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Abstra
t: IDITs was originally pro-posed in [Broe et al., 2003℄ as arepresentation language for de
isionproblems involving quantitative mea-sures of time. IDITs is suggested as arepresentation language, whi
h 
atersfor aspe
ts of time. However, the tem-poral semanti
s of elements in IDITspresented in [Broe et al., 2003℄ are
awed. In this report, we suggest anew set of ordering semanti
s anda de�nition of wellde�nedness thatbuilds on this new ordering. Further-more, a method to 
he
k an IDIT forwellde�nedness is given, and the rep-resentation language of IDITs is en-han
ed to 
ater for more aspe
ts oftime, in
luding varying orderings ofde
isions.[Broe et al., 2003℄ also negle
ts topresent a method for solving de
i-sion problems modelled as IDITs,but do suggest a sket
h for su
h amethod. In the latter part of this re-port, we explore the boundaries ofthis sket
h and identify a subset ofIDITs that 
an be solved using thisapproa
h. Our method su

eeds inhandling 
ontinuous variables as par-ents of dis
rete de
isions through ex-ploitation of 
onstraints indu
ed bythe nature of time.
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Chapter 1
Introdu
tion
In
uen
e diagrams involving time (hen
eforth referred to as IDITs) is a frameworkfor representing de
ision problems that involve quantitative measures of time. Itis the result of an analysis of de
ision problems, frameworks traditionally used formodelling de
ision problems, and how these frameworks 
ope with aspe
ts of time,
arried out in [Broe et al., 2003℄. The 
on
lusion of this analysis is that none of theanalyzed frameworks, viz. de
ision trees, in
uen
e diagrams, and valuation networks,are suitable for modelling de
ision problems involving time. This is be
ause these
ater only for qualitative aspe
ts of time, su
h as ordering of de
isions and obser-vations, and some de
ision problems revolve around quantitative aspe
ts of time,su
h as deadlines or entities who 
hange as time progresses. Consequently, IDITswas developed as an alternative.Frameworks that are traditionally used for modelling de
ision problems, su
h as in-
uen
e diagrams, de
ision trees, and valuation networks, have a set of semanti
sasso
iated with them that allows humans to read and understand modelled de
isionproblems in an unambiguous manner. Furthermore, they in
lude a syntax whi
h, in
onjun
tion with the semanti
s, renders de
ision problems solvable on a 
omputer.That is, a strategy, whi
h maximizes the expe
ted utility of a de
ision taker, 
an be
omputed from a model of the de
ision problem.IDITs is meant to be an extension of the in
uen
e diagrams framework, origi-nally proposed in [Howard and Matheson, 1984℄, and is a 
ompa
t and unambiguousframework, whi
h portrays de
ision problems involving time in a fashion that shouldbe easy to grasp for modellers experien
ed in modelling de
ision problems usingin
uen
e diagrams. The extension is a true extensions, in the sense that an IDIT,1



2 Chapter 1. Introdu
tionmodelling a de
ision problem that does not involve time, is an in
uen
e diagram,whi
h 
an be reasoned about using the set of semanti
s traditionally asso
iatedwith in
uen
e diagrams. Unfortunately, [Broe et al., 2003℄ fails to provide a 
learsemanti
al interpretation of modelled de
ision problems. Spe
i�
ally, a temporal or-dering of events and de
isions in the problem is 
awed. Furthermore, a method forsolving IDITs modelling de
ision problems, whi
h do involve time, is not given, as[Broe et al., 2003℄ settles on a sket
h of su
h a method.The sket
h, although brief, brings to light the diÆ
ulty in solving a de
ision problemmodelled as an IDIT: De
ision problems are represented as de
ision graphs, in whi
hpoints in time are represented as 
ontinuous variables. Time variables' impa
t onother variables and poli
ies, whi
h are both dis
rete, are not easily evaluated. Inthis report we, a
tually, give an example of an IDIT, modelling a de
ision probleminvolving time, whi
h 
annot be solved exa
tly using known algebrai
 manipulations.The basi
 problem of integrating 
ontinuous and dis
rete variables in the samede
ision graph, and more spe
i�
ally in
uen
e diagrams, has been given alot of attention in the resear
h 
ommunity. An approa
h to using 
ontinuousvariables in in
uen
e diagrams, 
alled Gaussian in
uen
e diagrams, are givenin [Sha
hter and Kenley, 1989℄. A Gaussian in
uen
e diagram 
onsists of 
ontinuousvariables only, where 
han
e variables follow Gaussian distributions, potentially 
on-ditioned on other variables in the diagram. A more universally appli
able approa
his given in [Poland and Sha
hter, 1993℄, whi
h des
ribes a method for letting 
ontin-uous 
han
e variables in Bayesian networks follow a distribution whi
h is a mixtureof Gaussian distributions. [Madsen and Jensen, 2003℄ gives a solution method forin
uen
e diagrams involving a mixture of 
ontinuous Gaussian distributed variablesand dis
rete variables, with the stru
tural 
onstraint that no dis
rete variable 
an bea 
hild of a 
ontinuous variable. Finally, [Lerner et al., 2001℄ introdu
es a te
hniquefor mixing dis
rete and 
ontinuous variables in a Bayesian network, using softmaxfun
tions (traditionally applied in reasoning using neural networks) as 
onditionalprobability distributions for dis
rete 
han
e variables given 
ontinuous parents. Theinferen
e method they propose is exa
t up to the a

ura
y of numeri
al integrationsperformed during evaluation. Thus, an approximation.The basi
 problem involved in applying these te
hniques for solving IDITs, is thatall of them assumes 
ontinuous variables follow Gaussian distributions, or mixturesthereof. Su
h variables have a stri
tly positive density for all real numbers, whi
hdoes not suit the nature of a progression of time variables, whi
h should be guar-anteed to have probability 0 for 
on�gurations where their values de
rease. In other



3words, the probability distributions of time variables should ensure that time neverregresses. Furthermore, none of the te
hniques listed allow 
ontinuous parents of dis-
rete de
isions, and none of them give a full des
ription of how to allow 
ontinuousparents of dis
rete 
han
e variables in in
uen
e diagrams.The problems arising from employing 
ontinuous variables 
an be 
ir
umventedthrough dis
retizing the variables prior to solving the in
uen
e diagram. One su
hte
hnique is given in [Kozlov and Koller, 1997℄. Another approa
h, whi
h 
ir
um-vents the problem of using non-Gaussian distributed 
ontinuous variables, is to applysampling methods, su
h as those presented in [Charnes and Shenoy, 2003℄. Unfortu-nately, this latter approa
h do not solve the problem of having 
ontinuous parentsof dis
rete de
isions. A solution method for IDITs, whi
h utilizes sampling, 
an befound in [Broe and Jeppesen, 2003℄.In this report, we 
omplete the representation language of IDITs into a framework.We examine IDITs in depth, whi
h reveals a number of problems inherent in itsoriginal formulation. We then reformulate IDITs in a form that does not su�er fromthese problems. Following this, a set of unambiguous semanti
s for temporal order-ings is 
eshed out, and the language is enhan
ed to provide additional possibilitiesfor modelling time aspe
ts of de
ision problems. Building on the new temporal order-ing, we furthermore de�ne what it means for an IDIT to be wellde�ned and providea method for 
he
king this. Following this is the last result, whi
h is an examinationof the boundaries of the solution sket
h given in [Broe et al., 2003℄, resulting in amethod that solves a subset of IDITs using approximations in the form of Taylor'sseries and Newton's method. The solution method avoids dis
retizing the 
ontinuousvariables in the framework and does not require sampling, at the expense of onlysolving a subset of IDITs.OverviewThe report is divided intro four 
hapters, of whi
h this is the �rst, and an appendix.Chapter 2 presents the IDITs representation language in its original form and de-s
ribes a set of enhan
ements as well as the abovementioned semanti
al 
orre
tions.In Chapter 3 we des
ribe what it means to solve a de
ision problem and graduallyadapt the general dis
ussion into the full solution method. Finally, in Chapter 4 a
on
lusion of the report is given.Following the main part of the report, Appendix A 
ontains a brief summary of theentire report.



4 Chapter 1. Introdu
tionNotationThe topi
s dis
ussed in the report are of a somewhat abstra
t nature, as we aredealing with mathemati
al models on several layers of abstra
tion. Consequently,the report 
an be heavy on notation and 
on
epts in pla
es, so we have provided alist of notation and an index of 
on
epts in the ba
k of the report. Furthermore, thereport has been printed using extra line spa
ing to allow for mathemati
al expressionsto be interleaved in the text with little visual impa
t.Some general 
onventions are not des
ribed in the list of notation, and we list themhere instead: All sets are printed using a bold font, su
h as S, all de
ision problemsand IDITs are printed using a 
aligraphi
 font, like I, all variables are printed usingnormal font, su
h as X, and all states of variables are presented in lower 
ase letters,e.g. x and ~d. Whenever we refer to a set of unnamed variables of an unspe
i�ed type,we denote it Z, and sets of unnamed dis
rete variables are denoted D. De
isionvariables are generally denoted by D, 
han
e variables as C, and variables of anunspe
i�ed type as X or Y . All notation are o

asionally subje
t to subs
ripts orsupers
ripts.



Chapter 2
In
uen
e Diagrams InvolvingTime
In this 
hapter we introdu
e IDITs, whi
h is a representation language 
onstru
tedfor representing de
ision problems involving quantitative measures of time. The rep-resentation language is based on that of in
uen
e diagrams, and most of the se-manti
s is similar. It was originally proposed in [Broe et al., 2003℄. We introdu
e itinformally and des
ribe it formally in its original form in Se
tion 2.1. For furtherelaborations on the original representation language and the motivation behind it,see [Broe et al., 2003℄. In Se
tion 2.2 some alterations, whi
h address minor short-
omings of the original representation language, are des
ribed and in
orporated inthe formalization of IDITs. Se
tion 2.3 introdu
es a temporal ordering relation forthe elements in an IDIT, and a de�nition of what a wellde�ned IDIT is.2.1 The Original Representation LanguageAn IDIT is a model of a de
ision problem and its asso
iation to a de
ision taker.The model is a dire
ted a
y
li
 graph, whose nodes represent de
ision and 
han
evariables as well as lo
al utility fun
tions. In this report we refer to nodes represent-ing variables as variables and nodes representing lo
al utility fun
tions as utilities,when this introdu
e no ambiguity. For a formal introdu
tion to the basi
s of graphsand explanation of graph 
on
epts used in this report, see [Broe et al., 2003℄.5



6 Chapter 2. In
uen
e Diagrams Involving TimeIntrodu
tion to IDITsThe representation language is designed to deal with de
isions that span periodsof time. For instan
e, a farmer's de
ision on whether to harvest his �elds using athorough method, a qui
k method, or not at all would span a period of time rangingfrom an instant to several days. Given that de
isions 
an span periods of time, andassuming further that no two de
isions 
an take pla
e simultaneously, it is 
lear,that a de
ision should have asso
iated with it a point in time, where it initiates,and its duration. Colle
tively, we 
an en
ode this information by, for ea
h de
ision,D, of a de
ision problem involving time, atta
hing two variables: The initiationtime of the de
ision, denoted init(D), and the end time of the de
ision, denotedend(D). The period a de
ision, D, spans is, thus, the variable end(D) � init(D).[Broe et al., 2003℄ further introdu
es an assumption 
alled no-delay , whi
h basi
allystates that when a de
ision ends the next de
ision initiates immediately. That is,for two de
isions, Di and Di+1, where Di+1 is the de
ision presented to the de
isiontaker after having de
ided on Di, it holds that init(Di+1) equals end(Di). In otherwords, there is no unexplained delay between the two de
isions. If we assume thatthe �rst de
ision of some de
ision problem is taken at some prede�ned point intime, e.g. 0, we 
an, due to the no-delay assumption, omit variables representinginitiation times when des
ribing the de
ision problem.Some de
isions might be worth postponing for the de
ision taker. The farmer, forexample, might postpone his de
ision on whether to harvest, while some laboratoryexamines samples of his 
rops to estimate its quality. Representing aspe
ts like thisis a

omplished by introdu
ing some de
isions regarding possible waiting periods.In the example the farmer would be fa
ed with two de
isions: The harvest de
isionand a de
ision on whether to wait for some period before de
iding on the harvestde
ision and, if so, for how long. Su
h a de
ision is 
alled a wait de
ision. As theexa
t length of the waiting period might be 
louded in un
ertainty, the wait de
isionde
omposes into the de
ision itself and the resulting waiting time. [Broe et al., 2003℄assumes that the de
ision itself only a�e
ts the a
tual waiting time and no otheraspe
ts of the IDIT. As su
h, the 
hoi
e taken have no e�e
t in itself, but onlythrough the inherent a
tual waiting period resulting from it. Therefore, it is 
alleda non-intervening 
hoi
e.Even though we deal with de
isions that 
an be postponed, it is important tostress that we assume that no de
ision 
an be 
onstrained to be taken at onlysele
t moments in time. A

ording to our per
eption of modelled de
ision pro
esses,de
isions do not just appear or disappear. Some 
hoi
e is always open for taking,no matter when the de
ision is initiated. In some 
ases, this 
hoi
e might simplybe to do nothing, but that is still a 
hoi
e. Furthermore, as IDITs are supposed tomodel de
ision pro
esses, we disregard 
ir
umstan
es and events whi
h have timespans, i.e. initiation and end times are not modelled for these. This is elaborated on



2.1 The Original Representation Language 7later in this se
tion. With these preliminaries on the nature of de
ision problemsinvolving time dealt with, we look deeper into the 
onstituents of IDITs.Chan
e variables are exhaustive groupings of mutually ex
lusive 
ir
umstan
es orevents that lie outside the de
ision taker's dire
t 
ontrol, and de
ision variables,sometimes simply 
alled de
isions, are exhaustive groupings of mutually ex
lusivea
tions that are dire
tly 
ontrollable by the de
ision taker. Lo
al utility fun
tionsare assumed to be an additive de
omposition of some total utility fun
tion, whi
h isa real-valued fun
tion over the 
on�gurations of the variables in the diagram, whi
hre
e
ts the de
ision taker's preferen
es. When spe
ifying the utility fun
tion, thisde
omposition property is usually exploited, and only the lo
al utilities are de�ned.The 
han
e variables are furthermore partitioned into time variables, whi
h have
ontinuous state spa
es, and the remaining 
han
e variables, referred to as ordinary
han
e variables, whi
h all have �nite and dis
rete state spa
es. Likewise, de
isionvariables are divided into wait de
isions, whi
h have 
ontinuous state spa
es, andthe remaining de
ision variables, ordinary de
isions, whi
h have �nite and dis
retestate spa
es. A time variable symbolizes the end time of exa
tly one de
ision,and a wait de
ision symbolizes a period of waiting time. For a variable, X, itsstate spa
e is denoted as sp(X). For a set of variables, S, the Cartesian produ
t�fsp(X)jX 2 Sg is denoted as the state spa
e of S, written sp(S). If a variable,X, is known to be in some state, x, we say that it is instantiated and write X = x.In an IDIT, ordinary 
han
e variables are depi
ted as 
ir
les, ordinary de
isions asre
tangles, utilities as diamonds, time variables as double bordered semi
ir
les, andwait de
isions as double bordered re
tangles. A time variable is only allowed to bein the diagram if it is dire
tly asso
iated with a de
ision, and a de
ision is at mostallowed to have one time variable dire
tly asso
iated with it. A formal 
lari�
ationof what it means for a time variable to be dire
tly asso
iated with a de
ision isgiven in the end of this se
tion. For now, we rely on the reader's intuition.In order to minimize the number of ar
s in the diagram, a time variable and theasso
iated de
ision are drawn as an entity 
onsisting of a re
tangle and a semi
ir
le.We present an example of a de
ision problem involving time and an IDIT modellingit, before dis
ussing �ner aspe
ts of the representation language.Example 1The example, whi
h is inspired by a somewhat similar example in [Broe et al., 2003℄, revolvesaround the previously introdu
ed farmer and his 
rops. Whenever a variable is introdu
edin the example its name is shown in parenthesis following the des
ription of its meaning, like(This).At the outset of the de
ision problem the farmer, who we refer to as Frank, is fa
ing har-vesting season. His 
rops are of some quality (Q
1), whi
h is hard to evaluate pre
isely. Theonly hint Frank has got is the amount of weed in the �eld (We1). However, he 
an order atest (Te) of his 
rops' quality by an external laboratory, whi
h has spe
ialized in this sort of



8 Chapter 2. In
uen
e Diagrams Involving Timetask. The test takes ten days and 
osts $1000 to perform. No matter if Frank takes the test,his next de
ision is 
on
erned with whether he should spray (Spr) his �eld against weed.He 
an 
hoose to de
ide on this straight away, based solely on his subje
tive estimate of thestate of his 
rops a
hieved from the information on the amount of weed in the �eld, or he
an postpone the de
ision, until a test result (Re) is ready.Depending on whether he sprays or not, the de
ision on spraying 
an take some time, andeven after he has 
ompleted any spraying, government imposed health regulations prohibithim from harvesting in a period of seven days after this has taken pla
e. Thus, dependingon his 
hoi
e on spraying, he must de
ide whether to wait for a while before de
iding onharvesting (Ha). Another fa
tor that might in
uen
e that 
hoi
e is the result of the test ofhis 
rops. If he de
ided to spray without waiting for the test result, and he is for
ed to waitfor seven days in addition to the period of, say, one day used on spraying, he 
ould de
ideto wait an additional two days to view the test result before de
iding whether to harvest.Of 
ourse, Frank has the option of taking a dire
t look at the 
urrent level of weed in his�elds (We2), whi
h 
an give him some indi
ation of the 
urrent quality of the 
rops (Q
2),but his estimate will be more pre
ise if he knows the result of the test of the quality beforespraying.Besides the estimated quality of the 
rops at harvesting time, Frank a

esses further infor-mation in the form of the weather fore
ast (Wf ). If it turns out to be raining for a good dealof the forth
oming days, even the qui
k harvesting method might take drasti
ally longer to
omplete than expe
ted, and furthermore, the value of the 
rops would diminish if it getswet.Considering further that every other farmer in the area is trying to beat Frank to the �nish-ing line and get their 
rops onto the market, while it is still a sought after 
ommodity, Frankmust, throughout all of his de
isions, bear in mind that the value of his 
rops, no matter thequality, is inversely proportional to the point in time he 
an deliver it.The stru
ture of Frank's de
ision problem is modelled by the IDIT portrayed in Figure 2.1.Time is measured in days.Stri
tly speaking, the diagram in the �gure is not a proper IDIT as des
ribedin [Broe et al., 2003℄ be
ause of the dashed arrow from the time variable next to the de-
ision Spr to Ha and the dashed arrow from the time variable next to the de
ision Ha 0 toHa both being present. We return to this issue in Se
tion 2.2.The nodes that have not been introdu
ed this far in
lude the three utilities CTe , CSpr , andRCr , whi
h represent the 
ost of any test being 
arried out, the 
ost asso
iated with anyspraying, and the eventual revenue of the harvested 
rops, respe
tively. Furthermore, twowait de
isions, Spr 0 and Ha 0, symbolize the time periods Frank waits before de
iding onSpr and Ha, respe
tively. The 
han
e variable Gw represents the global weather situation,around the time Frank 
hooses whether to harvest. It a�e
ts the lo
al weather during theharvesting period (W ) and the previously introdu
ed weather fore
ast. The double-borderedsemi
ir
les atta
hed to de
isions Spr 0, Spr , Ha 0, and Ha represents end(Spr 0) = init(Spr),end(Spr) = init(Ha 0), end(Ha 0) = init(Ha), and end(Ha), respe
tively. init(Te), end(Te),



2.1 The Original Representation Language 9

CSprCTe
RCrTe Spr 0 Spr Ha 0 Ha

We1 We2Q
1 Q
2

GwWf W
Re t � 10
Figure 2.1: An IDIT of the farmer's problem.and init(Spr 0) are all assumed to have the value 0, and end(Te) = init(Spr 0) is, therefore,not shown expli
itly in the diagram. Throughout this report we refer ba
k to this exampleand the variables and relationships introdu
ed.Semanti
s of IDITsAs stated previously, the time variables symbolize points in time and are ea
hrequired to be asso
iated with a de
ision. The semanti
s of the unique time variableasso
iated with a de
ision is the point in time the de
ision has been implementedand any a
tions inherent in the 
hoi
e 
hosen has been performed. If no timevariable is asso
iated with a de
ision, it is assumed to be taken instantaneously,and it is 
alled an instant de
ision. Te in Example 1, for instan
e, is an instantde
ision, as it 
an be 
arried out in an instant, no matter if the 
hoi
e is to ordera test or to do nothing. Conversely, Ha is not an instant de
ision, even thoughit 
an be 
ompleted in an instant as well, by 
hoosing not to harvest. De
isionswith asso
iated time variables we 
all de
isions involving time. Wait de
isions arerequired to be de
isions involving time due to their semanti
s.Ar
s in an IDIT 
an be labelled, either dashed or solid, and represent eitherinformational pre
eden
e, probabilisti
 dependen
ies, or fun
tional dependen
ies.We go through the allowed possibilities one by one below.A solid ar
 going into a de
ision variable represents informational pre
eden
e. Thatis, the state of the variable the ar
 emanates from is known immediately before



10 Chapter 2. In
uen
e Diagrams Involving Timede
iding upon the de
ision represented by the de
ision variable. These kinds of ar
sare 
alled informational ar
s and are allowed to have guards asso
iated with them.A guard is a boolean fun
tion shown as a label on the ar
, like it is the 
ase on thear
 from Re to Spr in Example 1. The guarded ar
 signi�es that the variable the ar
emanates from, 
alled the guarded variable, is only observed when de
iding uponthe de
ision it goes into, if this de
ision is initiated at a point in time where theguard evaluates to true. As an example, Re in Example 1 is observed immediatelybefore de
iding upon Spr , only if init(Spr ) takes on a value greater than or equalto 10, mirroring the fa
t that the test takes ten days to 
omplete.The t referred to by a guard on an ar
 going into a de
ision, D, is always init(D),and not any other points in time the observed variable happens to be probabilis-ti
ally dependent on. This re
e
ts the philosophi
al view that the time dependentobservation or non-observation of a variable is solely a result of the point in timethe observation is attempted. Other dependen
ies regarding observation might bethought of. One is to allow observation to hinge on 
on�gurations of other variablesin the modelled de
ision problem. This lies outside the s
ope of this report, though,and the motivation for 
onstru
ting the IDIT representation language in the �rstpla
e. Adapting IDITs to 
are for these kinds of relationships might be a topi
 offuture resear
h. [Nielsen and Jensen, 2000℄ presents te
hniques for representing thisin settings that do not involve time.No-forgetting is assumed, whi
h means that observed variables and de
isions de
idedupon are remembered when de
iding upon subsequent de
isions. For instan
e, thestate of We1 in Example 1, observed when the farmer de
ides on Te, is rememberedwhen de
iding upon ea
h of Spr 0, Spr , Ha 0, and Ha 0. If no-forgetting was notassumed, a modeller of a de
ision problem would have to expli
itly draw ar
sfrom an observed variable, to every de
ision where it might be relevant, and thede
ision taker would remember it. Both requirements are not easily seen to beful�lled: Knowing the state of a variable might allow a de
ision taker to 
hoose abetter 
hoi
e at a de
ision, whi
h seemingly have nothing to do with that variable,and if some de
ision problem spans several years the set of variables remembered
orre
tly by the de
ision taker 
annot be taken for granted. Some representationlanguages do not assume no-forgetting, e.g. LIMIDs[Lauritzen and Nilsson, 2001℄,but through expli
itly assuming no-forgetting, the issues elaborated on above areavoided. In addition to no-forgetting, it is assumed that the value of time variablesrepresenting end times of de
isions, whi
h have been de
ided upon, are rememberedat subsequent de
isions.



2.1 The Original Representation Language 11Guarded variables are subje
t to a spe
ial kind of no-forgetting, 
alled extendedno-forgetting . Basi
ally, every guarded ar
 going into a de
ision is \inherited" byfollowing de
isions. This means that, even if a variable is not observed at a de
ision,it might be
ome observed before one of the next de
isions are initiated and, thus,be rea
ted on. For example, Re in Example 1 would not be observed when de
idingupon Spr if the initiation time of Spr is, say, 0. However, if Frank de
ides to spraywith some 
hemi
al that takes four days to use and subsequently waits for thespe
i�ed period of seven days before de
iding upon harvesting, then Re will beobserved immediately before de
iding upon harvesting. This re
e
ts the fa
t thatthe test result would be in Franks possession at day 11, where he initiates hisde
ision on harvesting. Further elaboration on this topi
 is presented in Se
tion 2.2.A dashed ar
 going into a de
ision, D, from some variable, X, signi�es that thestate spa
e of D is a fun
tion over the state spa
e of X. In other words, the set ofavailable 
hoi
es at D is restri
ted by the value taken on by X. X is said to be in thedomain of the restri
tion fun
tion, rD, of D, written X 2 dom(rD). For instan
e, inExample 1, the set of available 
hoi
es at Ha is restri
ted by the 
hoi
e taken at Sprand the points in time represented by end(Spr ) and end(Ha 0): Choosing to spraywith some 
hemi
al and not waiting for the pres
ribed period of seven days renderthe 
hoi
es for harvesting impossible. As the 
on
ept of restri
tion relies on statesof the world, whi
h are rendering 
ertain 
hoi
es impossible, it is required that norestri
ting variable 
an be unobserved. It would make little sense to be preventedfrom doing something, with no knowledge of why this is so. In graphi
al terms, noinformational ar
s are allowed to be both guarded and dashed.Turning our attention from informational ar
s, a solid ar
 going into a 
han
evariable represents that the variable is probabilisti
ally dependent on the variablethe ar
 emanates from. If the parent variable is a time variable, the semanti
sasso
iated with this is that the probability distribution of the 
han
e variable variesover time. The probability distribution that is to be applied is then the one 
orre-sponding to the point in time represented by the parent time variable. Therefore,two time variables are not allowed to be parents of the same 
han
e variable. We2in Example 1 is an example of a variable whose probability distribution varies overtime. Only observed variables are allowed to follow probability distributions thatvary over time. The reason for this is the semanti
s just des
ribed: The probabilitydistribution that is to be applied 
orresponds to a point in time. If the variable isnot observed, the point in time it is realized 
annot be established uniquely, and theprobability distribution that is to be applied 
an, 
onsequently, not be identi�ed.



12 Chapter 2. In
uen
e Diagrams Involving TimeThe joint distribution of su
h an unknown point in time and the 
han
e variable
an be en
oded by the marginal distribution for the 
han
e variable, though.At this point we return to the issue of events spanning periods of time, whi
h wedeemed prohibited in the beginning of this se
tion. If an ordinary 
han
e variable
ontains some state, whi
h represents an event that spans a period of time, itwould be possible to atta
h an initiation and end time to this variable. Theywould represent the point in time the event starts and the point in time it expires.However, as a 
han
e variable is supposed to in
lude states, whi
h are mutuallyex
lusive and exhaustive, some of the other states of the variable must representthe possibility of the event not happening. That begs the question of how we aresupposed to determine an initiation time or, indeed, an end time of something thatdoes not happen? In other words, the semanti
s of the initiation and end time ofthe 
han
e variable seem to be de�ned for sele
t states of the variable only.This problem is not relevant for de
ision variables. To see why, we need to examinethe nature of the two kinds of variables. De
ision variables 
ontain 
hoi
es of whi
hone must be sele
ted by the de
ision taker. It makes no sense to enquire what thestate of a de
ision variable is, at points in time prior to it being presented to thede
ision taker. Enquiring the state of a de
ision, at some point in time after thede
ision has been taken, is irrelevant as it remains �xed on
e it has been taken.Chan
e variables seen as representations of states of the world, 
an, on the otherhand, always be enquired. Even if some event would happen in a given time interval,the variable takes on spe
i�
 values in points in time outside of this interval.Therefore, initiation and end times of 
han
e variables are asso
iated with somesemanti
al un
ertainty. Far more meaningful to deal with the point in time thevariable is observed and its state at this point. That is, 
on
eive a 
han
e variableas a snapshot of the state of the world, at the point in time it is observed. Forinstan
e, a 
han
e variable representing the deposit on a bank a

ount allows forno obvious initiation time nor end time. When we ask the state of su
h a 
han
evariable, we are implying that what we really want to know, is the state of somevariable, whi
h represents the deposit on the a

ount at some spe
i�
 point in time,for instan
e the deposit on the a

ount at January 1st. Therefore, in IDITs thereis no initiation time nor end time of variables, but 
han
e variables are allowed tobe probabilisti
 dependent on a time variable if they are observed at a de
isioninitiated at the point in time represented by that time variable.The natural semanti
al interpretation of a guarded ar
 going into an ordinary
han
e variable, C, from some variable, X, would be that C is only probabilisti




2.1 The Original Representation Language 13dependent on X if C is observed at points in time, at whi
h the guard evaluates totrue. In 
ontrast to the semanti
s of guards on informational ar
s, however, thisinformation represents no stru
tural signi�
an
e to the de
ision pro
ess modelledby the IDIT, and the information is already found in the probability distribution ofC. Using guarded ar
s, in this 
ase, is merely a visualization of a spe
i�
 attributeof the probability distribution of C, namely that for some values of the parent timevariable the state of C is independent of the state of X. Other attributes of theprobability distribution, in
luding independen
ies arising from instantiation of othervariables than the time variable, seem to be equally relevant, but are not shown inin
uen
e diagrams, whi
h IDITs are sought to be 
ompatible with. Therefore, ar
sinto ordinary 
han
e variables and utility fun
tions are not allowed to be guarded.Ar
s into 
han
e variables are allowed to be dashed, however, if the variable is a timevariable. In that 
ase, the ar
 indi
ates a probabilisti
 relationship of deterministi
nature. An example 
ould be an ar
 from a 
han
e variable Temperature to atime variable, end(D), representing the time some de
ision, D, involving 
hemi
alrea
tions �nishes. If the temperature is low , the time taken 
arrying out D wouldtake, say, two hours more than it would, had it been high. To signify this predi
tablerelationship, the ar
 from Temperature to end(D) should be dashed. A similararrangement for ar
s going into ordinary 
han
e variables 
ould be envisioned, butthis 
on
i
ts with 
urrent standards in in
uen
e diagrams to whi
h IDITs have beendesigned to be 
ompatible. Therefore, dashed ar
s into ordinary 
han
e variablesare prohibited. This topi
 is further dis
ussed in Se
tion 2.2.Ar
s into utilities indi
ate fun
tional dependen
ies. That is, the lo
al utility fun
tionrepresented by a utility node is a fun
tion over the state spa
e of all variables thatare parents of the utility. These ar
s are only allowed to be solid and non-guarded.Guarded ar
s are not allowed for the same reason as they are not allowed into 
han
evariables, namely that it 
on
i
ts with the representation of in
uen
e diagrams,and that the information is already stored in the utility fun
tion itself. The samereasoning applies for not allowing dashed ar
s. Of the parent variables of a utility,only one is allowed to be a time variable. If one su
h variable exists, it signi�es thatthe utility takes on a di�erent stru
ture for ea
h point in time, and that the a
tualstru
ture is determined by the point in time represented by this time variable. RCrin Example 1 is dependent on the point in time Ha ends, for instan
e, in that thevalue of some �xed amount of 
rops of some �xed quality takes on di�erent valuesdependent on the time it is sold.In the graph there must exist a dire
ted path in
luding all de
ision and time
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uen
e Diagrams Involving Timevariables. This path indi
ates the temporal ordering of these, in the sense that if atime or de
ision variable, X, is prior to a time or de
ision variable, Y , on this path,then the point in time represented by X, or init(X) if X is a de
ision, is beforeor equal to the point in time represented by Y , or init(Y ) if Y is a de
ision. Thediagram must be 
onstru
ted, su
h that any pair of time variables are separated byat least one de
ision on this path. This is due to the previously introdu
ed no-delayassumption.The semanti
s asso
iated with ar
s des
ribed above share a 
ommon denominator:All ar
s 
onvey inter-variable stru
tural aspe
ts of de
ision problems. These kindsof aspe
ts are 
alled qualitative aspe
ts. In 
ontrast, we �nd that intra-variableaspe
ts, su
h as state spa
es, are not evident from the pi
torial representationof the diagram. In addition to the graphi
al stru
ture of an IDIT, we, therefore,de�ne one or more realizations for it. A realization en
apsulates some of thesenon-stru
tural | also 
alled quantitative | aspe
ts of a de
ision problem and
onsists of probability distributions for 
han
e variables, lo
al utility fun
tions, andrestri
tion fun
tions. Additional terms for qualitative and quantitative aspe
ts areglobal and lo
al aspe
ts, respe
tively. In
uen
e diagrams 
learly divides qualitativeand quantitative information into diagrams and realizations, and IDITs, whi
h wasdesigned to be 
ompatible with in
uen
e diagrams, attempts to retain this division.A number of further restri
tions apply to the topology of the IDIT, and we gothrough these after having set up a formal notation, as this allows us to dis
ussIDITs with greater pre
ision. Realizations are also subje
t to restri
tions that areeasier understood using formal notation, and a thorough des
ription of these is,therefore, postponed for now.
Formalization of IDITsAs des
ribed above, an IDIT, I, is de�ned to be a dire
ted a
y
li
 labelled graph,(W I ;LI ;EI), where W I 
onsists of 
han
e variables, de
ision variables, and lo
alutility fun
tions, LI is a set of labels, and EI is a set of ar
s. The set of all 
han
evariables in I is denoted as V IC , the set of all de
ision variables as V ID, the set ofall time variables as V IT , the set of all wait de
isions as V IW , and the set of all lo
alutility fun
tions as V IU . We have that V IT � V IC and V IW � V ID. Furthermore, theset of all variables, V IC [V ID, is denoted as V I , the set of ordinary 
han
e variables,V IC n V IT , as V IOC , and the set of ordinary de
ision variables, V ID n V IW , as V IOD.



2.1 The Original Representation Language 15Thus, V IT [ V IOC [ V IW [ V IOD [ V IU =W I ;where the sets on the left-hand side of the equality sign are pairwise disjoint. If theIDIT, I, is obvious from the 
ontext we omit its name from the notation, e.g. simplywrite V D instead of V ID.The set of labels, LI , 
onsists of boolean fun
tions having the real numbers as theirdomain. That is, LI � ff jf : R ! ftrue; falsegg. The set of ar
s, EI , is partitionedinto two disjoint sets: A set of solid ar
s, EIs , and a set of dashed ar
s, EId . As forsets of variables, we omit the name I from the notation, when it is obvious from the
ontext. An ar
 (X;Y; f) in E is to be interpreted as an ar
 emanating from nodeX going to node Y labelled with the fun
tion f . Ar
s labelled with the 
onstantfun
tion true are drawn with no label for sake of 
larity. Ar
s labelled with the
onstant fun
tion false are semanti
ally equivalent to the absen
e of an ar
, andare, therefore, not drawn in the diagram.The pla
ement of ar
s labelled with non-
onstant fun
tions is restri
ted to informa-tional ar
s. That is, if (X;Y; f) is in E, and f(t1) 6= f(t2) for two distin
t t1 and t2in R, then Y must be in V D. Additionally, dashed ar
s are only allowed going intode
ision or time variables. Thus, if (X;Y; f) is in Ed, then Y must be in V D [ V T .The set of all parents of a node, X, i.e. the nodes from whi
h an ar
 that goes intoX emanates, we denote as pa(X), and the set of 
hildren, i.e. the nodes from whi
han ar
 emanating at X goes into, as 
h(X). The set of all parents 
onne
ted to anode, X, with dashed ar
s we denote pad(X).The previously mentioned temporal order of de
isions and time variables is extendedto an ordering relation, whi
h imposes a partial order on all variables, denoted �.For any pair of time or de
ision variables, X and Y , X is temporally prior to Y ,written X � Y , if and only if there is a path from X to Y . As stated previously,the ordering of time and de
ision variables indu
ed from the diagram is requiredto be a total ordering. This de�ned ordering su�ers from some 
aws, all asso
iatedwith guarded ar
s. For instan
e, when guards are not ful�lled, and ar
s 
onsequentlyare per
eived as not being present, we might experien
e a situation, where there is,in e�e
t, no dire
ted path between two de
isions, and the ordering, thus, fails toemerge. We look further into these problems in Se
tion 2.3. For now, we disregardthese aspe
ts and further state that for any ordinary 
han
e variable, X, and somede
ision or time variable, Y , X � Y if and only if (X;Y; f) is in E, for some f inL, or there exists some de
ision or time variable, Z, su
h that X � Z and Z � Y .Furthermore, if an ordinary 
han
e variable, X, is not a parent of any de
ision or
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e Diagrams Involving Timetime variable, then Y � X, for any time or de
ision variable, Y . This re�nement issubje
t to further dis
ussion in Se
tion 2.3 as well.Some stru
tural 
onstraints need to be ful�lled for a graph to qualify as an IDIT:� No node is allowed to have more than one time variable as parent, i.e.jpa(X) \ V T j � 1, for all X inW . This restri
tion re
e
ts that no variable orutility 
an be observed or realized at more than one point in time.� A node has no 
hildren, if and only if it represents a utility. That is, 
h(U) = ?i� U 2 V U . This requirement is similar to what is usually required of nodesin in
uen
e diagrams and seeks to prevent barren nodes and 
hildren of utilitynodes, the latter having no 
lear semanti
al interpretation. Barren nodes arevariables that in
uen
e no other part of the de
ision problem. They are some-times in
luded in models of de
ision problems in order to render the problemeasier understood by people with pre
on
eived notions of the me
hani
s under-lying the problem. They are, when all is said and done, irrelevant to a solutionmethod, su
h as the one presented in this report, though.� There should exist a path, (X1; : : : ;Xn), in the diagram, su
h thatV D [ V T � fX1; : : : ;Xng. This path ensures that the temporal ordering, �,is a total ordering over all time and de
ision variables, but as mentioned above,this is subje
t of further dis
ussion in Se
tion 2.3.� Ea
h time variable must be a 
hild of some de
ision variable. That is, if T 2 V Tthen jpa(T ) \ V Dj � 1. This stru
tural requirement stems from the no-delayassumption introdu
ed earlier in this se
tion. If more de
isions are parents ofthe same time variable, the maximal one, with respe
t to �, is the de
isionwhose end time is represented by the time variable. The time variable is saidto be dire
tly asso
iated with this de
ision. The remaining parent de
isions are
onditionals for the probability distribution of this end time variable.� A wait de
ision must have exa
tly one 
hild variable, and that variable mustbe a time variable, i.e. if D 2 V W , then 
h(D) = fTg and T 2 V T . Thisrequirement is meant to restri
t the possible impa
t, on the variables in therest of the diagram, of what is per
eived as a non-intervening de
ision.� There must be a dashed ar
 between any two time variables, whi
h are 
on-se
utive in the order obtained from applying � to the set of time variables.That is, for any Ti; Tj 2 V T , where Ti � Tj , and there is no Tk 2 V T , su
h



2.1 The Original Representation Language 17that Ti � Tk � Tj, the ar
 (Ti; Tj ; true) must be in Ed. This requirementis meant to re
e
t that a time variable 
annot take on a value that is lowerthan the one the time variable before it did, or, in other words, that the timemodelled always progresses and never regresses. Of 
ourse the stru
ture only
ommuni
ates that restri
tions between time variables are in pla
e. The a
tualrestri
tions, ensuring this progression of time, must be de�ned in the probabil-ity distributions of the variables. We 
all an ar
 from a time variable to a timevariable a temporal ar
.� An ordinary 
han
e variable is only allowed to have a time variable as parent,if it is observed when de
iding upon a de
ision, whi
h initiates at the point intime represented by this time variable. Formally, if C 2 V OC , and there existssome T 2 pa(C), where T 2 V T , then there exists some D in 
h(C), whereD 2 V D and init(D) = T . The need for a unique \trigger point" for ordinary
han
e variables to be dependent on time, des
ribed previously, is the reasonfor this requirement.� An ar
 is not allowed to be both dashed and guarded. Formally, if (X;Y; f)is in Ed, then f(ti) = f(tj), for all ti and tj in R. The reasoning for this isthe understanding that a variable, whi
h 
an restri
t a de
ision, 
annot beunobserved or observed after the de
ision has been taken, sin
e this 
ould leadto paradoxes, as des
ribed above.Given this formal syntax of IDITs and the above list of stru
tural requirements thekeen-eyed reader might protest that the IDIT pi
tured in Figure 2.1 is not reallyan IDIT. For instan
e, there are no temporal ar
s, and there is no path through alltime and de
ision variables. This is due to it being shown in its 
ompressed form, asopposed to the blown-up version the formal syntax des
ribes. The 
ompressed formof an IDIT is a result of exploitation of two observations, namely that ea
h timevariable should have a de
ision as parent, and that the temporal ar
 from one timevariable to the next is always present. By pi
torially atta
hing all time variables tothe de
isions whose end times they represent no information is lost, as if the timevariable was to be \ripped" from its parent de
ision, there would, in every 
ase,be an ar
 from the de
ision to the time variable. Additionally, as the ar
s between
onse
utive time variables are required to always be present, 
onsistently and 
on-ventionally omitting them results in no information loss. Furthermore, the 
ouplingof a time variable to the de
ision whose end time it represents, emphasizes the strong
on
eptual bond between these.
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Spr 0 Spr Ha 0(a)

Spr 0 SprHa 0(b)Figure 2.2: a) Compressed form of an IDIT. b) Blown-up version of the same IDIT.Figures 2.2(a) and 2.2(b) show two versions of a part of the IDIT in Figure 2.1.The one in Figure 2.2(a) 
orresponds to the 
ompa
t form, whereas the one in Fig-ure 2.2(b) shows what the blown-up version would look like. The �gures should
onvey the di�eren
e in 
larity of the two s
hemes.As mentioned earlier, ea
h IDIT allows for one or more realizations. A realizationfor an IDIT, I, is a four tuple, (�I ;	I ;�I ;�I), where the elements of �I areprobability distributions, the elements of 	I are lo
al utility fun
tions, the elementsof �I are density fun
tions, and the elements of �I are restri
tion fun
tions. Morepre
isely, for ea
h node, X, inW I� a 
onditional probability distribution P (Xjpa(X)) is in �I i� X 2 V IOC ,� a lo
al utility fun
tion uX : sp(pa(X)) ,! R, where ,! denotes a partialfun
tion, is in 	I i� X 2 V IU ,� a density fun
tion fX : sp(pa(X))� R ! [0;1[, where R1�1 f(~
; x)dx = 1, forall ~
 in sp(pa(X)), is in �I i� X 2 V IT , or� a restri
tion fun
tion rX : sp(pad(X)) ,! 2sp(X) n f?g is in �I i� X 2 V ID.As for other sets, we omit the name of the IDIT in the notation if it is obviousfrom the 
ontext. It is worth noti
ing that, when spe
ifying a realization for anIDIT, some 
on�gurations of parent variables for some de
ision or utility might beimpossible. Consequently, the restri
tion or utility fun
tion value 
orresponding tothese 
on�gurations 
an be diÆ
ult to spe
ify by a modeller, and we, therefore,allow these fun
tions to be partial.The intuition behind a density fun
tion for a time variable, T , is that it, for
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on�guration of pa(T ), is a density fun
tion for T over the real numbers. Arestri
tion fun
tion for a de
ision, D, for any 
on�guration of pa(D), yields thepossible 
hoi
es when de
iding upon D. Even though the guards on ar
s 
an 
ontainnumeri
al attributes they are not seen as part of a realization, as their semanti
 isof a stru
tural nature.For a realization to make any sense, a restri
tion fun
tions is required to neverresult in the empty set. That is, when de
iding upon a de
ision, no matter the
on�guration of the parent variables, some 
hoi
e is always possible. Furthermore,density fun
tions are required to take on the value 0 for points in time, whi
hpre
ede the point represented by the unique parent time variable. That is, timeprogresses and never regresses.
2.2 Alterations of the Original FrameworkSome aspe
ts of IDITs, as introdu
ed in Se
tion 2.1, are not fully desirable,and in this se
tion we, therefore, propose a set of alterations to the originalrepresentation language and its interpretation. The motivation for ea
h alterationis presented along with the alteration proposal itself. As the original requirementson IDITs are modi�ed, or new requirements are added, we state it in 
learlymarked Requirement's. Ea
h requirement assumes the existen
e of a labelledgraph, I = (W I ;LI ;EI), as des
ribed in Se
tion 2.1. Similarly, when we introdu
e
on
epts, whi
h are referen
ed in the remainder of the report, we do so in 
learlymarked De�nition's.None of the alterations presented in this se
tion are required for IDITs to be afun
tioning representation language, but they are in
luded as they in
rease theexpressive powers or de
rease the level of in
onsisten
y in it. Alterations thata
tually �xes 
aws in the semanti
s of the originally proposed representationlanguage are presented in Se
tion 2.3.Presen
e of Dashed Ar
sThe �rst alteration we propose is dropping the 
onvention of drawing ar
s into timevariables dashed, if the parent variable has a fun
tional in
uen
e on the time variable.
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uen
e Diagrams Involving TimeThe reason for doing this is two-fold: First, the dashed ar
s impose restri
tions on theprobability distributions for time variables stored in the realization. The distin
tionbetween qualitative and quantitative aspe
ts is thus blurred, and an IDIT and itsrealization are tied 
loser together than ne
essary. Se
ond, to ensure 
onsisten
yar
s into ordinary 
han
e variables that represent deterministi
 relationships wouldalso have to be dashed. But that would 
on
i
t with the 
onventional semanti
s ofin
uen
e diagrams, leaving IDITs in
ompatible. Hen
e, we allow only dashed ar
sto go into de
isions.Requirement 1Ar
s whi
h are dashed or labelled with a non-
onstant fun
tion may only go into ade
ision node. That is, if (X;Y; f) is inEId , or f(ti) 6= f(tj) for distin
t real numbers,ti and tj, then Y is in V ID.Realization Time Variables for UtilitiesThe se
ond alteration stems from the observation that utilities, whi
h take onvalues depending on the spe
i�
 points in time they are realized, 
an in IDITsonly be modelled if the moment of realization 
oin
ides with the end time of somede
ision. This might not always be the 
ase, as 
an be seen by 
onsidering some�nan
ial utility, payed by a mailed 
he
k, whi
h is not 
ashed until some time afterthe de
ision, whi
h triggered the utility, ended. We remedy this, by allowing utilitynodes to have asso
iated their \own" time, in e�e
t imposing an un
ertainty onthe value of utilities. We 
all these points in time realization times of the utilitiesand draw them in IDITs as semi
ir
les atta
hed to the utility nodes they areasso
iated with. Semanti
ally, they 
orrespond to groupings of points in time wherea utility might be realized, just like end time variables represent groupings of pointsin time where de
isions end. We distinguish between the two kinds of variablesby spe
i�
ally referring to a variable representing the point in time a utility isrealized as a realization time variable, or simply realization time, though. Like timevariables, realization times must have probability distributions spe
i�ed for them,and these 
an be parameterized by other variables. This is shown in the IDIT bydrawing solid ar
s from the a�e
ting variables to the realization time. See Figure 2.3for a depi
tion of a utility dependent on time, U , with its own realization timenode, real(U). real(U) is a�e
ted by both end(D) and C1, while U is a fun
tion overreal(U) and C2.If the realization time of some utility always 
oin
ides with the end time of some
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UC1 C2

Figure 2.3: A utility with its own realization time.de
ision, we leave out the semi
ir
le and simply draw an ar
 from the end time ofthe de
ision to the utility, as des
ribed in Se
tion 2.1. If the utility does not dependon time at all, we 
onne
t no time variable to it as parent.We denote the set of all realization time variables in an IDIT, I, as V IR or, if theIDIT is obvious from the 
ontext, simply as V R.As the point in time a utility, U , is realized, is modelled as a variable, real(U), it isnatural to enquire, whether variables and other utilities 
an depend on it, i.e. if othernodes than U are allowed to be a des
endent of real(U). In this report we 
hoosenot to allow this. First of all, we do not allow some de
ision to be a des
endant ofreal(U), as it, depending on the asso
iated realizations, might introdu
e antinomieswith regards to time. These antinomies arise, if both a time variable representingan end time of a de
ision, D2, and a time variable representing the realization timeof U are lo
ated along paths from one de
ision, D1, to another, D3, as shown inFigure 2.4. In that 
ase we 
annot uniquely determine, whi
h of the variables thatshould a
t as initiation time of D3, and even if we, 
onsistently, always 
hooseeither the former or latter, some 
on�gurations of real(U) and end(D2) would yieldD3 either initiating before D2 ends, or real(U) representing a point in time afterD3 is initiated, but still known immediately before it initiates. Both s
enarios areantinomi
. Furthermore, if we were to 
hoose the variable representing the pointfarthest in time on a 
ase by 
ase basis, we would, in situations where real(U)is interpreted as init(D3), violate the no-delay assumption, as there would be anuna

ounted for delay in the de
ision pro
ess from ending D2 to initiating D3.Allowing some ordinary 
han
e variable, C, to be a 
hild of a realization time,real(U), is also prohibited, as this would, owing to the dis
ussion in Se
tion 2.1,require C to be observed. However, if C is observed, then some de
ision node mustbe a 
hild of C and, 
onsequently, a des
endant of real(U), whi
h is undesirable due
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D1 D2

U D3
Figure 2.4: An unattra
tive 
onsequen
e of allowing de
isions as des
endants of utilityrealization times. The zig-zags on the ar
s signal that there might be some interme-diate nodes on the path between the node the ar
 emanates from and the node it goesinto.to the reasons given above.Finally, we might envision some utility node, U 0, other than U , being a 
hildof real(U). Semanti
ally, this would mean that both U and U 0 are realized atthe point in time symbolized by real(U). But why atta
h real(U) to U and notU 0, then? Indeed, we 
ould a
hieve a more balan
ed representation, of su
h ashared realization time, by tearing real(U) from U and representing it as a fulldouble 
ir
le 
onne
ted as a parent to both U and U 0. This is not 
onsistentwith the approa
h used for representing end times of de
isions in the rest of thediagram, though, and although the semanti
s of the two kinds of variables aredi�erent, we feel that the 
on
eptual bond between a utility and its realizationtime is as relevant as that found between a de
ision and its end time. There-fore, we 
ontinue to draw realization times atta
hed to utility nodes as semi
ir
les,and simply abstain from 
onne
ting other utilities as 
hildren of the realization time.
Requirement 2Realization time variables are only allowed to have one 
hild, whi
h must be autility node. They are required to have one and only one time variable as par-ent. Formally, if real(U) is in V IR then 
h(real(U)) � V IU , j
h(real(U))j = 1, andjpa(real(U)) \ V IT j = 1.
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isionsThe third alteration to the stru
ture of IDITs is that we, hen
eforth, allow de
isionsto have more than one time variable as parent. IDITs, as they were des
ribedin Se
tion 2.1, prohibit all variables from having more than one time variable asparent, as this 
ould lead to 
onfusion on whi
h time variable that represents theinitiation time or instantiation time of the de
ision or 
han
e variable, respe
tively.The restri
tion is of a pedagogi
al nature when applied to ar
s going into de
isionvariables, though, as the requirement on a dire
ted path through all de
ision andtime variables ensures that the initiation time of a de
ision 
an be dedu
ed fromthe diagram, even if more time variables are parents of the de
ision.Having several time variables as parents of one de
ision would, when no-forgettingis assumed, be useless if they were all 
onne
ted with solid ar
s. In Figure 2.1,however, the variable Ha is a 
hild of both end(Spr ) and end(Ha 0). The reasonwhy it is attra
tive to have several time variables as parents of one de
ision, evenif the extra ar
s, due to no-forgetting, seems redundant, thus be
omes 
lear: Somerestri
tion fun
tions might vary a

ording to the stret
h in time between twode
isions. Even though the states of the time variables end(Ha 0) and end(Spr ) areremembered at de
ision Ha, the restri
ting e�e
t 
an only be 
onveyed to a readerby drawing the dashed ar
s. Consequently, from now on we allow de
isions to havemore than one time variable as parent, even if a set of parent time variables, withmore than one 
onne
ted with a solid ar
, is redundant information.Requirement 3No 
han
e or utility node 
an have more than one time variable as parent. That is,if X is in V IC [ V IU , then jpa(X) \ (V IT [ V IR)j � 1.Inheritan
e of Guarded Ar
sWhile on the subje
t of informational ar
s we 
omment on the nature of guardedar
s, whi
h gives rise to the fourth alteration of IDITs. Guarded ar
s, as explainedin Se
tion 2.1, are inherited by de
isions following the de
isions the ar
s go into.This is the sane approa
h if an ar
 is guarded with a boolean fun
tion, whi
h yieldsfalse for initial points in time, but from some point in time starts yielding true,like it is the 
ase in Example 1, where the result of a test is unavailable initially, butbe
omes available later on. By allowing ar
s to be inherited by later de
isions, the
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e for ea
h de
ision, and the guarded variable, thus, gets more
han
es of being observed. However, applying the same reasoning, if the guard is ofan inverse nature, i.e. it evaluates to true for early points in time but false for laterones, simply inheriting the ar
 would mean that, somehow, the guarded variablebe
omes unobserved as time progresses. Even if the phenomenon represented bythe guarded variable be
omes physi
ally unobservable, we might assume that, ifit was observable previously, its state 
an be remembered. Therefore, we alter thesemanti
s of guarded ar
s: We still interpret a guarded ar
 into a de
ision, D, tomean that the guarded variable, X, is observed immediately before de
iding on D,provided that the guard evaluates to true at init(D). However, for any de
ision, Di,that is a des
endant of D, we de�ne X to be observed immediately before, Di, ifeither the guard evaluates to true at init(Di), or it evaluated to true for init(Dj),where Dj is D or some an
estor of Di and des
endant of D. In other words, on
esome variable is observed, it stays observed, even if the 
ir
umstan
es allowing forthe observation expires.
Varying Ordering of De
isionsA further alteration to the stru
ture of the representation language 
on
erns therequirement on the graph to be a
y
li
. We now abandon the requirement for theIDIT to be a dire
ted a
y
li
 graph and allow the graph to 
ontain 
y
les underspe
ial 
ir
umstan
es. This alteration 
auses problems for the previously introdu
edtemporal ordering of variables, �, as this was heavily based on the a
y
li
 property ofIDITs. But, as were also mentioned, this ordering is subje
t to some other 
aws, andwe, therefore, disregard it for the moment and return to the matter in Se
tion 2.3.Allowing 
y
les is attra
tive as it allows for spe
i�
ation of sets of de
isions thatare not ne
essarily taken in a predetermined order, but a

ording to the point intime they, as a group, are initiated. An example should 
larify this: The IDIT inFigure 2.5 
ontains two de
isions, D2 and D3, whi
h are taken either in the order D2then D3 or in the order D3 then D2. The determining fa
tor is what time the waitde
ision D1 ends: If end(D1) is less than 10, then D3 is taken prior to D2, whereasif end(D1) is greater than or equal to 10, then D2 is taken prior to D3. This is seenfrom the guards on the ar
s forming the 
y
le (D2;D3;D2). When the de
ision takeris done taking D1, the guards on ar
s going into the next de
ision, whi
h in this
ase is either D1 or D2, are evaluated, and ar
s with guards that evaluate to false
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C1 C2U

t � 10t < 10t < 5
Figure 2.5: An example of two de
isions that are not taken in a prede�ned order.are 
onsidered to be non-existent, as des
ribed in Se
tion 2.1. No matter what pointin time end(D1) represents, exa
tly one of the guards on the two ar
s evaluates totrue. The 
y
le is thus \broken", and the ordering of D2 and D3 is evident from theresulting diagram.Two key observations regarding this arrangement should be noted, though. First,none of the de
isions involved in the 
y
le is a de
ision involving time. If one of thede
isions, say D2, had been a de
ision involving time, it would not be 
lear whatpoint in time, end(D1) or end(D2), the guard t � 10 refers to: If D3 initiates beforeD2, then t would refer to end(D1), and if D3 initiates after D2, then it would refer toend(D2). But as we do not know whether D3 initiates before D2, until the guards onthe ar
s are evaluated, the guards 
annot be evaluated, and a seemingly inextri
ablyproblem thus arises. The se
ond key observation is that the guards on the two ar
sare mutually ex
lusive and exhaustive, thereby guaranteeing that the 
y
le is brokenbefore any of its 
onstituent de
isions are de
ided on.Three approa
hes to 
y
les, whi
h honour these two observations, are� either to disallow 
y
les and thereby varying de
ision orderings,� to allow 
y
les involving instant de
isions only, or� instead of using t, use some other notation, su
h as end(D):t, to signify whattime variable ea
h guard is referring to.
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D1

D2
D3

C D4 Uend(D1 ):t�10end(D 1):t<
10 ? � 12

Figure 2.6: Problems arising from using more elaborate notation.The �rst approa
h we dismiss as it limits fun
tionality, and the se
ond approa
h wetreated in the previous paragraphs. The third, however, seems to be the most pow-erful approa
h, as it puts little restri
tion on the 
onstru
ts whi
h 
an be modelled.However, we take it that the approa
h would severely damage 
larity of IDITs andat the same time 
ripple some of the 
exibility of the language. This last point 
anbe seen by studying a modi�ed version of the IDIT pi
tured in Figure 2.5, usingthe more elaborate guards suggested as approa
h number three. The new IDIT ispi
tured in Figure 2.6. Clearly, no ambiguities arise, when determining whether theguards on the ar
s 
onne
ting D2 and D3 evaluate to true, but the guard on thear
 between C and D4 is problemati
. The variable that should repla
e the questionmark is either end(D2):t or end(D3):t, depending on whi
h of the two de
isions, D2or D3, that is taken �rst. However, we do not know, whi
h it is, until D1 has 
om-pleted, and 
ertainly not when we draw the diagram in the �rst pla
e. The problem
ould be remedied by using init(D4), but this variable is not drawn expli
itly inthe diagram, and we believe that referring to it in guards would, therefore, lead to
onfusion on behalf of the reader.Another problem, related to using more elaborate notation on guards, is the pro
essof determining, whether a 
y
le is guaranteed to be broken before any of its 
on-stituent de
isions are de
ided on. Assume for a moment that, in Figure 2.6, the guardfrom D2 to D3 was spe
i�ed as end(D0):t � 10, and that D0 is some de
ision priorto D1. Whether the 
y
le would be broken, when D1 ends, is now less 
lear than itwas before. If the two time variables, end(D0) and end(D1), were related, su
h that,



2.2 Alterations of the Original Framework 27in addition to the previously mentioned requirement on time not regressing, we hadthat end(D0) < 10) end(D1) < 10;for instan
e, the 
y
le would be guaranteed to be broken. But this would not beevident from the diagram. Taking the thought experiment even further we mightimagine 
y
les en
ompassing a sizeable number of de
isions, in whi
h the guardswould refer to lots of variables, and 
onsequently, few modellers would be ableto distinguish a legal 
y
le from an illegal one. It might be possible to automatethe pro
ess of 
he
king whether a 
y
le is guaranteed to be broken, even if theguards in it refer to several time variables. However, this would 
all for analysis and
omparisons of density fun
tions and is outside the s
ope of this report.Con
luding on this dis
ussion we settle on allowing 
y
les involving instant de
isionsonly and shun the elaborate notation mentioned in the previous paragraph. At thispoint we also brie
y tou
h upon the subje
t of probabilisti
 guards. That is, guardswhi
h evaluates to true with some probability, and not deterministi
ally, given itsparameters, e.g. t � A;A � N(6; 2). Su
h guards would have to be prohibited fromappearing in 
y
les, as the 
y
les 
ould not be guaranteed to be broken at any pointin time. We do not tou
h upon probabilisti
 guards in the remainder of this report.Requirement 4A 
y
le must 
onsist only of instant de
isions and ordinary 
han
e variables. That is,if there is a path from a variableX toX, thenX 2 V IOD[V IOC , and 
h(X)\V IT = ?.De�nition of IDITsIn 
on
lusion we de�ne the IDIT and its realizations. A number of requirements areleft untou
hed from Se
tion 2.1, and we list them here for 
onvenien
e.Requirement 5There must be a temporal ar
 between any two time variables following ea
h otherin the temporal order. That is, there exists a path, (T1; : : : ; Tn), through all timevariables, V IT = fT1; : : : ; Tng, indi
ating the temporal ordering of these.Note that temporal ar
s, whi
h 
an be dedu
ed from the rest of the diagram, arenot shown in the 
ompa
t form of IDITs shown in most �gures in this report.
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e Diagrams Involving TimeRequirement 6There must be a dire
ted path through all de
ision and time variables. That is, theremust exist a path, (X1; : : : ;Xn), in I su
h that V IT [ V ID � fX1; : : : ;Xng.Requirements 4 and 6 guarantee a total ordering of non-instant de
isions withrespe
t to time variables.Requirement 7A node has no 
hildren if and only if it is a utility node, i.e. for any node X inW Iwe have that pa(X) = ? i� X is in V IU .Requirement 7, thus, handles barren node removal as des
ribed in Se
tion 2.1.Requirement 8Ea
h time variable must be a 
hild of at least one de
ision. That is, if T is in V IT ,then jpa(T ) \ V IDj � 1.The reason that ea
h time variable needs a de
ision as parent is that their semanti
alinterpretation is to be end times of de
isions. Hen
e, it makes no sense to talk abouttime variables with no asso
iation to a de
ision.Requirement 9Ea
h wait de
ision has only one 
hild, and that 
hild is a time variable. More formally,we have that if D is in V IW , then 
h(D) = fTg, where T is in V IT .As stated in Se
tion 2.1, this is be
ause we per
eive a wait de
ision as a non-intervening de
ision, whi
h 
an only a�e
t other parts of the de
ision problemthrough the a
tual time spent waiting.Requirement 10An ordinary 
han
e variable is only allowed to have a time variable as parent ifit is observed immediately before a de
ision, whi
h initiates at the point in timerepresented by the time variable. In other words, if there is a T in pa(C) \ V IT , forsome C in V IOC , then there is a D in 
h(C) \ V ID su
h that init(D) = T .The reasoning for this was elaborated on in Se
tion 2.1.Given these requirements, we de�ne IDITs, as they are used in the rest of the report.



2.3 Temporal Ordering in IDITs 29De�nition 2.1Let I = (W I ;LI ;EI) be a dire
ted labelled graph, whose nodes, W I , 
onsist ofordinary 
han
e variables, V IOC , ordinary de
isions, V IOD, wait de
isions, V IW , timevariables, V IT , realization time variables, V IR, and utility fun
tions, V IU . Further-more, let the set of labels, LI , 
onsist of boolean fun
tions over the real numbers, i.e.LI � ff jf : R ! [true; false℄g, and the set of edges, EI , be partitioned into a setof solid edges, EIs , and a set of dashed edges, EId . If I 
onforms to Requirements 1to 10, then I is an IDIT.Additionally, the realizations we will deal with are de�ned as following.De�nition 2.2Let I be an IDIT. Then the four tuple, (�I ;	I ;�I ;�I), where the elements of�I are probability distributions, the elements of 	I are lo
al utility fun
tions, theelements of�I are density fun
tions, and the elements of �I are restri
tion fun
tions,is a realization of I if for ea
h node, X, inW I� a 
onditional probability distribution P (Xjpa(X)) is in �I i� X 2 V IOC ,� a lo
al utility fun
tion uX : sp(pa(X)) ,! R is in 	I i� X 2 V IU ,� a density fun
tion fX : sp(pa(X))� R ! [0;1[, where R1�1 f(~
; x)dx = 1, forall ~
 in sp(pa(X)), is in �I i� X 2 V IT [ V IR, and� a restri
tion fun
tion rX : sp(pad(X)) ,! 2sp(X) n f?g is in �I i� X 2 V ID.As 
an be seen, the only di�eren
e, between De�nition 2.2 and the one des
ribed inSe
tion 2.1, is the allowan
e for realization time variables, to whi
h density fun
tionsare asso
iated.2.3 Temporal Ordering in IDITsIn Se
tion 2.1, when the temporal ordering relation, �, was introdu
ed, we brie
y
ommented that it su�ers from some 
aws in 
onjun
tion with guards on ar
s. Wefurther allowed 
y
les in IDITs in Se
tion 2.2 resulting in even more strains on�. In this se
tion we explain in detail, why the original ordering relation is notsuÆ
ient for reading IDITs, and propose a new ordering relation for nodes in IDITs.Furthermore, we de�ne what it means for an IDIT to be wellde�ned and provide a
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D1 D2 D3C1C2

t > 5t < 5Figure 2.7: An example of problems related to the �-relation.method for 
he
king this.Why � failsWe start of with highlighting the 
aws of �. In the example IDIT pi
tured in Fig-ure 2.7 they are prevalent. A

ording to �, the de
ision problem modelled by thisdiagram seems to make little sense: If we try to list the variables a

ording to �, weget the total orderingD1 � end(D1) � C1 � D2 � end(D2) � C2 � D3;whi
h 
on
i
ts with the intuitive notion obtained from the diagram that C1 
anonly be observed at points in time after 5, whereas C2 
an only be observed priorto this. Furthermore, if taking D1 ends at, say, time 2, we seem to en
ounter asituation where whi
h de
ision is next is unde�ned. On the one hand there is adire
ted path from D2 to D3, whi
h, a

ording to �, means that de
ision D2 shouldbe taken prior to de
ision D3. On the other hand the semanti
s of a guarded ar
,whose guard evaluates to false, is equivalent to a non-existing ar
. Thus, as we,from the dire
ted path with no intermediate time or de
ision variables from end(D1)to D2, 
an dedu
e that init(D2) is equivalent to end(D1), we know that the guardt > 5 is not ful�lled, and 
onsequently, the very same dire
ted path, whi
h allowedus to rea
h this 
on
lusion, 
eases to exist. Choosing D3 as the next de
ision insteadis not a solution, even though the path from D1 to D3 
ontinues to be there whenthe guard t < 5 is evaluated. This is be
ause of there still being a dire
ted pathfrom D2 to D3, stating that D2 should be taken before D3. However, if we assumethat D1 has been taken and instantiate end(D1) to some value, we 
an disregardthem and 
on
lude that, even though the dire
ted path from D1 to D2 is broken,be
ause there is a dire
ted path from D2 to D3, D2 must be the �rst de
ision in
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D1 D2 D3C1C2

t > 5t < 5Figure 2.8: An example of problems related to the �-relation | further elu
idatedusing temporal ar
s.the remaining part of the diagram. Thus, D2 must be following D1 in the temporalorder. In other words, in any new de
ision problem, arising from de
iding on D1and instantiating end(D1), we 
an easily identify the �rst de
ision presented to thede
ision taker, viz. D2.If the diagram in Figure 2.7 was shown in the blown-up version, with all temporalar
s in pla
e, as in Figure 2.8, we would immediately see that end(D1) � end(D2).In 
onjun
tion with the relationships end(D2) � D3, D1 � end(D1), andD2 � end(D2), this would allow for only two orderings:D1 � end(D1) � D2 � end(D2) � D3and D1 � D2 � end(D1) � end(D2) � D3:As the se
ond of these orderings 
learly violates the no-delay assumption, the onlyordering, whi
h ful�lls the assumptions, is the �rst one. Noti
e that no additionalinformation is portrayed by the diagram, though, as the only other possibility ofpla
ing temporal ar
s, i.e. an ar
 from end(D2) to end(D1), is not allowed, as itwould result in a 
y
le involving time variables.This exer
ise seems quite elaborate and yet the 
on
lusion so vague: the de�nitionof � 
learly states that D2 follows D1 in the ordering obtained by �, if and only ifthere is a dire
ted path from D1 to D2, whi
h 
eases to be the 
ase, if we instantiateend(D1) to some value less than 5. If we add temporal ar
s to the diagram theordering seems mu
h 
learer, although no new information is 
onveyed. Thus, itmust be the ordering relation, whi
h is not wellde�ned. Furthermore, and worse,a

ording to �, we have that C1 pre
edes both D2 and D3 in the temporal ordering,but when end(D1) is instantiated to a value less than 5 that 
on
lusion seemsdubious, as the guard 
learly states that C1 is observable, only when the time haspassed 5, whi
h is not the 
ase when the de
ision following D1 is initiated. This
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e Diagrams Involving Timeproblem of observable variables 
annot be remedied simply through instantiatingvariables or disregarding parts of the IDIT. Consequently, we must de�ne a newand weaker ordering relation, �0, whi
h imposes only a partial ordering on de
isionvariables, to a

ommodate for 
y
les.In addition to these problems, extended no-forgetting su�ers from a semanti
aloversight, whi
h has re
e
ted on �. The omission is 
onne
ted to the situation inwhi
h an ordinary 
han
e variable, C, is a parent of a time variable, T , but notany de
isions prior to T . Semanti
ally, this means that the state of C a�e
ts thepoint in time represented by T . An example of this is the weather variable, W ,whi
h a�e
ts the time it takes to harvest, modelled as an impa
t on end(Ha). Insu
h 
ases, it is reasonable to assume that the impa
ting variable is observed, as itdire
tly a�e
ts the time it takes to take a de
ision. Rarely are we in a situation, inwhi
h the 
ompletion of some task have a time span whi
h is noti
eably more orless than usual, with no explanation as to why this is so.When we add the assumption that ordinary 
han
e variables a�e
ting a timevariable are observed, a logi
al step is to work this assumption into the extendedno-forgetting assumption. That is, in addition to remembering variables observedat de
isions, we also remember variables having an impa
t on time variables. Thenew ordering relation should 
onform to this, by expli
itly letting 
han
e variablesa�e
ting a time variable, be prior to this in the temporal ordering.
A New Ordering RelationFollowing the dis
ussion above we de�ne a de
ision, D, to be prior to anothervariable, X, in the temporal ordering of variables in an IDIT, I, written D �0I X,if there is a dire
ted path, from D to X in I, 
omprising no guarded ar
s. Thereasoning behind this is similar to the one applied in in
uen
e diagrams. An exampleof this is the de
ision D1, whi
h is prior to end(D1), C1, and C2 in the IDIT inFigure 2.7. It is, however, not prior to D2 nor D3 by virtue of this rule alone, asthe paths from D1 to both of them 
omprise guarded ar
s. Se
ond, we de�ne a timevariable, Ti, to be prior to a time variable, Tj , if there is a dire
ted path, P , fromTi to Tj. This is justi�ed if there is a path 
onsisting only of temporal ar
s from Tito Tj. Requirement 5 guarantees the existen
e of su
h a path from either Ti to Tjor from Tj to Ti. Requirement 4 and the existen
e of P tell us that it must be theformer, and 
on
luding that Ti �0I Tj is, thus, justi�ed. For instan
e, we 
on
luded



2.3 Temporal Ordering in IDITs 33a little earlier that the time variable end(D1) in the IDIT in Figure 2.7 had to beprior to the time variable end(D2) using a similar argument.A de
ision, D, whi
h is a des
endant of a time variable, T , is de�ned to be followingT in the temporal ordering. This is justi�ed, as the point in time represented by Tmust either be init(D), if no other time variables exists on paths from T to D, orsome point in time prior to init(D), otherwise. As an example, this, in addition totransitive 
losure introdu
ed later, is the rule whi
h allows us to 
on
lude that D2is following D1 in the IDIT in Figure 2.7. We furthermore de�ne an ordinary 
han
evariable, C, to be following a time variable, T , if C is a parent of a de
ision, D, su
hthat init(D) = T , and C is not prior to T . As the ar
 from C to D 
an be seen asbeing guarded, either by a genuine guard, if su
h a guard is shown in the diagram,or the trivial guard, t = t, its observation depends on the value of T , and hen
e, it
annot be prior to T in the temporal ordering. The additional requirement on C notbeing prior to T in the temporal ordering is pra
ti
ally redundant, as that wouldimply C is being observed at some de
ision, D0, initiating before the point in timerepresented by T . In that 
ase, C would also be a parent of D0, and the ar
 fromC to D would, 
onsequently, be redundant due to no-forgetting. An example of arelationship su
h as this, is the variable Re in Example 1, whi
h follows end(Spr 0),in the temporal ordering.Additionally, we de�ne an ordinary 
han
e variable, C, to be prior to a de
isionvariable, D, if C is a parent of D 
onne
ted with an unguarded ar
. In this 
aseC is always observed prior to de
iding on D, and we may then safely assumethat C �0 D. Had the ar
 between the two been guarded, we 
annot 
on
lude thesame, and the ordering of the two variables is thus unknown. This is re
e
ted inFigure 2.7, where the positions of the two variables C1 and C2 in the temporal orderis unde�ned prior to instantiating end(D1). The 
ounterpart of this rule is that a
han
e variable, C, is prior to a time variable, T , if C is a parent of T . An exampleof this is the variable W in Figure 2.1, whi
h is prior to the time variable end(Ha).Analogous to orderings of variables in in
uen
e diagrams, we de�ne an ordinary
han
e variable, C, that is not a parent of a de
ision variable, D, or any de
isionwhi
h might be prior to D in the temporal ordering, to be following D. This ruleonly di�ers from the one used in in
uen
e diagrams, by the spe
i�
 
he
k for Cbeing a parent of some de
ision whi
h might prior to D. In in
uen
e diagrams it issuÆ
ient to 
he
k whether C is prior to D, but in the IDIT in Figure 2.7 this wouldlead us to 
on
lude that C1 is prior to D3 in the temporal ordering, whi
h is notne
essarily the 
ase. An example of this rule is the variable C1 in Figure 2.5, whi
h
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D1 D4

D2
D3 C Ut>5 t�5 t>5Figure 2.9: Example showing the need for one of the �0-rules.is not a parent of any de
ision, and therefore, follows them all in the temporalordering. Noti
e that C2, in the same IDIT, does not fall into this 
ategory, as it is aparent of D2, and thus might be observed prior to D2. It is, however, following D1.Similarly, we de�ne a time variable, T , whi
h is not prior to a de
ision, D, to befollowing D in the temporal ordering. The reason for this, is that, as T does notrepresent a point in time prior to initiation of D, it must be a point in time afterthis. An example of the need for this rule, is the IDIT in Figure 2.9. Here theordering of D2 and end(D4), i.e. D2 �0I end(D4), is determined by this rule.Finally, we extend �0I to its transitive 
losure, i.e. X �0I Y and Y �0I Z impliesX �0I Z, whi
h seems a natural 
onvention, as we are dealing with events in theever progressing 
ow of time.De�nition 2.3The partial temporal ordering of elements in an IDIT, I, is the transitive 
losure ofthe ordering relation, �0I , having the following 
hara
teristi
s:� if there is a dire
ted path, 
omprising no guarded ar
s, from a de
ision variable,D, to some other variable, X, in I, then D �0I X,� if there is a dire
ted path from a time variable, T , to a time or de
ision variable,X, in I, then T �0I X,� if an ordinary 
han
e variable, C, is an unguarded parent of a time or de
isionvariable, X, in I, then C �0I X,



2.3 Temporal Ordering in IDITs 35D1 D2 D3t < 5t � 5 t � 10t < 10Figure 2.10: An example of an IDIT that is not wellde�ned, as no unique �rst de
ision
an be identi�ed.� if an ordinary 
han
e variable, C, is not a parent of a de
ision, D, or any otherde
ision D0, where D 6�0I D0, in I, then D �0I C,� if a time variable, T , is not prior to a de
ision, D, in I, then D �0I T , and� if an ordinary 
han
e variable, C, is a parent of a de
ision,D, in I, and T �0I Dfor some time variable, T , then T �0I C.The extended notation applying subs
ripts, used in the above de�nition, is aban-doned when the IDIT is obvious from the 
ontext.Applied to the diagram of Figure 2.7 this new relation yields the following orderingof de
ision and time variables:D1 �0 end(D1) �0 D2 �0 end(D2) �0 D3:The ordering relationships of C1 and C2 are unde�ned ex
ept for both of themfollowing end(D1) and C2 following end(D2), mirroring that C1 and C2 are notne
essarily observed before any de
ision. Returning brie
y to 
y
les we see thatthe ordering relationships of variables in the IDIT pi
tured in Figure 2.5 are thetransitive 
losure of the relationshipsD1 �0 end(D1); end(D1) �0 D2; end(D1) �0 D3; D2 �0 C1; and D3 �0 C2:No total temporal ordering of all variables 
an be obtained from these relationships,but if some de
ision, whi
h is prior to all other de
isions a

ording to �0, 
an beidenti�ed, we 
an, given instantiations of it and its end time and through evaluationof guards, identify the next de
ision and the set of variables, observed immediatelybefore that next de
ision initiates. Some diagrams, su
h as the one presented inFigure 2.10, do not have this quality, and we, therefore, say that su
h diagrams arenot wellde�ned .
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isely, we introdu
e some auxiliary
on
epts and results. These are referen
ed extensively throughout the rest of thereport. We start with simple and intuitive 
on
epts arising from applying �0 to setsof variables.De�nition 2.4Let Z be a set of variables in an IDIT, I. A variable, X, in Z is then said to be the�rst variable of Z, if X �0I Y , for all other variables Y in Z.As examples of this de�nition, the de
ision D1 is the �rst variable of the set ofde
ision variables in the IDIT in Figure 2.5, and the de
ision D3 is the �rst variableof the set fD3; C2g in the same IDIT. Noti
e that the de�nition says nothing aboutthe existen
e of a �rst variable. In fa
t, this 
annot be guaranteed, as is evident fromthe set of ordinary 
han
e variables in the IDIT in Figure 2.5. In the report, we treatthe 
on
ept of �rst variables rather 
asually and refer to them in an intuitive manner,e.g. \the �rst time variable" and \the �rst de
ision following X" to mean \the �rstvariable of the set of time variables" and \the �rst variable of the set 
onsistingof de
isions, whi
h followX in the temporal ordering obtained from �0", respe
tively.De�nition 2.5Let Z be a set of variables in an IDIT, I. A variable, X, in Z is then said to be thelast variable of Z, if Y �0I X, for all other variables Y in Z.An example of a last variable is end(D1) in Figure 2.5, whi
h is the last variablein the set of time variables. Similar to the 
on
ept of �rst variable, there is noguarantee of existen
e, and we refer to last variables in an intuitive manner in theremaining part of the report.De�nition 2.6Let I be an IDIT and X and X 0 be two variables in I. A variable, Y , is then saidto be an intermediate variable between X and X 0, if X �0I Y and Y �0I X 0.An example of this de�nition is end(D1) in Figure 2.5, whi
h is an intermediatevariable between D1 and C2. As for �rst and last variables, the existen
e of inter-mediate variables between two variables 
annot be guaranteed, and we use rather
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asual language in referring to these.In addition to these de�nitions building on �0, we introdu
e the 
on
ept of instan-tiations:De�nition 2.7Let I be an IDIT and X a variable in I. Then an IDIT in whi
h X is known to bein some state, x 2 sp(X), is 
alled an instantiation of I on X to the value x. Wewrite this as I[X 7! x℄.Examples of instantiations of the IDIT, I, in Figure 2.5, assuming that the statespa
e of D1 is fd1;:d1g and the state spa
e of C2 is f
2;:
2g, are I[D1 7! d1℄ andI[C2 7! :
2℄, whereas I[D1 7! x℄ and I[Y 7! y℄ are not. I[D1 7! x℄ is not an instan-tiation as x is not a state of D1, and I[Y 7! y℄ is not an instantiation as Y is not avariable in I.The extra information on the state of a variable 
an 
ause graphi
al representationsof the IDIT to 
hange: When an IDIT is instantiated on a time variable, T , all guardson ar
s going into intermediate de
isions, between T and the �rst time variable fol-lowing T , 
an be evaluated with t being the value T is instantiated to. Ar
s withguards, whi
h evaluate to true, 
an then be ex
hanged for ar
s with no label. Anar
 with a guard, whi
h evaluates to false, on the other hand, must be removed.However, owing to the dis
ussion of inheritan
e of guarded ar
s in Se
tion 2.2, newar
s, with the same guard, must be added from the guarded variable to de
isionsfollowing the �rst time variable following T .Likewise, in an instantiation on a variable, X, whi
h is in the domain of some re-stri
tion fun
tion for a de
ision, D, to the value x, the restri
tion fun
tion for D,rD : sp(pad(D))! 2sp(D);
an be ex
hanged for the fun
tionr0D : sp(pad(D) n fXg)! 2sp(D);where r0D(~
) = rD(~
; x), for all ~
 in sp(pad(D) n fXg), after whi
h the dashed ar
from X to D is rendered solid.Instantiations of the IDIT, I, in Figure 2.7, I[end(X) 7! 2℄ and I[end(X) 7! 12℄, areshown in Figures 2.11 and 2.12, respe
tively. Note that, as an instantiation is an IDITwith added information, it is reasonable to talk of instantiations of instantiations. Fornotational 
onvenien
e we write I[fX1;X2; : : : ;Xng 7! (x1; x2 : : : ; xn)℄, or I[S 7! ~x℄,
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D1 D2 D3C1C2 t > 5t < 5Figure 2.11: An instantiation of the IDIT in Figure 2.7 
orresponding to end(X)being 2.
D1 D2 D3C1C2 t < 5Figure 2.12: An instantiation of the IDIT in Figure 2.7 
orresponding to end(X)being 12.where S is fX1;X2; : : : ;Xng, to denote the instantiationI[X1 7! x1℄[X2 7! x2℄ � � � [Xn 7! xn℄:Also for notational 
onvenien
e, we use the term IDIT to mean an IDIT with zeroor more instantiated variables, unless otherwise expli
itly stated.Not all instantiations are sensible, though. For instan
e, an instantiation whi
h in-
lude a de
ision, but not the time variable stating when the de
ision initiates, would
onstitute a paradoxi
al situation. We de�ne the sensible instantiations:De�nition 2.8Let I[Z 7! ~
℄ be an instantiation of an IDIT, I, on a set of variables, Z, to thevalues ~z. Then I[Z 7! ~z℄ is said to be a temporally allowable instantiation if,� for all pairs of time variables, Ti = ti and Tj = tj, in Z, where Ti �0 Tj , wehave that ti � tj, and� there exists no non-instantiated time variable, T , in I[Z 7! ~z℄ and X in Z,su
h that X 6�0I[Z 7!~z℄ T .



2.3 Temporal Ordering in IDITs 39In words, we require that the values of time variables do not violate the requirementon time progression, and we do not allow a variable to be observed or de
ided upon,unless all time variables, whi
h pre
edes it in the temporal ordering, have been in-stantiated. A temporal allowable instantiation on all variables in an IDIT, whi
hdo not violate the restri
tion fun
tion of any de
ision, we 
all a de
ision s
enario.For notational 
onvenien
e we regard an IDIT with no instantiated variables as atemporally allowable instantiation.At this point, we introdu
e a short hand notation, whi
h renders methods intro-du
ed in the remainder of this report more elegantly expressed. For an IDIT, I,whi
h 
ontains both instantiated and non-instantiated time variables, we denote theset of intermediate de
ision variables between the last instantiated time variable andthe �rst non-instantiated time variable as IDI . The intuition behind this is thatea
h de
ision in IDI initiates at the point in time the de
ision problem modelled byI starts, and are, thus, part of that part of the de
ision problem, whi
h is 
urrent.For instan
e, in the IDIT, I, in Figure 2.12, whi
h models a de
ision problem inwhi
h D1 has ended at time 12, IDI 
onsists of D2, meaning that D2 is the onlyde
ision initiating at time 12. In an IDIT, I, whi
h only 
ontains instantiated timevariables, IDI is de�ned to be the set of de
isions following the last time variable.If I 
ontains only non-instantiated time variables, IDI is the set of de
isions priorto the �rst time variable. For instan
e, IDI 
onsists of D1 in Figure 2.5. Finally, inIDITs 
ontaining no time variables, IDI equals V D, 
orresponding to all de
isionsbeing taken in the same instant.These de�nitions and notational 
onventions aside, we note some useful aspe
ts of�0. First and foremost, it is 
learly the 
ase that in any IDIT, whi
h 
onforms to Re-quirement 5, a total ordering of all time variables 
an be identi�ed. Furthermore, asthis ordering is indu
ed from temporal ar
s, whi
h, by de�nition, 
annot be guarded,no amount of instantiation of variables 
an alter it.Another useful result is that in any IDIT, I, for any de
ision variable, D, and timevariable, T , we 
an determine, whether D �0I T , or T �0I D. This result is immedi-ately obtained from Requirements 4 and 6, whi
h allow only the ordering of instantde
isions to vary, and as time variables are disallowed in 
y
les, even the orderingof the instant de
isions relative to time variables are �xed. Again, no amount ofinstantiation 
an 
hange these ordering relations.Building on these notions, we de�ne a wellde�ned IDIT:De�nition 2.9Let I be an IDIT. The we say that I is stru
turally wellde�ned, or simply wellde�ned,
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h de
ision, D, in IDI0 andvariable, X, in V I nD, either D �0 X or X �0 D.Intuitively, for all temporally allowable instantiations, the ordering of all de
isions,whi
h are prior to the �rst non-instantiated time variable, is a total ordering, andthe set of variables observed at ea
h of those de
isions 
an be uniquely determined.This de�nition tells us that no matter what points in time time variables represent,as long as they 
onstitute an temporally allowable instantiation, the next de
isionto de
ide upon 
an always be identi�ed.
Che
king Wellde�nednessDe�nition 2.9 
annot be applied me
hani
ally to verify that a spe
i�
 IDIT is wellde-�ned, though. That would 
all for a 
he
k of all temporally allowable instantiations,of whi
h there, even for IDITs 
ontaining only a single time variable, is an in�nitenumber. Instead we 
onstru
t an operational method for examining whether an IDITis wellde�ned. Before presenting the method, formally, we reveal the workings of it,by applying De�nition 2.9 to the example IDIT, I, in Figure 2.5, using intuitionrather than stri
t adheren
e to the wording of the de�nition.The approa
h, we take, is to exploit that even if there is an in�nite number of al-lowable instantiations of a given IDIT, there is only a �nite number of di�erentstru
tures derivable from it. That is, even if we 
an instantiate variables in an in-�nite number of ways, these instantiations 
an be grouped into sets with similarstru
tures.Looking at I in Figure 2.5, we see that there is a maximum of eight di�erent stru
-tures of variables that 
onforms to the restri
tions laid down by I. These are por-trayed in Figure 2.13. By applying the rules of �0, it 
an easily be seen that someof these stru
tures do not ful�ll the requirement on a 
lear ordering of de
isions andunique set of observed variables. Therefore, we need to be sure that no temporallyallowable instantiations result in one of those stru
tures.To get any further, we observe that the stru
ture, whi
h 
orresponds to a temporallyallowable instantiation, is a fun
tion of the instantiated time variables only, as thestru
ture is uniquely determined by the evaluation of guards, whi
h in turn are fun
-tions over time variables, only. Therefore, we need only fo
us on the values of timevariables in temporally allowable instantiations. As a result of this observations, we
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an divide the temporally allowable instantiations into groups, 
orresponding to howmany time variables they en
ompass. In the 
ase of the IDIT I, we thus group thetemporal allowable instantiations into two sets: One where end(D1) is instantiatedand one where it is not. Next we need to subdivide these sets into groups based ontheir stru
ture.The group of instantiations, where no time variables are instantiated, 
an only re-sult in one stru
ture of the de
ision variables and observed variables prior to the�rst non-instantiated time variable, viz. end(D1), as guards are fun
tions over timevariables only. The set of de
isions prior to end(D1) 
onsists of a single variable, D1,and the ordering of its elements is, trivially, total. Likewise, as no variables are par-ents of D1, the set of observed variables 
an be unambiguously determined. Thus, alltemporally allowable instantiations not involving end(D1) ful�lls the requirementsof De�nition 2.9.When we move on to 
he
king the temporally allowable instantiations in
ludingend(D1), we 
an exploit the work we just 
ompleted on the instantiations that didnot in
lude end(D1): As the ordering of de
ision variables with respe
t to time vari-ables are total in I, none of the de
ision variables prior to end(D1) 
an be involvedin the stru
tural 
hanges arising from instantiation of end(D1). Thus, the de
isionsprior to end(D1) do not need to be 
he
ked when we examine whether a temporallyallowable instantiation involving end(D1) ful�lls the requirements in De�nition 2.9.As we attempt to subdivide the group of temporally allowable instantiations involv-ing end(D1), a

ording to their stru
ture, we en
ounter a potential problem. Wementioned that only time variables a�e
t this division, so the problem eventuallyboils down to splitting the state spa
e of end(D1) a

ording to its e�e
t on theguards t < 5, t < 10, and 10 � t. In this spe
i�
 example this 
an be a

omplishedquite easy through identifying the 
riti
al points 5 and 10, and then splitting thestate spa
e of end(D1) a

ordingly. However, for some guards, su
h as \t is a prime",this straightforward splitting is unde
idable. Therefore and in the rest of the report,we assume that all guards are of the formg(t) =_i t 2 Ii;where the Ii's are intervals of the real line.As we have identi�ed three intervals ℄�1; 5[, [5; 10[, and [10;1[ in whi
h the stru
-tural 
hanges resulting from instantiating end(D1) are the same, we 
an split thetemporally allowable instantiations in
luding end(D1) into three groups. Instanti-ations in all groups agree on the stru
ture of de
isions prior to end(D1), and the
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Figure 2.13: The possible stru
tures of variables in the IDIT in Figure 2.5.instantiations in ea
h individual group agree on the stru
ture of the remaining partof the IDIT. We 
an visualize this pro
ess as a tree, whi
h is illustrated in Fig-ure 2.14. As 
an be seen from the resulting stru
tures in the three leaves, ea
h ofthe three groups of temporal allowable instantiations ful�lls the requirements forwellde�nedness, and we 
an 
on
lude that I is wellde�ned. In the remainder of thereport, we will refer to trees, 
onstru
ted by a pro
ess su
h as this, as split trees.The method we have just des
ribed 
an be generalized to one that 
an be appliedfor 
he
king IDITs in
luding an arbitrary number of time variables. Su
h a method,for 
he
king whether an IDIT, I, is wellde�ned, is presented below and we elaborateon the details, whi
h set it apart from the one just given, afterwards. The methodtakes as parameter a starting point in time, t, whi
h for most problems would be 0,but 
ould be set to minus in�nity or any number for that matter. The starting pointrepresents, when the de
ision problem modelled by the IDIT is initiated, that is, theminimum value the �rst time variable 
an possibly take on.Method 2.10 (Input: IDIT I, and point in time t)1. Identify IDI2. Evaluate whether the instantiation that is I ful�lls the requirements for wellde�ned-ness, through 
he
king if a total ordering of all de
isions in IDI 
an be obtained from�0I , and if all ar
s into de
isions in IDI are without guards. If this is not the 
ase,
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D1 D2 D3
C1 C2U

t � 10t < 10t < 5

D1 D2 D3
C1 C2U

D1 D2 D3
C1 C2U

D1 D2 D3
C1 C2U

t < 5
5 � t < 10
10 � t

Figure 2.14: The tree 
onstru
ted by the method for 
he
king wellde�nedness of theIDIT in Figure 2.5.
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ess, and no non-instantiated time variablesremains in I, stop and report su

ess. Otherwise, let T be the �rst non-instantiatedtime variable in I, and 
ontinue.3. Let G be the set of guards on ar
s in I going into the de
isions in IDI[T 7!t℄.4. Partition the points in time from t to in�nity into a minimal set of subsets,fT 1; : : : ;T ng, su
h that ea
h guard in G evaluate to the same value for all pointsin time in ea
h T i. That is, for all T i and all f in G, f(ta) equals f(tb), for any twopoints, ta and tb, in T i.5. For ea
h subset, T i, 
onstru
t the IDIT I[T 7! ti℄, where ti is the least element of T i,and re
ursively 
he
k whether I[T 7! ti℄ is wellde�ned for the point in time ti. If oneor more of these instantiations is not wellde�ned, then I is not wellde�ned, otherwiseit is wellde�ned and su

ess is reported.There are two main di�eren
es between Method 2.10 and the one illustrated bythe example: Most obvious, Method 2.10 is re
ursive. Se
ond, it does not generategroups of instantiations, but a sort of generalized representative of ea
h of thesegroups.That Method 2.10 is re
ursive is due to it handling more than one time variable.When we split the group of instantiations in the example, we did so a

ording tohow the �rst time variable, end(D1), a�e
ted the guards on ar
s into de
isions priorto the �rst time variable following end(D1), whi
h did not exist. At the same timewe reasoned why the stru
ture of de
isions prior to end(D1) was left untou
hed byinstantiating D1, and therefore why we 
ould disregard this part of the IDIT when
he
king instantiations in
luding end(D1). When we are dealing with a se
ond timevariable, T2, we 
an employ this reasoning again and 
onsider only the e�e
t of T2on the part of the IDIT that follows it.This apparently suggests an iterative method, in whi
h parts of the IDIT betweentwo time variables are 
he
ked one after the other. However, the value a timevariable, T , is instantiated to 
an a�e
t the stru
ture of variables following thetime variable following T . This is be
ause guards that do not evaluate to true areinherited by subsequent de
isions and their sets of observed variables, thus, dependon more points in time than just their initiation time. Consequently, we need toemploy a re
ursive strategy.We 
an 
ontend ourself with not 
onstru
ting groups of instantiations, but ratherrepresentatives of su
h groups, due to three observations. First, when we split agroup of temporally allowable instantiations on some time variable T , we knowthat the instantiations in the group all agree on the stru
ture of the de
isions prior
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hose a single representative for this.Se
ond, 
onsider the group of temporally allowable instantiations 
orrespondingto one of the subgroups of instantiations | say, those where T is instantiatedto a value in [t1; t2℄ [ � � � [ [tn�1; tn℄, where i < j implies ti � tj : No matterwhat value in this interval we 
hoose to instantiate T to, the ordering of de
isionsprior to the �rst time variable following T will be the same. Likewise, for thesets of observed variables. Finally, when T is instantiated to some value t0, thepossible values of instantiated time variables, following T in the temporal order ina temporally allowable instantiation, are limited to those in [t0;1[. Therefore, by
hoosing to instantiate T to the lowest possible value, t1, the set of possible valuesof following time variables en
ompass the possible values had we 
hosen any othert0 in [t1; t2℄ [ � � � [ [tn�1; tn℄. Thus, by 
hoosing the lowest possible value for a splitvariable, it suÆ
es to use a representative from a group of instantiations.Although we use the \lowest possible value", or equivalently, the minimal elementof a set, as instantiation value in this method, some intervals, su
h as ℄4; 5[ have nominimal element. In su
h a 
ase, we 
hoose to use the abstra
t \value" ℄4, meaningthe number whi
h is less than any number in [4;1[ ex
ept for 4 whi
h it is greaterthan, as instantiation value. That this \value" do not have the properties of realnumbers, su
h as the ability to be a part of a sum or multipli
ation, does not hinderus from using it in this 
ase, as all we are using it for, is 
omparisons.This se
tion 
on
ludes our des
ription of IDITs and the semanti
s used in thisreport. We have des
ribed the representation language both in its original form andwith some alterations that enhan
es the language. In the remainder of the reportwhen we refer to IDITs, we are referring to the representation language de�ned inSe
tion 2.2, and when we use temporal orderings of nodes, we are referring to thesemanti
s introdu
ed in this se
tion.
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Chapter 3
Solutions to IDITs
So far no method for solving de
ision problems modelled with the IDIT represen-tation language has existed. In this 
hapter we des
ribe a method, whi
h solves asubset of these, and apply it in an example. The 
hapter is divided into three se
-tions. Se
tion 3.1 is a general dis
ussion of what a solution to a de
ision problemis. Se
tion 3.2 is a des
ription of what it means to solve an IDIT in parti
ular, andSe
tion 3.3 presents the method we have devised for solving IDITs, as well as theexample of this.3.1 Solutions to De
ision ProblemsThe purpose of the representation language IDITs is primarily to be a standard, inwhi
h de
ision problems involving time 
an be modelled 
ompa
tly and unambigu-ously, and for whi
h the models 
an easily be interpreted by human beings. In short:Supplying a means for dis
ussing and 
ommuni
ating de
ision problems in a soundmanner. Furthermore, the representation language has a syntax and semanti
s, whi
hallow models to be fed to a 
omputer. On
e a de
ision problem has been modelledby an IDIT, it is, therefore, possible to have methods that, given the model, 
anreason about the problem. One method, whi
h is strongly desirable, is an automatedsolution method. Solution, in this 
ase, meaning a pres
ription for whi
h 
hoi
esa de
ision taker should 
hoose at the various de
isions, given previous observationsand 
hoi
es, in order to maximize his expe
ted utility. We formalize this notion usingterms and 
on
epts traditionally used in des
ribing solutions to de
ision problems.47



48 Chapter 3. Solutions to IDITsThe formalization given in this se
tion is written in general and abstra
t terms, inorder to allow the reader to fo
us on what the essen
e of a solution is, instead ofdetails pertaining to solutions of IDITs. In Se
tion 3.2 we transform the 
on
eptsand terms into IDIT spe
i�
 equivalents, whi
h take advantage of the informationon stru
tural 
onstraints that an IDIT 
ontains.As the term \de
ision problem" is unspe
i�ed at this point, we brie
y list whatwe 
onsider the bare essentials of a de
ision problem in this general dis
ussion. Ade
ision problem, P, 
ontains a set of 
han
e variables, V PC , and a set of de
isionvariables, V PD, 
olle
tively denoted V P . We allow ea
h variable to be 
ontinuous ordis
rete. In addition to the variables, P must spe
ify a probability distribution forthe 
han
e variables given the de
isions, i.e. P (V PC jV PD), and a utility fun
tion overthe state spa
e of all variables, uP : sp(V P) ! R. The semanti
s of these 
on
eptsare similar to the ones spe
i�
 to IDITs given in Se
tion 2.1. Noti
e that a de
isionproblem, in this 
ontext, 
ontains no information on when a variable 
an be observedduring the de
ision pro
ess, or whether it 
an be observed at all. Furthermore, itsays nothing about the ordering of de
isions, or assumptions on no-forgetting andno-delay. It is merely a des
ription of what possible states of the world this problemis de�ned over, whi
h parts are under dire
t 
ontrol by the de
ision taker, how likelythe remaining parts are, and how valuable ea
h 
on�guration of variables is to thede
ision taker. An example of a de
ision problem 
ould, thus, be the farming prob-lem, des
ribed in Example 1, stripped of any ordering information.Before de�ning what a solution to a de
ision problem is, we introdu
e its 
onstituentelements.De�nition 3.1Let D be a de
ision variable in a de
ision problem, P, and P a subset of V P n fDg.Then a fun
tion ÆD : sp(P )! sp(D) is 
alled a poli
y for D given P .Intuitively, we may think of a poli
y, ÆD : sp(P ) ! sp(D), as a fun
tion, whi
hgiven a 
on�guration over a set of variables observed or de
ided upon in the past, P ,yields a 
hoi
e from the de
ision D. An example of a poli
y for the de
ision variableTe in Example 1 given We1 
ould be a fun
tion, whi
h yields the 
hoi
e order test,if We1 is mu
h, and do not order test if We1 is little. Another example of a poli
yfor Te, 
ould be a fun
tion whi
h yields do not order test if Ha is qui
k and We2is little, and order test for all other 
on�gurations of the two variables. This latterexample would have no value for a de
ision taker, though, as both variables 
annotbe observed when de
iding upon Te. The latter poli
y is rendered invalid by the
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ision Problems 49ordering 
onstraints given in the IDIT. Generally, we say that under an ordering, /,over the variables in a de
ision problem, P, a poli
y, ÆD : sp(P )! sp(D), is valid iffor any variable X in V P , we have that X is in P if and only if P /D. In Example 1the poli
y just des
ribed is, thus, not valid under the ordering �0.In order to identify valid poli
ies for a de
ision problem, P, we assume that a 
on-�guration, ~
, over the variables in V P uniquely determines the ordering of thesevariables. That is, we 
an de�ne a fun
tion, oP : sp(V P) ! OP , where OP is theset of all possible ordering of the variables in V P , yielding the ordering of variablesgiven a 
on�guration over these. In IDITs, for instan
e, the ordering of variables 
anbe found from the 
on�guration of time variables.Next, we de�ne the formal equivalent of the previously mentioned pres
ription.De�nition 3.2Let P be a de
ision problem and / some ordering over the variables in V P . Then aset [D2V PDfÆD : sp(fX 2 V P jX / Dg)! sp(D)g;is a strategy for P under the ordering /. We denote this SP/ .A strategy for a de
ision problem under some ordering is, thus, a set of valid poli
ies:One for ea
h de
ision and the set of past variables for this de
ision. Given a de
isionproblem, P, we 
all a set, [/2OP SP/ ;a strategy for P. The poli
ies in a strategy SP whi
h are valid under some ordering,/, we also denote SP/ . In the report, we denote the set of all strategies for a de
isionproblem, P, as �P .In order to des
ribe the impa
t of poli
ies and strategies on the expe
ted utilityof a de
ision problem, we introdu
e poli
y-indu
ed probability distributions. This
on
ept is of a similar nature to the probabilities of future de
isions presented in[Nilsson and Jensen, 1999℄.De�nition 3.3Let ÆD be a poli
y for a de
ision variable, D, given a set of past variables, P , in ade
ision problem, P. Then the probability distribution, PÆD(DjP ), de�ned asPÆD(dj~p) = ( 1 if ÆD(~p) = d0 otherwise;



50 Chapter 3. Solutions to IDITswhere d is in sp(D) and ~p is in sp(P ), is the ÆD-indu
ed probability distribution.The ÆD-indu
ed probability distribution, thus, represents the probability of the de-
ision D, given the set of variables P , if D is de
ided upon by a de
ision taker whofollows ÆD.We extend the 
on
ept of poli
y-indu
ed probability distributions to strategy-indu
ed probability distributions under some ordering.De�nition 3.4Let SP/ be a strategy under some ordering, /, for a de
ision problem, P, with prob-ability distribution P (V PC jV PD). The probability distribution,PSP/ (V P) = P (V C jV D) YÆD:sp(P )!sp(D)2SP/ PÆ(DjP );is then 
alled the SP/ -indu
ed probability distribution.Thus, a strategy-indu
ed probability distribution under some ordering is a jointdistribution over 
han
e and de
ision variables re
e
ting the probability of these,given that the de
isions are de
ided upon by a de
ision taker, whi
h follows thatstrategy and that the ordering of variables is the one the strategy is spe
i�ed over.In the beginning of this se
tion, we brie
y stated that a solution to a de
ision problemwas a pres
ription for 
hoi
es at all de
isions given previous 
hoi
es and observations.With the 
on
epts introdu
ed above we 
an de�ne this pre
isely.In the de�nition below, and hen
eforth, we use a #-notation on real-valued fun
tions.For the fun
tion f : sp(Z = C [D) ! R, where the variables in C are 
ontinuousand the variables in D are dis
rete, the expression f(Z)#Z� , where Z� is a subsetof Z, denotes the fun
tion f� : sp(Z�)! R wheref�(~z) = X~d2sp(DnZ�) Zsp(CnZ�) f(~d;~
; ~z)d~
;for all ~z in sp(Z�). We say that f� is the proje
tion of f down-to Z�. If Z� is theempty set, then f(Z)#Z� is a 
onstant.De�nition 3.5Let P be a de
ision problem. Then an optimal strategy for P isarg maxS2�P �PSPoP (V P )(V P) � uP(V P)�#? :
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The quantity, that is sought maximized, is denoted the expe
ted utility of P underthe ordering oP(V P) given S. As an o�shoot of this de�nition, we de�ne an optimalpoli
y to be a poli
y, whi
h is part of an optimal strategy. Given a de
ision problemwe also designate an optimal strategy as a solution to the de
ision problem. Thepro
ess, in whi
h a solution to a de
ision problem is obtained, we 
all solving thede
ision problem, and a method for doing this we 
all a solution method .
3.2 Solutions to IDITsThe 
on
epts introdu
ed in the previous se
tion were given in order to present asmooth transition from the rather 
asual, but intuitive, initial de�nition of what itmeans to solve a de
ision problem, to the mathemati
al 
ogent de�nition presentedin De�nition 3.5. However, as the de�nitions given are abstra
t and general, theyalso fail to take advantage of the additional information 
ontained in an IDIT ofa de
ision problem. An IDIT 
ontains information on informational pre
eden
e,ordering 
onstraints on de
isions, probabilisti
 independen
ies among variables, aswell as a de
omposition of the total utility fun
tion. In this se
tion we exploit someof this information and present a set of IDIT spe
i�
 de�nitions, whi
h render theeventual task of solving the de
ision problem easier.Required Poli
iesThe de�nition of a solution given in Se
tion 3.1 re
e
ts that a pres
ription for
hoi
es given previous 
hoi
es and observations, at the fa
e of it, would need to takeinto a

ount all orderings of variables. However, if a de
ision problem is modelled asan IDIT, the set of possible orderings are drasti
ally redu
ed, as non-guarded ar
sin the diagram allow us to determine ordering restri
tions between variables.For instan
e, in Example 1, a poli
y for the de
ision Spr given the set of variablesfend(Spr 0);Wf g would not make any sense. Both as the variable Wf 
annot beobserved before Spr is de
ided upon, and as knowing end(Spr 0) would, be
ause ofno-forgetting, imply that the variables Spr 0, Te, and We1 are also known. The sets



52 Chapter 3. Solutions to IDITsfend(Spr 0);Spr 0;Te;We1g and fend(Spr 0);Spr 0;Te ;We1;Reg are the only possiblesets of known variables when de
iding upon Spr . Whether or not Re is observed,depends solely on the value of end(Spr 0). Consequently, we de�ne a required poli
yfor an IDIT:De�nition 3.6Let ÆD be a poli
y for a de
ision, D, in an IDIT, I. Then we 
all ÆD a required poli
yfor I if there is a temporally allowable instantiation, I[X 7! ~x℄, su
h that ÆD is validunder �0I[X 7!~x℄.In other words, only if there exists some genuine situation, in whi
h a poli
y isneeded, do we require it to be spe
i�ed in a strategy for the IDIT.Identifying required poli
ies is not always easy, though, as guarded information ar
s
an be inherited by subsequent de
isions and the truth values of some guards mightimply spe
i�
 truth values of others, as noted in Se
tion 2.3. However, these stru
-tural 
hanges are all fun
tions of time variables, and in order to see whether a poli
yis required, it, therefore, suÆ
es to 
onsider instantiations of time variables only.Thus, the set of required poli
ies 
onstituting a strategy, S, for an IDIT, I, is[~t2sp(V IT ) [D2V DfÆD : sp(P I;D;~t)! sp(D)g;where P I;D;~t = fX 2 V I jX �0I[V IT 7!~t℄ Dg:In what follows, we use the short hand notation SoI(~t) to mean SI/ , where / is someordering 
onsistent with �0I[V IT 7!~t℄.Clearly, the sets of poli
ies in SoI(~ti) and SoI(~tj), where ~ti 6= ~tj, for some strategy S,would for many 
on�gurations, ~ti and ~tj, be the same. For instan
e, a strategy, S,for the IDIT in Figure 2.5 would 
onsists of the poli
iesÆD1 : sp(?)! sp(D1);ÆD2 : sp(fD1; end(D1);D3; C2g)! sp(D2); andÆD3 : sp(fD1; end(D1)g)! sp(D3);
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on�gurations of time variables where end(D1) is less than 5. In orderto utilize these similarities, we need to group the instantiations of time variables intosets of instantiations, whi
h share a similar stru
ture. Su
h a grouping is performedby Method 2.10, and in the next se
tion we show how it 
an be used in the 
ontextof �nding an optimal strategy for an IDIT.As for de
ision problems in general, an optimal strategy for an IDIT is a strat-egy, whi
h maximizes the expe
ted utility. However, we 
an express this more 
on-
isely by using the fa
torization of probability distributions and utility fun
tionsstored in a realization. That is, an optimal strategy for an IDIT, I, with realization(�I ;	I ;�I ;�I ; ), isarg maxS2�I0B� Y�2�I � Y�2�I � YÆ2SoI(V IT )PÆ0� X 2	I  1A1CA#? :In the report, we regard two strategies for an IDIT, whi
h yield the same expe
tedutility, as equivalent.
Legal Poli
iesPoli
ies, whi
h are de�ned over sets of variables that, due to observability, 
an never
onstitute sets of past variables, are not the only poli
ies that we 
an dismiss: Assumea de
ision, D, has a restri
tion fun
tion, rD, whi
h given some 
on�guration, ~p,over the variables P , prevents a 
hoi
e, d, to be taken when de
iding upon D. Apoli
y whi
h advises the de
ision taker to take 
hoi
e d, when observing that thevariables P is instantiated as ~p, is 
onsequently 
awed, as the advi
e 
annot befollowed. Therefore, we de�ne a legal poli
y. In this de�nition, we use the #-operatoron 
on�gurations over variables. For a 
on�guration, ~z, over the variables Z, wedenote by ~z#Z0 , where Z 0 is a subset of Z, the 
on�guration over the variables in Z 0obtained from ~z by dropping 
oordinates of variables in Z nZ 0.De�nition 3.7Let ÆD be a poli
y for a de
ision, D, with restri
tion fun
tion rD, given a set ofpast variables, P , in an IDIT, I. If, for all 
on�gurations, ~p, over P , ÆD(~p) is inrD(~p#dom(rD)), then we say that ÆD is a legal poli
y.
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ies for D1 and D2 make sense.A strategy for an IDIT, whi
h 
onsists of only legal poli
ies, are said to be legal aswell. Thus, when sear
hing for an optimal strategy, S, for an IDIT, we must take
are not to in
lude any poli
ies, whi
h are not legal, in it. By 
onsidering this priorto sear
hing for optimal strategies the sear
h spa
e is redu
ed, and the sear
h is,potentially, more e�e
tive.Not only 
an we fo
us our attention on legal poli
ies, several of these poli
ies 
an bedisregarded as well. Consider the IDIT in Figure 3.1, where the state spa
es of C1 isf
1;:
1g, the state spa
e of D1 is fd1;:d1g, and the state spa
e of D2 is fd2;:d2g.The restri
tion fun
tion for D1 is de�ned asrD1(
1) = fd1;:d1gand rD1(:
1) = fd1g:In this 
ase, two poli
ies for D1, ÆD1 and Æ0D1 , whereÆD1(
1; d1) = Æ0D1(
1; d1);ÆD1(
1;:d1) = Æ0D1(
1;:d1); andÆD1(:
1; d1) = Æ0D1(:
1; d1);but ÆD1(:
1;:d1) 6= Æ0D1(:
1;:d1);are equivalent advisers for a de
ision taker, as the only 
ase, in whi
h they di�er, isone that 
annot o

ur.These restri
tions, arising from distinguishing between poli
ies that are legal andthose that are not, are utilized in the next se
tion, where we use an adaptation ofMethod 2.10 to solve an IDIT.
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iesHaving de�ned exa
tly what a solution to an IDIT is, we need to address afundamental problem before proposing a method for �nding it, namely how tohandle poli
ies over 
ontinuous variables. That is, whether su
h poli
ies 
an have�nite representations. If it is not possible to do this, no solution method would ever�nish outputting a solution and no de
ision taker would be able to use it.Evidently, any strategy for an IDIT must 
ontain a �nite number of poli
ies, as thereis only a �nite number of de
isions and a �nite number of 
ombinations of variables,whi
h 
an be past variables for de
isions. Thus, we need only 
on
ern ourselveswith representing individual poli
ies in a �nite manner. In solutions for in
uen
ediagrams, poli
ies have traditionally been stored as tables, with an entry for ea
h
on�guration of the past variables, stating the poli
y value of this 
on�guration.In IDITs, however, we need to deal with 
ontinuous variables, in the form of timevariables and wait de
isions, and the table approa
h 
an, therefore, not be applieddire
tly.Two approa
hes for representing poli
ies de�ned over 
ontinuous variables exists,though. Either the poli
y 
an be stored as a �nite mathemati
al expression, orthe 
ontinuous variables in the domain 
an be dis
retized a

ording to their e�e
ton the poli
y. Unfortunately, none of the approa
hes is ideal in all situations. Theproblem inherent in the former is that it might not always be possible to 
onstru
tan expression, whi
h 
an be evaluated within a reasonable time frame. The problemasso
iated with the latter is that the 
ontinuous variables in the domain of somepoli
ies might require an in�nite number of dis
retization intervals, for the poli
iesto be represented in suÆ
ient detail. However, in most 
ases we may settle for asatisfying solution. That is, storing a poli
y, whi
h is not an optimal poli
y, butwhi
h 
an be represented using dis
retization or as a relatively simple fun
tion, andwhi
h yields an expe
ted utility not substantially lower than the one o�ered byan optimal poli
y. When dealing with points in time, it is quite reasonable to useapproximations: Initiating a de
ision at some exa
t point in time is rarely possibleand it might be hard to justify that a utility should yield radi
ally di�erent valuesfor points in time 
lose to one another.However, not all 
ontinuous domains 
an easily be dis
retized. Example 1 providesan example of the requirement on in�nite dis
retization intervals. If we ignore
on
epts su
h as winter and life span of 
rops, and assume that, no matter whenthe farmer arrives at the Ha de
ision, he would gain maximum expe
ted utility by
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rops and the weather, we need an in�nitenumber of dis
retization intervals for the poli
y ÆHa : For ea
h possible pair ofstates, tSpr 0 and tHa0 , of end(Spr 0) and end(Ha 0), respe
tively, we need to storeeither a 
hoi
e qui
k or thorough or the 
hoi
e no harvesting, depending uponwhether the time span between the points in time tSpr 0 and tHa0 is more thanseven. No �nite dis
retization intervals for end(Spr 0) and end(Ha 0) 
an 
apturethis. In this 
ase, we 
an 
ir
umvent the problem by spe
ifying the poli
y over adis
retization of the di�eren
e of the two variables in addition to dis
retizations ofthe variables themselves. A variable, su
h as the di�eren
e between the value of twotime variables, whi
h is de�ned as a deterministi
 fun
tion of other variables, we
all a derived variable.In this example the need for letting the poli
y vary a

ording to a derived variablearose from the restri
tion fun
tion for the de
ision. In fa
t, the problem wesolved, through using derived variables, would also be present when spe
ifyingthe restri
tion fun
tion, as part of the realization, in the �rst pla
e. In general, ifa restri
tion fun
tion for a de
ision is not 
onstant, we 
an 
onstru
t a deriveddis
rete variable, whi
h take on values 
orresponding to this fun
tion, and thereby,we 
an 
on
lude that all poli
ies, whi
h di�ers due to a restri
tion fun
tion, 
an berepresented through this s
heme. However, handling the derived variable in solutionmethods might not be as straightforward.In this report we make some assumptions that renders the possibility of two
ontinuous variables in the domain of a poli
y impossible. Therefore, we 
an restri
tourselves to poli
ies de�ned over one 
ontinuous variable. These we represent astables over the dis
rete variables in their domain, and with ea
h 
ell 
ontaining a�nite list of mutually ex
lusive and exhaustive intervals of the states in the statespa
e of the 
ontinuous variable, and a 
orresponding 
hoi
e from the de
ision.For wait de
isions, we store ea
h 
hoi
e as a simple fun
tion of the value, t, of the
ontinuous variable, su
h as k � t, where k is some 
onstant.Of 
ourse, even as we restri
t our attention to poli
ies varying over one 
ontinuousvariable only, we still 
annot be sure that we 
an 
onstru
t a �nite list of intervals,as there might be an in�nite number of intervals over whi
h the poli
y di�ers, foreven this single variable. A solution is to divide the state spa
e of the 
ontinuousvariable into subsets, whi
h do not ne
essarily 
onstitute intervals, but this begsthe question as to whether these subsets 
an be des
ribed in a �nite manner. Weleave these problems, as fortunately, the workings of the solution method we presentguarantee a �nite number of intervals.
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3.3 Solving IDITsIn this se
tion we present a method for solving IDITs, whi
h is an extension ofMethod 2.10. We introdu
e the method through an example, before presenting themethod in full.Introdu
ing the ProblemThe method, we present in this se
tion, builds on the stru
ture of the method ofsolving de
ision trees, the method for solving asymmetri
 in
uen
e diagrams pre-sented in [Nielsen and Jensen, 2000℄, and the method for solving valuation networksgiven in [Demirer and Shenoy, 2001℄. The method presented here di�ers radi
ally insome areas, though, most having to do with the 
ontinuous nature of time variables.As the method is a hybrid of elimination of variables and message passing in a splittree, it is not obvious why it identi�es in an optimal strategy. To better understandthe problems asso
iated with elimination, whi
h is spe
i�
 to IDITs, we present arather elaborate example, whi
h should help the reader obtain some intuition on thestru
ture of the method and why it works, allowing him to fo
us on the details ofthe method presented later in this se
tion.The example involves a number of general observations. To better 
ommuni
atethese, we employ a 
hange in typography when they arise and return to the stan-dard example typography again afterwards.Example 2The IDIT, we want to solve, is the IDIT, I, presented in Figure 3.2. It is a slightly alteredversion of the IDIT we used as example in presenting Method 2.10. The 
hanges, whi
hare the addition of the node C0 and the ar
s 
onne
ting it to D1, D2, and D3, have beenintrodu
ed in order to render this example more interesting. We assume that all non-timevariables are binary and denote the states of a variable, X , as x and :x.The realization of I, we work with, 
onsists of the probability distributions given inTables 3.1(a) through 3.2(a), the restri
tion fun
tion given in Table 3.2(b), the utilityfun
tion given in Table 3.3, and the density fun
tion for end(D1), whi
h is �2, with 5degrees of freedom if D1 is d1, and 10 degrees of freedom if D1 is :d1. A plot of the densityfun
tions for end(D1) is shown in Figure 3.3.The realization is 
hosen somewhat arbitrarily, and no spe
i�
 semanti
s are given for thevariables. A pair of relationships warrants emphasizing, though: First, the utility fun
tion,
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D1 D2 D3

C1 C2
C0

U
t � 10t < 10t < 5

Figure 3.2: The IDIT we want to �nd an optimal strategy for.d1 :d1
0 0:2 0:7:
0 0:8 0:3(a) d2 :d2
1 0:05 0:4:
1 0:95 0:6(b)Table 3.1: (a): The probability distribution P (C0jD1). (b): The probability distributionP (C1jD2). d3 :d3
2 1 0:1:
2 0 0:9(a) 
0 fd2;:d2g:
0 fd2g(b)Table 3.2: (a): The probability distribution P (C2jD3). (b): The restri
tion fun
tionrD2 : sp(C0)! 2sp(D2) n f?g. 
1 :
1
2 40 20:
2 0 30Table 3.3: The utility fun
tion U .
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tFigure 3.3: The density fun
tions for end(D1). The fair line is 5 degrees of freedom,and the dark one is 10 degrees of freedomU , is stru
tured so that knowing the state of C2, when de
iding upon D2, is desirable.Se
ond, the 
hoi
e of d1 in D1 yields a faster de
ision, whi
h in turn, renders the observationof C2 prior to de
iding on D2 more likely. However, this would, most likely, also render the
hoi
e :d2 impossible and, 
onsequently, the top utility of 40 unlikely. Thus, no 
andidate,for an optimal strategy, seems an obvious 
hoi
e, and this exer
ise is, therefore, not trivial.Solving IWhen identifying an optimal strategy, we start by limiting ourselves to the set ofstrategies, whi
h suit the information 
onstraints in the IDIT. As we mentioned inSe
tion 3.2, the trees 
onstru
ted by the method in Se
tion 2.3 allow us to identifywhi
h poli
ies are required for a strategy for a de
ision problem modelled as anIDIT. This is done through 
reating groups of instantiations of the IDIT, whi
hshare the same stru
ture. In order to 
apture the 
onstraints imposed by restri
tionfun
tions we need to expand on the method, su
h that it 
onstru
ts trees, in whi
hthe groups of instantiations, not only share a 
ommon stru
ture, but also share thesame state spa
es of variables.It turns out that integrating splitting of de
ision s
enarios, a

ording to state spa
esof variables, into the pro
ess des
ribed in Method 2.10 is quite straightforward:Re
all that Method 2.10 works its way through time variables in the order di
tatedby �0. Whenever a time variable, T , is en
ountered, the pro
ess splits the 
urrentgroup of de
ision s
enarios, a

ording to the value of T , and re
ursively invokesitself on the resulting groups. As mentioned, we need to split the groups of de
ision
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enarios, a

ording to the state spa
es of de
isions in them, as well. Thus, we mustadjust Method 2.10 so that whenever it en
ounters a variable, whi
h a�e
ts the statespa
es of subsequent de
isions, it splits the group of de
ision s
enarios a

ordinglyand re
urses. Fortunately, the group of de
ision s
enarios of a wellde�ned IDIT,handled in ea
h invo
ation of the method, are guaranteed to have the same orderingof de
isions and observed variables prior to the �rst non-instantiated time variable,T 0. Therefore, if some of these variables are in the domain of some restri
tionfun
tion, we 
an split the 
urrent group of de
ision s
enarios a

ording to how thesevariables a�e
t the state spa
e of the de
isions, before handling T 0. In summary,there is little di�eren
e in how a variable in the domain of a restri
tion fun
tion anda time variable should be handled. Consequently, we refer to both kinds of variablesas split variables.
Example 2For the IDIT I we 
an identify two split variables: The time variable end(D1) and thevariables in the domain of rD2 , i.e. C0. We observe the ordering of split variables to beend(D1) �0 C0. Thus, we must start by splitting on end(D1). This task was performed inSe
tion 2.3, and the resulting tree, with the addition of C0, is displayed in Figure 3.4. Next,we split the de
ision s
enarios on C0 resulting in the tree shown in Figure 3.5. For ease ofreferen
e we have labelled the IDITs in the individual nodes, su
h that IDIT Ixy is the IDITfound as the y'th 
hild of the x'th 
hild of the root, and IDIT Ix is the x'th 
hild of theroot. Although the leaf nodes pairwise seem to 
ontain similar IDITs, the state spa
es of D2di�er: In the ones, where C0 is instantiated to 
0, the state spa
e of D2 
onsists of d2 and:d2, and in the ones, where C0 is instantiated to :
0, the state spa
e of D2 
onsists only ofd2.We end up with six groups of de
ision s
enarios 
ontaining de
isions with similar statespa
esand similar ordering of variables:f~z 2 sp(V I)j~z#fend(D1)g 2 [0; 5[ and ~z#fC0g = 
0g = I11;f~z 2 sp(V I)j~z#fend(D1)g 2 [0; 5[ and ~z#fC0g = :
0g = I12;f~z 2 sp(V I)j~z#fend(D1)g 2 [5; 10[ and ~z#fC0g = 
0g = I21;f~z 2 sp(V I)j~z#fend(D1)g 2 [5; 10[ and ~z#fC0g = :
0g = I22;f~z 2 sp(V I)j~z#fend(D1)g 2 [0;1[ and ~z#fC0g = 
0g = I31; andf~z 2 sp(V I)j~z#fend(D1)g 2 [10;1[ and ~z#fC0g = :
0g = I32;where the orderings are �0I11 , �0I12 , �0I21 , �0I22 , �0I31 , and �0I32 , respe
tively. In the rest ofthis example, we let ÆS;IjkDi denote the poli
y for Di under the ordering of variables �0Ijk inthe strategy S.
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D1 D2 D3
C1 C2U

C0 t � 10t < 10t < 5

D1 D2 D3
C1 C2U

C0

D1 D2 D3
C1 C2U

C0

D1 D2 D3
C1 C2U

C0

t < 5
5 � t < 10
10 � t

Figure 3.4: The tree 
onstru
ted from I by splitting on end(D1).
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D1 D2 D3
C1 C2U

C0 t � 10t < 10t < 5
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C0
I2

D1 D2 D3
C1 C2U
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I3
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5 � t < 10
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D1 D2 D3
C1 C2U

C0 I11
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C1 C2U
C0 I12

D1 D2 D3
C1 C2U
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C1 C2U
C0 I22

D1 D2 D3
C1 C2U

C0 I31
D1 D2 D3

C1 C2U
C0 I32
0:
0


0:
0


0:
0

Figure 3.5: The tree 
onstru
ted from I by splitting �rst on end(D1) and then C0.



3.3 Solving IDITs 63We turn out attention to the expression for an optimal strategy, S0, for I:S0 =arg maxS2�I0B� Y�2�I � Y�2�I � YÆ2SoI (V IT ) PÆ0� X 2	I  1A1CA#?=arg maxS2�I Z 1�1 XxC02sp(C0) XxC12sp(C1) XxC22sp(C2) XxD12sp(D1) XxD22sp(D2) XxD32sp(D3)f(xend(D1)jxD1 )P (x
0 jxD1)P (x
1 jxD2)P (x
2 jxD3)� PÆS;I[end(D1)7!xend(D1)℄D1 (xD1 jxC0 ; xC1 ; xC2 ; xD2 ; xD3 ; xend(D1))� PÆS;I[end(D1)7!xend(D1)℄D2 (xD2 jxC0 ; xC1 ; xC2 ; xD1 ; xD3 ; xend(D1))� PÆS;I[end(D1)7!xend(D1)℄D3 (xD3 jxC0 ; xC1 ; xC2 ; xD1 ; xD2 ; xend(D1))� U(xC1 ; xC2)dxend(D1):As the ordering of D1 and end(D1) relative to every other variable is the same in all sixgroups of de
ision s
enarios identi�ed above, we may rewrite the expression above toS0 =arg maxS2�I XxD12sp(D1)PSÆD1 (xD1 ) Z 1�1 f(xend(D1)jxD1) XxC02sp(C0)P (x
0 jxD1)XxC12sp(C1) XxC22sp(C2) XxD22sp(D2) XxD32sp(D3)P (x
1 jxD2)P (x
2 jxD3)� PÆS;I[end(D1)7!xend(D1)℄D2 (xD2 jxC0 ; xC1 ; xC2 ; xD1 ; xD3 ; xend(D1))� PÆS;I[end(D1)7!xend(D1)℄D3 (xD3 jxC0 ; xC1 ; xC2 ; xD1 ; xD2 ; xend(D1))� U(xC1 ; xC2)dxend(D1):We 
hose to split this sum into six parts, ea
h 
orresponding to one of the groupings ofde
ision s
enarios identi�ed above, by splitting the integration interval and unfolding the



64 Chapter 3. Solutions to IDITssum over states of C0.S0 =arg maxS2�I XxD12sp(D1)PSÆD1 (xD1) Z 5�1 f(xend(D1)jxD1)�P (
0jxD1)XxC12sp(C1) XxC22sp(C2) XxD22sp(D2) XxD32sp(D3)P (x
1 jxD2 )P (x
2 jxD3)� PÆS;I11D2 (xD2 j
0; xC2 ; xD1 ; xD3 ; xend(D1))PÆS;I11D3 (xD3 j
0; xD1 ; xend(D1))� U(xC1 ; xC2)�+�P (:
0jxD1 ) XxC12sp(C1) XxC22sp(C2)XxD22sp(D2) XxD32sp(D3)P (x
1 jxD2 )P (x
2 jxD3)� PÆS;I12D2 (xD2 j:
0; xC2 ; xD1 ; xD3 ; xend(D1))PÆS;I12D3 (xD3 j:
0; xD1 ; xend(D1))� U(xC1 ; xC2)�dxend(D1)+... ...+ Z 110 f(xend(D1)jxD1 )�P (
0jxD1 )XxC12sp(C1) XxC22sp(C2) XxD22sp(D2) XxD32sp(D3)P (x
1 jxD2 )P (x
2 jxD3)� PÆS;I31D2 (xD2 j
0; xD1 ; xend(D1))PÆS;I31D3 (xD3 j
0; xD1 ; xD2 ; xend(D1))� U(xC1 ; xC2)�+�P (:
0jxD1 ) XxC12sp(C1) XxC22sp(C2)XxD22sp(D2) XxD32sp(D3)P (x
1 jxD2 )P (x
2 jxD3)� PÆS;I32D2 (xD2 j:
0; xD1 ; xend(D1))PÆS;I32D3 (xD3 j:
0; xD1 ; xD2 ; xend(D1))� U(xC1 ; xC2)�dxend(D1)!: (3.1)At this point the stru
ture of the expression, we need to maximize, is similar to that of thesplit tree in Figure 3.5. We have not used any spe
ial properties of the involved fun
tions,whi
h suggests that a splitting of the expe
ted utility of any IDIT, 
an be 
onstru
ted in asimilar fashion.



3.3 Solving IDITs 65d2 :d2
2 21 28:
2 28:5 18Table 3.4: The utility fun
tion U�.At this point we need to 
al
ulate the sums in the six subexpressions, of whi
hXxC12sp(C1) XxC22sp(C2) XxD22sp(D2) XxD32sp(D3)P (x
1 jxD2)P (x
2 jxD3)� PÆS;I11D2 (xD2 j
0; xC2 ; xD1 ; xD3 ; xend(D1))PÆS;I11D3 (xD3 j
0; xD1 ; xend(D1))� U(xC1 ; xC2) (3.2)is one, before we 
an move on to summing over C0 and D1 and integrating over end(D1).This is no 
oin
iden
e. If we study the IDITs in the leaves of the split tree in Figure 3.5,C0, D1, and end(D1) are all either instantiated or prior to an instantiated variable in theordering �0I . Variables whi
h are neither instantiated nor prior to an instantiated variablein an IDIT, I, we 
all free variables . We fo
us on the subexpression in (3.2), where the freevariables, thus, are C1, C2, D2, and D3. By rearranging sums we getXxD32sp(D3)PÆS;I11D3 (xD3 j
0; xD1 ; xend(D1)) XxC22sp(C2)P (x
2 jxD3)� XxD22sp(D2)PÆS;I11D2 (xD2 j
0; xC2 ; xD1 ; xD3 ; xend(D1)) XxC12sp(C1)P (x
1 jxD2 )U(xC1 ; xC2):(3.3)Thus we must sum over variables in the order C1, D2, C2, and then D3. This ordering is
onsistent with the inverse of �0I11 .Elimination of VariablesWe evaluate the the sub expressionXxC12sp(C1)P (xC1 jxD2)U(xC1 ; xC2)right away, and get a utility fun
tion, U�, de�ned over C2 and D2. U� is shown in Table 3.4.This we refer to as marginalizing out C1 or, equivalently, eliminating C1 from I11.Repla
ing XxC12sp(C1)P (xC1 jxD2)U(xC1 ; xC2)



66 Chapter 3. Solutions to IDITswith U�(xC2 ; xD2) we getXxD32sp(D3)PÆS;I11D3 (xD3 j
0; xD1 ; xend(D1)) XxC22sp(C2)P (x
2 jxD3)� XxD22sp(D2)PÆS;I11D2 (xD2 j
0; xC2 ; xD1 ; xD3 ; xend(D1))U�(xC2 ; xD2):To �nd a poli
y PÆS;I11D2 whi
h maximizes this expression for all states of D1, all states ofend(D1) in [�1; 5[, and C0 being 
0, we 
an fo
us on the last part of the expression:XxD22sp(D2)PÆS;I11D2 (xD2 jD1; end(D1); 
0; xC2 ; xD3)U�(xC2 ; xD2): (3.4)This is equivalent to the expressionU�(xC2 ; ÆS;I11D2 (D1; end(D1); 
0; xC2 ; xD3));so, in order to maximize it, we 
an writemaxd2sp(D2)U�(xC2 ; d);whi
h yield a value of 28 if xC2 is 
2 and 28:5 otherwise. The 
orresponding states of D2 
anbe found by arg maxd2sp(D2)U�(xC2 ; d);yielding the 
hoi
e :d2 in 
ase that C2 is 
2, and d2 otherwise. Hen
e, we have identi�ed apoli
y whi
h maximizes (3.4):ÆS;I11D2 (D1; end(D1); C0; C2; D3) = ( d2 if C2 = :
2:d2 if C2 = 
2:No matter how the remaining parts of (3.3) may evaluate, this poli
y must be part of anoptimal strategy. This is be
ause it is 
onditioned on end(D1) being less than 5 and C0being 
0 and, thus, only a�e
ts the part of Equation (3.1) that 
onstitutes (3.4), whi
h itmaximizes.By substituting the expression in (3.4) with a utility fun
tion over C2, whi
h yields the value28 if C2 is 
2 and 28:5 if C2 is :
2, we 
an disregard D2 in (3.3), hen
eforth. We refer to thisas marginalizing D2 out, or eliminating D2 from I11. Note that the pro
ess of marginalizingout a de
ision is, thus, di�erent from that of marginalizing out a 
han
e variable. In theformer we maximize over states and in the latter we sum. Furthermore, in the former wenote, for ea
h 
on�guration of past variables, the state whi
h yields the maximum utility.Continuing eliminating free variables in I11 in the same manner, we must marginalize out,�rst C2, and then D3. We skip the details, whi
h are similar to those for marginalizing out



3.3 Solving IDITs 67C1 and D2, and simply state that the resulting optimal poli
y isÆS;I11D3 (D1; end(D1); C0) = :d3;meaning that as long as end(D1) is less than 5 and C0 is 
0 we should always 
hoose :d3 atD3. The expe
ted utility of this is 28:45, whi
h 
an easily be veri�ed.The pro
ess just des
ribed 
orresponds to traditional elimination of variables in an in
uen
ediagram. A
tually, it 
orresponds exa
tly to eliminating variables from I11 interpreted as anin
uen
e diagram. We 
an perform similar pro
esses on the IDITs in the remaining leavesof the split tree. The resulting expression isS0 =arg maxS2�I XxD12sp(D1)PSÆD1 (xD1 ) � Z 5�1 f(xend(D1)jxD1)�P (
0jxD1) � 28:5�+ �P (:
0jxD1) � 27:75�dxend(D1)�+ Z 105 f(xend(D1)jxD1)�P (
0jxD1 ) � 28:2�+ �P (:
0jxD1) � 26:5�dxend(D1)�+ Z 110 f(xend(D1)jxD1)�P (
0jxD1 ) � 28:2�+ �P (:
0jxD1) � 26:5�dxend(D1)!:We say that the maximum expe
ted utilities of the IDITs in the leaves of the split tree, havebeen absorbed into the IDITs in the internal nodes of the tree. Noti
e that the maximumexpe
ted utilities absorbed from the leaves 
orresponding to end(D1) being greater than 5,are the same. This is be
ause, in both 
ases, no information is obtained by the de
ision takerbetween de
iding upon D2 and D3, and the ordering of the two, therefore, does not a�e
tthe resulting utility.



68 Chapter 3. Solutions to IDITsNext, we eliminate C0, whi
h results in the following expressionS0 =arg maxS2�I=PSÆD1 (d1) Z 50 f(xend(D1)jd1)27:89dxend(D1)+Z 105 f(xend(D1)jd1)27:8dxend(D1)+Z 110 f(xend(D1)jd1)27:8dxend(D1)!+PSÆD1 (:d1) Z 50 f(xend(D1)j(:d1)28:24dxend(D1)+Z 105 f(xend(D1)j(:d1)27:925dxend(D1)+Z 110 f(xend(D1)j(:d1)27:925dxend(D1)!: (3.5)A

ording to the temporal order, �0, we should next eliminate end(D1). Studying theexpression in Equation (3.5), however, reveals that this is no easy task. Even though we
an move the 
onstants outside the integrals, we are still left with evaluating integrals overthe density fun
tion of end(D1). As end(D1) follows a �2-distribution, of whi
h no known
losed form expression, presently, exists[Nist, 2003℄, this is impossible.

As we are really not that interested in the a
tual maximum expe
ted utility of I,but rather a strategy whi
h maximizes this, we 
an employ approximation te
hniquesinstead. One su
h te
hnique is sampling, in whi
h we, for ea
h possible poli
y, ÆD1 ,



3.3 Solving IDITs 69sample the value ofPÆD1 (d1) Z 50 f(xend(D1)jd1)27:89dxend(D1)+Z 105 f(xend(D1)jd1)27:8dxend(D1)+Z 110 f(xend(D1)jd1)27:8dxend(D1)!+PÆD1 (:d1) Z 50 f(xend(D1)j(:d1)28:24dxend(D1)+Z 105 f(xend(D1)j(:d1)27:925dxend(D1)+Z 110 f(xend(D1)j(:d1)27:925dxend(D1)!;a �xed number of times. Then we 
al
ulate the average of the samples taken forea
h poli
y and 
hoose the poli
y with the maximum average as the optimal one. Aproblem arising from applying this te
hnique is that it assumes a �xed 
on�gurationof past variables. If there would happen to be some time variable, T , in the past ofD1, we would, theoreti
ally, need to sample for an in�nite number of 
on�gurationsof past variables, whi
h is a perpetual task. This 
ould be remedied by dis
retizingT , but the 
hoi
e of dis
retization intervals of T is not obvious. Furthermore, thete
hnique 
an be time and spa
e 
onsuming, as the number of samples in some
ases would need to be high in order to obtain a satisfying degree of 
on�den
ein the result. [Charnes and Shenoy, 2003℄ present a method that utilizes samplingfor in
uen
e diagrams, whi
h 
ould allow dis
retization of time variables to be of�ne granularity, while leaving the 
al
ulation of expe
ted utility 
omputationallyfeasible. [Broe and Jeppesen, 2003℄ presents a solution method for IDITs utilizingsampling.A more 
rude approa
h is to only allow integrable density fun
tions for timevariables. Furthermore, we would have to require that the resulting fun
tionsfrom integrating over these would be integrable too. Similarly, all kinds of utilityfun
tions, whi
h 
ould arise during elimination of variables, should be integrable.Clearly, this approa
h limits the number of de
ision problems that 
an be spe
i�edand solved using IDITs severely.A more 
exible take on this last approa
h is to approximate all 
ontinuous fun
tionsby polynomials, as these are in�nitely integrable, and sums and produ
ts of poly-nomials are polynomials as well. The pro
ess of 
onverting an arbitrary 
ontinuousfun
tion to a polynomial 
an be time 
onsuming, though, and some fun
tions



70 Chapter 3. Solutions to IDITswould need to be approximated by polynomials of a very high degree, implyingrequirements on time and spa
e for a solution method. However, approximationusing polynomials has some advantages as well, most having to do with avoidan
e ofdis
retization issues. When we approximate using polynomials we need to be awareof the nature of these when the variable in their domain goes to in�nity or minusin�nity. In most 
ases the value of the polynomial will go to either in�nity or minusin�nity as well. Therefore, we must limit the areas of integration. For most de
isionproblems the span of time is assumed to start at some 
onstant, su
h as 0, and thelower limit is therefore not a problem.Example 2In order to round o� this example, we 
hoose to approximate the density fun
tions forend(D1) by polynomials, and limit the areas of integration to the values in [0; 40℄. Theresulting expression isS0 =arg maxS2�IPSÆD1 (d1) � (0:58 � 27:89 + 0:34 � 27:8 + 0:07 � 27:8)+PSÆD1 (:d1) � (0:11 � 28:24+ 0:45 � 27:925+ 0:42 � 27:925)= arg SmaxS2�I PÆD1 (d1) � 27:57 + PSÆD1 (:d1) � 27:40:Thus, the optimal poli
y for D1, is to 
hoose d1, although the expe
ted utility of 
hoosing:d1 is roughly the same.Preliminaries for the Solution MethodThe purpose of the example just given was to introdu
e the main stru
ture of thesolution method, and to hint at why it identi�es an optimal strategy when invokedon an IDIT. However, several problems arising from eliminating variables in IDITshave not been tou
hed upon during the example. We do so, as they be
ome relevantin the presentation of the method below, and hope that the reader, through theexample, has obtained the breath of view ne
essary to fo
us on these details insteadof the overall stru
ture of the method. The solution method des
ribed here solvesonly a subset of IDITs. Throughout the des
ription below we need to introdu
e aset of assumptions. Whenever this need arises we emphasize the assumption in aparagraph by itself and 
omment on the restri
tions it implies. Before we presentthe method, some preliminaries need to be laid down, though.



3.3 Solving IDITs 71As the elaborate example, 
on
erning solution of the IDIT in Figure 3.2, showed,we have to handle situations in whi
h a utility fun
tion over a time variable is onlypie
ewise 
ontinuous. We introdu
e a set of formal notation and some 
on
epts forhandling su
h fun
tions. We start by de�ning a partition of the real numbers as a�nite subset of the real numbers, I = fa1; : : : ; an+1g, where i < j implies ai < aj ,and say that it generates a series of n+ 2 intervals,℄�1; a1[; [a1; a2[; : : : ; [an; an+1[; [an+1;1[:We refer to an interval, [ai; ai+1[, as the i'th interval of I. The series of intervalsgenerated by the empty set 
onsists of a single interval, ℄�1;1[. We use the notationI<x to denote the number of elements in I whi
h are smaller than or equal to x.For example, we have that the partition I = f2; 7g generates the intervals ℄�1; 2[,[2; 7[, and [7;1[, and that I<4 is 1 and I<7 is 2. We thus have the relationship: If xis in [ai; ai+1[ then I<x is i.Let If 0 = fa1; : : : ; an+1g be a partition and (f0 : R ! R; : : : ; fn+1 : R ! R) a seriesof 
ontinuous fun
tions. Then the fun
tion f 0 : R ! R, where
f 0(x) = 8>>>>>>><>>>>>>>:

f0(x) if x 2℄�1; a1[f1(x) if x 2 [a1; a2[... ...fn(x) if x 2 [an; an+1[;fn+1(x) if x 2 [an+1;1[;is the pie
ewise 
ontinuous fun
tion over the partition If 0 of the fun
tions(f0; : : : ; fn+1). We use subs
ripts on f 0 to a

ess the fun
tions in (f0; : : : ; fn+1),i.e. f 0i denotes the fun
tion fi. As an example, we have plotted part of thepie
ewise 
ontinuous fun
tion, f , over the partition If = f2; 7g of the fun
tions(0:5x + 2; 10=x;�0:15x2 + 15) in Figure 3.6Noti
e that we have 
hosen to have all intervals of the form [a; b[, instead of, say,℄a; b℄. That is, the 
utting point on the real line is always in
luded in the interval
ontaining the higher numbers. This is a notational 
onvenient 
onvention and inall intents and purposes does not a�e
t the reasoning presented, as the intervals areused only as boundaries of integral domains. Considered from a di�erent perspe
tive,we 
an also argue that, as time variables are 
ontinuous, the probability of a de
isions
enario, in whi
h a time variable takes on a spe
i�
 point in time is zero, and thus,it does not matter whi
h group of de
ision s
enarios it is in
luded in.
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Figure 3.6: A pie
ewise 
ontinuous fun
tion.During the solution pro
ess we need to 
al
ulate sums of pie
ewise 
ontinuous fun
-tions. Addition of pie
ewise 
ontinuous fun
tions are somewhat 
umbersome. Oneneeds to take into a

ount that they might not be de�ned over the same intervals:Let f and f 0 be pie
ewise 
ontinuous fun
tions over the partitions If and If 0 , respe
-tively. Then the sum f + f 0 is the pie
ewise 
ontinuous fun
tion over the partitionIf+f 0 = If [ If 0 = fa1; : : : ; an+1g; of the fun
tions(f + f 0)i = fI<aif + f 0I<aif 0 ;for all i in f1; : : : ; n + 1g, and (f + f 0)0 = f0 + f 00. Noti
e that if we regard any
ontinuous fun
tion, f
, as being pie
ewise 
ontinuous over the partition ? and f0being f
, then the above de�nition 
orresponds to the standard de�nition of the sumof two 
ontinuous fun
tions. Furthermore, a sum of a pie
ewise 
ontinuous fun
tion,f , and a 
ontinuous fun
tion, f
, results in a pie
ewise 
ontinuous fun
tion, f + f
,over the same de�ning intervals as f , with ea
h (f+f
)i being f
+fi. The produ
t ofpie
ewise 
ontinuous fun
tions are de�ned analogous to the sum, ex
ept that multi-pli
ation of individual fun
tions are applied instead of addition. Thus, we may in allmatters regard 
ontinuous fun
tions as pie
ewise 
ontinuous fun
tion, and therefore,do not distinguish between them during manipulation of utilities.Given a pie
ewise 
ontinuous fun
tion, f , we, furthermore, de�ne the short hand no-



3.3 Solving IDITs 73tation f#[a;b[ to mean the produ
t f � g, where g is the pie
ewise 
ontinuous fun
tionover the partition Ig = fa; bg of (g0 = 0; g1 = 1; g2 = 0). Intuitively, f#[a;b[ takes onthe value of f in the interval [a; b[ and the value 0 everywhere else. We denote it asthe proje
tion of f down-to the interval [a; b[.The main idea of the solution method is to approximate 
ontinuous fun
tions bypolynomials, as manipulations of these, su
h as addition, multipli
ation, and di�er-entiation, 
an be 
arried out me
hani
ally. We work with polynomials over one ortwo variables. A polynomial, p, of degree n over one variable, x, is de�ned asp(x) = nXi=0 C[p℄ixi;where C[p℄0; : : : ; C[p℄n are real numbers, whi
h we 
all 
oeÆ
ients. TheC[fun
tion-name℄-notation we use throughout the report when dealing with poly-nomials. Similarly, a polynomial, p, of degree (n;m) over two variables, x and y, isde�ned as p(x; y) = nXi=0 mXi=0 C[p℄ijxiyj ;where C[p℄00; : : : ; C[p℄nm are real numbers.As stated in Chapter 1, we employ approximation in the form of Taylor's series. Wede�ne these formally, and refer the interested reader to [Apostol, 1974℄ for furtherinformation on them.
De�nition 3.8Let f be a fun
tion, whi
h is in�nitely di�erentiable over the interval [a; b℄. Then theTaylor's series of f on [a; b℄ about a point, 
, in [a; b℄ is the polynomial1Xi=0 f (i)(
)i! (x� 
)i;where f (i)(
) is the i'th derivative of f at 
.



74 Chapter 3. Solutions to IDITsThe point 
 is usually 
alled the point of expansion of the series.As we 
annot deal with in�nite polynomials, we utilize that we 
an rewrite1Xi=0 f (i)(
)i! (x� 
)i = nXi=0 f (i)(
)i! (x� 
)i + 1Xj=n+1 f (j)(
)j! (x� 
)j= nXi=0 f (i)(
)i! (x� 
)i + rn(x):It 
an be shown [Apostol, 1974℄ that limn!1 rn(x) = 0, if there exists some 
onstant,k, su
h that jf (n)(x)j � kn, for all x in the interval [a; b℄. Therefore, when dealingwith utility and density fun
tions, for whi
h this is true, we 
an 
hose a Taylor'sseries of a �nite degree as an approximation to the original fun
tion. Throughoutthe remainder of the report we assume all Taylor's series are of a �xed degree, N .This dis
ussion imposes the following assumption on the given utility and densityfun
tions, as well as probability distributions dependent on time variables:Assumption 1Any density fun
tion for a time variable, utility fun
tion over a time variable, orprobability distribution with a time variable in its domain, f : sp(Z)�R ! R, mustbe di�erentiable an arbitrary number of times with respe
t to the time variable.Furthermore, for ea
h 
on�guration ~z of the variables in Z, there must exist some
onstant, k, su
h that jf(~z)(n)(x)j � kn, for all x in R.This assumption is rather stri
t, but due to an additional assumption, introdu
edbelow, we 
an loosen it a bit.Of 
ourse, an approximation, f 0, of a density fun
tion, f , rarely is a density fun
tionitself, i.e. R1�1 f 0(t)dt do not ne
essarily evaluate to 1. The approximation 
an betransformed into a density fun
tion by dividing ea
h 
oeÆ
ient of f 0 by R1�1 f 0(t)dt,though. Su
h an operation we refer to as normalizing f 0. Similarly, the Taylor seriesof a probability distribution, P (CjD; T ) for a given 
on�guration, ~d, of the variablesin D, P 0(
1j~d; T ); : : : ; P 0(
nj~d; T ), do not ne
essarily sum to 1 for ea
h t in sp(T ).This 
an be solved by adding 1� X
i2sp(C)P (
1j~d; T )to one of the series, su
h as P 0(
1j~d; T ).The value of N we assume to be set by the user of our method, but some dynami
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tion (dark line) for a�2-distributed variable.adjustment method 
ould be in
orporated in the method some time in the future.We do not tou
h upon this again in this report. We use Tf ([a; b℄; 
) to denote theTaylor's series of f on [a; b℄ about 
. In Figure 3.7 the density fun
tion of a variablefollowing a �2-distribution with 6 degrees of freedom as well as a Taylor's series, onthe real line of degree 10 about 8, of this are shown.Spe
i�
ally 
atering for pie
ewise 
ontinuous fun
tions, furthermore, allows us toapproximate utility fun
tions and probability distributions using Taylor's series pie
eby pie
e. Obviously, this is useful if the fun
tion is spe
i�ed pie
e by pie
e, but it 
analso result in faster approximation, as lower values of N 
an be used with little lossin pre
ision. As an example of this, we present two approximations of the fun
tionf(t) = ett6 sin t over the interval [0; 20℄ in Figures 3.8 and 3.9. The �rst approximationis based on the �rst 40 derivatives of f , whereas the se
ond uses only the �rst 10, butuses them four times. In both 
ases 40 evaluations of derivatives in a point need tobe evaluated, but whereas the �rst approa
h needs 
al
ulation of 40 derivatives these
ond method needs only 10. It is, thus, faster to approximate the fun
tion pie
e bypie
e. Of 
ourse there is a limit to the gains in approximation speed, as N 
annot beless than 0. Furthermore, the a
tual speed gain or penalty of pie
ewise approximationin the solution method itself is not obvious. We do not present a full time-
omplexityanalysis of our solution method, but do evaluate 
omplexity of the more intriguingsteps, to hint at the 
omplexity of the issue. Unfortunately, we 
annot allow densityfun
tions to be approximated pie
ewise, whi
h is further elaborated on below.For notational 
onvenien
e, we introdu
e the notation Tf , where f is a pie
ewise
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Figure 3.8: A Taylor's series (fair line) of the fun
tion ett6 sin t (dark line) over theinterval [0; 20℄ with N being 40.
ontinuous fun
tion over the partition If of the fun
tions (f0; : : : ; fn+1), to mean thepie
ewise 
ontinuous fun
tion over the partition If of the fun
tions (f�0 ; : : : ; f�n+1),where f�i = Tfi �[ti; ti+1[; ti+1 � ti2 � ;for i in f1; : : : ; ng, f�0 = Tf0 (℄1; t1[; t1 � 1) ;and f�n+1 = Tfn+1 ([tn+1;1[; tn+1) :As we approximate all utility fun
tions by polynomials of a �nite degree, the ap-proximations will invariably start to monotoni
ally de
rease or in
rease after somepoint in time. In Example 2 we needed to integrate over utility fun
tions from zeroto in�nity, and this will also be ne
essary in the method presented below. This 
an-not be performed when utility fun
tions de
rease or in
rease as des
ribed, and we,therefore, assume that the IDITs we solve have a time limit, te, before whi
h thede
ision taker wants the de
ision pro
ess 
ompleted at all 
osts. That is, all utilityfun
tions dependent on time, either dire
tly or indire
tly, yields 0 for points in timeafter te, no matter the 
on�guration of other variables in the IDIT. By \indire
tly",we mean that a utility is d-
onne
ted to the time variable given the set of observedvariables and de
isions prior to the time variable in the temporal ordering.This assumption is not as restri
tive as it appears. First of all, if a de
ision taker
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Figure 3.9: A pie
ewise Taylor's series (fair line) of the fun
tion ett6 sin t (dark line)over the intervals [0; 5[, [5; 10[, [10; 15[, and [15; 20℄ with N being 10.is a human being there is a very natural limit after whi
h the utility should be ofno 
on
ern to him. Se
ond, if an IDIT 
ontains no wait de
isions, the probabilityof de
ision s
enarios where the last time variable takes on a high value, will get in-
reasingly smaller, and thus, the 
ontribution of these to the expe
ted utility of anyde
ision is negligible. If an IDIT does 
ontain a wait de
ision, and we 
annot applythis argument, we rely on most naturally o

urring utilities dependent on time beinghighest for initial points in time and steadily de
resing afterwards. That is, manyde
ision takers prefer a payo� today rather than tomorrow. In su
h 
ases, there must
ome some point in time, t�e, after whi
h ea
h utility for ea
h 
on�guration of othervariables either is so low that the di�eren
es from one 
on�guration to the otherbe
omes negligable, or it is 
onstant. In both s
enarios, the part of the de
isionproblem that su

eeds t�e 
an be disregarded with little impa
t on the result.Assumption 2A time limit to the de
ision pro
ess, te, must be �xed before an IDIT 
an be solved.All utilities dependent on time variables, must yield the value 0 for all points in timeafter te. Likewise, utilities indire
tly dependent on time, su
h as utilities dependenton an ordinary 
han
e variable whi
h in turn depends on a time variable, shouldyield 0 for points in time after te.Given this assumption and a utility fun
tion or density fun
tion, f , in an IDIT, wemay approximate f#[0;te[, instead of f , when identifying Taylor series. Thus, the



78 Chapter 3. Solutions to IDITsdegree of approximation, N , are 
losely bound to the value of te. When te is raised,either N or the a

eptable ina

ura
y stemming from approximation would needto be raised as well. Furthermore, Assumption 2 and the observation that utilityfun
tions 
an be approximated pie
e by pie
e, allow us to loosen the wording ofAssumption 1 to only require density fun
tions, utility fun
tions, and probabilitydistributions to be di�erentiable an arbitrary number of times over the interval[0; te[, as opposed to the real line. Furthermore, we 
an allow utility fun
tions andprobability distributions to ful�ll this requirement on a pie
e by pie
e basis.Sin
e we assume all utility fun
tions are 0 outside the interval [0; te[, for any given
on�guration of other variables, we must also assume that ea
h utility does nottake on negative values in the interval [0; te[. If this was not assumed, we wouldhave s
enarios in whi
h the points in time outside this interval yield more attra
tiveutilities than some of those inside it. However, by adding a large 
onstant tosu
h utilities beforehand, we 
an disregard this problem. Furthermore, as utilitiesgenerally are required to be unique up to any given positive linear transformation,whi
h adding a 
onstant is, this is not a limitation.With this notation and understanding of approximation methods used, we 
an moveon to the a
tual algorithm.
Solution MethodThe method we propose for solving IDITs is inspired by the method for solvingasymmetri
 in
uen
e diagrams presented in [Nielsen and Jensen, 2000℄. Throughoutthe des
ription, we use lower 
ase greek letters to denote fun
tions whi
h are notne
essarily part of the original spe
i�
ation of the IDIT, but possibly results ofprevious 
al
ulations. Method 3.9 is the method that solves its input IDIT, I, andreturns an optimal strategy, S. It is really a shell for the solution method itself, andtakes 
are of initialization of the IDIT in preparation to the a
tual solving pro
ess.Method 3.10, whi
h is the main part of the solution method, takes as argumentan IDIT, I, with a realization, (�;	;�;�), a starting point in time, ts, and anend point in time te, and it produ
es a set of poli
ies for free de
isions in I, S,as well as two sets of fun
tions, �0 and 	0, whi
h are results of manipulationsof the fun
tions given in (�;	;�;�). The method re
ursively invokes itself andalso, o

asionally, 
alls Method 3.11, whi
h takes 
are of the a
tual elimination ofvariables. All methods are explained immediately after they have been presented.



3.3 Solving IDITs 79Method 3.9Input: IDIT I, realization (�;	;�;�), and end point in time te.Output: Optimal strategy, S.1. For ea
h utility, u : sp(D)� sp(T )! R, where D is some subset of V OD [V OC andT is a time variable, in 	, approximate the fun
tion  : sp(D)� sp(T )! R as (~d) = Tu(~d)#[0;te[ ;for all ~d in sp(D). Repla
e u with  .2. For ea
h probability distribution with a time variable in its domain, P (CjD; T ),where D is some subset of V OD [ V OC , in �, 
onstru
t the probability distribu-tion P �(CjD; T ) as P �(
j~d) = TP (
j~d)#[0;te[ ;for all 
 in sp(C) and ~d in sp(D). Then let P �(
0j~d), for some arbitrary 
0 in sp(C),be given as P �(
0j~d) +0�1� X
2sp(C)P �(
j~d)1A ;and repla
e P (CjD; T ) with P �(CjD; T ).3. For ea
h density fun
tion, f : sp(D) � sp(T ) ! R, where D is some subset ofV OD [ V OC and T is a time variable, in �, 
onstru
t the fun
tion � : sp(D) �sp(T )! R as �(~d) =  Tf(~d)#[0;te[R te0 Tf(~d)#[0;te[dt!#[0;te[ ;for all ~d in D.Repla
e f with �.4. Run Method 3.10 on I, (�;	;�;�), 0, and te. Denote the result (�0;	0;S). The set�0 should 
ontain a 
onstant, 1, and 	 should 
ontain only a 
onstant representingthe maximum expe
ted utility of I.5. Return S.The workings of Method 3.9 should be pretty straightforward to understand.In Step 1 ea
h utility fun
tion is �rst proje
ted down-to the interval [0; te[ ina

ordan
e with Assumption 2, and then a Taylor's series is 
onstru
ted for ea
hpie
e of the fun
tion. When a fun
tion is pie
ewise 
ontinuous it might be the 
asethat the fun
tions of adja
ent intervals are essentially the same. In that 
ase, we
an speed up the solution method by joining these intervals into one. Examiningwhether two fun
tions are the same, 
an be diÆ
ult when the initial fun
tions are
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e they have been 
onverted to polynomials, it 
an be done by N + 1
omparisons. Although we, attempting to be 
lear and 
on
ise, do not write thisoperation spe
i�
ally, it 
an be inserted after most of the operations des
ribed laterin this se
tion. We do not tou
h upon it again in this report.In Step 2 ea
h probability distribution with a time variable in its domain isapproximated and proje
ted down-to the interval [0; te[. In a

ordan
e with the dis-
ussion above, the resulting set of fun
tions are then normalized to be a probabilitydistribution.Step 3 approximates the density fun
tions, whi
h are not allowed to be pie
ewisefrom the start. After a new fun
tion has been proje
ted down-to the interval [0; te[and approximated, it is normalized to be a density fun
tion. This 
ompletes theinitialization steps of Method 3.9.In Step 4 the method 
alls Method 3.10, whi
h as mentioned is the main part ofthe solution method. Due to the re
ursive 
alls performed by that method, theresult returned to Method 3.9 is a triple of sets. The �rst set 
ontains probabilitydistributions of ordinary 
han
e variables, whi
h have not been eliminated fromthe IDIT, the se
ond 
ontains utility fun
tions over variables that have not beeneliminated, and the last 
ontains a set of poli
ies that should 
onstitute an optimalstrategy. Obviously, the �rst set should 
ontain a fun
tion over the empty set, i.e. a
onstant, whi
h should be 1, and similarly the se
ond set should 
ontain a 
onstant,indi
ating the maximum expe
ted utility of the IDIT. We end the solving pro
essby returning the optimal strategy in Step 5.Method 3.10Input: IDIT I, realization (�;	;�;�), points in time ts and te.Output: Sets of probability distributions, �0, and utility fun
tions, 	0, over thevariables in I, whi
h are not free, and an optimal strategy, S, for free de
isionsin I, given the variables that are not free.1. Examine whether non-instantiated split variables are in I. If so, let X denote the �rstof these. If not, let S be the empty set and skip to Step 4.2. If X is not a time variable, skip to Step 3. Else,i Let G be the set of guards on ar
s in I into the de
isions in IDI[X 7!ts℄. If X isfurthermore in the domains of some restri
tion fun
tions, rD1 ; : : : ; rDk , then letR be the set of boolean fun
tions over X determining its impa
t on state spa
esof D1; : : : ; Dk, k[i=1frDi(~
; x)j~
 2 sp(dom(rDi ))g;otherwise, let R be ?.



3.3 Solving IDITs 81ii Partition the points in time from ts to te into a set of intervals, [ts =t1; t2[; : : : ; [tn; tn+1 = te[, 
ontaining points in time having similar impa
t onguards in G and restri
tion fun
tions in R. That is, for any interval, [ti; ti+1[,any guard, g, in G, any restri
tion fun
tion, r0, in R, and any two points, tj andtk, in [ti; ti+1[, we have that g(tj) = g(tk) and r0(tj) = r0(tk).iii Let FX be the set of free variables in I[X 7! ts℄, and �FX the subset of �
ontaining probability distributions having some variable in FX in their domain.Furthermore, let 	FX and �FX be de�ned in similar ways. Let �� be the set� n�FX , and 	� and �� be de�ned similarly.iv For ea
h interval, [ti; ti+1[, do the followinga Constru
t the IDIT I[X 7! ti℄, and the updated set of restri
tion fun
tionsarising from this instantiation, �X=ti .b Re
ursively invoke Method 3.10 on I[X 7! ti℄ and the realization(�FX ;	FX ;�FX ;�X=ti) with the starting point in time being ti and theending point being te.Denote the resulting triples as (�1;	1;S1); : : : ; (�n;	n;Sn).v For ea
h utility  in ea
h 	i, where X is not in dom( ) and  is not in 	jfor all j in f1; : : : ; ng, 
ondition  on the value of X being in [ti; ti+1[. That is,remove  from 	i and repla
e it with the fun
tion  0 : dom( ) � sp(X) ! R,where, for ea
h ~z in dom( ), I 0(~z) = fti; ti+1g and  0(~z)1 =  (~z).Then repla
e ea
h utility  in ea
h 	i, where X is in dom( ), with  #[ti;ti+1[.vi Let � = �� [ n[i=1�i; S = n[i=1Si; and 	 =	� [ n[i=1	i:3. i Let FX be the set of free variables in I[X 7! x℄, where x is some state in thestate spa
e ofX , and�FX be the subset of� 
ontaining probability distributionshaving a variable in FX in their domain. Furthermore, let 	FX and �FX bede�ned in similar ways. Let �� be the set � n�FX , and 	� and �� be de�nedsimilarly.ii For ea
h state, x, in sp(X), do the following:a Constru
t the IDIT I[X 7! x℄, and the updated set of realization fun
tionsarising from this instantiation, �X=x.b Re
ursively invoke Method 3.10 on I[X 7! x℄ and the realization(�FX ;	FX ;�FX ;�X=x) with the starting point in time being ts and theending point te.Denote the resulting triples as (�1;	1;S1); : : : ; (�n;	n;Sn).



82 Chapter 3. Solutions to IDITsiii For ea
h utility  in 	i, where X is not in dom( ) and  is not in 	j for all jin f1; : : : ; ng, 
ondition  on X being x. That is, remove  from 	i and repla
eit with the fun
tion  0 : dom( ) � sp(X)! R, where  0(~z; x0) =  (~z) if x0 is xand 0 otherwise, for all ~z in dom( ) and x0 in sp(X).iv Let � = �� [ n[i=1�i; S = n[i=1Si; and 	 = 	� [ n[i=1	i:4. Eliminate all free variables from the fun
tions in �, 	, and � using Method 3.11 withsome elimination order 
onsistent with the inverse of �0I , the starting point ts, andthe ending point te. Denote the result (�0;	0;S0).5. Return (�0;	0;S [ S0).Method 3.10 basi
ally bran
hes into three 
ases depending upon the nature of the�rst split variable, X, in I. If no X 
an be identi�ed, it means that the ordering ofvariables and state spa
es of de
isions are the same for all de
ision s
enarios in I.In that 
ase we 
an immediately pro
eed to Step 4 where all free variables in I areeliminated using Method 3.11.If, on the other hand, a split variable X 
an be identi�ed we must split the groupof de
ision s
enarios 
orresponding to I on X. This step is represented by Steps 2and 3, 
orresponding to X being a time variable or not. The pro
ess in both stepsare similar, but minor details are di�erent due to X being either a time variable, andthus, 
ontinuous, or an ordinary de
ision or 
han
e variable, and hen
e, dis
rete. Webrie
y note that X 
annot be a wait de
ision, as these are not allowed to in
uen
eanything but their own end time, and 
onsequently 
annot be in a restri
tion fun
tionof any de
ision.As the pro
esses in Steps 2 and 3 are similar, we 
omment only on the one in Step 2,as this is the most 
omplex one and 
ontains the same problems as the one in Step 3.Initially, in parts i and ii, the state spa
e of X is divided into intervals, a

ordingto its e�e
t on I. This is similar to the approa
h given in Method 2.10, and wetherefore do not go into it in detail. What is worth noti
ing, though, is that thispartitioning do not need to be of a spe
i�
 granularity. That is, any partitioning,whi
h ful�lls the requirement on a similar e�e
t on guards and restri
tion fun
tions,will do. Furthermore, this approa
h for
es us to assume that no restri
tion fun
tionis a fun
tion over more than one time variable, as the intervals 
annot easily bedetermined otherwise.



3.3 Solving IDITs 83Assumption 3No de
ision variable 
an have two time variables in the domain of its restri
tionfun
tion.Obviously, this assumption ex
ludes the example IDIT given in Example 1 and sim-ilar IDITs from being solved.In the 
ase where X is not a time variable, we assume that it is dis
rete and split onits individual states instead of intervals. This is a reasonable assumption as the onlynon-time variables that are 
ontinuous is wait de
isions, and as these are prohibitedfrom restri
ting other de
isions and do not appear in guards, they 
annot be splitvariables.Next, as the set of variables, whi
h is in an instantiation of I on X, is the same forall values in the state spa
e of X, we 
an sele
t any value we like when determiningthis set. We 
hose, ts, and identi�es the set of free variables in I[X ! ts℄. Theseare the subset of free variables in I that 
annot be eliminated in this invo
ationof Method 3.10, sin
e their ordering or state spa
e is dependent on the value of X.Therefore, we 
onstru
t the subproblems 
orresponding to ea
h interval and re
ur-sively solve these.The results of all subproblems should repla
e the original fun
tions in the realization.However, some of the utility fun
tions are not obtained from all of the re
ursive 
alls.These are therefore 
onditioned on X being in the 
orresponding interval. This hap-pens in v. This step 
ontains two impli
it assumptions: First, that no time variabledi�erent from X is in the domains of utility fun
tions absorbed from the subprob-lems, and se
ond, that no two probability distributions over the same domain, butyielding di�erent probabilities, are absorbed from the subproblems. In order to arguefor the se
ond of these assumption, it is suÆ
ient to realize that:� the only parts of Methods 3.10 and Methods 3.11 that produ
e new probabilitydistributions or manipulate existing ones are the elimination pro
edures for or-dinary 
han
e variables, ordinary de
isions, and time variables in Method 3.11� these are 
ommutative, in the sense that it does not matter whi
h order vari-ables are eliminated from them,� the sets of variables that is eliminated in ea
h subproblem is the same, and� ea
h subproblem is invoked on the same set of probability distributions.



84 Chapter 3. Solutions to IDITsThat is, ea
h invo
ation starts from the same situation, applies the same set ofoperations, whi
h 
an be applied in any order without a�e
ting the result, and 
on-sequently, ends up in the same situation.In order to be sure that no utility fun
tion absorbed from a re
ursive 
all is de�nedover a time variable di�erent from X, we need another assumption:Assumption 4For any two time variables, T and T 0, where T �0 T 0, and any node, X, that is ades
endant of T 0, we have that T is d-separated from X, given the 
han
e variablesin 
h(T ).This is the most limiting assumption we must introdu
e for the proposed solutionmethod to work. It is not only needed at this point, but at several points in theelimination pro
edures in Method 3.11. To give the reader a better understandingof the impli
ations of this assumption, we present a few examples of IDITs that donot ful�ll it in Figure 3.10.The IDIT in (a) does not ful�ll Assumption 4 as the utility U is both a des
endantof end(D2), a 
hild of end(D1), and hen
e, d-
onne
ted to end(D1) given end(D2).In the slightly 
hanged situation, modelled in the IDIT in (b), the utility U , whi
his still a des
endant of end(D2), is not a 
hild of end(D1). It is, however, still d-
onne
ted to end(D1) through real(U). That both of these situations do not make alot of sense 
an easily be argued for: As the realization time of U in both 
ases |end(D1) and real(U), respe
tively | 
an be a point in time prior to de
iding uponD3, it goes against 
ommon sense to have the resulting 
hoi
e of D3 in
uen
ing U .The situation modelled in the IDIT in (
), on the other hand, 
annot be said to besenseless. We have a variable, C3, whi
h a�e
ts two 
han
e variables dependent ontime, C1 and C2. Several situation where su
h a setup is in
luded 
an be thought of.For instan
e, C3 
ould represent a global physi
al 
ir
umstan
e, su
h as humidity ortemperature, and C1 and C2 
ould be observations of the same phenomenon, su
h asnumber of athletes still parti
ipating in an amateur marathon ra
e, at two di�erentpoints in time, end(D1) and end(D3). Sadly, as C2 is d-
onne
ted to end(D1) throughC3 and a des
endant of end(D2) as well, this IDIT does not ful�ll Assumption 4.Having des
ribed Assumption 4, we argue why it allows us to 
on
lude that notime variable di�erent from X is in the domains of utility fun
tions absorbed fromonly some of the subproblems: Assume the opposite, namely that a utility,  , withsome time variable T di�erent from X in its domain, is returned from some of thesubproblems only. First of all, we note that T must be prior to X in the temporal
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D1 D2 D3 D4CU(a)
D1 D2 D3 D4CU(b)
D1 D2 D3UC1 C2C3(
)Figure 3.10: IDITs su
h as these we do not attempt to solve.



86 Chapter 3. Solutions to IDITsordering, as it would have been eliminated in the subproblems otherwise. The reasonwhy  is only returned from some subproblems, must be be
ause of the asymmetri
di�eren
es arising from X. That is,  must be the result of elimination of somede
ision D, where D's set of observed variables or D's state spa
e is dependent onthe value of X. If T is in the domain of  , then there must exist some node, Y , whi
hT is d-
onne
ted to given the 
han
e variables among its 
hildren, and whi
h is ades
endant of D. Furthermore, as D is eliminated in the subproblems, it must befollowing X in the temporal ordering and, thus, be a des
endant of X. Consequently,Y is a des
endant of X, thereby violating Assumption 4.Returning to the des
ription of Method 3.10, we rea
h Step 4, where all free variablesin I are eliminated from the fun
tions in �, 	, and �, with respe
t to the points intime ts and te. The elimination of ea
h variable is handled by Method 3.11, whi
hneeds an elimination order, 
onsistent with the inverse of �0. That is, if X �0 Y ,then Y should be eliminated prior to X, whereas if both X 6�0 Y and Y 6�0 X,then the elimination ordering of the two is without signi�
an
e. We 
onje
ture thatany method for 
onstru
ting these elimination orderings 
an be used, in
luding thestandard jun
tion tree based method used for solving in
uen
e diagrams, as des
ribedin [Jensen, 2001℄. For simpli
ity, we may simply assume that the exa
t eliminationsequen
e is 
hosen at random.After all free variables have been eliminated from the fun
tions in �, 	, and �, wereturn what remains of them and the 
al
ulated optimal poli
ies along with optimalpoli
ies 
al
ulated in any re
ursive steps to the 
alling method. If I is the originalIDIT, the free variables en
ompass all variables in I and the resulting fun
tionsshould, therefore, be only 
onstants. It should be noted that no density fun
tionsare returned to the 
alling method. This is be
ause� no new density fun
tions are produ
ed by any of the elimination pro
edures inMethod 3.11, and� all density fun
tions given to Method 3.10 as input are density fun
tions forfree time variables in I, whi
h are all eliminated in Step 4.We pro
eed to presenting Method 3.11.Method 3.11Input: IDIT, I, set of probability distributions, �, set of density fun
tions, �, setof utility fun
tions, 	, points in time, t and te, and elimination order (X1; : : : ; Xn).Output:



3.3 Solving IDITs 871. For ea
h variable X in the ordering (X1; : : : ; Xn), eliminate X from (�;	;S) usingthe appropriate elimination te
hnique, from those des
ribed below.2. Return the transformed sets (�;	;S).The basi
 stru
ture of Method 3.11 is a loop where the variables to be eliminatedare treated one after the other in the given order of elimination. Ea
h elimination isperformed by swit
hing on the type of the variable to be eliminated and its parentsin I, and then applying the 
orresponding transformation on involved fun
tions. Asthis stru
ture is fairly basi
, we fo
us on explaining the transformation in details,whi
h 
onstitute the larger part of the rest of the report.All throughout the des
riptions below, whenever we write \for a 
on�guration ~dover the variables D", we assume that the state spa
e of ea
h de
ision, D, hasbeen updated a

ording to the value of the restri
tion fun
tion, given the values ofremaining variables in D. This assumption are not needed for the solution to befound, but prevents 
al
ulation of fun
tion values that are irrelevant for a solution.Case 1The �rst 
ase we 
onsider is the elimination of a time or realization time variable,T , whi
h is a 
hild of another time variable, a wait de
ision, or both. This is by farthe most 
omplex 
ase. Although this parent variable 
an be a wait de
ision, for thesake of 
larity, we 
hoose to denote it T 0 as if it was a time variable. If T is a 
hildof both a wait de
ision, W , and a time variable, T 00, we denote by T 0 the 
ontinuousvariable T 00 +W . In order to do 
al
ulations in the 
ase des
ribed here we make anadditional assumption, whi
h 
onsists of three nearly identi
al requirements:Assumption 5The density fun
tion, f , for a time variable, T , given another time variable,T 0, is, for all 
on�gurations, ~d, of other variables in its domain, spe
i�ed as adensity fun
tion over the span in time from T 0 to T . That is, the density fun
tion,fT�T 0 , for the 
ontinuous variable T � T 0 given ~d, is f(tjt0; ~d), for all real numbers, tand t0. Furthermore, fT�T 0(t�t0; ~d) is 0 for all points in time, t and t0, where t�t0 � 0.The density fun
tion, f , for a time variable, T , given a wait de
ision, W , is,for all 
on�gurations, ~d, of other variables in its domain, spe
i�ed as a densityfun
tion over the span in time from W to T . That is, the density fun
tion, fT�W ,
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ontinuous variable T � W given ~d, is f(tjw; ~d), for all real numbers, tand w. Furthermore, fT�T 0(t�w; ~d) is 0 for all points in time, t and t0, where t�t0 � 0.Likewise, the density fun
tion, f , for a time variable, T , given another time variable,T 0, and a wait de
ision, W , is, for all 
on�gurations, ~d, of other variables in its do-main, spe
i�ed as a density fun
tion over the span in time from T 0+W to T . That is,the density fun
tion, fT�(T 0+W ), for the 
ontinuous variable T � (T 0+W ) given ~d, isf(tjt0; w; ~d), for all real numbers, t, t0, and w. Furthermore, fT�(T 0+W )(t� (t0+w); ~d)is 0 for all real numbers, t, t0, and w, where t� (t0 + w) � 0.Observing the requirement on time not regressing, the guiding lines given in thisassumption represent a very natural way of spe
ifying probability distributions fortime variables given their prede
essors. At least this author 
annot 
ome up withany 
ounter examples.When eliminating time variables, we utilize that all variables in the domain of theirdensity fun
tion are prior to the time variable in the temporal ordering. This is notne
essarily the 
ase of realization time variables, as these have no spe
i�ed orderingrelative to their parent 
han
e variables. However, by re�ning the temporal orderingto pla
e a realization time variable after ea
h of its parent variables, allow us toapply the same reasoning for these as time variables.When T is to be eliminated the only fun
tions in �, 	, and � having T in their do-main must be the density fun
tion for T � T 0, �T�T 0 , a set of utility fun
tions,whi
h 
ombine additively into,  T , and possibly some probability distributions,P (Z1jZ2; T ). The reason why there 
annot exist more density fun
tions with Tin its domain is that no new density fun
tions are produ
ed by any of the elimina-tion pro
edures, and time variables following T in the temporal ordering must havebeen eliminated at this point.As stated previously, the elimination ordering must respe
t the inverse of �0. Thatmeans that all ordinary 
han
e variables, whi
h are des
endants of T must havebeen eliminated at this point. Therefore, if T is in the domain of a probability dis-tribution, P (Z1jZ2; T ), a variable, X, in Z1 is not a des
endant of T . Furthermore,no variables among T 's des
endants 
an be 
onsidered instantiated at this point.Consequently, T must be d-separated from X given its parents, and we may simplyrepla
e P (Z1jZ2; T ) in � with P (Z1jZ2) equaling P (Z1jZ2; ti) for some random tiin [ts; te[, su
h as ts.



3.3 Solving IDITs 89What remains is to repla
e �T�T 0 : sp(D1) � sp(T � T 0) ! R and : sp(D2)� sp(T )! R with a new utility fun
tion,  0 : sp(D1 [D2 =D) �sp(T 0) ! R. Before we 
onstru
t  0 we explain why the sets D1 and D2 
an be
onsidered to be subsets of V OC [ V OD. First, none of the elimination steps inMethod 3.11 
onstru
t new density fun
tions, and �T�T 0 , therefore, 
an be de�nedover the time variables T and T 0 only. Se
ond, none of the elimination steps 
on-stru
ts utility fun
tions over two time variables and due to Assumption 4 su
h util-ities 
annot exist in the diagram from the start, so  
annot be de�ned over othertime variables than T .As when eliminating variables in in
uen
e diagrams, we need to 
onstru
t,  0, forea
h 
on�guration, ~d, of variables inD. These fun
tions should ea
h be the expe
tedvalue of  given T 0 and ~d2 = ~d#D2 . As ea
h  (~d2) might be pie
ewise 
ontinuous,we need to de�ne ea
h  0(~d) as a pie
ewise 
ontinuous fun
tion also. Sin
e �T�T 0is 
ontinuous over the interval [0; te℄ we do not need to take this into a

ount whenidentifying the intervals for ea
h  0(~d), and we 
an, therefore, simply let I 0(~d) equalI (~d2) for ea
h ~d in D. Noti
e that if we had let density fun
tions be pie
ewise 
on-tinuous over the interval [0; te[, the partition I 0(~d) 
ould not have been determinedthis way. This is be
ause a density fun
tion is de�ned over the variable T �T 0 ratherthan T itself. Therefore, the resulting partition of the resulting utility fun
tion forT 0, would be a fun
tion of T 0, leaving us with 
al
ulating an in�nite number of par-titions.We let  0(~d)i be 0, for ea
h i in f0; : : : ; I<t 0(~d) � 1g. That is, the expe
ted utility ofany value of T 0 less than t, is not needed in future 
omputations and is, therefore,simply set to 0. The remaining parts of  0(~d) is found as following: For ea
h i infI<t 0(~d); : : : ; jI 0(~d)jg we let  0(~d)i be de�ned as 0(~d)i(t0) = Z 1�1 �T�T 0(~d1)(t� t0) (~d2)(t)dt;where ~d1 is ~d#D1 , for all real numbers t0. By utilizing that �T�T 0(~d1)(t� t0) is 0 for allpoints in time, t, less than t0, that te is an upper limit after whi
h all utilities yield0, that  (~d2) is de�ned pie
ewise, and that all fun
tions are polynomials of degree



90 Chapter 3. Solutions to IDITsN , we get 0(~d)i(t0) = Z 1�1 �T�T 0(~d1)(t� t0) (~d2)(t)dt= Z tet0 NXj=0C[�T�T 0(~d1)℄j(t� t0)j (~d2)(t)dt= NXj=0C[�T�T 0(~d1)℄j Z ti+1t0 (t� t0)j NXl=0 C[ (~d2)i℄ltldt++ jI 0(~d)j�1Xk=i+1 Z tk+1tk (t� t0)j NXm=0C[ (~d2)k℄mtmdt!= NXj=0C[�T�T 0(~d1)℄j NXl=0 C[ (~d2)i℄l Z ti+1t0 (t� t0)jtldt++ jI 0(~d)j�1Xk=i+1 NXm=0C[ (~d2)k℄m Z tk+1tk (t� t0)jtmdt!:



3.3 Solving IDITs 91Using the Binomial Theorem[Edwards and Penney, 1998℄, we 
an repla
e (t � t0)xwith Pxy=0 �xy�(�1)x�yt0x�yty, and we get 0(~d)i(t0) = NXj=0C[�T�T 0(~d1)℄j NXl=0 C[ (~d2)i℄l Z ti+1t0 (t� t0)jtldt+ (3.6)+ jI 0(~d)j�1Xk=i+1 NXm=0C[ (~d2)k℄m Z tk+1tk (t� t0)jtmdt!= NXj=0C[�T�T 0(~d1)℄j NXl=0 C[ (~d2)i℄l Z ti+1t0 jXn=0�jn�(�1)j�nt0j�ntjtldt+ jI 0(~d)j�1Xk=i+1 NXm=0C[ (~d2)k℄m Z tk+1tk jXn=0�jn�(�1)j�nt0j�ntjtmdt!= NXj=0C[�T�T 0(~d1)℄j jXn=0�jn�(�1)j�n NXl=0 C[ (~d2)i℄lt0j�n Z ti+1t0 tj+ldt+ jI 0(~d)j�1Xk=i+1 NXm=0C[ (~d2)k℄mt0j�n Z tk+1tk tj+mdt!= NXj=0C[�T�T 0(~d1)℄j jXn=0�jn�(�1)j�n NXl=0 C[ (~d2)i℄l tj+l+1i+1 � t0j+l+1j + l + 1 t0j�n+ jI 0(~d)j�1Xk=i+1 NXm=0C[ (~d2)k℄m tj+m+1k+1 � tj+m+1kj +m+ 1 t0j�n! (3.7)As this is a polynomial of degree 2N , we need to approximate it by a polynomial ofa degree N , before removing  and �T 0T from 	 and �, respe
tively, and inserting 0 in 	.It is worth noti
ing that if the numbers �xy� have been evaluated before hand, theevaluation time of the expression in (3.7) is O(N3jI j1), where jI j is the maximumnumber of intervals a utility fun
tion is split into due to initial spe
i�
ationand split variables. Considering that the expression only yield one of the neededpolynomials,  i, we end up with a total evaluation time of O(N3jI j2), prior toapproximation down-to a polynomial of degree N . Thus, for suÆ
iently largeapproximations of degree n, the 
omplexity of this operation ben�ts from a divisionof the domain into intervals and approximations to a lesser degree over ea
h of them.
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ase where we are eliminating a time variable, T , whi
h have no time variablenor wait de
ision as parent, is roughly similar to Case 2. The only di�eren
e is thatthe utility fun
tion,  0, resulting from eliminating T is not a fun
tion over anothertime variable or wait de
ision. We show how to derive  0, given a density fun
tion,�T : sp(D1) � sp(T ) ! R, and a utility fun
tion  : sp(D2) � sp(T ) ! R. Forthe same reasons as when eliminating a time variable with another time variable asparent, D = D1 [D2 must be a subset of V OC [ V OD, and we derive  0 for ea
h
on�guration, ~d, over D: 0(~d) = Z 1�1 �T (~d1)(t) (~d2)(t)dt;where ~d1 denotes ~d#D1 and ~d2 denotes ~d#D2 . Using the same tri
ks as in the deriva-tions above, we get 0(~d) = NXi=0 C[�T (~d1)℄i jI (~d2)j�1Xj=1 Z tj+1tj NXk=0C[ (~d2)j ℄kti+kdt= NXi=0 C[�T (~d1)℄i jI (~d2)j�1Xj=1 NXk=0C[ (~d2)j ℄k Z tj+1tj ti+kdt= NXi=0 C[�T (~d1)℄i jI (~d2)j�1Xj=1 NXk=0C[ (~d2)j ℄k ti+k+1j+1 � ti+k+1ji+ k + 1 :Similar to the situation above, we need to approximate this result before insertingit in 	. The evaluation of this thus takes time O(N2jIj).Case 3When eliminating a wait de
ision, W , with a time variable, T , as parent, we needonly 
onsider one fun
tion, viz. the utility  : sp(D)� sp(W + T )! R in 	. Thisis be
ause W only o

urred in one fun
tion from the start, fT 0�(W+T ), for sometime variable, T 0. When T 0 was eliminated only a utility over W + T was produ
edwhile fT 0�(W+T ) was removed. For the same reasons as given for elimination of timevariables, D must be a subset of V OC [ V OD.As we eliminate W from  we need to identify a strategy that, given a 
on�guration
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Figure 3.11: An example utility fun
tion for a wait de
ision.~d over the variables in D, and a point in time, t, represented by T , yields the 
hoi
efrom [t; te℄ that maximizes  . If we study the example utility fun
tion,  (~d), plottedin Figure 3.11, we 
an see how these 
hoi
es must be des
ribed:� If t is less than 2, where  (~d) is at a global maximum, the best advi
e is towait until time 2. In other words, the optimal 
hoi
e is to wait for 2 � t timeunits.� If t is more than 2, but still less than 3, the best advi
e is not to wait. Thatis, the optimal 
hoi
e is to wait for 0 time units.� In the time span from 3 to 15, the best advi
e is again to wait. The optimal
hoi
e is thus to wait for 15� t time units.� In the remaining time of the interval from 0 to 18, the optimal 
hoi
e is againto wait for 0 time units.Thus, an optimal poli
y, ÆW , would be de�ned as following:ÆW (~d)(t) = 8>>>><>>>>: 2� t if t < 20 if 2 � t < 315� t if 3 � t < 150 if 15 � t < 18
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on
lusion through a simple pro
edure. On
e we have establishedthat the points 0, 2, 3, 15, and 18 are the pla
es on the real line the poli
y should
hange, we 
an apply a simple set of rules to ea
h interval between them to determinethe poli
y. However, some utility fun
tions might be pie
ewise 
ontinuous, and wehave to take that into a

ount. Furthermore, we need a method of �nding extremaof the utility fun
tion, whi
h redu
es to �nding roots in its derivative. We �nd rootsof a fun
tion, f , by the appli
ation of Newton's method, whi
h given an initial guessof a root, x1, 
al
ulates a new root 
andidate, x2, using the formulax2 = x1 � f(x1)f 0(x1) ;where f 0 is the �rst derivative of f . The pro
ess 
ontinues iteratively until the di�er-en
e xn+1�xn is smaller than some �xed threshold value. Newton's method 
an undersome 
ir
umstan
es fail to lo
ate a root, even though su
h one exists, and in that 
asehuman intervention might be ne
essary, or another approximation method may beused. For more information on Newton's method, see [Edwards and Penney, 1998℄.The iterative pro
edure for lo
ating an optimal poli
y for a given 
on�guration, ~d,is as following: Initially, we di�erentiate ea
h pie
e of the utility fun
tion  (~d) withregards to t. We lo
ate roots of the resulting fun
tions in their respe
tive intervals.This is done using Newton's method. We denote the roots r1; : : : ; rn. Next we denoteP = I (~d) [ fr1; : : : ; rng as the set of points of interest, and setr = argmaxt2P  (~d)(t):Then we set the poli
y for all points in time, t0, prior to r to r � t0.In the iterative step we identify whi
h of the points larger than r that gives rise tothe highest value of  (~d). If several of these points exists we 
hoose the minimumone. Let this be r0. Then we 
onstru
t the fun
tion f(t) =  (~d)(t) �  (~d)(r0) and�nd its root, r�, in the interval ℄r; r0[, if su
h a thing exists.If no root exists,  (~d) is either larger than  (~d)(r0) over the interval [r; r0[ or lessthan or equal to  (~d)(r0) over [r; r0[. In the �rst 
ase we set the poli
y for this intervalto 0. In the se
ond 
ase we set it to r0 � t.If a root exists, we are in a situation su
h as the one presented in the example above,and we 
an set the poli
y for [r; r�[ to 0 and the poli
y for [r�; r0[ to r0 � t.Next we set r0 to be r and iterate. When we run out of 
andidates for maximums inP we stop the iteration.



3.3 Solving IDITs 95This method does not take into a

ount restri
tions on the state spa
e of W . Thealterations needed for this would, depending on how simple these restri
tions are,imply a more thorough examination of the utility fun
tion. We 
hose not to fo
uson this here and simply assume:Assumption 6No ar
s into wait de
isions may be dashed.Having this assumption as a basi
 part of the representation language of IDITs isa
tually not that re
kless. Whenever we are in a situation where we are told thatwe \
annot wait for that long", or that we \need to wait for at least" some spe
i�
amount of time, the impli
it understanding of this is \or else...". In other words, arestri
tion on a wait de
ision 
ould be modellable as an sudden de
rease or in
reasein some utility 
onne
ted to the time variable following the wait de
ision. Therefore,we do not see Assumption 6 as a limitation on the number of de
ision problemsthat 
an be solved.The remaining bit of work is to 
onstru
t a new utility fun
tion,  0, oversp(fTg [D). For ea
h 
on�guration, ~d, over D, where ÆW (~d) is the optimal poli
yjust found, we let  0(~d) be given as following: For all intervals where ÆW (~d) is notgiven as 0, but as k � t, for some k in [t; te[, we let  0(~d) be the fun
tion de�ned asf(t) =  (~d)(r). For all intervals where ÆW (~d) is 0, we let  0(~d) be  (~d).
Case 4The 
ase where a wait de
ision,W , with no time variable as parent is to be eliminatedis quite simple. As for wait de
isions with time variables as parents, we 
an assumethat only a utility fun
tion,  : sp(D) � sp(W ) ! R, has W in its domain. Weneed to �nd an optimal poli
y for W | a pro
ess whi
h, for ea
h 
on�guration ~dover the variables in D, en
ompass lo
ating the value, m~d, of W 
orresponding tothe global maximum of  (~d) over [0; te[. This pro
ess was des
ribed as part of theexplanation of how to eliminate wait de
isions with time variables as parents, so wedo not repeat it here.On
e these global maxima have been identi�ed, we 
an repla
e  with an utility, 0 : sp(D)! R, de�ned as  0(~d) =  (~d;m~d);



96 Chapter 3. Solutions to IDITsfor all ~d in sp(D). Furthermore, we 
onstru
t the optimal poli
yÆW : sp(D)! [0; te[, as ÆW (~d) =m~d;for all ~d in sp(D).Case 5When an ordinary de
ision, D, is eliminated we need to manipulate a set of proba-bility distributions, �D, having D in their domain, and a set of utilities, 	D, witha similar property. No density fun
tions 
an have D in their domain at this point,be
ause su
h a density fun
tion would be de�ned over a time variable following Din the temporal ordering, whi
h should have been eliminated at this point.Like for time variables, we start by removing D from any probability distributionP (Z1jZ2;D), as D must be d-separated from any variable in Z1. Following this, webran
h into two 
ases: First 
ase, is when no time variable is in the domain of anyof the utility fun
tions in 	D. The se
ond 
ase is when only one time variable is inthe domains of the utility fun
tions in 	D. We 
an never be in the 
ase that twotime variables, T and T 0, are both in the domains of fun
tions in 	D, and that thesum of these fun
tions is not 
onstant over either T or T 0. To see this, we need a
onje
ture:Conje
ture 1Let T be a time variables in an IDIT, d-
onne
ted to some variable X given its the 
han
evariables amongst its 
hildren. Then T is d-
onne
ted to any node that is a 
hild of X .We assume without loss of generality that T �0 T 0, and that  T is an utility fun
tionwith T in its domain. This means that there is some node, X, whi
h is a des
endantof D and, a

ording to Conje
ture 1, d-
onne
ted to T given the 
han
e variablesamongst its 
hildren. Furthermore, as both T and T 0 is in the domain of a utilityin 	D, they 
annot have been eliminated at this point, whi
h indi
ates that D isfollowing both of them in the temporal ordering. This in turn tells us that D isa des
endant of T 0, that X is a des
endant of T 0, and Assumption 4 is, therefore,violated.We 
onsider �rst the 
ase in whi
h no time variable is in the domain of utilityfun
tions in 	D. This is similar to the pro
edure used for eliminating de
ision vari-ables in in
uen
e diagrams and is, therefore, not presented in great detail. We let : sp(D [ fDg)! R be the sum of utilities in 	D. Then for ea
h 
on�guration, ~d,



3.3 Solving IDITs 97of variables in D, we let the poli
y for D beÆD(~d) = arg maxd2sp(D) (~d; d);and the maximum expe
ted utility,  0 : sp(D)! R, be de�ned as 0(~d) =  (~d; ÆD(~d)):Finally, we repla
e the utilities in 	D in 	 with  0 and store ÆD in S.If a time variable, T , is in the domains of the fun
tions in 	D, we sum all utilitiesin 	D into one,  : sp(D [ fDg) � sp(T ) ! R. We 
onstru
t the optimal poli
y,ÆD, for D as following: For ea
h 
on�guration, ~d, of D, we 
onstru
t the fun
tions (~d; di)� (~d; dj), for ea
h pair of distin
t states, di and dj, in rD(~d#dom(rD)), whererD is the restri
tion fun
tion for D in �. We then use Newton's method on thesefun
tions and lo
ate their roots. These points, along with dis
ontinuities, I (~d), in (~d), are the points in time where our poli
y may 
hange. We denote them P  (~d).As identi�
ation of these points is the main purpose of 
onstru
ting the  (~d; di) � (~d; dj)-fun
tions, we may 
hose to only 
onstru
t one of the fun
tions  (~d; di) � (~d; dj) and  (~d; dj)�  (~d; di) for ea
h pair of states, di and dj .Finally, for ea
h interval [ti; ti+1[ generated by P  (~d) we letÆD(~d)(t) = arg maxd2rD(~d) (~d; d)� ti+1 � ti2 � ;for all t in [ti; ti+1[.The utility fun
tion,  0 : sp(D) � sp(T ) ! R, whi
h is to repla
e the fun
tions in	D in 	, we derive for ea
h 
on�guration, ~d, of D as following: First, we let I 0(~d)be P  (~d). Then for ea
h interval [ti; ti+1[ generated by I 0(~d) we let 0(~d) =  (~d; ÆD(~d; ti)):Case 6Elimination of an ordinary 
han
e variable, C, involves manipulation of fun
tionsin � and 	. No density fun
tion, �, in �, for a time variable, T , 
an have C inits domain, as that would imply that C �0 T , and hen
e, that T should have beeneliminated at this point. We 
all the sets of fun
tions with C in their domain �C
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tively.Ea
h fun
tion in 	C 
an have only one time variable in its domain, as that is the
ase from the start, and no elimination pro
edure produ
es utility fun
tions over twotime variables. At this point we divide the des
ription into three 
ases, dependingon whether no, one, or more time variables are in the domains of fun
tions in �C .No Time Variables in Domains of Fun
tions in �CFirst, we repla
e the fun
tions in �C in � with the fun
tion, �0 : sp(D1) ! [0; 1℄,where D1 is the set of variables in domains of fun
tions �C ex
ept C, de�ned as�0(~d1) = X
2sp(C) Y�2�C �(
; ~d#dom(�)1 );for ea
h 
on�guration, ~d1, over the variables inD1. Se
ond, we repla
e ea
h fun
tion, , in 	C in 	 with the expe
ted value of  ,  0. If  does not have a time variablein its domain, we let  0 be  0 : sp(D =D1 [ dom( ) n fCg)! R, de�ned as 0(~d) = P
2sp(C)Q�2�C �(
; ~d#dom(�)) (
; ~d#dom( ))P
2sp(C)Q�2�C �(
; ~d#dom(�)) ;for ea
h 
on�guration, ~d, over the variables in D.If  has a time variable, T , in its domain, we let  0 be 0 : sp(D =D1 [ dom( ) n fC; Tg) � sp(T )! R, de�ned as 0(~d) = P
2sp(C)Q�2�C �(
; ~d#dom(�)) (
; ~d#dom( ))P
2sp(C)Q�2�C �(
; ~d#dom(�)) ;for ea
h 
on�guration, ~d, over the variables in D. The main di�eren
e between thisexpression and the one before is that the resulting  0(~d)'s are polynomials.We have divided up the sum of utilities, and 
al
ulated ea
h expe
ted utility in-dividually, whi
h is not the standard solution te
hnique for in
uen
e diagrams. Inthese the utilities in 	C are additively 
ombined and then the expe
ted value of this
ombination is 
onstru
ted. The two approa
hes 
an easily be shown to yield thesame result, though. To see why we have 
hosen this approa
h, study the IDIT inFigure 3.12. If we add up the resulting utilities when eliminating C, we end up witha utility over two time variables, whi
h the rest of the solution method depends on



3.3 Solving IDITs 99D1 D2U1 U2CFigure 3.12: IDITs where we have to be 
areful not to sum the lo
al utility fun
tions.never happens.
One Time Variable in Domains of Fun
tions in �CWhen there is one or more time variables, T , in the domain of the fun
tions in �C ,we need a di�erent approa
h and some additional results. We �rst assume that onlyone time variable, T , is in T :We repla
e the fun
tions in �C in � with the fun
tion, �0 : sp(D1)� sp(T )! [0; 1℄,where D1 is the set of variables in domains of fun
tions �C ex
ept C and T , de�nedas �0(~d1) = X
2sp(C) Y�2�C �(
; ~d#dom(�)1 );for ea
h 
on�guration, ~d1, over the variables in D1. This is a polynomial, whi
h 
anbe of degree j�C jN , sin
e ea
h probability distribution might be a polynomial ofdegree N . As we work with polynomials of a �xed degree only, we approximate ��by a Taylor's series. That is, we repla
e the fun
tions in �C in � with the fun
tion�0 : sp(D1)� sp(T )! [0; 1℄ de�ned as�0(~d1) = T��(~d1);for ea
h 
on�guration, ~d1, over the variables in D1.Se
ond, we repla
e ea
h fun
tion,  , in 	C in 	 with the expe
ted value of ,  0. If  does not have a time variable in its domain, we let  � be  � :sp(D =D1 [ dom( ) n fCg)� sp(T )! R, de�ned as �(~d) = P
2sp(C)Q�2�C �(
; ~d#dom(�)) (
; ~d#dom( ))P
2sp(C)Q�2�C �(
; ~d#dom(�)) ;
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h 
on�guration, ~d, over the variables in D. Ea
h  �(~d) is not a polynomial,so we need to approximate it. Consequently, we repla
e  in 	 with the fun
tion 0 : sp(D)� sp(T )! R de�ned as 0(~d) = T �(~d);for ea
h 
on�guration, ~d, over the variables in D.If  has a time variable, T 0, in its domain, and T 0 is the same variable as T , thenwe let  � be  � : sp(D =D1 [ dom( ) n fCg)� sp(T )! R, de�ned as �(~d) = P
2sp(C)Q�2�C �(
; ~d#dom(�)) (
; ~d#dom( ))P
2sp(C)Q�2�C �(
; ~d#dom(�)) ;for ea
h 
on�guration, ~d, over the variables in D. As above, ea
h  �(~d) is not apolynomial, so we repla
e  in 	 with  0 : sp(D)� sp(T )! R de�ned as 0(~d) = T �(~d);for ea
h 
on�guration, ~d, over the variables in D.If  has a time variable, T 0, di�erent from T , in its domain, we 
annot apply theabove operations dire
tly, as we need to be sure we do not 
onstru
t a utility withtwo time variables in its domain. We refer to the dis
ussion in the next paragraphon why a utility 
annot be non-
onstant over more than one time variable, T �, andsimply state that the resulting utility must be 
onstant over at least one of thevariables. We, therefore, let  � be  � : sp(D =D1 [ dom( ) n fCg)� sp(T �)! R,de�ned as  �(~d) = P
2sp(C)Q�2�C �(
; ~d#dom(�)) (
; ~d#dom( )P
2sp(C)Q�2�C �(
; ~d#dom(�)) ;for ea
h 
on�guration, ~d, over the variables in D. As twi
e before, ea
h  �(~d) is notne
essarily a polynomial, so we repla
e  in	 with  0 : sp(D)�sp(T 0)! R de�nedas  0(~d) = T �(~d);for ea
h 
on�guration, ~d, over the variables in D.



3.3 Solving IDITs 101More than one Time Variable in the Domains of Fun
tions in �CWhen there is more time variables, T , in the domains of the fun
tions in �C , werepla
e the fun
tions in �C in � with the fun
tion, �0 : sp(D1)� sp(T )! [0; 1℄,where D1 is the set of variables in domains of fun
tions �C ex
ept C and those inT , de�ned as �0(~d1) = X
2sp(C) Y�2�C �(
; ~d#dom(�)1 );for ea
h 
on�guration, ~d1, over the variables in D1. This is not a polynomial, buta sum over a produ
t of polynomials. We denote it as a 
ompound expression. Wedo not evaluate it to a polynomial at this point but simply store �0 in � insteadof the fun
tions in �C . Any appli
able en
oding s
heme, su
h as a list of ordinary
han
e variables, C, followed by a list of polynomials, PL, 
an be used to representa fun
tion su
h as XX2C Yp2PL p;and we do not make any assumptions on this representation. We must, however, take
are that this unevaluated fun
tion do not interfere with the workings of the otherparts of the solution method. The only parts of the solution method that manipulatesprobability distributions in ways other than dropping variables from their domains,is the two 
ases des
ribed above. As both of these are 
onditioned on there notbeing two time variables in domains of fun
tions in �C , we 
an be sure that theseprobability distributions do not get handled by anything other than this part of thesolution method.We then examine ea
h utility,  : sp(D2) � sp(C) � sp(T ) ! R, in 	C . When we
onstru
t the expe
ted utility,  � : sp(D =D1 [D2)� sp(T [ fTg)! R, as �(~d) = P
2sp(C)Q�2�C �(
; ~d#dom(�)) (
; ~d#dom( ))P
2sp(C)Q�2�C �(
; ~d#dom(�)) ;for ea
h 
on�guration, ~d, over the variables in D, we end up with a non-polynomialover several time variables, T [ fTg. However, it will always be the 
ase that  � is
onstant over all time variables, ex
ept possibly for one. To see this, let T 6
 denotethe set of time variables in T [ fTg for whi
h  � is not 
onstant. Furthermore, letTm denote the variable in T 6
 farthest in the temporal ordering. As Tm has not beeneliminated it is 
learly the 
ase that Tm �0I C.  � is not 
onstant over Tm and



102 Chapter 3. Solutions to IDITstherefore it must have some node, X, amongst the des
endants of C, as des
endant.Then let T 0 be some other time variable in T 6
, whi
h would have to be prior to Tmin the temporal ordering. As  � is not 
onstant over T 0 and all 
han
e variables thatare 
hildren of T 0 is known when Tm is known, we 
on
lude that T 0 is d-
onne
ted toC given the 
han
e variables amongst its 
hildren, and, a

ording to Conje
ture 1,thus to X. This is a violation of Assumption 4, and T 0 
an therefore not exist. Hen
e, �, varies only over one variable.We then let  0 : sp(D =D1 [D2)� sp(Tm)! R, be given as �(~d) = P
2sp(C)Q�2�C �(
; ~d#dom(�)) (
; ~d#dom( ))P
2sp(C)Q�2�C �(
; ~d#dom(�)) ;for ea
h 
on�guration, ~d, over the variables inD. If this is not a polynomial of degreeN , we approximate it and repla
e  in 	 with the approximation. Otherwise, werepla
e it with  0.The only open question remaining, is regarding the point in the method where a
ompound expression, �, is removed from	: Whenever a time variable is eliminated,and 
onsequently removed from the domain of �, we 
he
k if there are still two timevariables in the domain of �, and if not, we evaluate �, and store the result in �.Stru
tural Corre
tness of the Solution MethodIn the paragraphs above, we have given several arguments as to why the eliminationpro
edures and short 
uts we have applied are sound. We still need to argue why theoverall stru
ture of the solution method produ
es an optimal strategy for a givenIDIT I. As a formal proof of this would be rather elaborate and would not di�ermu
h from the one given in [Nielsen and Jensen, 2000℄, we 
hose only to present asket
h.To prove that the stru
ture of the method 
onstru
ts an optimal strategy, giventhat the elimination pro
edures are 
orre
t, we apply a 
onversion of IDITs tode
ision trees, and utilize that the averaging-out-and-folding-ba
k algorithm isknown to produ
e an optimal strategy for de
ision problems modelled as de
isiontrees [Jensen, 2001℄.We need to argue that our solution method 
an 
onstru
t a split tree where ea
hvariable in I is treated as a split variable: Ea
h ordinary de
ision or 
han
e variablein I, whi
h are not in the domain of a restri
tion fun
tion, 
an be used as a split
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an be seen from Step 3 in Method 3.10, whi
h does not require ofthe variables it splits on, that the resulting subproblems are of a di�erent stru
ture.Hen
e, we may split on all ordinary de
ision and 
han
e variables in this step, if weso desire.As already mentioned above, when splitting on a time variable, the partitioningof the numbers in the interval [ts; te[, need not be of a spe
i�
 granularity, as longas the requirement on similarity of de
ision s
enarios in the resulting subproblemsis ful�lled. Therefore, we 
an dis
retize ea
h time variable to any given level ofpre
ision and still apply out method. Similarly, by dis
retizing wait de
isions we
an let Step 3 in Method 3.10 split on the states of these as well.Thus, by dis
retizing 
ontinuous variables, to an arbitrarily �ne level of granularity,we end up with the general stru
ture of the averaging-out-and-folding-ba
k algo-rithm.Future WorkClearly, this solution method su�ers from some 
aws, all due to the assumptionsintrodu
ed. The subset of IDITs we 
an solve are limited, most noti
eable be
auseof Assumption 4, whi
h, among other things, prohibits an unobserved variable toin
uen
e time dependent variables not dependent on the same time variable. Asalready mentioned this ex
ludes a great deal of de
ision s
enarios, and a topi
 offuture resear
h would be to alter the parts of the solution method that dependson it. Furthermore, an area where improvements are needed, is in the handling ofrestri
tion fun
tions. The method, as presented, does not allow wait de
isions tobe restri
ted, and ordinary de
isions 
annot be restri
ted by more than one timevariable.Apart from 
ompleting the solution method, it would be interesting to analyze the
omplexity of the method in terms of N , te, jI j, and the number of nodes in anIDIT. The result of su
h an analysis 
ould perhaps be used for de
iding an optimalvalue of N and optimal number of approximation intervals for ea
h utility andprobability distribution, given an IDIT and a value for te.Apart from 
ompleting the solution method, a topi
 of interest is implementationof a modelling and solving tool for IDITs. This tool 
ould warn the user when anIDIT violating the assumptions is 
onstru
ted.
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Chapter 4
Con
lusion
As this report forms the do
umentation of a period of study as well as a means of
ommuni
ating the result, this 
on
lusion 
onsists of two parts. First, some 
on
lud-ing remarks on the s
ienti�
 status and value of the results given in the report, andse
ond, a brief a

ount on the knowledge that has been obtained by this author inthe pro
ess.The starting point for this report is a representation language for representing de
i-sion problems involving quantitative aspe
ts of time. This representation languagesu�ers from some serious 
aws and some minor quirks, whi
h we 
orre
ted in Chap-ter 2. The most damaging 
aw was the la
k of a 
lear temporal ordering of elementsin IDITs. Through an analysis we have highlighted the 
aws in the existing ordering,and from this analysis, we have 
reated a new temporal order operator, whi
h takesasymmetry arising from quantitative time into a

ount. Building on this work, wehave managed to 
onstru
t a de�nition of what IDITs that make sense, that is, whi
h
an be 
onsidered wellde�ned. A method for 
he
king IDITs for being wellde�nedhas also been 
onstru
ted.The temporal ordering operator is inspired by the ordering operator used in asym-metri
 in
uen
e diagrams [Nielsen and Jensen, 2000℄, but takes on a quite di�erentform, due to guarded ar
s into de
isions being inherited by subsequent de
isions.Similarly, the 
on
ept of instantiation, used in other representation languages, hasbeen adapted to 
ater for this as well.In addition to these results, we have also presented a solution method whi
h solves asubset of IDITs. Even 
onsidering the limitations on the IDITs whi
h 
an be solved,the solution method is interesting as it avoids dis
retizing 
ontinuous variables and105



106 Chapter 4. Con
lusiondoes so without utilizing sampling. Continuous variables have so far not been inte-grated into in
uen
e diagrams with unequivo
al su

ess. The problem of spe
ifyingpoli
ies for de
isions over 
ontinuous variables has so far eluded solution. In our 
ase,we have exploited the restri
tions and nature of time, and hen
e, have solved it inthis spe
i�
 
ase.Seen from a personal learning perspe
tive, this proje
t has been ri
h on 
hallenges.The problems 
onne
ted to identifying a temporal ordering relation have mostly beendealt with using re
e
tion and pondering while studying orderings of in
uen
e dia-grams in detail. Before de
iding upon an approa
h for solving IDITs, several otherapproa
hes, in
luding sampling and dis
retization, was studied to a point where a
hoi
e 
ould be made on a solid foundation. As most of the methods for dealing with
ontinuous variables that exist are based heavily on properties of Gaussian distribu-tions, few ideas from these sour
es have been appli
able, whereas the stru
ture ofsolutions to asymmetri
 in
uen
e diagrams have been an inspiration to the stru
tureof the solution method presented in this report.
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Notationinit(D) the time variable that represents the initiation time of the de
ision D p6end(D) the time variable that represents the end time of the de
ision D p6sp(X) the state spa
e of the variable X p7S1 � S2 the Cartesian produ
t of the sets S1 and S2 p7X = x the knowledge that the variable X is in the state x p7dom(f) the domain of the fun
tion f p11W I the set of all nodes in the IDIT I p14LI the set of all labels in the IDIT I p14EI the set of all edges in the IDIT I p14V IC the set of all 
han
e variables in the IDIT I p14V ID the set of all de
isions in the IDIT I p14V IT the set of all time variables in the IDIT I p14V IW the set of all wait de
isions in the IDIT I p14V IU the set of all lo
al utility fun
tions in the IDIT I p14V I the set of all variables in the IDIT I p14V IOC the set of all ordinary 
han
e variables in the IDIT I p14V IOD the set of all ordinary de
isions in the IDIT I p14EIs the set of all solid edges in the IDIT I p15EId the set of all dashed edges in the IDIT I p15pa(X) the set of parent variables for the node X p15
h(X) the set of 
hild nodes for the node X p15pad(X) the set of parent variables 
onne
ted with dashed edges for the node X p15� the ordering relation used in [Broe et al., 2003℄ p15�I the set of probability distributions in a realization for the IDIT I p18	I the set of lo
al utility fun
tions in a realization for the IDIT I p18�I the set of density fun
tions in a realization for the IDIT I p18�I the set of restri
tion fun
tions in a realization for the IDIT I p18,! a partial fun
tion p18real(U) the realization time variable of the utility U p20V IR the set of all realization time variables in the IDIT I p21�0I the temporal ordering relation of elements in the IDIT I p32I[X 7! x℄ the instantiation of the IDIT I in whi
h X is known to be x p37



IDI the set of de
isions in an IDIT I initiating at the point in timethe de
ision problem modelled by I starts p39OP The set of possible orderings of variables in the de
ision problem P p49oP(~z) the ordering of variables in the de
ision problem, P, when thevariables are instantiated as ~z p49SP/ the poli
ies in the strategy S, whi
h are valid under the ordering / p49�P the set of strategies for a de
ision problem P p49PÆD(DjP ) the ÆD-indu
ed probability distribution for the poli
y ÆD p49f(S)#S0 the real-valued fun
tion over S0 obtained from the funtion f bysumming and/or integrating over all variables in S n S0 p50PSP/ (V P) the S-indu
ed probability distribution for the strategy Sfor the de
ision problem P p50P I;D;~t the set of past time variablesfor the de
ision D in the IDIT I[V IT 7! ~t℄ p52SoI(~t) SI/ , where / is some ordering 
onsistent with �0I[V IT 7!~t℄ p52~x#S the 
on�guration over the variables in S obtained from ~xby dropping 
oordinates not 
orresponding to a variable in S p53ÆS;ID the poli
y for D in S under the ordering �0I p60I<x the number of elements in the partition I less than or equal to x p71If the partition the fun
tion f is de�ned over p71fi the fun
tion de�ned over the i'th interval generated by If p71f#[a;b[ the fun
tion that takes on the value of f on points in [a; b[and 0 everywhere else p73C[f ℄i the 
oeÆ
ient 
orresponding to xi in the polynomial f p73N the degree of Taylor's series in the solution method p74Tf the pie
ewise approximation of the fun
tion f p75Tf ([a; b℄; 
) the Taylor's series of f on [a; b℄ about 
 p75te a point in time after whi
h all utilities in an IDIT should yield 0 p77jI j the maximum number of intervals a utility fun
tion is splitinto due to initial spe
i�
ation and split variables p91
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Appendix A
Summary
This report deal with a representation language for de
ision problems involving quan-titative aspe
ts of time 
alled in
uen
e diagrams involving time, or simply IDITs.For some time there has existed a number of frameworks for representing and solv-ing de
ision problems, in
luding in
uen
e diagrams, valuation networks, and de
i-sion trees. None of them 
ope very well with quantitative measures of time, whi
hwas un
overed in [Broe et al., 2003℄. Consequently, a new framework was needed.[Broe et al., 2003℄ suggests a representation language, 
alled IDITs, whi
h is sup-posed to be a 
ompa
t and unambiguous language 
ompatible with in
uen
e dia-grams, in the sense that an IDIT of a de
ision problem involving no aspe
ts of quan-titative time should be interpretable as an in
uen
e diagram with no modi�
ation.[Broe et al., 2003℄ negle
ts to turn the representation language into a full framework,meaning that both a set of unambiguous semanti
s and a solution method is la
king.In this report both of these missing results are developed.Chapter 2 
ontain a des
ription of IDITs. In short, these are dire
ted a
y
li
 graphswhose nodes represent 
han
e and de
ision variables and lo
al utilities. Ar
s in thegraph represent either probabilisti
 dependen
ies, informational 
onstraints, or fun
-tional dependen
ies. This far IDITs resemble in
uen
e diagrams. However, IDITsallow for a subset of the 
han
e variables to represent points in time where de
i-sions end, and thereby to be 
ontinuous. Furthermore, de
isions 
an be 
ontinuous ifthey denote de
isions on lengths of waiting periods en
ountered during the pro
essdes
ribed by the de
ision problem. Asymmetry arising from quantitative time arein
luded in the diagram by the means of guarded informational ar
s and restri
tionfun
tions for de
isions. 115



We enhan
e IDITs by furthermore allowing utilities to depend on points in timenot ne
essarily representing an end time of a de
ision in the de
ision problem. Ad-ditionally, we allow the ordering of de
isions, whi
h do not span a period of time,to vary a

ording to the time previous de
isions have ended, and modify the rulesfor inheriting guards in the diagram, to better re
e
t the nature of time dependentobservation. A temporal ordering relation whi
h takes into a

ount the asymmetryof IDITs is then presented, and a de�nition of wellde�nedness is derived from thisrelation. We furthermore 
onstru
t a method that 
he
ks whether an IDIT is wellde-�ned.At this point we have 
ompleted IDITs as a representation language and 
an, thus, inChapter 3, 
onstru
t a solution method on a solid foundation. Our approa
h to 
on-stru
ting a solution method, takes outset in an introdu
tion to solutions to de
isionproblems in general, and is then outlined through an elaborate example before beingpresented in full. The stru
ture of our solution method follows the stru
ture of solu-tion methods for solving asymmetri
 de
ision problems in [Nielsen and Jensen, 2000℄and [Demirer and Shenoy, 2001℄, but the details are di�erent. We 
hose to approxi-mate 
ontinuous fun
tions in IDITs by Taylor's series and use algebrai
 manipula-tions of these in order to eliminate variables from the IDIT. Spe
i�
ally, we are, dueto asymmetry, required to 
ater for pie
ewise 
ontinuous fun
tions, whi
h furtherallow us to approximate 
ontinuous utility fun
tions with greater pre
ision using thesame resour
es.The resulting solution method is not universally appli
able, as it builds on a seriesof assumptions on the nature of the given IDIT. It 
an be argued for that mostof these assumptions are ful�lled by the vast majority of IDITs. However, one ofthem is a real limitations. Future resear
h should seek to eliminate the need for thisassumption.


