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1 Summary

This thesis aims to assess and compare three approaches for estimating controller
parameters in a PID-controlled cruise control system using observational data from
the plant. The methods include numerical techniques, deep neural networks, and
a combined approach.

To apply numerical solutions, the system has been formulated as a parame-
terized initial value problem (IVP) by integrating the plant and controller into a
system of ordinary differential equations.

IVP’s comprise a set of differential equations describing the system and initial
conditions. A solution to an IVP is a function that satisfies these conditions and
effectively describes the system’s behavior over a defined interval. This solution,
known as a trajectory, can be approximated using numerical methods called ODE
solvers.

Single shooting methods are among these numerical solutions. However, single-
shooting approaches for parameter estimation can be computationally expensive.
Methods like training a deep neural network (DNN) or using numerical discretization-
based estimation (DBE) from observed data can provide suitable initial parameter
guesses without directly solving the IVP.

DNNs however need to be tuned and trained. If not done properly, they can
suffer from various issues. One of these being saturation.

Addressing the issue of saturation can be done by normalizing the data-set
used for training. Min-max normalization was chosen for this, both for the input
and target, due to its ability to standardize the range and improve training stabil-
ity. While normalization reduced saturation, models trained on normalized data
increased the total loss.

It was also observed that the data-set used contained regions of constant fea-
tures, these provide no additional information for the network to learn from. To
address this, these regions were removed to emphasize the distinct characteristics
of different parameter configurations.

However, issues of overfitting arose with models trained on this data. This was
fixed by lowering the complexity of the DNN trained.

Finally, results showed that DNNs, when trained on normalized data with ex-
cluded regions of constant features, yielded quick results, close to the target pa-



rameters, but with higher loss than numerical methods.

Also shown is the DNNs potential as use as an initial guess estimator. While
it was unable to outperform the DBE initial guess estimator on noiseless data,
without further optimization, it outperformed DBE on noisy data, both in terms of
accuracy and computation time.



2 Abstract

In this thesis, our objective is to investigate methodologies for predicting the pa-
rameters of a PID-controlled cruise control system. Specifically, we delve into an
examination and comparison of three distinct approaches; one involving numerical
solutions, the second utilizing deep neural networks (DNN), and finally a combi-
nation of the two.

We present several possible approaches for modeling the system as an ordi-
nary differential equation (ODE), a prerequisite for utilizing numerical solutions.
We outline the challenges of this process, as well as address issues unique to the
explored system. We also address the critical concern of selecting an appropriate
ODE solver, in addition to exploring optimization methods thereof. Additionally,
we investigate hyper-parameter optimization of neural networks using Weight and
Biases and delve into approaches for identifying and mitigating issues related to
model saturation and overfitting.

The ultimate goal is to compare these different methods. This comparison
encompasses an assessment of prediction accuracy, computation speed, and an
analysis of the respective strengths and weaknesses of the different approaches,
with the intent of finding the one best suited for our task.

3 Introduction

This thesis aims to address the inverse problem of estimating parameters within a
cruise control system. The primary objective is to thoroughly assess and compare
three different approaches for estimating the parameters of said system, with the
aim of identifying the most effective solution. These approaches include employing
numerical solutions and/or utilizing a well-trained deep neural network (DNN),
which will be methodically compared within the scope of this task. To clarify, the
task at hand is predicting the parameters of the PID controller governing the cruise
control system, based on observed data, comprising an ongoing sequence of speed
measurements as the cruise controller approaches its desired speed.

The motivation for this study stemmed from an initial desire to accurately pre-
dict the execution of the PID-controlled cruise control system. However, predicting
parameters, particularly for non-linear systems, can pose significant challenges. As
such, we set out to compare the three approaches, starting with a thorough exam-
ination of traditional and well-established numerical methods. Recognizing the
criticism of high computational costs associated with numerical solutions, we ex-
panded our investigation to include other approaches; training a DNN model to



estimate the system’s parameters and a combination of the two.

The different approaches will be thoroughly explored, addressing a range of as-
sociated challenges. These include issues related to modeling a closed-loop system
as an initial value problem (IVP), a prerequisite for using numerical solutions, as
well as selecting appropriate ODE solvers and optimizers. Our study also tackles
common neural network optimization issues like hyper-parameter tuning, satu-
ration, and overfitting. Finally, we investigate using DNNs to provide an initial
guess for the ODE solvers, aiming to reduce the computational cost of numerical
solutions.

The thesis concludes with a thorough comparative analysis. This comparison
focuses on the respective computational speed and predictive accuracy of the meth-
ods, in addition to a comparison of the advantages and disadvantages inherent to
each.

4 Motivation

Our interest in parameter estimation was brought about by an earlier problem.
That is anomaly detection in observational data from a simulation of a PID-controlled
cruise control system, being subjected to neutron radiation. These anomalies could
disrupt the normal behavior of the system, appearing as deviations in the trace
that would have been produced by a nominal execution.

In our previous attempts, we did not find a satisfactory solution to the problem
of anomaly detection in the data-set of traces produced by this neutron-radiated
system. Pivoting focus to solve the issue of parameter estimation is an indirect
attempt at solving the original issue of anomaly detection. The behavior of the
cruise control system is deterministic, meaning that any deviation from normal
behavior must be caused by an error. By estimating the parameters of the system,
it would be possible to determine the nominal speed value at any given time-
step. Consequently, assuming the estimations could be made accurate enough,
anomalies could then be identified by how much they deviated from the traces
generated by the system.

We investigated traditional parameter estimation methods, which involve mod-
eling and defining the system as an initial value problem. However, this can be a
challenging task due to the computational cost associated with the repeated simu-
lation of the system and often requiring a good initial guess. Thus we also investi-
gated DNN for parameter estimation, analyzing how they perform as a stand-alone
solution, or as a way to mitigate the previously mentioned issues. Our reasoning



for using a DNN for this purpose is that neural networks have shown promising
results with similar problems, and should be able to create a mapping of a nominal
trace generated by the system, to a particular set of parameters.

5 Background

In this section, the preliminary information pertaining to the thesis will be covered.

5.1 Ordinary Differential Equation

Differential equations are mathematical equations that involve derivatives of a
function with respect to one or more independent variables. In practical terms,
differential equations describe how physical phenomena change over some factor
like space or time. Because of their ability to model change, differential equations
play a fundamental role in describing dynamic processes in various fields.

Ordinary Differential Equations (ODEs) are specific types of differential equa-
tions that deal with the functions of a single independent variable.

ODEs can be classified based on their order, which indicates the highest deriva-
tive of the function involved in the equation. The order of an ODE has a significant
impact on its complexity and the methods used to solve it.

The general form of ODE n’th-order given a function F of x, y, and derivatives
of y is as follows:

F(t, y, y
′
, ..., y(n)) = 0 (1)

where y is a function of t, y
′
= dy/dt is the first derivative with respect to t,

y(n) = dny/dtn is the n’th derivative with respect to t.

Every higher-order ODE can be represented as a system of first-order ODEs,
with the number of ODEs equal to the order of the original system. To convert an
nth-order ODE into a system of first-order ODEs, new variables are introduced to
represent the derivatives, such that y1 = y, y2 = y′, ..., yn − 1 = yn−1. This results
in the following system:



y1
′ = y2

y2
′ = y3

.

.

.

yn−1
′ = F(t, y1, y2, ..., yn−1) = 0

(2)

The system in Equation 2 of first-order ODEs is a coupled system, meaning the
derivative of each yi depends only on the values of the variables t, y1, y2, ..., yn.

ODEs can be solved analytically or numerically, depending on the complexity
of the equation. Analytic solutions provide exact mathematical expressions for the
solution function, while numerical solutions use approximation methods to obtain
a numerical solution to the equation.

5.2 Control systems

Control systems are a fundamental concept in engineering, designed to manage
and regulate the behavior of various systems in which the state of the system
changes continuously over some factor, usually time. The general form of control
systems is:

y′ = f (y, u) (3)

Where y′ is the rate of change of the system, f is an unknown function, y is
the state of the system and u is the control variables. Control variables can be
state-dependent u(y), time-dependent u(t), or both u(y, t).

Closed-loop control systems, also known as feedback control systems, are a
type of control system where the output of the system is fed back as input for
comparison, with the desired target state known as the set-point. The key compo-
nents of a closed-loop control system are a controller and a plant.

5.2.1 PID Controller

A proportional–integral–derivative (PID) controller is a type of feedback control
method. The PID controller calculates a correction to the measured process variable
based on its distance from the desired set-point at each time-step. This difference
between measured variable y(t) and set-point yr is referred as error signal; e(t) =
yr − y(t).



Figure 1: Block diagram of a closed-loop system. The output of the plant y(t) is subtracted from the
set-point r(t), and this error e(t) is fed to the controller, which produces the control signal u(t) that
is sent to the input of the plant, in an attempt to drive the error to zero. [4]

The control signal produced by a PID controller is the sum of three terms,
weighted with proportional gain, integral gain, and derivative gain, which we will
refer to as KP, KI , and KD, respectively, from hereon. These parameters adjust the
controller’s response to the error signal.

The proportional term defined as uP = KP · e(t) acts as a "spring" that guides
the state toward the set-point. A higher KP value will result in a faster response.

The integral term uI = KI · I(t)|I(t) =
∫ t

0 e(τ)dτ is designed to counteract
steady state errors. Steady-state error is the residual difference between the desired
and actual values in a stable system under a constant input. In a cruise control
system, steady-state error is the difference between the current and set-point speed
once the system has settled, as indicated by the error signal.

The derivative term uD = KD · e′(t) helps the controller anticipate changes in
the error signal and reduce overshooting. It is designed to accommodate second-
order systems, that can oscillate under uP and uI unless they are dampened. The
derivative term is rarely used in first-order systems particularly because of the
difficulty in calculating error derivatives. Thus In first-order systems, e′(t) is ap-
proximated using finite difference; e′(t) ≈ e(t)−e(t−dt)

dt

These individual terms are summed for the complete control signal (correction
value), as given by, as shown in Equation 4.

uPID = KP · e + KI · I + KD · e′ (4)

5.3 ODE Solvers

ODE solvers are numerical techniques used to approximate the solutions of ODEs
over a specified range of values, often referred to as the solution interval, given an
initial state y0.



They accomplish their task by first discretizing the continuous domain into a
set of discrete time steps, where the smaller the step size, the more accurate the
approximation, but at the cost of increased computational effort.

ODE solvers use numerical integration techniques to update the approximation
of the state at each step. This process is iterative and repeats until the solver reaches
the target time-step or another termination condition is met.

Because ODE solvers perform numerical integration, their general form can be
represented as in Equation 5.

hStN
t0
≈

∫ tN

t0

f (t, y(t)) · dt (5)

Where f is an unknown function, t0 and tN are the beginning and target time-
step of the solution interval respectively. y0 is the initial state, and h is the step
size.

5.3.1 Fixed-step Methods

Fixed-step size solvers maintain the same sized time-step through the entire in-
tegration process, meaning that the trade-off between speed and accuracy of the
estimation is user-specified.

5.3.1.1 Euler’s Method
The simplest ODE solver called forward Euler is based on a first-order approxima-
tion. Its definition can be seen in Equation 6.

yn+h = yn + f (tn, yn) · h (6)

Euler’s method approximates the integral by starting in state y0 = f (t0) and
repeatedly applying the rule Equation 7 N times.

yi+1 ←− yi + f (ti, yi) · h (7)

This procedure gives a sequence y0:N , in which each point yi approximates the
y(t0 + I · h), and yn ≈ y(t f ).

Because Euler’s method only considers a single gradient, it produces an inac-
curate estimation unless used with extremely small time-steps, which adds to the
computational expense. Thus it is rarely used when accurate approximations are
needed.



5.3.1.2 Runge–Kutta 4 Method

The Runge-Kutta 4th order method (RK4) is a more elaborate method than
Euler. RK4 evaluates the function four times at each time-step, meaning that its
approximation is more accurate although four times slower than Euler given the
same step size.

It can be defined as in Equation 8.

yn+1 = yn +
dt
6
· (k1 + 2k2 + 2k3 + k4)

k1 = f (tn, yn),

k2 = f (tn +
dt
2

, yn + dt · k1

2
)

k3 = f (tn +
dt
2

, yn + dt · k2

2
)

k4 = f (tn + dt, yn + dt · k3)

(8)

5.3.2 Adaptive-step Methods

Adaptive-step solvers change the step size based on the estimated rate of change
of derivatives in the region surrounding the current state. In particular, when the
rates change slowly, adaptive-step solvers take larger steps speeding up calcula-
tions. On the other hand, when the rates change quickly those solvers decrease
the size of their steps, achieving accuracy that could be only achieved with a small
fixed step size. Because of these properties, adaptive-step solvers maintain a bal-
ance between speed and accuracy.

5.4 Optimization

One of the primary goals in optimization is to find a local minimum or maximum
of a given objective function. For example, if the objective function represents a
cost, then the aim is to find the value x which will yield the lowest possible cost.
A general form of a minimization problem can be represented as in Equation 9.

min
y

f (y) (9)

5.4.1 Gradient Descent

The idea behind Gradient Descent (GD) is to repeatedly calculate the gradient of
the loss function with respect to the parameters of the function being optimized,



and then perform a small step in the direction of the greatest descent until either a
global or local minimum is reached.

The update step for GD can be formulated as in Equation 10.

yy+1 = yi − γ · ∇ f (yi) (10)

Where γ represents a hyper-parameter called the learning rate, and ∇ f (y) rep-
resents the gradient of an objective function f evaluated at yi.

In many cases, it is impractical to use the entire data-set to calculate the gra-
dient, often only randomly selected mini-batches are employed. This approach is
referred to as stochastic gradient descent (SGD).

Because GD uses only first-order information, it necessitates small step sizes
at each iteration so as not to step over a possible minimum, which in turn results
in a relatively slow convergence speed. While having limited local information is
beneficial when optimizing a large number of parameters, as encountered in neural
networks, it becomes impractical in situations where the number of parameters is
small.

5.4.1.1 Adam
The Adam algorithm [20] is an extended version of SGD as it combines ideas
from momentum and the Root Mean Square Propagation (RMSprop) algorithms.
It uses the squared gradients to scale the learning rate like RMSprop and it takes
advantage of momentum by using the moving average of the gradient to accelerate
the convergence towards the minimum. It can be represented by following pseudo-
code Figure 2.

5.4.2 Newton’s method

Newton’s method, also called Newton–Raphson, is an unbound iterative optimiza-
tion algorithm. Newton-Raphson uses both first and second-order information,
specifically the gradient and Hessian matrix to create a local quadratic approxima-
tion of the objective function given some specific value. Then it performs a step in
the approximated function to acquire the next value. This process repeats until the
approximated minimum is reached.

The update step for Newton–Raphson can be formulated as in Equation 11.

yy+1 = yi − γ · H−1
i · ∇ f (yi) (11)



Figure 2: Adam optimizer pseudo-code [14]

Where H−1
i represents the inverse of the Hessian matrix, ∇ f (y) represents the

gradient of an objective function f evaluated at yi, and γ represents the learning
rate.

Traditionally, the learning rate γ is set to 1, however, when dealing with non-
convex functions, ill-conditioned problems, or when the Hessian matrix is not pos-
itive definite, line search algorithms are used to adjust the learning rate.

The benefit of using Newton’s method is that it results in fast convergence.
Additionally, Newton-Raphson exhibits quadratic convergence properties, mean-
ing that the number of correct digits in the solution approximately doubles with
each iteration when near the optimal solution.

The downsides of using Newton-Raphson are its sensitivity to initial guesses
and the high computational cost of Hessian inversion.

5.4.3 BFGS

BFGS (Broyden-Fletcher-Goldfarb-Shanno) is an optimization algorithm used for
unconstrained optimization problems. It belongs to the family of the quasi-Newton
methods. These methods are designed to overcome the computational challenges
associated with computing and storing the full Hessian matrix. Instead of comput-
ing the Hessian directly, quasi-Newton methods iteratively update an approxima-
tion to the inverse Hessian matrix at the end of each iteration.



The downside of BFGS is that it maintains and updates a full approximation to
the inverse Hessian matrix at each iteration.

5.4.3.1 L-BFGS
L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) is a modification of
the BFGS method designed to address memory limitations associated with large-
scale optimization problems. Instead of storing and updating the full inverse Hes-
sian matrix L-BFGS maintains a limited memory history of previous gradients and
parameter updates used for computation. The number of historical values is de-
cided by a hyper-parameter.

5.4.4 Levenberg–Marquardt

The Levenberg–Marquardt (LM) algorithm merges elements from both gradient
descent and the Gauss-Newton method. It introduces a damping parameter that
governs the choice of optimization strategy. When the damping parameter λ is
small, the algorithm applies a Gauss-Newton update, while larger values of λ

prompt a shift toward gradient descent. Initially, the damping parameter λ is set
to a large value, causing the initial updates to be conservative, taking small steps
along the steepest-descent direction.

5.5 Adjoint Method

The adjoint sensitivity method, also known as the adjoint method, is a mathemat-
ical technique used to compute gradients of an objective function with respect to
the parameters in systems governed by differential equations, particularly ODEs.
It calculates gradients by using the state and the sensitivity of the loss with respect
to said state, and then solving the augmented ODE backward in time. An aug-
mented ODE is an extension of the original ODE that incorporates additional state
variables. These additional variables are introduced to help with the sensitivity
analysis and parameter estimation problems.

The pseudo-code for computing gradients using the adjoint method can be seen
in Figure 3:

5.6 Deep Neural-Networks

A deep neural network (DNN) is a type of neural network (NN) that has one or
more hidden layers between the input and output layers. The term "deep" refers to
the presence of these multiple layers.

A NN can be represented as a tuple N = (L, T, F), where:



Figure 3: Adjoint Method pseudo-code [8]

L = Lk | k ∈ 0, . . . , K

T ⊆ L× L

F = Fk | k ∈ 1, . . . , K

L is a set of layers. T is a set of connections between each of the fully connected
layers and F a set of functions, one for each non-input layer. In a NN, the first layer
L0 is the input layer, the last layer LK is the output layer, and all layers in between
are called hidden layers. Each layer Lk consists of nk neurons, also known as nodes.

5.7 Weights & Biases

To aid in the comparison and optimization of hyper-parameters, "Weights & Biases"
was used. Weights & Biases is among other things a logging and visualization tool
specifically built for machine learning problems. [31]

For this thesis, the "sweep" functionality of Weights & Biases has been utilized
in hyper-parameter optimization. A "sweep" is a term used for describing a series
of experiments, in which a number of models with different hyper-parameters
are compared. In the Weights & Biases framework, a sweep works by defining
several ranges or sets of values. Hyper-parameters are then selected from the sets
and/or ranges and the results from the resulting model are then logged. The
hyper-parameter selections is made either at random, sequentially going through
every possible combination, or selected through Bayesian search. After training a
series of models, Weights & Biases aids in selecting optimal hyper-parameters by
visualizing the results.



5.8 Normalization

Normalization refers to the process of adjusting the scale of a variable or a data-
set to bring it within a specific range or standardize it in a way that facilitates
comparison or improves convergence in certain algorithms. It is often beneficial
for training neural networks, as it can add stability during training by reducing
the effects of outliers. It can also provide consistency and comparability, by scaling
features to have the same range, ensuring features with larger numerical values
won’t dominate the loss when training a model. [2, 18]

Two of the most common normalization methods are ’min-max’ normalization,
often just referred to as "normalization", and "ZScore" normalization, also referred
to as "standardization". Min-max normalization scales a set of values to be between
0 and 1, or −1 and 1. The function for min-max normalization can be seen in
Equation 12.

f (x) =
x−min

max−min
(12)

Where x is the value being scaled, min is the minimum value in the set and max
the maximum value in the set. Min-max can help deal with outliers and extreme
values, in addition to scaling all features to the same range to reduce biases during
model training.

ZScore normalization scales a set of values such that the mean is 0 and the
standard deviation is 1. The function for ZScore normalization can be seen in
Equation 13.

f (x) =
x− µ

σ
(13)

Where x is the value being scaled, µ is the arithmetic mean of the set, and σ

is the population standard deviation of the set. Scaling in this manner can ben-
efit data analysis, making it simpler to understand the values and their relative
deviation within the set, which can accelerate training.

In general, there are three different approaches to applying normalization; fea-
ture, sample, and global normalization. Sample normalization involves scaling
each individual sample in a data-set independently. The normalization is applied
across the features for a specific sample. This means that each sample has its own
scale based on its characteristics.

Feature normalization involves scaling the values of each feature in the data-set
independently. For each feature, the normalization is applied across all samples.



This ensures that each feature contributes to the learning process equally, regard-
less of its original scale.

Global normalization applies a common scale factor to the entire data-set. The
transformation is performed collectively across all samples and features, taking
into account the combined values of the entire data-set. This ensures that all fea-
tures and samples share a similar scale.



6 Problem definition

Given observational data from the plant of a PID-controlled cruise control system,
the aim of this thesis is to examine and compare the use of numerical methods,
deep neural networks (DNNs) and a combined approach for the task of estimating
controller parameters, namely proportional gain KP, integral gain KI , and deriva-
tive gain KD. The comparison will be based on the quantitative measurements of
the loss on each parameter, as well as computation speed.

In order to employ numerical solutions, a prerequisite is to formulate the sys-
tem as a parameterized Initial Value Problem (IVP), which requires combining the
plant and the controller into a system of ordinary differential equations (ODE).



7 Related Work

The literature on solving the initial value problem (IVP) for models of ordinary
differential equations spans various scientific communities and approaches. Gen-
erally, approaches for solving an IVP can be divided, among others, into numerical
and analytical.

Many of the most popular numerical techniques for solving IVPs are explored
in detail by Jonathan Claver in [7] and Howe, Nikolaus Harry Reginald in [15]. .

Numerical methods for parameter estimation in ODEs often focus on approx-
imating the solution of differential equations by simulating the model trajecto-
ries, however, since this is done with each iteration of the optimization process
they often have high computational cost. These methods are referred to as shoot-
ing approaches and have been extensively studied in works such as [26], [5], [28]
and [25]. Moreover, shooting approaches rely heavily on initial guesses, especially
when combined with gradient-based optimizers. For that purpose, it is common to
use methods for estimating parameters without the need to simulate the solution
trajectory. Methods for attaining an initial guess commonly involve matching the
approximating gradients derived from the observed data using finite differences to
the gradients obtained from the ODE when using observed data as a state input.
These methods are presented in works such as [30], [24], and [32].

Neural networks can also be used for the task of estimating the parameters
of ODEs. Vivek Dua in [10] decomposes the problem of parameter estimation
into two sub-problems. The first sub-problem creates a neural network that maps
the relationship between time-steps and the state of the system. The second sub-
problem uses the neural network model to obtain an estimate of the parameters
which can later be used as an initial guess for a numerical solution. Another two-
stage solution for parameter estimation was proposed in [6], where neural ordinary
differential equations are used to estimate state derivatives, which are then used
to estimate the parameters of a more interpretable model. In [17] Vivek Dua and
Elnaz Jamili propose a technique where the approximation of the state variable
and model parameters are done simultaneously. .

Other notable work includes the approximation of reconstruction maps for
model parameter estimation proposed as in [29].



Figure 4: Table schema

8 Data-set

The data-set consists of time-series observational data collected from a simulated
cruise control system, where the system’s speed is controlled by a PID controller.
In this section, we will provide a brief overview of the data-set and its structure.

Each simulation had the aforementioned PID controller and an associated plant
that exchanged messages with each other. The simulations ran for 15 seconds, and
the communication between the controller and plant was synchronized to ensure
determinism in the order of packets. Additionally, the experiments were deter-
ministic in their execution, given a set of parameters, meaning that if a set of
simulations shared parameters, their execution would be identical.

The data was stored in tables according to the schema shown in Figure 4. The
values stored in certain columns depended on the value of the can_id column, as
explained in Figure 5. The trace from a simulation was stored in separate tables and
saved to a file for later analysis. Additionally, each simulation was associated with
a unique ID, which consisted of six parts that identified the parameter values of the
simulation in question, following the schema shown in Figure 6. Only nominal files
are used in this thesis. As mentioned in section 4, the original problem involved
anomaly detection, which is why there was a need to denote whether data was
anomalous or not.

We focused on the entries in the tables with the can_id of PLANT_INFO_VehicleSpeed
and used the high_word entry, which represents the velocity. The order of the
time-steps, in the time-series, are determined based on the sequence, and each
subsequent data point records the velocity at 0.01-second intervals following the
preceding one.



Figure 5: can_id meanings

Figure 6: Simulation id schema



9 Noise Generation

During the experiments, the examination was expanded to include an investigation
into the impact of noise on the loss of the various methods. The cruise control
system however, as previously mentioned in section 8, is deterministic producing
no noise. Consequently, in order to examine the effect of noise, said noise had to
be introduced. The decision was made to introduce it artificially.

An advantage of artificially created noise is knowing the distribution of said
noise. This eliminates the need to make assumptions or approximations of the
real noise distribution. With this knowledge, we can easily compare the effect of
different noise distributions on our prediction accuracy.

The choice was made to introduce the noise into the system during its simula-
tion. The system consists of a plant, the simulated vehicle, and the PID controller.
The noise is introduced at the plant when the current velocity of the vehicle is up-
dated and relaid back to the controller, the reason for introducing the noise here
is to simulate an inaccurate sensor. The noise introduced is a fluctuating error, a
changing variable, it modifies velocity, and the amount is chosen at random within
a specified range at each time-step. The formula for the noisy velocity calculation
is described in Equation 14.

f (y) = y +N (0, E) (14)

Where f () is the function that generates the noisy velocity and y represents the
true velocity. N represents a normal distribution, where "0" is the mean and E,
representing the fluctuating error, is the standard deviation of the distribution.

After the erroneous velocity has been calculated it is sent to the controller,
which then uses the noisy result for its calculations. These simulations are then
used to generate new traces, which can then be used as a data-set for testing and
evaluation.

By introducing the noise during the simulation, rather then simply modify-
ing the existing trace data, we are able to achieve more ’real-to-life’ data, or ’to-
simulation’ in our case. The reason being that the controller output will be influ-
enced by the result of the previous time-step, which was likewise effected by the
noise. This results in the errors of previous steps compounding and effecting one
another, unlike if it had been introduced after the fact.



10 Evaluation Metrics

We evaluate the performance of the DNN and numerical method predictions through
quantitative methods, calculating the loss of each parameter separately. We have
chosen a straightforward approach, evaluating the absolute differences. We delib-
erately decided not to use methods that combined the results into a single value.
Our intention here was to preserve as much information as possible for poten-
tial model evaluation. The issue with a combined value is models with different
prediction losses on individual parameters may have an identical combined loss.
Consequently, distinguishing between these two models becomes impossible, even
if they have notable differences. The equation for calculating the loss can be seen
on Equation 15.

|Ppred − Ptarget| = Ploss (15)
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Where Ppred and Ptarget are vectors containing the prediction and targets respec-
tively, both include values corresponding to the KP, KI and KD parameters. Ploss is
a vector of absolute differences for each parameter. An example application can be
seen on Equation 16.

In addition to the absolute difference another metric we will be using is the
population standard deviation. This metric is useful when doing quantitative test-
ing as it allows a measure of the general dispersion and deviation between multiple
measurements. Standard deviation is calculated as seen in Equation 17.

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (17)

Where σ is the standard deviation, xi represents an individual data-point, µ is
the arithmetic mean and N is the total number of data-points in the population.

As the final measuring metric used in this thesis is the evaluation time, rep-
resenting the mean time it takes to make a single prediction based on a set of
observations. These time measurements will be performed on the same computer
to have a consistent testing environment. These measurements will be performed
on a "MacBook Air M1, 2020", 3.2 GHz CPU, 1.28 GHz GPU, 8gb of ram and 256gb
SSD storage.



11 Initial Value Problem

In this thesis, for our numerical solutions, we consider the model of the system
formulated as a parameterized initial value problem (IVP). The IVP consists of
model derivatives specified by a system of ODEs, namely the PID-controlled cruise
control system and initial conditions specifying the initial state of the model as
defined in Equation 18.

y′(t) = f (t, y(t), p)

y(0) = y0

t ∈ (0, T)

(18)

Where y(t) is the state vector of a single dimension, containing the velocity at
a given time-step. t is a time-step in T, where T is the set of all time-steps. p is
a constant vector of model parameters KP, KI , and KD. y0 is the initial condition;
the velocity at time t0, and f is the cruise control model responsible for generating
model derivatives of a system at time-step t.

The goal of solving a parameterized IVP is to find a function that satisfies the
differential equation while taking into account the specified parameters and initial
conditions. In simpler terms, an IVP aims to find the function that describes how
a system behaves over a given interval, starting from an initial point with specific
parameter values. This result, known as a trajectory, can be approximated by
utilizing numerical methods called ODE solvers, which simulate the system’s state
from the initial time t0 to a designated final time.

For this problem, we know the initial state as we are given a trace. Therefore,
the solution to the IVP essentially equates to determining the correct model pa-
rameters so that the simulated trajectory from the known starting time to the final
time closely matches the observed trajectory of the original system.

12 System modeling

As mentioned in section 11 in order to solve the parameterized IVP, we need to
define the cruise control system as an ODE. In order to accomplish this the plant
and the controller must be combined. Such combination results in the first-order
ODE seen in Equation 19.

y′ =

{
KP·e+KI ·

∫
e+KD ·e′−CdA·y2

m if y > 0
KP·e+KI ·

∫
e+KD ·e′+CdA·y2

m otherwise

e = yr − ⌊y⌋
(19)



Where CdA is a static value representing opposing forces affecting the vehi-
cle, and m is the static mass of the vehicle. e is a control error calculated as the
difference between set-point yr and floored velocity ⌊y⌋ at time-step t. Flooring
the velocity ⌊y⌋ when calculating the error e is a feature in the system presented
in this thesis, as in the original implementation of the cruise control system there
were identified bugs with floating point truncation. Usually, the error is calculated
by e = yr − y, but because the goal was to model the system that produced the
observed data, we included it in the model definition.

In first-order systems, the integral of the error is usually approximated using
Riemann sum e.q

∫ t
0 e(t) ≈ ∑t

n=1 e(t) · dt and the derivative of the error is approx-

imated by finite difference e′(t) ≈ e(t)−e(t−dt)
dt , where dt represents the step-size.

Approximating those terms requires in-memory storage of past values and knowl-
edge of the step-size at each integration.

When simulating the change in velocity of a PID-controlled cruise control sys-
tem, the choice of an appropriate numerical solver plays a critical role in achieving
accurate trajectory approximation. For the purpose of choosing the most suitable
one for our task, we tested a selection of first-order, higher-order, and adaptive-step
solvers, namely Euler, RK4, and dopri5 [9] respectively. To evaluate the perfor-
mance of each, we simulated 100 trajectories with different initial conditions and
parameters in order to compare those trajectories to the ones approximated using
said solvers. As a metric of accuracy, we used the mean squared error (MSE) that
measures the difference between approximated trajectories and the target trajec-
tory. The results show that Euler’s method is the most reliable choice, as it con-
sistently provides accurate and stable results. We hypothesized that other solvers
introduce errors and instability due to the fact that the derivative and integral
terms are calculated using past values stored in memory. This could significantly
influence the trajectory accuracy. These deviations could occur because the more
complex solvers are sensitive to the influence of past values, leading to deviations
from the target trajectory. In contrast, Euler’s method maintains precision when
past values are integral to the approximation, perhaps due to its relative simplicity.
To test that hypothesis, we repeated the initial experiments with different combi-
nations of proportional, integral, and derivative terms, as integral and derivative
terms are influenced by past values contrary to the proportional term. The purpose
of the test was to determine which terms causes the inaccuracies seen in the more
complex solvers. The results shown in Table 1 indicate that the discrepancy in the
approximation issue is mainly caused by the integral term, however, the deriva-
tive term also contributes to it, which aligns with the hypothesis that it is the past
values causing the complex solvers to become inaccurate.



Mean MSE for trajectory comparison
Metrics Euler RK4 Dopri5
Mean MSE uPID 0.309 {0.039} 18354.199 {26145.486} 3966.444 {8186.335}
Mean MSE uP 0.331 {0.013} 0.294 {0.138} 0.294 {0.138}
Mean MSE uPI 0.300 {0.038} 18144.556 {27817.927} 18144.556 {27817.927}
Mean MSE uPD 0.346 {0.013} 0.476 {0.197} 0.476 {0.197}

Table 1: Mean MSE for trajectory comparison

In order to avoid the degradation of accuracy in complex solvers caused by past
values, attemps were made to model the system in such a way, as to avoid storing
previous values in memory for calculating the derivative and integral terms, so
that the complex solvers could potentially be used for accurate trajectory approx-
imation. Modeling the system as such was initially attempted by increasing the
order of the system by taking the derivatives of both sides, a popular technique in
stability analysis. To do this, it is essential that the set-point yr lies at the origin
yr = 0 before the derivative increases. After the increase in derivatives, we ended
up with the system shown in Equation 20

y′′ =

{
KP·e′+KI ·e+KD ·e′′−2CdA·y′y

m if y > −yr
KP·e′+KI ·e+KD ·e′′+2CdA·y′y

m otherwise

e′ = −⌊y′⌋
(20)

The idea behind this technique is that by increasing the derivatives, the inte-
gration required for calculating the integral term is eliminated, as now it can be
approximated by e. Equation 20 also shows that despite transformation there is
still a need to approximate the derivative term using finite difference, as solving
e′′ requires knowledge thereof, thus only partially eliminating the models depen-
dency on past values for calculation. If the order of the system was not equal to the
order of the derivative term, this would not be the case. This is one of the reasons
why most of the first-order systems are controlled by a PI controller without the
derivative term.

When comparing the trajectory of the second-order model with the re-centered
target trajectory, there is a significant difference between the two. This discrepancy
is caused by the previously mentioned flooring of the velocity. This comparison be
seen in Figure 7.

A different approach was attempted to eliminate the need for storing past val-
ues, achieved by augmenting the state of the ODE. This is done by adding addi-
tional variables to the state of the ODE. The augmented variables are integrated
alongside the standard state variables. In the case of Equation 19, one can include



Figure 7: Comparison between re-centered target trajectory and one approximated by higher-order
ODE with and without floored velocity

the error variable in the state to calculate the integral term at time-step. This aug-
mentation could be thought of as increasing the order of the system. Its application
can be seen in Equation 21.

y′ =

{
KP·e+KI ·E+KD ·e′−CdA·y2

m if y > 0
KP·e+KI ·E+KD ·e′+CdA·y2

m otherwise

E′ = e

(21)

Using this technique the integral terms reliance on past values can be elimi-
nated as its derivative e is known at each state. However the derivative term is still
reliant on knowledge of the step-size and past values.

The results of testing this model against 100 simulated trajectories can be seen
in Table 2. As shown by the results, this model achieves lesser accuracy than
Equation 19 for all of the solvers.

Mean MSE for trajectory comparison using augmented state model
Metrics Euler RK4 Dopri5
Mean MSE uPID 567.579 {765.697} 559.840 {762.847} 560.0254 {762.58136}

Table 2: Mean MSE for trajectory comparison using augmented state model

As the attempts to eliminate the models dependency on past values did not
yield better results, the decision was made to use the first-order ODE model, Equa-
tion 19, with Euler solver.



13 Single Shooting

This section explores the application of single shooting methods [3], as a numerical
solution, to finding the set of system model parameters such that the solution of
the IVP best fits the observed data, as defined by an appropriate objective function.
We explain the idea behind the Incremental Single Shooting (ISS) [25] approach.
We emphasize the importance of careful consideration of initial parameter estima-
tion, optimization algorithms, and loss functions. Additionally, highlighting the
challenges associated with the adjoint method when working with systems where
historical values play a significant role. After considering the results in this section,
we conclude that the best-explored solution for estimating parameters in the PID-
controlled cruise control would be to utilize the Levenberg-Marquardt optimization
algorithm, with the initial guess calculated by the Numerical Discretization-based
Estimation.

Single shooting methods are iterative techniques. In each iteration of the opti-
mization process, ODE solvers are utilized to estimate the solution of the IVP. This
estimation involves the initial state and a predicted set of parameters across the
entire interval of interest. The obtained solution, along with observed data, is then
used to evaluate the objective function. In this thesis, we employed a variant of
the Single Shooting method known as Incremental Single Shooting (ISS). The fun-
damental concept behind ISS revolves around the iterative adjustment of system
parameters while assessing the system’s anticipated behavior against the observa-
tions. In simpler terms, the trajectory interval is divided into smaller sub-intervals,
with each one approximated sequentially while optimizing the same set of param-
eters. ISS offers the distinct advantage of updating parameters in an incremental
manner. Instead of making abrupt, disruptive changes to the control system, it
facilitates a gradual, more stable transition. In our specific case, ISS can acquire
knowledge of the parameters before the control system reaches its set-point, gen-
erating data traces that significantly influence the optimization process.

Parameter estimation in systems of ODEs is commonly done using maximum
likelihood estimation (MLE) [11]. This is because MLE tries to maximize the like-
lihood of parameters resolving a case, which is particularly useful when the esti-
mated trajectory does not fit the observed data exactly. However, to perform MLE
one needs to know or make assumptions about the probability distribution of the
data.

Given observed data and assuming a normal distribution with the same vari-
ance across all errors, parameter estimation for ODEs, be represented as non-linear
least squares represented problem as Equation 22.



min
p

n

∑
i=1

(ŷ(ti)− y(ti, p))2, such that y(t,p) satisfies Equation 18 (22)

Where n is the number of data points in the trajectory, ŷ(ti) is the observed
velocity at time ti, y(ti) is the predicted trajectory at time ti with parameters p.

For solving the problem as defined in Equation 22 with a single shooting ap-
proach, we define the objective function as the sum of squared errors:

O(p) =
n

∑
i=1

(ŷ(ti)− y(ti, p))2 (23)

13.1 Initial Guess

A common criticism of estimating parameters using a single-shooting approach,
especially in combination with gradient-based optimizers, is that repeated simula-
tion of the system’s trajectory is computationally expensive, especially if the ODE
is complex. In such cases, optimization tends to diverge or converge to local op-
tima without sufficiently good initial guesses p0, thus methods that use observed
data to obtain suitable p0 without approximating the solution of the IVP can be
employed.

One way to obtain a good initial guess is to train an NN to estimate parameters
directly from the observations. Another set of methods is based on fitting ap-
proximated derivatives from the observed data, usually by finite difference to the
derivatives generated directly by the ODE model using observed values as state
inputs. Numerical discretization-based estimation (DBE) [32] is one such method
and it can be formulated as the following least squares objective function Equa-
tion 24.

min
p

n

∑
i=1

(
ŷ(ti+1)− ŷ(ti)

ti+1 − ti
− f (ti, ŷ(ti), p))2 (24)

Where ŷ(ti+1 and ŷ(ti+1 are observed states at time ti+1 and ti respectively. f is
the ODE function and p is the set of parameters of said function.

To test the DBE’s application in finding a good initial guess for the PID-controlled
cruise control system, we conducted two experiments, one involving noise-free
data and the other data with normally distributed noise with a standard deviation
of 10. For both experiments, we used Levenberg-Marquardt (LM) optimizer with



the initial values set to 1 for each parameter. the results of those experiments can
be seen in Table 3 and Table 4.

Initial guess using DBE
Metrics DBE with LM
Mean Iterations 11.000 {0.000}
Mean Time [ s] 0.058 {0.004}
Mean distance KP 2.433 {3.491}
Mean distance KI 0.099 {0.140}
Mean distance KD 0.564 {0.298}

Table 3: Results of parameter estimation with DBE and LM

Results of parameter estimation with DBE and LM with noise
Metrics DBE with LM
Mean Iterations 11.000 {0.000}
Mean Time [ s] 0.061 {0.013}
Mean distance KP 124.130 {71.892}
Mean distance KI 3.981 {2.554}
Mean distance KD 66.546 {18.671}

Table 4: Results of parameter estimation with DBE and LM with noise

13.2 Optimization Algorithms

The choice of the optimization algorithm significantly impacts the precision, effi-
ciency, and convergence of the parameter estimation process. Given the nature of
the IVP and the associated system, four specific optimization algorithms were se-
lected for comparison: Adam [19], L-BFGS [22], Newton-Raphson, and Levenberg-
Marquardt [21]. This section explains the reasoning behind this selection.

Adam is chosen for its adaptability and efficiency in handling noisy data. The
optimizer’s adaptive learning rates adjust individually to each parameter which
aligns with the adaptive nature of the IVP and the need for robustness.

L-BFGS is included for its memory-efficient quasi-Newton approach, finding a
balance between computational efficiency and convergence speed.

The classical Newton-Raphson method is selected for its potential rapid con-
vergence when the initial guess is sufficiently close to the optimal parameters.



Levenberg-Marquardt is chosen for its balance between gradient descent and
Newton-Raphson methods, offering versatility and stability. Its damping factor
adapts the optimization process based on the curvature of the objective function,
making it suitable for non-linear least squares problems.

This diversity allows for a comprehensive exploration of the parameter space.

13.2.1 Optimization Experiments

For each optimizer, two experiments were performed, one with noiseless data and
one with normally distributed noise with a standard deviation of 10. Each experi-
ment was conducted over a set of randomly selected trajectories from the data-set.
The initial value for the parameters was set to the mean value of their respective
ranges.

We used the PyTorch implementation of Adam. We set the number of epochs to
1000, with early stopping, and terminating optimization if the absolute difference
between five consecutive losses was less than 5-4e. The initial learning-rate was set
to 5, multiplied by 0.1 every 100 epochs to address slow convergence.

Newton-Raphson was implemented using PyTorch-minimize, with the learning-
rate set to 1.0 as per default, and the maximum number of epochs set to 50.

We also used the L-BFGS implementation from the PyTorch library. We set the
learning-rate to 1.0 and the maximum number of epochs to 50 as with Newton-
Raphson.

Levenberg-Marquardt was implemented using the Scipy library without chang-
ing any of its default parameters.

For experiments with PyTorch and PyTorch-minimize, the sum of squared er-
rors was used as an objective function. Moreover, for all experiments, we used
Euler’s method with a step-size set to 0.01 as that was the step-size used to gener-
ate target trajectories.

As can be seen from the results Table 5, Table 6, Table 7 and Table 8, all of the
optimizers performed well in both scenarios.

The only outlier in terms of the loss of the predicted parameter was the Adam
optimizer. It is possible that the performance of Adam could be further adjusted by
fine-tuning the learning-rate, amongst others, but at the potential cost of increasing
the computational cost. Further analyzing the data provided by experiments with
Adam we yield several conclusions. Firstly, the computational cost for convergence
is significant, as indicated by the high average number of iterations. Secondly, this



Results of solving IVP using l-bfgs and Newton-Raphson
Metrics L-BFGS Newton-Raphson
Mean Iterations 4.800 {3.765} 6.811 {5.699}
Mean Time [ s] 28.940 {6.465} 44.323 {9.047}
Mean distance KP 0.854 {0.585} 0.840 {0.736}
Mean distance KI 0.144 {0.177} 0.250 {0.354}
Mean distance KD 0.567 {0.134} 0.680 {0.296}

Table 5: Results of solving IVP using L-BFGS and Newton-Raphson

Results of solving IVP using Adam and Levenberg-Marquardt
Metrics Adam Levenberg-Marquardt
Mean Iterations 445.790 {90.746} 102.700 {34.516}
Mean Time [ s] 161.829 {33.032} 8.196 {2.690}
Mean distance KP 2.651 {10.529} 0.326 {0.216}
Mean distance KI 0.962 {3.952} 0.260 {0.272}
Mean distance KD 2.448 {6.433} 0.820 {0.242}

Table 6: Results of solving IVP using Adam and Levenberg-Marquardt

Results of solving IVP using L-BFGS and Newton-Raphson
with added noise

Metrics L-BFGS Newton-Raphson
Mean Iterations 4 {3.197} 5.699 {1.828}
Mean Time [ s] 32.553 {12.821} 46.334 {7.211}
Mean distance KP 2.826 {2.828} 3.581 {3.037}
Mean distance KI 1.075 {1.473} 1.577 {1.398}
Mean distance KD 1.347 {0.759} 1.168 {1.025}

Table 7: Results of solving IVP using l-bfgs and Newton-Raphson with added noise

Results of solving IVP using Adam and Levenberg-Marquardt
with added noise

Metrics Adam Levenberg-Marquardt
Mean Iterations 576.333 {49.195} 153.9 {45.328}
Mean Time [ s] 205.350 {17.862} 13.196 {4.368}
Mean distance KP 19.528 {14.618} 3.310 {2.832}
Mean distance KI 2.824 {2.459} 1.637 {1.423}
Mean distance KD 23.876 {24.241} 1.637 {1.434}

Table 8: Results of solving IVP using Adam and Levenberg-Marquardt with added noise



approach relies heavily on having an accurate initial guess, as evidenced by the
standard deviation of iterations. These challenges arise from the inherent nature
of gradient descent optimizers. They operate by approximating the objective func-
tion linearly at each step with limited local information, necessitating small step
sizes at each iteration. While this is beneficial when optimizing a large number of
parameters, as seen in neural networks, it becomes impractical in situations with a
small number of parameters, as in this case.

Analyzing the rest of the optimization methods we can see that Levenberg-
Marquardt performed the fastest, however with a larger amount of function eval-
uations than L-BFGS and Newton-Raphson. On the other hand, Newton-Raphson
achieved the highest number of function evaluations with the highest average com-
putation time excluding Adam.

After performing the aforementioned experiments, we determined that Levenberg-
Marquardt is the best suited for our case due to the fact that it consistently achieved
the fastest convergence speed across all experiments while achieving results com-
parable to those of L-BFGS and Newton-Raphson.

13.3 Comparing Parameter Estimation Methods

Selecting the most suitable parameter estimation method is crucial when dealing
with ODE systems. The choice of an appropriate loss function can have a profound
impact on the precision and dependability of parameter estimates. In this section,
we compare two widely used approaches for parameter estimation: Least Squares
and Huber Loss[16].

Our findings reveal that in situations characterized by noise-free data, the Least
Squares method emerges as the most effective option. However, in scenarios char-
acterized by the presence of noisy data, the Huber Loss proves to be a more robust
alternative, offering parameter estimates of increased reliability.

To conduct an evaluation, we performed experiments involving both Least
Squares and Huber Loss on the data featuring normal noise with a standard de-
viation of 100. These experiments were executed using the L-BFGS optimizer and
their outcome can be seen in Table 9.

The rationale behind the observed outcomes can be attributed to the inherent
characteristics of each of the loss functions examined. Least Squares optimization
centers on the minimization of the sum of squared errors, a computational ap-
proach that balances efficiency but with a sensitivity to outliers and assumptions



Comparison between Huber and Least Squares
Metrics Least Squares with noise Huber without noise
Mean Iterations 30.38 {2.756} 31.58 {5.308}
Mean Time [ s] 9.562 {9.905} 2.402 {8.711}
Mean distance KP 1.514 {1.257} 1.276 {1.105}
Mean distance KI 0.497 {0.383} 0.491 {0.346}
Mean distance KD 1.477{1.294} 1.336 {1.111}

Table 9: Comparison between Huber and Least Squares

about the noise distribution. In contrast, the Huber Loss stands out for its re-
silience in the face of outliers, a feature achieved by combining the Mean Absolute
Error (MAE) and Mean Squared Error (MSE) loss functions. This adaptability is
further enhanced by the inclusion of a hyper-parameter; δ, which governs the tran-
sition point from quadratic to linear behavior. These characteristics render Huber
Loss highly versatile and suitable for a wide array of scenarios, particularly those
featuring noisy data or the presence of outliers.

While these loss functions can be used in many scenarios, they do not necessar-
ily work in every scenario. A possible solution is to employ Maximum Likelihood
Estimation (MLE). MLE seeks parameters that maximize the likelihood of observ-
ing the given data and can be often represented. This likelihood maximization can
often be represented as a specific loss function based on the negative log-likelihood.
This however requires knowledge of the probability distribution of the noise in the
data.

Taking into consideration the aforementioned insights, we conclude that Least
Squares is the most suitable choice for our particular problem. This decision is
substantiated by the notably minimal error evident in the data originating from
the cruise control system.

13.4 Adjoint experiments

In this section, we present the idea behind the adjoint method for computing the
gradient with respect to the parameters, and why it is not suitable in cases where
loss is dependent on the variables stored and updated in memory.

The adjoint method streamlines the computation of parameter gradients within
an ODE system, resulting in a substantial reduction in computational resources
compared to conventional finite-difference approaches. This computational effi-
ciency also extends to memory usage, as the method calculates gradients without



requiring explicit storage and backpropagation throughout the entire ODE trajec-
tory.

Given the advantages outlined above, experiments to assess the performance of
the adjoint method in the context of parameter prediction using Adam and L-BFGS
optimizers were conducted. Initially, those experiments were performed using the
same configuration as the one seen in subsubsection 13.2.1 .

The results using the Adam optimizer show that utilizing the adjoint method
increases the time of the optimization and leads to parameter estimates that deviate
farther from the target compared to cases where the method is not utilized.

When conducting experiments with the L-BFGS optimizer, challenges associ-
ated with exploding gradients were encountered, which subsequently led to un-
successful optimization attempts. To mitigate this issue, we implemented gradient
clamping and reduced the learning rate. However, even with these adjustments,
the results continued to follow a similar pattern, where the integration of the ad-
joint method extended the computational time of the optimization process and led
to parameter estimates that deviated more significantly from the target values in
contrast to cases where the method was not utilized. The results of the aforemen-
tioned tests can be seen in Table 10.

We hypothesized a potential connection between the issue of exploding gradi-
ents and the storage and updates of historical values. Such values could introduce
dependencies that the adjoint is not aware of and cannot account for, but which
significantly impact the loss function. To test our hypothesis, we conducted exper-
iments with different combinations of proportional, integral, and derivative terms
in our controller. This is because integral and derivative terms are calculated using
historical values. The results confirmed our theory as only the controller with pro-
portional term did not show signs of exploding gradients. The exploding gradient
can be shown by the evolution of the loss function, rapidly increasing, transition-
ing to a nearly vertical ascent. The evolution of loss across these experiments is
visually represented in Figure 8,Figure 9 and Figure 10.

Based on the empirical results presented above, we conclude that the use of
the adjoint method is not suitable when historical values are updated and stored
in memory, which is the case with the modeled system of PID-controlled cruise
control.



Results of solving IVP using Adam and L-BFGS with adjoint
Metrics Adam L-BFGS
Mean Iterations 550.45 {81.938} 28.53 {74.412}
Mean Time [ s] 351.056 {128.611} 31.351 {96.470}
Mean distance KP 25.272 {16.687} 196.643 {1121.221}
Mean distance KI 4.099 {2.838} 4.335 {2.981}
Mean distance KD 77.823 {52.593} 2.932 {11.560}

Table 10: Results of solving IVP using Adam and adjoint

Figure 8: The evolution of loss
with proportional term uP.

Figure 9: The evolution of loss
with proportional and integral
terms uP I.

Figure 10: The evolution of loss
with proportional and deriva-
tive terms uPD.

14 Deep Neural-Networks

This section goes over how a final DNN model trained achieved a summed total
loss of less than 12. Describing how hyper-parameters were tuned, and how issues
of saturation and overfitting were dealt with.

14.1 Hyper-Parameter Tuning

The DNN implementations were done in Python, using the TensorFlow/Keras [1]
libraries.

To train and test the models, sets of 1000 traces were sampled randomly drawn
from the data-set section 8, with 70% being used for training and 30% for testing.

Hyper-parameters are settings or configurations that are not learned from the
data but are set prior to the training process. They control the overall behavior
of the neural network and influence the learning process. Adjusting the hyper-
parameters of a neural network determines the overall architecture, and can be a
challenging task, especially without the assistance of specialized tools. Adjusting
hyper-parameters is crucial for tailoring the network to a specific problem. Some
of these hyper-parameters include the number of layers, the number of nodes in



said layers, the activation function of those nodes, and amount of epochs. Due
to all these being tuneable, neural networks can have a near infinite number of
unique configurations. In an attempt to get better prediction results from the
DNNs trained, the tool "Weights and Biases" was used to log and compare the
test results of each configuration.

Weights and Biases can be provided with a set of values or ranges to test within.
Opting for specific sets of values reduced the amount of possible combinations,
while still being able to explore a wider numerical range. Thus enabling a mea-
sured approach to how much of the state space is explored. Additionally, opting
to split certain hyper-parameters into separate sweeps, further reducing the overall
amount of combinations and the run-time of the experiment. Figure 11 shows the
parameter values Weights and Biases was initially setup to train models within.

• Number of runs: 54

• Data-set size: 1000

• Layer amount: [2, 4, 8, 12, 16, 24]

• Nodes per layer: [64, 128, 256, 512, 1024, 2048]

• Epochs: 16

• batch size: [1, 2, 4, 8, 16, 32]

• Vector size: 1500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: 1e-3

Figure 11: Initial Weights and Biases experimental setup.

To clarify some of the values/sets of values in Figure 11 that merit it; "number of
runs: 54", is the number of different models trained, with a random sampling, from
the hyper-parameter values listed. Settling on 54 as that would roughly equate to
an exploration of 25% of the possible hyper-parameter combinations, believing that
this would be a large enough exploration to make an informed decision, without
reaching an infeasible run-time for the experiments. "layer amount", "nodes per
layer" and "batch size" having sets of values, indicates that these are the param-



eters being tested, during this first sweep. The choice was made to group "layer
amount" and "nodes per layer" hyper-parameters as they are highly dependent on
one another, for example, if the network has few layers, it may require a large num-
ber of nodes in each layer, for the network to have the required complexity to be
able to relate a certain input to a target, and vise versa. Batch size was additionally
included to spare the additional sweep.

"Epochs" and "learning rate" were optimized in the second sweep, as they like
nodes and layers are dependent on one another. For example, with a low number
of epochs a larger learning rate may be preferable to ensure the network is able
to get close to a minima in the amount of epochs given, with the risk that it will
overshoot said minima, and not be quite able to reach it. With a large number of
epochs, a lower learning rate may be preferable, as there is more time to converge,
and a lower rate may avoid issues of overshooting, however at the cost of training
potentially taking significantly longer.

"Vector size: 1500", was chosen as it represents all the time-steps of a trace. The
initial hypothesis for this choice was that providing the neural network with as
much information as possible would yield more accurate predictions.

As can be seen in Figure 20, the results from the initial experiments with
Weights and Biases were vague and difficult to draw solid conclusions from, as
the different hyper-parameter values often had many outliers in their test loss val-
ues. Although, from the values in the set of "nodes per layer", 128 seemed to
consistently perform well. 24 layers also performs well in several of the test runs.
The choice of these hyper-parameter values were based on the fact that both hyper-
parameters tended to get losses that clustered low in terms of test loss. Lastly batch
size was the most difficult hyper-parameter to make a good decision on, however,
out of the set of options, a "batch size" of 8 was chosen, as it had low clustering of
losses, like the previous two mentioned, albeit with more outliers than them.

As previously explained, after settling on hyper-parameter values for "nodes
per layer", "layer amount", and "batch size", the focus was on finding the best
"epochs" and "learning rate". To do this, Weights and Biases was again used, the
difference this time being that the entire state space was explored, as there was only
two hyper-parameters to optimize. The specific test values can be seen in Figure 13.
It is important to note that any values not mentioned remained unchanged from
the previous experiment.

The specific values for "epochs" and "learning rate" were easier to decide upon
than the previous three hyper-parameters. Settling on 256 "epochs", as it had a
tight grouping at a low test loss, for the models trained. For the "learning rate"
1e-4 was chosen, as the best performing experiment was done with this.



(a) Test loss for differing amounts of "nodes per layer".

(b) Test loss for differing "layer amounts".

(c) Test loss for differing "batch sizes".

Figure 12: Test loss’s of initial Weights & Biases experiments.



• Number of runs: 36

• Layer amount: 24

• Nodes per layer: 128

• Epochs: [8, 16, 32, 64, 128, 256]

• batch size: 8

• Learning rate: [1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5]

Figure 13: Second experimental setup with Weights and Biases.

These two experiments were then repeated, trying to find an optimal amount
of layers, "nodes per layer" and "batch size" with the "epochs" and "learning rate"
settled on. Followed by another experiment on "epochs" and "learning rate" again,
in an attempt to catch any interdependence between the two. The results of these
intermittent experiments can be found in subsection 16.1.

The final parameter selection can be seen in Figure 14

• Layer amount: 4

• Nodes per layer: 64

• Epochs: 512

• batch size: 32

• Learning rate: 1e-4

Figure 14: Final values for DNN model hyper-parameter with an input vector size of 1500.

Then a set of 10 DNN models were trained with these hyper-parameters, in an
attempt to account for random variance, with the mean and standard deviation
of loss on each parameter, along with the run-time of a single prediction listed in
Table 11.

The results seen in Figure 20, reveals a consistent pattern; when testing various
model parameter configurations with Weights and Biases, clusters often emerge in
the test loss, however, with a notable presence of outliers. Investigating the outliers
further, by training stand-alone models, and an otherwise random sampling of
parameters, revealed that the models trained would often produce the same output
regardless of input, a likely culprit of the many outliers observed.



Results of predictions using models trained on an input vector of 1500
Metrics Mean and std of parameter prediction test loss
Mean prediction time [ s] 0.001 {0.0002}
Mean test loss KP 7.613 {6.114}
Mean test loss KI 4.407 {2.905}
Mean test loss KD 1.956 {1.382}

Table 11: Mean and standard deviation of prediction test loss for models trained on the entire
simulation trace with hyper-parameters optimized through Weights and Biases.

14.2 Saturation Measurements

While investigating the issue of models consistently producing identical outputs
regardless of input, we considered that this might be attributed to a phenomenon
called "saturation" in the trained models. This condition arises when many neu-
rons in a neural network tend to operate within a narrow range of their activation
function, often at the extreme ends. To illustrate, take the ReLU activation function.
In this case, the neurons only output zero values, regardless of the negative inputs
provided. Practically, this leads to a situation where neurons struggle to differen-
tiate between different inputs. They fail to make full use of the available range
of activation values. Consequently, this results in the models producing uniform
outputs regardless of the input provided.

The Swish activation function is a smooth, non-monotonic function that was
introduced as an alternative to activation functions like ReLU [27]. When the in-
put is positive, ReLU allows the gradient to flow directly through, alleviating the
vanishing gradient problem [13] that can occur with functions like sigmoid or tanh
when they receive a large positive value, causing them to become saturated.

As an example, the sigmoid activation function Equation 25.

σ(x) =
1

1 + e−x (25)

When the sigmoid function receives a very small or large value, the output of
the function approaches zero or one, respectively. Causing the gradients in the
network to become very small, i.e. the vanishing gradient problem. When the
gradients are small, the weights in the network are updated slowly, making it
difficult for the network to learn.

Swish shares the feature with ReLU of allowing positive values to flow trough.
However, ReLU can cause neurons to become inactive, output zero, for negative
input, leading to a "dying ReLU" problem [23], a similar problem to when sigmoid



and tanh approaches their respective extremes. For swish, the contribution of neg-
ative values is reduced, but it’s not entirely removed, as in ReLU. Swish combines
the linearity of the identity function with the non-linearity of the sigmoid function.
It is defined as seen in Figure 15a.

f (x) = x · σ(x)

(a) Swish Equation (b) Swish Function Plot

Figure 15: Swish Activation Function

Where σ is the sigmoid function.

To investigate potential saturation-related issues, a measure was implemented,
taking inspiration from [12], which graphed activation function outputs over a set
of ranges. Given that swish lacks an upper limit for positive inputs, the issue
was assumed to stem from the negative activations. Specifically, values between
0 and −0.3 were examined, as the lowest observed activation value in the testing
data was −0.273. This range was then divided into 10 segments, each indicating
the percentage of activations within that range. Table 12 displays the mean and
standard deviation of saturation across 10 models.

Saturation of models trained on an input vector of 1500
Metrics Mean and std of saturation
0 - −0.03 55.195 {1.962}
−0.03 - −0.06 0.016 {0.001}
−0.06 - −0.09 0.008 {0.001}
−0.09 - −0.12 0.008 {0.003}
−0.12 - −0.15 0.006 {0.001}
−0.15 - −0.18 0.009 {0.003}
−0.18 - −0.21 0.007 {0.001}
−0.21 - −0.24 0.007 {0.002}
−0.24 - −0.27 0.011 {0.001}
−0.27 - −0.3 0.012 {0.002}

Table 12: Mean and standard deviation of saturation within ranges for models trained on the entire
simulation trace with hyper-parameters optimized trough Weights and Biases.

As can be seen in Table 12, the majority of nodes have activations in the 0
- −0.03 range, a sign of saturation as mentioned. This was believed to be the



primary culprit of the model sometimes not being able to differentiate between
inputs and simply outputting the same value, regardless of input.

In addressing this problem, the initial approach involved normalizing the data-
set used for training the models. Both the model input and the targets underwent
normalization, albeit with differences in the application.

14.3 Normalization

To improve the performance and alleviate issues with saturation in the DNN, nor-
malization was employed on the data-set [18]. Various normalization techniques
were evaluated including ZScore and min-max normalization, which were the most
common among the ones tested. Testing and comparing the techniques on the loss
achieved did not reveal a consistently superior method. The less common tech-
niques were rarely an improvement, and in some cases, under-performed notably.
The decision was made to solely use min-max normalization for both the input
and target parameters.

This decision was driven firstly by the need to standardize the range of the
target parameters. In the data-set, the KP parameter for the controller had a wide
numerical range, spanning from 100 to 1000, whereas the KI and KD parameters
ranged from 2 to 15 and 1 to 3, respectively. Given the substantial numerical dif-
ference between KP and the other two parameters, it biased the training in favor
of accurately predicting KP. By applying min-max normalization to scale all three
parameters within a range from 0 to 1, this bias was eliminated, ensuring equal
priority for each parameter. Furthermore, min-max normalization can enhance
training stability by scaling the input vector. Reducing large numerical values to
a lesser scale helps mitigate training volatility, addressing concerns such as over-
shooting and potentially accelerating the convergence process.

The decision was made to not utilize ZScore normalization, despite it achieving
similar results to min-max when tested. This choice was due to the fact that ZScore
normalization relies on the mean and standard deviation of a given data-set to scale
the values. However, in the context of the problem at hand, these measures offer
no valuable information to the system. To clarify, the input to the DNN consisted
of a time-series of velocities, representing the vehicle speed changing over time as
the cruise controller reached the target speed. In this context, neither the mean
nor standard deviation of the time-series provides any insight, as to how how a
specific set of parameters alter the values of said time-series. Similarly, the mean
and standard deviation offer no meaningful insights when it comes to presenting
the target parameters. The data-set contains every possible combination of KP,



KI , KD and initial speed. Given that this represents a uniform distribution across
the state space, with no combination more prevalent than another, the mean or
standard deviation of these parameters is not useful.

Despite deciding to use min-max normalization for both the input and target
parameters, the application differed. As discussed in subsection 5.8 there are three
different methods for applying normalization, feature, sample, and global normal-
ization.

In the case of input data, a global normalization approach was utilized. The
input represents a time-series where each subsequent value depends on the pre-
ceding one. Consequently, to ensure the time-steps remain comparable and mean-
ingful comparisons can be made, the time-steps must all be scaled equally, which
makes feature normalization unsuitable. For similar reasons, sample normaliza-
tion is likewise unsuitable for the data-set. As each sample may have varying ini-
tial and top velocities, scaling the data utilizing sample normalization, would lead
to samples being scaled individually. As a result, making meaningful compar-
isons between samples becomes difficult, this would impede the learning process’s
ability to identify common patterns. To avoid these inconsistencies between fea-
tures and samples, global normalization was applied to the input data, ensuring a
uniform scale is applied equally and maintaining comparability.

For target parameters, the choice was made to use feature normalization in-
stead. The primary benefit of employing min-max normalization for the target
parameters ensures a common numerical scale for all parameters, preventing any
single parameter from being favored during the training process. This necessitated
individual normalization of each feature, thus feature normalization was required.

Table 13 and Table 14 show the results and saturation of 10 models trained with
normalized data.

Results of predictions using models trained on a normalized input vector of 1500
Metrics Mean and std of parameter prediction test loss
Mean prediction time [ s] 0.001 {0.0001}
Mean test loss KP 16.138 {16.743}
Mean test loss KI 2.354 {1.847}
Mean test loss KD 0.679 {0.446}

Table 13: Mean and standard deviation of prediction test loss for models trained on globally min-
max normalised input and feature min-max normalized targets.



Saturation of models trained on a normalized input vector of 1500
Metrics Mean and std of saturation
0 - −0.03 2.098 {0.312}
−0.03 - −0.06 2.242 {0.865}
−0.06 - −0.09 2.423 {0.931}
−0.09 - −0.12 2.092 {0.524}
−0.12 - −0.15 2.413 {0.646}
−0.15 - −0.18 4.662 {0.162}
−0.18 - −0.21 8.440 {0.942}
−0.21 - −0.24 8.760 {0.371}
−0.24 - −0.27 9.482 {0.824}
−0.27 - −0.3 7.444 {1.506}

Table 14: Mean and standard deviation of saturation within ranges for models trained on globally
min-max normalized input and feature min-max normalized targets.

As can be seen in Table 13, the mean test loss on KP, increased when models
were trained on min-max normalized data. Summing the KP, KI , and KD losses for
models trained on non-normalized data and comparing them with those trained
on normalized data, it becomes shows that the models trained on normalized data
experienced an increase in total loss. When KP is not normalized, the loss for pre-
dicting the parameter wrong is likely to be much larger, as the range of possible
values for it is wider, causing the network to prioritize it. Bringing the KP param-
eter within the same range of values as KI and KD means the model trained will
treat the loss on each equally, and the gain achieved on KI and KD might not be
enough to compensate the likely increase on KP.

However, the saturation improved, as shown in Table 14, where it can be seen
that the activations are no longer concentrated in a single range, close to zero. A
benefit of the normalized models is, that they are less likely to produce the same
output regardless of input and likely being better at generalizing than their non-
normalized counterparts, as they use a larger range of their activation function.

14.4 Constant Feature Regions

To further improve the models trained, an examination of the data from the cruise
control system was done. It was observed that the target speed was consistently
reached around the 500th time-step. Once the cruise control system reached its
set-point, it maintained a steady speed, resulting in a portion on the data where



features are constant across all data-points, the last 1000 entries, and as [2] states,
this provides no additional information for the network to learn from. In such
instances, the neural network might struggle to discern meaningful patterns, po-
tentially affecting the model’s performance. Removing these regions of constant
features would emphasize the unique characteristics that distinguishes how dif-
ferent parameter configurations reached the desired speed. This adjustment could
potentially make it simpler for a model to associate a specific input with a partic-
ular target, potentially reducing the test loss.

To test this hypothesis, hyper-parameters were again optimized, reasoning that
they might have different ideal settings for different input sizes. The last iteration
of this can be seen in Figure 16. The final hyper-parameters selection can be seen
in Figure 17.

Figure 16: Test loss for differing amounts of "learning rates".

• Layer amount: 16

• Nodes per layer: 1024

• Epochs: 256

• batch size: 32

• Learning rate: 5e-4

Figure 17: Final values for DNN model hyper-parameter with an input vector size of 500.



In Figure 16, an improvement is evident in the number of outliers in the trained
models. This indicates that they did not suffer from the issue of producing the
same output regardless of input, as previously mentioned about the models trained
with a "vector size" of 1500. Furthermore, the hyper-parameters selected in Fig-
ure 17 resulted in a much more complex network, with both a higher number of
"layer amount" and "nodes per layer".

Results of predictions using models trained on an input vector of 500
Metrics Mean and std of parameter prediction test loss
Mean prediction time [ s] 0.001 {0.0002}
Mean test loss KP 25.395 {39.252}
Mean test loss KI 3.689 {2.521}
Mean test loss KD 1.131 {0.788}

Table 15: Mean and standard deviation of prediction test loss for models trained on the first five-
hundred entries of simulation traces with hyper-parameters optimised through Weights and Biases.

Results of predictions using models trained on a normalized input vector of 500
Metrics Mean and std of parameter prediction test loss
Mean prediction time [ s] 0.003 {0.0005}
Mean test loss KP 42.696 {56.337}
Mean test loss KI 3.416 {1.774}
Mean test loss KD 0.676 {0.437}

Table 16: Mean and standard deviation of prediction test loss for models trained on globally min-
max normalised input and feature min-max normalized targets.

However, as can be seen in Table 15 and Table 16, the results actually wors-
ened, when compared to Table 11 or the normalized version thereof Table 13. This
initially disproved the hypothesis that removing the regions of constant features
region of the data would reduce the test loss of the models trained. Examining
the training loss of the models trained on the data-sets with regions removed how-
ever revealed that the training losses were consistently lower than the testing loss,
indicating that the models trained were being over-fitted.

14.5 Overfitting

As stated previously, the models trained with a "vector size of 500" exhibited signs
of overfitting, whereas these signs were absent in the models trained with a vector
size of 1500. This is likely because of the more complex network, in conjunction
with the many epochs they were trained for, allowing them enough complexity to



create a model that maps the training data completely and enough epochs to do so.
In contrast, the models with a vector size of 1500 were relatively simpler, forcing
the models to learn general patterns instead.

To test this hypothesis, another round of Weight and Biases experiments were
conducted, focusing on picking lower values for the neural networks trained. The
selection settled on can be seen in Figure 18.

• Layer amount: 4

• Nodes per layer: 512

• Epochs: 512

• batch size: 4

• Learning rate: 0.0001

Figure 18: Low value focus for DNN model hyper-parameter with an input vector size of 500.

While Weights and Biases actually found that an even higher amount of "epochs"
were needed, an lower "learning rate" was needed, this might be due to the dif-
ficulty of finding a minima in this network that produces the least loss on all of
the training data given. "Layer amount" and "nodes per layer" were however re-
duced. Models trained with this configuration of hyper-parameters yielded the
results seen in Table 17 and Table 18.

Results of predictions using models trained on an input vector of 500
with a less complex network

Metrics Mean and std of parameter prediction test loss
Mean prediction time [ s] 0.001 {0.0002}
Mean test loss KP 5.029 {5.592}
Mean test loss KI 3.201 {2.376}
Mean test loss KD 0.745 {0.458}

Table 17: Mean and standard deviation of prediction test loss for models trained on the first five-
hundred entries of simulation traces with hyper-parameters optimised trough Weights and Biases.

As the results show, these models out-competes the models trained with a "vec-
tor size" of 1500, to some extend proving the hypothesis that removing the regions
of constant features would emphasize the distinct characteristics that distinguished
how different parameter configurations reached the desired speed. Like with the
1500 models, these "vector size" 500 models, when trained on non-normalized data
have a high saturation in the 0 - −0.03 range, 84.574% to be exact, and normalizing



Results of predictions using models trained on a
normalized input vector of 500 with a less complex network

Metrics Mean and std of parameter prediction test loss
Mean prediction time [ s] 0.003 {0.0005}
Mean test loss KP 10.040 {8.634}
Mean test loss KI 1.187 {1.078}
Mean test loss KD 0.704 {0.444}

Table 18: Mean and standard deviation of prediction test loss for models trained on globally min-
max normalised input and feature min-max normalized targets.

the data drops the activations in this range to 31.162. Still a rather high value,
when compared to the results seen when normalization was applied to the "vector
size" 1500 models, indicating that the network could benefit from further refine-
ment. This is because the activations in this range are close to an output of zero,
meaning that any input that was entered into the node was essentially nullified.
This is referred to as a "dead node", and could indicate that the network could be
reduced in complexity even further.

Another approach to handling overfitting is adding noise to the training data.
Noisy data introduces variability and outliers into the training set, forcing the
model to learn more general patterns, rather than memorizing specific examples.
Furthermore, adding noise helps simulate real-world scenarios, where noise is
prevalent.

However, adding noise to the training data, to the same degree as was done in
subsubsection 13.2.1, with a standard deviation of ten, was not enough to have an
significant impact on the performance of models trained with the hyper-parameter
setup in Figure 18. The results were nearly identical to those obtained when the
models were trained on noiseless data. Furthermore, using Huber loss for loss cal-
culations on noisy data showed no improvement either, as it did for the numerical
solutions subsection 13.3.

15 Conclusion

As mentioned in the problem definition section 6, the goal of this thesis was to eval-
uate and compare DNNs, numerical solutions and a combined approach, to find
which is most suitable for the task of predicting the parameters of the controller,
given observational data from the plant in a cruise control system.

Examining the results in Table 19, shows that employing a model trained on



Table of DNN and numerical solution results
Metrics DNNs Numerical Numerical solution

solution with DNN initial guess
Mean prediction time [ s] 0.003 {0.0005} 5.793 {1.9} 9.277 {2.935}
Mean test loss KP 10.040{8.634} 0.556 {0.490} 0.879 {0.784}
Mean test loss KI 1.187 {2.905} 0.098 {0.104} 0.159 {0.150}
Mean test loss KD 0.704 {0.444} 0.469 {0.227} 0.372 {0.212}

Table 19: Mean and standard deviation comparisons of evaluation matrices of the DNNs, numerical
solutions and the combined approach.

normalized data with regions of constant features excluded for parameter predic-
tion can yield results close to the actual targets. However, these results, while gen-
erally good, have a higher loss than numerical methods, specifically the Levenberg-
Marquardt single shooting approach, with the DBE as an initial guess.

An advantage of DNNs however, lies in their ability to make predictions faster.
A disadvantage then is that DNNs require a training phase. For this, an appro-
priate training data-set and the fine-tuning of hyper-parameters, etc. are needed.

The con of numerical methods are then that they require an accurate model of
the system, not something that is always available. Additionally, the selection of
a suitable solver is pivotal in accurately approximating the original trajectory, and
thereby, target parameters.

A combined approach was then attempted, with the DNN model employed as
a method for an initial guess for the Levenberg-Marquardt solver. As can be seen
in Table 19 this combined approach’s accuracy and computing speed is roughly
equivalent as when using DBE for initial guess estimation. However in this case
it is likely not worthwhile to employ DNNs as an initial guess estimator, due to
it being significantly more difficult to implement. However, this conclusion could
change if the DNNs prediction accuracy improved further.

Table 20 shows the results of previously mentioned approaches predicting on
noisy data. As can be seen, the DNN model was not affected significantly by the
degree of noise used, unlike the numerical solution. Despite this, the conclusions
between the two approaches on noisy data remain the same, with the numerical
solution having a lower loss, with the trade-off of computation speed. This is likely
due to the initial guess from the DBE estimator performing poorly on noisy data.
Notably however on noisy data the numerical solution using the DNN model for
an initial guess, bests the numerical with the DBE initial guess estimator. Outper-



Table of DNN and numerical solution results on noisy data
Metrics DNNs Numerical Numerical solution

solution with DNN initial guess
Mean prediction time [ s] 0.002 {0.0004} 12.685 {3.919} 11.620 {3.395}
Mean test loss KP 10.250 {8.762} 2.934 {1.629} 1.590 {1.197}
Mean test loss KI 1.795 {1.303} 1.449 {1.167} 0.699 {0.589}
Mean test loss KD 0.669 {0.471} 1.529 {1.899} 1.372 {0.980}

Table 20: Mean and standard deviation comparisons of evaluation matrices of the DNNs and nu-
merical solutions on noisy data

forming it both in terms of accuracy and with a marginal computing time decrease.

While both DNNs and single shooting approaches have their respective mer-
its and drawbacks, their efficacy hinges on distinct prerequisites and constraints.
DNNs offer swifter predictions but necessitate a robust training phase. At the
same time, single shooting approaches excel with an accurate model of the system
but are contingent on careful selection of solvers and step sizes. DNNs might be
preferable in scenarios where few computing resources are available, fast/frequent
predictions are required, or in cases where a model of the system is not available.
The numerical solution might be preferable when time is not as critical, but accu-
racy is. Finally, it is possible that a DNN model could be optimized further which
may change some of the conclusions we have made thus far. We did not achieve
this though, and leave that as potential future work.
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16 Appendix

16.1 Sweeps

In the following, every sweep performed with Weights & Biases will be listed, with
a full itemized list of hyper-parameter values/sets of values the experiments where
performed within, and the resulting scatter plots.

16.1.1 Sweep 1

• Number of runs: 54

• Data-set size: 1000

• Layer amount: [2, 4, 8, 12, 16, 24]

• Nodes per Layer: [64, 128, 256, 512, 1024, 2048]

• Epochs: 16

• batch size: [1, 2, 4, 8, 16, 32]

• Vector size: 1500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: 1e-3

Figure 19: sweep 1 configuration

24 "layer amount", 128 "nodes per layer" and a "batch size" of 8 was chosen.



(a) Test loss for differing amounts of "nodes per layer".

(b) Test loss for differing "layer amounts".

(c) Test loss for differing "batch sizes".

Figure 20: Sweep 1 results.



16.1.2 Sweep 2

• Number of runs: 75

• Data-set size: 1000

• Layer amount: 24

• Nodes per Layer: 128

• Epochs: [8,16,32,64,128,256]

• batch size: 8

• Vector size: 1500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: [1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5]

Figure 21: sweep 2 configuration

256 "epochs" and a learning rate of "1e-4" was chosen.



(a) Test loss for differing amounts of "Epochs".

(b) Test loss for differing "learning rates".

Figure 22: Sweep 2 results.



16.1.3 Sweep 3

• Number of runs: 54

• Dataset size: 1000

• Layer amount: [4, 8, 12, 16, 24, 32]

• Nodes per Layer: [64, 128, 256, 512, 1024, 2048]

• Epochs: 256

• batch size: [1, 2, 4, 8, 16, 32]

• Vector size: 1500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: 1e-4

Figure 23: sweep 3 configuration

4 "layer amount", 64 "nodes per layer" and a "batch size" of 32 was chosen.



(a) Test loss for differing amounts of "nodes per layer".

(b) Test loss for differing "layer amounts".

(c) Test loss for differing "batch sizes".

Figure 24: Sweep 3 results.



16.1.4 Sweep 4

• Number of runs: 36

• Dataset size: 1000

• Layer amount: 4

• Nodes per Layer: 64

• Epochs: [16, 32, 64, 128, 256, 512]

• batch size: 32

• Vector size: 1500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: [1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5]

Figure 25: sweep 4 configuration

512 "epochs" and a learning rate of "1e-4" was chosen.



(a) Test loss for differing amounts of "Epoch".

(b) Test loss for differing "Learning rates".

Figure 26: Sweep 4 results.



16.1.5 Sweep 5

• Number of runs: 54

• Dataset size: 1000

• Layer amount: [2, 4, 8, 12, 16, 24]

• Nodes per Layer: [64, 128, 256, 512, 1024, 2048]

• Epochs: 16

• batch size: [1, 2, 4, 8, 16, 32]

• Vector size: 500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: 1e-3

Figure 27: sweep 5 configuration

16 "layer amount", 1024 "nodes per layer" and a "batch size" of 4 was chosen.



(a) Test loss for differing amounts of "layers".

(b) Test loss for differing "nodes".

(c) Test loss for differing "batch size".

Figure 28: Sweep 5 results.



16.1.6 Sweep 6

• Number of runs: 36

• Dataset size: 1000

• Layer amount: 12

• Nodes per Layer: 128

• Epochs: [8, 16, 32, 64, 128, 256]

• batch size: 8

• Vector size: 500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: [1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5]

Figure 29: sweep 6 configuration

64 "epochs" and a learning rate of "1e-3" was chosen.



(a) Test loss for differing amounts of "learning rate".

(b) Test loss for differing "epochs".

Figure 30: Sweep 6 results.



16.1.7 Sweep 7

• Number of runs: 54

• Dataset size: 1000

• Layer amount: [2, 4, 8, 12, 16, 24]

• Nodes per Layer: [64, 128, 256, 512, 1024, 2048]

• Epochs: 64

• batch size: [1, 2, 4, 8, 16, 32]

• Vector size: 500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: 5e-5

Figure 31: sweep 7 configuration

16 "layer amount", 1024 "nodes per layer" and a "batch size" of 32 was chosen.



(a) Test loss for differing amounts of "layers".

(b) Test loss for differing "nodes".

(c) Test loss for differing "batch size".

Figure 32: Sweep 7 results.



16.1.8 Sweep 8

• Number of runs: 36

• Dataset size: 1000

• Layer amount: 16

• Nodes per Layer: 1024

• Epochs: [8, 16, 32, 64, 128, 256]

• batch size: 32

• Vector size: 500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: [5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5]

Figure 33: sweep 8 configuration

128 "epochs" and a learning rate of "5e-4" was chosen.



(a) Test loss for differing amounts of "learning rate".

(b) Test loss for differing "epochs".

Figure 34: Sweep 8 results.



16.1.9 Sweep 9

• Number of runs: 32

• Dataset size: 1000

• Layer amount: [8, 12, 16, 20, 24]

• Nodes per Layer: [128, 256, 512, 1024, 2048]

• Epochs: 64

• batch size: [4, 8, 16, 32, 64]

• Vector size: 500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: 1e-3

Figure 35: sweep 9 configuration

8 "layer amount", 128 "nodes per layer" and a "batch size" of 8 was chosen.



(a) Test loss for differing amounts of "layers".

(b) Test loss for differing "nodes".

(c) Test loss for differing "batch size".

Figure 36: Sweep 9 results.



16.1.10 Sweep 10

• Number of runs: 25

• Dataset size: 1000

• Layer amount: 8

• Nodes per Layer: 128

• Epochs: [32, 64, 128, 256, 512]

• batch size: 8

• Vector size: 500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: [1e-3, 5e-3, 1e-4, 5e-4, 1e-5, 1e-5]

Figure 37: sweep 10 configuration

256 "epochs" and a learning rate of "5e-4" was chosen.



(a) Test loss for differing amounts of "learning rate".

(b) Test loss for differing "epochs".

Figure 38: Sweep 10 results.



16.1.11 Sweep 11

• Number of runs: 32

• Dataset size: 1000

• Layer amount: [2, 4, 8, 12, 16]

• Nodes per Layer: [32, 64, 128, 256, 512]

• Epochs: 256

• batch size: [2, 4, 8, 16, 32]

• Vector size: 500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: 5e-4

Figure 39: sweep 11 configuration

4 "layer amount", 512 "nodes per layer" and a "batch size" of 8 was chosen.



(a) Test loss for differing amounts of "layers".

(b) Test loss for differing "nodes".

(c) Test loss for differing "batch size".

Figure 40: Sweep 11 results.



16.1.12 Sweep 12

• Number of runs: 25

• Dataset size: 1000

• Layer amount: 4

• Nodes per Layer: 512

• Epochs: [32,64,128,256,512]

• batch size: 4

• Vector size: 500

• Activation function: swish

• Loss function: mean squared error

• Optimizer: Adam

• Learning rate: [5e-3, 1e-4, 5e-4, 1e-5, 5e-5, 1e-6]

Figure 41: sweep 12 configuration

512 "epochs" and a learning rate of "1e-4" was chosen.



(a) Test loss for differing amounts of "learning rate".

(b) Test loss for differing "epochs".

Figure 42: Sweep 12 results.
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