Process Migration in FROST

MICHAEL GLIBSTRUP - LARS KRINGELBACH
© 2002, AALBORG UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
AALBORG UNIVERSITY

TITLE : Process Migration in FROST
THEME : Distributed Systems
SEMESTER: F10S

PROJECT TERM: February 2002 - June 2002

Abstract

FROST is a distributed heterogeneous calculation platfaost
described in [GKOZ2]. It provides an API that allows a user to
create assignments which are distributed and calculated|on
number of computers.

In this project we have chosen to improve the dynamic |oad
balancing scheme of the FROST system by implementing|pro-
cess migration. We do this in order to improve the perforneanc

of the system as processes can be moved from nodes that are
heavily loaded onto nodes that are less loaded during eracit

AUTHORS:
Michael Glibstrup
m chael g@s. auc. dk

Lars Kringelbach

lars@s. auc. dk We have analyzed the problem of process migration |and

have decided on a solution using checkpoints as a means

SUPERVISOR: of performing process migration. The chosen solution|has
Josva Kleist been designed and parts of the design has been implemgnted.
kl ei st @s. auc. dk During the design phase we have been very aware that the

performance aspects of FROST should not become worse after
the introduction of process migration as it would remove|the
reason for using the feature.

We have tested the system with regard to overhead, pérfor-
mance and the behavior of the migration policies. The tests
show that the overhead with regard to the process migration
features is fairly small compared to what they offer. In diddi
the performance tests and the policy tests showed that #i¢ sy
tem performs well after the introduction of process migrat
We do conclude, however, that in order to obtain even bgtter
performance it should be considered to introduce migration
points as a tool as well.

NUMBER PRINTED: 6
NUMBER OF PAGES: 116
FINISHED: Junetth, 2002

This report may not be published or reproduced in any way onfeithout permission from the authors.
Copyright © 2002, Aalborg University

Dansk Resumé

Indenfor feltet omhandlende langtidsberegninger ved bifulgke-dedikerede maskiner er det kendt,
at mulighed for dynamisk redistribution af belastning kgeelpe med til at forbedre ydeevnen i
systemet. Dette skyldes inflydelsen fra brugerprocessar,ikke kan forudsiges i den indledende
tildeling af opgaver til maskiner.

FROST er en distribueret heterogen beregningsplatform,esobeskrevet i [GK02]. Den er tiltaenkt
at kare i et ikke-dedikeret miljg, hvor den bruger de ledig@ykler pa almindelige arbejdsstationer
til langtidsberegninger. FROST stiller et API til radighebm tillader en bruger at skabe opgaver,
der bliver distribueret og beregnet pa et antal computesitkét muligger udnyttelse af ubrugte CPU
cykler i et lokalnetveerk.

| dette projekt har vi valgt at forbedre FROST systemets dyiske load-balancering ved at imple-
mentere procesmigrering. Vi ggr dette for at forbedre systs ydeevne, da processer kan flyttes fra
knuder som er hardt belastede, til knuder som er mindre teelasinder udfgrelsen af dem.

Vi har analyseret procesmigreringsproblemet og har valdening som bruger checkpoints som et
middel til at udfgre procesmigrering. Den valgte Igsningesignet og dele af den implementeret. |
lzbet af designfasen har vi veeret meget opmaerksomme péeedryen i FROST systemet ikke blev

forveerret efter introduktionen af procesmigrering, dateleflle fierne grunden til at bruge denne

egenskab. Derudover er mader, til at ggre FROST skalerBaliipvet overvejet.

Vi har testet systemet med hensyn til overhead, ydeevne émrgen af migreringspolitikkerne.

Testene viser at overheadet med hensyn til checkpointsamepmigrering er ganske lille sammen-
lignet med, hvad der tilbydes af procesmigreringsegenskalyi konkluderer dog, at for at opna
endnu bedre ydeevne burde det overvejes ligeledes at irdeod migreringspunkter som et veerktgj.

Preface

This report is a master’s thesis based on work performed ori@tln semester in computer science,
distributed systems. The purpose of the report is to comoat@ithe thoughts and used approaches
in considering, analyzing, designing, and implementingcpss migration into a distributed hetero-
geneous calculation platform, the FROST system. The worledo this master’s thesis builds on
work presented in [GK02].

The report is directed towards people with interest in thsted calculation platforms, peer-to-peer
computing, and process migration in heterogeneous envieois.

In part | we will survey the area of process migration and &peiting and from this determine the
most optimal solution for FROST. We will also look upon théesifor controlling the migration and
checkpointing. Part Il contains performance considenat@nd the design of the elements necessary
for implementing process migration in FROST. In part Il veok upon the details regarding the
implementation of process migration in the FROST systemalBi in part IV we perform tests of
FROST system after process migration has been implememgechnsider how to make the FROST
system scale to a larger platform, and we present a conausiahe results. A word list can be
found in appendix A describing some of the FROST terminoldgfined in [GK02]. Test results are
located in appendix B.

The bibliography is situated in the back of the report. Refiees to the bibliography are as follows:
[GKO02], which refers to the papéFROST - A Distributed Heterogeneous Calculation Platfdrm
written by Micheal Glibstrup and Lars Kringelbach in 2002 ef&ences to figures are made as
follows: “figure x.y”, where x is the chapter and y is a conge@numbering within each chapter.
References to tables are similar to the references to figures

Some typography is used in the report in order to clarify niegnClass names are written 8ans
Serif. Algorithms in part | are described in pseudo-code usingMgerithmicenvironment. Refer-
ences to the algorithms in the report are as follows: “atponi1”. In the algorithms, settingar
before a variable in a method decleration means that thehlaris passed as a reference to the
method. FROST is developed in C++, and in part Ill, Impleragoh, examples are therefore given
in a C++-style language.

Throughout the report we use the words computer, machinestation, and node interchangeably.

Michael Glibstrup Lars Kringelbach

I’'m a great person for utilizing waste power

- Robert Lee Frost

Vii

Contents

1 Introduction
1.1 TheFROSTSystem e e e e e e e e
1.2 FurtherWork e
1.3 Problem Statement e

2 Process Migration
2.1 Motivation e e
2.2 Performing Process Migration e
2.3 PreproCesSOr. v o v i i i e e e e e
2.4 Checkpointing. e e
2.5 Process MigrationPolicies e

3 Analysis
3.1 KernelorUserSpace i
3.2 PreproCesSOr. v v v it e e e e e e
3.3 Checkpointing. e
3.4 Process Migration Policies e
3.5 Demand Specification e

4 Designing Process Migration
4.1 Performance. e e
4.2 Limitations e

5 Policies
5.1 |InformationPolicy e
5.2 TransferPolicy e
5.3 SelectionPolicy e
5.4 LocationPolicy

6 Checkpointing
6.1 ProcessorState

11
12
13

15
15
15
16
17
20

23

25
25
27

29
29
32
35
39

45

CONTENTS

10

11

12

6.2 ProcessVariables,
6.3 DataMarshaling.

Preprocessor

7.1 GeneralStructure
7.2 UserRequirements
73 TheParser.
7.4 The Checkpoint Code Generator

7.5 Source Code Analyzer
7.6 TheIntermediate Format

[l Implementation

Implementation Status

8.1 Policies
8.2 Migration
8.3 Preprocessor.

Implementation of Policies

9.1 InformationPolicy
9.2 TransferPolicy
9.3 SelectionPolicy o o
9.4 LocationPolicy

Checkpointing

10.1 Control- andDataStack
10.2 CalculationCode Additions
10.3 CheckpointingData

Test

11.1 TestTypes o o oo e e
11.2 Howto PerformtheTests
11.3 Overhead
11.4 Performance
115 Policies
11.6 TestConclusion

Scaling FROST

12.1 Distributed Master
12.2 InformationSharing
12.3 Summary

CONTENTS Xi
13 Conclusion 103
13.1 Design and Implementation 103
13.2 Results. e e 103
13.3 FurtherWork e 104
V Appendix 109
A Word List 111
B Test Results 113
B.1 PerformanceTestl e 114
B.2 Performance Test2 e 115

B.3 Performance Test3

CHAPTER 1

Introduction

The FROST system was designed and implemented in [GK02] ®faur 9th semester project
work, with systems such as SETI@home and Distributed.ngtiitd. The aim was to develop an
API that could be used to easily develop SETI@home-likeiegfibns, which are automatically dis-
tributed to machines on the Interhddy the built-in runtime system. The system is designed to be
used Internet-wide using non-dedicated machines. A sysitigéimthis setup sets some demands to
efficiency and durability. As the system is designed to rumon-dedicated machines it requires
that the application is fault-tolerant as machines cankbdeavn. Because it is to perform Internet-
wide the system demands a high calculation to communica#ito in order to achieve optimal
performance. In the following we will give a further desdigm of the FROST system and a charac-
terization of the applications that are suitable to theaystFinally we will introduce the work that
is contained in this report.

1.1 The FROST System

The FROST system is a distributed calculation platforméxatoits unused CPU-cycles in a network
of non-dedicated workstations. Non-dedicated means ligaiiachines are normally used by local
users and these users must be given highest priority whgmtel the machine. As FROST therefore
has low priority on the machines, more machines are negeizan in a system that uses dedicated
machines in order to obtain the same amount of computing pdwanake most machines available
to the system, heterogeneity is considered to be an impdeetor, and therefore it has been made
easy to develop portable applications to the FROST systenetlisjg FROST take care of non-
portable issues such as byte-order conversions, diswibof binary files, etc.

The system is intended to be used widely on the Internet,igray lots of users with access to
surplus computing power. For this reason, the system istbasdhe peer-to-peer paradigm where
all machines performs on an equal basis. This is implemesudtiat in order to utilize computing
power on other machines, a computer must provide computmgepin return.

Due to the use of non-dedicated machines, we cannot counPbhdycles being available for each

application at all times. Some calculations, or part of awlaltion, can be postponed or slowed
down if the amount of available CPU-cycles is small. For teiason we have dedicated FROST to
performing calculations and therefore it cannot be usedgpglications which require any interaction

from users or other external devices.

When developing applications for FROST the user only hastaentrate on his application domain.
He needs to provide an algorithm for splitting the problerto iseveral pieces, arork units that
can be processed independently and an algorithm for combithie results when they have been
processed. Finally he must specify the algorithm that peréche calculations. Everything regarding
the distribution of work units between the available maekirincluding all network communication,
is performed by FROST. Dynamic load balancing is perfornmeatder to have applications finish in
the shortest possible time.

The interprocess communication capabilities availablERDST introduces some limitations to the
development of applications to FROST. In the following s&etive will describe interprocess com-
munication in FROST and afterwards the applications thatsaiitable for the FROST system are
characterized.

1The applications are only distributed to other machinesHhase the FROST system installed.

Introduction

1.1.1 Communication in FROST

FROST was designed with the possibility for limited interpess communication. The communi-
cation consists in passing on a sub-result to another edinglnode. This node is then able to use
the previously calculated result in the further calculasioAll communication must be known in ad-
vance, that is, the dependencies between result and dadaglanust be known. These dependencies
must be specified using the graph structure included in tteFRsystem. FROST will then handle
all interprocess communication from the dependenciesfipeém the graph.

Because communication must be specified beforehand thersoane limitations to the problems
that can be solved using FROST. Hence, applications thiaildites a data structure across several
machines due to lack of memory on a single machine, will oftehbe possible to implement in
FROST. If the data structure is accessed randomly, the carwation cannot be specified in advance
which is necessary.

An example of problems that can take advantage of the conuation available in FROST is the

class of dynamic programming problems. In this class of |emols earlier results are used in the
further calculations in a predictable way. An example is plaeenthesizing of matrix-chain multi-

plication in order to find the multiplication order with thedst amount of multiplications. For these
calculations the tables shown in figure 1.1 are used.

@) (b)

Figure 1.1: Calculation of matrix-chain-order. a) Firsettark shaded areas are cal-
culated in parallel. Afterwards the two light shaded araascalculated in
parallel using the results from the dark shaded areas. @lfFithe rest of
the table is calculated using the previously calculatedltes

The dark shaded areas in figure 1.1 (a) can be calculated afigdaiThe results from these calcula-
tions must then be transferred two by two to the machinesittiog the light shaded areas, e.g. the
results in place (2,1) and (3,2) is transferred to the macbéaiculating the result for (3,1). Finally all
the shaded areas in figure 1.1 (a) are used to calculate thzala®f the table as shown in figure 1.1
(b).

Even though this kind of problems is suited for the intergssccommunication primitives available
in FROST, they are not especially suited to be solved with EROT'here are several reasons for this:

Imbalanced distribution: Using the procedure described above will make the work uaitger for
each level of calculations. There is however a solutionit tinstead of calculating the striped
area in figure 1.1 (b) at once, it can be split across severahmas. This can be done by
first calculating (4,2) using (3,2) and (4,3), and aftervgadl, 1) using the entire underlying
triangle and so forth. This will solve the imbalance of cédtion sizes, but it will require more
transferral of data between machines.

Memory usage: The most optimal problems to FROST uses less memory to ps@cesrk unit on
a machine than is used when processing the entire problensotgk machine. We cannot
expect that the workstations have the same amount of memarg@percomputer and therefore
this is an important property, especially if the problemésywmemory consuming. The above
example does not have this property, since when calculatpayt of the table, the entire table

1.1 The FROST System 3

in a triangle below must be available. When calculating #s part, the entire table must be
available as if all of the table was calculated on the samehmac This applies for dynamic
programming problems in general and will be a problem fogdgproblems.

Communication: The calculation to communication ratio for the above prable not optimal.
In order to achieve maximum parallelization the amount df-gsesults that needs to be sent
increases. The size of the sub-results increases when qopithe table, and therefore a large
amount of communication is necessary.

Parallelization: An entry in the table can not be calculated until all entrieghie entire triangle
below have been calculated. This limits the amount of paliaiition possible, which can give
poor performance in FROST, as a low bandwidth, high latemtwark is to be used.

The above issues apply to the entire class of dynamic pragiagiproblems and this class of prob-
lems is therefore not suited to be solved with FROST. It isangnt to mention that the problems
are well suited to be solved in parallel if a shared memoryhirezis used, as can be seen in the
literature. Some examples are Hardwick et al. [HOS99] andohov et al. [ARQ93].

We have not been able to find any problems that can be solvegeatfy with FROSTand uses the
possibilities for communication. FROST has been desigoée tused on a network abn-dedicated
workstations connected withlaw-bandwidtimetwork, and these conditions sets some limitations to
the problems that are suitable to be solved. For this reagomave chosen not to support the limited
communication that was designed in [GK02], and insteachupé the system for problems which
do not have any interprocess communication.

In the following section we will characterize problems theg suitable to be solved with FROST by
first describing the systems that we had in mind when FROSTdeaigned.

1.1.2 Applications in FROST

In [GK02] we designed FROST with projects such as SETI@hdmistyibuted.net, and THINK
in mind. These projects solve problems that are all optichime be solved using non-dedicated
workstations connected to a low-bandwidth network. In thiéofving we will characterize these
projects and the problems they solve. The problems all hawenwon features. They can be split in
a number of work units where each work unit can be processegletely independent of another,
hence there is no need for interprocess communication leetthe different machines used to solve
the problem. They also have a very high calculation to comipaiion ratio which makes them
extremely suitable for a low-bandwidth network connectidhe following is a description of some
of the projects:

SETI@home: SETI@homéis a project set on finding radio signals from alien civilinas. To
obtain the data, the large radio telescope at Arecibo is.udéds telescope scans the sky,
recording data in a certain frequency range. When enoughtdet been gathered, the data is
split up into 10 kHz work units of about 100 seconds in lengthese work units are then sent
to computers over the Internet for further proces$ing

A work unit contains data to be calculated upon for a singletmre. These work units can
be calculated independently of each other which makes carwation between machines un-
necessary.In the SETI@home project they contain 340kbtafated they should take between
10 and 50 hours to complete on an average home computer. fflyrtee average CPU-time
per work unitis 17 hours and 14 minutes.

Distributed.net: Distributed.net consists of several projects which areheraiatical in nature. The
projects are mainly on the effort of cracking encryptiorhaps of different encryption schemes,

2In [GK02] the system was designed to a 10-100Mbit networkhefsystem is to be used Internet-wide we cannot expect
the machines to be connected with a 100Mbit network, bueratD.5-10Mbit connection or lower.

Shttp://setiathome. ber kel ey. edu

4For further information on the Seti@home project and theomilgms that are run on the data séetp://
seti at hone. ber kel ey. edu/ about _seti/about_seti_at_honme_1. htm

Introduction

but a project of finding the most optimal Golomb rufeisalso in progress

The work units in the Distributed.net projects are of verfyadent size. In the RC5 challenge
the user can determine how much work he wants to retrieveiateadependent on how often
he connects to the Internet and how fast his computer is.

THINK: The THINK' project covers a wider selection of problems that needs smhed. Examples
are researching Anthrax, Cancer, understanding the huer@onge and other medical research
problems as well as web performance testing. Common to tltgcadgoroblems are that they
utilize the same algorithms for performing calculationseodataset over and over again. For
example in the cancer research program, computers test aerush molecules in order to
find a drug that could cure cancer. The project regarding tiredn genome utilizes Hidden
Markov Models to find genetic sequences that can be relatedd other in some way.

In the testing of molecules, a work unit contains approxetyat OKb of data and the average
CPU-time per unitis currently 7.5 hours. The CPU-time regdivaries from 4 hours to several
days only due to differences in the data that is calculateshup

All of these problems lie within the class of problems calegdbarrassingly parallelas described

in [FWM94]. Embarrassingly parallel problems have a singpatial structure which leads to clear
parallelization, and there is no synchronization involegd hence no interprocess communication
is necessary. The only communication needed is to set uprtiidem and accumulate the results.
Due to the lack of synchronization between machines it isroftossible to archive a linear speedup,
especially if the problem has a high calculation to commaitidn ratio. Another example of embar-
rassingly parallel problems is Monte Carlo simulationsd@a].

This kind of independent or “job level” parallelism is commtm many kinds of simulations in sci-

ence and engineering. Sometimes it is done by performinggsicalculations on each machine but
with varying parameters if possible. This approach is iyestited to very coarse-grained parallel
machines, and especially for distributed computing usietgvorks of workstations [Cod93].

1.2 Further Work

In [GK02] we have noted some of the further work necessaryriteioto achieve a more optimal
system. These are summarized in the following.

Communication between slaves: The possibility of communication between slaves was neubyr f
implemented and we have chosen not to support this featdugure versions of the system.

Load balancing: FROST uses a dynamic load balancing scheme where the iagsdnment of
work units to nodes can be changed during runtime as needefiGK02], we say that if
there is communication between slaves an intelligentah@ssignment of tasks to machines
is of great importance in order to minimize the expensiveriptocess communication. As we
do not support communication between slaves, we believieotivadynamic load balancing
scheme performs reasonably compared to an intelligermdlimissignment as the load can vary
a great deal during calculations. This is especially truesfioall tasks as this will minimize the
time needed on a heavily loaded machine. It is, however, mongenient with larger tasks
as it will minimize the amount of communication between sk#nd the master and hence the
administration load on the master. Larger tasks will thememake it possible to achieve better
performance. This contrast requires new means for loachbadg in order to achieve optimal
performance.

Fault-tolerance: Fault-tolerance has not been implemented and the problemgafailing ma-
chines can be minimized by having smaller tasks. As mentiabeve larger tasks can provide
better performance and is more suitable to the FROST systéis will however make the

5Golomb Rulers are described in detailatt p: / / menber s. aol . cont gol onb20/ i ntro. ht m

8For more information on the distributed.net projects lseep: / / www. di st ri but ed. net

“htt p: // vwwwy. ud. com

8By large tasks is meant that a single task takes long timergpate. A long timeis in this context several hours.

1.3 Problem Statement 5

need for fault-tolerance more necessary, as a larger patcaiculation can be lost if a ma-
chine fails.

Security: Security was given a low priority in the design phase of FR@STt is not important in
order to show the applicability of the system. It is, howewery important in a final version
of the system both to secure the privacy of the data beingilzded upon and to have secure
execution of foreign code on slave machines.

Portability: The portability issue was also given a low priority in theidegphase for the same reason
as with security. Some means for increasing the portalibitye, however, been implemented,
such as byte order conversions when transferring data beardtwork. If the calculation code
is made portable it should be fairly easy to port the systenthier UNIX-based platforms.

In the following section we will elaborate on the issues diésd above in order to determine the
work we will proceed with in this project.

1.3 Problem Statement

We still see the security issue as important in a final versiothe system, but as we are still in the
initial phases of the construction of a generic distributattulation platform, we will give it a low
priority.

This project will consider the improvement of issues regagdoad balancing and fault-tolerance,
as these have direct influence on the performance of themsy€By implementing fault-tolerance
techniques it is possible to distribute larger tasks whidhminimize the amount of communication
needed with the master and hence decrease the bottlenettatiter imposes. With larger tasks the
need for a more intelligent load balancing scheme increases

In order to make it an advantage to have larger tasks somé&eauents are set to the load balancing
scheme. We cannot predict the load on non-dedicated machmical users can decide to use the
machine at any time. The FROST system was designed in [GI@Rhtwith a low priority to ensure
that user processes always will have precedence over FR&R3.tWhen a user loads his machine
heavily the FROST tasks will not gain any CPU-time. When gleinask has a long running time,
the implemented dynamic load balancing scheme will notsiffsince balancing can only happen
between tasks. Instead of the dynamic load balancing scladneedy implemented in FROST the
use of process migration should be considered in order t@aetbetter performance. According
to Smith and Hutchinson [SH98] it is an advantage to use goo@gration when a system mostly
executes longer running tasks. Process migration worksdning a calculating process to another
machine at runtime. By supporting process migration we earonly balance the load when a new
task is sent to a slave, but also change the assignment sfttaskdes during execution.

When most of the tasks in the system are long running it is sesoy for the system to be fault-
tolerant. This would protect the tasks from e.g. a systemalbdown or a machine shutting down
during a calculatiof In order to do this it must be possible to revert the process known state
before the failure. This means that there must be some kieti@kpointing where the state of the
process is saved to a fail-tolerant media.

Process migration is basically capturing the state of age®to be transferred and transferring it to
another machine where it is continued. Checkpointing is thotkof capturing the state of a process
and saving it to disk e.g. for fault tolerance. Thus, a cheakghat is transferred to another machine
instead of saving it to disk is a way of performing processnatign.

We have chosen to concentrate on implementing process tioigria the FROST system as we
believe that this issue is very important to the performasfdee system.

9This kind of failure is known as fail-silent or fail-stop ihe literature [Tan95]

PART |

Analysis

This part presents an introduction to the area of processratign and a discussion
of how to introduce process migration into the FROST systemhapter 2 we survey
the area and look at different ways of performing procesgation. In chapter 3 we
look at the different possibilities presented in chaptem2 aiscuss them in relation
to FROST.

CHAPTER 2

Process Migration

In the following we will survey the area of process migratiwhich allows tasks in a system to
move from one computer to another as need arises. We willidensome of the advantages and
disadvantages of process migration. We will also reflect@mes of the ways that other systems
perform process migration. Later we shall see that fauéiremce can be introduced through the use
of checkpoints.

2.1 Motivation

The need for process migration can be based on several tHmgsder to state what motivates the
use of process migration in a distributed system we look iatesexamples.

» Another processor emerges which offer better performémae the present one.
e The current processor is about to shut down.

e The desire to minimize the amount of communication betw@enesses on different comput-
ers.

< Memory demands that are not fulfilled by the current compute

 Special architectural characteristics offered by sonoegssors.

Process migration allows a task to gain access to thesedésaiy moving it from one processor to
another.

An important aspect to keep in mind when considering whephecess migration is an option for a
distributed application is whether it offers a reasonalelégrmance gain. Itis obvious that if process
migration raises the execution time of a process withowdraffy anything else in return it will not be
used. Preferably it should increase the performance ofytsies so that processes will finish faster
when using process migration than when it is not used. The&se in performance can be gained
by moving a process closer to another process with whichdbmunicating heavily, or moving a
process from a heavily loaded computer onto a computer wikiclt loaded. If process migration
cannot provide an increase in execution time it has to offerething else in order to justify including
it in an application. This can for example be that a procefisiways be executing if needed except if
the host computer breaks down. If process migration is aalplith checkpointing even a computer
break down can be survived as the process can be recovezed lat

When considering process migration it is necessary to fa&edst of migration into account - how
much is moved, how long will it take and how often is it done.other words it is not enough just
to move a process in order to secure a performance gain ottarcamount of memory, it is also
necessary to consider the implications of the migrationth& implication of introducing process
migration is too great it may be necessary to reconsidenttreduction of it. We will consider the
subject of performance further in a later section.

2.2 Performing Process Migration

Process migration can be performed in a number of ways, plééing on the architecture and
approach used. In the following we will look upon some of theys/in which process migration can
be performed.

Process Migration

2.2.1 The State of a Process

When a migration of a process is to be performed, it is necgdedransfer, not only the code of
the process, but also the state of the process. The statistsoofsthe process variables, pointers to
other objects, file handlers, communication with other cotags, call stack, and so on. All this has
to be transfered to the system on which the process is toraomits execution. The basic way of
performing this transfer is to stop the process that is to grated, extract the state of the process,
inform the computers with which it is communicating, andrtfgass the state information along to
the receiving computer. If checkpoints are used it is momamlcated to handle communication
between computers. This will be discussed further in a Isg¢etion. Exactly how the extraction is
done may differ from system to system but there are two baaiswf performing state extraction -
direct and indirect extraction.

Direct Extraction

The direct approach of extracting the state of a processrs@ystems that, in some way, accesses
the stack and heap of a process. A system like Condor [LTBLS#&]this approach when migrating
processes. Condor produces a file in which all informatiooualbegisters, data and stack, pending
signals and open files are displayed. This is then transféoranother computer where the process
is restarted and its state restored. All system calls arfopeed through a shadow process which
remains on the sending computer. The advantage of the Camgwoach is that migration can be
performed transparently from the user’s point of view. Tlhgadvantage is that when transferring
the stack and data areas of a process directly, it limits #terbgeneity that a system is capable of
providing, unless massive translations are made of the stédrmation of processes at migration
time, or a generic stack and heap is maintained in parallileéaormal ones.

Indirect Extraction

Opposed to the direct way of performing process migratidhésindirect way. This way of perform-
ing process migration allows a more user-oriented appraache preliminary work of the migration
is performed by a preprocessor or the user himself.

An example of the indirect approach is the Dome-environrgBt. +95]. Here the user must con-
form to a predefined API which creates a Dome-environments &hvironment then performs the
necessary operations in the migration process. Anothenpbais MpPVM [CS96]. MpPVM em-
ploys a preprocessor which translates PV&durce code into MpPVM source code by dividing it
into subsequences and inserting migration points betwessetsubsequences. It also performs data
analysis in order to determine what data is needed at a spetidiration point and thus must be
included in the migration process.

The indirect approach consists of modifying the code of tleegss, so that variables and pointers
are saved in a way that makes it possible to restore themraftgation. This can be done using a
table containing all variables and their types. Then at atign time this table can be transfered to
another computer where the variables are reloaded.

The advantage of the indirect approach is that migratioreisopmed at a much higher level and
therefore it can be much more flexible when it comes to hetarey.

Seligman and Beguelin [SB94] gives an example on this inicgldo the Dome system. They state
that using a low level, or direct, method for checkpointimgguces larger checkpoints than does
their high level method. This is because a low level methodideto provide only page-level data
granularity and tends to save a large quantity of other mftion, such as the full stack contents. A
high level method on the other hand, enables a more selegigmach to choosing which variables
to include in a checkpoint. They give an example where thigi level Dome approach gives a 10kb
checkpoint file compared to a low level approach giving a $3Meckpoint file. Thus we can see
that the closer the migration process is placed to the agics being migrated, the better is the
prices that can be achieved.

Iparallel Virtual Machine

2.3 Preprocessor 11

The disadvantage is that being such a high level approaciyfitjeopardize the transparency from
the user’s point of view. Migration demands an effort frora thser in some cases and can thus be a
problem rather than an advantage. This will be considergt ne

2.2.2 Kernel or User Space

A certain level of transparency is important in a migratoygtem in order to make the system as easy
to use as possible. But how do we achieve this transparemcyiz [previous section we considered
the direct and indirect approach to process migration. Aeopossibility is to consider where the
migration process is placed within an environment. Theeetao possibilities - kernel and user
space.

If the migration procedure is performed in the kernel of aermping system it is easier for a system
to migrate processes. As the kernel has direct knowledgdl pf@cesses, it can perform process
migration independently of the user space code by movinguhtme stack, data areas, code and
process registers directly onto another computer. Thidezan advantage as the user or the processes
in user space need not have any knowledge of the migratiouréssthat run in the kernel. In addition
migration control can be coupled with the ordinary procesgesduler in the kernel. A disadvantage is
that if process migration is to be introduced into an exgstirrnel it requires extensive modifications
to the kernel [MDP 00], and thus redistribution of the kernel. The modificatitman existing kernel
could be avoided by creating a new kernel which already d¢osigupport for process migration but
such a kernel would also require a distribution phase anddvprobably have to be incorporated
into an existing system. Another disadvantage is that whegfopming process migration in kernel
space it is much harder to migrate processes in a heterogeeewironment. Due to the possibility
of having different architectures in a heterogeneous ay#tés no longer possible for the kernel just
to move a process. Before migrating a process the state atelafdhe process has to be changed
into a format which is understood by another architectura.iddirect approach cannot be used in
kernel space, as the kernel has no knowledge of variable siantktypes.

Another approach is to place the migration process in ussespMilojicic et al. [MDP-00] divides
the user space approach into two sub-categories - usdraleti@pplication specific migration. Both
these levels generally suffer from lack of transparencguoed performance and higher migration
costs. They have the advantage though, that the closer filerimentation of migration can get to the
applications which it is to migrate, the more knowledge itaiyy has about them. This knowledge
can be used in the derivation of better migration policies la@nce, better overall performance.

Whether to use a kernel or a user space approach dependb/taaindividual needs. If a migra-
tion tool that can migrate all kinds of processes is heeddtlawery high amount of transparency
is required, a kernel-space approach may be preferablen the other hand a more specialized
approach is needed, where only processes from a singlecappfi needs to be migrated or if the
migrations need to be strictly controlled or tuned to spedifeeds, a user-space approach may be
chosen. When considering kernel or user space migratidvoitld also be noted that the closer to the
kernel the migration process is placed within the systemhtirder it will be to achieve heterogeneity
[MDP+00].

2.3 Preprocessor

In a user level approach to process migration, a preprocesigiit be useful in order to insert mi-
gration primitives into the code of the user. This would emteathe system transparency in relation
to the user. System transparency in relation to the user igldyhdesired feature when considering
process migration due to the high complexity of the migrafeature.

Chanchio and Sun [CS96] uses a preprocessor approach in pd/M system. Here the PVM
primitives in the user code is first translated into MpPVMnpitives, then the code is analyzed and
migration points are inserted. After this, data analysipasformed in order to locataecessary
variables. Necessary variables are variables which atmlined before the migration point and
which will be used after the migration point. Thus, if a véiiis not used after a migration point it
will not be transfered during the migration which means thaly the necessary data is sent. After

Process Migration

the migration points and their data have been establishadras used for migrating and reinstating
a process are inserted into the code.

A preprocessor changes the code created by a user. This cam &dvantage as it is possible for
a user to review and change the code created by the prepoodessre it is compiled into an exe-
cutable. This allows the user to maintain the general viethefcode and if needed, optimize the
code generated by the preprocessor before it is compilefdr Example the user locates a place in
the machine generated code where the preprocessor hatetheanecessary migration points he is
able to remedy this before the code is compiled.

The problem of using a preprocessor is that it can be quifedlif to read and understand machine
generated code, and thus optimize or debtigiitorder to do so the user needs detailed knowledge on
the workings of the preprocessor. This includes the API efdbde introduced by the preprocessor,
and where in the original code it might be included. If a usggsinot have this knowledge it is hard
for him to perform debugging or optimization when the cods baen processed by the preprocessor.
This is because of the lack of correspondence between thmakicode and the code compiled by
the compiler. Line numbers will be skewed and a translatareme between original and modified
line numbers would be a good idea for debugging purposes.

A preprocessor approach can be used without regard to therlyintyy architecture. This means that
no matter if a homogeneous or heterogeneous architecagrédineath the user code, a preprocessor
can be used as it is only modifying the users code with preeéfimimitives.

2.4 Checkpointing

Checkpointing is performed by capturing the state of a pgsde such a way that it is possible to
rollback the process and restart it at the point where thelgh@int was made. In order to do this,
the checkpoint must include the entire state of the proagds as the runtime stack and data areas,
processor registers and so on.

Checkpointing is usually used to increase fault-tolerarsiea Dome [ABLF95] and Condor [LTBL97]
by saving the checkpoint to stable storage. In case of madhiture, the process can be restarted
using the last checkpoint instead of starting over. The tions carried out when performing the
checkpoint are very similar to those of process migratioengtihe state of the process is transferred
to another machine instead of being saved to stable stofdgefeature makes it possible to use the
checkpointing mechanism for process migration, just bgdfarring the checkpoint data to another
machine and load it there in order to continue execution.

In spite of the similar approaches to process migration wiséng checkpoints or migration points,
the methods have some differences. When using checkpgjtiia checkpoint is made at each point
specified in the code, where process migration using migngoints, as in MpPVM, only capture the
state when the actual migration takes place. This indugas sontime overhead in the checkpointing
method as the state is captured more often. This is, howegeessary to obtain the fault-tolerance
capabilities. Furthermore it gives the possibilities taqyrate without waiting for the next migration
point, the last checkpoint can be sent exactly when mignasievanted.

When using checkpointing, interaction between procesgesduces a serious problem. If a process
is restarted from a checkpoint, it can be necessary to rchitmdher processes in the system with
which it has been communicating. This is a problem as thea@atential risk that all processes in the
system needs to be rolled back to where they were when th&pbiet was performed, thus rendering
the performed calculations useless. If all the communiggtirocesses acts completely deterministic
there is a solution to the problem. All the communication sages received between the checkpoint
and the point where the process was stopped can be buffedegaent to the recovering process
and thus no processes needs to be rolled back.

When using checkpointing for process migration, it is alsoassary to consider the heterogeneity of
machines in the system just as when regular process migriatissed.

2The code inserted by the preprocessor must be error freeasorly the code of the user needs to be debugged.

2.5 Process Migration Policies 13

2.5 Process Migration Policies

In the above sections we have considered the more techripats of process migration. But in
order to ensure that process migration becomes an advaatagrot a nuisance it is necessary to
consider when migration should be performed and where aggsoshould migrate to.

Because of the fact that the load in a system is likely to ckan@ distributed system consisting of
non-dedicated workstations, it is natural to consider pssanigration with regard to adaptive load
sharing in these systems. But we cannot allow any processierc@mputer to migrate to another
computer whenever it sees fit to do so. Therefore it is necgsgth a set of rules which declare
when and where a process should be allowed to migrate. Thkeseare known as thteansfer policy
and thelocation policy[CT01].

The transfer policy chooses the process that is to be mijfaden one computer to another. The
policy regards the load on the computer on which the procesitiated, the size of the process being
transfered, the time a process has run relative to the timd itun, and other relevant considerations.

When a process is chosen for migration the location poliaysisd to determine which computer in
the system the process should be transferred to. When cfgpasiew computer for a process the
location policy has to take different conditions into acabuExamples are the relative load of the
computers, differences in machine architectures, and pegial resources they may possess.

Finally in addition to the other two policies, a third policguld be considered. This is tirdormation
policy which handles the gathering of information about the loath&system. This policy can be
either centralized or decentralized. In the first case, d lmanager is placed at one point in the
network, collecting load information about all the otherahmes in the network. In the second
case each node maintains a database of information andsxtblegirege information with one another
directly in order to keep the database up to date.

The three policies presented above are essential to thensystwhich process migration is consid-
ered as a tool and we will therefore consider them furtheh@analysis.

CHAPTER 3

Analysis

When considering process migration in relation to FROS®,isisues introduced in the process mi-
gration survey in chapter 2 must be considered. These issgasd both technical and algorithmic
properties when designing and implementing process miggrat FROST. In the following sections
we will analyze these issues in the context of FROST in ordeset some demands to the further
design and implementation.

3.1 Kernel or User Space

From section 2.2.2 we can identify three main issues corisglthe location of the process migration
feature in relation to the FROST system, transparencyrbgémeity and portability.

The kernel space solution provides a great deal of transpgi&s it is most often implemented with

a direct approach for extracting the state of a process. Mibyrthe kernel has no knowledge of the
variables in a process and therefore it can only access tleegs image as a whole. This issue makes
heterogeneity very difficult to implement without providithe kernel with extra information.

If the process migration should be implemented in the kentebould make the FROST system
dependent on the kernel it is running on. Hence, FROST wonllgllze able to run on systems using
the modified kernel. This would limit the portability of th&PST system a great deal, and probably
make it impossible to port to Windows systems. By placingrifigration feature in the kernel we
would also have to consider the possibility that proces$lesrdhan those from FROST could be
migrated, which is not what we are interested in.

Opposite of placing process migration in kernel space gsriporating process migration directly into

the application in question. As stated by Milojicic et al.[I™00] the closer the implementation of

process migration is placed on the applications which isetonligrated, the more knowledge it can
obtain about the application. This knowledge then lead®tteboverall performance when it comes
to migrating processes. Furthermore the extra knowledge/&y important factor when performing

process migration in a heterogeneous environment.

As the heterogeneity and portability issues are very ingrdnto the FROST system, implementing
the process migration feature in kernel space is not anwpByg placing the migration feature in the
FROST system itself we have complete control of the migraiements and we have direct access
to the processes that is to be migrated. In order to obtaerbgeneity, we need to use an indirect
approach for extracting the state of the process. In thisw@ayave access to the variables and their
types, which is necessary in order to transfer them acrdéfseit machine architectures.

Placing process migration in user space introduces soniBgms. As stated earlier in section 2.2.1
process migration can be performed more or less transpp@epending on the approach taken.
By using an indirect approach it is necessary to analyze awdifjnthe code of the process that is
to be migrated. This fact reduces the transparency, butdsssary to fulfill the heterogeneity and
portability issues. The transparency problem can, howeyeisolved by using a preprocessor to
modify the source code of the process.

3.2 Preprocessor

The design of the FROST system is directed towards easingnitlementation of distributed com-
puting assignments. With this in mind it is of great necgdsitconsider the amount of transparency
needed when introducing process migration into the systéthe user has to implement migration
features into his source code, in addition to splitting lsisignment, we have to contemplate the pos-

15

Analysis

sibility that process migration may not be used. This is duthé fact that process migration is an
advanced feature and any errors in the migration processuiayhe results of the calculation, if it
completes at all. Therefore a high level of transparencgeded in the process migration procedure
in order to aid the users as much as possible.

As stated in section 3.1 a preprocessor can be used to prtvdequired transparency, as the chosen
placement of the migration feature requires modificatiorthée user code. The use of a preprocessor
does however introduce another advantage. We are intdriespeoviding the user with an approach
which enables him to consider the most optimal placemenhetkpoints, but which performs the
actual data analysis and process migration without anyhiewoent from the user. The reason why
the user has to state the point where a checkpoint is to berpeetl, is that he is the one which
holds the most knowledge of the current problem, and thugptzae the checkpoints so that optimal
performance is achieved. This approach is not completahsparent, but it is sufficiently transparent
to allow a user to use process migration easily while stiltling the possibility to optimize his code.
As stated in section 2.3 there are, however, also probleneswking a preprocessor. The problem
of debugging user code for example. We believe though, tlhatranslation scheme between the line
numbers in the unmodified code and the modified code can bedrehe problem of debugging the
user code is not harder than it would be if a preprocessor wassed.

The user does not have to state the variables needed in apdieckut merely points in the code
where checkpoints should be performed. Data-analysisresadtion of checkpointing code can then
be performed by a preprocessor as mentioned in section 2.3.

3.3 Checkpointing

In section 1.3 we stated that the FROST system should supporé form of fault-tolerance. The
main reason for introducing fault-tolerance in FROST ist tive purpose of the FROST system is
to perform long term calculations on non-dedicated platf®r The user of such a platform may
choose to shut the computer down at an arbitrary time, rémglgrerformed calculations useless
unless fault-tolerance is available. Such a feature coglictpresented by checkpointing. This would
not completely remove the problem of performing some caldoihs twice, but it would help to
minimize the problem, as a lesser amount of calculationidbilost.

As process migration basically means moving the state afegss to another computer and resuming
its execution, checkpointing could also be used in the m®oé performing process migration. A
checkpoint has to contain enough information from a protes=nable the system to recover the
process and continue execution after failure. The procéggation feature can be implemented by
recovering from the checkpoint on a different machine, anttiouing the execution there. By using
the checkpointing method for saving the state of the proeessan gain fault-tolerance in addition
to the process migration feature.

An alternative to using checkpoints for process migratisrtp add migration points in the source
code as in MpPVM [CS96]. Migration points is different froimexkpoints as the process state is only
extracted if and when the process is migrated. They givediarstage that when process migration
is performed, no calculations are lost. Only if a completedyv checkpoint is transferred, this can be
achieved with the checkpointing method. As FROST is desigmbe used for long term calculations,
the time lost by using checkpoints for migration has lessigrite on the total running time, and is
therefore seen as an less important factor. Another adgantdth migration points is, that data
does not need to be saved to disk before migration is perfidrms fault-tolerance is necessary in
FROST data must be saved to disk, and this is therefore nstaened as a performance degradation
compared to the migration point method. Hence, the issuamsigusing the checkpointing feature
for migration in FROST is either insignificant with regardthe time lost or unavoidable with regard
to saving the data to disk, and we therefore choose the cbeulgolution.

As performing long term calculations is the main purposéhefEROST system it is an advantage to
have fault-tolerance as stated above. As stated in secédia@t-tolerance can be secured by saving
checkpoints to a stable storage media from where they casdogered when needed. As the FROST
system is meant to run on non-dedicated workstations weatdoesure that a process can recover
even though a checkpoint has been produced and saved toldiskher words, we cannot be sure

3.4 Process Migration Policies 17

that the disk in a non-dedicated workstation is actuallylstatorage. This is because a user may
choose to remove the FROST system at any time or he may chosbkettdown the computer for a
long period of time in which the assignment should have begshied. In order to circumvent this
problem of users interfering with the normal execution of /&I, some of the checkpoints produced
on a slave should be sent to the master of the task for stonatjjethe task has finished. These
checkpoints can then be used if a user decides to shut doweimiguter without announcing it or if

a computer breaks down because of an error. Another comgartethen be chosen by the master to
continue working on the assignment from where the checkpeaas made and less data is lost.

Producing checkpoints in a distributed system is normailgx@remely difficult procedure, because,
in addition to the normal things included in a checkpointoounication with other computers across
the network has to be taken into account. This means thay#tera has to support some sort of roll-
back feature, allowing a slave to “erase” its previous comitation with other slaves. Use of such
a feature is potentially problematic as there is a risk thaifahe work performed by the system has
to be rolled back in order to reach a common ground by eacleslav

In FROST we do not have this problem. This is due to the fadt¢benmunication in FROST is
limited by the way FROST handles the assignments given talie flow is that the master splits
the assignment into a number of independent tasks. Thelse das sent to slaves which perform
calculations and, when these are finished, returns thetsetsuthe master. No communication is
allowed between the individual slaves. Thus in FROST we dmeed a rollback feature because
when a task or result has been transmitted it has no effed¢teather slaves.

3.4 Process Migration Policies

In the previous sections, the technical issues regardiagptbcess migration and fault-tolerance
features were analyzed. As stated in section 2.5 we alsotoesfine certain rules that are used to
make decisions when a process is to be migrated. Some infiormis.needed to make the decisions,
and a rule must state which information that should be usedcaw it will be obtained. When that
information is obtained, another rule must be used to dewitkether we need to migrate a process,
and if so, which process we wish to migrate. When a proceskdsen for migration, it has to be
determined where it should be migrated to. These three ankeknown as the information, transfer,
and location policies. We have chosen to split the trangféicypinto two, creating a selection policy
as well. The transfer policy then determines whether it isassary to migrate a process or not, and
the selection policy determines which process to migrate.

In the following sections we will consider each of these giek in greater depth in relation to the
FROST system. In order to do this, we will consider three gxansystems and the policies they
use. We will consider the MOSIX system and the Load Sharirgjlifa(LSF) system described by
Milojicic et al. [MDPT00] and tmPVM described by Tan and Yuen [CTY99]. First we gille a
short introduction to the three systems, and throughougtiaysis of the policies, we will relate
FROST to these systems.

MOSIX is implemented as a distributed operating system wipgocesses are migrated between
machines in order to perform dynamic load balancing in trstem.

LSF provides some distributed operating system facilibiegop of various operating systems with-
out changing them. It uses process migration to balanceotia ih the system, but it is used as a
supplement to the initial placement.

tmPVM is an implementation of PVM that supports process atign in a homogeneous environ-
ment. Process migration is used to achieve better perfarenby migrating processes away from
overloaded nodes to lesser loaded nodes.

3.4.1 The Information Policy

The information policy consists basically of an informatigathering process where information is
collected to allow future policies to perform decisionsdxhsn the overall state of the entire system.
There are many ways of performing this information gathgrifihey can be centralized approaches

Analysis

or decentralized approaches, periodic gathering or evas#dbgathering, all depending on the system
implementing the gathering of load information. We will nminsider how the different systems
define load, but how the information is collected.

The MOSIX system uses a decentralized load balancing #hgonvhere each node in the system
maintains a load information vector about the load on a smdiket of other nodes in the system.
For every iteration of the algorithm two nodes are selectedmadom and are sent the most recent
load information. The receiving system answers this byrretig its own load information back to
the sender.

The LSF is a little different from the MOSIX system as it prirfiarelies on initial placement of the
processes as a way of achieving load balancing. In additighi$ it employs checkpointing as a
means of performing process migration. LSF uses a cerggalipproach where a node is assigned
the task of being master. This master is responsible for taimimg the collecting of load information
from the other nodes. Each node sends its load informatitimetonaster periodically.

tmPVM also uses a centralized approach. A process on eaghooddcts load information, regarding
the node it is running on, and sends it periodically to a @izied resource manager.

The FROST system is designed as a peer-to-peer system antdralized approach is therefore
generally an inappropriate solution. With a decentraliapgroach each machine holds the load
information needed to decide whether to migrate or not. éfglistem are to scale Internet-wide it
is not possible for each machine to hold information abolutrachines in the system. A solution
such as the one used in the MOSIX system is required, wheyetioalload of a subset of the nodes
is known.

3.4.2 The Transfer Policy

The transfer policy is used to decide whether a system shoigichte a process or not. This basically
means that this policy only determines whether a node iscseiffily loaded to take action. The policy
does not decide which process to move but only whether toatagsr not. We will consider three
approaches to this policy, the sender initiated, the recénitiated and the centralized approach.

The sender initiated policy is invoked on an overloaded nibdé¢ wishes to transfer a process to
another node. According to Milojicic et al. [MDmO0] a sender initiated policy is especially usable in
a system where the number of underloaded nodes is highettteamumber of overloaded nodes. The
receiver initiated approach is in contrast invoked on anewloéhded node in need of work. Milojicic
et al. says that the receiver initiated policy is good in aesyswith a larger number of overloaded
than underloaded nodes. Shivaratri et al. have a reasomidifference. When using a sender
initiated approach in a highly loaded system it is not verglly to find a suitable destination node, and
therefore the administration price increases comparduetbénefits of migration [SKS92]. Shivaratri
et al. furthermore states that when using a receiver igiti@pproach in a lightly loaded system, the
effectiveness is reduced as the need for migration ofteistouered late. The centralized approach
has a central process that keeps track of the load in theeesitstem and chooses the nodes that
should migrate a process.

The MOSIX system uses a sender initiated approach, dedidimigrate a process when a node finds
another node with a significantly reduced load relativegelit The difference in load between two
nodes needed for the transfer policy to make a decision nxaseel a stability factor.

If a node is overloaded in the LSF system or if it is needed bighdr priority process, it may choose
to migrate a process to another node. The choice of whetherigeate is made from local load

information. LSF allows users to specify a certain time perin which local load conditions must

remain unfavorable before performing migration on a chgeecess. This is done in order to avoid
that temporary load spikes can cause unnecessary proagsgions. If the load conditions becomes
better the process can remain on the current node and tresgsbids the time-loss of migrating a
process. Depending on the jobs that run in the system, thefaapolicy in the LSF system may be
configured to use different load information. The LSF systdso uses a sender initiated approach.

As described in section 3.4.1, tmPVM has a centralized la&atination policy, and it is therefore
also obvious to have centralized transfer policy. The resmmanager keeps track of the load on the

3.4 Process Migration Policies 19

different nodes, and if a load imbalance is discovered, artloaded node is selected to migrate a
process.

As with the information policy a centralized approach is suitable for the transfer policy in FROST.

This is especially true as the load information is kept lgcah each node. With regard to choosing
a sender or a receiver initiated approach, we need to cansidether the nodes in the system is
generally overloaded or underloaded. As we are using nalicded machines this property cannot
be predicted, and we can therefore not decide which of thestations that are most suitable for
the FROST system. Instead we will use a combination of thdesesnd receiver initiated approach,
also known as a symmetric transfer policy [MD@0], as it combines the two policies in order to take
advantage of the positive sides in both of them. The sendéted policy can then be used when
the load of a node is above a certain threshold and the radeitiated policy when a node is below

this threshold.

As we use non-dedicated machines such as in the LSF systeprablem regarding temporary load
spikes will also exists in FROST. Means must be consideraichthndle this situation in order not to
make unnecessary migrations.

3.4.3 The Selection Policy

The selection policy determines which process to migraterwthe decision to migrate a process
has been made by the transfer policy. The selection polisjeig system dependent. There are
many factors that can be used to determine which processdgmtai E.g. a selection policy can
choose to migrate the newest process, a long lived prodesanichoose based on a the amount
of communication a process has with another process on exeliff node or it can take an entirely
different approach to selecting a process to migrate.

In the MOSIX system a process is selected for migration baseils history of forking off new
subprocesses or a history of communication with anotheerifoitlexists. A process is only chosen
for migration though, if it has run for a certain minimum anmbof time. This prevents short-lived
processes from using up valuable processing time in a nmgrathich turns out to be in vain if the
process terminates immediately after it is migrated.

Milojicic et al. [MDP+00] does not describe how a process is chosen for migratitheibSF system.

In tmPVM each node maintains a list of processes that canrmidates for migration. What makes
a process a candidate for migration is not specified anyduith[CTY99].

In the FROST system the choice of a process to migrate is @@adly on each node. This is because
we believe that the individual nodes have the most knowledigeit the processes running on them.
The reason for having a good selection policy is to make swaeads little time as possible is lost
when migrating a process. E.g. a process must be runningdanggh on the (hopefully faster)
destination node in order to catch up with the time lost dytime migration. In order to achieve
this, the selection of a process to migrate could be basetietire that has elapsed since the last
checkpoint of the process, the time a process has been gyrtheamount of data to be transferred,
or any other type of information available in the FROST syste

3.4.4 The Location Policy

The location policy is used to determine which node a sedieptecess should be migrated to. De-
pending on the approach used in the information and trapsfiécies there can be different possi-

bilities for choosing the destination node of the migratprgcess. If the load information is kept

centralized it is most obvious also to choose the destinatarle centralized, as all load information
will be available. If the load information is not kept cenizad and a sender initiated approach is
used, it makes most sense to let the source node choose thmates by itself, unless a centralized

resource has more knowledge of the nodes in the system, ghgregard to architecture or amount

of memory. If a receiver initiated approach is used, thetiocas already determined as the initiator
of the migration.

The MOSIX system uses a sender initiated approach and de&snvhere to migrate a process based

Analysis

on a load vector. If a node is significantly less loaded thanothe considering the migration, it can
be chosen as a target for migration.

In the LSF system processes may have different requirensrds as special architecture properties,
to the nodes on which they execute. These requirements bidectaken into account when choosing
the node to which a process should migrate. In addition t® diynamic load conditions are also
taken into account when choosing a node. The LSF system da&stta feature that in order to avoid
overloading a node, once a process is scheduled to run ortiaytear node, this node is not taken
into account for a period of time when considering where cplnew processes. The reason why
LSF is able to do this is due to the centralized approach & fmdocating processes.

In the tmPVM system the location policy tries to balance tloekload at each node. This is done by
migrating processes from overloaded nodes to lesser loaolgels. For each process that is migrated,
the least loaded node is chosen as the destination nodebjhevening out the load on the different
nodes.

As stated in section 3.4.2 we choose to use a symmetric éigpalicy which includes both the sender
and receiver initiated approaches. This choice also inflesithe transfer policy. When the sender
initiated approach is used, a lesser loaded node must betestl@s destination node, and when the
receiver initiated approach is used, a more loaded nodelmeustlected as source node. The purpose
of the location policy in the FROST system is the same as inihPThe policy should be designed
to equalize the load on the nodes in the system. This has fibet ef making the same amount of
CPU power available to each process and thereby letting #anute in the system on an equal
basis.

As we wish to make the system as architecture independemtsashte, we will not include require-
ments for special architecture properties when locatingden If the calculation code must run on a
specific architecture, the binary file will only exists foatharchitecture, and this must of course be
taken into consideration when choosing the destinatiorenod

3.5 Demand Specification

In this section we will summarize the choices we have madéenprevious sections into a list of
demands to the design and implementation of process nogratiFROST.

Technical demands:

User space: The process migration feature must be implemented in usaresps a kernel space
solution does not fulfill our demands.

Indirect extraction: The process state must be extracted using an indirect agphmoarder to sup-
port the heterogeneity of the FROST system.

Preprocessor: In order to uphold the transparency from the users point@fiya preprocessor must
be implemented that takes care of modifying the user codefipat process migration.

Checkpointing: In order to achieve both fault-tolerance and process maraa checkpoint solution
must be used for saving and transferring the process state.

Furthermore issues regarding transparency, heterogeansit portability generally have to be taken
into consideration during the design process.

Policies:

Information: In order to uphold the peer-to-peeridea in the FROST systdetantralized approach
must be used. The scalability of the system must be consideinen choosing the approach
for distributing the load information.

Transfer: A symmetric approach must be used due to changing loads isytem induced by the
local users. Means for securing against process migratiertalload spikes must be designed
and implemented.

3.5 Demand Specification 21

Selection: The process to migrate is selected locally from the inforamabbtained using the infor-
mation policy. The aim of the selection policy is to choose thost advantageous process to
migrate with regard to finishing the task faster.

Location: The symmetric transfer policy also affects the locationiggoto handle two situations.
The purpose of the location policy is to select either a seoradestination node of the migra-
tion so that the load on both nodes is closer to the average.

When designing and implementing the polices, performandesaalability generally have to be taken
into consideration.

PART Il

Design

This part deals with the design of process migration in th&®©BR system. Chapter
4 considers performance aspects that should be kept in ntied @esigning process
migration in FROST. Chapter 5 designs the policies that @drihe process migra-
tion. In chapter 6 the migration procedure is consideredndfy in chapter 7 the
preprocessor is designed.

CHAPTER 4

Designing Process Migration

In this chapter we look at the performance issue with regaqblicies, checkpointing and process
migration that has to be considered before the actual desigrstart. As the goal of implementing
process migration into the FROST system is improving théoperance of the system we have to
consider how the different parts of the FROST system shoelthte in order to at least match the
performance of the system without process migration anéepbly exceed it. In the following
section we will consider how this can be done. Afterwards tegesthe limitations to the present
version of the FROST system.

4.1 Performance

In section 1.3 we have chosen to consider improvement oéssgegarding load balancing and fault-
tolerance and to consider the significance of these imprenesnwith regard to performance in the
FROST system. In order to incorporate this into the FROSTesyst is necessary to consider how
improvements such as load balancing in shape of processtioigrand fault-tolerance in shape of
checkpointing influence the performance with regard to sgmments introduced to the system by
the users. It is necessary to balance the design of the systdhmat the maximum performance is
gained while still maintaining flexibility with regard to esprocesses by using process migration.
In addition to this the main idea of fault-tolerance has tacbasidered as well without ruining the
performance of the system. The reason for introducing @®oeigration into the FROST system is
that we want to achieve better performance when machindeaded.

In the following we will consider the different areas wheerformance can be jeopardized by intro-
ducing process migration into the FROST system.

4.1.1 Policies

When considering the performance overhead introducedlirgd-ROST system by the effect of the
policies introduced in section 3.4, it is vital that this dvead does not grow larger than is absolutely
necessary. In order to ensure this we have to considerigyadfithe policies and the requirement of
the policies to make a qualified choice when it is necessanjgoate a process and more importantly,
when it is not. These aspects will be considered next.

Stability

Stability is an important aspect of the policies in the FRG¥$tem. The policies must be stable
so that no unnecessary process migrations happen and ¢hagstem is not subjected to thrashing.
It is very important that both of these two unwanted progsrtioes not happen in the system as
they have a direct impact on the performance of the systemurvanted migration is if a process
is migrated to a node that is already heavily loaded. Theesystould not gain anything from
performing this migration and therefore it makes no sensrigate the process. The same goes for
thrashing. Thrashing happens when a process is migratédhibadorth between nodes in the system
without ever having an opportunity to perform any calcaas. In order to avoid this the policies
must ensure that when moving a process the state of the sgétenthe migration is always better
than it was before the migration. This will resultin a bettgerall load in the system and ensure that
performance is kept at a maximum with the properties givethbysystem.

The state of the system after a migration has been perforenegty important. If the migration just
moves load from one loaded node onto another which becomeslygdpaded after the migration,

25

Designing Process Migration

nothing is gained from the migration and it is more likely tthiane is lost in the migration. This
situation is an unwanted migration which leads to instgbais unnecessary migrations will occur.
The problem of maintaining stability is that in order to dote system have to predict the state after
a migration is performed, but before it actually happendsiust be done to prevent the migration
from happening in the first place if it turns out that the resilit is a worse system state than if the
migration is not performed.

4.1.2 Process Migration Overhead

When the FROST system is making a choice whether to migrateaegs or not there are a number
of parameters that should be taken into account. Among thes¢he amount of time that is lost
when a process is migrated.

It is vital to the performance of the system that the relati@ween the overhead for creating a
checkpoint and the time between the checkpoints is tunekdag@s little calculations as possible is
lost at system failure, without inducing too much overhdadhddition to this we have to ensure that
the amount of overhead that is induced by the checkpointiigpsiocess migration into the overall
time is also kept at a reasonable level.

In the following we will consider ways of optimizing the overad induced by checkpoints and pro-
cess migration.

Checkpointing

In order to limit the overhead introduced into the systemHtmytime that is lost when a checkpoint
is migrated we have to consider the optimal time betweenlgients. If this can be tuned properly
the system will loose as little calculations as possiblegiation to the time it takes to perform a
checkpoint.

A checkpoint is a point in time where the state of a processgd as described in section 3.3.
Therefore we loose the calculations that have been perfibsimee the last checkpoint as they are
not part of the checkpoint used for recovery. In order to bpesformance we have to minimize the
amount of calculations we have to perform twice. Therefoechave to weigh how often we wish
to create a checkpoint against the cost of making a checkpouhthe probability that a computer
crashes. The problem is that the FROST system cannot piealictig a checkpoint will be and
how long it will take to make it, as it depends heavily on theigsment created by the user. Itis
up to the user to know the overhead of checkpointing and thlkafility that this computer crashes.
It could be argued then that it could be an advantage to cobatekpoints with very small intervals
but the time between checkpoints must not be too small eithehe smaller this interval gets, the
more overhead is induced into the overall computation tirhemperforming checkpoints. Plank and
Elwasif [PE97] gives an equation for calculating an appmadion of the most optimal space between
checkpoints. This is shown in equation 4.1.

2C

Topt = T y (41)

whereC is the overhead induced by creating a checkpointaisdMTTF ! (Mean Time To Failure).

If for example we consider a machine that has an MTTF on 4 hanglghe checkpointing overhead,

C, is 2 seconds, then the approximated optimal time betweeckgioints is 4 minutes. The average
tasks is supposed to run for hours in FROST and therefore dtasns a reasonable loss if a computer
breaks down.

Migration

As FROST is a distributed system that operates in a non-dedie@nvironment we have to consider
that the load on machines can change over time. This meati$ tiva load increases on a computer
it cannot provide the same performance as before the charigad and it might be advantageous
to move a process to another computer that provides bettiarpence. In order to loose as little

4.2 Limitations 27

calculations as possible it might be advantageous to rédemthe time between checkpoints calcu-
lated above. This is due to the fact that we expect changégilbad on a node to occur more often
than break downs of the nodes. Instead of MTTF as a measuttef@robability we can now use
the probability that the load will change and cause a migretd happen a&. The probability that a
migration happens is based on the behavior of the usersskahe computers in the FROST system
for regular use. If a user chooses to use his computer heiawilgy trigger a migration. In order to
decide this probability it is necessary to study the usagtepe of users. As this is beyond the scope
of this project we choose instead to checkpoint more oftesrdter to loose as little calculations as
possible. We assume that every 30 minutes the user of a neagfillruse it intensively long enough
to justify a migration. This changes the optimal checkpaitnterval calculated using equation 4.1
to a checkpoint every 38 seconds.

Necessary Variables

In section 4.1.1 it was stated that the time it takes to perfarcheckpoint depends on the amount
of data which is saved in a checkpoint. In order to maximizégsmance with regard to the time it
takes to perform a checkpoint it is necessary to limit thadathe checkpoint to as little as possible.
As stated in section 3.3, a checkpoint has to obtain enodgmiation about a process to save it and
recover it at a later time, either on the present node, or atham node if the checkpointis used in a
process migration. The data that needs to be saved can @alndmber of things, such as variables,
and pointers to other objects. In order to optimize the cheaking process an approach resembling
the one used by Chanchio and Sun [CS96] in MpPVM should beideresl. As stated in section 2.3
MpPVM only includes what is calledecessaryariables when a migration of a process is performed.
This ensures that as little data as possible is stored ameftie as little time as possible is used in
the migration phase.

4.2 Limitations

In the following we will state the limitations we set from thaalysis to the design.

4.2.1 Scalability

The FROST system is supposed to supply a large amount of ggiogepower at a very low cost by
using a large number of computers. The present version dFR@ST system is only running on a
small number of computers in a LAN and we will in this projeohtinue to consider the including of
process migration in FROST when used on a local area netwris. also means that the solutions
provided in the design does not necessarily scale well tontarriet wide platform. We are aware
of the limitations this introduce into the system but we wlififer the discussion of scalability until a
later chapter.

4.2.2 Necessary Variables

As described above, the locating of necessary variablésnaite it possible to achieve better perfor-
mance as a minimum of variables are checkpointed and tnaedfduring migration. Locating nec-
essary variables does, however, demand a high level anccuerglex code analysis. Furthermore it
is not a necessary feature to support in order to achievesmnedle process migration feature, and
we therefore choose not to use this approach to variablaatidn in our checkpointing procedure.

4.2.3 Fault-tolerance

Fault-tolerance is an important feature in a vulnerablérenwnent. In this project, however, we have
chosen to concentrate on the process migration feature andilvtherefore not design the fault-
tolerance features any further, except for the checkpugrfeeature which is used to extract the state
of the processes.

CHAPTER 5

Policies

In section 3.4 of the analysis we considered four policies@mtrolling the process migration pro-
cedure. These were the information policy, the transfeicgpthe selection policy, and the location
policy. These policies are essential parts of a system whiirporates process migration and there-
fore we will in the following sections consider how they cawibcluded into the FROST system.

5.1 Information Policy

The information policy states how the system is to gatherim&tion on which to base later decisions.
In order to do this we have to consider what this informat®itoiconsist of, how it should be gathered
and how it is published so that all nodes in a network can ged@ss to this information. In the
following sections we will consider these issues in gredeail.

5.1.1 Usable Information

When considering a system as FROST, we see that its maimtioritwith regard to obtaining CPU-
cycles is that it must yield whenever a user wishes to usedh®pater. This means that the FROST
system cannot monopolize a node and shut out all other progyom that node in order to finish a
result as fast as possible. As the nodes are non-dedicaembtitating system on each node must
ensure that a user has priority over the FROST system. Ifieisipeished aside by FROST the entire
idea of the FROST system is jeopardized.

A successful FROST node is a node that performs its tasksshagaossible and still offers a good
response time to the local user of the node. The problem istbasecure the responsiveness of a
node. As stated in section 1.3 this is secured by giving a FR@Sk a low priority in the operating
system. This priority is lower than the priorities assigriedhe user processes in that system thus
ensuring that the FROST system is preempted whenever a smss needs the system.

A usable variable in the information policy is the load on @@o This can be measured in several
ways, an example is the number of processes in the ready gubhaemore processes in the ready
gueue the more loaded the system. Kunz states that usingalg queue as a measure for the load
of a computer is the most effective way of measuring load {ijn

We choose to use another way of measuring the load on a nodéheAwocesses in the FROST
system are assigned the lowest possible priority in ordétmanterfere with user processes, we
believe that the ready queue does not supply sufficientimétion for calculating load. The problem
is that as long as there is user processes, the FROST proitlegzeive little CPU time as it has the
lowest priority even though the ready queue is short. Thiamsehat the length of the ready queue
does not supply usable information for the FROST system aetfigth may only be one, namely
the FROST process, and instead of taking the consequenderigrating the FROST process, we
do nothing based on the short ready queue leading to stamvatithe FROST system. In order to
avoid this starvation of the FROST processes we choose tthasevailable resources as a measure
of performance. The available resources states how mudaegsor time is available to the FROST
process and thus whether it is advantageous to move thegsreomewhere else in order to allow the
FROST process to run. By using available resources we ayalable to find the node that finishes
the assignment in the shortest time. Resources is an indepemeasure where load is relative to
the node on which it is taken. If for example both a slow andsh feode is 80% loaded, the fast
node will have more available resources as each percent émumore on the fast node. In other
words percentages cannot be compared directly. The nunbeaitable resources on the other hand
can always be compared between machines no matter how égsaté relative to each other. The

29

30

Policies

approach that we have chosen to include in the FROST systeneiecute the following method at
regular intervals.

CALCULATE RESOURCE$)

1: settimer

2: while the timer runglo

3: CUTT@'ILtReSOUTC@S «— CurrentResources + 1
4: end while

5. return CUTT@'ILtReSOUTC@S

The intervals that the above method should be run with dependwo things. First of all the more
often it is run, the more often resource information is ofstai. The problem with obtaining data
often is that it comes with a price. The more often thie. CULATE RESOURCESMethod is executed,
the more processing power is used in calculating resourcdthe less processing power is available
for the calculation of tasks in FROST. The second thing thatihterval depends on is how often
migration can be considered. If the price of migration is hdgh the interval with which it is called
should not be very high.

The timer that is mentioned in the description of theLCULATE RESOURCESmethod decides for
how long the single measuring of available resources wéll. & he value measured will be passed
on to the following policies for further decision making. &kimer plays an important role as well
as the longer it runs the less sensitive the policies willdveard fluctuations in the resources. But
if it runs for too long, the same problem as with the intenf@ppen. Too much time is spent in the
CALCULATE RESOURCESMethod.

The CaLcULATE RESOURCESMmMethod is a rather simple method but it has no need to be mane co
plexin order to give a measure for the available resourcégigystem. The timer which is mentioned
in the above method stops the while-loop, ends thecl)LATE RESOURCESMethod and a measure
for the available resources in the system is returned todherc

The CaLcULATE RESOURCESmMethod must be run at the same priority level as the procedsies
performs the calculations. This will then give an averagasnee for the amount of resources avail-
able for each process and this number can be compared betmadtines.

As FROST uses non-dedicated machines, the amount of memueyy likely limited compared to
when a supercomputer is used. For this reason the amountrabryeshould also be considered in
the available resources. The amount of free memory and theuSBge can change rapidly, but if the
load becomes too high, calculating processes can yielthggimore CPU power to the user. Memory
on the other hand has to be swapped out thereby making matetdeanemory to other processes.
This however, takes some time as it requires disk accesd aadnot be controlled by FROST, as it
is only operating in user spate

We have chosen a simple solution to the problem of handlingpong resources. We have chosen
to limit the use of memory to a predefined value, either seth@yuser or as a percentage of the
total amount of memory. This value determines the pool of wgrthat may be used by calculating

processes. As designed in [GK02], the user must specify @#sdmum amount of memory used

by each work unit. We believe this is a reasonable demandeaarhount of memory used by an

algorithm most often can be determined on beforehand. Wheorla unit is sent to a machine, the

amount of memory it uses is subtracted from the pool of abllanemory. If there is not enough

available memory in the pool, the work unit cannot be seniéb inachine. The amount of available
memory must be declared when a machine requests to trangfercass to another. This can be
handled by sending the memory use of a process along wittetheest. The receiver can then make
the decision whether it has sufficient memory to accept tbegss.

5.1.2 Gathering Local Information

In the previous section we stated what kind of informatiorceeld include in the information policy
and how this information could be obtained. We also have tsicker how to enable the system to
obtain it so that we display a fair picture of the load in theteyn. Locally on each machine we have

1IFROST cannot control the yielding of processes either, litalculating processes can be set to run with a low priority

5.1 Information Policy 31

to perform resource calculations periodically in order tecdver if the available resources changes
for example because of the user. Event based calculatiensaaradequate as we cannot count on
any events happening frequently enough in the FROST systeis.obvious that if the resource
calculation runs too often, too much time will be spent updathe available resources information
across the network and less time is used for calculating¢ketasks. But if the resource calculation
are performed too infrequently a node may choose to movea@psdased on old information which
is no longer valid, resulting in overloading an overloaded&even further.

Another problem, firstintroduced in section 3.4.2, that \weéto consider is the problem of avoiding
reactions based on spikes in the values of the resourcdatideu In the LSF system [MDP00] this
problem was addressed in the transfer policy. In FROST, kewave see that it is advantageous
to solve it in the information policy as it is here the gathgrand processing of information is per-
formed. In order to smoothen out load spikes in the system¢cho®se a solution where resource
information is gathered over a period of time and an averafigof the collected information is cal-
culated. If the period is chosen correctly the influence afllspikes can be minimized. In addition to
this we choose to require that two gatherings of resoura@imétion has to show the same tendency
in available resources in the system before it is considiréake further action in order to minimize
the sensitivity of the system against short lived processes

In order to consider the interval with which the resourcesusth be gathered on a node we have to
take the non-FROST processes of the users into considerai®stated above we require that two

intervals of resource checks show the same tendency befai@cass is migrated. We do not wish

the system to be sensitive to processes that run for lesoti@mminute which means that we have to
perform the resource gathering with a one minute interval.

It should be noted that the approach of gathering infornmagioould be tested and adapted to per-
forming the resource calculation with the most optimal ivié

5.1.3 Distributing Information

The problem of introducing process migration into a systerthat one must be very careful not to
move a process from one node which is overloaded onto anotite which is even more loaded.
In Shivaratri et al. [SKS92] they present an approach whedes are chosen and polled for their
load based on their previously known state. In FROST, wekthiins a better approach to share load
information among the individual nodes in the system. Siggioad information is relatively easy as
long as the system is sufficiently small. It is easily donedayding the load information of one node
to all the other nodes in the system, either using unicasgdwast or multicast. The advantage of this
approach is that a node can easily be chosen as target faatinigor request as all load information
is known on beforehand. This also enables us to make a prelimprediction about whether moving
a process would be advantageous or not. Prediction will bsidered later. The problem with this
approach s that it cannot scale to a size where it is usalkdesyatem spanning the entire Internet due
to the large amount of information that each node shouldaionAnother problem is that broadcast
is usually not allowed to cross routers between a sub-netlathternet, multicast requires that all
nodes agree on the address, and unicast requires that ab had knowledge of all other nodes.

The FROST system is running on non-dedicated computerg asimon-dedicated network for com-
munication and therefore we cannot rely on a single servgrerform information gathering and
distribution so we have to consider another way of upholdireginformation policy. As stated in
section 4.2 FROST is presently only running on a small nunobeomputers. Therefore we have
chosen to broadcast the resource information of each canpaithat all other computers gain access
to this information easily. We are aware of the problems emted with this approach and it will be
necessary to consider an approach which avoid the use ofitastin order to allow the FROST
system to scale. This will be considered later.

Each node in the FROST system is a potential master and ed stegection 3.4.1 all nodes function
in a peer-to-peer fashion, sharing processing power on aaldgpsis. As every node functions
on an equal basis it is necessary for each of them to have hdatastructure for containing the
resources of all the nodes in the system, including the Inode. We will call this data structure a
ResourceVector and it must be present on all the nodes in the system. Therréaisgaving ones own

Policies

resource information as well as the resource informatioallasther nodes, is that the information is
used in the transfer policy when thresholds are calculadsddescribed previously in sections 5.1.1
and 5.1.2 the resources on each machine is calculated riggoyathe master and shared with the
other nodes in the system.

Because resource information of a node has to be shared Mithar nodes in the FROST system,

we have to ensure that only essential information is shaoeith@ nodes are not overwhelmed by
a huge amount of resource information. It is for example restessary to share newly calculated
resource informations if these are equivalent to the oldrimation which has already been shared.
Therefore we choose to use an event based distribution sghemsed on the difference between
old and newly calculated resources for the information Wwhias to be shared with other nodes.
Such a scheme prevents sharing of resource informatioiRROST system unless it is sufficiently

different from previously shared information.

When sharing resource information we will use the approachvs in algorithm 1.

Algorithm 1 Information policy.
1: CurrentResources « CALCULATE RESOURCES

if PreviousResources is very different fromCurrentResources then
Resource Vector[Localhost] < CurrentResources
PreviousResources < CurrentResources
BroadcastCurrentResources

else

ResourceVector <+ CurrentResources
end if

© N o aRwwDN

Whenever a master receives new resource information frooda it updates it®esource Vector to
reflect this information.

This approach is usable when the system is running and evasyemhas information about all the
other masters in the system. But if a new node is introduceékdmetwork special measures has to
be taken to ensure that a new node can participate on the same as the others. This approach
is shown in figure 5.1. When a new node is started in the FROSEB), it immediately announces
its presence to the other nodes by issuing a broadcast neessatnining information about itself,
including its current resource information. After receigithis message each of the other nodes waits
for a random amount of time and unicasts a message to the miy containing similar information
about itself. The new node is then updated and can now betgolating tasks. The reason that
the nodes have to wait a random amount of time before ansgvéranew node is that if they did
not wait it could result in the new node being overwhelmedh®/resource messages as they would
arrive more or less simultaneously.

5.2 Transfer Policy

The transfer policy constitutes the decision making path@system. It is the transfer policy which
has to make the decision about whether the system is in aveli@ie it is necessary to take action in
order to get out of that state.

As stated in section 3.4.2 we use a symmetric approach fddidgcwhether to receive or send
a process. A symmetric approach is a combination of two partender and a receiver initiated
approach. The sender initiated approach is used if a compatefew available resources. Then
it may decide to transfer one of its processes to another atenjin order to balance the overall
resources in the system. As the main purpose of the transfieyis to get the most calculations out
of the resources present in the system, we must ensure thaid®is able to exploit other nodes.
This is done with the peer-to-peer structure of FROST in naind is ensured by the location policy.
The receiver initiated approach works opposite of the seimiteated approach. If a computer has a
large number of available resources it can request a prde@asanother computer in order to lessen
the load on that computer.

The decision about whether to use the sender or the recaitiatéd part of the symmetric approach

5.2 Transfer Policy 33

1 2 .
— Unicast
1:10 1:10
2:20 2:200 ----- > Broadcast
3 ;EXX ResourceVector
15 -1-_15
1:10 - T 1:10Q
2:20Q 2:20
3:15 \10‘ 3:1
1:10|
3:15 ‘y
1:10Q
2:20
3:15

Figure 5.1: The procedure of sharing resource informatigh & new node. Nodes 1
and 2 are already online nodes, node 3 is the new node. When3ad
started it only knows about itself. It then issues a broadwith its own
resource information. Nodes 1 and 2 receives the broadodstipdates
their information. They then wait a random time before thejcast their
own resource information to node 3.

is made by the individual nodes in the system, based on tlrag&available resources in the entire
system. In the following section we will consider how to mélis decision.

5.2.1 System Thresholds

When it comes to comparing the available resources on a fax# with the available resources in
the entire system the solution that we choose in the FROSE&myis to use three states delimited by
two thresholds, an upper and a lower threshold. Shivaradti eescribe a similar approach but where
they calculate thresholds based on the local load only [0 $& decide to calculate them relative to
the average available resources in the entire system begaubelieve that this gives a more useful
image of the resources in the system. These thresholdsvetegiher the system is loaded or not
and they determine the eagerness of the system with regantbtating processes. If the resource-
number is above the upper threshold the system is lightlyobfoaded and the transfer policy may
choose to request a process from another node which has ardesoairce-number than itself. If the
resource-number is below the lower threshold the systeneawity loaded and the transfer policy
will try to migrate a process away in order to make the systess loaded. If the resource-number is
between the two thresholds no action will be taken. The clibgethresholds are placed together the
more eager the system is to move processes.

The reason for using the thresholds is, in addition to udimegrt for deciding whether the system is
over- or underloaded, that the system is not as sensitive regard to fluctuations as there is some
freedom of movement for the resource-number to move aroh@dverage value before a process
is migrated if they are placed with a reasonable intervafoifexample thresholds were not used,
a node would choose to migrate a process as soon as its dea#aources fell below the average
system value and that would likely result in thrashing.

We choose to fix the thresholds to a certain value around thage available resources in the entire
system. This is done in order to give the nodes a certain fpdvefore they choose to migrate
a process. In addition to this we choose to switch off eitler ieceiver or the sender initiated
approaches at certain points, due to the fact that theirradgas lie in different ends of the resource
spectrum, as stated in section 3.4.2. An example of this eagebn in figure 5.2

In figure 5.2 (a) we see an example on a system which has a higiheruof average available

34

Policies

Average

********************** Lower Threshold
,,,,,,,,,,,,,,,,,,,,,, Upper Thresholc

Average

(a) (b)

Figure 5.2: An illustration of different approaches.

resources. As can be seen, only the sender initiated apgpisatsed, represented by the lower
threshold, as it is most effective when the number of undeidal nodes is higher than the number of
overloaded nodes in the system. In figure 5.2 (b) it is therottaey around. Here a small number of
underloaded nodes are available in the system and thusiaeeicdtiated approach is more effective,
represented by the upper threshold. The transition bet@eemder and a receiver initiated approach
should happen simultaneously on all nodes in the systentier ¢o ensure that no conflicting requests
are issued. This would require that all nodes in the systethehshared state which could be set
according to the current average available resources isyhEm. Creating such a shared state is
complicated and would result in a significant communicatiwarhead in order to synchronize all
nodes.

Another possibility is that each node measures two extiemia number for the available resources
when the node is idle and a number for the available resouvbes a node is heavily loaded. These
values shall only be measured once, namely during the iastad of the FROST program. Every
time a node is going online the values are broadcast as p#redirst broadcast message which is
described in section 5.1.3. The extremity values can theumsbd to calculate an average idle value
and an average heavy-loaded value for the entire systemglitsis information each node can make
a choice whether to use a receiver or a sender initiated appreif the system average available
resources is closest to the average idle value a sendaté@utapproach is used and the receiver
initiated is switched off, and vice versa. This approachiisirated in figure 5.3.

Average Idle Resources Average Idle Resources

Average

Lower Threshold
Upper Threshold

Average

Average Heavy-loaded
Resources

Average Heavy-loaded
Resources

(@) (b)

Figure 5.3: Anillustration of how the system makes the cadietween a receiver and
a sender initiated approach.

As can be seen in figure 5.3 (a) the distance from the averagkalle resources to the average idle
value is shorter than the distance from the average avail&@siources to the average heavy-loaded
resources. This results in the system choosing a sendiaténitapproach as there are fewer nodes
which has few available resources and thus a sender imitégtproach is more effective. The opposite
can be seen in figure 5.3 (b) where the average availablenesoin the system is seen to be closer
to the heavy-loaded resources extremity, due to a lower eurabnodes with a lot of available
resources. This results in a receiver initiated approadhiadetter that the few nodes with a lot of

5.3 Selection Policy 35

available resources ask a node with a few number of avaitebtmurces for a process than if all nodes
with a few number of available resources just send theirgsses to the nodes with the high number
of available resources. We still use the thresholds to deter when a migration shall be initiated.

If a new computer joins the system it receives values forlalla resources, and idle and heavy-load
extremities. This means that it can immediately calculaéeaverage available resources in relation
to the extremities, and determine whether a sender or avexdeitiated approach is currently used
in the system. If a sender initiated approach is used, itdailhothing until it is contacted by a node
which has few available resources, and thus is placed bélevotver threshold. The node which has
few available resources states a wish to migrate a procehbe toew node, which the new node can
accept or deny depending on various parameters which willismissed later. If a receiver initiated
approach is used, the new node will find a node which has tls¢ d@ailable resources and request a
process from that node. Again there are certain paramédtatsriust be fulfilled before migration is
initiated.

Determination of the thresholds is a subject that shouldbk&dd into in order to optimize process
migration in the FROST system.

Determining System State

When determining the system state we have to consider théhfsiove cannot calculate the average
available resources in the system using resource valuainebtat the same time for all the nodes
in the system. This is primarily due to the lack of a shareakloetween the nodes for timing the
checking of resources so that every node checks its avaitabburces at the same time. This means
that the average available resources calculated in orditesmine the system state is not the average
available resources in the system at a fixed time, but an appadion using the available values for
the nodes in the system. These values for the availablen@s®may be far from the actual values at
the time of threshold calculation, but it is the best appmation which can be reached in a realistic
manner. It would be possible to obtain a more exact numbeithgreusing a snapshot algorithm or
synchronizing the clocks in the system, but this would iaseethe cost of determining the system
state in a way which is undesirable.

In algorithm 2 we give the algorithm for calculating the syststate in the FROST system and how

we act upon this information. Note that action is only takewo resource values obtained after each

other shows the same tendency. So if (reviousResources states that the system state is above the
upper threshold and th@urrentResources states the opposite, then no action is taken.

5.3 Selection Policy

The selection policy is the part of the system that makes kuéce of which process on a node
that should be selected for migration. In section 3.4.3 weslagued that the selection policy is
performed locally because the information which is reqiifi@ making the decision is only known
locally. We also stated that the process which should beerhé® migration should be the one
which was most advantageous with regard to finishing fastearder to make the choice we gave
some parameters. These parameters were the following.

* The time a process has been running.
e The amount of data that must be transferred during mignatio

« The time since the last checkpoint was performed.

In order to make the best choice of which process to move albtifove parameters can be used in
the selection process by weighting them against each ofhé.can be done by introducing a score
system where each process receives a number of points forafdbe parameters. The score will
depend on how a process is situated in relation to the otloeegses and in relation to the demands
set by the parameters. This will then allow a node to choosentbst optimal process for migration.

36

Policies

Algorithm 2 Transfer policy.

1

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

if broadcast withresourcenumber is receivedhen
Resource Vector[IP] « resourcenumber
Calculate new average available resources in the system

2
3
4; end if
5:
6
7
8
9

if average available resources has changed entivegh

Calculate new distance from average available resouromgitemities.

if distance to idle extremity is smallesten
SystemMode < SENDER
else
SystemMode < RECEIVER
end if
end if

if SystemMode = RECEIVER then
if ResourceVector[Localhost] > UpperThreshold then
if PreviousResources > UpperThreshold then
The node is lightly loaded and should request a process
goto locationpolicy
end if
end if
else if SystemMode = SENDER then
if ResourceVector[Localhost] < Lower Threshold then
if PreviousResource < LowerThreshold then
The node is loaded and should get rid of a process
goto selectionpolicy
end if
end if
else
Do nothing
end if
PreviousResource < ResourceVector|[Localhost)

5.3 Selection Policy 37

The procedure of selecting a process for migration consist&o parts - calculating scores for all
the processes on the node based on the criteria mentioned,aml making a choice, based on this
score, about which process on a node to migrate. This is appiis shown in algorithm 3.

Algorithm 3 Selection policy.
1: for all processes on the node
2: Calculate score based on the criteria given
3: end for
4: Choose the process with the best score for migration

There is a problem with using the score system for decidingchvprocess to migrate though. In

order to ensure that each of the parameters are upheld the Isas to be kept up-to-date. As some
of the parameters may change in a way which cannot be forgteescore assignment is a dynamic
feature of the system as scores must be reassigned everg pnoeess is to be chosen for migration.

5.3.1 Score Calculation & Process Selection

The primary goal of the score calculation is to allow the s policy to choose the process which
is the most advantageous for migration. As we stated ab@&vsdbre must be recalculated whenever
a process is to be selected in the FROST system due to theerddttlre parameters on which the
score is based. In order to select the most optimal procegoé things can be taken into account.

One approach is to weight the individual parameters in tlogesap against the others so that some
parameters have more significance than other parametersexBmple it is obvious that the time
since the last checkpoint plays a major role in score cdlicunas the longer it has been since the last
checkpoint the more data is lost if it is used to restart tleeess. Therefore it could be an advantage
to let this parameter have greater influence on the final regen the score is calculated. Another
important aspect that could be included in a weighting pdoce is the size of a checkpoint. It is
necessary to take the time it takes to move a checkpoint froencomputer to another into account
as well when considering how to weight parameters. If fomeple a checkpointis 30MB in size it
could be a problem to move such a checkpoint no matter how ttitecheckpointis performed. The
time it takes to move 30MB depends heavily on the speed ofdheaction from the sending node to
the receiving node. If it only takes 30 seconds to move theB@kid the process has a 4 minute old
checkpoint, there will be lost less than 5 minutes if the pesds migrated. But if it takes 10 minutes
to move the 30MB, approximately 15 minutes of calculationetiis lost, and in addition to that we
have loaded the network for 10 minutes. Therefore it will bgoad idea to weight the scores so
that we find the process which looses the least time when itgsated. This example also indicates
that the network bandwidth should be taken into considendibth when the destination machine is
selected and when the process to migrate is selected. Asshioove, the network bandwidth can
increase the migration time considerably.

In section 3.4.3 we chose to include run-time for a procé@s® since latest checkpoint, and amount
of data that is to be transferred in our selection procedArpossible procedure for calculating the
score in the FROST system, based on the three the paramigemsapove, is as follows.

Run-time for processes: In the FROST system we assume that processes in the samd asera
signment generally will run for the same amount of time. Idesrto have a measure for the
expected remaining running time, an average can be maaudor each of the assignments
that a node is involved in. Then a score can be assigned byarimyghe elapsed run-time
and the expected run-time for a work unit. The maximum scegaven to the process which
seems to have the best potential of continuing for the lange®unt of time. This ensures
that a process which is just about to finish will have a lowesgiaility of being migrated. The
second highest score is awarded to the process which witlreesecond longest and so on
down to the process with the shortest expected running tefie The reason why it is the
processes which will continue for the longest time that gfeéshighest score is that it has the
best probability for catching up with the time lost by mignat

Amount of data transferred: As noted above, the amount of data that needs to be trandfesre

38

Policies

have a very large impact on the time lost by the migration. [East amount of points should
be assigned to the process that has the largest amount abdaaasfer. The amount of data
should be considered in the assigning of points, e.g. bygaisgj one point per 100kb of data.
This will give the process with the most amount of data mosttgowhich is not wanted. To

invert the points, each assignment can be subtracted frem#ximum amount of points given,
thereby assigning zero points to the process with most @& points should be weighted with
regard to the bandwidth.

Time since last checkpoint; Each time a process makes a checkpoint it also records the tim
When scores are assigned, it is possible to calculate thettiat has elapsed since the last
checkpoint for all the processes. The above procedure Y@rtimg the point assignment can
also be used here. The process with the youngest checkpoinldsget the highest score as
the least amount of time will be lost when recovering from lit.one point is assigned for
each minute since the last checkpoint, the oldest checkigoassigned the highest score. By
inverting the scores, the desired assignment is achieved.

The scores are summed up to a total and the process with thedtigcore is to be migrated. An
example is given in table 5.1. The amount of data to transfdudes the size of the binary file.

Process A Process B Process C Process D
Expected run-time 30 min =2pts| 2 min=1pts | 77 min =3 pts| 120 min = 4pts
Data to transfer 2Mb=0pts | 1,2Mb =8pts| 1,7 Mb=3pts| 1,8 Mb =2pts
Time since last checkpoint 2 min = 13pts| 15 min =0pts| 10 min =5pts| 5 min = 10pts
| Total | 15pts | Opts | 11pts | 16pts |

Table 5.1: An example of the score assignment process.

By comparing the result from table 5.1 with the price of thegration shown in table 5.2, we see
that some weighting of the points assigned would be an adgantWith a 10Mbit connection it is
clear that process A would be more advantegeous to choas@tbeess D, as only 2 minutes is lost.
If, however, a 56kbit connection is used, it may be an adgnta transfer process D, as it has an
expected running time of 120 minutes left to catch up withGmeinutes lost. Process A has only 30
minutes to catch up with the 7 minutes lost by choosing thatgss.

Process A| Process B| Process C| Process D
10 Mbit 2 min 15 min 10 min 5 min
128 kbit 4 min 16 min 12 min 7 min
56 kbit 7 min 18 min 14 min 9 min

Table 5.2: The amount of time lost by migrating a process.y@m time since last
checkpoint and the transferral of data is considered. The for transfer-
ring data is calculated using theoretical maximum valueshe connec-
tions.

From the examples we can conclude that the higher bandwiditable, the more the time since last
checkpoint should be weighted compared to the amount oftddtansfer. Furthermore it would be
an advantage to compare the time lost with the expectedimmé.g. taking the expected available
resources on the destination machine into account. As caedre from the examples, the use of a
scoring system is rather complex, as the weighting of scgitesld be performed dynamically taking
the bandwidth and available resource etc. into account.

According to Eager et al. [ELZ86] it is often as good a chowaise a simple approach when per-
forming load balancing as it is to use a highly complex apphoaProcess migration is essentially
dynamic load balancing and therefore we have chosen to livailscoring system to use a simple
approach. At present FROST is run on a LAN and therefore haghtedmount of bandwidth at its

5.4 Location Policy 39

disposal and therefore we find it reasonable to omit thisrpatar. We choose to use a single value
for the selection of a process to migrate: The time sincedhstkpoint. Hence, the process with
least time since the last checkpoint was performed is chizganigration.

5.4 Location Policy

The location policy is the mechanism that chooses a deftinédr a process that is to be migrated.
As stated in section 3.4.4 we have chosen a symmetric pdlidg. means that depending on whether
the receiver or the sender part of it is used, the locatioitpalas to find the least or the most loaded
node in the system.

If the system is in the receiver mode the location policy lodsid the most loaded node in the system.
This is done by looking through information about all nodethie system and choosing the one which
has the fewest available resources. That node is then dffeespossibility of offloading a process
onto the initiating node. In the receiver initiated appto#tte upper threshold mentioned in section
5.2 will only be used by the requesting node to check whethsriin a position to allow a request,
as the requested node does not need to be overloaded but ordyoaded than the requesting node.
The algorithm used in the receiver initiated approach iswwhio algorithm 4. The node variables are
data structures containing information about a node, sa¢halP and the available resources.

Algorithm 4 Receiver initiated location policy.
1. ChosenNode « 0
. for all NodesN in Resource Vector do
if N.resources < ChosenNode.resources then
ChosenNode < N
end if
end for
. Offer to receive a process from.

No ahhwN

In a sender initiated approach a node chooses to offload agsaicpossible due to lack of available
resources. This choice has been made in the transfer palicya process has subsequently been
chosen for migration in the selection policy. It is now up ke thechanisms in the location policy
to choose a new node to which the process is to be migrateds iStdone by looking through
all the nodes and choosing the node with the most availableurees as a target for the migrating
process. This choice can only be made by nodes which are letolower threshold, which denotes
a heavily loaded system, in order to secure that the loadl&mbad across the entire system. If a
non-overloaded node is not found the chosen process isteabtnd the migration is not performed.
The algorithm used in the sender initiated approach is shovatgorithm 5

Algorithm 5 Sender initiated location policy.
1: ChosenNode <+ (0
2: for all NodesN in Resource Vector do
3 if (N.resources > lower_threshold) then
if (N.resources > ChosenNode.resources) then

ChosenNode < N

end if

end if

. end for

. if 3ChosenNode then

10: Send a process to it.

11: else

12: Skip migration for now.

13: end if

© N2

There is a problem with these approaches as we run the riskgoéting a process to a system which
will become heavily loaded when receiving a process. Thisefdhe receiving node to migrate a

Policies

process, and so on leading to thrashing. A solution to thidlem is to only migrate processes to
nodes which are above the upper threshold. Shivaratri §8KIS92] propose a prediction method
where a migrating node polls another node at random for#d.l@ hen the migrating node determines
whether sending another process to the chosen node wilt irsunaking the load exceed a certain
threshold. If it does, another node is chosen at random ateldelf not, the migrating node sends a
task to the chosen node. In the example described by Shiverai. they do not have local access
to the load information of other nodes and thus they have idqat. In FROST, on the other hand,
we have information about the current available resouréedl modes in the system. This can be
used to introduce a prediction approach in FROST when a psanégration is about to occur. If the
prediction is positive the process is migrated, if it is mat,migration is performed to that node. This
prediction approach will be considered next.

5.4.1 Prediction

In order to balance the resources in the system in the moshalpivay there must be some overall
rules for deciding when it is a good idea to migrate a proceskvehen it is not. These rules are to
ensure that the resource situation is always better in thiesyafter a migration has been performed
than it was before the migration. This can be done by demaitia the receiver of the migration
has a sufficient amount of available resources and that thigable resources of the two machines
must be closer to the average available resources in thee esystem after a migration from one of
the machines to the other has been performed.

Calculating Needed Resources

The primary goal of migrating a process is to choose a nodetwdifers to finish a task faster than the
one it is presently running on, or in other words, the nodecivliias a sufficient amount of available
resources. Using the time that is lost when migrating a ®ee can consider the minimum amount
of available resources that should be available for a psowaéen it has migrated to a new node for
the migration to be advantageous. This estimation is onfippmed in the sender initiated approach.
It can be used by the sender initiated approach to choosetewihich is most likely to finish a task
chosen by the selection policy fastest. Calculating thistadone by looking at the relation between
the remaining time for a work unit and the available resosime the current node. In addition we
have to take the time it takes to migrate a process into a¢cdtis is seen in equation 5.1.

Prem Prem + Tm
>

5.1
- P 5.1)

whereP,.,, is the remaining time for a work unif, is the current available resources on the old
node,R; is the resources that must be available on the new nodél)gnisithe time that is lost when
migrating a process.

The time that is lost when migrating a process can be cakdlas$ in equation 5.2.

Tm:&‘i'Tr‘i'_'Pc: (5.2)

whereT), is the time that is lost when migrating a proceSsjs the size of the checkpoint, is the
speed of the networl;, is the time it takes to recover a process from a checkpointlanp. is the
average computation time that is lost when moving a checkpoi

Equation 5.1 state the amount of resources that a node mussirharder to receive a process. This

calculation can be used to limit the number of nodes that ansidered when the next phase in the
prediction approach is initiated, namely finding a node tlzat ensure that the available resources of
the two machines are closer to the average available reseafter the migration has been performed.

5.4 Location Policy 41

Predicting Resources

In figure 5.4 an example on securing that the state of the mysteould always be better after a
migration is shown for two nodes. First in figure 5.4 (a) wekapon the nodes before any migration
is performed. It can be seen that node A is below the lowerstiokel and thus it is overloaded.
Therefore it could be an advantage to move a process from Addenode B. But if the result of
the move is that node B falls below the lower threshold as shioviigure 5.4 (b) then the migration
is not preferable as the system has not gained anything.f B result of the migration is as seen
in figure 5.4 (c) then the overall distance in available reses from the system average available
resources has become smaller and thus the system has gaimetthé migration.

”””””””””””””””””””””” Upper Threshold

‘ System Average

********************************* Lower Thresholc

@) ®

Figure 5.4: An illustration of the resource rule.

This approach is used in order to avoid thrashing. If theestditer a migration has been performed
can be predicted before the migration is actually carriettioe location policy can base its choice
of node on that prediction. If the prediction shows that ttatesof the system is not better after a
process has been migrated to a certain node, another node camsidered as an alternative target
or migration can be canceled if no node can be found that gilester overall result after migration.

Generally the following calculations must hold in order tignate a process from one node to another.

First we calculate the average available resources afemigration has been performed for each of
the nodes.

R4 - NoProcy
Ry=—i——— 5.3
A7 "NoProcy —1° (5.3)

. Rp - NoProcg
Ry = NoProcg +1° (5.4)

where R’ and R}, are the predicted resources available on the nodes afteatioig is performed
and R4 and Rp are the available resources before migration is performdad?roc4 and NoProcg
are the number of FROST processes on nodes A and B respgctivel

Then we see whether the system gains something by allowiggation. First we calculate the
absolute distancd), of the resources on a node from the system average. Thisésfdoboth nodes
using both known resource values before migrati®pand predicted resource values after migration,
R*. Anillustration of these distances are shown in figure 5@Wshg the distancel) 4, for node A.

D= |R - SA'vg|v (55)

wheresS 4., i the system average.

Then if the combined distances after the migration is sm#iien the distances before the migration
the system will proceed with the migration.

D% + D% < D4+ Dg, (5.6)

whereD* and D7, are the distances after afitly andDp are the distances before migration.

42 Policies

If this holds andR?* is above the lower threshold the node is chosen as a targetifpation. Oth-
erwise a new node will be chosen and the process will be dtakter or migration will be canceled
and the process restarted on its current node.

After a node has been chosen as a target for the migration @@ toeensure that the load on the
chosen node has not changed for the worse. This can be dortihyg the sending node request the
load of the node to which it will send a process just beforealtt sending the process. Then if the
load has changed to the worse the process could be withhdldrasther node could be chosen as
target for migration.

5.4.2 Locating a Node

In order to be able to use the prediction described abovettaibn policy first has to choose a node
among all the nodes in the system. Depending on whetherdteeatthe node on which the location
policy is running is receiver or sender initiated two apmioes must be considered. These are shown
in figure 5.5

Requesting Node Requested Node Requesting Node Requested Node¢
la 1b
* \2b>
44/3 N * *
5a 5b
47/
(@ (b)

Figure 5.5: Locating a target node. (a) shows the receivgated approach and (b)
shows the sender initiated approach.

In figure 5.5 (a) the receiver initiated approach is shownlo®es the protocol for the receiver
initiated approach.

It should be noted that due to the structure of the FROST systey a single task of each assignment
on a node is calculated at the same time. Therefore we do lowt alprocess to be migrated to a
node that already executes a task from the same assignmiéntaagd have to wait until the already
present task had finished before it could continue caladati

la First a node discovers that the current system state isvexcigiitiated and that it is
underloaded and it therefore finds a node that is more loddrditself.

2a It then issues a request to that node for a process and wittetheest it states the
maximum amount of memory that process may use.

3a The requested node first checks whether it is already peifigrenmigration and if so
it rejects the request. Otherwise it locates a process witoiplies with the demands.

4a Therequested node replies with the current amount of élail@sources, the number
of currently running processes and the id of the chosen geoce

5a If the requesting node already has a process from the sangnaEnt we are not
interested in receiving it, it is rejected and another isuesjed. If the requesting
node does not already have the process, the predictionildeddn section 5.4.1 is
performed using the new resource information from the retpeenode.

6a If the prediction shows that it would be advantageous to nitbeeprocess, an OK is
sent to the requested node.

7a When an OK is received the process is migrated.

5.4 Location Policy 43

In figure 5.5 (b) the sender initiated approach is shown andtat the protocol for this approach
below.

1b The node discovers that the system state is sender initatedhat it is overloaded
and it therefore locates a node which is not overloaded.eh finds the best process
for migration.

2b It then issues a request for migration to the other node sgnalong the id of the
chosen process, and the memory usage of the process.

3b The requested node checks whether it is already performimggeation and if so it
rejects the request. Otherwise it checks the id of the psard the memory usage.
If the id already exists on the requested node, the requesjeisted. If the memory
usage of the process is unacceptable the request is rej@tteetwise it is accepted.

4b The requested node returns a message containing its dyraeatlable resources and
the number of running processes if the request is accefdtesdaeejection is returned.

5b The requesting node performs the prediction procedureritbestin section 5.4.1 us-
ing the new resource information and process number fromethgested node.

6b If the prediction shows that it would be advantageous to ntloggrocess, the process
is migrated.

As can be seen in the above protocols we send the newesttdgasource number and the number
of currently running processes every time we go through téogols. These information could also
be sent every time the available resources are updated tsfplae information policy. We choose
not to send the number of processes regularly as there isneelg for it in the above protocols. The
updated resource information is sent in order to get thetatérmation for the prediction procedure.

From the protocols, points 5a and 3b respectively, it candem shat the FROST system should not
allow a process to migrate to a node which is already calicig@t process from the same assignment.
This is due to the way FROST handles assignments. In FRO§Taaihgle work unit per assignment
is calculated on each node at any given time. If a checkpoast to arrive on a node which was
already running a process from the same assignment the pbietkvould have to wait until the
other process had finished before it could proceed. Thexéfds more advantageous for a process
to stay at a heavily loaded node and perform calculatiorsn ¢vough it may not be much, than it
would be to migrate and perform no calculations.

CHAPTER 6

Checkpointing

In section 3.5 some technical demands were specified whicht bauconsidered during the design
phase. In this section we will design the facilities needwdektracting the state of the process and
saving it to disk and to be able to recover the process agdiis i@l done before the design of the
preprocessor in order to point out the elements that need tmhdled by it.

In order to extract the process state there are a numberfefeift issues that must be considered.
We have identified the following:

Processor state: The state of the processor with regard to the particulargescThis state consists
of the runtime stack, program counter and the registerspaunt be captured in order to restart
the process on another machine.

Process variables: In orderto transfer a process to another machine, it is isacgshat all variables
used in the process are transferred.

Data marshaling: When transferring variables in a heterogeneous enviromihés necessary to
make sure that they are interpreted the same way on all acthites.

A general design issue to the checkpointing procedure tsithan performing a new checkpoint, the
last checkpoint made is not removed before all data is safedgkpointed. This is necessary in order
to be sure not to loose any data if the machine breaks downglthie checkpoint procedure.

6.1 Processor State

The processor state information consists of the conterisoafessor registers [Sta98]. This informa-
tion determines where in the code the process is executitidpaw further execution will continue.

It needs to be transferred with the migrating process, ireotd restart the execution on the desti-
nation machine. The information includes user registeds@mtrol and status registers such as the
program counter and a stack pointer. Furthermore it is resgggo transfer the runtime stack itself
which holds return addresses and parameter values for eh@tkiocations etc. The processor state
information is, as the name indicates, very processor digr@rand therefore it is very important to
consider heterogeneity when transferring this infornratibhis is done in the following sections.

The process control information [Sta98] is less importanéwmigrating processes in FROST. Much
of the information is dependent on the actual execution emtachine where the process is executing,
and will be automatically generated when the process ianest. Whether the process is in virtual
memory or not depends on the operating system on which itéswing. There are, however,
elements that are both dependent on the operating systeth@egecuting process, such as 1/0 and
file access, but access to this kind of resources has beeibjpeohin FROST for security reasons
[GKO02], and will therefore not be considered any further.

6.1.1 Runtime Stack

As we wish to perform process migration in a heterogeneous@rmment, there are some demands
to the transferral of the runtime stack. In a heterogenenuis@ment it is necessary to translate the
stack between the different architectures, e.g. by usinmp@nmediate format known to all archi-
tectures. As the runtime stack can be, and possibly is, naist very differently on the different
architectures, we wish to make a completely independentofaytracting the stack.

1We cannot control this as we are designing for user spaceatiogr

45

Checkpointing

We have adopted Chanchio and Sun’s [CS96] way of keeping whfunction calls in MpPVM.
For this purpose they usecntrol stackto which a label is pushed when entering a function and
popped when leaving the function. When migrating a procéescontrol stack is transferred and
used to build the runtime stack by performing the actual fimmccalls. The runtime stack is rebuilt
by jumping down to the function call, performing the functicall and jumping to the next function
call or to where the execution of the process must continue.

The example code in figure 6.1 shows an example on the furadiipthat is needed in order to keep
track of the runtime stack using a control stack. Furtheeribshows the code necessary to recover
from a checkpoint.

int main() { int SecondMet hod(){
i f (Executi onMbde == RECOVER) { i f (Executi onMbde == RECOVER){
Recover Cont r ol St ack() swi t ch(Next Label ()){
swi t ch(Next Label ()){ case 2:
case 1: goto _SecondLabel ;
goto _FirstLabel; br eak;
br eak; }
} }

}

Fi rst Met hod() ;

/1 Variable assignnments etc.

Push(2);
Fi rst Label : Checkpoi nt Cont rol St ack()
~ Push(1); Checkpoi nt Vari abl es();
int result = SecondMet hod(); Pop() ;
Pop() ; _SecondLabel :

i f (Executi onMbde == RECOVER) {
. Recover Fr omCheckpoi nt () ;
} Executi onMbde = NORMAL;

voi d FirstMethod(){ }
/1 No checkpoint made in :
/1 this nethod }

}

Figure 6.1: A simple example on how the control stack is usedly methods con-
taining a checkpoint are pushed to the stack. Since Firstbtetioes not
lead to a checkpoint it does not need to be considered whéorpeng or
recovering from the checkpoint.

In order to handle this functionality, two data structures meeded: the control stack that holds the
labels of the method-calls and a flag that specifies the eecutode of the process. The state of the
execution mode is used to determine whether the processisnginormally or recovering from a
checkpoint. During normal execution, most of the contratktcode is not executed. Only the Push
and Pop methods and the CheckpointVariables method aszléalbrder to perform the checkpoint.
In the RECOVER-state a simple procedure is followed in otdeebuild the runtime stack from the
control stack. The labels recovered from a checkpoint fiéeran through using the call to NextLabel.
These labels are used to enter the correct method, wherééo&moint was performed as described
above.

The Push and Pop methods are placed on each side of the nestl®th all methods that leads to
a checkpoint. We define a method that leads to a checkpoirat,rasthod that has not returned
before a checkpoint is performed. Hence, FirstMethod inrég8.1 does not lead to a check-
point but SecondMethod does. If for instance SecondMethaslimvoked from inside FirstMethod,
FirstMethod would also lead to a checkpoint.

When a checkpointis performed in SecondMethod, the staltkeld the values 1 and 2. The control
stack is also included in the checkpoint and the values a¥é daring recovery. Figure 6.2 shows
how the recovery code builds the runtime stack using thevereal labels.

After the execution mode is set to normal, the process isvereal and the execution continues. In
order for the checkpoint to make sense in the example, the-mathod must somehow be depen-
dent on the executed statements in SecondMethod, and theuédsbe more statements after the

6.1 Processor State

47

int main() {
i f (Executi onMode == RECOVER) {
Recover Cont r ol St ack()
swi t ch(Next Label ()){
case 1:
goto _FirstLabel;
br eak;
}
}

First Met hod();

int SecondMet hod(){
i f (Executi onMbde == RECOVER) {
swi t ch(Next Label ()){
case 2:
goto _SecondLabel ;
br eak;
}

}

/'l Variable assignnents etc.

Push(2);
Ei rst Label : Checkpoi nt Cont r ol St ack()
" Push(1); Checkpoi nt Vari abl es();
int result = SecondMethod(); =—— Pop() ;
Pop() ; _SecondLabel :
: i f (Executi onMbde == RECOVER) {
. Recover Fr onCheckpoi nt () ;
} Executi onMode = NORVAL;
voi d FirstMethod(){ }
/'l No checkpoint made in :
/1 this nethod }
}

Figure 6.2: The same example as in figure 6.1, showing thadhséexecution during
recovery. Normal execution proceeds after the executiodaris set to
normal last in SecondMethod.

checkpoint.

The control stack will be implemented as a class in order ppett the extra functionality needed,

compared to a standard stack. This functionality is balsitla¢ ability to checkpoint and recover the
stack itself. By placing this functionality here it is eagyilmplement the NextLabel-method used
when the process is in the recovery state. The class diagmathdControlStack class can be seen

in figure 6.3.

ControlStack

Push

Pop
Checkpoint
Recover
NextLabel

Figure 6.3: The class diagram for the cl&sntrolStack.

The Checkpoint and Recover methods respectively savesdtiets and loads the stack from persis-
tent media. It must be saved in a machine independent mas@escribed in a later section, in order
to make sense when the process is transferred to a machima different architecture. Whether the

stack should be rebuilt or not during recovery depends orrevtie labels are inserted in the source
code. In figure 6.2 the labels are placed before the call tt,Rukich means that the stack will be

rebuilt at runtime. If the call to Recover rebuilds the cohstack, the labels must be placed after
the call to Push at regular method invocations and beforedli¢o Pop at the checkpoint. After the

Recovery method has been invoked, the NextLabel methodetilin the next label to jump to.

When the last jump has been performed (the jump to _Secomdliirafigure 6.2), the control stack
and hence the runtime stack has been recovered. All thatdetnow is to recover the user variables,
which is explained further in a later section.

Checkpointing

6.1.2 Program Counter and Registers

The way that we handle the runtime stack makes it extremealy ®ehandle the program counter and
the registers. The program counter is set automaticallynwheovering, as the actual method invo-
cations are carried out, and a jump to the correct sourcadiperformed at the end. Our checkpoints
are always performed between source lines and not in thelenad@ calculation, and therefore also
the registers are handled automatically.

6.2 Process Variables

In order to migrate a process it is necessary to transferaalbsles accessed by that process. In
FROST this can be limited to variables and objects accessiblheCalculationCode object (see
figure 6.4) and the calculating thread. This can furtherrberimited as some variables are initialized
automatically when the calculation code is loaded. Thitufiesis explained further in the following
section. Afterwards handling of the variables accessibt&é calculating thread is explained.

6.2.1 Member Variables

The member variables are first of all the variables in the lotessse<CalculationCode, Data- and
ResultObject andData- andResultLump?. These classes are defined in [GK02]. Thata- and
ResultLump classes represent the smallest entity of either the dakeesesult of a work unit respec-
tively. Also variables added to the inherited classes byuser are considered as member variables
and must be transferred during migration. The class diagrfahe entire calculation code component
can be seen in figure 6.4, which is taken from [GK02].

Component Calculation Code ‘

Values:
Calculation Code | {NotStarted,
State-------""""""1 T Started, Stopped,
Location ~~_ _ _ Done}
Checkpoint
Id

§

1 ‘ 1

Values:
~~|{onSlave,
onMaster}

DataObject ResultObject
1 ? 1
1.* 0.1 1
DatalLump Graph ResultLump
S Nodes -----___ | | Vvalue:
R‘ZE Si Dependencies | {INodelD,]
e amsize = DataLumpiD, IP, size
Value: DiskSize > weightl) R "
{float_32, float_64, . esult Value:
in_32, int_64,int 14 [Type . YT S {float_32, float_64,
chart - Data . Value: int_32, int_64, int_1
N alue: char}
'd *.| {NodeID,
ResultSize | NodelD,
Weight]}

Figure 6.4: Class diagram of the calculation code comporidr figure is taken from
[GKO2].

TheCalculationCode, DataObject andResultObject classes must be handled specially as these are
expected to already be loaded and initialized on the de&timeachine when a process is migrafing
This means that when recovering from a checkpoint, we doeedho allocate and load these objects,

2The Graph class is not necessary to checkpoint as it is only used on #stemand we only migrate processes between
slaves.

31f the calculation code is not loaded on the destination rimechefore migration, it must be loaded before the checkpoin
is recovered.

6.2 Process Variables 49

but only set some of the member variables correctly.

The Id and Location variables in th@alculationCode class (see figure 6.4) is both set upon ini-
tialization of the class and does not need to be transfeped migration. The Id variable is even
unique for the local machine that the calculation code iglneg on, and therefore it makes no sense
to transfer it to another machine. The State variable isgghd runtime, and as we rebuild the run-
time stack by performing all the method invocations, thigalale will be set correctly without any
further handling. The Checkpoint variable indicate the fdh@ last checkpoint made. This ID must
be set by the slave component in order to inform@adculationCode class about which checkpoint
to recover from. TheCalculationCode controls the access to thzataObject and ResultObject
classes and must therefore take care of saving them.

The DataObject andResultObject classes does not contain any variables except for one or more
members of th®ataLump andResultLump classes respectively. They contain a number of simple
variable4 which must all be saved. In order to ease the saving of vasablspecial class will be
made.

The DataStream Class

The DataStream class provides a simple interface to the saving of data. hEurtore it provides
the functionality necessary to transfer the saved data ieterbgeneous environment. This feature
and the saving of pointers and more advanced structures asiehrays and STL-containérare
described in a later section regarding data marshalings 3éaition concentrates on thataStream
class interface.

The interface must include facilities to save and load da&tds require a checkpoint and a recover
method that can handle several types of data. For simpletypis is not a problem but for user-
defined types special care must be taken.

In order to handle user-defined objects in a architectureppddent manner it is necessary to access
member variables through their variable names. A possibiyportable method would be to access
member variables through offsets from the object addrasgsthiat would require that the compiler
lays out the variables in a deterministic way which makesriba-viable solution. To be able to
access private variables through variable names it is sacg$o access them from inside the class.
This requires a public method in the class that handles gadimll member variables. When such
an object is encountered, the checkpointing or recoveriathod must recognize it as a user-defined
object and invoke the saving or loading method in the object.

Due to the way we have chosen to checkpoint objects we limi#adues from checkpointing third
party libraries. It is necessary for us to be able to insextstiiving and loading methods in the source
code in order for us to checkpoint an object, and that is nesite with third party libraries If
third party libraries are used, itis required that they aigdlized in the constructor of the calculation
code.

The use of variable names when checkpointing sets someltionis on the types of data. Variables
declared as constants and references must be instantigkedraleclaration, as the compiler will not
allow us to initialize them later.

As there naturally will be several variables in each cheahkipdt is necessary to have delimiters
around the checkpointing and recovering. These delimi@nsconsist of a Start and an End method
that initializes and finalizes the checkpoint respectivéijhese methods and the Checkpoint and
Recover methods forms the interface of thataStream.

6.2.2 Runtime Variables

When a calculation is running it is most likely that some ahlés are created on the stack, or even
on the heap, in the methods. These variables are referresiiméime variables, and must also be
transferred during migration as they are a part of the pmst#te. This can be done in several ways,

4Simple variables are variables of simple data types.
Shtt p: // www. cppr ef er ence. conl cpp_st| . htm
81t is, however, possible with open source libraries but vétjuire re-compilation of the libraries.

Checkpointing

where some are more suitable to be used in a heterogeneartmenent than others.

When performing a checkpoint, it is necessary that we caphe state of all variables at the same
time. We cannot expect all variables to be in scope, whentikekpoint is performed, and therefore
special care has to be taken. To illustrate this, we havepsataimple example:
A-METHOD()

x4+ 0,y+<0

1
20 ...
3: ANOTHERMETHOD(x)
4: ...
5: return z

ANOTHERMETHOD(var x)

: fori=0to10do

T+
CHECKPOINTVARIABLES()
4. end for

W N R

The y variable is not in the scope of MOTHERMETHOD where the checkpoint is performed. As
we are making checkpoints instead of migration points weshiawsave data each time a checkpoint
occurs, and not just when the actual migration is carried bignce, we cannot save variables that
are in the scope of the current function call, return to thevimus call and save variables available
in that scope and so on. When the checkpoint has been pedoptheexecution must proceed. In
order to handle this problem, it is possible to analyze thelsbackwards through the function calls
without returning from them, and then jump back to the orgiaddress and continue execution.
This method is difficult to handle and inappropriate in a hajeneous environment as analyzing
the stack is not very portable. The structure of the stacleddp both on the compiler used and the
machine architecture the program is compiled for. Furttemthe locations of the variables cannot
be deterministically determined if compiler-optimizatgare switched on, unless the algorithms used
by the compiler are known.

Another solution would be to save all variables in the curssope that are not transferred to the next
scope. Hence, the variableabove is checkpointed before the invocation i@THERMETHOD.
This will, however, require that we keep track of all scopedhie checkpoint. It also adds to the
complexity when we need to keep a backup of the previous guakin the current scope in order
not to overwrite the last checkpoint.

A simple solution can be found if it is possible to checkpaithtvariables at the same time. Hence,
we need a method where we can access the variables at thesctclocation, without them being
in the scope of where the checkpoint is performed. Furtheerttee process must continue from the
same point after the checkpoint has been performed. In dodaccess the correct location of the
variables, we need to find the address at runtime. This camwibe by keeping an array of addresses
of the variables declared in each scope. This solution isesdmat similar to aisplayin the compiler
terminology where it is used to keep track of nested scopgp®8]. The following is a simple
example on how the addresses can be saved, wheteStack is the global array containing the
addresses:

SOMEMETHOD()
1 int a
: float b
. DataStack|0] « address of a
. DataStack[l] < address of b

g w N

When making the checkpoint the addresses must be casteel toittect type in order for thBata-
Stream class to recognize it and save it correctly.

This way of saving runtime variables gives us the possyhilftsaving variables that are not in the cur-
rent scope without analyzing the runtime stack. It is a gmetaolution as the addresses determined
at runtime are used correctly and with the correct data type.

6.3 Data Marshaling 51

This solution has a drawback, though. It is necessary tlehthmber of variables that need to be
saved can be determined at compile time, which limits theedomm using recursive method cdlls
They can, however, be used between checkpoints, but thenethe performed a checkpoint inside
a recursive call. In order to handle this situation it is reseey to use the same procedure as with the
runtime stack. Hence, it must be possible to push varialidessdes to the data stack at runtime. This
makes it impossible to determine the type of a variable atiraa, and therefore it is necessary also
to push the type of the variable. For simple data types, th&ssimple demand, but if user-defined
types must be supported, it introduces a problem. The caatestives the variables from the data
stack must be defined at compile time where the user-definezs tsnust be added to the mapping
between the value pushed onto the data stack and the data type

To support checkpointing in recursive method calls, theddéack is designed as a class somewhat
similar to the control stack. There must be methods to pushbla addresses and the variable types.
Itis, however, not necessary to be able to pop values oned&yWwhen a method returns, all variables
declared (and pushed) in that method, can be popped altrgeténce, if a special method-delimiter
is pushed before the variable declarations they can be pagdpat once when the method returns.

DataStack

Push

Pop
Checkpoint
Recover

Figure 6.5: The class diagram for the cl&astaStack.

Itis most natural to place the code for checkpointing andvedng variables in thBataStack class
and then adjust the code at compile time to include user-elfiypes. This gives a class as shown in
figure 6.5 with an interface very similar to the control stack

The location of the call to Checkpoint is already determided to the functionality of th®ata-
Stack class. All variables can be checkpointed from any scopetlaer@fore the call to Checkpoint
can be placed where the checkpoint is to be performed. Tlaidocof the call to Recover, however,
must be considered very carefully. This is depicted in tHiefang example:

1: MyClass x {Declaration of x of type MyClass}
20 ...

3: .METHODINMYCLASS()

4: ...

If a checkpoint is performed inside ®HODINMY CLASS it is necessary that is recovered before
the call to METHODINMY CLASS. To ensure this, variables must be recovered in the scopeatiae
declared. This will require that a call to Recover only rem@wariables belonging to a single scope.
As noted earlier, scopes are separated by the method deimit

In the following section we will discuss how more advancethddructures are handled.

6.3 Data Marshaling

As with the control stack, the transferral of process vdaalmust be done in an architecture indepen-
dent format when migrating in a heterogeneous environmemtder to ensure this, we have chosen
to represent the checkpoint data using the External DateeReptation (XDR) standard [Sri95]. The
XDR standard specifies how all the simple data types must bedenl, and can therefore be used
independently of the architectures on which data is savddaaued.

The saving of pointers must be handled similarly to the sawvirsimple data types, by saving the data
that is pointed to. There must, however, be taken specialafguointer aliasés It is very important

"When we use the term recursive method calls we also refer taahrecursive method calls.
8Pointers that points to the same address.

52 Checkpointing

that they are recognized during the checkpointing and saeeckctly and, even more important,
they must be loaded correctly in order to ensure that theutaion code executes correctly. Loaded
correctly means that two pointers, pointing to the sameesiiwhen the checkpoint is saved, must
also point to the same address when the process has beeanesgtov

Array sizes must also be recognized in order for all valudse@aved. In C/C++ it is not possible
to tell the difference between pointers to a single elemermnoarray, and it is therefore necessary
to handle arrays specially. This can be done by logging tleeation of arrays, and keeping a table
of arrays and their sizes. This can either be done by locaihgemory allocations in the source
code and insert code that builds such a table from the addressumber of elements determined at
runtime, or thenew operator can be overloaded. In order to simplify the codérast be inserted
to support migration, we choose the latter.

CHAPTER 7

Preprocessor

As we have chosen an indirect way of extracting the state pfrograting processes it is necessary
to insert checkpoint code into the users source code asideddn chapter 6. In order for users to
be able to exploit the process migration feature, a gredtafegansparency is needed, as correct
insertion of checkpoint code can be rather complex. In om@chieve the transparency needed we
have chosen to develop a preprocessor to handle the angigmoh modification of the user source
code.

The work of the preprocessor is mainly to insert the use ofifita structures designed in chapter 6,
which requires careful analysis of the source code. Thegdesf the preprocessor is carried out in
the following sections. The aim of the preprocessor is t@iwban optimal interaction with the user,

in such a way that the user experiences maximum transpacemtgmporary with the preprocessor
generating the most optimal code.

In the following section we will start out by introducing tlyeneral structure of the preprocessor.
Afterwards we will describe some user requirements we havesorder to achieve a more optimal

preprocessor and to limit the complexity of it. Finally th&erent parts of the preprocessor will be

designed including the intermediate format.

7.1 General Structure

The general structure of the preprocessor can be seen irefigir We have chosen to divide the
preprocessor into three major modules. The lexer and theepar depicted as one module, as these
are automatically generated using a compiler-generatdr to

. Modified
Source f Source Code Checkpoint Code|
— ——/ mediate,/—» source
code Lexer/Parser Analyzer Generator code
7777777 I
a Format 3 Symbol !
! tables |
[T woaue -

- ! Insertion |
| ! ! points
I 1 Internaldata ~ L______
I

I

Figure 7.1: The overall structure of the preprocessor.

The last two modules is the main modules in the preproce3$@r.Source Code Analyzer analyzes
the code in order to determine the structure and locate tedatesymbols and places to insert check-
point code. This information is handed over to the CheckipGivde Generator which prepares and
inserts the checkpoint code into the user source code. Tipeios the modified source code, which

can be compiled with a regular compiler.

7.2 User Requirements

We have chosen to make some requirements to the user botldén tor simplify the complexity
of the preprocessor but also to make it possible for the wseptimize the code generated by the
preprocessor. These requirements consist of making threingat certain tags in the source code,

53

Preprocessor

which is used by the preprocessor. It is possible to make grpecessor that do not require any user
interaction as is done in the MpPVM system [CS96]. We do, h@nebelieve that we can obtain
more optimal results with some user interaction as the ultendas knowledge of his source code
which is difficult to capture and implement in a general wag ipreprocessor.

7.2.1 Marking the Checkpoint Location

In the MpPVM preprocessor migration points are insertedimatically based on data analysis of
the user source code [CS96]. The location of migration gdamhot as important as the location of
checkpoint$, as the migration points do not induce as much overhead akgbiats. Checkpoints
require extraction and saving of the process state eachthigyeoccur, and therefore the location is
very important. The placement of the checkpoint locatioa mlance between how much data that
may be lost during migration or machine failure, and how maebrhead there is induced by the
checkpoint.

We believe that the users of FROST has great, or at least damwjledge of the algorithms they

are implementing, and therefore they are better suitedaoepthe checkpoints optimally compared
to a preprocessor. We have therefore chosen to let the useifyspvhere checkpoints should be
performed in the source code.

The tags that the user must insert into his calculation codst e well-defined in order for the
preprocessor to recognize them. We have chosen the folipsyintax for the location of checkpoints:

Il ——FROST-— CHECKPOINT

Hence, the tags are inserted as comments in the originaiescode.

It must be possible to insert several checkpoints as it dabaaexpected that all calculations is
performed in a single loop-structure. Furthermore, we witike it possible to place checkpoints in
all user-defined methods, as long the complete source c@deilsble to the preprocessor.

7.2.2 Marking Variables

We will also make some requirements regarding variableadatibns. One requirement is that the
user must indicate the variables which should not be in threlkgboint. There are two reasons for
this requirement. We have limited ourselves from checkiiagthird party libraries in section 6.2.1,
and in order to simplify the preprocessor by not requiringpitocate library variables, we need the
user to mark the variables which are not supposed to be cbéetkgd. The other reason is, that by
permitting the user to indicate variables which are not tabheckpointed he has the possibility to
optimize the checkpointing process. By indicating thealalgs that are initialized in the constructor
of an object and not assigned later to be excluded from thekgioént, the checkpointing process can
be optimized.

As with the checkpoint location we have defined tags to beriedexround variables which are not
to be checkpointed:

/I ——FROST-— DO_NOT_CHECKPOINT START
... (declarations of variables that shall not be in the cheak)
Il ——FROST-— DO_NOT_CHECKPOINT END

Variables declared inside these tags will not be considetesh inserting the checkpoint code into
the calculation code.

For convenience we require that all stack variables areadedlin the beginning of a method. When
we are rebuilding the runtime stack as described in sectibri 6ve useyoto. Because some compil-
ers do not allow jumps across variable declarations, it teesary that variables are declared in the
beginning of methods. We could make the preprocessor mavestiable declarations by itself, but
for simplicity we require the user to take care of it.

All of the user requirements can be handled automaticallthieypreprocessor, and we believe they

1By the location of checkpoints is meant where the checkgsiperformed in the source code.

7.3 The Parser 55

should be handled in a final version, but we make these limitatfor now. We believe that it should
always be possible for the user to specify the location o€kpeints.

7.3 The Parser

In this section we will describe the statements that mustebegnized in the source code. This can
be used to design the grammar which is used to generate therfmrthe compiler-generator tool.
Furthermore the following sections will aid the design af thource Code Analyzer.

7.3.1 FROST Tags

It is obvious that the preprocessor needs to be able to fgeh&é FROST tags which were defined in
section 7.2.1 and 7.2.2.

The marking of variables that shall not be checkpointedéslus aid the analyzer in the identification
of variable declarations. If these tags were not requirtadpiuld be necessary to go through all the
source code available to the preprocessor and identifydniable types which is not defined in the
available source code.

The marking of the checkpoint locations is very importantite Source Code Analyzer. As it de-
termines where the checkpoints must be performed, it mdie$oundation for most of the code
analysis. This is explained further in the following sentregarding method invocations.

7.3.2 Method Invocations

The locating of method invocations is very dependent on ligekpoint location. It is only necessary
to locate method invocation which leads to a checkpoint asrileed in section 6.1.1.

The locating of method invocations is used to place Push apdcBlls around the invocations as
described in section 6.1.1, and it is not necessary to theestack into methods where a checkpointis
never performed. This can be seen in the example code shdigaie 6.1 where only SecondMethod
leads to a checkpoint, and therefore the Push and Pop caltsér placed around the invocation of
this method.

The parser will locate all method invocations, and then thisjob of the Source Code Analyzer to
determine which methods the Push and Pop calls shall becpéaoand.

7.3.3 Variable Declarations

In order to insert the checkpointing code it is necessarptate all variables and their types that
exists in the scope of the checkpoint location. This inctuldeth all user-defined classes and vari-
ables declared in methods that leads to a checkpoint. Themattion shall be used to extend the
Checkpoint and Recover methods as described in sectiol, 8@.that it can handle user-defined
types. Furthermore it is needed when the saving and loadetads are to be inserted in the user-
defined classes as described in section 6.2.1. Finallynigégssary to push all addresses and types
of variables, which is declared in methods that leads to alghmnt, to the data stack when they are
declared.

All the recognized statements described in the above seidiprocessed by the Source Code An-
alyzer in order to determine where extra code must be indef@rthermore, elements needed for
the code generation are found. The code that is to be insertamhsidered in the following section
which leads to the design of the Source Code Analyzer.

7.4 The Checkpoint Code Generator

The Checkpoint Code Generator is used to insert the codgértirms the checkpoint. The code
that needs to be inserted was described in chapter 6. We hager to design the Checkpoint Code

Preprocessor

Generator before the Source Code Analyzer in order to détermhich information that is needed
from the analyzer to be able to insert the migration code.

The code that needs to be inserted consists in the following:

» Logging of variable addresses and types

e Checkpoint and recover methods for user-defined classes
e Push and Pop around method calls

e Checkpointing data

» Recovery code

In the following we will describe in more detail the code tisato be inserted and the location of the
insertion, which will lead to the information needed frone ttode analysis.

7.4.1 Logging of Variable Addresses and Types

The logging of variable addresses and types must be donelér tw checkpoint stack variables in
the calculating methods. Hence, this section only apptiestiables declared in methods, and as
noted above it is only necessary to log variables in methlaailéads to a checkpoint.

The logging is done using tHeataStack class which was designed in section 6.2.2. To log a variable,
the address and its type must be pushed to the data stacke Haitls to push must be inserted for all
variables declared in each method leading to a checkpaintrder to ease the popping of variable
addresses when the method returns, a method delimiter raymtdhed to the data stack. In this way
all values can be popped at once.

As variable types cannot be pushed directly to the data staelkneed some sort of mapping from

variable types to integers. In this way we can push the viriaidress and an integer denoting the
variable type. As user-defined variable types is not knowrbeforehand, it is necessary that the
Source Code Analyzer provides us with this information. esnwe need two tables, a variable table
and a mapping table holding a mapping from variable typestegiers.

Content|| Variable name| Variable type| Location
Type Text Number Line number

Table 7.1: The variable table holding variable names ani tiipes required when
logging stack variables.

The mapping table is depicted in table 7.1. As variablesrasedpe when the logging is performed,
the variable names can be used directly to retrieve the addfédne variable types have been assigned
a number, which represents a variable type name as depictatdle 7.2. The location of where to
insert the logging must be available, e.g. as a line numbgesource code.

Content|| Variable type namg Type value
Type Text Number

Table 7.2: The mapping table that maps the actual variabteen®a the type value
assigned to it.

As the Checkpoint method in tHeataStack class is used to checkpoint all stack variables it must
know all possible variable types. As described in secti@Z this is not possible before the source
code is run through the preprocessor, and therefore it issgary that the preprocessor adds handling
of any user-defined types to tiataStack class. The mapping table in table 7.2 must be used for
this purpose.

7.4 The Checkpoint Code Generator 57

All variables is required to be declared in the beginning @tiod calls. The logging of variables
must be done both during normal execution and during regpasmormal execution always proceeds
when recovery has finished. Therefore the location of végitdgging must be before the recovery
code jumps to a method invocation or checkpoint. Thus, wkinskrt logging code just after the
variables have been declared.

7.4.2 Checkpoint and Recover Methods in User-defined Classe s

The insertion of checkpoint and recover methods in usenrddftlasses is very simple. The only
requirement is that they are inserted as public methodseyséte invoked from outside the class.
The class table only has to provide the location of the imm®ednd the names of the variables, as, of
course, the variable types are known from inside the class.

Content|| Variable name| Location
Type Text Line number

Table 7.3: The class table holding information needed feeiting checkpoint and re-
cover methods in the user-defined classes.

The class table is depicted in table 7.3, where variablelsérsame user-defined class can be given
the same location.

7.4.3 Push and Pop Placement

The pushing and popping of values to and from the controkdtas already been defined in section
6.1.1. Alabel must be pushed before a method is invoked appgzbagain when the method returns.
As noted above, we only need to keep track of methods thas ieeal checkpoint, and therefore the
Source Code Analyzer must provide information about whidthuods that leads to a checkpoint.
This can possibly consist in the direct insertion point e thethods, as indicated in table 7.4. The
insertion of push and pop calls also includes the insertiblaleels that can be used to jump to,

when the recovery code is rebuilding the runtime stack. Hbels are also included in the table,

but whether it is filled in by the Source Code Analyzer or thee€kpoint Code Generator does not
matter, as long as both the labels and the label values ageetni

Content Location Label | Label value
Type Line number| Text Number

Table 7.4: The method table holding information needed rigeiting push and pop
calls around method invocations that leads to a checkpoint.

The label and the label value is used by the recover codeibdeddn a later section.

7.4.4 Checkpointing Data

The checkpointing of data consists in activating the Cheitkpmethods in all the different classes.
This includes theCalculationCode class, theControlStack class, and th®ataStack class. Fur-
thermore the Start and End methods from Bre#aStream class must be invoked in order to initiate
and finalize the checkpoint. All this code must be insertedmslthe checkpoint is to be performed.
The code that is to be inserted is not dependent on the userescade, and thus all that needs to be
provided is the location of the checkpoint. This informatis very similar to the information needed
for the push and pop placement described in table 7.4, alslabeheckpoints are also needed when
generating recovery code. By adding a column to the methud ta table 7.4 indicating whether the
entry is a method or a checkpoint, the table can hold infoienatbout checkpoints too.

58 Preprocessor

7.4.5 Recovery Code

The recovery code consists of the code for rebuilding thémstack and the code for loading vari-
ables. The location of these two elements are very depeondezech other. The code for rebuilding
the runtime stack consists of the code that checks a labml fin@ control stack and uses it to jump
to the correct method call, as depicted in figure 6.1. Thisscodist be placed after the logging of
variable addresses and types and hence, after variablardgohs. This is due to two issues. First
of all, we cannot jump across variable declarations as destin section 7.2.2. Secondly, we also
need to log the variable addresses during recovery, as pbating will be performed again, after

the normal execution resumes.

The code that loads the stack variables must be placed ictipe ©f the variable declarations. This is
in fact not a requirement due to the functionality of tbataStack class, but as described in section
6.2.2, it is possible that a method is invoked on a stack kkajebefore the checkpoint location is
reached. Hence, the recovering of variables must be doaeth# variable declarations and before
a method is invoked, and this can either be before a jump tothadés performed, or between the
label that is jumped to and the method invocation. The la#quires that variable recovery code is
added at each label in the current method and therefore theefds chosen. This situation requires
that the Recover method of th@ataStack class only recovers the most recent scope of variables.
The method delimiters on the data stack can be used for thippe.

No symbols is needed for the insertion of these two code el&sneut the Source Code Analyzer
must provide information regarding the location of where tlode is to be inserted. This information
can be placed in the method table by adding an extra columa.cémplete table is shown in table
7.5

Content Location Label | Label value Type Recover location
Type Line number| Text Number | Method/Checkpoint{ Line number

Table 7.5: The complete method table holding all informatieeded regarding inser-
tion of push and pop calls, insertion of code for checkpamtilata, and
insertion of recovery code.

The code used for initiating the checkpoint and loading tileuation code member variabfesan
be performed in th€alculationCode class itself. Therefore only call to End in tiataStream
and the code for setting the execution mode must be insetrteé point of the checkpoint.

7.4.6 Algorithm for the Checkpoint Code Generator

From the information found in sections 7.4.1 through 7.4é5aan design the algorithm needed for
the Checkpoint Code Generator. In algorithm 6 it is implieattonly scopes and method invocations
leading to a checkpoint is considered.

7.5 Source Code Analyzer

The Source Code AnalyZemust analyze the user code, in order to locate the informatéeded to

fill in the tables described above. When filling the variallgpping and method tables it must be
known which methods that leads to a checkpoint, as it is oatessary to consider these methods.
The methods can be found using the fix point algorithm showaigorithm 7. ThelnvokesMethods
data structure is an array of sets, where each set holds tttedsethat are invoked by the method
which the entry belongs to:

2The calculation code object is already instantiated, butesmember variables must be set correctly.
Sltis called a Source Code Analyzer even though it operatea@imtermediate format.

7.5 Source Code Analyzer 59

Algorithm 6 Algorithm for inserting the checkpoint code.
INSERTCHECKPOINTCODE()

. for all entries in the mapping tabtio
insert handling intdataStack class
. end for
. for all entries in theSymbolTable do
insert logging code dtocation
end for
. for all distinct locations in the class talde
insert checkpoint and recover methods where
all variables with the same location are
checkpointed or recovered in the same method
: end for
. for all entries in the method tabtko
if Type= Methodthen
insert push, pop and label
else
insert checkpoint code
end if
: end for
. for all distinct recover locationdo
insert recover code
: end for

[uy

© N aR N

NNRPR R RRERRRERRR R
PO VNSO RWNEREO

Algorithm 7 Algorithm for finding methods that leads to a checkpoint.
FIND-METHODY)
. LeadsToCheckpoint + {}

=

2: for all methods4 do

3. if Aincludes checkpoirthen

4 LeadsToCheckpoint < LeadsToCheckpointU { A}

5. endif

6: InvokesMethods[A] < {}

7. for all method invocation® in A do

8: InvokesMethods[A] < InvokesMethods[A] U { B}

9: end for
10: end for
11: repeat
12: for all entriesA in InvokesMethods do
13 if (InvokesMethods[A] N LeadsToCheckpoint) # () then
14: LeadsToCheckpoint < LeadsToCheckpoint U { A}
15: end if
16: end for
17: until LeadsToCheckpoint does not change

When the algorithm has finishedeads To Checkpoint holds the names of all methods leading to a
checkpoint.

7.5.1 The Variable and Mapping Tables

The variable and mapping tables are easily filled using treds®oCheckpoint data structure. For
each method in LeadsToCheckpoint, all variable declamatave added to the variable table and any
new data types are added to the mapping table. This algovitimot be specified any further.

60

Preprocessor

7.5.2 The Class Table

Only the user-defined classes that are being checkpoingsdsrie have the checkpoint and recover
methods added. The mapping table holds all user-defined thia¢ is checkpointed and hence this
table can be used to fill the class table. The declarationalf eser-defined type in the mapping table
must be located and its variable names must be added to 8etalale. This is depicted in algorithm
8.

Algorithm 8 Algorithm for filling the class table.
FILL-CLASS-TABLE()
1: for all user-defined typ€es in M appingT able do
2. locate declaration af’
3. forall variablesX in 7" do

4: insertX into ClassT able
5. end for
6: end for

7.5.3 The Method Table

The Method table is also filled using theeads To Checkpoint data structure. As with the filling
of the variable and mapping tablebeads ToCheckpoint determines which methods that must be
analyzed. Each method ibeadsToCheckpoint is analyzed for invocations of any method in the
LeadsToCheckpoint data structure, as these method invocations must havdedsgush and pop
calls around it. Furthermore, the last variable declaratiothese methods are found in order to
determine where the recovery code is to be inserted. Algor# fills the method table.

Algorithm 9 Algorithm for filling the method table.
FILL-METHOD-TABLE()

1: for all entriesA in LeadsToCheckpoint do
2. locate declaration oft

3: RecoverLocation < location of last variable declaration i

4. for all method invocation® in A do

5: if B € LeadsToCheckpoint then

6: insertCurrent Location, M ethod, Recover Location into M ethodT able
7: end if

8: end for

o: forall checkpointsind do
10: insertCurrent Location, Checkpoint, Recover Location into M ethodT able
11 end for
12: end for

7.6 The Intermediate Format

The intermediate format must provide enough informatigmadorm the analysis that must be carried
out by the Source Code Analyzer. We have chosen to use araetsyntax tree where all needed
elements have their own node in the tree. The nodes must helthtormation needed about the
element it describes. A class diagram describing the irgdiate format can be seen in figure 7.2.

7.6 The Intermediate Format

61

BaseNode
Location
ClassDeclaration VariableDeclaration MethodDeclaration MethodInvocation Checkpoint
Name Name Name Name
Type

Figure 7.2: The class diagram for the intermediate format.

PART Il

Implementation

The implementation part describes the parts of the desigimifive been implemented
into the FROST system. Chapter 9 describes the implememtatithe policies that
control the migration procedure in FROST. In chapter 10 tha$ for performing the
checkpointing and migration of these checkpoints are desdr

CHAPTER 8

Implementation Status

This chapter is a summary of the implemented system. We itbestire differences between the
design and implementation. The chapter will follow the @lidayout from the design.

It should be noted that the current version of the FROST systéhas only been tested on the Linux
operating system and on Intel CPU architecture.

8.1 Policies

In the following we will consider the policies that have beaeplemented in the FROST system
and discuss the differences that exist between the desijtharimplementation. Generally can be
said that the overall functionality of the policies have mémplemented while some of the more
sophisticated features have been omitted due to time comistr

Information Policy

In order to secure that the users always have priority overRROST system, we have assigned
priorities to the individual threads in the FROST systemescdbed in the design. We have used the
ni ce command for controlling the priorities of the FROST pro@sssTheni ce command enables
us to lower the priorities of FROST processes in such a walyukar processes can take over the
processor whenever they are in need of it, thus ensuringatbaer maintains full usage of his CPU.
We have chosen only to assign priorities to the calculatiothecthreads and the resource-checker
thread because these threads are the ones that use the ovesisong power. The priorities assigned
to the threads are chosen so that the FROST processes agtdingteld to all the other processes.

As described in section 5.1.1, we use available resourcas@sasure for how loaded the machine
is. We have chosen not to implement the use of memory in Gtloglthe available resources on a
machine based on the fact that the machines on which we aninguthe prototype of the FROST
system has a large amount of memory and thus memory is notéepnat present. Instead we only
use the average measure of the resources available to d thithethe same priority as a calculation
code thread.

Transfer Policy

With regard to the transfer policy we have limited the impéartation of it only to include a sender
initiated approach and to using thresholds in determinihgtiver a node is over-, under-, or average-
loaded. The reason that only a limited version of the trangbéicy described in section 5.2 has been
implemented is due to time constraints.

Selection Policy

In section 5.3 of the design we describe a scoring systemefecsng a process for migration. We

also state that we choose only to use the time since the laskphint when selecting a process for
migration. In order to enable the use of a more advancedrsgaystem, we have performed the
implementation in such a way that it is easy to modify the enpénted scoring system to include a
more advanced system.

65

Implementation Status

Location Policy

The location policy is dependent on the approach used byrdinsfer policy and thus we have also
implemented a sender initiated approach in the locatioityol

The protocols for the sender initiated location policy asalied in section 5.4.2 have generally
been implemented with the exception of the use of memory agsgion. As described in the section

above regarding the information policy, we have chosen aaisge memory as a criterion in the

selection process and thus there is no reason for providifiogmation about the maximum memory
limit allowed on a node prior to migration.

8.2 Migration

In chapter 6 the migration facilities of the FROST systemeasigned. In order to enable process
migration all that has been designed has been implementeés.h@s been necessary as migrating a
process is dependent on a number of things all touched ugbe thesign. We have, however, chosen
to omit the support for recursive method calls. We see thia esasonable limitation, because if a
checkpoint is placed within a recursive call, the checkpthiat has to be produced will grow as it
will have to include the data from all the previous layers &lw

8.3 Preprocessor

In section 7 the preprocessor used to ensure transparetioy FROST system is designed, but we
have chosen not to implement it. This is primarily due to tingetissue, and we do not find it is

necessary to have an implementation of the preprocessodén to show the functionality of process

migration in FROST.

CHAPTER 9

Implementation of Policies

After discussing general ways of creating policies in s8t8.4 and designing a set of policies spe-
cific to the FROST system in chapter 5, we set out to implenfergd policies. When implementing
the policies into the already existing FROST system the \oéuhe policies as four separate but
cooperative entities disappear. As the policies are hgaependent on each other it is natural that
the edges between them seem to disappear in the implenoenpaticess. In the following sections
we will try to uphold these edges in order to create a framé&wdrich is easy to compare with the
framework set in chapter 5.

The policies are implemented in three classesRhasource class, theCalculationCodelnfo class

and theMaster class, where the latter two are first introduced in [GK02]eResource class is a
new addition to the FROST system, providing the main fumality of the information policy and
acts as a toolbox for the transfer, selection, and locataitips. In the following we will describe
how the functionality of the policies has been implemented the FROST system.

9.1 Information Policy

The information policy performs the evaluation of the aablie resources in the system and is de-
scribed earlier in section 5.1. The main functionality abtholicy is placed within thékesource
class.

9.1.1 Threads and Timers

As described in section 3.4.1 the information policy is aioimation gathering process which col-
lects information for the other policies so that they can enpkoper decisions based on the actual
state of the system. The main task of the information pokdpigather information about the current
state of the nodes in the system and store this informatiofufare use.

In the design of the information policy we chose to includehithe memory usage and the CPU usage
in the calculation of the available resources in the systéfa.have however chosen not to include

the memory usage in the implementation and therefore CPYeusaat present the only measure for

available resources in the FROST system - the less availabtairces, the more loaded a node is.
The memory usage should however be included in a final verditime system.

In order to enable the information policy to gather inforioatin a realistic environment which
reflects the number of tasks on a node, it is vital that theggath commences on the same conditions
given to the processes performing tasks on a node. We doythétting the information policy run in
its own thread at the same priority level as the tasks. Thesies that a higher priority process, such
as a user process, can preempt the information policy thtbad affecting the number of available
resources and in this way represent a higher load in thersyste

As discussed in section 5.1.1 we use a timer to control thémenn which the number of available
resources is measured. The timer is set and within its ritima information policy thread performs
the measuring of available resources. In section 5.1.2 weecthe interval with which the resource
information is measured to one minute. We have chosen tdedtmher to 100 ms and then obtain
the resources a number of times for calculating an average.

The number of times the resources are measured could beathangrder to obtain an even more
precise number for the available resources on the node. Tdtdegm is that the more times the
thread performing the information gathering for the inf@tion policy is run, the more it would

affect the actual purpose of the FROST system, namely peifigr calculations. We see that this

67

Implementation of Policies

way of performing measurements of the available resournesrmode are still vulnerable to random
fluctuations in the number of available resources. This lerlwas earlier discussed in section 5.1.2
and we have implemented the solution to the problem giveretmequiring that two intervals which
follow each other has to show the same tendency in availabtaurces in order to avoid unnecessary
migrations.

In figure 9.1 can be seen an example on how using single measntsg, as described above, can lead
to unnecessary migration.

Lower Thresholc

Migrate Migrate

Figure 9.1: The effects of taking single measurements witsmoothing.

As can be see from figure 9.1 taking single measurements i®0d gs the system reacts on load
spikes and migrates processes more or less at random. dhetké smoothing effect is advanta-
geous. An example on this is given in figure 9.2

N ——_—_——_—_——— N <z---- Lower Thresholc

Migrate

””” Average

Figure 9.2: The effects of multiple measuring with smooghin

In figure 9.2 no unnecessary migration takes place even thtmagl spikes do occur. As the mea-
surements in available resources decrease so does thg@werd a request to migrate process is
issued.

9.1.2 Calculating Available Resources

The process of obtaining resource information on a node hasqusly been described in section
5.1.1 and the process will thus not be described any furthestead we will concentrate on the
problem of eliminating load spikes and how we have chosemfdeément this in FROST.

This is done in the calculateResources method shown betotlid method we obtain the available

resources a number of times and calculate the average vhthe available resources in order to

smoothen out the effect of potential load spikes. We caliniivaber of times that the resources are
checked for the resolution of the calculateResources ndetho

calculateResources (resolution)

{
for(int i =0; i < resolution ; i++){
set the timer;

while(timer runs)
nodeResources += Calculated resources;

9.2 Transfer Policy 69

Sleep(runinterval / resolution);

}

return nodeResources / resolution ;

}

This method is called with regular intervals and every titrteais run we check whether the resource
number has changed sufficiently to justify a broadcast toother nodes in the system. We have
chosen that the resource number must change at least 5%senfordt to be broadcast.

9.2 Transfer Policy

As described in section 5.2 the primary purpose of the tensblicy is to decide whether to take
action or not based on the input from the information policy.

The transfer policy of the FROST system is very simple asliy decides whether the system state
is overloaded or not. After the system state has been deeidiedision about whether to act on the
information is made. The system state is based on the avavagable resources for all the nodes in
the system and is set by comparing the available resourcasofle with a threshold which is also

set by the transfer policy. When the state is set by the infion policy, the master is notified and it

takes further action if needed.

The transfer policy employs a sender initiated approackch%un approach is described in section
5.2. The sender initiated approach states that there arstates that the system can be in. It can
either be overloaded and thus try to migrate a process awayan not be overloaded and wait for

a process to be migrated to it. In the following we will deberthe implementation of the transfer

policy in greater detail.

9.2.1 Calculating Thresholds

After the information policy of a node has determined the hanof available resources on that node
the transfer policy calculates the average available megsun the system and sets a lower threshold
representing the lower limit of the resources on this nodethé sender initiated approach only the
lower threshold is used to determine whether it is necedsaiye system to take any action. If the
current resources on a node falls below the lower thresltoédsystem is overloaded and action needs
to be taken to remedy that situation. In order to ensure tteatgsses are only migrated if necessary,
a node needs to be below the lower threshold, and thus beoaded, two checks in a row. If this is
the case the node will try to migrate a process away.

As described in section 5.2.1 the data used for the caloulati the average available resources from
which the lower threshold is set, are not necessarily an @rafgthe current number of available
resources on a given node but only the latest resource isfitomreceived from each node. We are
aware of the problems introduced by using old data for perfing these calculations, but we choose
not to act on this as we see this problem as being small. Thisésto the fact that the processes
within the FROST system is in general long running and tleeethe resource information should
be relatively stable as long as a user does not interact hétlsystem. As soon as a user chooses to
interact with a node it could pose a problem not to announeeltange in available resources of that
node to the rest of the system because the other nodes cauddeclo act on old information and
attempt to migrate a process to this node thus putting ever load on it. This could be avoided by
either requesting the current number of available resawfa node prior to a process migration, as
described in section 5.4.2, or by announcing the changesditadle resources of a node when a user
starts to interact with it.

In the following we will describe the method which is used ¢éb the threshold.

calculateThreshold ()

{

for (all nodes in node_vector){
tmpResource += presentNoderesources;

70

Implementation of Policies

}

averageSystemResources = tmpResource/noNodes;

systemThreshold.lowerThreshold =
(averageSystemResources OWER_THRESHOLD_ DELIMITER);
}

The average available resources in the system is calcul@tesh we set the lower threshold relative
to the average available resources in the system. The detioged for setting the thresholds should
be a subject to future tests in order to optimize the system.

After the threshold have been set the transfer policy usesdiécide whether the system is currently
overloaded or not by comparing the average available resswn the node with the threshold. As
stated above, if the current resources of the node is beleviother threshold, the system is over-
loaded, and action should be taken to move a process awaytti@ourrent node if it has any, and if
the current resources are above the lower threshold the isotte overloaded and is thus a possible
target for a migration from an overloaded node.

9.2.2 Acting upon Information

After the threshold have been set and the decision aboutehtite system is overloaded or not has
been made, the master is notified. Here action is taken deyead the state of the system.

if (System State == OVERLOADED)
} else
}

The above code checks for the state of the system and actsthisoinformation. If the system
discovers that it is overloaded it acts on this informationthis is part of the selection and location
policies and will therefore be discussed in the followingtgmns. If the system is not overloaded, it
takes no action at present.

9.3 Selection Policy

Where the transfer policy decides if a process should be thovaot the selection policy decides
which process to move. The selection policy has been desigreection 5.3.

The tools of the selection policy is implemented in alculationCodelnfo class which contains
information about all the different tasks currently rungion a particular node.

The selection policy is enforced from the master and it idlyiglependent on the state of the node.
If the system is in a state where the amount of available ressus low and the transfer policy
has decided that the system is in an overloaded state, tbetisel policy is executed. The selection
policy chooses the process which is the last to have perfdarmeheckpoint as the process that is to
be migrated.

As the receiver initiated approach is not implemented iheogystem at present, no action is taken
when a node is not in an overloaded state.

The selection policy of the FROST system consists of a simgdthod which both produce the basis
on which a selection can be made and performs the selectiorthel following sections we will
discuss this method in greater detail.

9.3.1 Selecting a Process

In order to make a selection of which process on a node thatgs duited for migration we have
decided to implement the approach mentioned in sectioi 518.section 5.3.1 we decided that the

9.4 Location Policy 71

time since the last checkpoint was performed by a processavemm the basis for the selection
as we believe it to be the most important aspect in choosingeeps. The reason for this choice
is among other things that if the process which has last pegd a checkpoint is chosen as little
calculations as possible will be lost in the migration pichoe.

As itis only a single parameter we are searching for we cak flomugh all the processes and choose
the process which has last performed a checkpoint. The aodkié is shown below.

getProcess ()

{
currentTime = time (0);
tmpTime =—1,;

for (all processes){

if (process->State '= RUNNING)
continue;

}

Time = currentTime— process->checkPointTime;
if (Time <tmpTime || tmpTime ==1){
tmpTime = Time;
processToMigrate = process;
}
}

return processToMigrate;

}

9.4 Location Policy

The location policy is the policy that decides which nodeacpss is to be migrated to.

As stated in section 8.1 we have limited our implementatiforts only to include a sender initiated
approach. This also goes for the location policy, and sotdgman the fact that the receiver initiated
approach has not been implemented, it is only the use of measoa parameter to base the decision
about whether to perform process migration that has beettexrfrom the location policy as it is
described in section 5.4.

In the following we will describe the approach taken in immpknting the location policy.

9.4.1 Choosing a Node

If the transfer policy in section 9.2 decides that a node iarniroverloaded state the FROST system
will try to migrate a process away in order to lessen the loadhis node. In this case the location
policy has to find a node which has the most available resswasd is likely to be the most capable
of finishing a process the shortest time. We use a modifiedorers the prediction described in
section 5.4.1 to find the node that will provide the best pannce. The modification consists in
that instead of sending information about number of proegasd resources when a requestis issued,
these information is sent in the information policy alonghathe resources. The information is sent
each time there is changes to the amount of resources, amddiesthe information that is available
at a node is maximally one resource-measuring interval old.

if (SystemState == OVERLOADED){

if (migrationinProgress !=rue){
migrationInProgress #rue;

72

Implementation of Policies

tmpRunning = localhost>runningProc;
tmpResources = getResourcesOnLocalhost();
tmpPredicted = (tmpResourcesmpRunning)/(tmpRunningl);

For (‘all known nodes){
receiver_resources = noderesources;

if (receiver_resources > tmpResources){
receiver_running = node>RunningProcesses;
predicted_resources = (receiver_resoureeseceiver_running)/(receiver_running +1);

}

if ((predicted_resources > (tmpResources + 1500)) &&
(tmpPredicted < receiver_resources)) {

insertNodelntoMap(node);

}
}
}
}

First we record some information about the sending nodeudinty the predicted resources on the
sending node after the migration. Then we look through allesathat are known to the sending node.
For each of these nodes we predict their resources after idgpation. If the predicted resources for
the receiving node is favorable we insert the node into aermdlmap which orders the nodes after
the resource numbers. In order to ensure that moving a psamess not result in an overloaded node
the sending node checks that the predicted resources aé¢b@/ing node is larger than those of the
sending node plus a constant in order to ensure that bettfarpance to the process is achieved.
In addition the sending node checks whether the predictamlrees for the sending node is smaller
than the resources of the current resources of the recenodg. An example of this is shown in
figure 9.3. Even though the total distance to the system gedgraless in figure 9.3(b), we do not
allow migration as the predicted resources on node B will glo the current resources of node A.

Finally we get the node from the map that has the most pretiaotailable resources after the migra-
tion and issues a request to that node.

If the request that is issued by the location policy is grdritee process chosen by the selection
policy is not sent immediately. Instead the system on thaestgd node verifies that it is not already
executing a task from the chosen assignment. This is be¢hadeROST system does not allow a
process to migrate to a node which is already executing aftaskthat assignment, as described in
section 5.4.2. If the requested node does not have a taskfidsame assignment, then the process
chosen by the selection policy can be migrated to the new.n@dleerwise the requesting node is
denied its request and the next node in the map is chosen aawl @equest is issued.

9.4 Location Policy

73

77 Current Receivel
Resources
B A ‘ A
‘ System Average
B
A B
Current Sender
”””””””””””””””””””” Resources
(€] %) 3

A - Resources on the sending node
B — Resources on the receiving node

Figure 9.3: An illustration of the resources before andradtenigration. (1) is the
resource situation before a migration occur. (2) is an urtegsituation
where the predicted values A and B show that A gains from rtiiggaa
process whereas B becomes overloaded and thus the systemwtasdea
gains nothing. (3) shows a legal resource distribution witbe overall
resources in the system is closer to the system averageaafigration.

CHAPTER 10

Checkpointing

In chapter 6 some classes and data structures were des@mhauddle the checkpointing and recover-
ing of a process. In this chapter we will describe the impletagon details of these classes and data
structures and the extra features needed in the implen@mtabcess.

10.1 Control- and DataStack

The Control- andDataStack are very simple data structures and the implementation aoediffer
considerably from the design.

The ControlStack is implemented as a class with the methods described irosegti.1. For con-
venience, the ExecutionMode flag has been included ilCdrrolStack class as a public variable.
There has not been made any further changes to the interfdlae olass. The constructor takes an
instance of th®ataStream class as a parameter which is used when checkpointing the. &g us-
ing theDataStream class, data marshaling is ensured and the control stackectrarisferred across
different architectures.

With regard to the data stack, we have chosen not to supprutsige method calls. We believe that
checkpointing in a recursive method call is often not reabbm The deeper the recursion reaches,
the more data needs to be saved, as all the data from preaisisscsaved. Furthermore all recursive
algorithms can be transformed to non-recursive algoritfi@exi92], and we therefore see it as an
acceptable limitation. Hence, tliataStack is made as a simple array of integers as first described
in section 6.2.2. All access to the data stack can be detethaincompile time and should be inserted
by the preprocessor.

10.2 CalculationCode Additions

In order to simplify the tasks that should be handled by tleppycessor, there has been made some
additions to theCalculationCode class. Furthermore section 6.2.1 states that there musikea t
special care of th€alculationCode, DataObject and ResultObject classes as they are already
initialized upon recovery.

In order to handle these classes special Checkpoint andvBeotethods have been made which
saves and loads the member variables of the classes. To mak#hat variables in the specialized

calculation code classes are also saved, the methods aeevinadl and any hence derived classes
can implement these methods to save and load variables.

The Checkpoint and Recover methods are very simple inCtaleulationCode class. There are
only two simple variables, holding the total runtime thas leen used to process the work unit and
the number of active work units in the calculation code. Remnore the methods must execute the
Checkpoint and Recover methods in thataObject and ResultObject classes respectively. This
gives us the following Checkpoint method:

void CalculationCode :: Checkpoint(){
datastreamx runTime« noOfActiveWorkUnits;
mDataObj}->Checkpoint(datastream);
mResultObj>Checkpoint(datastream);

}

The DataObject andResultObject classes does not have any knowledge of the data stream object
used for the checkpointing, and it is therefore passed afeeeree to the Checkpoint methods. The

75

Checkpointing

Recover method is very similar to the Checkpoint method aitichet be described any further.

The calls to the Checkpoint and Recover methods must beglzaefully. As will be explained
further in the next section, the order in which data is saved laaded must be exactly the same.
Furthermore the member variables of @BalculationCode class must be instantiated before meth-
ods are executed in them. This is necessary as the checkpaifte performed in any user-defined
class, and hence such a class must be instantiated befquiateeof the checkpoint (and recovery)
is reached. In the example code below, MyObiject is a memb@hla of the specialized calcula-
tion code, and labels and goto’s etc. have been left out.hEtrtore the lines Checkpoint(); and
Recover(); covers the entire checkpointing and recovesfriata:

int MyCalculationCode:: calculate (){

MyObject->DoCalculations();

}
void MyObject::DoCalculations(){
Checkpoint();
If (ExecutionMode == RECOVER)
Recover();

}

The call to DoCalculations cannot be executed before My@lhias been instantiated. It is therefore
necessary that the member variables are recovered edudierat the point of the call to Recover
above. In order to ensure this, we have placed the call to ¢ltewer method in th€alculationCode
class even before the calculate method is started.

The same applies to variables declared at runtime, and eegonust therefore be done before a
subsequent method call.

10.3 Checkpointing Data

TheDataStream class was designed to handle saving and loading of chedigatimusing the XDR
format. In order to handle this correctly, special data jertips must be identified at runtime such as
array sizes and pointer aliases. Furthermore, speciahz®e taken of user-defined classes.

To handle conversion of data into the XDR format we have chtsese an existing library, providing
us with these facilities. A short introduction to the XTLH@yy and the facilities it provides are given
in the next section.

10.3.1 The XTL Library

The XTL library! is a set of template classes that are designed to ease the taskverting C++ data
structures into an independent format. Several formatsw@pported including the XDR format, and
it also handles the saving and loading of data to and from disk

Due to the way XTL handles the data that it stores it is vitat thata structures are saved and restored
in the same order. This means that if variable a is saved defmiable b then variable a must also
be restored before variable b. This is due to XTL using a filthwequential access and therefore
everything is saved in consecutive order. When the datastenmed, the file is read in the same order
as when the data was saved and thus the data that was savisdréssbred first.

The programmers interface has a number of different metleadh handling a class of data types
such as simple data types, arrays and STL-containers [P8i8i8 has the effect that in order to save
a variable, it is necessary to identify the type of the vddamnd recognize which class of variable

Ihttp://xtl.sourceforge. net/

10.3 Checkpointing Data 77

types it belongs to. This can be shown with the following eglntode, where stream is the XTL
template class used for saving and loading data:

int i;

int a[l10];

int «pi = new int;

int *pa =new int[10];

vector<dnt > v;

stream.simple(i). vector (a,10). pointer (pi). array (p@), container (v);

Furthermore it can be seen that the size of arrays must baréecivhen saving the variables. The
library does handle pointer aliases but there are somediioits. For this reason and for the problems
regarding variable types and array sizes we have chosenpieinent theDataStream class as a
wrapper class of the XTL library, taking care of these issu&he implementation details of the
DataStream class is described in the following section.

10.3.2 The DataStream Class

The interface to th®ataStream class was designed in section 6.2.1 to have Checkpoint aca/Be
methods for saving and loading data. To make it simple, thesthods have been implemented by
overloading the stream operators (« and »). This makes #ilpleso have the following syntax when
checkpointing:

DataStream ds;

int a =10;
int b =20;

datastreanx a« b;

When checkpointing values on the data stack, it is necessa@ast the addresses to the correct type,
in order for theDataStream class to recognize them correctly:

datastreamx = (int »)DataStack [0k =(float)DataStack[1];

The stream operators can be overloaded to handle a numbifieoédt data types, both simple types
such as integers and floating point values and more advaratedsttuctures. In order to reduce
the complexity of the interface we have chosen to limit thedfedata types that are supported.
All simple types can easily be handled and are thereforemtpg. With regard to STL-containers
we have chosen to limit the support to most of the contairteat ¢an be accessed with iterators.
Furthermore, arrays and pointers are supported.

Most functionality of the class is taken care of by the or&iKTL library but some additions have
been made both by adding functionality to the XTL librabut also by implementing the function-
ality in the DataStream class.

One of the problems mentioned in section 10.3.1 is that ib&eBsary to recognize which sort of vari-
able type, e.g. simple, pointer or container, a variabletgs to, when inserting the checkpointing
code. This is the main issue that has been solved witD#iaStream class. The required function-
ality has been achieved by overloading the stream openattire number of template functions each
handling one or more types of variables. There has for exain@én implemented a template func-
tion for each container that is supported by BetaStream class. This limits the comprehensiveness
of the class but provides an easy to use interface.

User-defined Classes

The XTL library also supports the handling of user-definexsses in the same way tBbataStream
class was designed to handle them. Hence, a method must bd talthe user-defined class that

2The XTL library is open source software.

Checkpointing

handles the saving of member variables in the class. We Ha&ea to use the exact syntax of the
XTL library when adding these methods. In this way we do na&ch® handle user-defined objects
in any special way in thBataStream class. When a user-defined object is to be saved with the XTL
library it is done with the same methods as simple data typdsainters are saved with, and then
the library automatically executes the saving functioneatih the user-defined class.

The functions that must be added to the user-defined clagssis o be template functions. This
is due to the use of template classes in the XTL library, themaaking the format data is saved
in, unknown until compile time. As we also wish to use thataStream class for saving and
loading data in user-defined classes and still let the XTlceteethe methods automatically, it has
been necessary to make tBataStream object globally available. If another solution should be
used, it would be necessary to integrate the XTL library drellataStream class far more, and
thereby increasing the complexity considerably. As allokp®inting code is to be inserted by the
preprocessor, we do not see this as a problem.

The following code shows an example on how the methods fangand loading data is added to
a class. In the XTL library these methods are called come@sitl takes the output or input stream
as a parameter depending on the data is to be saved or foattezlstream is not used when we are
using theDataStream class, but we need to use the exact XTL syntax as describeeabo

class MyClass{
int val;

template<class Format>

void composite(obj_output<Format>& stream) {
ds« val;

}

template<class Format>

void composite(obj_input<Format>& stream) {
ds» val;

}

3

When an object is loaded with the XTL library it cannot prawitie constructor with any parameters.
For this reason it is necessary that each user-defined claisb 6 to be checkpointed has a con-
structor that does not take any parameters. This also esjthat references are not used as member
variables if they cannot be set in the constructor withouapeeters.

Data Properties

As noted in the beginning of section 10.3 some data proartiest be identified when checkpointing
the data.

In the example in section 10.3.1 regarding the use of XTL,aswecessary to state the size of
arrays when they were saved. In section 6.3 we stated thet sizes must be recognized in order
to have all elements saved. By recognizing the array sizenaatically in the system, we can let the
DataStream class use this information, so that we do not need to providsize when saving data.
This is done by overloading theew{] operator so that a data structure of allocated arrays heu t
sizes can be maintained.

Another property that must be recognized is pointers pointdo garbage. When the XTL library

saves a pointer, it checks whether it is a null-pointer or. Adtis requires pointers to be set to 0O if
they are not allocated. Declaration of pointers can be neiceg and if they are not allocated at once
they can be set to 0 instead. Furthermore deletion of pamterst be recognized in order to set the
pointer to O after deletion. This is necessary as it otherwisuld point to an address which is not
allocated anymore. This is, however not adequate with tegapointer aliases. It was previously
stated that the XTL library takes care of pointer aliasesurwhich is also true. But if the original

pointer is deleted the alias will also point to garbage. Talaton above where the deleted pointer is

3XTL uses one stream for saving and one for loading data. We hveade thdataStream as a wrapper for both of these.

10.3 Checkpointing Data 79

set to 0 does not apply in this situation, as pointer aliaaesat be recognized at compile time. The
example code below shows the situation, where pb is a paatfites to pa. It should be noted that it
cannot be determined at compile time whether pa has beetedelenot.

int xpa =new int;
int xpb = pa;

delete pa;
pa =0;

datastreamx pa« pb;

Instead of setting pa to 0, we need a solution that also hamuaimter aliases. By overloading the
deleteoperator, we can keep track of all deleted data and therefmpadng pointers to the deleted
addresses in order to locate pointers to garbage.

A more detailed description of the overloading of the mernadlycation operators is described in the
next section.

Due to the way the XTL library works there is an important issuith regard to pointers to stack
variables. A pointer to a stack variable is not considerebleg@ pointer alias in the original imple-
mentation of the library. Due to this, the example below wdt be handled correctly.

int a =42;
int xpa=&a;

datastreamx a « pa;

The value '42’ will be saved two times, and when the checkpisineloaded, the second value will
be allocated on the heap instead of creating the pointes ediarectly. We have corrected this flaw
in the library by logging the address of all variables savedrider to identify pointer aliases. There
is, however, still a limitation to the saving of variablesid required that the stack variable is saved
before the pointer to it. If not, the pointer will not be savadla pointer alias to the stack variable, and
thus it will be allocated on the heap upon loading, which isdesired. We have not implemented
any solution to this problem.

Containers with Pointers

STL-containers holding pointers could not be saved usiegdhL library. As this is a functionality
that is useful in the FROST system, we have added it to tharlipand provided template functions
in theDataStream class for handling them. It has been implemented so thatdimtgrs are included
in the identifying of pointer aliases.

10.3.3 Memory Management

The overloading of the memory operators serves the purpafsdentifying array sizes and pointer
aliases to garbage. In the previous section it was stateahthve] | was overloaded to log the array
sizes and theleleteoperator to log deleted memory. It is obviously also neaggsdog the deletion
of arrays, as pointer aliases to arrays or elements insidgsare very common.

Furthermore, there is a possibility that a previously dezdted memory segment is allocated again.
If we only log deletion of pointers and not the allocation gavly allocated pointer can be recognized
as a pointer to garbage. By keeping track of all allocated orgmve can start by matching a pointer,
that is to be saved, against the allocated memory. If the meaddress is not allocated, we can
search the deleted memory in order to see if the address kageallocated. If it is not found there
either, it is a pointer to a stack variable.

It is, however, possible that a previously deallocated ntgrsegment is allocated again, but with
another data type. If there exists a pointer to a non-existeer-defined object in the re-allocated
memory segment, the XTL library will try to execute the corajp@ method in the object that is

80

Checkpointing

deleted. We have not solved this problem, but we have trieditomize it by setting all garbage
pointers to 0 when a checkpoint is performed. By doing this,can erase the logged deallocations
when a checkpoint is performed, thereby limiting the amairdata in the data structures used for
logging.

PART IV

Test & Conclusion

This part contains test and conclusion to the introductiépi@cess migration into
the FROST system. In addition to that some thoughts regatimscaling of FROST
is given. Chapter 11 contains description and results otésés made on the system,
chapter 12 considers how the FROST system can be made tacealarger extent,
and chapter 13 contains the conclusions to the project.

CHAPTER 11

Test

In this chapter we consider how the FROST system can be tegtfedegard to the process migration
feature. We will first consider which tests to perform, thea will consider how these tests are to
be performed in a manner that will give representative tesulast we discuss the results of the
performed tests.

11.1 Test Types

When considering process migration in the FROST systene thier a number of things which must
be considered. In the following we will consider the elensewhich must be tested in order to
determine whether it is an advantage to use process migratiGROST compared to not using
process migration in FROST.

Correctness A necessary aspect when considering whether process migtets the potential to be
an advantage in the FROST system is correctness. In seclione3stated that the presence of
process migration in FROST should not be detectable by teesu3herefore it is imperative
that there are no difference in the result when using proo@gsation as opposed to when
process migration is not used. Furthermore FROST with m®asigration is not worth much
if it generates flawed results. Note though, that testingcforectness only states whether
process migration haspotentialto be an advantage. Process migration may still show not to
be an advantage based on some of the other test elements.

Performance The important issue when considering process migratiorROET is the additional
time it will take for an assignment to complete after proamggration has been implemented.
It is obvious that if there is a loss of performance when ugiragess migration, it may not be
used by the users of the FROST system. It should be notedthatddition in time depends
heavily on the assignment and therefore this time will difepending on the period at which
checkpoints are performed and how often a process is mutjedte

Overhead In order to see how process migration affects the overallmaation times of an assign-
ment, it is necessary to find out how much overhead there is\wheorming a checkpoint. As
the checkpointing code is performed on a regular basis 8te will show whether the check-
pointing code has to be optimized or run with less regularivals. We would like to find out
whether the introduced overhead is too high to justify the ofsfault-tolerance. The perfor-
mance of the system is also degraded by the migration overfigee migration overhead is the
price for migrating a process and consists of the negotidtine between the sender and the
receiver, the transferral of checkpoint data, and recogdgriom the checkpoint. This overhead
will also be measured in order to determine the factors tifaiénces the performance.

Transparency As stated in section 3.5 transparency from the users poirtesi is an important
aspect. In order to maintain the ease of use of the FROSTrsyAR the user should not
be required to consider the technical aspects of the pranggation. As the transparency is
thought to be provided by the preprocessor, which has nat Imeglemented, we have chosen
not to test this aspect.

Policies As describedin chapter 9 we have implemented four policiéisé FROST system. In order
to ensure that the system performs as expected it is negassaneck whether the policies
leads to thrashing. This is due to the fact that a system whisthbjected to thrashing does not
perform any calculations but merely moves processes batkath between computers. As
the purpose of the FROST system is to perform calculatioissiibperative that this situation

83

Test

does not occur, and that process migration does only occanvihis an advantage to move a
process.

We have chosen not to perform any tests with regard to thelsitiay of the system and the effect
of process migration when a larger amount of machines isdghired to the system. The system has
not been designed to be a scalable solution as describectiarsé.2.1 and it would therefore not be
reasonable to test this issue. Furthermore these testsede@measure process migration overhead
and adjust the parameters used for the policies etc. Weftiteneeed to be able to analyze the results
from the different tests, which makes it necessary that vep kke results from the tests simple.

11.2 How to Perform the Tests

In this section we will describe the general issues that@onto all the tests that are described in the
following sections. We will, however, start out by addressthe issue regarding correctness of the
assignment results when using FROST with process migrafismoted earlier, this is a necessary
aspect to fulfill as it forms the basis for the process migrafeature in FROST.

11.2.1 Correctness

In order for process migration to be a viable feature in th®©BR system, it is necessary that the
assignment results are exactly the same and that they asztwhether the feature is used orhot

As process migration is performed exactly the same way iedéently of the tasks it is migrating,
we believe that most errors can be detected by performingigeld number of practical tests. We
have carried out a number of practical tests where we havepaoad the results of an assignment
calculated both with and without the use of process mignatiDifferent situations have been set
up in order to test both one and several migrations betweaimgbar of machines. We have also
tested that a task can migrate back and forth between twoinesctvithout changing the result of
the assignment.

These tests should not be seen as a proof for the correcthéss process migration feature, but
we find them adequate for the further testing of performande. will not describe the testing of
correctness any further.

11.2.2 User Processes

The purpose of FROST is to use the unused CPU-cycles of ndicated workstations. These work-
stations are normally used by a number of users who should@&anterrupted or in other ways
disturbed by the FROST system. A user may be typing in a teikbreol compiling code. Neither

should be disturbed by FROST. On the other hand, if a useraigaskstation intensively it might

prove to be an advantage for the FROST system to move its gges@away from that workstation in
order to finish faster.

In order to test the overall performance of the system irisgalconditions we choose to create a user
process which is supposed to simulate a user using a nodepiidtess consists of a pattern of three
types of intervals. Each interval i s10 minutes long andtisegia series of load spikes which have
a duration of 5 seconds followed by a 55 second sleep peritmhgaheavy usage of the processor
which runs for 10 minutes, or a 10 minute sleep period wheeentbde is completely free of load
from the user process. The sleep period always comes in batthie other two intervals and the only
load that may occur in a sleep period comes from the procésses FROST system.

Each node run one of these user processes and each of theggedmve a unique pattern. This
pattern makes it possible to predict with relative certanwhen a process in FROST is going to
migrate and where it is going to migrate to. In figure 11.1 thage patterns are shown.

We have chosen to create these usage patterns in order ta aledefined usage of the processors

1in order for FROST to deliver similar results each time theeaassignments is run it is necessary that the user does not
use randomness in his calculations.

11.2 How to Perform the Tests 85

0 10 20 30 40 50 6Minutes
1 1 1 1 1 1 1
| S | LS | S | LS | S | F |
1 I I I I I I 1
| S | LS | S | F | S | LS |
2 I I I I I I 1
| S | F | S | LS | S | LS |
3 T T T T T 1
S = Sleep
LS = Load Spikes
F = Full Load

Figure 11.1: An illustration of the usage patterns in ther psecesses.

so that all the tests in this category can be run with the sas®@urce characteristics. Using the same
resource characteristics for each test enables us to certtmaresults of the tests.

During the tests we will run one user process on each nodesisythtem in order to have changing
load on the machines.

11.2.3 Test Problems

In order to obtain general results with the test cases meatiabove, it is necessary to test the system
using multiple types of problems. These problems shouldedrom small work units, small results
and long term calculations to large work units, large resaitd relatively short calculations. The first
type of test programs has a good calculation to communitaaiio where the second type has a poor
calculation to communication ratio. Both types of prograshsuld be considered as the programs
for which the system is used are not guaranteed to have amalpgglation between calculation and
communication.

In section 1.1.2 in the introduction we have described a rarmbapplications suitable to be solved
in the FROST system, but as we do not have neither source alyeithms nor data to calculate on
available for any of these problems, we have chosen anotbblgm type, raytracing.

Raytracing has proved to have the exact characteristiashwhakes a problem suitable to solve using
the FROST system. Itis a problem which is easily split intaimber of tasks which are independent
of each other. Raytracing is basically a number of lightsraging shot into a model from a camera
and if the ray intersects with the model, a pixel is drawn. Thlr of the pixel depends on light
sources, other objects, the surface of the obfeatts and requires therefore extensive calculations.

Every pixel can essentially be computed independentlyctf eéher so that the problemis completely
parallelized, all that needs to be distributed is the modti which the rays intersect and information
about which pixels to calculate. Depending on the size «f thodel it may be advantageous to
compute a number of pixels on each machine in order to keegetloalation to communication ratio
at a reasonable level.

At present we have only implemented a single problem whighpetts process migration in the
FROST system. This problem will be used to perform the ihigats of the system in order to deter-
mine if it performs reasonably. Further testing is requite@btain results which are representative
of the system.

The purpose of our test problem is to simulate a realisticidation assignment in the FROST system.
Due to time limitations we will use a problem which is smalhgoared to the assignments solved in
the systems described in the introduction. In the raytgpimblem we can adjust many parameters
which makes it possible to optimize the problem in order thi@ee the most precise results. These

2Reflectiveness, color etc.

Test

parameters are described in the following:

Total runtime: The total runtime of an assignment will mostly be used wheasugng the perfor-
mance gain of an entire assignment. The total runtime of sigiasient is measured from when
the splitting of the assignment is started to all the pargalits have been combined and the
final result is ready.

Number of work units/Time per work unit: The number of work units seldom have a direct influ-
ence on the tests. It is mostly used to change the size of pbatk as a smaller amount
of work units will provide more data to save during calcwat. The time per work unit is
directly dependent on the number of work units.

Checkpoints per work unit/Time between checkpoints: The time between checkpoints is a very
important measure, as it determines the time that can batosigration.

Checkpoint size: The size of checkpoints is also an important figure. It infee=nboth the time it
takes to perform a checkpoint and the time it takes to migrgiscess.

Before each of the tests in the following sections we willatidx the values used for these parameters
where it influences the test.

11.2.4 Technical Specification

The system that the performance tests have been carriechastao7-node cluster. Each node in
the cluster is a dual Pentium 11l 733 Mhz with 2Gb PC133 SDRANIEand they are connected
through a fast switched Ethernet. All nodes are running kirdlence, it is a very homogeneous and
dedicated system.

The FROST system is originally thought to run in a heterogesesnvironment. We have although
chosen to perform our tests in a homogeneous environmerg dsidicated machines and a dedicated
network as it is easier to compare results that are obtairigdnwsuch an environment. We do not,
however, see it as a problem as all our tests are performéihtite same environment and thus the
results are comparable.

When running FROST on a dual processor machine with a sing@3T task it has proven to be
hard to make the task migrate while we are trying to simulatersiin a realistic way. In order to
remedy this situation we have created a process which talestee unloaded processor during the
tests. This has the effect that we are simulating a singlegasor machine.

We believe, however, that dual processor machines doesoduipe a problem for normal use of the
system.

11.3 Overhead

We have chosen to start out by measuring the overhead thaduséd by the different process mi-
gration features. First we will measure the overhead intoed by the checkpointing facility, and
afterwards the migration overhead which denotes the prigeocess migration. Finally we will
measure the price for process migration feature in an idgsiem, where there is no need for mi-
grating any processes. The results from these test are tedzbin the following tests regarding
performance and stability of policies.

In general, there will not be running any user processesdndhting of overhead, as we wish to test
how much overhead the process migration feature introditself

11.3.1 Checkpoint Overhead

The checkpoint overhead is obtained by measuring the tinekés to perform a checkpoint in our
test example. The time it takes to perform a checkpoint dépen two things. First, the amount of
data that is to be saved is the main contributor to the ovelteesathe data is saved in a file. Second,

11.3 Overhead 87

the complexity of the data that is to be saved also influenicediine it takes to save data. E.g.
pointers must be analyzed in order to locate pointer aliases

We believe that the checkpoint size is the most influentietidiaas it includes disk access, and we
will therefore only vary this factor in the measuring of ckpoint overhead. When checkpointing in
the test problem, we can vary this factor by changing the arhofpixels to be calculated in a work
unit. This can be changed both by changing the horizontaluéen of the image and the number of
rows in a work unit.

In this test we will not consider the entire runtime of an gesient, but only the time it takes to

perform a checkpoint and compare it to the amount of datastsgtved. This is useful as we cannot
say anything in general about the runtime of an assignmenpeced to the amount of data that is
contained in its checkpoints.

Table 11.1 shows the amount of data that is checkpointe@itet example. We have only calculated
the amount of data that is directly imposed by the user, ah@R@®ST control variables such as the
extra variables in the work unit, that determines the typeéai# etc.

| Data | Size (bytes) |
Work unit 16
Result depends on the work unit data
Temporary data 52

Table 11.1: The data that is checkpointed in our test example

The size of the result can be calculated from the number @pihat the work unit covers. The size
of a result for a single work unit can be calculated using fibimula:

ResultSize = h_res - no_rows - 3 - 4,

whereh_res is the horizontal resolution of the image and_rows is the number of rows that is to
be calculated in the current work unit. Hendeyes - no_rows is the amount of pixels that is to
be calculated. Each pixel consists of three cdl@sd each color is a four byte vafueThe other
parameters does not influence the result of this test dyracttl will be changed in order to achieve
different checkpoint sizes.

From the results found in this test, we will setup expecteito the runtime of a complete assign-
ment. From the size of the checkpoints generated by theramsigt we can calculate the overhead
introduced by the checkpointing feature.

By comparing this overhead with the difference between tital tuntime and the runtime for the
same assignment where all checkpointing and resource megasats are disabled, we can determine
the price of the process migration feature if we are runnimgri ideal system where there is no need
for migration.

Results

In this section we describe how we have varied the resultisizeder to measure the time it takes
to perform a checkpoint. Table 11.2 holds the values reggrithage resolution, number of rows
per work unit, and the amount of data that is saved per chéckfmr each of the tests we have
performed.

The result of the test can be seen in figure 11.2. It can be segrthte amount of time it takes to
perform a checkpoint depends very linearly on the amountatéd that is to be saved, and it takes
about 1 second per 420 kb.

In order to set these results in perspective we will give aangxe. If we have a work unit that
generates a 1Mb checkpoint the time for performing a cheickpdll be approximately 2.5 seconds.

3The RGB color scheme is used.
4The colors can actually be represented by two byte valuethieuXTL library saves them as four byte integers anyway.

88

Test

| Resolution | Rows per work unit| Checkpoint size (kb)

160 x 120 12 22.6
800 x 600 10 93.8
1024 x 768 12 144.0

800 x 600 30 281.3
1024 x 768 32 384.1
3072 x 2304 12 432.1

Table 11.2: Specifications for the tests we have performed.

11

Checkpoint time (s)

0 50 100 150 200 250 300 350 400 450
Checkpoint size (kb)

Figure 11.2: The result from measuring the time it takes oo a checkpoint.

If it takes 10 hours to complete a work unit, and a checkpamerformed every 4 minutes, the
checkpointing feature will induce approximately 6 minutegrhead to the total calculation time of
the work unit. We believe that a six minute overhead is quiteeptable as it gives the advantage
that only six minutes of calculations can be lost, if a maehineaks down. A checkpoint for every
4 minutes is acceptable for fault-tolerance, but if the &jpeints are used for process migration
the interval must be lower. From equation 4.1 in section2itlcan be calculated that 2.5 second
checkpoint time requires a checkpoint every 95 secondsdtifyjua migration every 30 minutes.
With a 95 second interval the overhead will be almost 16 nd@awthich is a 2.6% overhead to the
total runtime. This is still an acceptable overhead but theoto gain an advantage of the increased
overhead process migration must provide better perfore#men if migration is not used.

11.3.2 Migration Overhead

The migration overhead is the price that is paid when a p&esigrated. In this test we will
determine this overhead, but only the part that is inducezltduactual migration, and not the part
that consists in lost calculation time due to migration ofodaler checkpoint. That is, we wish to
determine how much time it takes to migrate a process fromnoaehine to another in the FROST
system.

The overhead that this test will measure is very small coegbso the total running time and therefore
it is necessary to reduce any influencing elements. By reditbie total running time of the assign-
ment we will reduce the probability for intervening load lggs. It will, however, also make such
a load spike more influential on the running time, and we vhiéirefore perform a number of runs
for each measuring in order to determine an average valughdérmore we will measure the time

11.3 Overhead 89

per work unit instead of the total runtime and thereby remgvnfluence from as much unimportant
administration as possible.

We will conduct the test using only two nodes in the test systand only one node is used for
calculating the assignment at a time. First we will measheswork unit calculation times of the
assignment using only a single node such that no migraticmpexformed. As the execution time
of a work unit can vary, we will use the average value for adl thork units. Afterwards we will
make the same measurements but where a process is migratearuhforth between the two nodes
a number of times. This test is also mostly influenced by tlezkpoint size, and we have therefore
varied this parameter.

As there are not running any user processes during thisthesprocesses will not migrate by them-
selves. We do not wish to add any load on the nodes as it wik lir@luence on the runtime and
thereby give erroneous results for the migration overh&aeérefore we have added constructs in the
code that will force migration a fixed number of times, so tlvatcan make comparable tests.

In the measuring of runtime without migration using a singbele, all communication, such as trans-
ferral of work units and results, happens on the local noxé yet over the network. When measuring
the runtime when migration is performed, it is necessannguee that all communication, except for
the migration, happens locally. Hence, the task must be erséime node as the master, when it
returns a result. We will ensure this by always forcing annenember of migrations per work unit
as shown in figure 11.3. Hence, the task will always be on th&tenawvhen a result is returned and a
new work unit is received.

Node1 : Node:

Work Unit 1

Work Unit 2

Figure 11.3: Migrations is performed an even amount of timesrder to ensure that
work units and results are only transferred locally.

Even though we are forcing migrations at predeterminedgime cannot ensure that no time is lost
due to the time that has elapsed since last checkpoint. Weseviipensate for this by measuring
the time since last checkpoint and subtract these values tine total runtime. The total price for
migration will be measured in a later test.

Results

We have used the number of work units to vary the checkpor#t Bi this test. By varying the
number of work units, we vary the size of the result that i€gkdted in each work unit and hence,
the checkpoint size. The values used can be seen in table 11.3

The result can be seen in figure 11.4, where the time per nogreepends on the checkpoint size.

It can be seen that the migration price is linearly dependenthe checkpoint size except for the
measuring with a 77 kb checkpoint size. We believe that thes lower limit due to administration

overhead. From the figure we can see that it takes approXynht® second to migrate a 500 kb
process and a 420 kb process can be migrated in 1 second.

90

Test

| Work units | Checkpoint size (kb

48 77

24 154

12 308
6 614

Table 11.3: The values used for testing migration overh&dek checkpoint size de-
pends on the number of work units.

Time per migration (s)

0 100 200 300 400 500 600 700
Checkpoint size (kb)

Figure 11.4:

11.3.3 General Overhead

From the two previous tests we can estimate the checkpothtragration overhead for an assign-
ment. If we compare the runtime for an assignment in FROSHwitany migration or checkpointing
features with the runtime when the migration and checkjrugrfeatures enabled, we can determine
any additional overhead due to these features. By compé#rgse two measurements without per-
forming any migrations, we can determine the price of hayracess migration features in an ideal
system, where there is no need for migration. We will meathiseprice in this test.

We have used the values in table 11.4 for the parametersibeddén section 11.2.3.

| Parameter | Value |
Work units (WU) 6
Average time per WU 32 min
Checkpoints per WU 40
Average time between checkpoints 49s
Checkpoint size 154kb

Table 11.4: The parameter values used for testing the gemazehead induced by the
process migration features.

We have aimed towards an average time between checkpoiB& s#conds as specified in section
4.1.2. Itis, however, difficult to adjust the parametersri@gact value due to differences in the work
units. We have adjusted the average time to approximatebed®nds and it ranges from 19 to 80

11.4 Performance 91

seconds.

From the results of the test regarding checkpoint overheadam estimate that it takes approximately
0.36 second to perform a checkpoint of 154kb. With 40 cheitkpger work unit and 6 work units
we have 240 checkpoints. The overhead induced by the chtkmpcan therefore be estimated to:

240-0.36s = 86.4s

Hence, we can expect more than 86 seconds overhead in théttesheckpoint and migration code
compared to the test without.

Results

The runtime for the assignment without any checkpoint orratign features enabled was measured
to 6043 seconds on average. This means that we at least cact expintime of 6130 seconds when
checkpoint and migration features are enabled. The mewsgpofithis runtime was, however, only
6122 seconds on average which is only 79 seconds overhead.

We believe that this is because the checkpoint and migré¢iatures induce such a small overhead
that we cannot measure it precise enough with an assignnigchwas a runtime of 6000 seconds.
Due to the low overhead of approximately 1.3% of the totatiraa, we have not performed any tests
in order to achieve a more precise result.

Hence, the result of this test shows that if process mignasimot used, the overhead is not any larger
than the overhead from the checkpointing feature, whidhpstivides fault-tolerance.

11.4 Performance

The test of performance is very important to prove the agpiicty of the process migration features
we have implemented in the FROST system. The performantestesry similar to the testing of
general overhead, except that we allow migration in the seét@lf of the test.

11.4.1 Total Runtime

The first part of the performance test consists in measuhiaddtal runtime of an assignment with
influence from user processes and with all checkpoint andatian features disabled. We simulate
the user processes as described in section 11.2.2. Aftéswee perform the same test but with
checkpoint and migration features enabled. The differdrura the testing of general overhead lies
first of all in the influence of user processes. Furthermoradean extra node to the system which
makes migration possible. We only use three nodes in to@aider to simplify the output of the test

so that we can analyze it in order to determine the stabifithe policies.

| Parameter | Value |
Work units (WU) 12
Average time per WU 32 min
Checkpoints per WU 40
Average time between checkpoints 49s
Checkpoint size 154kb

Table 11.5: The parameter values used for testing the pedoce of the FROST sys-
tem with process migration. The average times are measuthdwload
on the machine, and can therefore be higher during the testin

The parameters used for the performance test is shown ia fdbb. We have increased the total
runtime of the assignment to achieve a more realistic restifte runtime is, however, still only
around 6.5 hours on a single node but due to time limitatioesnust limit the test in this way.

Test

The first part of the test consist in measuring the total matwithout migration as described above.
From the results of this test we will calculate an expectedinue of the assignment with the use of
migration.

Results

The first part of the test gave a total runtime of 11608 secondshours and 13 minutes using two
nodes. When the assignment is run without any additional, lthee runtime is approximately 9700
seconds. Hence, the load from the user processes inducedat®d0 seconds overhead or almost
32 minutes. During a three hour period the simulated usargsses will induce 60 minutes of heavy
load across two nodes besides the load spikes. Hence, théataln is not proceeding considerably
during the heavy load.

When enabling process migration, a process should maximafi for two minutes during heavy
load, before it is migrated. Hence, the heavy load will 8d@min = 6 minutes to the total runtime.
The 60 minutes consist in 30 minutes on each of the nodes. B0tes is 3 10 minutes, and hence,
3 - 2 minutes of runtime is lost. Furthermore, we expect a migrafor each of the six times of
heavy load where we Ioos@ seconds on average. The time added for performing the cbaukp
consist of12 - 40 - 0.36 seconds, as we have 12 work units with 40 checkpoints eacha amgle
checkpoint takes approximately 0.36 seconds to perfornesé&toverheads gives us the following
expected runtime:

4
9700s + 3 - 1205 + 6 - 798 +12-40-0.36s = 10379.8s

Hence, the migration feature should lower the total runtirfitnis assignment with approximately 20
minutes when user processes are introduced.

The result of the test turned out to be quite different thoughe total runtime of the assignment
with migration was 11858 seconds, 4 minutes more than withdgration. The main reason for
this added overhead can be found in the time that is lost dagidoation of old checkpoints. The
system migrated five times during the assignment and a t6thD80 seconds or 18 minutes was
lost due to these migrations and a maximum of 350 secondsmusalb minutes was lost in a single
migration. When there is no load on the nodes, there is onlget®nds between checkpoints on
average, but due to the low priority that the FROST assigrise running with, the user processes
slows down the assignment and hence, the time between atiatkncreases. The measuring of
resources should, however, be done every two minutes thenely allowing an assignment to be
slowed down for two minutes, but the thread measuring theuegs has been given the same low
priority as the assignments as described in section 9.1.1.

In the next section regarding the policies, we will analyzrtfer on the results from this test in order
to find ways of improving the performance.

11.5 Policies

In this section we will analyze the results from the perfontetest in order to determine if the
parameters of the policiegre optimal or if the system is performing inappropriate ratmns. First
we will summarize the different parameters and the effeey thave on the system behavior:

Interval: The interval between the measuring of resources has twoteffi decides the freshness of
the data that is used for making migration decisions on theratodes in the network. When
a node has measured its own load, it will compare it to theitdstmation received from the
other nodes, and it will at most receive new information facleinterval. It also decides how
often migration will be considered on the local machine, sinduld therefore depend on how
sensitive the system must be to load changes.

Runtime: The runtime of the resource measuring thread determinesittte of the snapshot of the

SResource measuring interval, resolution and runtime aedHresholds.

11.5 Policies 93

current resources. A longer runtime makes measuring lessts@ to small load spikes, but it
will require more CPU-cycles for the measuring.

Resolution: The resolution is used to smoothen the load spikes as dedaribsection 9.1.2. As
the runtime is very short, a higher resolution can discovadlspikes that are longer than the
runtime.

Thresholds: The thresholds determines how willing a machine is to m@atprocess. A large
threshold will require the resources on a node to be fartheyafrom the system average
before migration is considered.

In the following we will determine if some of these paramsteeed to be optimized by analyzing the
results from the performance test.

11.5.1 Analysis of the Performance Test Results

In order to analyze the results from the performance testave plotted the measured resources, the
migrations and the load from the user process into a singlptgfor each node. Figure 11.5 shows
the resource graph for node 1 in the first performance tesé Sfiikes and blocks at the bottom of
the graph shows how the user processes act. The spikestasitea minutes of load spikes and the
blocks indicate ten minutes of heavy load as described itioset1.2.2. In appendix B the resource
graphs for all the performance tests can be found and we gileseription of how the information
used to make the graphs is obtained.

14000

T — T
Available resources
Migrations -------

12000

To node 2
From node 2
To node 2

10000 b

8000 b

Resources

6000 B

4000 B

2000 - I 4
g S 1111 111 111 e

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Time (s)

Figure 11.5: The graph for node 1 in the first performance test

It can be seen from the figure that the policies react well angles in the measured resources. When
the first block of heavy load is encountered a process is t@gifaom node 1 to node 2. The resource
graphs for all three nodes can be found in appendix B.1, winenecan be easily compared. Figure
B.2 shows that the process from node 1 is migrated to node 8 thieee are lots or free resources on
node 2. In general the migrations are performed with reasgoracesses are migrated from nodes
with very low resources to nodes with plenty of resources. udoecessary migrations are made
taking the known resource information into account, andchehe implemented prediction scheme
performs well.

The system reacts well to changes in the measured resobdethie figures in appendix B.1 also
shows that the measured resources does not follow the addedfiom the user processes very
well. There are sometimes rather large delays from the loa & user process changes until it is
discovered by the system. In order to optimize this situmti@ will change the resource measuring
interval to 30 seconds instead of one minute and carry outvepeeformance test.

Test

11.5.2 Performance Test 2

The second performance test is carried out with the exace gaarameters as described in section
11.4.1. The lower runtime interval for the resource meagttiread gives us a new expected runtime:

4
9700s + 3 -60s + 6 - 798 +12-40-0.365 = 10199.8s

The total runtime in the second test was 11319 seconds whahimprovement of almost 9 minutes
compared to the first test and almost 5 minutes better tharutiteme when migration is not used.
It is, however, still 18.7 minutes slower than the expectattime. During the test there were five
migrations which gave a total loss of more than 14 minutek wimaximum of more than 7 minutes
for a single migration. The other four migrations were albadthe expected average of 24.5 seconds.

The resource graphs for this test can be found in section B2y mostly shows a more correct
measuring of the resources compared to the addition of lomu the user processes. There is,
however, still some delays in the measuring of resources.

Due to the large loss of calculation time when a process isated, it seems that the resource mea-
suring thread does not run with the intervals specified. Tiieeexecution of the resource measuring
thread runs with lowest priority, which includes the pasttdetermines the interval between the mea-
surings. This can be the problem to our delayed measurings tte load is high on a node. We will
perform a third performance test where we change the resaneasuring thread to only run with a
low priority when the actual measuring of resources is pentd.

11.5.3 Performance Test 3

The third performance test was also carried out with the saanameters as the others. The param-
eters of the resource measuring test was also the same as se¢bnd test, except for the priority.
The changing of priority has not changed the measured ressunut only increased the likelihood
that the thread will run with the specified intervals. As nograeters are changed from the second
test we can expect a runtime of approximately 10200 seconds.

The third test showed excellent performance with a runtim&0370 seconds which is less than 3
minutes more than the expected runtime. Hence, the impledgmocess migration features shows
very good performance as it decreases the total runtimematte than 20 minutes thereby removing
2/3 of the overhead induced by user processes when procgsstion is not used. There is however
still possibilities for optimization.

If we look at the time that is lost due to migration of old chpolts we see that 481 seconds is lost
in 8 migrations. They all lies between 33 and 104 secondsiwisicnore than the 24.5 seconds we
have expected on average. If the loss per migration can liapt to reach the average value, the
total runtime can be decreased with almost 5 minutes giving total of 4% overhead compared to
when process migration is not used in a non-dedicated system

The resource graphs for this test is shown in appendix B.2evieey can be compared against each
other. First of all they show that the measuring of resouisary realistic compared to the load
induced by the user processes. Secondly, they show thatoliwep act very well, as processes
are migrated away very shortly after the heavy load is stiaated never due to the load spikes. No
unnecessary migrations are performed, except for therdast iode 1 to node 2 which is just before
the assignment ends, but we have not taken this into accotim ipolicies.

11.6 Test Conclusion

In general the tests have shown good results. We have meakereverhead from the checkpointing
feature and the price of migration which has proved to béyfaiexpensive compared to the possibil-
ities that is provided. The performance tests showed a prolii the implementation of the resource
measuring thread, but when it was corrected the systempeefibvery well.

There is, however, one issue that should be considered. vidrteead of checkpointing is small in the

11.6 Test Conclusion 95

sense of fault-tolerance, but if the amount of data to belgh@ioted is large it induces a noticeable
overhead. Furthermore the performance tests has provetthtéhtime lost when a process is migrated
is larger than expected mainly due to the decrease in exacspieed when a node is heavily loaded.
This increases the time between checkpoints and therebtinteethat is lost when a process is

migrated. As the process is migrated to a machine with maeurees it will take the same time to

catch up with the lost time, but the time used on the source still wasted.

In section 3.3 we stated that the use of migration points dowlt be an advantage in FROST as
the time lost by migrating an old checkpoint was insignificahhe tests of the system has shown,
however, that this is not entirely true. In section 11.3.1gawe an example which showed that
approximately ten minutes can be saved due to less fregheakpointing when checkpoints are only
used for fault-tolerance. Furthermore the time lost perratign would be92—5 seconds on average,

which has shown to be higher in practice.

On the basis of these tests we believe that it will be an adganto include the use of migration
points to the FROST system. As noted earlier, migration goimduce a much smaller overhead,
when migration is not performed and therefore they can beegolanuch more frequently in the
source code. When checkpoints are only used for faultdale, they can be performed more seldom
thereby inducing a smaller overhead. When using migratmintp there will not be lost any time
when migrating due to calculations that need to be perforiwézk. The price of the migration will
be the time to serialize and de-serialize data and trartséen to the destination node.

Tests have been performed which shows that the processtioigfaature can provide increase in
performance when the system is used in a non-dedicatecoanvént. Further testing needs to be
performed in order to verify the results of these tests whendystem is used with different types
of assignments and with more random user processes. Fudheit is necessary to test the perfor-
mance when more nodes are introduced to the system. As lleddn the beginning of this chapter
the system has not been designed to be a scalable solutiadhexetbre testing the scalability at this
point is not reasonable. The following chapter will consitie scalability issue in more depth.

CHAPTER 12

Scaling FROST

The philosophy of the FROST system is to provide a large amnaiicomputer power without having
access to a supercomputer. In order to be able to supply tidsiat of computing power a large
number of computers must be used. The present version ofREESH system is only scalable to a
local area network. A larger number of computers are mostyeasd cheaply accessed through
the Internet where their unused computing cycles can biedilin an approach resembling the
SETI@home system. In SETI@home milliéref slaves connect to a single central master, obtain a
work unit which they compute and then they return the resaltee master. In order to make FROST
an applicable system it is necessary to consider differaysvof making the system scale Internet
wide.

There are some very important differences between SETI@Hdw systems and the FROST system
which needs to be addressed when considering scaling in FRO8e main difference between
FROST and SETI@home is that the FROST system allows alléivesin the system to be masters in
addition to slaves. This means that we cannot rely on a diediczntralized server for administration
of all the tasks in the system. Furthermore, there is no Idimgt to the sizes of the computers in
FROST. Any computer capable of connecting to the network@mhble of running the FROST
software is able to act as both a master and a slave. This aaasihat the FROST system cannot
know anything about the computing power of a computer pdarbeing introduced into the FROST
system. Itis a demand though that a master in the FROST sydteoks whether a node is capable
of containing another task, with regard to memory usage asidsphace, before it actually sends the
task to that node. It is obvious that a task should not be seatrtode without room for another
process. Additionally it is necessary to ensure that a mastdways able to keep up with the data
flow to and from itself and to store the data and the resulthefassignments it is processing. If a
master is not able to do this it should not be allowed to staytraore assignments.

Another problem with scalability of the FROST system is thatcurrentimplementation uses broad-
cast to announce the availability of machines. Broadcassages do not spread across the Internet
and all machines will therefore not be reached. It would ptiipalso pose a problem if they could be
reached via broadcast as the amount of data needed to kekptial machines would be enormous.

It is, however, a problem if not even a single machine can behred, or if the system is divided in
subnets that cannot reach each other.

The solutions to make FROST scale can be identified as thenfiold):

* Removing the bottleneck induced by the master

» Making a scalable information sharing solution

In the following we will consider how these solutions can bmpiemented in the FROST system, in
order to make it scale to wide area networks.

12.1 Distributed Master

In order to remove the bottleneck that the master inducdst&ROST system, we first need to iden-
tify the source of the problem. The problem lies in the mas#drility to handle the communication

if thousands of slaves are used in a calculation. All comication with the slaves goes through this
single master which is a huge bottleneck either becausesafétwork connection or the speed of the
master, whichever is slowest. Hence, the problem can bdifidehas being the task of the master

Ihttp://setiat home. berkel ey. edu/total s. ht

97

Scaling FROST

growing above the capacity of a single workstation. Of ceubhés depends on the assignment being
solved, but the more computers that is utilized for a singl@gnment the more the master will be a
bottleneck.

The only solution to this problem is to distribute the masesk to several machingsn the FROST
system all machines can already function as a master, buishybdting the master task is meant
dividing a single assignment into a number of smaller pants letting different masters take care
of each of these parts. Hence, several machines act as arrfioagiart of an assignment. This will
share the communication between master and slaves betwesnlzer of machines, hence, reducing
the bottleneck of the master. Eventually, the results magsieburned to the master that started the
assignment, but this can be done upon request of the masgeritvis ready for it.

Distributing the master task requires further analysis design which we do not wish to address
in this project, and therefore making the FROST system supdistributed master is laid out as
further work.

12.2 Information Sharing

Better performance can be achieved by introducing more sigd¢he system. The problem here
is that the more nodes we introduce into the current implaat&m of the FROST system the more
bandwidth we use for administrative tasks. The currentém@ntation of FROST is limited to a local
area network (LAN) on which we can use broadcast for shaiagl information and for detecting
new nodes in the system.

The possibilities for sharing information such as the st#tenachine3 is very important to the
scaling of FROST. As noted above, it is not realistic for eathine to hold information about all
other machines in the system if it is to scale Internet-widence, the current usage of broadcast for
sharing the availability of machines has two flaws. It faflscrossing network boundaries, thereby
splitting the system, and it aims towards everyone holdirfigrination about everyone.

In the following sections we will consider new approachethtoway FROST communicates so that
it may be made to run on a larger scale. Three approachesar ghd discussed, a multi-cast
approach, a multi-cast approach with partitions and a s¢a@ghbor approach. Finally a short
discussion of the problem imposed by firewalls is given.

12.2.1 Multicast

As stated above, the current implementation of FROST useadicast for communication. The
problem of using broadcast for communication is that wheaiisg the FROST system to be usable
Internet-wide a large part of the communication is goingéabross subnet boundaries. As routers
generally do not allow broadcast to pass a subnet boundamgrevaot able to keep in touch with
all the nodes in the system, thus limiting the number of nadelose that are reachable via broad-
cast. Therefore we have to consider an alternative way trilalising information within the FROST
system.

The first solution that comes into mind is multicast as seefigure 12.1. Multicast has the same
advantages as broadcast, and if hardware that supportastilis used, a multicast message does
not bother computers which are not in the FROST system, wikeliit is necessary for each node to
check whether a multicast message was meant for it or not. @s modern network interface cards
supports a multicast filtering this is not a problem thotigh

Because of the great similarities between multicast anddwast one could directly replace the
broadcast methods with equal multicast methods.

Multicast provides better possibilities for a large numbémodes in the FROST system to talk
directly to each other, but does, however, share some prbiéth broadcast. Multicast is supported
in the Internet Protocol (IP), but as a best-effort protoudiere delivery to all members of a group

20r add a server to the system handling the master assignmente have already excluded this solution.
3The state of a machine consists of whether it is online omaffiind if it is online, the load of the machine.
“http: // ww. er g. abdn. ac. uk/ user s/ gorry/ cour se/ i ntro- pages/ uni - b- ncast . ht m

12.2 Information Sharing 99

Router

Internet

Router

Router

=z

Figure 12.1: FROST using multicast across the Internet.

is not guaranteed [Tan96]. Furthermore, as the number aésiottrease in the FROST network the
amount of load information and other types of communicatiandled by multicast increases. This
has an effect similar to those encountered when using besadeamely the amounts of data to be
handled gets too big. The data-structures containingmndédion about all other nodes grows linearly
with the number of nodes in the system. This may not sound ahrout if millions of nodes are
present in the network the amount of information containedeery computer about all the other
computers is massive and table lookups would take longefd@rgkr, thus rendering the system
useless.

12.2.2 Multicast with Partitions

As stated above, multicast in its pure form has the same isddges as broadcast. But multicast
is generally a good idea as every, or at least many, node®isytbtem can be reached easily and
the messages which are sent between different nodes doegedtto be processed by computers
which are not part of the FROST system. Because of these wdyesit is worth reconsidering the
multicast approach and finding a way to alter the commurdogtatterns to introduce more flexibility
into them. An approach which holds greater promise than purkicast where everyone can talk to
everyone, is to still use multicast but then split the sysieto partitions as shown in figure 12.2.
Then a number of multicast channels could be used, one fonumitation between the routers and
one internally in each of the different partitions.

A problem with this approach as well as the pure multicasteggh is that in order to enable the
nodes to communicate they have to agree on a multicast ch@nuse. There are several ways to
solve this problem. One way is to obtain a permanent multiaddress and hardcode it into the
system, but that solution presents more problems than &alyas as it is not very flexible. Another
way is to let the user specify the channels used. This aphrisanore flexible but it demands that a
user knows the channels that are used by all the other node &, hhe FROST system is to be used
Internet-wide a multicast address has to be used that nolse@ises. A third way of doing it is to
allow the use of broadcasting inside a partition. The achgahere is that all nodes inside a partition
can easily obtain knowledge about all the other nodes arsldgtee on a multicast channel so that
nodes which are not part of the FROST system are not bothgréduehtraffic. The communication
between the routers present more of a problem as they casaditraadcast as a means for agreeing
on a multicast channel. A way to get around this could be tcausentral master for exchanging the
channel information. Such a master could be a common IR@8aor it could be a dedicated master
in the FROST system. The problem with a central master isithatits the system by introducing a
single point of failure so another approach than partittbmeslticast might be worth considering.

SInternet Assigned Numbers Authorityht t p: / / wwv. i ana. or g
6http://www. | ivinginternet.com ?r/rw htmandhttp://rfc.sunsite.dk/rfc/rfcl459. htn

100 Scaling FROST

e

FROST Router %

L

Master

Figure 12.2: FROST using partitioning, routers and mugtica

An advantage with this solution is that the amount of datedhandystem is limited, as the FROST
routers can collect the average load of the partitions aadestine information with other patrtitions.

The load of the individual machines will not be availableass different partitions, but it is a reason-
able limitation as we cannot expect to make decisions onmmdtion from thousands or millions of

machines.

12.2.3 Nearest-Neighbor

If FROST is supposed to scale Internet-wide, we have to make dimitations. In the solution using
multicast with partitions, the presence of routers in oriegather subnets that are not connected
directly is required. Furthermore these routers have thk td gathering average load information
from the different subnets, thereby limiting the amountaffedin the system, but also removing some
information with regard to the load on the individual maasnDuring a migration, this has the effect
that we may not find the least loaded node in the entire systgmather a node that is sufficiently
less loaded than the current node.

The nearest-neighbor approach is an approach which eliggrthe problem introduced by using
broadcast and multicast - flooding channels of communinatio addition to this it gets around the
problem with a single point of failure introduced by usingragée master in the partitioned multicast
approach, but it will also make decisions based on a subgbeafiformation about machines.

The main idea is that every node only knows about a relatiseigll number of other nodes which
we call neighbors. Neighbors should only be located a fewlmemof hops away from each other
to reduce the amount of latency introduced if the distances@ great. A node can exchange
information directly with its neighbors using unicast aswh in figure 12.3.

When a node gets overloaded it will send a request for a lésaded node, and add its own load to
the request. Figure 12.4 shows an example, where a nodeoaithllO requests a lesser loaded node.
It has chosen a hop count of 2. The hop count does not denotrithber of hops through routers,
but only hops through nodes in the FROST system. The FROS€&mysould keep track of these
hops by using a special hop field in each message. When a teqtiess at a node, it decreases the
hop count by one and retransmits the request, with the sstalfehe local load and the load of the
requesting node, if the maximum hop count is not reacheds ddm be seen in figure 12.4 (a). Replys
are returned from nodes that has a smaller load than thesegflideach node only forwards the reply
with the smallest load back to the requesting node as shovigure 12.4 (b). The address of the
node with the smallest load is also returned to the requgstinle, so that the migrating process can
be transferred directly to the destination node.

The nearest neighbor solution provides a scalable systeenenthe scale of the system can be set

12.2 Information Sharing 101

O O<O
N O

() Node \\O

<——= Information sharing O

Figure 12.3: The nearest-neighbor approach.

? ®
N 90 N 90

O Requesting node
—= Request

——= Reply

Figure 12.4: Finding a lesser loaded node in the neareshheigapproach using a 2
node hop count. a) A request for a node with lesser load tharetuest-
ing node is rippled to nodes two hops away. b) Nodes only ripheir
load is lesser than the requested.

dynamically by changing the hop count e.g. when requestiaghimes to solve the assignment. If a
large assignment needs to be solved it can increase the bhap toereby reaching a larger number of
machines. Furthermore the amount of data transmitted legttie machines is kept at a minimum,
as only relevant data is transmitted. There are no need fogusoadcast or multicast as all com-
munication can be handled with unicast, but the solutiomireg that a small amount of neighbors is
known.

There are some issues that need to be considered furthbis ifalution is to be used. E.g. if all
neighboring nodes have a higher load than the requesting, i@dhow long should a node wait for
an answer, how many hops should be used when sending oustsgaied how do a node keep track
of the online/offline state of the nodes it uses as slaveshi&sg not the solution we consider in this
project, these problems will not be addressed any further.

102 Scaling FROST

12.2.4 Firewalls

An additional problem when considering the scaling of FRGS1hat there is a firewall between
most local networks and the Internet. We have to take intsicenation how FROST nodes can be
allowed to communicate through these firewalls. A possiblat®n to this is to use the SOAP pro-
tocol’. This is a protocol that allows FROST communication messag®e piggybacked on HTTP
messages which can be sent through a firewall and authesttiosing standard HTTP-authentication
mechanisms. It requires that the firewall allows standatda@ing HTTP connections as described in
Bolcer et al. [B"00]. They describe an approach where nodes behind firensdlEvent Relayss
temporary storage of messages to computers behind othealfise Each computer then contacts this
event relay regularly and requests any cached messagésToeiproblem with event relays is that it
requires a dedicated server to act as an event relay as thenaofawommunication with these relays
can be large if a high number of computers wishes to conneathier computers through firewalls.

12.3 Summary

In the previous sections we have provided a number or pessidiutions for making FROST a scal-
able system. In order to make FROST an applicable solutiothfeintended usage, some of these
solutions must be implemented. Making a system scale letevide is a non-trivial issue which
requires more research with regard to the FROST system. Btneasolutions is a step on the way
with regard to moving the bottleneck imposed by the mastdrraaking the system cross network
boundaries.

The distributed master and sharing of information is the mmast important aspects of the scalability
issues, as they form the basis of a scalable solution. Bygthgthe way information about machines
is shared, and the amount of information that is shared vétly.regard to number of known nodes

per node, it is necessary to change some of the policiesrtsig this project. They are designed
on the basis that all information about all the nodes in tletesy is known when decisions are taken.

Hence, making FROST a scalable system is very importantamahe intentions of the system but
it requires some effort. Due to time limitations it has notbdandled in this project and is therefore
laid out as further work.

“nttp://ww. devel op. com soap/

CHAPTER 13

Conclusion

In this project we have concentrated upon the design andeimgitation of process migration in
FROST in order to obtain better performance when using regiedited machines and we have suc-
ceeded in incorporating process migration facilities ithte existing version of the FROST system.

13.1 Design and Implementation

The process migration feature has been designed and implechas a part of the FROST system.
The migration facilities works in user space in order to @asihe possibility of a wider area of
distribution as the process migration facility is a parttoé application level program FROST. Ad-
ditionally by placing it in user space we have made it possibluse an indirect extraction approach
which is necessary in order to allow FROST to function in &hajeneous environment.

The support for a heterogeneous environment requiresadenmdling of the process state e.g. with
regard to the runtime stack which can be very dependent améoline architecture and the compiler
used. For this purpose we have constructed the control staeke we keep information regarding

method invocations and the point of execution from wherettoeess must be restarted. The control
stack can be transferred between machines independertigiofirchitecture and operating system
which makes it possible to continue execution from the egagit in the code where the checkpoint
was made.

The indirect extraction approach requires insertion ofcgpeint and recover code into the user
source code and therefore it provides poor transparencyrdar to remedy this situation a pre-
processor has been designed which is thought to handlesalttian of checkpoint and recover code.
In order to obtain an optimal placement of checkpoints inuber code we have chosen to let the user
choose the points where they should be placed.

In order to provide possibility for fault-tolerance, whighimportant in a system performing long
term calculations, we have implemented process migrasaomgucheckpoints.

A number of policies have been designed to secure good peafuce in relation to the expected

use of the computers by the local users as we have descritsatiion 4.1.2. The policies are the

heart of the process migration features as they define howgides are made when a process is to
be migrated. A very important design aspect consist in énguihat the system is stable and do not
perform any unnecessary migrations. Still they must beisem&nough to take action when a user
adds heavy load to the node. Furthermore we needed to desjggcal way of measuring the load

on a node due to the low priority that the FROST assignmeetsuarming with. In order to secure a

stable system we have implemented the main parts of therdsbjaplicies.

In the following section we will describe the results of thesiyn and implementation of process
migration in FROST. We will both consider the results of thgbrtant decisions made in the design
and the results from testing the system.

13.2 Results

The support for a heterogeneous environment in the procegation features has been fully imple-
mented but it has not been tested across different architext There are, however, no architecture
dependent elements and all data is saved in an architeotlgpéndent manner and so it should not
be a problem to migrate processes between different acthits.

Tests have shown that the way load is measured in FROST, paraiglg available resources as
described in section 5.1.1, is a good solution. This is b&tbalbise it provides us with a valuable

103

104 Conclusion

tool on which further decisions can be based and becauseahét s performed actually provides
us with the resources that a process can expect to have doc&asthermore the parameters of the
resource measuring was tuned during the tests to give tiem\excellent performance as the system
acts to change if it is needed assuming the user patternswesdeacribed in section 11.2.2.

The prediction approach described in section 5.4.1 whicisézl to ensure that the FROST system is
always in a better state after a migration is performed tharas before, has shown to be a valuable
tool for the stability of the system. The most important s&ithat it prevents unnecessary migrations
when the idle load of two machines are equal. Without theiptied feature, a process would migrate
back and forth between the two machines as the other macluinkg\always be seen as having more
available resources. The feature predicts that the ressusdl not be higher on the destination
machine and therefore the migration is not performed. lugthbe noted that it is possible to create
a user pattern which will make the system migrate back artth #ug. by adding load spikes on the
different nodes interchangeably just long enough to justimigration. No matter which parameters
we use in our policies, it is possible to construct such a pagern. In order to remedy this situation
adaptive policies should be considered. Such policiesdvmadct to the present user pattern instead
of reacting according to a pre-determined plan and they evthuis be much more flexible than our
present solution.

We have carried out a few tests in order to check the correstoéthe implemented features. The
results of these tests have not been documented in thistigytoour general observation is that the
features work as expected.

The results with regard to checkpoint and migration ovedhglaows a linear increase in time in
relation to the size of the checkpoints which we believe ie@sonable result. The measuring of
general overhead has shown that the price of the procesatiigifeatures in an ideal system is no
more than the overhead of checkpointing.

The performance of the system has been tested by simulating-aledicated environment. The first
test offered poor performance as the total runtime of thegasgent was four minutes slower than
if process migration was not used. Through optimizatiorsedeaon the results of the first tests we
achieved a better performance with a runtime that was 20 te@faster than the total runtime when
process migration was not used. Due to the implementedgiiedialgorithm the system behaved
very stable with no unnecessary migrations during the tests

The conclusion to the tests was that it will be advantagemimplement migration points instead of
using checkpoints for migration in order to achieve beterfgrmance, as it is possible to limit the
overhead of the checkpointing feature and remove the oadrfrem performing the same calcula-
tions twice.

13.3 Further Work

In this project we have designed and implemented procesgatitg in the FROST system. Our
work has shown that in order to obtain an optimal system batmfa users point of view and from
a performance point of view there are some topics that nebe fooked into. In the following we
state these topics and why they must be considered. Furtihenve state some of the design issues
that should be considered when designing the topics.

Migration points: The implementation of migration points into the FROST sys&hould be con-
sidered. Both because our tests indicate that more perfaren@an be gained but also because
it is a fairly trivial task. When a migration point is used fprocess migration the procedure
is very similar to performing a checkpoint. The only exceptis that the migration point
is transferred directly to another node where the checkpsisaved to disk. The advantage
of migration points over checkpoints is that the procestestaonly extracted when the sys-
tem has chosen to perform a migration when using migrationtpowhereas checkpoints are
performed fully every time they are encountered.

The use of migration does, however, also have a disadvarisgenode cannot migrate a
process before a migration point is encountered even thatglheavily loaded. This means
that if there is too long between migration points they hdnedpposite effect as the process

13.3 Further Work 105

will receive less resources during a longer period and thedecreasing the performance. As
migration points introduce very little overhead into thestgm they can be inserted into the
source code with more frequent intervals so that they arfopaed more often and thus raise
the flexibility of the system.

Fault-tolerance: In order to fully implement fault-tolerance features ink@tFROST system it has
to be ensured that the data-structures in the master antbhifeecontaining information about
the node and the tasks it is currently executing is saveditibdally the fact that the hard disk
on the slaves cannot be seen as stable storage for the climtskpuust be considered. In order
to ensure that these checkpoints are preserved in the besibjfmway a replication scheme,
where checkpoints are distributed between masters, sheutdnsidered. In addition to this a
protocol for handling machine breakdown is needed so thaiales keeping checkpoints for
the failing node can agree on who should restart the tasks.

Preprocessor: In this project we have designed a preprocessor for enstrangparency of the pro-
cess migration features in relation to user assignments.préprocessor have been designed
to support the insertion of checkpoints in recursive fumtsi but at present it is not supported
by the checkpointing facility which should be updated ifuesive functions are used. If mi-
gration points are used it can be an advantage to supporatitgrinside recursive methods.
Implementing the preprocessor is a relatively simple task id should therefore be done in
order to make it easier for a user to create tasks for FROSIudimg the locating of neces-
sary variables should also be considered as an optimizatitre system and it should thus be
included into the design and implementation of the pressace

Scaling: The present version of the system does not scale to an Interde platform due to the
way it handles resource information and the way the masteawes with regard to general
communication. The problem of making it scale is non-tiiead some considerations with
regard to this is made in chapter 12. In order for the systeivetavidely usable it is neces-
sary to make it scalable. When the system has been madels¢aldbitional tests should be
performed with an increasing number of nodes in order to ssethe system reacts to being
scaled and in order to see if it affects the performance inveany.

Test of the system in a realistic environment: In order to ensure that the system is able to handle
realistic user patterns without becoming unstable it hdsettested under realistic conditions.
This can be done by installing FROST on several workstatioasnormal office environment
and test how the system reacts to the usage of the machines.

Bibliography

[ABLT95] José Nagib Cotrim Arabe, Adam Beguelin, Bruce Lowekaffgk Seligman, Mike

[App98]

[ARQ93]

[B+00]

[Ct01]

[Cod93]

[CS96]

[CTY99]

[ELZ86]

[FWMO4]

[GKO2]

[HOS99]

[Kun91]

[LTBL97]

Starkey, and Peter Stephan. Dome: Parallel programming@iexogeneous multi-user
environment. Technical Report CS-95-137, 1995.

Andrew W. Appel. Modern Compiler Implementation in Jav&Cambridge University
Press, first edition, 1998.

R. Andonov, F. Raimbault, and P. Quinton. Dynamiocgramming parallel implemen-
tation for the knapsack problem. Technical Report PI-7RISKA, Campus de Beaulieu,
Rennes, 1993.

Gregory Alan Bolcer et al. Peer-to-Peer Architectured the MAGI™ Open-Source
Infrastructure. ht t p: / / www. endeavor s. conl pdf s/ ETI %20P2P%20whi t €%
20paper . pdf , December 6th 2000.

George Coulouris et alDistributed Systems - Concepts and Desigwadison-Wesley,
third edition, 2001.

P. D. Coddington. An analysis of distributed conipgisoftware and hardware for appli-
cations in computational physics. Rioceedings of the Second International Symposium
on High Performance Distributed Computing (HPDG-8pokane, WA, 1993.

K. Chanchio and X. H. Sun. MpPVM: A Software SystemNon-Dedicated Heteroge-
neous Computing. IRProceedings of the International Conference on Paralleld@ss-
ing, August 1996.

W.F. Wong C.P. Tan and C.K. Yuen. tmPVM - task migkd¢aPVM. InProceedings of
the 2nd Merged Symposium [IPS/SRPRges 196-202, 1999.

Derek L. Eager, Edward D. Lazowska, and John Zamorjsdaptive Load Sharing
in Homogeneous Distributed System$EEE Transactions on Software Engineering
12(5):662-675, 1986.

Geoffrey C. Fox, Roy D. Williams, and Paul C. Messinarallel Computing Works
Morgan and Kaufmann, first edition, 1994.

Michael Platz Glibstrup and Lars Kringelbach. FROSA Distributed Heterogeneous
Calculation Platform. Technical report, Aalborg Univéysi Department of Computer
Science, January 2002.

Janus Hardwick, Robert Oehmke, and Quentin F. Stduyprogram for sequential al-
location of three bernoulli populationsComputational Statistics and Data Analysis
31:397-416, 1999.

Thomas Kunz. The Influence of Different Workload Dstions on a Heuristic Load
Balancing SchemelEEE Transactions on Software Engineeriig (7):725-730, July
1991.

M. Litzkow, T. Tannenbaum, J. Basney, and M. LivhZheckpoint and Migration of
UNIX Processes in the Condor Distributed Processing Systethnical Report #1346,
University of Wisconsin-Madison Computer Sciences, Apgb7.

107

108

BIBLIOGRAPHY

[MDP*00] Dejan S. Milojicic, Fred Douglis, Yves Paindaveine, IRicd Wheeler, and Songnian

[PE97]

[Per9g]

[SB94]

[Sed92]

[SHO8]

[SKS92]

[Sri95]

[Sta9s]

[Tan9s]
[Tan96]

Zhou. Process migratioMCM Computing Surveys (CSURBR(3):241-299, 2000.

James S. Plank and Wael R. Elwasif. Experimental #xasat of Workstation Failures
and Their Impact on Checkpointing Systems. Technical Rep&iCS-97-379, Depart-
ment of Computer Science, University of Tennessee, 1997.

Jost'e Orlando Pereira. XTL - The Externalizatieeniplate Library. Internetit t p:
/I xtl.sourceforge. net/xtl gui de. pdf,1999.

E. Seligman and A. Beguelin. High-level fault toleca in distributed programs. Techni-
cal Report CMU-CS-94-223, School of Computer, Sciencen&€gie Mellon University,
1994.

Robert Sedgewicllgorithms in C++ Addison Wesley, first edition, 1992.

Peter Smith and Norman C. Hutchinson. Heterogenpoarsess migration: The Tui
system.Software Practice and Experien@8(6):611-639, 1998.

Niranjan G. Shivaratri, Phillip Krueger, and MukeSinghal. Load Distributing for
Locally Distributed SystemsComputey25(12):33-44, December 1992.

R. Srinivasan. RFC1832: XDR: External Data Repnéstion Standard. Internet,
http://ww. fags.org/rfcs/rfcl832. htnl,h 1995.

William Stallings.Operating Systems - Internals and Design PrinciplBgentice Hall,
third edition, 1998.

Andrew S. Tanenbauristributed Operating SystemBrentice Hall, 1995.

Andrew S. Tanenbaun@omputer NetworksPrentice Hall, third edition, 1996.

PART V
Appendix

APPENDIX A

Word List

This appendix explains some of the words used in the reporheSof the definitions are taken from
[GKO02].

Calculation code: The source code that is executed to carry out the assignméntludes also the
methods for splitting and combining the data.

Assignment: An assignment is the work that a user wants the FROST systezarty out. It is
divided into several tasks that is distributed to a numbesl@afes. It contains the calculation
code and the data that is to be calculated upon.

Task: A task is a part of an assignment that is to be solved on a singlhine. During a task, a
single work unit of data is processed.

Work unit: A work unit is the data that is used for processing a single. ti$iolds one or more data
lumps.

Data lump: A data lump is the smallest amount of data distributed in yistesn. It contains one or
more values of the same simple data type.

Simple data type: A simple data type is a non-composite type such as an intedkrating point.

111

APPENDIX B

Test Results

This appendix contains the resource graphs which show thtseof the performance tests described
in section 11.4.

The resource graphs shows the measured resources duringjr@essignment. One resource graph
for each node used in the tests has been made and hencegallgifaphs from a test should be

compared against each other. For convenience all graphsdrsingle test have been placed on the
same page.

All Migrations to and from a node is indicated on the resougcaphs so that it can be checked if

there is any unnecessary migrations. In the bottom of eaaphgthe pattern of the user processes is
shown. Spikes denote load spikes and a block denotes that loeal is added to the node. The user
process patterns are thoroughly described in section2.1.2.

The information needed for constructing the graphs has be#ected by a logging process on a
separate machine. Each node broadcast messages with ahmatibn needed such as measured
resources and when checkpoints or migrations are perfomhéch is then collected by the logging
process. The resources are broadcast to the logging practessame time as it is broadcast to the
other nodes in the system, and the graphs therefore showetteeas the system exactly as it is seen
from a node in the system.

113

114 Test Results

B.1 Performance Test 1

14000 T T
Available resources
Migrations ---
«
« P ~
12000 g 3 2 b
g < g
E § 2
w
10000 7
o 8000 7
8
5
o
3
Q
& 6000 i
4000 7
2000 ﬂ—ﬂ_’i 4
N 1] 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
. Time (s)
Figure B.1: Node 1
14000 T T
Available resources
Migrations ---
o A - R ©
@ (] Q
12000 - 2 3 2 3 3
8 e 8 2 2
E § E § §
w w w
10000
« 8000
8
5
o
3
Q
& 6000 i
4000 a
2000 u
v t
| L ‘ |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
. Time (s)
Figure B.2: Node 2
14000 T T
Available resources
Migrations ---
RN ~
Q
12000 - 3 E
g e
§ 2
LL
10000 A
« 8000 a
8
5
o
3
Q
& 6000 i
4000 a
2000 B
I U
ol L1 ALl T 1. ok w1, [

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Time (s

Figure B.3: (l\)lode 3

B.2 Performance Test 2 115

B.2 Performance Test 2

14000 T T T
‘Available resources
Migrations |-------
™
o [} o
12000 g 3 g
2 : g
e § E
[
10000 T
o 8000 T
3
5
o
2
Q
X 6000 - i
4000 - 7
2000 i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
} Time (s)
Figure B.4: Node 1
14000 T T T
Available resources
Migrations |-------
™ il o2
[} @
12000 |- o 3 8 3
e c gl |2
2 § el |§
w w
10000
o 8000
3
5
o
2
Q
X 6000 -
4000 - 7
2000 i
L i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
) Time (s)
Figure B.5: Node 2
14000 T T T
‘Available resources
Migrations -------
o~ - N
[} @
12000 - 3 2 3 h
2 8 e
§ E §
w w
10000 T
o 8000 T
3
5
o
2
Q
X 6000 i
4000 - 7
2000 H i
L
ol L LNl 1. ook o ‘

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Time (s,

Figure B.6: (I\)lode 3

116

Test Results

B.3 Performance Test 3

14000 T T T
Available resources
Migrations ---
o~ b o~ —% o~
@ @
12000 |- 2 3 3 8 8
e < g H g
2 § e § 2
w w
10000
o 8000
8
5
o
a
2 1”|_r'L,—.J_”“|J_“|-|~”'L—r
& 6000 5
4000 -
2000 ’.‘
0 : L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
. Time (s)
Figure B.7: Node 1
14000 T T
Available resources
Migratio
o — o I
@ (] ~
12000 - 3 3 3 E 3|
=] < o < =] =}
2 c 2 £ 2 e
P S ° S ° 3
[[<)
10000 w
« 8000
8
5
o
a2 U il
Q
& 6000 H H s
4000 -
2000 =
Il LI L
o i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
. Time (s)
Figure B.8: Node 2
14000 T T
Available resources
Migrations ---
- Ll o ot Lo
@ @ Q
12000 3 8 g g 3 4
c g < g c
§ 2 § 2 §
w w w
10000 q
« 8000 B
8
5
o
a v { WU R
Q
& 6000 B
4000 4
2000 H B
(ML
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
. Time (s)
Figure B.9: Node 3

