Influence Diagrams Involving Time

Seren Holbech Nielsen Department of Computer Science
holbech@cs.auc.dk Aalborg University

10th June 2003

o=t
or=i

Aalborg University

Department, of Computer Science, Fredrik Bajers Vej TE, 9220 Aalborg st

TITLE:

Influence Diagrams Involving Time

SUBJECT:
Decision Support Systems

PROJECT GROUP:
E2-101

MEMBERS OF PROJECT GROUP:
Seren Holbech Nielsen

SUPERVISOR:
Thomas D. Nielsen

SEMESTER:
DAT®6

PROJECT PERIOD:
1st of February 2003 -

10th of June 2003

NUMBER OF COPIES:
4

NUMBER OF PAGES:
Report: 106 pages
Total: 116 pages

Abstract: IDITs was originally pro-
posed in [Broe et al., 2003] as a
representation language for decision
problems involving quantitative mea-
sures of time. IDITSs is suggested as a
representation language, which caters
for aspects of time. However, the tem-
poral semantics of elements in IDITs
presented in [Broe et al., 2003] are
flawed. In this report, we suggest a
new set of ordering semantics and
a definition of welldefinedness that
builds on this new ordering. Further-
more, a method to check an IDIT for
welldefinedness is given, and the rep-
resentation language of IDITs is en-
hanced to cater for more aspects of
time, including varying orderings of
decisions.

[Broe et al., 2003] also neglects to
present a method for solving deci-
sion problems modelled as IDITs,
but do suggest a sketch for such a
method. In the latter part of this re-
port, we explore the boundaries of
this sketch and identify a subset of
IDITs that can be solved using this
approach. Our method succeeds in
handling continuous variables as par-
ents of discrete decisions through ex-
ploitation of constraints induced by

the nature of time.

o=t
or=i

Preface

This report constitutes my master thesis in the field of decision support systems.
It was developed at the Dat6 semester at the Department of Computer Science at
Aalborg University. The project period spans the spring semester of 2003, from the
1st of February 2003 to the 10th of June 2003.

I would like to thank Thomas D. Nielsen for exceptional supervision and commitment
during the semester. Furthermore, I would also like to thank Mads Broe and Rune

Jeppesen for being enthusiastic debating partners throughout the semester.

Segren Holbech Nielsen

iii

Contents

1 Introduction 1
2 Influence Diagrams Involving Time 5
2.1 The Original Representation Language)
2.2 Alterations of the Original Framework 19
2.3 Temporal Orderingin IDITs 29
3 Solutions to IDITs 47
3.1 Solutions to Decision Problems 47
3.2 Solutions to IDITs 51
3.3 Solving IDITs o 57
4 Conclusion 105
A Summary 115

vi

CONTENTS

Chapter 1

Introduction

Influence diagrams involving time (henceforth referred to as IDITs) is a framework
for representing decision problems that involve quantitative measures of time. It
is the result of an analysis of decision problems, frameworks traditionally used for
modelling decision problems, and how these frameworks cope with aspects of time,
carried out in [Broe et al., 2003]. The conclusion of this analysis is that none of the
analyzed frameworks, viz. decision trees, influence diagrams, and valuation networks,
are suitable for modelling decision problems involving time. This is because these
cater only for qualitative aspects of time, such as ordering of decisions and obser-
vations, and some decision problems revolve around quantitative aspects of time,
such as deadlines or entities who change as time progresses. Consequently, IDITs
was developed as an alternative.

Frameworks that are traditionally used for modelling decision problems, such as in-
fluence diagrams, decision trees, and valuation networks, have a set of semantics
associated with them that allows humans to read and understand modelled decision
problems in an unambiguous manner. Furthermore, they include a syntax which, in
conjunction with the semantics, renders decision problems solvable on a computer.
That is, a strategy, which maximizes the expected utility of a decision taker, can be
computed from a model of the decision problem.

IDITs is meant to be an extension of the influence diagrams framework, origi-
nally proposed in [Howard and Matheson, 1984], and is a compact and unambiguous
framework, which portrays decision problems involving time in a fashion that should
be easy to grasp for modellers experienced in modelling decision problems using

influence diagrams. The extension is a true extensions, in the sense that an IDIT,

2 Chapter 1. Introduction

modelling a decision problem that does not involve time, is an influence diagram,
which can be reasoned about using the set of semantics traditionally associated
with influence diagrams. Unfortunately, [Broe et al., 2003] fails to provide a clear
semantical interpretation of modelled decision problems. Specifically, a temporal or-
dering of events and decisions in the problem is flawed. Furthermore, a method for
solving IDITs modelling decision problems, which do involve time, is not given, as
[Broe et al., 2003] settles on a sketch of such a method.

The sketch, although brief, brings to light the difficulty in solving a decision problem
modelled as an IDIT: Decision problems are represented as decision graphs, in which
points in time are represented as continuous variables. Time variables’ impact on
other variables and policies, which are both discrete, are not easily evaluated. In
this report we, actually, give an example of an IDIT, modelling a decision problem
involving time, which cannot be solved exactly using known algebraic manipulations.
The basic problem of integrating continuous and discrete variables in the same
decision graph, and more specifically influence diagrams, has been given a
lot of attention in the research community. An approach to using continuous
variables in influence diagrams, called Gaussian influence diagrams, are given
in [Shachter and Kenley, 1989]. A Gaussian influence diagram consists of continuous
variables only, where chance variables follow Gaussian distributions, potentially con-
ditioned on other variables in the diagram. A more universally applicable approach
is given in [Poland and Shachter, 1993], which describes a method for letting contin-
uous chance variables in Bayesian networks follow a distribution which is a mixture
of Gaussian distributions. [Madsen and Jensen, 2003] gives a solution method for
influence diagrams involving a mixture of continuous Gaussian distributed variables
and discrete variables, with the structural constraint that no discrete variable can be
a child of a continuous variable. Finally, [Lerner et al., 2001] introduces a technique
for mixing discrete and continuous variables in a Bayesian network, using softmax
functions (traditionally applied in reasoning using neural networks) as conditional
probability distributions for discrete chance variables given continuous parents. The
inference method they propose is exact up to the accuracy of numerical integrations
performed during evaluation. Thus, an approximation.

The basic problem involved in applying these techniques for solving IDITs, is that
all of them assumes continuous variables follow Gaussian distributions, or mixtures
thereof. Such variables have a strictly positive density for all real numbers, which
does not suit the nature of a progression of time variables, which should be guar-

anteed to have probability 0 for configurations where their values decrease. In other

words, the probability distributions of time variables should ensure that time never
regresses. Furthermore, none of the techniques listed allow continuous parents of dis-
crete decisions, and none of them give a full description of how to allow continuous
parents of discrete chance variables in influence diagrams.

The problems arising from employing continuous variables can be circumvented
through discretizing the variables prior to solving the influence diagram. One such
technique is given in [Kozlov and Koller, 1997]. Another approach, which circum-
vents the problem of using non-Gaussian distributed continuous variables, is to apply
sampling methods, such as those presented in [Charnes and Shenoy, 2003]. Unfortu-
nately, this latter approach do not solve the problem of having continuous parents
of discrete decisions. A solution method for IDITs, which utilizes sampling, can be
found in [Broe and Jeppesen, 2003].

In this report, we complete the representation language of IDITs into a framework.
We examine IDITs in depth, which reveals a number of problems inherent in its
original formulation. We then reformulate IDITs in a form that does not suffer from
these problems. Following this, a set of unambiguous semantics for temporal order-
ings is fleshed out, and the language is enhanced to provide additional possibilities
for modelling time aspects of decision problems. Building on the new temporal order-
ing, we furthermore define what it means for an IDIT to be welldefined and provide
a method for checking this. Following this is the last result, which is an examination
of the boundaries of the solution sketch given in [Broe et al., 2003], resulting in a
method that solves a subset of IDITs using approximations in the form of Taylor’s
series and Newton’s method. The solution method avoids discretizing the continuous
variables in the framework and does not require sampling, at the expense of only

solving a subset of IDITs.

Overview

The report is divided intro four chapters, of which this is the first, and an appendix.
Chapter 2 presents the IDITs representation language in its original form and de-
scribes a set of enhancements as well as the abovementioned semantical corrections.
In Chapter 3 we describe what it means to solve a decision problem and gradually
adapt the general discussion into the full solution method. Finally, in Chapter 4 a
conclusion of the report is given.

Following the main part of the report, Appendix A contains a brief summary of the

entire report.

4 Chapter 1. Introduction

Notation

The topics discussed in the report are of a somewhat abstract nature, as we are
dealing with mathematical models on several layers of abstraction. Consequently,
the report can be heavy on notation and concepts in places, so we have provided a
list of notation and an index of concepts in the back of the report. Furthermore, the
report has been printed using extra line spacing to allow for mathematical expressions
to be interleaved in the text with little visual impact.

Some general conventions are not described in the list of notation, and we list them
here instead: All sets are printed using a bold font, such as §, all decision problems
and IDITs are printed using a caligraphic font, like Z, all variables are printed using
normal font, such as X, and all states of variables are presented in lower case letters,
e.g. ¢ and d. Whenever we refer to a set of unnamed variables of an unspecified type,
we denote it Z, and sets of unnamed discrete variables are denoted D. Decision
variables are generally denoted by D, chance variables as C, and variables of an
unspecified type as X or Y. All notation are occasionally subject to subscripts or

superscripts.

Chapter 2

Influence Diagrams Involving

Time

In this chapter we introduce IDITs, which is a representation language constructed
for representing decision problems involving quantitative measures of time. The rep-
resentation language is based on that of influence diagrams, and most of the se-
mantics is similar. It was originally proposed in [Broe et al., 2003]. We introduce it
informally and describe it formally in its original form in Section 2.1. For further
elaborations on the original representation language and the motivation behind it,
see [Broe et al., 2003]. In Section 2.2 some alterations, which address minor short-
comings of the original representation language, are described and incorporated in
the formalization of IDITs. Section 2.3 introduces a temporal ordering relation for
the elements in an IDIT, and a definition of what a welldefined IDIT is.

2.1 The Original Representation Language

An IDIT is a model of a decision problem and its association to a decision taker.
The model is a directed acyclic graph, whose nodes represent decision and chance
variables as well as local utility functions. In this report we refer to nodes represent-
ing variables as variables and nodes representing local utility functions as utilities,
when this introduce no ambiguity. For a formal introduction to the basics of graphs

and explanation of graph concepts used in this report, see [Broe et al., 2003].

6 Chapter 2. Influence Diagrams Involving Time

Introduction to IDITs

The representation language is designed to deal with decisions that span periods
of time. For instance, a farmer’s decision on whether to harvest his fields using a
thorough method, a quick method, or not at all would span a period of time ranging
from an instant to several days. Given that decisions can span periods of time, and
assuming further that no two decisions can take place simultaneously, it is clear,
that a decision should have associated with it a point in time, where it initiates,
and its duration. Collectively, we can encode this information by, for each decision,
D, of a decision problem involving time, attaching two variables: The initiation
time of the decision, denoted init(D), and the end time of the decision, denoted
end(D). The period a decision, D, spans is, thus, the variable end(D) — init(D).
[Broe et al., 2003] further introduces an assumption called no-delay, which basically
states that when a decision ends the next decision initiates immediately. That is,
for two decisions, D; and D; 1, where D;; is the decision presented to the decision
taker after having decided on Dj;, it holds that init(D;11) equals end(D;). In other
words, there is no unexplained delay between the two decisions. If we assume that
the first decision of some decision problem is taken at some predefined point in
time, e.g. 0, we can, due to the no-delay assumption, omit variables representing
initiation times when describing the decision problem.

Some decisions might be worth postponing for the decision taker. The farmer, for
example, might postpone his decision on whether to harvest, while some laboratory
examines samples of his crops to estimate its quality. Representing aspects like this
is accomplished by introducing some decisions regarding possible waiting periods.
In the example the farmer would be faced with two decisions: The harvest decision
and a decision on whether to wait for some period before deciding on the harvest
decision and, if so, for how long. Such a decision is called a wait decision. As the
exact length of the waiting period might be clouded in uncertainty, the wait decision
decomposes into the decision itself and the resulting waiting time. [Broe et al., 2003]
assumes that the decision itself only affects the actual waiting time and no other
aspects of the IDIT. As such, the choice taken have no effect in itself, but only
through the inherent actual waiting period resulting from it. Therefore, it is called
a non-intervening choice.

Even though we deal with decisions that can be postponed, it is important to
stress that we assume that no decision can be constrained to be taken at only
select moments in time. According to our perception of modelled decision processes,
decisions do not just appear or disappear. Some choice is always open for taking,
no matter when the decision is initiated. In some cases, this choice might simply
be to do nothing, but that is still a choice. Furthermore, as IDITs are supposed to
model decision processes, we disregard circumstances and events which have time
spans, i.e. initiation and end times are not modelled for these. This is elaborated on

2.1 The Original Representation Language 7

later in this section. With these preliminaries on the nature of decision problems
involving time dealt with, we look deeper into the constituents of IDITs.

Chance variables are exhaustive groupings of mutually exclusive circumstances or
events that lie outside the decision taker’s direct control, and decision wvariables,
sometimes simply called decisions, are exhaustive groupings of mutually exclusive
actions that are directly controllable by the decision taker. Local utility functions
are assumed to be an additive decomposition of some total utility function, which is
a real-valued function over the configurations of the variables in the diagram, which
reflects the decision taker’s preferences. When specifying the utility function, this
decomposition property is usually exploited, and only the local utilities are defined.
The chance variables are furthermore partitioned into time variables, which have
continuous state spaces, and the remaining chance variables, referred to as ordinary
chance variables, which all have finite and discrete state spaces. Likewise, decision
variables are divided into wait decisions, which have continuous state spaces, and
the remaining decision variables, ordinary decisions, which have finite and discrete
state spaces. A time variable symbolizes the end time of exactly one decision,
and a wait decision symbolizes a period of waiting time. For a variable, X, its
state space is denoted as sp(X). For a set of variables, S, the Cartesian product
x{sp(X)|X € S} is denoted as the state space of S, written sp(S). If a variable,
X, is known to be in some state, x, we say that it is instantiated and write X = z.
In an IDIT, ordinary chance variables are depicted as circles, ordinary decisions as
rectangles, utilities as diamonds, time variables as double bordered semicircles, and
wait decisions as double bordered rectangles. A time variable is only allowed to be
in the diagram if it is directly associated with a decision, and a decision is at most
allowed to have one time variable directly associated with it. A formal clarification
of what it means for a time variable to be directly associated with a decision is
given in the end of this section. For now, we rely on the reader’s intuition.

In order to minimize the number of arcs in the diagram, a time variable and the
associated decision are drawn as an entity consisting of a rectangle and a semicircle.
We present an example of a decision problem involving time and an IDIT modelling
it, before discussing finer aspects of the representation language.

Example 1

The example, which is inspired by a somewhat similar example in [Broe et al., 2003], revolves
around the previously introduced farmer and his crops. Whenever a variable is introduced
in the example its name is shown in parenthesis following the description of its meaning, like
(This).

At the outset of the decision problem the farmer, who we refer to as Frank, is facing har-
vesting season. His crops are of some quality (Qc,), which is hard to evaluate precisely. The
only hint Frank has got is the amount of weed in the field (We;). However, he can order a

test (Te) of his crops’ quality by an external laboratory, which has specialized in this sort of

8 Chapter 2. Influence Diagrams Involving Time

task. The test takes ten days and costs $1000 to perform. No matter if Frank takes the test,
his next decision is concerned with whether he should spray (Spr) his field against weed.
He can choose to decide on this straight away, based solely on his subjective estimate of the
state of his crops achieved from the information on the amount of weed in the field, or he
can postpone the decision, until a test result (Re) is ready.

Depending on whether he sprays or not, the decision on spraying can take some time, and
even after he has completed any spraying, government imposed health regulations prohibit
him from harvesting in a period of seven days after this has taken place. Thus, depending
on his choice on spraying, he must decide whether to wait for a while before deciding on
harvesting (Ha). Another factor that might influence that choice is the result of the test of
his crops. If he decided to spray without waiting for the test result, and he is forced to wait
for seven days in addition to the period of, say, one day used on spraying, he could decide
to wait an additional two days to view the test result before deciding whether to harvest.
Of course, Frank has the option of taking a direct look at the current level of weed in his
fields (Wez), which can give him some indication of the current quality of the crops (Qc,),
but his estimate will be more precise if he knows the result of the test of the quality before
spraying.

Besides the estimated quality of the crops at harvesting time, Frank accesses further infor-
mation in the form of the weather forecast (Wf). If it turns out to be raining for a good deal
of the forthcoming days, even the quick harvesting method might take drastically longer to
complete than expected, and furthermore, the value of the crops would diminish if it gets
wet.

Considering further that every other farmer in the area is trying to beat Frank to the finish-
ing line and get their crops onto the market, while it is still a sought after commodity, Frank
must, throughout all of his decisions, bear in mind that the value of his crops, no matter the
quality, is inversely proportional to the point in time he can deliver it.

The structure of Frank’s decision problem is modelled by the IDIT portrayed in Figure 2.1.
Time is measured in days.

Strictly speaking, the diagram in the figure is not a proper IDIT as described
in [Broe et al., 2003] because of the dashed arrow from the time variable next to the de-
cision Spr to Ha and the dashed arrow from the time variable next to the decision Ha' to
Ha both being present. We return to this issue in Section 2.2.

The nodes that have not been introduced this far include the three utilities C're, C'spy, and
Ry, which represent the cost of any test being carried out, the cost associated with any
spraying, and the eventual revenue of the harvested crops, respectively. Furthermore, two
wait decisions, Spr’ and Ha', symbolize the time periods Frank waits before deciding on
Spr and Ha, respectively. The chance variable Gw represents the global weather situation,
around the time Frank chooses whether to harvest. It affects the local weather during the
harvesting period (W) and the previously introduced weather forecast. The double-bordered
semicircles attached to decisions Spr', Spr, Ha', and Ha represents end(Spr') = init(Spr),
end(Spr) = init(Ha'), end(Ha') = init(Ha), and end(Ha), respectively. init(7e), end(Te),

2.1 The Original Representation Language 9

CTe @

Figure 2.1: An IDIT of the farmer’s problem.

and init(Spr') are all assumed to have the value 0, and end(Te) = init(Spr') is, therefore,
not shown explicitly in the diagram. Throughout this report we refer back to this example

and the variables and relationships introduced.

Semantics of IDIT's

As stated previously, the time variables symbolize points in time and are each
required to be associated with a decision. The semantics of the unique time variable
associated with a decision is the point in time the decision has been implemented
and any actions inherent in the choice chosen has been performed. If no time
variable is associated with a decision, it is assumed to be taken instantaneously,
and it is called an instant decision. Te in Example 1, for instance, is an instant
decision, as it can be carried out in an instant, no matter if the choice is to order
a test or to do nothing. Conversely, Ha is not an instant decision, even though
it can be completed in an instant as well, by choosing not to harvest. Decisions
with associated time variables we call decisions involving time. Wait decisions are
required to be decisions involving time due to their semantics.

Arcs in an IDIT can be labelled, either dashed or solid, and represent either
informational precedence, probabilistic dependencies, or functional dependencies.
We go through the allowed possibilities one by one below.

A solid arc going into a decision variable represents informational precedence. That

is, the state of the variable the arc emanates from is known immediately before

10 Chapter 2. Influence Diagrams Involving Time

deciding upon the decision represented by the decision variable. These kinds of arcs
are called informational arcs and are allowed to have guards associated with them.
A guard is a boolean function shown as a label on the arc, like it is the case on the
arc from Re to Spr in Example 1. The guarded arc signifies that the variable the arc
emanates from, called the guarded variable, is only observed when deciding upon
the decision it goes into, if this decision is initiated at a point in time where the
guard evaluates to true. As an example, Re in Example 1 is observed immediately
before deciding upon Spr, only if init(Spr) takes on a value greater than or equal
to 10, mirroring the fact that the test takes ten days to complete.

The t referred to by a guard on an arc going into a decision, D, is always init(D),
and not any other points in time the observed variable happens to be probabilis-
tically dependent on. This reflects the philosophical view that the time dependent
observation or non-observation of a variable is solely a result of the point in time
the observation is attempted. Other dependencies regarding observation might be
thought of. One is to allow observation to hinge on configurations of other variables
in the modelled decision problem. This lies outside the scope of this report, though,
and the motivation for constructing the IDIT representation language in the first
place. Adapting IDITs to care for these kinds of relationships might be a topic of
future research. [Nielsen and Jensen, 2000] presents techniques for representing this
in settings that do not involve time.

No-forgetting is assumed, which means that observed variables and decisions decided
upon are remembered when deciding upon subsequent decisions. For instance, the
state of We; in Example 1, observed when the farmer decides on Te, is remembered
when deciding upon each of Spr', Spr, Ha', and Ha'. If no-forgetting was not
assumed, a modeller of a decision problem would have to explicitly draw arcs
from an observed variable, to every decision where it might be relevant, and the
decision taker would remember it. Both requirements are not easily seen to be
fulfilled: Knowing the state of a variable might allow a decision taker to choose a
better choice at a decision, which seemingly have nothing to do with that variable,
and if some decision problem spans several years the set of variables remembered
correctly by the decision taker cannot be taken for granted. Some representation
languages do not assume no-forgetting, e.g. LIMIDs[Lauritzen and Nilsson, 2001],
but through explicitly assuming no-forgetting, the issues elaborated on above are
avoided. In addition to no-forgetting, it is assumed that the value of time variables
representing end times of decisions, which have been decided upon, are remembered

at subsequent decisions.

2.1 The Original Representation Language 11

Guarded variables are subject to a special kind of no-forgetting, called extended
no-forgetting. Basically, every guarded arc going into a decision is “inherited” by
following decisions. This means that, even if a variable is not observed at a decision,
it might become observed before one of the next decisions are initiated and, thus,
be reacted on. For example, Re in Example 1 would not be observed when deciding
upon Spr if the initiation time of Spr is, say, 0. However, if Frank decides to spray
with some chemical that takes four days to use and subsequently waits for the
specified period of seven days before deciding upon harvesting, then Re will be
observed immediately before deciding upon harvesting. This reflects the fact that
the test result would be in Franks possession at day 11, where he initiates his
decision on harvesting. Further elaboration on this topic is presented in Section 2.2.
A dashed arc going into a decision, D, from some variable, X, signifies that the
state space of D is a function over the state space of X. In other words, the set of
available choices at D is restricted by the value taken on by X. X is said to be in the
domain of the restriction function, rp, of D, written X € dom(rp). For instance, in
Example 1, the set of available choices at Ha is restricted by the choice taken at Spr
and the points in time represented by end(Spr) and end(Ha'): Choosing to spray
with some chemical and not waiting for the prescribed period of seven days render
the choices for harvesting impossible. As the concept of restriction relies on states
of the world, which are rendering certain choices impossible, it is required that no
restricting variable can be unobserved. It would make little sense to be prevented
from doing something, with no knowledge of why this is so. In graphical terms, no
informational arcs are allowed to be both guarded and dashed.

Turning our attention from informational arcs, a solid arc going into a chance
variable represents that the variable is probabilistically dependent on the variable
the arc emanates from. If the parent variable is a time variable, the semantics
associated with this is that the probability distribution of the chance variable varies
over time. The probability distribution that is to be applied is then the one corre-
sponding to the point in time represented by the parent time variable. Therefore,
two time variables are not allowed to be parents of the same chance variable. Weo
in Example 1 is an example of a variable whose probability distribution varies over
time. Only observed variables are allowed to follow probability distributions that
vary over time. The reason for this is the semantics just described: The probability
distribution that is to be applied corresponds to a point in time. If the variable is
not observed, the point in time it is realized cannot be established uniquely, and the

probability distribution that is to be applied can, consequently, not be identified.

12 Chapter 2. Influence Diagrams Involving Time

The joint distribution of such an unknown point in time and the chance variable
can be encoded by the marginal distribution for the chance variable, though.

At this point we return to the issue of events spanning periods of time, which we
deemed prohibited in the beginning of this section. If an ordinary chance variable
contains some state, which represents an event that spans a period of time, it
would be possible to attach an initiation and end time to this variable. They
would represent the point in time the event starts and the point in time it expires.
However, as a chance variable is supposed to include states, which are mutually
exclusive and exhaustive, some of the other states of the variable must represent
the possibility of the event not happening. That begs the question of how we are
supposed to determine an initiation time or, indeed, an end time of something that
does not happen? In other words, the semantics of the initiation and end time of
the chance variable seem to be defined for select states of the variable only.

This problem is not relevant for decision variables. To see why, we need to examine
the nature of the two kinds of variables. Decision variables contain choices of which
one must be selected by the decision taker. It makes no sense to enquire what the
state of a decision variable is, at points in time prior to it being presented to the
decision taker. Enquiring the state of a decision, at some point in time after the
decision has been taken, is irrelevant as it remains fixed once it has been taken.
Chance variables seen as representations of states of the world, can, on the other
hand, always be enquired. Even if some event would happen in a given time interval,
the variable takes on specific values in points in time outside of this interval.
Therefore, initiation and end times of chance variables are associated with some
semantical uncertainty. Far more meaningful to deal with the point in time the
variable is observed and its state at this point. That is, conceive a chance variable
as a snapshot of the state of the world, at the point in time it is observed. For
instance, a chance variable representing the deposit on a bank account allows for
no obvious initiation time nor end time. When we ask the state of such a chance
variable, we are implying that what we really want to know, is the state of some
variable, which represents the deposit on the account at some specific point in time,
for instance the deposit on the account at January 1st. Therefore, in IDITs there
is no initiation time nor end time of variables, but chance variables are allowed to
be probabilistic dependent on a time variable if they are observed at a decision
initiated at the point in time represented by that time variable.

The natural semantical interpretation of a guarded arc going into an ordinary

chance variable, C', from some variable, X, would be that C' is only probabilistic

2.1 The Original Representation Language 13

dependent on X if C is observed at points in time, at which the guard evaluates to
true. In contrast to the semantics of guards on informational arcs, however, this
information represents no structural significance to the decision process modelled
by the IDIT, and the information is already found in the probability distribution of
C'. Using guarded arcs, in this case, is merely a visualization of a specific attribute
of the probability distribution of C, namely that for some values of the parent time
variable the state of C' is independent of the state of X. Other attributes of the
probability distribution, including independencies arising from instantiation of other
variables than the time variable, seem to be equally relevant, but are not shown in
influence diagrams, which IDITs are sought to be compatible with. Therefore, arcs
into ordinary chance variables and utility functions are not allowed to be guarded.
Arcs into chance variables are allowed to be dashed, however, if the variable is a time
variable. In that case, the arc indicates a probabilistic relationship of deterministic
nature. An example could be an arc from a chance variable Temperature to a
time variable, end(D), representing the time some decision, D, involving chemical
reactions finishes. If the temperature is low, the time taken carrying out D would
take, say, two hours more than it would, had it been high. To signify this predictable
relationship, the arc from Temperature to end(D) should be dashed. A similar
arrangement for arcs going into ordinary chance variables could be envisioned, but
this conflicts with current standards in influence diagrams to which IDITs have been
designed to be compatible. Therefore, dashed arcs into ordinary chance variables
are prohibited. This topic is further discussed in Section 2.2.

Arcs into utilities indicate functional dependencies. That is, the local utility function
represented by a utility node is a function over the state space of all variables that
are parents of the utility. These arcs are only allowed to be solid and non-guarded.
Guarded arcs are not allowed for the same reason as they are not allowed into chance
variables, namely that it conflicts with the representation of influence diagrams,
and that the information is already stored in the utility function itself. The same
reasoning applies for not allowing dashed arcs. Of the parent variables of a utility,
only one is allowed to be a time variable. If one such variable exists, it signifies that
the utility takes on a different structure for each point in time, and that the actual
structure is determined by the point in time represented by this time variable. R¢,
in Example 1 is dependent on the point in time Ha ends, for instance, in that the
value of some fixed amount of crops of some fixed quality takes on different values
dependent on the time it is sold.

In the graph there must exist a directed path including all decision and time

14 Chapter 2. Influence Diagrams Involving Time

variables. This path indicates the temporal ordering of these, in the sense that if a
time or decision variable, X, is prior to a time or decision variable, Y, on this path,
then the point in time represented by X, or init(X) if X is a decision, is before
or equal to the point in time represented by Y, or init(Y') if Y is a decision. The
diagram must be constructed, such that any pair of time variables are separated by
at least one decision on this path. This is due to the previously introduced no-delay
assumption.

The semantics associated with arcs described above share a common denominator:
All arcs convey inter-variable structural aspects of decision problems. These kinds
of aspects are called qualitative aspects. In contrast, we find that intra-variable
aspects, such as state spaces, are not evident from the pictorial representation
of the diagram. In addition to the graphical structure of an IDIT, we, therefore,
define one or more realizations for it. A realization encapsulates some of these
non-structural — also called quantitative — aspects of a decision problem and
consists of probability distributions for chance variables, local utility functions, and
restriction functions. Additional terms for qualitative and quantitative aspects are
global and local aspects, respectively. Influence diagrams clearly divides qualitative
and quantitative information into diagrams and realizations, and IDITs, which was
designed to be compatible with influence diagrams, attempts to retain this division.
A number of further restrictions apply to the topology of the IDIT, and we go
through these after having set up a formal notation, as this allows us to discuss
IDITs with greater precision. Realizations are also subject to restrictions that are
easier understood using formal notation, and a thorough description of these is,

therefore, postponed for now.

Formalization of IDITs

As described above, an IDIT, Z, is defined to be a directed acyclic labelled graph,
(WI LT E*), where W7 consists of chance variables, decision variables, and local
utility functions, L” is a set of labels, and E7 is a set of arcs. The set of all chance
variables in Z is denoted as V%, the set of all decision variables as VID, the set of
all time variables as VZ. the set of all wait decisions as V%, and the set of all local
utility functions as V%. We have that V:Ip C V% and V%V C V%. Furthermore, the
set of all variables, V% U VII), is denoted as V7, the set of ordinary chance variables,
VI \ VL, as Vi, and the set of ordinary decision variables, V4, \ VT, as V.

2.1 The Original Representation Language 15

Thus,
viuvi,uvi uvi,uvi =wi,

where the sets on the left-hand side of the equality sign are pairwise disjoint. If the
IDIT, Z, is obvious from the context we omit its name from the notation, e.g. simply
write Vp instead of V.

The set of labels, LT, consists of boolean functions having the real numbers as their
domain. That is, L C {f|f : R — {true, false}}. The set of arcs, EZ, is partitioned
into two disjoint sets: A set of solid arcs, Ef , and a set of dashed arcs, Eg . As for
sets of variables, we omit the name Z from the notation, when it is obvious from the
context. An arc (X,Y, f) in E is to be interpreted as an arc emanating from node
X going to node Y labelled with the function f. Arcs labelled with the constant
function true are drawn with no label for sake of clarity. Arcs labelled with the
constant function false are semantically equivalent to the absence of an arc, and
are, therefore, not drawn in the diagram.

The placement of arcs labelled with non-constant functions is restricted to informa-
tional arcs. That is, if (X,Y, f) is in E, and f(t1) # f(t2) for two distinct ¢; and to
in R, then Y must be in V p. Additionally, dashed arcs are only allowed going into
decision or time variables. Thus, if (X,Y, f) is in E4, then Y must be in V, U V.
The set of all parents of a node, X, i.e. the nodes from which an arc that goes into
X emanates, we denote as pa(X), and the set of children, i.e. the nodes from which
an arc emanating at X goes into, as ch(X). The set of all parents connected to a
node, X, with dashed arcs we denote pa,(X).

The previously mentioned temporal order of decisions and time variables is extended
to an ordering relation, which imposes a partial order on all variables, denoted <.
For any pair of time or decision variables, X and Y, X is temporally prior to Y,
written X < Y, if and only if there is a path from X to Y. As stated previously,
the ordering of time and decision variables induced from the diagram is required
to be a total ordering. This defined ordering suffers from some flaws, all associated
with guarded arcs. For instance, when guards are not fulfilled, and arcs consequently
are perceived as not being present, we might experience a situation, where there is,
in effect, no directed path between two decisions, and the ordering, thus, fails to
emerge. We look further into these problems in Section 2.3. For now, we disregard
these aspects and further state that for any ordinary chance variable, X, and some
decision or time variable, Y, X <Y if and only if (X,Y, f) is in E, for some f in
L, or there exists some decision or time variable, Z, such that X < Z and Z < Y.

Furthermore, if an ordinary chance variable, X, is not a parent of any decision or

16 Chapter 2. Influence Diagrams Involving Time

time variable, then Y < X, for any time or decision variable, Y. This refinement is
subject to further discussion in Section 2.3 as well.

Some structural constraints need to be fulfilled for a graph to qualify as an IDIT:

e No node is allowed to have more than one time variable as parent, i.e.
lpa(X) N V| <1, for all X in W. This restriction reflects that no variable or

utility can be observed or realized at more than one point in time.

e A node has no children, if and only if it represents a utility. That is, ch(U) = @
iff U € V. This requirement is similar to what is usually required of nodes
in influence diagrams and seeks to prevent barren nodes and children of utility
nodes, the latter having no clear semantical interpretation. Barren nodes are
variables that influence no other part of the decision problem. They are some-
times included in models of decision problems in order to render the problem
easier understood by people with preconceived notions of the mechanics under-
lying the problem. They are, when all is said and done, irrelevant to a solution

method, such as the one presented in this report, though.

e There should exist a path, (Xi,...,X,), in the diagram, such that
VpUVy C{Xy,...,X,}. This path ensures that the temporal ordering, <,
is a total ordering over all time and decision variables, but as mentioned above,

this is subject of further discussion in Section 2.3.

e Each time variable must be a child of some decision variable. That is, if " € V¢
then |pa(7) NV p| > 1. This structural requirement stems from the no-delay
assumption introduced earlier in this section. If more decisions are parents of
the same time variable, the maximal one, with respect to <, is the decision
whose end time is represented by the time variable. The time variable is said
to be directly associated with this decision. The remaining parent decisions are

conditionals for the probability distribution of this end time variable.

e A wait decision must have exactly one child variable, and that variable must
be a time variable, i.e. if D € Vyy, then ch(D) = {T'} and T" € V. This
requirement is meant to restrict the possible impact, on the variables in the

rest of the diagram, of what is perceived as a non-intervening decision.

e There must be a dashed arc between any two time variables, which are con-
secutive in the order obtained from applying < to the set of time variables.
That is, for any T;,7; € V, where T; < T}, and there is no T}, € V', such

2.1 The Original Representation Language 17

that T; < Tj, < Tj, the arc (T;,7},true) must be in E;. This requirement
is meant to reflect that a time variable cannot take on a value that is lower
than the one the time variable before it did, or, in other words, that the time
modelled always progresses and never regresses. Of course the structure only
communicates that restrictions between time variables are in place. The actual
restrictions, ensuring this progression of time, must be defined in the probabil-
ity distributions of the variables. We call an arc from a time variable to a time

variable a temporal arc.

e An ordinary chance variable is only allowed to have a time variable as parent,
if it is observed when deciding upon a decision, which initiates at the point in
time represented by this time variable. Formally, if C' € V o, and there exists
some T' € pa(C), where T' € Vp, then there exists some D in ch(C), where
D € Vp and init(D) = T. The need for a unique “trigger point” for ordinary
chance variables to be dependent on time, described previously, is the reason

for this requirement.

e An arc is not allowed to be both dashed and guarded. Formally, if (X,Y, f)
is in Eq, then f(t;) = f(t;), for all ¢; and ¢; in R. The reasoning for this is
the understanding that a variable, which can restrict a decision, cannot be
unobserved or observed after the decision has been taken, since this could lead

to paradoxes, as described above.

Given this formal syntax of IDITs and the above list of structural requirements the
keen-eyed reader might protest that the IDIT pictured in Figure 2.1 is not really
an IDIT. For instance, there are no temporal arcs, and there is no path through all
time and decision variables. This is due to it being shown in its compressed form, as
opposed to the blown-up version the formal syntax describes. The compressed form
of an IDIT is a result of exploitation of two observations, namely that each time
variable should have a decision as parent, and that the temporal arc from one time
variable to the next is always present. By pictorially attaching all time variables to
the decisions whose end times they represent no information is lost, as if the time
variable was to be “ripped” from its parent decision, there would, in every case,
be an arc from the decision to the time variable. Additionally, as the arcs between
consecutive time variables are required to always be present, consistently and con-
ventionally omitting them results in no information loss. Furthermore, the coupling
of a time variable to the decision whose end time it represents, emphasizes the strong

conceptual bond between these.

18 Chapter 2. Influence Diagrams Involving Time

Spr!)—>| Spr |)—»| Hda' D

(a) (b)

Figure 2.2: a) Compressed form of an IDIT. b) Blown-up version of the same IDIT.

Figures 2.2(a) and 2.2(b) show two versions of a part of the IDIT in Figure 2.1.
The one in Figure 2.2(a) corresponds to the compact form, whereas the one in Fig-
ure 2.2(b) shows what the blown-up version would look like. The figures should
convey the difference in clarity of the two schemes.

As mentioned earlier, each IDIT allows for one or more realizations. A realization
for an IDIT, Z, is a four tuple, (&%, ®% I17,T'7), where the elements of & are
probability distributions, the elements of ®Z are local utility functions, the elements
of II? are density functions, and the elements of 'Y are restriction functions. More

precisely, for each node, X, in W7

a conditional probability distribution P(X|pa(X)) is in ®% iff X € V7,

a local utility function uyx : sp(pa(X)) — R, where — denotes a partial
function, is in ¥ iff X € V7,

a density function fx : sp(pa(X)) x R — [0; co[, where ffooo f(é z)dx =1, for
all ¢in sp(pa(X)), is in IIZ iff X € V%, or

e a restriction function ry : sp(pay(X)) = 25X\ {@} is in T iff X € V7,

As for other sets, we omit the name of the IDIT in the notation if it is obvious
from the context. It is worth noticing that, when specifying a realization for an
IDIT, some configurations of parent variables for some decision or utility might be
impossible. Consequently, the restriction or utility function value corresponding to
these configurations can be difficult to specify by a modeller, and we, therefore,
allow these functions to be partial.

The intuition behind a density function for a time variable, 7T, is that it, for

2.2 Alterations of the Original Framework 19

any configuration of pa(7T), is a density function for T over the real numbers. A
restriction function for a decision, D, for any configuration of pa(D), yields the
possible choices when deciding upon D. Even though the guards on arcs can contain
numerical attributes they are not seen as part of a realization, as their semantic is
of a structural nature.

For a realization to make any sense, a restriction functions is required to never
result in the empty set. That is, when deciding upon a decision, no matter the
configuration of the parent variables, some choice is always possible. Furthermore,
density functions are required to take on the value 0 for points in time, which
precede the point represented by the unique parent time variable. That is, time

progresses and never regresses.

2.2 Alterations of the Original Framework

Some aspects of IDITs, as introduced in Section 2.1, are not fully desirable,
and in this section we, therefore, propose a set of alterations to the original
representation language and its interpretation. The motivation for each alteration
is presented along with the alteration proposal itself. As the original requirements
on IDITs are modified, or new requirements are added, we state it in clearly
marked Requirement’s. Each requirement assumes the existence of a labelled
graph, Z = (WZ, L%, ET), as described in Section 2.1. Similarly, when we introduce
concepts, which are referenced in the remainder of the report, we do so in clearly
marked Definition’s.

None of the alterations presented in this section are required for IDITs to be a
functioning representation language, but they are included as they increase the
expressive powers or decrease the level of inconsistency in it. Alterations that
actually fixes flaws in the semantics of the originally proposed representation

language are presented in Section 2.3.

Presence of Dashed Arcs

The first alteration we propose is dropping the convention of drawing arcs into time

variables dashed, if the parent variable has a functional influence on the time variable.

20 Chapter 2. Influence Diagrams Involving Time

The reason for doing this is two-fold: First, the dashed arcs impose restrictions on the
probability distributions for time variables stored in the realization. The distinction
between qualitative and quantitative aspects is thus blurred, and an IDIT and its
realization are tied closer together than necessary. Second, to ensure consistency
arcs into ordinary chance variables that represent deterministic relationships would
also have to be dashed. But that would conflict with the conventional semantics of
influence diagrams, leaving IDITs incompatible. Hence, we allow only dashed arcs

to go into decisions.

Requirement 1

Arcs which are dashed or labelled with a non-constant function may only go into a
decision node. That is, if (X,Y, f) is in EZ, or f(t;) # f(t;) for distinct real numbers,
t; and t;, then Y is in V5,

Realization Time Variables for Utilities

The second alteration stems from the observation that utilities, which take on
values depending on the specific points in time they are realized, can in IDITs
only be modelled if the moment of realization coincides with the end time of some
decision. This might not always be the case, as can be seen by considering some
financial utility, payed by a mailed check, which is not cashed until some time after
the decision, which triggered the utility, ended. We remedy this, by allowing utility
nodes to have associated their “own” time, in effect imposing an uncertainty on
the value of utilities. We call these points in time realization times of the utilities
and draw them in IDITs as semicircles attached to the utility nodes they are
associated with. Semantically, they correspond to groupings of points in time where
a utility might be realized, just like end time variables represent groupings of points
in time where decisions end. We distinguish between the two kinds of variables
by specifically referring to a variable representing the point in time a utility is
realized as a realization time variable, or simply realization time, though. Like time
variables, realization times must have probability distributions specified for them,
and these can be parameterized by other variables. This is shown in the IDIT by
drawing solid arcs from the affecting variables to the realization time. See Figure 2.3
for a depiction of a utility dependent on time, U, with its own realization time
node, real(U). real(U) is affected by both end(D) and C7, while U is a function over
real(U) and Cs.

If the realization time of some utility always coincides with the end time of some

2.2 Alterations of the Original Framework 21

"/

[D]

Figure 2.3: A wtility with its own realization time.

decision, we leave out the semicircle and simply draw an arc from the end time of
the decision to the utility, as described in Section 2.1. If the utility does not depend
on time at all, we connect no time variable to it as parent.

We denote the set of all realization time variables in an IDIT, Z, as V% or, if the
IDIT is obvious from the context, simply as V p.

As the point in time a utility, U, is realized, is modelled as a variable, real(U), it is
natural to enquire, whether variables and other utilities can depend on it, i.e. if other
nodes than U are allowed to be a descendent of real(U). In this report we choose
not to allow this. First of all, we do not allow some decision to be a descendant of
real(U), as it, depending on the associated realizations, might introduce antinomies
with regards to time. These antinomies arise, if both a time variable representing
an end time of a decision, Ds, and a time variable representing the realization time
of U are located along paths from one decision, D;, to another, D3, as shown in
Figure 2.4. In that case we cannot uniquely determine, which of the variables that
should act as initiation time of D3, and even if we, consistently, always choose
either the former or latter, some configurations of real(U) and end(D2) would yield
D3 either initiating before D9 ends, or real(U) representing a point in time after
Ds is initiated, but still known immediately before it initiates. Both scenarios are
antinomic. Furthermore, if we were to choose the variable representing the point
farthest in time on a case by case basis, we would, in situations where real(U)
is interpreted as init(Ds3), violate the no-delay assumption, as there would be an
unaccounted for delay in the decision process from ending Dy to initiating Ds.
Allowing some ordinary chance variable, C', to be a child of a realization time,
real(U), is also prohibited, as this would, owing to the discussion in Section 2.1,
require C' to be observed. However, if C' is observed, then some decision node must

be a child of C and, consequently, a descendant of real(U), which is undesirable due

22 Chapter 2. Influence Diagrams Involving Time

Figure 2.4: An unattractive consequence of allowing decisions as descendants of utility
realization times. The zig-zags on the arcs signal that there might be some interme-
diate nodes on the path between the node the arc emanates from and the node it goes
into.

to the reasons given above.

Finally, we might envision some utility node, U’, other than U, being a child
of real(U). Semantically, this would mean that both U and U’ are realized at
the point in time symbolized by real(U). But why attach real(U) to U and not
U’, then? Indeed, we could achieve a more balanced representation, of such a
shared realization time, by tearing real(U) from U and representing it as a full
double circle connected as a parent to both U and U’. This is not consistent
with the approach used for representing end times of decisions in the rest of the
diagram, though, and although the semantics of the two kinds of variables are
different, we feel that the conceptual bond between a utility and its realization
time is as relevant as that found between a decision and its end time. There-
fore, we continue to draw realization times attached to utility nodes as semicircles,

and simply abstain from connecting other utilities as children of the realization time.

Requirement 2

Realization time variables are only allowed to have one child, which must be a
utility node. They are required to have one and only one time variable as par-
ent. Formally, if real(U) is in V% then ch(real(U)) C V%, |ch(real(U))| = 1, and
lpa(real(U)) N VL] = 1.

2.2 Alterations of the Original Framework 23

Time Variables as Parents of Decisions

The third alteration to the structure of IDITs is that we, henceforth, allow decisions
to have more than one time variable as parent. IDITs, as they were described
in Section 2.1, prohibit all variables from having more than one time variable as
parent, as this could lead to confusion on which time variable that represents the
initiation time or instantiation time of the decision or chance variable, respectively.
The restriction is of a pedagogical nature when applied to arcs going into decision
variables, though, as the requirement on a directed path through all decision and
time variables ensures that the initiation time of a decision can be deduced from
the diagram, even if more time variables are parents of the decision.

Having several time variables as parents of one decision would, when no-forgetting
is assumed, be useless if they were all connected with solid arcs. In Figure 2.1,
however, the variable Ha is a child of both end(Spr) and end(Ha'). The reason
why it is attractive to have several time variables as parents of one decision, even
if the extra arcs, due to no-forgetting, seems redundant, thus becomes clear: Some
restriction functions might vary according to the stretch in time between two
decisions. Even though the states of the time variables end(Ha') and end(Spr) are
remembered at decision Ha, the restricting effect can only be conveyed to a reader
by drawing the dashed arcs. Consequently, from now on we allow decisions to have
more than one time variable as parent, even if a set of parent time variables, with

more than one connected with a solid arc, is redundant information.

Requirement 3
No chance or utility node can have more than one time variable as parent. That is,
if X is in VE U VZ, then |pa(X) N (VEUVE)| < 1.

Inheritance of Guarded Arcs

While on the subject of informational arcs we comment on the nature of guarded
arcs, which gives rise to the fourth alteration of IDITs. Guarded arcs, as explained
in Section 2.1, are inherited by decisions following the decisions the arcs go into.
This is the sane approach if an arc is guarded with a boolean function, which yields
false for initial points in time, but from some point in time starts yielding true,
like it is the case in Example 1, where the result of a test is unavailable initially, but

becomes available later on. By allowing arcs to be inherited by later decisions, the

24 Chapter 2. Influence Diagrams Involving Time

guard is evaluated once for each decision, and the guarded variable, thus, gets more
chances of being observed. However, applying the same reasoning, if the guard is of
an inverse nature, i.e. it evaluates to true for early points in time but false for later
ones, simply inheriting the arc would mean that, somehow, the guarded variable
becomes unobserved as time progresses. Even if the phenomenon represented by
the guarded variable becomes physically unobservable, we might assume that, if
it was observable previously, its state can be remembered. Therefore, we alter the
semantics of guarded arcs: We still interpret a guarded arc into a decision, D, to
mean that the guarded variable, X, is observed immediately before deciding on D,
provided that the guard evaluates to true at init(D). However, for any decision, D,
that is a descendant of D, we define X to be observed immediately before, D;, if
either the guard evaluates to true at init(D;), or it evaluated to true for init(D;),
where D; is D or some ancestor of D; and descendant of D. In other words, once
some variable is observed, it stays observed, even if the circumstances allowing for

the observation expires.

Varying Ordering of Decisions

A further alteration to the structure of the representation language concerns the
requirement on the graph to be acyclic. We now abandon the requirement for the
IDIT to be a directed acyclic graph and allow the graph to contain cycles under
special circumstances. This alteration causes problems for the previously introduced
temporal ordering of variables, <, as this was heavily based on the acyclic property of
IDITs. But, as were also mentioned, this ordering is subject to some other flaws, and
we, therefore, disregard it for the moment and return to the matter in Section 2.3.

Allowing cycles is attractive as it allows for specification of sets of decisions that
are not necessarily taken in a predetermined order, but according to the point in
time they, as a group, are initiated. An example should clarify this: The IDIT in
Figure 2.5 contains two decisions, D2 and D3, which are taken either in the order Dy
then Dj3 or in the order D3 then Djy. The determining factor is what time the wait
decision Dy ends: If end (D) is less than 10, then D3 is taken prior to Dy, whereas
if end(D;) is greater than or equal to 10, then D is taken prior to Ds. This is seen
from the guards on the arcs forming the cycle (Dy, D3, D). When the decision taker
is done taking D;, the guards on arcs going into the next decision, which in this

case is either D or Do, are evaluated, and arcs with guards that evaluate to false

2.2 Alterations of the Original Framework 25

Figure 2.5: An example of two decisions that are not taken in o predefined order.

are considered to be non-existent, as described in Section 2.1. No matter what point
in time end(D;) represents, exactly one of the guards on the two arcs evaluates to
true. The cycle is thus “broken”, and the ordering of Do and Dj is evident from the
resulting diagram.

Two key observations regarding this arrangement should be noted, though. First,
none of the decisions involved in the cycle is a decision involving time. If one of the
decisions, say Ds, had been a decision involving time, it would not be clear what
point in time, end(D;) or end(Dz2), the guard ¢ > 10 refers to: If D3 initiates before
Dy, then t would refer to end(D1), and if Dj initiates after Dy, then it would refer to
end(Ds2). But as we do not know whether Dj initiates before Dy, until the guards on
the arcs are evaluated, the guards cannot be evaluated, and a seemingly inextricably
problem thus arises. The second key observation is that the guards on the two arcs
are mutually exclusive and exhaustive, thereby guaranteeing that the cycle is broken
before any of its constituent decisions are decided on.

Three approaches to cycles, which honour these two observations, are

e cither to disallow cycles and thereby varying decision orderings,
e to allow cycles involving instant decisions only, or

e instead of using ¢, use some other notation, such as end(D).t, to signify what

time variable each guard is referring to.

26 Chapter 2. Influence Diagrams Involving Time

<>

N

Figure 2.6: Problems arising from using more elaborate notation.

The first approach we dismiss as it limits functionality, and the second approach we
treated in the previous paragraphs. The third, however, seems to be the most pow-
erful approach, as it puts little restriction on the constructs which can be modelled.
However, we take it that the approach would severely damage clarity of IDITs and
at the same time cripple some of the flexibility of the language. This last point can
be seen by studying a modified version of the IDIT pictured in Figure 2.5, using
the more elaborate guards suggested as approach number three. The new IDIT is
pictured in Figure 2.6. Clearly, no ambiguities arise, when determining whether the
guards on the arcs connecting Dy and D3 evaluate to true, but the guard on the
arc between C and Dy is problematic. The variable that should replace the question
mark is either end(D3).t or end(D3).t, depending on which of the two decisions, D,
or D3, that is taken first. However, we do not know, which it is, until D; has com-
pleted, and certainly not when we draw the diagram in the first place. The problem
could be remedied by using init(Dy), but this variable is not drawn explicitly in
the diagram, and we believe that referring to it in guards would, therefore, lead to
confusion on behalf of the reader.

Another problem, related to using more elaborate notation on guards, is the process
of determining, whether a cycle is guaranteed to be broken before any of its con-
stituent decisions are decided on. Assume for a moment that, in Figure 2.6, the guard
from Dy to D3 was specified as end(Dy).t > 10, and that Dy is some decision prior
to D;. Whether the cycle would be broken, when D; ends, is now less clear than it

was before. If the two time variables, end(Dy) and end(D;), were related, such that,

2.2 Alterations of the Original Framework 27

in addition to the previously mentioned requirement on time not regressing, we had
that
end(Dy) < 10 = end(D;) < 10,

for instance, the cycle would be guaranteed to be broken. But this would not be
evident from the diagram. Taking the thought experiment even further we might
imagine cycles encompassing a sizeable number of decisions, in which the guards
would refer to lots of variables, and consequently, few modellers would be able
to distinguish a legal cycle from an illegal one. It might be possible to automate
the process of checking whether a cycle is guaranteed to be broken, even if the
guards in it refer to several time variables. However, this would call for analysis and
comparisons of density functions and is outside the scope of this report.

Concluding on this discussion we settle on allowing cycles involving instant decisions
only and shun the elaborate notation mentioned in the previous paragraph. At this
point we also briefly touch upon the subject of probabilistic guards. That is, guards
which evaluates to true with some probability, and not deterministically, given its
parameters, e.g. t < A, A ~ N(6,2). Such guards would have to be prohibited from
appearing in cycles, as the cycles could not be guaranteed to be broken at any point

in time. We do not touch upon probabilistic guards in the remainder of this report.

Requirement 4
A cycle must consist only of instant decisions and ordinary chance variables. That is,
if there is a path from a variable X to X, then X € VUV, and ch(X)NVZ% = @.

Definition of IDITSs

In conclusion we define the IDIT and its realizations. A number of requirements are

left untouched from Section 2.1, and we list them here for convenience.

Requirement 5

There must be a temporal arc between any two time variables following each other
in the temporal order. That is, there exists a path, (Ti,...,T,), through all time
variables, V& = {T\,...,T,}, indicating the temporal ordering of these.

Note that temporal arcs, which can be deduced from the rest of the diagram, are

not shown in the compact form of IDITs shown in most figures in this report.

28 Chapter 2. Influence Diagrams Involving Time

Requirement 6
There must be a directed path through all decision and time variables. That is, there
must exist a path, (X1,...,Xy,), in Z such that VL5 U V% C {Xy,..., X, }.

Requirements 4 and 6 guarantee a total ordering of non-instant decisions with

respect to time variables.

Requirement 7
A node has no children if and only if it is a utility node, i.e. for any node X in W*
we have that pa(X) = @ iff X is in V7,.

Requirement 7, thus, handles barren node removal as described in Section 2.1.

Requirement 8
Each time variable must be a child of at least one decision. That is, if T is in V%,
then |pa(T) NVE| > 1.

The reason that each time variable needs a decision as parent is that their semantical
interpretation is to be end times of decisions. Hence, it makes no sense to talk about

time variables with no association to a decision.

Requirement 9
FEach wait decision has only one child, and that child is a time variable. More formally,
we have that if D is in V%, then ch(D) = {T'}, where T is in V%.

As stated in Section 2.1, this is because we perceive a wait decision as a non-
intervening decision, which can only affect other parts of the decision problem

through the actual time spent waiting.

Requirement 10

An ordinary chance variable is only allowed to have a time variable as parent if
it is observed immediately before a decision, which initiates at the point in time
represented by the time variable. In other words, if there is a T in pa(C) N VZ, for
some C in V&, then there is a D in ¢ch(C) N V%, such that init(D) = T.

The reasoning for this was elaborated on in Section 2.1.

Given these requirements, we define IDITs, as they are used in the rest of the report.

2.3 Temporal Ordering in IDITs 29

Definition 2.1

Let T = (WL LT, E?) be a directed labelled graph, whose nodes, W7, consist of
ordinary chance variables, V%C, ordinary decisions, Vg s wait decisions, V%V, time
variables, V%, realization time variables, VII%, and utility functions, V%. Further-
more, let the set of labels, LT, consist of boolean functions over the real numbers, i.e.
L? C {f|f : R — [true, false]}, and the set of edges, E*, be partitioned into a set
of solid edges, EZ , and a set of dashed edges, Eg . If T conforms to Requirements 1
to 10, then T is an IDIT.

Additionally, the realizations we will deal with are defined as following.

Definition 2.2

Let T be an IDIT. Then the four tuple, (<I>I A § i ,I‘I), where the elements of
&’ are probability distributions, the elements of ®* are local utility functions, the
elements of II are density functions, and the elements of T'" are restriction functions,

is a realization of Z if for each node, X, in Wt

e a conditional probability distribution P(X |pa(X)) is in ®% iff X € VL,
e a local utility function ux : sp(pa(X)) — R is in ¥ iff X € VE,

e a density function fx : sp(pa(X)) x R — [0; 00|, where ffooo f(¢ x)dx =1, for
all ¢ in sp(pa(X)), is in IT* if X € VLU VL, and

e a restriction function rx : sp(pay(X)) < 2°P(X)\ {@} is in T iff X € V7,

As can be seen, the only difference, between Definition 2.2 and the one described in
Section 2.1, is the allowance for realization time variables, to which density functions

are assoclated.

2.3 Temporal Ordering in IDITSs

In Section 2.1, when the temporal ordering relation, <, was introduced, we briefly
commented that it suffers from some flaws in conjunction with guards on arcs. We
further allowed cycles in IDITs in Section 2.2 resulting in even more strains on
<. In this section we explain in detail, why the original ordering relation is not
sufficient for reading IDITs, and propose a new ordering relation for nodes in IDITs.

Furthermore, we define what it means for an IDIT to be welldefined and provide a

30 Chapter 2. Influence Diagrams Involving Time

t>5

| D2)

EN)

t<5

Figure 2.7: An example of problems related to the <-relation.

method for checking this.

Why < fails

We start of with highlighting the flaws of <. In the example IDIT pictured in Fig-
ure 2.7 they are prevalent. According to <, the decision problem modelled by this
diagram seems to make little sense: If we try to list the variables according to <, we

get the total ordering
D < end(Dl) < Cy <Dy < end(Dg) < Cy < D3,

which conflicts with the intuitive notion obtained from the diagram that C) can
only be observed at points in time after 5, whereas C5 can only be observed prior
to this. Furthermore, if taking D; ends at, say, time 2, we seem to encounter a
situation where which decision is next is undefined. On the one hand there is a
directed path from Dy to D3, which, according to <, means that decision Do should
be taken prior to decision D3. On the other hand the semantics of a guarded arc,
whose guard evaluates to false, is equivalent to a non-existing arc. Thus, as we,
from the directed path with no intermediate time or decision variables from end(D;)
to Do, can deduce that init(Ds) is equivalent to end(D;), we know that the guard
t > 5 is not fulfilled, and consequently, the very same directed path, which allowed
us to reach this conclusion, ceases to exist. Choosing D3 as the next decision instead
is not a solution, even though the path from D; to D3 continues to be there when
the guard ¢ < 5 is evaluated. This is because of there still being a directed path
from Dy to Ds, stating that Dy should be taken before Ds3. However, if we assume
that D; has been taken and instantiate end(D;) to some value, we can disregard
them and conclude that, even though the directed path from D; to Ds is broken,

because there is a directed path from Dy to D3, Do must be the first decision in

2.3 Temporal Ordering in IDITs 31

:: t>5

Figure 2.8: An example of problems related to the <-relation — further elucidated
using temporal arcs.

the remaining part of the diagram. Thus, Do must be following D; in the temporal
order. In other words, in any new decision problem, arising from deciding on D;
and instantiating end (D7), we can easily identify the first decision presented to the
decision taker, viz. Do.

If the diagram in Figure 2.7 was shown in the blown-up version, with all temporal
arcs in place, as in Figure 2.8, we would immediately see that end(D;) < end(D3).
In conjunction with the relationships end(Ds) < D3, Dy < end(D;), and
Dy < end(Ds3), this would allow for only two orderings:

D < end(Dl) <Dy < end(Dg) < Dj3

and
Dy <Dy < end(Dl) < end(Dg) < Ds.

As the second of these orderings clearly violates the no-delay assumption, the only
ordering, which fulfills the assumptions, is the first one. Notice that no additional
information is portrayed by the diagram, though, as the only other possibility of
placing temporal arcs, i.e. an arc from end(D3) to end(D;), is not allowed, as it
would result in a cycle involving time variables.

This exercise seems quite elaborate and yet the conclusion so vague: the definition
of < clearly states that Dy follows D; in the ordering obtained by <, if and only if
there is a directed path from D; to Dy, which ceases to be the case, if we instantiate
end(D1) to some value less than 5. If we add temporal arcs to the diagram the
ordering seems much clearer, although no new information is conveyed. Thus, it
must be the ordering relation, which is not welldefined. Furthermore, and worse,
according to <, we have that] precedes both Do and D3 in the temporal ordering,
but when end(D;) is instantiated to a value less than 5 that conclusion seems
dubious, as the guard clearly states that C) is observable, only when the time has

passed 5, which is not the case when the decision following D is initiated. This

32 Chapter 2. Influence Diagrams Involving Time

problem of observable variables cannot be remedied simply through instantiating
variables or disregarding parts of the IDIT. Consequently, we must define a new
and weaker ordering relation, <’, which imposes only a partial ordering on decision
variables, to accommodate for cycles.

In addition to these problems, extended no-forgetting suffers from a semantical
oversight, which has reflected on <. The omission is connected to the situation in
which an ordinary chance variable, C, is a parent of a time variable, T', but not
any decisions prior to 7. Semantically, this means that the state of C' affects the
point in time represented by 7. An example of this is the weather variable, W,
which affects the time it takes to harvest, modelled as an impact on end(Ha). In
such cases, it is reasonable to assume that the impacting variable is observed, as it
directly affects the time it takes to take a decision. Rarely are we in a situation, in
which the completion of some task have a time span which is noticeably more or
less than usual, with no explanation as to why this is so.

When we add the assumption that ordinary chance variables affecting a time
variable are observed, a logical step is to work this assumption into the extended
no-forgetting assumption. That is, in addition to remembering variables observed
at decisions, we also remember variables having an impact on time variables. The
new ordering relation should conform to this, by explicitly letting chance variables

affecting a time variable, be prior to this in the temporal ordering.

A New Ordering Relation

Following the discussion above we define a decision, D, to be prior to another
variable, X, in the temporal ordering of variables in an IDIT, Z, written D </ X,
if there is a directed path, from D to X in Z, comprising no guarded arcs. The
reasoning behind this is similar to the one applied in influence diagrams. An example
of this is the decision Dj, which is prior to end(D;), C;, and Cy in the IDIT in
Figure 2.7. It is, however, not prior to Do nor D3 by virtue of this rule alone, as
the paths from D; to both of them comprise guarded arcs. Second, we define a time
variable, T3, to be prior to a time variable, T}, if there is a directed path, P, from
T; to Tj. This is justified if there is a path consisting only of temporal arcs from T;
to Tj. Requirement 5 guarantees the existence of such a path from either T; to T
or from T} to T;. Requirement 4 and the existence of P tell us that it must be the

former, and concluding that T; <’ T} is, thus, justified. For instance, we concluded

2.3 Temporal Ordering in IDITs 33

a little earlier that the time variable end(D;) in the IDIT in Figure 2.7 had to be
prior to the time variable end(D;) using a similar argument.

A decision, D, which is a descendant of a time variable, 7', is defined to be following
T in the temporal ordering. This is justified, as the point in time represented by 7'
must either be init(D), if no other time variables exists on paths from 7' to D, or
some point in time prior to init(D), otherwise. As an example, this, in addition to
transitive closure introduced later, is the rule which allows us to conclude that D,
is following D; in the IDIT in Figure 2.7. We furthermore define an ordinary chance
variable, C, to be following a time variable, T, if C' is a parent of a decision, D, such
that init(D) = T', and C is not prior to T'. As the arc from C to D can be seen as
being guarded, either by a genuine guard, if such a guard is shown in the diagram,
or the trivial guard, ¢ = ¢, its observation depends on the value of 7', and hence, it
cannot be prior to 71" in the temporal ordering. The additional requirement on C not
being prior to 71" in the temporal ordering is practically redundant, as that would
imply C' is being observed at some decision, D', initiating before the point in time
represented by T'. In that case, C' would also be a parent of D’, and the arc from
C to D would, consequently, be redundant due to no-forgetting. An example of a
relationship such as this, is the variable Re in Example 1, which follows end(Spr’),
in the temporal ordering.

Additionally, we define an ordinary chance variable, C, to be prior to a decision
variable, D, if C' is a parent of D connected with an unguarded arc. In this case
C is always observed prior to deciding on D, and we may then safely assume
that C' <" D. Had the arc between the two been guarded, we cannot conclude the
same, and the ordering of the two variables is thus unknown. This is reflected in
Figure 2.7, where the positions of the two variables C} and C in the temporal order
is undefined prior to instantiating end(D;). The counterpart of this rule is that a
chance variable, C, is prior to a time variable, T, if C is a parent of T'. An example
of this is the variable W in Figure 2.1, which is prior to the time variable end(Ha).
Analogous to orderings of variables in influence diagrams, we define an ordinary
chance variable, C, that is not a parent of a decision variable, D, or any decision
which might be prior to D in the temporal ordering, to be following D. This rule
only differs from the one used in influence diagrams, by the specific check for C
being a parent of some decision which might prior to D. In influence diagrams it is
sufficient to check whether C is prior to D, but in the IDIT in Figure 2.7 this would
lead us to conclude that C; is prior to D3 in the temporal ordering, which is not

necessarily the case. An example of this rule is the variable C} in Figure 2.5, which

34 Chapter 2. Influence Diagrams Involving Time

D,

B
¢ <
<

N

Ds | Di [}

Figure 2.9: Example showing the need for one of the <'-rules.

is not a parent of any decision, and therefore, follows them all in the temporal
ordering. Notice that C9, in the same IDIT, does not fall into this category, as it is a
parent of Dy, and thus might be observed prior to Ds. It is, however, following D;.
Similarly, we define a time variable, T', which is not prior to a decision, D, to be
following D in the temporal ordering. The reason for this, is that, as 1" does not
represent a point in time prior to initiation of D, it must be a point in time after
this. An example of the need for this rule, is the IDIT in Figure 2.9. Here the
ordering of Dy and end(Dy), i.e. Dy <7 end(Dy), is determined by this rule.

Finally, we extend <’ to its transitive closure, i.e. X <7 Y and Y <% Z implies
X <’ Z, which seems a natural convention, as we are dealing with events in the

ever progressing flow of time.

Definition 2.3
The partial temporal ordering of elements in an IDIT, T, is the transitive closure of

the ordering relation, <%, having the following characteristics:

e ifthere is a directed path, comprising no guarded arcs, from a decision variable,
D, to some other variable, X, in Z, then D <’ X,

e if there is a directed path from a time variable, T', to a time or decision variable,
X,inZ, thenT <7 X,

e if an ordinary chance variable, C, is an unguarded parent of a time or decision
variable, X, in Z, then C' </, X,

2.3 Temporal Ordering in IDITs 35

t<b t>10
7]
t>5 t <10

Figure 2.10: An example of an IDIT that is not welldefined, as no unique first decision
can be identified.

e if an ordinary chance variable, C, is not a parent of a decision, D, or any other
decision D', where D A D', in T, then D <! C,

e if a time variable, T, is not prior to a decision, D, in Z, then D <’ T, and

e if an ordinary chance variable, C, is a parent of a decision, D, inZ, and T <% D

for some time variable, T', then T </ C.

The extended notation applying subscripts, used in the above definition, is aban-
doned when the IDIT is obvious from the context.
Applied to the diagram of Figure 2.7 this new relation yields the following ordering

of decision and time variables:
D, <! end(Dl) <! Do <! end(DQ) <! Ds.

The ordering relationships of C'; and C5 are undefined except for both of them
following end(D;) and Cj following end(D;), mirroring that C; and Cy are not
necessarily observed before any decision. Returning briefly to cycles we see that
the ordering relationships of variables in the IDIT pictured in Figure 2.5 are the

transitive closure of the relationships
Dy <" end(Dy), end(Dy) <" Dy, end(Dy) <" D3, Dy <" Cy, and D3 <’ C.

No total temporal ordering of all variables can be obtained from these relationships,
but if some decision, which is prior to all other decisions according to <’, can be
identified, we can, given instantiations of it and its end time and through evaluation
of guards, identify the next decision and the set of variables, observed immediately
before that next decision initiates. Some diagrams, such as the one presented in
Figure 2.10, do not have this quality, and we, therefore, say that such diagrams are
not welldefined.

36 Chapter 2. Influence Diagrams Involving Time

Welldefined IDITs

Before we define this notion of welldefinedness, precisely, we introduce some auxiliary
concepts and results. These are referenced extensively throughout the rest of the
report. We start with simple and intuitive concepts arising from applying <’ to sets

of variables.

Definition 2.4
Let Z be a set of variables in an IDIT, Z. A variable, X, in Z is then said to be the
first variable of Z, if X < Y, for all other variables Y in Z.

As examples of this definition, the decision D; is the first variable of the set of
decision variables in the IDIT in Figure 2.5, and the decision D3 is the first variable
of the set {D3,C5} in the same IDIT. Notice that the definition says nothing about
the existence of a first variable. In fact, this cannot be guaranteed, as is evident from
the set of ordinary chance variables in the IDIT in Figure 2.5. In the report, we treat
the concept of first variables rather casually and refer to them in an intuitive manner,
e.g. “the first time variable” and “the first decision following X” to mean “the first
variable of the set of time variables” and “the first variable of the set consisting

1

of decisions, which follow X in the temporal ordering obtained from <'”, respectively.

Definition 2.5
Let Z be a set of variables in an IDIT, . A variable, X, in Z is then said to be the
last variable of Z, if Y <’ X, for all other variables Y in Z.

An example of a last variable is end(D;) in Figure 2.5, which is the last variable
in the set of time variables. Similar to the concept of first variable, there is no
guarantee of existence, and we refer to last variables in an intuitive manner in the

remaining part of the report.

Definition 2.6
Let T be an IDIT and X and X' be two variables in . A variable, Y, is then said
to be an intermediate variable between X and X', if X <Y and Y </ X'.

An example of this definition is end(D;) in Figure 2.5, which is an intermediate
variable between D and C5. As for first and last variables, the existence of inter-

mediate variables between two variables cannot be guaranteed, and we use rather

2.3 Temporal Ordering in IDITs 37

casual language in referring to these.
In addition to these definitions building on <, we introduce the concept of instan-

tiations:

Definition 2.7
Let T be an IDIT and X a variable in 7. Then an IDIT in which X is known to be
in some state, z € sp(X), is called an instantiation of Z on X to the value z. We

write this as Z[X — z].

Examples of instantiations of the IDIT, 7, in Figure 2.5, assuming that the state
space of D; is {dy,—~d;} and the state space of Cy is {cg, —c2}, are Z[Dy — d;] and
Z[Cy — —c3], whereas Z|Dy + x| and Z[Y + y] are not. Z[D; — z] is not an instan-
tiation as x is not a state of D, and Z[Y + y] is not an instantiation as Y is not a
variable in Z.

The extra information on the state of a variable can cause graphical representations
of the IDIT to change: When an IDIT is instantiated on a time variable, 7', all guards
on arcs going into intermediate decisions, between 7" and the first time variable fol-
lowing T, can be evaluated with ¢ being the value T is instantiated to. Arcs with
guards, which evaluate to true, can then be exchanged for arcs with no label. An
arc with a guard, which evaluates to false, on the other hand, must be removed.
However, owing to the discussion of inheritance of guarded arcs in Section 2.2, new
arcs, with the same guard, must be added from the guarded variable to decisions
following the first time variable following 7.

Likewise, in an instantiation on a variable, X, which is in the domain of some re-

striction function for a decision, D, to the value z, the restriction function for D,
rp : sp(pag(D)) — 2P,
can be exchanged for the function
rp : sp(pag(D) \ {X}) — 2P,

where 77,(¢) = rp(c, x), for all ¢ in sp(pay(D) \ {X}), after which the dashed arc
from X to D is rendered solid.

Instantiations of the IDIT, Z, in Figure 2.7, Z[end(X) — 2] and Z[end(X) — 12], are
shown in Figures 2.11 and 2.12, respectively. Note that, as an instantiation is an IDIT
with added information, it is reasonable to talk of instantiations of instantiations. For

notational convenience we write Z[{ X1, Xo,..., X, } = (21, 22...,2y,)], or Z|S — Z],

38 Chapter 2. Influence Diagrams Involving Time

Figure 2.11: An instantiation of the IDIT in Figure 2.7 corresponding to end(X)
being 2.

| D2)

EN)

t<5

Figure 2.12: An instantiation of the IDIT in Figure 2.7 corresponding to end(X)
being 12.

where S is { X1, Xo,..., X, }, to denote the instantiation
I[Xl — .’L‘l][XQ — :ch] s [Xn — xn]

Also for notational convenience, we use the term IDIT to mean an IDIT with zero
or more instantiated variables, unless otherwise explicitly stated.

Not all instantiations are sensible, though. For instance, an instantiation which in-
clude a decision, but not the time variable stating when the decision initiates, would

constitute a paradoxical situation. We define the sensible instantiations:

Definition 2.8
Let Z[Z ~ ¢] be an instantiation of an IDIT, Z, on a set of variables, Z, to the

values Z. Then Z[Z — 7] is said to be a temporally allowable instantiation if,

e for all pairs of time variables, T; = t; and T = t;, in Z, where T; <' T}, we
have that t; < t;, and

e there exists no non-instantiated time variable, T', in I|Z ~ 7] and X in Z,
such that X #I[Zez‘} T.

2.3 Temporal Ordering in IDITs 39

In words, we require that the values of time variables do not violate the requirement
on time progression, and we do not allow a variable to be observed or decided upon,
unless all time variables, which precedes it in the temporal ordering, have been in-
stantiated. A temporal allowable instantiation on all variables in an IDIT, which
do not violate the restriction function of any decision, we call a decision scenario.
For notational convenience we regard an IDIT with no instantiated variables as a
temporally allowable instantiation.

At this point, we introduce a short hand notation, which renders methods intro-
duced in the remainder of this report more elegantly expressed. For an IDIT, Z,
which contains both instantiated and non-instantiated time variables, we denote the
set of intermediate decision variables between the last instantiated time variable and
the first non-instantiated time variable as IDz. The intuition behind this is that
each decision in I D7 initiates at the point in time the decision problem modelled by
T starts, and are, thus, part of that part of the decision problem, which is current.
For instance, in the IDIT, Z, in Figure 2.12, which models a decision problem in
which Dy has ended at time 12, I D7 consists of Dy, meaning that Dy is the only
decision initiating at time 12. In an IDIT, Z, which only contains instantiated time
variables, I D7 is defined to be the set of decisions following the last time variable.
If Z contains only non-instantiated time variables, I D7 is the set of decisions prior
to the first time variable. For instance, I D7 consists of D; in Figure 2.5. Finally, in
IDITs containing no time variables, I D7 equals V p, corresponding to all decisions
being taken in the same instant.

These definitions and notational conventions aside, we note some useful aspects of
<. First and foremost, it is clearly the case that in any IDIT, which conforms to Re-
quirement 5, a total ordering of all time variables can be identified. Furthermore, as
this ordering is induced from temporal arcs, which, by definition, cannot be guarded,
no amount of instantiation of variables can alter it.

Another useful result is that in any IDIT, Z, for any decision variable, D, and time
variable, T', we can determine, whether D <’ T, or T' <’ D. This result is immedi-
ately obtained from Requirements 4 and 6, which allow only the ordering of instant
decisions to vary, and as time variables are disallowed in cycles, even the ordering
of the instant decisions relative to time variables are fixed. Again, no amount of
instantiation can change these ordering relations.

Building on these notions, we define a welldefined IDIT:

Definition 2.9
Let Z be an IDIT. The we say that Z is structurally welldefined, or simply welldefined,

40 Chapter 2. Influence Diagrams Involving Time

if, for any temporally allowable instantiation, 7', for each decision, D, in IDz and
variable, X, in V1 \ D, either D <" X or X <' D.

Intuitively, for all temporally allowable instantiations, the ordering of all decisions,
which are prior to the first non-instantiated time variable, is a total ordering, and
the set of variables observed at each of those decisions can be uniquely determined.
This definition tells us that no matter what points in time time variables represent,
as long as they constitute an temporally allowable instantiation, the next decision

to decide upon can always be identified.

Checking Welldefinedness

Definition 2.9 cannot be applied mechanically to verify that a specific IDIT is wellde-
fined, though. That would call for a check of all temporally allowable instantiations,
of which there, even for IDITs containing only a single time variable, is an infinite
number. Instead we construct an operational method for examining whether an IDIT
is welldefined. Before presenting the method, formally, we reveal the workings of it,
by applying Definition 2.9 to the example IDIT, Z, in Figure 2.5, using intuition
rather than strict adherence to the wording of the definition.

The approach, we take, is to exploit that even if there is an infinite number of al-
lowable instantiations of a given IDIT, there is only a finite number of different
structures derivable from it. That is, even if we can instantiate variables in an in-
finite number of ways, these instantiations can be grouped into sets with similar
structures.

Looking at Z in Figure 2.5, we see that there is a maximum of eight different struc-
tures of variables that conforms to the restrictions laid down by Z. These are por-
trayed in Figure 2.13. By applying the rules of <’, it can easily be seen that some
of these structures do not fulfill the requirement on a clear ordering of decisions and
unique set of observed variables. Therefore, we need to be sure that no temporally
allowable instantiations result in one of those structures.

To get any further, we observe that the structure, which corresponds to a temporally
allowable instantiation, is a function of the instantiated time variables only, as the
structure is uniquely determined by the evaluation of guards, which in turn are func-
tions over time variables, only. Therefore, we need only focus on the values of time

variables in temporally allowable instantiations. As a result of this observations, we

2.3 Temporal Ordering in IDITs 41

can divide the temporally allowable instantiations into groups, corresponding to how
many time variables they encompass. In the case of the IDIT Z, we thus group the
temporal allowable instantiations into two sets: One where end(D;) is instantiated
and one where it is not. Next we need to subdivide these sets into groups based on
their structure.

The group of instantiations, where no time variables are instantiated, can only re-
sult in one structure of the decision variables and observed variables prior to the
first non-instantiated time variable, viz. end(D;), as guards are functions over time
variables only. The set of decisions prior to end(D;) consists of a single variable, D1,
and the ordering of its elements is, trivially, total. Likewise, as no variables are par-
ents of Dy, the set of observed variables can be unambiguously determined. Thus, all
temporally allowable instantiations not involving end(D;) fulfills the requirements
of Definition 2.9.

When we move on to checking the temporally allowable instantiations including
end(D;), we can exploit the work we just completed on the instantiations that did
not include end(D1): As the ordering of decision variables with respect to time vari-
ables are total in Z, none of the decision variables prior to end(D;) can be involved
in the structural changes arising from instantiation of end(D;). Thus, the decisions
prior to end(D;) do not need to be checked when we examine whether a temporally
allowable instantiation involving end(D;) fulfills the requirements in Definition 2.9.
As we attempt to subdivide the group of temporally allowable instantiations involv-
ing end(D1), according to their structure, we encounter a potential problem. We
mentioned that only time variables affect this division, so the problem eventually
boils down to splitting the state space of end(D;) according to its effect on the
guards ¢ < 5, t < 10, and 10 < £. In this specific example this can be accomplished
quite easy through identifying the critical points 5 and 10, and then splitting the
state space of end(D;) accordingly. However, for some guards, such as “ is a prime”,
this straightforward splitting is undecidable. Therefore and in the rest of the report,

we assume that all guards are of the form
g(t)=\/te L,
i

where the I;’s are intervals of the real line.

As we have identified three intervals | — oo; 5[, [5; 10, and [10; oo[in which the struc-
tural changes resulting from instantiating end(D;) are the same, we can split the
temporally allowable instantiations including end(D;) into three groups. Instanti-
ations in all groups agree on the structure of decisions prior to end(D;), and the

42 Chapter 2. Influence Diagrams Involving Time

Figure 2.13: The possible structures of variables in the IDIT in Figure 2.5.

instantiations in each individual group agree on the structure of the remaining part
of the IDIT. We can visualize this process as a tree, which is illustrated in Fig-
ure 2.14. As can be seen from the resulting structures in the three leaves, each of
the three groups of temporal allowable instantiations fulfills the requirements for
welldefinedness, and we can conclude that Z is welldefined. In the remainder of the
report, we will refer to trees, constructed by a process such as this, as split trees.
The method we have just described can be generalized to one that can be applied
for checking IDITs including an arbitrary number of time variables. Such a method,
for checking whether an IDIT, Z, is welldefined, is presented below and we elaborate
on the details, which set it apart from the one just given, afterwards. The method
takes as parameter a starting point in time, ¢, which for most problems would be 0,
but could be set to minus infinity or any number for that matter. The starting point
represents, when the decision problem modelled by the IDIT is initiated, that is, the
minimum value the first time variable can possibly take on.

Method 2.10 (Input: IDIT 7, and point in time t)
1. Identify ID7

2. Evaluate whether the instantiation that is Z fulfills the requirements for welldefined-
ness, through checking if a total ordering of all decisions in I D7 can be obtained from

<’, and if all arcs into decisions in I D7 are without guards. If this is not the case,

2.3 Temporal Ordering in IDITs 43

0 <t <10

Figure 2.14: The tree constructed by the method for checking welldefinedness of the
IDIT in Figure 2.5.

44 Chapter 2. Influence Diagrams Involving Time

stop and report failure. If the test is a success, and no non-instantiated time variables
remains in 7, stop and report success. Otherwise, let T" be the first non-instantiated

time variable in Z, and continue.
3. Let G be the set of guards on arcs in Z going into the decisions in IDz[p, -

4. Partition the points in time from ¢ to infinity into a minimal set of subsets,
{T1,...,T,}, such that each guard in G evaluate to the same value for all points
in time in each T;. That is, for all T'; and all f in G, f(t,) equals f(t;), for any two
points, t, and tp, in T;.

5. For each subset, T';, construct the IDIT Z[T — t;], where ¢; is the least element of T';,
and recursively check whether Z[T' + t;] is welldefined for the point in time ¢;. If one
or more of these instantiations is not welldefined, then Z is not welldefined, otherwise

it is welldefined and success is reported.

There are two main differences between Method 2.10 and the one illustrated by
the example: Most obvious, Method 2.10 is recursive. Second, it does not generate
groups of instantiations, but a sort of generalized representative of each of these
groups.

That Method 2.10 is recursive is due to it handling more than one time variable.
When we split the group of instantiations in the example, we did so according to
how the first time variable, end(D;), affected the guards on arcs into decisions prior
to the first time variable following end(D;), which did not exist. At the same time
we reasoned why the structure of decisions prior to end(D7) was left untouched by
instantiating Dy, and therefore why we could disregard this part of the IDIT when
checking instantiations including end(D;). When we are dealing with a second time
variable, T5, we can employ this reasoning again and consider only the effect of 15
on the part of the IDIT that follows it.

This apparently suggests an iterative method, in which parts of the IDIT between
two time variables are checked one after the other. However, the value a time
variable, T', is instantiated to can affect the structure of variables following the
time variable following 7'. This is because guards that do not evaluate to true are
inherited by subsequent decisions and their sets of observed variables, thus, depend
on more points in time than just their initiation time. Consequently, we need to
employ a recursive strategy.

We can contend ourself with not constructing groups of instantiations, but rather
representatives of such groups, due to three observations. First, when we split a
group of temporally allowable instantiations on some time variable 7', we know

that the instantiations in the group all agree on the structure of the decisions prior

2.3 Temporal Ordering in IDITs 45

to T, and it, thus, does not matter if we chose a single representative for this.
Second, consider the group of temporally allowable instantiations corresponding
to one of the subgroups of instantiations — say, those where T is instantiated
to a value in [ti;82] U --- U [ty_1;t,], where 4 < j implies ¢; < t;: No matter
what value in this interval we choose to instantiate 7' to, the ordering of decisions
prior to the first time variable following 7" will be the same. Likewise, for the
sets of observed variables. Finally, when T is instantiated to some value t', the
possible values of instantiated time variables, following 7" in the temporal order in
a temporally allowable instantiation, are limited to those in [t'; 00[. Therefore, by
choosing to instantiate 1" to the lowest possible value, £, the set of possible values
of following time variables encompass the possible values had we chosen any other
t'in [ty;ta] U -+ U [t,—1;t,]. Thus, by choosing the lowest possible value for a split
variable, it suffices to use a representative from a group of instantiations.

Although we use the “lowest possible value”, or equivalently, the minimal element
of a set, as instantiation value in this method, some intervals, such as]4; 5[have no
minimal element. In such a case, we choose to use the abstract “value”]4, meaning
the number which is less than any number in [4; co[except for 4 which it is greater
than, as instantiation value. That this “value” do not have the properties of real
numbers, such as the ability to be a part of a sum or multiplication, does not hinder
us from using it in this case, as all we are using it for, is comparisons.

This section concludes our description of IDITs and the semantics used in this
report. We have described the representation language both in its original form and
with some alterations that enhances the language. In the remainder of the report
when we refer to IDITs, we are referring to the representation language defined in
Section 2.2, and when we use temporal orderings of nodes, we are referring to the

semantics introduced in this section.

46

Chapter 2. Influence Diagrams Involving Time

Chapter 3

Solutions to IDIT's

So far no method for solving decision problems modelled with the IDIT represen-
tation language has existed. In this chapter we describe a method, which solves a
subset of these, and apply it in an example. The chapter is divided into three sec-
tions. Section 3.1 is a general discussion of what a solution to a decision problem
is. Section 3.2 is a description of what it means to solve an IDIT in particular, and
Section 3.3 presents the method we have devised for solving IDITs, as well as the

example of this.

3.1 Solutions to Decision Problems

The purpose of the representation language IDITs is primarily to be a standard, in
which decision problems involving time can be modelled compactly and unambigu-
ously, and for which the models can easily be interpreted by human beings. In short:
Supplying a means for discussing and communicating decision problems in a sound
manner. Furthermore, the representation language has a syntax and semantics, which
allow models to be fed to a computer. Once a decision problem has been modelled
by an IDIT, it is, therefore, possible to have methods that, given the model, can
reason about the problem. One method, which is strongly desirable, is an automated
solution method. Solution, in this case, meaning a prescription for which choices
a decision taker should choose at the various decisions, given previous observations
and choices, in order to maximize his expected utility. We formalize this notion using

terms and concepts traditionally used in describing solutions to decision problems.

47

48 Chapter 3. Solutions to IDITs

The formalization given in this section is written in general and abstract terms, in
order to allow the reader to focus on what the essence of a solution is, instead of
details pertaining to solutions of IDITs. In Section 3.2 we transform the concepts
and terms into IDIT specific equivalents, which take advantage of the information
on structural constraints that an IDIT contains.

As the term “decision problem” is unspecified at this point, we briefly list what
we consider the bare essentials of a decision problem in this general discussion. A
decision problem, P, contains a set of chance variables, Vg, and a set of decision
variables, VB, collectively denoted V7. We allow each variable to be continuous or
discrete. In addition to the variables, P must specify a probability distribution for
the chance variables given the decisions, i.e. P(V5|V']), and a utility function over
the state space of all variables, u” : sp(VP) — R. The semantics of these concepts
are similar to the ones specific to IDITs given in Section 2.1. Notice that a decision
problem, in this context, contains no information on when a variable can be observed
during the decision process, or whether it can be observed at all. Furthermore, it
says nothing about the ordering of decisions, or assumptions on no-forgetting and
no-delay. It is merely a description of what possible states of the world this problem
is defined over, which parts are under direct control by the decision taker, how likely
the remaining parts are, and how valuable each configuration of variables is to the
decision taker. An example of a decision problem could, thus, be the farming prob-
lem, described in Example 1, stripped of any ordering information.

Before defining what a solution to a decision problem is, we introduce its constituent

elements.

Definition 3.1
Let D be a decision variable in a decision problem, P, and P a subset of V¥ \ {D}.
Then a function 0p : sp(P) — sp(D) is called a policy for D given P.

Intuitively, we may think of a policy, 0p : sp(P) — sp(D), as a function, which
given a configuration over a set of variables observed or decided upon in the past, P,
yields a choice from the decision D. An example of a policy for the decision variable
Te in Example 1 given We; could be a function, which yields the choice order test,
if Wey is much, and do not order test if Wey is little. Another example of a policy
for Te, could be a function which yields do not order test if Ha is quick and Weg
is little, and order test for all other configurations of the two variables. This latter
example would have no value for a decision taker, though, as both variables cannot

be observed when deciding upon 7e. The latter policy is rendered invalid by the

3.1 Solutions to Decision Problems 49

ordering constraints given in the IDIT. Generally, we say that under an ordering, <,
over the variables in a decision problem, P, a policy, dp : sp(P) — sp(D), is valid if
for any variable X in V¥, we have that X is in P if and only if P < D. In Example 1
the policy just described is, thus, not valid under the ordering <'.

In order to identify valid policies for a decision problem, P, we assume that a con-
figuration, &, over the variables in V¥ uniquely determines the ordering of these
variables. That is, we can define a function, o” : sp(V7”) — O%, where O7 is the
set of all possible ordering of the variables in V7, yielding the ordering of variables
given a configuration over these. In IDITs, for instance, the ordering of variables can
be found from the configuration of time variables.

Next, we define the formal equivalent of the previously mentioned prescription.

Definition 3.2
Let P be a decision problem and < some ordering over the variables in V*. Then a

set

UJ {60 :sp({X € V?|X aD}) = sp(D)},
Dev?

is a strategy for P under the ordering <. We denote this S7.

A strategy for a decision problem under some ordering is, thus, a set of valid policies:

One for each decision and the set of past variables for this decision. Given a decision

U s7.

40P

problem, P, we call a set,

a strategy for P. The policies in a strategy S” which are valid under some ordering,
<, we also denote Sf. In the report, we denote the set of all strategies for a decision
problem, P, as Ap.

In order to describe the impact of policies and strategies on the expected utility
of a decision problem, we introduce policy-induced probability distributions. This
concept is of a similar nature to the probabilities of future decisions presented in
[Nilsson and Jensen, 1999].

Definition 3.3
Let 0p be a policy for a decision variable, D, given a set of past variables, P, in a
decision problem, P. Then the probability distribution, Ps, (D|P), defined as

1 itép(p) =d
0 otherwise,

By, (dlp) = {

50 Chapter 3. Solutions to IDITs

where d is in sp(D) and p is in sp(P), is the dp-induced probability distribution.

The dp-induced probability distribution, thus, represents the probability of the de-
cision D, given the set of variables P, if D is decided upon by a decision taker who
follows dp.

We extend the concept of policy-induced probability distributions to strategy-

induced probability distributions under some ordering.

Definition 3.4
Let SZ]D be a strategy under some ordering, <, for a decision problem, P, with prob-
ability distribution P(VZ|V'})). The probability distribution,

Pgp(V7) = P(Vc|VDp) 11 Ps(D|P),
dp:sp(P)—sp(D)eS?

is then called the ST -induced probability distribution.

Thus, a strategy-induced probability distribution under some ordering is a joint
distribution over chance and decision variables reflecting the probability of these,
given that the decisions are decided upon by a decision taker, which follows that
strategy and that the ordering of variables is the one the strategy is specified over.
In the beginning of this section, we briefly stated that a solution to a decision problem
was a prescription for choices at all decisions given previous choices and observations.
With the concepts introduced above we can define this precisely.

In the definition below, and henceforth, we use a |-notation on real-valued functions.
For the function f : sp(Z = C U D) — R, where the variables in C are continuous
and the variables in D are discrete, the expression f(Z)*4, where Z~ is a subset
of Z, denotes the function f~ :sp(Z) — R where

— (5 — J’—» —»d—»
o= 3 | /SP(C\Z_)f(&, 2)dz,

desp(D\z~
for all 7 in sp(Z~). We say that f~ is the projection of f down-to Z~. If Z~ is the
empty set, then f(Z)*4 is a constant.

Definition 3.5
Let P be a decision problem. Then an optimal strategy for P is

1o
Py . PP
s e (P, (V)07 07))

3.2 Solutions to IDIT's 51

The quantity, that is sought maximized, is denoted the expected utility of P under
the ordering o” (V') given S. As an offshoot of this definition, we define an optimal
policy to be a policy, which is part of an optimal strategy. Given a decision problem
we also designate an optimal strategy as a solution to the decision problem. The
process, in which a solution to a decision problem is obtained, we call solving the

decision problem, and a method for doing this we call a solution method.

3.2 Solutions to IDITs

The concepts introduced in the previous section were given in order to present a
smooth transition from the rather casual, but intuitive, initial definition of what it
means to solve a decision problem, to the mathematical cogent definition presented
in Definition 3.5. However, as the definitions given are abstract and general, they
also fail to take advantage of the additional information contained in an IDIT of
a decision problem. An IDIT contains information on informational precedence,
ordering constraints on decisions, probabilistic independencies among variables, as
well as a decomposition of the total utility function. In this section we exploit some
of this information and present a set of IDIT specific definitions, which render the

eventual task of solving the decision problem easier.

Required Policies

The definition of a solution given in Section 3.1 reflects that a prescription for
choices given previous choices and observations, at the face of it, would need to take
into account all orderings of variables. However, if a decision problem is modelled as
an IDIT, the set of possible orderings are drastically reduced, as non-guarded arcs
in the diagram allow us to determine ordering restrictions between variables.

For instance, in Example 1, a policy for the decision Spr given the set of variables
{end(Spr’), Wf} would not make any sense. Both as the variable Wf cannot be
observed before Spr is decided upon, and as knowing end(Spr’) would, because of

no-forgetting, imply that the variables Spr’, Te, and We; are also known. The sets

52 Chapter 3. Solutions to IDITs

{end(Spr’), Spr', Te, We 1} and {end(Spr’), Spr', Te, Wey, Re} are the only possible
sets of known variables when deciding upon Spr. Whether or not Re is observed,
depends solely on the value of end(Spr'). Consequently, we define a required policy
for an IDIT:

Definition 3.6
Let 0p be a policy for a decision, D, in an IDIT, Z. Then we call 6 p a required policy
for T if there is a temporally allowable instantiation, Z| X — &], such that dp is valid

under -<II[X>—>Q':']‘

In other words, only if there exists some genuine situation, in which a policy is
needed, do we require it to be specified in a strategy for the IDIT.

Identifying required policies is not always easy, though, as guarded information arcs
can be inherited by subsequent decisions and the truth values of some guards might
imply specific truth values of others, as noted in Section 2.3. However, these struc-
tural changes are all functions of time variables, and in order to see whether a policy
is required, it, therefore, suffices to consider instantiations of time variables only.

Thus, the set of required policies constituting a strategy, S, for an IDIT, Z, is

U U p:sp(P; 0 — sp(D)},

tesp(VL)DeVD

where

Prpi={X € VX <. 5 D}

In what follows, we use the short hand notation Sz to mean SZ where < is some
. . . /

ordering consistent with <I[V% .E

Clearly, the sets of policies in § oL (E)) and S oL (D) where ¢; # t;, for some strategy S,

would for many configurations, ¢; and f;-, be the same. For instance, a strategy, S,

for the IDIT in Figure 2.5 would consists of the policies

dp, : sp(@) — sp(Dy),
dp, : sp({D1,end(Dy), D3, C2}) — sp(D2), and
dp, : sp({D1,end(D1)}) — sp(D3),

3.2 Solutions to IDIT's 53

for any of the configurations of time variables where end(D;) is less than 5. In order
to utilize these similarities, we need to group the instantiations of time variables into
sets of instantiations, which share a similar structure. Such a grouping is performed
by Method 2.10, and in the next section we show how it can be used in the context
of finding an optimal strategy for an IDIT.

As for decision problems in general, an optimal strategy for an IDIT is a strat-
egy, which maximizes the expected utility. However, we can express this more con-
cisely by using the factorization of probability distributions and utility functions
stored in a realization. That is, an optimal strategy for an IDIT, Z, with realization
(@f, et mr,rt)), is

1o

agmax | J[« [[¢ I B X v

rell? ¢pcd? 66501(v%) Yew?

In the report, we regard two strategies for an IDIT, which yield the same expected

utility, as equivalent.

Legal Policies

Policies, which are defined over sets of variables that, due to observability, can never
constitute sets of past variables, are not the only policies that we can dismiss: Assume
a decision, D, has a restriction function, rp, which given some configuration, p),
over the variables P, prevents a choice, d, to be taken when deciding upon D. A
policy which advises the decision taker to take choice d, when observing that the
variables P is instantiated as p. is consequently flawed, as the advice cannot be
followed. Therefore, we define a legal policy. In this definition, we use the |-operator
on configurations over variables. For a configuration, 2, over the variables Z, we
denote by z+2', where Z' is a subset of Z, the configuration over the variables in Z’

obtained from Z by dropping coordinates of variables in Z \ Z'.

Definition 3.7

Let 0p be a policy for a decision, D, with restriction function rp, given a set of
past variables, P, in an IDIT, Z. If, for all configurations, p, over P, dp(p) is in
rp(ptdom(r)) then we say that dp is a legal policy.

54 Chapter 3. Solutions to IDITs

Figure 3.1: Not all policies for D; and D2 make sense.

A strategy for an IDIT, which consists of only legal policies, are said to be legal as
well. Thus, when searching for an optimal strategy, S, for an IDIT, we must take
care not to include any policies, which are not legal, in it. By considering this prior
to searching for optimal strategies the search space is reduced, and the search is,
potentially, more effective.

Not only can we focus our attention on legal policies, several of these policies can be
disregarded as well. Consider the IDIT in Figure 3.1, where the state spaces of C is
{c1,—c1}, the state space of D is {di,~d;}, and the state space of Dy is {da, ~da}.

The restriction function for Dy is defined as

rp,(c1) = {di,~d1 }

and
rp, (—e1) = {di }.

In this case, two policies for Dy, dp, and 5931, where

0p, (c1,d1) = 0p, (c1,d1),
5D1 (01, —Idl) = 5’[)1 (Cl, —|d1), and
0p, (mer,dr) = 0p, (—er, dy),

but
dp, (mer, ~dy) # 0p, (—er, —dy),

are equivalent advisers for a decision taker, as the only case, in which they differ, is
one that cannot occur.

These restrictions, arising from distinguishing between policies that are legal and
those that are not, are utilized in the next section, where we use an adaptation of
Method 2.10 to solve an IDIT.

3.2 Solutions to IDIT's 55

Representing Policies

Having defined exactly what a solution to an IDIT is, we need to address a
fundamental problem before proposing a method for finding it, namely how to
handle policies over continuous variables. That is, whether such policies can have
finite representations. If it is not possible to do this, no solution method would ever
finish outputting a solution and no decision taker would be able to use it.
Evidently, any strategy for an IDIT must contain a finite number of policies, as there
is only a finite number of decisions and a finite number of combinations of variables,
which can be past variables for decisions. Thus, we need only concern ourselves
with representing individual policies in a finite manner. In solutions for influence
diagrams, policies have traditionally been stored as tables, with an entry for each
configuration of the past variables, stating the policy value of this configuration.
In IDITSs, however, we need to deal with continuous variables, in the form of time
variables and wait decisions, and the table approach can, therefore, not be applied
directly.

Two approaches for representing policies defined over continuous variables exists,
though. Either the policy can be stored as a finite mathematical expression, or
the continuous variables in the domain can be discretized according to their effect
on the policy. Unfortunately, none of the approaches is ideal in all situations. The
problem inherent in the former is that it might not always be possible to construct
an expression, which can be evaluated within a reasonable time frame. The problem
associated with the latter is that the continuous variables in the domain of some
policies might require an infinite number of discretization intervals, for the policies
to be represented in sufficient detail. However, in most cases we may settle for a
satisfying solution. That is, storing a policy, which is not an optimal policy, but
which can be represented using discretization or as a relatively simple function, and
which yields an expected utility not substantially lower than the one offered by
an optimal policy. When dealing with points in time, it is quite reasonable to use
approximations: Initiating a decision at some exact point in time is rarely possible
and it might be hard to justify that a utility should yield radically different values
for points in time close to one another.

However, not all continuous domains can easily be discretized. Example 1 provides
an example of the requirement on infinite discretization intervals. If we ignore
concepts such as winter and life span of crops, and assume that, no matter when

the farmer arrives at the Ha decision, he would gain maximum expected utility by

56 Chapter 3. Solutions to IDITs

harvesting, no matter the state of the crops and the weather, we need an infinite
number of discretization intervals for the policy dp,: For each possible pair of
states, tg, and tp,, of end(Spr') and end(Ha'), respectively, we need to store
either a choice quick or thorough or the choice no harvesting, depending upon
whether the time span between the points in time ¢g, and tpy, is more than
seven. No finite discretization intervals for end(Spr') and end(Ha') can capture
this. In this case, we can circumvent the problem by specifying the policy over a
discretization of the difference of the two variables in addition to discretizations of
the variables themselves. A variable, such as the difference between the value of two
time variables, which is defined as a deterministic function of other variables, we
call a derived variable.

In this example the need for letting the policy vary according to a derived variable
arose from the restriction function for the decision. In fact, the problem we
solved, through using derived variables, would also be present when specifying
the restriction function, as part of the realization, in the first place. In general, if
a restriction function for a decision is not constant, we can construct a derived
discrete variable, which take on values corresponding to this function, and thereby,
we can conclude that all policies, which differs due to a restriction function, can be
represented through this scheme. However, handling the derived variable in solution
methods might not be as straightforward.

In this report we make some assumptions that renders the possibility of two
continuous variables in the domain of a policy impossible. Therefore, we can restrict
ourselves to policies defined over one continuous variable. These we represent as
tables over the discrete variables in their domain, and with each cell containing a
finite list of mutually exclusive and exhaustive intervals of the states in the state
space of the continuous variable, and a corresponding choice from the decision.
For wait decisions, we store each choice as a simple function of the value, ¢, of the
continuous variable, such as k — ¢, where k is some constant.

Of course, even as we restrict our attention to policies varying over one continuous
variable only, we still cannot be sure that we can construct a finite list of intervals,
as there might be an infinite number of intervals over which the policy differs, for
even this single variable. A solution is to divide the state space of the continuous
variable into subsets, which do not necessarily constitute intervals, but this begs
the question as to whether these subsets can be described in a finite manner. We
leave these problems, as fortunately, the workings of the solution method we present

guarantee a finite number of intervals.

3.3 Solving IDITSs 57

3.3 Solving IDITs

In this section we present a method for solving IDITs, which is an extension of
Method 2.10. We introduce the method through an example, before presenting the
method in full.

Introducing the Problem

The method, we present in this section, builds on the structure of the method of
solving decision trees, the method for solving asymmetric influence diagrams pre-
sented in [Nielsen and Jensen, 2000], and the method for solving valuation networks
given in [Demirer and Shenoy, 2001]. The method presented here differs radically in
some areas, though, most having to do with the continuous nature of time variables.
As the method is a hybrid of elimination of variables and message passing in a split
tree, it is not obvious why it identifies in an optimal strategy. To better understand
the problems associated with elimination, which is specific to IDITs, we present a
rather elaborate example, which should help the reader obtain some intuition on the
structure of the method and why it works, allowing him to focus on the details of
the method presented later in this section.

The example involves a number of general observations. To better communicate
these, we employ a change in typography when they arise and return to the stan-
dard example typography again afterwards.

Example 2

The IDIT, we want to solve, is the IDIT, 7, presented in Figure 3.2. It is a slightly altered
version of the IDIT we used as example in presenting Method 2.10. The changes, which
are the addition of the node Cy and the arcs connecting it to D, D», and D3, have been
introduced in order to render this example more interesting. We assume that all non-time
variables are binary and denote the states of a variable, X, as and —z.

The realization of Z, we work with, consists of the probability distributions given in
Tables 3.1(a) through 3.2(a), the restriction function given in Table 3.2(b), the utility
function given in Table 3.3, and the density function for end(D;), which is x?, with 5
degrees of freedom if D is d;, and 10 degrees of freedom if D; is —=d;. A plot of the density
functions for end(D;) is shown in Figure 3.3.

The realization is chosen somewhat arbitrarily, and no specific semantics are given for the

variables. A pair of relationships warrants emphasizing, though: First, the utility function,

58 Chapter 3. Solutions to IDITs

Figure 3.2: The IDIT we want to find an optimal strategy for.

d1 _|d1 d2 _‘d2
c | 0.2 0.7 c | 005| 04
—co | 0.8] 0.3 —c1 | 0.95] 0.6
(a) (b)
Table 3.1: (a): The probability distribution P(Cy|Dy). (b): The probability distribution
P(C1|Dy).
ds | ~d
S s co | {d2,d>}
Co 1 0.1 - {d }
~c; | 0] 09 = 2
b
(a) (b)

Table 3.2: (a): The probability distribution P(C2|D3). (b): The restriction function
D, : sp(Ch) — 25p(D2) \ {9}

C1 —C1
co | 40 20
e 0 30

Table 3.3: The utility function U.

3.3 Solving IDITSs 59

0.2

0.18

0.16

0.14

0.12

Figure 3.3: The density functions for end(Dy). The fair line is 5 degrees of freedom,
and the dark one is 10 degrees of freedom

U, is structured so that knowing the state of Cs, when deciding upon D-, is desirable.
Second, the choice of d; in D; yields a faster decision, which in turn, renders the observation
of Cs prior to deciding on D, more likely. However, this would, most likely, also render the
choice —dy impossible and, consequently, the top utility of 40 unlikely. Thus, no candidate,
for an optimal strategy, seems an obvious choice, and this exercise is, therefore, not trivial.

Solving 7

When identifying an optimal strategy, we start by limiting ourselves to the set of
strategies, which suit the information constraints in the IDIT. As we mentioned in
Section 3.2, the trees constructed by the method in Section 2.3 allow us to identify
which policies are required for a strategy for a decision problem modelled as an
IDIT. This is done through creating groups of instantiations of the IDIT, which
share the same structure. In order to capture the constraints imposed by restriction
functions we need to expand on the method, such that it constructs trees, in which
the groups of instantiations, not only share a common structure, but also share the
same state spaces of variables.

It turns out that integrating splitting of decision scenarios, according to state spaces
of variables, into the process described in Method 2.10 is quite straightforward:
Recall that Method 2.10 works its way through time variables in the order dictated
by <’. Whenever a time variable, T, is encountered, the process splits the current
group of decision scenarios, according to the value of 7', and recursively invokes
itself on the resulting groups. As mentioned, we need to split the groups of decision

60 Chapter 3. Solutions to IDITs

scenarios, according to the state spaces of decisions in them, as well. Thus, we must
adjust Method 2.10 so that whenever it encounters a variable, which affects the state
spaces of subsequent decisions, it splits the group of decision scenarios accordingly
and recurses. Fortunately, the group of decision scenarios of a welldefined IDIT,
handled in each invocation of the method, are guaranteed to have the same ordering
of decisions and observed variables prior to the first non-instantiated time variable,
T'. Therefore, if some of these variables are in the domain of some restriction
function, we can split the current group of decision scenarios according to how these
variables affect the state space of the decisions, before handling 7". In summary,
there is little difference in how a variable in the domain of a restriction function and
a time variable should be handled. Consequently, we refer to both kinds of variables
as split variables.

Example 2

For the IDIT Z we can identify two split variables: The time variable end(D;) and the
variables in the domain of rp,, i.e. Cp. We observe the ordering of split variables to be
end(Dy) <’ Cp. Thus, we must start by splitting on end(D;). This task was performed in
Section 2.3, and the resulting tree, with the addition of Cj, is displayed in Figure 3.4. Next,
we split the decision scenarios on Cjy resulting in the tree shown in Figure 3.5. For ease of
reference we have labelled the IDITs in the individual nodes, such that IDIT Z,,, is the IDIT
found as the y’th child of the z’th child of the root, and IDIT Z, is the z’th child of the
root. Although the leaf nodes pairwise seem to contain similar IDITs, the state spaces of Do
differ: In the ones, where (Y is instantiated to ¢y, the state space of Dy consists of dy and
—ds, and in the ones, where Cj is instantiated to —¢g, the state space of D- consists only of
ds.

We end up with six groups of decision scenarios containing decisions with similar statespaces
and similar ordering of variables:

{Z e sp(VT)|zHendDU} ¢ [0; 5] and 2HO = ¢} = T4,

{Z e sp(VT)|zHendDU} ¢ [0; 5] and 21} = —¢p} = Ty,
{7 € sp(VT)|zHendDU} ¢ [5:10] and 2HY = ¢} = Ty,
{7 € sp(VT)|zHendDU} ¢ [5:10] and 2H0} = ¢} = T,
{7 € sp(VT)|zHend(DU} ¢ [0; o] and ZHY = ¢y} = T3y, and
{7 € sp(VT)|zHend(PV} ¢ [10; 00 and 2H} = ¢y} = Ty,

where the orderings are1-<’1u, <T1y> =<Tyy» =Tpy» =1, and <7, respectively. In the rest of
this example, we let 515;; * denote the policy for D; under the ordering of variables <’Ijk in

the strategy S.

3.3 Solving IDITSs

61

Figure 3.4: The tree constructed from I by splitting on end(D).

62 Chapter 3. Solutions to IDITs

I In
/COV
* 112
©
L
X
T Ty I
21
/COV
<1< 10 E
: 2
T Iy
7 [y
\\\ 13 &
o »
\Ca‘ 132

Figure 3.5: The tree constructed from I by splitting first on end(Dy) and then Cy.

3.3 Solving IDITSs 63

We turn out attention to the expression for an optimal strategy, S', for Z:

1o

S':argsgéaAXI H T H o H Ps Z ¥

el ¢pecd” JESOI(V%) YewT

00
P D YND YD SHEED SHEED SIS S
o0 zc€sp(Co) xc, €sp(Ch) zc, €sp(C2) xp, €Esp(D1) p,Esp(D2) zp, Esp(Ds3)

f(xend(D1)|$D1)P($Co|xD1)P($01|xD2)P($Cz|$D3)

’ Pasl[e“d(Dl)"’wend(Dl)] ($D1 |$Co yLC1»LCo5 T Dyy T D3 xend(Dl))
Dy

: PJS,I[end(DN'—)wend(Dl)] (iEDz |$Co yLC1»LCo5 Dy, D3, xend(Dl))
D2

. Pdsyf[end(Dl)’—)mend(Dl)] (ng |$Co y LC1yLCoy LDy y T Do, xend(Dl))
D3

“U(wey,20,)dTend(Dy)-

As the ordering of D; and end(D;) relative to every other variable is the same in all six

groups of decision scenarios identified above, we may rewrite the expression above to

00
S' = arg Sr'IelaA}i: Z Pdsl’jl ($D1) KW f(xend(Dl) |$D1) Z P(xco |xD1)
zp, €sp(D1) zcy €sp(Co)

Z Z Z Z P($01|wD2)P($C2|wD3)

zc, €sp(C1) zo, €5P(C2) 2Dy €5P(D2) zpy Esp(D3)

: P(SS-I[EHd(Dl)Hwend(Dl)] (‘/L'D2 |$Co yLCyy LCoy LDy y LDy xend(Dl))
D2

: P(SS-I[EHd(Dl)Hwend(Dl)] (;UD;; |$Co yLCyy LCoy LDy y LDy xend(Dl))
D3

’ U($C1) sz)dxend(Dl) .

We chose to split this sum into six parts, each corresponding to one of the groupings of

decision scenarios identified above, by splitting the integration interval and unfolding the

64 Chapter 3. Solutions to IDITs

sum over states of Cp.

SeAr
zp, €sp(D1)

Z Z Z Z P($01|wD2)P(w62|$D3)

zc, €sp(C1) Ty €sp(C2) p, €sp(D2) wpy €sp(Ds)

5
S = arg max Z Pzisl;l (zp,) (/ f(xend(D1)|$D1) (P(co|a:D1)

: Pag-lu ($D2 |007 TCyyTDy1y LDy, wend(Dl))P(;g-Iu (:ED;; |007 TDy wend(Dl))
2 3

'U(ﬂfcl,ﬂ?cz)> + (P(_'Co|33D1) > >

zc, €sp(C1) woy €sp(C2)

Z Z P($01|$D2)P($02|$D3)

zp,€sp(D2) zpy €Esp(D3)

: Pagérlz (xp,|co, xcy, D, , TDs, fl?end(Dl))P(;]sj,szm (g |=co, TDy s Tena(py))

Uz, $c2)> dTend(py)t

o0
+ / f(wend(D1)|wD1) (P(CO|$D1)

10

Z Z Z Z P(xc1|$D2)P($C2|xD3)
zc, €sp(C1) zc, €sP(C2) zp, €sP(D2) 2y €sp(Ds)
- Pagérsl (D, o, Ty, $end(D1))P5IS)v3131 (D3 lco, Ty, Dy, Tend(Dy))

Ulaenoe)) + (Poaln) X 3

zc, €sp(Ch) zo, €sp(C2)

> S P(ae,|2p,) P(zey|zp,)

zp,€sp(D2) tpy Esp(D3)

: Pdlsj-lw ($D2 |_'CO; TDy wend(Dl))Paglaz (ng |_‘007 LDy TDys wend(Dl))
2 3
: U(»Tcl,wcz)> dfvend(Dl)) : (3.1)

At this point the structure of the expression, we need to maximize, is similar to that of the
split tree in Figure 3.5. We have not used any special properties of the involved functions,
which suggests that a splitting of the expected utility of any IDIT, can be constructed in a

similar fashion.

3.3 Solving IDITSs 65

dy | —ds
C2 21 28
—cy | 28.5 18

Table 3.4: The utility function U*.

At this point we need to calculate the sums in the six subexpressions, of which

Z Z Z Z P($01|wD2)P($C2|wD3)

zc, €sp(C1) zo, €5P(C2) 2Dy €5P(D2) zpy Esp(D3)

: P(;g-lu ($D2 |007 LCy,TDyy T D3, xend(Dl))Paglu (ng |007 TDy xend(Dl))
2 3

’ U(:UCl:sz) (32)

is one, before we can move on to summing over Cy and D; and integrating over end(Dy).
This is no coincidence. If we study the IDITs in the leaves of the split tree in Figure 3.5,
Cy, Dy, and end(D;) are all either instantiated or prior to an instantiated variable in the
ordering <’. Variables which are neither instantiated nor prior to an instantiated variable
in an IDIT, Z, we call free variables. We focus on the subexpression in (3.2), where the free

variables, thus, are C1, Cs, D2, and Dj3. By rearranging sums we get

Z P(;ls),lu (2Ds |0, TD, , Tend(Dy)) Z P(ze,|zps)

3
zpy€sp(D3) zc, €sp(C2)

Z P(;]-s;’lll (:I/'Dg|007$C27xD17xD37xend(D1)) Z P(£C1|£D2)U(:L'C1ax02)'
zp,€sp(D2) : zc, €sp(C1)

(3.3)

Thus we must sum over variables in the order Cy, D5, C5, and then Ds. This ordering is

consistent with the inverse of <7 .

Elimination of Variables

We evaluate the the sub expression

Z P($01|xD2)U(xC17$C2)

zc, €sp(Ch)

right away, and get a utility function, U*, defined over Cy and Ds. U* is shown in Table 3.4.
This we refer to as marginalizing out Cy or, equivalently, eliminating C; from Z;;.
Replacing

Y Plwe,|zp,)U(zo,,7c,)

zc, €sp(C1)

66 Chapter 3. Solutions to IDITs

with U*(z¢,, ¢ p,) we get

Z Pglsj'lll ($D3 |007 LDy, wend(D1)) Z P(wcz |$D3)

3
zpy Esp(D3) zc, €sp(C2)

*
g PJISJJ-'M (iUDz |007 LCyy D1y LDgs xend(Dl))U ($02) :L'Dz)'
2
zp, Esp(D2)

To find a policy P; S which maximizes this expression for all states of Dy, all states of

end(Dy) in [—o0; 5], and C being ¢y, we can focus on the last part of the expression:

> Pys.zy, (2p,|D1,end(D1), o, 3¢, , 70,)U™ (05, 2D,)- (3.4)

2
zp,€sp(D2)

This is equivalent to the expression
U*(zcy, 0, (D1, end(D
(J/'Cg; (1,€n (1)7007$027$D3))7
S0, in order to maximize it, we can write

max U*(zc,,d),
desp(}[()z) (Cy)
which yield a value of 28 if ¢, is c2 and 28.5 otherwise. The corresponding states of Dy can
be found by

arg dEISI}Da(‘%z) (O (:UCz) d):

yielding the choice —d, in case that C5 is ¢2, and dy otherwise. Hence, we have identified a

policy which maximizes (3.4):

d2 if 02 = T1Cy

82Dy end(Dy), Co, Ca, D3) =
Dy (D1,end(D1), Co, C2, D3) {—|d2 Oy = e,

No matter how the remaining parts of (3.3) may evaluate, this policy must be part of an
optimal strategy. This is because it is conditioned on end(D;) being less than 5 and Cy
being ¢y and, thus, only affects the part of Equation (3.1) that constitutes (3.4), which it
maximizes.

By substituting the expression in (3.4) with a utility function over Cs, which yields the value
28 if Cy is ¢y and 28.5 if Cy is —cy, we can disregard Do in (3.3), henceforth. We refer to this
as marginalizing D5 out, or eliminating D- from Z;;. Note that the process of marginalizing
out a decision is, thus, different from that of marginalizing out a chance variable. In the
former we maximize over states and in the latter we sum. Furthermore, in the former we
note, for each configuration of past variables, the state which yields the maximum utility.
Continuing eliminating free variables in 7;; in the same manner, we must marginalize out,

first Co, and then D3. We skip the details, which are similar to those for marginalizing out

3.3 Solving IDITSs 67

C1 and D», and simply state that the resulting optimal policy is
63;111 (Dl, end(Dl), CO) = _|d3,

meaning that as long as end(D) is less than 5 and Cj is ¢y we should always choose —d3 at
Ds3. The expected utility of this is 28.45, which can easily be verified.

The process just described corresponds to traditional elimination of variables in an influence
diagram. Actually, it corresponds exactly to eliminating variables from Z;; interpreted as an
influence diagram. We can perform similar processes on the IDITs in the remaining leaves

of the split tree. The resulting expression is

S' =arg SI'IéaAXI Z Pgil (xp,) (

zp, €sp(D1)

5
. / f(mend(D1)|xD1)(P(co|a:D1) - 28.5) + (P(—|CO|33D1) -27.75)dazend(D1)

10
A+ [f@enapylzn,) (Pleolzn,) -28.2) + (P(=colep,) - 26.5) den(p,)
5

-+/ f(@ena(pyy|2,) (Pleolan,) -28.2) + (P(=colop,) - 26.5)dazend(D1)>.
10

We say that the maximum expected utilities of the IDITs in the leaves of the split tree, have
been absorbed into the IDITs in the internal nodes of the tree. Notice that the maximum
expected utilities absorbed from the leaves corresponding to end(D;) being greater than 5,
are the same. This is because, in both cases, no information is obtained by the decision taker
between deciding upon Dy and D3, and the ordering of the two, therefore, does not affect

the resulting utility.

68 Chapter 3. Solutions to IDITs

Next, we eliminate Cy, which results in the following expression

S' =arg max
SeAr

5
:Png (d1) (/ F(Tena(py)1d1)27.89dT ena(py)
0

10

+ f(Tena(p,)|d1)27.8dTenq(Dy)
5

+/ f(ﬂfend(Dl)|d1)27-8dﬂfend(D1)>
10

5
+P£)1 (—dy) (/ [(Tena(p,)|(—d1)28.24dxena(p,)
0

10

+ f(wend(Dl)|(_'d1)27'925dwend(D1)
5

+/ f(wend(D1) |(_'d1)27'925dwend(D1)> : (3.5)
10

According to the temporal order, <', we should next eliminate end(D;). Studying the
expression in Equation (3.5), however, reveals that this is no easy task. Even though we
can move the constants outside the integrals, we are still left with evaluating integrals over
the density function of end(D;). As end(D;) follows a x2-distribution, of which no known

closed form expression, presently, exists[Nist, 2003], this is impossible.

As we are really not that interested in the actual maximum expected utility of Z,
but rather a strategy which maximizes this, we can employ approximation techniques

instead. One such technique is sampling, in which we, for each possible policy, dp,,

3.3 Solving IDITSs 69

sample the value of

5
P6D1 (dl) (/0 f(xend(Dl)|d1)27'89d$end(D1)

10
+ : f(Tend(py)d1)27.8dTenq(py)

+/10 f(xend(Dl)|d1)27'8d$end(D1)>

5
+P6D1 (_'dl) </0 f(xend(Dl)|(_'d1)28'24d$end(D1)

10

+ : f(Zend(py)(7d1)27.925dz epq(p))

+ /10 f(xend(Dl)|(_'d1)27'925dxend(D1)>7

a fixed number of times. Then we calculate the average of the samples taken for
each policy and choose the policy with the maximum average as the optimal one. A
problem arising from applying this technique is that it assumes a fixed configuration
of past variables. If there would happen to be some time variable, T', in the past of
Dy, we would, theoretically, need to sample for an infinite number of configurations
of past variables, which is a perpetual task. This could be remedied by discretizing
T, but the choice of discretization intervals of 7" is not obvious. Furthermore, the
technique can be time and space consuming, as the number of samples in some
cases would need to be high in order to obtain a satisfying degree of confidence
in the result. [Charnes and Shenoy, 2003] present a method that utilizes sampling
for influence diagrams, which could allow discretization of time variables to be of
fine granularity, while leaving the calculation of expected utility computationally
feasible. [Broe and Jeppesen, 2003] presents a solution method for IDITs utilizing
sampling.

A more crude approach is to only allow integrable density functions for time
variables. Furthermore, we would have to require that the resulting functions
from integrating over these would be integrable too. Similarly, all kinds of utility
functions, which could arise during elimination of variables, should be integrable.
Clearly, this approach limits the number of decision problems that can be specified
and solved using IDITs severely.

A more flexible take on this last approach is to approximate all continuous functions
by polynomials, as these are infinitely integrable, and sums and products of poly-
nomials are polynomials as well. The process of converting an arbitrary continuous
function to a polynomial can be time consuming, though, and some functions

70 Chapter 3. Solutions to IDITs

would need to be approximated by polynomials of a very high degree, implying
requirements on time and space for a solution method. However, approximation
using polynomials has some advantages as well, most having to do with avoidance of
discretization issues. When we approximate using polynomials we need to be aware
of the nature of these when the variable in their domain goes to infinity or minus
infinity. In most cases the value of the polynomial will go to either infinity or minus
infinity as well. Therefore, we must limit the areas of integration. For most decision
problems the span of time is assumed to start at some constant, such as 0, and the
lower limit is therefore not a problem.

Example 2
In order to round off this example, we choose to approximate the density functions for
end(D;) by polynomials, and limit the areas of integration to the values in [0;40]. The

resulting expression is
S' =arg max
ScAz
Png (dy) - (0.58 -27.89 4+ 0.34 - 27.8 + 0.07 - 27.8)

+Pg (~dy) - (0.11-28.24 4 0.45 - 27.925 + 0.42 - 27.925)

5 S
=arg max P, (dy) - 27.57 + Py, (—dy) - 27.40.

Thus, the optimal policy for Dy, is to choose d;, although the expected utility of choosing

—d; is roughly the same.

Preliminaries for the Solution Method

The purpose of the example just given was to introduce the main structure of the
solution method, and to hint at why it identifies an optimal strategy when invoked
on an IDIT. However, several problems arising from eliminating variables in IDITs
have not been touched upon during the example. We do so, as they become relevant
in the presentation of the method below, and hope that the reader, through the
example, has obtained the breath of view necessary to focus on these details instead
of the overall structure of the method. The solution method described here solves
only a subset of IDITs. Throughout the description below we need to introduce a
set of assumptions. Whenever this need arises we emphasize the assumption in a
paragraph by itself and comment on the restrictions it implies. Before we present

the method, some preliminaries need to be laid down, though.

3.3 Solving IDITSs 71

As the elaborate example, concerning solution of the IDIT in Figure 3.2, showed,
we have to handle situations in which a utility function over a time variable is only
piecewise continuous. We introduce a set of formal notation and some concepts for
handling such functions. We start by defining a partition of the real numbers as a
finite subset of the real numbers, I = {a1,...,ap41}, where i < j implies a; < aj,

and say that it generates a series of n + 2 intervals,

| —o0sa1], [ar; a2l ..., [an; Gnii]; [@nt1; 00].

We refer to an interval, [a;;a;11[, as the i’th interval of I. The series of intervals
generated by the empty set consists of a single interval, | —oo; co[. We use the notation
I<% to denote the number of elements in I which are smaller than or equal to z.
For example, we have that the partition I = {2,7} generates the intervals | — co; 2|,
[2;7[, and [7; 00, and that I<*is 1 and I<7 is 2. We thus have the relationship: If z
is in [a;; a;41[then I<7 is 1.

Let Iy = {a1,...,an+1} be a partition and (fo : R = R,..., foy1 : R = R) a series

of continuous functions. Then the function f’: R — R, where

p

fo(z) if x €] — o0; a1
fi(z) if x € [a1; az]
f'(z) = : :
fn(2) if 2 € [an; an1];
[fr+1(2) if z € [ap41; 00|,

is the piecewise continuous function over the partition Iy of the functions
(fos-+-s fnr1). We use subscripts on f’ to access the functions in (fo,..., fnt1),
ie. f/ denotes the function f;. As an example, we have plotted part of the
piecewise continuous function, f, over the partition I'y = {2,7} of the functions
(0.5 + 2,10/z,—0.152? + 15) in Figure 3.6

Notice that we have chosen to have all intervals of the form [a;b[, instead of, say,
Ja; b]. That is, the cutting point on the real line is always included in the interval
containing the higher numbers. This is a notational convenient convention and in
all intents and purposes does not affect the reasoning presented, as the intervals are
used only as boundaries of integral domains. Considered from a different perspective,
we can also argue that, as time variables are continuous, the probability of a decision
scenario, in which a time variable takes on a specific point in time is zero, and thus,

it does not matter which group of decision scenarios it is included in.

72 Chapter 3. Solutions to IDITs

f(x)

Figure 3.6: A piecewise continuous function.

During the solution process we need to calculate sums of piecewise continuous func-
tions. Addition of piecewise continuous functions are somewhat cumbersome. One
needs to take into account that they might not be defined over the same intervals:
Let f and f' be piecewise continuous functions over the partitions Iy and I s/, respec-
tively. Then the sum f + f’ is the piecewise continuous function over the partition

Ijipp=I;Ulp ={ay,...,an41}, of the functions
(f 1) = Frges + Frsoi

for all ¢ in {1,...,n + 1}, and (f + f")o = fo + f{- Notice that if we regard any
continuous function, f., as being piecewise continuous over the partition @ and fj
being f., then the above definition corresponds to the standard definition of the sum
of two continuous functions. Furthermore, a sum of a piecewise continuous function,
f, and a continuous function, f., results in a piecewise continuous function, f + fe,
over the same defining intervals as f, with each (f + f.); being f.+ f;. The product of
piecewise continuous functions are defined analogous to the sum, except that multi-
plication of individual functions are applied instead of addition. Thus, we may in all
matters regard continuous functions as piecewise continuous function, and therefore,
do not distinguish between them during manipulation of utilities.

Given a piecewise continuous function, f, we, furthermore, define the short hand no-

3.3 Solving IDITSs 73

tation f4% to mean the product f - g, where g is the piecewise continuous function
over the partition I, = {a,b} of (go = 0,91 = 1,92 = 0). Intuitively, f+!l takes on
the value of f in the interval [a;b[and the value 0 everywhere else. We denote it as
the projection of f down-to the interval [a;b[.

The main idea of the solution method is to approximate continuous functions by
polynomials, as manipulations of these, such as addition, multiplication, and differ-
entiation, can be carried out mechanically. We work with polynomials over one or

two variables. A polynomial, p, of degree n over one variable, z, is defined as
n .
p(z) =Y Clplia’,
i=0

where C/[plo,...,C[p], are real numbers, which we call coefficients. The
C[function-name]-notation we use throughout the report when dealing with poly-
nomials. Similarly, a polynomial, p, of degree (n,m) over two variables, x and vy, is
defined as o
plzy) =YY Clplya'y’,

i=0 i=0
where C[p|oo, - - -, C[p]nm are real numbers.
As stated in Chapter 1, we employ approximation in the form of Taylor’s series. We
define these formally, and refer the interested reader to [Apostol, 1974] for further

information on them.

Definition 3.8
Let f be a function, which is infinitely differentiable over the interval [a;b]. Then the

Taylor’s series of f on [a;b] about a point, ¢, in [a;b] is the polynomial

1

0 £(i) (o .
Z f |()($ o C)l,
=0

where f()(c) is the i’th derivative of f at c.

74 Chapter 3. Solutions to IDITs

The point ¢ is usually called the point of expansion of the series.

As we cannot deal with infinite polynomials, we utilize that we can rewrite

% (i) (. O : 0 fW(e -
> e =S et 3 Doy
; i=0 J=n+1

. -
2 .
=0 J

no o
= Z f(l;'(c) (2 — ¢)' + ().
i=0
It can be shown [Apostol, 1974] that lim,,_, . 7, (z) = 0, if there exists some constant,
k, such that |f(™)(z)| < k", for all z in the interval [a;b]. Therefore, when dealing
with utility and density functions, for which this is true, we can chose a Taylor’s
series of a finite degree as an approximation to the original function. Throughout
the remainder of the report we assume all Taylor’s series are of a fixed degree, N.
This discussion imposes the following assumption on the given utility and density

functions, as well as probability distributions dependent on time variables:

Assumption 1

Any density function for a time variable, utility function over a time variable, or
probability distribution with a time variable in its domain, f : sp(Z) x R — R, must
be differentiable an arbitrary number of times with respect to the time variable.
Furthermore, for each configuration Z of the variables in Z, there must exist some
constant, k, such that |f(2)™ (z)| < k™, for all z in R.

This assumption is rather strict, but due to an additional assumption, introduced
below, we can loosen it a bit.

Of course, an approximation, f’, of a density function, f, rarely is a density function
itself, i.e. ffooo f'(t)dt do not necessarily evaluate to 1. The approximation can be
transformed into a density function by dividing each coefficient of f' by [f'(t)dt,
though. Such an operation we refer to as normalizing f'. Similarly, the Taylor series
of a probability distribution, P(C|D,T) for a given configuration, J: of the variables
in D, P’(cl|cz: T),... ,P’(cn|cz: T), do not necessarily sum to 1 for each ¢ in sp(7).
This can be solved by adding

1— Y Plaldr)

ciesp(C)

to one of the series, such as P'(c;|d, T).

The value of N we assume to be set by the user of our method, but some dynamic

3.3 Solving IDITSs 75

0.14

0.12

0.1+

0.08

0.06

0.04

o.024"

Figure 3.7: The Taylor’s series (fair line) of a density function (dark line) for a
xz—distm'buted variable.

adjustment method could be incorporated in the method some time in the future.
We do not touch upon this again in this report. We use 7 ([a;b],c) to denote the
Taylor’s series of f on [a;b] about c. In Figure 3.7 the density function of a variable
following a x?-distribution with 6 degrees of freedom as well as a Taylor’s series, on
the real line of degree 10 about 8, of this are shown.

Specifically catering for piecewise continuous functions, furthermore, allows us to
approximate utility functions and probability distributions using Taylor’s series piece
by piece. Obviously, this is useful if the function is specified piece by piece, but it can
also result in faster approximation, as lower values of N can be used with little loss
in precision. As an example of this, we present two approximations of the function
f(t) = €'t®sint over the interval [0; 20] in Figures 3.8 and 3.9. The first approximation
is based on the first 40 derivatives of f, whereas the second uses only the first 10, but
uses them four times. In both cases 40 evaluations of derivatives in a point need to
be evaluated, but whereas the first approach needs calculation of 40 derivatives the
second method needs only 10. It is, thus, faster to approximate the function piece by
piece. Of course there is a limit to the gains in approximation speed, as N cannot be
less than 0. Furthermore, the actual speed gain or penalty of piecewise approximation
in the solution method itself is not obvious. We do not present a full time-complexity
analysis of our solution method, but do evaluate complexity of the more intriguing
steps, to hint at the complexity of the issue. Unfortunately, we cannot allow density
functions to be approximated piecewise, which is further elaborated on below.

For notational convenience, we introduce the notation 7;, where f is a piecewise

76 Chapter 3. Solutions to IDITs

100

80|

60

a0 |

20

—20

—40

—60

—80

—100 -

Figure 3.8: A Taylor’s series (fair line) of the function e't®sint (dark line) over the
interval [0;20] with N being 40.

continuous function over the partition Iy of the functions (fo, ..., fnt+1), to mean the
piecewise continuous function over the partition Iy of the functions (fg,..., fi.1),
where

tiv1 —ti
fi="Ty ([ti;ti-l—l[a %) ,

foriin {1,...,n},

fo =T, (Joostal,t1 = 1),

and

foi1 = Tfopy (Tnyrs 00 tny) -

As we approximate all utility functions by polynomials of a finite degree, the ap-
proximations will invariably start to monotonically decrease or increase after some
point in time. In Example 2 we needed to integrate over utility functions from zero
to infinity, and this will also be necessary in the method presented below. This can-
not be performed when utility functions decrease or increase as described, and we,
therefore, assume that the IDITs we solve have a time limit, t., before which the
decision taker wants the decision process completed at all costs. That is, all utility
functions dependent on time, either directly or indirectly, yields 0 for points in time
after t., no matter the configuration of other variables in the IDIT. By “indirectly”,
we mean that a utility is d-connected to the time variable given the set of observed
variables and decisions prior to the time variable in the temporal ordering.

This assumption is not as restrictive as it appears. First of all, if a decision taker

3.3 Solving IDITSs 77

100
80
60
vy
a0

204

o] 2 2 6 8 10 1 14 16 18 20
—20 -
—40 -
—60

—80 1

—100 -

Figure 3.9: A piecewise Taylor’s series (fair line) of the function e't®sint (dark line)
over the intervals [0; 5[, [5;10], [10; 15[, and [15;20] with N being 10.

is a human being there is a very natural limit after which the utility should be of
no concern to him. Second, if an IDIT contains no wait decisions, the probability
of decision scenarios where the last time variable takes on a high value, will get in-
creasingly smaller, and thus, the contribution of these to the expected utility of any
decision is negligible. If an IDIT does contain a wait decision, and we cannot apply
this argument, we rely on most naturally occurring utilities dependent on time being
highest for initial points in time and steadily decresing afterwards. That is, many
decision takers prefer a payoff today rather than tomorrow. In such cases, there must
come some point in time, ¢¥, after which each utility for each configuration of other
variables either is so low that the differences from one configuration to the other
becomes negligable, or it is constant. In both scenarios, the part of the decision

problem that succeeds ¢ can be disregarded with little impact on the result.

Assumption 2

A time limit to the decision process, t., must be fixed before an IDIT can be solved.
All utilities dependent on time variables, must yield the value 0 for all points in time
after t.. Likewise, utilities indirectly dependent on time, such as utilities dependent
on an ordinary chance variable which in turn depends on a time variable, should

yield 0 for points in time after t..

Given this assumption and a utility function or density function, f, in an IDIT, we

Oste|

may approximate fHO%%l instead of f, when identifying Taylor series. Thus, the

78 Chapter 3. Solutions to IDITs

degree of approximation, N, are closely bound to the value of .. When t, is raised,
either IV or the acceptable inaccuracy stemming from approximation would need
to be raised as well. Furthermore, Assumption 2 and the observation that utility
functions can be approximated piece by piece, allow us to loosen the wording of
Assumption 1 to only require density functions, utility functions, and probability
distributions to be differentiable an arbitrary number of times over the interval
[0;tc[, as opposed to the real line. Furthermore, we can allow utility functions and
probability distributions to fulfill this requirement on a piece by piece basis.

Since we assume all utility functions are 0 outside the interval [0;¢.[, for any given
configuration of other variables, we must also assume that each utility does not
take on negative values in the interval [0;¢.[. If this was not assumed, we would
have scenarios in which the points in time outside this interval yield more attractive
utilities than some of those inside it. However, by adding a large constant to
such utilities beforehand, we can disregard this problem. Furthermore, as utilities
generally are required to be unique up to any given positive linear transformation,
which adding a constant is, this is not a limitation.

With this notation and understanding of approximation methods used, we can move

on to the actual algorithm.

Solution Method

The method we propose for solving IDITs is inspired by the method for solving
asymmetric influence diagrams presented in [Nielsen and Jensen, 2000]. Throughout
the description, we use lower case greek letters to denote functions which are not
necessarily part of the original specification of the IDIT, but possibly results of
previous calculations. Method 3.9 is the method that solves its input IDIT, Z, and
returns an optimal strategy, S. It is really a shell for the solution method itself, and
takes care of initialization of the IDIT in preparation to the actual solving process.
Method 3.10, which is the main part of the solution method, takes as argument
an IDIT, Z, with a realization, (®, ¥,II,T'), a starting point in time, ¢;, and an
end point in time ., and it produces a set of policies for free decisions in Z, S,
as well as two sets of functions, ®' and ¥', which are results of manipulations
of the functions given in (®,¥,II,T"). The method recursively invokes itself and
also, occasionally, calls Method 3.11, which takes care of the actual elimination of
variables. All methods are explained immediately after they have been presented.

3.3 Solving IDITSs 79

Method 3.9
Input: IDIT Z, realization (®,¥,II,T'), and end point in time ¢..
Output: Optimal strategy, S.

1. For each utility, u : sp(D) x sp(T') — R, where D is some subset of Vop UV oc and
T is a time variable, in ¥, approximate the function v : sp(D) x sp(T') — R as

—

w(d) = n(d'juo;te[:

for all d in sp(D). Replace u with 1.

2. For each probability distribution with a time variable in its domain, P(C|D,T),
where D is some subset of Vop U Ve, in ®, construct the probability distribu-
tion P*(C|D,T) as

P*(c|d) = Tp(c@uo;te[a
for all ¢ in sp(C) and d in sp(D). Then let P*(¢'|d), for some arbitrary ¢ in sp(C),
be given as
Pred+(1- 3 Ped |,
c€sp(C)

and replace P(C|D,T) with P*(C|D,T).

3. For each density function, f : sp(D) x sp(T)) — R, where D is some subset of
VopUVoe and T is a time variable, in II, construct the function = : sp(D) X

sp(T) — R as
105t
- T, te
n(d) = (— Lo) ,
fo 7}(J‘)¢[o;te[dt

for all d in D.
Replace f with 7.

4. Run Method 3.10 on Z, (@, ¥, I1,T), 0, and t.. Denote the result (®', ¥', S). The set
®' should contain a constant, 1, and ¥ should contain only a constant representing
the maximum expected utility of Z.

5. Return S.

The workings of Method 3.9 should be pretty straightforward to understand.
In Step 1 each utility function is first projected down-to the interval [0;¢.[in
accordance with Assumption 2, and then a Taylor’s series is constructed for each
piece of the function. When a function is piecewise continuous it might be the case
that the functions of adjacent intervals are essentially the same. In that case, we
can speed up the solution method by joining these intervals into one. Examining
whether two functions are the same, can be difficult when the initial functions are

80 Chapter 3. Solutions to IDITs

given, but once they have been converted to polynomials, it can be done by N + 1
comparisons. Although we, attempting to be clear and concise, do not write this
operation specifically, it can be inserted after most of the operations described later
in this section. We do not touch upon it again in this report.

In Step 2 each probability distribution with a time variable in its domain is
approximated and projected down-to the interval [0;¢.[. In accordance with the dis-
cussion above, the resulting set of functions are then normalized to be a probability
distribution.

Step 3 approximates the density functions, which are not allowed to be piecewise
from the start. After a new function has been projected down-to the interval [0;t¢[
and approximated, it is normalized to be a density function. This completes the
initialization steps of Method 3.9.

In Step 4 the method calls Method 3.10, which as mentioned is the main part of
the solution method. Due to the recursive calls performed by that method, the
result returned to Method 3.9 is a triple of sets. The first set contains probability
distributions of ordinary chance variables, which have not been eliminated from
the IDIT, the second contains utility functions over variables that have not been
eliminated, and the last contains a set of policies that should constitute an optimal
strategy. Obviously, the first set should contain a function over the empty set, i.e. a
constant, which should be 1, and similarly the second set should contain a constant,
indicating the maximum expected utility of the IDIT. We end the solving process
by returning the optimal strategy in Step 5.

Method 3.10

Input: IDIT Z, realization (®,¥ II,T), points in time ¢; and t..

Output: Sets of probability distributions, ®', and utility functions, ¥', over the
variables in 7, which are not free, and an optimal strategy, S, for free decisions

in Z, given the variables that are not free.

1. Examine whether non-instantiated split variables are in Z. If so, let X denote the first
of these. If not, let S be the empty set and skip to Step 4.

2. If X is not a time variable, skip to Step 3. Else,

i Let G be the set of guards on arcs in Z into the decisions in IDz[x, ¢ . If X is
furthermore in the domains of some restriction functions, rp,,...,rp,, then let
R be the set of boolean functions over X determining its impact on state spaces

OfDl,...,Dk,
k

U{rp: (@ 2)|2 € sp(dom(rp,))},

i=1

otherwise, let R be &.

3.3 Solving IDITSs 81

ii

iii

iv

vi

ii

Partition the points in time from ¢s to t. into a set of intervals, [t; =
ti;taf, ..., [tn;tnr1 = te[, containing points in time having similar impact on
guards in G and restriction functions in R. That is, for any interval, [t;;¢i1],
any guard, g, in G, any restriction function, r’, in R, and any two points, ¢; and
tr, in [ti;ti41[, we have that g(t;) = g(tx) and r'(t;) = r'(tr).

Let F'x be the set of free variables in Z[X + t,], and ®F, the subset of &
containing probability distributions having some variable in F'x in their domain.

Furthermore, let ¥, and IIr, be defined in similar ways. Let ®* be the set
D\ ®p,, and T* and IT* be defined similarly.

For each interval, [t;;t;11[, do the following

a Construct the IDIT Z[X ~ t;], and the updated set of restriction functions
arising from this instantiation, I' x—,.

b Recursively invoke Method 3.10 on Z[X + ;] and the realization
(Pry,Yry,Ip ,T'x—,) with the starting point in time being ¢; and the
ending point being t..

Denote the resulting triples as (®1,¥1,S51),...,(®,, ¥, Sy).

For each utility ¢ in each ¥;, where X is not in dom(t)) and ¢ is not in ¥,
for all j in {1,...,n}, condition ¢ on the value of X being in [t;;¢;+1[. That is,
remove ¥ from ¥; and replace it with the function ¢’ : dom(y)) x sp(X) — R,
where, for each 2'in dom(+)), Iy (z) = {t;,tiy1} and ¢'(2)1 = ¢(2).

Then replace each utility ¢ in each ¥;, where X is in dom(z), with ¢pttiti+il,

Let

@:@*u&«}i, sanJsi, and\Il:\Il*ULnJ\Ili.

i=1 i=1 i=1

i Let Fx be the set of free variables in Z[X —], where z is some state in the

state space of X, and @, be the subset of ® containing probability distributions
having a variable in F'x in their domain. Furthermore, let ¥, and IIf, be
defined in similar ways. Let @* be the set @ \ ® ., and ¥* and IT* be defined
similarly.
For each state, z, in sp(X), do the following:
a Construct the IDIT Z[X — z], and the updated set of realization functions
arising from this instantiation, I'x_,.

b Recursively invoke Method 3.10 on Z[X + 2] and the realization
(Pr.,¥Fr,,p,,I'x_,) with the starting point in time being ¢, and the

ending point t..

Denote the resulting triples as (®1, ¥1,S51),...,(Pn, ¥y, Sy).

82 Chapter 3. Solutions to IDITs

ili For each utility ¢ in ¥;, where X is not in dom(z) and ¢ is not in ¥; for all j
in {1,...,n}, condition ¥ on X being z. That is, remove ¢ from ¥; and replace
it with the function ¢’ : dom(¢)) x sp(X) — R, where ¢/(Z,2') = ¢(2) if ' is
and 0 otherwise, for all Z in dom(¢) and z' in sp(X).

iv Let

@ZQ*UO{)“ S:LHJS,', and\I!:\Il*ULnJ\II,-.

i=1 i=1 i=1

4. Eliminate all free variables from the functions in ®, ¥, and IT using Method 3.11 with
some elimination order consistent with the inverse of </, the starting point t,, and
the ending point t.. Denote the result (®', ¥, S").

5. Return (®', ¥’ SUS").

Method 3.10 basically branches into three cases depending upon the nature of the
first split variable, X, in Z. If no X can be identified, it means that the ordering of
variables and state spaces of decisions are the same for all decision scenarios in Z.
In that case we can immediately proceed to Step 4 where all free variables in Z are
eliminated using Method 3.11.

If, on the other hand, a split variable X can be identified we must split the group
of decision scenarios corresponding to Z on X. This step is represented by Steps 2
and 3, corresponding to X being a time variable or not. The process in both steps
are similar, but minor details are different due to X being either a time variable, and
thus, continuous, or an ordinary decision or chance variable, and hence, discrete. We
briefly note that X cannot be a wait decision, as these are not allowed to influence
anything but their own end time, and consequently cannot be in a restriction function
of any decision.

As the processes in Steps 2 and 3 are similar, we comment only on the one in Step 2,
as this is the most complex one and contains the same problems as the one in Step 3.
Initially, in parts i and ii, the state space of X is divided into intervals, according
to its effect on Z. This is similar to the approach given in Method 2.10, and we
therefore do not go into it in detail. What is worth noticing, though, is that this
partitioning do not need to be of a specific granularity. That is, any partitioning,
which fulfills the requirement on a similar effect on guards and restriction functions,
will do. Furthermore, this approach forces us to assume that no restriction function
is a function over more than one time variable, as the intervals cannot easily be

determined otherwise.

3.3 Solving IDITSs 83

Assumption 3
No decision variable can have two time variables in the domain of its restriction

function.

Obviously, this assumption excludes the example IDIT given in Example 1 and sim-
ilar IDITs from being solved.

In the case where X is not a time variable, we assume that it is discrete and split on
its individual states instead of intervals. This is a reasonable assumption as the only
non-time variables that are continuous is wait decisions, and as these are prohibited
from restricting other decisions and do not appear in guards, they cannot be split
variables.

Next, as the set of variables, which is in an instantiation of Z on X, is the same for
all values in the state space of X, we can select any value we like when determining
this set. We chose, t5, and identifies the set of free variables in Z|X — ¢,]. These
are the subset of free variables in Z that cannot be eliminated in this invocation
of Method 3.10, since their ordering or state space is dependent on the value of X.
Therefore, we construct the subproblems corresponding to each interval and recur-
sively solve these.

The results of all subproblems should replace the original functions in the realization.
However, some of the utility functions are not obtained from all of the recursive calls.
These are therefore conditioned on X being in the corresponding interval. This hap-
pens in v. This step contains two implicit assumptions: First, that no time variable
different from X is in the domains of utility functions absorbed from the subprob-
lems, and second, that no two probability distributions over the same domain, but
yielding different probabilities, are absorbed from the subproblems. In order to argue

for the second of these assumption, it is sufficient to realize that:

e the only parts of Methods 3.10 and Methods 3.11 that produce new probability
distributions or manipulate existing ones are the elimination procedures for or-

dinary chance variables, ordinary decisions, and time variables in Method 3.11

e these are commutative, in the sense that it does not matter which order vari-

ables are eliminated from them,
e the sets of variables that is eliminated in each subproblem is the same, and

e cach subproblem is invoked on the same set of probability distributions.

84 Chapter 3. Solutions to IDITs

That is, each invocation starts from the same situation, applies the same set of
operations, which can be applied in any order without affecting the result, and con-
sequently, ends up in the same situation.

In order to be sure that no utility function absorbed from a recursive call is defined

over a time variable different from X, we need another assumption:

Assumption 4

For any two time variables, T and T', where T <' T', and any node, X, that is a
descendant of T', we have that T is d-separated from X, given the chance variables
in ch(T).

This is the most limiting assumption we must introduce for the proposed solution
method to work. It is not only needed at this point, but at several points in the
elimination procedures in Method 3.11. To give the reader a better understanding
of the implications of this assumption, we present a few examples of IDITs that do
not fulfill it in Figure 3.10.

The IDIT in (a) does not fulfill Assumption 4 as the utility U is both a descendant
of end(D3), a child of end(D;), and hence, d-connected to end(D;) given end(D3).
In the slightly changed situation, modelled in the IDIT in (b), the utility U, which
is still a descendant of end(Ds), is not a child of end(Dy). It is, however, still d-
connected to end(D;) through real(U). That both of these situations do not make a
lot of sense can easily be argued for: As the realization time of U in both cases —
end(D;) and real(U), respectively — can be a point in time prior to deciding upon
D3, it goes against common sense to have the resulting choice of D3 influencing U.
The situation modelled in the IDIT in (c¢), on the other hand, cannot be said to be
senseless. We have a variable, C'3, which affects two chance variables dependent on
time, C1 and C5. Several situation where such a setup is included can be thought of.
For instance, C'3 could represent a global physical circumstance, such as humidity or
temperature, and C7 and C5 could be observations of the same phenomenon, such as
number of athletes still participating in an amateur marathon race, at two different
points in time, end (D7) and end(Ds3). Sadly, as C5 is d-connected to end(D;) through
C3 and a descendant of end(D3) as well, this IDIT does not fulfill Assumption 4.
Having described Assumption 4, we argue why it allows us to conclude that no
time variable different from X is in the domains of utility functions absorbed from
only some of the subproblems: Assume the opposite, namely that a utility, %, with
some time variable T' different from X in its domain, is returned from some of the

subproblems only. First of all, we note that 7" must be prior to X in the temporal

3.3 Solving IDITSs 85

H
iy
&

Figure 3.10: IDITs such as these we do not attempt to solve.

86 Chapter 3. Solutions to IDITs

ordering, as it would have been eliminated in the subproblems otherwise. The reason
why 1 is only returned from some subproblems, must be because of the asymmetric
differences arising from X. That is, 9 must be the result of elimination of some
decision D, where D’s set of observed variables or D’s state space is dependent on
the value of X. If T" is in the domain of ¢, then there must exist some node, Y, which
T is d-connected to given the chance variables among its children, and which is a
descendant of D. Furthermore, as D is eliminated in the subproblems, it must be
following X in the temporal ordering and, thus, be a descendant of X. Consequently,
Y is a descendant of X, thereby violating Assumption 4.

Returning to the description of Method 3.10, we reach Step 4, where all free variables
in Z are eliminated from the functions in ®, ¥, and II, with respect to the points in
time ¢, and .. The elimination of each variable is handled by Method 3.11, which
needs an elimination order, consistent with the inverse of <’. That is, if X <’ Y,
then Y should be eliminated prior to X, whereas if both X 4" Y and Y A’ X,
then the elimination ordering of the two is without significance. We conjecture that
any method for constructing these elimination orderings can be used, including the
standard junction tree based method used for solving influence diagrams, as described
in [Jensen, 2001]. For simplicity, we may simply assume that the exact elimination
sequence is chosen at random.

After all free variables have been eliminated from the functions in ®, ¥, and II, we
return what remains of them and the calculated optimal policies along with optimal
policies calculated in any recursive steps to the calling method. If Z is the original
IDIT, the free variables encompass all variables in Z and the resulting functions
should, therefore, be only constants. It should be noted that no density functions

are returned to the calling method. This is because

e no new density functions are produced by any of the elimination procedures in
Method 3.11, and

e all density functions given to Method 3.10 as input are density functions for

free time variables in Z, which are all eliminated in Step 4.

We proceed to presenting Method 3.11.

Method 3.11
Input: IDIT, 7, set of probability distributions, ®, set of density functions, II, set
of utility functions, ¥, points in time, ¢ and ¢., and elimination order (X;,...,X,,).

Output:

3.3 Solving IDITSs 87

1. For each variable X in the ordering (Xi,...,X,), eliminate X from (®,¥,.S) using

the appropriate elimination technique, from those described below.

2. Return the transformed sets (®, ¥, S).

The basic structure of Method 3.11 is a loop where the variables to be eliminated
are treated one after the other in the given order of elimination. Each elimination is
performed by switching on the type of the variable to be eliminated and its parents
in Z, and then applying the corresponding transformation on involved functions. As
this structure is fairly basic, we focus on explaining the transformation in details,
which constitute the larger part of the rest of the report.

All throughout the descriptions below, whenever we write “for a configuration d
over the variables D”, we assume that the state space of each decision, D, has
been updated according to the value of the restriction function, given the values of
remaining variables in D. This assumption are not needed for the solution to be

found, but prevents calculation of function values that are irrelevant for a solution.

Case 1

The first case we consider is the elimination of a time or realization time variable,
T, which is a child of another time variable, a wait decision, or both. This is by far
the most complex case. Although this parent variable can be a wait decision, for the
sake of clarity, we choose to denote it T" as if it was a time variable. If T' is a child
of both a wait decision, W, and a time variable, ", we denote by 7" the continuous
variable T" + W. In order to do calculations in the case described here we make an

additional assumption, which consists of three nearly identical requirements:

Assumption 5

The density function, f, for a time variable, T, given another time variable,
T', is, for all configurations, J: of other variables in its domain, specified as a
density function over the span in time from T' to T. That is, the density function,
fr_g, for the continuous variable T —T" given CZ: is f(t|t, J), for all real numbers, t

—

and t'. Furthermore, f7_7(t—t',d) is 0 for all points in time, t and t', where t—t' < 0.

The density function, f, for a time variable, T, given a wait decision, W, Iis,
for all configurations, cZ; of other variables in its domain, specified as a density

function over the span in time from W to T'. That is, the density function, fr_yy,

88 Chapter 3. Solutions to IDITs

for the continuous variable T' — W given CZ: is f (t|w,cf), for all real numbers, t

and w. Furthermore, f7_p(t—w, d) is 0 for all points in time, t and t', where t—t' < 0.

Likewise, the density function, f, for a time variable, T', given another time variable,
T', and a wait decision, W, is, for all configurations, J: of other variables in its do-
main, specified as a density function over the span in time from T'+W to T. That is,
the density function, fr_ (7w, for the continuous variable T' — (T"+ W) given J: is

f(t[t',w,d), for all real numbers, t, t', and w. Furthermore, fr_ iy (t — (¢ +w), cf)

is 0 for all real numbers, t, t', and w, where t — (t' + w) < 0.

Observing the requirement on time not regressing, the guiding lines given in this
assumption represent a very natural way of specifying probability distributions for
time variables given their predecessors. At least this author cannot come up with
any counter examples.

When eliminating time variables, we utilize that all variables in the domain of their
density function are prior to the time variable in the temporal ordering. This is not
necessarily the case of realization time variables, as these have no specified ordering
relative to their parent chance variables. However, by refining the temporal ordering
to place a realization time variable after each of its parent variables, allow us to
apply the same reasoning for these as time variables.

When 7' is to be eliminated the only functions in ®, ¥, and IT having 7" in their do-
main must be the density function for T — T', mp_v, a set of utility functions,
which combine additively into, 17, and possibly some probability distributions,
P(Z|Z,,T). The reason why there cannot exist more density functions with 7'
in its domain is that no new density functions are produced by any of the elimina-
tion procedures, and time variables following 7" in the temporal ordering must have
been eliminated at this point.

As stated previously, the elimination ordering must respect the inverse of <'. That
means that all ordinary chance variables, which are descendants of 7' must have
been eliminated at this point. Therefore, if 1" is in the domain of a probability dis-
tribution, P(Z1|Z3,T), a variable, X, in Z; is not a descendant of 7". Furthermore,
no variables among 7"s descendants can be considered instantiated at this point.
Consequently, 7" must be d-separated from X given its parents, and we may simply
replace P(Z1|Z2,T) in ® with P(Z,|Z5) equaling P(Z,|Z>,t;) for some random ¢;

in [ts; te[, such as ts.

3.3 Solving IDITSs 89

What remains is to replace wp g : sp(Di) x sp(T—T') — R and
P :sp(D3) X sp(T) — R with a new utility function, ¢’ : sp(D; U Dy = D) x
sp(T') — R. Before we construct 9’ we explain why the sets Dy and Dy can be
considered to be subsets of Voo U Vop. First, none of the elimination steps in
Method 3.11 construct new density functions, and 77, therefore, can be defined
over the time variables T and T" only. Second, none of the elimination steps con-
structs utility functions over two time variables and due to Assumption 4 such util-
ities cannot exist in the diagram from the start, so 1) cannot be defined over other
time variables than 7'.

As when eliminating variables in influence diagrams, we need to construct, v, for
each configuration, J; of variables in D. These functions should each be the expected
value of 9 given T" and dy = d*P2. As each ”(,b((ig) might be piecewise continuous,
we need to define each 9/ (cf) as a piecewise continuous function also. Since mp_q»
is continuous over the interval [0;¢.] we do not need to take this into account when

—

identifying the intervals for each 1'(d), and we can, therefore, simply let I w(d) equal

I -
¥(dz)
tinuous over the interval [0;t.[, the partition I W (d) could not have been determined

for each d in D. Notice that if we had let density functions be piecewise con-

this way. This is because a density function is defined over the variable T'— T rather
than T itself. Therefore, the resulting partition of the resulting utility function for
T’, would be a function of T", leaving us with calculating an infinite number of par-
titions.

We let w’(cf)i be 0, for each 7 in {0, ... ,I;f@ — 1}. That is, the expected utility of
any value of T” less than ¢, is not needed in future computations and is, therefore,

simply set to 0. The remaining parts of ¢/(d) is found as following: For each 4 in
{I;f@,...,|I¢,(d~)|} we let ¢'(d); be defined as

o
Vi) = [@)~ Opd) o
—o0
where d is d*P, for all real numbers ¢. By utilizing that mp_g(dy)(t—¢) is 0 for all
points in time, ¢, less than ¢', that ¢, is an upper limit after which all utilities yield

0, that 1/1((?2) is defined piecewise, and that all functions are polynomials of degree

Chapter 3. Solutions to IDITs

‘I¢I(d')|*1 N

Y O da)ilm

k=i+1 m=0

b1)
/ (t —t")It™dt).
123

3.3 Solving IDITSs 91

Using the Binomial Theorem[Edwards and Penney, 1998], we can replace (¢t — t')*
with 370 (;) (—1)*Y¢"*=¥¢¥ and we get

k=i+1 m=0 Ly
ol - N - ti+1 J j . . .
- ZC[WTfT/(Ch)]j (ZC[¢(d2)i]l/ Z ()(_1)J—ntlj—ntﬂtldt
j=0 1=0 v = \"
o=t N o thyr J J .) .
+ > C["/’(dZ)k]m/ Z()(—1)J”t’J”t1tmdt
k=it1 m=0 te p—o \
N J j N ti1
7 j—n 7 i—n i
= Z C[’]TT_T/ (dl)]] ZO (n) (—]_)] (; C['L/J(dg)z]ltlj /t, t]+ dt
Ly @l=1 N ot
+ > Clp(da)glmt " / t9+mdt>
k=i+1 m=0
. N L g
— C U d _1 J—n O d .] t,-]in
Z e () ZO()() (; (AT Mt
|Iw (d)‘ Ly ti+m+1 ti+m+1
Cl(da)k]m— li=n 3.7
* Z Z j+m+1) ()
k=i+1 m=0

As this is a polynomial of degree 2N, we need to approximate it by a polynomial of
a degree N, before removing 1 and Ty, from ¥ and II, respectively, and inserting
' in W,

It is worth noticing that if the numbers (g) have been evaluated before hand, the
evaluation time of the expression in (3.7) is O(N?|I|'), where |I| is the maximum
number of intervals a utility function is split into due to initial specification
and split variables. Considering that the expression only yield one of the needed
polynomials, 1;, we end up with a total evaluation time of O(N?3|I|?), prior to
approximation down-to a polynomial of degree N. Thus, for sufficiently large
approximations of degree n, the complexity of this operation benfits from a division

of the domain into intervals and approximations to a lesser degree over each of them.

92 Chapter 3. Solutions to IDITs

Case 2

The case where we are eliminating a time variable, 7', which have no time variable
nor wait decision as parent, is roughly similar to Case 2. The only difference is that
the utility function, ¢/, resulting from eliminating 7" is not a function over another
time variable or wait decision. We show how to derive 1’, given a density function,
w7 : sp(D1) x sp(T) — R, and a utility function 9 : sp(D3) x sp(T) — R. For
the same reasons as when eliminating a time variable with another time variable as
parent, D = D U Dy must be a subset of Voo U Vp, and we derive v’ for each

configuration, d, over D:

#(d) = / () (6l dy) (),

—00

where d; denotes d*P! and ds denotes d+P2. Using the same tricks as in the deriva-

tions above, we get

. N tit1 N
' (d) = Clar(dy)); / > Clyp(dy) et dt
i=0 L k=0
N | w(d2)| I N
= Clrrp(d))i Y Z Cl(da); / kgt
1=0] 1 k=0
N Tyayl=t N iR ikt
= (d1) Clp(da)]i- !
; [(dy) ; kz_o)il 7

Similar to the situation above, we need to approximate this result before inserting
it in ¥. The evaluation of this thus takes time O(N?|I|).

Case 3

When eliminating a wait decision, W, with a time variable, 7', as parent, we need
only consider one function, viz. the utility 9 : sp(D) x sp(W + T') — R in W. This
is because W only occurred in one function from the start, fr_(w,7), for some
time variable, T7'. When T" was eliminated only a utility over W + T was produced
while f7r_(y7) was removed. For the same reasons as given for elimination of time
variables, D must be a subset of Voo U Vop.

As we eliminate W from ¢ we need to identify a strategy that, given a configuration

3.3 Solving IDITSs 93

80

60

40

20

0

-20

-40

-60

_80 | | | | | | | |

Figure 3.11: An example utility function for a wait decision.

d over the variables in D, and a point in time, ¢, represented by 7', yields the choice

from [t; t] that maximizes 9. If we study the example utility function, ¢ (d), plotted

in Figure 3.11, we can see how these choices must be described:

—

e If ¢ is less than 2, where ¢(d) is at a global maximum, the best advice is to
wait until time 2. In other words, the optimal choice is to wait for 2 — ¢ time

units.

e [f ¢ is more than 2, but still less than 3, the best advice is not to wait. That

is, the optimal choice is to wait for 0 time units.

e In the time span from 3 to 15, the best advice is again to wait. The optimal

choice is thus to wait for 15 — ¢ time units.

e In the remaining time of the interval from 0 to 18, the optimal choice is again

to wait for 0 time units.

Thus, an optimal policy, dy, would be defined as following;:

2—t ift<?2
- 0 if2<t<3

S (d)(t) = =
w(d)®) 15— ¢ if3<t<15

0 if15 <t <18

94 Chapter 3. Solutions to IDITs

We arrive at this conclusion through a simple procedure. Once we have established
that the points 0, 2, 3, 15, and 18 are the places on the real line the policy should
change, we can apply a simple set of rules to each interval between them to determine
the policy. However, some utility functions might be piecewise continuous, and we
have to take that into account. Furthermore, we need a method of finding extrema
of the utility function, which reduces to finding roots in its derivative. We find roots
of a function, f, by the application of Newton’s method, which given an initial guess

of a root, x1, calculates a new root candidate, x2, using the formula

f(z1)
f(@1)’

Tro = T1 —

where f’ is the first derivative of f. The process continues iteratively until the differ-
ence Tp 41—y is smaller than some fixed threshold value. Newton’s method can under
some circumstances fail to locate a root, even though such one exists, and in that case
human intervention might be necessary, or another approximation method may be
used. For more information on Newton’s method, see [Edwards and Penney, 1998].

The iterative procedure for locating an optimal policy for a given configuration, J;
is as following: Initially, we differentiate each piece of the utility function 1/1((?) with
regards to t. We locate roots of the resulting functions in their respective intervals.
This is done using Newton’s method. We denote the roots r1,...,r,. Next we denote

P = Iw((f) U{ri,...,rp} as the set of points of interest, and set

-

r = arg max ¢(d) ().

Then we set the policy for all points in time, ¢, prior to r to r — ¢'.

In the iterative step we identify which of the points larger than r that gives rise to
the highest value of 1/1((?) If several of these points exists we choose the minimum
one. Let this be r’. Then we construct the function f(¢) = ¢(d)(t) — 1(d)(r') and
find its root, *, in the interval]r;7'[, if such a thing exists.

If no root exists, 4(d) is either larger than (d)(r') over the interval [r;7'[or less
than or equal to 1(d)(r') over [r;r'[. In the first case we set the policy for this interval
to 0. In the second case we set it to 7’ — t.

If a root exists, we are in a situation such as the one presented in the example above,
and we can set the policy for [r;r*[to 0 and the policy for [r*;7'[to r' — ¢.

Next we set 7’ to be r and iterate. When we run out of candidates for maximums in

P we stop the iteration.

3.3 Solving IDITSs 95

This method does not take into account restrictions on the state space of W. The
alterations needed for this would, depending on how simple these restrictions are,
imply a more thorough examination of the utility function. We chose not to focus

on this here and simply assume:

Assumption 6

No arcs into wait decisions may be dashed.

Having this assumption as a basic part of the representation language of IDITs is
actually not that reckless. Whenever we are in a situation where we are told that
we “cannot wait for that long”, or that we “need to wait for at least” some specific
amount of time, the implicit understanding of this is “or else...”. In other words, a
restriction on a wait decision could be modellable as an sudden decrease or increase
in some utility connected to the time variable following the wait decision. Therefore,
we do not see Assumption 6 as a limitation on the number of decision problems
that can be solved.

The remaining bit of work is to construct a new utility function, ', over
sp({T'} U D). For each configuration, J: over D, where 5W(cf) is the optimal policy
just found, we let 7’ (CZ) be given as following: For all intervals where (5W(J) is not
given as 0, but as k — t, for some k in [t; [, we let ' (cf) be the function defined as

- -

£(t) = 9(d)(r). For all intervals where &y (d) is 0, we let ¢'(d) be 9(d)

Case 4

The case where a wait decision, W, with no time variable as parent is to be eliminated
is quite simple. As for wait decisions with time variables as parents, we can assume
that only a utility function, 9 : sp(D) x sp(W) — R, has W in its domain. We
need to find an optimal policy for W — a process which, for each configuration d
over the variables in D, encompass locating the value, m z of W corresponding to
the global maximum of v(d) over [0;¢.[. This process was described as part of the
explanation of how to eliminate wait decisions with time variables as parents, so we
do not repeat it here.

Once these global maxima have been identified, we can replace 9 with an utility,

' :sp(D) — R, defined as

96 Chapter 3. Solutions to IDITs

for all d in sp(D). Furthermore, we construct the optimal policy
dw :sp(D) — [0;t[, as

for all d in sp(D).

Case 5

When an ordinary decision, D, is eliminated we need to manipulate a set of proba-
bility distributions, ®p, having D in their domain, and a set of utilities, ¥ p, with
a similar property. No density functions can have D in their domain at this point,
because such a density function would be defined over a time variable following D
in the temporal ordering, which should have been eliminated at this point.

Like for time variables, we start by removing D from any probability distribution
P(Z|Z4, D), as D must be d-separated from any variable in Z;. Following this, we
branch into two cases: First case, is when no time variable is in the domain of any
of the utility functions in ¥ p. The second case is when only one time variable is in
the domains of the utility functions in ¥p. We can never be in the case that two
time variables, T" and 7", are both in the domains of functions in ¥ p, and that the
sum of these functions is not constant over either 7" or T”. To see this, we need a
conjecture:

Conjecture 1
Let T be a time variables in an IDIT, d-connected to some variable X given its the chance

variables amongst its children. Then 7" is d-connected to any node that is a child of X.

We assume without loss of generality that 7' <’ T", and that ¢ is an utility function
with 7" in its domain. This means that there is some node, X, which is a descendant
of D and, according to Conjecture 1, d-connected to 1" given the chance variables
amongst its children. Furthermore, as both 7" and 7" is in the domain of a utility
in ¥p, they cannot have been eliminated at this point, which indicates that D is
following both of them in the temporal ordering. This in turn tells us that D is
a descendant of T", that X is a descendant of T”, and Assumption 4 is, therefore,
violated.

We consider first the case in which no time variable is in the domain of utility
functions in W p. This is similar to the procedure used for eliminating decision vari-
ables in influence diagrams and is, therefore, not presented in great detail. We let
¢ : sp(D U{D}) = R be the sum of utilities in ¥ . Then for each configuration, d,

3.3 Solving IDITSs 97

of variables in D, we let the policy for D be

0p(d) = arg e W(d, d),

and the maximum expected utility, 1)’ : sp(D) — R, be defined as

-

¥'(d) = ¢(d, 5p(d)).

Finally, we replace the utilities in ¥p in ¥ with ¢’ and store dp in S.

If a time variable, 7', is in the domains of the functions in ¥p, we sum all utilities
in ¥p into one, ¢ : sp(DU{D}) x sp(T) — R. We construct the optimal policy,
0p, for D as following: For each configuration, cz: of D, we construct the functions
w(cz: d;) — 1/;((?, d;), for each pair of distinct states, d; and d;, in rD(cp*dom('D)), where
rp is the restriction function for D in I'. We then use Newton’s method on these
functions and locate their roots. These points, along with discontinuities, I w(d)? in
1(d), are the points in time where our policy may change. We denote them P w(d)
As identification of these points is the main purpose of constructing the v(d,d;) —
w(cz: d;)-functions, we may chose to only construct one of the functions 1/J(J: d;) —
¥(d, d;) and ¥(d, dj) — ¥(d, d;) for each pair of states, d; and d;.

Finally, for each interval [¢;;¢;11[generated by P (@) We let

¥

- 5 bt —t
(@0 = arg max p(d.d) (70,
dETD(d_B 2
for all ¢ in [t;; ti41][.
The utility function, 9’ : sp(D) x sp(T') — R, which is to replace the functions in

¥p in ¥, we derive for each configuration, J: of D as following: First, we let I w(d

=

be Pz Then for each interval [t;; ¢;41] generated by I i) We let

— - -

¢'(d) = 4(d,dp(d, t;)).

Case 6

Elimination of an ordinary chance variable, C, involves manipulation of functions
in ® and ¥. No density function, «, in I, for a time variable, 7', can have C' in
its domain, as that would imply that C' <’ T, and hence, that T" should have been

eliminated at this point. We call the sets of functions with C' in their domain ®¢

98 Chapter 3. Solutions to IDITs

and ¥, respectively.

Each function in ¥ can have only one time variable in its domain, as that is the
case from the start, and no elimination procedure produces utility functions over two
time variables. At this point we divide the description into three cases, depending

on whether no, one, or more time variables are in the domains of functions in ®¢.

No Time Variables in Domains of Functions in &,

First, we replace the functions in ®¢ in ® with the function, ¢’ : sp(D;) — [0;1],

where D is the set of variables in domains of functions ®¢ except C, defined as

gy =S] élcd™),

cesp(C) pe®c

for each configuration, d}, over the variables in D. Second, we replace each function,
1, in ¥ in ¥ with the expected value of 1, 1. If 4/ does not have a time variable
in its domain, we let 9 be ¢’ : sp(D = Dy Udom(v) \ {C}) — R, defined as

'l,b'(cz') _ ECESP(C) Hqse(pc #(c, d_ldom(ﬁb))fl/,(c, d_ldom(¢))
EcEsp(C) Ht,’bE(PO (,ZS(C, didom(q&))

?

for each configuration, CZ; over the variables in D.
If ¢4 has a time variable, 7T, in its domain, we let ' be
' sp(D = Dy Udom(y) \ {C,T}) x sp(T) — R, defined as

¢'(CZ) _ ECESP(C) Hqse(pc o(c, dj,dom(¢))fl/,(c, d_ldom(¢))
EcEsp(C) Ht,’bE(PO (,ZS(C, didom(q&))

?

for each configuration, J; over the variables in D. The main difference between this
expression and the one before is that the resulting v (cZ)’s are polynomials.

We have divided up the sum of utilities, and calculated each expected utility in-
dividually, which is not the standard solution technique for influence diagrams. In
these the utilities in ¥ are additively combined and then the expected value of this
combination is constructed. The two approaches can easily be shown to yield the
same result, though. To see why we have chosen this approach, study the IDIT in
Figure 3.12. If we add up the resulting utilities when eliminating C', we end up with

a utility over two time variables, which the rest of the solution method depends on

3.3 Solving IDITSs 99

| D)

B

©

Us

o>

Figure 3.12: IDITs where we have to be careful not to sum the local utility functions.

never happens.

One Time Variable in Domains of Functions in &,

When there is one or more time variables, T', in the domain of the functions in ®¢,
we need a different approach and some additional results. We first assume that only
one time variable, T', is in T

We replace the functions in ®¢ in ® with the function, ¢' : sp(D1) x sp(T") — [0;1],

where D1 is the set of variables in domains of functions ®¢ except C and T, defined

gd)= > [éled®™?),

cesp(C) pe®c

as

for each configuration, cfl, over the variables in D;. This is a polynomial, which can
be of degree |®¢|N, since each probability distribution might be a polynomial of
degree N. As we work with polynomials of a fixed degree only, we approximate ¢*
by a Taylor’s series. That is, we replace the functions in ®¢ in ® with the function
¢ :sp(D1) x sp(T) — [0;1] defined as

for each configuration, cfl, over the variables in D;.

Second, we replace each function, v, in ¥ in ¥ with the expected value of
, /. If ¢ does not have a time variable in its domain, we let ¥* be * :
sp(D = D; Udom(y) \ {C}) x sp(T') — R, defined as

" (Cf) . ZCESp(C) Hd’E‘I’C ¢(c’ Jldom@)))qﬁ(c, d_ldom('z/)))
ECESP(C) H¢€<I>C P(c, d¢dom(¢))

7

100 Chapter 3. Solutions to IDITs

for each configuration, J; over the variables in D. Each ¢*(CZ) is not a polynomial,
so we need to approximate it. Consequently, we replace ¢ in ¥ with the function
' :sp(D) x sp(T) — R defined as

";b,(d) = 7:/)* (J)?

for each configuration, CZ; over the variables in D.
If 4 has a time variable, T”, in its domain, and 7" is the same variable as T', then
we let 9* be ¢* : sp(D = Dy Udom(%)) \ {C}) x sp(T) — R, defined as

¢* (CZ) N ECGSP(C) H¢E¢.O gﬁ(c’ d_ldom(ﬁb))rl/}(c’ d_ldom(zy))
ECEsp(C’) Hd’E‘I’c (,ZS(C, didom(q&))

?

for each configuration, d, over the variables in D. As above, each P* (CZ) is not a

polynomial, so we replace ¢ in ¥ with ¢’ : sp(D) x sp(T) — R defined as

-

¢,(d) = 7:/)* (J)a

for each configuration, cZ: over the variables in D.

If 4 has a time variable, 7", different from 7', in its domain, we cannot apply the
above operations directly, as we need to be sure we do not construct a utility with
two time variables in its domain. We refer to the discussion in the next paragraph
on why a utility cannot be non-constant over more than one time variable, T*, and
simply state that the resulting utility must be constant over at least one of the
variables. We, therefore, let ¢* be * : sp(D = D; Udom(¢) \ {C}) x sp(T™) — R,

defined as
w*(d’) B EcEsp(C) H¢eq>o #(c, d_ltllorn(¢5))¢(c7 Jrdom(¥)
ECESp(C) H¢>e<1>0 b(c, didom(#)) ’

for each configuration, J: over the variables in D. As twice before, each 1/1*((?) is not

necessarily a polynomial, so we replace 1 in ¥ with ¢’ : sp(D) xsp(T’) — R defined
as
!() e =
VD) =Ty @y

for each configuration, cZ: over the variables in D.

3.3 Solving IDITSs 101

More than one Time Variable in the Domains of Functions in &,

When there is more time variables, T, in the domains of the functions in ®, we
replace the functions in ®¢ in ® with the function, ¢’ : sp(D1) x sp(T) — [0;1],
where D7 is the set of variables in domains of functions ®~ except C and those in
T, defined as

fdy= Y] ¢lc.d®™),

cesp(C) pe@c

for each configuration, Ji, over the variables in D;. This is not a polynomial, but
a sum over a product of polynomials. We denote it as a compound expression. We
do not evaluate it to a polynomial at this point but simply store ¢’ in ® instead
of the functions in ®¢. Any applicable encoding scheme, such as a list of ordinary

chance variables, C, followed by a list of polynomials, P L, can be used to represent

> 1l »

X€eC pePL

a function such as

and we do not make any assumptions on this representation. We must, however, take
care that this unevaluated function do not interfere with the workings of the other
parts of the solution method. The only parts of the solution method that manipulates
probability distributions in ways other than dropping variables from their domains,
is the two cases described above. As both of these are conditioned on there not
being two time variables in domains of functions in ®¢, we can be sure that these
probability distributions do not get handled by anything other than this part of the
solution method.

We then examine each utility, 9 : sp(D2) x sp(C) x sp(T) — R, in ¥. When we
construct the expected utility, ¢* : sp(D = D1 U D9) x sp(TU{T}) — R, as

W (cf) _ ZCESp(C’) [Tsca. ?(c drdom(@)yy) (¢, ghdom(¥)y
> cesp(c) L pea, dlc, dom@))

7

for each configuration, cZ: over the variables in D, we end up with a non-polynomial
over several time variables, T U {T'}. However, it will always be the case that 1* is
constant over all time variables, except possibly for one. To see this, let T'y denote
the set of time variables in T' U {T'} for which ¢* is not constant. Furthermore, let
T, denote the variable in Ty farthest in the temporal ordering. As T}, has not been

eliminated it is clearly the case that Tj,, <’ C. 9* is not constant over T}, and

102 Chapter 3. Solutions to IDITs

therefore it must have some node, X, amongst the descendants of C, as descendant.
Then let 7" be some other time variable in Ty, which would have to be prior to T},
in the temporal ordering. As 9* is not constant over 7" and all chance variables that
are children of T" is known when T}, is known, we conclude that 7" is d-connected to
C given the chance variables amongst its children, and, according to Conjecture 1,
thus to X. This is a violation of Assumption 4, and 7" can therefore not exist. Hence,
1*, varies only over one variable.

We then let ¢’ : sp(D = Dy U Ds9) x sp(T,,) — R, be given as

W* (CZ) N ECGSP(C) Hqs@;.o o(c, d_ldom(ﬁb))rl/}(c’ d_ldom(zy))
ECESP(C) H¢E<I'O (,ZS(C, didOm(¢))

?

for each configuration, J: over the variables in D. If this is not a polynomial of degree
N, we approximate it and replace ¢ in ¥ with the approximation. Otherwise, we
replace it with 1)’

The only open question remaining, is regarding the point in the method where a
compound expression, ¢, is removed from ¥: Whenever a time variable is eliminated,
and consequently removed from the domain of ¢, we check if there are still two time

variables in the domain of ¢, and if not, we evaluate ¢, and store the result in ®.

Structural Correctness of the Solution Method

In the paragraphs above, we have given several arguments as to why the elimination
procedures and short cuts we have applied are sound. We still need to argue why the
overall structure of the solution method produces an optimal strategy for a given
IDIT Z. As a formal proof of this would be rather elaborate and would not differ
much from the one given in [Nielsen and Jensen, 2000], we chose only to present a
sketch.

To prove that the structure of the method constructs an optimal strategy, given
that the elimination procedures are correct, we apply a conversion of IDITs to
decision trees, and utilize that the averaging-out-and-folding-back algorithm is
known to produce an optimal strategy for decision problems modelled as decision
trees [Jensen, 2001].

We need to argue that our solution method can construct a split tree where each
variable in Z is treated as a split variable: Each ordinary decision or chance variable

in Z, which are not in the domain of a restriction function, can be used as a split

3.3 Solving IDITSs 103

variable. This can be seen from Step 3 in Method 3.10, which does not require of
the variables it splits on, that the resulting subproblems are of a different structure.
Hence, we may split on all ordinary decision and chance variables in this step, if we
so desire.

As already mentioned above, when splitting on a time variable, the partitioning
of the numbers in the interval [ts;.[, need not be of a specific granularity, as long
as the requirement on similarity of decision scenarios in the resulting subproblems
is fulfilled. Therefore, we can discretize each time variable to any given level of
precision and still apply out method. Similarly, by discretizing wait decisions we
can let Step 3 in Method 3.10 split on the states of these as well.

Thus, by discretizing continuous variables, to an arbitrarily fine level of granularity,
we end up with the general structure of the averaging-out-and-folding-back algo-

rithm.

Future Work

Clearly, this solution method suffers from some flaws, all due to the assumptions
introduced. The subset of IDITs we can solve are limited, most noticeable because
of Assumption 4, which, among other things, prohibits an unobserved variable to
influence time dependent variables not dependent on the same time variable. As
already mentioned this excludes a great deal of decision scenarios, and a topic of
future research would be to alter the parts of the solution method that depends
on it. Furthermore, an area where improvements are needed, is in the handling of
restriction functions. The method, as presented, does not allow wait decisions to
be restricted, and ordinary decisions cannot be restricted by more than one time
variable.

Apart from completing the solution method, it would be interesting to analyze the
complexity of the method in terms of N, t., |I|, and the number of nodes in an
IDIT. The result of such an analysis could perhaps be used for deciding an optimal
value of N and optimal number of approximation intervals for each utility and
probability distribution, given an IDIT and a value for ¢,.

Apart from completing the solution method, a topic of interest is implementation
of a modelling and solving tool for IDITs. This tool could warn the user when an

IDIT violating the assumptions is constructed.

104 Chapter 3. Solutions to IDITs

Chapter 4

Conclusion

As this report forms the documentation of a period of study as well as a means of
communicating the result, this conclusion consists of two parts. First, some conclud-
ing remarks on the scientific status and value of the results given in the report, and
second, a brief account on the knowledge that has been obtained by this author in
the process.

The starting point for this report is a representation language for representing deci-
sion problems involving quantitative aspects of time. This representation language
suffers from some serious flaws and some minor quirks, which we corrected in Chap-
ter 2. The most damaging flaw was the lack of a clear temporal ordering of elements
in IDITs. Through an analysis we have highlighted the flaws in the existing ordering,
and from this analysis, we have created a new temporal order operator, which takes
asymietry arising from quantitative time into account. Building on this work, we
have managed to construct a definition of what IDITs that make sense, that is, which
can be considered welldefined. A method for checking IDITs for being welldefined
has also been constructed.

The temporal ordering operator is inspired by the ordering operator used in asym-
metric influence diagrams [Nielsen and Jensen, 2000], but takes on a quite different
form, due to guarded arcs into decisions being inherited by subsequent decisions.
Similarly, the concept of instantiation, used in other representation languages, has
been adapted to cater for this as well.

In addition to these results, we have also presented a solution method which solves a
subset of IDITs. Even considering the limitations on the IDITs which can be solved,

the solution method is interesting as it avoids discretizing continuous variables and

105

106 Chapter 4. Conclusion

does so without utilizing sampling. Continuous variables have so far not been inte-
grated into influence diagrams with unequivocal success. The problem of specifying
policies for decisions over continuous variables has so far eluded solution. In our case,
we have exploited the restrictions and nature of time, and hence, have solved it in
this specific case.

Seen from a personal learning perspective, this project has been rich on challenges.
The problems connected to identifying a temporal ordering relation have mostly been
dealt with using reflection and pondering while studying orderings of influence dia-
grams in detail. Before deciding upon an approach for solving IDITs, several other
approaches, including sampling and discretization, was studied to a point where a
choice could be made on a solid foundation. As most of the methods for dealing with
continuous variables that exist are based heavily on properties of Gaussian distribu-
tions, few ideas from these sources have been applicable, whereas the structure of
solutions to asymmetric influence diagrams have been an inspiration to the structure

of the solution method presented in this report.

Bibliography

[Apostol, 1974] Apostol, T. M. (1974). Mathematical Analysis. Addison-Wesley, 2nd

edition.

[Broe and Jeppesen, 2003] Broe, M. and Jeppesen, R. (2003). Influence diagrams

involving time, a framework for decision problems involving time.

[Broe et al., 2003] Broe, M., Jeppesen, R., and Nielsen, S. H. (2003). Representing

decision problems involving time.

[Charnes and Shenoy, 2003] Charnes, J. M. and Shenoy, P. P. (2003). A forward

monte carlo method for solving influence diagrams using local computation. Work-
ing paper.

[Demirer and Shenoy, 2001] Demirer, R. and Shenoy, P. P. (2001). Sequential valu-
ation networks: A new graphical technique for asymmetric decision problems. In

Benferhat, S. and Besnard, P., editors, Lecture Series in Artificial Intelligence,

number 2143, pages 252-265. Springer-Verlag.

[Edwards and Penney, 1998] Edwards, C. H. and Penney, D. E. (1998). Calculus
with analytic geometry. Prentice Hall, 5th edition.

[Howard and Matheson, 1984] Howard, R. A. and Matheson, J. E. (1984). Influence
diagrams. In Readings on the Principles and Applications of Decision Analysis,
pages 721-762.

[Jensen, 2001] Jensen, F. V. (2001). Bayesian Networks and Decision Graphs.
Springer-Verlag.

[Kozlov and Koller, 1997] Kozlov, A. V. and Koller, D. (1997). Nonuniform dynamic
discretization in hybrid networks. In Proceedings of Thirteenth Conference on

Uncertainty in Artificial Intelligence, pages 314-325.

107

[Lauritzen and Nilsson, 2001] Lauritzen, S. L. and Nilsson, D. (2001). Representing
and solving decision problems with limited information. Management Science,
47(9):1235-1251.

[Lerner et al., 2001] Lerner, U., Segal, E., and Koller, D. (2001). Exact inference in
networks with discrete children of continuous parents. In Proceedings of the 17th
Annual Conference on Uncertainty in AI (UAI), pages 319-328.

[Madsen and Jensen, 2003] Madsen, A. L. and Jensen, F. (2003). Mixed influence
diagrams. In Seventh European Conference on Symbolic and Quantitative Ap-

proaches to Reasoning with Uncertainty.

[Nielsen and Jensen, 2000] Nielsen, T. D. and Jensen, F. V. (2000). Representing

and solving asymmetric decision problems.

[Nilsson and Jensen, 1999] Nilsson, D. and Jensen, F. V. (1999). Probabilities of
future decisions. Proceedings from the International Conference on Informational
Processing and Management of Uncertainty in knowledge-based Systems (IPMU),
pages 1454-1461.

[Nist, 2003] Nist (2003). Nist/sematech e-handbook of statistical methods.
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm.

[Poland and Shachter, 1993] Poland, W. B. and Shachter, R. D. (1993). Mixtures
of gaussians and minimum relative entropy techniques for modeling continuous
uncertainties. In Proceedings of the Ninth Conference on Uncertainty in Artificial

Intelligence.

[Shachter and Kenley, 1989] Shachter, R. D. and Kenley, C. R. (1989). Gaussian
influence diagrams. Management Science, 35(5):527-550.

Notation

init(D) the time variable that represents the initiation time of the decision D p6
end(D) the time variable that represents the end time of the decision D pb
sp(X) the state space of the variable X p7
S x Sy the Cartesian product of the sets S and S9 p7
X=xz the knowledge that the variable X is in the state x p7
dom(f) the domain of the function f pll
wt the set of all nodes in the IDIT 7 pl4
L’ the set of all labels in the IDIT Z pl4
E* the set of all edges in the IDIT 7 pld
\%e? the set of all chance variables in the IDIT Z pl4
v the set of all decisions in the IDIT 7 pl4
Vi the set of all time variables in the IDIT Z pl4
V%V the set of all wait decisions in the IDIT 7 pld
V[I] the set of all local utility functions in the IDIT Z pl4
\ % the set of all variables in the IDIT 7 pl4
\ the set of all ordinary chance variables in the IDIT 7 pl4
V%) D the set of all ordinary decisions in the IDIT 7 pld
Ef the set of all solid edges in the IDIT 7 pld
Eg the set of all dashed edges in the IDIT Z pl5
pa(X) the set of parent variables for the node X plb
ch(X) the set of child nodes for the node X pl5
pa,(X) the set of parent variables connected with dashed edges for the node X plb
< the ordering relation used in [Broe et al., 2003] pl5
&’ the set of probability distributions in a realization for the IDIT Z pl8
vl the set of local utility functions in a realization for the IDIT 7 pl8
I’ the set of density functions in a realization for the IDIT 7 pl8
rt the set of restriction functions in a realization for the IDIT 7 pl8
— a partial function pl8
real(U) the realization time variable of the utility U p20
v the set of all realization time variables in the IDIT 7 p21
< the temporal ordering relation of elements in the IDIT 7 p32

Z[X + z] the instantiation of the IDIT 7 in which X is known to be x p37

the set of decisions in an IDIT 7 initiating at the point in time

the decision problem modelled by Z starts

The set of possible orderings of variables in the decision problem P

the ordering of variables in the decision problem, P, when the

variables are instantiated as 2

the policies in the strategy S, which are valid under the ordering <

the set of strategies for a decision problem P

the dp-induced probability distribution for the policy dp

the real-valued function over S8’ obtained from the funtion f by
summing and/or integrating over all variables in S\ S’

the S-induced probability distribution for the strategy S

for the decision problem P

the set of past time variables

for the decision D in the IDIT Z[VZ i 7]

SZ. where < is some ordering consistent with -<’I[V%]
the configuration over the variables in S obtained from &

by dropping coordinates not corresponding to a variable in S
the policy for D in S under the ordering </

the number of elements in the partition I less than or equal to x
the partition the function f is defined over

the function defined over the i’th interval generated by I s

the function that takes on the value of f on points in [a;b]

and 0 everywhere else

the coefficient corresponding to #’ in the polynomial f

the degree of Taylor’s series in the solution method

the piecewise approximation of the function f

the Taylor’s series of f on [a;b] about ¢

a point in time after which all utilities in an IDIT should yield 0
the maximum number of intervals a utility function is split

into due to initial specification and split variables

p39
p49

p49

p49
p49

p5d0

pd0

p52
p52

pd3
p60
p71
p71
p71

p73
p73
p74
p75
p75
p77

pIl

Index

absorption, 67 last variable, 36

: ‘ legal policy, 53
blown-up version, 17 legal strategy, 54

chance variable, 7 local utility, 7

compressed form, 17 C .
marginalizing variable out, 65, 66

decision, 7 del
S . . no-delay assumption, 6
decision involving time, 9 ; Y prot,
.. . o-forgetting ass tion, 10
decision scenario, 39 HO-IOTEELIIE ASSUIPLION,

.. . non-intervening choice, 6
decision variable, 7 & ’

derived variable, 56 normalizing, 74

domain, 11 optimal policy, 51

eliminating variable, 65, 66 optimal strategy, 50

end time. 6 ordinary chance variable, 7
)

expected utility, 51 ordinary decision variable, 7
7

extended no-forgetting assumption, partition, 71

11, 32 piecewise continuous function, 71
first variable, 36 policy, 48
free variable, 65 policy-induced probability distribu-
tion, 50
guard, 10 projection, 50, 73

guarded variable, 10

qualitative aspect, 14
IDIT, 5, 14, 27, 29

informational arc, 10

quantitative aspect, 14

initiation time, 6 realization, 14, 29

instant decision, 9 realization time, 20
instantiated variable, 7 realization time variable, 20
instantiation, 37 required policy, 52
intermediate variable, 36 restriction function, 11

112

solution method, 51

solution to decision problem, 51

solving a decision problem, 51

split tree, 42

strategy, 49

strategy under ordering, 49

strategy-induced probability distribu-
tion, 50

Taylor’s series, 73

temporal arc, 17

temporal ordering, 32, 34

temporally allowable instantiation, 38
time variable, 7

total utility, 7

utility, 7
valid policy, 49

wait decision, 6, 7
welldefined, 35, 39

Appendix A

Summary

This report deal with a representation language for decision problems involving quan-
titative aspects of time called influence diagrams involving time, or simply IDITs.
For some time there has existed a number of frameworks for representing and solv-
ing decision problems, including influence diagrams, valuation networks, and deci-
sion trees. None of them cope very well with quantitative measures of time, which
was uncovered in [Broe et al., 2003]. Consequently, a new framework was needed.
[Broe et al., 2003] suggests a representation language, called IDITs, which is sup-
posed to be a compact and unambiguous language compatible with influence dia-
grams, in the sense that an IDIT of a decision problem involving no aspects of quan-
titative time should be interpretable as an influence diagram with no modification.
[Broe et al., 2003] neglects to turn the representation language into a full framework,
meaning that both a set of unambiguous semantics and a solution method is lacking.
In this report both of these missing results are developed.

Chapter 2 contain a description of IDITs. In short, these are directed acyclic graphs
whose nodes represent chance and decision variables and local utilities. Arcs in the
graph represent either probabilistic dependencies, informational constraints, or func-
tional dependencies. This far IDITs resemble influence diagrams. However, IDITs
allow for a subset of the chance variables to represent points in time where deci-
sions end, and thereby to be continuous. Furthermore, decisions can be continuous if
they denote decisions on lengths of waiting periods encountered during the process
described by the decision problem. Asymmetry arising from quantitative time are
included in the diagram by the means of guarded informational arcs and restriction

functions for decisions.

115

We enhance IDITs by furthermore allowing utilities to depend on points in time
not necessarily representing an end time of a decision in the decision problem. Ad-
ditionally, we allow the ordering of decisions, which do not span a period of time,
to vary according to the time previous decisions have ended, and modify the rules
for inheriting guards in the diagram, to better reflect the nature of time dependent
observation. A temporal ordering relation which takes into account the asymmetry
of IDITs is then presented, and a definition of welldefinedness is derived from this
relation. We furthermore construct a method that checks whether an IDIT is wellde-
fined.

At this point we have completed IDITs as a representation language and can, thus, in
Chapter 3, construct a solution method on a solid foundation. Our approach to con-
structing a solution method, takes outset in an introduction to solutions to decision
problems in general, and is then outlined through an elaborate example before being
presented in full. The structure of our solution method follows the structure of solu-
tion methods for solving asymmetric decision problems in [Nielsen and Jensen, 2000]
and [Demirer and Shenoy, 2001], but the details are different. We chose to approxi-
mate continuous functions in IDITs by Taylor’s series and use algebraic manipula-
tions of these in order to eliminate variables from the IDIT. Specifically, we are, due
to asymmetry, required to cater for piecewise continuous functions, which further
allow us to approximate continuous utility functions with greater precision using the
same resources.

The resulting solution method is not universally applicable, as it builds on a series
of assumptions on the nature of the given IDIT. It can be argued for that most
of these assumptions are fulfilled by the vast majority of IDITs. However, one of
them is a real limitations. Future research should seek to eliminate the need for this

assumption.

