
Process Migration in FROST

�� ��M ICHAEL GLIBSTRUP - LARS KRINGELBACH
© 2002, AALBORG UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
AALBORG UNIVERSITY

T ITLE : Process Migration in FROST
THEME : Distributed Systems
SEMESTER : F10S
PROJECT TERM : February 2002 - June 2002

AUTHORS:
Michael Glibstrup

michaelg@cs.auc.dk

Lars Kringelbach
lars@cs.auc.dk

SUPERVISOR:
Josva Kleist

kleist@cs.auc.dk

Abstract

FROST is a distributed heterogeneous calculation platformfirst
described in [GK02]. It provides an API that allows a user to
create assignments which are distributed and calculated ona
number of computers.

In this project we have chosen to improve the dynamic load
balancing scheme of the FROST system by implementing pro-
cess migration. We do this in order to improve the performance
of the system as processes can be moved from nodes that are
heavily loaded onto nodes that are less loaded during execution.

We have analyzed the problem of process migration and
have decided on a solution using checkpoints as a means
of performing process migration. The chosen solution has
been designed and parts of the design has been implemented.
During the design phase we have been very aware that the
performance aspects of FROST should not become worse after
the introduction of process migration as it would remove the
reason for using the feature.

We have tested the system with regard to overhead, perfor-
mance and the behavior of the migration policies. The tests
show that the overhead with regard to the process migration
features is fairly small compared to what they offer. In addition
the performance tests and the policy tests showed that the sys-
tem performs well after the introduction of process migration.
We do conclude, however, that in order to obtain even better
performance it should be considered to introduce migration
points as a tool as well.

NUMBER PRINTED : 6
NUMBER OF PAGES: 116
FINISHED : June7th, 2002

This report may not be published or reproduced in any way or form without permission from the authors.
Copyright © 2002, Aalborg University

Dansk Resumé

Indenfor feltet omhandlende langtidsberegninger ved brugaf ikke-dedikerede maskiner er det kendt,
at mulighed for dynamisk redistribution af belastning kan hjælpe med til at forbedre ydeevnen i
systemet. Dette skyldes inflydelsen fra brugerprocesser, som ikke kan forudsiges i den indledende
tildeling af opgaver til maskiner.

FROST er en distribueret heterogen beregningsplatform, som er beskrevet i [GK02]. Den er tiltænkt
at køre i et ikke-dedikeret miljø, hvor den bruger de ledige CPU cykler på almindelige arbejdsstationer
til langtidsberegninger. FROST stiller et API til rådighed, som tillader en bruger at skabe opgaver,
der bliver distribueret og beregnet på et antal computere, hvilket muliggør udnyttelse af ubrugte CPU
cykler i et lokalnetværk.

I dette projekt har vi valgt at forbedre FROST systemets dynamiske load-balancering ved at imple-
mentere procesmigrering. Vi gør dette for at forbedre systemets ydeevne, da processer kan flyttes fra
knuder som er hårdt belastede, til knuder som er mindre belastede under udførelsen af dem.

Vi har analyseret procesmigreringsproblemet og har valgt en løsning som bruger checkpoints som et
middel til at udføre procesmigrering. Den valgte løsning erdesignet og dele af den implementeret. I
løbet af designfasen har vi været meget opmærksomme på, at ydeevnen i FROST systemet ikke blev
forværret efter introduktionen af procesmigrering, da dette ville fjerne grunden til at bruge denne
egenskab. Derudover er måder, til at gøre FROST skalerbart på, blevet overvejet.

Vi har testet systemet med hensyn til overhead, ydeevne og opførslen af migreringspolitikkerne.
Testene viser at overheadet med hensyn til checkpoints og procesmigrering er ganske lille sammen-
lignet med, hvad der tilbydes af procesmigreringsegenskaben. Vi konkluderer dog, at for at opnå
endnu bedre ydeevne burde det overvejes ligeledes at introducere migreringspunkter som et værktøj.

v

Preface

This report is a master’s thesis based on work performed on our 10th semester in computer science,
distributed systems. The purpose of the report is to communicate the thoughts and used approaches
in considering, analyzing, designing, and implementing process migration into a distributed hetero-
geneous calculation platform, the FROST system. The work done in this master’s thesis builds on
work presented in [GK02].

The report is directed towards people with interest in distributed calculation platforms, peer-to-peer
computing, and process migration in heterogeneous environments.

In part I we will survey the area of process migration and checkpointing and from this determine the
most optimal solution for FROST. We will also look upon the rules for controlling the migration and
checkpointing. Part II contains performance considerations and the design of the elements necessary
for implementing process migration in FROST. In part III we look upon the details regarding the
implementation of process migration in the FROST system. Finally in part IV we perform tests of
FROST system after process migration has been implemented,we consider how to make the FROST
system scale to a larger platform, and we present a conclusion on the results. A word list can be
found in appendix A describing some of the FROST terminologydefined in [GK02]. Test results are
located in appendix B.

The bibliography is situated in the back of the report. References to the bibliography are as follows:
[GK02], which refers to the paper“FROST - A Distributed Heterogeneous Calculation Platform”
written by Micheal Glibstrup and Lars Kringelbach in 2002. References to figures are made as
follows: “figure x.y”, where x is the chapter and y is a consecutive numbering within each chapter.
References to tables are similar to the references to figures.

Some typography is used in the report in order to clarify meaning. Class names are written inSans
Serif. Algorithms in part I are described in pseudo-code using theAlgorithmicenvironment. Refer-
ences to the algorithms in the report are as follows: “algorithm 1”. In the algorithms, settingvar
before a variable in a method decleration means that the variable is passed as a reference to the
method. FROST is developed in C++, and in part III, Implementation, examples are therefore given
in a C++-style language.

Throughout the report we use the words computer, machine, workstation, and node interchangeably.

Michael Glibstrup Lars Kringelbach

I’m a great person for utilizing waste power

- Robert Lee Frost

vii

Contents

1 Introduction 1

1.1 The FROST System .. 1

1.2 Further Work .. 4

1.3 Problem Statement 5

I Analysis 7

2 Process Migration 9

2.1 Motivation .. . 9

2.2 Performing Process Migration 9

2.3 Preprocessor 11

2.4 Checkpointing 12

2.5 Process Migration Policies 13

3 Analysis 15

3.1 Kernel or User Space 15

3.2 Preprocessor 15

3.3 Checkpointing 16

3.4 Process Migration Policies 17

3.5 Demand Specification 20

II Design 23

4 Designing Process Migration 25

4.1 Performance .. . 25

4.2 Limitations .. . 27

5 Policies 29

5.1 Information Policy 29

5.2 Transfer Policy 32

5.3 Selection Policy 35

5.4 Location Policy 39

6 Checkpointing 45

6.1 Processor State 45

ix

x CONTENTS

6.2 Process Variables 48

6.3 Data Marshaling 51

7 Preprocessor 53

7.1 General Structure 53

7.2 User Requirements 53

7.3 The Parser .. 55

7.4 The Checkpoint Code Generator 55

7.5 Source Code Analyzer 58

7.6 The Intermediate Format 60

III Implementation 63

8 Implementation Status 65

8.1 Policies .. 65

8.2 Migration .. 66

8.3 Preprocessor 66

9 Implementation of Policies 67

9.1 Information Policy 67

9.2 Transfer Policy 69

9.3 Selection Policy 70

9.4 Location Policy 71

10 Checkpointing 75

10.1 Control- andDataStack . 75

10.2 CalculationCode Additions . 75

10.3 Checkpointing Data 76

IV Test & Conclusion 81

11 Test 83

11.1 Test Types .. . 83

11.2 How to Perform the Tests 84

11.3 Overhead .. 86

11.4 Performance 91

11.5 Policies .. . 92

11.6 Test Conclusion 94

12 Scaling FROST 97

12.1 Distributed Master 97

12.2 Information Sharing 98

12.3 Summary .102

CONTENTS xi

13 Conclusion 103

13.1 Design and Implementation 103

13.2 Results .. . 103

13.3 Further Work .. . 104

V Appendix 109

A Word List 111

B Test Results 113

B.1 Performance Test 1 114

B.2 Performance Test 2 115

B.3 Performance Test 3 116

CHAPTER 1

Introduction

The FROST system was designed and implemented in [GK02] as part of our 9th semester project
work, with systems such as SETI@home and Distributed.net inmind. The aim was to develop an
API that could be used to easily develop SETI@home-like applications, which are automatically dis-
tributed to machines on the Internet1 by the built-in runtime system. The system is designed to be
used Internet-wide using non-dedicated machines. A systemwith this setup sets some demands to
efficiency and durability. As the system is designed to run onnon-dedicated machines it requires
that the application is fault-tolerant as machines can break down. Because it is to perform Internet-
wide the system demands a high calculation to communicationratio in order to achieve optimal
performance. In the following we will give a further description of the FROST system and a charac-
terization of the applications that are suitable to the system. Finally we will introduce the work that
is contained in this report.

1.1 The FROST System

The FROST system is a distributed calculation platform thatexploits unused CPU-cycles in a network
of non-dedicated workstations. Non-dedicated means that the machines are normally used by local
users and these users must be given highest priority when they need the machine. As FROST therefore
has low priority on the machines, more machines are necessary than in a system that uses dedicated
machines in order to obtain the same amount of computing power. To make most machines available
to the system, heterogeneity is considered to be an important factor, and therefore it has been made
easy to develop portable applications to the FROST system byletting FROST take care of non-
portable issues such as byte-order conversions, distribution of binary files, etc.

The system is intended to be used widely on the Internet, providing lots of users with access to
surplus computing power. For this reason, the system is based on the peer-to-peer paradigm where
all machines performs on an equal basis. This is implementedso that in order to utilize computing
power on other machines, a computer must provide computing power in return.

Due to the use of non-dedicated machines, we cannot count on CPU-cycles being available for each
application at all times. Some calculations, or part of a calculation, can be postponed or slowed
down if the amount of available CPU-cycles is small. For thisreason we have dedicated FROST to
performing calculations and therefore it cannot be used forapplications which require any interaction
from users or other external devices.

When developing applications for FROST the user only has to concentrate on his application domain.
He needs to provide an algorithm for splitting the problem into several pieces, orwork units, that
can be processed independently and an algorithm for combining the results when they have been
processed. Finally he must specify the algorithm that performs the calculations. Everything regarding
the distribution of work units between the available machines, including all network communication,
is performed by FROST. Dynamic load balancing is performed in order to have applications finish in
the shortest possible time.

The interprocess communication capabilities available inFROST introduces some limitations to the
development of applications to FROST. In the following section we will describe interprocess com-
munication in FROST and afterwards the applications that are suitable for the FROST system are
characterized.

1The applications are only distributed to other machines that have the FROST system installed.

1

2 Introduction

1.1.1 Communication in FROST

FROST was designed with the possibility for limited interprocess communication. The communi-
cation consists in passing on a sub-result to another calculating node. This node is then able to use
the previously calculated result in the further calculations. All communication must be known in ad-
vance, that is, the dependencies between result and calculations must be known. These dependencies
must be specified using the graph structure included in the FROST system. FROST will then handle
all interprocess communication from the dependencies specified in the graph.

Because communication must be specified beforehand there are some limitations to the problems
that can be solved using FROST. Hence, applications that distributes a data structure across several
machines due to lack of memory on a single machine, will oftennot be possible to implement in
FROST. If the data structure is accessed randomly, the communication cannot be specified in advance
which is necessary.

An example of problems that can take advantage of the communication available in FROST is the
class of dynamic programming problems. In this class of problems earlier results are used in the
further calculations in a predictable way. An example is theparenthesizing of matrix-chain multi-
plication in order to find the multiplication order with the least amount of multiplications. For these
calculations the tables shown in figure 1.1 are used.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

(b)(a)

0 0 0 0 0

5

4

3

2

1 5

4

3

2

1

0 0 0 0 0

5

4

3

2

1 5

4

3

2

1

Figure 1.1: Calculation of matrix-chain-order. a) First the dark shaded areas are cal-
culated in parallel. Afterwards the two light shaded areas are calculated in
parallel using the results from the dark shaded areas. b) Finally the rest of
the table is calculated using the previously calculated results.

The dark shaded areas in figure 1.1 (a) can be calculated in parallel. The results from these calcula-
tions must then be transferred two by two to the machines calculating the light shaded areas, e.g. the
results in place (2,1) and (3,2) is transferred to the machine calculating the result for (3,1). Finally all
the shaded areas in figure 1.1 (a) are used to calculate the last part of the table as shown in figure 1.1
(b).

Even though this kind of problems is suited for the interprocess communication primitives available
in FROST, they are not especially suited to be solved with FROST. There are several reasons for this:

Imbalanced distribution: Using the procedure described above will make the work unitslarger for
each level of calculations. There is however a solution to this. Instead of calculating the striped
area in figure 1.1 (b) at once, it can be split across several machines. This can be done by
first calculating (4,2) using (3,2) and (4,3), and afterwards (4,1) using the entire underlying
triangle and so forth. This will solve the imbalance of calculation sizes, but it will require more
transferral of data between machines.

Memory usage: The most optimal problems to FROST uses less memory to process a work unit on
a machine than is used when processing the entire problem on asingle machine. We cannot
expect that the workstations have the same amount of memory as a supercomputerand therefore
this is an important property, especially if the problem is very memory consuming. The above
example does not have this property, since when calculatinga part of the table, the entire table

1.1 The FROST System 3

in a triangle below must be available. When calculating the last part, the entire table must be
available as if all of the table was calculated on the same machine. This applies for dynamic
programming problems in general and will be a problem for large problems.

Communication: The calculation to communication ratio for the above problem is not optimal.
In order to achieve maximum parallelization the amount of sub-results that needs to be sent
increases. The size of the sub-results increases when moving up the table, and therefore a large
amount of communication is necessary.

Parallelization: An entry in the table can not be calculated until all entries in the entire triangle
below have been calculated. This limits the amount of parallelization possible, which can give
poor performance in FROST, as a low bandwidth, high latency network is to be used.

The above issues apply to the entire class of dynamic programming problems and this class of prob-
lems is therefore not suited to be solved with FROST. It is important to mention that the problems
are well suited to be solved in parallel if a shared memory machine is used, as can be seen in the
literature. Some examples are Hardwick et al. [HOS99] and Andonov et al. [ARQ93].

We have not been able to find any problems that can be solved efficiently with FROSTanduses the
possibilities for communication. FROST has been designed to be used on a network ofnon-dedicated
workstations connected with alow-bandwidthnetwork2, and these conditions sets some limitations to
the problems that are suitable to be solved. For this reason we have chosen not to support the limited
communication that was designed in [GK02], and instead optimize the system for problems which
do not have any interprocess communication.

In the following section we will characterize problems thatare suitable to be solved with FROST by
first describing the systems that we had in mind when FROST wasdesigned.

1.1.2 Applications in FROST

In [GK02] we designed FROST with projects such as SETI@home,Distributed.net, and THINK
in mind. These projects solve problems that are all optimized to be solved using non-dedicated
workstations connected to a low-bandwidth network. In the following we will characterize these
projects and the problems they solve. The problems all have common features. They can be split in
a number of work units where each work unit can be processed completely independent of another,
hence there is no need for interprocess communication between the different machines used to solve
the problem. They also have a very high calculation to communication ratio which makes them
extremely suitable for a low-bandwidth network connection. The following is a description of some
of the projects:

SETI@home: SETI@home3 is a project set on finding radio signals from alien civilizations. To
obtain the data, the large radio telescope at Arecibo is used. This telescope scans the sky,
recording data in a certain frequency range. When enough data has been gathered, the data is
split up into 10 kHz work units of about 100 seconds in length.These work units are then sent
to computers over the Internet for further processing4.

A work unit contains data to be calculated upon for a single machine. These work units can
be calculated independently of each other which makes communication between machines un-
necessary.In the SETI@home project they contain 340kb of data and they should take between
10 and 50 hours to complete on an average home computer. Currently the average CPU-time
per work unit is 17 hours and 14 minutes.

Distributed.net: Distributed.net consists of several projects which are mathematical in nature. The
projects are mainly on the effort of cracking encryption ciphers of different encryption schemes,

2In [GK02] the system was designed to a 10-100Mbit network. Ifthe system is to be used Internet-wide we cannot expect
the machines to be connected with a 100Mbit network, but rather a 0.5-10Mbit connection or lower.

3http://setiathome.berkeley.edu
4For further information on the Seti@home project and the algorithms that are run on the data seehttp://

setiathome.berkeley.edu/about_seti/about_seti_at_home_1.html

4 Introduction

but a project of finding the most optimal Golomb rulers5 is also in progress6.

The work units in the Distributed.net projects are of very different size. In the RC5 challenge
the user can determine how much work he wants to retrieve at a time dependent on how often
he connects to the Internet and how fast his computer is.

THINK: The THINK7 project covers a wider selection of problems that needs to besolved. Examples
are researching Anthrax, Cancer, understanding the human genome and other medical research
problems as well as web performance testing. Common to the medical problems are that they
utilize the same algorithms for performing calculations ona dataset over and over again. For
example in the cancer research program, computers test a number of molecules in order to
find a drug that could cure cancer. The project regarding the human genome utilizes Hidden
Markov Models to find genetic sequences that can be related toeach other in some way.

In the testing of molecules, a work unit contains approximately 10Kb of data and the average
CPU-time per unit is currently 7.5 hours. The CPU-time required varies from 4 hours to several
days only due to differences in the data that is calculated upon.

All of these problems lie within the class of problems calledembarrassingly parallel, as described
in [FWM94]. Embarrassingly parallel problems have a simplespatial structure which leads to clear
parallelization, and there is no synchronization involvedand hence no interprocess communication
is necessary. The only communication needed is to set up the problem and accumulate the results.
Due to the lack of synchronization between machines it is often possible to archive a linear speedup,
especially if the problem has a high calculation to communication ratio. Another example of embar-
rassingly parallel problems is Monte Carlo simulations [Cod93].

This kind of independent or “job level” parallelism is common to many kinds of simulations in sci-
ence and engineering. Sometimes it is done by performing similar calculations on each machine but
with varying parameters if possible. This approach is ideally suited to very coarse-grained parallel
machines, and especially for distributed computing using networks of workstations [Cod93].

1.2 Further Work

In [GK02] we have noted some of the further work necessary in order to achieve a more optimal
system. These are summarized in the following.

Communication between slaves: The possibility of communication between slaves was never fully
implemented and we have chosen not to support this feature infuture versions of the system.

Load balancing: FROST uses a dynamic load balancing scheme where the initialassignment of
work units to nodes can be changed during runtime as needed. In [GK02], we say that if
there is communication between slaves an intelligent initial assignment of tasks to machines
is of great importance in order to minimize the expensive interprocess communication. As we
do not support communication between slaves, we believe that our dynamic load balancing
scheme performs reasonably compared to an intelligent initial assignment as the load can vary
a great deal during calculations. This is especially true for small tasks as this will minimize the
time needed on a heavily loaded machine. It is, however, moreconvenient with larger tasks8

as it will minimize the amount of communication between slaves and the master and hence the
administration load on the master. Larger tasks will therefore make it possible to achieve better
performance. This contrast requires new means for load balancing in order to achieve optimal
performance.

Fault-tolerance: Fault-tolerance has not been implemented and the problems due to failing ma-
chines can be minimized by having smaller tasks. As mentioned above larger tasks can provide
better performance and is more suitable to the FROST system.This will however make the

5Golomb Rulers are described in detail athttp://members.aol.com/golomb20/intro.htm
6For more information on the distributed.net projects seehttp://www.distributed.net
7http://www.ud.com
8By large tasks is meant that a single task takes long time to compute.A long timeis in this context several hours.

1.3 Problem Statement 5

need for fault-tolerance more necessary, as a larger part ofa calculation can be lost if a ma-
chine fails.

Security: Security was given a low priority in the design phase of FROSTas it is not important in
order to show the applicability of the system. It is, however, very important in a final version
of the system both to secure the privacy of the data being calculated upon and to have secure
execution of foreign code on slave machines.

Portability: The portability issue was also given a low priority in the design phase for the same reason
as with security. Some means for increasing the portabilityhave, however, been implemented,
such as byte order conversions when transferring data over the network. If the calculation code
is made portable it should be fairly easy to port the system toother UNIX-based platforms.

In the following section we will elaborate on the issues described above in order to determine the
work we will proceed with in this project.

1.3 Problem Statement

We still see the security issue as important in a final versionof the system, but as we are still in the
initial phases of the construction of a generic distributedcalculation platform, we will give it a low
priority.

This project will consider the improvement of issues regarding load balancing and fault-tolerance,
as these have direct influence on the performance of the system. By implementing fault-tolerance
techniques it is possible to distribute larger tasks which will minimize the amount of communication
needed with the master and hence decrease the bottleneck themaster imposes. With larger tasks the
need for a more intelligent load balancing scheme increases

In order to make it an advantage to have larger tasks some requirements are set to the load balancing
scheme. We cannot predict the load on non-dedicated machines as local users can decide to use the
machine at any time. The FROST system was designed in [GK02] to run with a low priority to ensure
that user processes always will have precedence over FROST tasks. When a user loads his machine
heavily the FROST tasks will not gain any CPU-time. When a single task has a long running time,
the implemented dynamic load balancing scheme will not suffice, since balancing can only happen
between tasks. Instead of the dynamic load balancing schemealready implemented in FROST the
use of process migration should be considered in order to achieve better performance. According
to Smith and Hutchinson [SH98] it is an advantage to use process migration when a system mostly
executes longer running tasks. Process migration works by moving a calculating process to another
machine at runtime. By supporting process migration we can not only balance the load when a new
task is sent to a slave, but also change the assignment of tasks to nodes during execution.

When most of the tasks in the system are long running it is necessary for the system to be fault-
tolerant. This would protect the tasks from e.g. a system break down or a machine shutting down
during a calculation9. In order to do this it must be possible to revert the process to a known state
before the failure. This means that there must be some kind ofcheckpointing where the state of the
process is saved to a fail-tolerant media.

Process migration is basically capturing the state of a process to be transferred and transferring it to
another machine where it is continued. Checkpointing is a method of capturing the state of a process
and saving it to disk e.g. for fault tolerance. Thus, a checkpoint that is transferred to another machine
instead of saving it to disk is a way of performing process migration.

We have chosen to concentrate on implementing process migration in the FROST system as we
believe that this issue is very important to the performanceof the system.

9This kind of failure is known as fail-silent or fail-stop in the literature [Tan95]

PART I

Analysis

This part presents an introduction to the area of process migration and a discussion
of how to introduce process migration into the FROST system.In chapter 2 we survey
the area and look at different ways of performing process migration. In chapter 3 we
look at the different possibilities presented in chapter 2 and discuss them in relation
to FROST.

CHAPTER 2

Process Migration

In the following we will survey the area of process migrationwhich allows tasks in a system to
move from one computer to another as need arises. We will consider some of the advantages and
disadvantages of process migration. We will also reflect on some of the ways that other systems
perform process migration. Later we shall see that fault-tolerance can be introduced through the use
of checkpoints.

2.1 Motivation

The need for process migration can be based on several things. In order to state what motivates the
use of process migration in a distributed system we look at some examples.

• Another processor emerges which offer better performancethan the present one.

• The current processor is about to shut down.

• The desire to minimize the amount of communication betweenprocesses on different comput-
ers.

• Memory demands that are not fulfilled by the current computer.

• Special architectural characteristics offered by some processors.

Process migration allows a task to gain access to these features by moving it from one processor to
another.

An important aspect to keep in mind when considering whetherprocess migration is an option for a
distributed application is whether it offers a reasonable performance gain. It is obvious that if process
migration raises the execution time of a process without offering anything else in return it will not be
used. Preferably it should increase the performance of the system so that processes will finish faster
when using process migration than when it is not used. The increase in performance can be gained
by moving a process closer to another process with which it iscommunicating heavily, or moving a
process from a heavily loaded computer onto a computer whichis not loaded. If process migration
cannot provide an increase in execution time it has to offer something else in order to justify including
it in an application. This can for example be that a process will always be executing if needed except if
the host computer breaks down. If process migration is coupled with checkpointing even a computer
break down can be survived as the process can be recovered later.

When considering process migration it is necessary to take the cost of migration into account - how
much is moved, how long will it take and how often is it done. Inother words it is not enough just
to move a process in order to secure a performance gain or a certain amount of memory, it is also
necessary to consider the implications of the migration. Ifthe implication of introducing process
migration is too great it may be necessary to reconsider the introduction of it. We will consider the
subject of performance further in a later section.

2.2 Performing Process Migration

Process migration can be performed in a number of ways, all depending on the architecture and
approach used. In the following we will look upon some of the ways in which process migration can
be performed.

9

10 Process Migration

2.2.1 The State of a Process

When a migration of a process is to be performed, it is necessary to transfer, not only the code of
the process, but also the state of the process. The state consists of the process variables, pointers to
other objects, file handlers, communication with other computers, call stack, and so on. All this has
to be transfered to the system on which the process is to continue its execution. The basic way of
performing this transfer is to stop the process that is to be migrated, extract the state of the process,
inform the computers with which it is communicating, and then pass the state information along to
the receiving computer. If checkpoints are used it is more complicated to handle communication
between computers. This will be discussed further in a latersection. Exactly how the extraction is
done may differ from system to system but there are two basic ways of performing state extraction -
direct and indirect extraction.

Direct Extraction

The direct approach of extracting the state of a process covers systems that, in some way, accesses
the stack and heap of a process. A system like Condor [LTBL97]use this approach when migrating
processes. Condor produces a file in which all information about registers, data and stack, pending
signals and open files are displayed. This is then transferred to another computer where the process
is restarted and its state restored. All system calls are performed through a shadow process which
remains on the sending computer. The advantage of the Condorapproach is that migration can be
performed transparently from the user’s point of view. The disadvantage is that when transferring
the stack and data areas of a process directly, it limits the heterogeneity that a system is capable of
providing, unless massive translations are made of the state information of processes at migration
time, or a generic stack and heap is maintained in parallel tothe normal ones.

Indirect Extraction

Opposed to the direct way of performing process migration isthe indirect way. This way of perform-
ing process migration allows a more user-oriented approachas the preliminary work of the migration
is performed by a preprocessor or the user himself.

An example of the indirect approach is the Dome-environment[ÁBL+95]. Here the user must con-
form to a predefined API which creates a Dome-environment. This environment then performs the
necessary operations in the migration process. Another example is MpPVM [CS96]. MpPVM em-
ploys a preprocessor which translates PVM1 source code into MpPVM source code by dividing it
into subsequences and inserting migration points between these subsequences. It also performs data
analysis in order to determine what data is needed at a specific migration point and thus must be
included in the migration process.

The indirect approach consists of modifying the code of the process, so that variables and pointers
are saved in a way that makes it possible to restore them aftermigration. This can be done using a
table containing all variables and their types. Then at migration time this table can be transfered to
another computer where the variables are reloaded.

The advantage of the indirect approach is that migration is performed at a much higher level and
therefore it can be much more flexible when it comes to heterogeneity.

Seligman and Beguelin [SB94] gives an example on this in relation to the Dome system. They state
that using a low level, or direct, method for checkpointing produces larger checkpoints than does
their high level method. This is because a low level method tends to provide only page-level data
granularity and tends to save a large quantity of other information, such as the full stack contents. A
high level method on the other hand, enables a more selectiveapproach to choosing which variables
to include in a checkpoint. They give an example where their high level Dome approach gives a 10kb
checkpoint file compared to a low level approach giving a 3.3Mb checkpoint file. Thus we can see
that the closer the migration process is placed to the applications being migrated, the better is the
prices that can be achieved.

1Parallel Virtual Machine

2.3 Preprocessor 11

The disadvantage is that being such a high level approach it might jeopardize the transparency from
the user’s point of view. Migration demands an effort from the user in some cases and can thus be a
problem rather than an advantage. This will be considered next.

2.2.2 Kernel or User Space

A certain level of transparency is important in a migratory system in order to make the system as easy
to use as possible. But how do we achieve this transparency? In the previous section we considered
the direct and indirect approach to process migration. Another possibility is to consider where the
migration process is placed within an environment. There are two possibilities - kernel and user
space.

If the migration procedure is performed in the kernel of an operating system it is easier for a system
to migrate processes. As the kernel has direct knowledge of all processes, it can perform process
migration independently of the user space code by moving theruntime stack, data areas, code and
process registers directly onto another computer. This canbe an advantage as the user or the processes
in user space need not have any knowledge of the migration features that run in the kernel. In addition
migration control can be coupled with the ordinary process scheduler in the kernel. A disadvantage is
that if process migration is to be introduced into an existing kernel it requires extensive modifications
to the kernel [MDP+00], and thus redistribution of the kernel. The modifications to an existing kernel
could be avoided by creating a new kernel which already contains support for process migration but
such a kernel would also require a distribution phase and would probably have to be incorporated
into an existing system. Another disadvantage is that when performing process migration in kernel
space it is much harder to migrate processes in a heterogeneous environment. Due to the possibility
of having different architectures in a heterogeneous system it is no longer possible for the kernel just
to move a process. Before migrating a process the state and code of the process has to be changed
into a format which is understood by another architecture. An indirect approach cannot be used in
kernel space, as the kernel has no knowledge of variable names and types.

Another approach is to place the migration process in user space. Milojicic et al. [MDP+00] divides
the user space approach into two sub-categories - user-level and application specific migration. Both
these levels generally suffer from lack of transparency, reduced performance and higher migration
costs. They have the advantage though, that the closer the implementation of migration can get to the
applications which it is to migrate, the more knowledge it usually has about them. This knowledge
can be used in the derivation of better migration policies and hence, better overall performance.

Whether to use a kernel or a user space approach depends heavily on individual needs. If a migra-
tion tool that can migrate all kinds of processes is needed orif a very high amount of transparency
is required, a kernel-space approach may be preferable. If on the other hand a more specialized
approach is needed, where only processes from a single application needs to be migrated or if the
migrations need to be strictly controlled or tuned to specific needs, a user-space approach may be
chosen. When considering kernel or user space migration it should also be noted that the closer to the
kernel the migration process is placed within the system, the harder it will be to achieve heterogeneity
[MDP+00].

2.3 Preprocessor

In a user level approach to process migration, a preprocessor might be useful in order to insert mi-
gration primitives into the code of the user. This would enhance the system transparency in relation
to the user. System transparency in relation to the user is a highly desired feature when considering
process migration due to the high complexity of the migration feature.

Chanchio and Sun [CS96] uses a preprocessor approach in the MpPVM system. Here the PVM
primitives in the user code is first translated into MpPVM primitives, then the code is analyzed and
migration points are inserted. After this, data analysis isperformed in order to locatenecessary
variables. Necessary variables are variables which are initialized before the migration point and
which will be used after the migration point. Thus, if a variable is not used after a migration point it
will not be transfered during the migration which means thatonly the necessary data is sent. After

12 Process Migration

the migration points and their data have been established, macros used for migrating and reinstating
a process are inserted into the code.

A preprocessor changes the code created by a user. This can bean advantage as it is possible for
a user to review and change the code created by the preprocessor before it is compiled into an exe-
cutable. This allows the user to maintain the general view ofthe code and if needed, optimize the
code generated by the preprocessor before it is compiled. Iffor example the user locates a place in
the machine generated code where the preprocessor has inserted unnecessary migration points he is
able to remedy this before the code is compiled.

The problem of using a preprocessor is that it can be quite difficult to read and understand machine
generated code, and thus optimize or debug it2. In order to do so the user needs detailed knowledge on
the workings of the preprocessor. This includes the API of the code introduced by the preprocessor,
and where in the original code it might be included. If a user does not have this knowledge it is hard
for him to perform debugging or optimization when the code has been processed by the preprocessor.
This is because of the lack of correspondence between the original code and the code compiled by
the compiler. Line numbers will be skewed and a translation scheme between original and modified
line numbers would be a good idea for debugging purposes.

A preprocessor approach can be used without regard to the underlying architecture. This means that
no matter if a homogeneous or heterogeneous architecture lies beneath the user code, a preprocessor
can be used as it is only modifying the users code with predefined primitives.

2.4 Checkpointing

Checkpointing is performed by capturing the state of a process in such a way that it is possible to
rollback the process and restart it at the point where the checkpoint was made. In order to do this,
the checkpoint must include the entire state of the process such as the runtime stack and data areas,
processor registers and so on.

Checkpointing is usually used to increase fault-toleranceas in Dome [ÁBL+95] and Condor [LTBL97]
by saving the checkpoint to stable storage. In case of machine failure, the process can be restarted
using the last checkpoint instead of starting over. The functions carried out when performing the
checkpoint are very similar to those of process migration where the state of the process is transferred
to another machine instead of being saved to stable storage.This feature makes it possible to use the
checkpointing mechanism for process migration, just by transferring the checkpoint data to another
machine and load it there in order to continue execution.

In spite of the similar approaches to process migration whenusing checkpoints or migration points,
the methods have some differences. When using checkpointing, the checkpoint is made at each point
specified in the code, where process migration using migration points, as in MpPVM, only capture the
state when the actual migration takes place. This induces some runtime overhead in the checkpointing
method as the state is captured more often. This is, however,necessary to obtain the fault-tolerance
capabilities. Furthermore it gives the possibilities to migrate without waiting for the next migration
point, the last checkpoint can be sent exactly when migration is wanted.

When using checkpointing, interaction between processes introduces a serious problem. If a process
is restarted from a checkpoint, it can be necessary to rollback other processes in the system with
which it has been communicating. This is a problem as there isa potential risk that all processes in the
system needs to be rolled back to where they were when the checkpoint was performed, thus rendering
the performed calculations useless. If all the communicating processes acts completely deterministic
there is a solution to the problem. All the communication messages received between the checkpoint
and the point where the process was stopped can be buffered and re-sent to the recovering process
and thus no processes needs to be rolled back.

When using checkpointing for process migration, it is also necessary to consider the heterogeneity of
machines in the system just as when regular process migration is used.

2The code inserted by the preprocessor must be error free so that only the code of the user needs to be debugged.

2.5 Process Migration Policies 13

2.5 Process Migration Policies

In the above sections we have considered the more technical aspects of process migration. But in
order to ensure that process migration becomes an advantageand not a nuisance it is necessary to
consider when migration should be performed and where a process should migrate to.

Because of the fact that the load in a system is likely to change in a distributed system consisting of
non-dedicated workstations, it is natural to consider process migration with regard to adaptive load
sharing in these systems. But we cannot allow any process on one computer to migrate to another
computer whenever it sees fit to do so. Therefore it is necessary with a set of rules which declare
when and where a process should be allowed to migrate. These rules are known as thetransfer policy
and thelocation policy[C+01].

The transfer policy chooses the process that is to be migrated from one computer to another. The
policy regards the load on the computer on which the process is situated, the size of the process being
transfered, the time a process has run relative to the time itwill run, and other relevant considerations.

When a process is chosen for migration the location policy isused to determine which computer in
the system the process should be transferred to. When choosing a new computer for a process the
location policy has to take different conditions into account. Examples are the relative load of the
computers, differences in machine architectures, and any special resources they may possess.

Finally in addition to the other two policies, a third policycould be considered. This is theinformation
policy which handles the gathering of information about the load inthe system. This policy can be
either centralized or decentralized. In the first case, a load manager is placed at one point in the
network, collecting load information about all the other machines in the network. In the second
case each node maintains a database of information and they exchange information with one another
directly in order to keep the database up to date.

The three policies presented above are essential to the system in which process migration is consid-
ered as a tool and we will therefore consider them further in the analysis.

CHAPTER 3

Analysis

When considering process migration in relation to FROST, the issues introduced in the process mi-
gration survey in chapter 2 must be considered. These issuesregard both technical and algorithmic
properties when designing and implementing process migration in FROST. In the following sections
we will analyze these issues in the context of FROST in order to set some demands to the further
design and implementation.

3.1 Kernel or User Space

From section 2.2.2 we can identify three main issues considering the location of the process migration
feature in relation to the FROST system, transparency, heterogeneity and portability.

The kernel space solution provides a great deal of transparency as it is most often implemented with
a direct approach for extracting the state of a process. Normally the kernel has no knowledge of the
variables in a process and therefore it can only access the process image as a whole. This issue makes
heterogeneity very difficult to implement without providing the kernel with extra information.

If the process migration should be implemented in the kernel, it would make the FROST system
dependent on the kernel it is running on. Hence, FROST would only be able to run on systems using
the modified kernel. This would limit the portability of the FROST system a great deal, and probably
make it impossible to port to Windows systems. By placing themigration feature in the kernel we
would also have to consider the possibility that processes other than those from FROST could be
migrated, which is not what we are interested in.

Opposite of placing process migration in kernel space, is incorporating process migration directly into
the application in question. As stated by Milojicic et al. [MDP+00] the closer the implementation of
process migration is placed on the applications which is to be migrated, the more knowledge it can
obtain about the application. This knowledge then leads to better overall performance when it comes
to migrating processes. Furthermore the extra knowledge isa very important factor when performing
process migration in a heterogeneous environment.

As the heterogeneity and portability issues are very important to the FROST system, implementing
the process migration feature in kernel space is not an option. By placing the migration feature in the
FROST system itself we have complete control of the migration elements and we have direct access
to the processes that is to be migrated. In order to obtain heterogeneity, we need to use an indirect
approach for extracting the state of the process. In this waywe have access to the variables and their
types, which is necessary in order to transfer them across different machine architectures.

Placing process migration in user space introduces some problems. As stated earlier in section 2.2.1
process migration can be performed more or less transparently depending on the approach taken.
By using an indirect approach it is necessary to analyze and modify the code of the process that is
to be migrated. This fact reduces the transparency, but is necessary to fulfill the heterogeneity and
portability issues. The transparency problem can, however, be solved by using a preprocessor to
modify the source code of the process.

3.2 Preprocessor

The design of the FROST system is directed towards easing theimplementation of distributed com-
puting assignments. With this in mind it is of great necessity to consider the amount of transparency
needed when introducing process migration into the system.If the user has to implement migration
features into his source code, in addition to splitting his assignment, we have to contemplate the pos-

15

16 Analysis

sibility that process migration may not be used. This is due to the fact that process migration is an
advanced feature and any errors in the migration process mayruin the results of the calculation, if it
completes at all. Therefore a high level of transparency is needed in the process migration procedure
in order to aid the users as much as possible.

As stated in section 3.1 a preprocessor can be used to providethe required transparency, as the chosen
placement of the migration feature requires modifications to the user code. The use of a preprocessor
does however introduce another advantage. We are interested in providing the user with an approach
which enables him to consider the most optimal placement of checkpoints, but which performs the
actual data analysis and process migration without any involvement from the user. The reason why
the user has to state the point where a checkpoint is to be performed, is that he is the one which
holds the most knowledge of the current problem, and thus canplace the checkpoints so that optimal
performance is achieved. This approach is not completely transparent, but it is sufficiently transparent
to allow a user to use process migration easily while still holding the possibility to optimize his code.
As stated in section 2.3 there are, however, also problems when using a preprocessor. The problem
of debugging user code for example. We believe though, that if a translation scheme between the line
numbers in the unmodified code and the modified code can be created, the problem of debugging the
user code is not harder than it would be if a preprocessor was not used.

The user does not have to state the variables needed in a checkpoint but merely points in the code
where checkpoints should be performed. Data-analysis and insertion of checkpointing code can then
be performed by a preprocessor as mentioned in section 2.3.

3.3 Checkpointing

In section 1.3 we stated that the FROST system should supportsome form of fault-tolerance. The
main reason for introducing fault-tolerance in FROST is that the purpose of the FROST system is
to perform long term calculations on non-dedicated platforms. The user of such a platform may
choose to shut the computer down at an arbitrary time, rendering performed calculations useless
unless fault-tolerance is available. Such a feature could be represented by checkpointing. This would
not completely remove the problem of performing some calculations twice, but it would help to
minimize the problem, as a lesser amount of calculations will be lost.

As process migration basically means moving the state of a process to another computer and resuming
its execution, checkpointing could also be used in the process of performing process migration. A
checkpoint has to contain enough information from a processto enable the system to recover the
process and continue execution after failure. The process migration feature can be implemented by
recovering from the checkpoint on a different machine, and continuing the execution there. By using
the checkpointing method for saving the state of the process, we can gain fault-tolerance in addition
to the process migration feature.

An alternative to using checkpoints for process migration,is to add migration points in the source
code as in MpPVM [CS96]. Migration points is different from checkpoints as the process state is only
extracted if and when the process is migrated. They give the advantage that when process migration
is performed, no calculations are lost. Only if a completelynew checkpoint is transferred, this can be
achieved with the checkpointing method. As FROST is designed to be used for long term calculations,
the time lost by using checkpoints for migration has less influence on the total running time, and is
therefore seen as an less important factor. Another advantage with migration points is, that data
does not need to be saved to disk before migration is performed. As fault-tolerance is necessary in
FROST data must be saved to disk, and this is therefore not considered as a performance degradation
compared to the migration point method. Hence, the issues against using the checkpointing feature
for migration in FROST is either insignificant with regard tothe time lost or unavoidable with regard
to saving the data to disk, and we therefore choose the checkpoint solution.

As performing long term calculations is the main purpose of the FROST system it is an advantage to
have fault-tolerance as stated above. As stated in section 2.4 fault-tolerance can be secured by saving
checkpoints to a stable storage media from where they can be recovered when needed. As the FROST
system is meant to run on non-dedicated workstations we cannot be sure that a process can recover
even though a checkpoint has been produced and saved to disk.In other words, we cannot be sure

3.4 Process Migration Policies 17

that the disk in a non-dedicated workstation is actually stable storage. This is because a user may
choose to remove the FROST system at any time or he may choose to shut down the computer for a
long period of time in which the assignment should have been finished. In order to circumvent this
problem of users interfering with the normal execution of FROST, some of the checkpoints produced
on a slave should be sent to the master of the task for storage until the task has finished. These
checkpoints can then be used if a user decides to shut down hiscomputer without announcing it or if
a computer breaks down because of an error. Another computercan then be chosen by the master to
continue working on the assignment from where the checkpoint was made and less data is lost.

Producing checkpoints in a distributed system is normally an extremely difficult procedure, because,
in addition to the normal things included in a checkpoint, communication with other computers across
the network has to be taken into account. This means that the system has to support some sort of roll-
back feature, allowing a slave to “erase” its previous communication with other slaves. Use of such
a feature is potentially problematic as there is a risk that all of the work performed by the system has
to be rolled back in order to reach a common ground by each slave.

In FROST we do not have this problem. This is due to the fact that communication in FROST is
limited by the way FROST handles the assignments given to it.The flow is that the master splits
the assignment into a number of independent tasks. These tasks are sent to slaves which perform
calculations and, when these are finished, returns the results to the master. No communication is
allowed between the individual slaves. Thus in FROST we do not need a rollback feature because
when a task or result has been transmitted it has no effect on the other slaves.

3.4 Process Migration Policies

In the previous sections, the technical issues regarding the process migration and fault-tolerance
features were analyzed. As stated in section 2.5 we also needto define certain rules that are used to
make decisions when a process is to be migrated. Some information is needed to make the decisions,
and a rule must state which information that should be used and how it will be obtained. When that
information is obtained, another rule must be used to decidewhether we need to migrate a process,
and if so, which process we wish to migrate. When a process is chosen for migration, it has to be
determined where it should be migrated to. These three rulesare known as the information, transfer,
and location policies. We have chosen to split the transfer policy into two, creating a selection policy
as well. The transfer policy then determines whether it is necessary to migrate a process or not, and
the selection policy determines which process to migrate.

In the following sections we will consider each of these policies in greater depth in relation to the
FROST system. In order to do this, we will consider three example systems and the policies they
use. We will consider the MOSIX system and the Load Sharing Facility (LSF) system described by
Milojicic et al. [MDP+00] and tmPVM described by Tan and Yuen [CTY99]. First we willgive a
short introduction to the three systems, and throughout theanalysis of the policies, we will relate
FROST to these systems.

MOSIX is implemented as a distributed operating system where processes are migrated between
machines in order to perform dynamic load balancing in the system.

LSF provides some distributed operating system facilitieson top of various operating systems with-
out changing them. It uses process migration to balance the load in the system, but it is used as a
supplement to the initial placement.

tmPVM is an implementation of PVM that supports process migration in a homogeneous environ-
ment. Process migration is used to achieve better performance by migrating processes away from
overloaded nodes to lesser loaded nodes.

3.4.1 The Information Policy

The information policy consists basically of an information gathering process where information is
collected to allow future policies to perform decisions based on the overall state of the entire system.
There are many ways of performing this information gathering. They can be centralized approaches

18 Analysis

or decentralized approaches, periodic gathering or event based gathering, all depending on the system
implementing the gathering of load information. We will notconsider how the different systems
define load, but how the information is collected.

The MOSIX system uses a decentralized load balancing algorithm where each node in the system
maintains a load information vector about the load on a smallsubset of other nodes in the system.
For every iteration of the algorithm two nodes are selected at random and are sent the most recent
load information. The receiving system answers this by returning its own load information back to
the sender.

The LSF is a little different from the MOSIX system as it primarily relies on initial placement of the
processes as a way of achieving load balancing. In addition to this it employs checkpointing as a
means of performing process migration. LSF uses a centralized approach where a node is assigned
the task of being master. This master is responsible for maintaining the collecting of load information
from the other nodes. Each node sends its load information tothe master periodically.

tmPVM also uses a centralized approach. A process on each node collects load information, regarding
the node it is running on, and sends it periodically to a centralized resource manager.

The FROST system is designed as a peer-to-peer system and a centralized approach is therefore
generally an inappropriate solution. With a decentralizedapproach each machine holds the load
information needed to decide whether to migrate or not. If the system are to scale Internet-wide it
is not possible for each machine to hold information about all machines in the system. A solution
such as the one used in the MOSIX system is required, where only the load of a subset of the nodes
is known.

3.4.2 The Transfer Policy

The transfer policy is used to decide whether a system shouldmigrate a process or not. This basically
means that this policy only determines whether a node is sufficiently loaded to take action. The policy
does not decide which process to move but only whether to migrate or not. We will consider three
approaches to this policy, the sender initiated, the receiver initiated and the centralized approach.

The sender initiated policy is invoked on an overloaded nodethat wishes to transfer a process to
another node. According to Milojicic et al. [MDP+00] a sender initiated policy is especially usable in
a system where the number of underloaded nodes is higher thanthe number of overloaded nodes. The
receiver initiated approach is in contrast invoked on an underloaded node in need of work. Milojicic
et al. says that the receiver initiated policy is good in a system with a larger number of overloaded
than underloaded nodes. Shivaratri et al. have a reason for this difference. When using a sender
initiated approach in a highly loaded system it is not very likely to find a suitable destination node, and
therefore the administration price increases compared to the benefits of migration [SKS92]. Shivaratri
et al. furthermore states that when using a receiver initiated approach in a lightly loaded system, the
effectiveness is reduced as the need for migration often is discovered late. The centralized approach
has a central process that keeps track of the load in the entire system and chooses the nodes that
should migrate a process.

The MOSIX system uses a sender initiated approach, decidingto migrate a process when a node finds
another node with a significantly reduced load relative to itself. The difference in load between two
nodes needed for the transfer policy to make a decision must exceed a stability factor.

If a node is overloaded in the LSF system or if it is needed by a higher priority process, it may choose
to migrate a process to another node. The choice of whether tomigrate is made from local load
information. LSF allows users to specify a certain time period in which local load conditions must
remain unfavorable before performing migration on a chosenprocess. This is done in order to avoid
that temporary load spikes can cause unnecessary process migrations. If the load conditions becomes
better the process can remain on the current node and the system avoids the time-loss of migrating a
process. Depending on the jobs that run in the system, the transfer policy in the LSF system may be
configured to use different load information. The LSF systemalso uses a sender initiated approach.

As described in section 3.4.1, tmPVM has a centralized load information policy, and it is therefore
also obvious to have centralized transfer policy. The resource manager keeps track of the load on the

3.4 Process Migration Policies 19

different nodes, and if a load imbalance is discovered, an overloaded node is selected to migrate a
process.

As with the information policy a centralized approach is notsuitable for the transfer policy in FROST.
This is especially true as the load information is kept locally on each node. With regard to choosing
a sender or a receiver initiated approach, we need to consider whether the nodes in the system is
generally overloaded or underloaded. As we are using non-dedicated machines this property cannot
be predicted, and we can therefore not decide which of the twosolutions that are most suitable for
the FROST system. Instead we will use a combination of the sender and receiver initiated approach,
also known as a symmetric transfer policy [MDP+00], as it combines the two policies in order to take
advantage of the positive sides in both of them. The sender initiated policy can then be used when
the load of a node is above a certain threshold and the receiver initiated policy when a node is below
this threshold.

As we use non-dedicated machines such as in the LSF system, the problem regarding temporary load
spikes will also exists in FROST. Means must be considered that handle this situation in order not to
make unnecessary migrations.

3.4.3 The Selection Policy

The selection policy determines which process to migrate when the decision to migrate a process
has been made by the transfer policy. The selection policy isvery system dependent. There are
many factors that can be used to determine which process to migrate. E.g. a selection policy can
choose to migrate the newest process, a long lived process, it can choose based on a the amount
of communication a process has with another process on a different node or it can take an entirely
different approach to selecting a process to migrate.

In the MOSIX system a process is selected for migration basedon its history of forking off new
subprocesses or a history of communication with another node if it exists. A process is only chosen
for migration though, if it has run for a certain minimum amount of time. This prevents short-lived
processes from using up valuable processing time in a migration which turns out to be in vain if the
process terminates immediately after it is migrated.

Milojicic et al. [MDP+00] does not describe how a process is chosen for migration inthe LSF system.

In tmPVM each node maintains a list of processes that can be candidates for migration. What makes
a process a candidate for migration is not specified any further in [CTY99].

In the FROST system the choice of a process to migrate is done locally on each node. This is because
we believe that the individual nodes have the most knowledgeabout the processes running on them.
The reason for having a good selection policy is to make sure that as little time as possible is lost
when migrating a process. E.g. a process must be running longenough on the (hopefully faster)
destination node in order to catch up with the time lost during the migration. In order to achieve
this, the selection of a process to migrate could be based on the time that has elapsed since the last
checkpoint of the process, the time a process has been running, the amount of data to be transferred,
or any other type of information available in the FROST system.

3.4.4 The Location Policy

The location policy is used to determine which node a selected process should be migrated to. De-
pending on the approach used in the information and transferpolicies there can be different possi-
bilities for choosing the destination node of the migratingprocess. If the load information is kept
centralized it is most obvious also to choose the destination node centralized, as all load information
will be available. If the load information is not kept centralized and a sender initiated approach is
used, it makes most sense to let the source node choose the destination by itself, unless a centralized
resource has more knowledge of the nodes in the system, e.g. with regard to architecture or amount
of memory. If a receiver initiated approach is used, the location is already determined as the initiator
of the migration.

The MOSIX system uses a sender initiated approach and determines where to migrate a process based

20 Analysis

on a load vector. If a node is significantly less loaded than the one considering the migration, it can
be chosen as a target for migration.

In the LSF system processes may have different requirements, such as special architecture properties,
to the nodes on which they execute. These requirements have to be taken into account when choosing
the node to which a process should migrate. In addition to this dynamic load conditions are also
taken into account when choosing a node. The LSF system has the extra feature that in order to avoid
overloading a node, once a process is scheduled to run on a particular node, this node is not taken
into account for a period of time when considering where to place new processes. The reason why
LSF is able to do this is due to the centralized approach it uses for locating processes.

In the tmPVM system the location policy tries to balance the workload at each node. This is done by
migrating processes from overloaded nodes to lesser loadednodes. For each process that is migrated,
the least loaded node is chosen as the destination node, thereby evening out the load on the different
nodes.

As stated in section 3.4.2 we choose to use a symmetric transfer policy which includes both the sender
and receiver initiated approaches. This choice also influences the transfer policy. When the sender
initiated approach is used, a lesser loaded node must be selected as destination node, and when the
receiver initiated approach is used, a more loaded node mustbe selected as source node. The purpose
of the location policy in the FROST system is the same as in tmPVM. The policy should be designed
to equalize the load on the nodes in the system. This has the effect of making the same amount of
CPU power available to each process and thereby letting themexecute in the system on an equal
basis.

As we wish to make the system as architecture independent as possible, we will not include require-
ments for special architecture properties when locating a node. If the calculation code must run on a
specific architecture, the binary file will only exists for that architecture, and this must of course be
taken into consideration when choosing the destination node.

3.5 Demand Specification

In this section we will summarize the choices we have made in the previous sections into a list of
demands to the design and implementation of process migration in FROST.

Technical demands:

User space: The process migration feature must be implemented in user space as a kernel space
solution does not fulfill our demands.

Indirect extraction: The process state must be extracted using an indirect approach in order to sup-
port the heterogeneity of the FROST system.

Preprocessor: In order to uphold the transparency from the users point of view, a preprocessor must
be implemented that takes care of modifying the user code to support process migration.

Checkpointing: In order to achieve both fault-tolerance and process migration, a checkpoint solution
must be used for saving and transferring the process state.

Furthermore issues regarding transparency, heterogeneity and portability generally have to be taken
into consideration during the design process.

Policies:

Information: In order to uphold the peer-to-peer idea in the FROST system adecentralized approach
must be used. The scalability of the system must be considered when choosing the approach
for distributing the load information.

Transfer: A symmetric approach must be used due to changing loads in thesystem induced by the
local users. Means for securing against process migration due to load spikes must be designed
and implemented.

3.5 Demand Specification 21

Selection: The process to migrate is selected locally from the information obtained using the infor-
mation policy. The aim of the selection policy is to choose the most advantageous process to
migrate with regard to finishing the task faster.

Location: The symmetric transfer policy also affects the location policy to handle two situations.
The purpose of the location policy is to select either a source or destination node of the migra-
tion so that the load on both nodes is closer to the average.

When designing and implementing the polices, performance and scalability generally have to be taken
into consideration.

PART II

Design

This part deals with the design of process migration in the FROST system. Chapter
4 considers performance aspects that should be kept in mind when designing process
migration in FROST. Chapter 5 designs the policies that control the process migra-
tion. In chapter 6 the migration procedure is considered. Finally in chapter 7 the
preprocessor is designed.

CHAPTER 4

Designing Process Migration

In this chapter we look at the performance issue with regard to policies, checkpointing and process
migration that has to be considered before the actual designcan start. As the goal of implementing
process migration into the FROST system is improving the performance of the system we have to
consider how the different parts of the FROST system should behave in order to at least match the
performance of the system without process migration and preferably exceed it. In the following
section we will consider how this can be done. Afterwards we state the limitations to the present
version of the FROST system.

4.1 Performance

In section 1.3 we have chosen to consider improvement of issues regarding load balancing and fault-
tolerance and to consider the significance of these improvements with regard to performance in the
FROST system. In order to incorporate this into the FROST system it is necessary to consider how
improvements such as load balancing in shape of process migration and fault-tolerance in shape of
checkpointing influence the performance with regard to the assignments introduced to the system by
the users. It is necessary to balance the design of the systemso that the maximum performance is
gained while still maintaining flexibility with regard to user processes by using process migration.
In addition to this the main idea of fault-tolerance has to beconsidered as well without ruining the
performance of the system. The reason for introducing process migration into the FROST system is
that we want to achieve better performance when machines areloaded.

In the following we will consider the different areas where performance can be jeopardized by intro-
ducing process migration into the FROST system.

4.1.1 Policies

When considering the performance overhead introduced intothe FROST system by the effect of the
policies introduced in section 3.4, it is vital that this overhead does not grow larger than is absolutely
necessary. In order to ensure this we have to consider stability of the policies and the requirement of
the policies to make a qualified choice when it is necessary tomigrate a process and more importantly,
when it is not. These aspects will be considered next.

Stability

Stability is an important aspect of the policies in the FROSTsystem. The policies must be stable
so that no unnecessary process migrations happen and that the system is not subjected to thrashing.
It is very important that both of these two unwanted properties does not happen in the system as
they have a direct impact on the performance of the system. Anunwanted migration is if a process
is migrated to a node that is already heavily loaded. The system would not gain anything from
performing this migration and therefore it makes no sense tomigrate the process. The same goes for
thrashing. Thrashing happens when a process is migrated back and forth between nodes in the system
without ever having an opportunity to perform any calculations. In order to avoid this the policies
must ensure that when moving a process the state of the systemafter the migration is always better
than it was before the migration. This will result in a betteroverall load in the system and ensure that
performance is kept at a maximum with the properties given bythe system.

The state of the system after a migration has been performed is very important. If the migration just
moves load from one loaded node onto another which becomes equally loaded after the migration,

25

26 Designing Process Migration

nothing is gained from the migration and it is more likely that time is lost in the migration. This
situation is an unwanted migration which leads to instability as unnecessary migrations will occur.
The problem of maintaining stability is that in order to do sothe system have to predict the state after
a migration is performed, but before it actually happens. This must be done to prevent the migration
from happening in the first place if it turns out that the result of it is a worse system state than if the
migration is not performed.

4.1.2 Process Migration Overhead

When the FROST system is making a choice whether to migrate a process or not there are a number
of parameters that should be taken into account. Among theseare the amount of time that is lost
when a process is migrated.

It is vital to the performance of the system that the relationbetween the overhead for creating a
checkpoint and the time between the checkpoints is tuned so that as little calculations as possible is
lost at system failure, without inducing too much overhead.In addition to this we have to ensure that
the amount of overhead that is induced by the checkpointing and process migration into the overall
time is also kept at a reasonable level.

In the following we will consider ways of optimizing the overhead induced by checkpoints and pro-
cess migration.

Checkpointing

In order to limit the overhead introduced into the system by the time that is lost when a checkpoint
is migrated we have to consider the optimal time between checkpoints. If this can be tuned properly
the system will loose as little calculations as possible in relation to the time it takes to perform a
checkpoint.

A checkpoint is a point in time where the state of a process is saved as described in section 3.3.
Therefore we loose the calculations that have been performed since the last checkpoint as they are
not part of the checkpoint used for recovery. In order to boost performance we have to minimize the
amount of calculations we have to perform twice. Therefore we have to weigh how often we wish
to create a checkpoint against the cost of making a checkpoint and the probability that a computer
crashes. The problem is that the FROST system cannot predicthow big a checkpoint will be and
how long it will take to make it, as it depends heavily on the assignment created by the user. It is
up to the user to know the overhead of checkpointing and the probability that this computer crashes.
It could be argued then that it could be an advantage to createcheckpoints with very small intervals
but the time between checkpoints must not be too small eitheras the smaller this interval gets, the
more overhead is induced into the overall computation time when performing checkpoints. Plank and
Elwasif [PE97] gives an equation for calculating an approximation of the most optimal space between
checkpoints. This is shown in equation 4.1.Topt =r2C� ; (4.1)

whereC is the overhead induced by creating a checkpoint and� is MTTF�1 (Mean Time To Failure).
If for example we consider a machine that has an MTTF on 4 hoursand the checkpointing overhead,C, is 2 seconds, then the approximated optimal time between checkpoints is 4 minutes. The average
tasks is supposed to run for hours in FROST and therefore 4 minutes is a reasonable loss if a computer
breaks down.

Migration

As FROST is a distributed system that operates in a non-dedicated environment we have to consider
that the load on machines can change over time. This means that if the load increases on a computer
it cannot provide the same performance as before the change in load and it might be advantageous
to move a process to another computer that provides better performance. In order to loose as little

4.2 Limitations 27

calculations as possible it might be advantageous to reconsider the time between checkpoints calcu-
lated above. This is due to the fact that we expect changes in the load on a node to occur more often
than break downs of the nodes. Instead of MTTF as a measure forthe probability� we can now use
the probability that the load will change and cause a migration to happen as�. The probability that a
migration happens is based on the behavior of the users that use the computers in the FROST system
for regular use. If a user chooses to use his computer heavilyit may trigger a migration. In order to
decide this probability it is necessary to study the usage patterns of users. As this is beyond the scope
of this project we choose instead to checkpoint more often inorder to loose as little calculations as
possible. We assume that every 30 minutes the user of a machine will use it intensively long enough
to justify a migration. This changes the optimal checkpointing interval calculated using equation 4.1
to a checkpoint every 38 seconds.

Necessary Variables

In section 4.1.1 it was stated that the time it takes to perform a checkpoint depends on the amount
of data which is saved in a checkpoint. In order to maximize performance with regard to the time it
takes to perform a checkpoint it is necessary to limit the data in the checkpoint to as little as possible.
As stated in section 3.3, a checkpoint has to obtain enough information about a process to save it and
recover it at a later time, either on the present node, or on another node if the checkpoint is used in a
process migration. The data that needs to be saved can include a number of things, such as variables,
and pointers to other objects. In order to optimize the checkpointing process an approach resembling
the one used by Chanchio and Sun [CS96] in MpPVM should be considered. As stated in section 2.3
MpPVM only includes what is callednecessaryvariables when a migration of a process is performed.
This ensures that as little data as possible is stored and therefore as little time as possible is used in
the migration phase.

4.2 Limitations

In the following we will state the limitations we set from theanalysis to the design.

4.2.1 Scalability

The FROST system is supposed to supply a large amount of processing power at a very low cost by
using a large number of computers. The present version of theFROST system is only running on a
small number of computers in a LAN and we will in this project continue to consider the including of
process migration in FROST when used on a local area network.This also means that the solutions
provided in the design does not necessarily scale well to an Internet wide platform. We are aware
of the limitations this introduce into the system but we willdefer the discussion of scalability until a
later chapter.

4.2.2 Necessary Variables

As described above, the locating of necessary variables will make it possible to achieve better perfor-
mance as a minimum of variables are checkpointed and transferred during migration. Locating nec-
essary variables does, however, demand a high level and verycomplex code analysis. Furthermore it
is not a necessary feature to support in order to achieve a reasonable process migration feature, and
we therefore choose not to use this approach to variable extraction in our checkpointing procedure.

4.2.3 Fault-tolerance

Fault-tolerance is an important feature in a vulnerable environment. In this project, however, we have
chosen to concentrate on the process migration feature and we will therefore not design the fault-
tolerance features any further, except for the checkpointing feature which is used to extract the state
of the processes.

CHAPTER 5

Policies

In section 3.4 of the analysis we considered four policies for controlling the process migration pro-
cedure. These were the information policy, the transfer policy, the selection policy, and the location
policy. These policies are essential parts of a system whichincorporates process migration and there-
fore we will in the following sections consider how they can be included into the FROST system.

5.1 Information Policy

The information policy states how the system is to gather information on which to base later decisions.
In order to do this we have to consider what this information is to consist of, how it should be gathered
and how it is published so that all nodes in a network can gain access to this information. In the
following sections we will consider these issues in greaterdetail.

5.1.1 Usable Information

When considering a system as FROST, we see that its main limitation with regard to obtaining CPU-
cycles is that it must yield whenever a user wishes to use the computer. This means that the FROST
system cannot monopolize a node and shut out all other programs on that node in order to finish a
result as fast as possible. As the nodes are non-dedicated the operating system on each node must
ensure that a user has priority over the FROST system. If a user is pushed aside by FROST the entire
idea of the FROST system is jeopardized.

A successful FROST node is a node that performs its tasks as fast as possible and still offers a good
response time to the local user of the node. The problem is howto secure the responsiveness of a
node. As stated in section 1.3 this is secured by giving a FROST task a low priority in the operating
system. This priority is lower than the priorities assignedto the user processes in that system thus
ensuring that the FROST system is preempted whenever a user process needs the system.

A usable variable in the information policy is the load on a node. This can be measured in several
ways, an example is the number of processes in the ready queue- the more processes in the ready
queue the more loaded the system. Kunz states that using the ready queue as a measure for the load
of a computer is the most effective way of measuring load [Kun91].

We choose to use another way of measuring the load on a node. Asthe processes in the FROST
system are assigned the lowest possible priority in order not to interfere with user processes, we
believe that the ready queue does not supply sufficient information for calculating load. The problem
is that as long as there is user processes, the FROST process will receive little CPU time as it has the
lowest priority even though the ready queue is short. This means that the length of the ready queue
does not supply usable information for the FROST system as the length may only be one, namely
the FROST process, and instead of taking the consequences and migrating the FROST process, we
do nothing based on the short ready queue leading to starvation of the FROST system. In order to
avoid this starvation of the FROST processes we choose to usethe available resources as a measure
of performance. The available resources states how much processor time is available to the FROST
process and thus whether it is advantageous to move the process somewhere else in order to allow the
FROST process to run. By using available resources we are always able to find the node that finishes
the assignment in the shortest time. Resources is an independent measure where load is relative to
the node on which it is taken. If for example both a slow and a fast node is 80% loaded, the fast
node will have more available resources as each percent count for more on the fast node. In other
words percentages cannot be compared directly. The number of available resources on the other hand
can always be compared between machines no matter how fast they are relative to each other. The

29

30 Policies

approach that we have chosen to include in the FROST system isto execute the following method at
regular intervals.

CALCULATE RESOURCES()

1: set timer
2: while the timer runsdo
3: CurrentResour
es CurrentResour
es + 1
4: end while
5: return CurrentResour
es

The intervals that the above method should be run with depends on two things. First of all the more
often it is run, the more often resource information is obtained. The problem with obtaining data
often is that it comes with a price. The more often the CALCULATE RESOURCESmethod is executed,
the more processing power is used in calculating resources and the less processing power is available
for the calculation of tasks in FROST. The second thing that the interval depends on is how often
migration can be considered. If the price of migration is toohigh the interval with which it is called
should not be very high.

The timer that is mentioned in the description of the CALCULATE RESOURCESmethod decides for
how long the single measuring of available resources will last. The value measured will be passed
on to the following policies for further decision making. The timer plays an important role as well
as the longer it runs the less sensitive the policies will be toward fluctuations in the resources. But
if it runs for too long, the same problem as with the intervalshappen. Too much time is spent in the
CALCULATE RESOURCESmethod.

The CALCULATE RESOURCESmethod is a rather simple method but it has no need to be more com-
plex in order to give a measure for the available resources inthe system. The timer which is mentioned
in the above method stops the while-loop, ends the CALCULATE RESOURCESmethod and a measure
for the available resources in the system is returned to the caller.

The CALCULATE RESOURCESmethod must be run at the same priority level as the processeswhich
performs the calculations. This will then give an average measure for the amount of resources avail-
able for each process and this number can be compared betweenmachines.

As FROST uses non-dedicated machines, the amount of memory is very likely limited compared to
when a supercomputer is used. For this reason the amount of memory should also be considered in
the available resources. The amount of free memory and the CPU usage can change rapidly, but if the
load becomes too high, calculating processes can yield, giving more CPU power to the user. Memory
on the other hand has to be swapped out thereby making more available memory to other processes.
This however, takes some time as it requires disk access and it cannot be controlled by FROST, as it
is only operating in user space1.

We have chosen a simple solution to the problem of handling memory resources. We have chosen
to limit the use of memory to a predefined value, either set by the user or as a percentage of the
total amount of memory. This value determines the pool of memory that may be used by calculating
processes. As designed in [GK02], the user must specify the maximum amount of memory used
by each work unit. We believe this is a reasonable demand, as the amount of memory used by an
algorithm most often can be determined on beforehand. When awork unit is sent to a machine, the
amount of memory it uses is subtracted from the pool of available memory. If there is not enough
available memory in the pool, the work unit cannot be sent to that machine. The amount of available
memory must be declared when a machine requests to transfer aprocess to another. This can be
handled by sending the memory use of a process along with the request. The receiver can then make
the decision whether it has sufficient memory to accept the process.

5.1.2 Gathering Local Information

In the previous section we stated what kind of information wecould include in the information policy
and how this information could be obtained. We also have to consider how to enable the system to
obtain it so that we display a fair picture of the load in the system. Locally on each machine we have

1FROST cannot control the yielding of processes either, but the calculating processes can be set to run with a low priority.

5.1 Information Policy 31

to perform resource calculations periodically in order to discover if the available resources changes
for example because of the user. Event based calculations are not adequate as we cannot count on
any events happening frequently enough in the FROST system.It is obvious that if the resource
calculation runs too often, too much time will be spent updating the available resources information
across the network and less time is used for calculating the user tasks. But if the resource calculation
are performed too infrequently a node may choose to move a process based on old information which
is no longer valid, resulting in overloading an overloaded node even further.

Another problem, first introduced in section 3.4.2, that we have to consider is the problem of avoiding
reactions based on spikes in the values of the resource calculation. In the LSF system [MDP+00] this
problem was addressed in the transfer policy. In FROST, however, we see that it is advantageous
to solve it in the information policy as it is here the gathering and processing of information is per-
formed. In order to smoothen out load spikes in the system, wechoose a solution where resource
information is gathered over a period of time and an average value of the collected information is cal-
culated. If the period is chosen correctly the influence of load spikes can be minimized. In addition to
this we choose to require that two gatherings of resource information has to show the same tendency
in available resources in the system before it is consideredto take further action in order to minimize
the sensitivity of the system against short lived processes.

In order to consider the interval with which the resources should be gathered on a node we have to
take the non-FROST processes of the users into consideration. As stated above we require that two
intervals of resource checks show the same tendency before aprocess is migrated. We do not wish
the system to be sensitive to processes that run for less thanone minute which means that we have to
perform the resource gathering with a one minute interval.

It should be noted that the approach of gathering information should be tested and adapted to per-
forming the resource calculation with the most optimal interval.

5.1.3 Distributing Information

The problem of introducing process migration into a system is that one must be very careful not to
move a process from one node which is overloaded onto anothernode which is even more loaded.
In Shivaratri et al. [SKS92] they present an approach where nodes are chosen and polled for their
load based on their previously known state. In FROST, we think, it is a better approach to share load
information among the individual nodes in the system. Sharing load information is relatively easy as
long as the system is sufficiently small. It is easily done by sending the load information of one node
to all the other nodes in the system, either using unicast, broadcast or multicast. The advantage of this
approach is that a node can easily be chosen as target for migration or request as all load information
is known on beforehand. This also enables us to make a preliminary prediction about whether moving
a process would be advantageous or not. Prediction will be considered later. The problem with this
approach is that it cannot scale to a size where it is usable ona system spanning the entire Internet due
to the large amount of information that each node should contain. Another problem is that broadcast
is usually not allowed to cross routers between a sub-net andthe Internet, multicast requires that all
nodes agree on the address, and unicast requires that all nodes has knowledge of all other nodes.

The FROST system is running on non-dedicated computers using a non-dedicated network for com-
munication and therefore we cannot rely on a single server toperform information gathering and
distribution so we have to consider another way of upholdingthe information policy. As stated in
section 4.2 FROST is presently only running on a small numberof computers. Therefore we have
chosen to broadcast the resource information of each computer so that all other computers gain access
to this information easily. We are aware of the problems connected with this approach and it will be
necessary to consider an approach which avoid the use of broadcast in order to allow the FROST
system to scale. This will be considered later.

Each node in the FROST system is a potential master and as stated in section 3.4.1 all nodes function
in a peer-to-peer fashion, sharing processing power on an equal basis. As every node functions
on an equal basis it is necessary for each of them to have a local data structure for containing the
resources of all the nodes in the system, including the localnode. We will call this data structure aResour
eVe
tor and it must be present on all the nodes in the system. The reason for saving ones own

32 Policies

resource information as well as the resource information ofall other nodes, is that the information is
used in the transfer policy when thresholds are calculated.As described previously in sections 5.1.1
and 5.1.2 the resources on each machine is calculated regularly by the master and shared with the
other nodes in the system.

Because resource information of a node has to be shared with all other nodes in the FROST system,
we have to ensure that only essential information is shared so that nodes are not overwhelmed by
a huge amount of resource information. It is for example not necessary to share newly calculated
resource informations if these are equivalent to the old information which has already been shared.
Therefore we choose to use an event based distribution scheme, based on the difference between
old and newly calculated resources for the information which has to be shared with other nodes.
Such a scheme prevents sharing of resource information in the FROST system unless it is sufficiently
different from previously shared information.

When sharing resource information we will use the approach shown in algorithm 1.

Algorithm 1 Information policy.
1: CurrentResour
es CALCULATE RESOURCES

2: if PreviousResour
es is very different fromCurrentResour
es then
3: Resour
eVe
tor [Lo
alhost ℄ CurrentResour
es
4: PreviousResour
es CurrentResour
es
5: BroadcastCurrentResour
es
6: else
7: Resour
eVe
tor CurrentResour
es
8: end if

Whenever a master receives new resource information from a node it updates itsResour
eVe
tor to
reflect this information.

This approach is usable when the system is running and every master has information about all the
other masters in the system. But if a new node is introduced inthe network special measures has to
be taken to ensure that a new node can participate on the same terms as the others. This approach
is shown in figure 5.1. When a new node is started in the FROST system, it immediately announces
its presence to the other nodes by issuing a broadcast message containing information about itself,
including its current resource information. After receiving this message each of the other nodes waits
for a random amount of time and unicasts a message to the new node, containing similar information
about itself. The new node is then updated and can now begin calculating tasks. The reason that
the nodes have to wait a random amount of time before answering the new node is that if they did
not wait it could result in the new node being overwhelmed by the resource messages as they would
arrive more or less simultaneously.

5.2 Transfer Policy

The transfer policy constitutes the decision making part inthe system. It is the transfer policy which
has to make the decision about whether the system is in a statewhere it is necessary to take action in
order to get out of that state.

As stated in section 3.4.2 we use a symmetric approach for deciding whether to receive or send
a process. A symmetric approach is a combination of two parts, a sender and a receiver initiated
approach. The sender initiated approach is used if a computer has few available resources. Then
it may decide to transfer one of its processes to another computer in order to balance the overall
resources in the system. As the main purpose of the transfer policy is to get the most calculations out
of the resources present in the system, we must ensure that nonode is able to exploit other nodes.
This is done with the peer-to-peer structure of FROST in mindand is ensured by the location policy.
The receiver initiated approach works opposite of the sender initiated approach. If a computer has a
large number of available resources it can request a processfrom another computer in order to lessen
the load on that computer.

The decision about whether to use the sender or the receiver initiated part of the symmetric approach

5.2 Transfer Policy 33

Unicast

Broadcast
1:10
2:20

1:10
2:20

1:10
2:20
3:15

1:10
2:20
3:15

1:10
2:20
3:15

1:xx
2:yy

1:10
3:15

3

3:15

15

1 2

15

10

20

ResourceVector

Figure 5.1: The procedure of sharing resource information with a new node. Nodes 1
and 2 are already online nodes, node 3 is the new node. When node 3 is
started it only knows about itself. It then issues a broadcast with its own
resource information. Nodes 1 and 2 receives the broadcast and updates
their information. They then wait a random time before they unicast their
own resource information to node 3.

is made by the individual nodes in the system, based on the average available resources in the entire
system. In the following section we will consider how to makethis decision.

5.2.1 System Thresholds

When it comes to comparing the available resources on a localnode with the available resources in
the entire system the solution that we choose in the FROST system is to use three states delimited by
two thresholds, an upper and a lower threshold. Shivaratri et al. describe a similar approach but where
they calculate thresholds based on the local load only [SKS92], we decide to calculate them relative to
the average available resources in the entire system because we believe that this gives a more useful
image of the resources in the system. These thresholds statewhether the system is loaded or not
and they determine the eagerness of the system with regard tomigrating processes. If the resource-
number is above the upper threshold the system is lightly or not loaded and the transfer policy may
choose to request a process from another node which has a lower resource-number than itself. If the
resource-number is below the lower threshold the system is heavily loaded and the transfer policy
will try to migrate a process away in order to make the system less loaded. If the resource-number is
between the two thresholds no action will be taken. The closer the thresholds are placed together the
more eager the system is to move processes.

The reason for using the thresholds is, in addition to using them for deciding whether the system is
over- or underloaded, that the system is not as sensitive with regard to fluctuations as there is some
freedom of movement for the resource-number to move around the average value before a process
is migrated if they are placed with a reasonable interval. Iffor example thresholds were not used,
a node would choose to migrate a process as soon as its available resources fell below the average
system value and that would likely result in thrashing.

We choose to fix the thresholds to a certain value around the average available resources in the entire
system. This is done in order to give the nodes a certain leeway before they choose to migrate
a process. In addition to this we choose to switch off either the receiver or the sender initiated
approaches at certain points, due to the fact that their advantages lie in different ends of the resource
spectrum, as stated in section 3.4.2. An example of this can be seen in figure 5.2

In figure 5.2 (a) we see an example on a system which has a high number of average available

34 Policies

(b)(a)

Average

Lower Threshold
Upper Threshold

Average

Figure 5.2: An illustration of different approaches.

resources. As can be seen, only the sender initiated approach is used, represented by the lower
threshold, as it is most effective when the number of underloaded nodes is higher than the number of
overloaded nodes in the system. In figure 5.2 (b) it is the other way around. Here a small number of
underloaded nodes are available in the system and thus a receiver initiated approach is more effective,
represented by the upper threshold. The transition betweena sender and a receiver initiated approach
should happen simultaneously on all nodes in the system in order to ensure that no conflicting requests
are issued. This would require that all nodes in the system had a shared state which could be set
according to the current average available resources in thesystem. Creating such a shared state is
complicated and would result in a significant communicationoverhead in order to synchronize all
nodes.

Another possibility is that each node measures two extremities, a number for the available resources
when the node is idle and a number for the available resourceswhen a node is heavily loaded. These
values shall only be measured once, namely during the installation of the FROST program. Every
time a node is going online the values are broadcast as part ofthe first broadcast message which is
described in section 5.1.3. The extremity values can then beused to calculate an average idle value
and an average heavy-loaded value for the entire system. Using this information each node can make
a choice whether to use a receiver or a sender initiated approach - if the system average available
resources is closest to the average idle value a sender initiated approach is used and the receiver
initiated is switched off, and vice versa. This approach is illustrated in figure 5.3.

Average Heavy−loaded
Resources

Average Heavy−loaded
Resources

(b)(a)

Average

Lower Threshold
Upper Threshold

Average

Average Idle Resources Average Idle Resources

Figure 5.3: An illustration of how the system makes the choice between a receiver and
a sender initiated approach.

As can be seen in figure 5.3 (a) the distance from the average available resources to the average idle
value is shorter than the distance from the average available resources to the average heavy-loaded
resources. This results in the system choosing a sender initiated approach as there are fewer nodes
which has few available resources and thus a sender initiated approach is more effective. The opposite
can be seen in figure 5.3 (b) where the average available resources in the system is seen to be closer
to the heavy-loaded resources extremity, due to a lower number of nodes with a lot of available
resources. This results in a receiver initiated approach asit is better that the few nodes with a lot of

5.3 Selection Policy 35

available resources ask a node with a few number of availableresources for a process than if all nodes
with a few number of available resources just send their processes to the nodes with the high number
of available resources. We still use the thresholds to determine when a migration shall be initiated.

If a new computer joins the system it receives values for available resources, and idle and heavy-load
extremities. This means that it can immediately calculate the average available resources in relation
to the extremities, and determine whether a sender or a receiver initiated approach is currently used
in the system. If a sender initiated approach is used, it willdo nothing until it is contacted by a node
which has few available resources, and thus is placed below the lower threshold. The node which has
few available resources states a wish to migrate a process tothe new node, which the new node can
accept or deny depending on various parameters which will bediscussed later. If a receiver initiated
approach is used, the new node will find a node which has the least available resources and request a
process from that node. Again there are certain parameters that must be fulfilled before migration is
initiated.

Determination of the thresholds is a subject that should be looked into in order to optimize process
migration in the FROST system.

Determining System State

When determining the system state we have to consider the fact that we cannot calculate the average
available resources in the system using resource values obtained at the same time for all the nodes
in the system. This is primarily due to the lack of a shared clock between the nodes for timing the
checking of resources so that every node checks its available resources at the same time. This means
that the average available resources calculated in order todetermine the system state is not the average
available resources in the system at a fixed time, but an approximation using the available values for
the nodes in the system. These values for the available resources may be far from the actual values at
the time of threshold calculation, but it is the best approximation which can be reached in a realistic
manner. It would be possible to obtain a more exact number by either using a snapshot algorithm or
synchronizing the clocks in the system, but this would increase the cost of determining the system
state in a way which is undesirable.

In algorithm 2 we give the algorithm for calculating the system state in the FROST system and how
we act upon this information. Note that action is only taken if two resource values obtained after each
other shows the same tendency. So if thePreviousResour
es states that the system state is above the
upper threshold and theCurrentResour
es states the opposite, then no action is taken.

5.3 Selection Policy

The selection policy is the part of the system that makes the choice of which process on a node
that should be selected for migration. In section 3.4.3 we have argued that the selection policy is
performed locally because the information which is required for making the decision is only known
locally. We also stated that the process which should be chosen for migration should be the one
which was most advantageous with regard to finishing faster.In order to make the choice we gave
some parameters. These parameters were the following.

• The time a process has been running.

• The amount of data that must be transferred during migration.

• The time since the last checkpoint was performed.

In order to make the best choice of which process to move all the above parameters can be used in
the selection process by weighting them against each other.This can be done by introducing a score
system where each process receives a number of points for each of the parameters. The score will
depend on how a process is situated in relation to the other processes and in relation to the demands
set by the parameters. This will then allow a node to choose the most optimal process for migration.

36 Policies

Algorithm 2 Transfer policy.
1: if broadcast withresour
enumber is receivedthen
2: Resour
eVe
tor [IP ℄ resour
enumber
3: Calculate new average available resources in the system
4: end if
5: if average available resources has changed enoughthen
6: Calculate new distance from average available resources toextremities.
7: if distance to idle extremity is smallestthen
8: SystemMode SENDER
9: else

10: SystemMode RECEIVER
11: end if
12: end if
13: : : :
14: if SystemMode = RECEIVER then
15: if Resour
eVe
tor [Lo
alhost ℄ > UpperThreshold then
16: if PreviousResour
es > UpperThreshold then
17: The node is lightly loaded and should request a process
18: goto lo
ationpoli
y
19: end if
20: end if
21: else ifSystemMode = SENDER then
22: if Resour
eVe
tor [Lo
alhost ℄ < LowerThreshold then
23: if PreviousResour
e < LowerThreshold then
24: The node is loaded and should get rid of a process
25: gotosele
tionpoli
y
26: end if
27: end if
28: else
29: Do nothing
30: end if
31: PreviousResour
e Resour
eVe
tor [Lo
alhost ℄

5.3 Selection Policy 37

The procedure of selecting a process for migration consistsof two parts - calculating scores for all
the processes on the node based on the criteria mentioned above, and making a choice, based on this
score, about which process on a node to migrate. This is approach is shown in algorithm 3.

Algorithm 3 Selection policy.
1: for all processes on the nodedo
2: Calculate score based on the criteria given
3: end for
4: Choose the process with the best score for migration

There is a problem with using the score system for deciding which process to migrate though. In
order to ensure that each of the parameters are upheld the score has to be kept up-to-date. As some
of the parameters may change in a way which cannot be foreseen, the score assignment is a dynamic
feature of the system as scores must be reassigned every timea process is to be chosen for migration.

5.3.1 Score Calculation & Process Selection

The primary goal of the score calculation is to allow the selection policy to choose the process which
is the most advantageous for migration. As we stated above the score must be recalculated whenever
a process is to be selected in the FROST system due to the nature of the parameters on which the
score is based. In order to select the most optimal process a lot of things can be taken into account.

One approach is to weight the individual parameters in the score up against the others so that some
parameters have more significance than other parameters. For example it is obvious that the time
since the last checkpoint plays a major role in score calculation as the longer it has been since the last
checkpoint the more data is lost if it is used to restart the process. Therefore it could be an advantage
to let this parameter have greater influence on the final result when the score is calculated. Another
important aspect that could be included in a weighting procedure is the size of a checkpoint. It is
necessary to take the time it takes to move a checkpoint from one computer to another into account
as well when considering how to weight parameters. If for example a checkpoint is 30MB in size it
could be a problem to move such a checkpoint no matter how often the checkpoint is performed. The
time it takes to move 30MB depends heavily on the speed of the connection from the sending node to
the receiving node. If it only takes 30 seconds to move the 30MB and the process has a 4 minute old
checkpoint, there will be lost less than 5 minutes if the process is migrated. But if it takes 10 minutes
to move the 30MB, approximately 15 minutes of calculation time is lost, and in addition to that we
have loaded the network for 10 minutes. Therefore it will be agood idea to weight the scores so
that we find the process which looses the least time when it is migrated. This example also indicates
that the network bandwidth should be taken into consideration both when the destination machine is
selected and when the process to migrate is selected. As shown above, the network bandwidth can
increase the migration time considerably.

In section 3.4.3 we chose to include run-time for a process, time since latest checkpoint, and amount
of data that is to be transferred in our selection procedure.A possible procedure for calculating the
score in the FROST system, based on the three the parameters given above, is as follows.

Run-time for processes: In the FROST system we assume that processes in the same overall as-
signment generally will run for the same amount of time. In order to have a measure for the
expected remaining running time, an average can be maintained for each of the assignments
that a node is involved in. Then a score can be assigned by comparing the elapsed run-time
and the expected run-time for a work unit. The maximum score is given to the process which
seems to have the best potential of continuing for the longest amount of time. This ensures
that a process which is just about to finish will have a lower possibility of being migrated. The
second highest score is awarded to the process which will continue second longest and so on
down to the process with the shortest expected running time left. The reason why it is the
processes which will continue for the longest time that getsthe highest score is that it has the
best probability for catching up with the time lost by migrating.

Amount of data transferred: As noted above, the amount of data that needs to be transferred can

38 Policies

have a very large impact on the time lost by the migration. Theleast amount of points should
be assigned to the process that has the largest amount of datato transfer. The amount of data
should be considered in the assigning of points, e.g. by assigning one point per 100kb of data.
This will give the process with the most amount of data most points, which is not wanted. To
invert the points, each assignment can be subtracted from the maximum amount of points given,
thereby assigning zero points to the process with most data.The points should be weighted with
regard to the bandwidth.

Time since last checkpoint: Each time a process makes a checkpoint it also records the time.
When scores are assigned, it is possible to calculate the time that has elapsed since the last
checkpoint for all the processes. The above procedure for inverting the point assignment can
also be used here. The process with the youngest checkpoint should get the highest score as
the least amount of time will be lost when recovering from it.If one point is assigned for
each minute since the last checkpoint, the oldest checkpoint is assigned the highest score. By
inverting the scores, the desired assignment is achieved.

The scores are summed up to a total and the process with the highest score is to be migrated. An
example is given in table 5.1. The amount of data to transfer includes the size of the binary file.

Process A Process B Process C Process D
Expected run-time 30 min = 2pts 2 min = 1pts 77 min = 3 pts 120 min = 4pts
Data to transfer 2 Mb = 0pts 1,2 Mb = 8pts 1,7 Mb = 3pts 1,8 Mb = 2pts
Time since last checkpoint 2 min = 13pts 15 min = 0pts 10 min = 5pts 5 min = 10pts

Total 15pts 9pts 11pts 16pts

Table 5.1: An example of the score assignment process.

By comparing the result from table 5.1 with the price of the migration shown in table 5.2, we see
that some weighting of the points assigned would be an advantage. With a 10Mbit connection it is
clear that process A would be more advantegeous to choose than process D, as only 2 minutes is lost.
If, however, a 56kbit connection is used, it may be an advantage to transfer process D, as it has an
expected running time of 120 minutes left to catch up with the9 minutes lost. Process A has only 30
minutes to catch up with the 7 minutes lost by choosing that process.

Process A Process B Process C Process D
10 Mbit 2 min 15 min 10 min 5 min
128 kbit 4 min 16 min 12 min 7 min
56 kbit 7 min 18 min 14 min 9 min

Table 5.2: The amount of time lost by migrating a process. Only the time since last
checkpoint and the transferral of data is considered. The time for transfer-
ring data is calculated using theoretical maximum values for the connec-
tions.

From the examples we can conclude that the higher bandwidth available, the more the time since last
checkpoint should be weighted compared to the amount of datato transfer. Furthermore it would be
an advantage to compare the time lost with the expected run-time e.g. taking the expected available
resources on the destination machine into account. As can beseen from the examples, the use of a
scoring system is rather complex, as the weighting of scoresshould be performed dynamically taking
the bandwidth and available resource etc. into account.

According to Eager et al. [ELZ86] it is often as good a choice to use a simple approach when per-
forming load balancing as it is to use a highly complex approach. Process migration is essentially
dynamic load balancing and therefore we have chosen to limitthe scoring system to use a simple
approach. At present FROST is run on a LAN and therefore has a high amount of bandwidth at its

5.4 Location Policy 39

disposal and therefore we find it reasonable to omit this parameter. We choose to use a single value
for the selection of a process to migrate: The time since lastcheckpoint. Hence, the process with
least time since the last checkpoint was performed is chosenfor migration.

5.4 Location Policy

The location policy is the mechanism that chooses a destination for a process that is to be migrated.
As stated in section 3.4.4 we have chosen a symmetric policy.This means that depending on whether
the receiver or the sender part of it is used, the location policy has to find the least or the most loaded
node in the system.

If the system is in the receiver mode the location policy has to find the most loaded node in the system.
This is done by looking through information about all nodes in the system and choosing the one which
has the fewest available resources. That node is then offered the possibility of offloading a process
onto the initiating node. In the receiver initiated approach the upper threshold mentioned in section
5.2 will only be used by the requesting node to check whether it is in a position to allow a request,
as the requested node does not need to be overloaded but only more loaded than the requesting node.
The algorithm used in the receiver initiated approach is shown in algorithm 4. The node variables are
data structures containing information about a node, such as the IP and the available resources.

Algorithm 4 Receiver initiated location policy.
1: ChosenNode 0
2: for all NodesN in Resour
eVe
tor do
3: if N :resour
es < ChosenNode:resour
es then
4: ChosenNode N
5: end if
6: end for
7: Offer to receive a process fromN .

In a sender initiated approach a node chooses to offload a process if possible due to lack of available
resources. This choice has been made in the transfer policy,and a process has subsequently been
chosen for migration in the selection policy. It is now up to the mechanisms in the location policy
to choose a new node to which the process is to be migrated. This is done by looking through
all the nodes and choosing the node with the most available resources as a target for the migrating
process. This choice can only be made by nodes which are belowthe lower threshold, which denotes
a heavily loaded system, in order to secure that the load is balanced across the entire system. If a
non-overloaded node is not found the chosen process is restarted and the migration is not performed.
The algorithm used in the sender initiated approach is shownin algorithm 5

Algorithm 5 Sender initiated location policy.
1: ChosenNode 0
2: for all NodesN in Resour
eVe
tor do
3: if (N :resour
es > lower_threshold) then
4: if (N :resour
es > ChosenNode:resour
es) then
5: ChosenNode N
6: end if
7: end if
8: end for
9: if 9ChosenNode then

10: Send a process to it.
11: else
12: Skip migration for now.
13: end if

There is a problem with these approaches as we run the risk of migrating a process to a system which
will become heavily loaded when receiving a process. This force the receiving node to migrate a

40 Policies

process, and so on leading to thrashing. A solution to this problem is to only migrate processes to
nodes which are above the upper threshold. Shivaratri et al.[SKS92] propose a prediction method
where a migrating node polls another node at random for its load. Then the migrating node determines
whether sending another process to the chosen node will result in making the load exceed a certain
threshold. If it does, another node is chosen at random and tested. If not, the migrating node sends a
task to the chosen node. In the example described by Shivaratri et al. they do not have local access
to the load information of other nodes and thus they have to poll for it. In FROST, on the other hand,
we have information about the current available resources of all nodes in the system. This can be
used to introduce a prediction approach in FROST when a process migration is about to occur. If the
prediction is positive the process is migrated, if it is not,no migration is performed to that node. This
prediction approach will be considered next.

5.4.1 Prediction

In order to balance the resources in the system in the most optimal way there must be some overall
rules for deciding when it is a good idea to migrate a process and when it is not. These rules are to
ensure that the resource situation is always better in the system after a migration has been performed
than it was before the migration. This can be done by demanding that the receiver of the migration
has a sufficient amount of available resources and that the available resources of the two machines
must be closer to the average available resources in the entire system after a migration from one of
the machines to the other has been performed.

Calculating Needed Resources

The primary goal of migrating a process is to choose a node which offers to finish a task faster than the
one it is presently running on, or in other words, the node which has a sufficient amount of available
resources. Using the time that is lost when migrating a process we can consider the minimum amount
of available resources that should be available for a process when it has migrated to a new node for
the migration to be advantageous. This estimation is only performed in the sender initiated approach.
It can be used by the sender initiated approach to choose the node which is most likely to finish a task
chosen by the selection policy fastest. Calculating this can be done by looking at the relation between
the remaining time for a work unit and the available resources on the current node. In addition we
have to take the time it takes to migrate a process into account. This is seen in equation 5.1.PremR1 > Prem + TmR2 ; (5.1)

wherePrem is the remaining time for a work unit,R1 is the current available resources on the old
node,R2 is the resources that must be available on the new node, andTm is the time that is lost when
migrating a process.

The time that is lost when migrating a process can be calculated as in equation 5.2.Tm = S
n + Tr + 12 � P
; (5.2)

whereTm is the time that is lost when migrating a process,S
 is the size of the checkpoint,n is the
speed of the network,Tr is the time it takes to recover a process from a checkpoint, and 12 � P
 is the
average computation time that is lost when moving a checkpoint.

Equation 5.1 state the amount of resources that a node must have in order to receive a process. This
calculation can be used to limit the number of nodes that are considered when the next phase in the
prediction approach is initiated, namely finding a node thatcan ensure that the available resources of
the two machines are closer to the average available resources after the migration has been performed.

5.4 Location Policy 41

Predicting Resources

In figure 5.4 an example on securing that the state of the system should always be better after a
migration is shown for two nodes. First in figure 5.4 (a) we look upon the nodes before any migration
is performed. It can be seen that node A is below the lower threshold and thus it is overloaded.
Therefore it could be an advantage to move a process from nodeA to node B. But if the result of
the move is that node B falls below the lower threshold as shown in figure 5.4 (b) then the migration
is not preferable as the system has not gained anything. But if the result of the migration is as seen
in figure 5.4 (c) then the overall distance in available resources from the system average available
resources has become smaller and thus the system has gained from the migration.

D
A

B

B

A

Lower Threshold

Upper Threshold

System Average

(1) (3)

A

B A

(2)

Figure 5.4: An illustration of the resource rule.

This approach is used in order to avoid thrashing. If the state after a migration has been performed
can be predicted before the migration is actually carried out the location policy can base its choice
of node on that prediction. If the prediction shows that the state of the system is not better after a
process has been migrated to a certain node, another node canbe considered as an alternative target
or migration can be canceled if no node can be found that givesa better overall result after migration.

Generally the following calculations must hold in order to migrate a process from one node to another.

First we calculate the average available resources after the migration has been performed for each of
the nodes. R�A = RA � NoPro
ANoPro
A � 1 ; (5.3)R�B = RB �NoPro
BNoPro
B + 1 ; (5.4)

whereR�A andR�B are the predicted resources available on the nodes after migration is performed
andRA andRB are the available resources before migration is performed.NoPro
A andNoPro
B
are the number of FROST processes on nodes A and B respectively.

Then we see whether the system gains something by allowing migration. First we calculate the
absolute distance,D, of the resources on a node from the system average. This is done for both nodes
using both known resource values before migration,R, and predicted resource values after migration,R�. An illustration of these distances are shown in figure 5.4 showing the distance,DA, for node A.D = jR� SAvg j; (5.5)

whereSAvg is the system average.

Then if the combined distances after the migration is smaller than the distances before the migration
the system will proceed with the migration.D�A +D�B < DA +DB ; (5.6)

whereD�A andD�B are the distances after andDA andDB are the distances before migration.

42 Policies

If this holds andR�A is above the lower threshold the node is chosen as a target formigration. Oth-
erwise a new node will be chosen and the process will be started over or migration will be canceled
and the process restarted on its current node.

After a node has been chosen as a target for the migration we need to ensure that the load on the
chosen node has not changed for the worse. This can be done by letting the sending node request the
load of the node to which it will send a process just before actually sending the process. Then if the
load has changed to the worse the process could be withheld and another node could be chosen as
target for migration.

5.4.2 Locating a Node

In order to be able to use the prediction described above the location policy first has to choose a node
among all the nodes in the system. Depending on whether the state of the node on which the location
policy is running is receiver or sender initiated two approaches must be considered. These are shown
in figure 5.5

Requested NodeRequesting Node

(b)

1b
2b

3b
4b

5b

6b

1a
2a

3a
4a

5a

6a

7a

Requested NodeRequesting Node

(a)

Figure 5.5: Locating a target node. (a) shows the receiver initiated approach and (b)
shows the sender initiated approach.

In figure 5.5 (a) the receiver initiated approach is shown. Below is the protocol for the receiver
initiated approach.

It should be noted that due to the structure of the FROST system only a single task of each assignment
on a node is calculated at the same time. Therefore we do not allow a process to be migrated to a
node that already executes a task from the same assignment asit would have to wait until the already
present task had finished before it could continue calculating.

1a First a node discovers that the current system state is receiver initiated and that it is
underloaded and it therefore finds a node that is more loaded than itself.

2a It then issues a request to that node for a process and with therequest it states the
maximum amount of memory that process may use.

3a The requested node first checks whether it is already performing a migration and if so
it rejects the request. Otherwise it locates a process whichcomplies with the demands.

4a The requested node replies with the current amount of available resources, the number
of currently running processes and the id of the chosen process.

5a If the requesting node already has a process from the same assignment we are not
interested in receiving it, it is rejected and another is requested. If the requesting
node does not already have the process, the prediction described in section 5.4.1 is
performed using the new resource information from the requested node.

6a If the prediction shows that it would be advantageous to movethe process, an OK is
sent to the requested node.

7a When an OK is received the process is migrated.

5.4 Location Policy 43

In figure 5.5 (b) the sender initiated approach is shown and westate the protocol for this approach
below.

1b The node discovers that the system state is sender initiatedand that it is overloaded
and it therefore locates a node which is not overloaded. It then finds the best process
for migration.

2b It then issues a request for migration to the other node sending along the id of the
chosen process, and the memory usage of the process.

3b The requested node checks whether it is already performing amigration and if so it
rejects the request. Otherwise it checks the id of the process and the memory usage.
If the id already exists on the requested node, the request isrejected. If the memory
usage of the process is unacceptable the request is rejected. Otherwise it is accepted.

4b The requested node returns a message containing its currently available resources and
the number of running processes if the request is accepted, else a rejection is returned.

5b The requesting node performs the prediction procedure described in section 5.4.1 us-
ing the new resource information and process number from therequested node.

6b If the prediction shows that it would be advantageous to movethe process, the process
is migrated.

As can be seen in the above protocols we send the newest available resource number and the number
of currently running processes every time we go through the protocols. These information could also
be sent every time the available resources are updated as part of the information policy. We choose
not to send the number of processes regularly as there is onlyneed for it in the above protocols. The
updated resource information is sent in order to get the latest information for the prediction procedure.

From the protocols, points 5a and 3b respectively, it can be seen that the FROST system should not
allow a process to migrate to a node which is already calculating a process from the same assignment.
This is due to the way FROST handles assignments. In FROST only a single work unit per assignment
is calculated on each node at any given time. If a checkpoint was to arrive on a node which was
already running a process from the same assignment the checkpoint would have to wait until the
other process had finished before it could proceed. Therefore it is more advantageous for a process
to stay at a heavily loaded node and perform calculations, even though it may not be much, than it
would be to migrate and perform no calculations.

CHAPTER 6

Checkpointing

In section 3.5 some technical demands were specified which must be considered during the design
phase. In this section we will design the facilities needed for extracting the state of the process and
saving it to disk and to be able to recover the process again. This id done before the design of the
preprocessor in order to point out the elements that need to be handled by it.

In order to extract the process state there are a number of different issues that must be considered.
We have identified the following:

Processor state: The state of the processor with regard to the particular process. This state consists
of the runtime stack, program counter and the registers, andmust be captured in order to restart
the process on another machine.

Process variables: In order to transfer a process to another machine, it is necessary that all variables
used in the process are transferred.

Data marshaling: When transferring variables in a heterogeneous environment it is necessary to
make sure that they are interpreted the same way on all architectures.

A general design issue to the checkpointing procedure is that when performing a new checkpoint, the
last checkpoint made is not removed before all data is safelycheckpointed. This is necessary in order
to be sure not to loose any data if the machine breaks down during the checkpoint procedure.

6.1 Processor State

The processor state information consists of the contents ofprocessor registers [Sta98]. This informa-
tion determines where in the code the process is executing and how further execution will continue.
It needs to be transferred with the migrating process, in order to restart the execution on the desti-
nation machine. The information includes user registers and control and status registers such as the
program counter and a stack pointer. Furthermore it is necessary to transfer the runtime stack itself
which holds return addresses and parameter values for method invocations etc. The processor state
information is, as the name indicates, very processor dependent and therefore it is very important to
consider heterogeneity when transferring this information. This is done in the following sections.

The process control information [Sta98] is less important when migrating processes in FROST. Much
of the information is dependent on the actual execution on the machine where the process is executing,
and will be automatically generated when the process is restarted. Whether the process is in virtual
memory or not depends on the operating system on which it is executing1. There are, however,
elements that are both dependent on the operating system andthe executing process, such as I/O and
file access, but access to this kind of resources has been prohibited in FROST for security reasons
[GK02], and will therefore not be considered any further.

6.1.1 Runtime Stack

As we wish to perform process migration in a heterogeneous environment, there are some demands
to the transferral of the runtime stack. In a heterogeneous environment it is necessary to translate the
stack between the different architectures, e.g. by using anintermediate format known to all archi-
tectures. As the runtime stack can be, and possibly is, constructed very differently on the different
architectures, we wish to make a completely independent wayof extracting the stack.

1We cannot control this as we are designing for user space migration.

45

46 Checkpointing

We have adopted Chanchio and Sun’s [CS96] way of keeping track of function calls in MpPVM.
For this purpose they use acontrol stackto which a label is pushed when entering a function and
popped when leaving the function. When migrating a process,the control stack is transferred and
used to build the runtime stack by performing the actual function calls. The runtime stack is rebuilt
by jumping down to the function call, performing the function call and jumping to the next function
call or to where the execution of the process must continue.

The example code in figure 6.1 shows an example on the functionality that is needed in order to keep
track of the runtime stack using a control stack. Furthermore it shows the code necessary to recover
from a checkpoint.

.

.

.

int main() {

 RecoverControlStack()
 if(ExecutionMode == RECOVER){

 switch(NextLabel()){
 case 1:
 goto _FirstLabel;
 break;
 }
 }

 FirstMethod();

_FirstLabel:
 Push(1);
 int result = SecondMethod();
 Pop();

}

void FirstMethod(){
 // No checkpoint made in
 // this method
}

.

.

.

int SecondMethod(){
 if(ExecutionMode == RECOVER){
 switch(NextLabel()){
 case 2:
 goto _SecondLabel;
 break;
 }
 }

 // Variable assignments etc.

 Push(2);
 CheckpointControlStack()
 CheckpointVariables();
 Pop();
_SecondLabel:
 if(ExecutionMode == RECOVER){
 RecoverFromCheckpoint();
 ExecutionMode = NORMAL;
 }

}

Figure 6.1: A simple example on how the control stack is used.Only methods con-
taining a checkpoint are pushed to the stack. Since FirstMethod does not
lead to a checkpoint it does not need to be considered when performing or
recovering from the checkpoint.

In order to handle this functionality, two data structures are needed: the control stack that holds the
labels of the method-calls and a flag that specifies the execution mode of the process. The state of the
execution mode is used to determine whether the process is running normally or recovering from a
checkpoint. During normal execution, most of the control stack code is not executed. Only the Push
and Pop methods and the CheckpointVariables method are called in order to perform the checkpoint.
In the RECOVER-state a simple procedure is followed in orderto rebuild the runtime stack from the
control stack. The labels recovered from a checkpoint file are run through using the call to NextLabel.
These labels are used to enter the correct method, where the checkpoint was performed as described
above.

The Push and Pop methods are placed on each side of the method-calls to all methods that leads to
a checkpoint. We define a method that leads to a checkpoint, asa method that has not returned
before a checkpoint is performed. Hence, FirstMethod in figure 6.1 does not lead to a check-
point but SecondMethod does. If for instance SecondMethod was invoked from inside FirstMethod,
FirstMethod would also lead to a checkpoint.

When a checkpoint is performed in SecondMethod, the stack will hold the values 1 and 2. The control
stack is also included in the checkpoint and the values are used during recovery. Figure 6.2 shows
how the recovery code builds the runtime stack using the recovered labels.

After the execution mode is set to normal, the process is recovered and the execution continues. In
order for the checkpoint to make sense in the example, the main-method must somehow be depen-
dent on the executed statements in SecondMethod, and there should be more statements after the

6.1 Processor State 47

.

.

.

int SecondMethod(){
 if(ExecutionMode == RECOVER){
 switch(NextLabel()){
 case 2:
 goto _SecondLabel;
 break;
 }
 }

 // Variable assignments etc.

 Push(2);
 CheckpointControlStack()
 CheckpointVariables();
 Pop();
_SecondLabel:
 if(ExecutionMode == RECOVER){
 RecoverFromCheckpoint();
 ExecutionMode = NORMAL;
 }

}

.

.

.

int main() {

 RecoverControlStack()
 if(ExecutionMode == RECOVER){

 switch(NextLabel()){
 case 1:
 goto _FirstLabel;
 break;
 }
 }

 FirstMethod();

_FirstLabel:
 Push(1);
 int result = SecondMethod();
 Pop();

}

void FirstMethod(){
 // No checkpoint made in
 // this method
}

Figure 6.2: The same example as in figure 6.1, showing the thread of execution during
recovery. Normal execution proceeds after the execution mode is set to
normal last in SecondMethod.

checkpoint.

The control stack will be implemented as a class in order to support the extra functionality needed,
compared to a standard stack. This functionality is basically the ability to checkpoint and recover the
stack itself. By placing this functionality here it is easy to implement the NextLabel-method used
when the process is in the recovery state. The class diagram for theControlStack class can be seen
in figure 6.3.

ControlStack

Push
Pop
Checkpoint
Recover
NextLabel

Figure 6.3: The class diagram for the classControlStack.

The Checkpoint and Recover methods respectively saves the stack to and loads the stack from persis-
tent media. It must be saved in a machine independent manner,as described in a later section, in order
to make sense when the process is transferred to a machine with a different architecture. Whether the
stack should be rebuilt or not during recovery depends on where the labels are inserted in the source
code. In figure 6.2 the labels are placed before the call to Push, which means that the stack will be
rebuilt at runtime. If the call to Recover rebuilds the control stack, the labels must be placed after
the call to Push at regular method invocations and before thecall to Pop at the checkpoint. After the
Recovery method has been invoked, the NextLabel method willreturn the next label to jump to.

When the last jump has been performed (the jump to _SecondLabel in figure 6.2), the control stack
and hence the runtime stack has been recovered. All that is needed now is to recover the user variables,
which is explained further in a later section.

48 Checkpointing

6.1.2 Program Counter and Registers

The way that we handle the runtime stack makes it extremely easy to handle the program counter and
the registers. The program counter is set automatically when recovering, as the actual method invo-
cations are carried out, and a jump to the correct source lineis performed at the end. Our checkpoints
are always performed between source lines and not in the middle of a calculation, and therefore also
the registers are handled automatically.

6.2 Process Variables

In order to migrate a process it is necessary to transfer all variables accessed by that process. In
FROST this can be limited to variables and objects accessible to theCalculationCode object (see
figure 6.4) and the calculating thread. This can furthermorebe limited as some variables are initialized
automatically when the calculation code is loaded. This feature is explained further in the following
section. Afterwards handling of the variables accessible to the calculating thread is explained.

6.2.1 Member Variables

The member variables are first of all the variables in the baseclassesCalculationCode, Data- and
ResultObject andData- andResultLump2. These classes are defined in [GK02]. TheData- and
ResultLump classes represent the smallest entity of either the data or the result of a work unit respec-
tively. Also variables added to the inherited classes by theuser are considered as member variables
and must be transferred during migration. The class diagramof the entire calculation code component
can be seen in figure 6.4, which is taken from [GK02].

Calculation Code

State

DataLumpID, IP,

Data
Id
ResultSize

RamSize
DiskSizeValue:

Value:

1..*

char}

{[NodeID,

{[NodeID,
NodeID,
Weight]}

{float_32, float_64, Type
weight]}

Graph
Nodes

Size

DataLump

1..*

Value:

Checkpoint
Location

Id

{float_32, float_64,

{onSlave,
onMaster}

Value:
Type
Result
Size

Values:
{NotStarted,

Done}
Started, Stopped,

int_32, int_64, int_16

Dependencies Id

0..1

ResultLump

char}

Values:

1

1 1

1 1

Component Calculation Code

DataObject ResultObject

int_32, int_64, int_16

Figure 6.4: Class diagram of the calculation code component. The figure is taken from
[GK02].

TheCalculationCode, DataObject andResultObject classes must be handled specially as these are
expected to already be loaded and initialized on the destination machine when a process is migrating3.
This means that when recovering from a checkpoint, we do not need to allocate and load these objects,

2TheGraph class is not necessary to checkpoint as it is only used on the master and we only migrate processes between
slaves.

3If the calculation code is not loaded on the destination machine before migration, it must be loaded before the checkpoint
is recovered.

6.2 Process Variables 49

but only set some of the member variables correctly.

The Id and Location variables in theCalculationCode class (see figure 6.4) is both set upon ini-
tialization of the class and does not need to be transferred upon migration. The Id variable is even
unique for the local machine that the calculation code is residing on, and therefore it makes no sense
to transfer it to another machine. The State variable is set during runtime, and as we rebuild the run-
time stack by performing all the method invocations, this variable will be set correctly without any
further handling. The Checkpoint variable indicate the ID of the last checkpoint made. This ID must
be set by the slave component in order to inform theCalculationCode class about which checkpoint
to recover from. TheCalculationCode controls the access to theDataObject andResultObject
classes and must therefore take care of saving them.

The DataObject andResultObject classes does not contain any variables except for one or more
members of theDataLump andResultLump classes respectively. They contain a number of simple
variables4 which must all be saved. In order to ease the saving of variables a special class will be
made.

The DataStream Class

The DataStream class provides a simple interface to the saving of data. Furthermore it provides
the functionality necessary to transfer the saved data in a heterogeneous environment. This feature
and the saving of pointers and more advanced structures suchas arrays and STL-containers5 are
described in a later section regarding data marshaling. This section concentrates on theDataStream
class interface.

The interface must include facilities to save and load data.This require a checkpoint and a recover
method that can handle several types of data. For simple types, this is not a problem but for user-
defined types special care must be taken.

In order to handle user-defined objects in a architecture independent manner it is necessary to access
member variables through their variable names. A possibly non-portable method would be to access
member variables through offsets from the object address, but that would require that the compiler
lays out the variables in a deterministic way which makes it anon-viable solution. To be able to
access private variables through variable names it is necessary to access them from inside the class.
This requires a public method in the class that handles saving of all member variables. When such
an object is encountered, the checkpointing or recovering method must recognize it as a user-defined
object and invoke the saving or loading method in the object.

Due to the way we have chosen to checkpoint objects we limit ourselves from checkpointing third
party libraries. It is necessary for us to be able to insert the saving and loading methods in the source
code in order for us to checkpoint an object, and that is not possible with third party libraries6. If
third party libraries are used, it is required that they are initialized in the constructor of the calculation
code.

The use of variable names when checkpointing sets some limitations on the types of data. Variables
declared as constants and references must be instantiated at their declaration, as the compiler will not
allow us to initialize them later.

As there naturally will be several variables in each checkpoint, it is necessary to have delimiters
around the checkpointing and recovering. These delimiterscan consist of a Start and an End method
that initializes and finalizes the checkpoint respectively. These methods and the Checkpoint and
Recover methods forms the interface of theDataStream.

6.2.2 Runtime Variables

When a calculation is running it is most likely that some variables are created on the stack, or even
on the heap, in the methods. These variables are referred to as runtime variables, and must also be
transferred during migration as they are a part of the process state. This can be done in several ways,

4Simple variables are variables of simple data types.
5http://www.cppreference.com/cpp_stl.html
6It is, however, possible with open source libraries but willrequire re-compilation of the libraries.

50 Checkpointing

where some are more suitable to be used in a heterogeneous environment than others.

When performing a checkpoint, it is necessary that we capture the state of all variables at the same
time. We cannot expect all variables to be in scope, when the checkpoint is performed, and therefore
special care has to be taken. To illustrate this, we have set up a simple example:

A-M ETHOD()

1: x 0; y 0
2: : : :
3: ANOTHERMETHOD(x)
4: : : :
5: return x

ANOTHERMETHOD(var x)

1: for i = 0 to 10 do
2: x x+ i
3: CHECKPOINTVARIABLES()
4: end for

The y variable is not in the scope of ANOTHERMETHOD where the checkpoint is performed. As
we are making checkpoints instead of migration points we have to save data each time a checkpoint
occurs, and not just when the actual migration is carried out. Hence, we cannot save variables that
are in the scope of the current function call, return to the previous call and save variables available
in that scope and so on. When the checkpoint has been performed, the execution must proceed. In
order to handle this problem, it is possible to analyze the stack backwards through the function calls
without returning from them, and then jump back to the original address and continue execution.
This method is difficult to handle and inappropriate in a heterogeneous environment as analyzing
the stack is not very portable. The structure of the stack depends both on the compiler used and the
machine architecture the program is compiled for. Furthermore the locations of the variables cannot
be deterministically determined if compiler-optimizations are switched on, unless the algorithms used
by the compiler are known.

Another solution would be to save all variables in the current scope that are not transferred to the next
scope. Hence, the variabley above is checkpointed before the invocation of ANOTHERMETHOD.
This will, however, require that we keep track of all scopes in the checkpoint. It also adds to the
complexity when we need to keep a backup of the previous checkpoint in the current scope in order
not to overwrite the last checkpoint.

A simple solution can be found if it is possible to checkpointall variables at the same time. Hence,
we need a method where we can access the variables at their correct location, without them being
in the scope of where the checkpoint is performed. Furthermore the process must continue from the
same point after the checkpoint has been performed. In orderto access the correct location of the
variables, we need to find the address at runtime. This can be done by keeping an array of addresses
of the variables declared in each scope. This solution is somewhat similar to adisplayin the compiler
terminology where it is used to keep track of nested scopes [App98]. The following is a simple
example on how the addresses can be saved, whereDataSta
k is the global array containing the
addresses:

SOMEMETHOD()

1: int a
2: float b
3: DataSta
k[0℄ address of a
4: DataSta
k[1℄ address of b
5: : : :

When making the checkpoint the addresses must be casted to the correct type in order for theData-
Stream class to recognize it and save it correctly.

This way of saving runtime variables gives us the possibility of saving variables that are not in the cur-
rent scope without analyzing the runtime stack. It is a portable solution as the addresses determined
at runtime are used correctly and with the correct data type.

6.3 Data Marshaling 51

This solution has a drawback, though. It is necessary that the number of variables that need to be
saved can be determined at compile time, which limits the code from using recursive method calls7.
They can, however, be used between checkpoints, but there cannot be performed a checkpoint inside
a recursive call. In order to handle this situation it is necessary to use the same procedure as with the
runtime stack. Hence, it must be possible to push variable addresses to the data stack at runtime. This
makes it impossible to determine the type of a variable at runtime, and therefore it is necessary also
to push the type of the variable. For simple data types, this is a simple demand, but if user-defined
types must be supported, it introduces a problem. The code that saves the variables from the data
stack must be defined at compile time where the user-defined types must be added to the mapping
between the value pushed onto the data stack and the data type.

To support checkpointing in recursive method calls, the data stack is designed as a class somewhat
similar to the control stack. There must be methods to push variable addresses and the variable types.
It is, however, not necessary to be able to pop values one by one. When a method returns, all variables
declared (and pushed) in that method, can be popped altogether. Hence, if a special method-delimiter
is pushed before the variable declarations they can be popped all at once when the method returns.

DataStack

Push
Pop
Checkpoint
Recover

Figure 6.5: The class diagram for the classDataStack.

It is most natural to place the code for checkpointing and recovering variables in theDataStack class
and then adjust the code at compile time to include user-defined types. This gives a class as shown in
figure 6.5 with an interface very similar to the control stack.

The location of the call to Checkpoint is already determineddue to the functionality of theData-
Stack class. All variables can be checkpointed from any scope, andtherefore the call to Checkpoint
can be placed where the checkpoint is to be performed. The location of the call to Recover, however,
must be considered very carefully. This is depicted in the following example:

1: MyClass x {Declaration of x of type MyClass}
2: : : :
3: x:METHODINMYCLASS()
4: : : :

If a checkpoint is performed inside METHODINMYCLASS it is necessary thatx is recovered before
the call to METHODINMYCLASS. To ensure this, variables must be recovered in the scope they are
declared. This will require that a call to Recover only recovers variables belonging to a single scope.
As noted earlier, scopes are separated by the method delimiters.

In the following section we will discuss how more advanced data structures are handled.

6.3 Data Marshaling

As with the control stack, the transferral of process variables must be done in an architecture indepen-
dent format when migrating in a heterogeneous environment.In order to ensure this, we have chosen
to represent the checkpoint data using the External Data Representation (XDR) standard [Sri95]. The
XDR standard specifies how all the simple data types must be encoded, and can therefore be used
independently of the architectures on which data is saved and loaded.

The saving of pointers must be handled similarly to the saving of simple data types, by saving the data
that is pointed to. There must, however, be taken special care of pointer aliases8. It is very important

7When we use the term recursive method calls we also refer to mutual recursive method calls.
8Pointers that points to the same address.

52 Checkpointing

that they are recognized during the checkpointing and savedcorrectly and, even more important,
they must be loaded correctly in order to ensure that the calculation code executes correctly. Loaded
correctly means that two pointers, pointing to the same address when the checkpoint is saved, must
also point to the same address when the process has been recovered.

Array sizes must also be recognized in order for all values tobe saved. In C/C++ it is not possible
to tell the difference between pointers to a single element or an array, and it is therefore necessary
to handle arrays specially. This can be done by logging the allocation of arrays, and keeping a table
of arrays and their sizes. This can either be done by locatingall memory allocations in the source
code and insert code that builds such a table from the addressand number of elements determined at
runtime, or thenew operator can be overloaded. In order to simplify the code that must be inserted
to support migration, we choose the latter.

CHAPTER 7

Preprocessor

As we have chosen an indirect way of extracting the state of our migrating processes it is necessary
to insert checkpoint code into the users source code as described in chapter 6. In order for users to
be able to exploit the process migration feature, a great deal of transparency is needed, as correct
insertion of checkpoint code can be rather complex. In orderto achieve the transparency needed we
have chosen to develop a preprocessor to handle the analyzing and modification of the user source
code.

The work of the preprocessor is mainly to insert the use of thedata structures designed in chapter 6,
which requires careful analysis of the source code. The design of the preprocessor is carried out in
the following sections. The aim of the preprocessor is to obtain an optimal interaction with the user,
in such a way that the user experiences maximum transparencycontemporary with the preprocessor
generating the most optimal code.

In the following section we will start out by introducing thegeneral structure of the preprocessor.
Afterwards we will describe some user requirements we have set in order to achieve a more optimal
preprocessor and to limit the complexity of it. Finally the different parts of the preprocessor will be
designed including the intermediate format.

7.1 General Structure

The general structure of the preprocessor can be seen in figure 7.1. We have chosen to divide the
preprocessor into three major modules. The lexer and the parser is depicted as one module, as these
are automatically generated using a compiler-generator tool.

Source Code
Analyzer

Source
code Lexer/Parser

Modified
source
code

Inter−
mediate
format

Inter−
mediate
format

Symbol
tables

/
Insertion

points

Format

Module

Internal data

Generator
Checkpoint Code

Figure 7.1: The overall structure of the preprocessor.

The last two modules is the main modules in the preprocessor.The Source Code Analyzer analyzes
the code in order to determine the structure and locate the needed symbols and places to insert check-
point code. This information is handed over to the Checkpoint Code Generator which prepares and
inserts the checkpoint code into the user source code. The output is the modified source code, which
can be compiled with a regular compiler.

7.2 User Requirements

We have chosen to make some requirements to the user both in order to simplify the complexity
of the preprocessor but also to make it possible for the user to optimize the code generated by the
preprocessor. These requirements consist of making the user insert certain tags in the source code,

53

54 Preprocessor

which is used by the preprocessor. It is possible to make a preprocessor that do not require any user
interaction as is done in the MpPVM system [CS96]. We do, however, believe that we can obtain
more optimal results with some user interaction as the user often has knowledge of his source code
which is difficult to capture and implement in a general way ina preprocessor.

7.2.1 Marking the Checkpoint Location

In the MpPVM preprocessor migration points are inserted automatically based on data analysis of
the user source code [CS96]. The location of migration points is not as important as the location of
checkpoints1, as the migration points do not induce as much overhead as checkpoints. Checkpoints
require extraction and saving of the process state each timethey occur, and therefore the location is
very important. The placement of the checkpoint location isa balance between how much data that
may be lost during migration or machine failure, and how muchoverhead there is induced by the
checkpoint.

We believe that the users of FROST has great, or at least some,knowledge of the algorithms they
are implementing, and therefore they are better suited to place the checkpoints optimally compared
to a preprocessor. We have therefore chosen to let the user specify where checkpoints should be
performed in the source code.

The tags that the user must insert into his calculation code must be well-defined in order for the
preprocessor to recognize them. We have chosen the following syntax for the location of checkpoints:

// ��FROST�� CHECKPOINT

Hence, the tags are inserted as comments in the original source code.

It must be possible to insert several checkpoints as it cannot be expected that all calculations is
performed in a single loop-structure. Furthermore, we willmake it possible to place checkpoints in
all user-defined methods, as long the complete source code isavailable to the preprocessor.

7.2.2 Marking Variables

We will also make some requirements regarding variable declarations. One requirement is that the
user must indicate the variables which should not be in the checkpoint. There are two reasons for
this requirement. We have limited ourselves from checkpointing third party libraries in section 6.2.1,
and in order to simplify the preprocessor by not requiring itto locate library variables, we need the
user to mark the variables which are not supposed to be checkpointed. The other reason is, that by
permitting the user to indicate variables which are not to becheckpointed he has the possibility to
optimize the checkpointing process. By indicating the variables that are initialized in the constructor
of an object and not assigned later to be excluded from the checkpoint, the checkpointing process can
be optimized.

As with the checkpoint location we have defined tags to be inserted around variables which are not
to be checkpointed:

// ��FROST�� DO_NOT_CHECKPOINT START
... (declarations of variables that shall not be in the checkpoint)

// ��FROST�� DO_NOT_CHECKPOINT END

Variables declared inside these tags will not be consideredwhen inserting the checkpoint code into
the calculation code.

For convenience we require that all stack variables are declared in the beginning of a method. When
we are rebuilding the runtime stack as described in section 6.1.1 we usegoto. Because some compil-
ers do not allow jumps across variable declarations, it is necessary that variables are declared in the
beginning of methods. We could make the preprocessor move the variable declarations by itself, but
for simplicity we require the user to take care of it.

All of the user requirements can be handled automatically bythe preprocessor, and we believe they
1By the location of checkpoints is meant where the checkpointis performed in the source code.

7.3 The Parser 55

should be handled in a final version, but we make these limitations for now. We believe that it should
always be possible for the user to specify the location of checkpoints.

7.3 The Parser

In this section we will describe the statements that must be recognized in the source code. This can
be used to design the grammar which is used to generate the parser by the compiler-generator tool.
Furthermore the following sections will aid the design of the Source Code Analyzer.

7.3.1 FROST Tags

It is obvious that the preprocessor needs to be able to identify the FROST tags which were defined in
section 7.2.1 and 7.2.2.

The marking of variables that shall not be checkpointed is used to aid the analyzer in the identification
of variable declarations. If these tags were not required, it would be necessary to go through all the
source code available to the preprocessor and identify the variable types which is not defined in the
available source code.

The marking of the checkpoint locations is very important tothe Source Code Analyzer. As it de-
termines where the checkpoints must be performed, it makes the foundation for most of the code
analysis. This is explained further in the following section regarding method invocations.

7.3.2 Method Invocations

The locating of method invocations is very dependent on the checkpoint location. It is only necessary
to locate method invocation which leads to a checkpoint as described in section 6.1.1.

The locating of method invocations is used to place Push and Pop calls around the invocations as
described in section 6.1.1, and it is not necessary to trace the stack into methods where a checkpoint is
never performed. This can be seen in the example code shown infigure 6.1 where only SecondMethod
leads to a checkpoint, and therefore the Push and Pop calls are only placed around the invocation of
this method.

The parser will locate all method invocations, and then it isthe job of the Source Code Analyzer to
determine which methods the Push and Pop calls shall be placed around.

7.3.3 Variable Declarations

In order to insert the checkpointing code it is necessary to locate all variables and their types that
exists in the scope of the checkpoint location. This includes both all user-defined classes and vari-
ables declared in methods that leads to a checkpoint. The information shall be used to extend the
Checkpoint and Recover methods as described in section 6.2.2, so that it can handle user-defined
types. Furthermore it is needed when the saving and loading methods are to be inserted in the user-
defined classes as described in section 6.2.1. Finally, it isnecessary to push all addresses and types
of variables, which is declared in methods that leads to a checkpoint, to the data stack when they are
declared.

All the recognized statements described in the above section is processed by the Source Code An-
alyzer in order to determine where extra code must be inserted. Furthermore, elements needed for
the code generation are found. The code that is to be insertedis considered in the following section
which leads to the design of the Source Code Analyzer.

7.4 The Checkpoint Code Generator

The Checkpoint Code Generator is used to insert the code thatperforms the checkpoint. The code
that needs to be inserted was described in chapter 6. We have chosen to design the Checkpoint Code

56 Preprocessor

Generator before the Source Code Analyzer in order to determine which information that is needed
from the analyzer to be able to insert the migration code.

The code that needs to be inserted consists in the following:

• Logging of variable addresses and types

• Checkpoint and recover methods for user-defined classes

• Push and Pop around method calls

• Checkpointing data

• Recovery code

In the following we will describe in more detail the code thatis to be inserted and the location of the
insertion, which will lead to the information needed from the code analysis.

7.4.1 Logging of Variable Addresses and Types

The logging of variable addresses and types must be done in order to checkpoint stack variables in
the calculating methods. Hence, this section only applies to variables declared in methods, and as
noted above it is only necessary to log variables in methods that leads to a checkpoint.

The logging is done using theDataStack class which was designed in section 6.2.2. To log a variable,
the address and its type must be pushed to the data stack. Hence, calls to push must be inserted for all
variables declared in each method leading to a checkpoint. In order to ease the popping of variable
addresses when the method returns, a method delimiter must be pushed to the data stack. In this way
all values can be popped at once.

As variable types cannot be pushed directly to the data stack, we need some sort of mapping from
variable types to integers. In this way we can push the variable address and an integer denoting the
variable type. As user-defined variable types is not known onbeforehand, it is necessary that the
Source Code Analyzer provides us with this information. Hence, we need two tables, a variable table
and a mapping table holding a mapping from variable types to integers.

Content Variable name Variable type Location
Type Text Number Line number

Table 7.1: The variable table holding variable names and their types required when
logging stack variables.

The mapping table is depicted in table 7.1. As variables are in scope when the logging is performed,
the variable names can be used directly to retrieve the address. The variable types have been assigned
a number, which represents a variable type name as depicted in table 7.2. The location of where to
insert the logging must be available, e.g. as a line number inthe source code.

Content Variable type name Type value
Type Text Number

Table 7.2: The mapping table that maps the actual variable name to the type value
assigned to it.

As the Checkpoint method in theDataStack class is used to checkpoint all stack variables it must
know all possible variable types. As described in section 6.2.2, this is not possible before the source
code is run through the preprocessor, and therefore it is necessary that the preprocessor adds handling
of any user-defined types to theDataStack class. The mapping table in table 7.2 must be used for
this purpose.

7.4 The Checkpoint Code Generator 57

All variables is required to be declared in the beginning of method calls. The logging of variables
must be done both during normal execution and during recovery, as normal execution always proceeds
when recovery has finished. Therefore the location of variable logging must be before the recovery
code jumps to a method invocation or checkpoint. Thus, we will insert logging code just after the
variables have been declared.

7.4.2 Checkpoint and Recover Methods in User-defined Classe s

The insertion of checkpoint and recover methods in user-defined classes is very simple. The only
requirement is that they are inserted as public methods as they are invoked from outside the class.
The class table only has to provide the location of the insertion and the names of the variables, as, of
course, the variable types are known from inside the class.

Content Variable name Location
Type Text Line number

Table 7.3: The class table holding information needed for inserting checkpoint and re-
cover methods in the user-defined classes.

The class table is depicted in table 7.3, where variables in the same user-defined class can be given
the same location.

7.4.3 Push and Pop Placement

The pushing and popping of values to and from the control stack has already been defined in section
6.1.1. A label must be pushed before a method is invoked and popped again when the method returns.
As noted above, we only need to keep track of methods that leads to a checkpoint, and therefore the
Source Code Analyzer must provide information about which methods that leads to a checkpoint.
This can possibly consist in the direct insertion point of the methods, as indicated in table 7.4. The
insertion of push and pop calls also includes the insertion of labels that can be used to jump to,
when the recovery code is rebuilding the runtime stack. The labels are also included in the table,
but whether it is filled in by the Source Code Analyzer or the Checkpoint Code Generator does not
matter, as long as both the labels and the label values are unique.

Content Location Label Label value
Type Line number Text Number

Table 7.4: The method table holding information needed for inserting push and pop
calls around method invocations that leads to a checkpoint.

The label and the label value is used by the recover code described in a later section.

7.4.4 Checkpointing Data

The checkpointing of data consists in activating the Checkpoint methods in all the different classes.
This includes theCalculationCode class, theControlStack class, and theDataStack class. Fur-
thermore the Start and End methods from theDataStream class must be invoked in order to initiate
and finalize the checkpoint. All this code must be inserted where the checkpoint is to be performed.
The code that is to be inserted is not dependent on the user source code, and thus all that needs to be
provided is the location of the checkpoint. This information is very similar to the information needed
for the push and pop placement described in table 7.4, as labels at checkpoints are also needed when
generating recovery code. By adding a column to the method table in table 7.4 indicating whether the
entry is a method or a checkpoint, the table can hold information about checkpoints too.

58 Preprocessor

7.4.5 Recovery Code

The recovery code consists of the code for rebuilding the runtime stack and the code for loading vari-
ables. The location of these two elements are very dependenton each other. The code for rebuilding
the runtime stack consists of the code that checks a label from the control stack and uses it to jump
to the correct method call, as depicted in figure 6.1. This code must be placed after the logging of
variable addresses and types and hence, after variable declarations. This is due to two issues. First
of all, we cannot jump across variable declarations as described in section 7.2.2. Secondly, we also
need to log the variable addresses during recovery, as checkpointing will be performed again, after
the normal execution resumes.

The code that loads the stack variables must be placed in the scope of the variable declarations. This is
in fact not a requirement due to the functionality of theDataStack class, but as described in section
6.2.2, it is possible that a method is invoked on a stack variable, before the checkpoint location is
reached. Hence, the recovering of variables must be done after the variable declarations and before
a method is invoked, and this can either be before a jump to a method is performed, or between the
label that is jumped to and the method invocation. The latterrequires that variable recovery code is
added at each label in the current method and therefore the former is chosen. This situation requires
that the Recover method of theDataStack class only recovers the most recent scope of variables.
The method delimiters on the data stack can be used for this purpose.

No symbols is needed for the insertion of these two code elements, but the Source Code Analyzer
must provide information regarding the location of where the code is to be inserted. This information
can be placed in the method table by adding an extra column. The complete table is shown in table
7.5

Content Location Label Label value Type Recover location
Type Line number Text Number Method/Checkpoint Line number

Table 7.5: The complete method table holding all information needed regarding inser-
tion of push and pop calls, insertion of code for checkpointing data, and
insertion of recovery code.

The code used for initiating the checkpoint and loading the calculation code member variables2 can
be performed in theCalculationCode class itself. Therefore only call to End in theDataStream
and the code for setting the execution mode must be inserted at the point of the checkpoint.

7.4.6 Algorithm for the Checkpoint Code Generator

From the information found in sections 7.4.1 through 7.4.5 we can design the algorithm needed for
the Checkpoint Code Generator. In algorithm 6 it is implied that only scopes and method invocations
leading to a checkpoint is considered.

7.5 Source Code Analyzer

The Source Code Analyzer3 must analyze the user code, in order to locate the information needed to
fill in the tables described above. When filling the variable,mapping and method tables it must be
known which methods that leads to a checkpoint, as it is only necessary to consider these methods.
The methods can be found using the fix point algorithm shown inalgorithm 7. TheInvokesMethods
data structure is an array of sets, where each set holds the methods that are invoked by the method
which the entry belongs to:

2The calculation code object is already instantiated, but some member variables must be set correctly.
3It is called a Source Code Analyzer even though it operates onthe intermediate format.

7.5 Source Code Analyzer 59

Algorithm 6 Algorithm for inserting the checkpoint code.
INSERTCHECKPOINTCODE()

1: for all entries in the mapping tabledo
2: insert handling intoDataStack class
3: end for
4: for all entries in theSymbolTable do
5: insert logging code atLocation
6: end for
7: for all distinct locations in the class tabledo
8: insert checkpoint and recover methods where
9: all variables with the same location are

10: checkpointed or recovered in the same method
11: end for
12: for all entries in the method tabledo
13: if Type= Methodthen
14: insert push, pop and label
15: else
16: insert checkpoint code
17: end if
18: end for
19: for all distinct recover locationsdo
20: insert recover code
21: end for

Algorithm 7 Algorithm for finding methods that leads to a checkpoint.
FIND-METHODS()

1: LeadsToChe
kpoint {}
2: for all methodsA do
3: if A includes checkpointthen
4: LeadsToChe
kpoint LeadsToChe
kpoint[{A}
5: end if
6: InvokesMethods [A] {}
7: for all method invocationsB in A do
8: InvokesMethods [A] InvokesMethods [A] [{B}
9: end for

10: end for
11: repeat
12: for all entriesA in InvokesMethods do
13: if (InvokesMethods [A] \ LeadsToChe
kpoint) 6= ; then
14: LeadsToChe
kpoint LeadsToChe
kpoint [{A}
15: end if
16: end for
17: until LeadsToChe
kpoint does not change

When the algorithm has finished,LeadsToChe
kpoint holds the names of all methods leading to a
checkpoint.

7.5.1 The Variable and Mapping Tables

The variable and mapping tables are easily filled using the LeadsToCheckpoint data structure. For
each method in LeadsToCheckpoint, all variable declarations are added to the variable table and any
new data types are added to the mapping table. This algorithmwill not be specified any further.

60 Preprocessor

7.5.2 The Class Table

Only the user-defined classes that are being checkpointed needs to have the checkpoint and recover
methods added. The mapping table holds all user-defined types that is checkpointed and hence this
table can be used to fill the class table. The declaration of each user-defined type in the mapping table
must be located and its variable names must be added to the class table. This is depicted in algorithm
8.

Algorithm 8 Algorithm for filling the class table.
FILL -CLASS-TABLE()

1: for all user-defined typesT in MappingTable do
2: locate declaration ofT
3: for all variablesX in T do
4: insertX intoClassTable
5: end for
6: end for

7.5.3 The Method Table

The Method table is also filled using theLeadsToChe
kpoint data structure. As with the filling
of the variable and mapping tables,LeadsToChe
kpoint determines which methods that must be
analyzed. Each method inLeadsToChe
kpoint is analyzed for invocations of any method in theLeadsToChe
kpoint data structure, as these method invocations must have inserted push and pop
calls around it. Furthermore, the last variable declaration in these methods are found in order to
determine where the recovery code is to be inserted. Algorithm 9 fills the method table.

Algorithm 9 Algorithm for filling the method table.
FILL -METHOD-TABLE()

1: for all entriesA in LeadsToChe
kpoint do
2: locate declaration ofA
3: Re
overLo
ation location of last variable declaration inA
4: for all method invocationsB in A do
5: if B 2 LeadsToChe
kpoint then
6: insertCurrentLo
ation;Method;Re
overLo
ation intoMethodTable
7: end if
8: end for
9: for all checkpoints inA do

10: insertCurrentLo
ation; Che
kpoint; Re
overLo
ation intoMethodTable
11: end for
12: end for

7.6 The Intermediate Format

The intermediate format must provide enough information toperform the analysis that must be carried
out by the Source Code Analyzer. We have chosen to use an abstract syntax tree where all needed
elements have their own node in the tree. The nodes must hold the information needed about the
element it describes. A class diagram describing the intermediate format can be seen in figure 7.2.

7.6 The Intermediate Format 61

ClassDeclaration

Name

VariableDeclaration

Name
Type

MethodDeclaration

Name

MethodInvocation

Name

Checkpoint

BaseNode

Location

Figure 7.2: The class diagram for the intermediate format.

PART III

Implementation

The implementation part describes the parts of the design that have been implemented
into the FROST system. Chapter 9 describes the implementation of the policies that
control the migration procedure in FROST. In chapter 10 the tools for performing the
checkpointing and migration of these checkpoints are described.

CHAPTER 8

Implementation Status

This chapter is a summary of the implemented system. We describe the differences between the
design and implementation. The chapter will follow the overall layout from the design.

It should be noted that the current version of the FROST system is has only been tested on the Linux
operating system and on Intel CPU architecture.

8.1 Policies

In the following we will consider the policies that have beenimplemented in the FROST system
and discuss the differences that exist between the design and the implementation. Generally can be
said that the overall functionality of the policies have been implemented while some of the more
sophisticated features have been omitted due to time constraints.

Information Policy

In order to secure that the users always have priority over the FROST system, we have assigned
priorities to the individual threads in the FROST system as described in the design. We have used the
nice command for controlling the priorities of the FROST processes. Thenice command enables
us to lower the priorities of FROST processes in such a way that user processes can take over the
processor whenever they are in need of it, thus ensuring thata user maintains full usage of his CPU.
We have chosen only to assign priorities to the calculation code threads and the resource-checker
thread because these threads are the ones that use the most processing power. The priorities assigned
to the threads are chosen so that the FROST processes automatically yield to all the other processes.

As described in section 5.1.1, we use available resources asa measure for how loaded the machine
is. We have chosen not to implement the use of memory in calculating the available resources on a
machine based on the fact that the machines on which we are running the prototype of the FROST
system has a large amount of memory and thus memory is not a problem at present. Instead we only
use the average measure of the resources available to a thread with the same priority as a calculation
code thread.

Transfer Policy

With regard to the transfer policy we have limited the implementation of it only to include a sender
initiated approach and to using thresholds in determining whether a node is over-, under-, or average-
loaded. The reason that only a limited version of the transfer policy described in section 5.2 has been
implemented is due to time constraints.

Selection Policy

In section 5.3 of the design we describe a scoring system for selecting a process for migration. We
also state that we choose only to use the time since the last checkpoint when selecting a process for
migration. In order to enable the use of a more advanced scoring system, we have performed the
implementation in such a way that it is easy to modify the implemented scoring system to include a
more advanced system.

65

66 Implementation Status

Location Policy

The location policy is dependent on the approach used by the transfer policy and thus we have also
implemented a sender initiated approach in the location policy.

The protocols for the sender initiated location policy as described in section 5.4.2 have generally
been implemented with the exception of the use of memory as a criterion. As described in the section
above regarding the information policy, we have chosen not to use memory as a criterion in the
selection process and thus there is no reason for providing information about the maximum memory
limit allowed on a node prior to migration.

8.2 Migration

In chapter 6 the migration facilities of the FROST system is designed. In order to enable process
migration all that has been designed has been implemented. This has been necessary as migrating a
process is dependent on a number of things all touched upon inthe design. We have, however, chosen
to omit the support for recursive method calls. We see this asa reasonable limitation, because if a
checkpoint is placed within a recursive call, the checkpoint that has to be produced will grow as it
will have to include the data from all the previous layers as well.

8.3 Preprocessor

In section 7 the preprocessor used to ensure transparency inthe FROST system is designed, but we
have chosen not to implement it. This is primarily due to the time issue, and we do not find it is
necessary to have an implementation of the preprocessor in order to show the functionality of process
migration in FROST.

CHAPTER 9

Implementation of Policies

After discussing general ways of creating policies in section 3.4 and designing a set of policies spe-
cific to the FROST system in chapter 5, we set out to implement these policies. When implementing
the policies into the already existing FROST system the viewof the policies as four separate but
cooperative entities disappear. As the policies are heavily dependent on each other it is natural that
the edges between them seem to disappear in the implementation process. In the following sections
we will try to uphold these edges in order to create a framework which is easy to compare with the
framework set in chapter 5.

The policies are implemented in three classes, theResource class, theCalculationCodeInfo class
and theMaster class, where the latter two are first introduced in [GK02]. The Resource class is a
new addition to the FROST system, providing the main functionality of the information policy and
acts as a toolbox for the transfer, selection, and location policies. In the following we will describe
how the functionality of the policies has been implemented into the FROST system.

9.1 Information Policy

The information policy performs the evaluation of the available resources in the system and is de-
scribed earlier in section 5.1. The main functionality of this policy is placed within theResource
class.

9.1.1 Threads and Timers

As described in section 3.4.1 the information policy is an information gathering process which col-
lects information for the other policies so that they can make proper decisions based on the actual
state of the system. The main task of the information policy is to gather information about the current
state of the nodes in the system and store this information for future use.

In the design of the information policy we chose to include both the memory usage and the CPU usage
in the calculation of the available resources in the system.We have however chosen not to include
the memory usage in the implementation and therefore CPU usage is at present the only measure for
available resources in the FROST system - the less availableresources, the more loaded a node is.
The memory usage should however be included in a final versionof the system.

In order to enable the information policy to gather information in a realistic environment which
reflects the number of tasks on a node, it is vital that the gathering commences on the same conditions
given to the processes performing tasks on a node. We do this by letting the information policy run in
its own thread at the same priority level as the tasks. This ensures that a higher priority process, such
as a user process, can preempt the information policy thread, thus affecting the number of available
resources and in this way represent a higher load in the system.

As discussed in section 5.1.1 we use a timer to control the runtime in which the number of available
resources is measured. The timer is set and within its runtime the information policy thread performs
the measuring of available resources. In section 5.1.2 we chose the interval with which the resource
information is measured to one minute. We have chosen to set the timer to 100 ms and then obtain
the resources a number of times for calculating an average.

The number of times the resources are measured could be changed in order to obtain an even more
precise number for the available resources on the node. The problem is that the more times the
thread performing the information gathering for the information policy is run, the more it would
affect the actual purpose of the FROST system, namely performing calculations. We see that this

67

68 Implementation of Policies

way of performing measurements of the available resources on a node are still vulnerable to random
fluctuations in the number of available resources. This problem was earlier discussed in section 5.1.2
and we have implemented the solution to the problem given there, requiring that two intervals which
follow each other has to show the same tendency in available resources in order to avoid unnecessary
migrations.

In figure 9.1 can be seen an example on how using single measurements, as described above, can lead
to unnecessary migration.

Lower Threshold

Migrate Migrate
Migrate

Figure 9.1: The effects of taking single measurements without smoothing.

As can be see from figure 9.1 taking single measurements is no good as the system reacts on load
spikes and migrates processes more or less at random. Therefore the smoothing effect is advanta-
geous. An example on this is given in figure 9.2

Lower Threshold

Average

Migrate

Figure 9.2: The effects of multiple measuring with smoothing.

In figure 9.2 no unnecessary migration takes place even though load spikes do occur. As the mea-
surements in available resources decrease so does the average and a request to migrate process is
issued.

9.1.2 Calculating Available Resources

The process of obtaining resource information on a node has previously been described in section
5.1.1 and the process will thus not be described any further.Instead we will concentrate on the
problem of eliminating load spikes and how we have chosen to implement this in FROST.

This is done in the calculateResources method shown below. In this method we obtain the available
resources a number of times and calculate the average value of the available resources in order to
smoothen out the effect of potential load spikes. We call thenumber of times that the resources are
checked for the resolution of the calculateResources method.

calculateResources (resolution)
{

for (int i = 0; i < resolution ; i++){
set the timer ;

while(timer runs)
nodeResources += Calculated resources ;

9.2 Transfer Policy 69

Sleep(runInterval / resolution);
}

return nodeResources / resolution ;
}

This method is called with regular intervals and every time it has run we check whether the resource
number has changed sufficiently to justify a broadcast to theother nodes in the system. We have
chosen that the resource number must change at least 5% in order for it to be broadcast.

9.2 Transfer Policy

As described in section 5.2 the primary purpose of the transfer policy is to decide whether to take
action or not based on the input from the information policy.

The transfer policy of the FROST system is very simple as it only decides whether the system state
is overloaded or not. After the system state has been decideda decision about whether to act on the
information is made. The system state is based on the averageavailable resources for all the nodes in
the system and is set by comparing the available resources ofa node with a threshold which is also
set by the transfer policy. When the state is set by the information policy, the master is notified and it
takes further action if needed.

The transfer policy employs a sender initiated approach. Such an approach is described in section
5.2. The sender initiated approach states that there are twostates that the system can be in. It can
either be overloaded and thus try to migrate a process away orit can not be overloaded and wait for
a process to be migrated to it. In the following we will describe the implementation of the transfer
policy in greater detail.

9.2.1 Calculating Thresholds

After the information policy of a node has determined the number of available resources on that node
the transfer policy calculates the average available resources in the system and sets a lower threshold
representing the lower limit of the resources on this node. In the sender initiated approach only the
lower threshold is used to determine whether it is necessaryfor the system to take any action. If the
current resources on a node falls below the lower threshold,the system is overloaded and action needs
to be taken to remedy that situation. In order to ensure that processes are only migrated if necessary,
a node needs to be below the lower threshold, and thus be overloaded, two checks in a row. If this is
the case the node will try to migrate a process away.

As described in section 5.2.1 the data used for the calculation of the average available resources from
which the lower threshold is set, are not necessarily an image of the current number of available
resources on a given node but only the latest resource information received from each node. We are
aware of the problems introduced by using old data for performing these calculations, but we choose
not to act on this as we see this problem as being small. This isdue to the fact that the processes
within the FROST system is in general long running and therefore the resource information should
be relatively stable as long as a user does not interact with the system. As soon as a user chooses to
interact with a node it could pose a problem not to announce the change in available resources of that
node to the rest of the system because the other nodes could choose to act on old information and
attempt to migrate a process to this node thus putting even more load on it. This could be avoided by
either requesting the current number of available resources of a node prior to a process migration, as
described in section 5.4.2, or by announcing the change in available resources of a node when a user
starts to interact with it.

In the following we will describe the method which is used to set the threshold.

calculateThreshold ()
{

for (all nodes in node_vector){
tmpResource += presentNode�>resources;

70 Implementation of Policies

}

averageSystemResources = tmpResource/noNodes;

systemThreshold.lowerThreshold =
(averageSystemResources� LOWER_THRESHOLD_DELIMITER);

}

The average available resources in the system is calculated. Then we set the lower threshold relative
to the average available resources in the system. The delimiter used for setting the thresholds should
be a subject to future tests in order to optimize the system.

After the threshold have been set the transfer policy uses itto decide whether the system is currently
overloaded or not by comparing the average available resources on the node with the threshold. As
stated above, if the current resources of the node is below the lower threshold, the system is over-
loaded, and action should be taken to move a process away fromthe current node if it has any, and if
the current resources are above the lower threshold the nodeis not overloaded and is thus a possible
target for a migration from an overloaded node.

9.2.2 Acting upon Information

After the threshold have been set and the decision about whether the system is overloaded or not has
been made, the master is notified. Here action is taken depending on the state of the system.

if (System State == OVERLOADED){
...

} else
...

}

The above code checks for the state of the system and acts uponthis information. If the system
discovers that it is overloaded it acts on this information but this is part of the selection and location
policies and will therefore be discussed in the following sections. If the system is not overloaded, it
takes no action at present.

9.3 Selection Policy

Where the transfer policy decides if a process should be moved or not the selection policy decides
which process to move. The selection policy has been designed in section 5.3.

The tools of the selection policy is implemented in theCalculationCodeInfo class which contains
information about all the different tasks currently running on a particular node.

The selection policy is enforced from the master and it is highly dependent on the state of the node.
If the system is in a state where the amount of available resources is low and the transfer policy
has decided that the system is in an overloaded state, the selection policy is executed. The selection
policy chooses the process which is the last to have performed a checkpoint as the process that is to
be migrated.

As the receiver initiated approach is not implemented into the system at present, no action is taken
when a node is not in an overloaded state.

The selection policy of the FROST system consists of a singlemethod which both produce the basis
on which a selection can be made and performs the selection. In the following sections we will
discuss this method in greater detail.

9.3.1 Selecting a Process

In order to make a selection of which process on a node that is best suited for migration we have
decided to implement the approach mentioned in section 5.3.1. In section 5.3.1 we decided that the

9.4 Location Policy 71

time since the last checkpoint was performed by a process wasto form the basis for the selection
as we believe it to be the most important aspect in choosing a process. The reason for this choice
is among other things that if the process which has last performed a checkpoint is chosen as little
calculations as possible will be lost in the migration procedure.

As it is only a single parameter we are searching for we can look through all the processes and choose
the process which has last performed a checkpoint. The code for this is shown below.

getProcess ()
{

currentTime = time (0);
tmpTime =�1;

for (all processes){

if (process�>State != RUNNING){
continue;

}

Time = currentTime� process�>checkPointTime;
if (Time < tmpTime || tmpTime ==�1){

tmpTime = Time;
processToMigrate = process ;

}
}

return processToMigrate;
}

9.4 Location Policy

The location policy is the policy that decides which node a process is to be migrated to.

As stated in section 8.1 we have limited our implementation efforts only to include a sender initiated
approach. This also goes for the location policy, and so apart from the fact that the receiver initiated
approach has not been implemented, it is only the use of memory as a parameter to base the decision
about whether to perform process migration that has been omitted from the location policy as it is
described in section 5.4.

In the following we will describe the approach taken in implementing the location policy.

9.4.1 Choosing a Node

If the transfer policy in section 9.2 decides that a node is inan overloaded state the FROST system
will try to migrate a process away in order to lessen the load on this node. In this case the location
policy has to find a node which has the most available resources as it is likely to be the most capable
of finishing a process the shortest time. We use a modified version of the prediction described in
section 5.4.1 to find the node that will provide the best performance. The modification consists in
that instead of sending information about number of processes and resources when a request is issued,
these information is sent in the information policy along with the resources. The information is sent
each time there is changes to the amount of resources, and therefore the information that is available
at a node is maximally one resource-measuring interval old.

if (SystemState == OVERLOADED){
...
if (migrationInProgress !=true){

migrationInProgress =true ;

72 Implementation of Policies

tmpRunning = localhost�>runningProc;
tmpResources = getResourcesOnLocalhost();
tmpPredicted = (tmpResources* tmpRunning)/(tmpRunning�1);

For (all known nodes){
receiver_resources = node�>resources;

if (receiver_resources > tmpResources){
receiver_running = node�>RunningProcesses;
predicted_resources = (receiver_resources* receiver_running)/(receiver_running +1);

}

if ((predicted_resources > (tmpResources + 1500)) &&
(tmpPredicted < receiver_resources)) {

insertNodeIntoMap(node);
}

}
}

}

First we record some information about the sending node including the predicted resources on the
sending node after the migration. Then we look through all nodes that are known to the sending node.
For each of these nodes we predict their resources after the migration. If the predicted resources for
the receiving node is favorable we insert the node into an ordered map which orders the nodes after
the resource numbers. In order to ensure that moving a process does not result in an overloaded node
the sending node checks that the predicted resources of the receiving node is larger than those of the
sending node plus a constant in order to ensure that better performance to the process is achieved.
In addition the sending node checks whether the predicted resources for the sending node is smaller
than the resources of the current resources of the receivingnode. An example of this is shown in
figure 9.3. Even though the total distance to the system average is less in figure 9.3(b), we do not
allow migration as the predicted resources on node B will go below the current resources of node A.

Finally we get the node from the map that has the most predicted available resources after the migra-
tion and issues a request to that node.

If the request that is issued by the location policy is granted the process chosen by the selection
policy is not sent immediately. Instead the system on the requested node verifies that it is not already
executing a task from the chosen assignment. This is becausethe FROST system does not allow a
process to migrate to a node which is already executing a taskfrom that assignment, as described in
section 5.4.2. If the requested node does not have a task fromthe same assignment, then the process
chosen by the selection policy can be migrated to the new node. Otherwise the requesting node is
denied its request and the next node in the map is chosen and a new request is issued.

9.4 Location Policy 73

Current Receiver
Resources

Current Sender
Resources

B

System Average

(1)

A

B A

(2) (3)

A

B

A − Resources on the sending node
B − Resources on the receiving node

Figure 9.3: An illustration of the resources before and after a migration. (1) is the
resource situation before a migration occur. (2) is an unwanted situation
where the predicted values A and B show that A gains from migrating a
process whereas B becomes overloaded and thus the system as awhole
gains nothing. (3) shows a legal resource distribution where the overall
resources in the system is closer to the system average aftera migration.

CHAPTER 10

Checkpointing

In chapter 6 some classes and data structures were designed to handle the checkpointing and recover-
ing of a process. In this chapter we will describe the implementation details of these classes and data
structures and the extra features needed in the implementation process.

10.1 Control- and DataStack

TheControl- andDataStack are very simple data structures and the implementation doesnot differ
considerably from the design.

TheControlStack is implemented as a class with the methods described in section 6.1.1. For con-
venience, the ExecutionMode flag has been included in theControlStack class as a public variable.
There has not been made any further changes to the interface of the class. The constructor takes an
instance of theDataStream class as a parameter which is used when checkpointing the class. By us-
ing theDataStream class, data marshaling is ensured and the control stack can be transferred across
different architectures.

With regard to the data stack, we have chosen not to support recursive method calls. We believe that
checkpointing in a recursive method call is often not reasonable. The deeper the recursion reaches,
the more data needs to be saved, as all the data from previous calls is saved. Furthermore all recursive
algorithms can be transformed to non-recursive algorithms[Sed92], and we therefore see it as an
acceptable limitation. Hence, theDataStack is made as a simple array of integers as first described
in section 6.2.2. All access to the data stack can be determined at compile time and should be inserted
by the preprocessor.

10.2 CalculationCode Additions

In order to simplify the tasks that should be handled by the preprocessor, there has been made some
additions to theCalculationCode class. Furthermore section 6.2.1 states that there must be taken
special care of theCalculationCode, DataObject and ResultObject classes as they are already
initialized upon recovery.

In order to handle these classes special Checkpoint and Recover methods have been made which
saves and loads the member variables of the classes. To make sure that variables in the specialized
calculation code classes are also saved, the methods are made virtual and any hence derived classes
can implement these methods to save and load variables.

The Checkpoint and Recover methods are very simple in theCalculationCode class. There are
only two simple variables, holding the total runtime that has been used to process the work unit and
the number of active work units in the calculation code. Furthermore the methods must execute the
Checkpoint and Recover methods in theDataObject andResultObject classes respectively. This
gives us the following Checkpoint method:

void CalculationCode :: Checkpoint(){
datastream« runTime« noOfActiveWorkUnits;
mDataObj�>Checkpoint(datastream);
mResultObj�>Checkpoint(datastream);

}

TheDataObject andResultObject classes does not have any knowledge of the data stream object
used for the checkpointing, and it is therefore passed as a reference to the Checkpoint methods. The

75

76 Checkpointing

Recover method is very similar to the Checkpoint method and will not be described any further.

The calls to the Checkpoint and Recover methods must be placed carefully. As will be explained
further in the next section, the order in which data is saved and loaded must be exactly the same.
Furthermore the member variables of theCalculationCode class must be instantiated before meth-
ods are executed in them. This is necessary as the checkpointcan be performed in any user-defined
class, and hence such a class must be instantiated before theplace of the checkpoint (and recovery)
is reached. In the example code below, MyObject is a member variable of the specialized calcula-
tion code, and labels and goto’s etc. have been left out. Furthermore the lines Checkpoint (); and
Recover(); covers the entire checkpointing and recoveringof data:

int MyCalculationCode:: calculate (){
...

MyObject�>DoCalculations();
...

}

void MyObject::DoCalculations(){
...

Checkpoint ();
If (ExecutionMode == RECOVER)

Recover();
...

}

The call to DoCalculations cannot be executed before MyObject has been instantiated. It is therefore
necessary that the member variables are recovered earlier than at the point of the call to Recover
above. In order to ensure this, we have placed the call to the Recover method in theCalculationCode
class even before the calculate method is started.

The same applies to variables declared at runtime, and recovery must therefore be done before a
subsequent method call.

10.3 Checkpointing Data

TheDataStream class was designed to handle saving and loading of checkpoint data using the XDR
format. In order to handle this correctly, special data properties must be identified at runtime such as
array sizes and pointer aliases. Furthermore, special carehas be taken of user-defined classes.

To handle conversion of data into the XDR format we have chosen to use an existing library, providing
us with these facilities. A short introduction to the XTL library and the facilities it provides are given
in the next section.

10.3.1 The XTL Library

The XTL library1 is a set of template classes that are designed to ease the taskof converting C++ data
structures into an independent format. Several formats aresupported including the XDR format, and
it also handles the saving and loading of data to and from disk.

Due to the way XTL handles the data that it stores it is vital that data structures are saved and restored
in the same order. This means that if variable a is saved before variable b then variable a must also
be restored before variable b. This is due to XTL using a file with sequential access and therefore
everything is saved in consecutive order. When the data is restored, the file is read in the same order
as when the data was saved and thus the data that was saved firstis restored first.

The programmers interface has a number of different methodseach handling a class of data types
such as simple data types, arrays and STL-containers [Per99]. This has the effect that in order to save
a variable, it is necessary to identify the type of the variable and recognize which class of variable

1http://xtl.sourceforge.net/

10.3 Checkpointing Data 77

types it belongs to. This can be shown with the following example code, where stream is the XTL
template class used for saving and loading data:

int i ;
int a [10];
int * pi = new int ;
int * pa = new int [10];
vector<int > v;
...
stream.simple(i). vector (a ,10). pointer (pi). array (pa ,10). container (v);

Furthermore it can be seen that the size of arrays must be declared when saving the variables. The
library does handle pointer aliases but there are some limitations. For this reason and for the problems
regarding variable types and array sizes we have chosen to implement theDataStream class as a
wrapper class of the XTL library, taking care of these issues. The implementation details of the
DataStream class is described in the following section.

10.3.2 The DataStream Class

The interface to theDataStream class was designed in section 6.2.1 to have Checkpoint and Recover
methods for saving and loading data. To make it simple, thesemethods have been implemented by
overloading the stream operators (« and »). This makes it possible to have the following syntax when
checkpointing:

DataStream ds;

int a = 10;
int b = 20;

datastream« a « b;

When checkpointing values on the data stack, it is necessaryto cast the addresses to the correct type,
in order for theDataStream class to recognize them correctly:

datastream« * (int *)DataStack [0]« * (float *)DataStack [1];

The stream operators can be overloaded to handle a number of different data types, both simple types
such as integers and floating point values and more advanced data structures. In order to reduce
the complexity of the interface we have chosen to limit the set of data types that are supported.
All simple types can easily be handled and are therefore supported. With regard to STL-containers
we have chosen to limit the support to most of the containers that can be accessed with iterators.
Furthermore, arrays and pointers are supported.

Most functionality of the class is taken care of by the original XTL library but some additions have
been made both by adding functionality to the XTL library2 but also by implementing the function-
ality in theDataStream class.

One of the problems mentioned in section 10.3.1 is that it is necessary to recognize which sort of vari-
able type, e.g. simple, pointer or container, a variable belongs to, when inserting the checkpointing
code. This is the main issue that has been solved with theDataStream class. The required function-
ality has been achieved by overloading the stream operatorswith a number of template functions each
handling one or more types of variables. There has for example been implemented a template func-
tion for each container that is supported by theDataStream class. This limits the comprehensiveness
of the class but provides an easy to use interface.

User-defined Classes

The XTL library also supports the handling of user-defined classes in the same way theDataStream
class was designed to handle them. Hence, a method must be added to the user-defined class that

2The XTL library is open source software.

78 Checkpointing

handles the saving of member variables in the class. We have chosen to use the exact syntax of the
XTL library when adding these methods. In this way we do not need to handle user-defined objects
in any special way in theDataStream class. When a user-defined object is to be saved with the XTL
library it is done with the same methods as simple data types and pointers are saved with, and then
the library automatically executes the saving function added to the user-defined class.

The functions that must be added to the user-defined classes needs to be template functions. This
is due to the use of template classes in the XTL library, thereby making the format data is saved
in, unknown until compile time. As we also wish to use theDataStream class for saving and
loading data in user-defined classes and still let the XTL execute the methods automatically, it has
been necessary to make theDataStream object globally available. If another solution should be
used, it would be necessary to integrate the XTL library and the DataStream class far more, and
thereby increasing the complexity considerably. As all checkpointing code is to be inserted by the
preprocessor, we do not see this as a problem.

The following code shows an example on how the methods for saving and loading data is added to
a class. In the XTL library these methods are called composite and takes the output or input stream
as a parameter depending on the data is to be saved or loaded3. The stream is not used when we are
using theDataStream class, but we need to use the exact XTL syntax as described above.

class MyClass{
int val ;

template<class Format>
void composite(obj_output<Format>& stream) {

ds « val ;
}
template<class Format>
void composite(obj_input<Format>& stream) {

ds » val ;
}

};

When an object is loaded with the XTL library it cannot provide the constructor with any parameters.
For this reason it is necessary that each user-defined class which is to be checkpointed has a con-
structor that does not take any parameters. This also requires that references are not used as member
variables if they cannot be set in the constructor without parameters.

Data Properties

As noted in the beginning of section 10.3 some data properties must be identified when checkpointing
the data.

In the example in section 10.3.1 regarding the use of XTL, it was necessary to state the size of
arrays when they were saved. In section 6.3 we stated that array sizes must be recognized in order
to have all elements saved. By recognizing the array size automatically in the system, we can let the
DataStream class use this information, so that we do not need to provide the size when saving data.
This is done by overloading thenew[] operator so that a data structure of allocated arrays and their
sizes can be maintained.

Another property that must be recognized is pointers pointing to garbage. When the XTL library
saves a pointer, it checks whether it is a null-pointer or not. This requires pointers to be set to 0 if
they are not allocated. Declaration of pointers can be recognized and if they are not allocated at once
they can be set to 0 instead. Furthermore deletion of pointers must be recognized in order to set the
pointer to 0 after deletion. This is necessary as it otherwise would point to an address which is not
allocated anymore. This is, however not adequate with regard to pointer aliases. It was previously
stated that the XTL library takes care of pointer aliases forus, which is also true. But if the original
pointer is deleted the alias will also point to garbage. The solution above where the deleted pointer is

3XTL uses one stream for saving and one for loading data. We have made theDataStream as a wrapper for both of these.

10.3 Checkpointing Data 79

set to 0 does not apply in this situation, as pointer aliases cannot be recognized at compile time. The
example code below shows the situation, where pb is a pointeralias to pa. It should be noted that it
cannot be determined at compile time whether pa has been deleted or not.

int * pa = new int ;
int * pb = pa;
...
delete pa;
pa = 0;
...
datastream« pa« pb;

Instead of setting pa to 0, we need a solution that also handles pointer aliases. By overloading the
deleteoperator, we can keep track of all deleted data and thereby comparing pointers to the deleted
addresses in order to locate pointers to garbage.

A more detailed description of the overloading of the memoryallocation operators is described in the
next section.

Due to the way the XTL library works there is an important issue with regard to pointers to stack
variables. A pointer to a stack variable is not considered tobe a pointer alias in the original imple-
mentation of the library. Due to this, the example below willnot be handled correctly.

int a = 42;
int * pa = &a;
...
datastream« a « pa;

The value ’42’ will be saved two times, and when the checkpoint is reloaded, the second value will
be allocated on the heap instead of creating the pointer alias correctly. We have corrected this flaw
in the library by logging the address of all variables saved in order to identify pointer aliases. There
is, however, still a limitation to the saving of variables. It is required that the stack variable is saved
before the pointer to it. If not, the pointer will not be savedas a pointer alias to the stack variable, and
thus it will be allocated on the heap upon loading, which is not desired. We have not implemented
any solution to this problem.

Containers with Pointers

STL-containers holding pointers could not be saved using the XTL library. As this is a functionality
that is useful in the FROST system, we have added it to the library, and provided template functions
in theDataStream class for handling them. It has been implemented so that the pointers are included
in the identifying of pointer aliases.

10.3.3 Memory Management

The overloading of the memory operators serves the purposesof identifying array sizes and pointer
aliases to garbage. In the previous section it was stated that new[] was overloaded to log the array
sizes and thedeleteoperator to log deleted memory. It is obviously also necessary to log the deletion
of arrays, as pointer aliases to arrays or elements inside arrays are very common.

Furthermore, there is a possibility that a previously deallocated memory segment is allocated again.
If we only log deletion of pointers and not the allocation, a newly allocated pointer can be recognized
as a pointer to garbage. By keeping track of all allocated memory, we can start by matching a pointer,
that is to be saved, against the allocated memory. If the memory address is not allocated, we can
search the deleted memory in order to see if the address has been deallocated. If it is not found there
either, it is a pointer to a stack variable.

It is, however, possible that a previously deallocated memory segment is allocated again, but with
another data type. If there exists a pointer to a non-existent user-defined object in the re-allocated
memory segment, the XTL library will try to execute the composite method in the object that is

80 Checkpointing

deleted. We have not solved this problem, but we have tried tominimize it by setting all garbage
pointers to 0 when a checkpoint is performed. By doing this, we can erase the logged deallocations
when a checkpoint is performed, thereby limiting the amountof data in the data structures used for
logging.

PART IV

Test & Conclusion

This part contains test and conclusion to the introduction of process migration into
the FROST system. In addition to that some thoughts regarding the scaling of FROST
is given. Chapter 11 contains description and results of thetests made on the system,
chapter 12 considers how the FROST system can be made to scaleto a larger extent,
and chapter 13 contains the conclusions to the project.

CHAPTER 11

Test

In this chapter we consider how the FROST system can be testedwith regard to the process migration
feature. We will first consider which tests to perform, then we will consider how these tests are to
be performed in a manner that will give representative results. Last we discuss the results of the
performed tests.

11.1 Test Types

When considering process migration in the FROST system there are a number of things which must
be considered. In the following we will consider the elements which must be tested in order to
determine whether it is an advantage to use process migration in FROST compared to not using
process migration in FROST.

Correctness A necessary aspect when considering whether process migration has the potential to be
an advantage in the FROST system is correctness. In section 3.5 we stated that the presence of
process migration in FROST should not be detectable by the users. Therefore it is imperative
that there are no difference in the result when using processmigration as opposed to when
process migration is not used. Furthermore FROST with process migration is not worth much
if it generates flawed results. Note though, that testing forcorrectness only states whether
process migration has apotentialto be an advantage. Process migration may still show not to
be an advantage based on some of the other test elements.

Performance The important issue when considering process migration in FROST is the additional
time it will take for an assignment to complete after processmigration has been implemented.
It is obvious that if there is a loss of performance when usingprocess migration, it may not be
used by the users of the FROST system. It should be noted that the addition in time depends
heavily on the assignment and therefore this time will differ depending on the period at which
checkpoints are performed and how often a process is migrated etc.

Overhead In order to see how process migration affects the overall computation times of an assign-
ment, it is necessary to find out how much overhead there is when performing a checkpoint. As
the checkpointing code is performed on a regular basis the tests will show whether the check-
pointing code has to be optimized or run with less regular intervals. We would like to find out
whether the introduced overhead is too high to justify the use of fault-tolerance. The perfor-
mance of the system is also degraded by the migration overhead. The migration overhead is the
price for migrating a process and consists of the negotiation time between the sender and the
receiver, the transferral of checkpoint data, and recovering from the checkpoint. This overhead
will also be measured in order to determine the factors that influences the performance.

Transparency As stated in section 3.5 transparency from the users point ofview is an important
aspect. In order to maintain the ease of use of the FROST system API the user should not
be required to consider the technical aspects of the processmigration. As the transparency is
thought to be provided by the preprocessor, which has not been implemented, we have chosen
not to test this aspect.

Policies As described in chapter 9 we have implemented four policies in the FROST system. In order
to ensure that the system performs as expected it is necessary to check whether the policies
leads to thrashing. This is due to the fact that a system whichis subjected to thrashing does not
perform any calculations but merely moves processes back and forth between computers. As
the purpose of the FROST system is to perform calculations itis imperative that this situation

83

84 Test

does not occur, and that process migration does only occur when it is an advantage to move a
process.

We have chosen not to perform any tests with regard to the scalability of the system and the effect
of process migration when a larger amount of machines is introduced to the system. The system has
not been designed to be a scalable solution as described in section 4.2.1 and it would therefore not be
reasonable to test this issue. Furthermore these tests are used to measure process migration overhead
and adjust the parameters used for the policies etc. We therefore need to be able to analyze the results
from the different tests, which makes it necessary that we keep the results from the tests simple.

11.2 How to Perform the Tests

In this section we will describe the general issues that conform to all the tests that are described in the
following sections. We will, however, start out by addressing the issue regarding correctness of the
assignment results when using FROST with process migration. As noted earlier, this is a necessary
aspect to fulfill as it forms the basis for the process migration feature in FROST.

11.2.1 Correctness

In order for process migration to be a viable feature in the FROST system, it is necessary that the
assignment results are exactly the same and that they are correct whether the feature is used or not1.

As process migration is performed exactly the same way independently of the tasks it is migrating,
we believe that most errors can be detected by performing a limited number of practical tests. We
have carried out a number of practical tests where we have compared the results of an assignment
calculated both with and without the use of process migration. Different situations have been set
up in order to test both one and several migrations between a number of machines. We have also
tested that a task can migrate back and forth between two machines without changing the result of
the assignment.

These tests should not be seen as a proof for the correctness of the process migration feature, but
we find them adequate for the further testing of performance.We will not describe the testing of
correctness any further.

11.2.2 User Processes

The purpose of FROST is to use the unused CPU-cycles of non-dedicated workstations. These work-
stations are normally used by a number of users who should notbe interrupted or in other ways
disturbed by the FROST system. A user may be typing in a text editor or compiling code. Neither
should be disturbed by FROST. On the other hand, if a user usesa workstation intensively it might
prove to be an advantage for the FROST system to move its processes away from that workstation in
order to finish faster.

In order to test the overall performance of the system in realistic conditions we choose to create a user
process which is supposed to simulate a user using a node. This process consists of a pattern of three
types of intervals. Each interval i s10 minutes long and is either a series of load spikes which have
a duration of 5 seconds followed by a 55 second sleep period, along heavy usage of the processor
which runs for 10 minutes, or a 10 minute sleep period where the node is completely free of load
from the user process. The sleep period always comes in between the other two intervals and the only
load that may occur in a sleep period comes from the processesin the FROST system.

Each node run one of these user processes and each of the processes have a unique pattern. This
pattern makes it possible to predict with relative certainty when a process in FROST is going to
migrate and where it is going to migrate to. In figure 11.1 the usage patterns are shown.

We have chosen to create these usage patterns in order to havea well defined usage of the processors

1In order for FROST to deliver similar results each time the same assignments is run it is necessary that the user does not
use randomness in his calculations.

11.2 How to Perform the Tests 85

S = Sleep
LS = Load Spikes
F = Full Load

0 10 20 30 40 50 60Minutes

S S

S

S S

S

S

LS

F

LS LS

LSLS

LS

F

F1

2

3

S

S

Figure 11.1: An illustration of the usage patterns in the user processes.

so that all the tests in this category can be run with the same resource characteristics. Using the same
resource characteristics for each test enables us to compare the results of the tests.

During the tests we will run one user process on each node in the system in order to have changing
load on the machines.

11.2.3 Test Problems

In order to obtain general results with the test cases mentioned above, it is necessary to test the system
using multiple types of problems. These problems should range from small work units, small results
and long term calculations to large work units, large results and relatively short calculations. The first
type of test programs has a good calculation to communication ratio where the second type has a poor
calculation to communication ratio. Both types of programsshould be considered as the programs
for which the system is used are not guaranteed to have an optimal relation between calculation and
communication.

In section 1.1.2 in the introduction we have described a number of applications suitable to be solved
in the FROST system, but as we do not have neither source code,algorithms nor data to calculate on
available for any of these problems, we have chosen another problem type, raytracing.

Raytracing has proved to have the exact characteristics which makes a problem suitable to solve using
the FROST system. It is a problem which is easily split into a number of tasks which are independent
of each other. Raytracing is basically a number of light-rays being shot into a model from a camera
and if the ray intersects with the model, a pixel is drawn. Thecolor of the pixel depends on light
sources, other objects, the surface of the objects2 etc, and requires therefore extensive calculations.

Every pixel can essentially be computed independently of each other so that the problem is completely
parallelized, all that needs to be distributed is the model with which the rays intersect and information
about which pixels to calculate. Depending on the size of this model it may be advantageous to
compute a number of pixels on each machine in order to keep thecalculation to communication ratio
at a reasonable level.

At present we have only implemented a single problem which supports process migration in the
FROST system. This problem will be used to perform the initial tests of the system in order to deter-
mine if it performs reasonably. Further testing is requiredto obtain results which are representative
of the system.

The purpose of our test problem is to simulate a realistic calculation assignment in the FROST system.
Due to time limitations we will use a problem which is small compared to the assignments solved in
the systems described in the introduction. In the raytracing problem we can adjust many parameters
which makes it possible to optimize the problem in order to achieve the most precise results. These

2Reflectiveness, color etc.

86 Test

parameters are described in the following:

Total runtime: The total runtime of an assignment will mostly be used when measuring the perfor-
mance gain of an entire assignment. The total runtime of an assignment is measured from when
the splitting of the assignment is started to all the partialresults have been combined and the
final result is ready.

Number of work units/Time per work unit: The number of work units seldom have a direct influ-
ence on the tests. It is mostly used to change the size of checkpoints as a smaller amount
of work units will provide more data to save during calculations. The time per work unit is
directly dependent on the number of work units.

Checkpoints per work unit/Time between checkpoints: The time between checkpoints is a very
important measure, as it determines the time that can be lostat migration.

Checkpoint size: The size of checkpoints is also an important figure. It influences both the time it
takes to perform a checkpoint and the time it takes to migratea process.

Before each of the tests in the following sections we will describe the values used for these parameters
where it influences the test.

11.2.4 Technical Specification

The system that the performance tests have been carried out on is a 7-node cluster. Each node in
the cluster is a dual Pentium III 733 Mhz with 2Gb PC133 SDRAM ECC and they are connected
through a fast switched Ethernet. All nodes are running Linux. Hence, it is a very homogeneous and
dedicated system.

The FROST system is originally thought to run in a heterogeneous environment. We have although
chosen to perform our tests in a homogeneous environment using dedicated machines and a dedicated
network as it is easier to compare results that are obtained within such an environment. We do not,
however, see it as a problem as all our tests are performed within the same environment and thus the
results are comparable.

When running FROST on a dual processor machine with a single FROST task it has proven to be
hard to make the task migrate while we are trying to simulate users in a realistic way. In order to
remedy this situation we have created a process which takes over the unloaded processor during the
tests. This has the effect that we are simulating a single processor machine.

We believe, however, that dual processor machines does not produce a problem for normal use of the
system.

11.3 Overhead

We have chosen to start out by measuring the overhead that is induced by the different process mi-
gration features. First we will measure the overhead introduced by the checkpointing facility, and
afterwards the migration overhead which denotes the price of a process migration. Finally we will
measure the price for process migration feature in an ideal system, where there is no need for mi-
grating any processes. The results from these test are to be used in the following tests regarding
performance and stability of policies.

In general, there will not be running any user processes in the testing of overhead, as we wish to test
how much overhead the process migration feature introducesitself.

11.3.1 Checkpoint Overhead

The checkpoint overhead is obtained by measuring the time ittakes to perform a checkpoint in our
test example. The time it takes to perform a checkpoint depends on two things. First, the amount of
data that is to be saved is the main contributor to the overhead, as the data is saved in a file. Second,

11.3 Overhead 87

the complexity of the data that is to be saved also influences the time it takes to save data. E.g.
pointers must be analyzed in order to locate pointer aliases.

We believe that the checkpoint size is the most influential factor as it includes disk access, and we
will therefore only vary this factor in the measuring of checkpoint overhead. When checkpointing in
the test problem, we can vary this factor by changing the amount of pixels to be calculated in a work
unit. This can be changed both by changing the horizontal resolution of the image and the number of
rows in a work unit.

In this test we will not consider the entire runtime of an assignment, but only the time it takes to
perform a checkpoint and compare it to the amount of data thatis saved. This is useful as we cannot
say anything in general about the runtime of an assignment compared to the amount of data that is
contained in its checkpoints.

Table 11.1 shows the amount of data that is checkpointed in the test example. We have only calculated
the amount of data that is directly imposed by the user, and not FROST control variables such as the
extra variables in the work unit, that determines the type ofdata etc.

Data Size (bytes)

Work unit 16
Result depends on the work unit data
Temporary data 52

Table 11.1: The data that is checkpointed in our test example.

The size of the result can be calculated from the number of pixels that the work unit covers. The size
of a result for a single work unit can be calculated using thisformula:ResultSize= h_res � no_rows � 3 � 4;
whereh_res is the horizontal resolution of the image andno_rows is the number of rows that is to
be calculated in the current work unit. Hence,h_res � no_rows is the amount of pixels that is to
be calculated. Each pixel consists of three colors3 and each color is a four byte value4. The other
parameters does not influence the result of this test directly and will be changed in order to achieve
different checkpoint sizes.

From the results found in this test, we will setup expectations to the runtime of a complete assign-
ment. From the size of the checkpoints generated by the assignment we can calculate the overhead
introduced by the checkpointing feature.

By comparing this overhead with the difference between the total runtime and the runtime for the
same assignment where all checkpointing and resource measurements are disabled, we can determine
the price of the process migration feature if we are running in an ideal system where there is no need
for migration.

Results

In this section we describe how we have varied the result sizein order to measure the time it takes
to perform a checkpoint. Table 11.2 holds the values regarding image resolution, number of rows
per work unit, and the amount of data that is saved per checkpoint for each of the tests we have
performed.

The result of the test can be seen in figure 11.2. It can be seen that the amount of time it takes to
perform a checkpoint depends very linearly on the amount of data that is to be saved, and it takes
about 1 second per 420 kb.

In order to set these results in perspective we will give an example. If we have a work unit that
generates a 1Mb checkpoint the time for performing a checkpoint will be approximately 2.5 seconds.

3The RGB color scheme is used.
4The colors can actually be represented by two byte value, butthe XTL library saves them as four byte integers anyway.

88 Test

Resolution Rows per work unit Checkpoint size (kb)

160 x 120 12 22.6
800 x 600 10 93.8
1024 x 768 12 144.0
800 x 600 30 281.3
1024 x 768 32 384.1
3072 x 2304 12 432.1

Table 11.2: Specifications for the tests we have performed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 50 100 150 200 250 300 350 400 450

C
he

ck
po

in
t t

im
e

(s
)

Checkpoint size (kb)

Figure 11.2: The result from measuring the time it takes to perform a checkpoint.

If it takes 10 hours to complete a work unit, and a checkpoint is performed every 4 minutes, the
checkpointing feature will induce approximately 6 minutesoverhead to the total calculation time of
the work unit. We believe that a six minute overhead is quite acceptable as it gives the advantage
that only six minutes of calculations can be lost, if a machine breaks down. A checkpoint for every
4 minutes is acceptable for fault-tolerance, but if the checkpoints are used for process migration
the interval must be lower. From equation 4.1 in section 4.1.2 it can be calculated that 2.5 second
checkpoint time requires a checkpoint every 95 seconds to justify a migration every 30 minutes.
With a 95 second interval the overhead will be almost 16 minutes which is a 2.6% overhead to the
total runtime. This is still an acceptable overhead but in order to gain an advantage of the increased
overhead process migration must provide better performance than if migration is not used.

11.3.2 Migration Overhead

The migration overhead is the price that is paid when a process is migrated. In this test we will
determine this overhead, but only the part that is induced due to actual migration, and not the part
that consists in lost calculation time due to migration of anolder checkpoint. That is, we wish to
determine how much time it takes to migrate a process from onemachine to another in the FROST
system.

The overhead that this test will measure is very small compared to the total running time and therefore
it is necessary to reduce any influencing elements. By reducing the total running time of the assign-
ment we will reduce the probability for intervening load spikes. It will, however, also make such
a load spike more influential on the running time, and we will therefore perform a number of runs
for each measuring in order to determine an average value. Furthermore we will measure the time

11.3 Overhead 89

per work unit instead of the total runtime and thereby removing influence from as much unimportant
administration as possible.

We will conduct the test using only two nodes in the test system, and only one node is used for
calculating the assignment at a time. First we will measure the work unit calculation times of the
assignment using only a single node such that no migrations are performed. As the execution time
of a work unit can vary, we will use the average value for all the work units. Afterwards we will
make the same measurements but where a process is migrated back and forth between the two nodes
a number of times. This test is also mostly influenced by the checkpoint size, and we have therefore
varied this parameter.

As there are not running any user processes during this test,the processes will not migrate by them-
selves. We do not wish to add any load on the nodes as it will have influence on the runtime and
thereby give erroneous results for the migration overhead.Therefore we have added constructs in the
code that will force migration a fixed number of times, so thatwe can make comparable tests.

In the measuring of runtime without migration using a singlenode, all communication, such as trans-
ferral of work units and results, happens on the local node, and not over the network. When measuring
the runtime when migration is performed, it is necessary to ensure that all communication, except for
the migration, happens locally. Hence, the task must be on the same node as the master, when it
returns a result. We will ensure this by always forcing an even number of migrations per work unit
as shown in figure 11.3. Hence, the task will always be on the master, when a result is returned and a
new work unit is received.

Node 1 Node 2

Work Unit 1

Work Unit 2

Figure 11.3: Migrations is performed an even amount of timesin order to ensure that
work units and results are only transferred locally.

Even though we are forcing migrations at predetermined times, we cannot ensure that no time is lost
due to the time that has elapsed since last checkpoint. We will compensate for this by measuring
the time since last checkpoint and subtract these values from the total runtime. The total price for
migration will be measured in a later test.

Results

We have used the number of work units to vary the checkpoint size in this test. By varying the
number of work units, we vary the size of the result that is calculated in each work unit and hence,
the checkpoint size. The values used can be seen in table 11.3.

The result can be seen in figure 11.4, where the time per migration depends on the checkpoint size.

It can be seen that the migration price is linearly dependenton the checkpoint size except for the
measuring with a 77 kb checkpoint size. We believe that this is a lower limit due to administration
overhead. From the figure we can see that it takes approximately 1.2 second to migrate a 500 kb
process and a 420 kb process can be migrated in 1 second.

90 Test

Work units Checkpoint size (kb)

48 77
24 154
12 308
6 614

Table 11.3: The values used for testing migration overhead.The checkpoint size de-
pends on the number of work units.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600 700

T
im

e
pe

r
m

ig
ra

tio
n

(s
)

Checkpoint size (kb)

Figure 11.4:

11.3.3 General Overhead

From the two previous tests we can estimate the checkpoint and migration overhead for an assign-
ment. If we compare the runtime for an assignment in FROST without any migration or checkpointing
features with the runtime when the migration and checkpointing features enabled, we can determine
any additional overhead due to these features. By comparingthese two measurements without per-
forming any migrations, we can determine the price of havingprocess migration features in an ideal
system, where there is no need for migration. We will measurethis price in this test.

We have used the values in table 11.4 for the parameters described in section 11.2.3.

Parameter Value

Work units (WU) 6
Average time per WU 32 min
Checkpoints per WU 40
Average time between checkpoints 49s
Checkpoint size 154kb

Table 11.4: The parameter values used for testing the general overhead induced by the
process migration features.

We have aimed towards an average time between checkpoints of38 seconds as specified in section
4.1.2. It is, however, difficult to adjust the parameters to an exact value due to differences in the work
units. We have adjusted the average time to approximately 49seconds and it ranges from 19 to 80

11.4 Performance 91

seconds.

From the results of the test regarding checkpoint overhead we can estimate that it takes approximately
0.36 second to perform a checkpoint of 154kb. With 40 checkpoints per work unit and 6 work units
we have 240 checkpoints. The overhead induced by the checkpointing can therefore be estimated to:240 � 0:36s = 86:4s
Hence, we can expect more than 86 seconds overhead in the testwith checkpoint and migration code
compared to the test without.

Results

The runtime for the assignment without any checkpoint or migration features enabled was measured
to 6043 seconds on average. This means that we at least can expect a runtime of 6130 seconds when
checkpoint and migration features are enabled. The measuring of this runtime was, however, only
6122 seconds on average which is only 79 seconds overhead.

We believe that this is because the checkpoint and migrationfeatures induce such a small overhead
that we cannot measure it precise enough with an assignment which has a runtime of 6000 seconds.
Due to the low overhead of approximately 1.3% of the total runtime, we have not performed any tests
in order to achieve a more precise result.

Hence, the result of this test shows that if process migration is not used, the overhead is not any larger
than the overhead from the checkpointing feature, which still provides fault-tolerance.

11.4 Performance

The test of performance is very important to prove the applicability of the process migration features
we have implemented in the FROST system. The performance test is very similar to the testing of
general overhead, except that we allow migration in the second half of the test.

11.4.1 Total Runtime

The first part of the performance test consists in measuring the total runtime of an assignment with
influence from user processes and with all checkpoint and migration features disabled. We simulate
the user processes as described in section 11.2.2. Afterwards we perform the same test but with
checkpoint and migration features enabled. The differencefrom the testing of general overhead lies
first of all in the influence of user processes. Furthermore weadd an extra node to the system which
makes migration possible. We only use three nodes in total inorder to simplify the output of the test
so that we can analyze it in order to determine the stability of the policies.

Parameter Value

Work units (WU) 12
Average time per WU 32 min
Checkpoints per WU 40
Average time between checkpoints 49s
Checkpoint size 154kb

Table 11.5: The parameter values used for testing the performance of the FROST sys-
tem with process migration. The average times are measured with no load
on the machine, and can therefore be higher during the testing.

The parameters used for the performance test is shown in table 11.5. We have increased the total
runtime of the assignment to achieve a more realistic result. The runtime is, however, still only
around 6.5 hours on a single node but due to time limitations we must limit the test in this way.

92 Test

The first part of the test consist in measuring the total runtime without migration as described above.
From the results of this test we will calculate an expected runtime of the assignment with the use of
migration.

Results

The first part of the test gave a total runtime of 11608 secondsor 3 hours and 13 minutes using two
nodes. When the assignment is run without any additional load, the runtime is approximately 9700
seconds. Hence, the load from the user processes induce around 1900 seconds overhead or almost
32 minutes. During a three hour period the simulated user processes will induce 60 minutes of heavy
load across two nodes besides the load spikes. Hence, the calculation is not proceeding considerably
during the heavy load.

When enabling process migration, a process should maximally run for two minutes during heavy
load, before it is migrated. Hence, the heavy load will add3 � 2min = 6 minutes to the total runtime.
The 60 minutes consist in 30 minutes on each of the nodes. 30 minutes is 3� 10 minutes, and hence,
3 � 2 minutes of runtime is lost. Furthermore, we expect a migration for each of the six times of
heavy load where we loose492 seconds on average. The time added for performing the checkpoints
consist of12 � 40 � 0:36 seconds, as we have 12 work units with 40 checkpoints each, and a single
checkpoint takes approximately 0.36 seconds to perform. These overheads gives us the following
expected runtime: 9700s+ 3 � 120s+ 6 � 492 s+ 12 � 40 � 0:36s = 10379:8s
Hence, the migration feature should lower the total runtimeof this assignment with approximately 20
minutes when user processes are introduced.

The result of the test turned out to be quite different though. The total runtime of the assignment
with migration was 11858 seconds, 4 minutes more than without migration. The main reason for
this added overhead can be found in the time that is lost due tomigration of old checkpoints. The
system migrated five times during the assignment and a total of 1080 seconds or 18 minutes was
lost due to these migrations and a maximum of 350 seconds or almost 6 minutes was lost in a single
migration. When there is no load on the nodes, there is only 49seconds between checkpoints on
average, but due to the low priority that the FROST assignments are running with, the user processes
slows down the assignment and hence, the time between checkpoints increases. The measuring of
resources should, however, be done every two minutes thereby only allowing an assignment to be
slowed down for two minutes, but the thread measuring the resources has been given the same low
priority as the assignments as described in section 9.1.1.

In the next section regarding the policies, we will analyze further on the results from this test in order
to find ways of improving the performance.

11.5 Policies

In this section we will analyze the results from the performance test in order to determine if the
parameters of the policies5 are optimal or if the system is performing inappropriate migrations. First
we will summarize the different parameters and the effect they have on the system behavior:

Interval: The interval between the measuring of resources has two effects. It decides the freshness of
the data that is used for making migration decisions on the other nodes in the network. When
a node has measured its own load, it will compare it to the lastinformation received from the
other nodes, and it will at most receive new information for each interval. It also decides how
often migration will be considered on the local machine, andshould therefore depend on how
sensitive the system must be to load changes.

Runtime: The runtime of the resource measuring thread determines thewidth of the snapshot of the

5Resource measuring interval, resolution and runtime and the thresholds.

11.5 Policies 93

current resources. A longer runtime makes measuring less sensitive to small load spikes, but it
will require more CPU-cycles for the measuring.

Resolution: The resolution is used to smoothen the load spikes as described in section 9.1.2. As
the runtime is very short, a higher resolution can discover load spikes that are longer than the
runtime.

Thresholds: The thresholds determines how willing a machine is to migrate a process. A large
threshold will require the resources on a node to be farther away from the system average
before migration is considered.

In the following we will determine if some of these parameters need to be optimized by analyzing the
results from the performance test.

11.5.1 Analysis of the Performance Test Results

In order to analyze the results from the performance test we have plotted the measured resources, the
migrations and the load from the user process into a single graph for each node. Figure 11.5 shows
the resource graph for node 1 in the first performance test. The spikes and blocks at the bottom of
the graph shows how the user processes act. The spikes indicates ten minutes of load spikes and the
blocks indicate ten minutes of heavy load as described in section 11.2.2. In appendix B the resource
graphs for all the performance tests can be found and we give adescription of how the information
used to make the graphs is obtained.

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

R
es

ou
rc

es

Time (s)

T
o

no
de

 2

F
ro

m
 n

od
e

2

T
o

no
de

 2

Available resources
Migrations

Figure 11.5: The graph for node 1 in the first performance test.

It can be seen from the figure that the policies react well on changes in the measured resources. When
the first block of heavy load is encountered a process is migrated from node 1 to node 2. The resource
graphs for all three nodes can be found in appendix B.1, wherethey can be easily compared. Figure
B.2 shows that the process from node 1 is migrated to node 2 when there are lots or free resources on
node 2. In general the migrations are performed with reason as processes are migrated from nodes
with very low resources to nodes with plenty of resources. Nounnecessary migrations are made
taking the known resource information into account, and hence the implemented prediction scheme
performs well.

The system reacts well to changes in the measured resources,but the figures in appendix B.1 also
shows that the measured resources does not follow the added load from the user processes very
well. There are sometimes rather large delays from the load from a user process changes until it is
discovered by the system. In order to optimize this situation we will change the resource measuring
interval to 30 seconds instead of one minute and carry out a new performance test.

94 Test

11.5.2 Performance Test 2

The second performance test is carried out with the exact same parameters as described in section
11.4.1. The lower runtime interval for the resource measuring thread gives us a new expected runtime:9700s+ 3 � 60s+ 6 � 492 s+ 12 � 40 � 0:36s = 10199:8s
The total runtime in the second test was 11319 seconds which is an improvement of almost 9 minutes
compared to the first test and almost 5 minutes better than theruntime when migration is not used.
It is, however, still 18.7 minutes slower than the expected runtime. During the test there were five
migrations which gave a total loss of more than 14 minutes with a maximum of more than 7 minutes
for a single migration. The other four migrations were all above the expected average of 24.5 seconds.

The resource graphs for this test can be found in section B.2.They mostly shows a more correct
measuring of the resources compared to the addition of load from the user processes. There is,
however, still some delays in the measuring of resources.

Due to the large loss of calculation time when a process is migrated, it seems that the resource mea-
suring thread does not run with the intervals specified. The entire execution of the resource measuring
thread runs with lowest priority, which includes the part that determines the interval between the mea-
surings. This can be the problem to our delayed measurings when the load is high on a node. We will
perform a third performance test where we change the resource measuring thread to only run with a
low priority when the actual measuring of resources is performed.

11.5.3 Performance Test 3

The third performance test was also carried out with the sameparameters as the others. The param-
eters of the resource measuring test was also the same as in the second test, except for the priority.
The changing of priority has not changed the measured resources but only increased the likelihood
that the thread will run with the specified intervals. As no parameters are changed from the second
test we can expect a runtime of approximately 10200 seconds.

The third test showed excellent performance with a runtime of 10370 seconds which is less than 3
minutes more than the expected runtime. Hence, the implemented process migration features shows
very good performance as it decreases the total runtime withmore than 20 minutes thereby removing
2/3 of the overhead induced by user processes when process migration is not used. There is however
still possibilities for optimization.

If we look at the time that is lost due to migration of old checkpoints we see that 481 seconds is lost
in 8 migrations. They all lies between 33 and 104 seconds which is more than the 24.5 seconds we
have expected on average. If the loss per migration can be optimized to reach the average value, the
total runtime can be decreased with almost 5 minutes giving us a total of 4% overhead compared to
when process migration is not used in a non-dedicated system.

The resource graphs for this test is shown in appendix B.2 where they can be compared against each
other. First of all they show that the measuring of resourcesis very realistic compared to the load
induced by the user processes. Secondly, they show that the policies act very well, as processes
are migrated away very shortly after the heavy load is started and never due to the load spikes. No
unnecessary migrations are performed, except for the last from node 1 to node 2 which is just before
the assignment ends, but we have not taken this into account in the policies.

11.6 Test Conclusion

In general the tests have shown good results. We have measured the overhead from the checkpointing
feature and the price of migration which has proved to be fairly inexpensive compared to the possibil-
ities that is provided. The performance tests showed a problem in the implementation of the resource
measuring thread, but when it was corrected the system performed very well.

There is, however, one issue that should be considered. The overhead of checkpointing is small in the

11.6 Test Conclusion 95

sense of fault-tolerance, but if the amount of data to be checkpointed is large it induces a noticeable
overhead. Furthermore the performance tests has proved that the time lost when a process is migrated
is larger than expected mainly due to the decrease in execution speed when a node is heavily loaded.
This increases the time between checkpoints and thereby thetime that is lost when a process is
migrated. As the process is migrated to a machine with more resources it will take the same time to
catch up with the lost time, but the time used on the source node is still wasted.

In section 3.3 we stated that the use of migration points would not be an advantage in FROST as
the time lost by migrating an old checkpoint was insignificant. The tests of the system has shown,
however, that this is not entirely true. In section 11.3.1 wegave an example which showed that
approximately ten minutes can be saved due to less frequent checkpointing when checkpoints are only
used for fault-tolerance. Furthermore the time lost per migration would be952 seconds on average,
which has shown to be higher in practice.

On the basis of these tests we believe that it will be an advantage to include the use of migration
points to the FROST system. As noted earlier, migration points induce a much smaller overhead,
when migration is not performed and therefore they can be placed much more frequently in the
source code. When checkpoints are only used for fault-tolerance, they can be performed more seldom
thereby inducing a smaller overhead. When using migration points there will not be lost any time
when migrating due to calculations that need to be performedtwice. The price of the migration will
be the time to serialize and de-serialize data and transfer them to the destination node.

Tests have been performed which shows that the process migration feature can provide increase in
performance when the system is used in a non-dedicated environment. Further testing needs to be
performed in order to verify the results of these tests when the system is used with different types
of assignments and with more random user processes. Furthermore it is necessary to test the perfor-
mance when more nodes are introduced to the system. As described in the beginning of this chapter
the system has not been designed to be a scalable solution andtherefore testing the scalability at this
point is not reasonable. The following chapter will consider the scalability issue in more depth.

CHAPTER 12

Scaling FROST

The philosophy of the FROST system is to provide a large amount of computer power without having
access to a supercomputer. In order to be able to supply this amount of computing power a large
number of computers must be used. The present version of the FROST system is only scalable to a
local area network. A larger number of computers are most easily and cheaply accessed through
the Internet where their unused computing cycles can be utilized in an approach resembling the
SETI@home system. In SETI@home millions1 of slaves connect to a single central master, obtain a
work unit which they compute and then they return the resultsto the master. In order to make FROST
an applicable system it is necessary to consider different ways of making the system scale Internet
wide.

There are some very important differences between SETI@home-like systems and the FROST system
which needs to be addressed when considering scaling in FROST. The main difference between
FROST and SETI@home is that the FROST system allows all the slaves in the system to be masters in
addition to slaves. This means that we cannot rely on a dedicated centralized server for administration
of all the tasks in the system. Furthermore, there is no lowerlimit to the sizes of the computers in
FROST. Any computer capable of connecting to the network andcapable of running the FROST
software is able to act as both a master and a slave. This also means that the FROST system cannot
know anything about the computing power of a computer prior to it being introduced into the FROST
system. It is a demand though that a master in the FROST systemchecks whether a node is capable
of containing another task, with regard to memory usage and disk space, before it actually sends the
task to that node. It is obvious that a task should not be sent to a node without room for another
process. Additionally it is necessary to ensure that a master is always able to keep up with the data
flow to and from itself and to store the data and the results of the assignments it is processing. If a
master is not able to do this it should not be allowed to start any more assignments.

Another problem with scalability of the FROST system is thatthe current implementation uses broad-
cast to announce the availability of machines. Broadcast messages do not spread across the Internet
and all machines will therefore not be reached. It would probably also pose a problem if they could be
reached via broadcast as the amount of data needed to keep track of all machines would be enormous.
It is, however, a problem if not even a single machine can be reached, or if the system is divided in
subnets that cannot reach each other.

The solutions to make FROST scale can be identified as the following:

• Removing the bottleneck induced by the master

• Making a scalable information sharing solution

In the following we will consider how these solutions can be implemented in the FROST system, in
order to make it scale to wide area networks.

12.1 Distributed Master

In order to remove the bottleneck that the master induces to the FROST system, we first need to iden-
tify the source of the problem. The problem lies in the masters ability to handle the communication
if thousands of slaves are used in a calculation. All communication with the slaves goes through this
single master which is a huge bottleneck either because of the network connection or the speed of the
master, whichever is slowest. Hence, the problem can be identified as being the task of the master

1http://setiathome.berkeley.edu/totals.html

97

98 Scaling FROST

growing above the capacity of a single workstation. Of course this depends on the assignment being
solved, but the more computers that is utilized for a single assignment the more the master will be a
bottleneck.

The only solution to this problem is to distribute the mastertask to several machines2. In the FROST
system all machines can already function as a master, but by distributing the master task is meant
dividing a single assignment into a number of smaller parts and letting different masters take care
of each of these parts. Hence, several machines act as a master for part of an assignment. This will
share the communication between master and slaves between anumber of machines, hence, reducing
the bottleneck of the master. Eventually, the results must be returned to the master that started the
assignment, but this can be done upon request of the master when it is ready for it.

Distributing the master task requires further analysis anddesign which we do not wish to address
in this project, and therefore making the FROST system support a distributed master is laid out as
further work.

12.2 Information Sharing

Better performance can be achieved by introducing more nodes in the system. The problem here
is that the more nodes we introduce into the current implementation of the FROST system the more
bandwidth we use for administrative tasks. The current implementation of FROST is limited to a local
area network (LAN) on which we can use broadcast for sharing load information and for detecting
new nodes in the system.

The possibilities for sharing information such as the stateof machines3 is very important to the
scaling of FROST. As noted above, it is not realistic for eachmachine to hold information about all
other machines in the system if it is to scale Internet-wide.Hence, the current usage of broadcast for
sharing the availability of machines has two flaws. It fails in crossing network boundaries, thereby
splitting the system, and it aims towards everyone holding information about everyone.

In the following sections we will consider new approaches tothe way FROST communicates so that
it may be made to run on a larger scale. Three approaches are given and discussed, a multi-cast
approach, a multi-cast approach with partitions and a nearest-neighbor approach. Finally a short
discussion of the problem imposed by firewalls is given.

12.2.1 Multicast

As stated above, the current implementation of FROST uses broadcast for communication. The
problem of using broadcast for communication is that when scaling the FROST system to be usable
Internet-wide a large part of the communication is going to be across subnet boundaries. As routers
generally do not allow broadcast to pass a subnet boundary weare not able to keep in touch with
all the nodes in the system, thus limiting the number of nodesto those that are reachable via broad-
cast. Therefore we have to consider an alternative way of distributing information within the FROST
system.

The first solution that comes into mind is multicast as seen infigure 12.1. Multicast has the same
advantages as broadcast, and if hardware that supports multicast is used, a multicast message does
not bother computers which are not in the FROST system, otherwise it is necessary for each node to
check whether a multicast message was meant for it or not. As most modern network interface cards
supports a multicast filtering this is not a problem though4.

Because of the great similarities between multicast and broadcast one could directly replace the
broadcast methods with equal multicast methods.

Multicast provides better possibilities for a large numberof nodes in the FROST system to talk
directly to each other, but does, however, share some problems with broadcast. Multicast is supported
in the Internet Protocol (IP), but as a best-effort protocol, where delivery to all members of a group

2Or add a server to the system handling the master assignment,but we have already excluded this solution.
3The state of a machine consists of whether it is online or offline and if it is online, the load of the machine.
4http://www.erg.abdn.ac.uk/users/gorry/course/intro-pages/uni-b-mcast.html

12.2 Information Sharing 99

Internet

Master

Slave

Slave

Slave

Slave

Router

Router

Router

Router

Slave

Figure 12.1: FROST using multicast across the Internet.

is not guaranteed [Tan96]. Furthermore, as the number of nodes increase in the FROST network the
amount of load information and other types of communicationhandled by multicast increases. This
has an effect similar to those encountered when using broadcast, namely the amounts of data to be
handled gets too big. The data-structures containing information about all other nodes grows linearly
with the number of nodes in the system. This may not sound as much but if millions of nodes are
present in the network the amount of information contained on every computer about all the other
computers is massive and table lookups would take longer andlonger, thus rendering the system
useless.

12.2.2 Multicast with Partitions

As stated above, multicast in its pure form has the same disadvantages as broadcast. But multicast
is generally a good idea as every, or at least many, nodes in the system can be reached easily and
the messages which are sent between different nodes does notneed to be processed by computers
which are not part of the FROST system. Because of these advantages it is worth reconsidering the
multicast approach and finding a way to alter the communication patterns to introduce more flexibility
into them. An approach which holds greater promise than puremulticast where everyone can talk to
everyone, is to still use multicast but then split the systeminto partitions as shown in figure 12.2.
Then a number of multicast channels could be used, one for communication between the routers and
one internally in each of the different partitions.

A problem with this approach as well as the pure multicast approach is that in order to enable the
nodes to communicate they have to agree on a multicast channel to use. There are several ways to
solve this problem. One way is to obtain a permanent multicast address5 and hardcode it into the
system, but that solution presents more problems than advantages as it is not very flexible. Another
way is to let the user specify the channels used. This approach is more flexible but it demands that a
user knows the channels that are used by all the other nodes, and if the FROST system is to be used
Internet-wide a multicast address has to be used that no one else uses. A third way of doing it is to
allow the use of broadcasting inside a partition. The advantage here is that all nodes inside a partition
can easily obtain knowledge about all the other nodes and thus agree on a multicast channel so that
nodes which are not part of the FROST system are not bothered by the traffic. The communication
between the routers present more of a problem as they cannot use broadcast as a means for agreeing
on a multicast channel. A way to get around this could be to usea central master for exchanging the
channel information. Such a master could be a common IRC-server6 or it could be a dedicated master
in the FROST system. The problem with a central master is thatit limits the system by introducing a
single point of failure so another approach than partitioned multicast might be worth considering.

5Internet Assigned Numbers Authority -http://www.iana.org
6http://www.livinginternet.com/?r/rw.htm andhttp://rfc.sunsite.dk/rfc/rfc1459.html

100 Scaling FROST

Master

Partition 2

Partition 3

Internet

Partition 1

FROST Router

FROST Router

FROST Router

Figure 12.2: FROST using partitioning, routers and multicast.

An advantage with this solution is that the amount of data in the system is limited, as the FROST
routers can collect the average load of the partitions and share the information with other partitions.
The load of the individual machines will not be available across different partitions, but it is a reason-
able limitation as we cannot expect to make decisions on information from thousands or millions of
machines.

12.2.3 Nearest-Neighbor

If FROST is supposed to scale Internet-wide, we have to make some limitations. In the solution using
multicast with partitions, the presence of routers in orderto gather subnets that are not connected
directly is required. Furthermore these routers have the task of gathering average load information
from the different subnets, thereby limiting the amount of data in the system, but also removing some
information with regard to the load on the individual machines. During a migration, this has the effect
that we may not find the least loaded node in the entire system but rather a node that is sufficiently
less loaded than the current node.

The nearest-neighbor approach is an approach which eliminates the problem introduced by using
broadcast and multicast - flooding channels of communication. In addition to this it gets around the
problem with a single point of failure introduced by using a single master in the partitioned multicast
approach, but it will also make decisions based on a subset ofthe information about machines.

The main idea is that every node only knows about a relativelysmall number of other nodes which
we call neighbors. Neighbors should only be located a few number of hops away from each other
to reduce the amount of latency introduced if the distances are too great. A node can exchange
information directly with its neighbors using unicast as shown in figure 12.3.

When a node gets overloaded it will send a request for a lesserloaded node, and add its own load to
the request. Figure 12.4 shows an example, where a node with load 10 requests a lesser loaded node.
It has chosen a hop count of 2. The hop count does not denote thenumber of hops through routers,
but only hops through nodes in the FROST system. The FROST system could keep track of these
hops by using a special hop field in each message. When a request arrives at a node, it decreases the
hop count by one and retransmits the request, with the smallest of the local load and the load of the
requesting node, if the maximum hop count is not reached. This can be seen in figure 12.4 (a). Replys
are returned from nodes that has a smaller load than the requested. Each node only forwards the reply
with the smallest load back to the requesting node as shown infigure 12.4 (b). The address of the
node with the smallest load is also returned to the requesting node, so that the migrating process can
be transferred directly to the destination node.

The nearest neighbor solution provides a scalable system where the scale of the system can be set

12.2 Information Sharing 101

Information sharing

Node

Figure 12.3: The nearest-neighbor approach.

10

Requesting node

Request

Reply

6

4 7

9

8

6
2

5

10

11

4

6

4

2

6

4 7

9

8

6
2

5

10

11

10

7

7

7
10

2

2

2

(a) (b)

Figure 12.4: Finding a lesser loaded node in the nearest neighbor approach using a 2
node hop count. a) A request for a node with lesser load than the request-
ing node is rippled to nodes two hops away. b) Nodes only replyif their
load is lesser than the requested.

dynamically by changing the hop count e.g. when requesting machines to solve the assignment. If a
large assignment needs to be solved it can increase the hop count, thereby reaching a larger number of
machines. Furthermore the amount of data transmitted between the machines is kept at a minimum,
as only relevant data is transmitted. There are no need for using broadcast or multicast as all com-
munication can be handled with unicast, but the solution requires that a small amount of neighbors is
known.

There are some issues that need to be considered further, if this solution is to be used. E.g. if all
neighboring nodes have a higher load than the requesting node, for how long should a node wait for
an answer, how many hops should be used when sending out requests, and how do a node keep track
of the online/offline state of the nodes it uses as slaves. As this is not the solution we consider in this
project, these problems will not be addressed any further.

102 Scaling FROST

12.2.4 Firewalls

An additional problem when considering the scaling of FROSTis that there is a firewall between
most local networks and the Internet. We have to take into consideration how FROST nodes can be
allowed to communicate through these firewalls. A possible solution to this is to use the SOAP pro-
tocol7. This is a protocol that allows FROST communication messages to be piggybacked on HTTP
messages which can be sent through a firewall and authenticated using standard HTTP-authentication
mechanisms. It requires that the firewall allows standard outgoing HTTP connections as described in
Bolcer et al. [B+00]. They describe an approach where nodes behind firewalls useEvent Relaysas
temporary storage of messages to computers behind other firewalls. Each computer then contacts this
event relay regularly and requests any cached messages for it. The problem with event relays is that it
requires a dedicated server to act as an event relay as the amount of communication with these relays
can be large if a high number of computers wishes to connect toother computers through firewalls.

12.3 Summary

In the previous sections we have provided a number or possible solutions for making FROST a scal-
able system. In order to make FROST an applicable solution for the intended usage, some of these
solutions must be implemented. Making a system scale Internet wide is a non-trivial issue which
requires more research with regard to the FROST system. The above solutions is a step on the way
with regard to moving the bottleneck imposed by the master and making the system cross network
boundaries.

The distributed master and sharing of information is the twomost important aspects of the scalability
issues, as they form the basis of a scalable solution. By changing the way information about machines
is shared, and the amount of information that is shared, e.g.with regard to number of known nodes
per node, it is necessary to change some of the policies designed in this project. They are designed
on the basis that all information about all the nodes in the system is known when decisions are taken.

Hence, making FROST a scalable system is very important to attain the intentions of the system but
it requires some effort. Due to time limitations it has not been handled in this project and is therefore
laid out as further work.

7http://www.develop.com/soap/

CHAPTER 13

Conclusion

In this project we have concentrated upon the design and implementation of process migration in
FROST in order to obtain better performance when using non-dedicated machines and we have suc-
ceeded in incorporating process migration facilities intothe existing version of the FROST system.

13.1 Design and Implementation

The process migration feature has been designed and implemented as a part of the FROST system.
The migration facilities works in user space in order to ensure the possibility of a wider area of
distribution as the process migration facility is a part of the application level program FROST. Ad-
ditionally by placing it in user space we have made it possible to use an indirect extraction approach
which is necessary in order to allow FROST to function in a heterogeneous environment.

The support for a heterogeneous environment requires special handling of the process state e.g. with
regard to the runtime stack which can be very dependent on themachine architecture and the compiler
used. For this purpose we have constructed the control stackwhere we keep information regarding
method invocations and the point of execution from where theprocess must be restarted. The control
stack can be transferred between machines independently oftheir architecture and operating system
which makes it possible to continue execution from the exactpoint in the code where the checkpoint
was made.

The indirect extraction approach requires insertion of checkpoint and recover code into the user
source code and therefore it provides poor transparency. Inorder to remedy this situation a pre-
processor has been designed which is thought to handle all insertion of checkpoint and recover code.
In order to obtain an optimal placement of checkpoints in theuser code we have chosen to let the user
choose the points where they should be placed.

In order to provide possibility for fault-tolerance, whichis important in a system performing long
term calculations, we have implemented process migration using checkpoints.

A number of policies have been designed to secure good performance in relation to the expected
use of the computers by the local users as we have described insection 4.1.2. The policies are the
heart of the process migration features as they define how decisions are made when a process is to
be migrated. A very important design aspect consist in ensuring that the system is stable and do not
perform any unnecessary migrations. Still they must be sensitive enough to take action when a user
adds heavy load to the node. Furthermore we needed to design aspecial way of measuring the load
on a node due to the low priority that the FROST assignments are running with. In order to secure a
stable system we have implemented the main parts of the designed policies.

In the following section we will describe the results of the design and implementation of process
migration in FROST. We will both consider the results of the important decisions made in the design
and the results from testing the system.

13.2 Results

The support for a heterogeneous environment in the process migration features has been fully imple-
mented but it has not been tested across different architectures. There are, however, no architecture
dependent elements and all data is saved in an architecture independent manner and so it should not
be a problem to migrate processes between different architectures.

Tests have shown that the way load is measured in FROST, namely using available resources as
described in section 5.1.1, is a good solution. This is both because it provides us with a valuable

103

104 Conclusion

tool on which further decisions can be based and because the way it is performed actually provides
us with the resources that a process can expect to have accessto. Furthermore the parameters of the
resource measuring was tuned during the tests to give the system excellent performance as the system
acts to change if it is needed assuming the user patterns we have described in section 11.2.2.

The prediction approach described in section 5.4.1 which isused to ensure that the FROST system is
always in a better state after a migration is performed than it was before, has shown to be a valuable
tool for the stability of the system. The most important issue is that it prevents unnecessary migrations
when the idle load of two machines are equal. Without the prediction feature, a process would migrate
back and forth between the two machines as the other machine would always be seen as having more
available resources. The feature predicts that the resources will not be higher on the destination
machine and therefore the migration is not performed. It should be noted that it is possible to create
a user pattern which will make the system migrate back and forth e.g. by adding load spikes on the
different nodes interchangeably just long enough to justify a migration. No matter which parameters
we use in our policies, it is possible to construct such a userpattern. In order to remedy this situation
adaptive policies should be considered. Such policies would react to the present user pattern instead
of reacting according to a pre-determined plan and they would thus be much more flexible than our
present solution.

We have carried out a few tests in order to check the correctness of the implemented features. The
results of these tests have not been documented in this report but our general observation is that the
features work as expected.

The results with regard to checkpoint and migration overhead shows a linear increase in time in
relation to the size of the checkpoints which we believe is a reasonable result. The measuring of
general overhead has shown that the price of the process migration features in an ideal system is no
more than the overhead of checkpointing.

The performance of the system has been tested by simulating anon-dedicated environment. The first
test offered poor performance as the total runtime of the assignment was four minutes slower than
if process migration was not used. Through optimizations based on the results of the first tests we
achieved a better performance with a runtime that was 20 minutes faster than the total runtime when
process migration was not used. Due to the implemented prediction algorithm the system behaved
very stable with no unnecessary migrations during the tests.

The conclusion to the tests was that it will be advantageous to implement migration points instead of
using checkpoints for migration in order to achieve better performance, as it is possible to limit the
overhead of the checkpointing feature and remove the overhead from performing the same calcula-
tions twice.

13.3 Further Work

In this project we have designed and implemented process migration in the FROST system. Our
work has shown that in order to obtain an optimal system both from a users point of view and from
a performance point of view there are some topics that need tobe looked into. In the following we
state these topics and why they must be considered. Furthermore we state some of the design issues
that should be considered when designing the topics.

Migration points: The implementation of migration points into the FROST system should be con-
sidered. Both because our tests indicate that more performance can be gained but also because
it is a fairly trivial task. When a migration point is used forprocess migration the procedure
is very similar to performing a checkpoint. The only exception is that the migration point
is transferred directly to another node where the checkpoint is saved to disk. The advantage
of migration points over checkpoints is that the process state is only extracted when the sys-
tem has chosen to perform a migration when using migration points, whereas checkpoints are
performed fully every time they are encountered.

The use of migration does, however, also have a disadvantageas a node cannot migrate a
process before a migration point is encountered even thoughit is heavily loaded. This means
that if there is too long between migration points they have the opposite effect as the process

13.3 Further Work 105

will receive less resources during a longer period and thereby decreasing the performance. As
migration points introduce very little overhead into the system they can be inserted into the
source code with more frequent intervals so that they are performed more often and thus raise
the flexibility of the system.

Fault-tolerance: In order to fully implement fault-tolerance features into the FROST system it has
to be ensured that the data-structures in the master and the slave containing information about
the node and the tasks it is currently executing is saved. Additionally the fact that the hard disk
on the slaves cannot be seen as stable storage for the checkpoints, must be considered. In order
to ensure that these checkpoints are preserved in the best possible way a replication scheme,
where checkpoints are distributed between masters, shouldbe considered. In addition to this a
protocol for handling machine breakdown is needed so that all nodes keeping checkpoints for
the failing node can agree on who should restart the tasks.

Preprocessor: In this project we have designed a preprocessor for ensuringtransparency of the pro-
cess migration features in relation to user assignments. The preprocessor have been designed
to support the insertion of checkpoints in recursive functions but at present it is not supported
by the checkpointing facility which should be updated if recursive functions are used. If mi-
gration points are used it can be an advantage to support migration inside recursive methods.
Implementing the preprocessor is a relatively simple task and it should therefore be done in
order to make it easier for a user to create tasks for FROST. Including the locating of neces-
sary variables should also be considered as an optimizationto the system and it should thus be
included into the design and implementation of the preprocessor.

Scaling: The present version of the system does not scale to an Internet wide platform due to the
way it handles resource information and the way the master behaves with regard to general
communication. The problem of making it scale is non-trivial and some considerations with
regard to this is made in chapter 12. In order for the system tobe widely usable it is neces-
sary to make it scalable. When the system has been made scalable, additional tests should be
performed with an increasing number of nodes in order to see how the system reacts to being
scaled and in order to see if it affects the performance in anyway.

Test of the system in a realistic environment: In order to ensure that the system is able to handle
realistic user patterns without becoming unstable it has tobe tested under realistic conditions.
This can be done by installing FROST on several workstationsin a normal office environment
and test how the system reacts to the usage of the machines.

Bibliography

[ÁBL+95] José Nagib Cotrim Árabe, Adam Beguelin, Bruce Lowekamp,Erik Seligman, Mike
Starkey, and Peter Stephan. Dome: Parallel programming in aheterogeneous multi-user
environment. Technical Report CS-95-137, 1995.

[App98] Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge University
Press, first edition, 1998.

[ARQ93] R. Andonov, F. Raimbault, and P. Quinton. Dynamic programming parallel implemen-
tation for the knapsack problem. Technical Report PI-740, IRISA, Campus de Beaulieu,
Rennes, 1993.

[B+00] Gregory Alan Bolcer et al. Peer-to-Peer Architectures and the MAGI™ Open-Source
Infrastructure. http://www.endeavors.com/pdfs/ETI%20P2P%20white%
20paper.pdf, December 6th 2000.

[C+01] George Coulouris et al.Distributed Systems - Concepts and Design. Addison-Wesley,
third edition, 2001.

[Cod93] P. D. Coddington. An analysis of distributed computing software and hardware for appli-
cations in computational physics. InProceedings of the Second International Symposium
on High Performance Distributed Computing (HPDC-2), Spokane, WA, 1993.

[CS96] K. Chanchio and X. H. Sun. MpPVM: A Software System forNon-Dedicated Heteroge-
neous Computing. InProceedings of the International Conference on Parallel Process-
ing, August 1996.

[CTY99] W.F. Wong C.P. Tan and C.K. Yuen. tmPVM - task migratable PVM. InProceedings of
the 2nd Merged Symposium IIPS/SPDP, pages 196–202, 1999.

[ELZ86] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive Load Sharing
in Homogeneous Distributed Systems.IEEE Transactions on Software Engineering,
12(5):662–675, 1986.

[FWM94] Geoffrey C. Fox, Roy D. Williams, and Paul C. Messina. Parallel Computing Works.
Morgan and Kaufmann, first edition, 1994.

[GK02] Michael Platz Glibstrup and Lars Kringelbach. FROST- A Distributed Heterogeneous
Calculation Platform. Technical report, Aalborg University - Department of Computer
Science, January 2002.

[HOS99] Janus Hardwick, Robert Oehmke, and Quentin F. Stout. A program for sequential al-
location of three bernoulli populations.Computational Statistics and Data Analysis,
31:397–416, 1999.

[Kun91] Thomas Kunz. The Influence of Different Workload Descriptions on a Heuristic Load
Balancing Scheme.IEEE Transactions on Software Engineering, 17(7):725–730, July
1991.

[LTBL97] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.Checkpoint and Migration of
UNIX Processes in the Condor Distributed Processing System. Technical Report #1346,
University of Wisconsin-Madison Computer Sciences, April1997.

107

108 BIBLIOGRAPHY

[MDP+00] Dejan S. Milojicic, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian
Zhou. Process migration.ACM Computing Surveys (CSUR), 32(3):241–299, 2000.

[PE97] James S. Plank and Wael R. Elwasif. Experimental Assesment of Workstation Failures
and Their Impact on Checkpointing Systems. Technical Report UT-CS-97-379, Depart-
ment of Computer Science, University of Tennessee, 1997.

[Per99] Jost’e Orlando Pereira. XTL - The Externalization Template Library. Internet,http:
//xtl.sourceforge.net/xtlguide.pdf, 1999.

[SB94] E. Seligman and A. Beguelin. High-level fault tolerance in distributed programs. Techni-
cal Report CMU-CS-94-223, School of Computer, Science, Carnegie Mellon University,
1994.

[Sed92] Robert Sedgewick.Algorithms in C++. Addison Wesley, first edition, 1992.

[SH98] Peter Smith and Norman C. Hutchinson. Heterogeneousprocess migration: The Tui
system.Software Practice and Experience, 28(6):611–639, 1998.

[SKS92] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load Distributing for
Locally Distributed Systems.Computer, 25(12):33–44, December 1992.

[Sri95] R. Srinivasan. RFC1832: XDR: External Data Representation Standard. Internet,
http://www.faqs.org/rfcs/rfc1832.html, 1995.

[Sta98] William Stallings.Operating Systems - Internals and Design Principles. Prentice Hall,
third edition, 1998.

[Tan95] Andrew S. Tanenbaum.Distributed Operating Systems. Prentice Hall, 1995.

[Tan96] Andrew S. Tanenbaum.Computer Networks. Prentice Hall, third edition, 1996.

PART V

Appendix

APPENDIX A

Word List

This appendix explains some of the words used in the report. Some of the definitions are taken from
[GK02].

Calculation code: The source code that is executed to carry out the assignment.It includes also the
methods for splitting and combining the data.

Assignment: An assignment is the work that a user wants the FROST system tocarry out. It is
divided into several tasks that is distributed to a number ofslaves. It contains the calculation
code and the data that is to be calculated upon.

Task: A task is a part of an assignment that is to be solved on a singlemachine. During a task, a
single work unit of data is processed.

Work unit: A work unit is the data that is used for processing a single task. It holds one or more data
lumps.

Data lump: A data lump is the smallest amount of data distributed in the system. It contains one or
more values of the same simple data type.

Simple data type: A simple data type is a non-composite type such as an integer or floating point.

111

APPENDIX B

Test Results

This appendix contains the resource graphs which show the results of the performance tests described
in section 11.4.

The resource graphs shows the measured resources during an entire assignment. One resource graph
for each node used in the tests has been made and hence, all three graphs from a test should be
compared against each other. For convenience all graphs from a single test have been placed on the
same page.

All Migrations to and from a node is indicated on the resourcegraphs so that it can be checked if
there is any unnecessary migrations. In the bottom of each graph the pattern of the user processes is
shown. Spikes denote load spikes and a block denotes that heavy load is added to the node. The user
process patterns are thoroughly described in section 11.2.2.

The information needed for constructing the graphs has beencollected by a logging process on a
separate machine. Each node broadcast messages with the information needed such as measured
resources and when checkpoints or migrations are performedwhich is then collected by the logging
process. The resources are broadcast to the logging processat the same time as it is broadcast to the
other nodes in the system, and the graphs therefore show the state of the system exactly as it is seen
from a node in the system.

113

114 Test Results

B.1 Performance Test 1

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

R
es

ou
rc

es

Time (s)
T

o
no

de
 2

F
ro

m
 n

od
e

2

T
o

no
de

 2

Available resources
Migrations

Figure B.1: Node 1

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

R
es

ou
rc

es

Time (s)

T
o

no
de

 3

F
ro

m
 n

od
e

1

T
o

no
de

 1

F
ro

m
 n

od
e

1

F
ro

m
 n

od
e

3

Available resources
Migrations

Figure B.2: Node 2

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

R
es

ou
rc

es

Time (s)

F
ro

m
 n

od
e

2

T
o

no
de

 2

Available resources
Migrations

Figure B.3: Node 3

B.2 Performance Test 2 115

B.2 Performance Test 2

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

R
es

ou
rc

es

Time (s)

T
o

no
de

 2

F
ro

m
 n

od
e

3

T
o

no
de

 2

Available resources
Migrations

Figure B.4: Node 1

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

R
es

ou
rc

es

Time (s)

T
o

no
de

 3

F
ro

m
 n

od
e

1

T
o

no
de

 3

F
ro

m
 n

od
e

1

Available resources
Migrations

Figure B.5: Node 2

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

R
es

ou
rc

es

Time (s)

F
ro

m
 n

od
e

2

T
o

no
de

 1

F
ro

m
 n

od
e

2

Available resources
Migrations

Figure B.6: Node 3

116 Test Results

B.3 Performance Test 3

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
es

ou
rc

es

Time (s)
T

o
no

de
 2

F
ro

m
 n

od
e

3

T
o

no
de

 2

F
ro

m
 n

od
e

3

T
o

no
de

 2

Available resources
Migrations

Figure B.7: Node 1

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
es

ou
rc

es

Time (s)

T
o

no
de

 3

F
ro

m
 n

od
e

1

T
o

no
de

 3

F
ro

m
 n

od
e

1

T
o

no
de

 3

F
ro

m
 n

od
e

1

Available resources
Migrations

Figure B.8: Node 2

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
es

ou
rc

es

Time (s)

F
ro

m
 n

od
e

2

T
o

no
de

 1

F
ro

m
 n

od
e

2

T
o

no
de

 1

F
ro

m
 n

od
e

2

Available resources
Migrations

Figure B.9: Node 3

