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h Unit of De
ision Support Systems at theDepartment of Computer S
ien
e at Aalborg University, Denmark.By 
onvention, 
itations follow the syntax of: �Last-name (year)�, throughoutthis thesis, and further information 
an be found in the bibliography at page119.The work presented in this thesis, is 
ontinued from our previous work pre-sented in Holm and Nielsen (2002).The thesis is divided into three parts. Part I 
ontains an introdu
tion toour problem domain. The basi
 
on
epts of Geneti
 Algorithms and Geneti
Programming are presented, and a summary of the most important �ndingsof Holm and Nielsen (2002) is in
luded. Additionally, part I 
ontains a moredetailed analysis of the previous results, 
on
luding in a spe
i�
 problemde�nition stating four di�erent extensions to the basi
 geneti
 programmingalgorithm. Part II presents the design of the four di�erent extensions to-gether with a presentation of related work. Part III presents results andproposes di�erent topi
s that should be pursued in the future.A
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Part IProblem AnalysisThis part is intended as do
umentation of the pro
ess of analyzing theproblem domain and will 
on
lude in a de�nition of the goals of thisproje
t. In 
hapter 1 we brie�y introdu
es some 
on
epts that will mo-tivate the further analysis. Chapter 2 introdu
es the spe
i�
 problemdomain of the game Unreal Tournament, and presents the extension pro-vided by the Gamebots module. Chapter 3 presents the basi
 theory ofGeneti
 Algorithms and Geneti
 Programming ne
essary for understand-ing our system. Chapter 4 presents a summary of our previous work re-ported in Holm and Nielsen (2002). Finally 
hapter 5 
on
ludes this partby narrowing the problem spa
e and de�ning the goals of this proje
t.





1 Introdu
tion�The only real voyage of dis
overy 
onsistsnot in seeking new lands
apes but in havingnew eyes.�,Mar
el Proust.Evolutionary Algorithms are one of the more promising bran
hes of mod-ern Computer S
ien
e and Arti�
ial Intelligen
e in parti
ular. Not that theideas and 
on
epts are modern them self, in essen
e the 
ore prin
iples stemsfrom the famous Charles Darwin and his work from 1859: �On the Originof Spe
ies by Means of Natural Sele
tion, or the Preservation of FavouredRa
es in the Struggle for Life�. Later in history, when digital 
omputershad been invented and had be
ome more 
ommon to the professional s
i-enti�
 
ommunity, the ideas and prin
iples �rst proposed by Darwin wereput into a more pra
ti
al use. John Holland is often referred to as one ofthe inventors of Evolutionary Algorithms, and espe
ially he gets the honorfor the invention of Geneti
 Algorithms. The ideas of Holland (1992) �rstpublished in 1975, has led to a variety of appli
ations within the broad �eldof algorithms for solving optimization problems. In the later years the �eldof Geneti
 Programming, mostly 
redited to Koza (1992), has se
ured itsfoothold within the 
ommunity of Arti�
ial Intelligen
e.From this brief histori
al survey we move on to motivate the general fo
usof this thesis.1.1 MotivationSome everlasting obsta
les to evolutionary optimization exists, and in thisthesis we fo
us on some of these obsta
les, or more pre
isely on ways tobypass these obsta
les. Before going into te
hni
al details about the 
ontentsof this thesis, we will in
lude a re�e
tion over The Investment Prin
iplepresented by Minsky (1988), as it very ni
ely presents the essen
e of what isthe fo
us of this thesis. Also, we �nd it reasonable to mention the prin
ipleof O

am's Razor, in order to put work presented in this thesis in a broaderperspe
tive.1.1.1 The Investment Prin
ipleThe investment prin
iple as stated by Minsky (1988) is:�Our oldest ideas have unfair advantages over those that 
ome later.The earlier we learn a skill, the more methods we 
an a
quire for using it.Ea
h new idea must then 
ompete against the larger mass of skills the oldideas have a

umulated.�Minsky (1988) argues that natural evolution is a good example of a pro
essbeing enslaved by the investment prin
iple. That is, good skills that weredeveloped in the early stages of the evolution, is hard to 
hange without3



4 Introdu
tiondestroying the good properties of other skills that might have been buildupon this initially good skill. E.g. the pla
ement of the brain in the headis a property inherited by our oldest an
estors hundreds of millions of yearsold, and the 
omplexity of properties build upon this early idea makes itimpossible for evolution to ever 
hange it, without destroying other essentialproperties. However, if we were to design the woodpe
ker anatomy froms
rat
h, we 
ould probably 
ome up with other pla
ements of the brain thatwould serve the purpose at least as well.In a wider sense, this re�e
tion illustrates the 
hara
teristi
 of most sear
hstrategies based on natural evolution, namely that they are inherently short-sighted. That is, properties emerge with the expe
tation of an immediatebene�t, and not be
ause of long term planning of 
omplex properties. Ratherthan designing some property from s
rat
h, existing properties are 
ombinedin new 
on�gurations.1.1.2 O

am's RazorWilliam of O
kham was a philosopher and 
ontroversial theologian of the14th 
entury, widely thought of as one of the most in�uential of his time. Heis spe
ially known for the medieval rule of parsimony, originally formulatedas: �Pluralitas non est ponenda sine ne

esitate.�In more modern English, this is often translated to �Pluralities should notbe posited without ne
essity�. This prin
iple is one of the 
ornerstones ofmany s
ienti�
 dis
iplines, espe
ially when developing models of naturalphenomenon and physi
al pro
esses. Models of high 
omplexity is typi
allyless general than models of low 
omplexity. The more 
omplex the model,the more details it has 
aptured, and hen
e it be
omes fragile to otherwiseinsigni�
ant 
hanges. We 
an 
onne
t this to the investment prin
iple de-s
ribed above. As evolution 
ontinually 
onstru
ts solutions to �t the 
urrentenvironment by pat
hing up and re
ombining old ideas, the evolved solutionsbe
ome more and more 
omplex, and hen
e more and more spe
ialized. Thisphenomenon is evident for most spi
es in nature. That is, most spi
es arehighly spe
ialized to bene�t from the environment in whi
h they exist, ormore spe
i�
, the environment in whi
h their an
estors existed.We have now argued that evolution does not inherently obey the prin
ipleof O

am's Razor.1.2 Problem Spa
eThe problem spa
e of this thesis, is de�ned to be within the appli
ation ofthe Geneti
 Programming paradigm to a real time 
omputer game. Theexperiments and results reported in this thesis builds upon work previouslyreported by Holm and Nielsen (2002).In the previous se
tions, we argued that one inherent property of evolutionis the bias toward favoring old ideas over new ones. We should realize thatthis property 
an be damaging to the evolution, if the early ideas are not op-timal for solving the 
urrent problem. If these sub-optimal ideas gain strong



1.2 Problem Spa
e 5foothold in an entire population, leaving no room for further developmentand improvement, the evolution is said to have 
onverged prematurely.We will postpone further narrowing of the problem spa
e until the spe
i�
domain has been introdu
ed in 
hapter 2. Also we will summarize our pre-vious work and results in 
hapter 4. In 
hapter 5 we will 
on
lude this partof the thesis in an analysis of the previous results, and a detailed problemde�nition.





2 The Environment andthe Domain�Joshua: An interesting game - theonly winning move is not to play�,From the movie, War Games.This 
hapter serves as a brief introdu
tion to the Unreal Tournament (UT)environment (the following se
tion), and the Gamebots domain (se
tion 2.2).We will only 
over topi
s relevant to the 
ore of the proje
t; follows the es-sential 
hara
teristi
s of UT and Gamebots. For a more general and detailedinformation on these visit Epi
-Games et al. (2001) and Gamebot-Proje
t(2001).2.1 Unreal Tournament - The GameUnreal Tournament is a game belonging to the 
lass of 3D 1st person shoot-ers. In this 
lass of games agents 
an move around in a 3D environment, see�gure 2.1 and �gure 2.2. The player 
ontrols an avatar in the game and his
omputer s
reen displays the world through the avatar's eyes as a humanvisually per
eive a 3D world (1st person perspe
tive). UT is a fast, 
omplexand dynami
 game domain. It o�ers a broad set of game types, eg. DeathMat
h, Domination and Capture the Flag, whi
h is further des
ribed in se
-tion 2.1.1. In addition, multiple di�erent world maps, varied both in sizeand semblan
e, are available as indi
ated in J. Gerstmann (1999). Ea
h ofthese game types requires a number of opponents, whi
h 
an be AI or human
ontrolled opponents. The AI 
ontrolled opponents in UT, will be des
ribedin se
tion 2.1.2.2.1.1 Game TypesThere are several possible game types available in UT. Most of these, are mu-tations of the three (probably) most popular game types whi
h are des
ribedbelow:Death Mat
h: Kill as many 
ompetitors as possible and try to avoid beingkilled by them. The player who rea
hes the frag 1 limit �rst (or hasthe most frags when the time limit is rea
hed) is the winner.Domination: Two teams or more, �ght for possession of several 
ontrol pointss
attered throughout the map. To take a 
ontrol point, a player simplytou
hes it, and that 
ontrol point is now owned by that player's team.When a team owns a 
ontrol point, their s
ore in
reases steadily untilthe other team tou
hes the 
ontrol point.1UT term for kill. 7
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Figure 2.1: Some of the UT environment seen from above.
Capture the Flag: The players are divided into two teams. Ea
h team has abase with a �ag that they must defend. Points are s
ored for a teamwhen a team member 
aptures the opposing team's �ag, by bringingit ba
k to the team's base while their own �ag is safely 
ontained inthe home base.Common to all these game types is that players respawn at random lo
ationswhen killed.2.1.2 Opponents in Unreal TournamentIn UT the player 
an play against the built-in botsor other players 
onne
t-ing through LAN's or the Internet. The AI 
ontrolled bots in UT is by manypeople 
onsidered to be formidable opponents. They 
an be extremely hardto beat and to a 
ertain level their behavior 
an be 
on
eived as that of ahuman. The strength of the bots is only partly due to 
leverly programmeds
ripts. Sin
e the bots a

ess information hidden to the human player (eg.player positions, though not visible in the line of sight), they have an ad-vantage 
ompared to human players. The UT environment is using built-innoise as default when aiming - meaning that even perfe
t aim at an oppo-nent, will not guarantee hitting the opponent. The noise varies dependingon the weapon used. The bots gain an advantage when in
reasing their skilllevel, be
ause their aiming noise will be redu
ed, whi
h is not the 
ase forthe human player.



2.1 Unreal Tournament - The Game 9

Figure 2.2: Two players in a 
lose en
ounter.2.1.3 Items In Unreal TournamentTo su

eed in any of the di�erent game types - let it be Domination, DeathMat
h or Capture the Flag - it is an asset to be superior in 
ombat againstan enemy. To master this ability, one should be able to perform a numberof a
tions at the right time. Some of these a
tions are listed below:� Pi
k up health.� Pi
k up armor.� Pi
k up weapons.� Pi
k up ammunition.� Initiate o�ensive or defensive movement patterns.� Choose an appropriate weapon.� Aim with the 
hosen weapon.� Exe
ute a strategy (
ombine and plan possible a
tions).As 
an be seen above, some of the mentioned a
tions involve the presen
e ofhealth, armor, weapons and ammunition. These items will be des
ribed inthe following se
tions. The basi
 elements of motion 
ontrol for movementwill be des
ribed in se
tion 2.1.5



10 The Environment and the DomainWeaponsThere are various weapons available in UT. All the weapons have distin
tattributes whi
h make them more or less useful depending on the situationin whi
h they are used. Some of the weapon attributes are general enoughto 
ategorize into di�erent 
lasses. The �rst 
lassi�
ation is instant weaponsopposed to non-instant weapons:Instant weapons: These weapons hit the enemy with negligible delay, hen
eimpossible for the enemy to dodge.Non-instant weapons: These weapons �re with slower bullets or ro
kets whi
hare visible and 
an be dodged.And the se
ond 
lassi�
ation is volatile weapons opposed to proje
tile weapons:Volatile weapons: These weapons �res with explosives whi
h on impa
t with asolid surfa
e or player explode. The damage taken by a player de
reaseswith distan
e to the 
enter of impa
t.Proje
tile weapon: These weapons �res with proje
tiles or similar and areonly dangerous if they hit the target.The 
hara
teristi
s of the various kind of weapons 
an be seen in the listbelow:Impa
t Hammer: Close 
ombat weapon whi
h �res slowly and in�i
t a mediumamount of damage. This weapon does not use any kind of ammuni-tion. When �red against solid obje
ts, the weapon 
an damage theinstigator. The player is equipped with this weapon at the start of agame.Chain Saw: Close 
ombat weapon whi
h in�i
ts 
ontinually damage when in
onta
t with the enemy.Enfor
er: The basi
 weapon in UT. This handgun is a

urate on medium toshort range distan
es. The weapon has a slow �ring rate. The weaponis in�i
ting instant but low damage.Double Enfor
er: When a player pi
ks up a se
ond enfor
er he is given thepossibility to utilize them both at the same time, by 
arrying one inea
h hand.Sho
k Ri�e: This ri�e �res slowly but a

urate, also on medium and longdistan
es. It in�i
ts medium damage instantly.Bio Ri�e: This weapon �res 
lumps of sludge whi
h glom onto solid surfa
es.It then explodes after a short time or when tou
hed by a player (alsothe instigator), 
ausing a medium amount of damage. The weapon�res at a medium rate, has 
lose to medium range and the 
lumps are�ying slowly.



2.1 Unreal Tournament - The Game 11Weapon type Damage Velo
ity VolatileImpa
t Hammer N/A 0 NoChain Saw N/A 0 NoEnfor
er 17 1 NoDouble Enfor
er 2�17 1 NoSho
k Ri�e 40 1 NoBio Ri�e 40 800 YesPulse Blaster 20 1450 NoSniper Ri�e N/A 1 NoRipper 30 1200 NoMinigun 17 1 NoFlak Cannon 16 2500 YesRo
ket Laun
her 75 900 YesTable 2.1: The weapon 
hara
teristi
s. Noti
e that in�nite velo
ity means instantdamage. The velo
ity is measured in UT-units.Pulse Blaster: Fires rapid low damaging proje
tiles at a high rate of �re.This weapon is usually used as a medium range weapon.Sniper Ri�e: This ri�e has a very slowly rate of �re. But, it is very a

urateand hits instantly in�i
ting a high level of damage. When the proje
tilehits the opponent's head it kills instantaneously. A pi
ture of the sniperri�e 
an be found on �gure 2.2.Ripper: The Ripper �res sharp blades whi
h 
an ri
o
het o� solid surfa
es.The blades are 
an when ri
o
heting in�i
t damage on the instigatorwhen 
areless. The blades is moving with high speed and 
an killinstantly if they hit a player's head, else they will in�i
t medium tolow damage. The Ripper is �ring at a medium rate.Minigun: This weapon is �ring the same proje
tiles as the Enfor
er, but ata very rate of �re. If not used with 
are this weapon 
an run out ofammo in se
onds, but 
an also redu
e the enemy's health in se
onds.Flak Cannon: This weapon works virtually as a real life shotgun. It �res
hunks of jagged metal whi
h, like the razor blades from the Ripper,
an ri
o
het. The 
loser it is �red against the enemy, the more damageit in�i
ts. In 
lose en
ounter one shot is often enough to kill the enemy.Ro
ket Laun
her: This weapon laun
hes ro
ket-propelled grenades that ex-plodes on impa
t. The grenades are moving slowly, but in�i
t a mediumamount of splash damage on impa
t with solid surfa
es, and a highamount of damage when hitting the enemy. The exploding grenades
an hurt the instigator if he �res against a nearby solid surfa
e.Table 2.1 shows the spe
i�
 attributes for ea
h weapon.



12 The Environment and the DomainAmmo type Rounds Fits toSho
k Core 10 Sho
k Ri�eBiosludge Ammo 50 Bio Ri�ePulse Cell 25 Pulse BlasterRi�e Rounds 25 Sniper Ri�eRazor Blades 25 RipperBullets 50 Enfor
er & MinigunFlak Shells 10 Flak CannonRo
ket Pa
k 12 Ro
ket Laun
herTable 2.2: Ammunition pa
kets, number of rounds in a pa
ket and the weapon itbelongs to.AmmunitionInitially a weapon is loaded with a default amount of ammunition. Everyplayer has room for additional ammo and he 
an a
quire this by pi
king upammunition. Di�erent weapons require di�erent ammunition - the di�erenttypes 
an be observed in table 2.2.HealthAll players in a UT game starts with 100 initial health points. When theplayer rea
hes zero, he dies and respawns at some random spawning point.To avoid death in UT, a player 
an pi
k up di�erent kinds of health pa
kets.These are listed in the following:Health Vial: Ea
h health vial gives the player 5 health points, to a maximumof 199.Health Pa
k: Replenishes 20 points of health, up to a maximum of 100.Keg O' Health: Gives the player 100 health points, to a maximum of 199.ArmorBesides the possibility to pi
k up health to avoid death, a player also hasthe option to pi
k up armor. Armor provides the player with armor pointsof whi
h he initially has zero. The maximum of armor points a player 
anretain is 150. Besides providing the player with armor points, the di�erenttypes of armor prote
t the player in di�erent ways. The 
hara
teristi
s ofthe three armor types 
an be found below:Thigh Pads: Provide the player with 50 armour points. They will absorb aper
entage of all damage dealt a player, until they wear away.Body Armor: Provide the player with 100 armour points. It absorbs a signif-i
ant amount of, though not all the damage dealt to the player.
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(a) (b) (
)Figure 2.3: The three manouevres a player in UT 
an perform; (a) Strafe left/right,(b) Move forward/ba
kward, (
) Turn left/right.Shield Belt: This is the most powerful defensive devi
e and provides theplayer with 150 armor points. The shield belt absorbs all damageuntil it is destroyed.2.1.4 The Players Initial ConditionWhen a player enters a game of UT, no matter the type, he will o�set at aninitial 
ondition of health, armor, equipment, et
. The initial values are asfollows: Weapons Impa
t Hammer & Enfor
erAmmo Bullets pa
k (50)Health 100Armor 02.1.5 Controlling a PlayerA player who manouevre an UT agent has a set of 
ommands available he
an 
ontrol by his keyboard and mouse. The set is given by the followingdes
ription:Strafe Right/Left: These two 
ommands will 
ause the player to move side-ways, either left or right, as 
an be seen in �gure 2.3(a).Move Forward/Ba
kward: These two 
ommands will 
ause the player to runforward or ba
kwards as 
an be seen in �gure 2.3(b).Turn Left/Right: These two 
ommands will 
ause the player to turn right orleft and will also 
hange the point he is fa
ing. This is be
ause theplayer is not able to turn his head. This movement 
an be seen in�gure 2.3(
).Shoot: This 
ommand will 
ause the player to �re the weapon he is holdingin the present moment. He will aim in the dire
tion he is fa
ing.These four kinds of basi
 
ontrol 
ommands 
an be exe
uted in parallel.As an example a player 
an strafe while turning against a �xed point and



14 The Environment and the Domainshooting - the UT term for these spe
i�
 parallel a
tions is 
ir
le stra�ngwhile shooting.2.2 The Gamebots DomainGamebots is a modi�
ation to UT and is brie�y des
ribed in this se
tion. Formore detailed information on the Gamebots domain please visit Gamebot-Proje
t (2001).2.2.1 The FeaturesThe Gamebots domain was 
reated to provide AI resear
hers with a dynami
,�exible and 
hallenging environment. It supports multiagent resear
h and isrelatively2 platform independent. The most apparent features are summa-rized in the following list:� Supports some of the most important game types in UT; Capture theFlag and Domination. New game types 
an be added.� Applies the same �exibility as UT. This in
ludes the UT-s
ript lan-guage whi
h 
an be used to extend the range of game types, items,environments, et
.� Provides a more friendly looking environment - The Magi
 Wizardtheme; for an example look at �gure 2.4.� Makes it possible to do resear
h within the �eld of human-AI 
ollabo-ration and 
ompetition.� Publi
ly available at Gamebot-Proje
t (2001).� Is built on a very popular game, whi
h makes it interesting for otherpeople than the usual resear
her. This leaves a 
han
e to gather abroad 
ommunity working on similar tasks and share experien
es.2.2.2 The Gamebots SystemThe Gamebots system allows players in a UT game to be 
ontrolled bynetwork so
kets 
onne
ted to 
lients that 
an be 
ontrolled by an appli
ation.It is thereby possible for an appli
ation running a player to send a
tions,whi
h should be exe
uted by the player in the game. The appli
ation alsogain information about the game state, whi
h makes it possible to plan thenext a
tion. In this way both remote 
ontrolled AI players, human playersand the built-in UT bots 
an play at the same time, in the same game.Players must master advan
ed AI 
apabilities to a
hieve the aims of the gametypes, this in
lude path planning, memorizing the 
hara
teristi
s of the 3Denvironment (items, paths, et
.) and strategi
 planning.2UT and Gamebots is ported to at least Linux, Windows and Ma
.
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Figure 2.4: The friendly Gamebots theme - with wizards, friendly sounds and magi
looking weapons, like the bubblewand - altogether looking harmless.
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SocketFigure 2.5: A sket
h of the general organization of the Gamebots software (
opiedfrom Adobbati et al. (2001), used with permission).2.2.3 The Gamebots Intera
tion Proto
olThe Gamebots intera
tion proto
ol is a text based proto
ol of single-linemessages between the server and the gamebots modi�
ation. The gamebotsserver sends sensory information messages to the bots 
ontaining the 
ur-rent state of the UT world. The bots operate in the environment by sendinga
tion messages ba
k to the server. There are two kinds of messages; syn-
hronous and asyn
hronous. The syn
hronous messages in
lude things likevisual updates and status of the bot itself. As the name implies they 
ome ata regular interval. The asyn
hronous messages are typi
al events whi
h areexpe
ted to happen less frequently, eg. if another player is visible or messagesabout in
oming �re. The a
tion 
ommands are for example the movement
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ommands des
ribed in se
tion 2.1.5. A more detailed des
ription 
an befound at Gamebot-Proje
t (2001).



3 EvolutionaryAlgorithms�It would be ni
e to be perfe
t: meanwhilewe 
an only strive to improve�,David E. Goldberg.Geneti
 algorithms and geneti
 programming are non-deterministi
 or sto
has-ti
 heuristi
 sear
h algorithms belonging to the paradigm of evolutionaryalgorithms. The main goal of this 
hapter is to introdu
e the 
on
ept of GP,but as this 
an be seen as a relaxation of GAs we will give a brief introdu
-tion to GA and thereafter GP. A brief survey of evolutionary algorithms andproblems suited for them will introdu
e this 
hapter.3.1 Introdu
tionLet us start by looking at how an optimization problem is de�ned and howsu
h a problem 
an be solved. An optimization problem is de�ned by apair (
; F ) where 
 is the spa
e of solutions over whi
h the optimizationis performed (i.e. the sear
h spa
e) and F is the fun
tion to be optimized(i.e. the �tness fun
tion or obje
tive fun
tion), and measures the goodnessof every solution in the sear
h spa
e. Then: F : 
 ! R. Note that 

an be �nite, in�nite, or de�ned a

ording to 
ompli
ate restri
tions and Fmay be multimodal, non-di�erentiable, or de�ned a

ording to 
ompli
aterestri
tions.The obje
tive is to �nd a solution (or, alternatively, solutions) z� 2 
 su
hthat: F (z�) � F (z) for all z 2 
 in the 
ase of maximization, or F (z�) �F (z) for all z 2 
 in the 
ase of minimization. A visual example of a �tnesslands
ape 
an be seen in �gure 3.1.3.1.1 Sear
h StrategiesWhen we want to solve a optimization problem, e.g. maximization of A
k-ley's 1 fun
tion depi
ted in �gure 3.1, we have to 
onsider some kind of sear
hstrategy. The 
hoi
e of sear
h strategy 
an depend on problem 
omplexity,available 
omputation power and various other parameters. A number ofsear
h strategies are available and a rough 
lassi�
ation of these is sket
hedbelow:� Brute for
e (e.g., depth-�rst)� Heuristi
:� Deterministi
 (e.g., hill-
limbing)1F (z) = F (z1; z2) = e 12 P2i=1 
os(2�zi)+20e�0:2p 12 P2i=1 z2i �e�20, where �3 � z1; z2 �3. 17
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Figure 3.1: Fitness lands
ape given by A
kley's fun
tion. This fun
tion is 
ommonlyused for ben
hmarking GAs.� Non-deterministi
 or sto
hasti
 (e.g., evolutionary algorithms).So a generi
 pro
edure for solving any optimization problem is: Sear
h forthe point of the sear
h spa
e with the best obje
tive fun
tion value by usingan appropriate sear
h strategy for exploring the sear
h spa
e.A

ording to Heitkötter and Beasley (1994) an evolutionary algorithm (EA)is an umbrella term used to des
ribe 
omputer-based optimization problemsolving systems whi
h use 
omputational models of evolutionary pro
essesas key elements in their design and implementation. Some 
ommon types ofEAs are:� Geneti
 algorithms.� Evolutionary programming.� Evolution strategies.� Geneti
 programming.In short, EAs is a 
lass of algorithms designed for sear
hing in very big sear
h-spa
es. Although simplisti
 from a biologist's viewpoint, these algorithmsare su�
iently 
omplex to provide robust (good performan
e a
ross a varietyof problem types) and powerful adaptive sear
h me
hanisms. Basi
ally, twosteps are 
ommon to most types of EA:1. Exploitation of known solutions.2. Exploration of new solutions.In the �rst step, the best solutions of a small set of known solutions aresele
ted in a pro
ess inspired by natural sele
tion, i.e. �survival-of-the-�ttest�. These sele
ted solutions are exploited by 
onstru
tion of new so-lutions through re
ombination. Intuitively, this step might be thought ofas a sense of small steps towards better solutions is exer
ised. This step isgenerally a tradeo� between random variation and stru
tured variation. Inthe se
ond step, new solutions are explored by 
reating new solutions fromvariations of the known solutions. Intuitively, this step aims to perform long



3.2 Geneti
 Algorithms 19jumps in the sear
h spa
e in order to explore areas that, otherwise, remainunexplored. If the new solutions are 
reated totally at random, the e�
ien
yof the algorithm might be undesirably low. On the other hand, if the solu-tions are 
reated in a totally stru
tured manner the algorithm might not beable to �nd satisfying solutions.3.2 Geneti
 AlgorithmsAs indire
tly stated in the quote introdu
ing this 
hapter, we 
an not expe
talways to rea
h perfe
tion, and hen
e, we should 
on
entrate on improving.This is the 
entral idea and driving for
e in evolutionary 
omputation andGeneti
 Algorithms (GA). Inspired by natural sele
tion and natural evolu-tion, GAs e�
iently sear
h through very large sear
h spa
es by moving aset of solutions (a population) to new regions with an expe
tation of im-provement. In the following we will des
ribe how GA su

eed by doing justthat.3.2.1 The Basi
 Loop of EvolutionBefore going into details, let us examine the main loop in GA, as depi
tedin �gure 3.2. The starting point of the loop in �gure 3.2 is the population in
Evaluation

of
individuals

Selection by

by mutation and
Reproduction

crossover

fittest principle
survival−of−the−

Figure 3.2: The loop of evolution.the leftmost 
ir
le. This population is our 
urrent population, and moving tothe topmost 
ir
le we evaluate ea
h individual in our population with respe
tto some prede�ned �tness fun
tion. After doing so, we are able to performsele
tion a

ording to the prin
iple of �survival-of-the-�ttest�. Sele
tion 
anbe implemented in numerous ways, and we mention only the most 
ommonlyused:Roulette Wheel Sele
tion (RWS): Ea
h individual is assigned a probability ofbeing sele
ted proportional to its a
tual �tness. Formally the proba-bility Pi of individual i being sele
ted is:Pi = FiPj2Pop Fj ; (3.1)



20 Evolutionary Algorithmswhere Pop is the population and Fj is the �tness of individual j. Nowthe individual with the highest �tness will have the highest probabilityof being sele
ted for reprodu
tion.Rank Based Sele
tion (RBS): If the population 
ontains some superindivid-ual 2 then this individual will be dominant in RWS. This is generallyundesirable, for reasons explained in se
tion 3.2.2. Instead of using thea
tual �tness when spinning the roulette wheel, we 
ould map the raw�tness of an individual to the ranking of that individual relative to therest of the population. So the best individual gets a ranked �tness ofN , (where N is the size of the population), the se
ond best gets N � 1and so forth. The probability Pi of individual i being sele
ted is now:Pi = RiPNj=0N � j = 2 �RiN(N + 1) ; (3.2)where Ri is the ranked �tness of individual i. Now no superindividual
an dominate the sele
tion.Tournament Based Sele
tion (TBS): This method works by randomly pullingtwo (or more) individuals out of the population and then sele
ting the�ttest. So, the probability of individual i being sele
ted is 
omputedby multiplying the probability of the individual being pulled out atrandom with the probability that a less �t individual being pulled.With a tournament-size of two we get the probability Pi of individuali being sele
ted: Pi = 2N �1� N �RiN � 1 � ; (3.3)where Ri is the ranked �tness of individual i and N is the size of thepopulation.TBS 
ompared to RBS allows superindividuals a higher level of dominan
e,but still not to the extend of RWS. As an example, a superindividual in apopulation of size 10 has the probability of approximately 18% using RBS and20% using TBS. Furthermore, the least �t individual 
an never be sele
tedusing TBS.The last step of the evolution, is the pro
ess of generating the next populationfrom the set of individuals sele
ted for reprodu
tion, and the bottom 
ir
le in�gure 3.2 
ontains the typi
al operators for doing just that, namely mutationand 
rossover. From applying these geneti
 operators to the subset of thepopulation that was sele
ted in the previous step, a new population emergesand the loop is ready to start a new 
y
le. Many di�erent types of 
rossoverand mutation has been investigated throughout the years, the most primitiveand probably most 
ommonly used being the one-point 
rossover and one-point mutation. These basi
 operators are depi
ted in �gure 3.3 and amongsta few other 
ommonly used operators are des
ribed below:2A superindividual is an individual with a �tness several degrees of magnitude higherthan the se
ond most �t individual in the population.
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Figure 3.3: Examples of the 
rossover and mutation operators in a
tion.One-point Crossover: As shown in �gure 3.3, we need two distin
t individu-als as parents. One random 
ut-point is 
hosen, and two o�spring are
onstru
ted by re
ombining the four pie
es into two new distin
t indi-viduals. The o�spring are added to the next population. The 
rossovera
tivity is part of the exploitation phase.Two-point Crossover: This approa
h is exa
tly like the one-point 
rossovermethod, using two 
ut-points instead of one. That is, three pie
esfrom ea
h parent should be re
ombined into two o�spring.Uniform Crossover: A randomly generated mask identi�es the 
ut-points thatshould be used. This mask is typi
ally implemented as just a randomlygenerated array of bits with a length equal to the number of possible
ut-points. Based on the value in this array 
ut-points are either usedor not used.Single-point Mutation: The property at a randomly sele
ted mutation-pointof the individual is mutated to 
reate one o�spring. In doing that wemight destroy the good properties that made us sele
t this individualin the �rst pla
e. On the other hand we might as well improve theindividual by 
hanging some bad property to a better one. And evenmore important, mutation is the only way new genes 
an be introdu
edin the population, and thereby keeping a level of diversity3. No matterwhat happened, this new individual is added to the next population.In �gure 3.3, the head of the individual is mutated to 
reate the newindividual. The mutation a
tivity is part of the exploration phase.Gaussian Mutation: Instead of mutating a property totally at random, themutation operator 
hooses the new value of the property based on aGaussian distribution around the 
urrent value.Many other methods for 
rossover and mutation exists, we have just men-tioned a few.So, the population of individuals in the next generation is �rst of all 
om-posed of o�spring produ
ed by the geneti
 operators, thereby repla
ing indi-3In se
tions 3.2.2 and 3.2.3 we dis
uss the existen
e of diversity in a population.



22 Evolutionary Algorithmsviduals in the population of the 
urrent generation. In some 
ases, however,it might be possible that individuals generated by the 
rossover and muta-tion operators do not des
ribe valid solutions to the problem. In that 
ase,it is typi
al to do one of three things:1. Introdu
e a repair operator that either randomly or systemati
allymodi�es invalid solutions until they des
ribe valid solutions.2. Severely penalize invalid solutions during evaluation.3. Dis
ard invalid solutions.When implementing GAs, you would typi
ally use a bit string representationof your individuals. As an example 
onsider this s
enario:You want to maximize the value of an integer variable x in the interval[1..32℄, and your �tness fun
tion is f(x) = px. It su�
es to use a bitstring of length 5 to des
ribe all points in the sear
h spa
e, integers in therange [1..32℄. Of 
ourse this sear
h spa
e is so small that you 
ould eas-ily 
he
k all 32 elements and determine the global optimum, but this isjust an example. You would then start out with a population of randomlygenerated individuals, say: {[00110℄[10011℄[01111℄...}. And �tness would be
omputed by 
omputing the square-root of the binary value: f([00110℄) = p6= 2.45. Crossover with the randomly 
hosen 
ut-point equal to two wouldbe: [001|10℄[100|11℄![00111℄[10010℄. Mutation would be just to �ip somerandomly 
hosen bit, i.e.:[01111℄![01110℄In this se
tion we have only in
luded the most 
ommon and basi
 methodsfor 
rossover and mutation. These are good for the purpose of explanation,and others are typi
ally modi�
ations of or extensions to these basi
 ideas.3.2.2 Ensuring Convergen
eWe stated earlier in this se
tion that GAs perform a sear
h in some largesear
h spa
e. Therefore it is reasonable to ask the question: 
an we be sureto �nd what we are looking for? 4. The answer is: No, not if the sear
hspa
e is too large to sear
h by brute for
e. But we 
an ensure that if we visitthe best individual in the sear
h spa
e (the global optimum), then we willkeep that individual. This is ensured by adding the 
on
ept of elitism to theloop in �gure 3.2, whi
h means that the best individual of a generation is
opied (without modi�
ation) to the next generation.Apart from the insuran
e of keeping the globally best individual if visited,keeping the best individual has an immediate advantage if the �tness fun
tionis simple and with few optima. If only a few optima exist, then why not tryto 
limb one as soon as on is found?A side-e�e
t of adding elitism is that the algorithm in general will 
onvergefaster to some optimum, and you run the risk that this optimum is not theglobal optimum but some lo
al optimum. This situation is often referred toas premature 
onvergen
e. Figure 3.4 shows a population, and their lo
ationin a �tness spa
e. This population is in danger of 
onverging prematurely at4We are looking for the best individual in sear
h spa
e, remember?
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Fitness

IndividualFigure 3.4: A population 
limbing a lo
al optimum, and without mutation would bedoomed to rea
h premature 
onvergen
e.a lo
al optimum, that is, evolution 
omes to a halt, and the global optimum isnever rea
hed. Only by mutation will some o�spring be able to �nd anotheroptimum. In se
tion 3.2.3 we will dis
uss methods (other than mutation)for maintaining diversity in the population in order to redu
e the risk ofpremature 
onvergen
e.Elitism is not ne
essarily a bad thing. As we argued above, it speeds up theevolution that guides the population towards some optimum. And if you arejust interested in �nding a good solution fast, but the perfe
t solution is notof spe
ial interest to you, then you 
ould enhan
e performan
e of your GAby adding elitism. You might even 
onsider to 
opy the two or three bestindividuals to the next generation, to further speed things up.It is possible to investigate the 
onvergen
e properties of GA with a moreformal approa
h than the one taken in this thesis. It has previously beendone, famous examples are Building Blo
k Hypothesis by Goldberg (1989)or the seminal S
hema Theorem by Holland (1992). S
hemata are genotypetemplates that de�ne a subset of the sear
h spa
e. A s
hema is en
odedin the same language used for en
oding solutions with the addition of aspe
ial don't 
are symbol #. So, if we en
ode solutions using �xed lengthbit strings, an example of a s
hema 
ould be [00#1#℄, and this s
hema issampled by the individuals [00010℄,[00011℄,[00110℄ and [00111℄. The order ofa s
hema is the number of �xed positions (non-# symbols) and the de�ninglength of a s
hema is the distan
e in positions between the �rst and the last�xed position of the s
hema. For instan
e the s
hema [0###1#℄ has order2 and de�ning length 4. The S
hema Theorem states that short low orders
hemata whi
h is sampled by �t individuals will rapidly spread throughoutthe population. The Building Blo
k Hypothesis states that late generationindividuals samples many su
h short low order s
hemata, and hen
e are
omposed from many small and good building blo
ks.3.2.3 Maintaining diversityWe need to explore new areas of the sear
h spa
e and not exploit a knownoptima for too long, in order not to get trapped in a lo
al optimum. As a sidee�e
t the sear
h is slowed down, that is, 
onvergen
e will be delayed. This isvery important for 
omplex domains in whi
h �tness fun
tions have multiplelo
al optima, as the risk of 
onverging prematurely is generally higher for a



24 Evolutionary Algorithmshigher number of optima.A lot of di�erent ways to maintain diversity within the population of GAexists, and in the following se
tions a few of these will be des
ribed. Asa 
oarse 
lassi�
ation, we 
an speak of ni
hing and non-ni
hing te
hniques.They di�er only in the formulation of subpopulations and the promotion ofthese, whi
h is more expli
it in the ni
hing te
hniques, while in the non-ni
hing te
hniques it is only an impli
it side-e�e
t.SharingGoldberg (1989) des
ribes a ni
hing te
hnique that dynami
ally divides thepopulation into subpopulations of appropriate size. The name Sharing referto the fa
t that �tness is shared among individuals that are 
lose to ea
hother. That is, �tness is regarded as a limited resour
e that individualsmust share. Raw �tness fraw is 
al
ulated for all individuals as usual, and inaddition a sharing fa
tor for all pairs of individuals s(i; j) is 
al
ulated. Thenthe e�e
tive �tness feff is 
onstru
ted by dividing fraw with the a

umulatedsharing fa
tor, formulated in equation (3.4).feff (i) = fraw(i)Pj2Pop s(i; j) (3.4)In equation (3.4), Pop is the population. The sharing fun
tion maps adistan
e measure d(i; j) to a sharing fa
tor in the interval [0::1℄. As a rule ofthumb, the maximum sharing fa
tor should o

ur between two individualsif they have the minimum possible distan
e to ea
h other, e.g. identi
alindividuals i and j should have s(i; j) = 1. For a population of size N , atotal of N(N�1)2 distan
es must be 
omputed to totally order the population,and hen
e this 
al
ulation 
an not be allowed to be very expensive.The aim of this te
hnique is to avoid the situation where all individuals in thepopulation o

upies the same peak in the �tness lands
ape. By investigatingequation (3.4) it is obvious that the greater the peak, the more individuals
an be allowed to inhabit it.CrowdingThis 
ommonly used non-ni
hing te
hnique is one of the earliest of its kind,�rst proposed by De Jong (1975). Using this te
hnique, generations are not
learly bounded but rather a steady state model is used, in whi
h generationsoverlap. A proportion of the population (referred to as the generation gapG) is 
hosen to reprodu
e, and the new o�spring repla
es existing individualsa

ording to some s
heme. A 
ommon s
heme is to extra
t a sample set ofsize CF (
rowding fa
tor) from the population. An o�spring then repla
es themember from the sample set that is most similar to the o�spring. The e�e
tof this approa
h is intuitively that, as o�spring repla
e individuals a

ordingto similarity, subpopulations or spi
es 
ould be expe
ted to emerge. Thenumber of spi
es that we would expe
t to emerge is of 
ourse 
ontrolled byCF, De Jong (1975) had su

ess with CF values of 2 and 3 leaving room fora few spi
es to evolve.
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ted MatingRestri
ted mating 
an be seen as a variation of the 
rowding method de-s
ribed above. It is a non-ni
hing te
hnique that only impli
itly promotesdisperse populations by putting up a restri
tion of mating a

ording to somes
heme. A typi
al s
heme is to only allow individuals to mate if they arewithin some distan
e to ea
h other. As mentioned by Goldberg (1989), thisrequirement 
ould be relaxed so that it is only required as long as improve-ment in �tness is the result. When no improvement is measured, inbreedingis reje
ted in favor of 
ross-breeding.Like the te
hnique of sharing des
ribed above, this s
heme 
ould be imple-mented by 
al
ulating an expli
it distan
e measure for any two sele
ted in-dividuals before allowing them to reprodu
e. Another implementation 
ouldbe to let all individuals 
arry a mating template, and when the template ofindividual i is mat
hed by individual j, then i is allowed to mate with indi-vidual j. To be more spe
i�
, the individual is divided into a fun
tional partand a template part. The fun
tional part, being the part used for assigninga �tness value to the individual. And the template is then used only for�nding good mates. However, the template part should still undergo geneti
re
ombination together with the fun
tional part, and thereby good skills for�nding mates would also be rewarded.The aim of restri
ted mating is to avoid stillborn individuals that also 
ouldhave a lethal impa
t on the evolutionary pro
ess itself.The Island Prin
ipleThe island prin
iple is a
tually not just one method, but rather a 
olle
tionof methods where subpopulation expli
itly (sometimes even physi
ally) areevolved in parallel. Most of the methods has been developed mainly fordistributing the GA, but the methods also holds the inviting property ofintrodu
ing an extended level of diversity 5 into the population. The meth-ods (like everything else in GA) is inspired by natural evolution in whi
hyou do not see one global population evolving as a unity. Instead numeroussubpopulations evolve in parallel 6 and, from time to time, individuals mi-grate from one population to another, thereby spreading its inherited genesto new areas. In GA we therefore 
an do similarly. The initial populationis split up into X subpopulations, and the loop of evolution (see �gure 3.2)is started on ea
h subpopulation. From time to time some migration shouldtake pla
e, a

ording to some topology. Fernández et al. (2001) suggest thetwo 
ommonly used topologies depi
ted in �gure 3.5. Figure 3.5a shows aring topology, in whi
h individuals migrate only in one dire
tion 
ontraryto the mesh topology, in whi
h individuals have a 
hoi
e of four dire
tionswhen migrating.The migration 
ould either pro
eed in some random order allowing popu-lations to grow and shrink. But we are not interested in ending up with5E.g. see Fernández et al. (2001).6These parallel evolving subpopulations are (in nature) often based upon di�erent�tness fun
tions. That is, a strategy might be su

essful on the south pole, but may failin Afri
a.
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(b)Figure 3.5: Figure (a) shows an example of 5 islands 
onne
ted a

ording to thering topology. Figure (b) shows 9 islands 
onne
ted in the mesh topology. The meshloops, giving a toroidal stru
ture.just a few (possibly one) inhabited islands, this would eliminate the wholeidea. Assigning a probability of migration (PM) to ea
h individual whi
h isproportional to the size of the population inhabiting that island will makeindividuals �ee from overpopulated islands, and by limiting the number ofmigrations per generation, you would over time approximate an even dis-tribution of the number of individuals on ea
h island. Another approa
his to have a �xed deterministi
 migration s
hema, and thereby keeping thepopulation sizes stati
. Using the ring topology, it would be obvious to justlet one individual migrate ea
h generation.If you implement elitism and are afraid that the evolution will su�er frompremature 
onvergen
e, then a possible approa
h 
ould be to let PM beproportional to the �tness of the individual. This ensures that the bestindividual will migrate more often than other individuals and hen
e, not beable to dominate one spe
i�
 subpopulation. It is of 
ourse true, that su
ha superindividual then just as well 
ould dominate the total population bymoving around spreading its genes in every subpopulation on its way. Butit will take appre
iable more generations for it to do so, as it never stays formore than a few generations in the same subpopulation. And it is likely toen
ounter a subpopulation in whi
h some individual is more �t, and hen
ewill no longer be subje
t to elitism.The evolution that we expe
t by applying the island prin
iple, 
ould be de-s
ribe by the snapshot of a population of �ve subpopulations shown in �gure3.6. In �gure 3.6 we see that there are typi
ally more than one subpopulationpresent at a spe
i�
 peak. This is what will happen if the best individualof a subpopulation is for
ed to migrate. As a subpopulation 
onverges toa lo
al optimum it is generally guided by the best individual in the popu-lation, as this is the individual that will be sele
ted for reprodu
tion mostoften. But as the best individual is repla
ed by migration every on
e in awhile, the whole population will generally shift dire
tion, and ideally sear
hall lo
al optima on its way. Here is a s
enario, based on �gure 3.6: Theislands are 
onne
ted a

ording to the ring topology, and the order is bla
k,
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Figure 3.6: A snapshot of a population of �ve subpopulations (bla
k, red, yellow,green and blue) evolving. This is not empiri
al data, but this is what we expe
t ofthe island prin
iple. A-E are the individuals that re
ently migrated.red, yellow, green and blue. Every se
ond generation the best individual ofan island migrates to the next island. The individuals A-E has just migratedto a new island. A was the best individual of the bla
k island, but now thebla
k island ex
hanged A for E, and the population of the bla
k island willnow move towards E, as this is the new best individual. In doing this, thepopulation will visit some of the mountain tops on the way.Massive Distributed Parallel Geneti
 AlgorithmAs des
ribed by Shumeet (1992), the Massive Distributed Parallel Geneti
Algorithm (MDPGA) is a kind of 
ompromise between the single globalpopulation approa
h, and an island approa
h. As the name suggests, it wasmainly developed for distributing GAs, but it is nonetheless interesting wheninvestigating diversity and 
onvergen
e properties in populations.As in the basi
 island approa
h, several small populations are maintained,but the individuals are organized in a mesh stru
ture as depi
ted in �gure 3.7.In the approa
h des
ribed by Shumeet (1992), ea
h subpopulation 
ontains
a b c

Figure 3.7: Organization of subpopulations in the MDPGA. The neighborhood ofsub-population a and 
 are shown as dotted 
ir
les. Subpopulation b is a 
ommonneighbor to both a and 
.10 individuals. After the initial populations have been randomly generated,the algorithm pro
eeds in ea
h generation as follows:
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t two individuals for reprodu
tion.2. Produ
e two o�springs, and in
lude these in the next population.3. When all of your eight neighbor populations have progressed to thisstep, 
lone one randomly 
hosen individual from ea
h of your eightneighbors, and in
lude this 
lone in your next population.4. Dis
ard your old population and initiate the next generation.You 
an still identify islands in this approa
h, but the borders are blurredbe
ause of the heavy migration between the relatively small subpopulations.But sin
e many su
h small subpopulations exist, fast global 
onvergen
e isnot likely to o

ur. Genes are slowly distributed throughout the network,and unique solutions will emerge in subpopulations that are far apart, while
lose sub-populations will derive similar solutions. Shumeet (1992) used amodest form of elitist sele
tion in whi
h the most �t individual of a sub-population repla
es the least �t individual of the same subpopulation in thenext generation. The extent of overlap in this approa
h is also investigatedin Shumeet (1992), and the approa
h presented here is the one with themost overlap. The danger of using extensive overlapping is (from a diver-sity/
onvergen
e property point of view) that you end up with one globalpopulation, and nothing has 
hanged from the basi
 GA, i.e. no diversitymaintenan
e. The other extreme is to allow only a minimum of overlapping,whi
h e�
iently slows down evolution, as genes are only spread in a fewdire
tions at a time. This allows for a high level of diversity.The most improvement is of 
ourse obtained when implemented on large
luster ma
hines as the topology of the subpopulations is inviting to thesear
hite
tures. With the heavy 
ommuni
ation taking pla
e in the MDPGA,it is dire
tly designed for lu
rative implementations for MIMD 7 ma
hines,whi
h is also emphasized by Shumeet (1992). The island prin
iple witha lower rate of migration is more suited for an heterogeneous distributedsystem with lower bandwidth.3.2.4 The Fitness Fun
tionThe a
tivity of designing the �tness fun
tion should of 
ourse be given pro-found attention, as this parameter will guide the evolution more than any-thing else. In this se
tion we will present a number of 
o-evolutionary ap-proa
hes. Most of the referen
es given exempli�es these approa
hes in thedomain of GP, but they are not spe
i�
 to GP and 
ould be used in GA aswell.The optimal solution to the task you are optimizing is not known, and inaddition it might not be possible to guarantee that it will s
ore maximum�tness. That is, if you try to evolve a strategy for a 
ertain game, the �tnessfun
tion that assesses a given individual against all valid strategies wouldintuitively be able to evolve good strategies. However, apart from very simplegames, it is typi
ally not possible to 
onstru
t all possible strategies for this�tness fun
tion, and hen
e we need another approa
h. Koza (1992) presents7Multible Instru
tionMultible Data.
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(a)
Winner

(b)Figure 3.8: The all-against-all 
ompetitive �tness approa
h, and 
up tournament�tness approa
h, (a) and (b) respe
tively. The approa
hes were previously presentedby Axelrod (1987) and Angeline and Polla
k (1994).a number of examples in whi
h programs solve well de�ned engineering taskssu
h as a boolean 11-multiplexer fun
tion. Also the well known arti�
ial antproblem that evolves a roboti
 a
tion plan for an arti�
ial ant that triesto �nd as mu
h food as possible in as short period of time as possible ispresented by Koza (1992). They are all evolved using a traditional �tnessmeasure. With traditional �tness measure, we understand a �tness fun
tionthat produ
es the same �tness for the same individual, independently of therest of the population, that is, an absolute �tness. As argued in Angeline andPolla
k (1994), this traditional �tness measure is not likely to perform wellfor very 
omplex tasks. Instead a 
ompetitive approa
h in whi
h individualsare evaluated relative to the rest of the population is suggested. Angelineand Polla
k (1994) investigate three di�erent 
ompetitive �tness fun
tions,two of whi
h were previously used by Axelrod (1987) and Hillis (1992). Theprin
iple of these two methods 
an be seen in �gure 3.8(a) and 3.8(b).All-Against-All Tournament Fitness
Axelrod (1987) used the all-against-all approa
h (see �gure 3.8(a)) to evolvestrategies for the iterated Prisoners Dilemma. Using this method, the �tnessof an individual is based upon that individuals' performan
e against all otherindividuals in the entire population. With this strategy and a populationsize of N we need: NXi=1 N � i = N(N � 1)2 ; (3.5)
ompetitions in order to determine �tness of all individuals in the population.The obvious drawba
k of this approa
h is the extensive 
omputation due tothe high amount of 
ompetitions. The advantage is that a total ordering ofall individuals relative to the population is obtained.



30 Evolutionary AlgorithmsCup Tournament Based FitnessIt is not always required to have a total ordering as des
ribed above or theamount of 
ompetitions might be an una

eptable overhead. If this is trueyou might 
onsider to implement a 
up tournament based �tness. Angelineand Polla
k (1994) used 
up tournament based �tness (see �gure 3.8(b))to evolve strategies for the simple Ti
 Ta
 Toe game. The 
up tournamentpairs individuals randomly two and two, and the winner pro
eeds to the nextround. If the number of individuals in a round is odd, one randomly 
hosenindividual is given a free pass to the next round. This 
an (and generallyshould) be avoided by 
hoosing the size of the population to be 2k for some k.The tournament pro
eeds until you have a winner, whi
h is then the �ttestindividual in the population. A
tually, this is a binary sear
h for the �ttestindividual, and the amount of 
ompetitions in a population of size N is:dlog2(N)eXi=1 �N2i � = N � 1: (3.6)The relatively small 
omputation overhead when 
ompared to all-against-all tournament (des
ribed above), is the paramount advantage of the 
uptournament approa
h. The ordering of the individuals will not be total,or even 
orre
t. First of all, the ordering only ensures you that the most �tindividual is found. The looser in the �nal round is ordered se
ond pla
e, butthe globally se
ond best individual might by 
han
e have been paired withthe globally best individual in the �rst round, and therefore ordered equallywith the least �t individuals. This is the main disadvantage of tournament�tness.Co-Evolution FitnessA third approa
h that avoids the use of traditional
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Figure 3.9: A 
o-evolutionary environ-ment 
onstituted bytwo parallel popula-tions, as used by Hillis(1992).

�tness measures is 
o-evolution. Koza (1991) presentsthe 
on
ept of 
o-evolution in EA as a pro
ess inwhi
h the environment of one population is 
onsti-tuted by one or more population(s), evolving in par-allel. The environment of the parallel population(s)is of 
ourse 
onstituted by all other parallel popula-tions. Individuals from the �rst generations will ingeneral be highly un�t when 
ompared to an absoluteoptimal solution, and �tness-values assigned relativeto the 
urrent environment are used.Hillis (1992) used the 
o-evolution strategy (see �g-ure 3.9), in whi
h individuals are assessed against anindividual from a parallel population. This is bestexplained with the example below.Assume that our individuals are evolved to 
lassifytextstrings, then we 
reate two populations namelya population of 
lassi�ers and a population of text-strings. Now, these two
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 Programming 31populations evolve in parallel, and �tness are assigned to them by paringtwo individuals, one 
lassi�er and one text-string. The 
lassi�er is of 
ourseassigned �tness proportional to how a

urate it 
lassi�es the text-string, andthe text-string is assigned the inverse value. With 2N individuals (
ountingthe parallel population also) we need N 
ompetitions. If we 
onsider theexample above, one seeming disadvantage of this approa
h is the fa
t thatthe �ttest 
lassi�er of some generation might just have been lu
ky to havebeen paired with a parti
ularly easy string. However, we should not penalizelu
k, rather leave it up to evolution to weed out the bad genes from thepopulation. The real disadvantage is that you need to maintain a populationof test examples together with your main population. The advantage of thisapproa
h in 
ontrary to approa
hes that use a �xed set of test 
ases, is thatyou do not spe
ialize your individuals to some prede�ned set of test 
ases,but rather you for
e your system to �nd general solutions.3.3 Geneti
 ProgrammingIn the previous se
tions of this 
hapter, we have introdu
ed the basi
 prin
i-ples in GA, along with some more advan
ed but 
ommonly used extensions.One of the major disadvantages of GA is that it uses �xed length en
odingsfor solutions. Geneti
 programming is basi
ally a relaxed GA allowing vari-able length en
odings. In order to establish this relaxation, amongst otheradjustments, a rede�nition of the geneti
 operators is required. It is obvi-ous, that with this enhan
ement, GP is more �exible towards the spe
i�
formulation of a solution than GA.The �eld of GP is relatively new, and the presentation given in this se
tionis based upon the work by Koza (1992), as it 
ontains one of the most
omprehensive introdu
tions to GP.One of the most important 
onsiderations is the de�nition of the languagefrom whi
h our individuals will be built. The language is union of the setsT (the set of all terminals) and F (the set of all fun
tions). To 
reate anindividual elements from the two sets are 
ombined to 
onstru
t a parse tree.The leafs of su
h a parse tree are of 
ourse elements of T , while the innernodes are elements of F . In the following se
tions we will des
ribe how toapply geneti
 operators to individuals represented as parse trees, dis
uss howto 
onstru
t T and F and last dis
uss the �tness fun
tion.3.3.1 Geneti
 Operators and Parse TreesThe parse tree representation is often 
hosen throughout the literature, andit has numerous advantages over e.g. higher-level sour
e 
ode or low-levelbinary ma
hine 
ode. The problem you fa
e with both alternatives to parsetrees is the same: it is hard e�
iently to ensure that only synta
ti
ally 
orre
tprograms are 
onstru
ted by 
rossover and mutation. Even when applyingthese operators to parse trees results in synta
ti
ally 
orre
t trees, we stillhave to 
he
k that all data types are 
orre
t for the di�erent fun
tions inour tree, unless we require T and F to satisfy the 
losure property, statedby Koza (1992).Property 3.3.1 (The Closure Property) The 
losure property requires



32 Evolutionary Algorithmsthat ea
h of the fun
tions in F be able to a

ept, as its arguments, any valueand data type that may possibly be returned by any fun
tion in F and anyvalue and data type that may possibly be assumed by any terminal in T .We will 
onsider how to satisfy this property in se
tion 3.3.2, for now let usassume that we have no problems with de�ning T and F .As an example, let us use the following F and T that, obviously, satisfyproperty 3.3.1: T = f1; 2; 3; 4gF = f+;�gIn �gure 3.10 examples of subtree-swapping 
rossover and subtree mutationapplied to parse trees built from these T and F are shown. In the remainderof this thesis, whenever we talk about 
rossover and mutation in GP, we un-derstand subtree-swapping 
rossover and subtree mutation, unless otherwisestated. As in GAs, many di�erent in
arnations of the basi
 geneti
 operators
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Figure 3.10: Crossover and mutation applied to parse trees.exist. Below we have des
ribed some of these:Subtree-swapping Crossover: After two individuals have been sele
ted for re-produ
tion, a random 
ut-point being a node in the tree is 
hosen,independently for them both. In 
ontrary to GAs, this 
ut-point neednot be 
ommon to the parents, as GP individuals generally di�er inboth shape and size. When 
ut-points have been 
hosen, the two sub-trees with root at the 
ut-points are ex
hanged, produ
ing the twoo�spring.Context preserving Crossover: The 
hosen 
ut-point must be 
ommon to theparents. That is, the path from the root to the 
ut-point must be thesame for both parents. Apart from this 
onstraint on the 
hosen 
ut-point, this operator swaps subtrees like the above mentioned method.Subtree Mutation: A random 
ut-point is 
hosen, and the subtree with rootat the 
ut-point is ex
hanged with a randomly generated subtree. In�gure 3.10 the randomly generated subtree is a tree 
onsisting of onlythe terminal node with value 1.Point Mutation: A single node (fun
tion or terminal) is 
hosen for mutation.Only the node is mutated, that is, any subtree(s) below this node
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 Programming 33remains un
hanged, whi
h means that a node of the same order (samenumber of 
hildren) must be 
hosen as repla
ement for the original.3.3.2 The Basi
 Building Blo
ks F and TKoza (1992) presents some useful rules of thumb when designing F and Tto satisfy the 
losure property (property 3.3.1). In this se
tion we try toprovide an overview of some of the most appli
able rules.Every fun
tion in F must be 
arefully examined in order to satisfy the 
lo-sure property. If 
ommon arithmeti
 operations are in
luded in F , then wemight need to rede�ne them to be prote
ted against invalid arguments. Forexample, if division by zero is possible, we might rede�ne the division op-erator to return zero when division by zero is attempted. Alternatively we
ould 
hoose to return undefined when invalid arguments are provided, andthen all fun
tions would have to be able to a

ept this new undefined valueas argument.Conditional operators normally operate on boolean values, but this might beuna

eptable in some spe
i�
 problem domains. The 
onditional operators
ould be modi�ed in one of these ways:Numeri
al valued logi
: All 
omparative operators (<, >, =, et
.) are modi-�ed to return a numeri
al value instead of true and false, for example1 and -1 respe
tively.Rede�nition of 
omparative operators: Instead of returning a boolean value,the 
omparative operators a

ept two additional arguments, and exe-
ute one of them based on the result of the 
omparison. That is, theequals operator should a

ept four arguments, so we have:equals(arg1,arg2,true-bran
h,false-bran
h) instead ofequals(arg1,arg2).And the semanti
 would of 
ourse be to exe
ute true-bran
h if arg1is equal to arg2, and exe
ute false-bran
h otherwise.Rede�nition of bran
hing operators: The 
ommon bran
hing operators 
ouldbe rede�ned to 
he
k on some 
ondition external to the program, typi-
ally some sensory information. In this way no general bran
hing 
on-stru
ts should be in
luded in F , but only spe
ialized bran
hing fun
-tions. For instan
e the sensory information enemy-in-rea
h shouldnot be a

essed dire
tly like:if(enemy-in-rea
h, then-bran
h, else-bran
h)rather it should be en
apsulated in a fun
tion like:if-enemy-in-rea
h(then-bran
h, else-bran
h)that a

epts two arguments then-bran
h and else-bran
h. Based onthe value of the external sensor variable enemy-in-rea
h the fun
tionexe
utes either then-bran
h or else-bran
h.It should be noted that Montana (1993) proposes a method for StronglyTyped Geneti
 Programming (STGP) in whi
h the 
losure property is totally



34 Evolutionary Algorithmsrelaxed. Montana (1993) uses stati
 type-
he
king when 
onstru
ting theparse trees to ensure the 
orre
t types of data.Koza (1992) identi�es another important property that must be satis�ed inorder for the system to be able to evolve good solutions. In Koza (1992) thisproperty is stated as follows:Property 3.3.2 (The Su�
ien
y Property) The su�
ien
y property re-quires that F and T be 
apable of expressing a solution to the problem.It is obvious that the ability to express the solution to the problem, usingthe given F and T , is a reasonable requirement. However, often it is noteasy to realize what set of fun
tions and terminals will provide universal andsu�
ient expressive power. Therefore one should 
onsider the introdu
tionof extraneous fun
tions and terminals. The impa
t on the performan
e ofthe system is hard to predi
t. In general numerous extraneous fun
tions willalmost 
ertainly degrade the performan
e of the GP system, as the sear
hspa
e 
ontains identi
al individuals. On the other hand, it may produ
esolutions whi
h are more suitable for human understanding. Consider asystem sear
hing for a boolean fun
tion as a solution to a problem. Now,F={AND, NOT} is universal as any boolean fun
tion 
an be implementedusing only the AND and NOT operators. This may be a good 
hoi
e if you aredesigning 
ir
uit board layouts, but you may prefer a fun
tion set as F={IF,AND, OR, NOT} in order to get a solution whi
h is more intuitive to humans.One way to 
he
k if the su�
ien
y property is satis�ed, is to try to 
onstru
ta known solution to the problem with the F and T . If this is possible, thenyou know that one solution is possible. And if you did not design F andT towards expressing this spe
i�
 solution, then 
han
es are that it is alsopossible to express other solutions.



4 Summary of previouswork �When your work speaks for itself, don'tinterrupt.�,Henry J. Kaiser.This 
hapter serves as a presentation of our previous results, in
luding themethods used and the approa
h taken. It was thoroughly des
ribed in Holmand Nielsen (2002) and hen
e, this 
hapter 
an safely be skipped, should thereader be familiar with our earlier work. The justi�
ation of the di�erent
hoi
es made will be held at a minimum, as it is not the purpose of this
hapter to justify and argue for the 
hoi
es, but rather it is to summarizethe methods and design issues.4.1 Previous GoalsThe goals in Holm and Nielsen (2002) were stated as follows:� To build a bot by means of evolutionary methods, and more spe
i�
allythe GP paradigm. That is, a system that allows our bots to evolvethrough generations must be implemented.� The system should be designed in a fashion that makes the evolution-ary pro
ess, to some extent, immune to many of the known problems
onne
ted with the appli
ation of evolutionary methods.� The bot should be ben
hmarked against the UT bot that 
omes withthe environment, e.g. the UT bot or some similar bot. Also, it shouldbe evaluated by human experien
ed players. The buildin bot providesa good ben
hmark test, as it has at least as mu
h information at itsservi
e as does our bot. Also, it has to work under the same 
onditionsas our bot. That is, parameters like maximum speed of movement andaiming noise will be the same, whi
h is not always true for a humanplayer.In the reminder of this 
hapter, we will summarize our attempt to rea
hthese goals.4.2 Language DesignThis se
tion des
ribes the language developed for des
ribing strategies, andit is 
omposed by the two sets F and T - the set of fun
tions and terminals,respe
tively. The language is designed without general purpose in mind,rather it is designed for the spe
i�
 domain of Gamebots as des
ribed in
hapter 2. 35



36 Summary of previous work4.2.1 The Most Basi
 SkillsFirst of all, there are some basi
 skills that are intuitively useful, and shouldtherefore be in
luded. The most basi
 being primitive movement 
ommands,as des
ribed in se
tion 2.1.5. These in
lude the following:(move-forward)(move-ba
kward)(turn-left)(turn-right)(strafe-left)(strafe-right).The most basi
 sensory informations provided for a player or a bot in
ludethe basi
 medi
al 
ondition and 
ondition of equipment. We therefore in
ludethe terminals listed below:(health)(ammo)(armor).These terminals assume the values of health, ammo for the 
urrent weapon(mapped to the range [0..200℄) and armor of the bot in the game. Healthand armor are already in the range [0..200℄ and need not be mapped.We want the bot to be able to evolve its own per
eption of what 
onditionsare good and what 
onditions are bad 1, therefore we in
lude the generalbran
hing stru
ture:(if-less-than arg1 arg2 arg3 arg4).The semanti
s of this fun
tion is, of 
ourse, that based on the boolean valueof the 
omparison (<) of arg1 and arg2, either the value of arg3 or arg4 isassumed. We 
ould also in
lude fun
tions like (if-greater-than arg1 arg2arg3 arg4) and (if-equals arg1 arg2 arg3 arg4), but this would not addto the expressiveness of the language and is therefore not in
luded.We add the possibility to represent 
onstant integer values from the range[0..200℄. This is done by adding the terminal:(
onst x)where x is repla
ed by an integer value from the range [0..200℄. The followingbran
hing fun
tions are in
luded:(if-health-in-rea
h arg1 arg2)1What value of health is 
onsidered low, what value is 
onsidered high, et
.



4.2 Language Design 37(if-armor-in-rea
h arg1 arg2)(if-ammo-in-rea
h arg1 arg2)(if-weapon-in-rea
h arg1 arg2).These fun
tions enable the bot to take di�erent a
tions depending on whethersome item is in rea
h. As a side e�e
t, the bot will pi
k up the item inquestion if it is in rea
h, in addition to exe
uting arg1.4.2.2 The More Offensive SkillsWhen 
onsidering 
lose 
ombat, one of the main obje
ts of interest should beyour enemy, as this obje
t 
an be the sour
e to either your glorious vi
toryor your su�ering defeat. So, by introdu
ing the fun
tion:(if-enemy-in-sight arg1 arg2)we enable our bot to di�erentiate between situations where the enemy hasbeen spotted, and situations where the enemy is not in sight.In order to bene�
ially use the (if-enemy-in-sight) fun
tion to defeat yourenemy, we add the two terminals:(fa
e-enemy)(shoot).The (fa
e-enemy) automati
ally rotates the bot to fa
e the enemy if theenemy is in sight, and otherwise does nothing. The fun
tion assumes thevalue 200 if the enemy was in sight, and 0 otherwise. The (shoot) terminal
ommands the bot to �re a shot with the 
urrent weapon and the terminalassumes the 
onstant value 0.The following terminal assumes a value equivalent to an estimate of the
urrent damage taken by the enemy. It has max-value 200 and minimum0, and it de
reases over time to 0, as it is reasonable to assume the enemypi
king up health pa
kets over time. We in
lude the terminal:(enemy-damage).In order to 
ompare weapons, the following terminals are in
luded:(my-weapon)(enemy-weapon).These terminals assume values ranging from 0 to 200, a

ording to theweapon 
urrently used by either the bot or the enemy. This enables strategiesto 
ompare weapons, and take di�erent a
tions a

ordingly.(if-enemy-move-left arg1 arg2)(if-enemy-move-right arg1 arg2)
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(a) (b)Figure 4.1: The enemy movement as per
eived by the golden (upper) bot. Dis-tin
tions between leftward/rightward and forward/ba
kward depi
ted in (a) and (b)respe
tively. Arrows of the same 
olor within the same sub�gure 
orresponds todire
tions of movement that yield the same result.(if-enemy-move-away arg1 arg2)(if-enemy-
losing-in arg1 arg2)(if-enemy-is-stati
 arg1 arg2).These fun
tions enable strategies to 
hange a

ording to the relative dire
tionof the enemy. They all exe
ute and assume the value of arg1 if the enemyis in sight and has the respe
tive dire
tion of movement. Otherwise theyexe
ute and assume the value of arg2. The distin
tion between di�erentrelative enemy movements are depi
ted in �gure 4.1.The spe
i�
 movement of the enemy might not always be of interest if youare too far from your enemy. Therefore we add the terminal:(enemy-distan
e).This terminal will at any time assume an integer value in the range of [0..200℄
orresponding to the distan
e to the enemy, or 0 if the enemy is not withinsight.4.2.3 Higher Level SkillsAs mentioned previously in se
tion 2.1.5, it is 
ommon to 
ombine di�erenta
tions in a series of parallel a
tions, like (strafe-left) and (fa
e-enemy)resulting in a 
ir
ular movement with the enemy as 
enter. This 
ombinationof movements is 
ommon to all players of UT, novi
e as well as master.It therefore seems reasonable for us to in
lude spe
i�
 terminals and onefun
tion for this movement:(
ir
le-strafe-left)(
ir
le-strafe-right)(strafe-relative arg1 arg2).
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(b)Figure 4.2: The use of relative destination points when stra�ng. The 
oordinate-system relative to the red bot is rotated as the bot moves, and the point of destination(x',y') then 
hanges dynami
ally (with respe
t to global 
oordinates), as depi
ted inthe 
hange of (a) to (b).The two terminals 
ommands the bot to strafe in a 
ir
ular path while main-taining fa
e towards the enemy. The fun
tion (strafe-relative arg1 arg2)is a bit more 
ompli
ated. It 
ommands the bot to move to the point (x0; y0)dynami
ally 
al
ulated by equation 4.1 and equation 4.2:x0 = xenemy + (
os(�) � u� sin(�) � v) (4.1)y0 = yenemy + (sin(�) � u� 
os(�) � v) (4.2)where (xenemy; yenemy) is the lo
ation of the enemy, u is the value assumedby arg1, v is the value assumed by arg2 and � is the yaw 2 orientation ofthe enemy. That is, the point (u; v) is transformed from a lo
al 
oordinate-system inserted on top of the enemy (the enemy lo
ated at (100,100)), to theglobal 
oordinatesystem. This is depi
ted in �gure 4.2(a) and �gure 4.2(b).As the last element, we add a fun
tion that enables strategies to put morefun
tions and terminals in sequen
e:(prog-2 arg1 arg2).This fun
tion evaluates �rst arg1, then arg2 and �nally assumes the valueof arg2.4.3 Designing the AlgorithmThe 
ommon GA/GP 
y
le was des
ribed in se
tion 3.2.1 in �gure 3.2. Inthis se
tion it will be extended, with the steps we �nd feasible for the devel-opment of su

essful geneti
ally programmed bots. The spe
i�
 operatorsand methods 
hosen, will be des
ribed in
luding minimal justi�
ation. Aswith every topi
 
overed in this 
hapter, extensive justi�
ation, argumen-tation and dis
ussion of the de
isions made is found in Holm and Nielsen(2002). The di�erent steps of the extended GA/GP 
y
le in �gure 4.3 arebrie�y des
ribed in the following enumerated list:2In terms of Yaw, Pit
h and Roll systems, the Yaw 
omponent des
ribes the rotationabout the Z-axis.
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Figure 4.3: The extended loop of evolution.1. The initial population is generated by either the 
ustom tree generatoror the random tree generator. The tree generators are des
ribed inse
tion 4.3.1. There are no limit to the size of the initial population,sin
e it is going to be redu
ed by the assessment step 2.2. The assessment fun
tion is implemented to ensure a 
ertain level ofquality in the run of the �rst generation in the extended GA/GP 
y
le.The assessment fun
tion will remove individuals whi
h 
an not satisfya basi
 set of 
onstraints, these are des
ribed in se
tion 4.3.2. The as-sessment fun
tion assesses individuals mu
h faster than the evaluationfun
tion.3. The population used in the extended GA/GP 
y
le 
onsists of 224 in-dividuals evenly divided into 7 subpopulations. This yields a subpop-ulation size of 32. Every subpopulation will then run its own GA/GP
y
le. This 
ould be done in parallel if implemented on a multipro
es-sor system.4. Every subpopulation is hereafter evaluated by the 
ompetitive evalua-tion fun
tion des
ribed in se
tion 4.3.2.



4.3 Designing the Algorithm 415. When all the subpopulations have been evaluated, it is time to sele
tindividuals for the di�erent geneti
 operations whi
h have to be per-formed before the extended GA/GP 
y
le is ready to repeat itself. Thetournament sele
tion method is used for this and is des
ribed in se
tion4.4.1.6. The last step is to apply the geneti
 operators on the sele
ted individu-als. The 
hosen methods for this are des
ribed in se
tion 4.4.2, se
tion4.4.3 and se
tion 4.4.4. When this is done the algorithm will loop byjumping to step 3.Noti
e that migration between the subpopulations will o

ur with a regularinterval as 
an be seen in �gure 4.3. These six steps will be addressed furtherin the following se
tions.4.3.1 Initial PopulationThe generation of the initial population for the extended GA/GP 
y
le is animportant step. The foundation of the sear
h in the spa
e of possible solu-tions is, to a 
ertain degree 3, limited to the set of all possible 
ombinationsof the individuals 
onstituting the initial population.This topi
 is also 
onne
ted to the geneti
 operators; mutation and 
rossover,more on that in se
tion 4.4.3 and se
tion 4.4.4. As mentioned by Yu (2001),strongly typed Geneti
 Programming (STGP) is a way to limit the spa
e ofpossible trees. We have applied a slightly di�erent method for a 
ustom treegeneration and it is des
ribed in se
tion 4.3.1.Another important fa
tor in this step is the size of the population, andwe have 
hosen it to be 224 divided into 7 subpopulations or islands of 32individuals ea
h.Tree GeneratorsTo generate an initial population, and to 
reate the subtrees used in the mu-tation operator, we need an algorithm for tree generation. For this purposewe have adopted the traditional tree generation algorithm, GROW in Koza(1992), whi
h is des
ribed and motivated in the following se
tion. GROWhas shown serious weaknesses in more simple experiments. As a 
onsequen
ewe have designed a 
ustom tree generation algorithm based upon the theoryon STGP, as des
ribed by Yu (2001).The Random Tree Generator The 
ommon tree generation algorithm,GROW, is used to generate trees for the initial population and the subtreesused by the mutation operator. The algorithm uses a set, S, of fun
tions andterminals to pla
e as nodes in the tree. It 
hooses all the nodes randomlyfrom S, until the 
hosen maximum depth is rea
hed. The algorithm works ina re
ursive manner by sele
ting a root and then 
all itself to �nd des
endentsto the 
urrently sele
ted node until a terminal is sele
ted or the maximumdepth is rea
hed. The algorithm is shown in table 4.1.3Of 
ourse mutation 
an reintrodu
e fun
tions and terminals in the population.



42 Summary of previous workAlgorithm GROWD = maximum depth;S = fun
tions F and terminals T;grow(depth d) {if (d = D) {return random terminal from T;}else {get random element s from S;if (s 2 T) {return s;}else {for (ea
h argument a of s) {a = grow(d+1);}return s;}}}Table 4.1: The most 
ommon tree generation algorithm, GROWThe obvious advantage of GROW is that it is easy to implement and runsin linear time. Still some disadvantages remains, and as mentioned by Luke(2000), GROW has the three main weaknesses:� It sele
ts between all the possible fun
tions and terminals with equalprobability, whi
h in some 
ases 
an be undesirable.� It does not allow any 
ontrol over the tree stru
tures, ex
ept for thesize.� It does not 
reate trees with a �xed or average tree size or depth (thisweakness is mentioned as the most signi�
ant).The Custom Tree Generator By introdu
ing the 
ustom tree generatorwe will also introdu
e an abstra
tion of typed GP. Yu (2001) states that thereare two 
auses to prefer STGP:� STGP removes the 
losure requirement and thereby in
reases the ap-pli
ability of GP.� STGP helps GP sear
hing for problem solutions using type informa-tion.



4.3 Designing the Algorithm 43F NamesA prog-2B if-less-thanC relative-movementD if-health-in-rea
hE if-ammo-in-rea
hF if-armor-in-rea
hG if-weapon-in-rea
hH if-bumpI if-enemy-in-sightJ if-enemy-move-leftK if-enemy-move-rightL if-enemy-move-awayM if-enemy-
losing-inN if-enemy-is-stati


T Namesa healthb my-weapon
 ammod armore enemy-weaponf enemy-damageg enemy-distan
eh fa
e-enemyi turn-leftj turn-rightk strafe-leftl strafe-rightm 
ir
le-strafe-leftn 
ir
le-strafe-righto shootp move-forwardq move-ba
kwardr 
onstTable 4.2: The alphabet of the CFG. The fun
tions are assigned upper
ase lettersin the leftmost box and the terminals are assigned lower
ase letters in the rightmostbox.With the 
hosen fun
tion and terminal set we des
ribe and motivate in se
-tion 4.2, we need not remove the 
losure requirement - this eliminates the�rst motive for STGP. But it might be possible to redu
e the tree sear
hspa
e. When examining the fun
tion and terminal set, we �nd it sensibleto redu
e the set of possible arguments for 
ertain fun
tions. Koza (1992)made the �rst attempt to introdu
e types to GP with what he des
ribedas 
onstrained synta
ti
 stru
tures. That is, the trees 
onstituting the indi-viduals in the population must obey some spe
ial problem spe
i�
 rules of
onstru
tion. When adopting this system of 
onstrained synta
ti
 stru
tureshe mentioned some issues whi
h should be 
onsidered:� The initial population must inherit the de�ned 
onstrained synta
ti
stru
ture.� Geneti
 operators, su
h as mutation and 
rossover, that alter and 
re-ate individuals, must produ
e trees that also preserve the 
onstrainedsynta
ti
 stru
ture.In our problem, a 
onstrained synta
ti
 stru
ture is just another way to per-
eive STGP. A 
onvenient way to des
ribe the 
onstrained synta
ti
 stru
-ture is through a Context Free Grammar (CFG). We have designed su
h agrammar and the alphabet of the grammar, representing the fun
tions andterminals of our language, is des
ribed in table 9.1.



44 Summary of previous workS ! Fset j asetA ! aset asetB ! sset sset Fset Fset j sset sset Fset asetB ! sset sset aset Fset j sset sset aset asetC ! r rIset ! Fset Fset j aset Fset j Fset aset j aset asetTable 4.3: The CFG of the 
onstrained synta
ti
 rules for 
ustom tree generationWe will now explain a number of sets, whi
h will be used in the grammar.The "fun
tion" set Fset = fA::Ng
onsists of all the fun
tions from our fun
tion and terminal set.The "if" set Iset = fD::Ng
onsists of all the fun
tions being if 
onstru
tions ex
ept if-less-thanwhi
h di�er in that it uses two of its arguments for evaluation.The "a
tion" set aset = fh::qg
onsists of all terminals whi
h 
auses some kind of bot a
tion when exe
uted.The "sensor" set sset = fa::gg S frg
onsists of all terminals representing game information and the 
onstantterminal.The 
omplete CFG is observable in table 4.3.4.3.2 Fitness Fun
tionsWe designed two fun
tions; the assessment fun
tion and the evaluation fun
-tion. They will be des
ribed in the following two se
tions.
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tionThe assessment fun
tion was designed to ensure a 
ertain quality in the �rstgeneration and should therefore only evaluate the initial population.To do this we de
ided to let an UT bot play every individual and thenmeasure their survival time and any damage they would do against it. The
hosen measure of �tness will 
over most of the fun
tions and terminals;survival time will reward good defensive behavior su
h as preserving healthand maneuvering - damage given will reward good o�ensive behavior su
has fa
ing the opponent and shoot at him. The two numbers are given equalimportan
e, meaning that maximum survival time will yield 50 per
ent ofthe maximum �tness and the same applies for damage. Two elements ensurethat individuals will be assessed rapidly. Firstly, when the UT bot kills anindividual, it will end the individual's assessment. Se
ondly, if an individualdoes not move for a given short interval of time, it will end the individual'sassessment.Evaluation Fun
tionThe evaluation fun
tion will evaluate every individual in every generation.Hen
e, this fun
tion is one of the key elements to su

eed in �nding a solutionto our problem. The following issues have been addressed in the quest forbuilding an appropriate �tness fun
tion:1. We are dealing with a 
omplex problem and for su
h a problem it 
anbe di�
ult for the population to evolve if no pre
autions have beentaken.2. Due to the dynami
 nature of the domain it would be preferable thatthe evolved bots are not spe
ialized to 
ertain situations and 
an bee�
ient and e�e
tive against various types of opponents.3. The aim, i.e. to evolve a bot for 
ombat situations, should be keptin mind. That is, the environment should mirror a typi
al 
ombats
enario as mu
h as possible.4. We want relative fast evaluation times, sin
e we 
an expe
t to runa 
onsiderable number of generations before a satisfying solution isrea
hed (if ever). When taking the population size of 224 individualsinto a

ount, it should be obvious that every se
ond saved for evalua-tion of an individual will be important.These issues address 
onsiderations whi
h should be done and problemswhi
h are to be dealt with.We will use a 
ompetitive �tness fun
tion, sin
e this type of fun
tion dealswith several of the issues mentioned. Firstly, this type of fun
tion deals withthe 
omplexity of the problem and the typi
al aftermath of building �tnessfun
tions to these kind of problems 4.4For further reading see Luke (1998) or Nol� and Floreano (2000).
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AFigure 4.4: The map designed to serve as battle ground.Se
ondly, a 
ompetitive �tness fun
tion fa
ilitates the desire to evolve botssuperior against various kinds of strategies.Lastly, we 
an adopt the 
up tournament based �tness fun
tion, des
ribedin 
hapter 3 and previously presented by Angeline and Polla
k (1994), whi
h
an help us in redu
ing the number of evaluations per generation and hen
eredu
e total evaluation time.When dealing with these issues, another element to 
onsider is the 
hoi
e ofenvironment in whi
h the bots are going to 
ompete. It would be preferableto use a dynami
 environment whi
h should re�e
t the distin
tive surround-ings of typi
al 
ombat s
enarios. One way of doing this (and maybe thebest), would be to swit
h maps on
e in a while, when running the algorithm.This would avoid spe
ialization of the bots for 
ertain maps and insteadevolve bots with more general strategies. Due to the time 
onstraints of thisproje
t and sin
e it has proven di�
ult to implement this feature, we havebeen for
ed to look at alternatives to this approa
h. In �gure 4.4 a sket
hof the map we have used is depi
ted. The s
ale and dimensions of the mapdepi
ted in �gure 4.4 and the real map is not kept, but the general nature ofthe real map is kept. The map is 
ir
ular and without any 
orridors or stair-
ases, so minimal path �nding and navigation is required. All four di�erent
lasses of items des
ribed in se
tion 2.1.3 are present, that is: weapons, �rstaid kits, ammunition and armor. The spawning points are lo
ated on a 
ir
learound the 
enter of the map, and bots are spawned with orientation towardsthe 
enter, as shown in �gure 4.4.To determine a �tness of ea
h individual, all we need, when using the 
uptournament based 
ompetitive �tness fun
tion, is a way to determine a win-ner when a pair of bots are 
ompeting. For doing this, it seems obvious to
hoose the bot with the highest number of frags as the winner, hen
e thiswill be the primary de
ision fa
tor. If the s
ore in frags should be even, theamount of damage given is 
ompared and should the mat
h still be a draw,the individual with the least sui
ides wins. As a last resort, the winner isfound by 
oin toss. The way of determining the �tness of individuals 
ouldraise the following question: does this method not just seem too simple for
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 Operators 47su
h a 
omplex problem domain? As the quote in the beginning of this 
hap-ter implies, simpli
ity 
an be a virtue and the parameters of this approa
hare no simpler than still adequate to determine the winner of 
ompeting in-dividuals. In addition the map has been designed to help early individualsto obtain a nonzero �tness value.The 
on
ept of �tness noise was also 
onsidered under the design of theevaluation fun
tion. This issue is dis
ussed in the next se
tion.Fitness NoiseSome domains are deterministi
, meaning that no noise is present. By noise,we mean elements whi
h 
an produ
e di�erent out
omes in identi
al situa-tions. Noise is often introdu
ed to make a game domain less predi
table or tosimulate the 
omplexity of real life. For instan
e, as explained in 
hapter 2,UT introdu
es noise when a player shoots at a target. The amount of noisein the domain is interesting to us, be
ause it should be taken into a

ountwhen designing the GP algorithm, parti
ulary the evaluation fun
tion, andwhen 
on
luding on the results. When we designed the evaluation fun
tion,and 
hose the 
up tournament based �tness fun
tion, we hypothesized thatnoise in the domain would not have any noti
eable in�uen
e on the evolution.This is due to the fa
t that, a 
ompetitive �tness fun
tion is noisy in itself,be
ause the �tness from an evaluation of the individuals not ne
essarily yieldtheir a
tual �tness.After the evolution was started, we performed a test to 
on�rm or a�rm oursuspi
ion of the �tness noise. A randomly 
hosen best individual from oneof the late generations was set to 
ompete against a 
lone of itself, in 100games where every game lasted 60 se
onds. Figure 4.5 depi
t the frequen
ywith whi
h results of the mat
hes was observed, yielding a histogram. As
an be seen in �gure 4.5 the noise of the 
ompetitions is obvious, though theresults is far from random as the density is 
learly higher, near to zero.
4.4 Geneti
 OperatorsThe geneti
 operators adopted or designed for our problem will be des
ribedin the following se
tions.4.4.1 Sele
tionAs explained in 
hapter 3, the 
hoi
e of sele
tion operator will in�uen
ethe sele
tion pressure in the population. We have already argued that wewant to keep a relative low sele
tion pressure. We have therefore 
hosenthe tournament sele
tion operator whi
h is suited for this and 
an easily beadjusted by altering the tournament size, whi
h we have 
hosen to be as lowas possible; namely two.
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Figure 4.5: The histogram of the results from pitting one bot against a 
lone ofitself. As expe
ted the density is higher 
loser to 0, but noise is 
learly present.4.4.2 Reprodu
tionThe reprodu
tion operator implements the 
on
ept of elitism, 
an regulatethe rate at whi
h the population 
onverges. Furthermore it ensures that thebest strategies survives and 
an be further evolved. A high reprodu
tionsetting will eliminate 
urrent weaker strategies at a faster rate, that is, ahigh reprodu
tion setting will speed up lo
al sear
h but it 
an also have thedrawba
k of eliminating potential strong but immature individuals. Thisproperty is one of our reasons behind the introdu
tion of the islands prin-
iple and migration in our extended GA/GP 
y
le, sin
e this allows us tomaintain a high reprodu
tion setting to re�ne lo
al strategies while avoidingdomination of the total population by de
elerating the migration rate.4.4.3 CrossoverThe 
rossover operator is implemented as des
ribed by Koza (1992). The
onstrained synta
ti
 stru
ture is not enfor
ed in the 
rossover operationdue to time 
onstraints and the reason that we want to let evolution de
idewhat is good and what is bad, when the initial generation has been generated.When two individuals have been sele
ted, a random 
ross point is 
hosen anda subtree swapping is performed as des
ribed in se
tion 3.3.1, produ
ing twoo�springs.4.4.4 MutationThe mutation operator 
an take the 
ustom tree generator in use when gen-erating a subtree. The operator 
hooses a random 
ut point and inserts the



4.5 Tests 49generated subtree at that point.4.4.5 Repla
ementThe o�spring generated by 
onse
utive appli
ation of 
rossover and mutationrepla
es the 
urrent population, with the ex
eption of the best individualsthat are kept due to elitism.4.4.6 Island Approa
hWe have 
hosen to adopt the island approa
h. In 
hapter 3 we explained howdistributed versions of evolutionary algorithms seems to favor the quality andthe robustness of the solutions when stru
tured settings for the populationsare used. In addition we have argued that it also supports the theory of
ompetitive �tness fun
tions and we have hypothesized that using the islandapproa
h 
ould enhan
e the development of di�erent strategies and therebyavoiding the risk that the population will spe
ialize itself to handle only asubset of strategies. To be able to 
ontrol the migration rate and movementof individuals we have implemented the ring topology with seven islands, ea
hinhabited by 32 individuals. Migration will o

ur with a regular interval -when o

urring, the best individual of every island will migrate to its leftneighbor. In this way we 
an 
ontrol exa
tly how long it will take for anindividual to wander the ring.4.5 TestsThree di�erent runs were performed with di�erent parameters, listed in ta-ble 4.4. The di�erent parameters were 
hosen with 
omparison of results inmind. The most important task though, was the investigation of the evo-lutionary pro
ess itself and how the bots evolved. As the proje
t served aspreliminary studies pre
eding this thesis, it was more important to identifyproblems and opportunities in the applied domain, than to analyze all of thedata 
olle
ted through the test runs. It was also ne
essary to postpone athorough examination of the 
olle
ted data, sin
e the amount of data wassimply to extensive. In the end the evolved bots were 
ompared to the UTbots and tested against a human opponent.4.5.1 Parameters of the EvolutionIn table 4.4, Assessment pool is the amount of 
ustom generated individualsfrom whi
h our initial population is 
reated. Initial population is the sizeof the initial population, and Islands is the number of islands used. P
ross,Pmuta and Rmigr are the probability of 
rossover, the probability of mutationand the migration rate 5, respe
tively. Relite is the amount of individualsthat are transferred to the next generation un
hanged. Initial time is thetime that one mat
h in the 
up tournament based �tness fun
tion 6 will last5For instan
e, 12 means that the �ttest individual migrates from an island every se
ondgeneration.6Refer to se
tion 3.2.4, for a des
ription of the 
up-based �tness fun
tion.



50 Summary of previous workParameters 1st Run 2nd Run 3rd RunAssessment pool 2000 2000 2000Initial population 224 224 224Islands 7 7 7P
ross 90% 90% 80%Pmuta 10% 10% 20%Rmigr 12 12 14Relite 2 2 2Initial time 30 20 20Max. time 120 120 60Max. individual depth 9 9 9Max. mutation depth 4 4 4Subtree generator Random Custom CustomTable 4.4: The di�erent parameters used in the 1st, 2nd and 3rd run, respe
tively.in se
onds for the �rst generation. This amount is in
remented by 1 se
ondevery generation, as des
ribed in se
tion 4.3.2. Max. time is the maximumallowable time of an evaluation. Max. individual depth is the maximumdepth of an individual in the assessment pool. Max. mutation depth is themaximum depth of a 
ustom generated subtree that is to be inserted duringmutation. Subtree generator lists the method used for subtree generationduring mutation.Halting 
onditionsNeither of the three runs have had expli
itly stated halting 
onditions, wehave just evolved for as long as possible. Still no more than 100 generationsseemed reasonably, sin
e we spend about 2 hours evolving one full populationof size 224. In e�e
t that meant a few weeks of evolution on two standardPCs (700 Mhz and 1333 Mhz). As the problem domain (the game of UT)is running in realtime, an in
rease in 
pu-
y
les would have no e�e
t on theevaluation time.4.5.2 Performan
e TestsTo derive information about the abilities of the evolved bots, we have per-formed two kind of experimental tests. Firstly, we have tested some of theevolved bots against the UT bot. Se
ondly, we 
arried out a test between ahuman and an evolved bot. A des
ription of the tests and a debrie�ng aboutthe results will 
on
lude this 
hapter.Unreal Tournament Bot vs. Evolved BotsThe UT bot are widely known and esteemed in the gaming 
ommunity fortheir strength of play, espe
ially when they are 
ompared to other bots insimilar games 7. For this reason we thought it would be interesting to see7Quake, Half-Life, et
.



4.5 Tests 51UT bot - 10th generation bot 50 - 0UT bot - 15th generation bot 47 - 50UT bot - 20th generation bot 50 - 43UT bot - 25th generation bot 50 - 49UT bot - 30th generation bot 47 - 50UT bot - 35th generation bot 43 - 50UT bot - 40th generation bot 48 - 50UT bot - 45th generation bot 49 - 50UT bot - 50th generation bot 39 - 50Table 4.5: The results of the mat
hes between bots from the 1st run, 6th island andthe UT bot.how the evolved bots performed against the UT bot. In addition this test
ould serve as a ben
hmark test against an opponent of known and 
onstantstrength. In the previous tests presented in Holm and Nielsen (2002), theevolved bots have been tested against a team of other evolved bots fromthe same run. This mean they have played against bots using strategies thetested bots themselves either have evolved from or to. Hen
e, a 
ompetitionwith an UT bot will be an a
id test to a
quire information on the evolvedbots ability to engage strategies whi
h they have not been spe
i�
ally evolvedto handle. The result of this test 
an be found in table 4.5 and �gure 4.6.

Figure 4.6: The di�eren
e between the UT bot and the di�erent generations of the3rd island 1st run. Noti
e that the evolved bots gradually improve the performan
eagainst the UT bot.The UT bot has played bots from the 6th island of the 1st run, 
hosen with5 generations interval from the 10th generation to the 50th generation. The�ghts were terminated when one of the 
ontestants rea
hed a frag limit,whi
h was set to 50. The UT bot gets defeated the �rst time against the15th generation bot. The last �ve evolved bots are all vi
torious and the50th generation bot is distin
tly superior to the UT bot.



52 Summary of previous workUT bot - 32nd generation bot 32 - 50Human - UT bot 50 - 12Human - 32nd generation bot 50 - 42Human - 82nd generation bot 47 - 50Table 4.6: The results of the experimental test between humans, an UT bot and twoevolved bots from the 3rd run and 3rd island.This test supports the supposition stated earlier, about the e�e
ts of applyinga 
ompetitive �tness fun
tion in 
onjun
tion with the island prin
iple, whi
his believed to evolve and maintain a broad set of strategies throughout thepopulations.Human Versus Evolved Bots The major motive for testing an evolvedbot against a human is that, 
ontrary to 
omputer opponents, a human is
apable of analyzing the behavior of evolved bots, not to mention that ahuman also has a relatively good 
apability to adapt. We would like to
ompare the time it will take a human to adapt to an UT bot strategy
ompared to that of an evolved bot. This should give us a 
lue about thegenerality of the strategy used by the evolved bot. Sin
e we believe thatthe evolved bot should be 
apable of 
ompeting various strategies, it will befeasible to believe that it should be easier to adapt to an UT bot, than anevolved bot. In this test the best bot from the 32nd generation of island3 in the 3rd run was pitted against an UT bot and a human. In additionthe human played the UT bot. At last the human played a bot from the82nd generation of island 3. Again, the mat
h was ended when one of the
ontestants rea
hed 50 frags. The result of the test 
an be found in table4.6.Firstly it 
an be seen that the evolved bot from the 32nd generation wassuperior to the UT bot. The human was even more superior to the UT bot,whi
h was to be expe
ted be
ause of humans adaptive 
apabilities. It wasalso 
lear when observing the a
tual mat
h that, as the mat
h progressed,the human adapted more and more and was mu
h better in the last half ofthe mat
h. The mat
h between the evolved bot and the human was moreequal. In the start of the game the evolved bot was dominant and thehuman showed greater di�
ulties in adapting to this bot. As an observerit was hard to see if this was be
ause the evolved bot used a more generaldi�
ult strategy to deal with for humans or it was be
ause the strategyin general was evolved to be more resilient to a broad range of opposingstrategies. To look further into this matter the human was pitted againstthe bot from the 82nd generation. In this mat
h the human fa
ed evengreater di�
ulties and lost it. It would require a more exhaustive test tomake de�nite 
on
lusions about the general 
auses of the test results, sin
ehumans introdu
e a lot of di�
ulties when evaluating due to in
onstantperforman
e and the ability to adapt. Nevertheless we 
an 
on
lude thatthe evolved bots tend to show resilien
y against di�erent strategies appliedby a human and they are superior to the UT bot.



5 Problem definition�No problem 
an withstand the assault ofsustained thinking.�,Voltaire.This 
hapter will motivate several extensions and additions to the systemdes
ribed in Holm and Nielsen (2002). The motivation will originate from anarrowing of the proje
t spa
e, after whi
h an analysis of the observationsmade from the 3 runs des
ribed in se
tion 4.5 is given. In se
tion 5.3 this
hapter will 
on
lude in a more spe
i�
 de�nition of the goals of this proje
t.5.1 Proje
t Spa
eWe have 
hosen the spa
e of this proje
t to be to design and test severalextensions to the system previously developed. Many di�erent extensionsare immediately interesting, most of whi
h 
an be 
lassi�ed in one of twomajor 
lasses, namely:Agent spe
i�
: Extensions that a�e
t the general ar
hite
ture of the agents,and to some extend these su
h extensions are inherently isolated fromthe GP system. The only dire
t 
onne
tion between agent ar
hite
tureand the GP system is the language for des
ribing strategies.System spe
i�
: Extensions that a�e
t the GP system. For example, extend-ing the geneti
 operators used during reprodu
tion with more features,or extending the population type to in
lude a generation gap parame-ter and thereby using a steady state model. These extensions are nottightly 
onne
ted to the agent ar
hite
ture.In Holm and Nielsen (2002) we proposed extensions of both 
lasses as pos-sible future work. In this proje
t, however, we have 
hosen to 
on
entrateon system spe
i�
 extensions. More spe
i�
ally, we will evaluate di�erentextensions that might improve the sear
h pro
ess.In the following se
tions, we will perform an analysis of the result and ex-perien
es gained in Holm and Nielsen (2002) that will 
on
lude in a morespe
i�
 de�nition of the proje
t goals.5.2 Analysis of Previous ResultsWe 
on
luded 
hapter 4 with a presentation of some performan
e tests onthe bots previously evolved. These tests were not of exhaustive quantita-tive nature, but more meant as a random test to measure the quality of theevolved solutions. The results of these tests left us with the impression thatthe most e�
ient strategies evolved were relatively simple strategies and notvery 
omplex. That is, when playing against the evolved bots or viewing the53



54 Problem definitiontournament as a spe
tator, they did not display 
omplex human-like behav-ior. Still, at later generations, strategies seemed to in
lude some primitiveadaptation, that is, di�erent behaviors a

ording to di�erent enemies or dif-ferent enemy behavior. But as this is only based on random observations, wewill investigate the 
omposition of strategies in more detail in the followingse
tions. First, we will take a look at the distribution of the nodes usedduring the learning pro
ess.5.2.1 Popular Bri
ks And Building Blo
ksIn this se
tion we will investigate how the di�erent language 
onstru
ts isused during evolution. In �gure 5.1 the average o

urren
e of spe
i�
 fun
-tion (�gure 5.1(a)) and terminal (�gure 5.1(b)) 
onstru
ts is plotted as afun
tion of the generation 1. The 
orresponding plots for the 2nd and 3rdrun 
an be seen in �gures 5.2(a-b) and 5.3(a-b). We noti
e the expe
tedeven distribution in the beginning of the evolution in all plots. In the latergenerations, the evolution seems to have found some favorite fun
tions andterminals, whi
h is espe
ially 
lear in �gure 5.1(a-b) for the 1st run. thefun
tion relative-movement and the terminal shoot have gained unswerv-ing foothold in the population. The very noti
eable dominan
e 
an easilybe explained if we take a look at the environment in whi
h the bots whereevolved. Re
all the map, sket
hed in �gure 4.4 (and espe
ially the spawningpoints) for whi
h we have evolved strategies, and the language whi
h we haveused. It should not 
ome as a big surprise that simple strategies 
an be highlye�
ient. The arena is 
ir
ular with no obsta
les, so a 
ir
ular movement isnatural. A 
ir
ular movement is easy to produ
e by on of the three 
onstru
tsrelative-movement, 
ir
le-strafe-left or 
ir
le-strafe-right. Allthese fun
tions moves the bot in a 
ir
ular motion relative to the enemy ifhe/she is in sight. However, this is always the 
ase initially, and as there is nowhere for your enemy to hide, you 
an easily tra
k him/her down with a good
ir
ular sear
h path. So, 
ombining any of these fun
tions with a few shoot
onstru
ts you have a pretty good strategy. The reason relative-movementgains dominan
e unlike any of the 
ir
le-strafe fun
tions must be thatwith relative-movement it is possible to move the bot out of the �eld of vi-sion of the enemy, whereas the 
ir
le-strafe fun
tions uses no knowledgeof the 
urrent orientation of the enemy. So in e�e
t, the relative-movement
onstru
t has good defensive properties in addition to the obvious o�ensiveproperties of dynami
 movement.The dominan
e of relative-movement and shoot is less noti
eable in the2nd and 3rd run (�gures 5.2(a-b) and 5.3(a-b)), but still re
ognizable. Inthese two runs, the shoot 
onstru
t is a

ompanied by the 
onst 
onstru
t.5.2.2 The Flower of The TreeSo now that we have realized that the population seems to be dominatedby a few 
onstru
ts in the later generations, we ask ourself if everything inthe tree should be 
onsidered �owers in bloom, or if some withered leaves
an be identi�ed. Following this question further, we will investigate the1Refer to appendix A for the 
orresponding data divided among islands.



5.2 Analysis of Previous Results 55evolved strategies in order to isolate these �owers, that is, simple yet e�
ientstrategies, that apparently are responsible for the e�
ien
y of the tree. Wehave pitted a number of individuals against a sele
ted team of 7 di�erentindividuals (one at a time), and logged information of the exe
ution paths.In �gure 5.4 the results for the best individual from the 4th island of the60th generation from the 3rd run is depi
ted. This individual is an exampleof a somewhat adapting strategy, whi
h 
an be realized when 
omparing theexe
uted paths of the di�erent trees in �gure 5.4 (for instan
e �gure 5.4(a)and �gure 5.4(b)). Figure 5.5 depi
ts the results for the �ttest individualof the 1st island of the 60th generation of the 3rd run is depi
ted. Thisis an example of a relatively large parse-tree, in whi
h only a few nodes isever (observed) exe
uted. For the matter of 
omparison we in
lude a solutionfrom the 10th generation in �gure 5.6. Here we �nd a mu
h lower proportionof unexe
uted nodes, whi
h 
ould indi
ate that the proportion of unexe
utednodes grows as the evolution progresses 2. In �gure 5.7 the average size ofthe 3 runs have been plotted, and as expe
ted the size of the trees growstogether with the evolution.So, following up the introdu
ing metaphor of this se
tion, we must say thatindeed, not everything found in parse trees are �owers, some withered leafs(or whole bran
hes) are 
learly unused.
5.2.3 The Withered LeavesWe have now identi�ed that large parts of the parse trees are not a�e
t-ing the performan
e of the solution. We will postpone a dis
ussion of thema
ros
opi
 e�e
t of this phenomenon to a following se
tion, and �rst ab-sorb ourself in an analysis of di�erent kinds of withered leafs, often referredto as introns.If individual X is produ
ed by applying the subtree-swapping 
rossover op-erator to a 
ut-point within a large unrea
hable blo
k of individual Y, thenX and Y will perform equally and hen
e, no good qualities of Y has beensu

essfully exploited. X and Y only di�er within an unrea
hable part ofthe program, so in all rea
hable parts of the program X and Y are identi
al.This spe
i�
 property is part of the de�nition of introns given by Nordin andBanzhaf (1995). They de�ne introns to be blo
ks of 
ode with the followingproperties:1. The blo
k has no e�e
t on the performan
e of the program.2. O�spring produ
ed by applying the 
rossover operator inside the intronof the parent, will display performan
e and behavior equivalent to itsparent.2This observation is thoroughly des
ribed throughout the literature, Bli
kle and Thiele(1994) and Nordin et al. (1995) just to mention a few.
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Figure 5.8: A global intron in a parse tree is typi
ally 
aused by redundant sensor-
he
ks.Some introns will be of a 
ontext independent nature, and others will be ofa 
ontext dependent nature as some bran
hes will be exe
uted based uponthe spe
i�
 temporal state of some sensor value. Nordin and Banzhaf (1995)generalizes the de�nition of this distin
tion of two kinds of introns, namelyglobal and lo
al introns, by the following de�nition:Global Introns: An intron is global if it is an intron for every valid programinput.Lo
al Introns: An intron is lo
al if it is an intron for the 
urrent test 
ase,but not ne
essarily for any other valid program input.When investigating the parse trees in �gures 5.4 and 5.5 further all whitenodes are introns, either global or lo
al. In �gure 5.8, the parse tree from �g-ure 5.4(a) is reprinted, and this time the root of a global intron is magni�ed,
orresponding to the blo
k of 
ode:(if-enemy-is-stati
(true-bran
h)( ... false-bran
h ...(if-enemy-is-stati
(..global-intron..)( ... false-bran
h ...))))As 
an be seen from this 
onstru
tion, the redundant use of the booleansensor 
he
k (if-enemy-is-stati
) gives raise to a global intron. Likewisewe 
an identify lo
al introns, this time we inspe
t the parse tree from �gure5.5. In �gure 5.9, the parse tree from �gure 5.5(a) is reprinted, this timewith the root of a lo
al intron magni�ed (by 
oin
iden
e, this is also the rootof the tree). The magni�
ation 
orresponds to the 
ode:(if-enemy-in-sight(..lo
al-intron..)(if-weapon-in-rea
h ..))
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al intron in a parse tree is 
aused by a spe
i�
 
on�guration of thetest 
ase, and hen
e is dependent on the 
urrent test 
ase.At �rst, this kind of intron seem less interesting as it potentially will a�e
tthe performan
e of the program when fed the right input and hen
e is notat all unimportant to the individual. But with referen
e to the identi�
ationof introns, it is somewhat easier to identify the lo
al introns for the 
urrenttest 
ase, as we 
an just tag all nodes when exe
uted, and thereafter allnon-tagged nodes are lo
al introns. The identi�
ation of global introns 
anbe done by a mu
h more 
omplex semanti
al analysis of the parse trees.Therefore, one interesting property of lo
al introns is the relation with globalintrons. Namely, that the set of all global introns is a subset of all lo
alintrons, so if all lo
al introns are isolated you 
an be sure that all globalintrons has been isolated as well.5.2.4 Causes of growth of non-exe
uted 
odeMany theories as to why the proportion of introns seems to grow as theevolution progresses exist, three slightly di�erent theories will be des
ribedin the following.1. Amongst others, Bli
kle and Thiele (1994) and Nordin et al. (1995)des
ribe the growth of proportion of introns as a kind of prote
tionagainst the destru
tive e�e
t of 
rossover and mutation operators.That is, 
rossover and mutation 
annot alter (neither in
rease nor de-
rease) the performan
e of the program, if it is applied to an intron partof the program. Therefore, it 
ould be expe
ted that the evolution toa 
ertain degree promotes solutions that are somewhat immune to thedestru
tiveness of 
rossover and mutation. Another way of putting itis, that the number of introns in the population serves as an adjustmentof the parameter 
ontrolling the 
rossover and mutation frequen
ies.2. Soule and Foster (1998) has a slightly di�erent explanation, also orig-inating in the destru
tiveness of 
rossover and mutation, namely theremoval bias. When o�spring is produ
ed by repla
ing a subtree froma parent, the good qualities of the parent are in danger of being de-stroyed. The larger the subtree being remove the more likely it is thatsome good qualities are lost. Hen
e, we would expe
t the evolutionto bias towards those individuals that has been produ
ed from a re-pla
ement pro
edure that removed as little as possible from the parent.



5.2 Analysis of Previous Results 63This would of 
ourse give raise to a general growth in size of solutions.3. Lastly, Langdon and Poli (1997) argue that when using variable lengthen
odings, it is most often possible to en
ode semanti
ally equiva-lent solutions in many (possibly in�nitely many) synta
ti
ally di�erentways. This means that any solution 
an be found in many synta
ti-
ally di�erent in
arnations in the sear
h spa
e, and if in�nitely manyexist, then for any solution there will always be more equivalent thatare larger than there are equivalent solutions that are smaller. Hen
e,as the sear
h progresses, it is more probable to �nd larger solutionsthan it is to �nd smaller, with any given �tness.It should by now be fully realized that 
ode growth is to be expe
ted. Thequestion now is whether this 
hara
teristi
 is an advantage or a disadvantagefor the performan
e of the evolutionary sear
h.5.2.5 Effe
ts of 
ode growthWhen viewed as some kind of automati
 adjustment of the 
rossover andmutation frequen
y, the existen
e of large introns in the population seemsto be justi�ed, or at least something that seems to be inherent to any EAsear
h using variable length en
odings. We 
ould argue, that it makes senseto let evolution optimize the parameters of the system itself, improving thedynami
s of the total system. However, one should not overlook the fa
tthat when lowering the frequen
y of mutation, you narrow your sear
h andwill not explore new solutions as often. And when lowering the frequen
yof 
rossover, the good solutions in the populations is not as aggressivelyexploited. In e�e
t, the evolutionary sear
h is slowed down whi
h is alsore
ognized by Bli
kle and Thiele (1994) and De Jong et al. (2001) amongstothers.Another argument for 
ontrolling the size of individuals is presented by Ros
a(1996), where strategies for a simple Pa
-Man game are evolved. Here, thesmallest evolved programs were also the most general ones. With generalitywe understand the performan
e of a program when presented a new set of test
ases that have not been in
luded in the training data used in the evolution.Gather
ole and Ross (1996) des
ribes the intera
tion between the 
rossoveroperator and the absolute tree size. They argue that in populations weretrees have rea
hed a 
onsiderable size, the dis
overy of good subtrees andthe distribution of these subtrees, mainly o

urs in the lower levels of thetrees, that is, near the leafs. When the size of the trees grow, the probabilityof sele
ting a 
rossover point near the root de
reases dramati
ally, and hen
ethe upper part of the trees 
onverge, while diversity is maintained in the lowerparts of the trees. So if a suboptimal solution gains foothold in the earlygenerations, this solution 
an be dragged on in the upper levels of the treesfairly immune to further improvement. It is obvious that in a situation likethis, there exists an upper bound on the quality of solutions that 
an beexpe
ted to evolved from the 
urrent population.Lastly, in some systems solutions with a high proportion of introns requiremore evaluation time. For instan
e, Brameier and Banzhaf (2001) use aLinear Geneti
 Programming system to evolve a 
lassi�
ation program to
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t diseases. In this system, introns are removed before evaluation ofspe
i�
 programs in order to optimize this step. After evaluation and beforethe new generation is produ
ed, the introns are reintrodu
ed on the originalpla
es into the programs. This, however, is not an issue for our spe
i�
problem, due to the spe
i�
 evaluation method we use.5.3 Proje
t GoalsIn the previous se
tions we have both identi�ed and des
ribed the phe-nomenon of bloat using some new results extra
ted from the experimentsdes
ribed in Holm and Nielsen (2002) (see 
hapter 4 for a summary). In ourspe
i�
 domain, bloat does not give raise to extra overhead in the evaluationof the solutions, but indeed we are interested in a general improvement ofthe evolution whi
h 
ould 
onsist in redu
ing bloat.In the �gures 5.1(a-b), 5.2(a-b) and 5.3(a-b) we noti
e that diversity mainte-nan
e might be an interesting topi
 to engage. In Holm and Nielsen (2002)we atta
ked this topi
 by using the island prin
iple with 7 islands. When
omparing the three runs, we see that the populations get dominated by onlya few nodes, whi
h 
ould indi
ate 
onvergen
e and low diversity in the latergenerations.When working in a multimodal and highly 
omplex domain su
h as UT, itis indispensable to the performan
e of the evolution, not to get stu
k in alo
al optima. We believe that it is essential to the quality of the evolvedsolutions of a GP system applied to real time domains, to avoid 
onvergen
efor as long as possible. So, when 
onsidering the quality of the system asa whole, it is highly dependent on the systems ability to avoid premature
onvergen
e.We therefor state the goals of this proje
t to be:1. Address the problem of bloat or 
ode growth. Extensions to the systemfor gaining better 
ontrol of the size of individuals should be designedand implemented. The e�e
t on the quality of the evolved solutionsshould be investigated.2. Address the problem of maintaining diversity. New initiatives di�erentfrom the island prin
iple should be designed and implemented. Thee�e
t on the quality of the evolved solutions should be investigated.The performan
e of the sear
h should always stay in fo
us, and we shouldnot give up performan
e in favor of one of the two above mentioned goals.We propose the following extensions:1. Exe
uted Path Guided Operators. New 
rossover and mutation oper-ators that only allows 
ut-points/mutation-points within the exe
utedpath are proposed. The 
rossover operator was previously proposedby Bli
kle and Thiele (1994), and it is inspired by the 
ause of growthlisted as item 1 in se
tion 5.2.4 by not allowing neutral operators. Thatis, individuals 
an not be immune to the destru
tiveness of the geneti
operators by growing in size.



5.3 Proje
t Goals 652. Extended Context Free Grammar, an extended version of the 
ontextfree grammar des
ribed in se
tion 4.3.1 is used both when generatingsubtrees during for mutation and individuals for the initial population.In addition, 
rossover and mutation should be 
losed operators over theset of individuals re
ognized by the extended 
ontext free grammar.This extension atta
ks the 
ause of growth listed as item 3 in se
tion5.2.4, as it narrows the sear
h spa
e of possible solutions.3. Size Ranking, a more dire
t method for promoting small solutions areproposed. This method atta
ks no spe
i�
 
ause of growth, rather itis a more general approa
h.4. Diversity Ranking, a more dire
t method for promoting disperse pop-ulations. This method is based on a subtree 
omparison of exe
utedsubtrees, for either rewarding or punishing individuals for their unique-ness.The design of the di�erent extensions will be des
ribed in the following 
hap-ters.





Part IIOur Approa
hThis part is intended as do
umentation of the pro
ess of designing the dif-ferent extensions previously proposed. Along with ea
h extension, relatedwork is presented. Chapter 6 des
ribes some modi�
ations to the sys-tem des
ribed in 
hapter 4. Chapter 7 present the Size Ranking method.Chapter 8 presents the Diversity Ranking method. Chapter 9 presentsour E-CFG method, and 
hapter 10 presents our EPGO method.





6 System Modifi
ations�Things alter for the worse spontaneously,if they be not altered for the better de-signedly.�,Sir Fran
is Ba
on.Before we 
ontinue with the design of the four methods proposed in se
tion5.3, we �nd it appropriate to des
ribe some of the more general systemmodi�
ations made to the system des
ribed in 
hapter 4.First of all, the algorithm that implements the extended loop of evolutionas depi
ted in �gure 4.3 used 7 islands. This property has been removed, soinstead of 7 subpopulations of 32 individuals ea
h (a total of 224 individuals),only a single population of size 256 is maintained. We 
hoose a size that is apower of 2, as this yields a ni
e tournament s
hedule with no �walk-overs� 1.This modi�
ation was 
onsidered ne
essary as in order to get a more 
leantest environment. That is, when measuring the e�e
t of a new feature ofthe system, it 
ould be hard to distinguish the e�e
t of one feature from thee�e
t of another, or even the e�e
t of the 
ombination of the two. Therefore,it is preferable to keep the GP system at a very basi
 level.Se
ondly, we skipped the assessment step of our old algorithm, refer to se
-tion 4.3.2 for a des
ription of this fun
tion. In the assessment step youbasi
ally de
ide where you want your sear
h to begin, and this might beeither 
onsidered good or bad. In our 
ase we assessed the strategies a

ord-ing to some prior knowledge about the domain. In other words, we imposean arti�
ial distribution on the initial population. In this proje
t however,we want to have a system as basi
 as possible, and we therefore wants tostart with a random initial population. This approa
h seems to be standardthroughout the literature.Thirdly, we have modi�ed the language des
ribed in se
tion 4.2, also asa result of the observations made in Holm and Nielsen (2002). It is awell known issue (e.g. see Koza (1992)), that atomi
 
onstru
ts with very
omplex semanti
s 2 
an 
ause 
onvergen
e by dominating good solutionsand whole populations. And indeed we saw this e�e
t with 
onstru
tslike relative-movement (see se
tion 5.2.1). Therefore, this 
onstru
t hasbeen removed from the set of fun
tions. In general, we dislike the ideato mix high-level and low-level 
onstru
ts in the language, and by remov-ing relative-movement we feared that 
onstru
ts like 
ir
le-strafe-leftand 
ir
le-strafe-right 
ould be just as dominant in the population aswhat we experien
ed with relative-movement, and therefore the everlast-ing risk of 
onverging prematurely is strengthened. Hen
e, we have removed
ir
le-strafe-left and 
ir
le-strafe-right from the language. This1Individuals that 
an not be paired with another individual in the 
urrent round istypi
ally given a so 
alled �walk-over�, meaning that they pro
eed to the next roundwithout 
ompeting.2Often referred to as high-level fun
tions and terminals.69



70 System Modifi
ationsremoval does not narrow the expressiveness of the language, unlike the re-moval of relative-movement. That is, it is possible to 
onstru
t the be-havior of 
ir
le-strafe-left by 
ombination of e.g. fa
e-enemy andstrafe-left. However, in experimenting with di�erent 
ombinations toa
hieve the 
ir
ular stra�ng movement, we noti
ed that smooth movementwas hard to 
onstru
t without being able to postpone further exe
ution ofthe parse tree every on
e in a while. The reason is that it takes some smallamount of time before the server a
knowledges (and perform) an a
tion 
om-mand send by the 
lient. Hen
e, we added the fun
tion:(wait x arg)This fun
tion requires (as does 
onst) an integer value x, and exe
utionof the argument arg is postponed proportional to the value of x. waitassumes the value assumed by arg. This does not mean that the bot stopsits 
urrent business in the arena, it just means that no new 
ommands aresend during that sli
e of time. A 
omplete language spe
i�
ation 
an befound in appendix C.Fourthly, we have 
hanged the arena a bit, for two reasons:1. The bots where spawned on one of several spawning-points, uniformlypla
ed and fa
ing the 
enter of the arena, see �gure 4.4. In e�e
t, thismeans that the bots were spawned with visual 
onta
t of ea
h other,whi
h is a perfe
t 
ondition for su

essful use of the relative-movementfun
tion. Also, a single shoot node is a highly e�e
tive solution if youare fa
ing your enemy most of the time. So in an attempt to 
onstrainthe s
ope of some of the very primitive solutions, the spawning-pointsare now s
attered over the arena. Also, we wanted to make the mapmore dynami
, and the symmetri
 spawning points in the old mapmakes it somewhat more stati
, and might not reward good strategiesfor �nding your enemy, as he/she is usually right in front of you.2. In the old map, items were evenly distributed throughout the wholearena, making it very easy for the bots to pi
k up items. In fa
t, thebots would typi
ally run into several items just by 
rossing the arena.So, in an attempt to avoid this situation, and making the environmentmore 
hallenging to the bots, we enlarged the arena and dispersed thepla
ement of items.



7 Size Ranking�One should not in
rease, beyond what isne
essary, the number of entities requiredto explain anything.�,William of O

am.The fa
t that the performan
e of a standard GP system using subtree swap-ping 
rossover will degraded along with growth in tree size was motivated in
hapter 5. The following se
tion 7.2 presents di�erent approa
hes to defeatthis problem. In se
tion 7.3 the approa
h that we have 
hosen in this proje
tis des
ribed.When des
ribing the e�e
t of evolution on the size of en
odings, some sortof formal argumentation is often 
onstru
ted (i.e. see Nordin and Banzhaf(1995); Langdon and Poli (1997); Ros
a (1997)). In keeping with this tradi-tion, the next se
tion 7.1 will serve as su
h an argumentation.7.1 The Bloat PhenomenonBefore going into a detailed dis
ussion about the e�e
t of evolution on the sizeof individuals, it is useful to distinguish between e�e
tive size and absolutesize of a program. Nordin and Banzhaf (1995) de�ne the e�e
tive size (Seff )of a program to be the size of the non-intron part, and the absolute size(Sabs) is of 
ourse the total size of the program, in
luding all introns. Ina

ordan
e with the de�nitions of introns given in se
tion 5.2, we 
an see thee�e
tive part of a program as being the exe
uted part of that program. Inthe following we will illustrate the fa
t that the absolute size of an individual
an have a hand in the survival rate of that individual.As des
ribed in 
hapter 5, neither standard 
rossover nor mutation 
an (byde�nition) 
hange the raw �tness of a program when applied within a globalintron blo
k. On the other hand, 
rossover or mutation within any non-intronblo
k of 
ode will almost 
ertainly 
hange the performan
e or behavior ofthat program at the risk of de
reasing raw �tness.It is possible to estimate the evolution of size by 
al
ulating the expe
tednumber of 
opies of a given e�e
tive part of a program in future generations.In generations later than the initial, this estimate is 
omposed of two parts.Firstly, 
ode blo
ks 
an survive a
ross generations through sele
tion andgeneti
 operations. Se
ondly, entirely new instan
es of equivalent blo
ks 
anemerge from geneti
 operations. We will fo
us on the survival of existingblo
ks and for now we will disregard new instan
es of 
ode blo
ks emergingfrom re
ombination and mutation.We have a probability of 
rossover and mutation at the individual level ofp
 and pm respe
tively. Seff (i) and Sabs(i) des
ribes the e�e
tive size andabsolute size of individual i. We 
an formulate an upper bound of the prob-ability of potential destru
tion of the e�e
tive 
ode blo
k of individual i,71



72 Size RankingPdes(i), as a result of 
rossover or mutation, as:Pdes(i) � Seff (i)Sabs(i) (p
 + pm): (7.1)The destru
tion of the e�e
tive blo
k is only bounded by this value, andnot ne
essarily equal to it, as it is possible to perform 
rossover or mutationwithin the e�e
tive blo
k without destroying it 1. If the probability of indi-vidual i being sele
ted for mating is Psel(i), then the survival rate Psur(i) ofthe e�e
tive part of individual i is des
ribed by equation (7.2).Psur(i) = Psel(i)� Pdes(i) (7.2)Psur(i) � Psel(i)� Seff (i)Sabs(i) (p
 + pm): (7.3)In equation (7.3), the proportion of destru
tive 
rossover operations, as esti-mated by equation (7.1), has been substituted into the survival rate des
ribedby equation (7.2).The way Psel(i) is 
al
ulated is not of great importan
e in equation (7.2)and (7.3), only fa
t that better �tness yields a higher Psel value is importantto noti
e. The relation that is important to observe, is that of Psur andSabs. With �xed Seff and Psel, an in
rease in Sabs does in fa
t in
rease thesurvival rate of an individual. Also, the smaller the Seff , the higher thePsur, whi
h show that evolution inherently favors 
ompa
t solutions, or atleast a low value for SeffSabs . Amongst others, these fa
ts were re
ognized byNordin and Banzhaf (1995) and Ros
a (1996).7.2 Previous EffortsA lot of di�erent approa
hes to gain more 
ontrol over the size and 
omplex-ity of the evolved solutions have been investigated. One 
rude or primitiveapproa
h is simply to 
onstrain solutions to be smaller than some expli
itlyde�ned maximum size. This te
hnique is most often reje
ted as too greedyand stati
, espe
ially if this size 
onstraint is �xed by plain guessing. How-ever, if you are already in possession of an a

eptable solution, and just wantto explore equally good (possibly better) but less 
omplex (i.e. shorter) solu-tions, this approa
h is intuitively optimal. It 
ould easily be 
ombined withone or more of the methods des
ribed in the following se
tions.7.2.1 Primitive Parsimony PressureA 
ommon (and a bit more sophisti
ated than the above mentioned) ap-proa
h is to expli
itly introdu
e parsimony pressure to the evaluation fun
-tion. In e�e
t, this means to make the e�e
tive �tness value dependent onthe absolute size of the individual. We rede�ne Psel and modify equation(7.2) as: P 0sel(i) = Psel � �Sabs(i) (7.4)Psur(i) = P 0sel(i)� Pdes(i): (7.5)1For instan
e, two identi
al subtrees 
an be ex
hanged between the parents, resultingin o�spring identi
al to the parents.



7.2 Previous Efforts 73As remarked by Ros
a (1997), the 
hoi
e of value for the O

am fa
tor 2 � isa di�
ult task, but at least � should be a small positive value so that �Sabs(i)in general is negligible 
ompared to Psel(i). The drawba
k of this approa
h isthat the weighting fa
tor is 
onstant throughout the evolution and with toogreat a value for �, it may not be possible to evolve solutions with su�
ientlygood performan
e. As the other extreme, if � is �xed on a too low value,it will have no e�e
t, and tree sizes will explode as usual. Both Nordin andBanzhaf (1995) and Ros
a (1996) show simple parsimony pressure 
an redu
ethe absolute size while e�e
tive size is relatively una�e
ted by the pressure.7.2.2 Adaptive Parsimony PressureAn adaptive O

am fa
tor for the parsimony pressure was proposed by Zhangand Mühlenbein (1995), and it extends the primitive parsimony pressureapproa
h des
ribed in se
tion 7.2.1 above. All individuals are �rst evaluatedin order to �x their raw �tness. Then, the error E of every program i ingeneration g, E(i; g), is determined. The absolute size of every program isalso de�ned as a fun
tion of the generation, i.e. Sabs(i; g). An estimate of theabsolute size of the best individual in the next generation, Ŝabs, is 
al
ulatedas: Ŝabs(best; g + 1) = Sabs(best; g) + �S(g): (7.6)In equation (7.6), �S(g) is re
ursively de�ned by equation (7.7).�S(g) = � 0 if g = 0,12Sabs(best; g) � Sabs(best; g � 1) + �S(g � 1) otherwise.(7.7)Now the O

am fa
tor is updated between generations a

ording to thes
heme des
ribed by equation (7.8).�(g) = ( 1N2 E(best;g�1)Ŝabs(best;g) if E(best; g � 1) > �1N2 1E(best;g�1)Ŝabs(best;g) otherwise (7.8)In equation (7.8) N is the size of the training set, and � des
ribes the max-imum training error allowed for the �nal solution. Finally, before engagingin the sele
tion pro
ess, � in equation (7.4) is repla
ed by the new de�ni-tion �(g) from equation (7.8). Amongst others Bli
kle (1996) shows goodresults in solving two symboli
 regression problems, one 
ontinuous and onedis
rete.7.2.3 Expli
itly Defining IntronsNordin et al. (1995) propose a system in whi
h a spe
ial language 
onstru
ts(an Expli
itly De�ned Intron (EDI)) is given the 
hara
teristi
 properties ofintrons. An EDI 
an be atta
hed to any edge between two 'normal' neighbornodes in the program, and it have no e�e
t on the exe
ution of the program.2Named after William of O

am and his prin
iple of simpli
ity (O

am's Razor): �Givena 
hoi
e between two explanations, 
hoose the simplest � the explanation whi
h requiresthe fewest assumptions.�
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��Figure 7.1: The 6 di�erent �tness 
lasses, produ
ed by our tournament based �tnessfun
tion, when applied to a population of 32 individuals, with �tness de
reasing fromleft to right.Atta
hed to an EDI is an integer value (EDIV) that a�e
ts the probability of
rossover between the two nodes 
onne
ted by the edge, proportional to thespe
i�
 EDIV. Nordin et al. (1995) show that the addition of EDIs to a GPsystem evolving solutions for symboli
 regression problems perform betterthan the equivalent system without EDIs. The aspe
ts investigated in
lude
omputation time, generalization and raw �tness. Also, it is shown that thenumber of destru
tive 
rossover operations is de
reased dramati
ally.7.3 Our Approa
hWe have 
hosen to experiment with a simple parsimony pressure approa
h.Our �tness fun
tion (des
ribed in se
tion 4.3.2) is a 
ompetitive tournamentbased �tness fun
tion, whi
h means, that the �tness of an individual is deter-mined relative to the population of the 
urrent generation. More pre
isely,with a population of size N , the individuals are divided into log2(N) + 1�tness 
lasses, as depi
ted in �gure 7.1. The �tness 
lass membership of anindividual is de�ning the raw �tness of this individual. We now order theindividuals within ea
h �tness 
lass a

ording to their absolute size. In thisway, we never run the risk of moving a individual from one �tness 
lass to an-other as a result of applying the pressure. The fa
t that the smallest 
hangein �tness is balan
ed against the biggest 
hange in size, is in a

ordan
e withthe guidelines that put up by Nordin and Banzhaf (1995).Our approa
h des
ribed in this 
hapter, will be referred to in the followingas SR.



8 Diversity Ranking�Without order nothing 
an exist - without
haos nothing 
an evolve.�,Unknown.The diversity of the geneti
 material 
ontained in the population maintainedby the EA is known to drop over time. The 
onsequen
e is that solutionswill be more and more alike, that is, the area of the entire sear
h 
overedby the population is narrowed, and the optimization is 
on
entrated on asingle peak on the �tness lands
ape. The population experien
e 
onvergen
eand the exploration of new solutions is rapidly damped down. In someappli
ations of EA, this is a very attra
tive property, espe
ially if you wantthe system to terminate and spit out a solution to the problem, as it is ni
ethat a lot of time is not wasted by on exploring totally new areas of thesear
h spa
e for ever.However, in some problem domains, you want to have more 
ontrol over the
onvergen
e properties of the EA. For instan
e, when dealing with problemdomains of very high 
omplexity and multimodality, it is 
ommon to experi-en
e �tness lands
apes with (possibly in�nitely) many peaks of suboptimalsolutions. In su
h domains, it is of great importan
e that diversity is keptunder 
ontrol and not permitted to drop below some threshold, whi
h woulddrive the exploration of new solutions to a halt.Espe
ially, in our domain (des
ribed in se
tion 2) we expe
t a lot of sub-optimal solutions to exist. As a result, we are not interested in dampingdown exploration prematurely, but rather we would prefer to explore newsolutions. However, when 
onsidering our use of a 
ompetitive tournamentbased �tness fun
tion (see se
tions 4.3.2), the �tness fun
tion itself displaysa very dynami
 behavior, as it is dependent on the population of the 
ur-rent generation. As mentioned by Angeline and Polla
k (1994), this kind oftournament �tness will naturally dis
ourage 
onvergen
e in most situations.The reason is in the way �tness is assigned to individuals. As illustratedin �gure 7.1, individuals are assigned a �tness value a

ording to the levelof the tournament rea
hed by that individual, in e�e
t meaning that a lotof individuals will be assigned the same �tness. So even in the �tness dis-tribution, we have inherently a bias towards low pressure. And as we usea sele
tion method with low pressure 1, we have a very low sele
tion pres-sure indeed. A low sele
tion pressure inherently promotes diversity, as nosuperindividual will be allowed to reprodu
e aggressively. This being said, itmight seem strange that we still want to 
onsider methods for maintainingdiversity in the population. The answer is, that a 
ompetitive �tness fun
-tion only leaves room for diversity to exist, but does not dire
tly dispersethe population and thereby for
ing individuals to explore new areas of thesear
h spa
e, and this is what we would like to do.1Tournament sele
tion with tournament size 2, see se
tion 4.3.2.75
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(b)Figure 8.1: Two trees are 
ompared, exe
uted nodes are 
olored. A mat
h of size 4has been en
ir
led.8.1 Our Approa
hWe have 
hosen to experiment with a te
hnique that will in
orporate anexpli
it distan
e measure, and thereby promote individuals that in
reasethe diversity of the population. The distan
e measure is inspired by DeJong et al. (2001), where the distan
e between two trees is 
al
ulated bysumming the number of identi
al nodes with 
orresponding positions whenthe two trees are overlaid. De Jong et al. (2001) normalizes the distan
ebetween two trees by division of the size of the smaller of the two. Insteadof performing this kind of full tree 
omparison, we only 
onsider the biggestgarbage free subtrees when performing 
omparison. By garbage free we meanthat all nodes in the full subtree have been exe
uted. As an example �gure8.1(a), 8.1(b), 8.2(a) and 8.2(b) depi
t a 
omparison of two trees using ours
heme, and two subtree mat
hes are en
ir
led by the dashed line. So, for allpairs of individuals in the population, we 
al
ulate the maximum 
ommonsubtree, and for ea
h individual we 
al
ulate an average of these values.Like in the approa
h des
ribed in se
tion 7.3, we use this average measureto sort individuals within spe
i�
 �tness 
lasses, so that individuals with alow average 
ommon size are promoted and individuals with a high value arepunished.The motivation for only 
onsidering the biggest garbage free subtree is �rstof all the fa
t that we do not want to punish trees with identi
al garbage,and promote trees with di�erent garbage. If, at some point the garbage isput into use, the garbage will not 
ontinue to be garbage, and trees withlarge 
ommon sizes will now be punished.8.1.1 Measuring Common SizeThe algorithm for determining the size of the biggest mat
hing subtree ofany two trees, is des
ribed by the algorithms 
ompare and subTreeMat
h de-pi
ted in tables 8.1 and 8.2 respe
tively. Basi
ally, 
ompare takes two treesas arguments, performs a breadth �rst s
an through both trees and 
ontin-
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(b)Figure 8.2: Two trees are 
ompared, exe
uted nodes are 
olored. A mat
h of size 5has been en
ir
led.ually 
omparing the subtrees rooted at the nodes 
urrently being s
anned,by 
ontinually 
alling subTreeMat
h for all possible pairs of nodes of thetwo trees. This yields a 
omplexity of M �N invo
ations of subTreeMat
h,where M and N are the sizes of t1 and t2. In the average 
ase we 
ouldminimize this 
omplexity, by only 
alling subTreeMat
h when it is possibleto �nd a bigger mat
h, that is both arguments of subTreeMat
h must havea size greater than the value of variable max_mat
h. This improvement doesnot a�e
t the worst 
ase s
enario, when two 
ompletely di�erent trees aregiven as arguments to 
ompare. The 
omplexity of subTreeMat
h is equal tothe size of the smaller of the two trees. This 
an be realized by 
onsideringthe worst 
ase s
enario, when two identi
al trees are given as arguments forsubTreeMat
h. In this 
ase, the amount of 
omparisons needed is equal tothe number of nodes in the tree. The same is the 
ase, when trees onlydi�er in leaf nodes. If we assume that most often the trees 
ompared are ofapproximately equal size, we get a 
omplexity of 
ompare of O(n2), n beingthe average size of the two trees given as arguments. As earlier mentioned,the worst 
ase s
enario for 
ompare is two 
ompletely di�erent trees, whi
his the best 
ase s
enario for subTreeMat
h, yielding a 
onstant 
omplexityas the test in line 10 of table 8.2 fails in the �rst iteration.It is obviously of great 
on
ern that our algorithm for 
ompare has a 
om-plexity of O(n2), but as we use only the biggest garbage free subtrees when
omparing two trees, we expe
t the size of these garbage free subtrees to stayapproximately 
onstant on a relative low value. As an illustration, some pre-liminary experiments have shown that garbage free subtrees on average donot grow to sizes of more than 10 to 20 nodes, whi
h yields a total of max202 = 400 
omparisons. Compared to the evaluation of a generation of255 individuals in our real-time domain (� 15 se
ondsindividual ) 400 
omparisons isnegligible. Of 
ourse, the 15 se
onds primary evaluation is done in a 
up-tournaments based fashion (des
ribed in se
tion 3.2.4), while all individualsneed to be 
ompared with all others on
e, yielding a total of 32385 
ompar-isons on the individual level. However, experiments still show that this is
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ompare(t1, t2){02: mat
h = 0;03: max_mat
h = 0;04: sta
k1 = Ø;05: sta
k2 = Ø;06: sta
k1.push(t1.root);07: sta
k2.push(t2.root);08: while(sta
k1 != Ø){09: node1 = sta
k1.pop();10: while(sta
k2 != Ø){11: node2 = sta
k2.pop();12: mat
h = subTreeMat
h(node1, node2);13: if(max_mat
h < mat
h){14: max_mat
h = mat
h;15: }16: for all 
hildren x of node1{17: sta
k2.push(x);18: }19: }20: sta
k2.push(t2.root);21: for all 
hildren x of node1{22: sta
k1.push(x);23: }24: }25: return max_mat
h;26: }Table 8.1: Algorithm for �nding the largest subtree mat
h within to subtrees.not a performan
e bottlene
k.In the following 
hapters, the approa
h des
ribed in this 
hapter will bereferred to as DR
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01: subTreeMat
h(root1, root2){02: mat
h = 0;03: sta
k1 = Ø;04: sta
k2 = Ø;05: sta
k1.push(root1);06: sta
k2.push(root2);07: while(sta
k1 != Ø AND sta
k2 != Ø){08: node1 = sta
k1.pop();09: node2 = sta
k2.pop();10: if(node1 == node2){11: mat
h = mat
h + 1;12: for all 
hildren x of node1{13: sta
k1.push(x);14: }15: for all 
hildren x of node2{16: sta
k2.push(x);17: }18: }19: }20: return mat
h;21: } Table 8.2: Algorithm for mat
hing subtrees.





9 Enhan
ed Context FreeGrammar�We adore 
haos be
ause we love to pro-du
e order.�,M. C. Es
her.In Holm and Nielsen (2002) we introdu
ed a CFG to be used by the 
us-tom tree generator. The 
ustom tree generator was used to generate theinitial population of trees re
ognized by the CFG and to dire
t the muta-tion operator when a subtree was needed 1. In this se
tion we will des
ribethe enhan
ement of the CFG and the motivation for it. We will name thisenhan
ed CFG, the Enhan
ed-Context Free Grammar (E-CFG).9.1 MotivationSeveral motives for enhan
ing the CFG exist. The impa
t of further synta
ti

onstraints is very appealing, sin
e it redu
es the sear
h spa
e. Of 
oursewe still have to be 
areful not to limit the solution spa
e. By analyzing thethree runs from Holm and Nielsen (2002) we found various useless synta
ti
stru
tures whi
h 
ould be eliminated by altering the CFG, and hopefully notthe solution spa
e. Another reason for enhan
ing the CFG was the removalof the high level fun
tions. The high level fun
tions were part of all the bestindividuals from the three runs in Holm and Nielsen (2002). By removingthese we expe
t that it will be
ome more di�
ult to rea
h solutions of thesame quality. Yet by adding rules to the CFG we 
an push the evolution toevolve sensible building blo
ks of the low level fun
tions. In the next se
tionwe will look 
loser into the new rules added to the CFG.9.2 Our Approa
hThe E-CFG is 
onstru
ted by altering some of the old rules from the ini-tial CFG and adding a number of new rules. The E-CFG should narrowthe sear
h spa
e further, still it should not do it by removing satisfyingsolutions. It has been our goal to design the E-CFG with the removal ofunsound synta
ti
 stru
tures in mind, e.g. stru
tures whi
h are obsolete be-
ause they only di�er 
ompared to other stru
tures as genotype but not asphenotype. In �gures 9.1(a) and 9.1(b) we 
an see an example of two treeshaving identi
al phenotype but di�ering genotype.
1Noti
e that when the mutation operator was applied the resulting tree was not ne
-essarily re
ognized by the CFG, only the subtree inserted.81
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if−less−than

const 100 const 140 if−enemy−move−right const 42

if−enemy−move−right if−enemy−move−left

turn−right shoot prog−2 health

if−less−than health

prog−2 prog−2 const 33 armor

turn−left wait 33

health

face−enemy shoot

(a)

if−enemy−move−right

turn−right if−enemy−move−left

prog−2 turn−right

turn−left wait 33

prog−2

face−enemy shoot(b)Figure 9.1: In (a) a randomly generated tree is depi
ted. Noti
e the semanti
alequivalen
e with the tree depi
ted in (b) whi
h is re
ognized by our CFG.9.2.1 Context Free GrammarsA 
ontext free grammar is a four-tuple(N ;X;P;S);where N is the non-terminal alphabet, P is the terminal alphabet, P is theset of produ
tions and S is the start symbol. The produ
tions are of theform A! b;where A 2 N , b 2 P S N �. Produ
tions of the formA! b;A! 
;
an be expressed as A! b j 
:9.2.2 The Enhan
ementsThe alphabet of the E-CFG, representing the fun
tions and terminals of ourlanguage, is des
ribed in table 9.1.We will now elu
idate a number of sets, whi
h will be used in the grammar.
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h 83F NamesA prog-2B if-less-thanC waitD if-health-in-rea
hE if-ammo-in-rea
hF if-armor-in-rea
hG if-weapon-in-rea
hH if-bumpI if-enemy-in-sightJ if-enemy-move-leftK if-enemy-move-rightL if-enemy-move-awayM if-enemy-
losing-inN if-enemy-is-stati


T Namesa healthb my-weapon
 ammod armore enemy-weaponf enemy-damageg enemy-distan
eh fa
e-enemyi turn-leftj turn-rightk strafe-leftl strafe-rightm shootm move-forwardo move-ba
kwardp 
onstTable 9.1: The alphabet of the E-CFG. The fun
tions are assigned upper
ase lettersin the leftmost box and the terminals are assigned lower
ase letters in the rightmostbox. Fset = fA::Ng (9.1)Iset = fD::Ng (9.2)aset = fh::og (9.3)sset = fa::gg (9.4)The "fun
tion" set (Fset) 
onsists of all the fun
tions from our fun
tionand terminal set. The "if" set (Iset) 
onsists of all the fun
tions being if
onstru
tions ex
ept if-less-than whi
h di�er in that it uses two of itsarguments for evaluation. The "a
tion" set (aset) 
onsists of all terminalswhi
h 
auses some kind of bot a
tion when exe
uted. The "sensor" set (sset)
onsists of all terminals representing game information and the 
onstantterminal.We will now take a look on the reasoning behind the di�erent rules in theE-CFG.The start rule S ! Fset (9.5)makes sure that trees at least 
onsist of three nodes, as all 
onstru
ts in Fsetrequire at least 2 
hildren with the ex
eption of the wait 
onstru
t, thatonly requires 1 
hild. However, the rule for wait (see rule (9.10)) preservesthe minimum tree size of trees with a wait node as root. Sin
e trees withless than three nodes 
an not represent satisfying solutions and we will avoidthat an individual whi
h only 
onsists of the shoot node 
an get a good
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prog−2

prog−2 shoot

if−enemy−in−sight shoot

face−enemy turn−right(a)
if−enemy−in−sight

prog−2 prog−2

face−enemy prog−2

shoot shoot

turn−right prog−2

shoot shoot(b)Figure 9.2: A tree generated randomly depi
ted in (a). When using the E-CFG fortree generation a semanti
al equivalent tree exists as 
an be seen in (b). The treeis generated using the new E-CFG prog-2 rule the rule should not 
onstrain thesolution spa
e.�tness early in a GP run, this is possible sin
e "shots �red" is a part of anindividuals �tness assignment.The prog-2 rules A! aset A j A aset j aset aset (9.6)only allows a prog-2 fun
tion to have another prog-2 fun
tion or one ofthe a
tion terminals as its arguments. This rule is implemented with theoriginal purpose of introdu
ing the prog-2 fun
tion in mind, namely to beable to exe
ute a sequen
e of a
tions. The syntax of this rule makes itpossible to exe
ute from two to an in�nite sequen
e of a
tions. We shouldalso note that this rule does not redu
es the set of possible solutions, but onlyredu
es semanti
 dupli
ates. An example of two trees whi
h are semanti
allyequivalent 
an be seen in �gure 9.2(a) and �gure 9.2(b). The tree in �gure9.2(b) was generated using the E-CFG and the tree in �gure 9.2(a) was not.The following if-less-than rulesB ! B0 B00 B00 (9.7)B0 ! sset p j p sset j sset sset (9.8)B00 ! aset j Fset (9.9)helps to generate 
onditionals whi
h should have a purpose, that is, evaluatesensor information and exe
ute the appropriate bran
h based on this infor-mation. The analysis of the trees from the three runs in Holm and Nielsen(2002) showed that the if-less-than fun
tion in some 
ases served as aprog-3 fun
tion or always exe
uted the same bran
h, or both possible exe-
utable bran
hes had sensor nodes as 
hildren. Illustrations of these threetypes of undesirable tree stru
tures 
an be seen in �gures 9.3(a), 9.3(b) and9.3(
). When using the new E-CFG's if-less-than rules, we make surethat the two 
hildren being evaluated never are two 
onstants, in this waywe avoids that the same bran
h always is exe
uted (with one ex
eption; when
onst takes a minimum or maximum value).
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if−less−than

const 42 const 52 health shoot(a) if−less−than

const 42 health armor ammo(b)
if−less−than

shoot move−forward shoot if−enemy−in−sight

face−enemy turn−right(
)Figure 9.3: An if-less-than fun
tion always exe
uting the same bran
h is depi
tedin (a). The two exe
utable bran
hes both have useless sensor nodes as instru
tion,depi
ted in (b). An if-less-than fun
tion a
ting as a prog-3, depi
ted in (
).
prog−2

wait 100

???

shoot

(a)
prog−2

wait 100 shoot

move−backward(b)Figure 9.4: During tree generation a wait fun
tion de
ides its 
hild by using itsparent's grammar rule. In (b) the wait node has de
ided to be a a
tion terminala

ording to the prog-2 grammar rule.The wait rule C ! parent rule (9.10)ne
essitates a little explanation. To limit the number of listed rules for thisfun
tion we have made a notational short
ut. What we mean by parent ruleis that the allowed 
hild to wait is determined by looking at the 
hildrenallowed for wait's parent. An example of this rule in use 
an be found in�gures 9.4(a) and 9.4(b). In this 
ase the rule for prog-2 will be used sin
ethis type of node is parent to wait, so this means that waits 
hild 
an beeither a prog-2 node or a terminal from the Aset as 
hosen in �gure 9.4(b).The Iset rule, de�ned in terms of the B00 variable previously de�ned by rule(9.9), Iset ! B00 B00; (9.11)allows all fun
tions and terminals ex
ept for sensors as arguments.
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ed Context Free GrammarE-CFGS ! FsetA ! aset A j A aset j aset asetB ! B0 B00 B00B0 ! sset p j p sset j sset ssetB00 ! aset j FsetC ! parent ruleIset ! B00 B00Table 9.2: The E-CFG of the 
onstrained synta
ti
 rules for 
ustom tree generation,
rossover and mutation.The 
omplete E-CFG is observable in table 9.2. We 
an now use this E-CFG to generate our initial population and the subtrees used in mutation.In addition we will use the E-CFG to 
ontrol the 
rossover operator, so thatthe o�spring generated will re
ognize the rules imposed by the grammar.



10 Exe
uted Path GuidedOperators�I think 
omplexity is mostly sort of
rummy stu� that is there be
ause it's tooexpensive to 
hange the interfa
e.�,Jaron Lanier.In this se
tion we will des
ribe a new 
rossover operator and a new mutationoperator. These operators are designed with an evolutionary optimization inmind and the theory behind them is des
ribed in Bli
kle and Thiele (1994).We will refer to these new operators as Exe
uted Path Guided Crossover(EPGC) and Exe
uted Path Guided Mutation (EPGM). We will refer toboth of them as Exe
uted Path Guided Operators (EPGO).10.1 ConsiderationsThe motivation for the introdu
tion of these new operators is partly basedupon our observations in Holm and Nielsen (2002) and the analysis in 
hapter5. As previously mentioned and do
umented in Soule et al. (1996), withoutany 
onstraint me
hanism the programs generated by GP will grow inde�-nitely regardless of whether or not the growth a
ts to improve the programs'solutions.The fa
t that the amount of non-fun
tional 
ode in our programs grows asevolution progresses raises some 
on
erns. Contrary to most papers tou
h-ing the problem with tree growth, the domain in fo
us is highly 
omplex,dynami
 and noisy. With this in mind, one have to 
onsider that results andmethods in these papers have to be 
arefully evaluated before applying anyof the theory to a

omplish our task.In a domain like UT it 
an be expe
ted to evolve a 
onsiderable numbergenerations in a GP run, before an adequate solution is found. When lookingat the time 
onsuming �tness fun
tion used in our domain it should beapparent that it is relevant to optimize the exploration and exploitationproperties provided by the geneti
 operators. When the amount of non-fun
tional 
ode in the population grows exponentially and we 
an expe
t toevaluate a high number of individuals it seems logi
al to aim for individualsonly di�ering in size but not semanti
ally are only evaluated on
e. Beforegoing into details with the approa
h taken to deal with this issue let us lookat similar work done within the area.10.2 Similar workThe prin
iple of EPGO, namely to let exe
ution paths guide the 
hoi
e of GP
rossover and mutation lo
ation is yet rather unexplored. As far as is known,87



88 Exe
uted Path Guided Operatorsprogram exe
ution paths are introdu
ed and used for guiding 
rossover forthe �rst time in Bli
kle and Thiele (1994). in this paper the method devisedis problem dependant in that it only works for 
ertain fun
tion sets and theperforman
e varies dependent on the problem at hand.In Langdon (1995) a more general, but also rather di�erent method is sug-gested. Langdon (1995) states that it is obviously wasteful to perform
rossover in 
ode that is working 
orre
tly, and therefore he suggests a di-re
ted 
rossover me
hanism whi
h su

eeds in dynami
ally redistributing
rossover lo
ations to 
ode in need of improvement as the population evolves.In the problem under treatment ea
h individual 
onsists of multiple trees,ea
h of whi
h is a part of the solution. By keeping a re
ord of whi
h treesare exe
uted and with what out
ome, the 
urrent performan
e of ea
h treewithin an individual 
an be des
ribed and this des
ription is used to biaswhi
h trees are 
hosen for 
rossover. Sin
e the method des
ribed in Langdon(1995) is designed for another representation of solutions than the one weuse and it is di�
ult to adapt, we will not go into details with the spe
i�
sof the method.The representation of the population as parse trees allows the trees to growwith time, often without improving the 
urrent best solution. One way ofavoiding this is to add some penalty to the �tness fun
tion for too big trees.Bli
kle and Thiele (1994) explain both the phenomenon of bloating and theunsatisfying 
onvergen
e of the sear
h pro
ess by means of the redundan
yin the trees. Spe
i�
ally Bli
kle and Thiele (1994) give a more formal de-s
ription of the 
rossover phase and redundan
y phenomena in GP. In thefollowing se
tion some of the de�nitions will be summarized.10.2.1 Crossover and Redundan
yDe�nition 10.2.1 The edge A in tree T is 
alled redundant if for all valuesof the leaves (terminals) the fun
tion represented by the tree T is independentof the subtree lo
ated at edge A.Note:� If the edge A is redundant if follows immediately that all edges in thesubtree lo
ated at edge A are redundant, too.� The redundan
y of an edge A in general depends on the 
ontext.� All nodes lo
ated at redundant edges are redundant nodes.� The non-redundant nodes are also 
alled "atomi
" by Ta
kett (1994).De�nition 10.2.2 The proportion of redundant edges in a tree T is givenby pr(T ) = number of redundant edges in Tnumber of all edges in TDe�nition 10.2.3 The redundan
y 
lass T � is the set of all trees T that onlydi�er from subtrees at redundant edges, i.e. for any two trees T1; T2 2 T �,



10.2 Similar work 89T1 
an be transformed into T2 only by 
hanging subtrees at redundant edgesof T1.Theorem 10.2.1 Let p
 be the probability of 
rossover and T a tree of theredundan
y 
lass T �. The probability of tree T to remain in 
lass T � after
rossover is given by ps(T ) � 1� p
 + p
pr(T ).Theorem 10.2.2 Let pr(T �) be the average redundan
y of the redundan
y
lass T � before reprodu
tion. The average redundan
y pr(T 0�) after repro-du
tion is in average independent of the reprodu
tion method and pr(T 0�) =pr(T �).Proofs of theorem 10.2.1 and theorem 10.2.2 
an be found in Bli
kle andThiele (1994).It follows from 10.2.1 that the more redundant trees are more likely to sur-vive. This implies the in
reasing redundan
y in a typi
al GP run makesit less likely to 
hoose a non-redundant node as 
rossover point and hen
ehinders the evolution of new individuals. Bli
kle and Thiele (1994) alsonote that it follows from this 
onsideration that the probability to es
ape apotential lo
al optima de
reases with time.In a highly multimodal and 
omplex problem domain the possibility of ex-ploring several lo
al maxima is evident. Therefore we �nd the just mentionedproperty highly undesirable in our domain. Bli
kle and Thiele (1994) suggesta method to 
ontrol the redundan
y and present results whi
h demonstrateits appli
ability.10.2.2 The Marking MethodThe idea of the "marking" operator des
ribed in Bli
kle and Thiele (1994) isto mark all nodes that are traversed (or exe
uted) during evaluation of the�tness fun
tion in the following way:� First before evaluation the marking �ags of all nodes are reset.� Then if a node is exe
uted during the �tness 
al
ulation the 
orre-sponding �ag is set.� At last after the 
al
ulating the �tness fun
tion, only at redundantnodes the �ags are still 
leared. The 
rossover is then restri
ted toedges with the �ag set.The method is applied on three problems taken from Koza (1992). For the6-multiplexer problem the performan
e was almost doubled, for the tru
kba
ker upper problem an improvement in 
onvergen
e of 20 % was measuredand for the ant problem almost no improvement was measured.
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if−enemy−move−away

if−enemy−move−right

if−less−thanturn−right

prog−2

face−enemy shoot

shoot turn−left const 42 move−forward(a) An initial generatedtree with no exe
ute nodesyet.
if−enemy−move−away

if−enemy−move−right

if−less−thanturn−right

prog−2

face−enemy shoot

shoot turn−left const 42 move−forward(b) The tree from �gure(a) after an evaluation.The 
olored nodes havebeen exe
uted.
if−enemy−move−away

if−enemy−move−right

if−less−thanturn−right

prog−2

face−enemy shoot

shoot turn−left const 42 move−forward(
) The tree from �gure(b) after another evalua-tion. This time a di�erentpart of the tree has been ex-e
uted.

if−enemy−move−away

if−enemy−move−right

if−less−thanturn−right

prog−2

face−enemy shoot

shoot turn−left const 42 move−forward(d) The 
olored subtreehas still not been exe-
uted. This latent subtree
ould be exe
uted in a sub-sequent evaluation.Figure 10.1: The 
olored subtree has still not been exe
uted. This latent subtree
ould be exe
uted in a subsequent evaluation.10.3 Our Approa
hWe have 
hosen to adopt the method des
ribed in Bli
kle and Thiele (1994)and use it for mutation as well as 
rossover. The method seems to �t ni
elyfor our problem domain. Alternate methods whi
h try to remove redundant
ode 
ould 
ause a problem in our domain. Let us take a look at an example.In �gure 10.1(a) we see an initial generated tree. We 
ould apply heuristi
sto remove possible redundant nodes, but we risk to remove sound 
ode andwe also risk to alter the initial diverse distribution of fun
tions and terminals.In �gure 10.1(b) we see the exe
uted nodes in a tree after an evaluation.These nodes will be allowed as 
utpoints in the following 
rossover phaseusing EPGC.In �gure 10.1(a) we see another exe
uted path in the same tree for a su

eed-ing evaluation, whi
h 
ould be 
aused by another opponent using a di�erentstrategy. This time only these nodes will be allowed as 
utpoints. Now it isnatural to ask: Why don't we also allow the previously exe
uted nodes as
utpoints? Imagine an evolution running for several generations, as we ob-served in Holm and Nielsen (2002) the solutions of the population graduallyadapt to di�erent strategies (as a result we see di�erent exe
uted paths),some of the strategies en
ountered early in the evolution are primitive and
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h 91will possibly be
ome extin
t, nevertheless the individuals will still 
ontainthe 
ode evolved to 
ope with this strategy as latent 
ode. This is a ni
eproperty whi
h 
ould be destroyed if we allowed the nodes of these latentsubtrees to be 
utpoints, in addition even if they were allowed as 
utpointswe wouldn't tra
e a 
hange in �tness sin
e the tree would not exe
ute thealtered.In �gure 10.1(b) we see a portion of the tree still not exe
uted after two ormore evaluations. We 
ould remove this subtree, but we 
an not rule outthat it 
an be exe
uted in a later generation and it is ni
e to preserve adiverse number of fun
tions and terminals in the population. In this waysuddenly exe
uted "never before exe
uted" 
ode 
an provide the populationwith fresh geneti
 material in late generations in support to the mutationoperator.So just to sum up we will adapt the method des
ribed in Bli
kle and Thiele(1994) as the "marking" operator and we refer to as EPGC. In addition wewill use the prin
iples of EPGC to 
onstru
t the EPGM operator sin
e theprin
iples and motivation for EPGC also applies for EPGM and hen
e willbe a logi
al extension.





Part IIIResults and 
on
lusionThis part presents the results extra
ted from test runs of the basi
 Geneti
Programming algorithm, extended with the di�erent methods designed inthe previous part. The results are presented in 
hapter 11, and �nally we
on
lude upon these in 
hapter 12.





11 Tests and Results�In theory, there is no di�eren
e betweentheory and pra
ti
e. But, in pra
ti
e, thereis.�,Jan L.A. van de Sneps
heut.To evaluate the di�erent extensions to the algorithm des
ribed in 
hapters7 through 10, we have evolved a population of 256 individuals using the GPsystem des
ribed in 
hapter 4 with the modi�
ations listed in 
hapter 6. Wehave performed a single run of 75 generations for ea
h extension, and fromthese test runs we want to identify 
hara
teristi
s of the di�erent modi�
a-tions. We 
an not expe
t these single runs to be a solid basis for formingstrong 
on
lusions, but our aim is only to get indi
ations of the di�erentadvantages and disadvantages that might be inherited by the introdu
tionof these new methods. The real-time domain we use is not easily speededup, and as a result, a full evaluation of a population of size 256 last for justabout 1 hour, e.g. 75 hours for a 
omplete run. Therefore, the time availableputs up a natural 
onstraint to the amount of testing possible.11.1 Parameters of the EvolutionWe have used the same set of parameters for all runs, these are listed in table11.1. As previously mentioned, we have dis
ontinued the use of the islandprin
iple and now only maintains a single population without subpopulationsand with a total size of 256. The 
rossover frequen
y P
ross is set to 0.9,the default value used by Koza (1992). Unlike default Koza-parameters 1,we use mutation at a frequen
y of 0.1. As we have a very low sele
tionpressure presented by our 
ombination of the 
up-tournament-based �tnessfun
tion and tournament sele
tion with tournament size 2, and as we do notuse reprodu
tion as de�ned by Koza (1992), we use elitism that 
opies the 10most �t individuals un
hanged to the next generation. We have re
on�guredthe UT-server to run at double speed, so the evaluation time of 30 se
onds isin real-time only 15 se
onds. The minimum and maximum initial individualdepth 
onstraints the individuals in the initial population (either random or
ustom generated) on depth. The minimum and maximum mutation depth,
onstraints the subtrees (either random or 
ustom generated) inserted byour mutation operator on depth.11.2 ResultsIn this se
tion we will �rst of all take a look at how the �ve runs haveevolved with regard to tree sizes. The �gures will depi
t average absolutesize, average e�e
tive size and absolute size of winner. A short des
riptionof these three measures 
an be found below (see se
tion 7.1 for a detailed1Default mutation frequen
y used by Koza (1992) is 0.0.95



96 Tests and ResultsParameter ValuePopulation Size 256P
ross 0.9Pmuta 0.1Relite 10Evaluation Time (se
onds) 30Min. initial individual depth 4Max. initial individual depth 10Min. mutation depth 2Max. mutation depth 4Table 11.1: The di�erent parameters used in all runs.des
ription):Average absolute size: The absolute size of a tree is the total number of nodes
ontained in that tree (in
luding introns). The average is 
al
ulatedfrom the entire population of a generation.Absolute size of winner: The absolute size of the best individual from a gen-eration.Average e�e
tive size: The e�e
tive size of a tree is the number of nodesexe
uted in that tree. The e�e
tive size of a tree is based on the�rst mat
h every individual play in the tournament based 
ompetitive�tness fun
tion (note: not the a

umulated nodes exe
uted during atournament). The average is 
al
ulated from the entire population ofa generation.Se
ondly, we des
ribe the results of a ben
hmark test performed on individ-uals from all generations of the �ve di�erent runs. An All-Star team wassummoned to a
t as the ben
hmark test environment. The best individualfrom the 25th, 50th and 75th generation of all �ve runs were drafted to playon the All-Star team, as we hoped this would 
ompose a diverse and broadspe
trum of di�erent strategies. The tests were performed by pitting thewinners from ea
h generation against all 15 members of the All-Star team,one at a time, in a 30 se
onds mat
h in the well known arena. For all winnersof all generations of the di�erent runs, the following values were logged:Points An a

umulation of points re
eived in the 15 mat
hes. 1 point isgiven to the individual with the most frags, -1 to the other, or 0 toboth individuals if there is a tie on amount of frags. We have departedfrom the interpretation of results used in the evaluation fun
tion forthe 
up-based tournament �tness fun
tion 2. The behavior we wantedto evolve in the bots, is the ability to 
olle
t more frags than the enemy.Therefore, it does not make sense to be 
on
erned with amount of shots�red or maximum period of no movement, when ben
hmark testing thesolutions.2See se
tion 4.3.2 for further information.



11.2 Results 97Using this system for evaluating performan
e, a general strategy supe-rior all 15 strategies on the All-Star team will s
ore max, while a highlyspe
ialized strategy will have trouble against some of the strategies onthe All-Star team, and will therefore be punished.The results will be presented in the following se
tions. Two graphs for ea
h ofthe �ve runs have been produ
ed, one for performan
e plotting points againstgeneration, and one for size plotting size against generation. In addition tographs of the logged data, a smoothly interpolated Bezier 
urve that displaysthe trend of the data more 
learly is in
luded.11.2.1 The BASIC runThe size and performan
e graphs for the BASIC run are depi
ted in �gure11.1(a-b). A pe
uliar phenomenon is the �u
tuations in the size of the winnerthat happens throughout the entire run and seem to �u
tuate around theaverage absolute size. Sin
e this phenomenon is 
ommon for the other runsas well, we will take a 
loser look at it and try to explain it.The Flu
tuation HypothesisWe have to 
onsider the high amount of noise in the domain as a possible
ause to 
ertain irregularities, but the �u
tuations seems too steady and
onstant to be 
aused by the noise. At �rst, it seems di�
ult to 
ome upwith a straightforward explanation about this phenomenon, so we will haveto study the evolution of the winning trees in detail. It seems reasonableto seek for a relation between the performan
e results and the size results,espe
ially be
ause we also observed �u
tuations in the performan
e results.In �gure 11.1(a) we see that after generation 40 the performan
e stabilizesand the small �u
tuations in the later generations are probably just a result ofthe inherent noise in the domain. This observation rule out an intermediate
onne
tion between the size �u
tuations and the evolution of new solutionsin the population. To sear
h for another explanation we have extra
teddetailed information on the sizes of individuals from the entire populationin 
onse
utive generations. In �gures 11.2(a-e) the data from generation 52,53, 54, 55 and 56 
an be seen.It is apparent from these graphs that not only the winners of the di�erentgenerations �u
tuates in size but the entire generation of individuals do. Thissupports us with the ne
essary information to form a hypothesis. Assumingthat the building blo
k hypothesis suggested by Goldberg (1989) is true, thenwhen we start an GP evolution small building blo
ks will start to form asevolution progresses. Then these building blo
ks get 
ombined to 
onstitutemore 
omplex solutions, as in �gure 11.3(a) illustrating an abstra
tion of agood solution. Some of these solutions will be better than others and hen
egets sele
ted more often, resulting in multiple o�spring based on this buildingblo
k. In �gure 11.3(b) su
h two blo
ks are depi
ted where the large triangleis the building blo
k and the small triangles illustrates two subtrees beingintrons. When evolution progresses and these trees are 
hosen for 
rossoveras depi
ted in �gure 11.3(b) and 11.3(
), some of the resulting o�springwill be a 
omposition of the same building blo
ks on top of ea
h other. If
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(a) (b) (
)

(d) (e)Figure 11.3: In (a) a good building blo
k is depi
ted. In (b) two trees sele
ted for
rossover, with 
rossover-points marked by the bla
k dots are depi
ted. In (
) thetwo o�spring resulting from that 
rossover are depi
ted. These three �gures depi
tsthe beginning of an a

umulation of good building-blo
ks in a still growing tree. Twolater generation individuals sele
ted for 
rossover (d), and the o�spring produ
edby 
hoosing the bla
k dots as 
ut-points (e).this happens through 
onse
utive generations we 
an imagine individualslike the two depi
ted in 11.3(d). When su
h two are 
hosen for 
rossoverthe resulting o�spring 
an look like its depi
ted in �gure 11.3(e). As 
anbe seen the smaller tree (�gure 11.3(e)) will then still 
onsist of the goodbuilding blo
k, hen
e perform as well as the larger. Therefore we will seethe huge �u
tuations. When studying some of the parse trees in detail ourhypothesis is supported. In �gure 11.2 the winning tree from generation 55
an be observed. This tree only has a size of 27 nodes and as seen in �gure11.1 follows generation 54 whi
h had a winning tree 
onsisting of 304 nodes.We have identi�ed at least two 
ommon building blo
ks in the winning treefrom generation 55, these 
an be found in table 11.3. These building blo
ksseems to be the basi
 foundation for a good solution in the last half ofthe evolution and are found multiple times in the large trees. Taking thiseviden
e in 
onsideration we feel the hypothesis is further ba
ked up.Ben
hmark ResultWe have now argued for the heavy �u
tuation in size, and when investigatingthe graph in �gures 11.1(a), we noti
e �rst of all that heavy �u
tuation inperforman
e is also present. For instan
e we noti
e the sudden peak at the9th generation, and the equally sudden drop in performan
e of the 10thgeneration. In table 11.4 the 9th and 10th winner is depi
ted. The 10thgeneration is 
learly the more primitive of the two. As the shoot node alwaysreturns 0, the if-less-than will always evaluate to false, and hen
e the



11.2 Results 101(if-less-than(if-enemy-in-sight(fa
e-enemy)(turn-left))(shoot)(if-weapon-in-rea
h(move-ba
kward)(move-ba
kward))(if-less-than(armor)(
onst 6)(if-enemy-is-stati
(enemy-damage)(move-ba
kward))(if-enemy-move-right(if-amor-in-rea
h(if-enemy-in-sight(turn-left)(turn-left))(prog-2(shoot)(if-weapon-in-rea
h(enemy-damage)(move-ba
kward))))(if-enemy-move-away(move-forward)(shoot)))))Table 11.2: The winner from generation 55 of the BASIC run.(if-enemy-in-sight(fa
e-enemy)(turn-left)) (if-enemy-move-away(move-forward)(shoot))Table 11.3: Two 
ommon building blo
ks extra
ted from the winner of generation55 of the E-CFG run.behavior is only 
omposed of shooting and running ba
kwards. The 9thgeneration winner however, will both try to fa
e the enemy and shoot nomatter the 
urrent states of sensors. The reason su
h a primitive strategy asthat of the 10th generation 
an make it to the top, while more sophisti
atedstrategies (like the winner from the 9th generation) exist in population isworth investigating. When looking at the 10th generation in more detail, wefound that the winner from the 10th generation a
tually was pitted againstan individual equivalent to the 9th generation winner in the semi-�nals, andof 
ourse won. This 
on�rms, that the low sele
tion pressure that 
ombinedwith a relatively noisy environment does not allow single good solutions tospread rapidly throughout the population. Apart from the �u
tuation, thegeneral trend of the graph is interesting. The trend in points 
olle
ted isalready above 0 around the 25th generation, whi
h is very good indeed. Inthe following se
tions we will 
ompare the performan
e of the other runswith this result.



102 Tests and ResultsWinner of the 9th generation Winner of the 10th generation(if-less-than(armor)(if-less-than(shoot)(fa
e-enemy)(armor)(if-enemy-move-away(shoot)(turn-right)))(if-weapon-in-rea
h(move-ba
kward)(move-ba
kward))(if-enemy-move-away(fa
e-enemy)(if-less-than(shoot)(enemy-damage)(enemy-distan
e)(if-health-in-rea
h(prog-2(ammo)(health))(if-bump(if-ammo-in-rea
h(fa
e-enemy)(shoot))(shoot))))))

(if-less-than(
onst 97)(shoot)(if-amor-in-rea
h(enemy-weapon)(if-enemy-is-stati
(wait 95(shoot))(prog-2(if-enemy-in-sight(armor)(enemy-damage))(fa
e-enemy))))(move-ba
kward))

Table 11.4: The best individual from the 9th (the leftmost) and 10th (the rightmost)generation
The Undesirable Flora of SizeThe average size of the population in the BASIC run was expe
ted to growrapidly and as 
an be seen in �gure 11.1(b) indeed it did. The average ef-fe
tive size though is kept under a size of 25 during the entire run and thegrowth of the e�e
tive size seems to happen with an insigni�
ant linear rate.The thing to note here is that growth of absolute size happens with an ap-proximately linear rate through the entire run. This raises the probabilityof premature 
onvergen
e and as 
an be seen in �gure 11.1(a) the perfor-man
e begin to 
onverge after generation 30. Now, this it not ne
essarily abad thing sin
e the 
onvergen
e happens 
lose to the maximum s
ore, but itsurely brake further evolution of better solutions. Hen
e if we had in
reasedthe number of generations per run it is unlikely that further improvementwould happen.It would be ni
e if we 
ould limit the growth of the trees, while still keepingthe performan
e of the BASIC run. In the next three runs (SR, DR andE-CFG) des
ribed, this growth is limited and the DR method su

eeds inmat
hing the performan
e of the BASIC run. The last method (EPGO)su

eeds in limiting the e�e
tive part of the trees used for 
rossover andmutation while still mat
hing the performan
e of the BASIC run.
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104 Tests and Results11.2.2 Size RankingCompared to the ben
hmark results of the BASIC run, the results of the SRrun presented in 11.4(a-b) are not as 
onvin
ing. The �rst notable peak isat the 5th generation, and when 
omparing with the size graph depi
ted in�gure 11.4(b), we note that generation 5 is the �rst to have a winner witha size below average. Even though isolated generations 
olle
t a positivenumber of points, the general trend seems to stabilize around a negatives
ore of 5 points.The average e�e
tive size and the average absolute size is almost identi
althrough the entire run. The growth is almost non existing and the winnerfollows the same pattern until generation 47 where the winners size �u
tuateswith some relative large winner sizes at the peaks, then at generation 64 thewinners size stabilizes at the same level as the average absolute and e�e
tivesize.Pressure Can Be UnhealthyThe enormous sele
tion pressure added by the size ranking method maintainsa 
lose to 
onstant size in all measurements. In 
on
lusion it seems thatpressure simply is too high 
onsidering the performan
e test whi
h showedpoor results. This 
ould be due to the 
omplexity of the domain, whi
hprobably will ne
essitate some evolutionary latitude (i.e. lower sele
tionpressure) when 
onstru
ting the building blo
ks. To put it another way, goodbuilding blo
ks are not allowed enough freedom to evolve and a

umulated inlarger and larger trees, as we assume is the 
ase for the BASIC run. The nextmethod su

eeds in delivering the latitude ne
essary for steady evolution ofbetter solutions while still maintaining a population with a trimmed size.11.2.3 Diversity RankingAlthough the performan
e graph of the DR run depi
ted in �gure 11.5(a) isnot as steep as that of the BASIC run depi
ted in �gure 11.1(a), the tenden
yis 
learly as
ending. The �u
tuation in points is more pronoun
ed than thatof the BASIC run. If we take a look at the evolution of size, it is interestingto see that many of the peaks in performan
e (at generations 35, 38, 42, 47,48, 49 and 52) is mat
hed by o�-peaks in size. This is in keeping with resultspreviously reported by Ros
a (1996), were short and 
ompa
t solutions arefound to be more general, even though other explanations (in
luding pure
oin
iden
e) to this phenomenon 
ould be just as valid. One obvious questionis then why the SR run performed so poorly 
ompared to the DR run? Theanswer must be that in SR we just promote solutions with a small absolutesize, and this makes the population 
onverge against the same short solution.The DR method however, a

omplishes the damping in bloat more indire
tly,whi
h will be elaborated in the following se
tion.
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106 Tests and ResultsThe Strength of Diversity RankingIn the DR run, we promote solutions with an e�e
tive part, that adds tothe diversity of the population. Re
all the method we use for measuring thediversity or uniqueness of an individual, namely the average size of the largest
ommon garbage free subtree (see 
hapter 8). That is, the shorter the averagegarbage free subtree overlapping is, the more rewarded an individual will be.Therefore, we see the very limited grow in e�e
tive size. This e�e
t seen inthe light of our �u
tuation hypothesis 
on
erning as stated in se
tion 11.2.1,must get most of the 
redit for the good performan
e together with limitedbloat observed. Good building blo
ks are given s
ope for development, butthe redundan
y introdu
ed by the a

umulation of more blo
ks is punishedby the DR method. This explains the good performan
e 
oexisting with thelow degree of bloat observed. Another ni
e property found when observingthe performan
e test in 11.5(a), is the la
k of visible 
onvergen
e, this isni
e be
ause through the entire run the performan
e has in
reased steadilyand at generation 75 rea
hed a solution 
ompetitive with that of the BASICrun. If additional generations were evolved a better solution would be aninherent possibility 
onsidering the limited e�e
tive average size of the trees
ombined with the performan
e trend.As one last remark, we must point out that the DR run is the run thatevolves a solution 
apable of s
oring the maximum of 15 points in the earliestgeneration, namely generation 35.11.2.4 Enhan
ed Context Free GrammarThe performan
e test of the E-CFG as depi
ted in �gure 11.6(a) is not goodwhen 
ompared to the other tests. One reason for this result 
ould be thatthe rules that make up our E-CFG in fa
t narrows the spa
e of possiblesolutions to tight. Another reason 
ould be, that the semanti
al meaningof our language 
onstru
ts is not as well de�ned as initially assumed. 3 Ifthis is the 
ase, we have built our E-CFG on a in
orre
t basis, and hen
eour E-CFG will a
t as a poor guide for the evolutionary pro
ess. Withoutenfor
ing the E-CFG upon the evolution, the true semanti
al meaning ofthe fun
tions and terminals would emerge from the 
ompositions of the �tindividuals.What Went WrongWe have done extensive testing on every single fun
tion and terminal and be-lieve that the missing performan
e of the E-CFG should be lo
ated elsewhere.When looking at �gure 11.7(a-b) showing the distribution of fun
tions andterminals, it seems odd that the frequen
y of prog-2 and shoot in
reases sorapidly. Now, when investigating the di�erent trees from the run, a patternis forming. It appears that a suboptimal solution has emerged in an earlygeneration, the 
ore of this solution 
an be found leftmost in table 11.5 and3An analogy is, in a real world robot, a move-forward 
ommand may not be wellde�ned for all possible environments, and may very well be dependent on the fri
tion ofthe surfa
e.
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11.2 Results 109Core Advan
ed Core(prog-2(shoot)(move-ba
kward)) (if-enemy-
losing-in(fa
e-enemy)(prog-2(prog-2(turn-left)(move-ba
kward))(shoot)))Table 11.5: Two 
ommon building blo
ks from the BASIC run.is very simple. This suboptimal solution is taking over the population witha surprisingly high rate and 
auses it to 
onverge prematurely. We believethe fast 
onvergen
e is sped 
onsiderably up by the E-CFG. The prog-2rule makes it di�
ult for new building blo
ks to emerge and the fa
t thatthe 
rossover operator must fail 10 times before giving up and then signalsfor two new parents makes it less likely that the prog-2 blo
k makes noo�spring. As 
an be seen in �gure 11.6(a), three generation winners (fromgeneration 57, 71 and 73) are making remarkable higher s
ores than the restof the winners. When further inspe
ted, these individuals 
onsists of thesame skeleton as the individual depi
ted in leftmost in table 11.5 and is en-han
ed with a 
apability of fa
ing the enemy and turn as showed rightmostin table 11.5. The impa
t of this general new solution 
an also be observedin �gure 11.7(a), showing in
reased frequen
ies of the terminals fa
e-enemyand move-ba
kward.Should the CFG be Dis
ardedAs a 
on
luding remark to the E-CFG results, we must say that it hasproven very di�
ult to de�ne a CFG that generates good solutions. Oneshould a
knowledge, that imposing a CFG on the 
onstru
tion of solutionsis equivalent to imposing a new distribution of the usage of nodes. That is,when the language is 
hanged from being type-less (in whi
h a totally random
omposition of individuals is valid) to a language 
onstrained by a grammar,a dependen
y between the nodes is imposed. And hen
e, if some nodes gaindominan
e in the population, some other nodes might be nearly impossibleto introdu
e into this population, due to the inter-node-dependen
y inferredby the grammar. Therefor, the geneti
 operators are 
hanged in a way thatmight not be 
ompletely 
lear, when designing the CFG. When this is said,we still believe a CFG 
an be powerful in a 
omplex domain, but it shouldbe guided in some way e.g. by a heuristi
. In 
hapter 12.4 we have proposedthis as future work.11.2.5 Exe
uted Path Guided OperatorsThe performan
e graph for the EPGO run depi
ted in �gure 11.8(a) is veryni
e, and has a trend very mu
h alike that of the DR run (depi
ted in �g-ure 11.5(a)). But unlike the DR run, the EPGO explodes in size, see �gure11.8(b). The EPGO is the run with the largest average size and also the
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11.2 Results 111largest winners. This is not entirely unexpe
ted, as we have made no ef-fort to dire
tly dis
ourage bloat, rather we 
hanged the geneti
 operators bydisabling their neutral property. Still, the performan
e of the solutions isnotable, whi
h shows that the destru
tive geneti
 operations does not seemto have the upper hand over the 
onstru
tive geneti
 operations. One lastobservation on the size, is the grow in e�e
tive size. Even though it is thelargest observed amongst the �ve di�erent runs, it is remarkable when 
on-sidering the fa
t that operators are only applied within e�e
tive 
ode. Thatis, we would have expe
ted the grow in e�e
tive size to be more intensive.Good or Bad Growth in SizeAt �rst the growth in both average e�e
tive size and average absolute sizelooks dis
ouraging, but we should not jump to 
on
lusions. On the 
ontrary,we have to 
onsider the amount of e�e
tive 
ode in the trees and realize thatthis is the amount of 
ode used for 
rossover. Thus, a fair 
omparison willbe to 
ompare the average e�e
tive size of EPGO with the average absolutesize of the other methods. With this in mind we see that EPGO keep a verylow growth rate in size on par with that of the DR. Taking into a

ount the
ompetitive performan
e with the BASIC run and the fa
t that EPGO sharethe trend of avoiding 
onvergen
e we believe the EPGO to have shown itspower and potential in 
omplex domains.





12 Con
lusion and FutureWork �S
ien
e... never solves a problem without
reating ten more.�,George Bernard Shaw.In se
tion 5.1 we de�ned the spa
e of this proje
t to be within system spe
i�
extensions for improvement of the evolutionary sear
h pro
ess. In addition tothe more broad proje
t spa
e, the goals of this proje
t was de�ned in se
tion5.3 to be 
on
erned with the phenomenon of bloat and diversity maintenan
e,altogether an attempt to improve the GP system. Four di�erent approa
heswere implemented, and test runs were performed in order to get an initialidea of the general performan
e of the di�erent methods. In the following, wewill sum up the most important 
on
lusions and ideas we have 
onstru
tedthrough the analysis of the results performed in 
hapter 11.12.1 Summary of ResultsThe simplest approa
h, the BASIC run, seems at �rst to outperform theother methods, at least when it 
omes to plain performan
e. We feel, how-ever, that it is a valid to also re
ognize that the performan
e of the BASICrun show signs of 
onvergen
e. And as stated in the problem de�nition (seese
tion 5.3) we believe the avoidan
e of premature 
onvergen
e to be essen-tial to the evolution. We 
an not say for sure that the BASIC run in fa
thas 
onverged prematurely, but we 
an say for sure that neither EPGO norDR shows sign of 
onvergen
e. On the 
ontrary, the heavy �u
tuation inperforman
e indi
ates that 
onvergen
e has still not o

urred, and yet the�u
tuation of both runs 
ontain numerous peaks 
lose to the maximum of 15,demonstrating that good solutions are found. When 
onsidering the degreeof bloat, the DR run is 
learly the best amongst the three. Furthermore, theDR run is the �rst to evolve a solution 
apable of s
oring the maximum of15 points.Regarding the SR run that only in �ashes raises above zero points in per-forman
e we must 
on
lude that the parsimony pressure did not provide thene
essary latitude for good solutions to emerge. The E-CFG run performsjust as poor, and with the least growth observed in the �ve di�erent runs.The reason for the failure of the E-CFG is 
redited to the fa
t that impos-ing a CFG on geneti
 operators distorts the distribution with whi
h geneti
material 
an spread throughout the population, and also whi
h types of newgeneti
 material 
an be introdu
ed into the population. All together the runis in high risk of premature 
onvergen
e.
113



114 Con
lusion and Future Work12.2 FailuresWith the SR approa
h, we have shown that 
are must be taken when par-simony pressure is introdu
ed. We did not su

eed in keeping the pressureon the size of the individuals on a insigni�
ant level when 
ompared to theprimary �tness measure.With the E-CFG approa
h, we have shown that to the introdu
tion of priorknowledge imposed by a CFG on the geneti
 operators may weaken theevolution.12.3 Su

essesWith the DR approa
h, des
ribed in 
hapter 8, we have demonstrated thepossibility of 
ontrolling the degree of bloat by means of a diversity promotingapproa
h is possible. This is a

omplished without loss of quality in theevolved solutions, and in addition we believe the potential of the approa
hto be higher than with the most basi
 approa
h.With the EPGO approa
h, des
ribed in 
hapter 10, we have demonstrateda way to relax the 
orrelation between bloat and premature 
onvergen
e.That is, we allow bloat to o

ur as we have removed it as a primary 
ause of
onvergen
e. In addition this is a

omplished without loss in performan
e,and we believe this yet rather unexplored method to withhold potentials.12.4 Future WorkIn this se
tion di�erent extensions and modi�
ations are suggested to themethods applied in the solution of our de�ned problem. We will 
ontinue touse the two 
lassifying 
lasses of extensions introdu
ed in 
hapter 5, namelyagent spe
i�
 extensions and system spe
i�
 extensions.12.4.1 Agent Spe
ifi
 ExtensionsThe 
on
epts of agent spe
i�
 extensions are as follows:1. Extend the individual to 
ontain multiple di�erent spe
ialized parsetrees, instead of just one general.2. Introdu
e the 
on
ept of memory for the parse trees to use.3. In
rease the dynami
s of the environment.Introdu
tion of Spe
ialized Parse TreesThe individuals des
ribed in this thesis is represented by only one generalpurpose strategy, des
ribed by the parse tree. Instead, several parse trees
ould be evolved for ea
h individual. One parse tree for all di�erent subtaskslike weapon sele
tion, aiming, o�ensive and defensive movement and overallbehavior sele
tion. That is, one parse tree 
ould be evolved to be responsiblefor sele
ting amongst the other parse tree, i.e. when to exe
ute o�ensive



12.4 Future Work 115movement and when to instead exe
ute defensive movement.In addition the me
hanism used to bias the 
hoi
e of 
rossover lo
ationsdes
ribed in Langdon (1995) 
ould be used. This me
hanism is based on arepresentation of ea
h individual with multiple parse trees ea
h performinga distin
t operation. The me
hanism used to bias the 
rossover lo
ations isdesigned with the belief that it is wasteful to perform 
rossover in 
ode thatis working 
orre
tly, instead the 
rossover lo
ations should be dynami
allyredistributed to 
ode in need of improvement.Introdu
tion of MemoryAs of now, we have not introdu
ed a 
on
ept of �exible memory into thestrategy. Intuitively, this limits the quality of the strategies we 
an expe
tto evolve, so any notion of memory would be wel
ome. One way to introdu
ememory would be to introdu
e a �xed number of global variables that 
ouldbe read by spe
ial terminals, and written to by spe
ial fun
tions. If thestrategies are able to use the 
on
ept of memory, it would be easier to imaginestrategies with a high level of adaption, as the strategy is able to use priorknowledge about the enemy.Environmental Dynami
sSin
e we want to evolve �exible bots, 
apable of performing well in di�erentenvironments we believe in
reasing the dynami
s of the system will improvethe evolved solutions. The environment mainly 
onsists of two 
omponents;the players and the map (in
luding the items). We have tried to approa
h the
hallenge of player dynami
s by introdu
ing the 
ompetitive �tness fun
tionand this step showed to provide dynami
s to the environment. Another in-teresting experiment would be to evaluate the bots against human opponentsby setting up a server on the internet.We believe that another 
hallenge to be dealt with is the dynami
s of themap. When the bots are spawned on the map for evaluation, it is always atone of the multiple spawning points on the same map. It is therefore feasibleto believe that the evolved solutions to a 
ertain degree will be adapted tothe spe
i�
 map. One solution 
ould be to 
hange map after ea
h endedgeneration but bots just spawned would still have the same health, armorand ammunition as always when they start an evaluation.Inspired by Nordin and Banzhaf (1997) we propose a bots spawning 
onditionto be a result of the previously evaluated bots end 
ondition, metaphori
allyspeaking it would be like 
onsidering the UT agent body as a vessel and theGP tree as the driver, a new driver would then re
eive the vessel in the statethe previous 
ontroller left it. In Nordin and Banzhaf (1997) this method isalso used for pra
ti
al reasons sin
e it is thereby avoided to bring a mobilerobot ba
k to a start lo
ation but it is also mentioned that using the sameinitial starting 
ondition 
ould result in over-spe
ialization and failure toevolve a behaviour that 
an generalize to unseen environments and tasks.
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lusion and Future Work12.4.2 System spe
ifi
 ExtensionsThe 
on
epts of system spe
i�
 extensions are as follows:1. Re�ne and alter the fun
tion and terminal set based on the experien
esgained.2. Combine the proposed methods (E-CFG, EPGO, SR, DR).3. Extend the 
up based tournament �tness to in
lude seeding of individ-uals.4. Extend the geneti
 operators with an operator for 
ompression of usefulsubtrees.5. Prote
t the inno
ent by applying non-destru
tive 
rossover.6. Guide a CFG with heuristi
s.Refining the Fun
tion and Terminal SetAn interesting proje
t for future work would be a thorough investigation ofthe fun
tion and terminal set. We believe that an important 
orner stonefor su

ess is a well designed fun
tion and terminal set. The trees we havebeen analyzing indi
ate that the fun
tion and terminal set is only partlyexploited, for instan
e the if-less-than fun
tion does not seem to be usedat all ex
ept as a prog-x, hen
e all the terminals representing sensor valuesare obsolete. Two approa
hes 
ould be taken to deal with this undesirable
ir
umstan
e. We 
an try to help the evolution to use the if-less-thanfun
tion in a proper way (maybe using the same prin
iples as in the E-CFG)or we 
an just remove all the unused fun
tions and terminals.Another thing whi
h we think might improve the fun
tion and terminal setwould be to 
hange the a
tion set 
onsisting of terminals to fun
tions takingarguments. Re
all the terminals turn-right and turn-left that turns thebot a steady amount of degrees every time they are exe
uted. If they werefun
tions they 
ould take an argument for de
iding the value of degrees toturn. The same prin
iple 
ould be applied to the rest of the a
tion sete.g. move-forward or strafe-right, where an argument 
ould de
ide thedistan
e the bot should move.Combinatory PowersWe would like to test the performan
e of a 
ombination of the methods.For instan
e the E-CFG 
ould easily be 
ombined with EPGO and DR orSR. In addition it seems obvious to believe that some of the GP parameters
ould be �ne-tuned and further experiments would have to be done to de
idethis. As des
ribed in 
hapter 11, SR and DR ensure a limited growth of thetrees in the population, but the pressure applied on the individuals by usingthese methods 
ould in�uen
e the evolution of more advan
ed solutions.Additional test runs would give a better answer to this question.



12.4 Future Work 117Extending the Cup Tournament with SeedingThe 
up tournament based �tness, as previously des
ribed in se
tion 3.2.4,has the drawba
k of only returning a fragmented ordering of the population,and in addition we 
an not insure 
orre
t ordering. That is, if the most�t individual by 
han
e is paired with the se
ond most �t individual in the�rst round, then the se
ond most �t bot will be ranked side by side withthe least �t individual. By introdu
ing the notion of seeding when de
idingwhi
h individuals should be paired in the �rst round of the tournament, we
ould insure that individuals expe
ted to be the most �t and the se
ondmost �t would never be paired in the �rst round. So the problem of howto seed newborn individuals remains. We propose to use the parents of anindividual in the seeding pro
ess. If the individual is 
onstru
ted throughreprodu
tion a

ording to the 
on
ept of elitism, the ranking in the previousgeneration should follow the individual to the 
urrent generation.Introdu
tion of the Compression OperatorAmongst others, Angeline and Polla
k (1994) introdu
ed the 
ompression op-erator that nondeterministi
ally 
reates new fun
tions and adds these to F .This task is 
arried out by sele
ting a part of a subtree, and then 
ompress-ing it to 
reate a new fun
tion, that is, prote
ting this subtree against futuremodi�
ation.The 
ompression operator would make it possible to evolve yetmore 
omplex strategies from small, robust and basi
 strategies. In additionto removing all high level fun
tions and terminals, we expe
t this extensionto be fertile in produ
ing new 
reative strategies.Introdu
tion of Non-Destru
tive CrossoverAs showed in several papers (e.g. Nordin and Banzhaf (1997)) the 
rossoveroperator in GP has a tenden
y to produ
e o�spring less �t than the parents.This undesirable e�e
t also destroys a lot of potential sound building blo
ksin that the parents 
ode 
ontaining the building blo
ks is exterminated. In anattempt to test the destru
tive hypothesis, Soule (1998) suggests an exper-iment using non-destru
tive 
rossover to eliminate the destru
tive e�e
t of
rossover (Soule (1998) was inspired by similar methods proposed by O'Reillyand Oppa
her (1995) and Hooper et al. (1997)). In Soule (1998)'s versionof non-destru
tive 
rossover, after ea
h 
rossover operation, the �tness ofthe o�spring is 
ompared to the �tness of the parent program. An o�springis in
orporated into the new population only if its �tness equals or ex
eedsthat of its parent, otherwise the parent is kept. In O'Reilly and Oppa
her(1995) multiple attempts were made to produ
e more su

essful o�springand if all the attempts failed, the parents were repla
ed by randomly 
reatedindividuals.The method des
ribed by Soule (1998) seems sensible to be used in generalin that it maintains and improve building blo
ks assuming that the buildingblo
k hypothesis is 
orre
t. In addition we would propose to 
ombine non-destru
tive 
rossover with EPGO. Considering our experiments and hypoth-esis about EPGO we think that this 
ombination 
ould show powerfull. It
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lusion and Future Workseems logi
al to believe that fo
using on exe
uted paths in 
hoosing 
rossoverlo
ations will heighten the probability of generating better o�spring, andthereby speed up the evolution.A Heuristi
ally Guided CFGThe problem with the proposed E-CFG seems to be that 
ertain fun
tionsand terminals will be
ome dominant in the population all too rapidly, be-
ause the E-CFG will make it hard for trees, with 
ertain fun
tion andterminals, to make o�spring. Consequently we believe that if would be ben-e�
ial with a heuristi
 to guide the lo
ation of 
rossover points, dependentof the 
urrent population fun
tion and terminal distribution.
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A Node Frequen
iesThis appendix in
ludes plots des
ribing with whi
h frequen
ies the di�erentlanguage 
onstru
ts have been used through the three evolutions previouslyperformed in Holm and Nielsen (2002), and des
ribed in 
hapter 4. FiguresA.1 and A.2 depi
t the frequen
ies observed in the 1st, �gures A.4 and A.5depi
t the frequen
ies observed in the 2nd run and �gures A.7 and A.8 depi
tthe frequen
ies observed in the 3rd run. The plots are divided on islands.
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(
) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(e) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(f) TerminalsFigure A.1: The frequen
y of node usage on island 1 (�g. a-b), 2 (�g. 
-d) and 3(�g. e-f) of the 1st run. 123



124 Node Frequen
ies
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(
) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(e) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(f) TerminalsFigure A.2: The frequen
y of node usage on island 4 (�g. a-b), 5 (�g. 
-d) and 6(�g. e-f) of the 1st run.



125
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) TerminalsFigure A.3: The frequen
y of node usage on island 7 (�g. a-b) of the 1st run.

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(
) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) TerminalsFigure A.4: The frequen
y of node usage on island 1 (�g. a-b) and 2 (�g. 
-d) ofthe 2nd run.



126 Node Frequen
ies
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(
) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(e) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(f) TerminalsFigure A.5: The frequen
y of node usage on island 3 (�g. a-b), 4 (�g. 
-d) and 5(�g. e-f) of the 2nd run.



127
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Fun
tion 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(
) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) TerminalsFigure A.6: The frequen
y of node usage on island 6 (�g. a-b) and 7 (�g. 
-d) ofthe 2nd run.

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) TerminalsFigure A.7: The frequen
y of node usage on island 1 (�g. a-b) of the 3rd run.



128 Node Frequen
ies
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(
) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(e) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(f) TerminalsFigure A.8: The frequen
y of node usage on island 2 (�g. a-b), 3 (�g 
-d) and4(e-f) of the 3rd run.



129
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(
) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(e) Fun
tions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(f) TerminalsFigure A.9: The frequen
y of node usage on island 5 (�g. a-b), 6 (�g. 
-d) and7(�g. e-f) of the 3rd run.





B New Node Frequen
iesThis 
hapter in
ludes plots des
ribing with whi
h frequen
ies the di�erentlanguage 
onstru
ts have been used through the �ve di�erent runs performedin 
hapter 11. Figure B.1(a-b) depi
t the frequen
ies for the BASIC run,�gure B.2 the ECFG run, �gure B.3 the EPGC run, �gure B.4 the SR runand �gure B.5 the DR run.
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C Language Referen
eThis appendix serves as a thorough referen
e of the language of our F andT . In table C.1 the elements from T are des
ribed, and in table C.2 theelements from F are des
ribed.TerminalsSyntax Semanti
s E�e
t on bot-
ontrol(move-forward) Assumes the value 200. Moves the bot one stepforward.(move-ba
kward) Assumes the value 0. Moves the bot one stepba
kward.(turn-left) Assumes the value 0. Rotates the bot 45 de-grees 
ounter
lo
kwise.(turn-right) Assumes the value 200. Rotates the bot 45 de-grees 
lo
kwise.(strafe-left) Assumes the value 0. Moves the bot side-ways one step left.(strafe-right) Assumes the value 200. Moves the bot side-ways one step left.(health) Assumes the value of the 
urrenthealth level of the bot. No e�e
t.(ammo) Assumes a value proportional tothe 
urrent ammo level of theweapon 
urrently used by the bot.The mapping fun
tion used isAmmo
urrentAmmomax � 200, so the valuewill be in the range of [0..200℄. No e�e
t.
(armor) Assumes the value of the 
urrentarmor level of the bot. No e�e
t.(fa
e-enemy) Assumes the value 200. If the enemy is in sightthen the bot is rotatedto fa
e the enemy, oth-erwise no e�e
t.(shoot) Assumes the value 0. Fires on shot in the fa
-ing dire
tion. If the en-emy is in sight, the botaims at the enemy.(enemy-damage) Assumes an estimate of the 
urrentdamage-level of the enemy. Everytime the enemy is hit, we expe
thim to have taken a 
ertain amountof damage. But this is a tempo-ral quantity, as we expe
t the en-emy to regenerate by pi
king uphealthpa
kets. Therefore, we re-du
e the amount a

ording to theformula dt = dt�1 � exp(�Hit),where dt is the estimated damageat time t and �Hit is the time inse
onds sin
e damage was last in-�i
ted upon the enemy.

No e�e
t.
Continued on next page
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134 Language Referen
eContinued from previous pageSyntax Semanti
s E�e
t on bot-
ontrol(my-weapon) Assumes a value a

ording to therelative superiority of the weapon
urrently used by the bot. No e�e
t.(enemy-weapon) If the enemy is in sight it assumes avalue a

ording to the relative su-periority of the weapon 
urrentlyused by the enemy. Otherwise 0. No e�e
t.(enemy-distan
e) Assumes a value a

ording to thedistan
e to the enemy, or 0 if theenemy is not in sight. No e�e
t.(
onst x) Assumes the value of integer xwithin the interval [0..200℄ No e�e
tTable C.1: Terminal referen
eFun
tionsSyntax # Semanti
s E�e
t on bot-
ontrol(if-bumb) 2(wait x) 1(if-less-than) 4 If the value assumed by arg1 isless than the value assumed byarg2 then the value assumed byarg3 is assumed, otherwise thevalue assumed by arg4. No e�e
t.(if-health-in-rea
h) 2 If health is in rea
h, then thevalue assumed by arg1 is as-sumed, otherwise the value as-sumed by arg2 is assumed. If health is in rea
h, itis pi
ked up, otherwiseno e�e
t.(if-armor-in-rea
h) 2 If armor is in rea
h, then thevalue assumed by arg1 is as-sumed, otherwise the value as-sumed by arg2 is assumed. If armor is in rea
h, itis pi
ked up, otherwiseno e�e
t.(if-ammo-in-rea
h) 2 If ammo is in rea
h, then thevalue assumed by arg1 is as-sumed, otherwise the value as-sumed by arg2 is assumed. If ammo for theweapon 
urrentlyused by the bot is inrea
h, it is pi
ked up,otherwise no e�e
t.(if-weapon-in-rea
h) 2 If a weapon that is better thanthe weapon 
urrently used bythe bot is in rea
h, then thevalue assumed by arg1 is as-sumed, otherwise the value as-sumed by arg2 is assumed. If a weapon that is bet-ter than the weapon
urrently used by thebot is in rea
h, it ispi
ked up, otherwise noe�e
t.(if-enemy-in-sight) 2 If the enemy is in sight, thenthe value assumed by arg1 is as-sumed, otherwise the value as-sumed by arg2 is assumed. No e�e
t.(if-enemy-move-left) 2 If the enemy is in sight andmoving left, then the value as-sumed by arg1 is assumed, oth-erwise the value assumed byarg2 is assumed. No e�e
t.(if-enemy-move-right) 2 If the enemy is in sight andmoving right, then the valueassumed by arg1 is assumed,otherwise the value assumed byarg2 is assumed. No e�e
t.Continued on next page



135Continued from previous pageSyntax # Semanti
s E�e
t on bot-
ontrol(if-enemy-move-away) 2 If the enemy is in sight andmoving away, then the valueassumed by arg1 is assumed,otherwise the value assumed byarg2 is assumed. No e�e
t.(if-enemy-
losing-in) 2 If the enemy is in sight and 
los-ing in, then the value assumedby arg1 is assumed, otherwisethe value assumed by arg2 is as-sumed. No e�e
t.(if-enemy-is-stati
) 2 If the enemy is in sight andhas velo
ity 0, then the valueassumed by arg1 is assumed,otherwise the value assumed byarg2 is assumed. No e�e
t.
Table C.2: Fun
tion referen
e the # 
olumn 
ontains the number of argumentsrequired by the fun
tion.


