
The � -engine
PART 2

Dynamic illumination in 3D enginesusing
real-time photon mapping

Group E4206b Supervisors
Dennis Kristensen Claus B. Madsen
Thorsten Jørgen Ottosen Olav Bangsø

Faculty of Engineering and Science
Aalbor g University

Department of Computer Science

TITLE:
The � -engine, PART 2, Dynamic
illumination in 3D engines using
real-time photon mapping.

SEMESTER PERIOD:
DAT6,
1st of February 2003-
20th of June2003

PROJECTGROUP:
E4-206b

GROUP MEMBERS:
Dennis Kristensen, snicki@cs.auc.dk

Thorsten Jørgen Ottosen, nesotto@cs.auc.dk

SUPERVISORS:
Claus B. Madsen, cbm@cvmt.auc.dk

Olav Bangsø,bangsy@cs.auc.dk

NUMBER OF COPIES: 7

NUMBER OF PAGES: 77

TOTAL NUMBER OF PAGES: 82

SYNOPSIS:

This report describes the application
of real-time photon mapping to en-
hance realism of lighting and to auto-
mate illumination work in interactive
3D applications.

The �rst part of this report reviews
the essential theory about light and
real-time photon mapping whereas
the second part discusses the imple-
mentation and results in detail.

This report looks into two major
problems of real-time photon map-
ping: to identify and remove perfor -
mance bottlenecks and to reduce �uc-
tuation and impr ove visual quality .

The main con�ict is between image
quality and real-time constraints. The
key to impr ove quality is to increase
photon and polygon count. However ,
increasing either of these decreases
performance.

The conclusion summarizes impor -
tant guidelines that must be followed
to enable real-time photon mapping
and describes problems that are sub-
ject to futur e work.

Preface
If there is any situation worsethan havingno documentation,it must behaving
wrongdocumentation.
—Bertrand Meyer

Our report is entitled “The � -engine” which is short for “The photon illumi-
nation engine”. We remind the reader that this report is the secondof two;
the �rst report dealt with analysis and implementation of a test scenario,
and this report solves major problems laid out in the �rst.

We expect the reader to be familiar with C++ sincemany algorithms are
presentedin C++ code or C++ like pseudo-code.

The spin-offs of this project will be an open source Quake 3 BSPloader
for Open SceneGraph, an easyto understand photon map implementation
and an Exact_photon_ma p classwhich canbeused to verify other imple-
mentations against.Everything canbedownloaded from http://www.cs.
auc.dk/˜nesott o/ pi e.

Wehave tried to make the report asself-contained aspossible.When this
is not possible,we provide referencesand try to beasspeci�c aspossible by
including page numbers. Note that no hyphens are used to break WWW-
addressesin the bibliography; any hyphen will therefore be part of the
addressitself. Italics are used to emphasize importance whereastechnical
terms or important aspectare written in a bold font when they are de�ned.
When we discuss issuesrelated to real-time graphics and 3D hardwar e,we
refer to an OpenGL context if nothing elseis mentioned. However , most of
the principles are ubiquitous and exist in other APIs aswell.

We would like to thank the following people. Thanks to Henrik Wann
Jensenfor providing us with the implementation of his photon map. Thanks
to Frank Suykens and Bent Dalgaard Larsen for our correspondence.We
also appreciate the helpful people on the Open SceneGraph mailing list.
Thanks to Bjarne Stroustrup for creating C++ and to Alex Stepanov for de-
veloping the Standard Template Library .

Dennis Kristensen Thorsten Jørgen Ottosen

Contents

1 Introduction 1
1.1 Lighting in 3D engines . 1
1.2 Real-time photon mapping . 2
1.3 Goals . 4
1.4 Overview of report . 6

2 Illumination theory 7
2.1 Lighting effectsoverview . 7
2.2 Lighting terminology . 9
2.3 Light scattering . 11
2.4 The rendering equation . 13
2.5 Summary . 13

3 Real-time photon mapping 15
3.1 The algorithm . 16
3.2 Impr ovements . 20
3.3 Rendering and blending . 23
3.4 Photon scattering . 25
3.5 Bias reduction . 29
3.6 Summary . 33

4 Implementation overview 35
4.1 Engine overview . 35
4.2 Open SceneGraph and BSPtrees 37
4.3 Control �ow . 37
4.4 Customizing photon mapping 39
4.5 Testing . 40
4.6 Summary . 43

5 Implementation details 45
5.1 Classoverview . 45
5.2 The photon tracer class . 48
5.3 The real-time photon map class 50
5.4 The BSPformat . 56
5.5 Summary . 58

v

6 Results 61
6.1 Photon mapping parameters 62
6.2 Visual quality . 66
6.3 Performance . 69
6.4 Summary . 71

7 Conclusion 73
7.1 Implementation status . 74
7.2 Contributions . 75
7.3 Comparison with goals . 75
7.4 Future work . 77

1Intr oduction
Thegreatestchallengeto anythinkeris statingtheproblemin awaythat will allow
asolution.
—Bertrand Russel

The main subject of this report is photon mapping and its applications in
a dynamic real-time context. In particular we investigate dynamic indir ect
light. This chapter intr oduces real-time photon mapping and sketchesthe
problems addressedin this report.

We begin with a short presentation of the lighting phenomena that real-
time photon mapping canhelp simulate. The main idea of real-time photon
mapping is then described followed by the goals of the project. In the end
we give an overview of the rest of the report. If the reader is new to com-
puter graphics we recommend that he also reads the intr oduction to our
�rst report [OK02].

1.1 Lighting in 3D engines

Traditionally , 3D graphics engines have separated the rendering of static
and dynamic light. Static light is light originating from light sourceswith
static properties whereasdynamic light originates from light sourceswith
variable properties like origin and dir ection. Static and dynamic light have
again beenseparated into indir ect light and dir ect light. Direct light refers
to the light received dir ectly from light sources.Indirect light is the light
received from other surfaces(that is, re�ected light). Global illumination
is the combination of both dir ect and indir ect light (notice that we use the
terms light and illumination interchangeable). In real-time graphics shad-
ows are treated separately for performance reasons.Figure 1.1shows how
important the indir ect illumination is.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: A room rendered with a) full global illumination, b) indir ect
illumination, c) dir ect illumination [VMKK00].

Texture mapping is used to attach imagesto models for impr oved visual
quality without adding complexity to the geometric model. A light map is
a texture map that representshow light strikes a surface, and it is widely
used to create static indir ect light and aspectsof static dir ect light such as
shadows. Contrary to photo-r ealistic rendering, indir ect dynamic light is
not simulated in real-time rendering since it relies on a global analysis of
the scenewhich is too costly. Two of the effects that are due to indir ect
illumination are color bleeding and caustics. Color bleeding can be seen
when e.g.a indir ectly lit white wall appears reddish becausea red object is
situated closeto it (seeFigure 1.2on the right), and an example of caustics
is when a surface is lit by a magni�er (seeFigure 1.2on the left). The lack of
indir ect illumination is acknowledged asashortcoming in current real-time
rendering by David Kirk, NVIDIA [Sta03]:

... we've moved from texture-mapped rendering to program-
mable pixel shading in pursuit of cinematic realism, but we
aren't quite there yet. In particular , real-time 3D graphics ren-
dering is not yet capableof global illumination.

We hope to move one step closer to this goal by using real-time photon
mapping.

1.2 Real-time photon mapping

Photon mapping is a technique that can enhancethe quality and speed of
the ray tracing rendering technique. It is particularly useful for producing
lighting effectssuch ascaustics,shadows and color bleeding [Jen01, xv].

Photon mapping is a two pass algorithm where the rendering step is
impr oved by using extra light information generated in a preprocessing
step. In real-time photon mapping we can summarize the two steps as
follows:

1.2. REAL-TIME PHOTON MAPPING 3

Figure1.2:Left: An example of caustics.This scenewith a glasseggconsists
of 4000 triangles [WKB+ 02]. Right: An example of color bleeding; notice
how the colors of the walls appear on the sides of the hanging box.

1. Photon tracing:

(a) emit photons from light source;

(b) scatterphotons dif fusely.

2. Rendering:

(a) use the photons to estimate the light eachobject receives;

(b) blend the texture color of the object with the light estimate.

During photon tracing photons are emitted from the light sources in the
scene.When a photon hits a surface, the photon is saved in a suitable data
structure called the global photon map (or just the photon map). The pho-
ton is then split up into several new photons that are traced recursively
one or two times. During rendering the photon map is used to estimate the
light each vertex on each object receives.We say that we make an irradi-
ance estimate for eachvertex. Finally the light estimatesare blended with
the texture color.

The basicoptimization idea of the technique is to calculate the irradiance
estimate for each vertex in the sceneand let the graphics hardwar e inter-
polate the color values in between vertices. Real-time photon mapping can
be implemented in other ways than using hardwar e to interpolate between
vertex colors, but when we say real-time photon mapping, we refer to this
de�nition unless stated otherwise. The important observation that justi�es
this interpolation scheme is that the indir ect illumination on dif fuse sur-
facesoften change slowly over the surface [WRC88, 3]. It is important to
realize that this is not the casewhen illumination changesabruptly near
shadow boundaries and caustics.

4 CHAPTER 1. INTRODUCTION

Figure 1.3: The results from our �rst report. The most apparent problems
are the speckled appearanceand the white saturation.

A similar method is used in irradiance caching where irradiance esti-
mates are precomputed for each photon position and estimates between
these positions are interpolated [Jen01, 140]. In general the interpolation
of dif fuse illumination is often used to increaseperformance in interactive
contexts. This can be seenin a recent survey by Damez et al. where many
of the methods use some form of interpolation [DDM03].

1.3 Goals

In this project we will incorporate photon mapping in a standard 3D en-
gine. The motivation for adding photon mapping to 3D engines was de-
scribed in [OK02, 10]. The main motivation is to add dynamic illumination
and to avoid many special cases.The long term goal is to maintain frame-
rates of at least 30FPSwhile simulating dynamic light.

The problems that need to be overcome in real-time photon mapping
can roughly be categorized as either performance related or visual quality
related [OK02, 79f]. By performance we mean the execution time whereas
visual quality refers to the realism of the rendered frames and the amount
of �uctuation between the frames. The requirement of both high realism
and high performance constitute opposing demands. Therefore we must
�nd a compromise between visual quality and performance.

Most performance impr ovements are irr elevant if the image quality can-
not bemade suf�ciently good. What we presentedin our last report was far
from satisfactory (seeFigure 1.3). Thus our �rst goal is:

Goal 1: Improvetheimagequality andreduce�uctuation to an acceptablelevel.

If we cannot do this, then what use is it to impr ove performance? It is also

1.3. GOALS 5

imperative to have a realistic sceneto test the engine on. If the scene is
not (at least a little) realistic, then it will be impossible to determine which
problems that are performance bottlenecks. Hence, the secondgoal is:

Goal 2: Build adynamicscenethat canworkasa testscenario.

But requiring that the sceneis dynamic is not enough:

Goal 3: Assemblethe3D enginesoimportantmodulesareimplementedandfunc-
tioning in a realisticmanner.

By realisticwe mean that e.g. the intersection testing module cannot use a
linear search scheme,but should rely on some spatial sorting of the scene
graph. If we do not have a realistic implementation of the dif ferent mod-
ules, then we can only guesswhat the performance bottlenecks might be.

Using photon mapping could simplify illumination effects, but on the
other hand it might complicate the engine itself:

Goal 4: Theintegrationof photonmappingandthereal-time3D graphicsengine
shouldbeaseasyaspossible.

This implies that we should be able to handle scenesof the same size as
before the integration. When the engine hasmatured to ful�ll goal 4, it will
be necessarywith some tests:

Goal 5: Testdifferent methodsto scatterphotonsthroughoutthesceneand �nd
out whichmethodsthat shouldbepreferredin theengine.

It will also be imperative to review what would be most important to do
next:

Goal 6: Identify areasthat clearlyseemsto beperformancebottlenecks.

The most pressing performance problems are predicted to fall into two
broad categories: intersection testing and irradiance calculation. Our last
report identi�ed threemain areasthat still needsfurther work [OK02, 60ff]:

1. Fasterphoton map data structure.

2. Fasterintersection testing.

3. Optimal photon distribution.

We will test and pro�le all three areas to identify those areas that need
further impr ovement.

6 CHAPTER 1. INTRODUCTION

In our �rst report we did not put focus on any special visual effect, but
wanted to look at both shadows, color bleeding and caustics [OK02, 10f].
Admittedly this scopeis too big and we narrow it to the following:

Goal 7: Keepthefocusondynamicindirectlighting with colorbleedingin diffuse
environments.

1.4 Overview of report

Chapter 2. Illumination theory . We start with an intr oduction to light phe-
nomena and continue with a description of physical models of light. This
will give us the necessarybackground information needed to understand
photon mapping.

Chapter 3. Real-time photon mapping . Here we give a detailed descrip-
tion of the real-time photon mapping algorithm. In particular , we describe
how illumination from the photon map is combined with the texture color.
Wedescribeseveralenhancementtechniquesand discusshow photon scat-
tering is bestperformed.

Chapter 4. Implementation overview . This chapter intr oduces the scene
graph library that we have used as the foundation of the � -engine. We
show the basic control �ow of the application and discuss parameters that
can tweak the photon mapping algorithm. We also describe how testing is
done throughout the rest of the report.

Chapter 5. Implementation details . The collaboration of the fundamental
classesin the � -engine is explained followed by an in-depth view of the
most important classes.Wediscussseveralperformance and quality related
issuesthat have beenor should be dealt with.

Chapter 6. Results. In this chapter we explain several testsand test param-
eters.The testsare concernedwith both visual quality and performance is-
sues.This chapter will also give an impr essionof the status of the � -engine.

Chapter 7. Conclusion . In the conclusion we look back at the work of two
semesters.We review what this particular report has contributed with and
describe dir ections for futur e work.

2Illumination
theory

I believethat globalillumination will becomethe norm. Dir ect illumination ren-
dererslike prmanhavereachedthe limit of therealismtheycanproducein terms
of lighting.
—Kaveh Kardan, Square USA

To make a realistic simulation of light it is important to understand the
physical models that areused to describelight. In order to simulate light in-
teraction in computer graphics we usean illumination model that encapsu-
lates asmuch of the physical model aspossible. At the sametime it should
besimple enough to make it tractable for usein computer graphics applica-
tions. An illumination model (or re�ection model) usesparameters such
aslight sourceproperties, material properties, and surfacegeometry to de-
scribe light-surface interaction. Illumination models can be separated into
global and local illumination models. In a local illumination model only
dir ect light is considered. In a global illumination model both dir ect and
indir ect light is considered

This chapter starts with a description of light sourcesand lighting ef-
fects. Then we discuss physical properties of light followed by re�ection
models. We end the chapter with the fundamental equation that all global
illumination algorithms strive to solve.

2.1 Lighting effects overview

Lighting effects or phenomena depend on the light source properties as
well asthe material properties and geometry of the surfacewhere the light-

7

8 CHAPTER 2. ILLUMINA TION THEORY

ing effect occurs. Therefore we discuss theseproperties before the lighting
effects.

2.1.1 Basic de�nitions

In real-time 3D computer graphics we are usually restricted to threetypes
of light sources:dir ectional lights, point lights, and spot lights [Ebe01, 100].
A directional light source is assumedto be located in�nitely far away such
that the light rays are parallel—a classical application is to approximate
sunlight. Point light sources emit light uniformly in all dir ections. A spot
light source only emits light within a coneand the light can be distributed
uniformly or with focus. Other light sourceattributes include the color and
intensity of the light, and point lights and spot lights should—if realism
is a concern—have their illumination attenuated with distance from the
light source. Despite its caveats (see[Wat00, 421ff]), the ubiquitous color
representation is the RGBmodel.

If a light sourceis visible from a surface,the surfacewill be hit by direct
light (or direct illumination). Re�ection means the return of light from a
surface, and indirect light (or indirect illumination or ambient light) is
light that hasbeenre�ected one or more times. We sometimesuse the term
bounce instead of re�ection. Of course, a dir ectly lit surface is also hit by
indir ect light.

When light is emitted from a light source, we need to be able to de-
scribe how it scattersin the scene.Most re�ection models deal with at least
two types of re�ections: dif fuse and specular. Dif fuse re�ections model the
re�ection of light scattered in all dir ections whereas specular re�ections
models mirr or-like re�ections. The re�ective properties of most materials
canbe described by a combination of thesetwo components. A surfacethat
re�ects light uniformly in all dir ections is called perfectly dif fuse (or Lam-
bertian) whereas one that is completely specular is denoted as a perfect
mirror .

2.1.2 Lighting effects

Indir ect illumination is an important global illumination effect which has
a profound impact on the perceived realism. This is becausemany of the
effectsdescribed below stemsfrom indir ect illumination.

A Glossy re�ection canbeseenasa combination of a dif fuse and a spec-
ular re�ection and results in a blurr ed re�ection. Some materials such as
paper and wood re�ects more light in shallow angles—this is known asthe
Fresnel effect.

Color bleeding is the transfer of color between objects caused by the
re�ection of indir ect light. Real-time graphics might be able to simulate
color bleeding by using colored lights. We already saw an example of color

2.2. LIGHTING TERMINOLOGY 9

bleeding in Figure 1.2. Notice that there is very little visible color bleeding
on the �oor; in general the dir ect illumination is much stronger than the
indir ect.

When light traveling through a transparent medium encountersabound-
ary leading into another transparent medium, a part of the ray is re�ected
and a part enters the secondmedium. The part that enters the secondme-
dium is bent at the boundary and is said to be refracted [SBJWJ00, 1113].
The light interaction between specular and dif fuse surfaces can produce
caustics.A caustic appears on a dif fuse surface when light is concentrated
by a specular re�ection or refraction. An example of causticsproduced by
refraction was shown in Figure 1.2. Notice that refraction produces darker
areas around the caustics. Refraction can also disperse light as when it
passesthrough a prism.

Both dir ectand indir ect illumination canform a shadow. A shadow is an
areathat is only partially illuminated due to blockageof light by an opaque
object called the occluder. If a point is not dir ectly lit at all, it is part of the
umbra of the shadow. If a point on the shadow is lit by a portion of the light
source,it is part of the penumbra of the shadow. A hard shadow consist of
pure umbra points whereasa soft shadow has its umbra surrounded with
a penumbra. It follows that the typical dif fuse point light source cannot
produce soft shadows.

2.2 Lighting terminology

Several dif ferent physical models of light exist. In computer graphics the
ray optics model is predominant. Ray optics (or geometrical optics) in-
volves the study of the propagation of light with the assumption that light
travels in a straight line as it passesthrough a uniform media. Ray optics
can be used to simulate most visual effects including re�ection and refrac-
tion. We discuss the radiometry terminology for describing ray optics.

2.2.1 Notation

In the following x; x0will denote surfacelocations, ~n will be the normal vec-
tor at x, and ~! ; ~! i are unit vectors that representsthe re�ected and incom-
ing dir ection, respectively. ~! r and ~! s representsthe refracted and specular
re�ected dir ection, respectively.

The set of all possible dir ections is the unit sphere
 4� that has a solid
angle of 4� steradian. A hemisphere
 2� covers 2� steradian. Associated
with a dir ection is the dif ferential solid angle, d! , that is used for integra-
tion over �nite solid angles.Notice that we do not use a curly “d” (�) even
though we describe partial derivatives; this notation is commonly used
[Jen01] [Suy02].

10 CHAPTER 2. ILLUMINA TION THEORY

Symbol Description Unit
Q radiant energy [J]
Q� spectral radiant energy [J]
� radiant �ux [W]
� � spectral radiant �ux [W=m]

B (x) radiosity of surface location x [W=m2]
E (x) irradiance at surface location x [W=m2]

L (x; ~!) radiance at surface point x in dir ection ~! [W=(m2 � sr)]

Table 2.1:Overview of symbols used in radiometry .

In spherical coordinates the dir ections are representedas~! = (� ; �) and
~! i = (� i ; � i). Mor eover, we sometimes use subscripts i and r to mean the
incomingand the re�ectedof someconcept.Note that all vectorsareassumed
to be normalized unless stated otherwise.

2.2.2 Radiometry

In radiometry the basicquantity is the photon which describesa quantum
of electromagnetic radiation. Symbols related to radiometry are listed in Ta-
ble 2.1. A photon with wavelength � hasan energy e� . The spectral radiant
energy of n � photons with the samewavelength is de�ned asQ� = n� e� .

Radiant energy is the quantity of energy propagating onto, through or
emerging from a speci�ed surface of given area in a given period of time
[Jen01, 13]. We calculate it as the energy of a collection of photons

Q =
Z 1

0
Q� d� [J] ; (2.1)

that is, we integrate the spectral radiant energy for all possiblewavelengths.
Flux is commonly used to denote the rate of transfer of particles or energy
acrossa given surface. With radiant �ux (or power or �ux) we denote the
�ow of radiant energy per time given by

� =
dQ
dt

[W] ; (2.2)

that is, the quantity of energy transferring through a surface or region of
spaceper time.

Radiosity , B , is the radiant �ux leaving a surface whereas irradiance ,
E , is the radiant �ux arriving at a surface. If a surface does not absorb or
transmit light, then B = E. Irradiance is given by

E(x) =
d�
dA

�
W=m2�

: (2.3)

2.3. LIGHT SCATTERING 11

dA

.......

........

........
........

..........
.............

....................................

........
..

..........
..........................

........
........
........................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

..........

..
.........
.........
.........
.........
.........
........
.........
.........
.........
......

ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppppppppppppp
ppppppppppppppppppppppppp

d~!

~n
L

�

..

Figure 2.1: The radiance, L , is de�ned as the radiant �ux per unit solid
angle, d~! , per unit projectedarea,dA.

Radiance can be thought of asthe number of photons arriving (or leaving)
per time at a small area from a given dir ection, and it can be used to de-
scribe the intensity of light at a given point in space in a given dir ection
(seeFigure 2.1). Formally, radiance is the radiant �ux per solid angle per
projectedareagiven by

L(x; ~!) =
dE(x)

cos� d~!
=

d2�
cos� d~! dA

(2.4)

that is, the area and solid angle density of radiant �ux. The cosine factor
in the denominator expressesthat the surface area is foreshortened and
the effective surface area is cos� dA. In vacuum, an important property of
radiance is that it is constant along a line of sight, that is, the photons are
not dispersed, do not loose energy and do not disappear entirely—this is
used by all ray tracing algorithms [Jen01, 15].

2.3 Light scattering

Now that we have an overview of the lighting terminology , we are inter-
ested in describing light-surface interaction. In simpli�ed situations light-
surface interaction can be described by well-known physical laws. If we
consider arbitrary re�ection properties of materials, however, the impor -
tant question arises how the re�ection properties can be represented. In
computer vision aswell ascomputer graphics the bidirectional re�ectance-
distribution function (BRDF) is used as the fundamental tool to describe
re�ection characteristics.

12 CHAPTER 2. ILLUMINA TION THEORY

2.3.1 The BRDF

Informally , a BRDFdescribeshow much of the light that comesin from one
dir ection goes out in another dir ection. The fraction of incident light that
is re�ected by a surface is called the re�ectance and is denoted � (x)—the
remainder is either transmitted or absorbed.Normally the BRDF is depen-
dent on the wavelength of the incoming light, but in the following we omit
such concerns.An approximation could be to use a BRDF for each of the
RGB-components.

Formally, the BRDFde�nes the relationship between dif ferential re�ect-
ed radiance and dif ferential irradiance [Wu03, 6]. By Equation 2.4we have
that

f r (x; ~! i ; ~!) =
dL r (x; ~!)
dE(x; ~! i)

=
dL r (x; ~!)

L i (x; ~! i)(~! i � ~n)d~! i

�
sr� 1�

(2.5)

If we know the incident radiance �eld at asurfacelocation, we cancompute
the re�ected radiance in all dir ections.This is done by rearranging equation
2.5and integrating the incident radiance L i :

L r (x; ~!) =
Z

 2�

f r (x; ~! i ; ~!)dE(x; ~! i) (2.6)

=
Z

 2�

f r (x; ~! i ; ~!)L i (x; ~! i)(~! i � ~n)d~! i (2.7)

An important property of the BRDFis Helmholtz' s law of reciprocity which
statesthat the BRDF is independent of the dir ection in which light �ows:

f r (x; ~! i ; ~!) = f r (x; ~! ; ~! i) (2.8)

This is a fundamental property that makes it possible to trace light paths in
both dir ections. Another physical property of the BRDF is that it is lessor
equal to 1 due to energy conservation. A surface (which is not an emitter)
cannot re�ect more light than it receives.

The BRDF is itself a simpli�cation of more complex models since we
assumethat light striking a surface is re�ected at the samesurface location.
For example, the BSSRDFcanbeused to simulate translucent materials like
milk, marble and skin [Jen01, 18f].

In this project we mostly deal with Lambertian surfaces. For a Lam-
bertian surface the re�ected radiance is constant in all dir ections regard-
less of the irradiance. As a consequencea point on a Lambertian surface
is equally bright from any view dir ection. This gives the constant BRDF
f r ;d(x) = � (x)=� [Jen01, 21]. The radiance is therefore by Equation 2.6

L r (x) = f r ;d(x)
Z

 2�

dE(x; ~! i) = f r ;d(x)E(x) (2.9)

2.4. THE RENDERING EQUATION 13

2.4 The rendering equation

A basis for all global illumination algorithms is found in the rendering
equation which can be used to compute the outgoing radiance at any sur-
face location in the model. It states that the outgoing radiance, L o, is the
sum of the emitted radiance, L e, and the re�ected radiance, L r :

L o(x; ~!) = L e(x; ~!) + L r (x; ~!) : (2.10)

By using equation 2.7 to compute the re�ected radiance we get the render-
ing equation as it is often used in ray-tracing algorithms:

L o(x; ~!) = L e(x; ~!) +
Z

 2�

f r (x; ~! i ; ~!)L i (x; ~! i)(~! i � ~n)d~! i : (2.11)

L i (x; ~!) originates from outgoing radiance on other surfaceswhich reveals
the recursive nature of the equation. The integral is solved numerically by
tracing rays over the hemisphere and calculating the outgoing radiance at
the surfacesthat they intersect [Suy02, 9f].

2.5 Summary

Many dif ferent lighting phenomena exist and we have seenhow they are
affected by dif ferent types of light sourcesand material properties (Section
2.1). The light-surface interactions that lead to thesephenomena are mod-
eled in an illumination model. Local illumination models only model dir ect
light whereas global illumination models model both dir ect and indir ect
light.

In Section2.2we described radiometry which is a lighting terminology
where the basicquantity is the photon. The two most important concept in
radiometry is irradiance and radiance. Irradiance can be thought of as the
number of photons arriving per time at a particular location from all di-
rections. Incoming radiance can be described as the irradiance originating
from a particular dir ection.

BRDFsare used to describe how much of the light that comes in from
one dir ection is re�ected in another dir ection (Section2.3). The most impor -
tant property of the BRDF is Helmholtz's law of reciprocity which allows
global illumination algorithms to trace light paths in both dir ections. Out-
going radiance on a dif fuse surface is the product of the dif fuse BRDF and
the irradiance.

In Section 2.4 we described the rendering equation which provides a
mathematical model for computation of outgoing radiance. The equation
can be solved numerically by ray-tracing; incoming radiance is computed
by recursively computing the outgoing radiance from other surfaces.

3Real-time
photon mapping

Oneof us recallsproducinga “random” plot with only 11 planes,andbeingtold
byhiscomputercenter'sprogrammingconsultantthat hehadmisusedtherandom
numbergenerator:“W e guaranteethat eachnumberis randomindividually, but
wedon't guaranteethat morethanoneof themis random.”
—[PVTF02]

Photo-realistic photon mapping is a full global illumination algorithm that
can be used to solve the rendering equation in a way that includes com-
plex simulation of indir ect illumination. Conceptually, the method is ordi-
nary Monte Carlo ray tracing with extra light information stored in pho-
ton maps. Monte Carlo ray tracing approximates the rendering equation
by tracing a large amount of randomly generated rays throughout the the
scenefor many recursions. This is computationally very expensive and a
single image can take hours to render. In this respect there is a long way
before we can generatetens of images per second.

In this chapter we review the basicphoton mapping algorithm and meth-
ods we use to enable it to run in real-time. Our presentation emphasizes
the cut down real-time version that we use, but we summarize how it de-
viates from the normal photo-r ealistic rendering method. Two techniques
from the photo-r ealistic version are intr oduces;we shall later evaluate their
relevanceto real-time rendering. We describe how the irradiance estimate
can be blended together with the texturesof the sceneto produce the �nal
image. Then we investigate how photons should be traced throughout the
scene,and quality impr ovement techniques are discussed. For the rest of
this report we assume that the reader has a basic understanding of real-
time graphics (an overview can be found in [OK02, 39ff]).

15

16 CHAPTER 3. REAL-TIME PHOTON MAPPING

3.1 The algorithm

Photon mapping is a simple two passalgorithm consisting of a photon trac-
ing pass and a rendering pass. In real-time photon mapping we do not
make a full photon tracing passfor eachframe, but distribute calculations
out on several frames to speed up the algorithm. An important aspect of
our work is to enable global illumination in a dynamiccontext. When light
sourcesand objectsare animated, it can lead to problems when photons are
stored for more than one frame. One could consider to make an invalida-
tion schemethat detected which photons to remove and re-emit (seee.g.
[DBMS02]). Such a schemeis probably of less value if the sceneis full of
action—then the entire photon map should be invalidated. Until we can
afford re-shooting the entire photon map for each frame, we only shoot a
fraction of the photons for each frame. What is important to this strategy
is that it should work reasonableas long as the frame-rate is high, so the
photon map is re-�lled several times per second.

Before we explain the photon mapping algorithm, it will be necessary
with ashort description the photon. In photon mapping aphoton is de�ned
by its power, position and incoming dir ection. In reality a photon hasa par-
ticular wavelength which is perceived as a certain color by the eye. When
many photons of the samewavelength reachthe eye,we seethe samecolor,
but with a larger intensity . In photon mapping (and in computer graphics
in general) the concept of color and intensity merges into one component,
namely the power representedasan RGBvector. In the RGB vector the re-
lationship between the threecomponents de�ne the color and the length of
the vector or the sum of the components de�nes the intensity. Therefore a
single photon representsa collection of real photons with the samewave-
length.

3.1.1 Photon tracing

Photon tracing works in the sameway asray tracing, exceptfor the fact that
photons propagatepower whereasrays gather radiance—this is important
sincethe photon-surface interaction can be dif ferent than ray-surface inter-
action [Jen01, 60].Photon tracing of a single photon canbe described in �ve
steps:

1. Emit: Choosephoton origin and dir ection from light source.This pro-
ceduredepends on the type of light source,seeSection3.4. The power
of the light sourceis distributed evenly among all emitted photons.

2. Intersect: Tracephoton until the �rst surface intersection. If no inter-
section is found, the next photon can be traced.

3.1. THE ALGORITHM 17

Figure 3.1:Left: Photon paths in a scenewith a specular sphere on the left
and a glass sphere on the right: (a) two dif fuse re�ections followed by ab-
sorption, (b) a specular re�ection followed by two dif fuse re�ections, (c)
two refractions followed by absorption [JCS01, 20]. Right: Gathering radi-
ancein a sphere.The gray areais the areaof the circle inside the sphere that
is used to �nd the irradiance [JCS01, 30].

3. Store: Store the photon containing the point of intersection and the
incoming dir ection of the photon in the photon map.

4. Re�ect: Createre�ected photons. First the power of the re�ected pho-
ton must be calculated by scaling the power of the incoming pho-
ton with the dif fuse re�ectance � (x) and the dif fuse BRDFf r ;d [Jen01,
61]—this is how color bleeding is accounted for. To make it simple we
use a re�ectance of 1 and assign one BRDF for an entire surface. To
quickly cover the scenewith photons, the photon is split into several
lower -powered photons which are dispersed dif fusely on the hemi-
sphere.

5. Recurse: Goto step 2 until some prede�ned depth is reached. This
depth is usually 1 or 2.

Figure 3.1shows threedif ferent photon paths. A photon path denotes the
light path traveled by a photon until the photon ceaseto exist. While the
photons are traced throughout the scene,the photons must be stored so
that they can be easily retrieved later. A kd-tree data structure is used to
store the photons becauseit can be representedcompactly asan array and
becauseit is quite fast to search for k photons in. If n is the number of pho-
tons stored in the photon map (which we denote as the size of the photon
map), the k nearest photons of a point can be found in O(lg n + k) time
[Jen01, 69]. Sucha search is called a nearest neighbor search. Becausepho-
tons are stored in a geometry-independent data structure,photon mapping
scaleswell with complex scenes[Suy02, 106].

18 CHAPTER 3. REAL-TIME PHOTON MAPPING

3.1.2 Rendering

In normal polygon rendering all unculled polygons are passeddir ectly to
the graphics hardwar e which draws the polygons on the screen. To take
advantage of the photon map we intervene the normal rendering pipeline
between culling and drawing. The additional stepsin this passare:

1. Irradiance estimate: The irradiance at a vertex can be estimated by
dir ect gathering or �nal gathering.

(a) Direct gathering : This processis depicted in Figure 3.1 on the
right. Conceptually, a nearest neighbor search for k photons is
conducted at a vertex by expanding a sphere until k photons is
found or until the search radius exceedsa prede�ned maximum.
We call this distance for the maximum search radius . The irra-
diance is the sum of the collected radiance divided by the area
in which the photons were found.

(b) Final gathering : This processis used to mask radiance inaccu-
racies in the photon map by approximating the irradiance by a
huge amount of radiance estimates. Final gathering gives bet-
ter results, but it is much slower to compute. The procedure is
explained in detail in Section3.2.2.

2. Radiance reconstruction: The irradiance is then interpolated between
vertices by graphics hardwar e. Combined with the BRDF of the sur-
face and (optionally) dir ect illumination from the light sources, the
radiance is computed for eachpixel.

3.1.3 Comparison with the photo-realistic algorithm

To make the algorithm faster we use far fewer recursions, fewer photons,
disable �nal gathering and use several simpli�cations. First of all, the we
only simulate Lambertian BRDFswhich means, for example, that we can-
not get caustics.In normal photon mapping there are two or threephoton
maps: the global photon map, the causticmap and the volume photon map.
The caustic map stores photons that have been specularly re�ected or re-
fracted at least once whereasthe volume map is used when participating
media like smoke must be simulated.

Second,we simulate dif fuse re�ection by splitting up a photon which is
actually the opposite of the photo-r ealistic version where fewer photons are
usually re�ected. Instead of re�ecting all photons with lesserpower, only
a re�ectance dependent fraction of the photons is emitted with full power;
this is called RussianRoulette [Jen01, 61].

3.1. THE ALGORITHM 19

Our radiance construction is quite dif ferent since it is both simpler and
relies on hardwar e interpolation. Ignoring the volume map, a normal radi-
anceconstruction is done using ray tracing where the irradiance at a single
point is computed as the sum of the dir ect light, the specularly re�ected
light, a dir ect gathering in the caustics map and �nal gathering from the
global map [Suy02, 115].

3.1.4 The radiance estimate

The radiance estimate at a given surface location is calculated using the
photon map as

L r (x; ~!) �
1

� r 2

kX

p=1

f r (x; ~! p; ~!)�� p(x; ~! p) (3.1)

where the �rst term is the circle area (r is the distance to the most dis-
tant photon), f r is the BRDF, �� p is the power of the photon and ~! p is
the incoming dir ection. This formula can be derived from Equation 2.7
(see[Suy02, 110f]). The factor 1

� r 2 is area estimate for a sphere; if we use
other volumes to gather radiance in, we might have to change the area es-
timate. When we only consider Lambertian surfaces,the radiance estimate
becomes

L r (x) � f d(x)
1

� r 2

kX

p=1

�� p(x; ~! p) (3.2)

where the factor

1
� r 2

kX

p=1

�� p(x; ~! p) (3.3)

is an approximation of the irradiance at x which we denote as the irradi-
anceestimate.

The accuracy of the estimate depends on n and k—ideally n should be
very large (perhaps millions) and k should be relative low (perhaps hun-
dreds). The formula and radiance gathering itself is based on several as-
sumptions:

� the geometry is locally �at,

� the photons are well distributed throughout the scene,

� no photons from other surfacesare present.

20 CHAPTER 3. REAL-TIME PHOTON MAPPING

If the geometry is not locally �at, the areaestimate becomeswr ong. In the-
ory one should simply use a very little radius, but in practice it might be
dif �cult unless the photon map stores a huge amount of photons. If pho-
tons are not well distributed, the power carried by the photons will not
representthe real power.

The areaestimate can also be wr ong for another reason:near edgesand
corners large parts of the sphere will be outside geometry. The error can be
quite signi�cant and the effect is known asboundary bias [Suy02, 112].

Photons that belong to entirely dif ferent surfacesor areasfar away are
said to leak into the irradiance estimate. On those surface the illumination
could be dif ferent thus intr oducing a bias. Surface leaking is de�ned as
leaking from surfaceswith a dif ferent normal or translated surfaceswith a
similar normal, and we call the corresponding bias for surface bias. Using a
large maximum search radius near shadow boundaries and inside caustics
can also include photons from a dif ferently lit areaeven though the surface
is �at; this is denoted distance leaking and it results in an distance bias in
the radiance estimate.

Corners and edgesare the most problematic regions in photon mapping
since all three types of bias can be intr oduced here. Section 3.5 discusses
bias in detail.

3.2 Improvements

In this section we describe two techniques that are normally used in photo-
realistic rendering: a maximum search radius heuristic and �nal gathering.
The radius heuristic promises to remove distance bias and impr ove per-
formance of the radiance estimate whereas�nal gathering can potentially
produce much better rendering results.

3.2.1 Maximum search radius

The maximum search radius and the maximum search count (k) controls
the behavior of the radiance estimate. While k is relatively sceneindepen-
dent, the search radius is not. If the radius is too high, we search too much
of the kd-tr ee which impede performance and intr oduces distance bias.
If the radius is too low, we get an inaccurate radiance estimate. It would
thereforebe bene�cial to automate the processof �nding a good maximum
search radius in a sceneindependent manner [Suy02, 116f].

If a radiance estimate is low, it means we have searched in a area with
low photon density. In this area there is a high change of distance leaking
and a smaller radius would have been preferred. If the scenein general
has a low photon density, then we should in general use a relatively small
radius. The question now is when a radiance value can be labeled as low.

3.2. IMPROVEMENTS 21

A sort of average radiance estimate can be constructed by considering all
photons:

L avg(x; ~!) �
1

� r 2
n

nX

p=1

f r (x; ~! p; ~!)�� p(x; ~! p) : (3.4)

where r n is the radius of the sphere enclosing all photons. We label a radi-
ance estimate as low when it is below a certain small percentage � of the
averageradiance. The maximum search radius is reachedwhen

L r = �L avg : (3.5)

Wesimplify both estimatesby replacing �� p with an averagephoton power
�� avg and by replacing the BRDF evaluation by an average dif fuse BRDF
� avg=� . The equality becomes

k �� avg � avg=�
� r 2

max
= �

n �� avg � avg=�
� r 2

n
: (3.6)

and therefore

rmax =

r
k r 2

n

�n
(3.7)

A slightly dif ferent heuristic can be found in [JCS01]. Both heuristics show
the same square root dependence on n and are reported to perform well
(especially with caustic maps).

3.2.2 Final gathering

Final gathering is used to mask errors in the radiance reconstruction from
the global map [Suy02, 115].The are two reasonsfor using �nal gathering:
(1) the global photon map only needsto storea coarseapproximation of the
radiance in a scene[Suy02, 107] and (2) somesurfacesare hard to disperse
enough photons on (there exist solutions to this problem, but they are not
easy to apply in a real-time context [SW00] [PP98]). Since �nal gathering
can produce much better rendering results, it also gives us a hint about
how good the real-time method can potentially become.

The principle behind �nal gathering can be seen in Figure 3.2. A �nal
gather is conceptually a dif fuse sampling of radiance over all incoming
dir ections; each dir ection de�nes a �nal gather ray which intersects the
sceneand the outgoing radiance is calculated here. (Section 3.4 explains
how the sampled dir ections should be generated). Once all radiance esti-
mates are found, they are averaged together and multiplied with the local
BRDFto produce the �nal radiance estimate.By taking an averagewe make
the estimate independent of the number of �nal gather rays. Notice that the
last step doesnot consider any areaas it is done by Equation 3.1.

22 CHAPTER 3. REAL-TIME PHOTON MAPPING

Figure 3.2: Left: A pictur e rendered with and without �nal gathering. Al-
though these pictur es are rendered using the radiosity algorithm, the ef-
fectsare similar for photon mapping [Suy02, 40]. Right: Final gathering for
a point near a corner. Many rays will hit the close-by surface.The errors in
the radiance reconstruction in the encircled area may be visible in the �nal
gather result.

The error on surfacesvery closeto the point where a �nal gather is per-
formed may be visible in the accurateestimate—this caseis shown in Fig-
ure 3.2. The wall close-by (red rays) covers a large part of the hemisphere
with respectto the �nal gathering point. The error in the reconstruction in
that areawill have an important in�uence on the error in the estimate. The
simple solution is to make a secondary �nal gather if the �nal gather point
is within a certain (small) distance.In practice this should only benecessary
for a small fraction of the rays.

Final gather rays are traced like normal rays with one exception. When
the ray hits a light source dir ectly or indir ectly through specular bounces,
it should not be used to make a radiance estimate. In the �rst casethe ra-
diance is accounted for by dir ect light sampling, and in the second case
the radiance is included in the causticsmap. Note that this is only done in
photo-r ealistic rendering.

The number of �nal gather rays can be several thousands, and most
of the rendering time is therefore used in �nal gathering. Apart from the
search radius heuristic, two well known techniquescanoptimize �nal gath-
ering; the �rst tries to minimize the number of nearest neighbor searches
and the last tries to reduce the number of �nal gathers [Suy02, 116ff]. Irra-
diance pre-computation works by precomputing irradiance in all the pho-
ton positions. Simply put, a radiance estimate is calculated by multiplying
the precomputed irradiance from the nearest photon with the local BRDF.
The running time canbe decreasedby asmuch asa factor of six. Irradiance
caching works by computing the �nal gathering irradiance estimate for a

3.3. RENDERING AND BLENDING 23

selectednumber of points in the sceneonly and to interpolate theseresult
for all points in between[Suy02, 118] [Jen01, 140]. The speedup can be a
factor of one-hundr ed or more.

3.3 Rendering and blending

In this section we brie�y discuss a couple of alternative ways to render
the illumination stored in the photon map. We shall seetwo dif ferent ap-
proachesto radiance reconstruction.

3.3.1 Rendering

The overall goal for all global illumination algorithms is to calculate the ex-
act radiance in the dir ection of the viewer for eachpixel. We cheata lot and
only calculate the radiance in eachvisible vertex and let the graphics hard-
ware interpolate all intermediate radiance values. (In computer graphics
this radiance is representedby an RGBvector and although its more than a
color, its common just to talk about a pixel color even though we mean the
radiance.)

To calculate the radiance for a single vertex we calculate the irradiance
estimate(not the radiance estimate) using the photon map and include it
in a formula together with the color of the texture. In some sensethe color
of the texture encodesthe perfectly dif fuse BRDF and Equation 3.2 gives
a simple way to combine the BRDF and irradiance. In effect the irradiance
estimatesare used to generatea light map which is then transformed in a
pixel shader asdescribed in the next section.

The speedup of this hardwar e interpolation is without doubt enormous
compared to estimating the radiance many times for eachpixel asit is done
in photo-r ealistic rendering. Other sourcesrecognize that hardwar e inter-
polation can be used for rendering dif fuse surfaces[DDM03, 57ff].

An interesting approach to hardwar e utilization canbe found in [Kel97].
Keller generates a particle approximation of the dif fuse radiance in the
sceneusing a technique similar to quasi-Monte Carlo integration which is
simply Monte Carlo ray-tracing using quasi-random sequences—seeSec-
tion 3.4 for a discussion. The particles are much like photons since they
propagate power. The graphics hardwar e renders an image with shadows
where each particle is used as a point light source. Global illumination is
obtained by summing up the single images in an accumulation buffer.

We can actually choose to use the photon map in two ways: we can
chooseto store the dir ect light in the photon map or not. In photo-r ealistic
rendering the dir ect illumination is often excluded from the photon map
and the light sourcesare explicitly sampled with ray-tracing. If the scene
is dominated by indir ect illumination, storing the dir ect illumination in the

24 CHAPTER 3. REAL-TIME PHOTON MAPPING

photon map can be adequate [Jen01, 89]. In our implementation we have
made it easy to leave out the dir ect light and enable OpenGL lighting in-
stead.

3.3.2 Blending

The �nal color of a pixel depends on many factors. In the standard render-
ing pipeline there is a �xed number of settings to control how, for example,
the color of a fragment is combined with the color of a texture and light-
ing information to create the �nal pixel color. A pixel shader is a userpro-
grammablereplacementof this process.We will now seehow a pixel shader
can be used to let the hardwar e blend the irradiance estimates with the
texture colors.

The �rst method is the one we presentedin our last report [OK02, 74f].
The idea is to usethe irradiance estimate to simulate everything from shad-
ows to caustics.An irradiance estimate with the value [0; 0; 0]T is mapped
to a fragment as [� 1; � 1; � 1]T and should represent completely darkness
and an irradiance estimate with value [1; 1; 1]T is mapped to [1; 1; 1]T and
should representcompletely white saturation. If we denote the value of an
irradiance estimate with

�!
Cf (fragment color), the �nal pixel color is

�!
Cp = 2

�!
Cf � [1; 1; 1]T +

�!
Ct (3.8)

where
�!
Ct is the color of the texture. For eachcomponent of the RGBvector

the range of the sub-expression 2Cf � 1 is [� 1; 1] which makes it possible
to darken a white texture (Ct = 1) completely and to make a caustic on top
a black texture (Ct = 0). This texture transformation is easily implemented
in a standard pixel shader. Note that Cf = 0:5 gives the texture color.

While this method gives full �exibility , it also hassomedrawbacks. The
most apparent problem is in saturated areas which appears completely
white. Normally we should not allow irradiance estimates above 0:5 un-
less there is a caustic (which we do not yet handle). In a test we tried to
keep the estimatesunder 0:5 by normalizing the estimateswith the highest
estimate from the previous frame. Unfortunately , there is always a few es-
timates that are high which makesthe majority of the estimate too low. The
visual result is that only a small areacloseto the light sourceis illuminated.

Since our last report we have narrowed our scope to exclude caustics
and therefore a more conventional light map approach without the above
problems can be taken. The conventional approach is to multiply the color
of a light map with the color of the texture, that is,

Cp = Cf Ct (3.9)

for eachRGBcomponent [WP01, 314] [Joh03, 316].This formulation is bet-
ter becauseit is physically plausible according to Equation 3.2. As stated

3.4. PHOTON SCATTERING 25

Figure 3.3: Light emission pro�les for dif ferent types of light sources.
[JCS01, 16]

in the previous section,
�!
Cf is the result of the (perhaps interpolated) irradi-

anceestimate and
�!
Ct can be thought of as the Lambertian BRDF. The effect

is that the texture color is decreasedor perhaps unmodi�ed which gave
rise to the term dark mapping [Oud99, 15]. So we can still create shadow
effects by this transformation whereaswe have lost the ability to brighten
geometry becausethe range of eachcomponent of

�!
Cf is normally clamped

to [0; 1]. If there exist someway to extend this range, it might be possible to
createwhite saturation.

3.4 Photon scattering

When photons are traced throughout the scene,it is important that the dis-
tribution of the photons in the photon map approximates the actual radi-
ancedistribution. In this section we �rst discuss the general methods used
to scatter the photons and then we describe how they can be impr oved.
Our primary aim is to generatedir ections for two purposes: a dir ection to
emit the photon from a light sourceand a dir ection for dif fuse scattering.

3.4.1 Simple scattering

The light sourceswe useare point light sourcesor spot lights. The emission
pro�le for theseand other types canbeseenin Figure 3.3. For adif fuse point
light sourcephotons are normally shot randomly in all possible dir ections.
To emit photons from a spherical light with a given radius we �rst pick a
random position on the surface. Then we pick a random dir ection on the
hemisphere above this point.

The hemisphere on the spherical light is sampled in the same manner
asan ordinary dif fuse re�ection. Given two uniformly distributed random
numbers � 1 2 [0; 1] and � 2 2 [0; 1] we �nd a random dif fuse re�ected dir ec-
tion as

~! d = (� ; �) = (cos� 1(
p

� 1); 2� � 2) (3.10)

26 CHAPTER 3. REAL-TIME PHOTON MAPPING

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

�

�

cos� 1 (�)333
3
3

3
cos� 1

� p
�

�
+
+++

+

+

Figure 3.4: Dif ferent distributions of � . Notice how the square-root shifts
the dir ections towards the � -axis. A steeper slope means that the angular
density of � is low; this is the casefor small and large values of � . However ,
the surface areaon the sphere is much smaller for small values of � .

using spherical coordinates [Jen01, 22]. A logical question is why is � not
computed as cos� 1(� 1)? If so, the angular density of � would be relatively
high at anglesaway from the normal. By taking the square root we shift the
higher density towards the normal. Figure 3.4shows the two distributions.
A relevant discussion can also be found in [II01].

It may also sound strange that dif fuse scattering does not have uniform
density over the hemisphere. This is simply becausethe receiver (whether
another surfaceor the eye)seesthe projectedareaof the light source[Jen01,
57]. If we could trace in�nitely many photons, it would not be necessary
to take the projected area into account becausethen a radiance estimate
would beextremely accurate.But aslong aswe work with a �nite and small
photon map size we cannot rely on the geometric properties to account for
the projected area. Using the inverse cosine can be seenas a way to emit
more photons in the most important dir ections; the surfacesdir ectly above
a certain point should in general receivemore light becausethey in general
will be facing the tangent plane in the point. In �nal gathering we must also
take this fact into account, but from another perspective. The dir ections of
�nal gather rays should be generated using Equation 3.10.

For perfectly dif fuse light sourceswe need a way to sample sphere di-
rections uniformly . In this context uniformly means that the probability
that the point is in a region depends only on the area of the region and
not its location on the sphere. Discrepancy can be used to measure how
uniform a distribution is [Shi91, 5]. Discrepancy provides a single number
that indicates something about the overall quality of a setof sample points:

3.4. PHOTON SCATTERING 27

Vec3 direction;
do
{

direction[0] = 2 * uniform_01() - 1;
direction[1] = 2 * uniform_01() - 1;
direction[2] = 2 * uniform_01() - 1;

}
while (direction.length() > 1);

Figure 3.5:Rejection sampling of a single dir ection in a unit sphere [Jen01,
57].uniform_01() should return uniformly distributed random numbers
2 [0; 1].

for(int k = 1; k < N + 1; ++k)
{

float h = -1 + 2 * (k - 1) / float(N - 1);
theta[k] = arccos(h);
if(k == 1 or k == N)

phi[k] = 0;
else

phi[k] = (phi[k - 1] + 3.6 / sqrt(N * (1 - h * h)))
mod (2 * pi);

}

Figure 3.6:The Saff-Kuijlaars method. The code shows how to generateN
uniformly distributed points on a sphere in polar coordinates [SK97].

a low discrepancy means that the distribution is very uniform whereasa
high value means that the distribution is poorly uniform. (Several formal
de�nitions of discrepancy are given in [Shi91] and [SKP98]).

The two standard techniques for sampling dir ections on a sphere are re-
jection sampling and explicit sampling. Rejection sampling works by gen-
erating random points inside the unit cubeuntil the point is also within the
unit sphere; the technique is shown in Figure 3.5. An elaborate discussion
(albeit not a proof) of why this technique gives a uniform distribution can
be found in [PVTF02, 294f]. Explicit sampling maps the random numbers
to the surface of the sphere by for example randomly sampling the angles
of a spherical mapping [Jen01, 57].

Other methods dir ectly generatesN points on a sphere.We have imple-
mented the method shown in Figure 3.6. In lack of a better name we call
it the Saff-Kuijlaars method [SK97]. By inserting the minimum and max-
imum k we can seethat h assumesdiscrete values in the interval [� 1; 1];
this means � lies in the range [� ; 0]. The sampling of � gives 0 for the two
extremesof � which corresponds to the two poles on the sphere. In Figure
3.7 we can seehow points are distributed with N = 500. The plot to the
left unveils problems as nearly no points are present in a band around the
sphere where � is closeto 0 or 2� .

28 CHAPTER 3. REAL-TIME PHOTON MAPPING

Figure 3.7:Points computed by the algorithm in Figure 3.6 with N = 500.
Left: The method has problems around the y = 0 plane where � is closeto
0 or 2� . Right: The points seemsevenly distributed in the other dir ections.

3.4.2 Improved scattering

Let us discuss how we can impr ove rejection sampling. In a real-time con-
text it is not enough that the random number generator produces uni-
formly distributed numbers, but we must require that the discrepancy is
low even for a small number of samples.This is a natural consequenceof
the relatively small amount of photons that we can afford to trace. There
exist at least two solutions to this: strati�ed sampling and quasi-random
sequences.

If we somehow cansubdivide the surfaceof the sphere into patcheshav-
ing approximately the samearea,we could simply pick a random sample
within eachpatch. This processof spreading out the samplesis called strati-
�ed sampling [Jen01, 155][PVTF02, 321f].Wecan include strati�cation into
Equation 3.10:

~! d = (� ; �) = (cos� 1
� r

j � � 1

M

�
; 2�

i � � 2

N
); j 2 [1;M]; i 2 [1;N] (3.11)

where j; i; M ; and N are integers. M and N de�nes the subdivision of the
hemisphere, and although the subdivision is clearly not optimal (the sur-
facepatcheshave dif ferent area) it is much better than naive random sam-
pling. One should always prefer to increasethe number of patches rather
than to usemoresampleswithin larger patches[Suy02, 20].Geodesicdome
constructions also provide a useful way to partition the sphere into rela-
tively uniform patches (see[BB82, 492f]). One problem with the strati�ca-
tion is that we have to decide in advancehow many samplesthat we need.

A quasi-random sequence is a sequenceof n-tuples that �ll n-space
more uniformly than uncorrelated random points; several methods can be

3.5. BIAS REDUCTION 29

found in [PVTF02, 313ff], [SKP98, 4], and [KK02]. The sequencesexhibit
two important properties:

1. The points can be generated on demand so that we do need to know
a priori how many points we want.

2. The points have a very low discrepancy.

Despite their name, there is nothing random about these sequences.If we
usequasi-random numbers when using rejection sampling or dif fuse sam-
pling of the hemisphere (Equation 3.10), the result should include implicit
strati�cation [Jen01, 148]. It is important to remember that eachcoordinate
is generated by a dif ferent quasi-random sequence[PVTF02, 316].

Empirical studies suggeststhat at least �ve times as quick convergence
can be achieved with sampling based on quasi-random sequencescom-
pared to random sampling, and it can be signi�cantly better in Lamber-
tian scenes[PVTF02, 318f]. For some very accurate purposes, a little real
pseudo-randomnessshould be added to the sequencesto avoid patterns in
caustics[Jen01, 148].

3.5 Bias reduction

The traditional irradiance estimate is done by collecting photons within
a sphere which can lead to surface and distance leaking. As seenon Fig-
ure 3.9, surface leaking especially happens at edgesand corners.Before we
discuss these two problems, we brie�y describe how distance bias can be
avoided.

Distance bias is particular noticeable on surfaceswith radiance discon-
tinuities. Radiance discontinuities causea sharp change in the density of
photons. In the casethat the real radiance drops close to zero, the recon-
structed radiance falls off as 1=r2 where r is the distance to the radiance
discontinuity [Suy02, 113].

Filtering is the traditional technique used to sharpen caustics[JCS01, 32],
but we expect that the technique can sharpen shadow boundaries as well.
A �lter assignsweights to eachphotons in the estimate whereby somepho-
tons will contribute morethan others in the �nal estimate.A simple weight-
ing criteria is for example the distance from the photons to the estimation
point. We shall not investigate �ltering further; dif ferent methods can be
found in [Jen01, 80ff] and [Suy02, 113f].

3.5.1 Surface bias

We will now examine four dif ferent approachesthat can be used to avoid
surface leaking by detecting and removing leaked photons before they are

30 CHAPTER 3. REAL-TIME PHOTON MAPPING

collected. One might consider postponing this �ltering processuntil the
k nearest photons have been found, but by experiments we found that it
makes the irradiance estimate very unstable. The simplest and least effec-
tive method is to use the incoming dir ection of the photon (1). The more
complicated solutions exchange the sphere with other geometric primi-
tives. The simplest solution here is to use a sphere slice (2), a cylinder is
only slightly more complicated (3) whereasan ellipsoid is the most com-
plicated (4). No matter what schemethat is used, it must be relatively fast
since it will be used heavily during nearest neighbor searching.

A simple operation used in the following is the projection of a vector
onto another. The projection of ~w onto ~v is a new vector ~pw;v in the dir ection
of ~v:

~pw;v = ~uv j ~wj cos� = ~uv
~v � ~w
j~vj

(3.12)

where ~uv is a unit vector in the dir ection of ~v.
The incoming dir ection of the photon is used to exclude photons from

the backside of thin surface.The test is run after the photon is known to be
within the sphere.The method works like hidden surfaceremoval by com-
puting the dot product between the normal and the incoming dir ection:
if the result is negative, the angle between the two vectors must be more
than 90 degreesand the photon must belong to the opposite hemisphere.
While this method is cheapto calculate, it cannot exclude many photons at
orthogonal surfacesin corners and at edges.

We have instead added an extra check to the standard sphere approach.
In Figure 3.8 the implementation of the method is shown. Besidesbeing
inside a sphere we further require a photon to be within a small distance
in the dir ection of the surface normal. This is done by projecting the vec-
tor from the search location to the position of the photon onto the normal.
Sincewe know that search_location _nor mal is normalized, Equation
3.12tells us that we get the length dir ectly by a dot product. Conceptually
this makes us search only in a small slice of the sphere.The gain is that we
remove almost all surface leaking. Unless the scenecontains very thin ob-
jectswe can omit the incident dir ection checkbecausethe slice is just made
thinner than the thinnest object. This also means that we can leave out the
incident dir ection in the photon data structure.

It often is suggested to use a cylinder instead [JCS01, 32]. The result of
the �ltering will be similar to the sphereslice,but it will require a few more
instructions. Instead of calculating the length of the projection, one should
calculate the projection of to_project onto the normal (cf Figure 3.8).
Then one should createthe vector from the projection to the position of the
photon. If the length of this vector is lessthan the radius of the cylinder , the
photon must be within the cylinder .

3.5. BIAS REDUCTION 31

bool check_inclusion(float squared_dist, const Photon& p) const
{

assert(equal(search_loaction_normal.length(), 1));
bool in_sphere = squared_dist < max_squared_radius;
if (not in_sphere)

return false;

Vec3 to_project = p.position() - search_location;
float projected_length = to_project * search_location_normal;
bool in_slice = projected_length < sphere_slice_size and

projected_length > -sphere_slice_size;
return in_slice;

}

Figure 3.8:Algorithm for determining if the photon lies within a thin slice
in the sphere.operator*() computes the dot product.

..

..s s s s s ss s s
s
s
s
s
s
s

s
s

ppppppppppppppp
pppppp

ppppppppppppppppppp
ppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp
ppppppppppppppppppp
pp
ppppppppppppppp
pppppp

s s
s
s
s
s
s

s
s

pps s s s s ss s s
s
s
s
s
s
s

s
s

ppppppppppppppp
pppppp

ppppppppppppppppppp
ppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp
ppppppppppppppppppp
pp
ppppppppppppppp
ppppps s s s s ss s s

.
.

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

Figure3.9:Using the sphere to locatephotons in corners can include wr ong
photons. An ellipsoid is a poor choice. Using a slice of a sphere is fast an
includes approximately the samephotons asan ellipsoid.

An ellipsoid is also mentioned as an alternative volume [Jen01, 79]. To
check if a photon is included, we consider the points of an ellipsoid with
center (x0; y0; z0) and semi-axesa;b;c:

(x � x0)2

a2 +
(y � y0)2

b2 +
(z � z0)2

c2 � 1 : (3.13)

A photon shall contribute to the irradiance estimate if the inequality holds
for its position. While this computation is relatively simply it will only
work for axis-aligned ellipsoids; if that is not the casethe test will be far
more expensive.Therefore the ellipsoid is a poor candidate.

3.5.2 Boundary bias

In photo-r ealistic rendering boundary bias is not a serious problem since
it can be masked by �nal gathering and since the maximum search radius

32 CHAPTER 3. REAL-TIME PHOTON MAPPING

uu
uu

..
..
..

..
..

..
... .

..
..
..
..
..

u uu

u u u
...

..........................
........
........
........
........
........
........
........
.

u uu
uu

..
..
..

..
..

..
... .

..
..
..
..
..

u uu

u u u............
........
........
........
........

.........
..........

...........
..............

.......................
...

...............
............

..........
.........
.........
........
........
........
........
.....

u uu
uu

..
..
..

..
..

..
... .

..
..
..
..
..

u uu

u u u...
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
............
...........

...........
..........

..........
...........

...........
...........

...........
...........

...........
...........

..

u uu
uu

..
..
..

..
..

..
... .

..
..
..
..
..

u uu

u u u........
........
........
.........

.........
..........

............
...............

.........................
..

................
............

..........
.........
.........
........
........
........
..

u uu
uu

..
..
..

..
..

..
... .

..
..
..
..
..

u uu

u u u

u

Figure 3.10:Comparison of dif ferent area estimation techniques. Starting
from upper left corner: A convex hull, a bounding sphere, an axis-aligned
bounding box, an oriented bounding ellipsoid, and an oriented bounding
box. The convex hull gives the best results.

can be made much smaller than in real-time rendering. In real-time pho-
ton mapping, on the other hand, it is quite apparent. Basically the problem
stemsfrom a wr ong areaestimate near edgesand corners, becauseup to 3

4
of the search volume will reachout into open space(in a three-way corner).
If we had accessto geometrical description of the scene,it would be possi-
ble to compute the exactarea [HP01]. Unfortunately , we only have a list of
polygons from which it is hard to extract such a description.

What we cando is to �t somekind of bounding volume around the pho-
tons that we intend to usefor the irradiance estimate.Figure 3.10compares
several bounding volumes. The simplest solution is to use axis-aligned
bounding volumes. While this works �ne on axis-aligned geometry it fails
miserably on other surfaces(we tried it). To createoriented bounding vol-
umes it will be necessaryto conduct a principal component analysis. A
principal component analysis is a statistical method used to �nd the axis
that is naturally aligned to a set of points [Len02, 183ff]. This procedure
requirescomputing the roots of a cubic polynomial and solving a homoge-
neous linear system for eachof the roots.

A well-know method is to calculate a convex hull of the points in the
estimate. We have not investigated how expensive it will be, but �rst the
points need to be projected down into the plane de�ned by the normal.
Then the convex hull algorithm can begin.

3.6. SUMMAR Y 33

3.6 Summary

In Section3.1we stated that photon mapping consistsof photon tracing and
rendering. A key optimization is to distribute photon tracing over several
frames. Furthermor e,we only handle dif fuse surfaces,make dif fuse re�ec-
tions by splitting a photon into severalnew photons, and rely on hardwar e
interpolation of irradiance values between vertices. Furthermor e, we do
not support caustics or volume rendering so separate maps for these ef-
fects are not used. To compute the irradiance estimate it is customary to
usea sphere to locate photons in. This makes it possible for photons to leak
into the estimate.

As described in Section 3.2, a simple heuristic can be used to specify a
fairly sceneindependent search radius, reduce distance bias, and perhaps
make the radiance estimate faster to compute. Photon mapping can be ex-
tended with �nal gathering; at the expense of more rendering time, the
results can be much better.

Section 3.3 described how the illumination stored in the photon map
can be blended with the texture. Graphics hardwar e is used to render dif-
fuse illumination via vertex color interpolation and this is one of the key
optimization of several real-time techniques. The �rst blending approach
makes it possible to visualize colors from black to white whereasthe sec-
ond allows only from black to the texture color.

Section 3.4 explained how photons should be emitted from dif ferent
light sourcesand how dif fuse scattering should be done. To get a good dis-
tribution of photons throughout the scenewe rely on either strati�cation of
the photon dir ections or quasi-random sequences.

Several techniques used to reduce bias in the irradiance estimate was
explained in Section 3.5. Filtering can remove distance bias. Surface bias
canbe removed effectively by using a sphereslice instead of a spherewhen
gathering radiance; other approachesgive similar results, but are more ex-
pensive to compute. Boundary bias can be resolved by computing a more
accurateareaestimate. To use bounding volumes effectively, it will be nec-
essary with a costly principal axis analysis. The most accurate solution
would be to create a convex hull. We believe that both of these solutions
will be far to expensive for real-time photon mapping.

4Implementation
overview

If youcan't write it downin English,youcan't codeit.
—PeterHalpern, Brooklyn, New York

A real-time graphics engine is a complex pieceof software with many non-
trivial responsibilities [OK02, 2f]. In this respect it is important that pho-
ton mapping can be easily integrated with existing engines.Therefore this
chapter presentsthe status of our implementation with focus on the inte-
gration of real-time photon mapping.

Westart with an intr oduction to the implementation and its most impor -
tant modules. Then we show the core �ow of control to give an overview
of what takes place when rendering a single frame. A presentation of the
many parameters of the photon mapping algorithm follows. In the end we
describehow we test and intr oduce the threetest scenesthat we will use in
the coming chapters.

4.1 Engine overview

We �rst describe the modules that are partly or completely implemented.
The modules are listed below with a description of their desired function-
ality and status.

� Agent: An autonomous agent (or agent) is simply a computer con-
trolled character. Dif ferent agents should reside in this module to-
gether with functionality to control them and their arti�cial intelli-
gence.Currently only the functionality for controlling the player or
observer is implemented and agentsare restricted to follow a prede-
�ned path.

35

36 CHAPTER 4. IMPLEMENT ATION OVERVIEW

� BSP:Loading of scenesstored in Quake 3's BSPtreeformat is handled
in this module. BSPtreestandsfor binary spacepartitioning tree and
refers to the fact that eachnode in the treesplits the remaining geom-
etry into two subtreesaccording to an arbitrary sorting plane—each
child contains everything on a particular side of the sorting plane
[Len02, 202f]. BSPtreesare used in 3D engines to acceleratehidden
surface removal, to ensure correct back-to-front rendering [Oud99,
10] and to acceleratespatial queries like intersection testing [Cha01,
39ff]. In this module extra functionality such as mesh re�nement is
also included. The resulting BSPtreesare just like normal Quake 3
treeswhich have few polygons in the leaves.

� Contrib: This module stores the libraries we have not coded our-
selves.The most important library is Open SceneGraph (OSG)which
we have built everything on top of. OSGis a scenegraph framework
with good culling performance and easyintegration of pixel shaders.

� Input/Output: All external communication is handled in this mod-
ule. It includes con�guration �le read/write, keyboard/mouse inter-
action and display con�guration.

� Math: Common mathematical primitives such as matrices, vectors
and planes aswell as functions on these.

� Photon mapping: The photon mapping functionality resides in this
module. This important module will be described thoroughly in this
and the next chapter.

� Scene:Cameraand scenemanagement is implemented asa thin wrap-
per around the Open SceneGraph library . This is were the general
scenegraph rendering is combined with our photon mapping func-
tionality .

� Shader: Collection of dif ferent pixel shader programs. Most impor -
tant is the program used to combine texture and fragment color.

Many other modules exist in a normal engine, but time constraints means
that we have to do with a minimal engine. Someof the larger modules that
almost certainly exists in normal engines are kinematics, physics simula-
tion and arti�cial intelligence [WP01] [Len02] [Rab02]. What is quite im-
portant is that these modules should not affect the integration of photon
mapping. The only impact such modules should have is performance re-
lated.

4.2. OPEN SCENEGRAPH AND BSPTREES 37

4.2 Open SceneGraph and BSPtrees

Wewill now give an overview of the functionality we usefrom Open Scene
Graph to re-build Quake's BSPtrees.The nodes in a scenegraph can be
divided into grouping nodes and drawable nodes. Grouping nodes are
nodesthat cancontain other grouping or drawable nodes.This kind of class
hierarchy is an example of the composite pattern [GHJV94, 163ff].

Drawable nodes cancontain oneor moreprimitives. A primitive encap-
sulates one of the DrawArrays or DrawElements classeswhich are thin
wrappers around OpenGL functions. It is worth noticing that OSG only
generatesbounding volumes around grouping nodes and that we only use
the BSPtreestructure to build the scenegraph. OSGwill then automatically
bene�t from the spatially sorted geometry when maintaining a bounding
volume hierarchy for the scene.A bounding volume hierarchy is a rooted
tree where eachnode contains a bounding volume of its childr en [Cha01,
30ff]. The actual naming of the classesrepresenting the nodes can be seen
in Table 4.1.

Sub-class Super-class Description
Group Node General group/internal node
Geode Node Leaf node for grouping drawables
Geometry Drawable Node for grouping Primitives
DrawArrays Primitive Primitives for array data
DrawElements<type> Primitive Primitives for indices in array data

Table 4.1:Someof the Open SceneGraph classesfor building scenetrees

Open SceneGraph does culling down to and including the Drawable
level. This meansthat if a single triangle of a Drawable is in the view frus-
tum, then all triangles from that Drawable will be drawn. On the other
hand, if the bounding volume of a grouping node is outside the view frus-
tum then all its descendentscan be culled immediately .

When the geometry in a BSPtree is re�ned we extend the array data
in the primitives. This leads to Drawable s with more triangles, but not in
more Drawable s.This will in turn lead to more unculled triangles outside
of the view frustum. As a result we will make more irradiance estimates
than necessary. The best solution would be to rebuild the tree after it is
re�ned although we have not implemented this scheme.

4.3 Control �ow

In this section we presentan overview of the control �ow of the program.
This will show how an engine that incorporates photon mapping needsto
bedif ferent from a normal engine. Wewill usea top-down approachwhere

38 CHAPTER 4. IMPLEMENT ATION OVERVIEW

1 program pie function setup_scene()
{ {

setup_scene(); turn_off_opengl_light();
load_bsp_level();

while(true) refine_geometry();
6 {

update_scene(); for_each(vertex_array)
cull_scene(); expand_color_array();
draw_scene();

} for_each(texture)
11) calculate_bleeding_color();

}

Figure 4.1: Left: The universal render loop. Right: The modi�ed initializa-
tion.

each function is expanded separately and the new functionality is written
with a red font.

At the outermost level the engine looks like any other (seeFigure 4.1
on the left). However , the sceneneeds to go through several preprocess-
ing steps which is shown in Figure 4.1 on the right. In line 3 we turn off
OpenGL lighting sincewe normally replaceall lighting with a custom pixel
shader. All lighting is controlled by the photon map and the photon disper-
sion, and we do not want OpenGL light to interfer e. In line 4-5 the sceneis
loaded and a secondcopy of the sceneis made. One of the scenesis re�ned
to make that scene�t for rendering (seeSection 5.4). This highly detailed
sceneis necessaryto use the irradiance estimatesproperly—or elsethe in-
terpolation distance between vertices will be too big. The low-detail scene
is kept for intersection testing. In line 7-8 we ensure that there is a one-to-
onecorrespondencebetween avertex and its color sowe cansetthe color of
a vertex during the draw stage.This expansion need only take place in the
detailed scene.In line 10-11the bleeding color of eachtexture is calculated.
During photon tracing we need to know what color e.g. a wall will bleed
with. Here we simply compute the average color of the texture. This is of
coursea very simple approximation to the BRDF, but under the assumption
of a completely dif fuse environment it should be reasonable.This feature
is not implemented yet, but for testing purposes we can manually add a
bleeding color to an object.

Ideally all changes to the scenegraph should happen during the up-
date stage. In Figure 4.2 on the left the new version of the update stage
is shown. The �rst part is not interesting since it is standard functionality
which takes care of transforming dynamic objects in the scene.However ,
emit_photons() is interesting becauseit effectively encapsulatesall pho-
ton tracing, and it is explained in detail in Section5.2. Note that the update
of the scenecannot happen after photon emission sincephotons can be in-
validated by dynamic changes.

4.4. CUSTOMIZING PHOTON MAPPING 39

1 function update_scene() function draw_scene()
{ {

for_each(node) for_each(unculled drawable)
update(); for_each(vertex)

color =
for_each(light source) irradiance_estimate(vertex);

6 emit_photons(); draw();
} }

Figure 4.2:Left: The new update function. Right: The new draw stage.

In cull_scene() we do nothing special whereasdraw_scene() has
beenmodi�ed (seeFigure 4.2on the right). Normally the draw stagedoes
not modify the scenetree due to potential multi-thr eading issues,but for
our purpose it is essential that irradiance estimates are made after culling
to avoid estimatesat vertices outside of the view frustum. The nested loop
is the new functionality which updates the color of the vertices. Again, this
update should only happen to the detailed scene.

4.4 Customizing photon mapping

In this section we give an overview of the many parameters that can be
changed in the application. By giving an overview of the theseparameters
we hope it becomeseasier for the reader to comprehend when they are
mentioned in the following chapters. Chapter 6 describes the parameters
in detail. The parameters fall in threemain categories:

1. Scenespeci�c: parameters that control the detail of the sceneand the
format of the scenegraph.

2. Photon map speci�c: parameters that determine the size of the pho-
ton map and behavior of the balancing and the irradiance estimate.

3. Photon tracing speci�c: parameters that control when photons should
be stored and how the dif fuse scattering should be done.

4. Miscellaneous: This category includes parameters like enabling the
maximum search radius heuristic and whether �nal gathering should
be used.

Common for all theseparameters are that they are speci�ed in a con�gura-
tion �le and canthereforebemodi�ed without recompiling the application.

Figure 4.3 shows how some of the parameters are used to determine
the size of the photon map. A short explanation to some of the parame-
ters follow . store_direct_l ig ht is a boolean �ag that controls if pho-
tons should be stored at the �rst re�ection. diffuse_reflec tio ns is

40 CHAPTER 4. IMPLEMENT ATION OVERVIEW

int Photon_map::photons_reflected(int level) const
{

if(level == 0) return 0;
return photons_from_light * pow(diffuse_reflections, level) +

photons_reflected(level - 1);
}

int Photon_map::size() const
{

int direct = store_direct_light * photons_from_light;
int indirect = photons_reflected(recursion_depth);
return (indirect + direct) * snowball_size * accumulation_frames;

}

Figure 4.3: Algorithm that determines the size of the photon map.
photons_reflect ed() calculates the number of re�ected photons for
level re�ections.

the number of new photons a single photon is split up into during a re-
�ection. recursion_depth describes the number of dif fuse re�ections.
snowball_size is used to store several photons in the photon map even
though only one photon arrived at somesurface;we call this for the snow-
ball feature. accumulation_fr ames is simply the number of frames that
photon emission should be distributed over.

4.5 Testing

In this section we �rst discussour view on how testing should carried out.
The following chapterswill repeatedly refer to teststhat we have made and
assessed.It would be unfortunate if we did not describe the premises for
those teststo the reader. In the end the individual test scenesare presented.

4.5.1 Test strategy

The �rst one should know is the hardwar e platform. All testswere run on
a Pentium IV 3 GHz CPU with 512 MB DDR RAM. The graphics card is
a GeForce 4 Ti4200with 128MB DDR RAM. The CPU has 512KB Level 2
cache.

Second,oneshould know how we test in general.At the top level there is
two kinds of tests:performance testsand visual quality tests.Performance
testsare also of two kinds: isolated testsand non-isolated tests.

An isolated test only runs the feature under test and the test must be
repeated a decent number of times. If the feature runs very fast, the test
should run for at least a second a couple of times to remove possible OS
overhead. A context dependent test testsa feature when it runs asan inte-
grated part of the whole application. The test is done by exchanging an old

4.5. TESTING 41

implementation of a feature with a new and keeping everything else the
same. The test must clearly explain what state the rest of the application
runs in if it could affect the evaluation of the test.

Whenever it is possible, one should prefer an isolated test. A context
dependent testmight be important if we need to know if the new optimized
feature was worth the trouble. The new feature might be much faster, but it
might not have a great impact on overall performance. However , the best
way to determine in advance if somefeature is a performance bottleneck is
to usea pro�ling program.

Sadly the visual quality test often relies on subjective assessments,but
the readercandecide for himself by running the binaries; they canbedown-
loaded from http://www.cs.au c. dk :/ ˜n eso tt o/ pi e/ . In a couple
of caseswe have generated a photo-r ealistic rendering of the same scene
which makes it easierto assessour real-time generated images.

To remove any ambiguities regarding the description of performance
tests we always give the relative running time with the original time as
index 1. For example, if an old test takes 2 secondsand the new test takes
1:5 secondswe say the new running time is 0:75 or 75%of the original. We
might alsoexpressthis asthe new test is 25%faster or that the running time
hasbeenreduced by 25%. Werefrain from the opposite comparison, that is,
we never say that the old test is 33%slower. Furthermor e, it might happen
that the new running time is 1:10 or 110%of the original and we say that
the new test is 10%slower.

4.5.2 Test scenes

Wehave chosenthreetest sceneswhich will be used for dif ferent tests.This
sectionshows how the test sceneslook like and explains what we are going
to test.

For the photo-r ealistic rendering we use RenderPark—an open source
test-bed system for physically basedphoto-r ealistic rendering. RenderPark
provides implementation of a wide variety of state-of-the-art ray-tracing
and radiosity algorithms [BdLPM].

Therearesomelimitations to the scenecomplexity that the readershould
be aware of. Currently we cannot use more than one light source. This is
mainly to keep experimentation simple until satisfactory result have been
achieved. Implementation wise it would be trivial to extend this limitation.
Let us discuss the scenes:

1. The Cornell box: Although geometrically simple, the Cornell box can
still be useful for making some visual quality tests. The simplicity
allows us to convert the scenedata to VRML which can be loaded by
RenderPark. In Figure 4.4we can seea rendering of the box without

42 CHAPTER 4. IMPLEMENT ATION OVERVIEW

Figure 4.4:Left: A real-time rendering using 20; 000photons. Right: A Ren-
derPark rendering of the samescene.

Figure 4.5: Left: View of the small Quake 3 test scenethrough the �oor .
Right: Overview of the normally sized Quake 3 level.

indir ect light. Ignoring the light source, the scenegeometry consists
of 48 vertices.

2. The small Quake level : As the secondtest scenewe will usea simple
scenefrom Quake 3. With this level we can test all features of our
implementation while maintaining an overview of the whole scene.

As shown in Figure 4.5 on the left, the sceneconsists of �ve rooms:
Four small rooms eachconnected to one larger room. In total there is
1107vertices in the scene.

3. The normal Quake level : The thir d sceneis a large level with many
rooms. Most of the scenecan be seenin Figure 4.5on the right. It will
be interesting to seehow the � -engine performs on this realistically
sized scene.The scenecontains 16,065vertices.

Ideally it would have been great to have a photo-r ealistic rendering of the
two Quake scenes,but that task is complicated by the need for a Render-
Park loader of the scenes.

4.6. SUMMAR Y 43

4.6 Summary

In Section 4.1we saw an overview of the modules in the engine. The BSP-
loader can load Quake 3 levels and the useof the BSPstructure is expected
to impr ove the performance of intersection testing. Two other important
modules are the photon mapping module and the scenemodule.

The scene graph node structure of OSG was explored in Section 4.2.
Grouping nodeswas used to make the inner nodesof the scenetreewhereas
primitive nodes encapsulated the OpenGL geometry itself. OSGwill auto-
matically maintain a bounding volume hierarchy based on the bounding
volumes of grouping nodes.

Section 4.3 described the changesto the traditional rendering loop that
arenecessaryto accommodatefor photon mapping. At load time a detailed
copy of the scenemust begeneratedto allow for better irradiance interpola-
tion; the low-detail sceneis used for intersection testing only. In the detailed
scenewe also expand the color arrays to hold the irradiance estimates as
the draw stage needs to calculate the irradiance estimate for each visible
vertex. It is very important to calculate the vertex colors in the draw stage
instead of the update stage.This way the irradiance estimate only has to be
calculated for vertices within the view frustum.

As described in Section 4.4, the � -engine can be tweaked by many pa-
rameters which can be modi�ed without recompilation. This provides ef-
fective means for experimenting. The most important parameters control
the complexity of the scene,the way photons are stored and how the irra-
diance estimatesare calculated.

Section 4.5 described how we intend to test performance and visual
quality . Performancetestsshould preferably beisolated. Visual quality tests
will to someextend rely on subjective assessments.Performance optimiza-
tions should be motivated by pro�ling data. We will use three scenesfor
testing purposes.

5Implementation
details

Getyour datastructurescorrect�rst, andtherestof theprogramwill write itself.
—David Jones,Assen,The Netherlands

Whenin doubt,usebruteforce.
—Ken Thompson, Bell Labs

We have now seenhow the � -engine works on a high abstraction level. In
this chapter we describe in detail the core parts of the engine. Ideally the
dependency between the scenemodule and the photon mapping module
should be aslow aspossible.A low dependency will make it easierto inte-
grate photon mapping with existing engines.As we will seein this chapter,
it is indeed possible to make a design with few dependencies.

Webegin with a high-level description of the sceneand photon mapping
modules illustrating how the dif ferent classescooperate. Afterwar ds we
review photon tracing and the photon map more thoroughly. In the end we
discuss our use of the BSPscene-format from Quake 3. We discuss design
tradeoffs, optimizations, and intr oduce con�guration parametersalong the
way.

5.1 Class overview

We start with the small, but important photon data structure. In Section
3.1 we saw how the photon is used. In Figure 5.1 the actual photon data
structure is shown. The readershould notice that the photon hasa position,
a power and a sort axis. The sort axis is set during balancing and used
during nearestneighbor search to guide the search. The incoming dir ection

45

46 CHAPTER 5. IMPLEMENT ATION DETAILS

enum Axis { x, y, z }; struct Photon {
class Photon float pos[3];
{ short plane;
public: // foundation unsigned char

Photon(); theta, phi;
Photon(const Vec3& position, const Vec3& power, float power[3];

const Vec3& direction = Vec3()); };
public: // inspectors

const Vec3& position() const;
const Vec3& power() const;
const Vec3& direction() const;
Axis sort_axis() const;
float sort_coordinate() const;

public: // modifiers
void scale_power(float factor);
void set_sort_axis(Axis);

private:
Vec3 position;
Vec3 power;
Vec3 direction;
Axis sort_axis;

};

Figure 5.1: The photon data structure. Left: The � -engine version. Right:
Jensen'sversion [Jen01, 158].The size of our classis 40 bytes compared to
28 bytes. In short, we favor simplicity , encapsulation, and speed whereas
Jensenfavors size.

of the photon is optional as seen by the default argument of the second
constructor. As explained in Section3.5, we canprobably omit the dir ection
if we usea sphere slice to locate photon in.

Compared to Jensen'sstructure we usemore space(40vs. 28bytes). The
main dif ference is the representation of the incoming dir ection where we
useCartesian coordinates instead of spherical coordinates. By using Carte-
sian coordinates we saveexpensive trigonometric operations used to con-
vert between the two coordinate systems. This overhead can however be
lowered by pre-computing look-up tables for the trigonometric functions.

The scenemodule contains functionality related to loading of the scene,
light sourcesand managementof the two dif ferent setsof geometry (aspre-
viously mentioned: one set for intersection testing and one for rendering).

The scenemodule hands over the sparsemodel and light sourcesto the
photon mapping module—Figur e 5.2 shows the relationship between the
classes.The Photon_tracer classscattersphotons throughout the scene
and stores them in a Photon_map . The Photon_tracer makes use of
threeother classes:

� Distribution : Is used to generatedir ections on a sphere or hemi-
sphere.To generatea dir ection on a hemisphere,direction() must
be passed a normal vector. In standard object oriented manner we
have implemented dif ferent strategies(seeSection 3.4for details).

5.1. CLASSOVERVIEW 47

�oat uniform_01()
void compute_intersection(...)
bool intersection_found()
Plane plane()
Vec3 inverse_direction()

..
........
.........
.........
........

........
........

....

........
........
........
..............................

..
........

........
.........
........
........
........
.....

........
........
........
.........
........

........
........

..

................
...
...............

1..1

1..1

1..1

1..1

1..1

Class Photon_tracer

Class Draw_callback

1..1

Photon_map* photon_map()

Class Photon_map

Class Distribution

Vec3 irradiance_at(...)

Vec3 direction()

void balance()

void drawImplementation(...)
void set_estimator(...)

void store(...)

void emit()

Class Point_generator

void set_snowball_size(...)
vector<Vec3> snowball()

void set_snowball_radius(...)

Class Intersector

Vec3 bleeded_power(...)
Vec3 normal()
Vec3 intersection()

Class Estimator

Vec3 irradiance_at(...)
void set_photon_map(...)
void toggle_�nal_gather ing()

1..1

Vec3 direction(...)

...

...

..

..
...

Figure 5.2:A simpli�ed classdiagram of the photon mapping module. If a
rhomb is attached to a class,it means that a variable of that type is owned
by the classesat other end of the line—for example, a Photon_tracer ag-
gregates one Distribution . The numbers on the line indicates the mul-
tiplicity of the aggregation [Obj03, 91ff]. A line with an arrow means that
the class—from which the line begins—is associated with an instance of
the other class. In practice this means that it stores a pointer to the other
class.An ellipsis denotes that arguments have beensuppressed.At the im-
plementation level most of theseclassesare abstract baseclassesin a class
hierarchy.

� Point_generator : Is used to distribute several points in the inter-
section plane for use with the snowball feature. Currently we only
use a random distribution of points, but strati�ed distributions can
easily be added.

� Intersector : Is used to compute intersections and �nd the bleed-
ing color at the intersection point. The classalso keeps track of vari-
ous information regarding the last intersection like normal and inter-
section plane.

The Estimator class stores a pointer to the Photon_map and uses the
map to generate and cacheirradiance estimates on demand. It also stores
an instanceof the Intersector classwhich is usedduring �nal gathering.

Finally, the Draw_callback stores a pointer to an Estimator to for-
ward irradiance estimate requests to it. The Draw_callback class is in-
stalled in the scenetree and acts as the link between the photon mapping
module and the scenemodule. The scenemodule applies drawImplemen-
tation() on eachDrawable in the scenewhich in turn applies Estima-
tor::irradianc e_at () on eachvertex.

48 CHAPTER 5. IMPLEMENT ATION DETAILS

5.2 The photon tracer class

The Photon_tracer is important enough to deservea more thorough ex-
planation. In Figure 4.2 on the left we saw how the Photon_tracer �ts
into the update stageof the rendering loop. In this section we explain the
photon tracing and describe a technique that can reduce �uctuation and
impr ove performance.

5.2.1 Photon tracing

Figure 5.3shows detailed pseudo code for emit() and an explanation fol-
lows. At the top level each photon is emitted from the light source. The
amount of emitted photons dependson the con�guration �le variable pho-
tons_from_light . If an intersection is found, additional re�ections are
traced until the maximum recursion depth. In the end the map is re-bal-
anced (seeSection5.3.2for details).

In trace_photons_fr om_l ig ht () the light source is queried for its
position and a photon dir ection. From these two parameters we construct
a line and the intersection of this line with the scene geometry is com-
puted. In casean intersection is found, we save the photon if we want
to include dir ect light. We do not call Photon_map::st or e() dir ectly
since we might generate several points from a single intersection using a
Point_generator .

In trace_photon_ref le ct io ns () we �rst calculate the new start
point for the re�ection. We cannot reuse the old intersection point since
then we will get that intersection once again. The solution is to step a tiny
fraction back in the dir ection the ray camefrom. Originally we went in the
dir ection of the normal, but this lead to loss of photons in narrow corners
becausewe simply went outside the scenegeometry (seeFigure 5.4). To cal-
culate the next intersection we need to generatea re�ected dir ection. This
is done by calling direction() with the normal of the intersection; the
normal is used to ensure we generatea dir ection on the hemisphere above
the point of re�ection. If we could �nd an intersection, we savethe photon
and trace the photon recursively.

5.2.2 Frame-coherent random numbers

To use frame-coherent random numbers meansto reusethe random num-
bersthat de�ned the photon dir ectionsover several frames.Simply put this
meansthat many photon paths will beexactly the same;only thosephotons
that are affected by moving objects will get a dif ferent photon path. The
bene�t of this method is twofold: (1) �uctuation can be reduced and (2)
dir ections can be pre-generated.We discussboth aspectsin the following.

5.2. THE PHOTON TRACER CLASS 49

void Photon_tracer::emit()
{

for_each(photon)
{

trace_photon_from_light();
if(intersector.intersection_found() and max_recursion_depth > 0)

trace_photon_reflections(max_recursion_depth);
}
map.balance()

}
void Photon_tracer::trace_photons_from_light()
{

Vec3 begin = light.world_position();
Vec3 dir = light.trace_direction();
intersector.compute_intersection(begin, dir);
if (should_store_direct_light and intersector.intersection_found())

save_photon();
}
void Photon_tracer::trace_photon_reflections(int depth)
{

Vec3 begin = moved_point(intersector.intersection(),
intersector.inverse_direction());

for_each(diffuse reflection)
{

Vec3 dir = distribution.direction(intersector.normal());
intersector.compute_intersection(begin, dir);
if(not intersector.intersection_found())

continue;
save_photon();
if (depth - 1 > 0)

trace_photon_reflections(depth - 1);
}

}

Figure 5.3:Pseudocode for photon emission. Apart from handling of pho-
ton power this is almost the real code.

i1

pp
ppp

pppppp
ppppppppppppppp
pppppp
ppppppppppppppp
pppppp
ppppppppppppppp
pppppp
ppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
ppp

qqq

pp
ppp

ppppppppppppppppppppp
ppppppppppppppppppppp

p
pppppppppppppppppp
pp
ppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppp

pp1

p2 i2n

i1

� p1

p2

p1

qqq

Figure 5.4:To avoid intersection with geometry in the start point we must
move the start point away from the geometry. Left: Moving in the normal
dir ection yields problems in corners.Right: Moving backalong the incident
dir ection is safe.

50 CHAPTER 5. IMPLEMENT ATION DETAILS

We can categorize animations based on their complexity. The simplest
animation is when only the camera moves. In this situation we can reuse
the photon map from the previous frame without shooting new photons if
we assumethat the camera is not connected to an occluding object—e.g.,
the camera might be attached to an avatar. The other extreme is when all
light sourcesand objectsare moving. This invalidates almost all photons in
the map. However , none of theseare the common case.It is often the case
that only a few objectsmove in an otherwise static scene.When this is the
case,it is advantageous to use the same photon path for the photons that
are not in�uenced by the moving objects.

Christensen suggestsan implementation that promisesa 90%reduction
in �uctuation [JCS01, 91ff]. He usesa dif ferently seededrandom number
generator for each emitted photon where the seed could simply be the
number of the photon.

We have taken this idea further so it also impr oves performance. We
observed that the generation of dir ections consumed asmuch ashalf of the
time it took to render a frame. We observed that the program was 25-50%
faster by pre-calculating all the dir ections needed for a program run.

This is done by adding restrictions to the photon paths. In particular ,
we do not allow photon paths of dif ferent lengths. If for example all pho-
tons are re�ected twice, two dir ections will be calculated for eachphoton
with respect to a prede�ned reference normal. When a surface is hit, the
re�ected dir ection is found by rotating the pre-calculated dir ection. Notice
that we always need to make this rotation, but we have saved the gen-
eration of dir ections which requires many expensive calls to the random
number generator.

To remove the restriction of equal photon path lengths, we can calculate
the number of dir ection that would have been used on a particular path.
Then we can simple throw away this amount of dir ections.

5.3 The real-time photon map class

In this section we summarize how a real-time photon map is developed.
We present the extra functionality that needs to be incorporated and we
describe details of the balancing. Afterwar ds the irradiance estimate is dis-
cussedand we evaluate the bene�ts of using several smaller photon maps.

5.3.1 Changes to the photon map

The overall idea behind the Realtime_photo n_map class is to store the
photons for several frames instead of just one [Joz02, 20]. This will allow
for a much smaller number of emitted photons per frame.

5.3. THE REAL-TIME PHOTON MAP CLASS 51

class Realtime_photon_map
{

typedef vector<Photon> Per_frame_photons_t;
vector<Per_frame_photons_t> photons;
vector<Photon*> weak_photons;
Nearest_queue nearest_photons;
int current_frame;
bool is_new_frame;

};

Figure5.5:Important data structuresin the Realtime_photo n_mapclass.

The only previous work stems from [Joz02, 27ff], so let us �rst review
the major changesthat he found necessary. His idea is to statically allocate
a �xed-sized array to store the photons for a single frame. The size should
then be as large as the maximum number of photons that can be saved
during one emission step. Sincephotons might be absorbed or disappear
(becausethey do not hit anything), there might be empty slots. Sohe adds
an “is-empty” �ag to his photon data structure to accommodate for this.

Furthermor e,he createsan accompanying array of indices that are used
to keep track of which frames the photons belong to. Theseindices needs
to be updated when the photon array is sorted during the balancing step.

Our implementation is similar in the sensethat it needs to addressthe
sameproblems, but it is dif ferent in the approach it takes to solve the prob-
lems. A simpli�ed view inside our map shows the data structuresin Figure
5.5.

Notice that we have removed the constraint that the maximum num-
ber of photons must be �xed by using a vector to hold the photons from
a single frame. And we further allow a variable number of frames by us-
ing another vector called photons . This simpli�es the implementation
a great deal—in particular , we do not need to use an “is-empty” �ag, and
we do not need an array of indices to keep track which frame the photons
belong to. The photons simply belong to a certain vector which is cleared
and re�lled asneeded.The variable current_frame is used to keep track
of which vector to store the photons in, and is_new_frame is used to
indicate when to reseta vector and start re�lling it with new photons.

We have still not explained how we make the many smaller containers
function asone big. The answer lies in the variable weak_photons which
(by storing pointers) acts a view of the entire map. This is illustrated in
Figure 5.6. Before the balancing step thesepointers need to be updated by
storing the addressesof all the relevant photons.

It might seemmore expensive to update all the pointers in addition to
storing the new photons for a frame, but it can actually impr ove perfor -
mance in some cases.The balancing processcan be sped up by using an
array of pointers since only pointers will be shuf�ed around [Jen01, 71].

52 CHAPTER 5. IMPLEMENT ATION DETAILS

ph
ot

on
s

..........
.....

..........
....

..........
....

..........
.......

..........
..................
.............

..........
................
..................
..............

..........
......

..........
......

1
2

3

1 2 3

1 2 3
1 2 3

1
3

2

1 2 3

......
j j

Per_frame_photons_t

...

...

...

...

w
ea

k_
ph

ot
on

s

...

..........
.......

Figure 5.6: Structure of the real-time photon map. The vector photons
contains photons from j frames. Dif ferent frames might store a dif ferent
amount of photons. weak_photons contains pointers to all of the photons.

However , it is more important to impr ove the running time of the nearest
neighbor search sinceit will run many thousand times per frame. Therefore
it might be a problem to store pointers since the nearest neighbor search
will be slower becauseof extra indir ections throughout the process.We
made a quick test that replaced the array of pointers with real Photon ob-
jects,but the test did not show any noticeabledif ference.To reacha decisive
conclusion a more thorough test would be necessary.

The performance of the real-time modi�ed photon map is quite satisfac-
tory: it is as fast a the implementation from [Jen01] despite its extra func-
tionality .

5.3.2 Photon map balancing

The �rst step in balance() is to update weak_photons to get aconsistent
view the photons in the map and to initialize an axis aligned bounding
box of all photons in the map. We then recursively sort the photons with
build_tree() asshown in Figure 5.7.

First we check if we can stop the recursion. This is done when there
is stop_recursion_ siz e or less photons left whereby stop_recur-
sion_size determines the maximum size of the leafs in the kd-tr ee.For
each recursion step the largest axis of the photons is found (line 4) and
we split across that axis. If for example x was the largest axis, we use a
plane parallel to the y-z-plane as the splitting plane. The largest axis can
be found cheaply (in the largest_axis()) by maintaining the bounding
box of the photons on eachrecursion level. This functionality is hidden in-
side build_left/right _s ubtr ee() which simply savesthe bounding
box state on the stack. Then the bounding box is updated and a recursive
call to build_tree() is made. An simple alternative to the bounding box
is to cycle through the axes,but after a few testswe concluded that it is an
inferior technique.

The nth_element() call in line 6 sorts the �rst half of the considered

5.3. THE REAL-TIME PHOTON MAP CLASS 53

1 void build_tree(size_t from, size_t to) {
if (to - from <= stop_recursion_size) return;

Axis sort_axis = largest_axis();
5 const size_t middle = middle_index(from, to);

nth_element(&weak_photons[from], &weak_photons[middle],
&weak_photons[to] + 1, Axis_ordering(sort_axis));

Photon* median = weak_photons[middle];
median_photon->set_sort_axis(sort_axis);

10 const size_t left_to = middle - 1;
const size_t right_from = middle + 1;

if (from < left_to)
build_left_subtree(from, left_to);

15
if (right_from < to)

build_right_subtree(right_from, to);
}

Figure 5.7:The algorithm used to build the kd-tr ee.Our subdivision splits
the array in the middle and sort eachhalf recursively. Other implementa-
tions builds a heap instead [Jen01, 71f]. We are not aware of any perfor -
mancedif ferencesof the two approaches,but our implementation is some-
what simpler.

photons along the sort_axis . nth_element() is the perfect choicehere
since the relative order in eachhalf is unspeci�ed—we just know that each
element in the left range comesbefore eachelement in the right range (of
course,someelementsmight be equal too) [ISO98, 556].

Notice that the sort axis is saved in the median photon so it can be used
to guide the nearest neighbor search (line 9).

5.3.3 The irradiance estimate

The most interesting part of the irradiance estimate is how to �nd the k
nearestneighbors. This is described �rst followed by someoptimizations.

After some initialization the k nearest photons is found by the find_-
nearest() algorithm shown in Figure 5.8. The algorithm is also recursive
and we start by checking the basis of the recursion in line 4. If the cur-
rent sub-tree contains stop_recursion_ si ze or less photons, we stop
the treetraversal and linearly check if the photons should be included (line
5 and 6). We must search the leafs linearly since we cannot rely on the ele-
ments being sorted (sincebalance() stopped at this leaf size).

add_photon() checksif the photon should be included in the estimate
asdescribed in Section3.5. If the photon passesthe check,it is added to the
nearest_photon s container.

If the recursion can continue, we follow the sub-tree that includes the
search location recursively (line 16-24). The can_stop_searc h() checks

54 CHAPTER 5. IMPLEMENT ATION DETAILS

1 void find_nearest(size_t from, size_t to) const {
const size_t photons_left = to - from + 1;

if (photons_left <= stop_recursion_size) {
5 for (size_t i = from; i <= to; ++i)

add_photon(*weak_photons[i]);
return;

}

10 const size_t middle = middle_index(from, to);
const Photon& root = *weak_photons[middle];
add_photon(root);
const size_t left_to = middle - 1;
const size_t right_from = middle + 1;

15
if (should_search_left_subtree(root)) {

find_nearest(from, left_to);
if (not can_stop_search(root))

find_nearest(right_from, to);
20 } else {

find_nearest(right_from, to);
if (not can_stop_search(root))

find_nearest(from, left_to);
}

25 }

Figure 5.8:The algorithm to �nd the nearestphotons.

in line 18 and 22 handles the caseswhere candidate photons might not be
present in both sub-trees.It simply computes the distance from the root
to the search location along the sort axis; if the distance in that dir ection is
more than the maximum search radius, we know that we do not have to
search that sub-tree.

Thenearest_photons container is an instanceof the Nearest_queue
classwhich is a modi�ed vector implementing two optimizations:

1. No dynamic allocations are done during photon search. This was
done becausedynamic allocation during insertions was spotted as
a performance problem early on.

2. A priority queue is maintained when max_search_coun t photons
have been found [Jen01, 74]. There is no reasonto build a queue be-
fore the vector is full and when it is, the queue is maintained with
push_heap() and pop_heap() from the C++ Standard Template
Library [ISO98, 561f]. If k is the size of the queue, push_heap()
requires at most lg k comparison whereas pop_heap() requires at
most 2lg k comparison. Both functions needsto run whenever a new
element is inserted, but the extra work makesit possible to changethe
search radius dynamically which can further speedup the searching.

Every recursive algorithm canberewritten asan iterative algorithm. The
iterative version is often faster than the recursive algorithm becauseof less

5.3. THE REAL-TIME PHOTON MAP CLASS 55

function call overhead. Christensen presentsan iterative version which is
reported to be 25% faster compared to the recursive version [JCS01, 100].
The speedup of this algorithm is most valuable in photo-r ealistic render-
ing where the amount of nearest neighbor searchesis orders of magnitude
larger than in real-time rendering. We have not implemented the iterative
algorithm, but keep it as an opportunity if the nearest neighbor search be-
comesa performance bottleneck.

5.3.4 Several photon maps

As we can seein Figure 5.2 all relationships are one-to-one. This has been
done to keep the implementation simple, but a small discussion of when to
break the one-to-one relationship to the photon map follows.

Although Christensenmentions that in general there is no reasonto split
up the photon map [JCS01, 108], there are two reasonsfor using several
photon maps: (1) to speed up computations and (2) to avoid leaking of
photons. The complexity of Photon_map::ba la nc e() is O(n lg n) and
searching for the k nearest photons takes O(lg n + k) time [Jen01, 69ff]. To
obtain the irradiance estimate we further need to accumulate the power
of the photons which takes O(k) time—so the running time for the entire
irradiance estimate is still O(lg n + k).

Let us assumethat we can somehow split the global photon map into
m smaller maps with an average of a = n=m photons in each and that
this doesnot make the quality of the estimate worse; we can then compare
the theoretical running times. Using m maps our running time becomes
O(a lg a)1 + � � � + O(a lg a)m = m O(a lg a) = O(n lg a) for balancing and
O(lg a+ k) for the irradiance estimate.There is no sum in the estimate since
we assume(1) that we canlocateall the photons in onemap, and (2) that we
can �nd the right map in constant time. Unless the map is absurdly large,
k will be the dominant factor and lg n will be insigni�cant.

In Table 5.1 we have compared the expected speedup for an estimate
with 50 photons. It shows that maximally 5-10% can be saved in theory
which supports Christensen's view. However , a recentempirical study sho-
ws that in practice there might be a big dif ference[LC03]. The method par-
titions the photon map into smaller photon maps according to the normal
of surfaces—thishasthe additional bene�t that most surfaceleaking canbe
avoided. Surfaceswith a similar normal share the samephoton map, and
for a particular surface the estimate will never consider any of the other
maps. This meansone can spare the sphere slice calculation.

As we expected they seethe largest speedup in the balancing process
whereasthe irradiance estimate is about 30-66%faster. It is unknown why
the irradiance estimate becomesso fast, but it might be becauseof better
cache hit rates. Another explanation is that our analysis uses too small

56 CHAPTER 5. IMPLEMENT ATION DETAILS

n = 106

a lg a + 50 running time
106 69:9 100%
105 66:6 95%
104 63:3 90%
103 60:0 86%

n = 104

a lg a + 50 running time
104 63:3 100%
103 60:0 95%
102 56:6 90%
101 53:3 84%

Table 5.1:Expected running times of the irradiance estimate using several
photon maps. Notice that we search for 50photons. In practice there is limit
to how small one can make the average photon map size, a, since a value
closeto or below the number of photons to search for makes little sense.

values of n and k for the big-O notation to make sense.The hidden con-
stants might be quite signi�cant and different on lg n and k. A good exam-
ple of how such constants affect the running time in real programs can be
found in [Ale02a] and [Ale02b]. A thir d explanation might be that sub-trees
are easier discarded by can_stop_search() since the photon positions
saved in one photon map can be more spatially separated.

It hasalsobeensuggestedto partition the photon map into severalsmal-
ler maps that eachstoresphotons from the cellsused in the visibility system
of the engine [Joh03, 319f]. The visibility system determines that only some
of the sceneis visible and we needonly make lookups in the corresponding
maps. This schemefails if �nal gathering is required.

5.4 The BSPformat

We have implemented loading of id Software's Quake 3 BSPformat. This
give us accessto many test sceneswith geometry optimized to contain a
low polygon count [Pro00]. We �rst discuss how the geometry can be re-
�ned and then discussa problem with the re�ned BSPtree.

5.4.1 Mesh re�nement

The BSPscenesare composed of a minimal amount of triangles which are
spatially sorted in a BSPtree.This is a good basis for fast intersection test-
ing. The scenes,however, consist of large polygons which need to be re-
�ned to make the irradiance interpolation schemereasonableaccurate. A
single re�nement is done by splitting the triangle with the globallylongest
side into two such that the longest side is split in the middle. We refer to
that triangle as the largest triangle even though its area might not be the
largest. It is important to choosethe globally largestside becausewe do not
want to re�ne geometry which is already detailed enough, such ascurved

5.4. THE BSPFORMAT 57

class Triangle
{

float longest_edge_length;
// ...
bool operator<(const Triangle& other) const
{ return edge_length < other.edge_length; }

};

typedef priority_queue<Triangle> Triangles_t;
Triangles_t triangles;
void refine(Node& node, int number_of_refinements)
{

add_all_triangles_in_model(node, triangles);
for_each(mesh_refinement)

split_largest_triangle(triangles);
}
void split_largest_triangle(Triangles_t& triangles)
{

Triangle t = tringles.top();
triangles.pop();

Triangle t2 = split_triangle(t);
triangles.push(t);
triangles.push(t2);

}

Figure 5.9: The mesh re�nement algorithm. A priority queue of all trian-
gles is maintained such that the triangle with the globally longest edge al-
ways is on top. The algorithm works by always splitting the top triangle in
two. The triangles are always sorted by the priority_queue according
to operator<() .

objects.Pseudo code for the algorithm is shown in Figure 5.9. To test this
aspect,mesh_refinement is used asa test parameter.

Referring to Figure 5.9, in refine() we store all initial triangles in the
scene.This is done by storing pointers to Drawable sinside Triangle ob-
jects.What happens underneath in split_largest_t ri angl e() is that
theseDrawable s are modi�ed. The �rst two lines of split_largest_-
triangle() pick the largest triangle and remove it from the queue. Then
split_triangle () modi�es its argument so it contains one of the two
new triangles whereasthe second triangle is returned. When the two new
triangles are inserted, the priority_queue will automatically sort itself
such that the largest triangle is always on the top.

Dif ferent levels of re�nement affects the number of irradiance estimates
needed as well as �uctuation and visual quality . A higher degree of re-
�nement leads to less �uctuation and better visual quality at the cost of
performance. The �uctuation is decreasedbecausethe areasof instability
due low photon density are reduced. Visual quality is enhanced because
sharper irradiance discontinuities can be visualized.

When the geometry is loaded into OSG, all the geometry is converted

58 CHAPTER 5. IMPLEMENT ATION DETAILS

into the GL_TRIANGLESformat such that no vertices areshared. This makes
the re�nement easier, but adds a lot of duplicated vertices. For threere�ne-
ments of a single triangle one vertex can be duplicated as many as �ve
times. This leads to estimation overhead becausethe same points will be
estimated �ve times. We expect that there is two ways to solve this prob-
lem: (1) to usea cacheschemeor (2) to transform the GL_TRIANGLESform
into the GL_TRIANGLES_STRI Pform. We have chosento implement solu-
tion (1).

5.4.2 The estimate cache

For a realistic level of re�nement eachvertex canbeduplicated more than 5
times. To avoid making extra irradiance estimatesfor eachvertex we cache
the �rst estimate for a given location in a given frame and usethat estimate
for subsequentestimatesof the samevertex in the frame.

The cacheis implemented using the map class from the C++ Standard
Library . The implementation of the caching is shown in Figure 5.10. The
vertices are used askeys, and a pair containing the irradiance estimate and
the frame it was estimated in is used as the value of the map. It is worth
noticing that we do not need �ll the cache variable at load time sincemap
automatically createsobjectswhen they do not exist.

The map relies on the less-than operator to maintain a sorted treeof its
keys. The tree is usually implemented as a red-black tree which gives op-
timal performance for a tree based solution [Sed98, 516]. However , sort-
ing the elements is completely unnecessary in our case and therefore a
hash map is a better candidate, but have not yet implemented it. We add
use_estimate_ca ch e as a test parameter to measure the performance
gain obtained by using the estimate cache.

The culling system in OSG is optimized for culling speed rather than
minimizing the amount of polygons to draw. This is normally a good com-
promise asmodern graphics cards can draw a few extra polygons at nearly
no cost. In our case,on the other hand, this meansadditional expensive ir -
radiance estimates.To further minimize the amount of drawn polygons a
sort of Potential Visible Set (PVS) system should be utilized, but we shall
not investigate this further . General visibility processing is described in
[WP01, 270ff] and [Ebe01, 411ff].

5.5 Summary

In Section 5.1 we described how the core classesof the � -engine cooper-
ate. It is possible to make a design that minimizes the dependencies be-
tween the scene module and the photon mapping module. The photon
mapping module needs to accessscenegeometry and light sources from

5.5. SUMMAR Y 59

class Estimator
{

typedef std::pair<Vec3, int> Estimate_frame_t;
mutable std::map<Vec3,Estimate_frame_t> cache;
Photon_map* photon_map;
// ...
Vec3 irradiance_at(const Vec3& position, const Vec3& normal) const
{

Estimate_frame_t& e = cache[position];

if(e.second < current_frame)
{

e.second = current_frame);
e.first = photon_map->irradiance_at(position, normal);

}
return e.first;

}
};

Figure 5.10:Implementation of the estimate cache.

the scenemodule. The scenemodule must install a single class from the
photon mapping module, the Draw_callback . The design of the photon
mapping module is largely object oriented which makes it easy to substi-
tute behavior of the algorithms.

The Photon_tracer class was explained in Section 5.2. We saw in
detail how the photon emission is done and how the classesin the pho-
ton mapping module are utilized. Frame-coherent random numbers can be
used to reduce �uctuation, and by pre-calculating all the random numbers
we could make the overall running time 25-50%faster.

Section 5.3 described the Realtime_photo n_map class.Compared to
a normal photon map it needsa mechanism to store and manage the pho-
tons emitted during several frames. The implementation uses a vector
for eachframe and then another vector of pointers during balancing and
searching. This schemeis actually cited in the literatur e as a performance
impr ovement, but we keep a skeptical stance towards it. Compared to a
normal photon map, the Realtime_photo n_map is not noticeable slower.
Wediscussedthe advantage of using severalphoton maps to speedup irra-
diance estimatesand balancing of the kd-tr ee.The irradiance estimate is by
far the most important to optimize. In theory only very small performance
gains are achievable,but empirical studies have given surprising results.

In Section 5.4 we stated that Quake 3's BSPformat is a good basis for
fast intersection testing. The scenemust be re�ned to provide decent vi-
sual quality , and we showed a simple algorithm for re�ning the geometry
where the globally largest side of a triangle is always split �rst. When the
geometry is re�ned, the leafs of the treecontained too many triangles. The
re�nement generates duplicated vertices and therefore it is important to
cacheirradiance estimatesfor thesevertices.

6Results
[The First Rule of Program Optimization]
Don't doit.
[The SecondRule of Program Optimization—For experts only]
Don't doit yet.
—Michael Jackson,Michael JacksonSystemsLtd.

In this chapter we presenttest results.The test results fall in two categories,
namely visual quality testsand performance tests.The important questions
we try to answer in this chapter are:

1. How good canwe make the visual quality regardlessof the rendering
time?

2. What type of photon scattering gives the best results?

3. Is it possible to make decent color bleeding and shadows?

4. How tessellatedmust the scenebe to give satisfactory results?

5. What are the key performance bottlenecks?

6. How good quality can we get if the frame-rate must be 30FPS?

Besidethesequestions, we will describea long line of small test parameters
to seehow they affect the algorithm. We make most of our visual quality
tests in the Cornell box. This includes color bleeding, shadow effects, and
photon scattering. In the second scene,the small quake scene,we inves-
tigate tessellation level and performance. The thir d sceneis mainly used
together with the two other scenesto seehow certain features work with
dif ferent scenes.

We�rst describethe many test parametersand evaluate if their behavior
is as expected. Visual quality is then discussed followed by performance
measurements.

61

62 CHAPTER 6. RESULTS

6.1 Photon mapping parameters

A parameter is presentedlike this: foo : int > 0 [50] which meansthat
the parameter foo has the type int with the restriction that it must be
positive and that a plausible value is 50. When we describe the tradeoffs
involved in a particular parameter, we always assume that all other pa-
rameters are held constant.

6.1.1 Sceneparameters

Parameter1: BSP_tree : bool [true] . At the scenelevel, we can specify
whether or not to use the BSPtree. The impact we expect from enabling
the BSP tree is that intersection tests will be faster for large scenes(see
e.g. [HPP00] and [Cha01]). On the small Quake scenethere is a noticeable
speedup and the larger Quake scenebene�ts even more from the BSPtree.

Using the BSPtreein the small Quake sceneis around 25%faster when
there is a minimal number of irradiance estimates(no re�nements). On the
large Quake level it is 75%faster to use the BSPtree.

Parameter2: mesh_refinement : int >= 0 [10000] . This option con-
trols the number of polygons that are potentially drawn. This number indi-
cateshow many times the largest triangle is split into two. When we use a
�ner mesh we expect that rendering is slower, but that the visual result
is better. To make a more scene independent parameter, this parameter
should be exchanged with the length of the maximum triangle side that
should be allowed. Then the re�nement should simply continue until all
sides are smaller than the speci�ed value.

Parameter3:use_estimate_c ac he:bool [true] . Determines whether
irradiance estimates should be cached.This is a major optimization when
scenescontain duplicate vertices. Dependent on the level of re�nement, ev-
ery vertex can be estimated up to 5-6 times for eachrendering. The overall
speedup depends on the fraction of the total running time that is spent on
calculating irradiance estimates.

6.1.2 Photon map parameters

Parameter4: max_search_count : int > 0 [50] . This number simply
speci�es the maximum number of photons to include in the irradiance es-
timate. A large value will reduce the variance in the estimate [Suy02, 114],
but it will also slow the processdown since the search algorithm runs in
O(lg n + k) time. If the photon map size is increased,we can also increase
max_search_coun t , but at a lower rate [Suy02, 114]. This number has a
large impact on the overall performance. In the Cornell box (in which inter-

6.1. PHOTON MAPPING PARAMETERS 63

Figure 6.1:The Cornell box with (left) and without (right) useof the sphere
slice feature. Even though we use a large search radius, surface leaking is
effectively removed.

section testing is fast), moving from 200 photons down to 50 photons can
make the engine 50%faster.

Parameter5: max_search_rad ius : float > 0 [scene dependent] .
The maximum search radius describesthe initial radius for the spherewhe-
re photons should be collected. A large max_search_rad iu s can intr o-
duce distancebias in the irradiance estimate.Even though we usea priority
queue for updating the search radius during a search, the parameter has a
great impact on performance. Therefore this parameter should be as small
as possible. It is quite easy to seewhen the radius is too small becausethe
image becomesspeckled.

Parameter6: use_radius_heur is tic : bool [false] . If we enable the
radius heuristic from Section 3.2, the max_search_radiu s parameter is
disabled. We tried to use the technique on the three scenesand it worked
reasonable.The technique is perhaps most useful when the light source is
dynamic. In the small Quake scenewe observed that the frame-rate could
increasewhen the illumination moved such that it was stored on a smaller
area.Although we are not completely certain that we can �ne-tune � for all
scenes,our �rst impr essionis good.

Parameter7: use_sphere_sli ce : bool [true] . This parameter con-
trols the useof the sphereslice feature from Section3.5. This feature is really
good at removing surface bias ascan be seenin Figure 6.1. The feature has
little impact on the overall running time.

Parameter8: final_gathering :bool [false] . When �nal gathering is
enabled, the calculation of the radiance estimate is extended asdescribed in
Section 3.2. Depending on the final_gatherin g_sa mples parameter,
the irradiance estimate is much slower to calculate. We can make an image

64 CHAPTER 6. RESULTS

with smoothly varying irradiance using very few photons (e.g.1,000) in the
photon map [Jen01, 89f]. We will seemore examples rendered using �nal
gathering later. Although we shall not discuss them, it is worth noticing
that several other parameters can be used to control the precision of the
�nal gathering results. We did not make a thorough test suite with �nal
gathering since it is very slow. Instead, we just use a high precision to get
the most out of the technique.

6.1.3 Photon tracing parameters

Parameter9: photons_from_li ght : int > 0 [200] . In all our test sce-
nes we have restricted the number of light sourcesto one. This parameter
describes the amount of photons that are emitted from that light source
for each frame. With this parameter we can partially control how many
photons will be stored in the photon map. Recall that the size of the photon
map was calculated by the algorithm in Figure 4.3. This parameter will
increaserendering time since it affects the number of intersection tests as
well as the nearestneighbor search time.

Parameter10:accumulation_fra mes: int > 0 [10] . Determines how
many frames to accumulate photons over. A high value will make the light-
ing react slowly to dynamic changes,but allow us to store more photons.
A low value will give a faster update of lighting at the cost of reducing the
size of the photon map. A too small photon map will give poor visual re-
sults. A value of ten will probably be quite alright if the frame-rate is 30 or
60 FPS.In Section6.3we try to �ne-tune this parameter.

Parameter11:store_direct_li ght :bool [true] .This will trigger stor-
ageof the photons that arrive dir ectly from the light source.By turning it on
we might be able to createa shadow effect sinceoccluded parts of the scene
will receivelessenergy. By turning it off we seeonly the indir ect light in the
scene.It might bepossible to make shadows evenwithout storing the dir ect
light if so-called shadow photons are used [Jen01, 148].If OpenGL lighting
is enabled, the dir ect light should not be stored. We expect that it will be
possible to augment our calculation of dif fuse indir ect light with normal
hardwar e acceleratedspecular lighting.

Parameter12: recursion_depth : int >= 0 [1] . A recursion depth of
n means that we allow up to n dif fuse re�ections for a photon. The actual
photon path might be shorter if the photon disappear into open space.A
high value should in theory give more plausible results, but it will also
waste many intersections on photons with a very low impact on the �nal
result. One re�ection is enough to simulate most color bleeding effects, so
we rarely use more.

Parameter13:diffuse_reflect io ns : int > 0 [36] . This number spe-
ci�es how many new photons a single photon is split into during a dif fuse

6.1. PHOTON MAPPING PARAMETERS 65

Figure 6.2:Left: when the Saff-Kuijlaars method is used to generatedif fuse
light dir ections. Right: naive rejection sampling.

re�ection. A high number will require more intersections, but give a better
dispersion of photons throughout the scene.If the number is too low the
effect of the dif fuse re�ections becomesunpr edictable.

Parameter14: snowball_size : int > 0 [1] . By �lling more photons
into the map for a given intersection, we can hope to get a better distribu-
tion of the photons without increasingthe number of intersections.Oncean
intersection have been found, we generatesome random points in a small
circle in the intersection plane. This way we hope to get the same effect
as if that circle had been hit by several photons. The circle must be rela-
tively small to avoid storing photons situated in open air and to avoid that
shadow areasare hit by photons. Currently this feature make the photon
distribution worse than the Saff-Kuijlaars method (seeSection 3.6). Obvi-
ously, we need to use strati�cation or quasi-random numbers when the
points are generated.

Parameter15: light_distributi on_t yp e: int [Saff-Kuijlaars] .
Unfortunately we have not implemented all the distributions described in
Section 3.4. Therefore we can only compare the Saff-Kuijlaars method to
naive random sampling which can be seen in Figure 6.2. The method is
much better than naive rejection sampling. It is unfortunate that we cannot
show how quasi-random sequencesperform.

Parameter16:diffuse_light_ di st ri but io n: int [stratified] . In-
steadof generating the dif fuse scattering randomly , we have tested the ben-
e�t of using strati�cation with one random dir ection in each strata. The
results are as expected: the strati�ed sampling is much better than naive
random sampling.

66 CHAPTER 6. RESULTS

Figure 6.3: Two pictur es rendered with photon mapping in RenderPark.
The map contained 250,000photons and 80neighbor photons were used in
the irradiance estimate. Left: A rendering with a maximum path length of
8. Notice the color bleeding on the sidesof the little box. Right: A rendering
with dir ect light only.

6.2 Visual quality

In this section we compare the best results we can achieve with a photo-
realistic rendering from RenderPark. This will give an impr ession of how
good our implementation is currently. Wealso investigate how detailed the
scenemust be in order to give decent results.

6.2.1 Color bleeding and shadows

Figure 6.3 shows two pictur es rendered with RenderPark. We can seethat
the illumination is very smooth on both pictur es.There is a little dif ference
in these two scenescompared to those we use in real-time rendering: the
wall we look through is not culled, but simply missing. This means that
we will get a brighter color bleeding in the real-time generated pictur es.
Nevertheless, it should be possible to get a good idea of the overall quality
of the illumination.

In Figure 6.4 the same two pictur es are rendered with �nal gathering.
There are some problems in the corners, but it is not becauseof bound-
ary bias—it is an unresolved implementation problem when making a �nal
gather in a corner.

If we compare the left-hand side of Figure 6.3with the left-hand side of
Figure 6.4we can seethat both images have round circleson the walls due
to the nearby light source. We can also seethat the color bleeding on the
box is in both images although it looks rather dif ferent; this is becauseof
the white culled wall in the real-time pictur e. If we compare with Figure
6.4 on the right we seethe color bleeding is more visible on the right. The
pictur e only contains indir ect illumination which is why the color bleeding

6.2. VISUAL QUALITY 67

Figure 6.4:Two pictur esrendered in “r eal-time” with �nal gathering. Both
pictur es are rendered using 10,000 photons and 625 �nal gather rays per
estimate. Left: when the dir ect light is included in the photon map. Right:
when no dir ect light is included in the photon map.

on the �oor and in the roof is much more dominant. It is worth noticing
that we cannot produce shadows with �nal gathering.

To continue our discussion of color bleeding, consider Figure 6.5. This
shows a real-time version with one dif fuse re�ection. A very interesting re-
sult is that a frame-rate of 20FPScanproduce similar results to a frame-rate
of 1 FPS.The pictur e on the right reveals some problems with the dif fuse
re�ections. The dif fuse re�ections can in certain casesruin the photon den-
sity so that the image becomesspeckled.

Figure 6.6 is a real-time rendering without indir ect light. If we compare
the shadows on this �gur e with Figure 6.3on the right, we can seethe real-
time shadow is not that bad although its slightly softer. If we compare the
shadows in Figure 6.5 with Figure 6.3 on the left, then both shadows are
more bright due to the indir ect illumination. The sharpness on the real-
time shadow could better, though. Filtering might be used to sharpen the
shadow boundaries (seeSection3.5).

6.2.2 Tessellation

Let us now discussthe test of the necessarylevel of re�nement. Dif ferences
in re�nement level affect both �uctuation and visual quality of the illumi-
nation. Theseresults canbe used asa rule of thumb for how many triangles
we must have in a scene.Figures 6.7 and 6.8 show the scenewith a spot
light pointing from the center of the scenetowards the culled roof. The
pictur es are made with a recursion level of one. Therefore all the surfaces
we seeare indir ectly illuminated—with OpenGL lighting we would have

68 CHAPTER 6. RESULTS

Figure 6.5:Two screenshoots of color bleeding from the � -engine. The pic-
tur e on the left is rendered with 20 FPSwhereasthe pictur e on the right is
rendered with 1 FPS.

Figure 6.6:Soft shadows from the � -engine. Only the dir ect illumination is
stored in the photon map. The pictur e on the left is rendered with about 20
FPSwhereasthe pictur e on the right is rendered with 1 FPS.

6.3. PERFORMANCE 69

Figure 6.7:Indir ect illumination in the small Quake scene.Left: 1,600trian-
gles.Right: 3,200triangles—here the illumination becomesreasonable.

Figure 6.8:Indir ect illumination in the small Quake scene:Left: 6,400trian-
gles. Right: 12,800triangles—going from 6,400to 12,800triangles seemsto
have a large impact on quality .

seenonly black surfaces.In OpenGL we canadd an ambient factor, but that
would look unrealistic asall surfacesthat do not receivedir ect illumination
would be equally lit. This would also happen to the small adjoining rooms
which are otherwise mostly dark.

All four pictur es have been rendered with a total of 3,200photons and
with a naive rejection sampling from the light source and naive random
dif fuse re�ection. If Figure 6.7we seethat the illumination is very speckled,
but also that doubling the number of triangles doesnot have a large impact
on the quality . In Figure 6.8 the quality is still not too good on the left. It is
very bene�cial to make a higher tessellation asit is canbe seenon the right.

6.3 Performance

In this sectionwe �rst describehow performance depends on the sizeof the
photon map and the re�nement level of the scene.A test of the intersection
testing follows (no pun intended), and we discuss tradeoffs regarding the
accumulation_f ra mes parameter. Then we make a little casestudy of
the small Quake scenewhere we keep the frame-rate high and see how
good we can make the illumination.

The �rst test investigates how the size of the photon map and varying

70 CHAPTER 6. RESULTS

triangles n photons 400 800 1600 3200 6400 12800 25600
400 460 298 179 101 52 26 12
800 344 243 156 90 49 25 12
1600 225 172 124 78 45 24 11
3200 124 105 83 58 37 21 10
6400 63 56 49 38 27 17 9
12800 30 28 26 22 17 12 8
25600 15 14 13 11 10 8 5

Table 6.1:Frame-rate as a function of the total number of photons and the
total number of triangles. Recall that the number of triangles is just a mea-
sure of how re�ned the sceneis.

re�nements levels affect the frame-rate of the application. In Table 6.1 we
see(by looking down the diagonal) that doubling the number of photons
and triangles approximately halves the frame-rate. Hence, the frame-rate
seemsto be inverse proportional to the sum of the number triangles and
the number of photons being traced.

Let us turn our attention to intersection testing. The two Quake scenes
contains 369and 5,355triangles, respectively. When the intersection testing
is done in isolation, we can trace 47,500 and 6,200 primary rays, respec-
tively . Soby using circa 14-15 times asmany triangles, we only get a factor
of 7-8 fewer intersections. This meansthat the BSPtreedoesenhanceinter-
section testing, but also that it could be much better.

On a single 800 MHz Pentium-III it should be possible to trace from
about 200,000to almost 1:5 million primary rays per second [WBWS01, 6].
The algorithm makes better use of computational resourcessuch ascaches
and SIMD instructions. It shows that our implementation is somewhat slow
compared to what should be possible. With our hardwar e it should be pos-
sible to trace from 600,000to 4:5 million primary rays (!). We can also ver-
ify that intersection tests is a key performance bottleneck by other means.
In the large Quake scenewith approximately 55,000 triangles (only 5,355
triangles for intersection testing) we stored 1,500 photons per frame over
ten frames. If intersection testing was enabled, the frame-rate was 2-3 FPS
whereasit was around 40FPSif no intersection was done.

We can increasethe frame-rate by distributing intersection testing over
several frames. This will, however, also increasethe time it takes to fully
renew all photons in the photon map (we call this time for the photon re-
newal time). Table 6.2shows how the frame-rate and photon renewal time
evolve when the number of accumulation frames is increasedand the total
number of photons is kept constant. The table shows a very interesting re-
sult: we can cacheillumination over several frames without increasing the
photon renewal time noticeable.

As the last test we shall try to keep the frame-rate high and constant

6.4. SUMMAR Y 71

Accumulation frames 1 2 4 8 16 32 64
Frame-rate 0.63 1.24 2.41 4.52 8.25 12.51 18.01
Photon renewal time 1.59 1.61 1.66 1.77 1.94 2.56 3.56

Table 6.2: Relation between accumulation frames, frame-rate, and photon
renewal time. The total amount of photons is kept constant at 10,000. No-
tice how going from 1 to 16 accumulation frames increasesthe frame-rate
considerable while it only increasesthe photon renewal time slightly .

Figure 6.9: The �ashlight demo. The demo runs with 30 FPS.The cone of
the spot light is indicated (approximately) with red lines.

while tuning the visual quality . This test hasbeendone in the small Quake
scene,where we walk around with a spot light pointing forwar d from the
view. In Figure 6.9we can seea screenshoot from the scene.The scenehas
beenre�ned until it contains 10,369triangles. At a frame-rate of 30 FPSwe
can trace 100photons from the light source and make 9 dif fuse re�ections
one time for each photon. As we can see in the �gur e, we do get some
indir ect illumination, but the quality could be much better. As a last result,
we tried running the demo without use of the estimate cache—in that case
the frame-rate dropped to 21 FPS.

6.4 Summary

In Section6.1we described the most important parameters that can tweak
the � -engine. Using the BSPtree is an advantage and the advantage in-
creaseswith the sizeof the scene.max_search_count and max_search_-
radius should be as small as possible since they have a large impact on
performance. The radius heuristic seemsto work, although it hard to say
if it can be �ne tuned independently of the scene.The sphere slice �lter -
ing can effectively remove most surface bias. The snowball feature is not
very usable in its current status. Photon scattering was best done with the

72 CHAPTER 6. RESULTS

Saff-Kuijlaars method from the light sourceand with strati�ed dif fuse sam-
pling in the re�ection step;unfortunately we have not implemented the use
of quasi-random sequenceyet.

Section 6.2 gave an overview of the visual quality we can achieve. It is
possible to get real-time color bleeding; occasionally the dif fuse re�ections
can interfer e with the surfaces that are dir ectly lit and give speckled im-
ages.With some �ne-tuning it is possible to get as good images with 20
FPSas with 1 FPS.The scenetessellation needs to be fairly high; for the
small Quake scenethis meansthat the sceneshould contain between 6,400
and 12,800triangles.

A small performance test revealedthat in our implementation the frame-
rate is inverse proportional to the sum of the photon map size and the size
of the scene(seeSection 6.3). When we compare the speedof our intersec-
tion testing with the work of others, it is clear that intersection testing is a
major performance bottleneck. The frame-rate could be increasedby using
more accumulation frames with little impact on the photon renewal time.
If the frame-rate must be 30 FPSin the small Quake scene,it clear that we
cannot yet trace enough photons to get satisfactory results.

7Conclusion
At any rate it seemsthat I amwiser than heis to this smallextent,that I donot
think that I knowwhat I donot know.
—Socrates

Photon mapping was originally proposed asa technique for photo-r ealistic
rendering. The technique enhances both the quality and the speed of a
photo-r ealistic rendering. This projecthas integrated photon mapping with
a traditional real-time 3D graphics engine. It is desirable to add photon
mapping for two reasons:

1. Many of the special casesused to handle dif ferent lighting effects in
3D graphics enginescan be avoided.

2. Global illumination including indir ect dynamic light can be simu-
lated. This will enablelighting effectssuch ascolor bleeding, caustics,
and shadows in real-time rendering.

Our �rst report served as a feasibility study for this report [OK02]. The
conclusion was that photon mapping could potentially add color bleeding
and soft shadows to a real-time context. From that conclusion we derived
the goals stated in Chapter 1.

The long term goal of the project is to maintain a frame-rate of at least
30 FPSwhile simulating dynamic light. The main areaswe have focused
on to ful�ll this goal are related to either visual quality or performance.
The requirement of both high performance and high visual quality consti-
tutes opposing demands. We have thereforeexplored ways to impr ove one
requirement without degrading the other. For example, strati�ed sampling
can impr ove the visual quality without decreasingthe performance. On the
other hand, we can also impr ove the performance by using more accumu-
lation frames without affecting the visual quality noticeable.

73

74 CHAPTER 7. CONCLUSION

We will �rst describe the status of the implementation followed by the
main contributions of this work. Then we compare the status of the project
with the goals from the intr oduction. At the end of the chapter we describe
dir ections for futur e work.

7.1 Implementation status

In this project we have shown that it is possible to use photon mapping
to add dynamic light to a real-time 3D graphics engine. Our engine can
simulate color bleeding and shadows.

The traditional 3D graphics engine must be altered in the update and
the draw stage. Photon tracing is added in the end of the update stage.
The draw stage must make an irradiance estimate for all visible vertices.
To impr ove the visual quality it is important to re�ne the geometry. The
intersection testing performance is kept independent of this re�nement by
using a separate unre�ned copy of the geometry. The implementation of
the real-time photon map performs well despite its extra functionality and
�exibility .

A number of important observations have been made throughout this
project:

� The tessellation level needs to be relatively high. Our medium sized
test sceneneeded a factor of 40 more triangles than in the original
sceneto get good visual results.

� The photons must be dispersed with aslow a discrepancy aspossible
to make optimal use of the limited number of photons. To generate
dir ections one should use strati�cation or quasi-random numbers.

� Intersection testing is the key performance bottleneck. One should
have this in mind when designing the scenetree.

� A good compromise between the number of accumulation frames
and the photon renewal time can be found. Without decreasing the
photon renewal time signi�cantly , a much larger frame-rate can be
achieved.

� It is important to only make irradiance estimatesfor the unculled ver-
tices.Therefore it pays off to spend more time in the cull stagein order
cull asmany vertices aspossible.

Severalspin-offs of the project will be made available. This includes an
Exact_photon_ma p class that can be used to verify photon map imple-
mentations against, an easyto understand implementation of the real-time
photon map, and a Quake 3 BSPloader for use with Open SceneGraph.

7.2. CONTRIBUTIONS 75

7.2 Contributions

We will now discuss the main contributions of this project. In Chapter 3
we describe how dif fuse re�ections can be impr oved for use in a real-time
context. Instead of decreasing the number of dif fusely re�ected photons
with Russian Roulette, we increasethe number of dif fusely re�ected pho-
tons. Thereby fewer re�ections are needed to cover the scenewith photons
and lesstime is spend on rather unimportant photons.

We have proposed a terminology for describing dif ferent types of leak-
ing: surface leaking is de�ned as leaking from surfaces with a dif ferent
normal or translated surfaceswith a similar normal, and distance leaking
is de�ned as leaking from a dif ferently lit areaon the same�at surface.

We also describe a new method for effectively removing surface bias
using a sphere slice. This method is faster than commonly advised ap-
proachessuch ascylinders an ellipsoids.

Chapter 5 described how frame-coherent random numbers can be used
to decrease�uctuation. We showed how one could also impr ove perfor -
manceby pre-calculating all needed dir ections.

The tests in Chapter 6 revealed an interesting property of the number of
accumulation frames. It is possible to increasethe frame-rate considerably
while only increasing the photon renewal time slightly .

7.3 Comparison with goals

We will compare the obtained results with the goals as they were laid out
in section 1.3. This is done by discussing the achievements related to each
goal.

Goal 1: Improvetheimagequality andreduce�uctuation to anacceptablelevel.

Achievement 1:Weare able to produce imageswith acceptablequality and
low �uctuation. The most important impr ovement of image quality comes
from a better distribution of photons. Fluctuations are decreasedconsider-
able by using frame-coherent photon paths. We expect the image quality to
impr ove assoon aswe can trace more photons or when support for quasi-
random sequencesare added. To further reduce �uctuation, a high tessel-
lation level should be used. The current status indicates that using a high
tessellation level is not a performance problem.

Goal 2: Build adynamicscenethat canworkasa testscenario.

Achievement 2: We have a simple test scenariowith dynamic objectsand a
dynamic light source.To test larger sceneswe can load Quake 3 BSPscenes.
This gives accessto scenesof a realistic size.

76 CHAPTER 7. CONCLUSION

Goal 3: Assemblethe3D enginesoimportantmodulesareimplementedandfunc-
tioning in a realisticmanner.

Achievement 3: Most required modules in a 3D engine are presentin states
adequate for identi�cation of real performance bottlenecks. In particular ,
we have intersection testing basedon spatially sorted geometry and a de-
cent culling performance.

Goal 4: Theintegrationofphotonmappingandthereal-time3D graphicsengine
shouldbeaseasyaspossible.

Achievement 4: Adding photon mapping requires integration in three
places.(1) The photon mapping module must have accessto the scenege-
ometry to perform intersection testing. (2) The scenemodule must install
a single callback that can update the irradiance estimates of each vertex
in the draw stage. (3) It must be possible to make a re�ned model of the
scene.We believe that (1) and (2) are straightforwar d extensionsto normal
real-time 3D graphics engineswhereaswe are uncertain about (3).

Goal 5: Testdifferent methodsto scatterphotonsthroughoutthesceneand �nd
out whichmethodsthat shouldbepreferredin theengine.

Achievement 5: Only a few dif ferent ways of distributing photons in a
scenehasbeentested.Currently the beststrategy is to usethe Saff-Kuijlaars
method for light source dir ections combined with strati�ed sampling for
dif fuse re�ections. However , we are convinced that using quasi-random
sequenceswill give even better results.

Goal 6: Identify areasthat clearlyseemsto beperformancebottlenecks.

Achievement 6: Many performance bottlenecks have been identi�ed and
optimized during development. In the current application intersection test-
ing is the key bottleneck. Currently we have optimized the intersection test-
ing module by using bounding volume hierarchies, but nevertheless the
performance is still rather low compared to state-of-art methods.

Goal 7: Keepthefocusondynamicindirectlighting with colorbleedingin diffuse
environments.

Achievement 7: We are able to render our test sceneswith dynamic indi-
rect illumination including color bleeding at acceptable frame-rates. Fur-
thermor e, soft shadows are presentalthough blurry . We hope that this can
be impr oved with useof �ltering.

We can conclude that most of our goals have been ful�lled, but that some
issuesstill persist. In the next section we summarize the areasthat are sub-
ject to futur e work.

7.4. FUTURE WORK 77

7.4 Future work

Our implementation can be still impr oved. Performance wise our intersec-
tion testing is slow (Section 6.3). The photon map implementation can be
impr oved by using an iterative nearest neighbor search and by using sev-
eral photon maps (Section 5.3). Quality wise the most important enhance-
ment will probably be to use quasi-random sequences(Section 3.4).

In this report we have continuously impr oved both performance and
visual quality . As futur e work we recommend this prioritized list for both
categories:

� Performance:

1. Impr ove intersection testing.

2. Remove the need for an estimate cache or use a hash map to
make the implementation asef�cient aspossible.

3. Culling should be made more �ne-grained to minimize the am-
ount of unculled vertices outside the view frustum.

4. Iterative nearest neighbor search and the use of several photon
maps.

� Visual quality:

1. Quasi-random sequencesfor use during photon scattering.

2. Use �ltering to sharpen shadows.

3. Impr ove the areaestimate to remove boundary bias.

As indicated by industry leaders,global illumination will becomethe norm.
There are several competing approachesthat tries to achieve this goal. We
cancategorizethe methods aseither pureray-tracing-based rendering, pure
hardwar e-basedrendering, and the hybrid approacheslike the � -engine.

Most hybrid methods have started out with a very high requirement
to the visual quality which means that they are very slow. Our approach
has been the opposite. We have started with an expectation of interactive
frame-rates and then tried to impr ove the visual quality .

Recentadvances in ray-tracing suggests that real-time ray-tracing will
be possible in the near futur e. Before that happens we believe hybrid ap-
proacheswill the best alternative. Modern graphics hardwar e are excellent
at rendering dynamic dir ect light and this capability should be used to-
gether with something similar to the � -engine. In a way the two methods
complement each other perfectly: the specular effects and the dir ect light
can be simulated by hardwar e whereasspecial effects like color bleeding
and causticscan be rendered by the real-time photon mapping algorithm.
Thereforewe believe that real-time photon mapping canbeused in modern
real-time 3D graphics engine in the foreseeablefutur e.

Bibliography

[Ale02a] Andr ei Alexandr escu. Ef�cient generic sorting and searching
in c++ (i): In search of a better search. C/C++ UsersJournal,
October 2002.

[Ale02b] Andr ei Alexandr escu. Ef�cient generic sorting and searching
in c++ (ii): Sorting through sorts of sort algorithms (well, sort
of). C/C++ UsersJournal, December2002.

[BB82] Dana H. Ballard and Christopher M. Brown. ComputerVision.
Prentice Hall, 1982.

[BdLPM] Philippe Bekaert,Frank Suykensde Laet, Pieter Peers,and Vin-
cent Masselus. Renderpark: A test-bed system for global illu-
mination. http://www .renderpark.be/.

[Cha01] Allen Y. Chang. A survey of geometric data structures for ray
tracing. Technical report, Department of Computer and Infor -
mation SciencePolytechnic Universityn Brooklyn, New York,
11201,2001.

[DBMS02] K. Dmitriev , S.Brabec,K. Myszkowski, and H. Seidel. Interac-
tive global illumination using selectivephoton tracing, 2002.

[DDM03] Cyrille Damez, Kirill Dmitriev , and Karol Myszkowski. Stateof
the art in global illumination for interactive applications and
high-quality animations. COMPUTER GRAPHICS forum, 21,
2003.

[Ebe01] David H. Eberly. 3D GameEngineDesign- A PracticalApproach
to Real-TimeComputerGraphics. Mor gan Kaufmann Publishers,
2001.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. DesignPatterns- ElementsofReusableObject-OrientedSoft-
ware. Addison-W esley, 1994.

[HP01] Heinrich Hay and Werner Purgathofer. Global Illumination
with Photon Map Compensation. available at ftp.cg.tuwien.
ac.at/pub/TR/01/TR-186-2-01-04Paper .pdf, January 2001.

79

80 BIBLIOGRAPHY

[HPP00] Vlastimil Havran, JanP�rikryl, and Werner Purgathofer. Statis-
tical Comparison of Ray-Shooting Ef�ciency Schemes.Techni-
cal report, Department of Computer Science,Czech Technical
University; VrVis Center for Virtual Reality and Visualization;
Institute of Computer Graphics, Vienna University of Technol-
ogy, 2000.

[II01] Ru Igarashi and JossIves. Sampling in non-cartesian coordi-
nate systems. http://nucleus.usask.ca/Geant/Exer cises/
sampling2.html, 2001.

[ISO98] ISO/IEC. InternationalStandard,Programminglanguages— C++,
1st edition, 1998.

[JCS01] Henrik Wann Jensen,Per H. Christensen, and Frank Suykens,
editors. A PracticalGuide to Global Illumination Using Photon
Mapping, Los Angeles, USA, August 2001.ACM SIGGRAPH.

[Jen01] Henrik Wann Jensen. Realistic ImageSynthesisUsing Photon
Mapping. A K Peters,2001.

[Joh03] Marlon John. FocusOn PhotonMapping. The Premier Press
Game Development Series.Premier Press,2003.

[Joz02] Timothy R. Jozwowski. Real time photon mapping. Master 's
thesis,Michigan Technological University , May 2002.

[Kel97] Alexander Keller. Instant radiosity . http://www .uni-kl.de/
AG-Heinrich/Alex.html, 1997.

[KK02] Thomas Kollig and Alexander Keller. Ef�cient multidimen-
sional sampling. EUROGRAPHICS Volume 21, Number 3,
2002.

[LC03] B. D. Larsen and N. J.Christensen. Optimizing photon map-
ping using multiple photon maps for irradiance estimates,feb
2003.

[Len02] Eric Lengyel. Mathematicsfor3D GameProgramming& Computer
Grahics. Charles River Media, Inc., 2002.

[Obj03] Object Management Group, Inc. OMG Uni�ed Modeling Lan-
guageSpeci�cation, March 2003.

[OK02] Thorsten Ottosen and Dennis Kristensen. The � -engine—part
1—illumination for 3d game engines using photon mapping.
Master 's thesis, Department of Computer Science, Aalbor g
University , Denmark, December2002.

BIBLIOGRAPHY 81

[Oud99] Juri A. Oudshoorn. Ray tracing as the futur e of computer
games. Technical report, Department of Computer Science,
University of Utr echt, November 1999.

[PP98] Ingmar Peter and Georg Pietrek. Importance driven construc-
tion of photon maps. http://ls7-www .cs.uni-dortmund.de/
research/pr ojekte/visibility-pr oblems/, 1998.

[Pro00] Kekoa Proudfoot. Unof �cial quake 3 map speci�cations.
http://graphics.stanfor d.edu/˜kekoa/q3/, 2000.

[PVTF02] William H. Press,William T. Vetterling, Saul A. Teukolsky, and
Brian P. Flannery. NumericalRecipesin C++. Cambridge Uni-
versity Press,2002.

[Rab02] Steve Rabin, editor. AI GameProgrammingWisdom. Charles
River Media, Inc., 2002.

[SBJWJ00] Raymond A. Serway, Robert J.Beichner, and Jr. JohnW. Jewett.
PhysicsFor Scientistand Engineers. Sounders College Publish-
ing, 2000.

[Sed98] Robert Sedgewick. Algorithms in C++, Third Edition. The Pre-
mier PressGame Development Series.Addison Wesley, 1998.

[Shi91] PeterShirley. Discrepancy asa quality measure for sample dis-
tributions. In ProceedingsofEurographics91, pages183–193,June
1991.

[SK97] E.B Saff and A.B.J Kuijlaars. Distributing many points on a
sphere. MathematicalIntelligencer19.1, pages5–11,1997.

[SKP98] László Szirmay-Kalos and Werner Purgathofer. Analysis of the
quasi-monte carlo integration of the rendering equation. Tech-
nical report, Department of Control Engineering and Informa-
tion Technology, Technical University of Budapest, 1998.

[Sta03] Nick Stam. The futur e of 3d graphics. http://www .
extremetech.com/article2/0,3973,1091416,00.asp,May 2003.

[Suy02] Frank Suykens. On robustMonte Carloalgorithmsfor multi-pass
globalillumination. PhD thesis, Department of Computer Sci-
ence,Katholicke Universiteit Leuven, 2002.

[SW00] Frank Suykens and Yves D. Willems. Density control for pho-
ton maps. http://www .cs.kuleuven.ac.be/cwis/r esearch/
graphics/CGRG.PUBLICA TIONS/, 2000. Department of
Computer Science,K.U. Leuven, Belgium.

82 BIBLIOGRAPHY

[VMKK00] Valdimir Volevich, Karol Myszkowski, Andr ei Khodulev , and
Edward A. Kopylov . Using the visual dif ferencespredictor to
impr ove performance of progressiveglobal illumination com-
putation. In ACM TransactionsonGraphics, volume 19(2),pages
122–161,2000.

[Wat00] Alan Watt. 3D ComputerGraphics,Third Edition. Addison-
WesleuPublishing Ltd., 2000.

[WBWS01] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp
Slusallek. Interactive rendering with coherent ray tracing.
In Alan Chalmers and Theresa-Marie Rhyne, editors, Compu-
ter GraphicsForum (Proceedingsof EUROGRAPHICS2001, vol-
ume 20, pages 153–164.Blackwell Publishers, Oxford, 2001.
available at http://graphics.cs.uni-sb.de/˜wald/Publications.

[WKB+ 02] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller,
and Philipp Slusallek. Interactive Global Illumination using
Fast Ray Tracing. In Proceedingsof the 13th EUROGRAPH-
ICSWorkshoponRendering. SaarlandUniversity , Kaiserslautern
University , 2002.avail.at http://www .openrt.de.

[WP01] Alan Watt and Fabio Policarpo. 3D Games— Real-timeRender-
ing andSoftwareTechnology. Addison-W esley, 2001.

[WRC88] Gregory J.Ward, Francus M. Rubinstein, and Robert D. Clear.
A ray tracing solution for dif fuse interr e�ection. In Computer
Graphics, pages85–92,August 1988.

[Wu03] Ying Wu. Radiometry, brdf and photometric stereo.
http://www .ece.northwestern.edu/˜yingwu/te aching/
ECE510/Notes/lighting.pdf, 2003.

	Introduction
	Lighting in 3D engines
	Real-time photon mapping
	Goals
	Overview of report

	Illumination theory
	Lighting effects overview
	Lighting terminology
	Light scattering
	The rendering equation
	Summary

	Real-time photon mapping
	The algorithm
	Improvements
	Rendering and blending
	Photon scattering
	Bias reduction
	Summary

	Implementation overview
	Engine overview
	Open Scene Graph and BSP trees
	Control flow
	Customizing photon mapping
	Testing
	Summary

	Implementation details
	Class overview
	The photon tracer class
	The real-time photon map class
	The BSP format
	Summary

	Results
	Photon mapping parameters
	Visual quality
	Performance
	Summary

