
forside

Vaialbity study of the use of Graph Neural Networks
for Entity Suggestion via Dense Retrieval

Graph Neural Networks for Sematic Entity
suggestion

Semester Project PSpring 2023
Group Master Thesis

Aalborg Universitet
Computer Science

Selma Lagerlöfs Vej 300 • DK-9220 Aalborg Øst

Aalborg Universitet
Computer Science

Selma Lagerlöfs Vej 300
DK-9220 Aalborg Øst
http://www.cs.aau.dk

Title:
Graph Neural Networks for Sematic Entity
suggestion

Theme:
Vaialbity study of the use of Graph Neural
Networks for Entity Suggestion via Dense
Retrieval

Project Period:
Spring 2023. semester

Project Group:
Computer Science (IT)
Master Thesis

Participant(s):
Bartal Eyðfinsson Veyhe

Supervisor(s):
Tomer Sagi

Numbered Pages: 118

Date of Completion:
18th October 2023

Abstract:

This thesis presents a comprehensive study
on enhancing the accuracy of entity linking
in scientific table data by leveraging a know-
ledge base and machine learning techniques.
The research focuses on generating mul-
timodal embeddings for both entity linking
and corpus embedding, aiming to improve
the suggestion of candidates for entity link-
ing. The study addresses the challenge
of ambiguity in entity linking by utilizing
a knowledge base for disambiguation and
employing a semantic heuristic function to
differentiate between overlapping entities.
The research methodology involves the use
of various datasets, including the Bacteria
Biotope datasets, OntoBiotope-NLP data-
set, BioTable dataset, Wikidata Subgraph
Dataset, and the WDC Schema.org Table
Annotation Benchmark dataset. The thesis
also explores the architecture of the Men-
tion Encoder, a model that leverages the
BERT model with an additional projection
head. The experimental setup adopts the
closed-world assumption for the knowledge
graph and assumes that the Graph Neural
Network model is transductive. The res-
ults indicate that while the model is un-
able to retrieve the correct entities, the
suggested entities are more semantically in
nature as opposed to lexicographic similar-
ity, demonstrating the feasibility of entity
suggestion based on dense retrieval. The
study concludes that the model requires
further fine-tuning to achieve state-of-the-
art performance. [1–6]

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Contribution of the paper . 4
1.3 Background . 4

1.3.1 Graph Neural Networks . 4
1.3.2 Dimensionality Reduction . 5
1.3.3 Dense Retrieval . 6
1.3.4 Knowledge Graphs: A Comprehensive Overview 6
1.3.5 Ontologies . 7
1.3.6 Schema Matching . 8
1.3.7 Entity Linking . 8
1.3.8 Ontology-based Data Integration . 8

1.4 Related work . 9

2 Datasets 11
2.1 Exploration of Bacteria Biotope Datasets in BioNLP 2019 11

2.1.1 Analysis of Mentions Dataset Statistics 12
2.1.2 Inspection of OntoBiotope-NLP Dataset Statistics 12

2.2 Table Annotation Task . 13
2.2.1 BioTable dataset statistics . 15
2.2.2 Exploration of Wikidata Subgraph Dataset 16
2.2.3 Analysis of the WDC Schema.org Table Annotation Benchmark Dataset 17
2.2.4 Insights into the Schema.org Dataset 18

3 Model architecture 21
3.1 Projection Head . 21
3.2 Mention encoder model . 22

3.2.1 Input . 23
3.2.2 Mention Encoder Architecture . 24

3.3 Entity Embedding model architecture . 25
3.3.1 Input encoding . 26
3.3.2 Ontology Embedding model . 26

3.4 Dual Encoding Model Architecture . 27
3.5 Scoring function . 28

3.5.1 Cosine Embedding Loss as the similarity Function 29
3.5.2 Cross Entropy Loss as the Loss Function 30
3.5.3 Triplet Loss and Euclidean Similarity Search 30

iii

Master Thesis Contents

4 Experiment setup 33
4.1 Validation Assumptions . 33
4.2 Dataloading configurations . 34
4.3 Model Configurations . 35

5 Evaluation of Experiments 37

6 Future Work 43

7 Conclusion 45

Appendices 53

A Model runs charts 55

iv

1 | Introduction

The primary objective of this research project is to enhance the accuracy of entity linking in
scientific table data by leveraging a knowledge base. This will be achieved by investigating
the feasibility of employing machine learning techniques to generate multimodal embeddings
for both entity linking and corpus embedding. In contrast to the current state-of-the-art
methods that heavily depend on lexicographical features, this project aims to exploit the
capabilities of a multimodal embedding approach to improve the suggestion of candidates
for entity linking. The main focus is to understand how multimodal embedding can be
used to extract relevant entities, considering the contextual data within the corpus for
Entity Linking with a Knowledge Base.

Entity linking presents a challenge of ambiguity. For instance, the term "Apple" could
denote the corporation or the fruit. To address this ambiguity, a knowledge base will be
utilized to disambiguate the entities. Entities often possess multiple names and aliases
that refer to the same entity. Therefore, it would be more beneficial to identify the entities
based on semantic meaning rather than lexicographical similarities, especially when the
name being searched for may not exist in the knowledge graph. Several entities can share
the same name, making it crucial to consider the context of the entity when performing
entity linking. For example, distinguishing between "Apple" the fruit or the company
can be challenging. Hence, a semantic heuristic function will be employed to assist in
differentiating between overlapping entities.

The structure of this thesis is organized into six chapters. Chapter 1 serves as an introduc-
tion to the subject, providing necessary background information and discussing related
works that have influenced this project. Chapter 2 delves into the datasets used in the
project, specifically focusing on the conversion of these datasets into mention datasets
that cover both tabular data and text data for the mentions. This chapter also covers
the target knowledge graphs. Chapter 3 presents the model architecture of the project,
including the projection head, mention encoder, entity encoder, and the dual encoder
architecture. It also discusses the scoring functions that will be utilized. Chapter 4 outlines
the experiments that will be conducted in the project and the evaluation metrics that
will be used to assess the results. Chapter 5 presents the results of the experiments and
provides a thorough evaluation of these results. Finally, Chapter 6 and Chapter 7 concludes
the project, summarizing the findings and suggesting potential avenues for future work.

1.1 Introduction

The primary task in research is data generation, which can be both time-consuming and
expensive. To address this issue, one approach is to reuse scientific data from related
works, which can help alleviate the problem of data collection. Additionally, incorporating
additional data sources can enhance the confidence in research findings by combining
self-generated data with external scientific data. However, a critical aspect of reusing
scientific data is the discoverability and integration of the data.

1

Master Thesis Chapter 1. Introduction

One challenge in finding relevant scientific data for a research project is that not all terms
and publications adhere to the same naming conventions. Therefore, prior knowledge is
required to effectively search for scientific data. Furthermore, integrating multiple sources
of scientific data necessitates normalization. For example, consider two data sources for
measuring the temperatures at different depths in the Culf of Mexico, as shown in Table 1.1
and Table 1.2. These sources use different depth measurment units and temperature unit.
To integrating the results requires transforming temperatures into a standardized unit,
such as Kelvin, and the distances unit to m.

Depth (m) Temperatures (◦C)

0 25.5
30 23
60 21
90 20

120 18
150 17

Table 1.1: Mean annual water temperatures at
different depths in the northen Gulf of Mexico.

Depth (ft) Temperatures (◦F)

0 78
200 70
400 65
600 60
800 57

1000 50

Table 1.2: Mean annual water temperatures at
different depths in the northen Gulf of Mexico.

Depth (m) Temperatures (◦K) Source

0 298.65 Table 1.1
0 298.70 Table 1.2

30 296.15 Table 1.1
60 294.15 Table 1.1
61 294.26 Table 1.2
90 293.15 Table 1.1

120 291.15 Table 1.1
122 291.48 Table 1.2
150 290.15 Table 1.1
183 288.7 Table 1.2
244 287 Table 1.2
305 283.15 Table 1.2

Table 1.3: The output scheme for the two data sources.

Methodologies that aid in the discovery and integration of scientific data include ontology-
based data integration (OBDI) and ontology-based data access (OBDA). OBDI and OBDA
are information management systems that aim to provide unified and transparent access
to data based on a domain model. In OBDI, the system consists of three components:
an ontology, a set of data sources, and the mapping between the two. The ontology is a
formal description of the domain of interest, expressed in terms of concepts, attributes,
relationships, and logical assertions. The data sources are repositories where data concerning
the domain are stored. The mapping specifies the correspondence between the data in the
sources and the elements of the ontology. The main purpose of OBDI is to enable users to
query the data using the elements in the ontology as predicates.
When an organization manages a single data source, the term OBDA is used. OBDA
systems also involve an ontology, but the focus is on accessing and querying the data in
the source using the ontology as a conceptual model.
The central notion in both OBDI and OBDA is the ontology, which plays a crucial role in
reasoning and deriving new facts from the source data. The axioms of the ontology allow
for inference and greatly influence the set of answers that the system can compute during
query processing.
One of the key aspects of Ontology-Based Data Integration (OBDI) and Ontology-Based

2

1.1. Introduction Master Thesis

Data Access (OBDA) is the process of identifying the mapping between terms in a schema
that describes scientific data and the concepts in an ontology. This process is illustrated
in Figures 1.1 and 1.2, where a schema describes the content in each column as depth
and temperature with the units m/ft and ◦ C/F, respectively. The output schema, in
this case, is represented in Kelvin/meters. The mapping process then associates each
concept in the schema to the corresponding concept in the ontologies. OBDI and OBDA
can significantly aid in the discovery and integration of multiple scientific data sources. For
instance, they enable researchers to query all data sources related to temperature in the
Gulf of Mexico without the need to know every methodology for determining the location
of the measurement. Furthermore, when integrating data sources, transformations are
often required to normalize different concepts. An example of such a transformation is
the conversion of Fahrenheit to Kelvin using the equation K = (F + 459.67) ∗ 5/9. This
transformation ensures that all temperature data is consistent and comparable across
different data sources.
However, scientific data often contains more than just a scheme, presenting unique challenges
and opportunities when integrating them. One approach is to deconstruct the table into a
graph to change the representation of the data into a similar domain as ontologies, treating
the data as an instance of a knowledge graph. Entity alignments can then be performed to
find a mapping between the data and an ontology. Additionally, the values and content
surrounding scientific data can be used to better understand the meaning of a column,
even when staying in tabular form.
Existing approaches primarily rely on syntactic information, such as the textual represent-
ation of column names, to elicit the meaning of a column by finding the closest syntactic
representation in the ontology. However, an increasing number of approaches have started
eliciting the semantic meaning of scientific datasets based on the values and content of
the data. For example, Wu et al. [2] introduced a dual-encoder/two-tower architecture
that measures the semantic similarity between values/mentions in a source document
and concepts in an ontology using the dot product. They demonstrated that encoding
the semantic information of values can be used as a retrieval mechanism for semantically
similar concepts in the ontology. An example of finding semantically similar concepts in
Table 1.1 and Table 1.2 is that that feet and meters are semantically similar to the concept
of distance units. However, these approaches assume that values are presented in a linear
fashion and that the context used to determine semantic information is based on the words
surrounding the value. They also represent the semantic information based on the title,
subtitle, and description of a concept provided by the ontology.
The current state-of-the-art methods that use a two-tower approach for semantic-based
ODBA/OBDI for scientific data have two gaps. Firstly, they assume that values are
presented in a linear textual format, encoding semantic information based on left and
right context even when dealing with tabular scientific data. This approach does not take
advantage of the implicit structural information present in a tabular structure. Secondly,
these methods do not leverage the structural information present in an ontology.
In this thesis, we will explore the use of a graph-based embedding method for the ontology
side and a table-based embedding for the dataset side to improve the quality of schema
mapping of scientific datasets to ontologies.

3

Master Thesis Chapter 1. Introduction

1.2 Contribution of the paper

• We propose a dual encoder model for entity suggestion and retrieval based on dense
retrieval.

• We propose a training strategy for join-mention embedding and ontologies graph
embedding.

• We showcase fine-tuning of the model based on the entity linking task.

1.3 Background

The following sections delve into the intricacies of various concepts and techniques in
machine learning and data integration, which are pivotal to the understanding and develop-
ment of my thesis. The first section explores Graph Neural Networks (GNNs) and Graph
Convolutional Networks (GCNs), highlighting their potential in handling complex systems
and non-Euclidean data structures, and the challenges they face, such as class imbalance
in training datasets [7]. The subsequent section discusses Dimensionality Reduction, a
technique used to combat the curse of dimensionality, and various methods employed for
this purpose, including the use of neural networks and the encode-decode architecture [7].
The third section introduces Dense Retrieval, a modern approach in information retrieval
that leverages deep learning techniques and dense vector representations for more accurate
and faster information extraction [8].
The fourth section provides an overview of Knowledge Graphs, a tool for data integration
that uses graph structures to represent and reason about knowledge, and their utility
in data integration [9]. The fifth section discusses Ontologies, a structured framework
for organizing and interpreting diverse data sets, and their role in data integration [10].
The sixth section delves into Schema Matching, a process crucial in Ontology-based data
integration, and the challenges it presents [10]. The seventh section discusses Entity Linking
(EL), a task in Natural Language Processing (NLP) that involves identifying and linking
mentions of real-world entities in a text to their corresponding entries in a knowledge base,
and its significance in data integration [10].
The final section discusses Ontology-based Data Integration (OBDI), a method that uses
ontologies to unify data from various sources, and the role of entity linking and suggestion
in enhancing its effectiveness [9]. These sections collectively provide a comprehensive
understanding of the various techniques and concepts that underpin my thesis.

1.3.1 Graph Neural Networks

Graph Neural Networks (GNNs) have emerged as a powerful tool for machine learning
tasks on graph-structured data, offering a unique approach to handle complex systems [11].
One of the key components of GNNs is the Graph Convolutional Networks (GCNs), which
are designed to handle the non-Euclidean data structure of graphs [12]. GCNs leverage
the graph structure to define convolution operations in the graph domain, enabling the
extraction of local and global features from graph data.
However, the application of GNNs and GCNs often encounters challenges. One such
challenge is the class imbalance problem, where the training dataset is small or the
distribution of classes is skewed [7]. This can lead to a model that is biased towards the
majority class, thus affecting the performance of the model.

4

1.3. Background Master Thesis

To address these issues, GNNs employ techniques such as node embedding and message
passing. Node embedding is a process that maps nodes in a graph to a low-dimensional
space, capturing the structural and feature information of the nodes [13]. Message passing,
on the other hand, is a mechanism that allows information exchange between nodes,
enabling the model to aggregate features from neighboring nodes [14]. This neighboring
aggregation is crucial in GNNs as it allows the model to capture the local graph structure
and the interactions between nodes.
In conclusion, while GNNs and GCNs present promising solutions for learning on graph-
structured data, they also pose challenges that need to be addressed to fully exploit their
potential.

1.3.2 Dimensionality Reduction

The majority of machine learning models today are suffering from the curse of dimensionality,
where a large number of features are used as the input to a model making the growth of
the data requirements exponential for effectively discerning patterns between the input
functions and the resulting output [15]. To deal with the increasing amount of features,
Dimensionality Reduction techniques have been implemented, with increasing success.
In modern machine learning techniques, dimension reduction is based on neural networks
that take in a high dimensional vector and map it to a lower dimensional manifold, where
”similar” inputs are mapped to output points that are close to each other [15].
The encode-decode architecture (see Figure 1.1) is a type of neural network that is used
for dimensionality reduction. The encoder part of the network is used to map the input
to a lower dimensional manifold, and the decoder part of the network is used to map the
lower dimensional manifold back to the original input. The encoder part of the network
is trained to learn a representation of the input that is useful for the decoder part of the
network to reconstruct the original input. The decoder part of the network is trained to
reconstruct the original input from the lower dimensional manifold. The loss function is
used to measure the difference between the original input and the reconstructed input.
The loss function is then used to update the weights and biases of the network.

Figure 1.1: Autoencoder architecture.

For a given model, where v ∈ V ⊆ Rn is the domain, then the autoencoder model can be
defined with two functions enc : V → Rk and dec : Rk → Rn where dec is the inverse to

5

Master Thesis Chapter 1. Introduction

enc. When using neural networks as estimators of the encoder and decoder function, the
training paradigm is to take the training data V ∗ ⊆ V and then for each vi ∈ V ∗ take
yi = dec(enc(vi)) then for a given similar measure S : Rn → R between two inputs.
The dimensionality reduction techniques in an autoencoder come from the output of the
enc where the dimension of the range is significantly lower than the input dimension.
Further, the Siamese neural network, dual encoders or two towers, and the triplet loss are
other techniques used for dimensionality reduction. The Siamese neural network involves
two identical neural networks, each taking one of the two input vectors. The last layers of
the two networks are then fed to a contrastive loss function [15]. The dual encoders or
two towers technique involves two separate encoders for the two different types of inputs.
The outputs of the two encoders are then compared to calculate the loss [15]. The triplet
loss technique involves three inputs, an anchor, a positive of the same class as the anchor,
and a negative of a different class. The goal is to bring the anchor and positive closer
together and push the anchor and negative further apart in the embedding space [15].
These techniques aim to move similar objects close together in the manifold and dissimilar
objects far apart, thereby reducing the dimensionality of the data.

1.3.3 Dense Retrieval

Dense retrieval is a modern approach in information retrieval that leverages deep learning
techniques to retrieve relevant information from a database [16]. Unlike traditional methods
that rely on sparse representations, dense retrieval utilizes dense vector representations,
often achieved through dimensionality reduction or embeddings [17]. This relationship
to embeddings allows for a more nuanced understanding of the data, as it can capture
semantic relationships between different pieces of information [8].
The benefits of dense retrieval are manifold. Firstly, it enables semantic search, which
allows for a more accurate retrieval of information based on the meaning of the query,
rather than just keyword matching [16]. Secondly, dense retrieval is faster than traditional
methods, as it can calculate the target embeddings offline and only needs to calculate the
query embeddings at runtime [17].
However, dense retrieval is not without its drawbacks. The main disadvantage is that
it requires a significant amount of computational resources, both for training the model
and for calculating the embeddings [8]. Furthermore, the quality of the retrieval is highly
dependent on the quality of the embeddings, which can be influenced by factors such as
the choice of model and the quality of the training data [16].

1.3.4 Knowledge Graphs: A Comprehensive Overview

Knowledge graphs, a potent tool for data integration, offer a structured and semantically
rich framework for organizing and linking data from diverse sources. They have found
extensive applications in various fields such as information retrieval, natural language
processing, and data mining. Essentially, a knowledge graph is a database type that
employs graph structures to represent, integrate, and reason about knowledge. It comprises
entities (nodes) and relationships (edges) between them, where entities symbolize real-world
objects or concepts, and relationships depict the connections between these entities (see
Figure 1.2).

6

1.3. Background Master Thesis

Figure 1.2: An example of a knowledge graph

In the context of a knowledge graph, relations and classes are defined using formal logic.
Relations serve as predicates linking two entities, representing a specific connection type
between them. Conversely, classes are sets of entities sharing common properties, defined
by a set of conditions that an entity must satisfy to be a class member. Instances of classes
in a knowledge graph are specific entities belonging to a particular class. For instance,
in a knowledge graph about animals, "Lion" could be an instance of the class "Mammal",
implying that "Lion" satisfies all conditions defining the class "Mammal".
Knowledge graphs prove particularly useful for data integration as they provide a flexible
and expressive framework for linking and organizing data from diverse sources. They allow
for the representation of complex relationships between entities, and their graph structure
facilitates easy querying and information retrieval. Moreover, their use of formal logic
enables automated reasoning and inference, which can help uncover new insights from the
integrated data.

1.3.5 Ontologies

Ontologies are a key component in the field of data integration, providing a structured
framework for organizing and interpreting diverse data sets. They are essentially a formal
way to describe things and the relationships between them, making it possible to process
data with automated tools.
An ontology can be visualized as a graph, where the nodes represent entities or concepts,
and the edges represent the relationships between these entities. For example, in a medical
ontology, the nodes might represent diseases, symptoms, and treatments, while the edges
might represent relationships like "is a symptom of" or "is a treatment for".
In terms of formal logic, ontologies are typically defined using a set of classes and relations.
A class is a collection of entities that share common properties or characteristics. For
instance, in a medical ontology, "Disease" might be a class that includes entities like
"Cancer" or "Diabetes". Relations, on the other hand, define how classes or entities are
related to each other. For example, the relation "is a symptom of" might connect the class
"Symptom" to the class "Disease".
Instances of classes in an ontology are specific entities that belong to a class. For example,
"Breast Cancer" might be an instance of the class "Disease". Each instance can have
properties that further describe it, such as "has symptom" or "has treatment".
Ontologies are particularly useful for data integration because they provide a common

7

Master Thesis Chapter 1. Introduction

vocabulary for describing data, making it easier to combine data from different sources.
They also provide a way to infer new information from existing data, by applying the rules
and relationships defined in the ontology. This can help to uncover hidden patterns or
insights in the data, enhancing the value of data integration efforts.

1.3.6 Schema Matching

Schema matching is the process of identifying and establishing correspondences between the
schemas of different data sources. It involves determining the similarities and differences
between the structures, attributes, and relationships of the schemas [10].
In the context of Ontology-based data integration, schema matching is crucial. Ontology-
based data integration aims to integrate data from multiple sources by mapping them to a
common ontology. However, the schemas of these sources may vary significantly, making it
challenging to establish mappings between them.
Schema matching helps in addressing this challenge by providing techniques and algorithms
to identify and align similar concepts and relationships across different schemas. By
matching the schemas, it becomes possible to create mappings between the data sources
and the common ontology.
These mappings enable the integration of data from diverse sources into a unified rep-
resentation, facilitating seamless querying, reasoning, and analysis. Ontology-based data
integration leverages schema matching to bridge the gap between heterogeneous data
sources and the common ontology, enabling effective integration and utilization of the data.

1.3.7 Entity Linking

Entity Linking (EL) is a pivotal task in the realm of Natural Language Processing (NLP).
It involves the detection of mentions of real-world entities within a text and associating
them with their corresponding entries in a knowledge base [18]. EL is a fundamental
process in data integration, as it enables the consolidation of information from diverse
sources, thereby augmenting the comprehensibility and usability of the data [19].
To understand EL, it is essential to comprehend its steps and significance. The process of EL
involves three primary steps: entity detection, entity disambiguation, and entity suggestion.
Entity detection identifies the mentions of entities in the text. Entity disambiguation
resolves the ambiguity of these mentions by linking them to the correct entities in a
knowledge base. Entity suggestion is a crucial step in EL as it recommends potential
entities that a mention could be linked to, thereby facilitating the disambiguation process.
EL is particularly beneficial in data integration due to its ability to disambiguate and
connect entities. In a world where data is often siloed and unstructured, EL provides
a means to structure this data and link it to relevant entities, thereby creating a more
coherent and integrated data landscape [20]. Furthermore, EL aids in the reduction of
data redundancy, as it ensures that the same entity is not represented multiple times in
the dataset. This not only improves the efficiency of data storage and retrieval but also
enhances the accuracy of data analysis [21].

1.3.8 Ontology-based Data Integration

Ontology-based data integration (OBDI) is a method that uses ontologies to combine data
from diverse sources into a unified view. Ontologies, which are formal representations of

8

1.4. Related work Master Thesis

knowledge as a set of concepts within a domain, play a crucial role in EL. They provide
a structured framework that aids in the disambiguation and linking of entities, thereby
enhancing the effectiveness of EL. [9]
The benefits of OBDI are manifold. It facilitates semantic interoperability, improves data
quality, and enables more effective data search and retrieval. However, it also presents
several challenges, such as the complexity of ontology development and maintenance, and
the difficulty of achieving accurate and efficient entity linking and suggestion.
Entity linking and suggestion are vital for OBDI. They enable the accurate mapping of
data to the correct entities in the ontology, thereby facilitating effective data integration.
However, they also present challenges, such as the difficulty of disambiguating entity
mentions and the computational cost of linking entities.
Semantic search can aid in addressing these challenges. By leveraging the semantic
relationships in the ontology, it can improve the accuracy and efficiency of entity linking
and suggestion, thereby enhancing the effectiveness of OBDI.

1.4 Related work

This section provides an overview of the related works that have significantly contributed to
the field of dual encoder architecture for learning entity representation, a crucial aspect of
entity disambiguation. The works of He et al. [22], Wang et al. [23], Wu et al. [2], and Louis
et al. [24] are discussed in detail, highlighting their unique approaches and methodologies.
These studies have employed various techniques for mention encoding and entity embedding,
and have used different similarity measures. This thesis aims to build upon these works
by integrating a BERT for mention encoding and a Graph Neural Network (GNN) for
entity embedding. The similarity measure will be determined using a dot-product, and
dense retrieval will be employed. A comprehensive comparison of the four papers and their
approaches is provided in Table 1.4. The subsequent sections will delve deeper into the spe-
cifics of our proposed methodology and its potential advantages over the existing techniques.

The study of dual encoder architecture for learning entity representation, which is vital for
entity disambiguation, was first proposed by He et al. [22]. Their architecture incorporated
an auto-encoder on both sides of the dual encoder, with the similarity measure being
determined using a dot-product. In contrast to their use of auto-encoders for both entity
and mention embeddings, our work will employ a Graph Neural Network (GNN) for entity
embeddings and a BERT for mention embeddings. We will update the mention encoder to
a BERT encoder, and the entity encoder to a BERT with a GNN encoder. Furthermore, a
projection layer will be used to map the two encoders into the same space, so that the dot
product can be used for similarity measurement.

Wang et al. [23] furthered this research by exploring a dual encoding system for linking
values and entities in a knowledge graph. They used a conditional probability estimator
for similarity measurement, while we will use a dot product, so that entities suggestion
based on semantic performances can be achieved. A projection layer will be used to map
the two encoders into the same space, so that the dot product can be used for similarity
measurement.

In a more recent study, Wu et al. [2] utilized a dual encoder architecture for entity
suggestion and retrieval based on dense retrieval. They employed BERT for both the

9

Master Thesis Chapter 1. Introduction

mention and entity encoding and used a dot product for similarity measurement. However,
for the entity embedding, they did not use a model that takes the structural information
into account. Our work will use a GNN to embed entities. A projection layer will be used
to map the two encoders into the same space, so that the dot product can be used for
similarity measurement.

Louis et al. [24] proposed a dual-encoder model specifically designed for the retrieval of
statutes. The model is fundamentally built upon the principles of query embedding and
hierarchical article encoding, both of which are facilitated by BERT-based encoders. In
addition to these, a Graph Neural Network (GNN) model is incorporated to augment the
article embedding process. This augmentation is realized by harnessing a legislative graph,
wherein the article embedding serves as the node features, and is further enhanced by the
query embeddings. Unlike their focus on the retrieval of statutes, we will focus on entity
linking. They have a separate process for generating the features for the nodes in the
graph. Our work investigates integrating the GNN and BERT encoder into a single model.
Our work will use a projection layer to map the two encoders into the same space, so that
the dot product can be used for similarity measurement.

Table 1.4 provides a comparison of the four papers and their approaches. This thesis
will build upon these works by using a BERT for mention encoding and a Graph Neural
Network (GNN) for entity embedding. The similarity measure will be determined using a
dot-product, and dense retrieval will be employed.

Table 1.4: Comparison of the four papers and their approaches.

Mention encoding Entity embedding Similarity measure Dense retrieval

He et al. auto-encoder auto-encoder Dot-product ✗
Wang et al. word2vec TranT CPD ✗
Wu et al. BERT BERT Dot-product ✓
Louis et al. BERT BERT + GNN Dot-product Eclu-

dian similarity
✓

Ours BERT GNN Dot-product Eclu-
dian similarity

✓

10

2 | Datasets

This chapter provides an overview of various datasets and tasks used in the field of bio-
medical research and data management. It begins by discussing the Bacteria Biotope (BB)
datasets, introduced by Bossy et al. [1], which were part of the BioNLP open shared task
in 2019. The tasks associated with these datasets are divided into entity detection and
relationship extraction, with the aim of identifying entities and relationships within the
corpus. The chapter also introduces the OntoBiotope-NLP (OBNLP) dataset, an ontology
describing the habitats of microorganisms.

The focus then shifts to the Table Annotation task, which is crucial for understanding
and interpreting data in a table. This task includes four distinct subtasks: Column Type
Annotation (CTA), Cell Entity Annotation (CEA), Column Property Annotation (CPA),
and Table Topic Detection. The chapter discusses the use of various datasets for table
annotation, including the BioTable dataset, which is specifically tailored to the biomedical
domain. The chapter also explores the challenges and potential biases in the distribution
of CTA targets within the BioTable dataset.

The chapter further discusses the Wikidata Subgraph Dataset, a comprehensive knowledge
graph used for training models. The complexity and connectivity of an ontology, inferred
from the size of its neighbors, is considered when generating an embedding for a node in
Graph Neural Networks (GNNs).

Finally, the chapter introduces the WDC Schema.org Table Annotation Benchmark
(SOTAB) dataset, a collection of tables used for training purposes. This dataset, along with
the Schema.org ontology, is used to annotate tables with entities and properties, despite
the imbalance in the frequency of entities in the training dataset.

2.1 Exploration of Bacteria Biotope Datasets in BioNLP
2019

The Bacteria Biotope (BB) datasets, as introduced by Bossy et al. [1], were made available
as part of the BioNLP open shared task in 2019. The tasks were bifurcated into two
segments: entity detection and relationship extraction. The entity detection task neces-
sitated the identification of entities within the corpus and the discovery of corresponding
entities in the NCBI taxonomy database [1] and OntoBiotope habitat [1]. The relationship
extraction task was designed to identify ”Lives_In” and ”Exhibits” relationships between
mentions in the corpus. The corpus is composed of PubMed titles and abstracts pertaining
to microorganisms and extracts from full-text articles related to microorganisms inhabiting
food products.

11

Master Thesis Chapter 2. Datasets

2.1.1 Analysis of Mentions Dataset Statistics

To identify potential issues in the BB dataset, we will scrutinize its statistics. The BB
dataset is partitioned into a training and a validation dataset, with the training dataset
further divided into a training and a test dataset. The training dataset is utilized to train
the model, the test dataset is employed to evaluate the model during training, and the
validation dataset is used to assess the model post-training to ensure that the model has
not overfitted to the training dataset.

Training Validation
Number of mentions 1571 881
Unique entities 299 181

Table 2.1: BB dataset statistics

Figure 2.1 illustrates the frequency of the entities in the BB dataset. The most prevalent
entity is OBT:001480 (Cheese) with n = 133, followed by a sharp drop-off. This suggests
a class imbalance in the training dataset, as discussed in section 1.3, which can cause the
training to favor classes that are over-represented in the dataset.

Figure 2.1: Histogram of entity frequency in the BB training dataset, with the y-axis on a log scale.

The subsequent section will convert the statistics of the target ontology OntoBiotope-NLP.

2.1.2 Inspection of OntoBiotope-NLP Dataset Statistics

The OntoBiotope-NLP (OBNLP), created for the BioNLP-OST 2019 competition, is an
ontology describing the habitats of microorganisms. Each concept in the ontology has a

12

2.2. Table Annotation Task Master Thesis

name, and some concepts also contain a list of synonyms for the given concept [25]. The
OBNLP dataset is saved in the obo data format [26], a human-readable text format for
ontologies used by OntoBiotope ontology.

OBNLP
Number of concepts 4219
Names 4219
Synonyms 689
Number of is_a edges 4639

Table 2.2: OBNLP dataset statistics

The OBNLP dataset presents one type of relationship in the ontology, the is_a type. As
shown in Table 2.2, the OBNLP ontology contains 4639 is_a relationships. With the
inverse relationships added, the dataset contains a total of 9278 relationships, meaning
that the OBNLP ontology contains a total of 9278 triplets.

Figure 2.2: Histogram showing the size of all neighbourhoods, the OntoBiotope-NLP ontology

The size of the neighbors can provide insights into the complexity and connectivity of the
ontology. The histogram in Figure 2.2 shows the distribution of neighborhood sizes in the
OntoBiotope-NLP ontology.

2.2 Table Annotation Task

The focus of this research is the Table Annotation task, a complex process that encompasses
four distinct tasks. The first task, referred to as Column Type Annotation (CTA), involves
assigning a semantic type to a column. This task is crucial as it provides a context for the
data contained within the column, thereby facilitating a more accurate interpretation of
the data. The second task, Cell Entity Annotation (CEA), involves assigning a semantic
type to a cell. This task is equally important as it provides a specific context for the data
contained within the cell. The third task, Column Property Annotation (CPA), involves
assigning a knowledge graph property to a cell. This task is essential for linking the data

13

Master Thesis Chapter 2. Datasets

in the cell to a broader knowledge graph, thereby enhancing the utility of the data. The
final task, Table Topic Detection, involves identifying the overall topic of the table.
This task is crucial for understanding the broader context of the table and for facilitating
the integration of the table into a larger dataset or analysis. These tasks are illustrated in
Figure 2.3, which provides a visual representation of the Table Annotation task and its
constituent tasks.

Name Depth Amount

Cod 10 m 200

Pike 15 m 150

Fish species

(a) The CTA task example, by identifying the first
column containing names for different fish species.

Name Depth Amount

Cod 10 m 200

Pike 15 m 150

Esox lucius

(b) The CEA task example, by identifying the cell
containing the name of the fish species Esox lucius
the formal name of the cod fish species.

Name Depth Amount

Cod 10 m 200

Pike 15 m 150

Amount

(c) The CPA task example, by identifying the rela-
tionship between the first and third column, which
is the relationship between the fish species and the
amount of the fish species.

Name Depth Amount

Cod 10 m 200

Pike 15 m 150

Experimental
Measurements

(d) The TTA task example, by identifying the topic
of the table, which is Experimental Measurements.

Figure 2.3: Examples of the table annotation tasks, From a fictive dataset of fish couth in the Faroe island
between the islands.

A variety of datasets are currently available for table annotation, as outlined in Table 2.3.
Among these, BioTable stands out as one of the few that are domain-specific and manually
annotated.

BioTable is a unique dataset in the sense that it is specifically tailored to the biomedical
domain. This specificity allows for a more focused exploration of the challenges and
opportunities associated with table annotation in this field. Furthermore, the manual
annotation process employed in the creation of BioTable ensures a high degree of accuracy
and reliability, making it an invaluable resource for researchers in the field of biomedical
NLP.

14

2.2. Table Annotation Task Master Thesis

Name Year Table Count CEA CTA CPA TTD Target

T2Dv2 [27] 2017 779 ✗ ✓ ✓ ✓ DBpedia
BioTable [28] 2021 110 ✓ ✓ ✓ ✗ Wikidata
Tough Tables [29] 2020 180 ✓ ✓ ✓ ✗ DBpedia, Wikidata
GitTables [30] 2021 1 Million ✓ ✓ ✓ ✓ DBpedia, Schema.org
WikipediaGS [31] 2019 485 096 ✓ ✓ ✗ ✗ DBpedia
VizNet-Sato [32] 2019 78 733 ✗ ✓ ✗ ✗ DBpedia
TNCR [33] 2021 9428 ✗ ✗ ✗ ✗ ✗
WikiTables-TURL [34] 2020 406 706 ✓ ✓ ✓ ✗ DBpedia
WDC SOTAB [35] 2023 48 379 ✗ ✓ ✓ ✗ Schema.org

Table 2.3: Table Annotation benchmark and challenge datasets

This thesis focuses on the task of Column Type Annotation (CTA), a crucial aspect in
the field of data management and knowledge representation. The primary objective of CTA
is to assign a semantic type to a column in a given dataset. This process is instrumental
in enhancing the understanding and interpretation of the data, thereby facilitating more
effective data analysis and knowledge extraction.

2.2.1 BioTable dataset statistics

An examination of the CTA targets within the BioTable dataset, as depicted in Table 2.4,
reveals that there are only seven distinct entities serving as CTA targets. The frequency
of each target varies, with some appearing in all 110 tables (e.g., Q14860489, Q2996394,
Q5058355, Q7187, and Q8054), while others appear less frequently (e.g., Q16521 and
Q35120).

The uneven distribution of CTA targets in the BioTable dataset could potentially skew the
model’s learning process, leading to a bias towards targets that appear more frequently.
This bias could significantly impact the model’s performance, making it crucial to consider
these factors during the training phase. Moreover, the limited amount of data available for
training further exacerbates the challenge. The scarcity of data could lead to overfitting,
where the model learns the training data too well and performs poorly on unseen data.
Therefore, it is imperative to employ strategies such as data augmentation or transfer
learning to mitigate these issues and ensure robust and unbiased performance of the model.

Target name Count

Q14860489 Molecular function 110
Q16521 Taxon 52
Q2996394 Biological process 110
Q35120 Entity 55
Q5058355 Cellular component 110
Q7187 Gene 110
Q8054 Protein 110

Table 2.4: BioTable CTA targets

Furthermore, evaulate the model on a small dataset that is domain-specific can be promising
for real-world applications as noted in the introduction data generation is one of the more
expensive parts of any research task, and this task is not less any when training a machine

15

Master Thesis Chapter 2. Datasets

learning model, Veyhe et al. [36] showcased the challenges for domain-specific entity linking
in tabular data based on syntax data soruce.

2.2.2 Exploration of Wikidata Subgraph Dataset

Wikidata, a comprehensive knowledge graph, comprises approximately 100 million entities.
However, the BioTable dataset utilizes only a small subset of this knowledge graph. The
Wikidata subgraph incorporated in the BioTable dataset is depicted in Table 2.4. To make
the training feasible, a sub-knowledge graph was generated.

To generate a graph to train the model on, a subgraph was generted, and based on Section
1.3 and Hamilton et al. [6] that an neighbors sourouding the target node is needed therefor
for traning the model, a subgraph was generted that with neighbors that are 2 hops from
the target entities listed Table 2.4. To limited the types of nodes that are represented in
the grpah the nodes are limtied to wikidata entities, meaning that the uuid for the entities
starts with the letter Q.

Capturing all entities that are one or two hops away results in a subgraph with 62, 175
entities in the dataset with 1, 019 types of properties. To further limit the type of entities
retrieved, the dataset was restricted to properties that link to entities internal to Wikidata.
The selected properties were based on an internal Wikidata table showcasing all properties
and their respective categories [37].

Figure 2.4: Histogram of the number of neighbors for each node in the Wikidata knowledge graph

The complexity and connectivity of an ontology can be inferred from the size of its neighbors.
As depicted in Figure 2.4, the distribution of neighborhood sizes in the Wikidata subgraph
is presented. A comparison of this distribution with that in Figure 2.2 reveals that the
average neighborhood size of the Wikidata knowledge graph encompasses hundreds of
entities. As discussed in Section 1.3, Graph Neural Networks (GNNs) consider the entire
neighborhood when generating an embedding for a node. This process, however, results in
substantial memory consumption. Further details on how this issue is addressed in terms
of memory requirements are elaborated in Chapter 4.

16

2.2. Table Annotation Task Master Thesis

2.2.3 Analysis of the WDC Schema.org Table Annotation Benchmark
Dataset

The WDC Schema.org Table Annotation Benchmark (SOTAB) dataset is a comprehensive
collection of 48,379 tables, with 46,790 tables allocated for training purposes. These tables
span across 17 diverse domains, providing a broad spectrum of general domains for analysis
(see Table 2.5).

Domain Train Test

Museum 116 14
MusicAlbum 316 38
TVEpisode 346 45
SportsEvent 613 86
Restaurant 1033 135
Hotel 1393 238
Movie 1846 202
Place 2015 224
Book 2022 341
MusicRecording 3344 401
CreativeWork 3393 686
JobPosting 3584 484
LocalBusiness 3744 602
Person 3818 374
Recipe 4083 412
Event 4721 593
Product 10403 875
Total 46790 5732

Table 2.5: WDC Schema.org Table Annotation Benchmark dataset table per domain domains

A closer examination of the training and validation datasets reveals a significant repres-
entation of entities. The training dataset comprises 130,472 entities, while the validation
dataset contains 16,841 entities. Both datasets share 87 unique entities (see Table 2.6).

Training Validation
Entities 130,472 16,841
Unique entities 87 87

Table 2.6: WDC Schema.org Table Annotation Benchmark dataset statistics

However, an imbalance is observed in the frequency of entities in the training dataset, as
depicted in Figure 2.5. The entity ’Name’ is the most prevalent with a count of 18,033,
followed by a steep decline in frequency for the subsequent entities. This class imbalance
could potentially bias the training towards over-represented classes, as discussed in Section
1.3.

17

Master Thesis Chapter 2. Datasets

Figure 2.5: Histogram of entity frequency in the WDC Schema.org Table Annotation Benchmark training
dataset, with the y-axis on a log scale.

2.2.4 Insights into the Schema.org Dataset

The Schema.org ontology, a collaborative initiative supported by major search engines like
Google, Microsoft, Yahoo, and Yandex, aims to develop and promote schemas for structured
data on the internet. The ontology serves as a common vocabulary for webmasters to
structure their website data in a manner comprehensible to these search engines.

The ontology currently encompasses over 600 distinct types of entities, each with its own
set of properties. These entities range from general concepts such as ’Thing’ and ’Place’ to
more specific ones like ’Movie’ and ’Person’. The dataset used for the table annotation
task comprises approximately 130,000 entities, which are instances of the types defined
in the Schema.org ontology. Each entity in the dataset possesses a set of properties filled
with data (see Figure 2.5 for a breakdown of entity representation in the training dataset).

18

2.2. Table Annotation Task Master Thesis

Figure 2.6: Histogram of the number of neighbors for each node in the Schema.org knowledge graph

The table annotation task, specifically the SOTAB task, is intrinsically linked to the
Schema.org ontology. The task’s objective is to annotate tables with entities and properties
from the Schema.org ontology, which involves identifying the entities in the table, determ-
ining their types, and assigning properties to them. The Schema.org ontology provides the
necessary vocabulary and structure for this task, enabling a coherent interpretation of the
data in the tables (see Figure 2.6 for a histogram of the number of neighbors for each node
in the Schema.org knowledge graph).

19

3 | Model architecture

This section provides an in-depth exploration of the methodologies employed in the project,
focusing on the concepts of text embedding and mention embedding. The input data
for the project is categorized into text data and tabular data, each with its unique input
structure in the BERT tokenizer. The text data input structure is based on the methodology
proposed by Wu et al. [2], where each mention in the corpus is encapsulated within a
specific string format (Example 3.2.1). On the other hand, the tabular data input structure
is inspired by the work of Trabelsi et al. [3], but with a simplified format due to the specific
requirements and constraints of the project (Example 3.2.2).
Following the discussion on input data, the section delves into the architecture of the
Mention Encoder, a model that leverages the BERT model [4] with an additional projection
head. The Mention Encoder’s architecture, including the tokenization process and the role
of the projection head, is discussed in detail, providing a comprehensive understanding of the
model’s functionality (Figure 3.2). This chapter serves as a foundation for understanding
the methodologies and techniques employed in the project, paving the way for subsequent
discussions on the project’s implementation and results.

3.1 Projection Head

The concept of a projection head, a fundamental component in machine learning, is utilized
to transform input data, specifically embeddings, into a different space, thereby generating
projected embeddings [38]. The projection is accomplished through a series of operations
collectively known as projection layers. The projection head is a simple feed-forward
neural network that serves to project the entity and mention embeddings to the same
dimensionality [39]. It is essentially a fully connected layer equipped with a ReLU activation
function. The output generated by the projection head comprises the entity and mention
embeddings. The primary function of the projection head is to reduce the dimensionality
of the embeddings, thereby making the embeddings comparable.
The initialization of the projection head involves several parameters: the number of input
channels, the dimension of the projection, the number of projection layers, and the dropout
rate. The dropout rate is a regularization technique employed to prevent overfitting in the
model. It achieves this by randomly setting a fraction of input units to 0 at each update
during the training phase.
The projection head comprises a list of projection layers. The first layer is a linear
transformation of the input data. Subsequently, a GELU activation function is applied for
each projection layer, followed by another linear transformation, a dropout operation, and
finally, a layer normalization.
The GELU activation function introduces non-linearity into the model, thereby enabling it
to learn more complex patterns. Layer normalization is a technique that normalizes the
features of each individual sample independently of other samples.

21

Master Thesis Chapter 3. Model architecture

gelu

Dense

Dropout

LayerNormalization

Input

La
ye

r 1

Embedding
Output

gelu

Dense

Dropout

LayerNormalization

La
ye

r 2

Figure 3.1: Projection layer architecture

The forward pass of the projection head takes the input embeddings and applies the
projection layers to them sequentially. If the current layer is a linear layer, it applies the
previous layer (GELU), the current layer (Linear), the next layer (Dropout), and then
adds the result to the original input embeddings. This is followed by applying the layer
normalization. The outcome of this process is the projected embeddings.
The projection head proves to be a valuable tool in numerous machine learning tasks,
such as dimensionality reduction, feature extraction, and data visualization. It facilitates
the transformation of input data into a different space, thereby enabling more complex
patterns to be learned and utilized.

3.2 Mention encoder model

The Mention Encoder model is a sophisticated architecture that leverages the power of
the BERT model with an additional projection head. The input data for this model is
divided into two categories: text data and tabular data. For text data, each mention in the
corpus is encapsulated within a string and structured as per the methodology proposed by
Wu et al. For tabular data, the project aims to perform Column Type Annotation, with
the input into the BERT tokenizer inspired by the work of Trabelsi et al. The Mention
Encoder’s architecture includes the BERT model and a projection head, which allows the
model to project the output of the BERT model into a lower-dimensional space, enabling
efficient computation and storage. The input to the Mention Encoder is tokenized text, a
process that involves breaking down the text into individual words or tokens.

22

3.2. Mention encoder model Master Thesis

3.2.1 Input

The input data for this project is divided into two categories: text data and tabular data.
For text data, the input into the BERT tokenizer is structured as per the methodology
proposed by Wu et al. [2]. Each mention in the corpus is encapsulated within a string of
the format ”[CLS] ctextl [Ms] mention [Me] ctextr [SEP]”. Here, ctextl and ctextr represent
the left and right context of the mention, respectively. The context windows are selected
such that the total length of the input equals 512 characters. The tokens Ms and Me

indicate the start and end of the mentioned token, while [CLS] and [SEP] are special tokens
indicating the start and end of the input. An example is show in Example 3.2.1.

Example 3.2.1. To understand the the encodeing process of the mention encoder for
text data, we will use the following quote is from the BB dataset with the mentions in
bold, the input to the BERT tokenizer is shown in Table 3.1.

B. linens was only isolated from the Casera, Gorgonzola and Scimudin
cheese surfaces, confirming the more recent information that this species
is not the most important bacterium on smear cheeses.

Mention Input

B. linens [CLS] [Ms] B. linens [Me] was only isolated from the . . . [SEP]
Casera, Gorgonzola and Scimudin
cheese surfaces

[CLS] was only isoloated from the [Ms] Casera, Gorgonzola and Scimudin
cheese surfaces [Me], confirming the most . . . [SEP]

smear cheeses [CLS] . . . confirming the more recent information that this species is not the
most important bacterium on [Ms] smear cheeses [Me]. [SEP]

Table 3.1: Input data for the Mention Encoder.

◀

For tabular data, the project aims to perform Column Type Annotation. The input into
the BERT tokenizer is inspired by the work of Trabelsi et al. [3] and is formatted as
”[CLS] Query [SEP] Metadata [SEP] [header name] [type] [value] [SEP] [header name] [type]
[value] ...”. However, in this project, the input is simplified to ”[CLS] Value1 [SEP] value2
[SEP] . . .”. This is because only the values of the cells in the tabular data are used, while
the header names and types are ignored. This decision is based on the fact that the table
may not always contain header information and type identification is beyond the scope
of this project. Additionally, the provided dataset does not contain metadata or query
information, hence they are also excluded from the encoding. An example is shown in
Example 3.2.2.

Example 3.2.2. To understand the enocdeing for tabular data for the CTA task,
Table 3.2 is from the WDC dataset that listed event that are scheduled.

23

Master Thesis Chapter 3. Model architecture

2019-06-20T18:30-MDT Why Developers Should Care About
Service Mesh | EnvZone

2019-06-20T21:00 EventScheduled

2019-06-12T17:30-MDT Dissolving The Problem: Kafka Is More
ACID Than Your Database With Tim
Berglund | EnvZone

2019-06-12T20:30 EventScheduled

Lakewood Networking Referral Group
| EnvZone

EventScheduled

Mobile Apps For Photographers With
Gary White | EnvZone

EventScheduled

5 Tips To Make Your Website Awesome
| EnvZone

EventScheduled

Wheat Ridge Networking Referral
Group | EnvZone

EventScheduled

Highlands Ranch Business Networking
Happy Hour | EnvZone

EventScheduled

2020-09-26T19:40-MDT Moving To React And Debugging Live
| EnvZone

2019-06-18T21:00 EventScheduled

Machine Learning With Google De-
veloper Expert Evan Hennis | EnvZone

EventScheduled

Table 3.2: Tabular dataset from Event Zone.

To shown the encodeing process the first coloum in Table 3.2 for the BERT tokenizer
is as follows:

• [CLS] 2019-06-20T18:30-MDT [SEP] 2019-06-12T17:30-MDT [SEP] [SEP] [SEP] [SEP] [SEP] [SEP]
2020-09-26T19-40-MDT [SEP].

◀

3.2.2 Mention Encoder Architecture

The Mention Encoder, as proposed by Wu et al. [2], is a sophisticated model that leverages
the power of the BERT model [4] with an additional projection head. The BERT model, a
transformer-based machine learning technique for natural language processing, forms the
base of the Mention Encoder. The projection head, which is a linear layer, is stacked on
top of the BERT model. This architecture allows the model to project the output of the
BERT model into a lower-dimensional space, thereby enabling efficient computation and
storage. The specifics of the projection head are discussed in detail in the previous section
of this thesis.

24

3.3. Entity Embedding model architecture Master Thesis

BERT-based
Encoder

[Cls] t1 tn

Projection
Head

Mention Embedding

Figure 3.2: The architecture of the Mention Encoder.

The input to the Mention Encoder is tokenized text. The process of tokenization, which
involves breaking down the text into individual words or tokens, is a crucial step in natural
language processing. The tokenization process for the Mention Encoder is explained in
detail in the above subsection.
The architecture of the Mention Encoder is illustrated in Figure 3.2. This figure provides a
visual representation of the model, including the BERT model and the projection head,
and how they interact to process the tokenized input.

3.3 Entity Embedding model architecture

This section provides an in-depth exploration of the Entity Embedding model architecture,
which is a crucial component of our research. The model architecture is divided into
two main subsections: Input Encoding and Ontology Embedding Model. The former
discusses the input format for the ontology embedding process, which is derived from
various ontologies/knowledge graphs, as detailed in Section 2. The latter delves into the
model architecture for ontology embedding, which is based on the work of Wu et al. [2] and
Louis et al. [24]. The model’s flexibility, particularly in the utilization of Graph Neural
Network (GNN) layers, is a key feature that allows it to be tailored to specific requirements
and scenarios. This section also presents a comprehensive comparison of different GNN
layers and their edge attributes. The final part of this section discusses the projection head,
which is a linear layer that projects the output of the BERT model into a lower-dimensional
space. The specifics of the projection head are discussed in detail in Section 3.1. This
section serves as a foundation for understanding the subsequent analysis and results of our

25

Master Thesis Chapter 3. Model architecture

research.

3.3.1 Input encoding

The input for the ontology embedding process is derived from the ontologies/knowledge
graphs discussed in Section 2. Each entity in these ontologies contains a name, and a
subset of them also includes one or more of the following: a description, synonyms, or
comments. As noted in Section chapter 2, all ontologies except the OBO knowledge
graph have multiple relationship types. However, for simplicity, edge attributes are not
considered in this project, leaving room for future work [40, 41]. The entity input format
follows the approach of Wu et al. [2], which is ”[CLS] title [ENT] description [SEP]”. The
knowledge bases Wikidata, Schema.org, and OntoBiotope, presented in Section 2, provide
the appropriate stand-ins for title and description.

3.3.2 Ontology Embedding model

The model architecture for ontology embedding is based on the work of Wu et al. [2] and
Louis et al. [24]. The entity encoder, shown in Figure 3.4a, is similar to the one from
Wu et al. [2], but it includes a projection layer on top. The model by Louis et al. [24],
shown in Figure 3.3, uses a BERT-based encoder for article embedding and enriches the
embedding with structural information using a Graph Neural Network (GNN). In contrast,
our proposed model architecture, shown in Figure 3.4b, integrates these steps.

Figure 3.3: The GDSR model architecture [24].

The flexibility of the model layer in our proposed system is one of its key features, as it
allows for the utilization of any of the Graph Neural Network (GNN) layers, as detailed in
Table 3.3. This adaptability is crucial in the context of our research, as it enables the model
to be tailored to specific requirements and scenarios. The ontologies’ features, as elaborated
in chapter 2, are primarily concentrated on node features, rather than edge features. This
distinction is not trivial, as it significantly influences the functionality and performance of
our model. To assess the effectiveness of enriching the embedding with a GNN layer, we
have designed the model to be configurable, allowing for the inclusion or exclusion of the
GNN layers. This design choice provides a robust framework for evaluating the impact
of GNN layers on the overall performance of the model. The two possible configurations,
which represent different approaches to integrating GNN layers, are illustrated in Figure 3.4.

26

3.4. Dual Encoding Model Architecture Master Thesis

This comprehensive overview of the model layer and its configuration options provides a
solid foundation for understanding the subsequent analysis and results of our research.

Method Citation Edge attributes

Graph Convolutional Networks (GCN) Kipf et al. [12] ✗

GraphSAGE Hamilton et al. [6] ✓

Graph Attention Networks (GAT) Velickovic et al. [42] ✓

k-dimensional GNNs (K-GNN) Morris et al. [43] ✓

Graph Attention Networks Verson 2 (GATv2) Brody et al. [44] ✓

Table 3.3: Comparison of different Graph Neural Network layers

The projection head, discussed in section 3.1, is the same as the one used in the Mention
Encoder. The final model architecture, which combines the two models, is presented in
section 3.4. The projection head is a linear layer that projects the output of the BERT
model into a lower-dimensional space. The specifics of the projection head are discussed in
detail in Section 3.1.

BER
T-based

Encoder

[C
ls]

t1
tn

Entity Encoder

Projection
H
ead

Entity Embedding

(a) Entity Encoder model architecture

B
ER

T-based
Encoder

B
ER

T-based
Encoder

B
ER

T-based
Encoder

Projection
H

ead
Projection

H
ead

Projection
H

ead

[C
ls]

t1
tn

[C
ls]

t1
tn

[C
ls]

t1
tn

Entity Embedding

zEntity Embedding

Entity Embedding

Entity Encode GNN

(b) Entity Encoder model architecture with GNN

Figure 3.4: Entity Encoder model architectures

3.4 Dual Encoding Model Architecture

This section provides a comprehensive overview of the dual encoding model architecture.
As underscored by Dong et al. [38], there exists a variety of dual encoder architectures,
including but not limited to Siamese Dual Encoder (SDE), Asymmetric Dual Encoder
(ADE), ADE with Shared Token Embedding (ADE-STE), ADE with Frozen Token Embed-
ding (ADE-FTE), and ADE with a yet to be defined component (ADE-SPL). The primary
focus of this project is the ADE model architecture, which is further bifurcated into two
main components: the entity encoder and the mention encoder, as elaborated in sections
3.3 and 3.2, respectively. This architecture facilitates simpler modifications to the different
components of the dual encoder, thereby enabling each stack to adapt and better fit the
conclusion. The selection of the loss/score function, a critical aspect of the model, will be
discussed in the subsequent section.

27

Master Thesis Chapter 3. Model architecture

Figure 1: Architectures of dual encoders. We study whether parameter sharing in different dual encoder components (i.e. token
embedder, transformer encoder, and projection layer) can lead to better representation learning. Orange and green components
are distinctly parameterized for question and answer encoder towers, respectively. Blue components are shared between two
encoding paths. Grey components are frozen during the fine-tuning.

shared or distinct.
We conduct experiments across 7 well-

established datasets. We find that SDEs consis-
tently outperforms ADEs on question answering
retrieval tasks, and sharing parameters in token
embedders and projection layers between the two
encoders improves the efficacy of ADEs. In partic-
ular, sharing projection layer (ADE-SPL) enables
ADEs to achieve comparable or even better perfor-
mance than SDEs.

To better understand why parameter sharing im-
proves the efficacy of the asymmetric dual en-
coders, we directly analyze the embeddings from
the two encoder tower, by projecting and clus-
ter them into 2-dimensional space using t-SNE
(van der Maaten and Hinton, 2008). The analysis
shows that without sharing projection layer, ADEs
tend to embed the inputs of the two encoder tow-
ers into disjoint embedding spaces, which hinders
the quality of retrieval. Based on the findings, we
recommend to share the projection layers between
two encoder towers in practice, if using asymmetric
dual encoder is necessary.

2 Related work

Dual encoders have been widely studied in entity
linking (Gillick et al., 2018), open-domain ques-
tion answering (Karpukhin et al., 2020), and dense
retrieval (Ni et al., 2021a), etc. This architecture
consists of two encoders, where each encoder en-
codes arbitrary inputs that may differ in type or
granularity, such as queries, images, answers, pas-
sages, or documents.

Open-domain question answering (ODQA) is a
challenging task that searches for evidence across
large-scale corpora and provides answers to user
queries (Voorhees, 1999; Chen et al., 2017). One
of the prevalent paradigms for ODQA is a two-step

approach, consisting of a retriever to find relevant
evidence and a reader to synthesize answers. Alter-
native approaches are directly retrieving from large
candidate corpus to provide sentence-level (Guo
et al., 2021) or phrase-level (Lee et al., 2021b) an-
swers; or directly generating answers or passage
indices using an end-to-end generation approach
(Tay et al., 2022). Lee et al. (2021a) compared the
performance of SDEs and ADEs for phrase-level
QA retrieval tasks. However, they only considered
the two extreme cases, where two towers have the
parameters completely shared or distinct. In this
work, we address the missing piece of previous
work by exploring parameter sharing in different
parts of the model.

3 Method

We follow a standard setup of QA retrieval: given a
question q and a corpus of answer candidatesA, the
goal is to retrieve k relevant answers Ak ∈ A for
q. The answer can be either a passage, a sentence,
or a phrase.

We adopt a dual encoder architecture (Gillick
et al., 2018; Reimers and Gurevych, 2019) as the
model to match query and answers for retrieval.
The model has two encoders, where each is a trans-
former that encodes a question or an answer. Each
encoder first produces a fixed-length representation
for its input and then applies a projection layer to
generate the final embedding.

We train the dual encoder model by optimizing
the contrastive loss with an in-batch sampled soft-
max (Henderson et al., 2017):

L =
esim(qi,ai)/τ

∑
j∈B e

sim(qi,aj)/τ
, (1)

where qi is a question and a∗ is a candidate answer.
ai is ground-truth answer, or a positive sample, for

Figure 3.5: Architectures of dual encoders [38].

As previously discussed in Section 3.2 embedding, the model architecture remains static,
with the only modification being the number of projection layers incorporated. This is a
crucial aspect of the model’s design, as it allows for flexibility in the model’s complexity
without necessitating a complete overhaul of the architecture. In contrast, as outlined in
Section 3.3, the model architecture can adopt a bi-directional encoding structure based
on BERT if the Graph Neural Network (GNN) model is omitted. In this scenario, both
encoders will resemble each other, with the only difference being the number of input
structures, resulting in the dual encoder architecture as shown in Figure 3.6a. However,
the inclusion of the GNN layer introduces a new dimension to the model architecture, as
depicted in Figure 3.6b. The GNN layer allows the model to capture and process more
complex relationships between entities, thereby enhancing the model’s performance in
tasks requiring a deeper understanding of the data’s structure.

BER
T-based

Encoder

[C
ls]

t1
tn

Mention Encoder
BER

T-based
Encoder

[C
ls]

t1
tn

Entity Encoder

Projection
H

ead
Projection

H
ead

Scoring
Function

Entity Embedding

Mention Embedding

(a) Dual encoding model architecture.

BER
T-based

Encoder

[C
ls]

t1
tn

Mention Encoder

BER
T-based

Encoder

[C
ls]

t1
tn

Entity Encoder

Projection
H

ead

Projection
H

eadG
N

N

Scoring
Function

Entity Embedding

Mention Embedding

Knowledge graph

(b) Dual encoding model architecture with GNN.

Figure 3.6: Dual encoding model architectures.

3.5 Scoring function

This thesis delves into the critical role of the loss function in steering both encoders to
acquire identical representations. The score function must be adept at evaluating the
similarity between mention and entity embeddings. Furthermore, it is essential for practical
applications that the entity’s embedding can be computed offline. The inference should be
achievable by calculating the mention embedding and retrieving the nearest k neighbors in
less than a minute, even in extensive knowledge bases like DBpedia, which encompasses

28

3.5. Scoring function Master Thesis

billions of entities.

This study presents three subsections, each focusing on a different function relevant to the
thesis. The first function, Cosine similarity/dot function, introduces the cosine embedding
loss. This is a common scoring function that enables dense retrieval based on the angular
similarity of embeddings representing entities. The second function, Triplet margin loss,
introduces the triplet loss function. This is a common loss function that allows for dense
retrieval based on the Euclidean similarity of embeddings representing entities. From
the perspective that embeddings are maps from higher dimensionality into a manifold in
lower dimension, the idea behind triplet loss is to move similar entities closer together,
and dissimilar entities farther away. The third function, with slight abuse of notation
cross-entropy, is a scoring function aimed at classification. However, the aim of the function
is to maximize the value of the right ”class” and minimize the value to the other negative
anchors. This can be seen as an updated triplet margin loss where the positive anchor
is pushed closer and the remainder is pushed farther away. These three functions are
presented because they provide a comprehensive understanding of the scoring and loss
functions used in machine learning, which is crucial to the thesis.

3.5.1 Cosine Embedding Loss as the similarity Function

This study employs the cosine embedding loss as the scoring function. The cosine embedding
loss quantifies the dissimilarity between two non-zero vectors within an inner product space
by measuring the cosine of the angle between them. This dissimilarity is computed as the
dot product of the normalized vectors, as defined in Eq. 3.1:

Cosine embedding loss = Lc(A, B) := 1 − cos(θ) = 1 − A · B
∥A∥∥B∥

. (3.1)

Positive

Anchor

Positive

Anchor

Leanring

Figure 3.7: Cosine Similarity

While cosine similarity is an effective measure of similarity between two vectors, it is
important to note that if KG is a given knowledge graph with V representing all entities in
the knowledge base, then for each vi ∈ V for i ∈ {1, 2, . . . , | V |}, Bi = ence(vi) represents
the entity encoding. Let m be a mention in a text, then A = encm(m) represents the
mention encoding. To find the k closest Bj , it is necessary to iterate over all Bi and
calculate the cosine similarity between A and Bi. Consequently, the operation becomes
O(| V |). Johnson et al. (2019) [45] introduced GPU-based similarity search that can scale
to billions of similarity searches and proposed an approximate algorithm.

29

Master Thesis Chapter 3. Model architecture

3.5.2 Cross Entropy Loss as the Loss Function

In the field of machine learning, particularly in classification tasks, the Cross-Entropy Loss
function plays a pivotal role. It is defined as the negative log-likelihood of the correct
class given the input, making it a popular choice due to its differentiability and ease of
optimization [7].

Positive

Anchor

Positive

Anchor

Negative

Negative

Leanring

Figure 3.8: Cross Entropy Loss

In the context of vector embeddings, an important operation is the concatenation of
Positive and Negative vector embeddings. This results in a vector, denoted as C, which
is expressed as C = [p1, p2, . . . , pk, n1, n2, . . . , nk]. The vector C belongs to the set of real
numbers and has dimensions 2k × embdim. Concurrently, another vector, E, is defined as
E = [e1, e2, . . . , ek].
The mathematical relationship between these vectors is established through the dot product
of E and the transpose of C, resulting in a new vector, S. This relationship is represented
as E · CT = S. Similar to C, the vector S also belongs to the set of real numbers and has
dimensions k × 2k.
In terms of loss functions, the built-in cross-entropy loss function in Python,
‘torch.nn.function.cross_entropy‘, is utilized. This function’s target is [0, 1, . . . , k]. This
configuration informs the loss function that for row i, the similarity for column i should be
maximized. This corresponds to the positive item, and the rest should be as close to zero
as possible [24].

3.5.3 Triplet Loss and Euclidean Similarity Search

The following paragraph is a comprehensive overview of the application of the Triplet
Loss Function in computer science, particularly in tasks related to computer vision and
similarity search.
The Triplet Loss Function, originating from the field of machine learning, is a powerful
tool frequently employed in tasks related to computer vision, such as image recognition
[46]. This function operates on a triplet of images: an anchor, a positive of the same class
as the anchor, and a negative of a different class. The objective of the function is to ensure
that the anchor is closer to the positive than to the negative by at least a certain margin,
as mathematically formulated in Equation (1).

L(A, P, N) = max(||f(A) − f(P)|| − ||f(A) − f(N)|| + margin, 0) (3.2)

In this equation, A represents the anchor, P the positive, N the negative, f the embedding
function that maps an image to a vector, and ||.|| denotes a distance metric, specifically
the L2 norm in this project.

30

3.5. Scoring function Master Thesis

Leanring

Margin

Negative

Positive

Anchor
Anchor

Negative

Positive

Figure 3.9: Triplet Loss between Anchor, Positive and Negative

The Triplet Loss Function has proven effective in tasks such as face recognition, where
distinguishing between different individuals is crucial [46]. However, the selection of the
triplets requires careful consideration to ensure the effectiveness of the training process.
Louis et al. [24] demonstrated the applicability of the triplet loss for dense retrieval in
combination with Graph Neural Networks (GNNs), albeit without utilizing a dual encoder
architecture.

Euclidean similarity = Le(A, B) := 1
1 + ∥A − B∥2

. (3.3)

In the context of similarity search Equation 3.3, the triplet loss function facilitates a
Euclidean similarity search, which is significantly faster than a cosine similarity search.
This speed-up can be crucial in large-scale applications where efficiency is a key concern.
Furthermore, the use of indexing for Euclidean-based distance, a well-understood concept
from database theory, allows for faster retrieval of data, further enhancing the efficiency of
the similarity search process [47].

31

4 | Experiment setup

In this chapter, we delve into the experimental setup for validating our model, focusing
on the assumptions, data loading configurations, and model configurations. We begin by
establishing the assumptions concerning the dataset we are working with. We adopt the
closed-world assumption for the knowledge graph, implying that all relevant concepts are
included in the graph [5]. We also assume that the Graph Neural Network (GNN) model
is transductive and that we have pre-computed all entity embeddings in the knowledge
graph offline at the time of inference.

In the data loading configurations, we address the issue of class imbalance in the dataset,
implementing an undersampling approach based on the methodology proposed by
Hamilton et al. [6]. We describe the process of dividing the mentions into batches, gener-
ating a subgraph for each batch, and selecting positive and negative mentions for each entity.

In the model configurations, we elucidate the configurations of the models utilized in the
experiments, which are summarized in Table 4.2. We highlight the challenges posed by
the stringent time constraint of 4 hours for model training and the implications of this
limitation on the interpretation of the results. We also provide a comparison with the
work of Wu et al. [2] and detail the hardware utilized for training the models.

4.1 Validation Assumptions

Before proceeding with the validation of our model, it is essential to establish certain
assumptions concerning the dataset we are working with. First, we adopt the closed-world
assumption for the knowledge graph, which implies that if a concept is relevant to the
domain, it is included in the knowledge graph [5]. Consequently, any concept not present
in the knowledge graph is considered false. Furthermore, as every concept relevant to the
domain is in the knowledge graph, we can also conclude that every mention in the corpus
corresponds to a concept in the knowledge graph. Therefore, we do not encounter false
mentions during training and inference, and there are no true negative samples in the
inference step.
Second, we assume that the Graph Neural Network (GNN) model is transductive. This
means that the model can only make inferences on the entities present in the knowledge
graph and cannot infer entities not included in the knowledge graph.
Third, we assume that we have pre-computed all entity embeddings in the knowledge graph
offline at the time of inference. The inference step is essentially an entity suggestion task. If
the true entity is among the top k results, it is considered a predicted positive k (PPk) case.
If not, it is considered a predicted negative k (PNk) case. As per the second assumption,
each mention has a corresponding entity at the time of inference, and all mentions are true
conditions. Therefore, we can only measure True Positive (TP) and False Negative (FN)
cases, limiting the standard performance measurement to recall. In this project, recallk
implies that the correct entity was among the top k entities encoding most similar to the

33

Master Thesis Chapter 4. Experiment setup

given mention’s encoding, as summery of the apprivations are listed in Table 4.1.

Symbol Description
TP True Positive
FN False Negative
recallk Recall at k

PPk Predicted Positive at k

PNk Predicted Negative at k

Table 4.1: Symbols and their descriptions

4.2 Dataloading configurations

Chapter 2 underscores the prevalent issue of class imbalance, as depicted in figures 2.1, 2.5,
and Table 2.4. In the Biotable dataset, the Taxon and Entity entities are underrepresented,
creating a skewed distribution of classes. Similarly, the WDC dataset reveals a stark
disparity in the frequency of certain entities, with some appearing up to 100 times more
frequently than others. This imbalance poses significant challenges in the training and
evaluation of Neural Networks, as discussed in Section 1.3. To address this issue, we
have implemented an undersampling approach. This strategy involves designating the
primary dataset as the knowledge graph and structuring the data loading process based on
the methodology proposed by Hamilton et al. [6]. This approach aims to ensure a more
balanced representation of classes, thereby enhancing the performance and reliability of
the Neural Networks.
To initiate the sampling process, we first assume that M = {(mi, vi)} represents the
mention dataset, where mi is the feature vector and vi is the target entity. We also
assume that KG = (V, E, F) represents the knowledge graph, and that ⋃

(m,v)∈M ⊆ V . We
compiled a list of entities in the mention dataset for data sampling. Let Vm = ⋃

(m,v)∈M

denote a set of entities in the mention dataset, and let n represent the desired batch size.
The mentions in Vm were divided into batches, each containing n entities. A subgraph
was generated for each batch using the entities in the batch as the seed. The neighbors
for each entity were then loaded. The neighborhood graph is defined as ⋃

v∈Vi
Nk(v), and

Es = {(vi, vj) | vi, vj ∈ Vs ∧ (vi, vj) ∈ E}, where Nk(v) loads k arbitrary neighborhood
vertices to v. Each batch is denoted as Vi.
For each entity vi ∈ Vi, the positive and negative mentions are selected as follows: pi ∈
{(mj , vj) | vj = vi} and ni ∈ {(mj , vj) | vj ̸= ei}, where p, n are chosen arbitrarily. This
leads to the final format of the input data being defined as di = (vi, pi, ni).

34

4.3. Model Configurations Master Thesis

Knowlage graph

Entities represented in dataset

Mention
Dataset

neighbor_loader

Request mentions from datasetsub
Knowledge

graph

Request positive and
negative samples

Combine

Subgrpah
Positive mention

Negative mentions

Figure 4.1: Data loading flow

4.3 Model Configurations

This section elucidates the configurations of the models utilized in the experiments, which
are comprehensively summarized in Table 4.2. The models undergo training within a
stringent time constraint of 4 hours. This time limit is imposed to ensure an equitable
learning environment for all models. However, this time constraint also presents a significant
challenge. The extensive duration required to train each model, coupled with the 4-hour
time limit, allows for each configuration to be executed only once. This limitation precludes
the possibility of performing a statistical analysis of the results, which could potentially
provide more robust and reliable insights. Therefore, the results presented in this study
should be interpreted with this limitation in mind. Future work could potentially involve
extending the time limit or employing more efficient training methods to allow for multiple
executions of each configuration, thereby enabling a more comprehensive statistical analysis.
The entity encoder models in Table 4.2 with zero GNN layer count operated in the same
manner as a bi-directional bert-based encoder for entity encoding. The cosine similarity is
equivalent to the dot similarity if the vectors are normalized, providing a comparison with
Wu et al. [2].
Table 4.2 presents the configurations of the models used in the study. The Bert Models used
are ’base-uncased’ and ’tiny’, both pre-trained models with weights provided by Hugging
Face. The loss functions used are Cross-Entropy loss with cosine similarity (CELCS) and
Triplet Margin Loss (TML). The datasets used are BB, BioTable, and WDC. The GNN
layers count varies from 0, 3, to 5.
The hardware utilized for training the models comprised of 4x Nvidia L4 GPU graphic
cards, each with 24GB of memory. The batch size for each model was kept constant

35

Master Thesis Chapter 4. Experiment setup

throughout the training process. This resulted in a total of 36 runs, or equivalently, 144
hours of training time to train all the models. The results of these training sessions are
presented in the subsequent chapter.
In the course of model training, a time constraint of 4 hours was enforced to ensure
equitable learning. Other potential methods to maintain consistency include keeping the
number of steps or epochs constant. However, each configuration was executed only once,
which precludes the possibility of performing a statistical analysis of the results. This
limitation is due to the extensive time required to train each model and the 4-hour time
limit. To make a comparison with Wu et al. [2], the entity encoder models in Table 4.2
with zero GNN layer count operated in the same manner as a bi-directional bert-based
encoder for entity encoding, and the cosine similarity is equivalent to the dot similarity if
the vectors are normalized.

Bert Model Loss function Dataset GNNLC

base-uncased CELCS BB 0
tiny CELCS BB 0
base-uncased TML BB 0
tiny TML BB 0
base-uncased CELCS BioTable 0
tiny CELCS BioTable 0
base-uncased TML BioTable 0
tiny TML BioTable 0
base-uncased CELCS WDC 0
tiny CELCS WDC 0
base-uncased TML WDC 0
tiny TML WDC 0
base-uncased CELCS BB 3
tiny CELCS BB 3
base-uncased TML BB 3
tiny TML BB 3
base-uncased CELCS BioTable 3
tiny CELCS BioTable 3
base-uncased TML BioTable 3
tiny TML BioTable 3
base-uncased CELCS WDC 3
tiny CELCS WDC 3
base-uncased TML WDC 3
tiny TML WDC 3
base-uncased CELCS BB 5
tiny CELCS BB 5
base-uncased TML BB 5
tiny TML BB 5
base-uncased CELCS BioTable 5
tiny CELCS BioTable 5
base-uncased TML BioTable 5
tiny TML BioTable 5
base-uncased CELCS WDC 5
tiny CELCS WDC 5
base-uncased TML WDC 5
tiny TML WDC 5

Table 4.2: Table 4.2 presents the configurations of the models used in the study. The Bert Models used are
’base-uncased’ and ’tiny’, both pre-trained models with weights provided by Hugging Face. The loss functions
used are Cross-Entropy loss with cosine similarity (CELCS) and Triplet Margin Loss (TML). The datasets
used are BB, BioTable, and WDC. The GNN layers count (GNNLC) varies from 0, 3, to 5.

The hardware utilized for training the models comprised of 4x Nvidia L4 GPU graphic
cards, each with 24GB of memory. The batch size for each model was kept constant
throughout the training process. This resulted in a total of 36 runs, or equivalently, 144
hours of training time to train all the models. The results of these training sessions are
presented in the subsequent chapter.

36

5 | Evaluation of Experiments

The experimental setup for this study is detailed in Table 4.2. The subsequent sections
provide an in-depth analysis of the results derived from these experiments, with a
particular emphasis on the influence of the configuration on the final outcomes. Due to
constraints in resources, each configuration is executed only once. For a more robust
statistical understanding of the significance of each configuration, it would be necessary to
conduct additional runs. However, due to time limitations, not all configurations of the
model with the text encoder being bert-base-uncased were executed, with 4 runs remaining
incomplete. The results of the executed runs are presented in Table 5.1.

Table 4.2 offers a comprehensive overview of all the model configurations that were
evaluated for performance. However, as indicated in Table 5.1, not all configurations were
executed. Certain configurations, specifically those utilizing bert-base-uncased and the
triplet margin loss function for the Schema and BioTable datasets, were not executed due
to time constraints.

The model architecture, which includes a Bi-directional encoder as the entity encoder and
employs cosine similarity measurement, is based on the work of Wu et al. [2]. This model
currently represents the state-of-the-art in the field of dense retrieval and entity suggestion
with a knowledge graph.

Table 5.1 lists all model configurations that were trained in this project. The highest
recallk for k ∈ {10, 50, 100} measured for any run, and the minimum of the loss score
found, are discussed in detail later in this chapter.

37

Master Thesis Chapter 5. Evaluation of Experiments

Bert encoder GNN Dataset Loss function Recall 10 Recall 50 Recall 100 Loss Score

tiny 0 BB CELCS 8.04 21.34 29.38 1.68
tiny 3 BB CELCS 10.54 19.46 26.88 1.68
tiny 5 BB CELCS 8.48 19.91 27.05 1.70
tiny 0 BioTable CELCS 37.98 37.98 52.26 0.46
tiny 3 BioTable CELCS 46.31 72.50 100.00 0.97
tiny 5 BioTable CELCS 15.83 29.29 54.64 1.01
tiny 0 WDC CELCS 15.21 41.40 60.14 2.02
tiny 3 WDC CELCS 24.45 46.98 56.98 2.20
tiny 5 WDC CELCS 23.57 51.26 63.00 2.15
tiny 0 BB TML 4.22 7.03 10.27 0.66
tiny 3 BB TML 2.46 6.61 13.08 0.59
tiny 5 BB TML 3.68 8.24 13.75 0.67
tiny 0 BioTable TML 41.34 44.11 100.00 0.31
tiny 3 BioTable TML 23.42 42.53 100.00 0.45
tiny 5 BioTable TML 42.50 70.30 100.00 0.37
tiny 0 WDC TML 8.68 18.29 21.62 0.72
tiny 3 WDC TML 9.21 27.72 38.13 0.71
tiny 5 WDC TML 19.30 35.75 42.18 0.74
base-uncased 0 BB CELCS 5.43 13.12 20.81 0.04
base-uncased 3 BB CELCS 3.17 9.95 22.17 0.15
base-uncased 5 BB CELCS 6.79 18.10 28.05 0.08
base-uncased 0 BioTable CELCS 0.61 4.85 8.48 0.14
base-uncased 3 BioTable CELCS 1.82 6.06 8.48 0.16
base-uncased 5 BioTable CELCS 0.00 1.21 6.06 0.10
base-uncased 0 WDC CELCS 8.43 19.87 31.92 0.14
base-uncased 3 WDC CELCS 5.01 25.91 49.33 0.13
base-uncased 5 WDC CELCS 16.68 47.20 59.06 0.16
base-uncased 5 WDC CELCS 12.73 42.68 58.75 0.11
base-uncased 0 BB TML 5.43 8.14 14.93 0.00
base-uncased 3 BB TML 4.07 9.50 16.74 0.00
base-uncased 5 BB TML 3.62 10.41 14.48 0.00
base-uncased 0 WDC TML 2.15 9.46 19.63 0.00

Table 5.1: This table presents the results of model experiments using different configurations of Bert
encoders, GNNs, datasets, and loss functions. The Bert encoders used are bert-tiny and bert-base-uncased
from huggingface. The loss functions include Cross-entropy loss with Cosine similarity (CELCS) and Triplet
margin loss (TML).

The first environment examined involves small bert models and the effect of the loss
function on model validation. The mean results grouped by the loss function values are
shown in Table 5.2. In all three metrics, the cosine cross entropy loss function performs
better across the selected Recallk. It is hypothesized that utilizing the cross entropy loss
with cosine similarity improves performance. Note that the table only uses bert-tiny as
most of the bert-base-uncased runs are for cosine similarity and not triplet loss.

Recall 10 Recall 50 Recall 100

Cross entity loss with Cosine similarity 21.16 37.79 52.22
Triplet margin loss 17.20 28.95 48.78

Table 5.2: Comparison of the mean performance of the cosine cross entropy loss function and the triplet
margin loss function across different Recall values, using the bert-tiny model and the entire dataset.

The next configuration examined is for entity encoding. The comparison is made if the en-
coder is a Bi-directional encoder, or if integrating the GNN layer into the entity encoder, as
seen in Figure 3.4b, and changing the layers to three layers or five layers of GCNConv layers
improves performance. Table 5.3 highlights the results from taking the mean from Table 5.1
when grouping by GNN layers. While for Recall10 shows minimal difference of a single point,

38

Master Thesis

however, the recall50, recall100 perform better when including the GNN entity in the model.

GNN layers Recall 10 Recall 50 Recall 100

Bi-directional encoder 19.25 28.36 45.61
3 19.40 35.97 55.85
5 18.89 35.79 50.10

Table 5.3: Comparison of recall values for different GNN layer configurations in the entity encoder model.

Examining the effect of the dataset on the model, Table 5.4 shows the mean of the results
from Table 5.1 when grouping by the dataset. The results show that the DBpedia dataset
performs better than the other two datasets. This is due to the fact that the DBpedia
dataset has more data than the other two datasets, and the model is able to learn more
from the DBpedia dataset.

Dataset Recall 10 Recall 50 Recall 100

BB 6.24 13.77 20.07
BioTable 34.56 49.45 84.48
WDC 16.74 36.90 47.01

Table 5.4: Comparison of model performance across different datasets. The table shows the recall at 10,
50, and 100 for each dataset. It is evident from the results that the DBpedia dataset outperforms the other
two datasets.

The performance of the model on the DBpedia dataset surpasses that on the other two
datasets, as seen in Table 5.4. This superior performance can be attributed to the size of
the DBpedia dataset, which is the largest among the three. The model, therefore, has
more data to learn from in the DBpedia dataset. However, a comprehensive understanding
of the model’s performance cannot be achieved by merely examining the overall results. It
is essential to delve deeper into the results for each dataset and scrutinize the impact of
the configuration on these results.

In Table 5.1, it is observed that some configurations with the bert-base-uncased model
were not executed. To maintain fairness in comparisons, two separate tables are introduced.
The first table includes only the matching configurations in bert-tiny, while the second
table encompasses all runs from bert-tiny. This approach ensures that the comparisons are
not skewed by the configurations that were not run.
Table 5.1 and noting that some configurations with the bert-base-uncased model were not
run, the configurations that were not run, and to keep the comparisons fair two tables are
introduced one with only matching configurations in bert-tiny and one will all runs from
bert-tiny.

39

Master Thesis Chapter 5. Evaluation of Experiments

Recall 10 Recall 50 Recall 100

BERT 19.80 34.26 52.22
BERT Large 5.42 16.18 25.64

Table 5.5: Comparison of Recall metrics between BERT and BERT Large models.

Comparing the cross entropy loss model runs where the change is the BERT-uncased-
model as seen in Table 5.5, it is seen that using the large bert model hinders the model’s
performance in all recallk metrics by a significant amount.
Figures 5.1a and 5.1b shows the loss over steps for the configuration bert=bert-tiny,
gnn_layers=5, loss=triplet margin loss and cross entropy loss and dataset=BB. The loss
function appears to be a random process with a constant mean, indicating that it does not
decrease over time by any significant amount.

(a) Loss over steps for the configuration bert=bert-tiny,
gnn_layers=5, loss=triplet loss and dataset=WDC.

(b) Loss over steps for the configuration bert=bert-tiny,
gnn_layers=5, loss=cross entropy loss and dataset=WDC.

Figure 5.1: Illustration of loss over steps for the configurations bert=bert-tiny, gnn_layers=5, with two
different loss functions: triplet margin loss and cross entropy loss, applied on the BB dataset. The loss
function seems to follow a random process with a stable mean, suggesting no significant decrease over time.

Figure 5.2a shows the loss over steps for the configuration bert=bert-base-uncased,
gnn_layers=5, loss=triplet loss and dataset=BB. The loss function appears to be a
random process with a constant mean, indicating that it does not decrease over time by
any significant amount. However, Figure 5.2b, which shows the same configuration with
the only change being the loss function changed to cross entropy loss, shows a decrease
over time closing in on zero.

40

Master Thesis

(a) Graphical representation of loss over steps for the
configuration bert=bert-base-uncased, gnn_layers=5,
loss=triplet loss and dataset=BB.

(b) Graphical representation of loss over steps for the
configuration bert=bert-base-uncased, gnn_layers=5,
loss=cross entropy loss and dataset=BB.

Figure 5.2: Comparative analysis of loss over steps for different configurations.

The loss over time with the change of bert-tiny and bert-base-uncased shows that the loss
function for bert-base-uncased is lower. This is corroborated by Table 5.1 that shows the
minimal loss recorded at any training point for bert-base-uncased models are lower by a
large margin. This can indicating that for BERT-tiny that the triplet margin loss with
random negative samples did not move the embeddings in the right direction, Schroff et
al [46] noted that when introducing triplet margin loss that the mining strategy for the
negative samples was importance for improving the models performances, and that it was
importance to select hard negative samples.
In conclusion, it is found that using cross entity loss with cosine similarity performs better
than triplet loss. Adding in the GNN into the entity encoder performs no difference when
using recall 10, but performs better when using recall 50 and recall 100. Looking at
the performances show that the model performs better on tabular dataset than on text
based dataset. The model performance better on the Biotable dataset than WDC this can
indicate that the model can performance well on domain specific datasets.

41

6 | Future Work

The successful implementation of the Graph Neural Network (GNN) layer in this project
has demonstrated its potential in enhancing model performance. However, there are several
areas that still require improvement.
Entity Embedding
The entity embedding utilized in this project was the small BERT model. However, other
models, such as the RoBERTa model [48], which is larger than the BERT model, could
potentially enhance the entity embedding and consequently improve the model’s perform-
ance. The incorporation of the ’nil’ entity, as suggested by [49], for entities not represented
in the knowledge graph, could shift the knowledge graph assumption to the open world
assumption. Building on the work of Louis et al. [24], the dense retrieval methodology
could be used to fine-tune the bi-directional mention and entity encoder based on Wu et
al. [2], and then use the GNN to enrich the embedding with graphical structural information.

GNN Layer
The GNN layer used in this project was the GAT layer. However, other GNN layers, such
as the GraphSAGE layer [6], could potentially enhance the model’s performance.
Edge Features
The edge features used in this project were the cosine similarity between the entity
embedding. However, other edge features, such as the Jaccard similarity [2], could
potentially enhance the model’s performance.

Hard Negative sampling
Schroff et al. [46] demonstrated that hard negative sampling could enhance the model’s
performance. This technique could be used to improve the model’s performance. This
project used a random sampling technique to retrieve a mention that was a negative sample.

Ontology Reasoning
Ontology reasoning could be used to enhance the model’s performance. For example, the
model could be trained to understand that a person is a type of entity and that a person
is a type of human. Consequently, when the model is trained, it will understand that a
person is a type of human. Finding negative samples that are semantically similar to the
mention could enhance the model’s performance.

Pre-training
The entity encoder could be pre-trained on the embedding task based on Knowledge graph
embedding benchmark datasets so that the GNN learns structural information based on
relationship types. Expanding the datasets to all entity linking dataset both text based
and tabular based as a Pre-training task and then using a domain specific dataset to fine
tune the model.

43

7 | Conclusion

The training phase of the model involves interaction solely with entities represented in the
mention dataset. As a result, the final positioning of entities not included in the mention
dataset remains untrained.
In the process of training dense retrieval models, an assumption is made, as discussed
in Section 1.3, that the model’s functionality is based on moving mention and entity
embeddings that are related closer together, while distancing unrelated ones.
Upon comparing the results in Chapter 5, it is evident that the integration of the Graph
Neural Network (GNN) into the entity encoder, based on the model architecture proposed
by Wu et al. [2], does not significantly improve the recall 10 validation metric. However,
an improvement of 5-10% is observed in recall 50 and recall 100 for each task.
The choice of loss function for training the model also impacts its performance. The model
trained with the cross-entropy cosine similarity loss function outperforms the one trained
with the triplet margin loss function. This finding aligns with the studies of Louis et al.
[24], who compared the triplet margin loss with cross-entropy loss, and Wu et al. [2], who
used the dot similarity measurement. However, neither study employed negative sampling
during model training.
Chapter 5 reveals that models using bert-base-uncased performed significantly worse than
other models. A closer look at the parameters reveals that the bert-tiny model contained
approximately 5 million parameters for each encoder, while bert-base-uncased contained
about 110 million parameters. Given the size of the datasets and the number of parameters,
it is plausible that the model overfitted when using such a large BERT model. This
hypothesis is further supported by the loss functions figures in the appendix for large bert
models and Table 5.1, where the loss score for bert-base-uncased models was close to zero
compared to other models.
To evaluate the performance of the model, we selected four random mentions from the
WDC validation dataset and a model with bert-tiny, 5 GNN layers, and trained with
cross-entropy cosine loss to examine the 5 entities that were retrieved. Table 7.1 displays
the target entity at the top and the retrieved entities in the subsequent five rows. Despite
numerous duplicate entities retrieved across the 4 mentions, the MusicAlbum and URL
retrieved some entities that are somewhat close.

Event Name MusicAlbum URL

1 ContentUrl Genetic Distance Genetic
2 dct:identifier ContentUrl Eye ContentUrl
3 Genetic dct:identifier dcat:Catalog dct:identifier
4 entertainmentBusiness entertainmentBusiness AlbumRelease entertainmentBusiness
5 TouristInfomationCenter chemicalRole Residence vehicleSpecialUsage

Table 7.1: Top 5 entities for each mention based on dense retrieval in the WDC training dataset.

Table 7.1 indicates that while the model is unable to retrieve the correct entities, the
suggested entities are more semantically in nature as opposed to lexicographic similarity.
The model is capable of making suggestions based on semantic similarities, demonstrating
the feasibility of entity suggestion based on dense retrieval. However, the model requires

45

Master Thesis Chapter 7. Conclusion

further fine-tuning to achieve state-of-the-art performance.

46

Bibliography

[1] Bossy, Robert et al. ‘Bacteria Biotope at BioNLP Open Shared Tasks 2019’. In:
Proceedings of the 5th Workshop on BioNLP Open Shared Tasks. Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 121–131. doi: 10.18653/
v1/D19-5719. url: https://aclanthology.org/D19-5719 (visited on 09/10/2023).

[2] Wu, Ledell et al. Scalable Zero-shot Entity Linking with Dense Entity Retrieval.
arXiv:1911.03814 [cs]. Sept. 2020. doi: 10.48550/arXiv.1911.03814. url: http:
//arxiv.org/abs/1911.03814 (visited on 21/08/2023).

[3] Trabelsi, Mohamed et al. ‘StruBERT: Structure-aware BERT for Table Search and
Matching’. en. In: Proceedings of the ACM Web Conference 2022. arXiv:2203.14278
[cs]. Apr. 2022, pp. 442–451. doi: 10.1145/3485447.3511972. url: http://arxiv.
org/abs/2203.14278 (visited on 17/08/2023).

[4] Devlin, Jacob et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805 [cs]. May 2019. doi: 10.48550/arXiv.
1810.04805. url: http://arxiv.org/abs/1810.04805 (visited on 01/09/2023).

[5] Wagner, B. and Garcez, A. S. d’Avila. ‘Neural-Symbolic Reasoning Under Open-World
and Closed-World Assumptions’. en. In: CEUR Workshop Proceedings. Vol. 3121.
ISSN: 1613-0073. California, USA: CEUR, Mar. 2022. url: http://ceur-ws.org/
Vol-3121/paper3.pdf (visited on 10/10/2023).

[6] Hamilton, William L., Ying, Rex and Leskovec, Jure. Inductive Representation
Learning on Large Graphs. en. arXiv:1706.02216 [cs, stat]. Sept. 2018. url: http:
//arxiv.org/abs/1706.02216 (visited on 09/10/2023).

[7] Goodfellow, Ian, Bengio, Yoshua and Courville, Aaron. Deep learning. eng. Adaptive
computation and machine learning. Cambridge, Massachusetts London, England:
The MIT Press, 2016. isbn: 978-0-262-03561-3.

[8] Manning, Christopher D., Raghavan, Prabhakar and Schütze, Hinrich. Introduction
to information retrieval. OCLC: ocn190786122. New York: Cambridge University
Press, 2008. isbn: 978-0-521-86571-5.

[9] Calvanese, Diego et al. ‘Ontology-Based Data Access and Integration’. en. In: Encyc-
lopedia of Database Systems. Ed. by Liu, Ling and Özsu, M. Tamer. New York, NY:
Springer, 2018, pp. 2590–2596. isbn: 978-1-4614-8265-9. doi: 10.1007/978-1-4614-
8265-9_80667. url: https://doi.org/10.1007/978-1-4614-8265-9_80667
(visited on 18/10/2023).

[10] Ontology Matching | SpringerLink. url: https://link.springer.com/book/10.
1007/978-3-642-38721-0 (visited on 18/10/2023).

[11] Zhou, Jie et al. ‘Graph neural networks: A review of methods and applications’.
In: AI Open 1 (Jan. 2020), pp. 57–81. issn: 2666-6510. doi: 10.1016/j.aiopen.
2021.01.001. url: https://www.sciencedirect.com/science/article/pii/
S2666651021000012 (visited on 18/10/2023).

[12] Kipf, Thomas N. and Welling, Max. Semi-Supervised Classification with Graph
Convolutional Networks. en. arXiv:1609.02907 [cs, stat]. Feb. 2017. url: http://
arxiv.org/abs/1609.02907 (visited on 09/10/2023).

47

https://doi.org/10.18653/v1/D19-5719
https://doi.org/10.18653/v1/D19-5719
https://aclanthology.org/D19-5719
https://doi.org/10.48550/arXiv.1911.03814
http://arxiv.org/abs/1911.03814
http://arxiv.org/abs/1911.03814
https://doi.org/10.1145/3485447.3511972
http://arxiv.org/abs/2203.14278
http://arxiv.org/abs/2203.14278
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
http://arxiv.org/abs/1810.04805
http://ceur-ws.org/Vol-3121/paper3.pdf
http://ceur-ws.org/Vol-3121/paper3.pdf
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
https://doi.org/10.1007/978-1-4614-8265-9_80667
https://doi.org/10.1007/978-1-4614-8265-9_80667
https://doi.org/10.1007/978-1-4614-8265-9_80667
https://link.springer.com/book/10.1007/978-3-642-38721-0
https://link.springer.com/book/10.1007/978-3-642-38721-0
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907

Master Thesis Bibliography

[13] Goyal, Palash and Ferrara, Emilio. ‘Graph Embedding Techniques, Applications,
and Performance: A Survey’. In: Knowledge-Based Systems 151 (July 2018).
arXiv:1705.02801 [physics], pp. 78–94. issn: 09507051. doi: 10.1016/j.knosys.
2018.03.022. url: http://arxiv.org/abs/1705.02801 (visited on 18/10/2023).

[14] Gilmer, Justin et al. Neural Message Passing for Quantum Chemistry.
arXiv:1704.01212 [cs]. June 2017. doi: 10.48550/arXiv.1704.01212. url: http:
//arxiv.org/abs/1704.01212 (visited on 18/10/2023).

[15] Hadsell, R., Chopra, S. and LeCun, Y. ‘Dimensionality Reduction by Learning an
Invariant Mapping’. In: 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06). Vol. 2. ISSN: 1063-6919. June 2006,
pp. 1735–1742. doi: 10.1109/CVPR.2006.100.

[16] Karpukhin, Vladimir et al. ‘Dense Passage Retrieval for Open-Domain Question
Answering’. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Online: Association for Computational Linguistics,
Nov. 2020, pp. 6769–6781. doi: 10.18653/v1/2020.emnlp-main.550. url: https:
//aclanthology.org/2020.emnlp-main.550 (visited on 18/10/2023).

[17] Rekabsaz, Navid et al. ‘Volatility Prediction using Financial Disclosures Sentiments
with Word Embedding-based IR Models’. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver,
Canada: Association for Computational Linguistics, July 2017, pp. 1712–1721. doi:
10.18653/v1/P17-1157. url: https://aclanthology.org/P17-1157 (visited on
18/10/2023).

[18] Shen, Wei, Wang, Jianyong and Han, Jiawei. ‘Entity Linking with a Knowledge Base:
Issues, Techniques, and Solutions’. In: IEEE Transactions on Knowledge and Data
Engineering 27.2 (Feb. 2015). Conference Name: IEEE Transactions on Knowledge and
Data Engineering, pp. 443–460. issn: 1558-2191. doi: 10.1109/TKDE.2014.2327028.
url: https://ieeexplore.ieee.org/document/6823700 (visited on 18/10/2023).

[19] Mendes, Pablo et al. ‘DBpedia Spotlight: Shedding Light on the Web of Documents’.
In: Proceedings of the 7th International Conference on Semantic Systems (Sept. 2011),
pp. 1–8. doi: 10.1145/2063518.2063519. url: https://corescholar.libraries.
wright.edu/knoesis/1034.

[20] Rao, Delip, McNamee, Paul and Dredze, Mark. ‘Entity Linking: Finding Extrac-
ted Entities in a Knowledge Base’. en. In: Multi-source, Multilingual Information
Extraction and Summarization. Ed. by Poibeau, Thierry et al. Theory and Applica-
tions of Natural Language Processing. Berlin, Heidelberg: Springer, 2013, pp. 93–
115. isbn: 978-3-642-28569-1. doi: 10.1007/978-3-642-28569-1_5. url: https:
//doi.org/10.1007/978-3-642-28569-1_5 (visited on 18/10/2023).

[21] Dredze, Mark et al. ‘Entity Disambiguation for Knowledge Base Population’. In: Pro-
ceedings of the 23rd International Conference on Computational Linguistics (Coling
2010). Beijing, China: Coling 2010 Organizing Committee, Aug. 2010, pp. 277–285.
url: https://aclanthology.org/C10-1032 (visited on 21/08/2023).

[22] He, Zhengyan et al. ‘Learning Entity Representation for Entity Disambiguation’.
In: Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Sofia, Bulgaria: Association for Computational
Linguistics, Aug. 2013, pp. 30–34. url: https://aclanthology.org/P13-2006
(visited on 21/08/2023).

48

https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.knosys.2018.03.022
http://arxiv.org/abs/1705.02801
https://doi.org/10.48550/arXiv.1704.01212
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://doi.org/10.18653/v1/P17-1157
https://aclanthology.org/P17-1157
https://doi.org/10.1109/TKDE.2014.2327028
https://ieeexplore.ieee.org/document/6823700
https://doi.org/10.1145/2063518.2063519
https://corescholar.libraries.wright.edu/knoesis/1034
https://corescholar.libraries.wright.edu/knoesis/1034
https://doi.org/10.1007/978-3-642-28569-1_5
https://doi.org/10.1007/978-3-642-28569-1_5
https://doi.org/10.1007/978-3-642-28569-1_5
https://aclanthology.org/C10-1032
https://aclanthology.org/P13-2006

Bibliography Master Thesis

[23] Wang, Zhen et al. ‘Knowledge Graph and Text Jointly Embedding’. en. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014, pp. 1591–
1601. doi: 10.3115/v1/D14-1167. url: http://aclweb.org/anthology/D14-1167
(visited on 17/08/2023).

[24] Louis, Antoine, Dijck, Gijs van and Spanakis, Gerasimos. ‘Finding the Law: Enhancing
Statutory Article Retrieval via Graph Neural Networks’. In: Proceedings of the
17th Conference of the European Chapter of the Association for Computational
Linguistics. Dubrovnik, Croatia: Association for Computational Linguistics, May
2023, pp. 2761–2776. doi: 10 . 18653 / v1 / 2023 . eacl - main . 203. url: https :
//aclanthology.org/2023.eacl-main.203 (visited on 09/10/2023).

[25] Nédellec, Claire. OntoBiotope-BioNLP-OST. en. Oct. 2023. doi: 10 . 15454 /
VSQKHB. url: https://entrepot.recherche.data.gouv.fr/dataset.xhtml?
persistentId=doi:10.15454/VSQKHB (visited on 09/10/2023).

[26] Jackson, Rebecca et al. ‘OBO Foundry in 2021: operationaliz-
ing open data principles to evaluate ontologies’. In: Database 2021
(Oct. 2021). _eprint: https://academic.oup.com/database/article-
pdf/doi/10.1093/database/baab069/40854912/baab069.pdf, baab069. issn:
1758-0463. doi: 10.1093/database/baab069. url: https://doi.org/10.1093/
database/baab069.

[27] Ritze, Dominique and Bizer, Christian. Matching Web Tables To DBpedia - A
Feature Utility Study. en. 2017. doi: 10.5441/002/EDBT.2017.20. url: https://
openproceedings.org/2017/conf/edbt/paper-148.pdf (visited on 09/10/2023).

[28] Oliveira, Daniela and Pesquita, Catia. SemTab 2021 BioTable Dataset. Oct. 2021. doi:
10.5281/zenodo.5606585. url: https://zenodo.org/record/5606585 (visited
on 09/10/2023).

[29] Cutrona, Vincenzo et al. ‘Tough Tables: Carefully Evaluating Entity Linking for
Tabular Data’. en. In: The Semantic Web – ISWC 2020. Ed. by Pan, Jeff Z. et
al. Vol. 12507. Series Title: Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, pp. 328–343. isbn: 978-3-030-62465-1. doi: 10.1007/
978-3-030-62466-8_21. url: https://link.springer.com/10.1007/978-3-
030-62466-8_21 (visited on 09/10/2023).

[30] Hulsebos, Madelon, Demiralp, Çağatay and Groth, Paul. ‘GitTables: A Large-Scale
Corpus of Relational Tables’. en. In: Proceedings of the ACM on Management of
Data 1.1 (May 2023). arXiv:2106.07258 [cs], pp. 1–17. issn: 2836-6573. doi: 10.1145/
3588710. url: http://arxiv.org/abs/2106.07258 (visited on 09/10/2023).

[31] Efthymiou, Vasilis et al. ‘Matching Web Tables with Knowledge Base Entities:
From Entity Lookups to Entity Embeddings’. en. In: The Semantic Web – ISWC
2017. Ed. by d’Amato, Claudia et al. Vol. 10587. Series Title: Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2017, pp. 260–277.
isbn: 978-3-319-68287-7. doi: 10.1007/978- 3- 319- 68288- 4_16. url: https:
//link.springer.com/10.1007/978-3-319-68288-4_16 (visited on 09/10/2023).

[32] Zhang, Dan et al. Sato: Contextual Semantic Type Detection in Tables. en.
arXiv:1911.06311 [cs]. June 2020. url: http : / / arxiv . org / abs / 1911 . 06311
(visited on 09/10/2023).

49

https://doi.org/10.3115/v1/D14-1167
http://aclweb.org/anthology/D14-1167
https://doi.org/10.18653/v1/2023.eacl-main.203
https://aclanthology.org/2023.eacl-main.203
https://aclanthology.org/2023.eacl-main.203
https://doi.org/10.15454/VSQKHB
https://doi.org/10.15454/VSQKHB
https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.15454/VSQKHB
https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.15454/VSQKHB
https://doi.org/10.1093/database/baab069
https://doi.org/10.1093/database/baab069
https://doi.org/10.1093/database/baab069
https://doi.org/10.5441/002/EDBT.2017.20
https://openproceedings.org/2017/conf/edbt/paper-148.pdf
https://openproceedings.org/2017/conf/edbt/paper-148.pdf
https://doi.org/10.5281/zenodo.5606585
https://zenodo.org/record/5606585
https://doi.org/10.1007/978-3-030-62466-8_21
https://doi.org/10.1007/978-3-030-62466-8_21
https://link.springer.com/10.1007/978-3-030-62466-8_21
https://link.springer.com/10.1007/978-3-030-62466-8_21
https://doi.org/10.1145/3588710
https://doi.org/10.1145/3588710
http://arxiv.org/abs/2106.07258
https://doi.org/10.1007/978-3-319-68288-4_16
https://link.springer.com/10.1007/978-3-319-68288-4_16
https://link.springer.com/10.1007/978-3-319-68288-4_16
http://arxiv.org/abs/1911.06311

Master Thesis Bibliography

[33] Abdallah, Abdelrahman et al. ‘TNCR: Table Net Detection and Classification Data-
set’. In: Neurocomputing 473 (Feb. 2022). arXiv:2106.15322 [cs], pp. 79–97. issn:
09252312. doi: 10.1016/j.neucom.2021.11.101. url: http://arxiv.org/abs/
2106.15322 (visited on 09/10/2023).

[34] Deng, Xiang et al. TURL: Table Understanding through Representation Learning. en.
arXiv:2006.14806 [cs]. Dec. 2020. url: http://arxiv.org/abs/2006.14806 (visited
on 09/10/2023).

[35] Korini, Keti. ‘SOTAB: The WDC Schema.org Table Annotation Benchmark’. en. In:
().

[36] Veyhe, Bartal Eyðfinsson, Sagi, Tomer and Hose, Katja. ‘Scientific Data Extraction
from Oceanographic Papers’. In: ACM Web Conference 2023 - Companion of the
World Wide Web Conference, WWW 2023 (Apr. 2023). Publisher: Association for
Computing Machinery, pp. 800–804. doi: 10.1145/3543873.3587595. url: http:
//www.scopus.com/inward/record.url?scp=85159581806&partnerID=8YFLogxK
(visited on 13/10/2023).

[37] Wikidata:Database reports/List of properties/all - Wikidata. url: https://www.
wikidata.org/wiki/Wikidata:Database_reports/List_of_properties/all
(visited on 09/10/2023).

[38] Dong, Zhe et al. Exploring Dual Encoder Architectures for Question Answering. en.
Apr. 2022. url: https://arxiv.org/abs/2204.07120v2 (visited on 09/10/2023).

[39] Team, Keras. Keras documentation: Natural language image search with a Dual
Encoder. en. url: https://keras.io/examples/vision/nl_image_search/
(visited on 09/10/2023).

[40] Yang, Yulei and Li, Dongsheng. ‘NENN: Incorporate Node and Edge Features in
Graph Neural Networks’. en. In: Proceedings of The 12th Asian Conference on
Machine Learning. ISSN: 2640-3498. PMLR, Sept. 2020, pp. 593–608. url: https:
//proceedings.mlr.press/v129/yang20a.html (visited on 10/10/2023).

[41] Gong, Liyu and Cheng, Qiang. Exploiting Edge Features in Graph Neural Networks.
en. arXiv:1809.02709 [cs, stat]. Jan. 2019. url: http://arxiv.org/abs/1809.02709
(visited on 10/10/2023).

[42] Veličković, Petar et al. Graph Attention Networks. en. arXiv:1710.10903 [cs, stat].
Feb. 2018. url: http://arxiv.org/abs/1710.10903 (visited on 09/10/2023).

[43] Morris, Christopher et al. ‘Weisfeiler and Leman Go Neural: Higher-Order Graph
Neural Networks’. en. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence 33.01 (July 2019), pp. 4602–4609. issn: 2374-3468, 2159-5399. doi: 10.1609/
aaai.v33i01.33014602. url: https://ojs.aaai.org/index.php/AAAI/article/
view/4384 (visited on 09/10/2023).

[44] Brody, Shaked, Alon, Uri and Yahav, Eran. How Attentive are Graph Attention
Networks? en. arXiv:2105.14491 [cs]. Jan. 2022. url: http://arxiv.org/abs/2105.
14491 (visited on 09/10/2023).

[45] Johnson, Jeff, Douze, Matthijs and Jégou, Hervé. Billion-scale similarity search with
GPUs. arXiv:1702.08734 [cs]. Feb. 2017. doi: 10.48550/arXiv.1702.08734. url:
http://arxiv.org/abs/1702.08734 (visited on 10/10/2023).

50

https://doi.org/10.1016/j.neucom.2021.11.101
http://arxiv.org/abs/2106.15322
http://arxiv.org/abs/2106.15322
http://arxiv.org/abs/2006.14806
https://doi.org/10.1145/3543873.3587595
http://www.scopus.com/inward/record.url?scp=85159581806&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85159581806&partnerID=8YFLogxK
https://www.wikidata.org/wiki/Wikidata:Database_reports/List_of_properties/all
https://www.wikidata.org/wiki/Wikidata:Database_reports/List_of_properties/all
https://arxiv.org/abs/2204.07120v2
https://keras.io/examples/vision/nl_image_search/
https://proceedings.mlr.press/v129/yang20a.html
https://proceedings.mlr.press/v129/yang20a.html
http://arxiv.org/abs/1809.02709
http://arxiv.org/abs/1710.10903
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://ojs.aaai.org/index.php/AAAI/article/view/4384
https://ojs.aaai.org/index.php/AAAI/article/view/4384
http://arxiv.org/abs/2105.14491
http://arxiv.org/abs/2105.14491
https://doi.org/10.48550/arXiv.1702.08734
http://arxiv.org/abs/1702.08734

Bibliography Master Thesis

[46] Schroff, Florian, Kalenichenko, Dmitry and Philbin, James. FaceNet: A Unified
Embedding for Face Recognition and Clustering. en. Mar. 2015. doi: 10.1109/
CVPR.2015.7298682. url: https://arxiv.org/abs/1503.03832v3 (visited on
10/10/2023).

[47] Scarselli, F. et al. ‘The Graph Neural Network Model’. In: IEEE Transactions
on Neural Networks 20.1 (Jan. 2009), pp. 61–80. issn: 1045-9227, 1941-0093. doi:
10.1109/TNN.2008.2005605. url: http://ieeexplore.ieee.org/document/
4700287/ (visited on 01/09/2023).

[48] Liu, Yinhan et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach.
arXiv:1907.11692 [cs]. July 2019. doi: 10.48550/arXiv.1907.11692. url: http:
//arxiv.org/abs/1907.11692 (visited on 18/10/2023).

[49] Abdelmageed, Nora et al. ‘Results of SemTab 2022’. In: Semantic Web Challenge on
Tabular Data to Knowledge Graph Matching 3320 (2022). Publisher: CEUR.

51

https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/abs/1503.03832v3
https://doi.org/10.1109/TNN.2008.2005605
http://ieeexplore.ieee.org/document/4700287/
http://ieeexplore.ieee.org/document/4700287/
https://doi.org/10.48550/arXiv.1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

Appendices

53

A | Model runs charts

bert-large 0 Schema Tripplet margin loss

For the dataset Schema, we used the Bi-directional bert encoder with 0 GNN layers and
the bert-large model. The loss function used was Tripplet margin loss. The following
figures show the loss and recall values obtained during the training process. It is important
to note that these values are indicative of the model’s performance and can vary depending
on the specific configuration and parameters used.

Figure A.1: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

Figure A.2: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

55

Master Thesis Appendix A. Model runs charts

Figure A.3: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

Figure A.4: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

bert-large 5 BB Tripplet margin loss

For the dataset BB, we used the Bi-directional bert encoder with 5 GNN layers and the
bert-large model. The loss function used was Tripplet margin loss. The following figures
show the loss and recall values obtained during the training process. It is important to
note that these values are indicative of the model’s performance and can vary depending
on the specific configuration and parameters used.

56

Master Thesis

Figure A.5: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

Figure A.6: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

57

Master Thesis Appendix A. Model runs charts

Figure A.7: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

Figure A.8: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

bert-large 3 BB Tripplet margin loss

For the dataset BB, we used the Bi-directional bert encoder with 3 GNN layers and the
bert-large model. The loss function used was Tripplet margin loss. The following figures
show the loss and recall values obtained during the training process. It is important to
note that these values are indicative of the model’s performance and can vary depending
on the specific configuration and parameters used.

58

Master Thesis

Figure A.9: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

Figure A.10: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

59

Master Thesis Appendix A. Model runs charts

Figure A.11: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

Figure A.12: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

bert-large 0 BB Tripplet margin loss

For the dataset BB, we used the Bi-directional bert encoder with 0 GNN layers and the
bert-large model. The loss function used was Tripplet margin loss. The following figures
show the loss and recall values obtained during the training process. It is important to
note that these values are indicative of the model’s performance and can vary depending
on the specific configuration and parameters used.

60

Master Thesis

Figure A.13: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

Figure A.14: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

61

Master Thesis Appendix A. Model runs charts

Figure A.15: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

Figure A.16: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

bert-large 5 DBpeida cosine

For the dataset DBpeida, we used the Bi-directional bert encoder with 5 GNN layers and
the bert-large model. The loss function used was cosine. The following figures show the
loss and recall values obtained during the training process. It is important to note that
these values are indicative of the model’s performance and can vary depending on the
specific configuration and parameters used.

62

Master Thesis

Figure A.17: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.18: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

63

Master Thesis Appendix A. Model runs charts

Figure A.19: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.20: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

bert-large 3 DBpeida cosine

For the dataset DBpeida, we used the Bi-directional bert encoder with 3 GNN layers and
the bert-large model. The loss function used was cosine. The following figures show the
loss and recall values obtained during the training process. It is important to note that
these values are indicative of the model’s performance and can vary depending on the
specific configuration and parameters used.

64

Master Thesis

Figure A.21: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.22: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

65

Master Thesis Appendix A. Model runs charts

Figure A.23: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.24: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

bert-large 0 DBpeida cosine

For the dataset DBpeida, we used the Bi-directional bert encoder with 0 GNN layers and
the bert-large model. The loss function used was cosine. The following figures show the
loss and recall values obtained during the training process. It is important to note that
these values are indicative of the model’s performance and can vary depending on the
specific configuration and parameters used.

66

Master Thesis

Figure A.25: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.26: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

67

Master Thesis Appendix A. Model runs charts

Figure A.27: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.28: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

bert 5 DBpeida cosine

For the dataset DBpeida, we used the Bi-directional bert encoder with 5 GNN layers and
the bert model. The loss function used was cosine. The following figures show the loss
and recall values obtained during the training process. It is important to note that these
values are indicative of the model’s performance and can vary depending on the specific
configuration and parameters used.

68

Master Thesis

Figure A.29: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.30: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

69

Master Thesis Appendix A. Model runs charts

Figure A.31: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.32: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

bert 3 DBpeida cosine

For the dataset DBpeida, we used the Bi-directional bert encoder with 3 GNN layers and
the bert model. The loss function used was cosine. The following figures show the loss
and recall values obtained during the training process. It is important to note that these
values are indicative of the model’s performance and can vary depending on the specific
configuration and parameters used.

70

Master Thesis

Figure A.33: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.34: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

71

Master Thesis Appendix A. Model runs charts

Figure A.35: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.36: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

bert-large 3 Schema cosine

For the dataset Schema, we used the Bi-directional bert encoder with 3 GNN layers and
the bert-large model. The loss function used was cosine. The following figures show the
loss and recall values obtained during the training process. It is important to note that
these values are indicative of the model’s performance and can vary depending on the
specific configuration and parameters used.

72

Master Thesis

Figure A.37: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.38: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

73

Master Thesis Appendix A. Model runs charts

Figure A.39: This image illustrates the recall@100 score over time for different model configurations.
The parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.40: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

bert-large 5 Schema cosine

For the dataset Schema, we used the Bi-directional bert encoder with 5 GNN layers and
the bert-large model. The loss function used was cosine. The following figures show the
loss and recall values obtained during the training process. It is important to note that
these values are indicative of the model’s performance and can vary depending on the
specific configuration and parameters used.

74

Master Thesis

Figure A.41: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.42: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

75

Master Thesis Appendix A. Model runs charts

Figure A.43: This image illustrates the recall@100 score over time for different model configurations.
The parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.44: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

bert-large 5 Schema cosine

For the dataset Schema, we used the Bi-directional bert encoder with 5 GNN layers and
the bert-large model. The loss function used was cosine. The following figures show the
loss and recall values obtained during the training process. It is important to note that
these values are indicative of the model’s performance and can vary depending on the
specific configuration and parameters used.

76

Master Thesis

Figure A.45: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.46: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

77

Master Thesis Appendix A. Model runs charts

Figure A.47: This image illustrates the recall@100 score over time for different model configurations.
The parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.48: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

bert-large 0 Schema cosine

For the dataset Schema, we used the Bi-directional bert encoder with 0 GNN layers and
the bert-large model. The loss function used was cosine. The following figures show the
loss and recall values obtained during the training process. It is important to note that
these values are indicative of the model’s performance and can vary depending on the
specific configuration and parameters used.

78

Master Thesis

Figure A.49: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.50: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

79

Master Thesis Appendix A. Model runs charts

Figure A.51: This image illustrates the recall@100 score over time for different model configurations.
The parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.52: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert-large, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

bert-large 3 BB cosine

For the dataset BB, we used the Bi-directional bert encoder with 3 GNN layers and the
bert-large model. The loss function used was cosine. The following figures show the loss
and recall values obtained during the training process. It is important to note that these
values are indicative of the model’s performance and can vary depending on the specific
configuration and parameters used.

80

Master Thesis

Figure A.53: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.54: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

81

Master Thesis Appendix A. Model runs charts

Figure A.55: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.56: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

bert-large 5 BB cosine

For the dataset BB, we used the Bi-directional bert encoder with 5 GNN layers and the
bert-large model. The loss function used was cosine. The following figures show the loss
and recall values obtained during the training process. It is important to note that these
values are indicative of the model’s performance and can vary depending on the specific
configuration and parameters used.

82

Master Thesis

Figure A.57: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.58: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

83

Master Thesis Appendix A. Model runs charts

Figure A.59: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.60: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

bert-large 0 BB cosine

For the dataset BB, we used the Bi-directional bert encoder with 0 GNN layers and the
bert-large model. The loss function used was cosine. The following figures show the loss
and recall values obtained during the training process. It is important to note that these
values are indicative of the model’s performance and can vary depending on the specific
configuration and parameters used.

84

Master Thesis

Figure A.61: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.62: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

85

Master Thesis Appendix A. Model runs charts

Figure A.63: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.64: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert-large, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

bert 0 DBpeida cosine

For the dataset DBpeida, we used the Bi-directional bert encoder with 0 GNN layers and
the bert model. The loss function used was cosine. The following figures show the loss
and recall values obtained during the training process. It is important to note that these
values are indicative of the model’s performance and can vary depending on the specific
configuration and parameters used.

86

Master Thesis

Figure A.65: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.66: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

87

Master Thesis Appendix A. Model runs charts

Figure A.67: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.68: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

bert 5 Schema cosine

For the dataset Schema, we used the Bi-directional bert encoder with 5 GNN layers and
the bert model. The loss function used was cosine. The following figures show the loss
and recall values obtained during the training process. It is important to note that these
values are indicative of the model’s performance and can vary depending on the specific
configuration and parameters used.

88

Master Thesis

Figure A.69: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.70: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

89

Master Thesis Appendix A. Model runs charts

Figure A.71: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.72: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

bert 3 Schema cosine

For the dataset Schema, we used the Bi-directional bert encoder with 3 GNN layers and
the bert model. The loss function used was cosine. The following figures show the loss
and recall values obtained during the training process. It is important to note that these
values are indicative of the model’s performance and can vary depending on the specific
configuration and parameters used.

90

Master Thesis

Figure A.73: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.74: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

91

Master Thesis Appendix A. Model runs charts

Figure A.75: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.76: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

bert 0 Schema cosine

For the dataset Schema, we used the Bi-directional bert encoder with 0 GNN layers and
the bert model. The loss function used was cosine. The following figures show the loss
and recall values obtained during the training process. It is important to note that these
values are indicative of the model’s performance and can vary depending on the specific
configuration and parameters used.

92

Master Thesis

Figure A.77: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.78: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

93

Master Thesis Appendix A. Model runs charts

Figure A.79: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.80: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

bert 5 BB cosine

For the dataset BB, we used the Bi-directional bert encoder with 5 GNN layers and the bert
model. The loss function used was cosine. The following figures show the loss and recall
values obtained during the training process. It is important to note that these values are
indicative of the model’s performance and can vary depending on the specific configuration
and parameters used.

94

Master Thesis

Figure A.81: This image illustrates the recall@10 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.82: This image illustrates the recall@50 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

95

Master Thesis Appendix A. Model runs charts

Figure A.83: This image illustrates the recall@100 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

Figure A.84: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function cosine.

bert 3 BB cosine

For the dataset BB, we used the Bi-directional bert encoder with 3 GNN layers and the bert
model. The loss function used was cosine. The following figures show the loss and recall
values obtained during the training process. It is important to note that these values are
indicative of the model’s performance and can vary depending on the specific configuration
and parameters used.

96

Master Thesis

Figure A.85: This image illustrates the recall@10 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.86: This image illustrates the recall@50 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

97

Master Thesis Appendix A. Model runs charts

Figure A.87: This image illustrates the recall@100 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

Figure A.88: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function cosine.

bert 0 BB cosine

For the dataset BB, we used the Bi-directional bert encoder with 0 GNN layers and the bert
model. The loss function used was cosine. The following figures show the loss and recall
values obtained during the training process. It is important to note that these values are
indicative of the model’s performance and can vary depending on the specific configuration
and parameters used.

98

Master Thesis

Figure A.89: This image illustrates the recall@10 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.90: This image illustrates the recall@50 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

99

Master Thesis Appendix A. Model runs charts

Figure A.91: This image illustrates the recall@100 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

Figure A.92: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function cosine.

bert 5 DBpeida Tripplet margin loss

For the dataset DBpeida, we used the Bi-directional bert encoder with 5 GNN layers and
the bert model. The loss function used was Tripplet margin loss. The following figures
show the loss and recall values obtained during the training process. It is important to
note that these values are indicative of the model’s performance and can vary depending
on the specific configuration and parameters used.

100

Master Thesis

Figure A.93: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

Figure A.94: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

101

Master Thesis Appendix A. Model runs charts

Figure A.95: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

Figure A.96: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

bert 3 DBpeida Tripplet margin loss

For the dataset DBpeida, we used the Bi-directional bert encoder with 3 GNN layers and
the bert model. The loss function used was Tripplet margin loss. The following figures
show the loss and recall values obtained during the training process. It is important to
note that these values are indicative of the model’s performance and can vary depending
on the specific configuration and parameters used.

102

Master Thesis

Figure A.97: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

Figure A.98: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

103

Master Thesis Appendix A. Model runs charts

Figure A.99: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

Figure A.100: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

bert 0 DBpeida Tripplet margin loss

For the dataset DBpeida, we used the Bi-directional bert encoder with 0 GNN layers and
the bert model. The loss function used was Tripplet margin loss. The following figures
show the loss and recall values obtained during the training process. It is important to
note that these values are indicative of the model’s performance and can vary depending
on the specific configuration and parameters used.

104

Master Thesis

Figure A.101: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

Figure A.102: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

105

Master Thesis Appendix A. Model runs charts

Figure A.103: This image illustrates the recall@100 score over time for different model configurations.
The parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity
encoder Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

Figure A.104: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset DBpeida, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

bert 5 BB Tripplet margin loss

For the dataset BB, we used the Bi-directional bert encoder with 5 GNN layers and the
bert model. The loss function used was Tripplet margin loss. The following figures show
the loss and recall values obtained during the training process. It is important to note
that these values are indicative of the model’s performance and can vary depending on the
specific configuration and parameters used.

106

Master Thesis

Figure A.105: This image illustrates the recall@10 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

Figure A.106: This image illustrates the recall@50 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

107

Master Thesis Appendix A. Model runs charts

Figure A.107: This image illustrates the recall@100 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

Figure A.108: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

bert 3 BB Tripplet margin loss

For the dataset BB, we used the Bi-directional bert encoder with 3 GNN layers and the
bert model. The loss function used was Tripplet margin loss. The following figures show
the loss and recall values obtained during the training process. It is important to note
that these values are indicative of the model’s performance and can vary depending on the
specific configuration and parameters used.

108

Master Thesis

Figure A.109: This image illustrates the recall@10 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

Figure A.110: This image illustrates the recall@50 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

109

Master Thesis Appendix A. Model runs charts

Figure A.111: This image illustrates the recall@100 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

Figure A.112: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

bert 0 BB Tripplet margin loss

For the dataset BB, we used the Bi-directional bert encoder with 0 GNN layers and the
bert model. The loss function used was Tripplet margin loss. The following figures show
the loss and recall values obtained during the training process. It is important to note
that these values are indicative of the model’s performance and can vary depending on the
specific configuration and parameters used.

110

Master Thesis

Figure A.113: This image illustrates the recall@10 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

Figure A.114: This image illustrates the recall@50 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

111

Master Thesis Appendix A. Model runs charts

Figure A.115: This image illustrates the recall@100 score over time for different model configurations.
The parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

Figure A.116: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset BB, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

bert 5 Schema Tripplet margin loss

For the dataset Schema, we used the Bi-directional bert encoder with 5 GNN layers and
the bert model. The loss function used was Tripplet margin loss. The following figures
show the loss and recall values obtained during the training process. It is important to
note that these values are indicative of the model’s performance and can vary depending
on the specific configuration and parameters used.

112

Master Thesis

Figure A.117: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

Figure A.118: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

113

Master Thesis Appendix A. Model runs charts

Figure A.119: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

Figure A.120: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 5 GNN layers, and the loss function Tripplet margin loss.

bert 3 Schema Tripplet margin loss

For the dataset Schema, we used the Bi-directional bert encoder with 3 GNN layers and
the bert model. The loss function used was Tripplet margin loss. The following figures
show the loss and recall values obtained during the training process. It is important to
note that these values are indicative of the model’s performance and can vary depending
on the specific configuration and parameters used.

114

Master Thesis

Figure A.121: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

Figure A.122: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

115

Master Thesis Appendix A. Model runs charts

Figure A.123: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

Figure A.124: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 3 GNN layers, and the loss function Tripplet margin loss.

bert 0 Schema Tripplet margin loss

For the dataset Schema, we used the Bi-directional bert encoder with 0 GNN layers and
the bert model. The loss function used was Tripplet margin loss. The following figures
show the loss and recall values obtained during the training process. It is important to
note that these values are indicative of the model’s performance and can vary depending
on the specific configuration and parameters used.

116

Master Thesis

Figure A.125: This image illustrates the recall@10 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

Figure A.126: This image illustrates the recall@50 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

117

Master Thesis Appendix A. Model runs charts

Figure A.127: This image illustrates the recall@100 score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

Figure A.128: This image illustrates the loss score over time for different model configurations. The
parameters for these configurations include the dataset Schema, the BERT model bert, the entity encoder
Bi-directional bert encoder with 0 GNN layers, and the loss function Tripplet margin loss.

118

	Title page
	Introduction
	Introduction
	Contribution of the paper
	Background
	Graph Neural Networks
	Dimensionality Reduction
	Dense Retrieval
	Knowledge Graphs: A Comprehensive Overview
	Ontologies
	Schema Matching
	Entity Linking
	Ontology-based Data Integration

	Related work

	Datasets
	Exploration of Bacteria Biotope Datasets in BioNLP 2019
	Analysis of Mentions Dataset Statistics
	Inspection of OntoBiotope-NLP Dataset Statistics

	Table Annotation Task
	BioTable dataset statistics
	Exploration of Wikidata Subgraph Dataset
	Analysis of the WDC Schema.org Table Annotation Benchmark Dataset
	Insights into the Schema.org Dataset

	Model architecture
	Projection Head
	Mention encoder model
	Input
	Mention Encoder Architecture

	Entity Embedding model architecture
	Input encoding
	Ontology Embedding model

	Dual Encoding Model Architecture
	Scoring function
	Cosine Embedding Loss as the similarity Function
	Cross Entropy Loss as the Loss Function
	Triplet Loss and Euclidean Similarity Search

	Experiment setup
	Validation Assumptions
	Dataloading configurations
	Model Configurations

	Evaluation of Experiments
	Future Work
	Conclusion
	Appendices
	Model runs charts

