CONSTANT, or
VARIABLE) to each symbol, and a type to the constant and variable symbols.

Pretypes

The pretypes of the simple type theory include the base types such as bool and real. Following are some
examples for pretypes: bool, real, [bool, real], [[real, bool]— bool]. A function pretype from domain pretype
A to range pretype B is constructed as [A — B]. A type is a pretype that has been typechecked in a given

context.

Preterms

The preterms of the language consists of the constants, variables, pairs, projections, applications and ab-
stractions. Pairs are of the form (a1, a2) where each a; is a preterm. A pair projection is an expression of
the form p; a where i € {1,2}. Abstractions have the form A(X : T)e, where X is a variable, T is a type
and e is a preterm. Following are some examples for the preterms: TRUE, ~-TRUE, X (x: bool): =X, py
(TRUE, FALSE), (TRUE, A(z : bool) : =(—(z))

Contexts

A context is a sequence of declarations, where each declaration is either a type declaration s : TY PE, a
constant declaration ¢ : T', where T is a type, or variable declaration x : VAR T'. Preterms and pretypes are
typechecked with respect to given context. The empty context is represent as {}. Following are the well
formed rules for contexts:

e A context can also be applied as a partial function so that for a symbol s with declaration D, (T, s :
D)(s) =D and (T',s: D(r) =T(r) for r # s.

e If s is not declared in T then I'(s) is undefined.
e If T' is a context, then for any symbol s the kind of the symbol s in T is given by kind(T'(s)).

o If the kind of s in T is CONSTANT or VARIABLE, then the type(T'(s)) is the type assigned to s in T
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Example

bool: TYPE

TRUE: bool

FALSE:bool

x:VAR [[bool, bool]->bool]

Type Rules
The type rules for simple type theory are given by a recursively defined partial function 7 that assigns:

e A type 7([')(a) to a preterm a that is well typed with respect to a context T'.
e The keyword TYPE as the result of 7(I')(A) when A is a well formed type under context T.

e The keyword CONTEXT as the result of 7(I")(A) when A is a well formed context under context I'. The
context I' is empty for simply typed fragments, so that typechecking is always invoked as 7()(T).

The type rules are given by the recursive definition 7.

3 The PVS prelude

The prelude consists of theories that are built in to the PVS system. It is typechecked the same as any other
PVS theory, but there are hooks in the typechecker that require most of these theories to be available, hence
the order of the theories is important. For example, no formulas may be declared before the booleans are
available, as a formula is expected to have type bool. Since definitions implicitly involve both formulas and
equality, the booleans theory may not include any definitions. The PVS prelude is a large body of theories
that provides the infrastructure for the PVS typechecker and prover, as well as much of the mathematics
needed to support specification and verification of systems. The prelude library in PVS [6] is a collection
of basic theories about logic, functions, predicates, sets, numbers, and other datatypes. The theories in the
prelude library are visible in all PVS contexts, unlike those from other libraries that have to be explicitly
imported. During type checking we need to import the meaning of names from the prelude file.

During type checking, we need to define the meaning of the names and variables and to check if they have a
right kind or not. If there is no definition for the names, variables, etc, in the theory then it must be found
in the imported theory or prelude file. If it is not found during this search then there is an error message.
Consider the following example:

Example

Following is an example of a PVS theory and the process of type checking for it. Consider the "sum" theory
as follow:

sum: THEORY
BEGIN
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n : VAR nat
sum(n) : RECURSIVE nat = ( IF n=0 THEN O ELSE n + sum (n-1)ENDIF ) MEASURE (LAMBDA n:n)

closed_form:THEOREM sum(n) = (n*x(n+1))/2
END sum

For typechecking the "sum" theory we need to define the meaning of the variables, names etc. For instance
the type "nat" for the variable n in the theory is not define, for typechecking the theory, either we have to
find the meaning of it in the imported theories or in the prelude file. Furthermore following steps should be

performed in order to typecheck the "sum" theory:

e Searching for the meaning of the type "nat" in the "sum" theory.

o If there is no definition and meaning of the type "nat" in the "sum", then we have to look for it in the

imported theories.

e Finally if we couldn’t find in the imported theories then we have to look for it in the prelude file.

In this example we will import definition of "nat" from the PVS prelude file.

Overview

This chapter covered the main concepts of the PVS type system and semantic analysis in PVS. The main
concepts about symbol table and the purpose of the type checker was discussed. In type theory section the
concepts: pretypes, preterms and contexts were discussed. In the last section of the chapter, PVS prelude

file was discussed.

Aalborg University Rasa Bonyadlou 49



Chapter 6
Design

This chapter will describe the design and implementation of PVS system which developed in Java. It describes
internal structure of PVS parser, type checker and the PVS graphical user interface which implemented
in Jbuilder. The first section of the chapter describes the graphical user interface design. The internal
representation of parser which is implemented according to the whole PVS grammar and short introduction
of JavaCC which is used for implementing the parser, is describe in the next section. Third section of chapter
contains the internal structure of PVS type checker. The last section of the chapter introduce the class for
designing the PVS theorem prover.

1 Graphical User Interface for PVS

This section is the describes the two different graphical user interfaces for PVS. The first part describes the
user interface created by SRI. Second part contains the description of the user interface created by Jbuilder.

1.1 SRI User Interface for PVS

PVS runs on SUN 4 (SPARC) workstations using Solaris 2 or higher. It has been implemented in common
Lisp. It needs a Unix workstation, X-windows, emacs and Tcl/Tk. PVS runs best using the X window
system. The Emacs (Gnu Emacs or XEmacs) editors provide the interface to PVS. The user interact with
the PVS system through a customized Emacs. Commands can be selected either by pull-down menus or by
extended Emacs commands. Extensive help, status-reporting and browsing tools are available, as well as the
ability to generate typeset specifications (in user-defined notation) using WTEX. Editing of specifications is
performed with this editor. Instructions are issued to PVS by means of Emacs commands. For example,
in order to perform a proof, the cursor is positioned at a formula declaration in the Emacs buffer and the
Emacs command M-x prove or the key sequence C-c p is issued. Proof trees and theory hierarchies can
be displayed graphically using Tcl/Tk. The PVS interface allows a certain amount of parallel activity. For
example, the user can continue editing theories or perform any other activity supported by Emacs while
PVS is typechecking a series of theories or performing a lengthy proof. Also, user need not wait for one PVS
activity to finish before issuing another command; most commands are queued for execution in the order
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they were issued, but certain status and other short commands preempt any ongoing analyses, perform their
function, and then return the system to its previous activity. Figure 6.1 is the user interface made by SRI:

ST
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C@x 0d 0 ¥ B QRSGY D

SRI International
Computer Science Laboratory

PPPPPEEP
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| |
Welcoms to the BVS
Specification and Verification Systen
Type G-c h for a summary of the commands
Your current working context is
Jpvs
Use M-x change-context to move to a different context.
L BYS Version 3.0
—1:3% PVS Welcome (Text. Fly)--L1--Tap

W Losding pvs-load. .. done

Figure 6.1: User interface for original PVS from SRI

Create The Specification in SRI User Interface

The figure 6.2 shows a specification for summation of the first n natural numbers, as it appears in emacs. The
sum specification is in the top window, and a proof is in progress in the bottom. The mode line indicates that
PVS is ready for a command. As mentioned in chapter two (the PVS architecture), there are two actors in
the PVS use case (see figure 2.1), : theory designer and verifier. When the verifier starts to prove, a graphical
representation of PVS proof tree will show up in the new window. This will show the tree representation of
the proof and proof steps. As mentioned before the basic objective of the proof is to generate a proof tree
of sequent, while proving the PVS will always be looking at unproved leaf of the tree, which is call current
sequent. When a given branch is complete (e.g., ends in a proved leaf), the prover automatically moves on
to the next unproved branch, or, if there are no more unproven branches, then the prove is complete. All
the proof steps and proof trees will show in the figure 6.3. This figure is the proof steps for proving the sum
theory. It covers all the PVS rules which has been used for proving the sum theory.

1.2 User Interface Created in JBuilder

The user interface created in JBuilder is a simple text editor, capable of reading, writing and editing the
selected theory. This text editor will be able to set the text color, as well as the background color of the text
editing region in the edit menu. The action menu of the user interface, include the parsing, type checking
and proving of the selected theory. Help menu contain information about the user interface and a link to
PVS prover guide. Status-reporting are also available. The two actors in PVS: theory designer and verifier,
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have two different parts in this user interface. Following is the description of the actors work in the graphical
user interface, created in Jbuilder.

1.3 User Interface For Theory Designer

Theory designer can either start typing the desire theory in the text editor area or can select one theory
from a file. The font of the selected theory can be edit via edit menu. The background color of the text
in the text area can also be edited in the edit menu. The text area in the text editor has syntax highlight.
The PVS reserve words, symbols and identifiers have different colors in this text area. Selected theory can
be parse and type check in the action menu. The theory can be proved after parsing and type checking.
Following are the steps and the description of making a user interface for theory designer in JBuilder.

Setting the look and feel

The runtime look and feel is determined by the source code setting. The look and feel selected in JBuilder’s
designer is for preview purposes and has no effect on the source code. Look and feel can be changed in
JBuilder. There are several choices of look and feel available in JBuilder:

e Metal.

e CDE/Motif.

e Window.

e MacOS Adaptive (supported only on Macintosh platforms).
In this project metal look and feel has been selected. To change the look and feel we have to set up Jbuilder
so the designer can use the metal look and feel. By setting up the look and feel in the designer context menu
or in the Jbuilder options dialog box, it doesn’t have any effect at runtime. To force a particular runtime
look and feel, we have to set the look and feel explicitly in the main () method of the class that runs the

application. By default, the application wizard generates the following line of the code in the main() method
of the runnable class:

UIManager.setLookAndFeel (UIManager.getSystemLookAndFeelClassName()) ;

That means the runtime look and feel will be whatever the hosting system is doing. To specify metal, the
code has to be changed as follow:

UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel") ;

After saving the project and its files, we can run the application and the metal look and feel will appear in
the user interface.

Adding The Text Area

In this step we add the text area which completely fill user interface frame between the menu bar at the top
and the status bar at the bottom. To support this, the layout manager for the main user interface container

54 Rasa Bonyadlou Aalborg University



needs to use BorderLayout. For this purpose, a panel containing multiple components is considered as one
component. A north component clings to the top of the container, an east component to the left side, and so
on. A component placed into the center area completely fills the container space not occupied by any other
areas containing components. The application wizard creates a JFrame component that’s the main container
for this UI. The figure 6.4 represent the user interface of the PVS created in JBuilder in this step. The user
can either enter the desirer theory in the text editor or choose one of the theories by selecting File|Open.

cuments and Settings\Rasa Bonyadlou\DokumenteriPYS Theories\test.PV5

File Action Edit Help
EICIES

THEORY
BEGIN
% this is a comment
$$% This is another comment
VAR

IF THEN 1 ELSE
THEOREM

oaded file C:'Documents and Settings'Rasa Bonyadlou'Dok iter' PVYS Theoriesitest.PvVS

Figure 6.4: The User Interface of PVS Created by JBuilder

Create The Menus
In this step the following menus are created:

o File
e Action
o Edit

e Help
Part of the menus is shown in figure 6.5. The menu designer is used to create and edit the menus. We can
create new menu items, add a new menu and insert a separator bar.
Setup The Tool Bars

By selecting toolbar option in the application wizard, JBuilder generates code for a JToolBar and populates
it with three Jbutton components that already display icons. The text for each buttons label must be
specified. The buttons in this user interface are, open file which allows the user to open and selected one
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Save As

Font About

Foreground Color

Background Caolor

Exit

Figure 6.5: The menus

PVS theory from a file. Clean, which can clean the text area, save for saving theories in the file and the help

button which is a link to PVS home page generated by SRI.

Adding a right-click menu to the text area

The DBTextDataBinder component adds a right-click menu to Swing text components for performing simple

editing tasks such as cut, copy, paste, clear all, select all, undo and redo clipboard data. DBTextDataBinder

also has built-in actions to load and save files into a JTextArea, but it don’t allow file name to be retrieved.

This step is the description of adding the DBTextDataBinder, binding it to the JTextAreal and suppress

the file open and save actions. Following are the steps for adding a right-click menu to the text area:

e In the design tab the DBTextDataBinder component on the dbSwing models tab of the palette is be

selected.

e In can be dropped anywhere in the designer or on the component tree.

o dBTextDataBinderl in the component tree, is selected and jTextComponent property in the inspector
is change to jTextAreal from the drop-down list. This binds dBTextDataBinderl to jTextAreal by
placing the following line of code in the jbInit() method.

dBTextDataBinderl.setJTextComponent (jTextAreal) ;

e The enableFileLoading property for dBTextDataBinderl is selected and its value is set to false by

using the drop-down arrow.

By saving the changes and running the application a pop up menu will appear when the user right-clicks the

text area. Figure 6.6 shows the graphical user interface created in JBuilder.
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BEGIN
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$$%  This is another comment
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END sum
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Copy
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Font...

Foreground color...

Background color...
oaded file C:'Documents and Settings'Rasa Bonyadlow'Dokumenter'PVYS Theoriestest.PyYS

Figure 6.6: Right Click Menu

1.4 TUser Interface For Verifier

In this part the verifier is started to prove the written theory by using the PVS proof rules. After parsing
and type checking, the selected theory in the text area must be proved, by selecting the proof part in the
action menu.

Internal Representation Of PVS Parser

The PVS parser builds a parse tree according to the PVS grammar. The act of parsing is to determine the
grammatical structure of a sentence of natural languages. For propositional logic the most obvious way of
parsing a formula is to turn the string into a tree, as illustrated by the following example: Let ¢ be the
formula —((p ¢ q) V (p — ¢)) this formula can parse ¢ into a tree as :

—

\

PN
“ —
/N /N

p g p q

A tree is an ordered pair: the first item is the label of the tree root and the second item is a list of all the
children of the root. Each child is itself a tree. This is a highly recursive definition and trees have recursive
structures. For each formula ¢ there is a tree formula ¢3 that represents the tree corresponding to ¢. Below
is the definition of the three kinds of tree formulas corresponding to the tree kinds of the formulas:
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e For a single proposition p, the tree consists of a single node labeled p which has no children. Thus
p = [p, []], the first argument of the pair is the label of the root and the second argument is the list of
the children of the root, which is an empty list in this case.

e For a negated formula ,—¢, the root of the tree is labeled by — and the root has exactly one child.
This child is the tree representation of ¢ or ¢. Thus: ~¢ = [, [$]].

e Finally for a formula of the form ¢ o) where o is a binary connective (either A, V, —, or <) the root
of the tree is labeled by o and the root has two children, the first child is <Z> and the second is 1& Thus:

(Gov) = [o, [, 4]l-

The programming language used for implementation of PVS parser is JavaCC. JavaCC stands for Java
Compiler Compiler and it is a parser generator and lexical analyzer generator. It can read description of a
language and generate the code.

2 PVS Parse Tree

The parser transforms an input stream into a parse tree. The parse tree generated by a parser made with
JavaCC, is the LLR parse tree. Furthermore it is a Look-ahead LR, parser, (LR means left-to-right signifying
a parser which reads the input string from left to right), look-ahead helps in knowing if the complete rule
has been matched or not.

2.1 Look ahead

The job of a parser is to read an input stream and determine whether or not the input stream conforms to the
grammar. This determination in its most general form can be quite time consuming. The general problem
of matching an input with a grammar may result in large amounts of backtracking and making new choices
and this can consume a lot of time. The amount of time taken can also be a function of how the grammar
is written. Many grammars can be written to cover the same set of inputs or the same languages (e.g.,
there can be multiple equivalent grammars for the same input language). The performance hit from such
backtracking is unacceptable for most systems that include a parser. Hence most parsers do not backtrack
in this general manner (or do not backtrack at all), rather they make decisions at choice points based on
limited information and then commit to it [4].

Parsers generated by Java Compiler Compiler (JavaCC) make decisions at choice points based on some
exploration of tokens further ahead in the input stream, and once they make such a decision, they commit
to it. The process of exploring tokens further in the input stream is termed "looking ahead" into the input
stream. There are 4 different kinds of choice points in JavaCC:

e An expansion of the form: (expllezp2|...). In this case, the generated parser has to somehow determine
which of expl, exp2, etc. to select or continue parsing.

e An expansion of the form: (exp)?. In this case, the generated parser must somehow determine whether
to choose exp or to continue beyond the (exp)?, without choosing exp. Note: (exp)? may also be
written as [ezp].
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e An expansion of the form (exp)x. In this case, the generated parser must do the same thing as in
the previous case, and furthermore, after each time a successful match of exp (if exp was chosen) is
completed, this choice determination must be made again.

e An expansion of the form (exp)+. This is essentially similar to the previous case with a mandatory
first match to exp.

There is an abstract form of PVS parse tree in the figure 6.7, generated by JavaCC lexical analyzer by
applying the PVS grammar.

Root node Datatype Importing
DatatypePart
Theory. . v
’ Assuming part .
| Importing
K. i
Assuming part™ Theory part TheoryDedl
Assumption
Theory element
Lmporting TheoryDecl"
VarDecl
FormulaDecl

I— Recursivedecl

libdecl

I TheoryAbbiDEcl

I ConstDecl
Conversion

InlmeDatatype

Figure 6.7: PVS Parse Tree

This is an abstract representation of the PVS parse tree, which is obtained by PVS grammar (Appendix A).

3 Type Checker

The PVS typechecker analyzes theories for semantic consistency and adds semantic information to the
internal representation built by the parser. In order to implement the PVS type checker a symbol table
require, which holds all the information about symbols needed during typechecking. The semantic analysis
phase of a compiler, checks that each expression has a correct type, and translate the abstract syntax into
a simpler representation suitable for generating the code.

Symbol Table

Typechecking is characterized by maintenance of symbol tables mapping identifiers to types and values. As
the declarations of types, variables and constants are processed, these identifiers are bound to meanings

Aalborg University Rasa Bonyadlou 59



in the symbol tables. According to the PVS languages references [8], local declaration for variables may
be given, in association with constant and recursive declarations and binding exzpressions (e.g., involving
FORALL or LAMBDA). Each local variable in a program has a scope in which it is visible. For example, let D
in F end, all the variables, types and functions declared in D are visible only until the end of E. As the
semantic analysis reaches the end of each scope, the identifier local to that scope are discarded. A symbol
table is a set of bindings denoted by the — arrows. For example the symbol table g contains the bindings
g — string, a — int; means that the identifier a is an integer variable and g is a string variable. PVS is able
to do several activities at the same time, for example saving proof and typechecking another theorem can
be done at the same time. Each module or part in PVS has a symbol table ¢ of its own. Some PVS theories
can be very large and they may contain thousands of identifiers, symbol tables must permit efficient lookup.
For this purpose a hash table is associated.

The symbol table is a vector, consisting of objects of the type symbol, each symbol has an id and a kind. The
kind defines whether it is a VAR, CONST, TYPE, etc. Id contains a string which represent the individual
symbols. Following is an example of PVS theory and symbol table for it:

sum: THEORY
BEGIN
n : VAR nat

sum(n) : RECURSIVE nat = ( IF n=0 THEN O ELSE n + sum (n-1)ENDIF ) MEASURE (LAMBDA n:n)
closed_form:THEOREM sum(n) = (n*(n+1))/2
END sum

The symbol table for the "sum" theory will be:

Id | Kind
n | VAR
nat | UNDEFINED
sum | CONST
closed-form | FORMULA

When the "prelude" is loaded, the kind of nat is found to be TYPE.

3.1 Internal Structure of Type Checking

According to the PVS parse tree, figure 6.7, which is generated by JavaCC by applying the whole PVS
grammar (Appendix A), we have two main sub nodes: theory and datatype. In order to implement the PVS
type checker, we ignore the datatype part and start from theory part. There are three type checking methods
which will developed:

e Compile
e Type Checking

e Save

Compile and type checking methods are implemented in the Tree root part. The saving method is imple-
mented in the theories part. Following three sections are the internal structure of these three methods:
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3.2 Compile

The compile method creates a data structure for checking correct use of variables, etc. It, compiles all
theories (NodeTheory) in this parse tree. Mainly the compile method generates a symbol table for checking
the declaration parts. The symbol table is a data structure for storing and retrieving information about
variables, constants, types etc. IdTable contains pairs (Identifier (a string) and a index (integer) identifying
the position of the symbol in the symbol table with the given identifier. The compile method checks for
correct declaration of variables, types, etc. For example it checks for duplicate declaration of variables.

A symbol table is created for each theory. The structure consists of Theories objects which are parsed to
the compile method of the tree root. The tree root in turn calls the compile() method of the individual
NodeTheory objects. The compile method of the NodeTheory objects constructs Theory objects and adds
these to the theories object. Furthermore the compile method of any sub nodes is called, the sub nodes of
these is in turn called etc. When the compile function of a declaration node is called, this nodes compile
method adds a corresponding symbol to the relevant Theory object symbol table, if the symbol has already
been declared an error is thrown.

Following is the internal structure of the compile method which is in the tree root. According to the UML
representation of the tree root, figure 6.8:

CompilePVS

CompilePVS
v =
T [ ranrrame ] |

& vect: Vector

CompilePVS
% Compile() : void
® TreeRoot() i void [T - - I - """ """ """ """ """
® TypeCheck(:vaid [C__— T~ 1
i
T

| |
“ ] i
CompileException |[ CompilePVS |[ HodeTheory |[ Theories |[ TypeCheckException

I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1 |

1 |
¥ Ui v ]
ClassHotFoundException || HoClassDefFoundError |[ Object |[ String

Figure 6.8: TreeRoot UML Representation

There are two methods in the TreeRoot class: compile() and typeCheck().
During compilation, when we meet a name, it can be in two contexts:

e Defining
e Using

Defining

That is when we want to introduce a new name for something in the theory. The process will be as follows:

e Lookup the name in the IdTable, if it occurs already, then there is an error, because the name is used
in two senses.
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o Create entries for the name in the IdTable and in the Symbols. The defining context gives the kind.

Using
When we need the meaning of a name. The procedure will be as follows:
e Lookup the name, if it occurs, it is defined in this theory and we have its meaning and we can check

whether it is the right kind or not.

e If it is not found in the current theory it must be found in an imported theory or the prelude. So
we have to search these theories in the reverse order of importing. Imported theories are loaded into
the Theories table when IMPORTING is processed, the prelude is loaded by default before any type
checking takes place.

e If it is not found during this search, we have an error (undefined name).

e If it is found, we have to import it. We create entries for it in the identifier table and symbol table -
copying its meaning from its definition. And then we proceed as in first part (see following example).

Example

Consider the "sum" theory as follows:

sum: THEORY
BEGIN
n : VAR nat

sum(n): RECURSIVE nat = ( IF n=0 THEN O ELSE n + sum (n-1)ENDIF ) MEASURE (LAMBDA n:n)
closed_form:THEOREM sum(n) = (n*x(n+1))/2
END sum

In this theory we will import "nat" from the PVS prelude file.

3.3 TypeCheck Method

This method, checks for correct use of variables, types etc. The thypeCheck method calls typecheck on all
theories (NodeTheory) in the parse tree. The TypeCheck method goes through the parse tree and for each
theory it checks if the individual variables type, is correct. This method starts in the TreeRoot class (see
figure 6.8).

3.4 Saving Method

This method saves the compiled files with ".cpt" extension. PVS theories will be saved with "cpt" extension
after type checking. The saved ".cpt" file contains all the theories and symbol tables of the compiled PVS
file.

Theories imported in PVS using "IMPORTING xxx" refers to compiled theory files (containing one or
more theories) rather than individual theory names. The PVS files may contain more than one theory e.g.,
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prelude.pvs which contains 89 theories. As a result of this the save method has been modified so that all
the theories in a pvs file will be saved in a single cpt file with the same name, e.g., compiling prelude.pvs
outputs prelude.cpt instead of 89 separate compiled theories. As an example of "cpt" saved files, consider
the following sum theory:

sum: THEORY
BEGIN
n : VAR nat

sum(n) : RECURSIVE nat = ( IF n=0 THEN O ELSE n + sum (n-1)ENDIF ) MEASURE
(LAMBDA n:n)
closed_form:THEOREM sum(n) = (n*(n+1))/2

END sum

The saved "cpt" file for sum theory will be as follows:

THEORY "sum"
TYPECHECK "true"
SYMBOLS 3

4 ||n||

6 n SllIIl"

5 "closed_form"

The following three sections will outline the internal structure of class Theories, Theory and Symbol.
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3.5 Class Theories

The theories class represents the whole complied PVS project. It contains a vector of the theories, which is

each represented by a theory object. The save method, is used in order to save the compiled PVS project as
CPT files. Figure 6.9 is the UML representing of the class theories:

java.lang

CompilePVs

Theories

9\/ prefix : String
4 PRELUCE : int
4 theories : Wectar
O ¢ theoryTable : HashMap

% addTheary() : void
b icl

Figure 6.9: UML Representation for Class Theories

Following are the methods in the class theories:
e addTheory

e 1oadCPT: loads all complied theories in a CPT file to theories list.

e saveCPT: saves compiled PVS project as "cpt" files.

64 Rasa Bonyadlou Aalborg University



3.6 Theory

This class represent the individual compiled theories in the PVS file. It also contains symbol table, name of
the theory and origin variable. Origin is the variable that can be either user/imported or prelude. This is
used in order to keep track of where the individual theories origin. So that when a CPT file is saved only
theories marked USER are saved and not PRELUDE and IMPORTED theories. A theory can be saved in a
file with "to Stream" method and it can be loaded by "fromStream". Figure 6.10 is the UML representation
of the class Theory:

CompileP¥S

4 formulaTable : Hashhap
& idTakle : Hashhap

T MPORTED : int

1y intialldCapacity : int
Ty intialSymbCapacity : int
& name : String

S origin - int

T PRELUDE : int

1 symbiner : int

4 symbolTable : Vector
9\/ typeCheckOk : boolean
& typeTable : HashMap
Ty USER int

% addToSymbals() : void
% fromStreamc) : void
¥ getSymboll) : Syrmbol
R Theary() : void

* toStream() : void

Figure 6.10: UML Representation for Class Theory

This class contains four methods:

e addToSymbolTable: adds a symbol object to the symbol table and creates a link from its id in the id
table to the index in the symbol table.

e toStream: saves theories to file.

e fromStream: it loads theories from "cpt" files.
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3.7 Symbol

This class is super class for the entities in the symbol table. Figure 6.11 is the UML representing of the class
Symbol:

CompileP¥S

s —
Symbol

T COMST : int
Tp FORMULA, : int
& id: String
& kind it
Ty kinds : Stringl]
Ty LIBRARY : int
1) RECURSIVE : int
Ty THEORY : int
Iy THEORYABER : int
1 THEORYFORMAL : it
T TYPE: int
T VAR int

% fromStream() : void
% loadSymbol() : Symbol
R Symbalr) : void

¥ Symbal() : void

% toStream() : void

% taString() : String

Figure 6.11: UML Representation for Class Symbol

This class contain following methods:

e fromStream
e loadSymbol: loads a symbol from file and creates a corresponding new symbol object which is returns.
e toStream: saves a symbol to a file.

e toString
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3.8 Internal Representation of Type Checker

Following is a representation of the upper level nodes possible in a parse tree, which regards the to the
TypeCheck() method. The tabulation of the individual node names represent their level in the parse tree.
All possible branches of a parse tree either ends in a part unimportant to the TypeCheck() method or ends
up in either a NodeExpr or a NodeTypeExpr. These two nodes and any nodes below their level in the parse
tree, are omitted. The main part of the type checking takes part in the NodeTypeExpr and NodeExpr.
Declarations has sub node of the type NodeTypeExpr, and as such this node is important to the type
checking.

TreeRoot
NodeTheory
NodeTheoryFormals
NodeTheoryFormal
NodeTheoryFormalDecl
NodeTheoryFormalType
NodeTheoryFormalConst
NodeTypeExpr *
Nodelmporting
NodeExporting
NodeExportingNames *
NodeExportingTheories
NodeExportingName
NodeAssumingPart
NodeAssumingElement
Nodelmporting
NodeTheoryDecl
NodeAssumption *
NodeTheortPart
NodeTheoryElement
Nodelmporting
NodeTheoryDecl
NodeVarDeacl
NodeFormulaDecl
NodeRecursiveDecl
NodeLibDecl #x
NodeTheoryAbbrDecl #x
NodeConstDecl
NodeTypeDecl
NodelnductiveDecl #x
NodeConversion
NodelnlineDatatype %x
NodeJudgement
NodeAutoRecursiveDecl #x
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NodeConversionEllem
NodesuptypeJudgment *
NodeConstantJudgment *
NodeRewritenam
NodeTypeExpr
NodeTypeApplication x*
NodeName
NodeEnumerationType
NodeSuptype *
NodeFunctionType *
NodeTupleType *
NodeRecordType *

In this tabulation of individual node, the nodes with x are not implemented and the nodes with *x are not
supported in this version of PVS. The type checking method is done for the rest of the nodes.

4 Theorem Prover

As describe in chapter two, the structure of PVS proofs consists of a proof tree and the goal of the proofs is
to construct a proof tree. If all the leaves are recognize as true, then the proof tree is complete. Each proof
goal is a sequent consisting of a sequence of formulas called antecedents and a sequence of formulas called
consequents. Following is internal representation of sequents:

public class Sequent {

public Vector antecedents, consequents; // of Expression
// hidden expressions among the antecedents and consequents
public BitSet ahidden, bhidden;

The default constructor sequent creates an empty sequent.

public Sequent() {

// creates new empty sequent
antecedents = new Vector();
consequents = new Vector();
ahidden = new BitSet();
chidden = new BitSet();

3

The constructor sequent makes a copy of an existing sequent.

public Sequent(Sequent s) {

// creates a copy of an existing sequent
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antecedents = new Vector(s.antecedents);
consequents = new Vector(s.consequents);
ahidden = s.ahidden.clone();

chidden = s.bhidden.clone();

};

The following two methods: addConsequent and addAntecedent add to the end of the vectors.

public void addConsequent (Expression e) {
consequents.add(e) ;

}

public void addAntecedent (Expression e) {
antecedents.add(e);

}

Following method hides a formula by setting a corresponding bit:

public void hide(int i) {

// hides an expression

if (i<0 && i >= -consequents.size) chidden.set(-1-i);

else if (i > 0 &% i <= antecedents.size) ahidden.set(-1+i);

}

//*

public void delete(int i) {

// deletes an expression

if (i<0 && i >= -antecedents.size) {

for (int k = -i; k < ahidden.length(); ++k)

if (ahidden.get(k+1)) ahidden.set(k); else ahidden.clear(k);
antecedents.removeElementAt (-1-1i);

} else if (i > 0 && i <= consequents.size) {

for (int k = -i; k < ahidden.length(); ++k)

if (chidden.get(k+1)) ahidden.set(k); else chidden.clear(k);
consequents.removeElementAt (-1+1i);

}

}

//*

public boolean check() {
// checks whether this sequent is a tautology
for (int i = antecedents.size-1; i >= 0; --i) {

// check whether antecedent(i) occurs as a consequent
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Expression a = antecedents.get(i);

for (int k = consequent.size-1; k >= 0; --k)
if (consequents.get(k).equal(a)) return true;
}

return antecedents.size == 0;

}

}

Proof Tree

PVS proof steps builds a proof tree by adding subtrees to leaf nodes as directed by the proof commands.
Following is the class which can be used to make a proof tree:

public class ProofStep {

public ProofStep parent
public Vector children // of ProofStep

public Sequent seq // the sequent corresponding to this proof step

public ProofStep(Sequent s) {

// creates new initial proof step

seq = s;

parent = this; // no parent

children = new Vector(); // no children

s

public ProofStep(Sequent s, ProofStep parent) {
// adds this as a child to the parent

seq = s;

this.parent = parent;
parent.children.add(this);

3

public void delete() {

// deletes the children steps

children.clear();

}

public boolean check() {

// checks whether this proof step is completed
boolean ok = true;

if (children.size > 0)

// the completion is the conjunction of completed children
for (int k = children.size-1; k >= 0 && ok; --k)
ok = ok && children.get(k).check();
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else ok = seq.check();
}
}

Overview

This chapter covered the internal structure of different parts of the PVS system, which was developed in
JBuilder. The first section covered the design details for making PVS GUI in JBuilder. The two different
user interface for the PVS system were discussed: the first part was the GUI of the original PVS which is
distributed by SRI and the second part was the design details for the user interface which was generated in
Jbuilder. The next section covered the internal representation of the PVS parser and parse tree. Design of
the PVS type checking was discussed in the third section. The different classes and methods in type checker
design, were also discussed. The last section of the chapter introduced the classes for implementation of a
PVS prover.
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Chapter 7

Test

This chapter will describe the testing instructions and outputs for the PVS system which were developed
using Java language. The first section will contain the test instructions and the output for the PVS parser,
which is generated by JavaCC. The next section contains the test instructions and cases for PVS graphical
user interface, (generated by JBuilder. Last part describes the test cases and instructions for the PVS
typechecker. Test cases for each part are examples of PVS theories.

1 Parser Testing

The parser checks for syntactic errors in the given theory. PVS parser generates parse tree according to the
full PVS grammar (Appendix A). The parser was generated by applying the PVS grammar (Appendix A)
to JavaCC. PVS user can either type an arbitrary PVS theory or selected one from the open menu. Selected
theory can be parse by selecting the parse from action menu in GUI. Following are the test requirements,
instructions and output for the parser.

1.1 Test Requirements

PVS parser checks for the syntactic errors in the given theories . The parser for PVS grammar is a program
which takes the language string as its input and produces either a corresponding parse tree or an error. The
PVS parser was generated by applying the PVS grammar to JavaCC. JavaCC is a parser generator for use
with Java application, which is a tool that reads a grammar specification and converts it to a Java program
that can recognize matches to the grammar. The PVS parser is tested for correct output. Correct output
being the whole (input) theorem apart of the commands which are irrelevant to the theory/theories.

1.2 Test Cases Specification

The two main approaches to testing software are: "black-box" (or functional) testing, and "white-box" (or
structural) testing. For testing the PVS parser, white box strategies has been used. White-box testing
strategies include designing tests such that every source line of code is executed at least once, or requiring
every function to be individually tested. It focuses specifically on using internal structure of the PVS parse
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tree to guide the selection of test data (PVS theories). The goal of the testing PVS parser is to obtain the
correct output. Correct output being the whole (input) theorem apart of the commands which are irrelevant
to the theory/theories.

Following are selected PVS theories as a test cases for the parser. According to the PVS grammar (Appendix
A), PVS theories contain specification, importing and exporting, assuming part, theory part, declarations,
type expressions, expressions, names, identifiers and datatype parts. Since we apply white box strategies to
the PVS parse tree, selected test cases should contain specification, importing and exporting, assuming part,
theory part, declarations, type expressions, expressions, names, identifiers and datatype parts (in order to
test every function individually). The PVS theories may not include all of these parts at once. Furthermore
a PVS theory may or may not contain specification, importing and exporting, assuming part, theory part,
declarations, type expressions, expressions, names, identifiers and datatype parts.

1.3 Test Cases

Bellow are the three PVS theories to which the PVS parser is applied. The first theory is the sum theory
which is discussed in the proving part.

1.4 Testl: Sum

sum: THEORY
BEGIN
% this is a comment
n : VAR nat
sum(n) : RECURSIVE nat = ( IF n=0 THEN O ELSE n + sum (n-1)ENDIF ) MEASURE
(LAMBDA n:n)
closed_form:THEOREM sum(n) = (n*(n+1))/2
END sum

After generating parse tree the output will be the same as the theory except the comments:

sum : THEORY
BEGIN
n : VAR nat;
sum( n ) : RECURSIVE nat = (IF n = 0 THEN O ELSE n + sum(n - 1) ENDIF )
MEASURE ( LAMBDA n:n );
closed_form : THEOREM sum(n) = (n * (n + 1)) / 2;
END sum
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1.5 Test2: Square-root

Here is another PVS theory:
square_root.pvs
% Defines square root
% Specializes the lemmas on roots
square_root : THEORY

BEGIN

IMPORTING roots

X, y : VAR nonneg_real

px, py : VAR posreal

u, v : VAR real

sqrt(x) : nonneg_real = root(x, 2)

sqrt_def : LEMMA sqrt(x) =y IFF y * y = x
square_sqrt : LEMMA sqrt(x) * sqrt(x) = x
sqrt_square : LEMMA sqrt(x * x) = x

square_sqrt2 : LEMMA expt(sqrt(x), 2) = x

sqrt_square2 : LEMMA sqrt(expt(x, 2)) = x
sqrt_square3 : LEMMA sqrt(u * u) = abs(u)

sqrt_square4 : LEMMA sqrt(expt(u, 2)) = abs(u)

posreal_sqrt_is_positive: JUDGEMENT sqrt(px) HAS_TYPE posreal
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sqrt_zero : LEMMA sqrt(0) = 0

sqrt_one : LEMMA sqrt(l) =1

null_sqrt : LEMMA sqrt(x) = 0 IFF x = 0

sqrt_mult : LEMMA sqrt(x * y) = sqrt(x) * sqrt(y)

sqrt_inv : LEMMA sqrt(1/px) = 1 / sqrt(px)

sqrt_div : LEMMA sqrt(x/py) = sqrt(x) / sqrt(py)

both_sides_sqrt : LEMMA sqrt(x) = sqrt(y) IFF x = y

both_sides_sqrt_1t : LEMMA sqrt(x) < sqrt(y) IFF x <y

both_sides_sqrt_le : LEMMA sqrt(x) <= sqrt(y) IFF x <=

both_sides_sqrt_gt : LEMMA sqrt(x) > sqrt(y) IFF x > y

both_sides_sqrt_ge : LEMMA sqrt(x) >= sqrt(y) IFF x >=

sqrt_1tl_bound : LEMMA sqrt(x) < 1 IFF x < 1

sqrt_gtl_bound : LEMMA sqrt(x) > 1 IFF x > 1
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sqrt_lel_bound : LEMMA sqrt(x) <= 1 IFF x <=1

sqrt_gel_bound : LEMMA sqrt(x) >= 1 IFF x >= 1

END square_root

The output will be as follows:

square_root : THEORY

BEGIN
IMPORTING roots;
x,y : VAR nonneg_real;
px,py : VAR posreal;
u,v : VAR real;
sqrt( x ) : nonneg_real = root(x,2);
sqrt_def : LEMMA sqrt(x) =y IFF y * y = x;
square_sqrt : LEMMA sqrt(x) * sqrt(x) = x;
sqrt_square : LEMMA sqrt(x * x) = x;
square_sqrt2 : LEMMA expt(sqrt(x),2) = x;
sqrt_square2 : LEMMA sqrt(expt(x,2)) = x;
sqrt_square3 : LEMMA sqrt(u * u) = abs(u);
sqrt_squared4 : LEMMA sqrt(expt(u,2)) = abs(u);
posreal_sqrt_is_positive : JUDGEMENT sqrt( px ) HAS_TYPE posreal;
sqrt_zero : LEMMA sqrt(0) = 0;
sqrt_one : LEMMA sqrt(1) = 1;
null_sqrt : LEMMA sqrt(x) = 0 IFF x = 0;
sqrt_mult : LEMMA sqrt(x * y) = sqrt(x) * sqrt(y);
sqrt_inv : LEMMA sqrt(1l / px) = 1 / sqrt(px);
sqrt_div : LEMMA sqrt(x / py) = sqrt(x) / sqrt(py);
both_sides_sqrt : LEMMA sqrt(x) = sqrt(y) IFF x = y;
both_sides_sqrt_1t : LEMMA sqrt(x) < sqrt(y) IFF x < y;
both_sides_sqrt_le : LEMMA sqrt(x) <= sqrt(y) IFF x <= y;
both_sides_sqrt_gt : LEMMA sqrt(x) > sqrt(y) IFF x > y;
both_sides_sqrt_ge : LEMMA sqrt(x) >= sqrt(y) IFF x >= y;
sqrt_ltl_bound : LEMMA sqrt(x) < 1 IFF x < 1;
sqrt_gtl_bound : LEMMA sqrt(x) > 1 IFF x > 1;
sqrt_lel_bound : LEMMA sqrt(x) <= 1 IFF x <= 1;
sqrt_gel_bound : LEMMA sqrt(x) >= 1 IFF x >= 1;

END square_root
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1.6 Test3: Parity

parity.pvs

parity : THEORY
BEGIN
i : VAR int

incr_odd : LEMMA odd?(i + 1) IFF even?(i)
incr_even : LEMMA even?(i + 1) IFF odd?(i)

opposite_odd : LEMMA o0dd?(-i) IFF odd?(i)

opposite_even : LEMMA even?(-i) IFF even?(i)

parityl : LEMMA odd?(i) OR odd?(i + 1)
parity2 : LEMMA even?(i) OR even?(i + 1)

odd_not_even : LEMMA o0dd?(i) IFF NOT even?(i)
even_not_odd : LEMMA even?(i) IFF NOT odd?(i)

even_2i : LEMMA even?(2 * i)
odd_2i_plusl : LEMMA odd?7(2 * i + 1)
odd_2i_minusl : LEMMA o0dd?7(2 * i - 1)

parity_zero: LEMMA even?(0)
parity_one: LEMMA o0dd7(1)
parity_two: LEMMA even?(2)
parity_three: LEMMA 0dd?(3)
parity_minus_one: LEMMA odd?(-1)
parity_minus_two: LEMMA even?(-2)
parity_minus_three: LEMMA o0dd?7(-3)
END parity

The output after parsing will be:

parity : THEORY
BEGIN
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i : VAR int;
incr_odd : LEMMA odd?(i + 1) IFF even?(i);
incr_even : LEMMA even?(i + 1) IFF odd?(i);
opposite_odd : LEMMA odd?(-i) IFF odd7(i);
opposite_even : LEMMA even?(-i) IFF even?(i);
parityl : LEMMA odd?(i) OR odd?(i + 1);
parity2 : LEMMA even?(i) OR even?(i + 1);
odd_not_even : LEMMA odd?(i) IFF NOTeven?(i);
even_not_odd : LEMMA even?(i) IFF NOTodd?(i);
even_2i : LEMMA even?(2 * i);
odd_2i_plusl : LEMMA 0dd?(2 * i + 1);
odd_2i_minusl : LEMMA odd?7(2 * i - 1);
parity_zero : LEMMA even?(0);
parity_one : LEMMA odd?(1);
parity_two : LEMMA even?(2);
parity_three : LEMMA odd?(3);
parity_minus_one : LEMMA odd?7(-1);
parity_minus_two : LEMMA even?(-2);
parity_minus_three : LEMMA odd?(-3);

END parity

Furthermore the prelude.pvs is used to test the parser as it contains all aspects of PVS.

2 Test for GUI

This part is the description of test for graphical user interface generated by JBuilder. Test cases for the user
interface will be PVS theories and the test target will describe separately for each part of the user interface
and at the end of the each part the figures will show the output result for each test target.

Test Requirements For GUI
e The theory should appear in the text area of the user interface. Theory designer can either select one
theory from the file or type desire theory in the text editor area.

e Selected theory can be saved in a file. Any changes in the theory can also be saved in a file in the
File|Save and File|Save as, menus.

e The font of the selected theory can be edited in the text area. Background color of the selected theory
can also be edited in the edit menu.

e The text editor in the user interface have syntax highlighting. All PVS reserved words, symbols and
identifiers have different colors.

e The tool bars buttons in the text area should be active: open file, clean the text area, save file and a
link to PVS home page. The status reporting should also be active.
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e The right click menu should be active in the text editor area. It can cut, copy, past, clear all, select
all, edit font and background color of the selected theory in the text area.

Test Data

Selected test data for the graphical user interface are PVS theories. For example theory designer can select
"sum" theory as a test cases. Test cases:

sum: THEORY
BEGIN
n: VAR nat
sum(n) : RECURSIVE nat=
(IF n=0 THEN O ELSE n + sum (n-1)ENDIF)
MEASURE (LAMBDA n:n)
closed_form:THEOREM sum(n)= (n*x (n+1)) / 2
END sum

Test Instructions

e The "sum" theory has selected as a test cases for the PVS text editor. The selected theory appears in
the text area. Figure 7.1 is the output for text editor. The selected theory is appear in the text area.
The syntax highlighting is also visible in the text area.

THEORY
BEGIN
% this is a comment
$$%  This is another comment

IF THEN 0 ELSE
THEOREM

oaded file C:\Doc

ts and Settings'Rasa Bony k ter'PYS theoriestest.PYS

Figure 7.1: TextEditor

e Following is the procedure for different parts of the text editor. We got the test result by applying the
test cases, "sum" theory, to the text editor.

Aalborg University Rasa Bonyadlou 79



Action | Results
Open File | Pass

Save File | Pass

Edit Font | Pass

Edit Color | Pass

Clean The Text Area | Pass
Tool Bar Buttons | Pass
Right Click Menu | Pass

3 Type checker

This section will describe the test instructions and requirements for the PVS type checker. Generally the
PVS typecheck, detects the semantic errors in the PVS theories. Furthermore it checks whether the use of
the names (such as variables, functions, type names) is inconsistent with their definition in the program.
The test cases for type checking part are PVS theories. Following are the test instructions and results for
PVS type checking.

3.1 Test Requirements

During type checking of PVS theories, if there is any semantic errors in the theories, an error message will
be thrown. Following are some examples of the semantic errors that may occur in the PVS theories. The
type checker will detect errors and will show an error message if any of following errors occur.

1. Semantic errors:

Wrong definition of types in theories.

Non-declared variables

Use of variable which is wrongly declared.

Duplicate declaration of variables/types/constants.

Following are two other requirements for PVS type checker:

2. Compiled PVS files should be save with ".cpt" extension. The "cpt" files contain all the theories and
symbol table of the compiled PVS file.

3. As described in the type checking design (chapter 6), PVS files may contain more than one theory,
as a result of saving "cpt" files, all the theories in a pvs file will be saved in a single cpt file with the

same name.

3.2 Test Instructions

This section will cover the test instruction and test cases for the test requirements. The first part will contain
the theories which have semantic errors, type checker should detect the errors and throw an error message.
The last part is a test case and output for "cpt" files.
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Test Cases with Semantic Errors
Following are PVS theories that have the above semantic errors:
1. Non-declared variables "n".

typeCheckTest1: THEORY
BEGIN

sum(n) : RECURSIVE nat = ( IF n=0 THEN O ELSE n + sum (n-1)ENDIF ) MEASURE (LAMBDA n:n)
END typeCheckTest1

2. Test for duplicate declaration of variables.

typeCheckTest2: THEORY

BEGIN
n : VAR nat
n : VAR nat

END typeCheckTest1

3. Test for duplicate declaration of constants.

typeCheckTest3: THEORY
BEGIN
c : bool
c : bool
d : TYPE FROM int
d : TYPE FROM int

END typeCheckTest3

The type checker will throw an error message in all above theories.

Test Cases for "cpt" Files

Compiled PVS files should be save with ".cpt" extension. The "cpt" files contain all the theories and symbol
table of the compiled PVS file. Following are test cases and output for the "cpt" files:

1. Test Cases: Extra-props

extra_props : THEORY
BEGIN
IMPORTING absolute_value
x1, x2, y1, y2 : VAR real
e, el, e2, d: VAR posreal

Aalborg University Rasa Bonyadlou 81



n : VAR nat

prod_bound : LEMMA

abs(xl - y1) < el AND abs(x2 - y2) < e2 IMPLIES

abs(xl * x2 - y1 *x y2) < el * e2 + abs(yl) * e2 + abs(y2) * el

prod_epsilon : LEMMA
EXISTS el, e2 : el * e2 + abs(yl) * e2 + abs(y2) * el < e
expt_continuous : LEMMA
FORALL x1, e, n : EXISTS d : FORALL y1 :
abs(yl - x1) < d IMPLIES abs(expt(yl, n) - expt(xl, n)) < e

END extra_props

The generated "cpt" file is as follows:

F e e e //
// COMPILED PVS FILE //
[/ mmmm e - //

THEORY "extra_props"
TYPECHECK "false"
SYMBOLS 12

nyon
ngn

nai"

naon

ngn

np
"prod_bound"

"prod_epsilon"

1S IS TS T U NG NG NG NS NS O N

"expt_continuous"

2. Test cases: Parity

parity : THEORY
BEGIN
i : VAR int

incr_odd : LEMMA o0dd?(i + 1) IFF even?(i)
incr_even : LEMMA even?(i + 1) IFF odd?7(i)
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opposite_odd : LEMMA o0dd?(-i) IFF o0dd?(i)

opposite_even : LEMMA even?(-i) IFF even?(i)

parityl : LEMMA odd?(i) OR odd?(i + 1)
parity2 : LEMMA even?(i) OR even?(i + 1)

odd_not_even : LEMMA o0dd?7(i) IFF NOT even?(i)
even_not_odd : LEMMA even?(i) IFF NOT odd?(i)

even_2i : LEMMA even?(2 * i)

odd_2i_plusl : LEMMA o0dd?7(2 * i + 1)
odd_2i_minusl : LEMMA 0dd7(2 * i - 1)

parity_zero: LEMMA even?(0)
parity_one: LEMMA odd?(1)
parity_two: LEMMA even?(2)
parity_three: LEMMA 0dd?(3)
parity_minus_one: LEMMA odd?(-1)
parity_minus_two: LEMMA even?(-2)

parity_minus_three: LEMMA o0dd?7(-3)

END parity

The generated "cpt" file for this PVS theory is:

THEORY "parity"
TYPECHECK "false"
SYMBOLS 19

nin
"incr_odd"
"incr_even"
"opposite_odd"
"opposite_even"
"parityl"
"parity2"
"odd_not_even"
"even_not_odd"
"even_2i"
"odd_2i_plusl"

"odd_2i_minus1"

(2 IS A & 2 B 2 BN & 2 & 2 NS 2 BN & 2 B & 2 B & 2 B 2 B & 2 Y™

"parity_zero"
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"parity_one"
"parity_two"
"parity_three"
"parity_minus_one"

"parity_minus_two"

a o0 o0 oo,

"parity_minus_three"

Another Test Case for CPT

The PVS "analysis" file contains three separate theories, all the theories in the "pvs" file are saved in a

single "cpt" file with the same name. Following is the PVS "analysis" file:

everything : THEORY
BEGIN

IMPORTING top_derivative, top_sequences, top_limits, top_continuity

END everything

inverse_continuous_functions [ T1, T2 : NONEMPTY_TYPE FROM real ]

BEGIN
ASSUMING
connected_domain : ASSUMPTION
FORALL (x, y : T1), (z : real)
x <= z AND z <= y IMPLIES (EXISTS (u : T1) : z = u)
ENDASSUMING

IMPORTING continuous_functions_props

g : VAR { £ : [Tl -> T2] | continuous(f) }
inverse_incr : LEMMA

bijective?[T1, T2](g) AND strict_increasing(g) IMPLIES

continuous (inverse(g))
inverse_decr : LEMMA
bijective?[T1, T2](g) AND strict_decreasing(g) IMPLIES

continuous (inverse(g))

inverse_continuous : PROPOSITION
bijective?[T1, T2](g) IMPLIES continuous(inverse(g))

END inverse_continuous_functions
top_derivative : THEORY

The output "cpt" file for the "analysis" theory will be as follows:

: THEORY
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THEORY "everything"
TYPECHECK "false"

SYMBOLS 0
B ————.— /7
/e /1

THEORY "inverse_continuous_functions"
TYPECHECK "false"
SYMBOLS 6

lITlII 1

I|T2|I 1

Ilgll
"inverse_incr"

"inverse_decr"

g oo NN

"inverse_continuous"

THEORY "top_derivative"
TYPECHECK "false"

SYMBOLS O
e e e //
e e e //
Overview

This chapter covered the test instructions, cases and results for PVS parser, GUI and type checker parts.

All the requirements in these parts has been tested. Test cases are selected from PVS theories.
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Chapter 8

Conclusion and future work

The aim of this project was, re-implementation of the Prototyping Verification System (PVS). This work
has been done in two semester as a complete Master thesis. The aim of the first part of the project, was to
take the initial steps towards the re-implementation of the Prototyping Verification System. And the aim of
the second part of this project was to complete and build the PVS system. I started the work by studying
the original PVS system which is distributed by SRI [1]. The architecture of PVS and the initial steps to
start an automated proof in PVS were discussed. As a preparation for building the theorem prover, the logic
system and the strategies for proving theories in PVS were discussed. It also covered different sorts of logic,
syntax and semantic of each logic. A graphical user interface for PVS system was developed and tested.
The PVS language and type system were discussed. By applying the whole PVS grammar, [8], to JavaCC,
a parser for the PVS system was developed and tested. The main parts for PVS type checkering was also
developed and tested. The theorem prover is not implemented, but the strategies behind the proof system
and proof trees are explained and the classes for prover has been developed. Following are some ideas on
future work in order to complete a full version of PVS verification system and improve this work:

e Implementation of theorem prover.
e In the graphical user interface:
— Add search item to the user interface.

— Localizing the user interface, in order to use it with different languages.

— Designing a user interface for showing the proof steps and proof tree.

e In our parse tree, figure 6.7, the datatype part is ignored, so this part should also be implement in
order to have a complete PVS type checker.

e Introduce tactics to the PVS prover system: more about sequent schema and the languages of sequent

schema for derived rules mechanism.
e More about the Order Binary Trees and their application to PVS.
While working with PVS system, I acquired some experiences and ideas about the way to prove theories with

an interactive theorem prover. Moreover I also gained experiences with PVS languages. During this project
work I also acquired more experiences in Java programming language, in order to develop the system.
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If we consider the time for developing the existing parts of the project, then an optimistic estimate for the
time complete a version of PVS will be around two months. This time is for completing the reminding parts
of the project, which are PVS prover and parts of the PVS type checker.
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Appendix A

The Grammar

The complete PVS grammar which are used for implementation is presented in this Appendix. Below is the
some points that should be consider for presentation of the syntax:

e Names in italics indicate syntactic classes and meta variables ranging over syntactic classes.

e The reserved words of the languages are in the UPPERCASE.

e An optional part of A of a clause is enclosed in square brackets:[A].

e Alternatives in a syntax production are separated by a bar |; a list of alternatives that is embedded
in the right-hand side of a syntax production is enclosed in brackets, as in

ExportingName ::= Id0p [: { TypeExpr | Type | FORMULA}]

e Tteration of a clause B one or more times is indicated by enclosing it in brackets followed by a plus
sign : B+; repetition zero or more times is indicated by an asterisk instead of the plus sign: Bx.

e A double plus or double asterisk indicates a clause separator; for example, B x x’,” indicates zero or
more repetitions of the clause B separated by commas.
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Specification

Specification
Theory

TheoryFormals
TheoryFormal
TheoryFormalDecl
TheoryFormalType

TheoryFormalConst

{ Theory | Datatype}+

Id [Tﬂr.r'ru‘;,.':"*}l1‘m.rr.:f.-f] : THEORY

[ Esporting]

BEGIN

[ AssumingPart]

[ TheoryPart]

END /d

[ TheoryFormal?,’]

[ ¢ Importing )| TheoryFormalDecl

TheoryFormal Type | TheoryFormalConst

Ids : {TYPE | NONEMPTY_TYPE | TYPE+}
[FROM TypeEapr]

1dOps : TypeEapr

Importings and Exportings

Ezporting = EXPORTING EzportingNames [WITH ExportingTheories]
EzportingNames = ALL [BUT EaportingNames+',’]
| EzportingName+t’,’
EgportingName = [dOp [: { TypeExpr | TYPE | FORMULA} ]
EzportingTheories == ALL | CLOSURE | TheoryNames
Importing = IMPORTING TheoryNames
Assumings
AssumingPart ::= ASSUMING {AssumingElement [ ;]}+ ENDASSUMING
AssumingElement I'mporting

TheoryDecl
Assumption
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Theory Part

TheoryPart
TheoryElement
TheoryDecl

{TheoryElement [;]}+
Importing | TheoryDecl

LibDecl | TheoryAbbrDecl | TypeDecl | VarDecl
ConstDecl | RecursiveDecl | MacroDecl | InductiveDecl
FormulaDecl | Judgement | Conversion | InlineDatatype
AutoRewriteDecl
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Declarations

LibDecl
TheoryAbbrDecl
TypeDecl

VarDecl
ConstDecl

RecursiveDecl

MaucroDecl

InductiveDecl

Assumplion
FormulaDecl
Judgement
SubtypeJudgement

ConstantJudgement

ConstantReference

Conversion

AutoRewriteDec!

RewriteName

Bindings

Ids : LIBRARY [=] String
Ids : THEDRY = TheoryName

Id [{, Ids} | Bindings] :
{TYPE | NONEMPTY_TYPE | TYPE+}
[ {= | FROM} TypeEzpr [CONTAINING Ezpr]]

IdOps : VAR TypeExzpr
IdOp [{, I1dOps } | Bindings+] @ TypeEzpr [= Ezpr]

1dOp [{, IdOps } | Bindings+] : RECURSIVE
TypeExpr = Expr MEASURE Ezpr [BY Exzpr]

IdOp [{, 1dOps } | Bindings+] : MACROD
TypeExpr = Expr

IdOp [{, IdOps } | Bindings+] : INDUCTIVE
TypeExpr = Expr

Ids : ASSUMPTION Euxpr

Ids = FormulaName Expr

SubtypeJudgement | ConstantJudgement

[IdOp :] JUDGEMENT TypeErpris’, ' SUBTYPE OF TypeErpr

[7dOp :] JUDGEMENT ConstantReference+s’,’
HAS_TYPE TypeEapr

Number | {Name Bindings«}

{CONVERSION | CONVERSION+ | CONVERSION-}
{ Name [: TypeEzpr] }++','

{AUTD_REWRITE | AUTO_REWRITE+ | AUTO_REWRITE-}
RewriteNames+?,’

Name [ [V]] [: { TypeEzpr | FormulaName} |
( Bindings++’,’)
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Binding
Typedlds
Typedld

TypedId | { ¢ TypedIds ) }
IdOps [: TypeEzpr] [| Ezpr]
IdOp [: TypeEzpr] [| Eapr]

Type Expressions

TypeEzpr

EnumerationType

Subtype

TypeApplication
FunctionType

Tuple Type
Record Type
FieldDecls

Name
EnumerationType
Subtype
TypeApplication
FunctionType
Tuple Type

Record Type

{ 1dOps }

{ SetBindings | Ezpr }
( Bapr)

Name Arguments

[FUNCTION | ARRAY]
[ { [{dOp :] TypeEzpr }++’,’ —> TypeEapr]

C{ [ZdOp :] TypeEapr }++7,71
[# FieldDeclss+’,’ #]
Ids « TypeExpr
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Expressions

Ezpr

Number

String

Name

Id ' Number

Expr Arquments

Expr Binop Expr

Unaryop Expr

Ezpr < { Id | Number}

( Ezprs+’,7)

(: Exprs+’,’ 1)

[ Brprex’, ' ]

(I Ezpret’,’ )

{1 Ezpre’, 7 1}

# Assignmentv+’, ' #)

Ezxpr :: TypeEapr

IfEzpr

BindingExzpr

{ SetBindings | Ezpr }

LET f,-c'f.f_}f:TJ.rifTr._r;++ ’, ? IN Expf‘
Ezpr WHERE LetBindings+’,’
Ezpr WITH [ Assignment++7, 7]
CASES Ezpr OF Selections+’,’ [ELSE Egzpr] ENDCASES
COND { Expr -> Eapr}++’,’ [, ELSE -> Ezpr] ENDCOND
TableEzpr
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Expressions (continued)

IfExpr

BindingExpr
BindingOp
LambdaBindings
LambdaBinding
SetBindings
SetBinding
Assignment

AssignArgs

Assigndrg

Selection

TableExpr

ColHeading
TableEntry
LetBinding
LetBind

Arguments

IF Egzpr THEN Eaxpr

{ELSIF FEzpr THEN Ezpr} s+ ELSE Fipr ENDIF

BindingOp LambdaBindings : Ezpr
LAMBDA | FORALL | EXISTS | { /dOp ! }
LambdaBinding [ [,] LambdaBindings]
I1dOp | Bindings

SetBinding [ [,] SetBindings]

{IdOp [: TypeEzpr] } | Bindings
Assigndrgs {:= | |->} Ezpr

Id [! Number]
Number
AssignArgr

( Ezprinhy )
‘< Id
¢ Number

1dOp [( IdOps )] : Eapr

TABLE [ Ezpr] [, Fupr]
[ ColHeading]
TableEntry+ ENDTABLE

I Ezpr {1 {Ezpr | ELSE} }+ 1|
{| [Ezpr | ELSE] }+ ||
{LetBind | ( LetBinds+’,’ )} = Expr
IdOp Bindingsx [: TypeEapr]
( Ezpres’y )

Aalborg University

Rasa Bonyadlou

95



Names

TheoryNames =  TheoryName++’,’

TheoryName == [Id@Q] Id [ Actucls]

Names u=  Names+',’

Name w=  [I1dQ] IdOp [Actuals] [. I1dOp]

Actuals u= [ Actuals+’,’]

Actual = Ezpr | TypeExpr

1d0ps 1dOpe+ 7y’

Id0p = Id | Opsym

Opsym == Binop | Unaryop | IF | TRUE | FALSE | [IIT | (1D | {11}

Binop x= o |IFF |<=> |IMPLIES |=> |WHEN |OR | \/ | AND
| /\ | & |XOR | ANDTHEN |ORELSE |~ |+ |- |* |/
I I B S 2 B e I e IR B O D
| /===l e > > | <
| > | <<= |>>= |# |@@ | ##

Unaryop = NOT |~ |00 |<> |-

FormulaName = AXIOM | CHALLENGE | CLAIM | CONJECTURE | COROLLARY
| FACT | FORMULA | LAW | LEMMA | OBLIGATION
| POSTULATE | PROPOSITION | SUELEMMA | THEOREM

Identifiers

Ids v= Idyy?,’

Id = Letter IdChar+

Number = Digity

String = " ASCILcharacters "

IdChar == Lelter | Digit | _ | ?

Letter = A |...|Z |a|...|=

Digit = 0 |...]9
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Datatypes

Datatype

InlineDatatlype

DatatypePart

Constructor

Id ['T'h.r'ru'yHJHn.rr.ﬂ.s‘] : DATATYPE [UITH SUBTYPES J"fff.-;]

BEGIN

[ Importing [;]]
[ AssumingPart]
DatatypePart
END /d

Id : DATATYPE [WITH SUBTYPES /ds]
BEGIN

[ Importing [;]]

[ AssumingPart]

DatalypePart

END #d

{ Constructor : IdOp [: Id] }+
IOp [ {IdOps : TypeEzpr Y4+, )]
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Appendix B

CD ROM

The CD ROM contains:

e The source code for the PVS GUI, parser, compiler and type checker, which is generated in JBuilder.
e The PVS executable version.

e Several PVS theories.
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