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SYNOPSIS:

This report describes the application
of real-time photon mapping to en-
hance realism of lighting and to auto-
mate illumination work in interactive
3D applications.

The first part of this report reviews
the essential theory about light and
real-time photon mapping whereas
the second part discusses the imple-
mentation and results in detail.

This report looks into two major
problems of real-time photon map-
ping: to identify and remove perfor-
mance bottlenecks and to reduce fluc-
tuation and improve visual quality.

The main conflict is between image
quality and real-time constraints. The
key to improve quality is to increase
photon and polygon count. However,
increasing either of these decreases
performance.

The conclusion summarizes impor-
tant guidelines that must be followed
to enable real-time photon mapping
and describes problems that are sub-
ject to future work.





Preface
If there is any situation worse than having no documentation, it must be having
wrong documentation.
—Bertrand Meyer

Our report is entitled “The π-engine” which is short for “The photon illumi-
nation engine”. We remind the reader that this report is the second of two;
the first report dealt with analysis and implementation of a test scenario,
and this report solves major problems laid out in the first.

We expect the reader to be familiar with C++ since many algorithms are
presented in C++ code or C++ like pseudo-code.

The spin-offs of this project will be an open source Quake 3 BSP loader
for Open Scene Graph, an easy to understand photon map implementation
and an Exact_photon_map class which can be used to verify other imple-
mentations against. Everything can be downloaded from http://www.cs.
auc.dk/˜nesotto/pie.

We have tried to make the report as self-contained as possible. When this
is not possible, we provide references and try to be as specific as possible by
including page numbers. Note that no hyphens are used to break WWW-
addresses in the bibliography; any hyphen will therefore be part of the
address itself. Italics are used to emphasize importance whereas technical
terms or important aspect are written in a bold font when they are defined.
When we discuss issues related to real-time graphics and 3D hardware, we
refer to an OpenGL context if nothing else is mentioned. However, most of
the principles are ubiquitous and exist in other APIs as well.

We would like to thank the following people. Thanks to Henrik Wann
Jensen for providing us with the implementation of his photon map. Thanks
to Frank Suykens and Bent Dalgaard Larsen for our correspondence. We
also appreciate the helpful people on the Open Scene Graph mailing list.
Thanks to Bjarne Stroustrup for creating C++ and to Alex Stepanov for de-
veloping the Standard Template Library.

Dennis Kristensen Thorsten Jørgen Ottosen
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1Introduction
The greatest challenge to any thinker is stating the problem in a way that will allow
a solution.
—Bertrand Russel

The main subject of this report is photon mapping and its applications in
a dynamic real-time context. In particular we investigate dynamic indirect
light. This chapter introduces real-time photon mapping and sketches the
problems addressed in this report.

We begin with a short presentation of the lighting phenomena that real-
time photon mapping can help simulate. The main idea of real-time photon
mapping is then described followed by the goals of the project. In the end
we give an overview of the rest of the report. If the reader is new to com-
puter graphics we recommend that he also reads the introduction to our
first report [OK02].

1.1 Lighting in 3D engines

Traditionally, 3D graphics engines have separated the rendering of static
and dynamic light. Static light is light originating from light sources with
static properties whereas dynamic light originates from light sources with
variable properties like origin and direction. Static and dynamic light have
again been separated into indirect light and direct light. Direct light refers
to the light received directly from light sources. Indirect light is the light
received from other surfaces (that is, reflected light). Global illumination
is the combination of both direct and indirect light (notice that we use the
terms light and illumination interchangeable). In real-time graphics shad-
ows are treated separately for performance reasons. Figure 1.1 shows how
important the indirect illumination is.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A room rendered with a) full global illumination, b) indirect
illumination, c) direct illumination [VMKK00].

Texture mapping is used to attach images to models for improved visual
quality without adding complexity to the geometric model. A light map is
a texture map that represents how light strikes a surface, and it is widely
used to create static indirect light and aspects of static direct light such as
shadows. Contrary to photo-realistic rendering, indirect dynamic light is
not simulated in real-time rendering since it relies on a global analysis of
the scene which is too costly. Two of the effects that are due to indirect
illumination are color bleeding and caustics. Color bleeding can be seen
when e.g. a indirectly lit white wall appears reddish because a red object is
situated close to it (see Figure 1.2 on the right), and an example of caustics
is when a surface is lit by a magnifier (see Figure 1.2 on the left). The lack of
indirect illumination is acknowledged as a shortcoming in current real-time
rendering by David Kirk, NVIDIA [Sta03]:

... we’ve moved from texture-mapped rendering to program-
mable pixel shading in pursuit of cinematic realism, but we
aren’t quite there yet. In particular, real-time 3D graphics ren-
dering is not yet capable of global illumination.

We hope to move one step closer to this goal by using real-time photon
mapping.

1.2 Real-time photon mapping

Photon mapping is a technique that can enhance the quality and speed of
the ray tracing rendering technique. It is particularly useful for producing
lighting effects such as caustics, shadows and color bleeding [Jen01, xv].

Photon mapping is a two pass algorithm where the rendering step is
improved by using extra light information generated in a preprocessing
step. In real-time photon mapping we can summarize the two steps as
follows:
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Figure 1.2: Left: An example of caustics. This scene with a glass egg consists
of 4000 triangles [WKB+02]. Right: An example of color bleeding; notice
how the colors of the walls appear on the sides of the hanging box.

1. Photon tracing:

(a) emit photons from light source;

(b) scatter photons diffusely.

2. Rendering:

(a) use the photons to estimate the light each object receives;

(b) blend the texture color of the object with the light estimate.

During photon tracing photons are emitted from the light sources in the
scene. When a photon hits a surface, the photon is saved in a suitable data
structure called the global photon map (or just the photon map). The pho-
ton is then split up into several new photons that are traced recursively
one or two times. During rendering the photon map is used to estimate the
light each vertex on each object receives. We say that we make an irradi-
ance estimate for each vertex. Finally the light estimates are blended with
the texture color.

The basic optimization idea of the technique is to calculate the irradiance
estimate for each vertex in the scene and let the graphics hardware inter-
polate the color values in between vertices. Real-time photon mapping can
be implemented in other ways than using hardware to interpolate between
vertex colors, but when we say real-time photon mapping, we refer to this
definition unless stated otherwise. The important observation that justifies
this interpolation scheme is that the indirect illumination on diffuse sur-
faces often change slowly over the surface [WRC88, 3]. It is important to
realize that this is not the case when illumination changes abruptly near
shadow boundaries and caustics.
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Figure 1.3: The results from our first report. The most apparent problems
are the speckled appearance and the white saturation.

A similar method is used in irradiance caching where irradiance esti-
mates are precomputed for each photon position and estimates between
these positions are interpolated [Jen01, 140]. In general the interpolation
of diffuse illumination is often used to increase performance in interactive
contexts. This can be seen in a recent survey by Damez et al. where many
of the methods use some form of interpolation [DDM03].

1.3 Goals

In this project we will incorporate photon mapping in a standard 3D en-
gine. The motivation for adding photon mapping to 3D engines was de-
scribed in [OK02, 10]. The main motivation is to add dynamic illumination
and to avoid many special cases. The long term goal is to maintain frame-
rates of at least 30 FPS while simulating dynamic light.

The problems that need to be overcome in real-time photon mapping
can roughly be categorized as either performance related or visual quality
related [OK02, 79f]. By performance we mean the execution time whereas
visual quality refers to the realism of the rendered frames and the amount
of fluctuation between the frames. The requirement of both high realism
and high performance constitute opposing demands. Therefore we must
find a compromise between visual quality and performance.

Most performance improvements are irrelevant if the image quality can-
not be made sufficiently good. What we presented in our last report was far
from satisfactory (see Figure 1.3). Thus our first goal is:

Goal 1: Improve the image quality and reduce fluctuation to an acceptable level.

If we cannot do this, then what use is it to improve performance? It is also
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imperative to have a realistic scene to test the engine on. If the scene is
not (at least a little) realistic, then it will be impossible to determine which
problems that are performance bottlenecks. Hence, the second goal is:

Goal 2: Build a dynamic scene that can work as a test scenario.

But requiring that the scene is dynamic is not enough:

Goal 3: Assemble the 3D engine so important modules are implemented and func-
tioning in a realistic manner.

By realistic we mean that e.g. the intersection testing module cannot use a
linear search scheme, but should rely on some spatial sorting of the scene
graph. If we do not have a realistic implementation of the different mod-
ules, then we can only guess what the performance bottlenecks might be.

Using photon mapping could simplify illumination effects, but on the
other hand it might complicate the engine itself:

Goal 4: The integration of photon mapping and the real-time 3D graphics engine
should be as easy as possible.

This implies that we should be able to handle scenes of the same size as
before the integration. When the engine has matured to fulfill goal 4, it will
be necessary with some tests:

Goal 5: Test different methods to scatter photons throughout the scene and find
out which methods that should be preferred in the engine.

It will also be imperative to review what would be most important to do
next:

Goal 6: Identify areas that clearly seems to be performance bottlenecks.

The most pressing performance problems are predicted to fall into two
broad categories: intersection testing and irradiance calculation. Our last
report identified three main areas that still needs further work [OK02, 60ff]:

1. Faster photon map data structure.

2. Faster intersection testing.

3. Optimal photon distribution.

We will test and profile all three areas to identify those areas that need
further improvement.
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In our first report we did not put focus on any special visual effect, but
wanted to look at both shadows, color bleeding and caustics [OK02, 10f].
Admittedly this scope is too big and we narrow it to the following:

Goal 7: Keep the focus on dynamic indirect lighting with color bleeding in diffuse
environments.

1.4 Overview of report

Chapter 2. Illumination theory. We start with an introduction to light phe-
nomena and continue with a description of physical models of light. This
will give us the necessary background information needed to understand
photon mapping.

Chapter 3. Real-time photon mapping. Here we give a detailed descrip-
tion of the real-time photon mapping algorithm. In particular, we describe
how illumination from the photon map is combined with the texture color.
We describe several enhancement techniques and discuss how photon scat-
tering is best performed.

Chapter 4. Implementation overview. This chapter introduces the scene
graph library that we have used as the foundation of the π-engine. We
show the basic control flow of the application and discuss parameters that
can tweak the photon mapping algorithm. We also describe how testing is
done throughout the rest of the report.

Chapter 5. Implementation details. The collaboration of the fundamental
classes in the π-engine is explained followed by an in-depth view of the
most important classes. We discuss several performance and quality related
issues that have been or should be dealt with.

Chapter 6. Results. In this chapter we explain several tests and test param-
eters. The tests are concerned with both visual quality and performance is-
sues. This chapter will also give an impression of the status of the π-engine.

Chapter 7. Conclusion. In the conclusion we look back at the work of two
semesters. We review what this particular report has contributed with and
describe directions for future work.



2Illumination
theory

I believe that global illumination will become the norm. Direct illumination ren-
derers like prman have reached the limit of the realism they can produce in terms
of lighting.
—Kaveh Kardan, Square USA

To make a realistic simulation of light it is important to understand the
physical models that are used to describe light. In order to simulate light in-
teraction in computer graphics we use an illumination model that encapsu-
lates as much of the physical model as possible. At the same time it should
be simple enough to make it tractable for use in computer graphics applica-
tions. An illumination model (or reflection model) uses parameters such
as light source properties, material properties, and surface geometry to de-
scribe light-surface interaction. Illumination models can be separated into
global and local illumination models. In a local illumination model only
direct light is considered. In a global illumination model both direct and
indirect light is considered

This chapter starts with a description of light sources and lighting ef-
fects. Then we discuss physical properties of light followed by reflection
models. We end the chapter with the fundamental equation that all global
illumination algorithms strive to solve.

2.1 Lighting effects overview

Lighting effects or phenomena depend on the light source properties as
well as the material properties and geometry of the surface where the light-

7



8 CHAPTER 2. ILLUMINATION THEORY

ing effect occurs. Therefore we discuss these properties before the lighting
effects.

2.1.1 Basic definitions

In real-time 3D computer graphics we are usually restricted to three types
of light sources: directional lights, point lights, and spot lights [Ebe01, 100].
A directional light source is assumed to be located infinitely far away such
that the light rays are parallel—a classical application is to approximate
sunlight. Point light sources emit light uniformly in all directions. A spot
light source only emits light within a cone and the light can be distributed
uniformly or with focus. Other light source attributes include the color and
intensity of the light, and point lights and spot lights should—if realism
is a concern—have their illumination attenuated with distance from the
light source. Despite its caveats (see [Wat00, 421ff]), the ubiquitous color
representation is the RGB model.

If a light source is visible from a surface, the surface will be hit by direct
light (or direct illumination). Reflection means the return of light from a
surface, and indirect light (or indirect illumination or ambient light) is
light that has been reflected one or more times. We sometimes use the term
bounce instead of reflection. Of course, a directly lit surface is also hit by
indirect light.

When light is emitted from a light source, we need to be able to de-
scribe how it scatters in the scene. Most reflection models deal with at least
two types of reflections: diffuse and specular. Diffuse reflections model the
reflection of light scattered in all directions whereas specular reflections
models mirror-like reflections. The reflective properties of most materials
can be described by a combination of these two components. A surface that
reflects light uniformly in all directions is called perfectly diffuse (or Lam-
bertian) whereas one that is completely specular is denoted as a perfect
mirror.

2.1.2 Lighting effects

Indirect illumination is an important global illumination effect which has
a profound impact on the perceived realism. This is because many of the
effects described below stems from indirect illumination.

A Glossy reflection can be seen as a combination of a diffuse and a spec-
ular reflection and results in a blurred reflection. Some materials such as
paper and wood reflects more light in shallow angles—this is known as the
Fresnel effect.

Color bleeding is the transfer of color between objects caused by the
reflection of indirect light. Real-time graphics might be able to simulate
color bleeding by using colored lights. We already saw an example of color
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bleeding in Figure 1.2. Notice that there is very little visible color bleeding
on the floor; in general the direct illumination is much stronger than the
indirect.

When light traveling through a transparent medium encounters a bound-
ary leading into another transparent medium, a part of the ray is reflected
and a part enters the second medium. The part that enters the second me-
dium is bent at the boundary and is said to be refracted [SBJWJ00, 1113].
The light interaction between specular and diffuse surfaces can produce
caustics. A caustic appears on a diffuse surface when light is concentrated
by a specular reflection or refraction. An example of caustics produced by
refraction was shown in Figure 1.2. Notice that refraction produces darker
areas around the caustics. Refraction can also disperse light as when it
passes through a prism.

Both direct and indirect illumination can form a shadow. A shadow is an
area that is only partially illuminated due to blockage of light by an opaque
object called the occluder. If a point is not directly lit at all, it is part of the
umbra of the shadow. If a point on the shadow is lit by a portion of the light
source, it is part of the penumbra of the shadow. A hard shadow consist of
pure umbra points whereas a soft shadow has its umbra surrounded with
a penumbra. It follows that the typical diffuse point light source cannot
produce soft shadows.

2.2 Lighting terminology

Several different physical models of light exist. In computer graphics the
ray optics model is predominant. Ray optics (or geometrical optics) in-
volves the study of the propagation of light with the assumption that light
travels in a straight line as it passes through a uniform media. Ray optics
can be used to simulate most visual effects including reflection and refrac-
tion. We discuss the radiometry terminology for describing ray optics.

2.2.1 Notation

In the following x, x′ will denote surface locations, ~n will be the normal vec-
tor at x, and ~ω, ~ωi are unit vectors that represents the reflected and incom-
ing direction, respectively. ~ωr and ~ωs represents the refracted and specular
reflected direction, respectively.

The set of all possible directions is the unit sphere Ω4π that has a solid
angle of 4π steradian. A hemisphere Ω2π covers 2π steradian. Associated
with a direction is the differential solid angle, dω, that is used for integra-
tion over finite solid angles. Notice that we do not use a curly “d” (δ) even
though we describe partial derivatives; this notation is commonly used
[Jen01] [Suy02].
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Symbol Description Unit
Q radiant energy [J ]
Qλ spectral radiant energy [J ]
Φ radiant flux [W ]
Φλ spectral radiant flux [W/m]

B(x) radiosity of surface location x [W/m2]
E(x) irradiance at surface location x [W/m2]

L(x, ~ω) radiance at surface point x in direction ~ω [W/(m2 · sr)]

Table 2.1: Overview of symbols used in radiometry.

In spherical coordinates the directions are represented as ~ω = (θ, φ) and
~ωi = (θi, φi). Moreover, we sometimes use subscripts i and r to mean the
incoming and the reflected of some concept. Note that all vectors are assumed
to be normalized unless stated otherwise.

2.2.2 Radiometry

In radiometry the basic quantity is the photon which describes a quantum
of electromagnetic radiation. Symbols related to radiometry are listed in Ta-
ble 2.1. A photon with wavelength λ has an energy eλ. The spectral radiant
energy of nλ photons with the same wavelength is defined as Qλ = nλeλ.

Radiant energy is the quantity of energy propagating onto, through or
emerging from a specified surface of given area in a given period of time
[Jen01, 13]. We calculate it as the energy of a collection of photons

Q =

∫

∞

0

Qλ dλ [J] , (2.1)

that is, we integrate the spectral radiant energy for all possible wavelengths.
Flux is commonly used to denote the rate of transfer of particles or energy
across a given surface. With radiant flux (or power or flux) we denote the
flow of radiant energy per time given by

Φ =
dQ

dt
[W] , (2.2)

that is, the quantity of energy transferring through a surface or region of
space per time.

Radiosity, B, is the radiant flux leaving a surface whereas irradiance,
E, is the radiant flux arriving at a surface. If a surface does not absorb or
transmit light, then B = E. Irradiance is given by

E(x) =
dΦ

dA

[

W/m2
]

. (2.3)
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Figure 2.1: The radiance, L, is defined as the radiant flux per unit solid
angle, d~ω, per unit projected area, dA.

Radiance can be thought of as the number of photons arriving (or leaving)
per time at a small area from a given direction, and it can be used to de-
scribe the intensity of light at a given point in space in a given direction
(see Figure 2.1). Formally, radiance is the radiant flux per solid angle per
projected area given by

L(x, ~ω) =
dE(x)

cos θ d~ω
=

d2Φ

cos θ d~ω dA
(2.4)

that is, the area and solid angle density of radiant flux. The cosine factor
in the denominator expresses that the surface area is foreshortened and
the effective surface area is cos θdA. In vacuum, an important property of
radiance is that it is constant along a line of sight, that is, the photons are
not dispersed, do not loose energy and do not disappear entirely—this is
used by all ray tracing algorithms [Jen01, 15].

2.3 Light scattering

Now that we have an overview of the lighting terminology, we are inter-
ested in describing light-surface interaction. In simplified situations light-
surface interaction can be described by well-known physical laws. If we
consider arbitrary reflection properties of materials, however, the impor-
tant question arises how the reflection properties can be represented. In
computer vision as well as computer graphics the bidirectional reflectance-
distribution function (BRDF) is used as the fundamental tool to describe
reflection characteristics.
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2.3.1 The BRDF

Informally, a BRDF describes how much of the light that comes in from one
direction goes out in another direction. The fraction of incident light that
is reflected by a surface is called the reflectance and is denoted ρ(x)—the
remainder is either transmitted or absorbed. Normally the BRDF is depen-
dent on the wavelength of the incoming light, but in the following we omit
such concerns. An approximation could be to use a BRDF for each of the
RGB-components.

Formally, the BRDF defines the relationship between differential reflect-
ed radiance and differential irradiance [Wu03, 6]. By Equation 2.4 we have
that

fr(x, ~ωi, ~ω) =
dLr(x, ~ω)

dE(x, ~ωi)
=

dLr(x, ~ω)

Li(x, ~ωi)(~ωi · ~n)d~ωi

[

sr−1
]

(2.5)

If we know the incident radiance field at a surface location, we can compute
the reflected radiance in all directions. This is done by rearranging equation
2.5 and integrating the incident radiance Li:

Lr(x, ~ω) =

∫

Ω2π

fr(x, ~ωi, ~ω)dE(x, ~ωi) (2.6)

=

∫

Ω2π

fr(x, ~ωi, ~ω)Li(x, ~ωi)(~ωi · ~n)d~ωi (2.7)

An important property of the BRDF is Helmholtz’s law of reciprocity which
states that the BRDF is independent of the direction in which light flows:

fr(x, ~ωi, ~ω) = fr(x, ~ω, ~ωi) (2.8)

This is a fundamental property that makes it possible to trace light paths in
both directions. Another physical property of the BRDF is that it is less or
equal to 1 due to energy conservation. A surface (which is not an emitter)
cannot reflect more light than it receives.

The BRDF is itself a simplification of more complex models since we
assume that light striking a surface is reflected at the same surface location.
For example, the BSSRDF can be used to simulate translucent materials like
milk, marble and skin [Jen01, 18f].

In this project we mostly deal with Lambertian surfaces. For a Lam-
bertian surface the reflected radiance is constant in all directions regard-
less of the irradiance. As a consequence a point on a Lambertian surface
is equally bright from any view direction. This gives the constant BRDF
fr,d(x) = ρ(x)/π [Jen01, 21]. The radiance is therefore by Equation 2.6

Lr(x) = fr,d(x)

∫

Ω2π

dE(x, ~ωi) = fr,d(x)E(x) (2.9)
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2.4 The rendering equation

A basis for all global illumination algorithms is found in the rendering
equation which can be used to compute the outgoing radiance at any sur-
face location in the model. It states that the outgoing radiance, Lo, is the
sum of the emitted radiance, Le, and the reflected radiance, Lr:

Lo(x, ~ω) = Le(x, ~ω) + Lr(x, ~ω) . (2.10)

By using equation 2.7 to compute the reflected radiance we get the render-
ing equation as it is often used in ray-tracing algorithms:

Lo(x, ~ω) = Le(x, ~ω) +

∫

Ω2π

fr(x, ~ωi, ~ω)Li(x, ~ωi)(~ωi · ~n)d~ωi . (2.11)

Li(x, ~ω) originates from outgoing radiance on other surfaces which reveals
the recursive nature of the equation. The integral is solved numerically by
tracing rays over the hemisphere and calculating the outgoing radiance at
the surfaces that they intersect [Suy02, 9f].

2.5 Summary

Many different lighting phenomena exist and we have seen how they are
affected by different types of light sources and material properties (Section
2.1). The light-surface interactions that lead to these phenomena are mod-
eled in an illumination model. Local illumination models only model direct
light whereas global illumination models model both direct and indirect
light.

In Section 2.2 we described radiometry which is a lighting terminology
where the basic quantity is the photon. The two most important concept in
radiometry is irradiance and radiance. Irradiance can be thought of as the
number of photons arriving per time at a particular location from all di-
rections. Incoming radiance can be described as the irradiance originating
from a particular direction.

BRDFs are used to describe how much of the light that comes in from
one direction is reflected in another direction (Section 2.3). The most impor-
tant property of the BRDF is Helmholtz’s law of reciprocity which allows
global illumination algorithms to trace light paths in both directions. Out-
going radiance on a diffuse surface is the product of the diffuse BRDF and
the irradiance.

In Section 2.4 we described the rendering equation which provides a
mathematical model for computation of outgoing radiance. The equation
can be solved numerically by ray-tracing; incoming radiance is computed
by recursively computing the outgoing radiance from other surfaces.





3Real-time
photon mapping

One of us recalls producing a “random” plot with only 11 planes, and being told
by his computer center’s programming consultant that he had misused the random
number generator: “We guarantee that each number is random individually, but
we don’t guarantee that more than one of them is random.”
—[PVTF02]

Photo-realistic photon mapping is a full global illumination algorithm that
can be used to solve the rendering equation in a way that includes com-
plex simulation of indirect illumination. Conceptually, the method is ordi-
nary Monte Carlo ray tracing with extra light information stored in pho-
ton maps. Monte Carlo ray tracing approximates the rendering equation
by tracing a large amount of randomly generated rays throughout the the
scene for many recursions. This is computationally very expensive and a
single image can take hours to render. In this respect there is a long way
before we can generate tens of images per second.

In this chapter we review the basic photon mapping algorithm and meth-
ods we use to enable it to run in real-time. Our presentation emphasizes
the cut down real-time version that we use, but we summarize how it de-
viates from the normal photo-realistic rendering method. Two techniques
from the photo-realistic version are introduces; we shall later evaluate their
relevance to real-time rendering. We describe how the irradiance estimate
can be blended together with the textures of the scene to produce the final
image. Then we investigate how photons should be traced throughout the
scene, and quality improvement techniques are discussed. For the rest of
this report we assume that the reader has a basic understanding of real-
time graphics (an overview can be found in [OK02, 39ff]).

15
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3.1 The algorithm

Photon mapping is a simple two pass algorithm consisting of a photon trac-
ing pass and a rendering pass. In real-time photon mapping we do not
make a full photon tracing pass for each frame, but distribute calculations
out on several frames to speed up the algorithm. An important aspect of
our work is to enable global illumination in a dynamic context. When light
sources and objects are animated, it can lead to problems when photons are
stored for more than one frame. One could consider to make an invalida-
tion scheme that detected which photons to remove and re-emit (see e.g.
[DBMS02]). Such a scheme is probably of less value if the scene is full of
action—then the entire photon map should be invalidated. Until we can
afford re-shooting the entire photon map for each frame, we only shoot a
fraction of the photons for each frame. What is important to this strategy
is that it should work reasonable as long as the frame-rate is high, so the
photon map is re-filled several times per second.

Before we explain the photon mapping algorithm, it will be necessary
with a short description the photon. In photon mapping a photon is defined
by its power, position and incoming direction. In reality a photon has a par-
ticular wavelength which is perceived as a certain color by the eye. When
many photons of the same wavelength reach the eye, we see the same color,
but with a larger intensity. In photon mapping (and in computer graphics
in general) the concept of color and intensity merges into one component,
namely the power represented as an RGB vector. In the RGB vector the re-
lationship between the three components define the color and the length of
the vector or the sum of the components defines the intensity. Therefore a
single photon represents a collection of real photons with the same wave-
length.

3.1.1 Photon tracing

Photon tracing works in the same way as ray tracing, except for the fact that
photons propagate power whereas rays gather radiance—this is important
since the photon-surface interaction can be different than ray-surface inter-
action [Jen01, 60]. Photon tracing of a single photon can be described in five
steps:

1. Emit: Choose photon origin and direction from light source. This pro-
cedure depends on the type of light source, see Section 3.4. The power
of the light source is distributed evenly among all emitted photons.

2. Intersect: Trace photon until the first surface intersection. If no inter-
section is found, the next photon can be traced.
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Figure 3.1: Left: Photon paths in a scene with a specular sphere on the left
and a glass sphere on the right: (a) two diffuse reflections followed by ab-
sorption, (b) a specular reflection followed by two diffuse reflections, (c)
two refractions followed by absorption [JCS01, 20]. Right: Gathering radi-
ance in a sphere. The gray area is the area of the circle inside the sphere that
is used to find the irradiance [JCS01, 30].

3. Store: Store the photon containing the point of intersection and the
incoming direction of the photon in the photon map.

4. Reflect: Create reflected photons. First the power of the reflected pho-
ton must be calculated by scaling the power of the incoming pho-
ton with the diffuse reflectance ρ(x) and the diffuse BRDF fr,d [Jen01,
61]—this is how color bleeding is accounted for. To make it simple we
use a reflectance of 1 and assign one BRDF for an entire surface. To
quickly cover the scene with photons, the photon is split into several
lower-powered photons which are dispersed diffusely on the hemi-
sphere.

5. Recurse: Goto step 2 until some predefined depth is reached. This
depth is usually 1 or 2.

Figure 3.1 shows three different photon paths. A photon path denotes the
light path traveled by a photon until the photon cease to exist. While the
photons are traced throughout the scene, the photons must be stored so
that they can be easily retrieved later. A kd-tree data structure is used to
store the photons because it can be represented compactly as an array and
because it is quite fast to search for k photons in. If n is the number of pho-
tons stored in the photon map (which we denote as the size of the photon
map), the k nearest photons of a point can be found in O(lg n + k) time
[Jen01, 69]. Such a search is called a nearest neighbor search. Because pho-
tons are stored in a geometry-independent data structure, photon mapping
scales well with complex scenes [Suy02, 106].
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3.1.2 Rendering

In normal polygon rendering all unculled polygons are passed directly to
the graphics hardware which draws the polygons on the screen. To take
advantage of the photon map we intervene the normal rendering pipeline
between culling and drawing. The additional steps in this pass are:

1. Irradiance estimate: The irradiance at a vertex can be estimated by
direct gathering or final gathering.

(a) Direct gathering: This process is depicted in Figure 3.1 on the
right. Conceptually, a nearest neighbor search for k photons is
conducted at a vertex by expanding a sphere until k photons is
found or until the search radius exceeds a predefined maximum.
We call this distance for the maximum search radius. The irra-
diance is the sum of the collected radiance divided by the area
in which the photons were found.

(b) Final gathering: This process is used to mask radiance inaccu-
racies in the photon map by approximating the irradiance by a
huge amount of radiance estimates. Final gathering gives bet-
ter results, but it is much slower to compute. The procedure is
explained in detail in Section 3.2.2.

2. Radiance reconstruction: The irradiance is then interpolated between
vertices by graphics hardware. Combined with the BRDF of the sur-
face and (optionally) direct illumination from the light sources, the
radiance is computed for each pixel.

3.1.3 Comparison with the photo-realistic algorithm

To make the algorithm faster we use far fewer recursions, fewer photons,
disable final gathering and use several simplifications. First of all, the we
only simulate Lambertian BRDFs which means, for example, that we can-
not get caustics. In normal photon mapping there are two or three photon
maps: the global photon map, the caustic map and the volume photon map.
The caustic map stores photons that have been specularly reflected or re-
fracted at least once whereas the volume map is used when participating
media like smoke must be simulated.

Second, we simulate diffuse reflection by splitting up a photon which is
actually the opposite of the photo-realistic version where fewer photons are
usually reflected. Instead of reflecting all photons with lesser power, only
a reflectance dependent fraction of the photons is emitted with full power;
this is called Russian Roulette [Jen01, 61].
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Our radiance construction is quite different since it is both simpler and
relies on hardware interpolation. Ignoring the volume map, a normal radi-
ance construction is done using ray tracing where the irradiance at a single
point is computed as the sum of the direct light, the specularly reflected
light, a direct gathering in the caustics map and final gathering from the
global map [Suy02, 115].

3.1.4 The radiance estimate

The radiance estimate at a given surface location is calculated using the
photon map as

Lr(x, ~ω) ≈ 1

πr2

k
∑

p=1

fr(x, ~ωp, ~ω)∆Φp(x, ~ωp) (3.1)

where the first term is the circle area (r is the distance to the most dis-
tant photon), fr is the BRDF, ∆Φp is the power of the photon and ~ωp is
the incoming direction. This formula can be derived from Equation 2.7
(see [Suy02, 110f]). The factor 1

πr2 is area estimate for a sphere; if we use
other volumes to gather radiance in, we might have to change the area es-
timate. When we only consider Lambertian surfaces, the radiance estimate
becomes

Lr(x) ≈ fd(x)
1

πr2

k
∑

p=1

∆Φp(x, ~ωp) (3.2)

where the factor

1

πr2

k
∑

p=1

∆Φp(x, ~ωp) (3.3)

is an approximation of the irradiance at x which we denote as the irradi-
ance estimate.

The accuracy of the estimate depends on n and k—ideally n should be
very large (perhaps millions) and k should be relative low (perhaps hun-
dreds). The formula and radiance gathering itself is based on several as-
sumptions:

• the geometry is locally flat,

• the photons are well distributed throughout the scene,

• no photons from other surfaces are present.
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If the geometry is not locally flat, the area estimate becomes wrong. In the-
ory one should simply use a very little radius, but in practice it might be
difficult unless the photon map stores a huge amount of photons. If pho-
tons are not well distributed, the power carried by the photons will not
represent the real power.

The area estimate can also be wrong for another reason: near edges and
corners large parts of the sphere will be outside geometry. The error can be
quite significant and the effect is known as boundary bias [Suy02, 112].

Photons that belong to entirely different surfaces or areas far away are
said to leak into the irradiance estimate. On those surface the illumination
could be different thus introducing a bias. Surface leaking is defined as
leaking from surfaces with a different normal or translated surfaces with a
similar normal, and we call the corresponding bias for surface bias. Using a
large maximum search radius near shadow boundaries and inside caustics
can also include photons from a differently lit area even though the surface
is flat; this is denoted distance leaking and it results in an distance bias in
the radiance estimate.

Corners and edges are the most problematic regions in photon mapping
since all three types of bias can be introduced here. Section 3.5 discusses
bias in detail.

3.2 Improvements

In this section we describe two techniques that are normally used in photo-
realistic rendering: a maximum search radius heuristic and final gathering.
The radius heuristic promises to remove distance bias and improve per-
formance of the radiance estimate whereas final gathering can potentially
produce much better rendering results.

3.2.1 Maximum search radius

The maximum search radius and the maximum search count (k) controls
the behavior of the radiance estimate. While k is relatively scene indepen-
dent, the search radius is not. If the radius is too high, we search too much
of the kd-tree which impede performance and introduces distance bias.
If the radius is too low, we get an inaccurate radiance estimate. It would
therefore be beneficial to automate the process of finding a good maximum
search radius in a scene independent manner [Suy02, 116f].

If a radiance estimate is low, it means we have searched in a area with
low photon density. In this area there is a high change of distance leaking
and a smaller radius would have been preferred. If the scene in general
has a low photon density, then we should in general use a relatively small
radius. The question now is when a radiance value can be labeled as low.
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A sort of average radiance estimate can be constructed by considering all
photons:

Lavg(x, ~ω) ≈ 1

πr2
n

n
∑

p=1

fr(x, ~ωp, ~ω)∆Φp(x, ~ωp) . (3.4)

where rn is the radius of the sphere enclosing all photons. We label a radi-
ance estimate as low when it is below a certain small percentage α of the
average radiance. The maximum search radius is reached when

Lr = αLavg . (3.5)

We simplify both estimates by replacing ∆Φp with an average photon power
∆Φavg and by replacing the BRDF evaluation by an average diffuse BRDF
ρavg/π. The equality becomes

k ∆Φavg ρavg/π

πr2
max

= α
n ∆Φavg ρavg/π

πr2
n

. (3.6)

and therefore

rmax =

√

k r2
n

αn
(3.7)

A slightly different heuristic can be found in [JCS01]. Both heuristics show
the same square root dependence on n and are reported to perform well
(especially with caustic maps).

3.2.2 Final gathering

Final gathering is used to mask errors in the radiance reconstruction from
the global map [Suy02, 115]. The are two reasons for using final gathering:
(1) the global photon map only needs to store a coarse approximation of the
radiance in a scene [Suy02, 107] and (2) some surfaces are hard to disperse
enough photons on (there exist solutions to this problem, but they are not
easy to apply in a real-time context [SW00] [PP98]). Since final gathering
can produce much better rendering results, it also gives us a hint about
how good the real-time method can potentially become.

The principle behind final gathering can be seen in Figure 3.2. A final
gather is conceptually a diffuse sampling of radiance over all incoming
directions; each direction defines a final gather ray which intersects the
scene and the outgoing radiance is calculated here. (Section 3.4 explains
how the sampled directions should be generated). Once all radiance esti-
mates are found, they are averaged together and multiplied with the local
BRDF to produce the final radiance estimate. By taking an average we make
the estimate independent of the number of final gather rays. Notice that the
last step does not consider any area as it is done by Equation 3.1.



22 CHAPTER 3. REAL-TIME PHOTON MAPPING

Figure 3.2: Left: A picture rendered with and without final gathering. Al-
though these pictures are rendered using the radiosity algorithm, the ef-
fects are similar for photon mapping [Suy02, 40]. Right: Final gathering for
a point near a corner. Many rays will hit the close-by surface. The errors in
the radiance reconstruction in the encircled area may be visible in the final
gather result.

The error on surfaces very close to the point where a final gather is per-
formed may be visible in the accurate estimate—this case is shown in Fig-
ure 3.2. The wall close-by (red rays) covers a large part of the hemisphere
with respect to the final gathering point. The error in the reconstruction in
that area will have an important influence on the error in the estimate. The
simple solution is to make a secondary final gather if the final gather point
is within a certain (small) distance. In practice this should only be necessary
for a small fraction of the rays.

Final gather rays are traced like normal rays with one exception. When
the ray hits a light source directly or indirectly through specular bounces,
it should not be used to make a radiance estimate. In the first case the ra-
diance is accounted for by direct light sampling, and in the second case
the radiance is included in the caustics map. Note that this is only done in
photo-realistic rendering.

The number of final gather rays can be several thousands, and most
of the rendering time is therefore used in final gathering. Apart from the
search radius heuristic, two well known techniques can optimize final gath-
ering; the first tries to minimize the number of nearest neighbor searches
and the last tries to reduce the number of final gathers [Suy02, 116ff]. Irra-
diance pre-computation works by precomputing irradiance in all the pho-
ton positions. Simply put, a radiance estimate is calculated by multiplying
the precomputed irradiance from the nearest photon with the local BRDF.
The running time can be decreased by as much as a factor of six. Irradiance
caching works by computing the final gathering irradiance estimate for a
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selected number of points in the scene only and to interpolate these result
for all points in between[Suy02, 118] [Jen01, 140]. The speedup can be a
factor of one-hundred or more.

3.3 Rendering and blending

In this section we briefly discuss a couple of alternative ways to render
the illumination stored in the photon map. We shall see two different ap-
proaches to radiance reconstruction.

3.3.1 Rendering

The overall goal for all global illumination algorithms is to calculate the ex-
act radiance in the direction of the viewer for each pixel. We cheat a lot and
only calculate the radiance in each visible vertex and let the graphics hard-
ware interpolate all intermediate radiance values. (In computer graphics
this radiance is represented by an RGB vector and although its more than a
color, its common just to talk about a pixel color even though we mean the
radiance.)

To calculate the radiance for a single vertex we calculate the irradiance
estimate (not the radiance estimate) using the photon map and include it
in a formula together with the color of the texture. In some sense the color
of the texture encodes the perfectly diffuse BRDF and Equation 3.2 gives
a simple way to combine the BRDF and irradiance. In effect the irradiance
estimates are used to generate a light map which is then transformed in a
pixel shader as described in the next section.

The speedup of this hardware interpolation is without doubt enormous
compared to estimating the radiance many times for each pixel as it is done
in photo-realistic rendering. Other sources recognize that hardware inter-
polation can be used for rendering diffuse surfaces [DDM03, 57ff].

An interesting approach to hardware utilization can be found in [Kel97].
Keller generates a particle approximation of the diffuse radiance in the
scene using a technique similar to quasi-Monte Carlo integration which is
simply Monte Carlo ray-tracing using quasi-random sequences—see Sec-
tion 3.4 for a discussion. The particles are much like photons since they
propagate power. The graphics hardware renders an image with shadows
where each particle is used as a point light source. Global illumination is
obtained by summing up the single images in an accumulation buffer.

We can actually choose to use the photon map in two ways: we can
choose to store the direct light in the photon map or not. In photo-realistic
rendering the direct illumination is often excluded from the photon map
and the light sources are explicitly sampled with ray-tracing. If the scene
is dominated by indirect illumination, storing the direct illumination in the
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photon map can be adequate [Jen01, 89]. In our implementation we have
made it easy to leave out the direct light and enable OpenGL lighting in-
stead.

3.3.2 Blending

The final color of a pixel depends on many factors. In the standard render-
ing pipeline there is a fixed number of settings to control how, for example,
the color of a fragment is combined with the color of a texture and light-
ing information to create the final pixel color. A pixel shader is a user pro-
grammable replacement of this process. We will now see how a pixel shader
can be used to let the hardware blend the irradiance estimates with the
texture colors.

The first method is the one we presented in our last report [OK02, 74f].
The idea is to use the irradiance estimate to simulate everything from shad-
ows to caustics. An irradiance estimate with the value [0, 0, 0]T is mapped
to a fragment as [−1,−1,−1]T and should represent completely darkness
and an irradiance estimate with value [1, 1, 1]T is mapped to [1, 1, 1]T and
should represent completely white saturation. If we denote the value of an
irradiance estimate with

−→
Cf (fragment color), the final pixel color is

−→
Cp = 2

−→
Cf − [1, 1, 1]T +

−→
Ct (3.8)

where
−→
Ct is the color of the texture. For each component of the RGB vector

the range of the sub-expression 2Cf − 1 is [−1, 1] which makes it possible
to darken a white texture (Ct = 1) completely and to make a caustic on top
a black texture (Ct = 0). This texture transformation is easily implemented
in a standard pixel shader. Note that Cf = 0.5 gives the texture color.

While this method gives full flexibility, it also has some drawbacks. The
most apparent problem is in saturated areas which appears completely
white. Normally we should not allow irradiance estimates above 0.5 un-
less there is a caustic (which we do not yet handle). In a test we tried to
keep the estimates under 0.5 by normalizing the estimates with the highest
estimate from the previous frame. Unfortunately, there is always a few es-
timates that are high which makes the majority of the estimate too low. The
visual result is that only a small area close to the light source is illuminated.

Since our last report we have narrowed our scope to exclude caustics
and therefore a more conventional light map approach without the above
problems can be taken. The conventional approach is to multiply the color
of a light map with the color of the texture, that is,

Cp = CfCt (3.9)

for each RGB component [WP01, 314] [Joh03, 316]. This formulation is bet-
ter because it is physically plausible according to Equation 3.2. As stated
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Figure 3.3: Light emission profiles for different types of light sources.
[JCS01, 16]

in the previous section,
−→
Cf is the result of the (perhaps interpolated) irradi-

ance estimate and
−→
Ct can be thought of as the Lambertian BRDF. The effect

is that the texture color is decreased or perhaps unmodified which gave
rise to the term dark mapping [Oud99, 15]. So we can still create shadow
effects by this transformation whereas we have lost the ability to brighten
geometry because the range of each component of

−→
Cf is normally clamped

to [0, 1]. If there exist some way to extend this range, it might be possible to
create white saturation.

3.4 Photon scattering

When photons are traced throughout the scene, it is important that the dis-
tribution of the photons in the photon map approximates the actual radi-
ance distribution. In this section we first discuss the general methods used
to scatter the photons and then we describe how they can be improved.
Our primary aim is to generate directions for two purposes: a direction to
emit the photon from a light source and a direction for diffuse scattering.

3.4.1 Simple scattering

The light sources we use are point light sources or spot lights. The emission
profile for these and other types can be seen in Figure 3.3. For a diffuse point
light source photons are normally shot randomly in all possible directions.
To emit photons from a spherical light with a given radius we first pick a
random position on the surface. Then we pick a random direction on the
hemisphere above this point.

The hemisphere on the spherical light is sampled in the same manner
as an ordinary diffuse reflection. Given two uniformly distributed random
numbers ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1] we find a random diffuse reflected direc-
tion as

~ωd = (θ, φ) = (cos−1(
√

ξ1), 2πξ2) (3.10)
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Figure 3.4: Different distributions of θ. Notice how the square-root shifts
the directions towards the ξ-axis. A steeper slope means that the angular
density of θ is low; this is the case for small and large values of ξ. However,
the surface area on the sphere is much smaller for small values of θ.

using spherical coordinates [Jen01, 22]. A logical question is why is θ not
computed as cos−1(ξ1)? If so, the angular density of θ would be relatively
high at angles away from the normal. By taking the square root we shift the
higher density towards the normal. Figure 3.4 shows the two distributions.
A relevant discussion can also be found in [II01].

It may also sound strange that diffuse scattering does not have uniform
density over the hemisphere. This is simply because the receiver (whether
another surface or the eye) sees the projected area of the light source [Jen01,
57]. If we could trace infinitely many photons, it would not be necessary
to take the projected area into account because then a radiance estimate
would be extremely accurate. But as long as we work with a finite and small
photon map size we cannot rely on the geometric properties to account for
the projected area. Using the inverse cosine can be seen as a way to emit
more photons in the most important directions; the surfaces directly above
a certain point should in general receive more light because they in general
will be facing the tangent plane in the point. In final gathering we must also
take this fact into account, but from another perspective. The directions of
final gather rays should be generated using Equation 3.10.

For perfectly diffuse light sources we need a way to sample sphere di-
rections uniformly. In this context uniformly means that the probability
that the point is in a region depends only on the area of the region and
not its location on the sphere. Discrepancy can be used to measure how
uniform a distribution is [Shi91, 5]. Discrepancy provides a single number
that indicates something about the overall quality of a set of sample points:
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Vec3 direction;
do
{

direction[0] = 2 * uniform_01() - 1;
direction[1] = 2 * uniform_01() - 1;
direction[2] = 2 * uniform_01() - 1;

}
while ( direction.length() > 1 );

Figure 3.5: Rejection sampling of a single direction in a unit sphere [Jen01,
57]. uniform_01() should return uniformly distributed random numbers
∈ [0, 1].

for( int k = 1; k < N + 1; ++k )
{
float h = -1 + 2 * ( k - 1 ) / float( N - 1 );
theta[k] = arccos( h );
if( k == 1 or k == N )

phi[k] = 0;
else

phi[k] = ( phi[ k - 1 ] + 3.6 / sqrt( N * ( 1 - h * h ) ) )
mod ( 2 * pi );

}

Figure 3.6: The Saff-Kuijlaars method. The code shows how to generate N
uniformly distributed points on a sphere in polar coordinates [SK97].

a low discrepancy means that the distribution is very uniform whereas a
high value means that the distribution is poorly uniform. (Several formal
definitions of discrepancy are given in [Shi91] and [SKP98]).

The two standard techniques for sampling directions on a sphere are re-
jection sampling and explicit sampling. Rejection sampling works by gen-
erating random points inside the unit cube until the point is also within the
unit sphere; the technique is shown in Figure 3.5. An elaborate discussion
(albeit not a proof) of why this technique gives a uniform distribution can
be found in [PVTF02, 294f]. Explicit sampling maps the random numbers
to the surface of the sphere by for example randomly sampling the angles
of a spherical mapping [Jen01, 57].

Other methods directly generates N points on a sphere. We have imple-
mented the method shown in Figure 3.6. In lack of a better name we call
it the Saff-Kuijlaars method [SK97]. By inserting the minimum and max-
imum k we can see that h assumes discrete values in the interval [−1, 1];
this means θ lies in the range [π, 0]. The sampling of φ gives 0 for the two
extremes of θ which corresponds to the two poles on the sphere. In Figure
3.7 we can see how points are distributed with N = 500. The plot to the
left unveils problems as nearly no points are present in a band around the
sphere where φ is close to 0 or 2π.
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Figure 3.7: Points computed by the algorithm in Figure 3.6 with N = 500.
Left: The method has problems around the y = 0 plane where φ is close to
0 or 2π. Right: The points seems evenly distributed in the other directions.

3.4.2 Improved scattering

Let us discuss how we can improve rejection sampling. In a real-time con-
text it is not enough that the random number generator produces uni-
formly distributed numbers, but we must require that the discrepancy is
low even for a small number of samples. This is a natural consequence of
the relatively small amount of photons that we can afford to trace. There
exist at least two solutions to this: stratified sampling and quasi-random
sequences.

If we somehow can subdivide the surface of the sphere into patches hav-
ing approximately the same area, we could simply pick a random sample
within each patch. This process of spreading out the samples is called strati-
fied sampling [Jen01, 155] [PVTF02, 321f]. We can include stratification into
Equation 3.10:

~ωd = (θ, φ) = (cos−1
(

√

j − ξ1

M

)

, 2π
i − ξ2

N
), j ∈ [1;M ], i ∈ [1;N ] (3.11)

where j, i,M, and N are integers. M and N defines the subdivision of the
hemisphere, and although the subdivision is clearly not optimal (the sur-
face patches have different area) it is much better than naive random sam-
pling. One should always prefer to increase the number of patches rather
than to use more samples within larger patches [Suy02, 20]. Geodesic dome
constructions also provide a useful way to partition the sphere into rela-
tively uniform patches (see [BB82, 492f]). One problem with the stratifica-
tion is that we have to decide in advance how many samples that we need.

A quasi-random sequence is a sequence of n-tuples that fill n-space
more uniformly than uncorrelated random points; several methods can be
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found in [PVTF02, 313ff], [SKP98, 4], and [KK02]. The sequences exhibit
two important properties:

1. The points can be generated on demand so that we do need to know
a priori how many points we want.

2. The points have a very low discrepancy.

Despite their name, there is nothing random about these sequences. If we
use quasi-random numbers when using rejection sampling or diffuse sam-
pling of the hemisphere (Equation 3.10), the result should include implicit
stratification [Jen01, 148]. It is important to remember that each coordinate
is generated by a different quasi-random sequence [PVTF02, 316].

Empirical studies suggests that at least five times as quick convergence
can be achieved with sampling based on quasi-random sequences com-
pared to random sampling, and it can be significantly better in Lamber-
tian scenes [PVTF02, 318f]. For some very accurate purposes, a little real
pseudo-randomness should be added to the sequences to avoid patterns in
caustics [Jen01, 148].

3.5 Bias reduction

The traditional irradiance estimate is done by collecting photons within
a sphere which can lead to surface and distance leaking. As seen on Fig-
ure 3.9, surface leaking especially happens at edges and corners. Before we
discuss these two problems, we briefly describe how distance bias can be
avoided.

Distance bias is particular noticeable on surfaces with radiance discon-
tinuities. Radiance discontinuities cause a sharp change in the density of
photons. In the case that the real radiance drops close to zero, the recon-
structed radiance falls off as 1/r2 where r is the distance to the radiance
discontinuity [Suy02, 113].

Filtering is the traditional technique used to sharpen caustics [JCS01, 32],
but we expect that the technique can sharpen shadow boundaries as well.
A filter assigns weights to each photons in the estimate whereby some pho-
tons will contribute more than others in the final estimate. A simple weight-
ing criteria is for example the distance from the photons to the estimation
point. We shall not investigate filtering further; different methods can be
found in [Jen01, 80ff] and [Suy02, 113f].

3.5.1 Surface bias

We will now examine four different approaches that can be used to avoid
surface leaking by detecting and removing leaked photons before they are
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collected. One might consider postponing this filtering process until the
k nearest photons have been found, but by experiments we found that it
makes the irradiance estimate very unstable. The simplest and least effec-
tive method is to use the incoming direction of the photon (1). The more
complicated solutions exchange the sphere with other geometric primi-
tives. The simplest solution here is to use a sphere slice (2), a cylinder is
only slightly more complicated (3) whereas an ellipsoid is the most com-
plicated (4). No matter what scheme that is used, it must be relatively fast
since it will be used heavily during nearest neighbor searching.

A simple operation used in the following is the projection of a vector
onto another. The projection of ~w onto ~v is a new vector ~pw,v in the direction
of ~v:

~pw,v = ~uv|~w| cos θ = ~uv

~v · ~w

|~v| (3.12)

where ~uv is a unit vector in the direction of ~v.
The incoming direction of the photon is used to exclude photons from

the backside of thin surface. The test is run after the photon is known to be
within the sphere. The method works like hidden surface removal by com-
puting the dot product between the normal and the incoming direction:
if the result is negative, the angle between the two vectors must be more
than 90 degrees and the photon must belong to the opposite hemisphere.
While this method is cheap to calculate, it cannot exclude many photons at
orthogonal surfaces in corners and at edges.

We have instead added an extra check to the standard sphere approach.
In Figure 3.8 the implementation of the method is shown. Besides being
inside a sphere we further require a photon to be within a small distance
in the direction of the surface normal. This is done by projecting the vec-
tor from the search location to the position of the photon onto the normal.
Since we know that search_location_normal is normalized, Equation
3.12 tells us that we get the length directly by a dot product. Conceptually
this makes us search only in a small slice of the sphere. The gain is that we
remove almost all surface leaking. Unless the scene contains very thin ob-
jects we can omit the incident direction check because the slice is just made
thinner than the thinnest object. This also means that we can leave out the
incident direction in the photon data structure.

It often is suggested to use a cylinder instead [JCS01, 32]. The result of
the filtering will be similar to the sphere slice, but it will require a few more
instructions. Instead of calculating the length of the projection, one should
calculate the projection of to_project onto the normal (cf Figure 3.8).
Then one should create the vector from the projection to the position of the
photon. If the length of this vector is less than the radius of the cylinder, the
photon must be within the cylinder.
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bool check_inclusion( float squared_dist, const Photon& p ) const
{
assert( equal( search_loaction_normal.length(), 1 ) );
bool in_sphere = squared_dist < max_squared_radius;
if ( not in_sphere )

return false;

Vec3 to_project = p.position() - search_location;
float projected_length = to_project * search_location_normal;
bool in_slice = projected_length < sphere_slice_size and

projected_length > -sphere_slice_size;
return in_slice;

}

Figure 3.8: Algorithm for determining if the photon lies within a thin slice
in the sphere. operator*() computes the dot product.
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Figure 3.9: Using the sphere to locate photons in corners can include wrong
photons. An ellipsoid is a poor choice. Using a slice of a sphere is fast an
includes approximately the same photons as an ellipsoid.

An ellipsoid is also mentioned as an alternative volume [Jen01, 79]. To
check if a photon is included, we consider the points of an ellipsoid with
center (x0, y0, z0) and semi-axes a, b, c:

(x − x0)
2

a2
+

(y − y0)
2

b2
+

(z − z0)
2

c2
≤ 1 . (3.13)

A photon shall contribute to the irradiance estimate if the inequality holds
for its position. While this computation is relatively simply it will only
work for axis-aligned ellipsoids; if that is not the case the test will be far
more expensive. Therefore the ellipsoid is a poor candidate.

3.5.2 Boundary bias

In photo-realistic rendering boundary bias is not a serious problem since
it can be masked by final gathering and since the maximum search radius
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Figure 3.10: Comparison of different area estimation techniques. Starting
from upper left corner: A convex hull, a bounding sphere, an axis-aligned
bounding box, an oriented bounding ellipsoid, and an oriented bounding
box. The convex hull gives the best results.

can be made much smaller than in real-time rendering. In real-time pho-
ton mapping, on the other hand, it is quite apparent. Basically the problem
stems from a wrong area estimate near edges and corners, because up to 3

4

of the search volume will reach out into open space (in a three-way corner).
If we had access to geometrical description of the scene, it would be possi-
ble to compute the exact area [HP01]. Unfortunately, we only have a list of
polygons from which it is hard to extract such a description.

What we can do is to fit some kind of bounding volume around the pho-
tons that we intend to use for the irradiance estimate. Figure 3.10 compares
several bounding volumes. The simplest solution is to use axis-aligned
bounding volumes. While this works fine on axis-aligned geometry it fails
miserably on other surfaces (we tried it). To create oriented bounding vol-
umes it will be necessary to conduct a principal component analysis. A
principal component analysis is a statistical method used to find the axis
that is naturally aligned to a set of points [Len02, 183ff]. This procedure
requires computing the roots of a cubic polynomial and solving a homoge-
neous linear system for each of the roots.

A well-know method is to calculate a convex hull of the points in the
estimate. We have not investigated how expensive it will be, but first the
points need to be projected down into the plane defined by the normal.
Then the convex hull algorithm can begin.
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3.6 Summary

In Section 3.1 we stated that photon mapping consists of photon tracing and
rendering. A key optimization is to distribute photon tracing over several
frames. Furthermore, we only handle diffuse surfaces, make diffuse reflec-
tions by splitting a photon into several new photons, and rely on hardware
interpolation of irradiance values between vertices. Furthermore, we do
not support caustics or volume rendering so separate maps for these ef-
fects are not used. To compute the irradiance estimate it is customary to
use a sphere to locate photons in. This makes it possible for photons to leak
into the estimate.

As described in Section 3.2, a simple heuristic can be used to specify a
fairly scene independent search radius, reduce distance bias, and perhaps
make the radiance estimate faster to compute. Photon mapping can be ex-
tended with final gathering; at the expense of more rendering time, the
results can be much better.

Section 3.3 described how the illumination stored in the photon map
can be blended with the texture. Graphics hardware is used to render dif-
fuse illumination via vertex color interpolation and this is one of the key
optimization of several real-time techniques. The first blending approach
makes it possible to visualize colors from black to white whereas the sec-
ond allows only from black to the texture color.

Section 3.4 explained how photons should be emitted from different
light sources and how diffuse scattering should be done. To get a good dis-
tribution of photons throughout the scene we rely on either stratification of
the photon directions or quasi-random sequences.

Several techniques used to reduce bias in the irradiance estimate was
explained in Section 3.5. Filtering can remove distance bias. Surface bias
can be removed effectively by using a sphere slice instead of a sphere when
gathering radiance; other approaches give similar results, but are more ex-
pensive to compute. Boundary bias can be resolved by computing a more
accurate area estimate. To use bounding volumes effectively, it will be nec-
essary with a costly principal axis analysis. The most accurate solution
would be to create a convex hull. We believe that both of these solutions
will be far to expensive for real-time photon mapping.





4Implementation
overview

If you can’t write it down in English, you can’t code it.
—Peter Halpern, Brooklyn, New York

A real-time graphics engine is a complex piece of software with many non-
trivial responsibilities [OK02, 2f]. In this respect it is important that pho-
ton mapping can be easily integrated with existing engines. Therefore this
chapter presents the status of our implementation with focus on the inte-
gration of real-time photon mapping.

We start with an introduction to the implementation and its most impor-
tant modules. Then we show the core flow of control to give an overview
of what takes place when rendering a single frame. A presentation of the
many parameters of the photon mapping algorithm follows. In the end we
describe how we test and introduce the three test scenes that we will use in
the coming chapters.

4.1 Engine overview

We first describe the modules that are partly or completely implemented.
The modules are listed below with a description of their desired function-
ality and status.

• Agent: An autonomous agent (or agent) is simply a computer con-
trolled character. Different agents should reside in this module to-
gether with functionality to control them and their artificial intelli-
gence. Currently only the functionality for controlling the player or
observer is implemented and agents are restricted to follow a prede-
fined path.

35
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• BSP: Loading of scenes stored in Quake 3’s BSP tree format is handled
in this module. BSP tree stands for binary space partitioning tree and
refers to the fact that each node in the tree splits the remaining geom-
etry into two subtrees according to an arbitrary sorting plane—each
child contains everything on a particular side of the sorting plane
[Len02, 202f]. BSP trees are used in 3D engines to accelerate hidden
surface removal, to ensure correct back-to-front rendering [Oud99,
10] and to accelerate spatial queries like intersection testing [Cha01,
39ff]. In this module extra functionality such as mesh refinement is
also included. The resulting BSP trees are just like normal Quake 3
trees which have few polygons in the leaves.

• Contrib: This module stores the libraries we have not coded our-
selves. The most important library is Open Scene Graph (OSG) which
we have built everything on top of. OSG is a scene graph framework
with good culling performance and easy integration of pixel shaders.

• Input/Output: All external communication is handled in this mod-
ule. It includes configuration file read/write, keyboard/mouse inter-
action and display configuration.

• Math: Common mathematical primitives such as matrices, vectors
and planes as well as functions on these.

• Photon mapping: The photon mapping functionality resides in this
module. This important module will be described thoroughly in this
and the next chapter.

• Scene: Camera and scene management is implemented as a thin wrap-
per around the Open Scene Graph library. This is were the general
scene graph rendering is combined with our photon mapping func-
tionality.

• Shader: Collection of different pixel shader programs. Most impor-
tant is the program used to combine texture and fragment color.

Many other modules exist in a normal engine, but time constraints means
that we have to do with a minimal engine. Some of the larger modules that
almost certainly exists in normal engines are kinematics, physics simula-
tion and artificial intelligence [WP01] [Len02] [Rab02]. What is quite im-
portant is that these modules should not affect the integration of photon
mapping. The only impact such modules should have is performance re-
lated.
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4.2 Open Scene Graph and BSP trees

We will now give an overview of the functionality we use from Open Scene
Graph to re-build Quake’s BSP trees. The nodes in a scene graph can be
divided into grouping nodes and drawable nodes. Grouping nodes are
nodes that can contain other grouping or drawable nodes. This kind of class
hierarchy is an example of the composite pattern [GHJV94, 163ff].

Drawable nodes can contain one or more primitives. A primitive encap-
sulates one of the DrawArrays or DrawElements classes which are thin
wrappers around OpenGL functions. It is worth noticing that OSG only
generates bounding volumes around grouping nodes and that we only use
the BSP tree structure to build the scene graph. OSG will then automatically
benefit from the spatially sorted geometry when maintaining a bounding
volume hierarchy for the scene. A bounding volume hierarchy is a rooted
tree where each node contains a bounding volume of its children [Cha01,
30ff]. The actual naming of the classes representing the nodes can be seen
in Table 4.1.

Sub-class Super-class Description
Group Node General group/internal node
Geode Node Leaf node for grouping drawables
Geometry Drawable Node for grouping Primitives
DrawArrays Primitive Primitives for array data
DrawElements<type> Primitive Primitives for indices in array data

Table 4.1: Some of the Open Scene Graph classes for building scene trees

Open Scene Graph does culling down to and including the Drawable
level. This means that if a single triangle of a Drawable is in the view frus-
tum, then all triangles from that Drawable will be drawn. On the other
hand, if the bounding volume of a grouping node is outside the view frus-
tum then all its descendents can be culled immediately.

When the geometry in a BSP tree is refined we extend the array data
in the primitives. This leads to Drawables with more triangles, but not in
more Drawables. This will in turn lead to more unculled triangles outside
of the view frustum. As a result we will make more irradiance estimates
than necessary. The best solution would be to rebuild the tree after it is
refined although we have not implemented this scheme.

4.3 Control flow

In this section we present an overview of the control flow of the program.
This will show how an engine that incorporates photon mapping needs to
be different from a normal engine. We will use a top-down approach where
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1 program pie function setup_scene()
{ {

setup_scene(); turn_off_opengl_light();
load_bsp_level();

while( true ) refine_geometry();
6 {

update_scene(); for_each( vertex_array )
cull_scene(); expand_color_array();
draw_scene();

} for_each( texture )
11 ) calculate_bleeding_color();

}

Figure 4.1: Left: The universal render loop. Right: The modified initializa-
tion.

each function is expanded separately and the new functionality is written
with a red font.

At the outermost level the engine looks like any other (see Figure 4.1
on the left). However, the scene needs to go through several preprocess-
ing steps which is shown in Figure 4.1 on the right. In line 3 we turn off
OpenGL lighting since we normally replace all lighting with a custom pixel
shader. All lighting is controlled by the photon map and the photon disper-
sion, and we do not want OpenGL light to interfere. In line 4-5 the scene is
loaded and a second copy of the scene is made. One of the scenes is refined
to make that scene fit for rendering (see Section 5.4). This highly detailed
scene is necessary to use the irradiance estimates properly—or else the in-
terpolation distance between vertices will be too big. The low-detail scene
is kept for intersection testing. In line 7-8 we ensure that there is a one-to-
one correspondence between a vertex and its color so we can set the color of
a vertex during the draw stage. This expansion need only take place in the
detailed scene. In line 10-11 the bleeding color of each texture is calculated.
During photon tracing we need to know what color e.g. a wall will bleed
with. Here we simply compute the average color of the texture. This is of
course a very simple approximation to the BRDF, but under the assumption
of a completely diffuse environment it should be reasonable. This feature
is not implemented yet, but for testing purposes we can manually add a
bleeding color to an object.

Ideally all changes to the scene graph should happen during the up-
date stage. In Figure 4.2 on the left the new version of the update stage
is shown. The first part is not interesting since it is standard functionality
which takes care of transforming dynamic objects in the scene. However,
emit_photons() is interesting because it effectively encapsulates all pho-
ton tracing, and it is explained in detail in Section 5.2. Note that the update
of the scene cannot happen after photon emission since photons can be in-
validated by dynamic changes.
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1 function update_scene() function draw_scene()
{ {

for_each( node ) for_each( unculled drawable )
update(); for_each( vertex )

color =
for_each( light source ) irradiance_estimate( vertex );

6 emit_photons(); draw();
} }

Figure 4.2: Left: The new update function. Right: The new draw stage.

In cull_scene()we do nothing special whereas draw_scene() has
been modified (see Figure 4.2 on the right). Normally the draw stage does
not modify the scene tree due to potential multi-threading issues, but for
our purpose it is essential that irradiance estimates are made after culling
to avoid estimates at vertices outside of the view frustum. The nested loop
is the new functionality which updates the color of the vertices. Again, this
update should only happen to the detailed scene.

4.4 Customizing photon mapping

In this section we give an overview of the many parameters that can be
changed in the application. By giving an overview of the these parameters
we hope it becomes easier for the reader to comprehend when they are
mentioned in the following chapters. Chapter 6 describes the parameters
in detail. The parameters fall in three main categories:

1. Scene specific: parameters that control the detail of the scene and the
format of the scene graph.

2. Photon map specific: parameters that determine the size of the pho-
ton map and behavior of the balancing and the irradiance estimate.

3. Photon tracing specific: parameters that control when photons should
be stored and how the diffuse scattering should be done.

4. Miscellaneous: This category includes parameters like enabling the
maximum search radius heuristic and whether final gathering should
be used.

Common for all these parameters are that they are specified in a configura-
tion file and can therefore be modified without recompiling the application.

Figure 4.3 shows how some of the parameters are used to determine
the size of the photon map. A short explanation to some of the parame-
ters follow. store_direct_light is a boolean flag that controls if pho-
tons should be stored at the first reflection. diffuse_reflections is
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int Photon_map::photons_reflected( int level ) const
{
if( level == 0 ) return 0;
return photons_from_light * pow( diffuse_reflections, level ) +

photons_reflected( level - 1 );
}

int Photon_map::size() const
{
int direct = store_direct_light * photons_from_light;
int indirect = photons_reflected( recursion_depth );
return ( indirect + direct ) * snowball_size * accumulation_frames;

}

Figure 4.3: Algorithm that determines the size of the photon map.
photons_reflected() calculates the number of reflected photons for
level reflections.

the number of new photons a single photon is split up into during a re-
flection. recursion_depth describes the number of diffuse reflections.
snowball_size is used to store several photons in the photon map even
though only one photon arrived at some surface; we call this for the snow-
ball feature. accumulation_frames is simply the number of frames that
photon emission should be distributed over.

4.5 Testing

In this section we first discuss our view on how testing should carried out.
The following chapters will repeatedly refer to tests that we have made and
assessed. It would be unfortunate if we did not describe the premises for
those tests to the reader. In the end the individual test scenes are presented.

4.5.1 Test strategy

The first one should know is the hardware platform. All tests were run on
a Pentium IV 3 GHz CPU with 512 MB DDR RAM. The graphics card is
a GeForce 4 Ti4200 with 128 MB DDR RAM. The CPU has 512 KB Level 2
cache.

Second, one should know how we test in general. At the top level there is
two kinds of tests: performance tests and visual quality tests. Performance
tests are also of two kinds: isolated tests and non-isolated tests.

An isolated test only runs the feature under test and the test must be
repeated a decent number of times. If the feature runs very fast, the test
should run for at least a second a couple of times to remove possible OS
overhead. A context dependent test tests a feature when it runs as an inte-
grated part of the whole application. The test is done by exchanging an old
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implementation of a feature with a new and keeping everything else the
same. The test must clearly explain what state the rest of the application
runs in if it could affect the evaluation of the test.

Whenever it is possible, one should prefer an isolated test. A context
dependent test might be important if we need to know if the new optimized
feature was worth the trouble. The new feature might be much faster, but it
might not have a great impact on overall performance. However, the best
way to determine in advance if some feature is a performance bottleneck is
to use a profiling program.

Sadly the visual quality test often relies on subjective assessments, but
the reader can decide for himself by running the binaries; they can be down-
loaded from http://www.cs.auc.dk:/˜nesotto/pie/. In a couple
of cases we have generated a photo-realistic rendering of the same scene
which makes it easier to assess our real-time generated images.

To remove any ambiguities regarding the description of performance
tests we always give the relative running time with the original time as
index 1. For example, if an old test takes 2 seconds and the new test takes
1.5 seconds we say the new running time is 0.75 or 75% of the original. We
might also express this as the new test is 25% faster or that the running time
has been reduced by 25%. We refrain from the opposite comparison, that is,
we never say that the old test is 33% slower. Furthermore, it might happen
that the new running time is 1.10 or 110% of the original and we say that
the new test is 10% slower.

4.5.2 Test scenes

We have chosen three test scenes which will be used for different tests. This
section shows how the test scenes look like and explains what we are going
to test.

For the photo-realistic rendering we use RenderPark—an open source
test-bed system for physically based photo-realistic rendering. RenderPark
provides implementation of a wide variety of state-of-the-art ray-tracing
and radiosity algorithms [BdLPM].

There are some limitations to the scene complexity that the reader should
be aware of. Currently we cannot use more than one light source. This is
mainly to keep experimentation simple until satisfactory result have been
achieved. Implementation wise it would be trivial to extend this limitation.
Let us discuss the scenes:

1. The Cornell box: Although geometrically simple, the Cornell box can
still be useful for making some visual quality tests. The simplicity
allows us to convert the scene data to VRML which can be loaded by
RenderPark. In Figure 4.4 we can see a rendering of the box without
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Figure 4.4: Left: A real-time rendering using 20, 000 photons. Right: A Ren-
derPark rendering of the same scene.

Figure 4.5: Left: View of the small Quake 3 test scene through the floor.
Right: Overview of the normally sized Quake 3 level.

indirect light. Ignoring the light source, the scene geometry consists
of 48 vertices.

2. The small Quake level: As the second test scene we will use a simple
scene from Quake 3. With this level we can test all features of our
implementation while maintaining an overview of the whole scene.

As shown in Figure 4.5 on the left, the scene consists of five rooms:
Four small rooms each connected to one larger room. In total there is
1107 vertices in the scene.

3. The normal Quake level: The third scene is a large level with many
rooms. Most of the scene can be seen in Figure 4.5 on the right. It will
be interesting to see how the π-engine performs on this realistically
sized scene. The scene contains 16,065 vertices.

Ideally it would have been great to have a photo-realistic rendering of the
two Quake scenes, but that task is complicated by the need for a Render-
Park loader of the scenes.
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4.6 Summary

In Section 4.1 we saw an overview of the modules in the engine. The BSP-
loader can load Quake 3 levels and the use of the BSP structure is expected
to improve the performance of intersection testing. Two other important
modules are the photon mapping module and the scene module.

The scene graph node structure of OSG was explored in Section 4.2.
Grouping nodes was used to make the inner nodes of the scene tree whereas
primitive nodes encapsulated the OpenGL geometry itself. OSG will auto-
matically maintain a bounding volume hierarchy based on the bounding
volumes of grouping nodes.

Section 4.3 described the changes to the traditional rendering loop that
are necessary to accommodate for photon mapping. At load time a detailed
copy of the scene must be generated to allow for better irradiance interpola-
tion; the low-detail scene is used for intersection testing only. In the detailed
scene we also expand the color arrays to hold the irradiance estimates as
the draw stage needs to calculate the irradiance estimate for each visible
vertex. It is very important to calculate the vertex colors in the draw stage
instead of the update stage. This way the irradiance estimate only has to be
calculated for vertices within the view frustum.

As described in Section 4.4, the π-engine can be tweaked by many pa-
rameters which can be modified without recompilation. This provides ef-
fective means for experimenting. The most important parameters control
the complexity of the scene, the way photons are stored and how the irra-
diance estimates are calculated.

Section 4.5 described how we intend to test performance and visual
quality. Performance tests should preferably be isolated. Visual quality tests
will to some extend rely on subjective assessments. Performance optimiza-
tions should be motivated by profiling data. We will use three scenes for
testing purposes.





5Implementation
details

Get your data structures correct first, and the rest of the program will write itself.
—David Jones, Assen, The Netherlands

When in doubt, use brute force.
—Ken Thompson, Bell Labs

We have now seen how the π-engine works on a high abstraction level. In
this chapter we describe in detail the core parts of the engine. Ideally the
dependency between the scene module and the photon mapping module
should be as low as possible. A low dependency will make it easier to inte-
grate photon mapping with existing engines. As we will see in this chapter,
it is indeed possible to make a design with few dependencies.

We begin with a high-level description of the scene and photon mapping
modules illustrating how the different classes cooperate. Afterwards we
review photon tracing and the photon map more thoroughly. In the end we
discuss our use of the BSP scene-format from Quake 3. We discuss design
tradeoffs, optimizations, and introduce configuration parameters along the
way.

5.1 Class overview

We start with the small, but important photon data structure. In Section
3.1 we saw how the photon is used. In Figure 5.1 the actual photon data
structure is shown. The reader should notice that the photon has a position,
a power and a sort axis. The sort axis is set during balancing and used
during nearest neighbor search to guide the search. The incoming direction

45
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enum Axis { x, y, z }; struct Photon {
class Photon float pos[3];
{ short plane;
public: // foundation unsigned char

Photon(); theta, phi;
Photon( const Vec3& position, const Vec3& power, float power[3];

const Vec3& direction = Vec3() ); };
public: // inspectors

const Vec3& position() const;
const Vec3& power() const;
const Vec3& direction() const;
Axis sort_axis() const;
float sort_coordinate() const;

public: // modifiers
void scale_power( float factor );
void set_sort_axis( Axis );

private:
Vec3 position;
Vec3 power;
Vec3 direction;
Axis sort_axis;

};

Figure 5.1: The photon data structure. Left: The π-engine version. Right:
Jensen’s version [Jen01, 158]. The size of our class is 40 bytes compared to
28 bytes. In short, we favor simplicity, encapsulation, and speed whereas
Jensen favors size.

of the photon is optional as seen by the default argument of the second
constructor. As explained in Section 3.5, we can probably omit the direction
if we use a sphere slice to locate photon in.

Compared to Jensen’s structure we use more space (40 vs. 28 bytes). The
main difference is the representation of the incoming direction where we
use Cartesian coordinates instead of spherical coordinates. By using Carte-
sian coordinates we save expensive trigonometric operations used to con-
vert between the two coordinate systems. This overhead can however be
lowered by pre-computing look-up tables for the trigonometric functions.

The scene module contains functionality related to loading of the scene,
light sources and management of the two different sets of geometry (as pre-
viously mentioned: one set for intersection testing and one for rendering).

The scene module hands over the sparse model and light sources to the
photon mapping module—Figure 5.2 shows the relationship between the
classes. The Photon_tracer class scatters photons throughout the scene
and stores them in a Photon_map. The Photon_tracer makes use of
three other classes:

• Distribution: Is used to generate directions on a sphere or hemi-
sphere. To generate a direction on a hemisphere, direction()must
be passed a normal vector. In standard object oriented manner we
have implemented different strategies (see Section 3.4 for details).



5.1. CLASS OVERVIEW 47

float uniform_01()
void compute_intersection(...)
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Figure 5.2: A simplified class diagram of the photon mapping module. If a
rhomb is attached to a class, it means that a variable of that type is owned
by the classes at other end of the line—for example, a Photon_tracer ag-
gregates one Distribution. The numbers on the line indicates the mul-
tiplicity of the aggregation [Obj03, 91ff]. A line with an arrow means that
the class—from which the line begins—is associated with an instance of
the other class. In practice this means that it stores a pointer to the other
class. An ellipsis denotes that arguments have been suppressed. At the im-
plementation level most of these classes are abstract base classes in a class
hierarchy.

• Point_generator: Is used to distribute several points in the inter-
section plane for use with the snowball feature. Currently we only
use a random distribution of points, but stratified distributions can
easily be added.

• Intersector: Is used to compute intersections and find the bleed-
ing color at the intersection point. The class also keeps track of vari-
ous information regarding the last intersection like normal and inter-
section plane.

The Estimator class stores a pointer to the Photon_map and uses the
map to generate and cache irradiance estimates on demand. It also stores
an instance of the Intersector class which is used during final gathering.

Finally, the Draw_callback stores a pointer to an Estimator to for-
ward irradiance estimate requests to it. The Draw_callback class is in-
stalled in the scene tree and acts as the link between the photon mapping
module and the scene module. The scene module applies drawImplemen-
tation() on each Drawable in the scene which in turn applies Estima-
tor::irradiance_at() on each vertex.
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5.2 The photon tracer class

The Photon_tracer is important enough to deserve a more thorough ex-
planation. In Figure 4.2 on the left we saw how the Photon_tracer fits
into the update stage of the rendering loop. In this section we explain the
photon tracing and describe a technique that can reduce fluctuation and
improve performance.

5.2.1 Photon tracing

Figure 5.3 shows detailed pseudo code for emit() and an explanation fol-
lows. At the top level each photon is emitted from the light source. The
amount of emitted photons depends on the configuration file variable pho-
tons_from_light. If an intersection is found, additional reflections are
traced until the maximum recursion depth. In the end the map is re-bal-
anced (see Section 5.3.2 for details).

In trace_photons_from_light() the light source is queried for its
position and a photon direction. From these two parameters we construct
a line and the intersection of this line with the scene geometry is com-
puted. In case an intersection is found, we save the photon if we want
to include direct light. We do not call Photon_map::store() directly
since we might generate several points from a single intersection using a
Point_generator.

In trace_photon_reflections() we first calculate the new start
point for the reflection. We cannot reuse the old intersection point since
then we will get that intersection once again. The solution is to step a tiny
fraction back in the direction the ray came from. Originally we went in the
direction of the normal, but this lead to loss of photons in narrow corners
because we simply went outside the scene geometry (see Figure 5.4). To cal-
culate the next intersection we need to generate a reflected direction. This
is done by calling direction() with the normal of the intersection; the
normal is used to ensure we generate a direction on the hemisphere above
the point of reflection. If we could find an intersection, we save the photon
and trace the photon recursively.

5.2.2 Frame-coherent random numbers

To use frame-coherent random numbers means to reuse the random num-
bers that defined the photon directions over several frames. Simply put this
means that many photon paths will be exactly the same; only those photons
that are affected by moving objects will get a different photon path. The
benefit of this method is twofold: (1) fluctuation can be reduced and (2)
directions can be pre-generated. We discuss both aspects in the following.



5.2. THE PHOTON TRACER CLASS 49

void Photon_tracer::emit()
{

for_each( photon )
{

trace_photon_from_light();
if( intersector.intersection_found() and max_recursion_depth > 0 )
trace_photon_reflections( max_recursion_depth );

}
map.balance()

}
void Photon_tracer::trace_photons_from_light()
{

Vec3 begin = light.world_position();
Vec3 dir = light.trace_direction();
intersector.compute_intersection( begin, dir );
if ( should_store_direct_light and intersector.intersection_found() )

save_photon();
}
void Photon_tracer::trace_photon_reflections( int depth )
{

Vec3 begin = moved_point( intersector.intersection(),
intersector.inverse_direction() );

for_each( diffuse reflection )
{

Vec3 dir = distribution.direction( intersector.normal() );
intersector.compute_intersection( begin, dir );
if( not intersector.intersection_found() )
continue;

save_photon();
if ( depth - 1 > 0 )
trace_photon_reflections( depth - 1 );

}
}

Figure 5.3: Pseudo code for photon emission. Apart from handling of pho-
ton power this is almost the real code.

i1

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppp

pppppppp
ppppp

pppppppp
pppppppp
ppppp

pppppppp
pppppppp
ppppp

pppppppp
pppppppp
ppppp

pppppppp
pppppppp
ppppp pppppppp
pppppppp
pppppppppppppppppppppp

pppppppppppppppppp
ppppppppppppppppppp

pppppppppppppppppp
ppppppppppppppppppp

pppppppppppppppppp
ppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppp

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppp

pppppppp
ppppppppppppp
pppppppp

ppppppppppppp
pppppppp

p
ppppppppp
ppppppppp
ppppppppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppp
pppppppppppppppppp
pppppppppppppppppp
pppppppppppppppppp
pppppppppppppppppp
pppppppppppppppppp
ppppppppppppp
ppppppppppp
pppppppppppppppppppppppppppp1

p2 i2n

i1

−p1

p2

p1

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

Figure 5.4: To avoid intersection with geometry in the start point we must
move the start point away from the geometry. Left: Moving in the normal
direction yields problems in corners. Right: Moving back along the incident
direction is safe.
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We can categorize animations based on their complexity. The simplest
animation is when only the camera moves. In this situation we can reuse
the photon map from the previous frame without shooting new photons if
we assume that the camera is not connected to an occluding object—e.g.,
the camera might be attached to an avatar. The other extreme is when all
light sources and objects are moving. This invalidates almost all photons in
the map. However, none of these are the common case. It is often the case
that only a few objects move in an otherwise static scene. When this is the
case, it is advantageous to use the same photon path for the photons that
are not influenced by the moving objects.

Christensen suggests an implementation that promises a 90% reduction
in fluctuation [JCS01, 91ff]. He uses a differently seeded random number
generator for each emitted photon where the seed could simply be the
number of the photon.

We have taken this idea further so it also improves performance. We
observed that the generation of directions consumed as much as half of the
time it took to render a frame. We observed that the program was 25-50%
faster by pre-calculating all the directions needed for a program run.

This is done by adding restrictions to the photon paths. In particular,
we do not allow photon paths of different lengths. If for example all pho-
tons are reflected twice, two directions will be calculated for each photon
with respect to a predefined reference normal. When a surface is hit, the
reflected direction is found by rotating the pre-calculated direction. Notice
that we always need to make this rotation, but we have saved the gen-
eration of directions which requires many expensive calls to the random
number generator.

To remove the restriction of equal photon path lengths, we can calculate
the number of direction that would have been used on a particular path.
Then we can simple throw away this amount of directions.

5.3 The real-time photon map class

In this section we summarize how a real-time photon map is developed.
We present the extra functionality that needs to be incorporated and we
describe details of the balancing. Afterwards the irradiance estimate is dis-
cussed and we evaluate the benefits of using several smaller photon maps.

5.3.1 Changes to the photon map

The overall idea behind the Realtime_photon_map class is to store the
photons for several frames instead of just one [Joz02, 20]. This will allow
for a much smaller number of emitted photons per frame.
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class Realtime_photon_map
{

typedef vector<Photon> Per_frame_photons_t;
vector<Per_frame_photons_t> photons;
vector<Photon*> weak_photons;
Nearest_queue nearest_photons;
int current_frame;
bool is_new_frame;

};

Figure 5.5: Important data structures in the Realtime_photon_map class.

The only previous work stems from [Joz02, 27ff], so let us first review
the major changes that he found necessary. His idea is to statically allocate
a fixed-sized array to store the photons for a single frame. The size should
then be as large as the maximum number of photons that can be saved
during one emission step. Since photons might be absorbed or disappear
(because they do not hit anything), there might be empty slots. So he adds
an “is-empty” flag to his photon data structure to accommodate for this.

Furthermore, he creates an accompanying array of indices that are used
to keep track of which frames the photons belong to. These indices needs
to be updated when the photon array is sorted during the balancing step.

Our implementation is similar in the sense that it needs to address the
same problems, but it is different in the approach it takes to solve the prob-
lems. A simplified view inside our map shows the data structures in Figure
5.5.

Notice that we have removed the constraint that the maximum num-
ber of photons must be fixed by using a vector to hold the photons from
a single frame. And we further allow a variable number of frames by us-
ing another vector called photons. This simplifies the implementation
a great deal—in particular, we do not need to use an “is-empty” flag, and
we do not need an array of indices to keep track which frame the photons
belong to. The photons simply belong to a certain vectorwhich is cleared
and refilled as needed. The variable current_frame is used to keep track
of which vector to store the photons in, and is_new_frame is used to
indicate when to reset a vector and start refilling it with new photons.

We have still not explained how we make the many smaller containers
function as one big. The answer lies in the variable weak_photonswhich
(by storing pointers) acts a view of the entire map. This is illustrated in
Figure 5.6. Before the balancing step these pointers need to be updated by
storing the addresses of all the relevant photons.

It might seem more expensive to update all the pointers in addition to
storing the new photons for a frame, but it can actually improve perfor-
mance in some cases. The balancing process can be sped up by using an
array of pointers since only pointers will be shuffled around [Jen01, 71].
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Figure 5.6: Structure of the real-time photon map. The vector photons
contains photons from j frames. Different frames might store a different
amount of photons.weak_photons contains pointers to all of the photons.

However, it is more important to improve the running time of the nearest
neighbor search since it will run many thousand times per frame. Therefore
it might be a problem to store pointers since the nearest neighbor search
will be slower because of extra indirections throughout the process. We
made a quick test that replaced the array of pointers with real Photon ob-
jects, but the test did not show any noticeable difference. To reach a decisive
conclusion a more thorough test would be necessary.

The performance of the real-time modified photon map is quite satisfac-
tory: it is as fast a the implementation from [Jen01] despite its extra func-
tionality.

5.3.2 Photon map balancing

The first step in balance() is to updateweak_photons to get a consistent
view the photons in the map and to initialize an axis aligned bounding
box of all photons in the map. We then recursively sort the photons with
build_tree() as shown in Figure 5.7.

First we check if we can stop the recursion. This is done when there
is stop_recursion_size or less photons left whereby stop_recur-
sion_size determines the maximum size of the leafs in the kd-tree. For
each recursion step the largest axis of the photons is found (line 4) and
we split across that axis. If for example x was the largest axis, we use a
plane parallel to the y-z-plane as the splitting plane. The largest axis can
be found cheaply (in the largest_axis()) by maintaining the bounding
box of the photons on each recursion level. This functionality is hidden in-
side build_left/right_subtree()which simply saves the bounding
box state on the stack. Then the bounding box is updated and a recursive
call to build_tree() is made. An simple alternative to the bounding box
is to cycle through the axes, but after a few tests we concluded that it is an
inferior technique.

The nth_element() call in line 6 sorts the first half of the considered
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1 void build_tree( size_t from, size_t to ) {
if ( to - from <= stop_recursion_size ) return;

Axis sort_axis = largest_axis();
5 const size_t middle = middle_index( from, to );

nth_element( &weak_photons[from], &weak_photons[middle],
&weak_photons[to] + 1, Axis_ordering( sort_axis ) );

Photon* median = weak_photons[middle];
median_photon->set_sort_axis( sort_axis );

10 const size_t left_to = middle - 1;
const size_t right_from = middle + 1;

if ( from < left_to )
build_left_subtree( from, left_to );

15

if ( right_from < to )
build_right_subtree( right_from, to );

}

Figure 5.7: The algorithm used to build the kd-tree. Our subdivision splits
the array in the middle and sort each half recursively. Other implementa-
tions builds a heap instead [Jen01, 71f]. We are not aware of any perfor-
mance differences of the two approaches, but our implementation is some-
what simpler.

photons along the sort_axis. nth_element() is the perfect choice here
since the relative order in each half is unspecified—we just know that each
element in the left range comes before each element in the right range (of
course, some elements might be equal too) [ISO98, 556].

Notice that the sort axis is saved in the median photon so it can be used
to guide the nearest neighbor search (line 9).

5.3.3 The irradiance estimate

The most interesting part of the irradiance estimate is how to find the k
nearest neighbors. This is described first followed by some optimizations.

After some initialization the k nearest photons is found by the find_-
nearest() algorithm shown in Figure 5.8. The algorithm is also recursive
and we start by checking the basis of the recursion in line 4. If the cur-
rent sub-tree contains stop_recursion_size or less photons, we stop
the tree traversal and linearly check if the photons should be included (line
5 and 6). We must search the leafs linearly since we cannot rely on the ele-
ments being sorted (since balance() stopped at this leaf size).

add_photon() checks if the photon should be included in the estimate
as described in Section 3.5. If the photon passes the check, it is added to the
nearest_photons container.

If the recursion can continue, we follow the sub-tree that includes the
search location recursively (line 16-24). The can_stop_search() checks
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1 void find_nearest( size_t from, size_t to ) const {
const size_t photons_left = to - from + 1;

if ( photons_left <= stop_recursion_size ) {
5 for ( size_t i = from; i <= to; ++i )

add_photon( *weak_photons[i] );
return;

}

10 const size_t middle = middle_index( from, to );
const Photon& root = *weak_photons[middle];
add_photon( root );
const size_t left_to = middle - 1;
const size_t right_from = middle + 1;

15

if ( should_search_left_subtree( root ) ) {
find_nearest( from, left_to );
if ( not can_stop_search( root ) )

find_nearest( right_from, to );
20 } else {

find_nearest( right_from, to );
if ( not can_stop_search( root ) )

find_nearest( from, left_to );
}

25 }

Figure 5.8: The algorithm to find the nearest photons.

in line 18 and 22 handles the cases where candidate photons might not be
present in both sub-trees. It simply computes the distance from the root
to the search location along the sort axis; if the distance in that direction is
more than the maximum search radius, we know that we do not have to
search that sub-tree.

Thenearest_photonscontainer is an instance of theNearest_queue
class which is a modified vector implementing two optimizations:

1. No dynamic allocations are done during photon search. This was
done because dynamic allocation during insertions was spotted as
a performance problem early on.

2. A priority queue is maintained when max_search_count photons
have been found [Jen01, 74]. There is no reason to build a queue be-
fore the vector is full and when it is, the queue is maintained with
push_heap() and pop_heap() from the C++ Standard Template
Library [ISO98, 561f]. If k is the size of the queue, push_heap()
requires at most lg k comparison whereas pop_heap() requires at
most 2 lg k comparison. Both functions needs to run whenever a new
element is inserted, but the extra work makes it possible to change the
search radius dynamically which can further speed up the searching.

Every recursive algorithm can be rewritten as an iterative algorithm. The
iterative version is often faster than the recursive algorithm because of less
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function call overhead. Christensen presents an iterative version which is
reported to be 25% faster compared to the recursive version [JCS01, 100].
The speedup of this algorithm is most valuable in photo-realistic render-
ing where the amount of nearest neighbor searches is orders of magnitude
larger than in real-time rendering. We have not implemented the iterative
algorithm, but keep it as an opportunity if the nearest neighbor search be-
comes a performance bottleneck.

5.3.4 Several photon maps

As we can see in Figure 5.2 all relationships are one-to-one. This has been
done to keep the implementation simple, but a small discussion of when to
break the one-to-one relationship to the photon map follows.

Although Christensen mentions that in general there is no reason to split
up the photon map [JCS01, 108], there are two reasons for using several
photon maps: (1) to speed up computations and (2) to avoid leaking of
photons. The complexity of Photon_map::balance() is O(n lg n) and
searching for the k nearest photons takes O(lg n + k) time [Jen01, 69ff]. To
obtain the irradiance estimate we further need to accumulate the power
of the photons which takes O(k) time—so the running time for the entire
irradiance estimate is still O(lg n + k).

Let us assume that we can somehow split the global photon map into
m smaller maps with an average of a = n/m photons in each and that
this does not make the quality of the estimate worse; we can then compare
the theoretical running times. Using m maps our running time becomes
O(a lg a)1 + · · · + O(a lg a)m = m O(a lg a) = O(n lg a) for balancing and
O(lg a+k) for the irradiance estimate. There is no sum in the estimate since
we assume (1) that we can locate all the photons in one map, and (2) that we
can find the right map in constant time. Unless the map is absurdly large,
k will be the dominant factor and lg n will be insignificant.

In Table 5.1 we have compared the expected speedup for an estimate
with 50 photons. It shows that maximally 5-10% can be saved in theory
which supports Christensen’s view. However, a recent empirical study sho-
ws that in practice there might be a big difference [LC03]. The method par-
titions the photon map into smaller photon maps according to the normal
of surfaces—this has the additional benefit that most surface leaking can be
avoided. Surfaces with a similar normal share the same photon map, and
for a particular surface the estimate will never consider any of the other
maps. This means one can spare the sphere slice calculation.

As we expected they see the largest speedup in the balancing process
whereas the irradiance estimate is about 30-66% faster. It is unknown why
the irradiance estimate becomes so fast, but it might be because of better
cache hit rates. Another explanation is that our analysis uses too small
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n = 106

a lg a + 50 running time
106 69.9 100%
105 66.6 95%
104 63.3 90%
103 60.0 86%

n = 104

a lg a + 50 running time
104 63.3 100%
103 60.0 95%
102 56.6 90%
101 53.3 84%

Table 5.1: Expected running times of the irradiance estimate using several
photon maps. Notice that we search for 50 photons. In practice there is limit
to how small one can make the average photon map size, a, since a value
close to or below the number of photons to search for makes little sense.

values of n and k for the big-O notation to make sense. The hidden con-
stants might be quite significant and different on lg n and k. A good exam-
ple of how such constants affect the running time in real programs can be
found in [Ale02a] and [Ale02b]. A third explanation might be that sub-trees
are easier discarded by can_stop_search() since the photon positions
saved in one photon map can be more spatially separated.

It has also been suggested to partition the photon map into several smal-
ler maps that each stores photons from the cells used in the visibility system
of the engine [Joh03, 319f]. The visibility system determines that only some
of the scene is visible and we need only make lookups in the corresponding
maps. This scheme fails if final gathering is required.

5.4 The BSP format

We have implemented loading of id Software’s Quake 3 BSP format. This
give us access to many test scenes with geometry optimized to contain a
low polygon count [Pro00]. We first discuss how the geometry can be re-
fined and then discuss a problem with the refined BSP tree.

5.4.1 Mesh refinement

The BSP scenes are composed of a minimal amount of triangles which are
spatially sorted in a BSP tree. This is a good basis for fast intersection test-
ing. The scenes, however, consist of large polygons which need to be re-
fined to make the irradiance interpolation scheme reasonable accurate. A
single refinement is done by splitting the triangle with the globally longest
side into two such that the longest side is split in the middle. We refer to
that triangle as the largest triangle even though its area might not be the
largest. It is important to choose the globally largest side because we do not
want to refine geometry which is already detailed enough, such as curved
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class Triangle
{

float longest_edge_length;
// ...
bool operator<( const Triangle& other ) const
{ return edge_length < other.edge_length; }

};

typedef priority_queue<Triangle> Triangles_t;
Triangles_t triangles;
void refine( Node& node, int number_of_refinements )
{

add_all_triangles_in_model( node, triangles );
for_each( mesh_refinement )
split_largest_triangle( triangles );

}
void split_largest_triangle( Triangles_t& triangles )
{

Triangle t = tringles.top();
triangles.pop();

Triangle t2 = split_triangle( t );
triangles.push( t );
triangles.push( t2 );

}

Figure 5.9: The mesh refinement algorithm. A priority queue of all trian-
gles is maintained such that the triangle with the globally longest edge al-
ways is on top. The algorithm works by always splitting the top triangle in
two. The triangles are always sorted by the priority_queue according
to operator<().

objects. Pseudo code for the algorithm is shown in Figure 5.9. To test this
aspect, mesh_refinement is used as a test parameter.

Referring to Figure 5.9, in refine() we store all initial triangles in the
scene. This is done by storing pointers to Drawables inside Triangle ob-
jects. What happens underneath in split_largest_triangle() is that
these Drawables are modified. The first two lines of split_largest_-
triangle() pick the largest triangle and remove it from the queue. Then
split_triangle() modifies its argument so it contains one of the two
new triangles whereas the second triangle is returned. When the two new
triangles are inserted, the priority_queue will automatically sort itself
such that the largest triangle is always on the top.

Different levels of refinement affects the number of irradiance estimates
needed as well as fluctuation and visual quality. A higher degree of re-
finement leads to less fluctuation and better visual quality at the cost of
performance. The fluctuation is decreased because the areas of instability
due low photon density are reduced. Visual quality is enhanced because
sharper irradiance discontinuities can be visualized.

When the geometry is loaded into OSG, all the geometry is converted
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into theGL_TRIANGLES format such that no vertices are shared. This makes
the refinement easier, but adds a lot of duplicated vertices. For three refine-
ments of a single triangle one vertex can be duplicated as many as five
times. This leads to estimation overhead because the same points will be
estimated five times. We expect that there is two ways to solve this prob-
lem: (1) to use a cache scheme or (2) to transform the GL_TRIANGLES form
into the GL_TRIANGLES_STRIP form. We have chosen to implement solu-
tion (1).

5.4.2 The estimate cache

For a realistic level of refinement each vertex can be duplicated more than 5
times. To avoid making extra irradiance estimates for each vertex we cache
the first estimate for a given location in a given frame and use that estimate
for subsequent estimates of the same vertex in the frame.

The cache is implemented using the map class from the C++ Standard
Library. The implementation of the caching is shown in Figure 5.10. The
vertices are used as keys, and a pair containing the irradiance estimate and
the frame it was estimated in is used as the value of the map. It is worth
noticing that we do not need fill the cache variable at load time since map
automatically creates objects when they do not exist.

The map relies on the less-than operator to maintain a sorted tree of its
keys. The tree is usually implemented as a red-black tree which gives op-
timal performance for a tree based solution [Sed98, 516]. However, sort-
ing the elements is completely unnecessary in our case and therefore a
hash map is a better candidate, but have not yet implemented it. We add
use_estimate_cache as a test parameter to measure the performance
gain obtained by using the estimate cache.

The culling system in OSG is optimized for culling speed rather than
minimizing the amount of polygons to draw. This is normally a good com-
promise as modern graphics cards can draw a few extra polygons at nearly
no cost. In our case, on the other hand, this means additional expensive ir-
radiance estimates. To further minimize the amount of drawn polygons a
sort of Potential Visible Set (PVS) system should be utilized, but we shall
not investigate this further. General visibility processing is described in
[WP01, 270ff] and [Ebe01, 411ff].

5.5 Summary

In Section 5.1 we described how the core classes of the π-engine cooper-
ate. It is possible to make a design that minimizes the dependencies be-
tween the scene module and the photon mapping module. The photon
mapping module needs to access scene geometry and light sources from
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class Estimator
{

typedef std::pair<Vec3, int> Estimate_frame_t;
mutable std::map<Vec3,Estimate_frame_t> cache;
Photon_map* photon_map;
// ...
Vec3 irradiance_at( const Vec3& position, const Vec3& normal ) const
{

Estimate_frame_t& e = cache[position];

if( e.second < current_frame )
{
e.second = current_frame );
e.first = photon_map->irradiance_at( position, normal );

}
return e.first;

}
};

Figure 5.10: Implementation of the estimate cache.

the scene module. The scene module must install a single class from the
photon mapping module, the Draw_callback. The design of the photon
mapping module is largely object oriented which makes it easy to substi-
tute behavior of the algorithms.

The Photon_tracer class was explained in Section 5.2. We saw in
detail how the photon emission is done and how the classes in the pho-
ton mapping module are utilized. Frame-coherent random numbers can be
used to reduce fluctuation, and by pre-calculating all the random numbers
we could make the overall running time 25-50% faster.

Section 5.3 described the Realtime_photon_map class. Compared to
a normal photon map it needs a mechanism to store and manage the pho-
tons emitted during several frames. The implementation uses a vector
for each frame and then another vector of pointers during balancing and
searching. This scheme is actually cited in the literature as a performance
improvement, but we keep a skeptical stance towards it. Compared to a
normal photon map, the Realtime_photon_map is not noticeable slower.
We discussed the advantage of using several photon maps to speed up irra-
diance estimates and balancing of the kd-tree. The irradiance estimate is by
far the most important to optimize. In theory only very small performance
gains are achievable, but empirical studies have given surprising results.

In Section 5.4 we stated that Quake 3’s BSP format is a good basis for
fast intersection testing. The scene must be refined to provide decent vi-
sual quality, and we showed a simple algorithm for refining the geometry
where the globally largest side of a triangle is always split first. When the
geometry is refined, the leafs of the tree contained too many triangles. The
refinement generates duplicated vertices and therefore it is important to
cache irradiance estimates for these vertices.





6Results
[The First Rule of Program Optimization]
Don’t do it.
[The Second Rule of Program Optimization—For experts only]
Don’t do it yet.
—Michael Jackson, Michael Jackson Systems Ltd.

In this chapter we present test results. The test results fall in two categories,
namely visual quality tests and performance tests. The important questions
we try to answer in this chapter are:

1. How good can we make the visual quality regardless of the rendering
time?

2. What type of photon scattering gives the best results?

3. Is it possible to make decent color bleeding and shadows?

4. How tessellated must the scene be to give satisfactory results?

5. What are the key performance bottlenecks?

6. How good quality can we get if the frame-rate must be 30 FPS?

Beside these questions, we will describe a long line of small test parameters
to see how they affect the algorithm. We make most of our visual quality
tests in the Cornell box. This includes color bleeding, shadow effects, and
photon scattering. In the second scene, the small quake scene, we inves-
tigate tessellation level and performance. The third scene is mainly used
together with the two other scenes to see how certain features work with
different scenes.

We first describe the many test parameters and evaluate if their behavior
is as expected. Visual quality is then discussed followed by performance
measurements.

61
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6.1 Photon mapping parameters

A parameter is presented like this: foo: int > 0 [50] which means that
the parameter foo has the type int with the restriction that it must be
positive and that a plausible value is 50. When we describe the tradeoffs
involved in a particular parameter, we always assume that all other pa-
rameters are held constant.

6.1.1 Scene parameters

Parameter 1: BSP_tree: bool [true]. At the scene level, we can specify
whether or not to use the BSP tree. The impact we expect from enabling
the BSP tree is that intersection tests will be faster for large scenes (see
e.g. [HPP00] and [Cha01]). On the small Quake scene there is a noticeable
speedup and the larger Quake scene benefits even more from the BSP tree.

Using the BSP tree in the small Quake scene is around 25% faster when
there is a minimal number of irradiance estimates (no refinements). On the
large Quake level it is 75% faster to use the BSP tree.

Parameter 2: mesh_refinement: int >= 0 [10000]. This option con-
trols the number of polygons that are potentially drawn. This number indi-
cates how many times the largest triangle is split into two. When we use a
finer mesh we expect that rendering is slower, but that the visual result
is better. To make a more scene independent parameter, this parameter
should be exchanged with the length of the maximum triangle side that
should be allowed. Then the refinement should simply continue until all
sides are smaller than the specified value.

Parameter 3: use_estimate_cache:bool [true]. Determines whether
irradiance estimates should be cached. This is a major optimization when
scenes contain duplicate vertices. Dependent on the level of refinement, ev-
ery vertex can be estimated up to 5-6 times for each rendering. The overall
speedup depends on the fraction of the total running time that is spent on
calculating irradiance estimates.

6.1.2 Photon map parameters

Parameter 4: max_search_count: int > 0 [50]. This number simply
specifies the maximum number of photons to include in the irradiance es-
timate. A large value will reduce the variance in the estimate [Suy02, 114],
but it will also slow the process down since the search algorithm runs in
O(lg n + k) time. If the photon map size is increased, we can also increase
max_search_count, but at a lower rate [Suy02, 114]. This number has a
large impact on the overall performance. In the Cornell box (in which inter-



6.1. PHOTON MAPPING PARAMETERS 63

Figure 6.1: The Cornell box with (left) and without (right) use of the sphere
slice feature. Even though we use a large search radius, surface leaking is
effectively removed.

section testing is fast), moving from 200 photons down to 50 photons can
make the engine 50% faster.

Parameter 5: max_search_radius: float > 0 [scene dependent].
The maximum search radius describes the initial radius for the sphere whe-
re photons should be collected. A large max_search_radius can intro-
duce distance bias in the irradiance estimate. Even though we use a priority
queue for updating the search radius during a search, the parameter has a
great impact on performance. Therefore this parameter should be as small
as possible. It is quite easy to see when the radius is too small because the
image becomes speckled.

Parameter 6: use_radius_heuristic: bool [false]. If we enable the
radius heuristic from Section 3.2, the max_search_radius parameter is
disabled. We tried to use the technique on the three scenes and it worked
reasonable. The technique is perhaps most useful when the light source is
dynamic. In the small Quake scene we observed that the frame-rate could
increase when the illumination moved such that it was stored on a smaller
area. Although we are not completely certain that we can fine-tune α for all
scenes, our first impression is good.

Parameter 7: use_sphere_slice: bool [true]. This parameter con-
trols the use of the sphere slice feature from Section 3.5. This feature is really
good at removing surface bias as can be seen in Figure 6.1. The feature has
little impact on the overall running time.

Parameter 8: final_gathering:bool [false]. When final gathering is
enabled, the calculation of the radiance estimate is extended as described in
Section 3.2. Depending on the final_gathering_samples parameter,
the irradiance estimate is much slower to calculate. We can make an image
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with smoothly varying irradiance using very few photons (e.g. 1,000) in the
photon map [Jen01, 89f]. We will see more examples rendered using final
gathering later. Although we shall not discuss them, it is worth noticing
that several other parameters can be used to control the precision of the
final gathering results. We did not make a thorough test suite with final
gathering since it is very slow. Instead, we just use a high precision to get
the most out of the technique.

6.1.3 Photon tracing parameters

Parameter 9: photons_from_light:int > 0 [200]. In all our test sce-
nes we have restricted the number of light sources to one. This parameter
describes the amount of photons that are emitted from that light source
for each frame. With this parameter we can partially control how many
photons will be stored in the photon map. Recall that the size of the photon
map was calculated by the algorithm in Figure 4.3. This parameter will
increase rendering time since it affects the number of intersection tests as
well as the nearest neighbor search time.

Parameter 10: accumulation_frames:int > 0 [10]. Determines how
many frames to accumulate photons over. A high value will make the light-
ing react slowly to dynamic changes, but allow us to store more photons.
A low value will give a faster update of lighting at the cost of reducing the
size of the photon map. A too small photon map will give poor visual re-
sults. A value of ten will probably be quite alright if the frame-rate is 30 or
60 FPS. In Section 6.3 we try to fine-tune this parameter.
Parameter 11: store_direct_light:bool [true]. This will trigger stor-
age of the photons that arrive directly from the light source. By turning it on
we might be able to create a shadow effect since occluded parts of the scene
will receive less energy. By turning it off we see only the indirect light in the
scene. It might be possible to make shadows even without storing the direct
light if so-called shadow photons are used [Jen01, 148]. If OpenGL lighting
is enabled, the direct light should not be stored. We expect that it will be
possible to augment our calculation of diffuse indirect light with normal
hardware accelerated specular lighting.

Parameter 12: recursion_depth: int >= 0 [1]. A recursion depth of
n means that we allow up to n diffuse reflections for a photon. The actual
photon path might be shorter if the photon disappear into open space. A
high value should in theory give more plausible results, but it will also
waste many intersections on photons with a very low impact on the final
result. One reflection is enough to simulate most color bleeding effects, so
we rarely use more.

Parameter 13: diffuse_reflections:int > 0 [36]. This number spe-
cifies how many new photons a single photon is split into during a diffuse
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Figure 6.2: Left: when the Saff-Kuijlaars method is used to generate diffuse
light directions. Right: naive rejection sampling.

reflection. A high number will require more intersections, but give a better
dispersion of photons throughout the scene. If the number is too low the
effect of the diffuse reflections becomes unpredictable.

Parameter 14: snowball_size: int > 0 [1]. By filling more photons
into the map for a given intersection, we can hope to get a better distribu-
tion of the photons without increasing the number of intersections. Once an
intersection have been found, we generate some random points in a small
circle in the intersection plane. This way we hope to get the same effect
as if that circle had been hit by several photons. The circle must be rela-
tively small to avoid storing photons situated in open air and to avoid that
shadow areas are hit by photons. Currently this feature make the photon
distribution worse than the Saff-Kuijlaars method (see Section 3.6). Obvi-
ously, we need to use stratification or quasi-random numbers when the
points are generated.

Parameter 15: light_distribution_type: int [Saff-Kuijlaars].
Unfortunately we have not implemented all the distributions described in
Section 3.4. Therefore we can only compare the Saff-Kuijlaars method to
naive random sampling which can be seen in Figure 6.2. The method is
much better than naive rejection sampling. It is unfortunate that we cannot
show how quasi-random sequences perform.

Parameter 16: diffuse_light_distribution:int [stratified]. In-
stead of generating the diffuse scattering randomly, we have tested the ben-
efit of using stratification with one random direction in each strata. The
results are as expected: the stratified sampling is much better than naive
random sampling.
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Figure 6.3: Two pictures rendered with photon mapping in RenderPark.
The map contained 250,000 photons and 80 neighbor photons were used in
the irradiance estimate. Left: A rendering with a maximum path length of
8. Notice the color bleeding on the sides of the little box. Right: A rendering
with direct light only.

6.2 Visual quality

In this section we compare the best results we can achieve with a photo-
realistic rendering from RenderPark. This will give an impression of how
good our implementation is currently. We also investigate how detailed the
scene must be in order to give decent results.

6.2.1 Color bleeding and shadows

Figure 6.3 shows two pictures rendered with RenderPark. We can see that
the illumination is very smooth on both pictures. There is a little difference
in these two scenes compared to those we use in real-time rendering: the
wall we look through is not culled, but simply missing. This means that
we will get a brighter color bleeding in the real-time generated pictures.
Nevertheless, it should be possible to get a good idea of the overall quality
of the illumination.

In Figure 6.4 the same two pictures are rendered with final gathering.
There are some problems in the corners, but it is not because of bound-
ary bias—it is an unresolved implementation problem when making a final
gather in a corner.

If we compare the left-hand side of Figure 6.3 with the left-hand side of
Figure 6.4 we can see that both images have round circles on the walls due
to the nearby light source. We can also see that the color bleeding on the
box is in both images although it looks rather different; this is because of
the white culled wall in the real-time picture. If we compare with Figure
6.4 on the right we see the color bleeding is more visible on the right. The
picture only contains indirect illumination which is why the color bleeding
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Figure 6.4: Two pictures rendered in “real-time” with final gathering. Both
pictures are rendered using 10,000 photons and 625 final gather rays per
estimate. Left: when the direct light is included in the photon map. Right:
when no direct light is included in the photon map.

on the floor and in the roof is much more dominant. It is worth noticing
that we cannot produce shadows with final gathering.

To continue our discussion of color bleeding, consider Figure 6.5. This
shows a real-time version with one diffuse reflection. A very interesting re-
sult is that a frame-rate of 20 FPS can produce similar results to a frame-rate
of 1 FPS. The picture on the right reveals some problems with the diffuse
reflections. The diffuse reflections can in certain cases ruin the photon den-
sity so that the image becomes speckled.

Figure 6.6 is a real-time rendering without indirect light. If we compare
the shadows on this figure with Figure 6.3 on the right, we can see the real-
time shadow is not that bad although its slightly softer. If we compare the
shadows in Figure 6.5 with Figure 6.3 on the left, then both shadows are
more bright due to the indirect illumination. The sharpness on the real-
time shadow could better, though. Filtering might be used to sharpen the
shadow boundaries (see Section 3.5).

6.2.2 Tessellation

Let us now discuss the test of the necessary level of refinement. Differences
in refinement level affect both fluctuation and visual quality of the illumi-
nation. These results can be used as a rule of thumb for how many triangles
we must have in a scene. Figures 6.7 and 6.8 show the scene with a spot
light pointing from the center of the scene towards the culled roof. The
pictures are made with a recursion level of one. Therefore all the surfaces
we see are indirectly illuminated—with OpenGL lighting we would have
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Figure 6.5: Two screen shoots of color bleeding from the π-engine. The pic-
ture on the left is rendered with 20 FPS whereas the picture on the right is
rendered with 1 FPS.

Figure 6.6: Soft shadows from the π-engine. Only the direct illumination is
stored in the photon map. The picture on the left is rendered with about 20
FPS whereas the picture on the right is rendered with 1 FPS.



6.3. PERFORMANCE 69

Figure 6.7: Indirect illumination in the small Quake scene. Left: 1,600 trian-
gles. Right: 3,200 triangles—here the illumination becomes reasonable.

Figure 6.8: Indirect illumination in the small Quake scene: Left: 6,400 trian-
gles. Right: 12,800 triangles—going from 6,400 to 12,800 triangles seems to
have a large impact on quality.

seen only black surfaces. In OpenGL we can add an ambient factor, but that
would look unrealistic as all surfaces that do not receive direct illumination
would be equally lit. This would also happen to the small adjoining rooms
which are otherwise mostly dark.

All four pictures have been rendered with a total of 3,200 photons and
with a naive rejection sampling from the light source and naive random
diffuse reflection. If Figure 6.7 we see that the illumination is very speckled,
but also that doubling the number of triangles does not have a large impact
on the quality. In Figure 6.8 the quality is still not too good on the left. It is
very beneficial to make a higher tessellation as it is can be seen on the right.

6.3 Performance

In this section we first describe how performance depends on the size of the
photon map and the refinement level of the scene. A test of the intersection
testing follows (no pun intended), and we discuss tradeoffs regarding the
accumulation_frames parameter. Then we make a little case study of
the small Quake scene where we keep the frame-rate high and see how
good we can make the illumination.

The first test investigates how the size of the photon map and varying
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triangles \ photons 400 800 1600 3200 6400 12800 25600
400 460 298 179 101 52 26 12
800 344 243 156 90 49 25 12
1600 225 172 124 78 45 24 11
3200 124 105 83 58 37 21 10
6400 63 56 49 38 27 17 9
12800 30 28 26 22 17 12 8
25600 15 14 13 11 10 8 5

Table 6.1: Frame-rate as a function of the total number of photons and the
total number of triangles. Recall that the number of triangles is just a mea-
sure of how refined the scene is.

refinements levels affect the frame-rate of the application. In Table 6.1 we
see (by looking down the diagonal) that doubling the number of photons
and triangles approximately halves the frame-rate. Hence, the frame-rate
seems to be inverse proportional to the sum of the number triangles and
the number of photons being traced.

Let us turn our attention to intersection testing. The two Quake scenes
contains 369 and 5,355 triangles, respectively. When the intersection testing
is done in isolation, we can trace 47,500 and 6,200 primary rays, respec-
tively. So by using circa 14-15 times as many triangles, we only get a factor
of 7-8 fewer intersections. This means that the BSP tree does enhance inter-
section testing, but also that it could be much better.

On a single 800 MHz Pentium-III it should be possible to trace from
about 200,000 to almost 1.5 million primary rays per second [WBWS01, 6].
The algorithm makes better use of computational resources such as caches
and SIMD instructions. It shows that our implementation is somewhat slow
compared to what should be possible. With our hardware it should be pos-
sible to trace from 600,000 to 4.5 million primary rays (!). We can also ver-
ify that intersection tests is a key performance bottleneck by other means.
In the large Quake scene with approximately 55,000 triangles (only 5,355
triangles for intersection testing) we stored 1,500 photons per frame over
ten frames. If intersection testing was enabled, the frame-rate was 2-3 FPS
whereas it was around 40 FPS if no intersection was done.

We can increase the frame-rate by distributing intersection testing over
several frames. This will, however, also increase the time it takes to fully
renew all photons in the photon map (we call this time for the photon re-
newal time). Table 6.2 shows how the frame-rate and photon renewal time
evolve when the number of accumulation frames is increased and the total
number of photons is kept constant. The table shows a very interesting re-
sult: we can cache illumination over several frames without increasing the
photon renewal time noticeable.

As the last test we shall try to keep the frame-rate high and constant
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Accumulation frames 1 2 4 8 16 32 64
Frame-rate 0.63 1.24 2.41 4.52 8.25 12.51 18.01
Photon renewal time 1.59 1.61 1.66 1.77 1.94 2.56 3.56

Table 6.2: Relation between accumulation frames, frame-rate, and photon
renewal time. The total amount of photons is kept constant at 10,000. No-
tice how going from 1 to 16 accumulation frames increases the frame-rate
considerable while it only increases the photon renewal time slightly.

Figure 6.9: The flashlight demo. The demo runs with 30 FPS. The cone of
the spot light is indicated (approximately) with red lines.

while tuning the visual quality. This test has been done in the small Quake
scene, where we walk around with a spot light pointing forward from the
view. In Figure 6.9 we can see a screen shoot from the scene. The scene has
been refined until it contains 10,369 triangles. At a frame-rate of 30 FPS we
can trace 100 photons from the light source and make 9 diffuse reflections
one time for each photon. As we can see in the figure, we do get some
indirect illumination, but the quality could be much better. As a last result,
we tried running the demo without use of the estimate cache—in that case
the frame-rate dropped to 21 FPS.

6.4 Summary

In Section 6.1 we described the most important parameters that can tweak
the π-engine. Using the BSP tree is an advantage and the advantage in-
creases with the size of the scene.max_search_countand max_search_-
radius should be as small as possible since they have a large impact on
performance. The radius heuristic seems to work, although it hard to say
if it can be fine tuned independently of the scene. The sphere slice filter-
ing can effectively remove most surface bias. The snowball feature is not
very usable in its current status. Photon scattering was best done with the
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Saff-Kuijlaars method from the light source and with stratified diffuse sam-
pling in the reflection step; unfortunately we have not implemented the use
of quasi-random sequence yet.

Section 6.2 gave an overview of the visual quality we can achieve. It is
possible to get real-time color bleeding; occasionally the diffuse reflections
can interfere with the surfaces that are directly lit and give speckled im-
ages. With some fine-tuning it is possible to get as good images with 20
FPS as with 1 FPS. The scene tessellation needs to be fairly high; for the
small Quake scene this means that the scene should contain between 6,400
and 12,800 triangles.

A small performance test revealed that in our implementation the frame-
rate is inverse proportional to the sum of the photon map size and the size
of the scene (see Section 6.3). When we compare the speed of our intersec-
tion testing with the work of others, it is clear that intersection testing is a
major performance bottleneck. The frame-rate could be increased by using
more accumulation frames with little impact on the photon renewal time.
If the frame-rate must be 30 FPS in the small Quake scene, it clear that we
cannot yet trace enough photons to get satisfactory results.



7Conclusion
At any rate it seems that I am wiser than he is to this small extent, that I do not
think that I know what I do not know.
—Socrates

Photon mapping was originally proposed as a technique for photo-realistic
rendering. The technique enhances both the quality and the speed of a
photo-realistic rendering. This project has integrated photon mapping with
a traditional real-time 3D graphics engine. It is desirable to add photon
mapping for two reasons:

1. Many of the special cases used to handle different lighting effects in
3D graphics engines can be avoided.

2. Global illumination including indirect dynamic light can be simu-
lated. This will enable lighting effects such as color bleeding, caustics,
and shadows in real-time rendering.

Our first report served as a feasibility study for this report [OK02]. The
conclusion was that photon mapping could potentially add color bleeding
and soft shadows to a real-time context. From that conclusion we derived
the goals stated in Chapter 1.

The long term goal of the project is to maintain a frame-rate of at least
30 FPS while simulating dynamic light. The main areas we have focused
on to fulfill this goal are related to either visual quality or performance.
The requirement of both high performance and high visual quality consti-
tutes opposing demands. We have therefore explored ways to improve one
requirement without degrading the other. For example, stratified sampling
can improve the visual quality without decreasing the performance. On the
other hand, we can also improve the performance by using more accumu-
lation frames without affecting the visual quality noticeable.

73
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We will first describe the status of the implementation followed by the
main contributions of this work. Then we compare the status of the project
with the goals from the introduction. At the end of the chapter we describe
directions for future work.

7.1 Implementation status

In this project we have shown that it is possible to use photon mapping
to add dynamic light to a real-time 3D graphics engine. Our engine can
simulate color bleeding and shadows.

The traditional 3D graphics engine must be altered in the update and
the draw stage. Photon tracing is added in the end of the update stage.
The draw stage must make an irradiance estimate for all visible vertices.
To improve the visual quality it is important to refine the geometry. The
intersection testing performance is kept independent of this refinement by
using a separate unrefined copy of the geometry. The implementation of
the real-time photon map performs well despite its extra functionality and
flexibility.

A number of important observations have been made throughout this
project:

• The tessellation level needs to be relatively high. Our medium sized
test scene needed a factor of 40 more triangles than in the original
scene to get good visual results.

• The photons must be dispersed with as low a discrepancy as possible
to make optimal use of the limited number of photons. To generate
directions one should use stratification or quasi-random numbers.

• Intersection testing is the key performance bottleneck. One should
have this in mind when designing the scene tree.

• A good compromise between the number of accumulation frames
and the photon renewal time can be found. Without decreasing the
photon renewal time significantly, a much larger frame-rate can be
achieved.

• It is important to only make irradiance estimates for the unculled ver-
tices. Therefore it pays off to spend more time in the cull stage in order
cull as many vertices as possible.

Several spin-offs of the project will be made available. This includes an
Exact_photon_map class that can be used to verify photon map imple-
mentations against, an easy to understand implementation of the real-time
photon map, and a Quake 3 BSP loader for use with Open Scene Graph.
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7.2 Contributions

We will now discuss the main contributions of this project. In Chapter 3
we describe how diffuse reflections can be improved for use in a real-time
context. Instead of decreasing the number of diffusely reflected photons
with Russian Roulette, we increase the number of diffusely reflected pho-
tons. Thereby fewer reflections are needed to cover the scene with photons
and less time is spend on rather unimportant photons.

We have proposed a terminology for describing different types of leak-
ing: surface leaking is defined as leaking from surfaces with a different
normal or translated surfaces with a similar normal, and distance leaking
is defined as leaking from a differently lit area on the same flat surface.

We also describe a new method for effectively removing surface bias
using a sphere slice. This method is faster than commonly advised ap-
proaches such as cylinders an ellipsoids.

Chapter 5 described how frame-coherent random numbers can be used
to decrease fluctuation. We showed how one could also improve perfor-
mance by pre-calculating all needed directions.

The tests in Chapter 6 revealed an interesting property of the number of
accumulation frames. It is possible to increase the frame-rate considerably
while only increasing the photon renewal time slightly.

7.3 Comparison with goals

We will compare the obtained results with the goals as they were laid out
in section 1.3. This is done by discussing the achievements related to each
goal.

Goal 1: Improve the image quality and reduce fluctuation to an acceptable level.

Achievement 1: We are able to produce images with acceptable quality and
low fluctuation. The most important improvement of image quality comes
from a better distribution of photons. Fluctuations are decreased consider-
able by using frame-coherent photon paths. We expect the image quality to
improve as soon as we can trace more photons or when support for quasi-
random sequences are added. To further reduce fluctuation, a high tessel-
lation level should be used. The current status indicates that using a high
tessellation level is not a performance problem.

Goal 2: Build a dynamic scene that can work as a test scenario.

Achievement 2: We have a simple test scenario with dynamic objects and a
dynamic light source. To test larger scenes we can load Quake 3 BSP scenes.
This gives access to scenes of a realistic size.
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Goal 3: Assemble the 3D engine so important modules are implemented and func-
tioning in a realistic manner.

Achievement 3: Most required modules in a 3D engine are present in states
adequate for identification of real performance bottlenecks. In particular,
we have intersection testing based on spatially sorted geometry and a de-
cent culling performance.

Goal 4: The integration of photon mapping and the real-time 3D graphics engine
should be as easy as possible.

Achievement 4: Adding photon mapping requires integration in three
places. (1) The photon mapping module must have access to the scene ge-
ometry to perform intersection testing. (2) The scene module must install
a single callback that can update the irradiance estimates of each vertex
in the draw stage. (3) It must be possible to make a refined model of the
scene. We believe that (1) and (2) are straightforward extensions to normal
real-time 3D graphics engines whereas we are uncertain about (3).

Goal 5: Test different methods to scatter photons throughout the scene and find
out which methods that should be preferred in the engine.

Achievement 5: Only a few different ways of distributing photons in a
scene has been tested. Currently the best strategy is to use the Saff-Kuijlaars
method for light source directions combined with stratified sampling for
diffuse reflections. However, we are convinced that using quasi-random
sequences will give even better results.

Goal 6: Identify areas that clearly seems to be performance bottlenecks.

Achievement 6: Many performance bottlenecks have been identified and
optimized during development. In the current application intersection test-
ing is the key bottleneck. Currently we have optimized the intersection test-
ing module by using bounding volume hierarchies, but nevertheless the
performance is still rather low compared to state-of-art methods.

Goal 7: Keep the focus on dynamic indirect lighting with color bleeding in diffuse
environments.

Achievement 7: We are able to render our test scenes with dynamic indi-
rect illumination including color bleeding at acceptable frame-rates. Fur-
thermore, soft shadows are present although blurry. We hope that this can
be improved with use of filtering.

We can conclude that most of our goals have been fulfilled, but that some
issues still persist. In the next section we summarize the areas that are sub-
ject to future work.
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7.4 Future work

Our implementation can be still improved. Performance wise our intersec-
tion testing is slow (Section 6.3). The photon map implementation can be
improved by using an iterative nearest neighbor search and by using sev-
eral photon maps (Section 5.3). Quality wise the most important enhance-
ment will probably be to use quasi-random sequences (Section 3.4).

In this report we have continuously improved both performance and
visual quality. As future work we recommend this prioritized list for both
categories:

• Performance:

1. Improve intersection testing.
2. Remove the need for an estimate cache or use a hash map to

make the implementation as efficient as possible.
3. Culling should be made more fine-grained to minimize the am-

ount of unculled vertices outside the view frustum.
4. Iterative nearest neighbor search and the use of several photon

maps.

• Visual quality:

1. Quasi-random sequences for use during photon scattering.
2. Use filtering to sharpen shadows.
3. Improve the area estimate to remove boundary bias.

As indicated by industry leaders, global illumination will become the norm.
There are several competing approaches that tries to achieve this goal. We
can categorize the methods as either pure ray-tracing-based rendering, pure
hardware-based rendering, and the hybrid approaches like the π-engine.

Most hybrid methods have started out with a very high requirement
to the visual quality which means that they are very slow. Our approach
has been the opposite. We have started with an expectation of interactive
frame-rates and then tried to improve the visual quality.

Recent advances in ray-tracing suggests that real-time ray-tracing will
be possible in the near future. Before that happens we believe hybrid ap-
proaches will the best alternative. Modern graphics hardware are excellent
at rendering dynamic direct light and this capability should be used to-
gether with something similar to the π-engine. In a way the two methods
complement each other perfectly: the specular effects and the direct light
can be simulated by hardware whereas special effects like color bleeding
and caustics can be rendered by the real-time photon mapping algorithm.
Therefore we believe that real-time photon mapping can be used in modern
real-time 3D graphics engine in the foreseeable future.
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