
AALBORG UNIVERSITY
Department of Computer Science.
Fredrik Bajers Vej 7E, 9220 Aalborg Ø

Title:

Comparing Schemas for Spatiotemporal Data Warehouses

Project Period:
1st February 2003 to
6th June 2003

Semester:
DAT6

Author:
Luis Domínguez

Supervisor:
Torben Bach Pedersen

Copies: 6

Pages: 38

ABSTRACT

Analysis of traffic through tracking of
moving objects, a location-based service,
is an activity that requires storing and
querying an amount of data which is
typically too large to use the classical
OLTP approach in a practical way.

A spatiotemporal data warehouse for
moving objects is built, with different
designs. Observations in position (X, Y,
road segment) and time for cars, utilization
of roads, and length and duration of trips
are stored facts in the DW. The DW is
populated from two data sources, one
from real, GPS data from moving cars,
and one with synthetic data from a data
generator. Indexes and materialized views
are built upon this DW to improve
performance. A set of typical queries is
issued to the DW to test this performance
and compare the designs.

Luis Domínguez

2

Table of Contents
1 Introduction..3
2 Related Work..4

2.1 Multidimensional Design ...4
2.2 Star Schema Design ..5
2.3 Spatiotemporal Databases..5
2.4 Design of a Spatiotemporal Data Warehouse..5

3 Data Sources...7
3.1 Data from the INFATI project...7

3.1.1 Description of the Data..7
3.1.2 Road Information..7
3.1.3 Integrity of the Data ...8

3.2 Data Generator...9
3.2.1 Using the Data Generator...9
3.2.2 Modifications to the Data Generator..10
3.2.3 Drawbacks...11

4 Data Structure...12
4.1 Observation...12

4.1.1 Road Network Dimension..13
4.1.2 Time of Day Dimension...13
4.1.3 Date Dimension..14
4.1.4 Driver Dimension ...14
4.1.5 Car Dimension ...15
4.1.6 Speed Dimension ...15
4.1.7 Acceleration Dimension ..16
4.1.8 Position Dimensions ...16

4.2 Road Utilization..17
4.2.1 Road Utilization Fact ...17
4.2.2 Shared Dimensions ...18
4.2.3 Minute Dimension ..18
4.2.4 Road Utilization Fact and Dimensions ...18

4.3 Trip ...18
4.3.1 Trip Fact ...18
4.3.2 Shared Dimensions ...19
4.3.3 Duration Dimension ..19
4.3.4 Distance Dimension ..20

5 Setup Description ..21
5.1 Configuration...21
5.2 Creating the Database..21
5.3 Technical Issues...22

6 Queries ..23
7 Experimental Results..25

7.1 Experiment Setup...25
7.1.1 Timing Setup..25
7.1.2 Table sizes, indices, materialized views..25

7.2 Query Results..28
7.3 Timing Results for the Bare Database..29
7.4 Timing Results for the Database with Indexes..30
7.5 Timing Results for the Database with Indexes and Materialized Views......................................32
7.6 Timing Results for the Database with Materialized Views..33
7.7 Comparison...34

8 Conclusion and Future Work...36
8.1 Conclusion...36
8.2 Future Work..36

9 Bibliography..37

3 Introduction

1 Introduction

Spatiotemporal applications are being increasingly used in various fields, from location based services in
mobile communications to traffic analysis; databases are being built to deal with data that is based in space
and time. The amount of this data is typically too large to use the classical OLTP (On-Line Transaction
Processing) approach in a practical way. A Data Warehouse (DW) is a database used for OLAP (On-Line
Analytical Processing), where in order to support analysis of data, the architecture is changed from the
relational database philosophy. An example of location-based service would be traffic jam detection
system in which the user is informed of the traffic conditions of the route he is taking. Tracking of
moving objects is another location based service; it can be divided into two areas. One area is the past
where discrete locations of the moving objects are stored, and can be interpolated in order to determine
the location between the samples. Another area is the future where predictions about the positions of
moving objects rely on knowledge about the objects' movements. Positioning of moving objects can be
performed in one-, two-, or three-dimensional space. Positioning can additionally be constrained to
subspaces where objects move along lines and curves in two or three dimensional space. An example of
moving objects, in which this constraint would be a road network, is traffic.

The goal of this project is to build a spatiotemporal DW for moving objects, specifically cars, and test
through a set of typical queries the effect that structures that support data warehousing and different
designs have in the performance of these queries.

The design for the DW built comprehends dimensions as X, Y Position for the position of cars in the
map, Time of Day and Date for time, a Road Network in which cars move, etc. A fact table keeps track
of the moving objects, associating the position (X, Y, and Road Network), time, car, and other
information with the respective dimensions. This fact table contains measures, speed and acceleration, to
analyze the behavior of cars respecting these parameters. Other interesting information that is gathered is
the utilization of each road. Having a fact table that stores the number of cars on a road or road segment
in each moment would be useful to detect traffic jams. Measuring the duration and length of trips
(traveling from one location to another) can provide information about travel patterns. If information
about trips is maintained during several years, trends and changes in the travel patterns can be revealed.
This could be information about the total distance and time traveled this year compared to last year. A fact
table holds information about the length and duration of these trips, that can be used for analyzing such
trends.

To populate this DW two data sources were available. The first comes from the INFATI project
[INFATI, 2003], a experiment done in the Danish town of Aalborg in which 20 cars were equipped with a
GPS receiver that was used to determine the position of the car every second the car was moving, for
almost two months. The other source is a data generator, a program written in Java whose approach is
to simulate an environment in which objects follow a given network. This data generator can be fed with
the Aalborg road network to simulate as many cars as needed, for the desired time interval.

To test the performance of the spatiotemporal DW built, a set of queries was made, like “number of
observations in a certain space window during the last hour” or “Most used road in the last x hours in the
city center”. These queries are issued to the DBMS with four different configurations. First over the
tables with no indices nor materalized views, then with indices and then with indices and materialized
views. A materialized view is a pre-computed table comprising aggregated data.

This kind of tests over a spatiotemporal DW in other work is unknown to the author, as it is the
comparison between designs.

The reminder of the thesis is structured as follows. Section 2 gives a brief overview of related work in
data warehousing theory and spatiotemporal databases. Section 3 describes the different data sources that
have been used to populate the DW. Section 4 contains a description of the DW design used. Section 5
details the different steps involved in the setup of the Data Warehouse. Section 6 describes the set of
queries used to test the DW performance. Section 7 contains the results of the experiments done with the
queries. In Section 8 the conclusion is presented together with suggestions for future work in the area.

4 Related Work

2 Related Work

A data warehouse is a database used for OLAP. In an OLAP database the focus is on analyzing data, that
is, to extract information to be used for decision support. A data warehouse can contain large amounts of
data from several source databases and it is updated from these sources periodically, for instance once a
day, or once a month depending on the purpose of the data warehouse. Therefore, a data warehouse need
not be consistent with the OLTP source databases. However, when analyzing data from several years to
find overall trends information from a single day has hardly any influence. A data warehouse is constituted
by two elements, facts and dimensions. A fact contains the data to be analyzed, and the dimensions give a
view of the data stored in the fact. A fact consists of measures, which are values describing the fact.

Facts are divided into three types according to the properties of the fact. The fact types are event fact,
snapshot fact and cumulative snapshot fact [Pedersen and Jensen, 2001]. Event facts represent events in
the real world. The snapshot fact represents the state of measured properties at a given point in time, for
instance an inventory. The measured value represents the inventory at a given point in time. The
cumulative snapshot fact is the cumulative value of a snapshot fact.

The structure in a data warehouse is very different from an OLTP database where the focus is on the
individual transaction e.g. money transfer in a bank. In an OLTP database it is important to avoid
redundancy. This is achieved by normalizing the schema but normalization can lead to long execution
times for queries involving large amounts of data. An important goal in the design of a data warehouse is
to achieve a low query execution-time. Therefore, unlike the OLTP database, a data warehouse permits
redundancy in order to reduce query execution-time. In order to obtain fast answers to queries a
technique called pre-aggregation is also used. The principle is to pre-calculate and store aggregate values
at higher levels of the hierarchy. At run-time these values can be accessed directly or used in further
calculations thereby reducing execution-time. Two main approaches to pre-aggregation are full pre-
aggregation and practical pre-aggregation [Pedersen et al., 1999, p. 1]. Full pre-aggregation means pre-
aggregating the aggregate value of the fact at every combination of levels in every dimension of the fact-
type. However, the storage space needed to store the aggregated results increases rapidly with the number
of dimensions and levels, and therefore, this strategy becomes infeasible. This phenomenon is called data
explosion [Pedersen et al., 1999]. Practical pre-aggregation, on the other hand, selects a subset of the
aggregation levels. This increases the performance by decreasing response time without taking up too
much storage. Practical pre-aggregation uses the pre-aggregated values at one level to pre-aggregate the
values at the levels above. For this approach to give the correct result, data of a dimension used for pre-
aggregation must be summarizable. Summarizability is achieved if the hierarchy of the dimension
members is onto (all paths from the root to a leaf in the hierarchy have equal lengths), covering (only
immediate parent and child values can be related), and strict (each child in a hierarchy has only one
parent) [Pedersen et al., 1999]. If these requirements are not satisfied, aggregated values based on lower
level aggregates can be incorrect because data at the lowest level are either counted more than once or not
at all. The following two sections each contain a description of a data warehouse schema. First, the
multidimensional schema is described, and then the star schema which is an adaption of the
multidimensional model to the relational schema. The next section deals with spatiotemporal databases.

2.1 Multidimensional Design

The multidimensional model [Kimball et al., 1998, p. 27] organizes each fact-type in a cube. A cube is
constructed of the dimensions of the fact-type such that each combination of dimension values creates a
cell where the measures of a fact can be stored. In cases where no fact exists for a combination of
dimension values, the cube has an empty cell [Kimball, 1996, p. 199].

In the cube the hierarchies of dimensions are modeled by having different granularities of the cells
according to the level in the hierarchy. When aggregating measures to a higher level of a dimension the
number of cells in that dimension will be reduced. In the theory of multidimensional models viewing the
data at a higher level is called rolling up. The inverse process is called drilling down.

Selecting a subset of the dimension values in the cube is called slicing. The result is the slice from the

5 Related Work

cube containing the specified value and the rest is cut away.

2.2 Star Schema Design

The star schema is an alternative to the multidimensional design and is based on the relational database
design. In a star schema the facts and dimensions are stored in tables, and there is typically a one-to-many
relationship between the dimensions and the fact. By selecting a subset of the dimension tuples and joining
with the fact table the star schema allows slicing in the dimensions just like the multidimensional design.
The advantage of the star schema design is that it can be implemented in conventional relational databases,
whereas the multidimensional designs are implemented in multidimensional OLAP systems like Oracle
Analytic Workspace [Oracle, 2003], integrated in Oracle9i R2, or Microsoft Analysis Services
[Microsoft, 2003].

The disadvantage of using a star schema is that it does not support the hierarchy structure of the
multidimensional design. In order to achieve the advantage of pre-aggregation, the Oracle RDBMS has a
functionality called materialized view. A materialized view is a table storing the result of an SQL-query. A
materialized view is created for the the chosen aggregation level. The Oracle query optimizer can then
rewrite a query to utilize the pre-aggregated values in the materialized view.

2.3 Spatiotemporal Databases

An common use for a Data Warehouse is storing spatiotemporal information. Real objects have position
and shape in space, and these and other properties can change as time passes. This results in a data
warehouse with two or three dimensions for space (x, y, z dimensions), and two time dimensions: a valid-
time dimension that stores the time when the fact is true in the modeled reality, and a transaction-time
dimension for the time when the fact is or was current in the database. A historical database stores data
with respect to valid time, while a rollback database stores data with respect to transaction time. A
bitemporal database stores data with respect to both valid time and transaction time.

Indexing spatiotemporal databases effectively has different solutions [Papadias et al., 2001]. Based in the
fact that many of the real-world applications use summarized data more than individual facts, the same
index stores pre-aggregated data, which could substitute the entire data cube if that is the only desired
information. There are typical spatial indexing solutions (R-tree and R-tree variants) and temporal
indexing solutions (aggregation tree) [Papadias et al., 2001].

An R-tree [Guttman, 1984] is an height-balanced tree in which internal nodes contain couples of pointers
to the lower nodes in the tree and the corresponding bounding box, while index records in leaf nodes
contain bounding boxes and pointers to the actual data object.

The aggregation tree [Kline and Snodgrass, 1995] indexes constant intervals, i.e. the maximum continuous
intervals where the value of the aggregation function is constant. The nodes store the difference of the
aggregation value between the current and the next level of the tree; therefore, the aggregation function is
computed by accumulation all the values in the path from the root to the leaves.

Then [Papadias et al., 2001] describes a framework for supporting OLAP operations over spatio-temporal
data and presents data structures based on the aggregation tree integrating spatio-temporal indexing with
pre-aggregation: For indexing static spatial dimensions, the aggregate R-B-tree (aRB-tree) is proposed: the
regions that constitute the spatial hierarchy are stored only once and indexed by an R-tree. For each entry
on the R-tree (including intermediate level entries), there is a pointer to a B-tree which stores historical
aggregated data about the entry. For indexing dynamic spatial dimensions, in which regions can appear,
disappear or change their extent over time, the aggregate historical RB-tree (aHRB-tree) and the 3DRB-
tree are proposed.

2.4 Design of a Spatiotemporal Data Warehouse

A Data Warehouse for spatiotemporal data has already been designed [Elliasen, Kjær and Urban, 2002],

6 Related Work

and the design described in section 4 is based upon this work.

The design also has dimensions X, Y Position for the position of cars in the map, Time of Day and Date
for time, and a Road Network in which cars move. In Road Network, the finest granularity is at Road
Code. This implies that a road with more than one speed limit is simplified to having just one. In our
design this is solved by storing information about road segments. A road is divided into segments when
there is a change in the speed limit in a section, or a intersection with another road occurs. A fact table
keeps track of the moving objects, associating the position in X, Y, and Road Network, time, car, and
other information with the respective dimensions. This fact table contains measures, speed and
acceleration, to analyze the behavior of cars respecting these parameters. Other fact table presented is
Road Utilization. It stores the number of cars on a road in each moment. Trip Fact, another fact table,
measures the duration and length of trips (traveling from one location to another).

7 Data Sources

3 Data Sources

The project documented in this report uses data gathered from two data sources which will be detailed
below.

3.1 Data from the INFATI project

During the spring of 2000 the “Urban and Transport Planning Division” under “Department of
Development and Planning” at Aalborg University started a project about cars and their speed called
INFATI [INFATI, 2003]. The purpose of the project was to investigate car-drivers' response to alerts,
when the speed of the car exceeded the speed limit on the road. The experiment involved 20 cars and 20
drivers, and the area covered by the experiment was the Aalborg Municipality, which is the town of
Aalborg and its surrounding area. A description of the experiment and the results can be found in [Nielsen
and Boroch, 2001] and [Madsen and Madsen, 2001].

For almost two months every movement of each of the 20 cars was registered using the Global
Positioning System (GPS). The positions were stored in the Universal Transverse Mercator (UTM)
format. The UTM system [USGS, 2001] applies the Transverse Mercator projection (cylindrical
projection of the world) to map the world, and measure in meters east and north from two perpendicular
reference baselines. Each car had a GPS receiver and a small computer. The GPS receiver was used to
determine the position of the car every second the car was moving and the computer recorded these
positions. No observations were made when the car was parked, since the computer was then turned off.

The GPS has an uncertainty of measurement and thus, the measured position of a car need not be on the
road the car is driving on. However, the position on the road is the interesting observation, not a position
five meters out in the field, and, since the car is assumed to be driving on a road, the measured position of
the car is mapped onto the road that the car is assumed to be driving on. If the car is not driving on a road
but on a field or a parking lot, the position of the car is still mapped onto a road.

3.1.1 Description of the Data

The observations recorded during the experiment were saved in four different files. These files, together
with two other files, one describing the roads in the Aalborg Municipality and another giving the speed
limit on the roads, will be described in the following two sections.

3.1.2 Road Information
The information about the roads in Aalborg is obtained from the administration in the Aalborg
Municipality. All local roads in Denmark have a road code of seven digits attached. The first three are a
code for the municipality to which the road belongs, and the last four are a unique number within the
municipality for that road. The file describing the roads in Aalborg Municipality, RoadNames.dat
contains data about all roads in the municipality. Each road in the file is associated with a road code and
the name of the road. Furthermore, the postal code and postal district of the road is contained in the file,
along with the starting and ending number of the houses on the road. An extract of the file is shown in
Figure 4.1.

Figure 3.1 Part of RoadNames.dat

Road code Road name start end Postal code Postal district
0068 Abelsvej 1 36 9000 Aalborg
0073 Abildgårdsvej 21 64 9400 Nørresundby
0078 Absalonsgade 1 34 9000 Aalborg
0080 A. C. Jacobsens Vej 5 34 9400 Nørresundby

8 Data Sources

There is another file, Veje.dat, which contains details about speed limit for each segment of a road. A
road is divided into segments when there is a change in the speed limit in a section, or a intersection with
another road occurs. Figure 4.2 shows part of the file.

Fields are X and Y UTM coordinates, road code, speed limit in km/h and “Unique”, a not used field. When
Each row is a starting point of a segment and can be an ending point for the following segment, unless
road code is -9, which means only an ending point.

Observations
The actual observations from INFATI are contained in four different files. As described previously, the
experiment lasted for almost two months, and during this period the position of each car was recorded
each second it was driving. The four files contain data from different periods of the experiment. Figure
4.3 shows part of one of the files.

The field unique is a concatenation of BilNr, Date and Time. BilNR is the car number, followed by
DRIVER number, and the DATE and TIME of the observation. X, Y is the position of the car at the time
of the observation; MPX and MPY is the position obtained by mapping the observed position onto a road.
The next field, SAT, is the number of satellites the GPS is receiving information from. HDOP meaning is
unknown to the author. LIMIT and SPEED are the speed limit in that segment of the road and the current
speed, respectively. VEJ is the road code. USERINPUT is also unknown.

A road code of -9 is set when the car was within ten meters of an intersection the coordinates; these were
not mapped onto a road because at this time it was not known on which road the car would proceed
when leaving the intersection.

3.1.3 Integrity of the Data

The data for the INFATI project has been used in former projects [Elliasen, Kjær and Urban, 2002],
where some filtering related to the integrity of the data was made.

The file containing information about roads and the corresponding postal code has some roads with more
than one postal code. Intuitively, this should also be the case because roads can stretch through several
postal districts. However, to achieve strictness, the roads with more than one postal code associated have
been assigned only one of these, as the segment file doesn't contain information about postal codes. Road
were assigned a town according to the postal district.

Figure 3.3 Part of an observation data file

UNIQUE BilNr Driver DATE TIME X Y MPX MPY SAT HDOP LIMIT SPEED VEJ USERINPUT
5071200144347 5 0 071200 144347 553495 6299654 553495 6299654 0 0,0 0 65 -9 0
5071200154317 5 0 071200 154317 556384 6322126 556407 6322125 7 1,2 50 8 3640 0
5071200154318 5 0 071200 154318 556384 6322124 556407 6322122 7 1,2 50 8 3640 0
5071200154319 5 0 071200 154319 556383 6322122 556383 6322111 7 1,2 50 7 3640 0
5071200154408 5 0 071200 154408 556325 6322216 556323 6322205 7 1,2 70 27 9749 0
5071200154409 5 0 071200 154409 556319 6322219 556316 6322207 7 1,2 70 29 9749 0
5071200154410 5 0 071200 154410 556312 6322221 556309 6322209 8 0,8 70 28 9749 0

Figure 3.2 Part of Veje.dat

 X-coord Y-coord Vejkode kmt Unique
 55430572 632455870 7486 50 23
 55430979 632457914 7486 50 23
 55431749 632458306 7486 50 23
 55449649 632456885 -9 0 0
 55419427 632454790 6607 50 23
 55417961 632455407 6607 50 23
 55416386 632455047 -9 0 0

9 Data Sources

In the files containing all the observations of the experiment a more thorough integrity check is needed.
Each observation in the files has been mapped onto a road and assigned the corresponding road code.
However when the car is within 10 meters of an intersection, the uncertainty is too high to determine if
the car is turning or continuing down the road. In these situations the observations were not mapped at
the observation time, and thus added in the database. The information in the observation files are
recordings of the cars' positions every second when the cars are moving. This implies that no car should
have more than one observation at any second. Such duplicate information has been removed from the
file. Furthermore, for some observations the value in the time-field did not describe a point in time. These
observations were also deleted. A total of 669,252 observations were deleted out of 2,234,799
corresponding to 29.95%.

3.2 Data Generator

Due to the relatively small amount of data that INFATI provides, a data generator [Brinkhoff, 2002] was
used, in order to provide sufficient data size.

The data generator is a program written in Java whose approach is to simulate an environment in which
objects follow a given network, which is suitable for our needs. Other aspects are considered, such as
maximum speeds, capacity of connections or the influence of the moving objects between each other.

3.2.1 Using the Data Generator

The program displays the network which is fed to it through a binary format file. In order to get the
Aalborg network running in the generator, former work on this program [Elliasen, Kjær and Urban, 2002]
included a script to convert the data from a text based format to a binary file format, which was used in
this project. The script needs a collection of nodes and edges that define the network, therefore another
script was made that generated this data from the “Aalborg Kommune” files, which is fed alongside the
speed limit and the road codes.

The data generator has a set of parameters that can be established through the user interface. These
parameters include the duration of the simulation, the initial number of moving objects, the rate of creation
of new moving objects, etc. Other parameters can be set through a configuration file. These include the
network data input files, visualization parameters, and maximum values for time and moving objects. A
screenshot of the data generator is shown in Figure 3.4. The map appears upside down, that is, the Y
coordinates are swapped. This is probably because of the java coordinate system, which places the origin
at the upper left corner of the window, and growing direction is right for X but down for Y. UTM Y axis
coordinates, though, grow upwards.

The configuration file provided was adjusted to the needs of our simulation. The displaying of moving
objects on the screen were turned off as it slows considerably the application with a large number of
moving objects. The simulator takes almost as much time as the simulation time, so this was adjusted for
a maximum of 10000 seconds, and three simulations were run separately for a total time of 8 hours. To
make the data more realistic, two rush hours were generated, with an initial amount of cars of 1000. One
car was generated each second, which gave an average number of cars moving after the rush hour of
200. The remaining simulation had a smaller amount of initial traffic, 500 cars, but 2 new objects were
generated per second, which gave an average number of cars of 400. All the simulations were run for
10000 seconds.

10 Data Sources

3.2.2 Modifications to the Data Generator

The data generator is supplied with the source code of some of the classes which allows the modification
of its behavior. The modifications were applied to the output generation, that now includes, for a given
moving object:

• Identifier for the edge in which the object is

• Road code

• Calculated speed and acceleration

And the default output:

• X, Y position

• Car Identifier

• Time

Figure 3.4 The Data Generator

11 Data Sources

Another modification was made: The default implementation assumes a set of speeds for each class of
road, and then all the speed limits are adjusted by a divisor, which wouldn't match exactly Denmark's
speed limits in different roads. Thus, the speed limit for each road had to be programmed and the divisor
setting was ignored.

3.2.3 Drawbacks

The data generator has some minor drawbacks for this project.

Moving objects will never speed. They accelerate until their allowed maximum speed and unless an
interaction with other moving object occurs, the speed will not vary for that road. This results in a
slightly less realistic simulation.

There are limited options in object generation. The only way of generating new moving objects is a
constant rate per timestamp, which leads to the need of more than one simulation to recreate varying
traffic conditions.

12 Data Structure

4 Data Structure

This chapter describes the design of the data warehouse. It is designed as a star schema and it is based on
the work of [Elliasen, Kjær and Urban, 2002]. The data warehouse is composed of three fact tables and
their accompanying dimensions, which will be detailed below.

4.1 Observation

The first fact in the design of the data warehouse is the Observation fact. It is a measurement in a certain
space (“X”, “Y”, “Road Network” dimensions) and time (“Time of Day”, “Date of Year”) of the speed
and the acceleration of a car. The star schema for the Observation fact can be seen in Figure 4.1.

The speed is measured in kilometers per hour, and it can be the result of a direct measurement, either
from a car speedometer or a GPS, or calculated through the difference of position with the previous
observation and the time between observations.

Acceleration is a purely calculated measure, analogous to speed, through previous observations. It is
measured in meters per second per second.

Each observation is associated with more data, in the form of dimensions that will be detailed below.

The sum of speeds of different observations does not describe a real world phenomenon. Therefore, these
two measures are physical measures that should not be visible to an end user. The “Average Speed”
measure, on the other hand, is a logical measure. It is calculated by dividing the sum of the “Speed” by
the sum of the “No. of Observations”.

The “Average Speed” cannot be added but it can be calculated at any level by using the aggregated values
of “Speed” and “No. of Observations” at the given level. The attribute “Acceleration” cannot be added
over any dimension but the “Minimum” and “Maximum” values can be found at every level of the

Figure 4.1 The star schema for Observation

XpositionID

X-Position
X-Position 10
X-Position 100
X-Position 1000

AccelerationID

Acceleration

SegmentID

Postal Code
Town
Conty
Part of Country
Country
Postal District
Speed Limit
Road Name
Capacity
Road Code

TimeSecondID

Hour
Minute
Second
Rush Hour

SpeedID

10 km/h Interval
50 km/h Interval
80 km/h Interval
110 km/h Interval

DateID

Date
Day of Week
Day Type
Week
Holiday
Month
Quarter
Year

CarID

Year
Five Year Period
Decade
Make
Model
Value
Price Group

SegmentID
TimeSecID
DateID
CarID
DriverID
SpeedID
AccelerationID
XpositionID
YpositionID

Speed
Acceleration

Car

DriverID

Age
Gender
DL Issue Year
DL Issue Decade
No. Accidents
No. Sp. Tickets

Time of Day

Date of Year

Road Network

Driver

Speed

Acceleration
YpositionID

Y-Position
Y-Position 10
Y-Position 100
Y-Position 1000

Y PositionX Position

Observation

13 Data Structure

hierarchies in the dimensions.

4.1.1 Road Network Dimension

The road network dimension is a geographical dimension that represents the road infrastructure. The
infrastructure is divided into regions: postal district, city and country.

The lowest level of the “Road Network” dimension is “Segment”, which is identified by a number. A
segment is a section of a road where the speed is constant, and is not intersected with other roads. The
attributes that describe a segment are represented in in Figure 4.1.

The attributes can be divided into geographical, and not geographical. The latter are: “Road Name”, the
name for the road that the segment belongs to; “Speed Limit” tells the legal speed limit in that segment of
the road. “Capacity” describes the maximum number of cars that can pass through that road segment
within a given time period.

The geographical attributes can be organized in the following hierarchy.

The hierarchy of the “Road Network” dimension splits into a parallel hierarchy after the “Road Code”
level. This split is caused by a non-uniform mapping between levels of the hierarchy, as each road has a
postal code but a road does not belong to a “Town” if it is in the country side. Due to this structure the
“Road Network” is non-covering and therefore the “Road Network” dimension is non-summarizable. This
means that the values at one level cannot be used to aggregate the values at the next level of the hierarchy.

If the measures at the “Road Code” level were used to aggregate values at the “Town” level and only
these were used for computing values at the “Country” level some values would be missing because some
roads do not belong to a town. This problem can be solved by constructing an alternative value at the
“Town” level to hold the aggregated values that do not belong to a town. In this way, the “Town” level
holds all information needed for further aggregation at higher levels. If a dummy attribute is not added to
the “Town” level, only the values aggregated at the “Postal Code” level should be used for further
aggregation. The “Town” only holds aggregated values from part of the “Road Code” but “Postal Code”
holds values from all measures in the “Road Code” level because each road has a postal code. The
hierarchy is both strict and onto because no data have more than one parent and all levels contain values
from the lowest level. The “All” level contains all the roads in the “Road Network” dimension. Each of the
lower levels define a subset of this set by geographic region.

4.1.2 Time of Day Dimension

The “Time of Day” dimension represents a time of day, e.g. 5:22. Separating the time of day from the

Figure 4.2 Road Network Dimension Hierarchy

Postal Code

County

Part of Country

Country

All

Town

Road Code

SegmentID

14 Data Structure

date has two advantages: The amount of disk space required to store the information about time and date
in separate dimensions is much smaller than storing all information in a single dimension. This is so
because one dimension for storing both date and time would require the Cartesian product of the two
dimensions. Faster execution of statistical purpose queries like “What is the average speed on Hadsundvej
between 2 and 4 o'clock?” because there are fewer tuples between 2 and 4 o'clock in the “Time of Day”
dimension than in a combined time and date dimension.

The disadvantage of storing time and date in separate dimensions is that the fact table referencing these
dimensions requires two attributes instead of one. This, however, is only a small amount of extra storage
compared to the savings. The table for the “Time of Day” dimension is illustrated in Figure 4.1.

The table contains one tuple for every second in a day, that is, 86.400 tuples. The hierarchy of the “Time
of Day” dimension can be seen in Figure 4.3

The lowest level is “Second” and the mapping between the levels is strict, onto and non-covering. The
latter is due to the fact that not all minutes are contained in a rush hour period.

4.1.3 Date Dimension
The dimension “Date”, shown in Figure 4.1, represents days in a year. This dimension can only contain a
subset of all possible days since there is an infinite number of days. Furthermore, for our needs only the
experiment period is interesting. The “Date”, “Month”, “Quarter”, and “Year” attributes are the usual date
descriptions. The “Day of Week” attribute is a textual description of the day, e.g. “Monday”. The “Day
Type” is a categorization of a day into weekdays and weekends and the “Week” is a number. The attribute
“Holiday” describes if the day is a holiday. It contains two parts, namely the industrial summer holiday
and Christmas.

The hierarchy of the “Date” dimension, as seen in Figure 4.4, is both strict and onto, but it is not covering
because some dates are not contained in a holiday. Therefore, the dimension is non-summarizable at the
“Holiday” part of the hierarchy. The date is independent from the week and day of week, because a date
can be uniquely specified without specifying the “Week” and “Day of Week”.

Figure 4.3 Time of Day Dimension Hierarchy

Hour

All

Rush Hour

Minute

Second

Figure 4.4 Date of Year Dimension Hierarchy

Week

All

Day of Week

Date

MonthHoliday

Year

Quarter Day Type

15 Data Structure

4.1.4 Driver Dimension

The “Driver” dimension, shown in Figure 4.1, represents the drivers of cars. This includes information
about a driver's age, “Age” and gender, “Gender”. The dimension also contains information about the
issue year of the driving license, “DL Issue Year”, the number of speeding tickets, “No. Sp. Tickets”, and
the number of accidents, “No. Accidents”. The three attributes “Age”, “No. Sp. Tickets”, and “No.
Accidents” can change over time and therefore the “Driver” dimension is a slowly changing dimension. In
this design the change is handled by overwriting the old values with the new values.

Except from the driving license the attributes of the “Driver” dimension cannot be grouped by different
granularities such as the “Road Network” and “Date” dimensions. However, the attributes are still related
as shown in Figure 4.5.

The hierarchy is strict, onto and covering.

4.1.5 Car Dimension

The “Car” dimension represents cars. The attributes of the “Car” dimension holds information describing
the car e.g. make and model of the car. The dimension is a slowly changing dimension because three of
the attributes may change over time. These are “License Number”, “Value”, and “Price Group”. As for
the “Driver” dimension, the old values of these attributes are overwritten when new values are obtained.
The dimension table of the “Car” is shown in Figure 4.1 (page 12).

The attributes of the “Car” dimension are grouped by different granularities. The maker can be divided
into different models and the value can be gathered in price groups. The production year is gathered into a
five-year grouping and a decade. The hierarchy with the different levels of the “Car” dimension is shown
in Figure 4.6.

The hierarchy is both strict, onto and covering.

4.1.6 Speed Dimension

The “Speed” dimension represents the speed of cars. It is divided into intervals and can be used to select
all the observations that have a speed within a given interval. The attributes of the “Speed” can be seen in
Figure 4.1.

Figure 4.5 Driver Dimension Hierarchy

Gender

All

Age

DriverID

DL Issue YearNo. Accidents No. Sp. Tickets

DL Issue Decade

Figure 4.6 Car Dimension Hierarchy

Model

All

Value

CarID

Year

Decade

First Year Period Price GroupMaker

16 Data Structure

The speed dimension hierarchy illustrated in Figure 4.7 is strict, onto and covering. The lowest level is the
“10 km/h Interval” which divides the speed into intervals of 10 km/h. All other levels determine if a certain
speed limit is exceeded. The three speed limits, 50 km/h, 80 km/h and 110 km/h, are the general limits in
towns, main roads and motorways, respectively. For instance, the “50 km/h Interval” level determines if
the speed limit for cities is exceeded. This eases the task of finding the cars that exceed the speed limit of
a certain region.

4.1.7 Acceleration Dimension
The “Acceleration” is useful for finding all the cars that brake sharply because of a dangerous situation.
Apart from the primary key the acceleration dimension table only contains the attribute “Acceleration” as
seen in Figure 4.1.

The acceleration is divided into intervals termed “Very High”, “High”, “Normal”, “Low”, and “Very Low”.
The “Low” and “Very Low” intervals are used to determine the dangerous situations. “Very High”
acceleration is considered from 9m/s2. The hierarchy of the dimension is illustrated in the Figure 4.8.

It only has the two levels “Acceleration” and “All”. The hierarchy is summarizable since there are only
two levels and all tuples at the “Acceleration” level map to the “All” level.

4.1.8 Position Dimensions

The “Position” dimensions represent positions in two-dimensional space. The position of a car is
determined by a coordinate set “X” and “Y”. However, the exact position is not important and due to the
GPS the positions are only known with precision of five meters or less. Therefore, instead of storing the
recorded positions of the cars, only the 5x5 rectangle that contains the observed position of the car is
stored. To save storage the position is given by two dimensions instead of one. The tables are illustrated
in Figure 4.1.

The “X-Position” dimension has four attributes. The value of the attribute “X-Position” is the starting
point of a five meter interval. The same applies for the other three attributes “X-Position 10”, “X-Position
100”, and “X-Position 1000” except that these have the intervals 50, 500, and 5000 meters, respectively.
The “Y-Position” dimension is constructed in the same way and by selection on both dimensions squares
can be found for range queries on the observations. The “Position” dimensions have the hierarchies
illustrated in Figure 4.9.

Figure 4.7 Speed Dimension Hierarchy

50 km/h Interval

All

110 km/h Interval

10 km/h Interval

80 km/h Interval

Figure 4.8 Acceleration Dimension Hierarchy
Acceleration

All

17 Data Structure

4.2 Road Utilization

In this section it is described how the “Road Utilization” fact is designed in order to hold information
about the number of cars.

4.2.1 Road Utilization Fact
The “Road Utilization” fact is constituted by three physical and one logical measure and provides
information about several cars and their movement. The “Number of Cars” is a static count of the amount
of cars over a spatial dimension, “Road Network”. At the lowest level, this measure contains the number
of different cars on a segment of a road at a given segment at a given moment. If the measure is added
over time some cars could be counted more than once and thus, the result would be higher than the actual
number of different cars on the road within the period. Therefore the measure is semi-additive. The “Road
Utilization” fact also contains the measure “Traffic Flow” which is the number of cars passing through an
area over time. It is calculated by counting the different cars on a segment of a road within a minute and
subtracting the number of cars initially on the segment, that is, the value in “Number of Cars”. This
“Traffic Flow” measure is also semi-additive because if the value is added over space some cars could be
counted on more than one segment within the same minute. The “Number of Cars” and “Traffic Flow”
measures are necessary for finding the density of cars in space, for instance to detect a traffic jam.
Another measure of the “Road Utilization” fact is “Capacity”. This measure contains the number of cars
that should at maximum pass through on the road segment within a period of time. The value is the same
as the “Capacity” of the “Road Network” dimension. It is used to calculate the logical measure “Load”.
The load on a road is the traffic flow divided by the capacity. The measures of the “Road Utilization” fact
is shown in Figure 4.10.

Figure 4.9 X Position and Y Position Dimension Hierarchy
X-Position

X-Position 10

X-Position 100

X-Position 1000

All

Y-Position

Y-Position 10

Y-Position 100

Y-Position 1000

All

Figure 4.10 Road Utilization star schema

TimeMinID

Hour
Minute
Rush Hour

Time of Day Minute DateID

Date
Day of Week
Day Type
Week
Holiday
Month
Quarter
Year
Date of Year

SegmentID

Postal Code
Town
Conty
Part of Country
Country
Postal District
Speed Limit
Road Name
Capacity
Road Code
Road Network

DateID
TimeMinID
SegmentID

Number of Cars
Traffic Flow
Capacity
Load
Road Utilization

18 Data Structure

4.2.2 Shared Dimensions

The number of cars on a given segment on a are associated with the “Road Network” dimension and with
“Date of Year” dimension, both formerly described.

4.2.3 Minute Dimension

To find information about the number of cars at a given point in time, or to determine when rush hours
and congestion occur based on information about the traffic flow, the fact must be related to a dimension
describing this particular point in time. For this purpose, the “Time of Day” dimension could be used.
However, knowing the number of cars at each second in time might not be necessary. Maintaining this
information every minute instead of every second would be sufficient to determine if the number of cars
is increasing or decreasing within a given time interval. Besides, this would also require less computation
and the storage needed would only be one sixtieth of the space required to store the measures every
second. Therefore, the “Number of Cars” fact is related to a dimension “Minute”. In a pure multi-
dimensional design the “Time of Day” dimension would be used to create a shrunken dimension [Kimball
et al., 1998, p. 556]. The dimension-table of the “Minute” dimension is shown in Figure 4.10.

This dimension has the two attributes “Minute” and “Hour” that together describe a time of day. The
hierarchy of the dimension is illustrated in Figure 4.11.

The level “Minute” adds up to the level “Hour” which is contained in the level “All”. However, not all
minutes are part of a rush hour and therefore, the hierarchy is both strict and onto but it is non-covering
and thus, it is not summarizable at the rush hour attribute.

4.2.4 Road Utilization Fact and Dimensions

The number of cars in a given area can be found by counting the cars on the roads in that area. This value
is found by applying the “Sum” function. The “Number of Cars” measure is semi-additive since it cannot
be added over the time-dimensions “Minute” and “Day”. By using the “Sum” aggregation function, the car
flow on a road can be calculated over the different time intervals in the dimensions “Minute” and “Day”.
The fact is a snapshot fact because it holds the number of cars at a given point in time and the number of
cars per given time interval.

4.3 Trip

This section contains a description of a fact for obtaining information about trips.

4.3.1 Trip Fact
Measuring the duration and length of trips can provide information about travel patterns. If information
about trips is maintained during several years trends and changes in the travel patterns can be revealed.
This could be information about the total distance and time traveled this year compared to last year. A fact
that holds information about the length and duration of trips can be used for analyzing such trends.
Therefore, the “Trip” fact, is constructed. The star schema for the trip fact is shown in Figure 4.12 (page
19).

The “Trip” fact holds information about each individual trip and it has the three physical measures
“Distance”, “Duration”, and “Number of Trips”. The first measure is the distance of the trip from the

Figure 4.11Minute Dimension Hierarchy

Hour

All

Rush Hour

Minute

19 Data Structure

starting point to the final point measured in kilometers. The second measure is the duration of the trip
measured in minutes.

4.3.2 Shared Dimensions

A trip is done by a given driver on a car, so “Car” and “Driver” dimension are needed. The trip starts on a
given moment so it's related the fact to the dimension “Day” and to the dimension “Minute”. The trip has
an starting point and a final position, thus the fact is related to “X Position” and a “Y Position” by two
entries, namely an initial position and a final position of the trip.

4.3.3 Duration Dimension

The “Duration” dimension represents the duration of a trip. This could be for determining the age of
people who take trips lasting for less than 10 minutes. When selecting such trips, it is an advantage to
have a dimension with intervals representing the number of minutes traveled in a trip. It has the attributes
“Minute” and “Hour”. If being interested in the trips lasting for a certain period, this period is selected in
the “Duration” table. The highest value of this dimension is 23 hours and 59 minutes. Theoretically,
however, a trip could last for arbitrarily long time, even longer than 24 hours. This would very rarely be
the case but the situation still needs to be handled. The problem is solved by the attribute “Long Trips” to
which all trips lasting for 24 hours or more are associated. In the fact “Trip” the real duration of the trip
can be recorded, and thus, all information is retained. The hierarchy of the dimension is shown in Figure
4.13. The lowest level is “Minute” which adds up to “Hour” and the level “Hour” adds up the super level
“All”. The hierarchy is strict, onto and covering.

Figure 4.12 Trip Fact star schema

TimeMinID

Hour
Minute
Rush Hour

Time of Day Minute

DateID

Date
Day of Week
Day Type
Week
Holiday
Month
Quarter
Year
Date of Year

DateID
TimeMinID
CarID
DriverID
DurationID
StartPointID
EndPointID
DistanceID

Distance
Duration

Trip Fact

CarID

Year
Five Year Period
Decade
Make
Model
Value
Price Group

Car

DriverID

Age
Gender
DL Issue Year
DL Issue Decade
No. Accidents
No. Sp. Tickets

Driver

DurationID

Hour
Minute
Long Trips

Duration

YpositionID

Y-Position
Y-Position 10
Y-Position 100
Y-Position 1000

Y Position

XpositionID

X-Position
X-Position 10
X-Position 100
X-Position 1000

X Position

DistanceID

5 km Interval
10 km Interval
50 km Interval

Distance

20 Data Structure

4.3.4 Distance Dimension

The “Distance” describes the length of a trip and enables the possibility of selecting trips of a certain
length. The trip distances are measured in five, ten and fifty km intervals. The “Distance” hierarchy can
be seen in Figure 4.14. The hierarchy is summarizable since all intervals at one level are contained in the
level above.

Figure 4.14 Distance Dimension Hierarchy
10 km Interval

10 km Interval

50 km Interval

All

Figure 4.13 Duration Dimension Hierarchy

Hour

All

Long Trips

Minute

21 Setup Description

5 Setup Description

In previous sections we described the design of the data warehouse. In the following section, the actual
implementation of the data warehouse will be detailed.

5.1 Configuration

The machine in which the database was hosted is a Pentium III – 1GHz, with 632MB of RAM, and 40GB
of hard disk. The OS is Windows XP Professional Edition. The DBMS is Oracle 9i Enterprise Edition,
version 9.0.1.

5.2 Creating the Database

The data from the INFATI project, the road network data and the output from the data generator were all
loaded to the database with SQLLDR. The data was not processed at this stage, and every field on the file
had its corresponding attribute on a database table.

The dimensions were created with PL/SQL scripts. Some of these scripts to create the database and
populate the dimensions were inherited from former work [Elliasen, Kjær and Urban, 2002].

To create the Road Network dimension it was necessary a PL/SQL script and a Java program. The PL/SQL
script uses the information from RoadNames.dat that is already loaded into the database. Information
about speed limit and capacity of the road. The capacity attribute is assigned a random number between 50
and 400. If the postal code is 9000, 9210, 9220, or 9400 the town is set to “Aalborg”. Otherwise the town
is set to the same value as the postal district. The java program uses veje.dat, which provides the speed
limit of each segment of a road, and generates an identifier for each of this segment, which is also used on
the data generator, thus facilitating the loading of the data from that source.

Due to the lack of segment information in the observation data files, the loading of the observation fact
table has to be done in several steps. The first step is a join between the raw data table and all the
dimensions related to it: “Date of Year”, “Road Network” , “X Position” , “Y Position”, “Time of Day”,
“Driver”, “Car” and “Speed”. This eliminates some rows, as some observation data has incorrect values,
such as values for minute greater than 60, for hour greater than 24, etc. The relationship with the “Road
Network” is established through the containment of the observation point into the rectangle that encloses a
segment. Here the GPS precision is considered by adding a 5 meters tolerance. That is, given X and Y are
the observation position and startX, startY the starting point of the segment, and endX, endY the ending
point of the segment, the condition for the relation is:

This can yield more than one segment for each observation, so a further step is required. The redundancy is
solved by calculating which is the nearest segment to the observation point; the distance between a
segment and a point is calculated through the following algorithm [Sunday, 2001]:

x ∈min startX , endX −5, max startX , endX 5
∧

y∈min startY , endY −5, max startY , endY 5

22 Setup Description

distance(Point P, Segment P0:P1)
{
 v = P1 - P0
 w = P - P0
 if ((c1 = w·v) <= 0)
 return d(P, P0)
 if ((c2 = v·v) <= c1)
 return d(P, P1)
 b = c1 / c2
 Pb = P0 + bv
 return d(P, Pb)
}

Where P, P0, P1 and Pb are points in a 2 dimension space, v,w are vectors and b, c1 and c2 are
numbers.

Thus, only the nearest segment is kept, and other segment-observation associations are just deleted. Then
the values for Speed and Acceleration measures are calculated with another PL/SQL script. Data from the
data generator doesn't need this process, as the generator was modified to have Segment, Acceleration
and Speed as an output. A SQLLDR script is used for loading this data.

The Road Utilization Fact is created from the Observation Fact table, by counting the different cars in a
minute, summing up with a group by clause.

The Trip Fact is created by processing all rows in Observation Fact, ordering them by car and then by
time; then, for each car, distance and duration is accumulated until a 10 minutes gap is detected and a
new trip is filed.

5.3 Technical Issues

Having amounts of data in the order of tens of millions of rows implies dealing with some problems.

In the process of creating some of the tables, it has been noticed that updating a table can be a lot more
cumbersome than simply inserting the same data into another table, depending on the “undo_retention”
Oracle parameter. The default value for this parameter, 3 hours, can produce an undo tablespace the size
of the fact table, with the consequent overhead. The speed of the query can be several times slower with
an update rather than an insert. As sometimes this is unavoidable, resetting this parameter to just a few
seconds and restarting the database will free most of the space in the tablespace. Then, the space that the
undo tablespace takes can be reduced with the “ALTER DATABASE DATAFILE <filename> RESIZE
<new_size>” command.

23 Queries

6 Queries

To test the database capabilities in data warehousing, a set of queries is made. In order to have the widest
range of types of work covered, we need a classification of the kind of queries that can be made.

From a multidimensional point of view, [Ho, Agrawal, Megiddo, Srikant, 1997] considers a taxonomy on
the way of addressing a dimension. Frequently, queries are made that address attributes with natural
semantics in ordering, such as age, time, etc. Thus, a ranged query is one that is applied over such an
attribute, specifying a contiguous range in its domain. So, a classification over the way of addressing a
dimension can be made:

Way of addressing a dimension

– Single value: a value on a dimension (contiguous or not)

– Ranged: continuous valued attribute on a dimension

• Single window: a continuous range on an attribute

• Multiple windows: more than a continuous range.

– Whole Dimension: all the values on a dimension (contiguous or not)

For selective queries, that is, the ones that address attributes without natural semantics in ordering, only
single value or whole dimension have a practical application.

In this project, the most important dimensions that are centered around attributes with natural semantics
in ordering are X, Y and time. This has been taken into account in the form of trying to cover the
combination of addressing these dimensions and other types of dimension; this way, other dimensions are
addressed selectively, independently of its potential continuous nature.

From another point of view, a classification [Tsotras, Jensen and Snodgrass, 1997] for spatiotemporal
databases can be made. Generically, in a spatiotemporal database there are X, Y, Z, valid and transactional
dimensions (described in section 3.3), which we will call implicit attributes, and a number of explicit
attributes (keys). The most common spatiotemporal queries are selection-based. These are queries applied
on a single data set (a relation), asking for all data objects (tuples) that satisfy the given query predicate.
For this kind of queries a notation is proposed, in the form:

Key//X_dimension/Y_dimension/Z_dimension//Valid/Transaction

where each of the attributes can be qualified, through any of these qualifiers:

• S slice, single value
• R range, continuous time interval
• E element, set of intervals
• * any value
• - not applicable

Query Description

1. The number of observations in a certain space window during the last hour. This query is intended to
be a generic query, as it provides a range for space dimensions and time dimension, getting a still
useful comparative value. For this query, space has been addressed via the coordinates in the position
dimensions or via the coordinates on the road network dimension. For each of these methods,
different sizes of the query window will be tried. With the notation explained above, this query would
be *//R/R/-//R/S, where * means that any kind of observation will be accepted, R/R/- that we
only set a qualifier (a range) for X and Y dimension, and R/S that we are asking for a valid time of 1
hour (ranged), and a transaction time is now.

i. Space window: a small part of the city center (~1% of the space)

24 Queries

ii. Space window: city center (~10% of the space)

iii. Space window: all the map (100% of the space)

2. The number of cars in the city center during the last hour. Counting the number of different cars is a
similar measure as the number of observations, but it will have a different performance. Notation:
*//R/R/-//R/S

3. For a given id car, number of times it exceeded the speed limit when it was in the city center. This
query addresses a particular car, is not statistic, and will test the performance of looking for specific
information and not statistic. The notation is S//R/R/-//*/S

4. Compare high decelerations between city center and the rest of the city. This query doesn't give a time
condition, and tries to get a overview of an attribute for all observations. Notation: *//R/R/-//*/S

5. The most used road in the last x hours in the city center. This query addresses a smaller fact table,
Road Utilization. It will also be tested over the Observation Fact table, to show the performance
differences between the two designs. Notation: *//R/R/-//R/S

6. The average length of trips in the midnight compared to the morning. This query addresses the Trip
Fact table. Unlike Query 5, making an equivalent query over Observation Fact would take as much
time as building the Trip Fact table itself, therefore it will not be compared. Notation: *//*/*/-//R/S

7. The average speed on a given road. This query doesn't give a condition for time nor X, Y or Z
dimensions. Notation: S//*/*/-//*/S

25 Experimental Results

7 Experimental Results
The set of queries described in Section 6 were issued to the DBMS with four different configurations.
First the tables had no indices nor materialized views, then indices were built and then materialized views.
Tests were also done with materialized views and no indices. In this section we describe the experiment
setup, the query results and for each of the configurations, the configuration setup process and
experiment timing results.

7.1 Experiment Setup

7.1.1 Timing Setup

To measure the time each query takes, the “timing” variable was set to “on” in the SQL Plus environment.
For each configuration, a command file with all the queries was run three times; therefore, timing results
presented in Sections 7.3, 7.4 and 7.5 are the average time for these three experiments.

Oracle uses different caches to improve performance, and this influence is not desired in the experiments,
as we want to analyze the performance gain of the different structures built. Allowing Oracle use caches
could hide this information. Oracle stores the actual code it is executing along with the execution plan. It
stores this in the Library Cache which is a component of the Shared Pool which is a component of the
System Global Area (SGA). To delete this data from the cache, “ALTER SYSTEM FLUSH
SHARED_POOL” can be issued. Secondly, Oracle stores the blocks that contain the rows of interest in a
Buffer Cache that is also a component of the SGA. The buffers in the cache are organized in two lists: the
dirty list and the least recently used (LRU) list. The dirty list holds dirty buffers, which contain data that
has been modified but has not yet been written to disk. The LRU list holds free buffers (unmodified and
available), pinned buffers (currently being accessed), and dirty buffers that have not yet been moved to
the dirty list [Oracle, 2003]. There is no flush Buffer Cache command. The second option is shutting
down and restarting the database before issuing each query which would flush all caches. The three
options, along the “no action” option, were tested by repeating a query five times. The database was
shutdown between each of the method “batch”. The results can be seen in Figure 7.1.

The best course of action is, then, restarting the DBMS before each query, as query time remains
constant.

Figure 7.1 Caching Effects in Query Time

1st 2nd 3rd 4th 5th

60

62,5

65

67,5

70

72,5

75

77,5

80

82,5

85

87,5

90

No action
Flush shared pool

Restart DBMS

26 Experimental Results

7.1.2 Table sizes, indices, materialized views

Timing results can't be properly analyzed without knowing the size of the tables involved. These sizes are
displayed on Table 7.1. All dimension tables but Road Network and Time of Day Second are very small
compared to the Observation Fact table, which takes more than one gigabyte, while the biggest dimension
apart from these two holds 256KB. On the other hand, Road Utilization and Trip Fact, being aggregated
derivatives from Observation Fact, are small compared to it.

Table Rows
Disk
Space
(KB)

Acceleration 5 64

Car 23000 256

Date of Year 1096 64

Distance 101 64

Driver 21 64

Duration 1441 64

Road Network 27559 4096

Time of Day Minute 1440 64

Time of Day Second 86400 3072

X Position 3222 128

Y Position 7255 256

Observation Fact 12998093 1021952

Road Utilization 1102168 23552

Trip Fact 7748 512

Table 7.1 Table size

To improve the performance of the queries, indices were build over these tables. Oracle creates, by
default an index for each table that has a primary key. Thus, over Observation Fact Table there is a unique
index, “ind_obs_fact”, over attributes (Time_of_day_second_ID, date_ID, X_Position_ID,
Y_Position_ID, Car_ID). This index takes almost half the size of the fact table itself. Other indices were
built over this table; “ind_x_obs” over column X_Position_ID, “ind_y_obs” over column Y_ Position_ID
and “ind_time_obs” over Time_of_day_second_ID. This indices take more than 200MB each, almost a
quarter of the fact table. Bitmap indices were also built. The advantages of using bitmap indices are
greatest for columns in which the ratio of the number of distinct values to the number of rows in the table
is under 1% [Oracle, 2003]. This is the case for Date_ID, Acceleration_ID and Speed_ID, so bitmap
indices (“ind_dat_obs”, “ind_acc_obs”, “ind_spd_obs”, respectively) were built for these. The size of
these indices is proportional to the variety of the attribute which is built upon, and thus acceleration,
which only has 4 different value options, takes only 8MB.

Two indices were built for Road Utilization Table, “ind_road_util” for columns (Time_of_Day_Minute,
Date_of_Year_ID, Segment_ID) to ease querying by time and then by segment, and “ind_ruf_rev” with
the same columns in different order: (Segment_ID, Date_of_Year_ID, Time_of_Day_Minute_ID), to ease
querying by segment and then by time. These indices are the same size as the fact table they are indexing.

No index was built for Trip Fact, as query time is already 0,06 seconds without indices, as shown in
Section 7.3. The space that these indices take is shown in Table 7.2.

27 Experimental Results

Index
Disk
Space
(KB)

ind_acc_obs 8192

ind_dat_obs 14336

ind_spd_obs 28672

ind_time_obs 229376

ind_xpos100 128

ind_x_obs 234496

ind_ypos_100 192

ind_y_obs 251904

ind_obs_fact 431104

ind_road_util 26624

ind_ruf_rev 26624

Observation
Fact

1021952

Road
Utilization

23552

Trip Fact 512

Table 7.2 Index size

To further improve query performance we used materialized views. Materialized views are a pre-
computed table comprising aggregated or joined data from fact and possibly dimension tables. It is also
known as a summary or aggregate table [Oracle, 2003]. As this database is supposed to be used for
statistical purposes, aggregation will be done to optimize getting statistical data.

Materialized View Rows
Disk
Space
(KB)

mv_ruf_t_hour 85003 5120

mv_obs_general 47971 5120

mv_obs_gen_rn 202791 13312

sp_100_t_hour_d_da
y

7099 448

Observation Fact 12998093 1021952

Road Utilization 1102168 23552

Trip Fact 7748 512

Table 7.3 Materialized View size

Four materialized views were built. “mv_ruf_t_hour” only rolls up the time dimension over Road
Utilization Fact from minutes to hours, keeping segment and date information; the aggregation is done
with a sum function over the flow measure. “mv_obs_general”, over Observation Fact, rolls time up to

28 Experimental Results

hour, and X and Y Position Dimension to XPos100 and YPos100, thus grouping objects on hundreds of
meters, and keeping information for Date of Year, Acceleration Id and Speed Id. “mv_obs_gen_rn” also
rolls time over Observation Fact up to hour, but keeps information for Segment ID, Date of Year,
Acceleration Id and Speed. “sp_100_t_hour_d_day”, over Observation Fact, also rolls up X and Y to
hundreds of meters, and time to hour, but only keeps this information. The aggregation for these three
materialized views is done through the count function, to have a measure of the number of
observations.

The size of the materialized views is shown in table 7.3. At least one index is created for the primary key
of the materialized view. This index corresponds to the primary key of the target master table (the table
over which the view is built) and has the name I_SNAP$_Materialized_View_Name; these indices are
added to the materialized view size. Anyway, the size of the materialized views is negligible compared to
the size of the fact tables or the indices, less than 25MB.

7.2 Query Results

The result for the queries described on Section 6 are the following:

1. The number of observations in a certain space window during the last hour: a. Via position dimension
b. Via road network dimension (one end of the segment in the area) c. via road network dimension
(both ends of the segment in the area)

i. ~1% space:

a. Result: 5095 observations

b. Result: 5539 observations

c. Result: 4308 observations

ii. ~10% space:

a. Result: 68651 observations

b. Result: 74866 observations

c. Result: 63143 observations

iii. 100% space: Result: 1561456 observations

2. The number of cars in the city center during the last hour. Result: 741 cars

3. For a given id car, number of times it exceeded the speed limit when it was in the city center. Result: 0
times (id. of the car: 1)

4. Compare high decelerations between city center and the rest of the city. To compare the acceleration,
four queries were made; for high and not high acceleration, in the city center and outside the city
center. It yields a 1% less of high acceleration in the city center

i. City center

a. High acceleration: 749 observations

b. Normal (not high) acceleration 565662 observations

ii. Outside the center:

a. High acceleration. Result:14606 observations

b. Normal (not high) acceleration. Result: 8135580 observations

5. Most used road segment in the last x hours in the city center. Number of different cars in the most
used road segment.

i. Over Road Utilization Fact. Result: 23 different cars

ii. Over Observation Fact. Result: 23 different cars

29 Experimental Results

6. The average length of trips in the midnight compared to the morning.

i. Midnight 21,8430016 km

ii. Morning 13,7792208 km

7. Average speed on a given road. In road 317(Asgården): 63,75 km/h

7.3 Timing Results for the Bare Database

There was no modification to the setup described in Section 5. The queries were made over tables with
no indices or materialized views. All tables were analyzed with the dbms_stats package, in “compute”
mode, which will use all the data in the tables to compute statistics. Query numbering is the same as in
Section 7.2.

Figure 7.2 shows query timings for Query 1. It takes four times longer to search for the segments with
both ends on the 1% area than other segments. The execution plan shows that the query optimizer does
only hash joins for the other queries, and a merge join (Cartesian) and a hash join for Query 1.i.c.
Execution plan for this query and Query 1.ii.c is shown in Figure 7.3.

Query 1.i.c
SELECT STATEMENT ()
 SORT (AGGREGATE)
 HASH JOIN ()
 HASH JOIN ()
 TABLE ACCESS (FULL) ROAD_NETWORK
 TABLE ACCESS (FULL) OBSERVATION_FACT
 TABLE ACCESS (FULL) TIME_OF_DAY_SECOND

Query 1.ii.c
SELECT STATEMENT ()
 SORT (AGGREGATE)
 HASH JOIN ()
 MERGE JOIN (CARTESIAN)
 TABLE ACCESS (FULL) ROAD_NETWORK
 BUFFER (SORT)
 TABLE ACCESS (FULL) TIME_OF_DAY_SECOND
 TABLE ACCESS (FULL) OBSERVATION_FACT

Figure 7.3 Execution Plan for Queries i and ii (1.c)

Figure 7.2 Time Results for Query 1, bare database

i ii iii

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

Query 1

a
b

c

tim
e

(s
ec

.)

30 Experimental Results

Timing results for Query 2, 3 and 7 are shown in figure 7.4. Query 2 retreives the same data as Query
1.ii.a, but counting distinct cars instead of counting observations. Query 2 uses a SORT (GROUP BY)
instead of a SORT (AGGREGATE) for Query 1.ii.a. The cost reflected in the execution plan is slightly
lower for Query 2 (19793, 19907 for Query 1.ii.a) but setting "autotrace" to on gives a result of 115388
physical reads for Query 2 and 99518 for Query 1.ii.a.

Query 4.ii.b takes longer that Query 4.i.b, 4.i.a and 4.ii.a as it has to address traffic not in the city center
and with normal acceleration, that is, execution time relates to the amount of data retrieved.

In Figure 7.6 the difference between addressing Observation Fact table and Road Utilization table can be
seen. As Trip Fact and Road Utilization are much smaller than Observation Fact, query time is greatly
reduced. It's worth mentioning that Road Utilization is still a 1 million row table and query time is 2
seconds, without indices or materialized views. Figure 7.7 shows that Query 6 is almost instant, as it only
has to retrieve 512KB of data.

7.4 Timing Results for the Database with Indexes

These are the results for the queries done over the database with the indexes described in Section 7.1.2.

Figure 7.8 shows timing results for Query1. Query 1.i.c still takes four times longer, but all queries take
advantage of the indices. The execution plans show that only “ind_obs_fact” was used, however. Indexes
defined for one column or bitmap indices were not used; dropping these indices would save more than
700MB

Figure 7.4 Timing Results for Queries 2, 3 and 7 Figure 7.5Timing Results for Query 4

Figure 7.6 Timing Results for Query 5 Figure 7.7 Timing Results for Query 6

2 3 7

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Queries 2, 3 & 7
tim

e
(s

ec
.)

i ii

0

10

20

30

40

50

60

70

80

90

100

Query 4

a
b

tim
e

(s
ec

.)

i ii

0

0,01

0,01

0,02

0,02

0,03

0,03

0,04

0,04

0,05

0,05

0,06

0,06

Query 6

tim
e

(s
ec

)

i ii

0

25

50

75

100

125

150

175

200

225

250

275

300

325

2,06

Query 5

tim
e

(s
ec

)

31 Experimental Results

Figure 7.10 shows timing results for queries 2, 3 and 7. Query 2 uses the index “ind_obs_fact”, but 3, 7
and 4 still do a full scan of the Observation Fact Table. In queries 3 and 4 Time of Day, the first field of
the index, is not addressed. Query 7 doesn't make a select over any field of the index. Building an index to
cover these queries to improve their performance should depend on the frequency of use of this kind of
queries and the variability of them, as building materialized views that cover these specific queries is much
cheaper in terms of disk space and query time, as shown on Section 7.5.

Query 5.i (Figure 7.12) uses the index “ind_road_util”, though the time remains the same due to the
relatively small size of the table, and 5.ii uses “ind_obs_fact”. Query 6 (Figure 7.11) results are
unchanged, as there is no index built on that table.

Figure 7.8 Timing Results for Query 1, database with index

Figure 7.10 Timing Results for Queries 2, 3 and 7 Figure 7.9 Timing Result for Query 4

i ii iii

0

25

50

75

100

125

150

175

200

Query 1

a

b

c

tim
e

(s
ec

.)

2 3 7

0

10

20

30

40

50

60

70

80

90

100

110

Queries 2, 3 & 7

tim
e

(s
ec

.)

i ii

0

10
20
30
40

50
60
70
80

90
100
110
120

130
140
150

Query 4

a
b

tim
e

(s
ec

.)

32 Experimental Results

7.5 Timing Results for the Database with Indexes and
Materialized Views

These are the results for the queries done over the database with the materialized views described in
Section 7.1.2.

Figure 7.13 shows timing results for Query1. Query 1.a uses the “mv_obs_general” materialized view,
and 1.b uses “mv_obs_gen_rn”, though the latter takes a little bit longer, as “mv_obs_gen_rn” is double
the size of “mv_obs_general”. Query 1.a had to be rewritten in order to use the view, as it expects a join
between the fact tables and all dimension tables stated in the query that defines the materialized view, even
if no condition is set for the attributes kept in the view. For this query “sp_100_t_hour_d_day” has
enough information and is much smaller, but “mv_obs_general” is kept as it is more general.

Figure 7.13 Timings for Query 1

Figure 7.12 Timing Results for Query 5 Figure 7.11 Timing Results for Query 6
i ii

0

25

50

75

100

125

150

175

200

225

250

2,08

Query 5

tim
e

(s
ec

)

i ii

0

0
0,01

0,01

0,01
0,01

0,02

0,02
0,02

0,02

0,03
0,03

0,03

0,03
0,04

Query 6

tim
e

(s
ec

)

i ii iii

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Query 1

a

b
c

tim
e

(s
ec

.)

33 Experimental Results

Query 2 (Figure 7.14) can't take advantage of the materialized view, as it uses a “select count(distinct)”
clause which was not taken into account in any of the materialized views built. However, it's still benefited
by the index “ind_obs_fact”. The same happens with Query 3, that selects a car, which wasn't kept in
any materialized view, and Query 7, that would need an aggregation over speed with the average function.
Query 4 (Figure 7.15) takes advantage of “mv_obs_general”, and query time drops to a second or less.

Query 5.i (Figure 7.16), uses “mv_ruf_t_hour” over Road Utilization, but 5.ii has to do a “select
count(distinct)” clause to count the distinct cars in a segment, which prevents it from using any of the
materialized views built. Building a materialized view to speed up this query could be equivalent to build
Road Utilization. Query 6, shown in Figure 7.17, remains unchanged as there is no materialized view built
for it due to its small size.

7.6 Timing Results for the Database with Materialized Views

The queries were also made over the database maintaining the materialized views and dropping the
indices. Graphs for these results will not be presented here, as the result present nothing new. Where
materialized views are used, times are the same as for the database with materialized views and index, and
when not used the results are the same as for the bare database (no indices to “fall-back” to). For
comparison purposes, data for these timing results can be seen in Section 7.7.

Figure 7.15 Timings for Query 4

Figure 7.16 Timings for Query 5 Figure 7.17 Timing for Query 6

Figure 7.14 Timings for Queries 2, 3 and 7

i ii

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

Query 4

a
b

tim
e

(s
ec

.)

2 3 7

0

10

20

30

40

50

60

70

80

Queries 2, 3 & 7

tim
e

(s
ec

.)

i ii

0

20

40

60

80

100

120

140

160

180

200

220

0,08

Query 5

tim
e

(s
ec

)

i ii

0

0,01

0,01

0,02

0,02

0,03

0,03

0,04

0,04

0,05

0,05

0,06

0,06

0,07

Query 6

tim
e

(s
ec

)

34 Experimental Results

7.7 Comparison

A comparison of the timings described above, along with the timings for the configuration in which index
are dropped and materialized views enabled, is shown in Figures 7.18, 7.19 and 7.20. The numbering for
the queries is the same as in Section 7.2.

In Figure 7.18 a comparison of the different configurations for Query 1 is shown. The average decrease
in time for using the indices over the bare database is 50,15%, and for the materialized views over the
indices, 96,93% (32 times faster). The main index for Observation Fact takes 421MB, and the
materialized view takes 13MB. However, any query that doesn't take advantage of the materialized view
(Query 2, Query 5.ii) can still use the index.

Query 4 is also benefited from the materialized view, as shown in Figure 7.19. Indexes decrease query
time by an average 5,45%, and materialized view decreases time by 98,56% (69 times faster).

Figure 7.18 Timing for Query 1, All Configurations

Figure 7.19 Timing for Query 4, All Configurations

1.ii.a 1.i.a 1.ii.b 1.ii.c 1.i.b 1.i.c 1.iii

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

Bare

Index

MV

Index & MV

tim
e

(s
ec

.)

4.i.a 4.i.b 4.ii.a 4.ii.b

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Bare

Index
MV

Index & MVtim
e

(s
ec

.)

35 Experimental Results

Query 2 (Figure 7.20), as stated in section 8.5, doesn't use any materialized view, but uses an index for a
41,47% reduction in time; the same happens with query 5.ii, for an average 12%. Query 6 remains
mostly unaffected by indices, as the Trip Fact table is too small for the influence to be noticed. Queries 3
and 7 gain nothing from these structures.

While used indices took half the size or more of the fact tables, this is, a total of half a gigabyte, for a
decrease in time around 50% in some cases, materialized views decreased query times around 95% with
less than a total of 25 megabytes. Materialized views are a powerful tool to handle summarized data. They
can boost performance up to the order of hundreds with a very little space requirement. However, new
needs or kinds of queries that were not anticipated in the moment of the design will not take advantage of
this improvement. Thus, an active maintenance and a thoughtful design are a must in this environment.

Figure 7.20 Timing Results for Queries 2, 3, 5, 6 and 7

2 3 5.i 5.ii 6.i 6.ii 7

0

25

50

75

100

125

150

175

200

225

250

275

300

325

Bare

Index

MV

Index & MV

tim
e

(s
ec

.)

36 Conclusion and Future Work

8 Conclusion and Future Work

8.1 Conclusion

Analysis of traffic through tracking of moving objects, a location-based service, is an activity that requires
storing and querying an amount of this data which is typically too large to use the classical OLTP
approach in a practical way.

A Data Warehouse design for spatiotemporal data was implemented in Oracle. It comprised dimensions
as X, Y Position for the position of cars in the map, Time of Day and Date for time, a Road Network in
which cars move, etc. The Observation Fact table keeps track of the moving objects, associating the
position in X, Y, and Road Network, time, car, and other information with the respective dimensions.
This fact table contains speed and acceleration measures, to analyze the behavior of cars respecting these
parameters. Two other fact tables were built, Road Utilization, that stores the number of cars on a road
segment in each moment, and Trip Fact, measuring the duration and length of trips.

This fact tables were populated with the two data sources available: real data from the INFATI project
together with data from a data generator, that simulates an environment in which objects follow a given
network, in this case the Aalborg road network; one day of traffic was simulated.

To improve the performance of the queries, indices were build over the database; to further improve
query performance we used materialized views. A set of queries was tested over different configuration
of the database, this is, without indices or materialized views, with indices and with materialized views.
Timing results for these configurations were gathered and compared, showing the utility of the
materialized views as a powerful tool to handle summarized data. While indices took half the size or more
of the fact tables, for a decrease in time around 50% in some cases, materialized views decreased query
times around 95% with a few megabytes. However, materialized views have to be built according to the
set of queries that will be issued to the DBMS, as they gather specific data, and thus new needs not taken
into account in the design phase will not take advantage of these structures.

It remains to be seen if it would be more effective to build Road Utilization fact, gathered from the
observations, as a materialized view of Observation fact. As it is, queries related to this measurement are
more than a hundred times faster over Road Utilization than over Observation. Oracle facilities to keep the
materialized views updated automatically would ease maintenance of this information, while as an
independent fact table it has to be separately updated.

Information about trips is computationally expensive to gather from the Observation fact. Observations
have to be ordered by car and time, traveled distance accumulated for each observation and time gaps of
more than 10 minutes detected, to establish a trip. This makes complex doing a materialized view to
aggregate this data or even query the Observation Fact table for trip information. However, once built, the
Trip Fact table is very small and fast to query to.

8.2 Future Work

It would be interesting to compare this approach to Data Warehousing support with the MOLAP
(Multidimensional OLAP) model, in which the data is stored in a Multi-dimensional database. Oracle
Analytic Workspace [Oracle, 2003], integrated in Oracle9i R2, or Microsoft Analysis Services
[Microsoft, 2003] are commercial products with this philosophy.

Another interesting field is analyzing how these structures to support Data Warehousing behave regarding
the loading or updating of data. Real-time applications that load data frequently or without the possibility
of doing off-line loads are a possible target for analysis.

Specific spatiotemporal structures [Papadias et al., 2001] like R-trees, aggregation trees, aRB-tree, etc.
can be used and their performance compared to the structures used in this thesis, indices and materialized
views.

37 Bibliography

9 Bibliography

Thomas Brinkhoff
Generating Network-based Spatiotemporal Datasets
http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator.shtml current as of 4th
Jun 2003

Jan Eliasen, Casper Kjær , Helen Urban
Data Warehouse Design for Spatio-Temporal Data.
DAT5 Report, January 2002. Aalborg University

Jan Eliasen, Casper Kjær , Helen Urban
Data Warehouse Based Traffic Jam Detection.
DAT6 Report, January 2002. Aalborg University

Antonin Guttman.
R-trees: a dynamic index structure for spatial searching.
In In Proceedings of ACM-SIGMOID Conference on the Management of Data, 1984.

INFATI.
http://www.infati.dk, current as of 1st May 2003

Ralph Kimball.
The Data Warehouse Toolkit.
John Wiley and Sons, Inc., 1996.
ISBN 0-471-15337-0.

Ralph Kimball, Laura Reeves, Margy Ross, and Warren Thornthwaute.
The Data Warehouse Lifecycle Toolkit.
John Wiley and Sons, Inc., 1998.
ISBN 0-471-25547-5.

Nick Kline, Richard Snodgrass.
Computing Temporal Aggregates.
 International Conference on Data Engineering, 1995

Microsoft Corporation
http://www.microsoft.com/sql/evaluation/bi/bianalysis.asp, current as of 6th Jun 2003

Oracle Corporation
Oracle9i Database Concepts, Memory Architecture
http://otn.oracle.com/documentation/, current as of 4th Jun 2003

Oracle Corporation
Oracle9i Data Warehousing Guide
http://otn.oracle.com/documentation/, current as of 4th Jun 2003

Oracle Corporation
Oracle9i Database Performance Tuning Guide and Reference
http://otn.oracle.com/documentation/, current as of 4th Jun 2003

Oracle Corporation
http://www.oracle.com/olap/, current as of 6th Jun 2003

38 Bibliography

Dimitris Papadias, Yufei Tao, Panos Kalnis, Jun Zhang
Indexing Spatio-Temporal Data Warehouses.
Proceedings of IEEE International Conference on Data Engineering (ICDE), San Jose,
26 Feb - 1 Mar, 2002.

Torben B. Pedersen and Christian S. Jensen.
Multidimensional database technology.
34:40-46, 2001. ISSN 0018-9162.

Torben B. Pedersen, Christian S. Jensen, and Curtis E. Dyreson.
Extending practical pre-aggregation in on-line analytical processing.
In VLDB'99, Proceedings of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK. Morgan Kaufmann, 1999.
TR R-99-5004.

Dan Sunday.
About Lines and Distance of a Point to a Line.
http://geometryalgorithms.com current as of 1st Apr 2003

Vassilis J. Tsotras, Christian S. Jensen, Richard T. Snodgrass
A Notation for Spatiotemporal Queries
TR-10 a Time Center Technical Report, 1997
http://www.cs.auc.dk/TimeCenter/, current as of 4th Jun 2003

USGS Eastern Region Geography
The Universal Transverse Mercator (UTM) Grid
http://mac.usgs.gov/mac/isb/pubs/factsheets/fs07701.html current as of 4th Jun 2003

