Master Thesis
By

Jens Dalgaard Nielsen and Jern Holm
June 2002

close combat strategies for agents in the game of Un-
real Tournament. The work presented in Holm and
Nielsen (2002) is used as the framework for this the-
sis.

SUPERVISOR: ~ We propose four different extensions to the basic Ge-
Dr. Jos‘e M. Pena netic Programming algorithm, in order to gain con-
Jjmp@cs.auc.dk trol over the growth in average size of the solutions,

and to improve the genetic operators, with respect
to maintenance of diversity.

In conclusion we find that a guidance of the ge-
netic operators to be applied within effective code,
shows good performance. A direct pressure that re-
wards unique solutions and punishes common solu-
tions shows good performance and an insignificant
degree of bloat.

NUMBER PRINTED: 6
NUMBER OF PAGES: 119
FINISHED: 6th June 2002

This thesis may not be published in any way or form without permission from the project group.
Copyright (© summer 2002, project group E1-119a, Aalborg University

- 4 Ul 1est DLUgCL VI AaCLHOUIGKR 11051 allllilicliily Ll
at udvikle naerkamps strategier for agenter i spillet
Unreal Tournament. Stoffet praesenteret i Holm and
Nielsen (2002) bliver brugt som basis for denne tese.

VEJLEDER: Vi foreslar fire forskellige udvidelser af den normale
Dr. Jose M. Pefia Genetiske Programmerings algoritme, med formalet
jmp@cs. auc.dk at kontrollere den gennemsnitlige vaekst i stgrrelse af

lpsningerne og forbedre de genetiske operatorer med
henblik pa diversitets opretholdelse.

Vi konkluderer at de genetiske operatorer med fordel
kan anvendes pa den effektive del af koden. Et di-
rekte pres der belgnner unikke lgsninger og straffer
almindelige lgsninger viser ogsa gode resultater og
desuden en ubetydelig grad af "bloat".

ANTAL EKSEMPLARER: 6
ANTAL SIDER: 119
AFSLUTTET: 6. Juni 2002

Denne tese ma ikke udgives hverken helt eller delvist uden tilladelse fra projektgruppen. Copyright ©
sommer 2002, projektgruppe E1-119a, Aalborg Universitet

ACKNOWLEDGMENTS

We acknowledge Unreal Tournament as a registered trademark of Epic Games,
Inc.

We would like to thank Rimantas Benetis for providing useful modifications
to the Gamebots module.

We would like to thank our supervisor Dr. Jose M. Pena for being our mentor
and mahatma.

Jorn Holm Jens Dalgaard Nielsen

\r

-+ 44 AARLLLIVUVVUUVLY ASUJLLLAMUELELL 2 s s e s s e e s s e s s e e s s e s s e

2.2.1 The Features
2.2.2 The Gamebots System
2.2.3 The Gamebots Interaction Protocol

Evolutionary Algorithms

3.1

3.2

3.3

Introductiono
3.1.1 Search Strategies
Genetic Algorithms oL
3.2.1 The Basic Loop of Evolution
3.2.2 Ensuring Convergence
3.2.3 Maintaining diversityo
3.2.4 The Fitness Function
Genetic Programming L.
3.3.1 Genetic Operators and Parse Trees
3.3.2 The Basic Building Blocks Fand T

Summary of previous work

4.1
4.2

Previous Goals oo
Language Design L.
4.2.1 The Most Basic Skills
4.2.2 The More Offensive Skills

11

&+ L

14
14
15

17
17
17
19
19
22
23
28
31
31
33

5.2.1 Popular Bricks And Building Blocks
5.2.2 The Flower of The Tree
5.2.3 The Withered Leaves
5.2.4 Causes of growth of non-executed code

5.2.5 Effects of code growth

5.3 Project Goals

II Owur Approach

6 System Modifications

7 Size Ranking

7.1 The Bloat Phenomenon
7.2 Previous Efforts

7.2.1 Primitive Parsimony Pressure

7.2.2 Adaptive Parsimony Pressure

7.2.3 Explicitly Defining Introns

7.3 Our Approach

8 Diversity Ranking

8.1 Our Approach

67

69

71
71
72
72
73
73
74

75

11.1 Parameters ol the Lvolution«

11.2 Results o 95
11.2.1 The BASICrun. 97

11.2.2 Size Ranking 104

11.2.3 Diversity Ranking 104

11.2.4 Enhanced Context Free Grammar 106

11.2.5 Executed Path Guided Operators 109

12 Conclusion and Future Work 113
12.1 Summary of Results 113
12.2 Failures oo 114
12.3 Successeso 114
12.4 Future Worko 114
12.4.1 Agent Specific Extensions 114

12.4.2 System specific Extensions 116
Bibliography 119

A Node Frequencies 123
B New Node Frequencies 131

C Language Reference 133

3.6

3.7

3.8

3.9

3.10
4.1

4.2

the mesh topology. Lhe mesn loops, giving a toroidal structure. 20

A snapshot of a population of five subpopulations (black, red,
yellow, green and blue) evolving. This is not empirical data,
but this is what we expect of the island principle. A-E are the
individuals that recently migrated.

Organization of subpopulations in the MDPGA. The neigh-
borhood of sub-population a and ¢ are shown as dotted circles.
Subpopulation b is a common neighbor to both a and c.

The all-against-all competitive fitness approach, and cup tour-
nament fitness approach, (a) and (b) respectively. The ap-
proaches were previously presented by Axelrod (1987) and
Angeline and Pollack (1994).

A co-evolutionary environment constituted by two parallel
populations, as used by Hillis (1992).

Crossover and mutation applied to parse trees.

The enemy movement as perceived by the golden (upper) bot.
Distinctions between leftward /rightward and forward /backward
depicted in (a) and (b) respectively. Arrows of the same color
within the same subfigure corresponds to directions of move-
ment that yield the same result.

The use of relative destination points when strafing. The
coordinatesystem relative to the red bot is rotated as the bot
moves, and the point of destination (x’,y’) then changes dy-
namically (with respect to global coordinates), as depicted in
the change of (a) to (b).

~1

27

27

29

30
32

38

39

5.6

5.7
5.8

9.9

7.1

8.1

8.2

9.1

run has been pitted against 7 different enemies. The executed
nodes is colored, figure (a) shows the result of 6 out of the 7
matches, figure (b) shows the result of the last test.

The fittest individual from the 6th island, 10th generation, 3rd
run has been pitted against 7 different enemies. The executed
nodes is colored, figure (a) shows the result from 6 out of the
7 matches, figure (b) shows the results of the last test.

The evolution of average size for the 3 test runs.

A global intron in a parse tree is typically caused by redundant
sensor-checks. oL

A local intron in a parse tree is caused by a specific configu-
ration of the test case, and hence is dependent on the current
test case. Lo

The 6 different fitness classes, produced by our tournament
based fitness function, when applied to a population of 32
individuals, with fitness decreasing from left to right.

Two trees are compared, executed nodes are colored. A match
of size 4 has been encircled.

Two trees are compared, executed nodes are colored. A match
of size 5 has been encircled.

In (a) a randomly generated tree is depicted. Notice the se-
mantical equivalence with the tree depicted in (b) which is
recognized by our CFG.

114
11.5
11.6
11.7
11.8
Al

A2

A3

A4

A5

A6

AT

the beginning of an accumulation of good building-blocks in

a still growing tree. Two later generation individuals selected

for crossover (d), and the offspring produced by choosing the

black dots as cut-points ().
Performance(a) and size(b) graphs for the SR run.
Performance(a) and size(b) graphs for the DR run.
Performance(a) and size(b) graphs for the E-CFG run.
Frequency of node usage during the E-CFG run.
Performance(a) and size(b) graphs for the EPGO run.

The frequency of node usage on island 1 (fig. a-b), 2 (fig. c-d)
and 3 (fig. ef) of the Istrun.

The frequency of node usage on island 4 (fig. a-b), 5 (fig. c-d)
and 6 (fig. e-f) of the Istrun.

The frequency of node usage on island 7 (fig. a-b) of the 1st
0

The frequency of node usage on island 1 (fig. a-b) and 2 (fig.
cd)ofthe 2nd run.

The frequency of node usage on island 3 (fig. a-b), 4 (fig. c-d)
and 5 (fig. e-f) of the 2nd run.

The frequency of node usage on island 6 (fig. a-b) and 7 (fig.
cd)ofthe 2nd run.

The frequency of node usage on island 1 (fig. a-b) of the 3rd
FUIL. o v oo o oo e e e e e e e e e e

105
107

8.2
9.1

9.2

111
11.2
11.3

114

11.5
C.1
C.2

Algorithm for matching subtrees. 79

The alphabet of the E-CFG. The functions are assigned upper-
case letters in the leftmost box and the terminals are assigned
lowercase letters in the rightmost box. 83

The E-CFG of the constrained syntactic rules for custom tree

generation, crossover and mutation. 86
The different parameters used in all runs. 96
The winner from generation 55 of the BASIC run. 101
Two common building blocks extracted from the winner of

generation 55 of the E-CFG run. 101
The best individual from the 9th (the leftmost) and 10th (the

rightmost) generation 102
Two common building blocks from the BASIC run. 109
Terminal reference L. 134

Function reference the # column contains the number of ar-
guments required by the function.o L. 135

tivate the further analysis. Chapter 2 introduces the specific problem
domain of the game Unreal Tournament, and presents the extension pro-
vided by the Gamebots module. Chapter 3 presents the basic theory of
Genetic Algorithms and Genetic Programming necessary for understand-
ing our system. Chapter 4 presents a summary of our previous work re-
ported in Holm and Nielsen (2002). Finally chapter 5 concludes this part
by narrowing the problem space and defining the goals of this project.

Ol enetliC rrogramiming, Inostly credlited to noza (1JJdz), las secured 1S
foothold within the community of Artificial Intelligence.

From this brief historical survey we move on to motivate the general focus
of this thesis.

1.1 MOTIVATION

Some everlasting obstacles to evolutionary optimization exists, and in this
thesis we focus on some of these obstacles, or more precisely on ways to
bypass these obstacles. Before going into technical details about the contents
of this thesis, we will include a reflection over The Investment Principle
presented by Minsky (1988), as it very nicely presents the essence of what is
the focus of this thesis. Also, we find it reasonable to mention the principle
of Occam’s Razor, in order to put work presented in this thesis in a broader
perspective.

1.1.1 THE INVESTMENT PRINCIPLE

The investment principle as stated by Minsky (1988) is:

“Our oldest ideas have unfair advantages over those that come later.
The earlier we learn a skill, the more methods we can acquire for using it.
Each new idea must then compete against the larger mass of skills the old
ideas have accumulated.”

Minsky (1988) argues that natural evolution is a good example of a process
being enslaved by the investment principle. That is, good skills that were
developed in the early stages of the evolution, is hard to change without

In more modern English, this is often translated to “Pluralities should not
be posited without necessity”. This principle is one of the cornerstones of
many scientific disciplines, especially when developing models of natural
phenomenon and physical processes. Models of high complexity is typically
less general than models of low complexity. The more complex the model,
the more details it has captured, and hence it becomes fragile to otherwise
insignificant changes. We can connect this to the investment principle de-
scribed above. As evolution continually constructs solutions to fit the current
environment by patching up and recombining old ideas, the evolved solutions
become more and more complex, and hence more and more specialized. This
phenomenon is evident for most spices in nature. That is, most spices are
highly specialized to benefit from the environment in which they exist, or
more specific, the environment in which their ancestors existed.

We have now argued that evolution does not inherently obey the principle
of Occam’s Razor.

1.2 PROBLEM SPACE

The problem space of this thesis, is defined to be within the application of
the Genetic Programming paradigm to a real time computer game. The
experiments and results reported in this thesis builds upon work previously
reported by Holm and Nielsen (2002).

In the previous sections, we argued that one inherent property of evolution
is the bias toward favoring old ideas over new ones. We should realize that
this property can be damaging to the evolution, if the early ideas are not op-
timal for solving the current problem. If these sub-optimal ideas gain strong

R R N S

computer screen displays the world through the avatar’s eyes as a human
visually perceive a 3D world (1st person perspective). UT is a fast, complex
and dynamic game domain. It offers a broad set of game types, eg. Death
Match, Domination and Capture the Flag, which is further described in sec-
tion 2.1.1. In addition, multiple different world maps, varied both in size
and semblance, are available as indicated in J. Gerstmann (1999). Each of
these game types requires a number of opponents, which can be AT or human
controlled opponents. The Al controlled opponents in UT, will be described
in section 2.1.2.

2.1.1 GAME TYPES

There are several possible game types available in UT. Most of these, are mu-
tations of the three (probably) most popular game types which are described
below:

Death Match: Kill as many competitors as possible and try to avoid being
killed by them. The player who reaches the frag ! limit first (or has
the most frags when the time limit is reached) is the winner.

Domination: Two teams or more, fight for possession of several control points
scattered throughout the map. To take a control point, a player simply
touches it, and that control point is now owned by that player’s team.
When a team owns a control point, their score increases steadily until
the other team touches the control point.

LUT term for kill.

Capture the Flag: The players are divided into two teams. Each team has a
base with a flag that they must defend. Points are scored for a team
when a team member captures the opposing team’s flag, by bringing
it back to the team’s base while their own flag is safely contained in
the home base.

Common to all these game types is that players respawn at random locations
when killed.

2.1.2 OPPONENTS IN UNREAL TOURNAMENT

In UT the player can play against the built-in botsor other players connect-
ing through LAN’s or the Internet. The AI controlled bots in UT is by many
people considered to be formidable opponents. They can be extremely hard
to beat and to a certain level their behavior can be conceived as that of a
human. The strength of the bots is only partly due to cleverly programmed
scripts. Since the bots access information hidden to the human player (eg.
player positions, though not visible in the line of sight), they have an ad-
vantage compared to human players. The UT environment is using built-in
noise as default when aiming - meaning that even perfect aim at an oppo-
nent, will not guarantee hitting the opponent. The noise varies depending
on the weapon used. The bots gain an advantage when increasing their skill
level, because their aiming noise will be reduced, which is not the case for
the human player.

2.1.3 ITEMS IN UNREAL TOURNAMENT
To succeed in any of the different game types - let it be Domination, Death
Match or Capture the Flag - it is an asset to be superior in combat against

an enemy. To master this ability, one should be able to perform a number
of actions at the right time. Some of these actions are listed below:

e Pick up health.

e Pick up armor.

e Pick up weapons.

e Pick up ammunition.

e Initiate offensive or defensive movement patterns.
e Choose an appropriate weapon.

e Aim with the chosen weapon.

e Execute a strategy (combine and plan possible actions).

As can be seen above, some of the mentioned actions involve the presence of
health, armor, weapons and ammunition. These items will be described in
the following sections. The basic elements of motion control for movement
will be described in section 2.1.5

The characteristics of the various kind of weapons can be seen in the list
below:

Impact Hammer: Close combat weapon which fires slowly and inflict a medium
amount of damage. This weapon does not use any kind of ammuni-
tion. When fired against solid objects, the weapon can damage the
instigator. The player is equipped with this weapon at the start of a
game.

Chain Saw: Close combat weapon which inflicts continually damage when in
contact with the enemy.

Enforcer: The basic weapon in UT. This handgun is accurate on medium to
short range distances. The weapon has a slow firing rate. The weapon
is inflicting instant but low damage.

Double Enforcer: When a player picks up a second enforcer he is given the
possibility to utilize them both at the same time, by carrying one in
each hand.

Shock Rifle: This rifle fires slowly but accurate, also on medium and long
distances. It inflicts medium damage instantly.

Bio Rifle: This weapon fires clumps of sludge which glom onto solid surfaces.
It then explodes after a short time or when touched by a player (also
the instigator), causing a medium amount of damage. The weapon
fires at a medium rate, has close to medium range and the clumps are
flying slowly.

alty 1iuve lllﬁbdllbly llllllcblllg A 111811 1CvVCl Ul udllldgc. VYV 11Cll ulltc pIVUJUUbllU
hits the opponent’s head it kills instantaneously. A picture of the sniper
rifle can be found on figure 2.2.

Ripper: The Ripper fires sharp blades which can ricochet off solid surfaces.
The blades are can when ricocheting inflict damage on the instigator
when careless. The blades is moving with high speed and can kill
instantly if they hit a player’s head, else they will inflict medium to
low damage. The Ripper is firing at a medium rate.

Minigun: This weapon is firing the same projectiles as the Enforcer, but at
a very rate of fire. If not used with care this weapon can run out of
ammo in seconds, but can also reduce the enemy’s health in seconds.

Flak Cannon: This weapon works virtually as a real life shotgun. It fires
chunks of jagged metal which, like the razor blades from the Ripper,
can ricochet. The closer it is fired against the enemy, the more damage
it inflicts. In close encounter one shot is often enough to kill the enemy.

Rocket Launcher: This weapon launches rocket-propelled grenades that ex-
plodes on impact. The grenades are moving slowly, but inflict a medium
amount of splash damage on impact with solid surfaces, and a high
amount of damage when hitting the enemy. The exploding grenades
can hurt the instigator if he fires against a nearby solid surface.

Table 2.1 shows the specific attributes for each weapon.

All players in a UT game starts with 100 initial health points. When the
player reaches zero, he dies and respawns at some random spawning point.
To avoid death in UT, a player can pick up different kinds of health packets.
These are listed in the following;:

Health Vial: Each health vial gives the player 5 health points, to a maximum
of 199.

Health Pack: Replenishes 20 points of health, up to a maximum of 100.

Keg O" Health: Gives the player 100 health points, to a maximum of 199.

ARMOR

Besides the possibility to pick up health to avoid death, a player also has
the option to pick up armor. Armor provides the player with armor points
of which he initially has zero. The maximum of armor points a player can
retain is 150. Besides providing the player with armor points, the different
types of armor protect the player in different ways. The characteristics of
the three armor types can be found below:

Thigh Pads: Provide the player with 50 armour points. They will absorb a
percentage of all damage dealt a player, until they wear away.

Body Armor: Provide the player with 100 armour points. It absorbs a signif-
icant amount of, though not all the damage dealt to the player.

follows:

Weapons | Impact Hammer & Enforcer
Ammo Bullets pack (50)
Health 100
Armor 0

2.1.5 CONTROLLING A PLAYER

A player who manouevre an UT agent has a set of commands available he
can control by his keyboard and mouse. The set is given by the following
description:

Strafe Right/Left: These two commands will cause the player to move side-
ways, either left or right, as can be seen in figure 2.3(a).

Move Forward/Backward: These two commands will cause the player to run
forward or backwards as can be seen in figure 2.3(b).

Turn Left/Right: These two commands will cause the player to turn right or
left and will also change the point he is facing. This is because the
player is not able to turn his head. This movement can be seen in
figure 2.3(c).

Shoot: This command will cause the player to fire the weapon he is holding
in the present moment. He will aim in the direction he is facing.

These four kinds of basic control commands can be executed in parallel.
As an example a player can strafe while turning against a fixed point and

e Provides a more friendly looking environment - The Magic Wizard
theme; for an example look at figure 2.4.

e Makes it possible to do research within the field of human-AT collabo-
ration and competition.

e Publicly available at Gamebot-Project (2001).

e [s built on a very popular game, which makes it interesting for other
people than the usual researcher. This leaves a chance to gather a
broad community working on similar tasks and share experiences.

2.2.2 THE GAMEBOTS SYSTEM

The Gamebots system allows players in a UT game to be controlled by
network sockets connected to clients that can be controlled by an application.
It is thereby possible for an application running a player to send actions,
which should be executed by the player in the game. The application also
gain information about the game state, which makes it possible to plan the
next action. In this way both remote controlled Al players, human players
and the built-in UT bots can play at the same time, in the same game.

Players must master advanced Al capabilities to achieve the aims of the game
types, this include path planning, memorizing the characteristics of the 3D
environment (items, paths, etc.) and strategic planning.

2UT and Gamebots is ported to at least Linux, Windows and Mac.

Gamepots
module

Host 1

Client
Client

Host 2

Host 3

Figure 2.5: A sketch of the general organization of the Gamebots software (copied
from Adobbati et al. (2001), used with permission,).

2.2.3 THE GAMEBOTS INTERACTION PROTOCOL

The Gamebots interaction protocol is a text based protocol of single-line
messages between the server and the gamebots modification. The gamebots
server sends sensory information messages to the bots containing the cur-
rent state of the UT world. The bots operate in the environment by sending
action messages back to the server. There are two kinds of messages; syn-
chronous and asynchronous. The synchronous messages include things like
visual updates and status of the bot itself. As the name implies they come at
a regular interval. The asynchronous messages are typical events which are
expected to happen less frequently, eg. if another player is visible or messages
about incoming fire. The action commands are for example the movement

o s 4 T 4

is performed (i.e. the search space) and F' is the function to be optimized
(i.e. the fitness function or objective function), and measures the goodness
of every solution in the search space. Then: F : 2 — R. Note that Q
can be finite, infinite, or defined according to complicate restrictions and F
may be multimodal, non-differentiable, or defined according to complicate
restrictions.

The objective is to find a solution (or, alternatively, solutions) z* € € such
that: F(z*) > F(z) for all z € Q in the case of maximization, or F(z*) <
F(z) for all z € Q in the case of minimization. A visual example of a fitness
landscape can be seen in figure 3.1.

3.1.1 SEARCH STRATEGIES

When we want to solve a optimization problem, e.g. maximization of Ack-
ley’s ! function depicted in figure 3.1, we have to consider some kind of search
strategy. The choice of search strategy can depend on problem complexity,
available computation power and various other parameters. A number of
search strategies are available and a rough classification of these is sketched
below:

e Brute force (e.g., depth-first)
e Heuristic:

— Deterministic (e.g., hill-climbing)

1F(z) = F(z1,22) = o3 Tio1 cos(2mzi) +20e” 02V 3 5o 2F —e—20, where —3 < 21,22 <
3.

17

EAs are:

e Genetic algorithms.
e Evolutionary programming.
e Evolution strategies.

e Genetic programming.

In short, EAs is a class of algorithms designed for searching in very big search-
spaces. Although simplistic from a biologist’s viewpoint, these algorithms
are sufficiently complex to provide robust (good performance across a variety
of problem types) and powerful adaptive search mechanisms. Basically, two
steps are common to most types of EA:

1. Exploitation of known solutions.

2. Exploration of new solutions.

In the first step, the best solutions of a small set of known solutions are
selected in a process inspired by natural selection, i.e. “survival-of-the-
fittest”. These selected solutions are exploited by construction of new so-
lutions through recombination. Intuitively, this step might be thought of
as a sense of small steps towards better solutions is exercised. This step is
generally a tradeoff between random variation and structured variation. In
the second step, new solutions are explored by creating new solutions from
variations of the known solutions. Intuitively, this step aims to perform long

Evaluation
of
individuals

Selection by
survival-of-the
fittest principle

Reproduction
by mutation and
crossover

Figure 3.2: The loop of evolution.

the leftmost circle. This population is our current population, and moving to
the topmost circle we evaluate each individual in our population with respect
to some predefined fitness function. After doing so, we are able to perform
selection according to the principle of “survival-of-the-fittest”. Selection can
be implemented in numerous ways, and we mention only the most commonly
used:

Roulette Wheel Selection (RWS): Each individual is assigned a probability of
being selected proportional to its actual fitness. Formally the proba-

bility P; of individual 7 being selected is:

P==—, (3.1)

ranaom witl tie probablilty that a less IIt 1ndlvidual Delng pulled.
With a tournament-size of two we get the probability P; of individual

1 being selected:
2 N - R;
P=—11- , .
v (- F=1) 53

where R; is the ranked fitness of individual 4 and N is the size of the
population.

TBS compared to RBS allows superindividuals a higher level of dominance,
but still not to the extend of RWS. As an example, a superindividual in a
population of size 10 has the probability of approximately 18% using RBS and
20% using TBS. Furthermore, the least fit individual can never be selected
using TBS.

The last step of the evolution, is the process of generating the next population
from the set of individuals selected for reproduction, and the bottom circle in
figure 3.2 contains the typical operators for doing just that, namely mutation
and crossover. From applying these genetic operators to the subset of the
population that was selected in the previous step, a new population emerges
and the loop is ready to start a new cycle. Many different types of crossover
and mutation has been investigated throughout the years, the most primitive
and probably most commonly used being the one-point crossover and one-
point mutation. These basic operators are depicted in figure 3.3 and amongst
a few other commonly used operators are described below:

2A superindividual is an individual with a fitness several degrees of magnitude higher
than the second most fit individual in the population.

11Ol €alll palclit s1ould DE I'CCOLILDIIEA L0 tWO OlLsPLIILE.

Uniform Crossover: A randomly generated mask identifies the cut-points that
should be used. This mask is typically implemented as just a randomly
generated array of bits with a length equal to the number of possible
cut-points. Based on the value in this array cut-points are either used
or not used.

Single-point Mutation: The property at a randomly selected mutation-point
of the individual is mutated to create one offspring. In doing that we
might destroy the good properties that made us select this individual
in the first place. On the other hand we might as well improve the
individual by changing some bad property to a better one. And even
more important, mutation is the only way new genes can be introduced
in the population, and thereby keeping a level of diversity®. No matter
what happened, this new individual is added to the next population.
In figure 3.3, the head of the individual is mutated to create the new
individual. The mutation activity is part of the exploration phase.

Gaussian Mutation: Instead of mutating a property totally at random, the
mutation operator chooses the new value of the property based on a
Gaussian distribution around the current value.

Many other methods for crossover and mutation exists, we have just men-
tioned a few.

So, the population of individuals in the next generation is first of all com-
posed of offspring produced by the genetic operators, thereby replacing indi-

3In sections 3.2.2 and 3.2.3 we discuss the existence of diversity in a population.

pe: |UULI1U)100)11]|—[00111]11U0L0}. Mutation would be just to Hip some
randomly chosen bit, i.e.:|01111]—[01110|

In this section we have only included the most common and basic methods
for crossover and mutation. These are good for the purpose of explanation,
and others are typically modifications of or extensions to these basic ideas.

3.2.2 ENSURING CONVERGENCE

We stated earlier in this section that GAs perform a search in some large
search space. Therefore it is reasonable to ask the question: can we be sure
to find what we are looking for? %. The answer is: No, not if the search
space is too large to search by brute force. But we can ensure that if we visit
the best individual in the search space (the global optimum), then we will
keep that individual. This is ensured by adding the concept of elitism to the
loop in figure 3.2, which means that the best individual of a generation is
copied (without modification) to the next generation.

Apart from the insurance of keeping the globally best individual if visited,
keeping the best individual has an immediate advantage if the fitness function
is simple and with few optima. If only a few optima exist, then why not try
to climb one as soon as on is found?

A side-effect of adding elitism is that the algorithm in general will converge
faster to some optimum, and you run the risk that this optimum is not the
global optimum but some local optimum. This situation is often referred to
as premature convergence. Figure 3.4 shows a population, and their location
in a fitness space. This population is in danger of converging prematurely at

“We are looking for the best individual in search space, remember?

Dy adding elitism. You mignt even consider to copy the two or three best
individuals to the next generation, to further speed things up.

It is possible to investigate the convergence properties of GA with a more
formal approach than the one taken in this thesis. It has previously been
done, famous examples are Building Block Hypothesis by Goldberg (1989)
or the seminal Schema Theorem by Holland (1992). Schemata are genotype
templates that define a subset of the search space. A schema is encoded
in the same language used for encoding solutions with the addition of a
special don’t care symbol #. So, if we encode solutions using fixed length
bit strings, an example of a schema could be [00#1#|, and this schema is
sampled by the individuals [00010],[00011],[00110] and [00111]. The order of
a schema is the number of fixed positions (non-# symbols) and the defining
length of a schema is the distance in positions between the first and the last
fixed position of the schema. For instance the schema |[0###1#| has order
2 and defining length 4. The Schema Theorem states that short low order
schemata which is sampled by fit individuals will rapidly spread throughout
the population. The Building Block Hypothesis states that late generation
individuals samples many such short low order schemata, and hence are
composed from many small and good building blocks.

3.2.3 MAINTAINING DIVERSITY

We need to explore new areas of the search space and not exploit a known
optima for too long, in order not to get trapped in a local optimum. As a side
effect the search is slowed down, that is, convergence will be delayed. This is
very important for complex domains in which fitness functions have multiple
local optima, as the risk of converging prematurely is generally higher for a

In equation (o.4), L/0p 1s the population. 1ne snaring unction maps a
distance measure d(7, j) to a sharing factor in the interval [0..1]. As a rule of
thumb, the maximum sharing factor should occur between two individuals
if they have the minimum possible distance to each other, e.g. identical
individuals 4 and j should have s(i,7) = 1. For a population of size N, a
total of W distances must be computed to totally order the population,
and hence this calculation can not be allowed to be very expensive.

The aim of this technique is to avoid the situation where all individuals in the
population occupies the same peak in the fitness landscape. By investigating
equation (3.4) it is obvious that the greater the peak, the more individuals
can be allowed to inhabit it.

CROWDING

This commonly used non-niching technique is one of the earliest of its kind,
first proposed by De Jong (1975). Using this technique, generations are not
clearly bounded but rather a steady state model is used, in which generations
overlap. A proportion of the population (referred to as the generation gap
G) is chosen to reproduce, and the new offspring replaces existing individuals
according to some scheme. A common scheme is to extract a sample set of
size CF (crowding factor) from the population. An offspring then replaces the
member from the sample set that is most similar to the offspring. The effect
of this approach is intuitively that, as offspring replace individuals according
to similarity, subpopulations or spices could be expected to emerge. The
number of spices that we would expect to emerge is of course controlled by
CF, De Jong (1975) had success with CF values of 2 and 3 leaving room for
a few spices to evolve.

ik Rttt A R

THE ISLAND PRINCIPLE

The island principle is actually not just one method, but rather a collection
of methods where subpopulation explicitly (sometimes even physically) are
evolved in parallel. Most of the methods has been developed mainly for
distributing the GA, but the methods also holds the inviting property of
introducing an extended level of diversity ® into the population. The meth-
ods (like everything else in GA) is inspired by natural evolution in which
you do not see one global population evolving as a unity. Instead numerous
subpopulations evolve in parallel ¢ and, from time to time, individuals mi-
grate from one population to another, thereby spreading its inherited genes
to new areas. In GA we therefore can do similarly. The initial population
is split up into X subpopulations, and the loop of evolution (see figure 3.2)
is started on each subpopulation. From time to time some migration should
take place, according to some topology. Fernandez et al. (2001) suggest the
two commonly used topologies depicted in figure 3.5. Figure 3.5a shows a
ring topology, in which individuals migrate only in one direction contrary
to the mesh topology, in which individuals have a choice of four directions
when migrating.

The migration could either proceed in some random order allowing popu-
lations to grow and shrink. But we are not interested in ending up with

E.g. see Fernandez et al. (2001).

5These parallel evolving subpopulations are (in nature) often based upon different
fitness functions. That is, a strategy might be successful on the south pole, but may fail
in Africa.

HISTatlOls Pel 5llelatloll, you woull OvVeLl LIILC apploOxllllailc all ©VCeLlL Uls=
tribution of the number of individuals on each island. Another approach
is to have a fixed deterministic migration schema, and thereby keeping the
population sizes static. Using the ring topology, it would be obvious to just
let one individual migrate each generation.

If you implement elitism and are afraid that the evolution will suffer from
premature convergence, then a possible approach could be to let PM be
proportional to the fitness of the individual. This ensures that the best
individual will migrate more often than other individuals and hence, not be
able to dominate one specific subpopulation. It is of course true, that such
a superindividual then just as well could dominate the total population by
moving around spreading its genes in every subpopulation on its way. But
it will take appreciable more generations for it to do so, as it never stays for
more than a few generations in the same subpopulation. And it is likely to
encounter a subpopulation in which some individual is more fit, and hence
will no longer be subject to elitism.

The evolution that we expect by applying the island principle, could be de-
scribe by the snapshot of a population of five subpopulations shown in figure
3.6. In figure 3.6 we see that there are typically more than one subpopulation
present at a specific peak. This is what will happen if the best individual
of a subpopulation is forced to migrate. As a subpopulation converges to
a local optimum it is generally guided by the best individual in the popu-
lation, as this is the individual that will be selected for reproduction most
often. But as the best individual is replaced by migration every once in a
while, the whole population will generally shift direction, and ideally search
all local optima on its way. Here is a scenario, based on figure 3.6: The
islands are connected according to the ring topology, and the order is black,

@ St Gl el A St ittt @ S @ St

population approach, and an island approach. As the name suggests, it was
mainly developed for distributing GAs, but it is nonetheless interesting when
investigating diversity and convergence properties in populations.

As in the basic island approach, several small populations are maintained,
but the individuals are organized in a mesh structure as depicted in figure 3.7.
In the approach described by Shumeet (1992), each subpopulation contains

i > PR\ ! P ‘n‘c P ‘.‘
:) I)
N\ NN PN -} o/

Figure 3.7: Organization of subpopulations in the MDPGA. The neighborhood of
sub-population a and c¢ are shown as dotted circles. Subpopulation b is a common
neighbor to both a and c.

10 individuals. After the initial populations have been randomly generated,
the algorithm proceeds in each generation as follows:

which efficiently slows down evolution, as genes are only spread in a few
directions at a time. This allows for a high level of diversity.

The most improvement is of course obtained when implemented on large
cluster machines as the topology of the subpopulations is inviting to these
architectures. With the heavy communication taking place in the MDPGA,
it is directly designed for lucrative implementations for MIMD 7 machines,
which is also emphasized by Shumeet (1992). The island principle with
a lower rate of migration is more suited for an heterogeneous distributed
system with lower bandwidth.

3.2.4 THE FITNESS FUNCTION

The activity of designing the fitness function should of course be given pro-
found attention, as this parameter will guide the evolution more than any-
thing else. In this section we will present a number of co-evolutionary ap-
proaches. Most of the references given exemplifies these approaches in the
domain of GP, but they are not specific to GP and could be used in GA as
well.

The optimal solution to the task you are optimizing is not known, and in
addition it might not be possible to guarantee that it will score maximum
fitness. That is, if you try to evolve a strategy for a certain game, the fitness
function that assesses a given individual against all valid strategies would
intuitively be able to evolve good strategies. However, apart from very simple
games, it is typically not possible to construct all possible strategies for this
fitness function, and hence we need another approach. Koza (1992) presents

"Multible Instruction Multible Data.

rest of the population, that 1s, an absolute nitness. As argued 1n Angeline and
Pollack (1994), this traditional fitness measure is not likely to perform well
for very complex tasks. Instead a competitive approach in which individuals
are evaluated relative to the rest of the population is suggested. Angeline
and Pollack (1994) investigate three different competitive fitness functions,
two of which were previously used by Axelrod (1987) and Hillis (1992). The
principle of these two methods can be seen in figure 3.8(a) and 3.8(b).

ALL-AGAINST-ALL TOURNAMENT FITNESS

Axelrod (1987) used the all-against-all approach (see figure 3.8(a)) to evolve
strategies for the iterated Prisoners Dilemma. Using this method, the fitness
of an individual is based upon that individuals’ performance against all other
individuals in the entire population. With this strategy and a population
size of N we need:

ZN—i:M, (3.5)

competitions in order to determine fitness of all individuals in the population.
The obvious drawback of this approach is the extensive computation due to
the high amount of competitions. The advantage is that a total ordering of
all individuals relative to the population is obtained.

4 Lviulil LuUlivULvu. 4 1100u

viocuii, Ll o Uiubuiiils YAy il o

‘yUU vilcvu uilL LiiVvouv o 1i1v

individual is found. The looser in the final round is ordered second place, but
the globally second best individual might by chance have been paired with
the globally best individual in the first round, and therefore ordered equally
with the least fit individuals. This is the main disadvantage of tournament

fitness.

Co-EvoLUTION FITNESS

Figure 3.9: A co-
evolutionary environ-
ment constituted by
two parallel popula-
tions, as used by Hillis

(1992).

A third approach that avoids the use of traditional
fitness measures is co-evolution. Koza (1991) presents
the concept of co-evolution in EA as a process in
which the environment of one population is consti-
tuted by one or more population(s), evolving in par-
allel. The environment of the parallel population(s)
is of course constituted by all other parallel popula-
tions. Individuals from the first generations will in
general be highly unfit when compared to an absolute
optimal solution, and fitness-values assigned relative
to the current environment are used.

Hillis (1992) used the co-evolution strategy (see fig-
ure 3.9), in which individuals are assessed against an
individual from a parallel population. This is best
explained with the example below.

Assume that our individuals are evolved to classify
textstrings, then we create two populations namely

a population of classifiers and a population of text-strings. Now, these two

At B et 2t et R

formulation of a solution than GA.

The field of GP is relatively new, and the presentation given in this section
is based upon the work by Koza (1992), as it contains one of the most
comprehensive introductions to GP.

One of the most important considerations is the definition of the language
from which our individuals will be built. The language is union of the sets
T (the set of all terminals) and F (the set of all functions). To create an
individual elements from the two sets are combined to construct a parse tree.
The leafs of such a parse tree are of course elements of 7, while the inner
nodes are elements of F. In the following sections we will describe how to
apply genetic operators to individuals represented as parse trees, discuss how
to construct 7 and F and last discuss the fitness function.

3.3.1 GENETIC OPERATORS AND PARSE TREES

The parse tree representation is often chosen throughout the literature, and
it has numerous advantages over e.g. higher-level source code or low-level
binary machine code. The problem you face with both alternatives to parse
trees is the same: it is hard efficiently to ensure that only syntactically correct
programs are constructed by crossover and mutation. Even when applying
these operators to parse trees results in syntactically correct trees, we still
have to check that all data types are correct for the different functions in
our tree, unless we require 7 and F to satisfy the closure property, stated
by Koza (1992).

Property 3.3.1 (The Closure Property) The closure property requires

+ +
e e mutation

Figure 8.10: Crossover and mutation applied to parse trees.

exist. Below we have described some of these:

Subtree-swapping Crossover: After two individuals have been selected for re-
production, a random cut-point being a node in the tree is chosen,
independently for them both. In contrary to GAs, this cut-point need
not be common to the parents, as GP individuals generally differ in
both shape and size. When cut-points have been chosen, the two sub-
trees with root at the cut-points are exchanged, producing the two
offspring.

Context preserving Crossover: The chosen cut-point must be common to the
parents. That is, the path from the root to the cut-point must be the
same for both parents. Apart from this constraint on the chosen cut-
point, this operator swaps subtrees like the above mentioned method.

Subtree Mutation: A random cut-point is chosen, and the subtree with root
at the cut-point is exchanged with a randomly generated subtree. In
figure 3.10 the randomly generated subtree is a tree consisting of only
the terminal node with value 1.

Point Mutation: A single node (function or terminal) is chosen for mutation.
Ounly the node is mutated, that is, any subtree(s) below this node

4 a4l =1 1TopPCLLIVELY.

Redefinition of comparative operators: Instead of returning a boolean value,
the comparative operators accept two additional arguments, and exe-
cute one of them based on the result of the comparison. That is, the
equals operator should accept four arguments, so we have:

equals(argl,arg2,true-branch,false-branch) instead of
equals(argl,arg2).

And the semantic would of course be to execute true-branch if argl
is equal to arg2, and execute false-branch otherwise.

Redefinition of branching operators: The common branching operators could
be redefined to check on some condition external to the program, typi-
cally some sensory information. In this way no general branching con-
structs should be included in F, but only specialized branching func-
tions. For instance the sensory information enemy-in-reach should
not be accessed directly like:

if (enemy-in-reach, then-branch, else-branch)
rather it should be encapsulated in a function like:
if-enemy-in-reach(then-branch, else-branch)

that accepts two arguments then-branch and else-branch. Based on
the value of the external sensor variable enemy-in-reach the function
executes either then-branch or else-branch.

It should be noted that Montana (1993) proposes a method for Strongly
Typed Genetic Programming (STGP) in which the closure property is totally

ks ~

One way to check if the sufficiency property is satisfied, is to try to construct
a known solution to the problem with the F and 7. If this is possible, then
you know that one solution is possible. And if you did not design F and
T towards expressing this specific solution, then chances are that it is also
possible to express other solutions.

e To build a bot by means of evolutionary methods, and more specifically
the GP paradigm. That is, a system that allows our bots to evolve
through generations must be implemented.

e The system should be designed in a fashion that makes the evolution-
ary process, to some extent, immune to many of the known problems
connected with the application of evolutionary methods.

e The bot should be benchmarked against the UT bot that comes with
the environment, e.g. the UT bot or some similar bot. Also, it should
be evaluated by human experienced players. The buildin bot provides
a good benchmark test, as it has at least as much information at its
service as does our bot. Also, it has to work under the same conditions
as our bot. That is, parameters like maximum speed of movement and
aiming noise will be the same, which is not always true for a human
player.

In the reminder of this chapter, we will summarize our attempt to reach
these goals.

4.2 LANGUAGE DESIGN

This section describes the language developed for describing strategies, and
it is composed by the two sets F and T - the set of functions and terminals,
respectively. The language is designed without general purpose in mind,
rather it is designed for the specific domain of Gamebots as described in
chapter 2.

Q=

(armor).

These terminals assume the values of health, ammo for the current weapon
(mapped to the range [0..200]) and armor of the bot in the game. Health
and armor are already in the range [0..200] and need not be mapped.

We want the bot to be able to evolve its own perception of what conditions
are good and what conditions are bad !, therefore we include the general
branching structure:

(if-less-than argl arg2 arg3 arg4).

The semantics of this function is, of course, that based on the boolean value
of the comparison (<) of argl and arg2, either the value of arg3 or arg4 is
assumed. We could also include functions like (if-greater-than argl arg?2
arg3 arg4) and (if-equals argl arg2 arg3 arg4), but this would not add
to the expressiveness of the language and is therefore not included.

We add the possibility to represent constant integer values from the range
[0..200]. This is done by adding the terminal:

(const x)

where x is replaced by an integer value from the range [0..200]. The following
branching functions are included:

(if-health-in-reach argl arg2)

What value of health is considered low, what value is considered high, etc.

Al d N e A

(shoot).

The (face-enemy) automatically rotates the bot to face the enemy if the
enemy is in sight, and otherwise does nothing. The function assumes the
value 200 if the enemy was in sight, and 0 otherwise. The (shoot) terminal
commands the bot to fire a shot with the current weapon and the terminal
assumes the constant value 0.

The following terminal assumes a value equivalent to an estimate of the
current damage taken by the enemy. It has max-value 200 and minimum
0, and it decreases over time to 0, as it is reasonable to assume the enemy
picking up health packets over time. We include the terminal:

(enemy-damage).
In order to compare weapons, the following terminals are included:

(my-weapon)

(enemy-weapon).

These terminals assume values ranging from 0 to 200, according to the
weapon currently used by either the bot or the enemy. This enables strategies
to compare weapons, and take different actions accordingly.

(if-enemy-move-left argl arg2)

(if-enemy-move-right argl arg?2)

Ul L1l UllUllly. lllby all cACLUULC allu asoulllc uvliltc valuc UL al’gl 11 L11T Ullt:llly
is in sight and has the respective direction of movement. Otherwise they
execute and assume the value of arg2. The distinction between different
relative enemy movements are depicted in figure 4.1.

The specific movement of the enemy might not always be of interest if you
are too far from your enemy. Therefore we add the terminal:

(enemy-distance).

This terminal will at any time assume an integer value in the range of [0..200]
corresponding to the distance to the enemy, or 0 if the enemy is not within
sight.

4.2.3 HIGHER LEVEL SKILLS

As mentioned previously in section 2.1.5, it is common to combine different
actions in a series of parallel actions, like (strafe-left) and (face-enemy)
resulting in a circular movement with the enemy as center. This combination
of movements is common to all players of UT, novice as well as master.
It therefore seems reasonable for us to include specific terminals and one
function for this movement:

(circle-strafe-left)
(circle-strafe-right)

(strafe-relative argl arg2).

Y = Yenemy + (sin(0) * u — cos(0) * v) (4.2)
where (Zenemy, Yenemy) 1s the location of the enemy, u is the value assumed
by argl, v is the value assumed by arg2 and 6 is the yaw 2 orientation of
the enemy. That is, the point (u,v) is transformed from a local coordinate-
system inserted on top of the enemy (the enemy located at (100,100)), to the
global coordinatesystem. This is depicted in figure 4.2(a) and figure 4.2(b).

As the last element, we add a function that enables strategies to put more
functions and terminals in sequence:

(prog-2 argl arg2).

This function evaluates first argl, then arg2 and finally assumes the value
of arg2.

4.3 DESIGNING THE ALGORITHM

The common GA/GP cycle was described in section 3.2.1 in figure 3.2. In
this section it will be extended, with the steps we find feasible for the devel-
opment of successful genetically programmed bots. The specific operators
and methods chosen, will be described including minimal justification. As
with every topic covered in this chapter, extensive justification, argumen-
tation and discussion of the decisions made is found in Holm and Nielsen
(2002). The different steps of the extended GA/GP cycle in figure 4.3 are
briefly described in the following enumerated list:

’In terms of Yaw, Pitch and Roll systems, the Yaw component describes the rotation
about the Z-axis.

Figure 4.3: The extended loop of evolution.

. The initial population is generated by either the custom tree generator
or the random tree generator. The tree generators are described in
section 4.3.1. There are no limit to the size of the initial population,
since it is going to be reduced by the assessment step 2.

. The assessment function is implemented to ensure a certain level of
quality in the run of the first generation in the extended GA/GP cycle.
The assessment function will remove individuals which can not satisfy
a basic set of constraints, these are described in section 4.3.2. The as-
sessment function assesses individuals much faster than the evaluation
function.

. The population used in the extended GA/GP cycle consists of 224 in-
dividuals evenly divided into 7 subpopulations. This yields a subpop-
ulation size of 32. Every subpopulation will then run its own GA/GP
cycle. This could be done in parallel if implemented on a multiproces-
sor system.

. Every subpopulation is hereafter evaluated by the competitive evalua-
tion function described in section 4.3.2.

strongly typed Genetic Programming (STGP) is a way to limit the space of
possible trees. We have applied a slightly different method for a custom tree
generation and it is described in section 4.3.1.

Another important factor in this step is the size of the population, and
we have chosen it to be 224 divided into 7 subpopulations or islands of 32
individuals each.

TREE GENERATORS

To generate an initial population, and to create the subtrees used in the mu-
tation operator, we need an algorithm for tree generation. For this purpose
we have adopted the traditional tree generation algorithm, GROW in Koza
(1992), which is described and motivated in the following section. GROW
has shown serious weaknesses in more simple experiments. As a consequence
we have designed a custom tree generation algorithm based upon the theory
on STGP, as described by Yu (2001).

The Random Tree Generator The common tree generation algorithm,
GROW, is used to generate trees for the initial population and the subtrees
used by the mutation operator. The algorithm uses a set, S, of functions and
terminals to place as nodes in the tree. It chooses all the nodes randomly
from S, until the chosen maximum depth is reached. The algorithm works in
a recursive manner by selecting a root and then call itself to find descendents
to the currently selected node until a terminal is selected or the maximum
depth is reached. The algorithm is shown in table 4.1.

30f course mutation can reintroduce functions and terminals in the population.

Table 4.1: The most common tree generation algorithm, GROW

The obvious advantage of GROW is that it is easy to implement and runs
in linear time. Still some disadvantages remains, and as mentioned by Luke
(2000), GROW has the three main weaknesses:

e [t selects between all the possible functions and terminals with equal
probability, which in some cases can be undesirable.

e [t does not allow any control over the tree structures, except for the
size.

e It does not create trees with a fixed or average tree size or depth (this
weakness is mentioned as the most significant).

The Custom Tree Generator By introducing the custom tree generator
we will also introduce an abstraction of typed GP. Yu (2001) states that there
are two causes to prefer STGP:

e STGP removes the closure requirement and thereby increases the ap-
plicability of GP.

e STGP helps GP searching for problem solutions using type informa-
tion.

vosL.

With the chosen function and terminal set we describe and motivate in sec-
tion 4.2, we need not remove the closure requirement - this eliminates the
first motive for STGP. But it might be possible to reduce the tree search
space. When examining the function and terminal set, we find it sensible
to reduce the set of possible arguments for certain functions. Koza (1992)
made the first attempt to introduce types to GP with what he described
as constrained syntactic structures. That is, the trees constituting the indi-
viduals in the population must obey some special problem specific rules of
construction. When adopting this system of constrained syntactic structures
he mentioned some issues which should be considered:

e The initial population must inherit the defined constrained syntactic
structure.

e Genetic operators, such as mutation and crossover, that alter and cre-
ate individuals, must produce trees that also preserve the constrained
syntactic structure.

In our problem, a constrained syntactic structure is just another way to per-
ceive STGP. A convenient way to describe the constrained syntactic struc-
ture is through a Context Free Grammar (CFG). We have designed such a
grammar and the alphabet of the grammar, representing the functions and
terminals of our language, is described in table 9.1.

consists of all the functions tfrom our function and terminal set.

The "if" set
It = {D..N}

consists of all the functions being if constructions except if-less-than
which differ in that it uses two of its arguments for evaluation.

The "action" set

Aget — {hq}

consists of all terminals which causes some kind of bot action when executed.

The "sensor" set

sset. = {a..g} U {r}

consists of all terminals representing game information and the constant
terminal.

The complete CFG is observable in table 4.3.

4.3.2 FITNESS FUNCTIONS

We designed two functions; the assessment function and the evaluation func-
tion. They will be described in the following two sections.

1. We are dealing with a complex problem and for such a problem it can
be difficult for the population to evolve if no precautions have been
taken.

2. Due to the dynamic nature of the domain it would be preferable that
the evolved bots are not specialized to certain situations and can be
efficient and effective against various types of opponents.

3. The aim, i.e. to evolve a bot for combat situations, should be kept
in mind. That is, the environment should mirror a typical combat
scenario as much as possible.

4. We want relative fast evaluation times, since we can expect to run
a considerable number of generations before a satisfying solution is
reached (if ever). When taking the population size of 224 individuals
into account, it should be obvious that every second saved for evalua-
tion of an individual will be important.

These issues address considerations which should be done and problems
which are to be dealt with.

We will use a competitive fitness function, since this type of function deals
with several of the issues mentioned. Firstly, this type of function deals with
the complexity of the problem and the typical aftermath of building fitness

functions to these kind of problems .

“For further reading see Luke (1998) or Nolfi and Floreano (2000).

reauce L0tal €valuauloll LIHIC.

When dealing with these issues, another element to consider is the choice of
environment in which the bots are going to compete. It would be preferable
to use a dynamic environment which should reflect the distinctive surround-
ings of typical combat scenarios. One way of doing this (and maybe the
best), would be to switch maps once in a while, when running the algorithm.
This would avoid specialization of the bots for certain maps and instead
evolve bots with more general strategies. Due to the time constraints of this
project and since it has proven difficult to implement this feature, we have
been forced to look at alternatives to this approach. In figure 4.4 a sketch
of the map we have used is depicted. The scale and dimensions of the map
depicted in figure 4.4 and the real map is not kept, but the general nature of
the real map is kept. The map is circular and without any corridors or stair-
cases, so minimal path finding and navigation is required. All four different
classes of items described in section 2.1.3 are present, that is: weapons, first
aid kits, ammunition and armor. The spawning points are located on a circle
around the center of the map, and bots are spawned with orientation towards
the center, as shown in figure 4.4.

To determine a fitness of each individual, all we need, when using the cup
tournament based competitive fitness function, is a way to determine a win-
ner when a pair of bots are competing. For doing this, it seems obvious to
choose the bot with the highest number of frags as the winner, hence this
will be the primary decision factor. If the score in frags should be even, the
amount of damage given is compared and should the match still be a draw,
the individual with the least suicides wins. As a last resort, the winner is
found by coin toss. The way of determining the fitness of individuals could
raise the following question: does this method not just seem too simple for

vaLisiL AU AARAL ALV AL AT

After the evolution was started, we performed a test to confirm or affirm our
suspicion of the fitness noise. A randomly chosen best individual from one
of the late generations was set to compete against a clone of itself, in 100
games where every game lasted 60 seconds. Figure 4.5 depict the frequency
with which results of the matches was observed, yielding a histogram. As
can be seen in figure 4.5 the noise of the competitions is obvious, though the
results is far from random as the density is clearly higher, near to zero.

4.4 GENETIC OPERATORS

The genetic operators adopted or designed for our problem will be described
in the following sections.

4.4.1 SELECTION

As explained in chapter 3, the choice of selection operator will influence
the selection pressure in the population. We have already argued that we
want to keep a relative low selection pressure. We have therefore chosen
the tournament selection operator which is suited for this and can easily be
adjusted by altering the tournament size, which we have chosen to be as low
as possible; namely two.

4.4.2 REPRODUCTION

The reproduction operator implements the concept of elitism, can regulate
the rate at which the population converges. Furthermore it ensures that the
best strategies survives and can be further evolved. A high reproduction
setting will eliminate current weaker strategies at a faster rate, that is, a
high reproduction setting will speed up local search but it can also have the
drawback of eliminating potential strong but immature individuals. This
property is one of our reasons behind the introduction of the islands prin-
ciple and migration in our extended GA/GP cycle, since this allows us to
maintain a high reproduction setting to refine local strategies while avoiding
domination of the total population by decelerating the migration rate.

4.4.3 CROSSOVER

The crossover operator is implemented as described by Koza (1992). The
constrained syntactic structure is not enforced in the crossover operation
due to time constraints and the reason that we want to let evolution decide
what is good and what is bad, when the initial generation has been generated.
When two individuals have been selected, a random cross point is chosen and
a subtree swapping is performed as described in section 3.3.1, producing two
offsprings.

4.4.4 MUTATION

The mutation operator can take the custom tree generator in use when gen-
erating a subtree. The operator chooses a random cut point and inserts the

4.5 TESTS

Three different runs were performed with different parameters, listed in ta-
ble 4.4. The different parameters were chosen with comparison of results in
mind. The most important task though, was the investigation of the evo-
lutionary process itself and how the bots evolved. As the project served as
preliminary studies preceding this thesis, it was more important to identify
problems and opportunities in the applied domain, than to analyze all of the
data collected through the test runs. It was also necessary to postpone a
thorough examination of the collected data, since the amount of data was
simply to extensive. In the end the evolved bots were compared to the UT
bots and tested against a human opponent.

4.5.1 PARAMETERS OF THE EVOLUTION

In table 4.4, Assessment pool is the amount of custom generated individuals
from which our initial population is created. Initial population is the size
of the initial population, and Islands is the number of islands used. Peyoss,
Pyt and Ry, are the probability of crossover, the probability of mutation
and the migration rate 5, respectively. Reyze is the amount of individuals
that are transferred to the next generation unchanged. Initial time is the
time that one match in the cup tournament based fitness function & will last

®For instance, % means that the fittest individual migrates from an island every second
generation.
SRefer to section 3.2.4, for a description of the cup-based fitness function.

sLLAVIAVLAASLL. MR O T MRV AV VS ARSI A AR S ARV YT Y YRS

during mutation.

HALTING CONDITIONS

Neither of the three runs have had explicitly stated halting conditions, we
have just evolved for as long as possible. Still no more than 100 generations
seemed reasonably, since we spend about 2 hours evolving one full population
of size 224. In effect that meant a few weeks of evolution on two standard
PCs (700 Mhz and 1333 Mhz). As the problem domain (the game of UT)
is running in realtime, an increase in cpu-cycles would have no effect on the
evaluation time.

4.5.2 PERFORMANCE TESTS

To derive information about the abilities of the evolved bots, we have per-
formed two kind of experimental tests. Firstly, we have tested some of the
evolved bots against the UT bot. Secondly, we carried out a test between a
human and an evolved bot. A description of the tests and a debriefing about
the results will conclude this chapter.

UNREAL TOURNAMENT BoT vs. EVOLVED BoOTS

The UT bot are widely known and esteemed in the gaming community for
their strength of play, especially when they are compared to other bots in
similar games 7. For this reason we thought it would be interesting to see

"Quake, Half-Life, etc.

Frag difference
b
5

Generation

Figure 4.6: The difference between the UT bot and the different generations of the
3rd island 1st run. Notice that the evolved bots gradually improve the performance
against the UT bot.

The UT bot has played bots from the 6th island of the 1st run, chosen with
5 generations interval from the 10th generation to the 50th generation. The
fights were terminated when one of the contestants reached a frag limit,
which was set to 50. The UT bot gets defeated the first time against the
15th generation bot. The last five evolved bots are all victorious and the
50th generation bot is distinctly superior to the UT bot.

evolved bot. In this test the best bot from the 32nd generation of island
3 in the 3rd run was pitted against an UT bot and a human. In addition
the human played the UT bot. At last the human played a bot from the
82nd generation of island 3. Again, the match was ended when one of the
contestants reached 50 frags. The result of the test can be found in table
4.6.

Firstly it can be seen that the evolved bot from the 32nd generation was
superior to the UT bot. The human was even more superior to the UT bot,
which was to be expected because of humans adaptive capabilities. It was
also clear when observing the actual match that, as the match progressed,
the human adapted more and more and was much better in the last half of
the match. The match between the evolved bot and the human was more
equal. In the start of the game the evolved bot was dominant and the
human showed greater difficulties in adapting to this bot. As an observer
it was hard to see if this was because the evolved bot used a more general
difficult strategy to deal with for humans or it was because the strategy
in general was evolved to be more resilient to a broad range of opposing
strategies. To look further into this matter the human was pitted against
the bot from the 82nd generation. In this match the human faced even
greater difficulties and lost it. It would require a more exhaustive test to
make definite conclusions about the general causes of the test results, since
humans introduce a lot of difficulties when evaluating due to inconstant
performance and the ability to adapt. Nevertheless we can conclude that
the evolved bots tend to show resiliency against different strategies applied
by a human and they are superior to the UT bot.

B e D

and to some extend these such extensions are inherently isolated from
the GP system. The only direct connection between agent architecture
and the GP system is the language for describing strategies.

e e

System specific: Extensions that affect the GP system. For example, extend-
ing the genetic operators used during reproduction with more features,
or extending the population type to include a generation gap parame-
ter and thereby using a steady state model. These extensions are not
tightly connected to the agent architecture.

In Holm and Nielsen (2002) we proposed extensions of both classes as pos-
sible future work. In this project, however, we have chosen to concentrate
on system specific extensions. More specifically, we will evaluate different
extensions that might improve the search process.

In the following sections, we will perform an analysis of the result and ex-
periences gained in Holm and Nielsen (2002) that will conclude in a more
specific definition of the project goals.

5.2 ANALYSIS OF PREVIOUS RESULTS

We concluded chapter 4 with a presentation of some performance tests on
the bots previously evolved. These tests were not of exhaustive quantita-
tive nature, but more meant as a random test to measure the quality of the
evolved solutions. The results of these tests left us with the impression that
the most efficient strategies evolved were relatively simple strategies and not
very complex. That is, when playing against the evolved bots or viewing the

=2

used. It should not come as a big surprise that simple strategies can be highly
efficient. The arena is circular with no obstacles, so a circular movement is
natural. A circular movement is easy to produce by on of the three constructs
relative-movement, circle-strafe-left or circle-strafe-right. All
these functions moves the bot in a circular motion relative to the enemy if
he/she is in sight. However, this is always the case initially, and as there is no
where for your enemy to hide, you can easily track him /her down with a good
circular search path. So, combining any of these functions with a few shoot
constructs you have a pretty good strategy. The reason relative-movement
gains dominance unlike any of the circle-strafe functions must be that
with relative-movement it is possible to move the bot out of the field of vi-
sion of the enemy, whereas the circle-strafe functions uses no knowledge
of the current orientation of the enemy. So in effect, the relative-movement
construct has good defensive properties in addition to the obvious offensive
properties of dynamic movement.

The dominance of relative-movement and shoot is less noticeable in the

2nd and 3rd run (figures 5.2(a-b) and 5.3(a-b)), but still recognizable. In
these two runs, the shoot construct is accompanied by the const construct.

5.2.2 THE FLOWER OF THE TREE

So now that we have realized that the population seems to be dominated
by a few constructs in the later generations, we ask ourself if everything in
the tree should be considered flowers in bloom, or if some withered leaves
can be identified. Following this question further, we will investigate the

!Refer to appendix A for the corresponding data divided among islands.

5.2.3 THE WITHERED LEAVES

We have now identified that large parts of the parse trees are not affect-
ing the performance of the solution. We will postpone a discussion of the
macroscopic effect of this phenomenon to a following section, and first ab-
sorb ourself in an analysis of different kinds of withered leafs, often referred
to as introns.

If individual X is produced by applying the subtree-swapping crossover op-
erator to a cut-point within a large unreachable block of individual Y, then
X and Y will perform equally and hence, no good qualities of Y has been
successfully exploited. X and Y only differ within an unreachable part of
the program, so in all reachable parts of the program X and Y are identical.
This specific property is part of the definition of introns given by Nordin and
Banzhaf (1995). They define introns to be blocks of code with the following
properties:

1. The block has no effect on the performance of the program.

2. Offspring produced by applying the crossover operator inside the intron
of the parent, will display performance and behavior equivalent to its
parent.

2This observation is thoroughly described throughout the literature, Blickle and Thiele
(1994) and Nordin et al. (1995) just to mention a few.

\a) 1 Uullvuluils

Frequency of use of nodes during evolution.

0.5
0.4
) 03 WWH
[9)
=}
g W
T 02 \f/
01 -/ o e
E”BEHZ/ oY B\E‘E\E‘{
Sop S . e Bahe Ay Ke A % S e
Ol - — e A AR LR K S A% =3 Ss s
0 10 20 30 40 50
Generations
my-weapon —+— shoot —e— strafe-right —e—
health —=— enemy-distance —=—
ammo —*— enemy-damage ——
armor —&— turn-left —=— move-forward —e—
turn-right —v— move-backward —e—
strafe-left —o— const —o—

Figure 5.1:

(b) Terminals

Distribution of language constructs for the population of the 1st run.

\a) 1 Uuiltilolls

Frequency of use of nodes during evolution.

0.5

0.4

0.3

Frequency

0.2
o, e

Generations
my-weapon —+— shoot —e— strafe-right —e—
health —=— enemy-distance —=—
ammo —*— enemy-damage ——
armor —8— turn-left —=— move-forward —e—
turn-right —v— move-backward —e—
strafe-left —o— const —o—

(b) Terminals

Figure 5.2: Distribution of language constructs for the population of the 2nd run.

\a) 1 Uullvuluils

Frequency of use of nodes during evolution.

0.5

0.4

0.3

Frequency

0.2

O i R T s W S

'eeoeeed&bee

xA‘Ax‘\“\‘ A

0 s
0 10 20 30 40 50 60 70 80
Generations
my-weapon —+— shoot —e— strafe-right —e—
health —=— enemy-distance —=—
ammo —*— enemy-damage —&—
armor —&— turn-left —=— move-forward —e—
turn-right —v— move-backward —e—
strafe-left —o— const —o—

Figure 5.3:

(b) Terminals

Distribution of language constructs for the population of the 3rd run.

(e) Match 5 (f) Match 6

(g) Match 7

Figure 5.4: The fittest individual from the 4th island, 60th generation, 3rd run has
been pitted against 7 different enemies. Fxecuted nodes is colored, and all nodes
has been tagged with the proportion of executions.

(a) (b)

Figure 5.6: The fittest individual from the 6th island, 10th generation, 3rd run has
been pitted against 7 different enemies. The executed nodes is colored, figure (a)
shows the result from 6 out of the 7 matches, figure (b) shows the results of the last
test.

Average size of individuals

Istrun —+—
2nd run
70 1 3rd run_—x— X %

X X
>

Avarege Size
N
5
X
X
¥
3
X\
%

0 10 20 30 40 50
Generations

Figure 5.7: The evolution of average size for the 8 test runs.

mput.

Local Introns: An intron is local if it is an intron for the current test case,
but not necessarily for any other valid program input.

When investigating the parse trees in figures 5.4 and 5.5 further all white
nodes are introns, either global or local. In figure 5.8, the parse tree from fig-
ure 5.4(a) is reprinted, and this time the root of a global intron is magnified,
corresponding to the block of code:

(if-enemy-is-static
(true-branch)
(... false-branch ...
(if-enemy-is-static
(..global-intron..)
(... false-branch ...))))

As can be seen from this construction, the redundant use of the boolean
sensor check (if-enemy-is-static) gives raise to a global intron. Likewise
we can identify local introns, this time we inspect the parse tree from figure
5.5. In figure 5.9, the parse tree from figure 5.5(a) is reprinted, this time
with the root of a local intron magnified (by coincidence, this is also the root
of the tree). The magnification corresponds to the code:

(if-enemy-in-sight
(..local-intron..)
(if-weapon-in-reach ..))

111L1Ulls, /LU 1L all 1ULal 1HL1IULLS alt 15014l yOu Lall DT sultt ullat all 5lvbal

introns has been isolated as well.

5.2.4 CAUSES OF GROWTH OF NON-EXECUTED CODE

Many theories as to why the proportion of introns seems to grow as the
evolution progresses exist, three slightly different theories will be described
in the following.

1. Amongst others, Blickle and Thiele (1994) and Nordin et al. (1995)
describe the growth of proportion of introns as a kind of protection
against the destructive effect of crossover and mutation operators.
That is, crossover and mutation cannot alter (neither increase nor de-
crease) the performance of the program, if it is applied to an intron part
of the program. Therefore, it could be expected that the evolution to
a certain degree promotes solutions that are somewhat immune to the
destructiveness of crossover and mutation. Another way of putting it
is, that the number of introns in the population serves as an adjustment
of the parameter controlling the crossover and mutation frequencies.

2. Soule and Foster (1998) has a slightly different explanation, also orig-
inating in the destructiveness of crossover and mutation, namely the
removal bias. When offspring is produced by replacing a subtree from
a parent, the good qualities of the parent are in danger of being de-
stroyed. The larger the subtree being remove the more likely it is that
some good qualities are lost. Hence, we would expect the evolution
to bias towards those individuals that has been produced from a re-
placement procedure that removed as little as possible from the parent.

that when lowering the frequency of mutation, you narrow your search and
will not explore new solutions as often. And when lowering the frequency
of crossover, the good solutions in the populations is not as aggressively
exploited. In effect, the evolutionary search is slowed down which is also
recognized by Blickle and Thiele (1994) and De Jong et al. (2001) amongst

others.

Another argument for controlling the size of individuals is presented by Rosca
(1996), where strategies for a simple Pac-Man game are evolved. Here, the
smallest evolved programs were also the most general ones. With generality
we understand the performance of a program when presented a new set of test
cases that have not been included in the training data used in the evolution.

Gathercole and Ross (1996) describes the interaction between the crossover
operator and the absolute tree size. They argue that in populations were
trees have reached a considerable size, the discovery of good subtrees and
the distribution of these subtrees, mainly occurs in the lower levels of the
trees, that is, near the leafs. When the size of the trees grow, the probability
of selecting a crossover point near the root decreases dramatically, and hence
the upper part of the trees converge, while diversity is maintained in the lower
parts of the trees. So if a suboptimal solution gains foothold in the early
generations, this solution can be dragged on in the upper levels of the trees
fairly immune to further improvement. It is obvious that in a situation like
this, there exists an upper bound on the quality of solutions that can be
expected to evolved from the current population.

Lastly, in some systems solutions with a high proportion of introns require
more evaluation time. For instance, Brameier and Banzhaf (2001) use a
Linear Genetic Programming system to evolve a classification program to

local optima. We believe that it is essential to the quality of the evolved
solutions of a GP system applied to real time domains, to avoid convergence
for as long as possible. So, when considering the quality of the system as
a whole, it is highly dependent on the systems ability to avoid premature
convergence.

We therefor state the goals of this project to be:

1. Address the problem of bloat or code growth. Extensions to the system
for gaining better control of the size of individuals should be designed
and implemented. The effect on the quality of the evolved solutions
should be investigated.

2. Address the problem of maintaining diversity. New initiatives different
from the island principle should be designed and implemented. The
effect on the quality of the evolved solutions should be investigated.

The performance of the search should always stay in focus, and we should
not give up performance in favor of one of the two above mentioned goals.

We propose the following extensions:

1. Executed Path Guided Operators. New crossover and mutation oper-
ators that only allows cut-points/mutation-points within the executed
path are proposed. The crossover operator was previously proposed
by Blickle and Thiele (1994), and it is inspired by the cause of growth
listed as item 1 in section 5.2.4 by not allowing neutral operators. That
is, individuals can not be immune to the destructiveness of the genetic
operators by growing in size.

I et A A A At ettt St

work 1s presented. Chapter 6 describes some modifications to the sys-
tem described in chapter 4. Chapter 7 present the Size Ranking method.
Chapter 8 presents the Diversity Ranking method. Chapter 9 presents
our E-CFG method, and chapter 10 presents our EPGO method.

Secondly, we skipped the assessment step of our old algorithm, refer to sec-
tion 4.3.2 for a description of this function. In the assessment step you
basically decide where you want your search to begin, and this might be
either considered good or bad. In our case we assessed the strategies accord-
ing to some prior knowledge about the domain. In other words, we impose
an artificial distribution on the initial population. In this project however,
we want to have a system as basic as possible, and we therefore wants to
start with a random initial population. This approach seems to be standard
throughout the literature.

Thirdly, we have modified the language described in section 4.2, also as
a result of the observations made in Holm and Nielsen (2002). It is a
well known issue (e.g. see Koza (1992)), that atomic constructs with very
complex semantics 2 can cause convergence by dominating good solutions
and whole populations. And indeed we saw this effect with constructs
like relative-movement (see section 5.2.1). Therefore, this construct has
been removed from the set of functions. In general, we dislike the idea
to mix high-level and low-level constructs in the language, and by remov-
ing relative-movement we feared that constructs like circle-strafe-left
and circle-strafe-right could be just as dominant in the population as
what we experienced with relative-movement, and therefore the everlast-
ing risk of converging prematurely is strengthened. Hence, we have removed
circle-strafe-left and circle-strafe-right from the language. This

Individuals that can not be paired with another individual in the current round is
typically given a so called “walk-over”, meaning that they proceed to the next round
without competing.

2Often referred to as high-level functions and terminals.

RO

which is a perfect condition for successful use of the relative-movement
function. Also, a single shoot node is a highly effective solution if you
are facing your enemy most of the time. So in an attempt to constrain
the scope of some of the very primitive solutions, the spawning-points
are now scattered over the arena. Also, we wanted to make the map
more dynamic, and the symmetric spawning points in the old map
makes it somewhat more static, and might not reward good strategies
for finding your enemy, as he/she is usually right in front of you.

. In the old map, items were evenly distributed throughout the whole
arena, making it very easy for the bots to pick up items. In fact, the
bots would typically run into several items just by crossing the arena.
So, in an attempt to avoid this situation, and making the environment
more challenging to the bots, we enlarged the arena and dispersed the
placement of items.

iYL oYt VY B bt as APy AL AL sy vty ity AL AL A VAt A e

of individuals, it is useful to distinguish between effective size and absolute
size of a program. Nordin and Banzhaf (1995) define the effective size (Sesy)
of a program to be the size of the non-intron part, and the absolute size
(Saps) is of course the total size of the program, including all introns. In
accordance with the definitions of introns given in section 5.2, we can see the
effective part of a program as being the executed part of that program. In
the following we will illustrate the fact that the absolute size of an individual
can have a hand in the survival rate of that individual.

As described in chapter 5, neither standard crossover nor mutation can (by
definition) change the raw fitness of a program when applied within a global
intron block. On the other hand, crossover or mutation within any non-intron
block of code will almost certainly change the performance or behavior of
that program at the risk of decreasing raw fitness.

It is possible to estimate the evolution of size by calculating the expected
number of copies of a given effective part of a program in future generations.
In generations later than the initial, this estimate is composed of two parts.
Firstly, code blocks can survive across generations through selection and
genetic operations. Secondly, entirely new instances of equivalent blocks can
emerge from genetic operations. We will focus on the survival of existing
blocks and for now we will disregard new instances of code blocks emerging
from recombination and mutation.

We have a probability of crossover and mutation at the individual level of
pe and pp, respectively. Serp(i) and Sgps(7) describes the effective size and
absolute size of individual . We can formulate an upper bound of the prob-
ability of potential destruction of the effective code block of individual i,

71

least a low value Ior -=-. AIONgSt OLNErs, these lacts were recogized by
abs
Nordin and Banzhaf (1995) and Rosca (1996).

7.2 PREVIOUS EFFORTS

A lot of different approaches to gain more control over the size and complex-
ity of the evolved solutions have been investigated. One crude or primitive
approach is simply to constrain solutions to be smaller than some explicitly
defined maximum size. This technique is most often rejected as too greedy
and static, especially if this size constraint is fixed by plain guessing. How-
ever, if you are already in possession of an acceptable solution, and just want
to explore equally good (possibly better) but less complex (i.e. shorter) solu-
tions, this approach is intuitively optimal. It could easily be combined with
one or more of the methods described in the following sections.

7.2.1 PRIMITIVE PARSIMONY PRESSURE

A common (and a bit more sophisticated than the above mentioned) ap-
proach is to explicitly introduce parsimony pressure to the evaluation func-
tion. In effect, this means to make the effective fitness value dependent on
the absolute size of the individual. We redefine P, and modify equation
(7.2) as:

slel(i) = P — 0Saps ('L) (74:)
Pour(1) = Pslel(i) — Pes(1). (7.5)

!For instance, two identical subtrees can be exchanged between the parents, resulting
in offspring identical to the parents.

111 equatlioll 1.0), Ao l§) 15 LECULSIVELY UCLIcU DY CquUatloll (.1).

0 ifg=0,
+Saps(best, g) — Saps(best,g — 1) + AS(g — 1) otherwise.
(7.7)

250) = {

Now the Occam factor is updated between generations according to the
scheme described by equation (7.8).

_L_E(best,g—1) B 1
U(g) = N? Saps(best,g) 1 (beStag) > € (78)
L otherwise
E(best,g—1)S,ps(best,g)

In equation (7.8) N is the size of the training set, and e describes the max-
imum training error allowed for the final solution. Finally, before engaging
in the selection process, o in equation (7.4) is replaced by the new defini-
tion o(g) from equation (7.8). Amongst others Blickle (1996) shows good
results in solving two symbolic regression problems, one continuous and one
discrete.

7.2.3 EXpPLICITLY DEFINING INTRONS

Nordin et al. (1995) propose a system in which a special language constructs
(an Explicitly Defined Intron (EDI)) is given the characteristic properties of
introns. An EDI can be attached to any edge between two 'normal’ neighbor
nodes in the program, and it have no effect on the execution of the program.

“Named after William of Occam and his principle of simplicity (Occam’s Razor): “Given
a choice between two explanations, choose the simplest — the explanation which requires
the fewest assumptions.”

e & et e aRS Y A AASE VWER

individuals within each fitness class according to their absolute size. In this
way, we never run the risk of moving a individual from one fitness class to an-
other as a result of applying the pressure. The fact that the smallest change
in fitness is balanced against the biggest change in size, is in accordance with
the guidelines that put up by Nordin and Banzhaf (1995).

Our approach described in this chapter, will be referred to in the following
as SR.

solutions. In such domains, it is of great importance that diversity is kept
under control and not permitted to drop below some threshold, which would
drive the exploration of new solutions to a halt.

Especially, in our domain (described in section 2) we expect a lot of sub-
optimal solutions to exist. As a result, we are not interested in damping
down exploration prematurely, but rather we would prefer to explore new
solutions. However, when considering our use of a competitive tournament
based fitness function (see sections 4.3.2), the fitness function itself displays
a very dynamic behavior, as it is dependent on the population of the cur-
rent generation. As mentioned by Angeline and Pollack (1994), this kind of
tournament fitness will naturally discourage convergence in most situations.
The reason is in the way fitness is assigned to individuals. As illustrated
in figure 7.1, individuals are assigned a fitness value according to the level
of the tournament reached by that individual, in effect meaning that a lot
of individuals will be assigned the same fitness. So even in the fitness dis-
tribution, we have inherently a bias towards low pressure. And as we use
a selection method with low pressure !, we have a very low selection pres-
sure indeed. A low selection pressure inherently promotes diversity, as no
superindividual will be allowed to reproduce aggressively. This being said, it
might seem strange that we still want to consider methods for maintaining
diversity in the population. The answer is, that a competitive fitness func-
tion only leaves room for diversity to exist, but does not directly disperse
the population and thereby forcing individuals to explore new areas of the
search space, and this is what we would like to do.

!Tournament selection with tournament size 2, see section 4.3.2.

rd><

Jong et al. (20U1), where the distance between two trees 1S calculated Dy
summing the number of identical nodes with corresponding positions when
the two trees are overlaid. De Jong et al. (2001) normalizes the distance
between two trees by division of the size of the smaller of the two. Instead
of performing this kind of full tree comparison, we only consider the biggest
garbage free subtrees when performing comparison. By garbage free we mean
that all nodes in the full subtree have been executed. As an example figure
8.1(a), 8.1(b), 8.2(a) and 8.2(b) depict a comparison of two trees using our
scheme, and two subtree matches are encircled by the dashed line. So, for all
pairs of individuals in the population, we calculate the maximum common
subtree, and for each individual we calculate an average of these values.
Like in the approach described in section 7.3, we use this average measure
to sort individuals within specific fitness classes, so that individuals with a
low average common size are promoted and individuals with a high value are
punished.

The motivation for only considering the biggest garbage free subtree is first
of all the fact that we do not want to punish trees with identical garbage,
and promote trees with different garbage. If, at some point the garbage is
put into use, the garbage will not continue to be garbage, and trees with
large common sizes will now be punished.

8.1.1 MEASURING COMMON SIZE

The algorithm for determining the size of the biggest matching subtree of
any two trees, is described by the algorithms compare and subTreeMatch de-
picted in tables 8.1 and 8.2 respectively. Basically, compare takes two trees
as arguments, performs a breadth first scan through both trees and contin-

minimize this complexity, by only calling subTreeMatch when it is possible
to find a bigger match, that is both arguments of subTreeMatch must have
a size greater than the value of variable max_match. This improvement does
not affect the worst case scenario, when two completely different trees are
given as arguments to compare. The complexity of subTreeMatch is equal to
the size of the smaller of the two trees. This can be realized by considering
the worst case scenario, when two identical trees are given as arguments for
subTreeMatch. In this case, the amount of comparisons needed is equal to
the number of nodes in the tree. The same is the case, when trees only
differ in leaf nodes. If we assume that most often the trees compared are of
approximately equal size, we get a complexity of compare of O(n?), n being
the average size of the two trees given as arguments. As earlier mentioned,
the worst case scenario for compare is two completely different trees, which
is the best case scenario for subTreeMatch, yielding a constant complexity
as the test in line 10 of table 8.2 fails in the first iteration.

It is obviously of great concern that our algorithm for compare has a com-
plexity of O(n?), but as we use only the biggest garbage free subtrees when
comparing two trees, we expect the size of these garbage free subtrees to stay
approximately constant on a relative low value. As an illustration, some pre-
liminary experiments have shown that garbage free subtrees on average do
not grow to sizes of more than 10 to 20 nodes, which yields a total of max
20? = 400 comparisons. Compared to the evaluation of a generation of
255 individuals in our real-time domain (= 1555) 400 comparisons is
negligible. Of course, the 15 seconds primary evaluation is done in a cup-
tournaments based fashion (described in section 3.2.4), while all individuals
need to be compared with all others once, yielding a total of 32385 compar-

isons on the individual level. However, experiments still show that this is

04: 3

25: return max_match;
26: }

Table 8.1: Algorithm for finding the largest subtree match within to subtrees.

not a performance bottleneck.

In the following chapters, the approach described in this chapter will be
referred to as DR

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

4L \dvuoe il T dvuea/ L
match = match + 1;
for all children x of nodeil{
stackl.push(x);
}
for all children x of node2{
stack2.push(x);

}

return match;

Table 8.2: Algorithm for matching subtrees.

S - 0= - - = = = = mr s T T S Y YA & e

three runs from Holm and Nlelsen (2002) we found various useless syntactic
structures which could be eliminated by altering the CFG, and hopefully not
the solution space. Another reason for enhancing the CFG was the removal
of the high level functions. The high level functions were part of all the best
individuals from the three runs in Holm and Nielsen (2002). By removing
these we expect that it will become more difficult to reach solutions of the
same quality. Yet by adding rules to the CFG we can push the evolution to
evolve sensible building blocks of the low level functions. In the next section
we will look closer into the new rules added to the CFG.

9.2 OUR APPROACH

The E-CFG is constructed by altering some of the old rules from the ini-
tial CFG and adding a number of new rules. The E-CFG should narrow
the search space further, still it should not do it by removing satisfying
solutions. It has been our goal to design the E-CFG with the removal of
unsound syntactic structures in mind, e.g. structures which are obsolete be-
cause they only differ compared to other structures as genotype but not as
phenotype. In figures 9.1(a) and 9.1(b) we can see an example of two trees
having identical phenotype but differing genotype.

!Notice that when the mutation operator was applied the resulting tree was not nec-
essarily recognized by the CFG, only the subtree inserted.

Q1

9.2.1 CONTEXT FREE GRAMMARS

A context free grammar is a four-tuple

N, P,S),

where A is the non-terminal alphabet, > is the terminal alphabet, P is the
set of productions and S is the start symbol. The productions are of the
form

A — b,

where A e N, b € Y |J N*. Productions of the form

can be expressed as
A—=b|ec

9.2.2 THE ENHANCEMENTS

The alphabet of the E-CFG, representing the functions and terminals of our
language, is described in table 9.1.

We will now elucidate a number of sets, which will be used in the grammar.

Fee = {A.N} (9.1)
L = {D.N} (9.2)
aset = {h..o} (9.3)
Sset = {a..g} (9.4)

The "function" set (Fse;) consists of all the functions from our function
and terminal set. The "if" set (Is) consists of all the functions being if
constructions except if-less-than which differ in that it uses two of its
arguments for evaluation. The "action" set (agse) consists of all terminals
which causes some kind of bot action when executed. The "sensor" set (sget)
consists of all terminals representing game information and the constant
terminal.

We will now take a look on the reasoning behind the different rules in the
E-CFG.

The start rule
S — Fset (95)

makes sure that trees at least consist of three nodes, as all constructs in Fye;
require at least 2 children with the exception of the wait construct, that
only requires 1 child. However, the rule for wait (see rule (9.10)) preserves
the minimum tree size of trees with a wait node as root. Since trees with
less than three nodes can not represent satisfying solutions and we will avoid
that an individual which only consists of the shoot node can get a good

only allows a prog-2 function to have another prog-2 function or one of
the action terminals as its arguments. This rule is implemented with the
original purpose of introducing the prog-2 function in mind, namely to be
able to execute a sequence of actions. The syntax of this rule makes it
possible to execute from two to an infinite sequence of actions. We should
also note that this rule does not reduces the set of possible solutions, but only
reduces semantic duplicates. An example of two trees which are semantically
equivalent can be seen in figure 9.2(a) and figure 9.2(b). The tree in figure
9.2(b) was generated using the E-CFG and the tree in figure 9.2(a) was not.

The following if-less-than rules

B — B' B"B" (9.7)
B — Sset D | D Sset | Sset Sset (98)
B" = age | Fiet (9.9)

helps to generate conditionals which should have a purpose, that is, evaluate
sensor information and execute the appropriate branch based on this infor-
mation. The analysis of the trees from the three runs in Holm and Nielsen
(2002) showed that the if-less-than function in some cases served as a
prog-3 function or always executed the same branch, or both possible exe-
cutable branches had sensor nodes as children. Illustrations of these three
types of undesirable tree structures can be seen in figures 9.3(a), 9.3(b) and
9.3(c). When using the new E-CFG’s if-less-than rules, we make sure
that the two children being evaluated never are two constants, in this way
we avoids that the same branch always is executed (with one exception; when
const takes a minimum or maximum value).

o D move-backwar

(a)

_ .
c-‘
G

Figure 9.4: During tree generation a wait function decides its child by using its
parent’s grammar rule. In (b) the wait node has decided to be a action terminal
according to the prog-2 grammar rule.

The wait rule
C' — parent rule (9.10)

necessitates a little explanation. To limit the number of listed rules for this
function we have made a notational shortcut. What we mean by parent rule
is that the allowed child to wait is determined by looking at the children
allowed for wait’s parent. An example of this rule in use can be found in
figures 9.4(a) and 9.4(b). In this case the rule for prog-2 will be used since
this type of node is parent to wait, so this means that waits child can be
either a prog-2 node or a terminal from the A as chosen in figure 9.4(b).

The I, tule, defined in terms of the B” variable previously defined by rule
(9.9),

It — B" B", (9.11)

allows all functions and terminals except for sensors as arguments.

DY @ et Dl e A s el AV AV S s Sl

In addition we will use the E-CFG to control the crossover operator, so that
the offspring generated will recognize the rules imposed by the grammar.

N N Y A

5. As previously mentioned and documented in Soule et al. (1996), without
any constraint mechanism the programs generated by GP will grow indefi-
nitely regardless of whether or not the growth acts to improve the programs’
solutions.

The fact that the amount of non-functional code in our programs grows as
evolution progresses raises some concerns. Contrary to most papers touch-
ing the problem with tree growth, the domain in focus is highly complex,
dynamic and noisy. With this in mind, one have to consider that results and
methods in these papers have to be carefully evaluated before applying any
of the theory to accomplish our task.

In a domain like UT it can be expected to evolve a considerable number
generations in a GP run, before an adequate solution is found. When looking
at the time consuming fitness function used in our domain it should be
apparent that it is relevant to optimize the exploration and exploitation
properties provided by the genetic operators. When the amount of non-
functional code in the population grows exponentially and we can expect to
evaluate a high number of individuals it seems logical to aim for individuals
only differing in size but not semantically are only evaluated once. Before
going into details with the approach taken to deal with this issue let us look
at similar work done within the area.

10.2 SIMILAR WORK

The principle of EPGO, namely to let execution paths guide the choice of GP
crossover and mutation location is yet rather unexplored. As far asis known,

Q7

11 LHE Lies. opolliiLally DIICKIT alll 1 11ITIT kl:jv‘k} s5ive a4 H1VIT 1011llal Uc-
scription of the crossover phase and redundancy phenomena in GP. In the
following section some of the definitions will be summarized.

10.2.1 CROSSOVER AND REDUNDANCY

Definition 10.2.1 The edge A in tree T is called redundant if for all values
of the leaves (terminals) the function represented by the tree T is independent
of the subtree located at edge A.

Note:

If the edge A is redundant if follows immediately that all edges in the
subtree located at edge A are redundant, too.

The redundancy of an edge A in general depends on the context.

All nodes located at redundant edges are redundant nodes.

The non-redundant nodes are also called "atomic" by Tackett (1994).

Definition 10.2.2 The proportion of redundant edges in a tree T is given

by
number of redundant edges in T
pr(T) =

number of all edges in T

Definition 10.2.3 The redundancy class T* is the set of all trees T that only
differ from subtrees at redundant edges, i.e. for any two trees T1,To € T,

potential local optima decreases with time.

In a highly multimodal and complex problem domain the possibility of ex-
ploring several local maxima, is evident. Therefore we find the just mentioned
property highly undesirable in our domain. Blickle and Thiele (1994) suggest
a method to control the redundancy and present results which demonstrate
its applicability.

10.2.2 THE MARKING METHOD

The idea of the "marking" operator described in Blickle and Thiele (1994) is
to mark all nodes that are traversed (or executed) during evaluation of the
fitness function in the following way:

e First before evaluation the marking flags of all nodes are reset.

e Then if a node is executed during the fitness calculation the corre-
sponding flag is set.

e At last after the calculating the fitness function, only at redundant
nodes the flags are still cleared. The crossover is then restricted to
edges with the flag set.

The method is applied on three problems taken from Koza (1992). For the
6-multiplexer problem the performance was almost doubled, for the truck
backer upper problem an improvement in convergence of 20 % was measured
and for the ant problem almost no improvement was measured.

part of the tree has been ex- could be executed in a sub-
ecuted. sequent evaluation.

Figure 10.1: The colored subtree has still not been executed. This latent subtree
could be executed in a subsequent evaluation.

10.3 OUR APPROACH

We have chosen to adopt the method described in Blickle and Thiele (1994)
and use it for mutation as well as crossover. The method seems to fit nicely
for our problem domain. Alternate methods which try to remove redundant
code could cause a problem in our domain. Let us take a look at an example.
In figure 10.1(a) we see an initial generated tree. We could apply heuristics
to remove possible redundant nodes, but we risk to remove sound code and
we also risk to alter the initial diverse distribution of functions and terminals.

In figure 10.1(b) we see the executed nodes in a tree after an evaluation.
These nodes will be allowed as cutpoints in the following crossover phase
using EPGC.

In figure 10.1(a) we see another executed path in the same tree for a succeed-
ing evaluation, which could be caused by another opponent using a different
strategy. This time only these nodes will be allowed as cutpoints. Now it is
natural to ask: Why don’t we also allow the previously executed nodes as
cutpoints? Imagine an evolution running for several generations, as we ob-
served in Holm and Nielsen (2002) the solutions of the population gradually
adapt to different strategies (as a result we see different executed paths),
some of the strategies encountered early in the evolution are primitive and

Programming algorithm, extended with the different methods designed in
the previous part. The results are presented in chapter 11, and finally we
conclude upon these in chapter 12.

11.1 PARAMETERS OF THE EVOLUTION

We have used the same set of parameters for all runs, these are listed in table
11.1. As previously mentioned, we have discontinued the use of the island
principle and now only maintains a single population without subpopulations
and with a total size of 256. The crossover frequency P..,ss is set to 0.9,
the default value used by Koza (1992). Unlike default Koza-parameters !,
we use mutation at a frequency of 0.1. As we have a very low selection
pressure presented by our combination of the cup-tournament-based fitness
function and tournament selection with tournament size 2, and as we do not
use reproduction as defined by Koza (1992), we use elitism that copies the 10
most fit individuals unchanged to the next generation. We have reconfigured
the UT-server to run at double speed, so the evaluation time of 30 seconds is
in real-time only 15 seconds. The minimum and maximum initial individual
depth constraints the individuals in the initial population (either random or
custom generated) on depth. The minimum and maximum mutation depth,
constraints the subtrees (either random or custom generated) inserted by
our mutation operator on depth.

11.2 RESULTS

In this section we will first of all take a look at how the five runs have
evolved with regard to tree sizes. The figures will depict average absolute
size, average effective size and absolute size of winner. A short description
of these three measures can be found below (see section 7.1 for a detailed

'Default mutation frequency used by Koza (1992) is 0.0.

qQ5

Average etfective size: 1lhne ellective size OI a tree 1S the number oI nodes
executed in that tree. The effective size of a tree is based on the
first match every individual play in the tournament based competitive
fitness function (note: not the accumulated nodes executed during a
tournament). The average is calculated from the entire population of
a generation.

Secondly, we describe the results of a benchmark test performed on individ-
uals from all generations of the five different runs. An All-Star team was
summoned to act as the benchmark test environment. The best individual
from the 25th, 50th and 75th generation of all five runs were drafted to play
on the All-Star team, as we hoped this would compose a diverse and broad
spectrum of different strategies. The tests were performed by pitting the
winners from each generation against all 15 members of the All-Star team,
one at a time, in a 30 seconds match in the well known arena. For all winners
of all generations of the different runs, the following values were logged:

Points An accumulation of points received in the 15 matches. 1 point is
given to the individual with the most frags, -1 to the other, or 0 to
both individuals if there is a tie on amount of frags. We have departed
from the interpretation of results used in the evaluation function for
the cup-based tournament fitness function 2. The behavior we wanted
to evolve in the bots, is the ability to collect more frags than the enemy.
Therefore, it does not make sense to be concerned with amount of shots
fired or maximum period of no movement, when benchmark testing the
solutions.

2See section 4.3.2 for further information.

constant to be caused by the noise. At first, it seems difficult to come up
with a straightforward explanation about this phenomenon, so we will have
to study the evolution of the winning trees in detail. It seems reasonable
to seek for a relation between the performance results and the size results,
especially because we also observed fluctuations in the performance results.
In figure 11.1(a) we see that after generation 40 the performance stabilizes
and the small fluctuations in the later generations are probably just a result of
the inherent noise in the domain. This observation rule out an intermediate
connection between the size fluctuations and the evolution of new solutions
in the population. To search for another explanation we have extracted
detailed information on the sizes of individuals from the entire population
in consecutive generations. In figures 11.2(a-e) the data from generation 52,
53, 54, 55 and 56 can be seen.

It is apparent from these graphs that not only the winners of the different
generations fluctuates in size but the entire generation of individuals do. This
supports us with the necessary information to form a hypothesis. Assuming
that the building block hypothesis suggested by Goldberg (1989) is true, then
when we start an GP evolution small building blocks will start to form as
evolution progresses. Then these building blocks get combined to constitute
more complex solutions, as in figure 11.3(a) illustrating an abstraction of a
good solution. Some of these solutions will be better than others and hence
gets selected more often, resulting in multiple offspring based on this building
block. In figure 11.3(b) such two blocks are depicted where the large triangle
is the building block and the small triangles illustrates two subtrees being
introns. When evolution progresses and these trees are chosen for crossover
as depicted in figure 11.3(b) and 11.3(c), some of the resulting offspring
will be a composition of the same building blocks on top of each other. If

Number of nodes

300

200

100

Evolution of size for BASIC run

Average absolute size —+— / / ‘ //

Average effective size —<— . .

Absolute size of winner —x— . v (68,303) 11
. . V (53,304) (54,3@4)

,,,,,,,,,,,,,,,,,,,,,,,,,,,

|

,,,,,,,,,,,,,,

f f
50 60

Generation

(b) Size

f
70

Figure 11.1: Performance(a) and size(b) graphs for the BASIC run.

o D

256 128 2 1680 256 128 32 1680
Population Population

(c) Generation 54, with a winner of size (d) Generation 55, with a winner of size

304. 27.
|‘m I\H\ i |.|HH \u..‘h il

zss 128 32 1680
Populatior

600

500 o

300 4

8

200 4

8
8

8
8

(e) Generation 56, with a winner of size
203.

Figure 11.2: Evolution of size of individuals from generation 52 through 56.

uuuuu i E e e e e R e S A O Y Y e

by choosing the black dots as cut-points (e).

this happens through consecutive generations we can imagine individuals
like the two depicted in 11.3(d). When such two are chosen for crossover
the resulting offspring can look like its depicted in figure 11.3(e). As can
be seen the smaller tree (figure 11.3(e)) will then still consist of the good
building block, hence perform as well as the larger. Therefore we will see
the huge fluctuations. When studying some of the parse trees in detail our
hypothesis is supported. In figure 11.2 the winning tree from generation 55
can be observed. This tree only has a size of 27 nodes and as seen in figure
11.1 follows generation 54 which had a winning tree consisting of 304 nodes.
We have identified at least two common building blocks in the winning tree
from generation 55, these can be found in table 11.3. These building blocks
seems to be the basic foundation for a good solution in the last half of
the evolution and are found multiple times in the large trees. Taking this
evidence in consideration we feel the hypothesis is further backed up.

BENCHMARK RESULT

We have now argued for the heavy fluctuation in size, and when investigating
the graph in figures 11.1(a), we notice first of all that heavy fluctuation in
performance is also present. For instance we notice the sudden peak at the
9th generation, and the equally sudden drop in performance of the 10th
generation. In table 11.4 the 9th and 10th winner is depicted. The 10th
generation is clearly the more primitive of the two. As the shoot node always
returns 0, the if-less-than will always evaluate to false, and hence the

(if-enemy-in-sight (if-enemy-move-away
(face-enemy) (move-forward)
(turn-left)) (shoot))

Table 11.3: Two common building blocks extracted from the winner of generation
55 of the E-CFG run.

behavior is only composed of shooting and running backwards. The 9th
generation winner however, will both try to face the enemy and shoot no
matter the current states of sensors. The reason such a primitive strategy as
that of the 10th generation can make it to the top, while more sophisticated
strategies (like the winner from the 9th generation) exist in population is
worth investigating. When looking at the 10th generation in more detail, we
found that the winner from the 10th generation actually was pitted against
an individual equivalent to the 9th generation winner in the semi-finals, and
of course won. This confirms, that the low selection pressure that combined
with a relatively noisy environment does not allow single good solutions to
spread rapidly throughout the population. Apart from the fluctuation, the
general trend of the graph is interesting. The trend in points collected is
already above 0 around the 25th generation, which is very good indeed. In
the following sections we will compare the performance of the other runs
with this result.

Table 11.4: The best individual from the 9th (the leftmost) and 10th (the rightmost)
generation

THE UNDESIRABLE FLORA OF SIZE

The average size of the population in the BASIC run was expected to grow
rapidly and as can be seen in figure 11.1(b) indeed it did. The average ef-
fective size though is kept under a size of 25 during the entire run and the
growth of the effective size seems to happen with an insignificant linear rate.
The thing to note here is that growth of absolute size happens with an ap-
proximately linear rate through the entire run. This raises the probability
of premature convergence and as can be seen in figure 11.1(a) the perfor-
mance begin to converge after generation 30. Now, this it not necessarily a
bad thing since the convergence happens close to the maximum score, but it
surely brake further evolution of better solutions. Hence if we had increased
the number of generations per run it is unlikely that further improvement
would happen.

It would be nice if we could limit the growth of the trees, while still keeping
the performance of the BASIC run. In the next three runs (SR, DR and
E-CFQG) described, this growth is limited and the DR method succeeds in
matching the performance of the BASIC run. The last method (EPGO)
succeeds in limiting the effective part of the trees used for crossover and
mutation while still matching the performance of the BASIC run.

Number of nodes

\@) L+ uUiiiuo

Evolution of size for SR run

300 -
Average absolute size —+— .
Average effective size —<— .
Absolute size of winner —x— '

200 4o e e R R R R b

g T

B8\ s = sy 7R +
0 T T T T T T T
0 10 20 30 40 50 60 70
Generation
(b) Size

Figure 11.4: Performance(a) and size(b) graphs for the SR run.

pressure) when constructing the building blocks. To put it another way, good
building blocks are not allowed enough freedom to evolve and accumulated in
larger and larger trees, as we assume is the case for the BASIC run. The next
method succeeds in delivering the latitude necessary for steady evolution of
better solutions while still maintaining a population with a trimmed size.

11.2.3 DIVERSITY RANKING

Although the performance graph of the DR run depicted in figure 11.5(a) is
not as steep as that of the BASIC run depicted in figure 11.1(a), the tendency
is clearly ascending. The fluctuation in points is more pronounced than that
of the BASIC run. If we take a look at the evolution of size, it is interesting
to see that many of the peaks in performance (at generations 35, 38, 42, 47,
48, 49 and 52) is matched by off-peaks in size. This is in keeping with results
previously reported by Rosca (1996), were short and compact solutions are
found to be more general, even though other explanations (including pure
coincidence) to this phenomenon could be just as valid. One obvious question
is then why the SR run performed so poorly compared to the DR run? The
answer must be that in SR we just promote solutions with a small absolute
size, and this makes the population converge against the same short solution.
The DR method however, accomplishes the damping in bloat more indirectly,
which will be elaborated in the following section.

Number of nodes

\@) L+ uUiiiuo

Evolution of size for DR run

300
Average absolute size —+—
Average effective size —<—
Absolute size of winner —x—
200 4o e N N
s s T I R e
‘ R R 7% oo i
R TEL AT AT
EOR YA A e e e
0 >%ﬁﬁ@g@ﬁ?>< —— t t t t t
0 10 20 30 40 50 60 70
Generation
(b) Size

Figure 11.5: Performance(a) and size(b) graphs for the DR run.

11.2.4 ENHANCED CONTEXT FREE GRAMMAR

The performance test of the E-CFG as depicted in figure 11.6(a) is not good
when compared to the other tests. One reason for this result could be that
the rules that make up our E-CFG in fact narrows the space of possible
solutions to tight. Another reason could be, that the semantical meaning
of our language constructs is not as well defined as initially assumed. 3 If
this is the case, we have built our E-CFG on a incorrect basis, and hence
our E-CFG will act as a poor guide for the evolutionary process. Without
enforcing the E-CFG upon the evolution, the true semantical meaning of
the functions and terminals would emerge from the compositions of the fit
individuals.

WHaAT WENT WRONG

We have done extensive testing on every single function and terminal and be-
lieve that the missing performance of the E-CFG should be located elsewhere.
When looking at figure 11.7(a-b) showing the distribution of functions and
terminals, it seems odd that the frequency of prog-2 and shoot increases so
rapidly. Now, when investigating the different trees from the run, a pattern
is forming. It appears that a suboptimal solution has emerged in an early
generation, the core of this solution can be found leftmost in table 11.5 and

3An analogy is, in a real world robot, a move-forward command may not be well
defined for all possible environments, and may very well be dependent on the friction of
the surface.

Number of nodes

\@) L+ uUiiiuo

Evolution of size for ECFG run

300
Average absolute size —+— .
Average effective size —<— .
Absolute size of winner —x— '
200 4 e R SR S SR S -
100 4 e R S e S Rt IR EENE S
WW*% 1 1 1 : :
g’z*\ ' ' L e e b ' ' !
L) NAVIVIVIWI Kok e ¢ KK
0 10 20 30 40 50 60 70
Generation
(b) Size

Figure 11.6: Performance(a) and size(b) graphs for the E-CFG run.

Frequency

\a) 4itllilllials

Frequency of use of functions during evolution using E-CFG.

0.5

0 10 20 30 40 50 60 70
Generations
rog-2 —+— if-enemy-move-away —v—
if-enemy-in-sight —<— if-bump —e— if-enemy-closing-in ——
if-less-than —x— if-weapon-in-reach —=— if-enemy-is-static —&—
if-health-in-reach —5— if-enemy-move-left —a—

if-enemy-move-right —<—

(b) Functions

Figure 11.7: Frequency of node usage during the E-CFG run.

in table 11.5. The impact of this general new solution can also be observed
in figure 11.7(a), showing increased frequencies of the terminals face-enemy
and move-backward.

SHouLD THE CFG BE DISCARDED

As a concluding remark to the E-CFG results, we must say that it has
proven very difficult to define a CFG that generates good solutions. One
should acknowledge, that imposing a CFG on the construction of solutions
is equivalent to imposing a new distribution of the usage of nodes. That is,
when the language is changed from being type-less (in which a totally random
composition of individuals is valid) to a language constrained by a grammar,
a dependency between the nodes is imposed. And hence, if some nodes gain
dominance in the population, some other nodes might be nearly impossible
to introduce into this population, due to the inter-node-dependency inferred
by the grammar. Therefor, the genetic operators are changed in a way that
might not be completely clear, when designing the CFG. When this is said,
we still believe a CFG can be powerful in a complex domain, but it should
be guided in some way e.g. by a heuristic. In chapter 12.4 we have proposed
this as future work.

11.2.5 EXECUTED PATH GUIDED OPERATORS

The performance graph for the EPGO run depicted in figure 11.8(a) is very
nice, and has a trend very much alike that of the DR run (depicted in fig-
ure 11.5(a)). But unlike the DR run, the EPGO explodes in size, see figure
11.8(b). The EPGO is the run with the largest average size and also the

Number of nodes

\@) L+ uUiiiuo

Evolution of size for EPGO run

300
Average absolute size —+— . .
Average effective size —<— . .
Absolute size of winner —x— ' '
200 - ;
100—/\ ————— bk
A | [Y
0 : l l
40 50 60 70
Generation
(b) Size

Figure 11.8: Performance(a) and size(b) graphs for the EPGO run.

The simplest approach, the BASIC run, seems at first to outperform the
other methods, at least when it comes to plain performance. We feel, how-
ever, that it is a valid to also recognize that the performance of the BASIC
run show signs of convergence. And as stated in the problem definition (see
section 5.3) we believe the avoidance of premature convergence to be essen-
tial to the evolution. We can not say for sure that the BASIC run in fact
has converged prematurely, but we can say for sure that neither EPGO nor
DR shows sign of convergence. On the contrary, the heavy fluctuation in
performance indicates that convergence has still not occurred, and yet the
fluctuation of both runs contain numerous peaks close to the maximum of 15,
demonstrating that good solutions are found. When considering the degree
of bloat, the DR run is clearly the best amongst the three. Furthermore, the
DR run is the first to evolve a solution capable of scoring the maximum of
15 points.

Regarding the SR run that only in flashes raises above zero points in per-
formance we must conclude that the parsimony pressure did not provide the
necessary latitude for good solutions to emerge. The E-CFG run performs
just as poor, and with the least growth observed in the five different runs.
The reason for the failure of the E-CFG is credited to the fact that impos-
ing a CFG on genetic operators distorts the distribution with which genetic
material can spread throughout the population, and also which types of new
genetic material can be introduced into the population. All together the run
is in high risk of premature convergence.

12.4 FUTURE WORK

In this section different extensions and modifications are suggested to the
methods applied in the solution of our defined problem. We will continue to
use the two classifying classes of extensions introduced in chapter 5, namely
agent specific extensions and system specific extensions.

12.4.1 AGENT SPECIFIC EXTENSIONS

The concepts of agent specific extensions are as follows:

1. Extend the individual to contain multiple different specialized parse
trees, instead of just one general.

2. Introduce the concept of memory for the parse trees to use.

3. Increase the dynamics of the environment.

INTRODUCTION OF SPECIALIZED PARSE TREES

The individuals described in this thesis is represented by only one general
purpose strategy, described by the parse tree. Instead, several parse trees
could be evolved for each individual. One parse tree for all different subtasks
like weapon selection, aiming, offensive and defensive movement and overall
behavior selection. That is, one parse tree could be evolved to be responsible
for selecting amongst the other parse tree, i.e. when to execute offensive

P11t WO o vwallut LU ©TVULVE 1LICALUILIT UUlJD, bd/l)(l/UJ.C Ul lJCJ.J.UJ.lJJllJ.s vwioll 111 U111l ©l1l1u
environments we believe increasing the dynamics of the system will improve
the evolved solutions. The environment mainly consists of two components;
the players and the map (including the items). We have tried to approach the
challenge of player dynamics by introducing the competitive fitness function
and this step showed to provide dynamics to the environment. Another in-
teresting experiment would be to evaluate the bots against human opponents
by setting up a server on the internet.

We believe that another challenge to be dealt with is the dynamics of the
map. When the bots are spawned on the map for evaluation, it is always at
one of the multiple spawning points on the same map. It is therefore feasible
to believe that the evolved solutions to a certain degree will be adapted to
the specific map. One solution could be to change map after each ended
generation but bots just spawned would still have the same health, armor
and ammunition as always when they start an evaluation.

Inspired by Nordin and Banzhaf (1997) we propose a bots spawning condition
to be a result of the previously evaluated bots end condition, metaphorically
speaking it would be like considering the UT agent body as a vessel and the
GP tree as the driver, a new driver would then receive the vessel in the state
the previous controller left it. In Nordin and Banzhaf (1997) this method is
also used for practical reasons since it is thereby avoided to bring a mobile
robot back to a start location but it is also mentioned that using the same
initial starting condition could result in over-specialization and failure to
evolve a behaviour that can generalize to unseen environments and tasks.

Tor success 1s a well designed function and terminal set. lhe trees we have
been analyzing indicate that the function and terminal set is only partly
exploited, for instance the if-less-than function does not seem to be used
at all except as a prog-x, hence all the terminals representing sensor values
are obsolete. Two approaches could be taken to deal with this undesirable
circumstance. We can try to help the evolution to use the if-less-than
function in a proper way (maybe using the same principles as in the E-CFG)
or we can just remove all the unused functions and terminals.

Another thing which we think might improve the function and terminal set
would be to change the action set consisting of terminals to functions taking
arguments. Recall the terminals turn-right and turn-left that turns the
bot a steady amount of degrees every time they are executed. If they were
functions they could take an argument for deciding the value of degrees to
turn. The same principle could be applied to the rest of the action set
e.g. move-forward or strafe-right, where an argument could decide the
distance the bot should move.

COMBINATORY POWERS

We would like to test the performance of a combination of the methods.
For instance the E-CFG could easily be combined with EPGO and DR or
SR. In addition it seems obvious to believe that some of the GP parameters
could be fine-tuned and further experiments would have to be done to decide
this. As described in chapter 11, SR and DR ensure a limited growth of the
trees in the population, but the pressure applied on the individuals by using
these methods could influence the evolution of more advanced solutions.
Additional test runs would give a better answer to this question.

more complex strategies from small, robust and basic strategies. In addition
to removing all high level functions and terminals, we expect this extension
to be fertile in producing new creative strategies.

INTRODUCTION OF NON-DESTRUCTIVE CROSSOVER

As showed in several papers (e.g. Nordin and Banzhaf (1997)) the crossover
operator in GP has a tendency to produce offspring less fit than the parents.
This undesirable effect also destroys a lot of potential sound building blocks
in that the parents code containing the building blocks is exterminated. In an
attempt to test the destructive hypothesis, Soule (1998) suggests an exper-
iment using non-destructive crossover to eliminate the destructive effect of
crossover (Soule (1998) was inspired by similar methods proposed by O'Reilly
and Oppacher (1995) and Hooper et al. (1997)). In Soule (1998)’s version
of non-destructive crossover, after each crossover operation, the fitness of
the offspring is compared to the fitness of the parent program. An offspring
is incorporated into the new population only if its fitness equals or exceeds
that of its parent, otherwise the parent is kept. In O’Reilly and Oppacher
(1995) multiple attempts were made to produce more successful offspring
and if all the attempts failed, the parents were replaced by randomly created
individuals.

The method described by Soule (1998) seems sensible to be used in general
in that it maintains and improve building blocks assuming that the building
block hypothesis is correct. In addition we would propose to combine non-
destructive crossover with EPGO. Considering our experiments and hypoth-
esis about EPGO we think that this combination could show powerfull. It

M. Brameier and W. Banzhaf. A comparison of linear genetic programming
and neural networks in medical data mining. IEEE-EC, pages 17-26, 2001.

E. D. De Jong, R. A. Watson, and J. B. Pollack. Reducing bloat and promot-
ing diversity using multi-objective methods. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), pages 11-18.
Morgan Kaufmann Publishers, 2001.

K. A. De Jong. An analysis of the behaviour of a class of genetic adaptive
systems. PhD thesis, University of Michigan, 1975.

Epic-Games, Infogrames, and Digital-Extremes, 2001. URL http://www.
unrealtournament.com/.

F. Fernandez, M. Tomassini, and L. Vanneschi. Studying the influence of
communication topology and migration ondistributed genetic program-
ming. In EuroGP2001, 4th European Conference on Genetic Programming,
pages 51-73. Springer Verlag, 2001.

The Gamebot-Project. Gamebots: Official site, 2001. URL http://www.
planetunreal.org/gamebots/.

C. Gathercole and P. Ross. An adverse interaction between the crossover
operator and a restriction on tree depth. In Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 291-296. MIT Press,
1996.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Publishing Company, Inc., 1989.

110

e LU AAUAL. AL Vo L PV P wiiviriovtvly. 00 vib LWy Pwirvirvetvly Yy “wwwiivpp v bd Uy

Means of Natural Selection. The MIT Press, 1992.

W. B. Langdon. Directed crossover within genetic programming. Technical
Report RN/95/71, University College London, UK, 1995.

W. B. Langdon and R. Poli. Fitness causes bloat. In Soft Computing in Engi-
neering Design and Manufacturing, pages 13-22. Springer-Verlag London,
1997.

S. Luke. Genetic programming produced competitive soccer softbot teams
for robocup97. In Genetic Programming 1998: Proceedings of the Third
Annual Conference, pages 214-222. Morgan Kaufmann Publishers, 1998.

S. Luke. Two fast tree-creation algorithms for genetic programming. IEEE
Transactions on Evolutionary Computation 4(3), pages 274-283, 2000.

M. L. Minsky. The Society of Mind. Simon & Schuster Inc., 1988.

D. J. Montana. Strongly typed genetic programming. BBN Technical Report
#7866, Cambridge, 1993.

S. Nolfi and D. Floreano. Evolutionary robotics through artificial evolution.
ERCIM News, (42):12-13, 2000.

P. Nordin and W. Banzhaf. Complexity compression and evolution. In
Genetic Algorithms: Proceedings of the Sizth International Conference
(ICGA95), pages 310-317. Morgan Kaufmann, 1995.

P. Nordin and W. Banzhaf. An on-line method to evolve behavior and to
control a miniature robot in real time with genetic programming., 1997.

on Evolutionary Computation, pages 781-186. IEEE Press, 1998.

T. Soule, J. A. Foster, and J. Dickinson. Code growth in genetic program-
ming. In Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 215-223. MIT Press, 1996.

W. A. Tackett. Recombination, Selection and the Genetic Construction of
Computer Programs. PhD thesis, University of Southern California, 1994.

T. Yu. Polymorphism and genetic programming. In FuroGP2001, 4th Euro-
pean Conference on Genetic Programming, pages 437-444. Springer Ver-
lag, 2001.

B. T. Zhang and H. Miihlenbein. Balancing accuracy and parsimony in
genetic programming. Evolutionary Computation, pages 17-38, 1995.

s 05
04
. WYY .
3 g
5 5
g g
H A &
VN
L s
33
% 50
0 Generations
Generations
Thy-weapon —— Shoot —— Strale-Tight ——
ProgZ —— Fenemy-move Tight —— healih —— enemy-distance —a—
ifless-than —— relative-movement —e— if-enemy-move-away —o— ammo —x— enemy-damage ——
if-enemy.-in-sight —%— i-amor-in-reach —a— if-enemy.-closing-n —s— armor —a— wn-left —e— move-forward —s—
ii-health-in-reach —a— if-weaponin-reach —— m-right —— move-backwar
if-enemy-move-left —s— strale-left —e—

(c¢) Functions (d) Terminals

Frequency of use of nodes during evolution. Frequency of use of nodes during evolution.

05 05
. /\\

03

Frequency
Frequency

02 S

X
o " ° P 7
0 10 20 30 40 50
Generations
Generations

Tyweapon —+— Shoot —— Strale Tight ——

prog2 —— 7 health —*— enemy-distance —a—

if-less-than —»— relative-movement —s— if-enem —— ammo —s— enemy-damage ——
if-enemy-in-sight —x— f-amor-in-reach —&— if-enemy-closing-in —+— amor —a— wrn-left —s— move-forward —e—
i-health-in-reach —a— if-weapon-in-reach —— — move-backward —a—
if-enemy-move-left —v— feft —e— const —e—

(e) Functions (f) Terminals

Figure A.1: The frequency of node usage on island 1 (fig. a-b), 2 (fig. ¢-d) and 3
(fig. e-f) of the 1st run.

1929

(c) Functions (d) Terminals

Frequency of use of nodes during evolution. Frequency of use of nodes during evolution.
05 05
04 04
03
‘” = e
H 3
3 §
oz AN ./'A i SUC NN soozr \-‘\/_f \Ww

0 10 20 30 40 50
Generations

my-Weapon —— Shoot —— Strafe-ight ——

prog2 —— T-enemy-move-ngnt —v— ealth —%— enemy-distance —&—

if-less-than —x— I —— i —— ammo —x— enemy —
if-enemy-in-sight —x— iF-amor-in-reach —&— if-enemy-closing in —s— armor —e— eft —— ove-forward —e—
if-health-in-reach —e— if-weapon-in-reach —— tum-right —— move-backward —e—
if-enemy-move-left —v— strafe-left —e— const —e—

(e) Functions (f) Terminals

Figure A.2: The frequency of node usage on island 4 (fig. a-b), 5 (fig. c-d) and 6
(fig. e-f) of the 1st run.

o A 20 30 40 50 60
Generations
T-enemy-move-right
relative-movement —e— il-enemy-move-away —e—
it if-amor-in-rea if-enemy-closing in —s—

t
if-health-in-reach —&—

if-weapon-in-reach
if-enemy-move-left —s—

Generations

my-weapon ——
health —x—

or —o—
enemy-distance ——
enemy-damage ——
amor —a— tum-left ——

tun-right —=—
strafe-left —o—

Strafe-right ——

move-forward —e—
move-backward —e—
const —s—

(a) Functions

Frequency of use of nodes during evolution,

(b) Terminals

Frequency of use of nodes during evolution.

05 05
04 0.4
0.3
z 03 3
& g
g g
E g
g H
<02
o1 o, /
o : zs]
o 10 20 30 40 50 60 Generations
Generations
my-weapon —— Shoot —e— strafe-fight ——
Prog2 —— T-enemy-move-night —v— health —x— enemy-distance —a—
it-less-than —=— I i —— ammo —x— enemy-damage

if-enemy-in-sight
if-health-in-reach —&—

e
if-amor-in-reach —a—
if-weapon-in-reach ——
if-enemy-move-left —s—

if-enemy-closing-in —+—

armor —a— tum-left ——

tun-right —=—
strafe-left —o—

move-forward —e—
move-backward —e—
const —s—

(¢) Functions

(d) Terminals

Figure A.4: The frequency of node usage on island 1 (fig. a-b) and 2 (fig. c-d) of

the 2nd run.

(c) Functions (d) Terminals

Frequency of use of nodes during evolution Frequency of use of nodes during evolution,

05 05

0.4

§ /\\/\ A

0.4

03

Frequency

Frequency

, o~ . o MARAA

e N A

0.1

0 10 20 30 40 50 60 Generations
Generations
my-Weapon —— Shoot Strafe-ight ——
prog2 —— T-enermy-move-night —v— ealth —%— enemy-distance —&—
if-less-than —x— —— i —— ammo —x— enemy-damage
if-enemy-in-sight —x— iF-amor-in-reach —&— if-enemy-closing in —s— armor —e— mleft —— move-forward —e—
if-health-in-reach —e— if-weapon-in-reach —— tum-right —— move-backward —e—
if-enemy-move-left —v— strafe-left —e— const —e—

(e) Functions (f) Terminals

Figure A.5: The frequency of node usage on island 3 (fig. a-b), 4 (fig. c-d) and 5
(fig. e-f) of the 2nd run.

(c) Functions (d) Terminals

Figure A.6: The frequency of node usage on island 6 (fig. a-b) and 7 (fig. c-d) of
the 2nd run.

Frequency of use of nodes during evolution. Frequency of use of nodes during evolution.
05 05
0.4 0.4
7 03 z 03
B g
g g, N f
| A e
01 \\J]\
g .
o 10 20 30 40 50 60 70 80
Generations
Generations
my-weapon —— shoot —e— strafe-nght ——
prog2 —— T-enemy-move-nght —— health —— enemy-distance —&—
if-less-than —— relative-movement —e— if-enemy-move-away —e— ammo —*— enemy-damage ——
if-enemy-in-sight —%— amor-in-reach —a— if-enemy-closing-in —s— armor —8— turn-left —s— move-forward —&—
i-health-in-reach —e— if-weapon-in-reach irn-right —~— move-backward
if-enemy-move-left —v— strafe-left —e— const —e—

(a) Functions (b) Terminals

Figure A.7: The frequency of node usage on island 1 (fig. a-b) of the 3rd run.

(c) Functions (d) Terminals

Frequency of use of nodes during evolution Frequency of use of nodes during evolution,

05 05
0.4 04
z 03 z 03
H
z g
g g
£ o T 02

Generations
y-Weapon —— Strafe-right ——

if-enemy-move-right —»— ealth —<—

it I —— i —— ammo —x—
if-enemy t —%— if-amor-in-reach —a— if-enemy-closing-in —+— armor —e— ove-forward —e—
if-health-in-reach —&— if-weapon-in-reach —— move-backward —e—
if-enemy-move-left —v— const —e—

(e) Functions (f) Terminals

Figure A.8: The frequency of node usage on island 2 (fig. a-b), 3 (fig c-d) and
4(e-f) of the 3rd run.

(c) Functions (d) Terminals

Frequency of use of nodes during evolution. Frequency of use of nodes during evolution.
05 05
04 0.4
03 z 03
g H
H g
E g
g H
I o2 02
01
o
80
Generations
Generations
my-weapon —— sh Strafe-Tight ——
T-enemy-move-ight —=— health —x— enemy-distance —a—
relative-movement —e— i.nemy.move-avuay —— ammo enermy-damage —»—
if-amor-in-reach —&— if-enemy-closing-in —e— ‘armor —a— turn-left move-forward —e—
iweapon - reach —+— o —— move-backward —o—
ey move-lfl —=— stale et —o— Const —o—

(e) Functions (f) Terminals

Figure A.9: The frequency of node usage on island 5 (fig. a-b), 6 (fig. c-d) and
7(fig. e-f) of the 3rd run.

Frequency of use of terminals during evolution using E-CFG. Frequency of use of functions during evolution using E-CFG.

Frequency

Generations

les:
ithealthn reach —a—

(a) Terminals (b) Functions

Figure B.2: Functions and terminals used during the evolution using the E-CFG.

121

(a) lerminals (b) Functions

Figure B.4: Functions and terminals used during the evolution using SR.

Frequency of use of terminals during evolution using DR, Frequency of use of functions during evolution using DR.

) T,

s YA

Frequency

Hess-than —s—

s |
o o T
‘ ener o e g ——
heatsaen

it rea
ir-enemy-move-left —-—

(a) Terminals (b) Functions

Figure B.5: Functions and terminals used during the evolution using DR.

The mapplng functlon used is

W * 200, so the value
mmomaz

will be in the range of [0..200].

(armor)

Assumes the value of the current
armor level of the bot.

No effect.

(face-enemy)

Assumes the value 200.

If the enemy is in sight
then the bot is rotated
to face the enemy, oth-
erwise no effect.

(shoot)

Assumes the value 0.

Fires on shot in the fac-
ing direction. If the en-
emy is in sight, the bot
aims at the enemy.

(enemy-damage)

Assumes an estimate of the current
damage-level of the enemy. Every
time the enemy is hit, we expect
him to have taken a certain amount
of damage. But this is a tempo-
ral quantity, as we expect the en-
emy to regenerate by picking up
healthpackets. Therefore, we re-
duce the amount according to the
formula d; = di—1 — exp(AHit),
where d; is the estimated damage
at time ¢t and AHit is the time in
seconds since damage was last in-
flicted upon the enemy.

No effect.

Continued on next page

129

\i1l-llcalltll=-1lill-IcalCll/

11 1HCaltll 15 111 1Calll, Licil Lic
value assumed by argl is as-
sumed, otherwise the value as-
sumed by arg2 is assumed.

11 1Caltll 15 111 1Caltll, 1U
is picked up, otherwise
no effect.

(if-armor-in-reach)

If armor is in reach, then the
value assumed by argl is as-
sumed, otherwise the value as-
sumed by arg2 is assumed.

If armor is in reach, it
is picked up, otherwise
no effect.

(if -ammo-in-reach)

If ammo is in reach, then the
value assumed by argl is as-
sumed, otherwise the value as-
sumed by arg?2 is assumed.

If ammo for the
weapon currently
used by the bot is in
reach, it is picked up,
otherwise no effect.

(if-weapon-in-reach)

If a weapon that is better than
the weapon currently used by
the bot is in reach, then the
value assumed by argl is as-
sumed, otherwise the value as-
sumed by arg2 is assumed.

If a weapon that is bet-
ter than the weapon
currently used by the
bot is in reach, it is
picked up, otherwise no
effect.

(if-enemy-in-sight)

If the enemy is in sight, then
the value assumed by argl is as-
sumed, otherwise the value as-
sumed by arg2 is assumed.

No effect.

(if-enemy-move-left)

If the enemy is in sight and
moving left, then the value as-
sumed by argl is assumed, oth-
erwise the value assumed by
arg?2 is assumed.

No effect.

(if-enemy-move-right)

If the enemy is in sight and
moving right, then the value
assumed by argl is assumed,
otherwise the value assumed by
arg?2 is assumed.

No effect.

Continued on next page

