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Abstract

Due to the plasmon resonance conditions
of metallic gratings, these can be used
for sensor applications. The theoretical
aspects of basic plasmonics are investi-
gated and their resonance conditions are
reviewed. Through use of Green’s func-
tion, a theoretical model for the near-field
of a gold grating is set up and different pa-
rameters are varied in order to investigate
the effects on the electrical field around the
grating wires.
The experimental work is carried out with
focus on producing gold and silicon grat-
ings through e-beam lithography. The
structures of the resulting gratings are
characterised by use of scanning electron
microscopy and atomic force microscopy.
The optical properties of the gratings are
investigated in terms of second harmonic
spectroscopy. The obtained spectra are fi-
nally sought explained and related to the
theoretical observations.
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Resume

På grund af plasmonresonans-
betingelserne kan metalgitre finde
anvendelse som sensorer. De teoretiske
aspekter vedrørende plasmoner er un-
dersøgt og resonansbetingelserne er
gennemgået. En teoretisk model for
nærfeltet omkring et guldgitter er opstillet
ved brug af Greens funktion og forskellige
parametre er varieret for at undersøge
effekterne på det elektriske felt omkring
gittertrådene.
Det eksperimentelle arbejde er udført
med fokus på fremstillingen af guld-
og siliciumgitre ved hjælp af e-beam
litografi. Strukturerne af de fremstillede
gitre er karakteriseret via skannende
elektron mikroskopi og atomar kraft
mikroskopi. De optiske egenskaber af
gitrene er undersøgt med anden harmonisk
spektroskopi. Endelig er de resulterende
spektre forsøgt forklaret og relateret til
teoretiske observationer.



Preface

This report documents a project regarding the making of gold and silicon gratings
using e-beam lithography. The report is the product of the ninth and tenth semester
project at the Department of Physics and Nanotechnology at Aalborg University
during the Fall semester 2010 and Spring semester 2011.

This project is the authors final part of the masters degree in Nanophysics and
-materials. Theoretical and technical understanding within the fields of nano-optics
and nano-fabrication are the primary goals of this master thesis project.

Structurally, the report is divided into parts, one which covers the theoretical as-
pects, one which covers the experimental work, and finally a last part containing
the conclusive remarks. The report is furthermore divided into chapters and sec-
tions; as an example, the notation 3.2 is read Chapter 3 - Section 2. Figures, tables,
and equations are designated with two numbers, where the first number denotes the
chapter and the second number identifies the figure, table, or equation. In some
cases figures are further denoted by a letter e.g. (b), which thus directs the reader to
a certain subfigure. All references are denoted e.g. by [4], indicating that the fourth
entry in the bibliography is cited.

5





Contents

1 Introduction 9

1.1 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I Theory 11

2 Maxwell’s Equations 15

3 Plasmonics 17

3.1 Surface Plasmon Polaritons . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Localised Surface Plasmons . . . . . . . . . . . . . . . . . . . . . 24

4 Integral Method Based on Green’s Function 25

5 Near-Field Modelling 31

6 Second Harmonic Generation 39

II Experimental 45

7 Grating-Sample Preparation 49

7.1 Overall Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Deposition of E-beam Resist . . . . . . . . . . . . . . . . . . . . . 50

7.3 E-beam Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.4 Gold Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.5 Silicon Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Optical Measurements 71

7



CONTENTS

III Conclusion 81

9 Conclusion 85

10 Perspectives 87

8 CONTENTS



Introduction 1
Plasmonics has been of great interest in the recent years. Ultimately, the principles
of guiding and modulating surface plasmons are believed to revolutionise the signal
processing in connection with optical devices in the future [9]. ’Active’ plasmonics
has been demonstrated in the sense that e.g. plasmonic waveguides and ring res-
onators have been produced, cf. e.g. [8; 7; 10]. These conquests have been made
possible by the ever improving ability of manufacturing sub wavelength structures
where electron-beam lithography and focused-ion-beam lithography are of partic-
ular interest since the dimensions of the resulting structures can be controlled very
well.
Not only the ’active’ plasmonics are of interest—also ’passive’ plasmonics have
multiple possible uses. An example is the implementation of metallic nano particles
into e.g. thin-film solar cells which then functions as scatterers and thus enhances
the efficiency of the solar cell. The distinct resonance conditions for the excita-
tion of surface plasmons also make it possible to utilise the phenomenon within
the field of sensors. When resonance conditions are fulfilled, a strongly enhanced
near-field is formed. This enhanced field couple to the exciting field which thus is
strongly scattered or absorbed and a dip is observed in the reflectivity spectrum for
the sample. The resonance conditions depend on the surrounding material. Due
to the near-field excitations a rather small amount of material adsorbed to the metal
surface will change the resonance condition, which will result in increased reflectiv-
ity where the dip in reflectivity was previously found—in other words—the surface
plasmon is excited at another frequency.
Sensors of this type can be useful for environmental sensing, where the resonance
condition is changed due to absorbed target material. Also, for biological sensing
applications, the principle is of interest. Here binding assays can be made, which
when subjected to a biological sample may bind agent-specific material and thus
change the resonance condition.

1.1 Project Overview

During this project, a metallic grating will be produced by use of e-beam lithogra-
phy. Hands on experience with the techniques used in the production is particularly
sought. The grating will be characterised and investigated with respect to some of
its optical properties.
The theoretical part of the project will clarify the resonance conditions for the exis-
tence of surface plasmons. Further the near-field of a grating will be modelled and
investigated.
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Theory
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The theory reviewed in this part first consist of some basic electromagnetism which
constitute the foundation for the subsequent chapters.
The conditions for surface plasmon polaritons and localised surface plasmons will
be treated. To understand the behaviour of metallic gratings, an integral method
will be outlined and applied in order to model the near-field around metallic scat-
terers.
Finally, some theory about the second harmonic response will be reviewed in order
to clarify conditions for possibly observed resonances in the spectra obtained in the
experimental part of this project.

13



14



Maxwell’s Equations 2
When describing the near-field of a scatterer like e.g. a gold wire, a macroscopic
approach is taken. This implies that no singular charge or current is considered
and that the charge density, ρ and current density, ~j is used instead. The electrody-
namic fields related to the problem at hand can be described in terms of Maxwell’s
equations which are:

∇×~E(~r, t) = −∂~B(~r, t)
∂t

,

∇× ~H(~r, t) =
∂~D(~r, t)

∂t
+~j(~r, t),

∇ ·~D(~r, t) = ρ(~r, t),
∇ ·~B(~r, t) = 0. (2.1)

~E denotes the electric field, ~B the magnetic induction, ~H the magnetic field, and
~D the dielectric displacement. Maxwell’s equations were originally introduced to
explain the transmission of forces from a source to a receiver—that is—from a
source emitting electromagnetic radiation to some structure in which the charges
and currents are affected by the electromagnetic radiation. In order to describe the
behaviour of matter under the influence of electromagnetic fields, the material’s
response is related to Maxwell’s equations through what is termed the constitutive
relations:

~D(~r, t) = ε0~E(~r, t)+~P(~r, t) = ε0~E(~r, t)+ ε0
↔
χe(~r, t)~E(~r, t)≡ ε0

↔
ε(~r, t)~E(~r, t),

~B(~r, t) = µ0~H(~r, t)+µ0 ~M(~r, t) = µ0~H(~r, t)+µ0
↔
χm(~r, t)~H(~r, t)≡ µ0

↔µ(~r, t)~H(~r, t),
~jc(~r, t) =

↔
σ(~r, t)~E(~r, t) (2.2)

where ~P is the electric polarisation of the material in question, i.e. the response of
the material due to the electrical field ~E, in terms of a material parameter,

↔
χe which

is termed the electrical susceptibility. ~M is the magnetisation of the material—the
magnetic counterpart to the electric polarisation—also related to the material in
question through a material dependent parameter,

↔
χm, the magnetic susceptibility.

↔
σ is the conductivity of the media and relates the electrical field to the conduc-
tion current density ~jc. The conduction current density constitutes along with the
source current density ~js the current density ~j (i.e. ~j = ~js +~jc) known from one of
Maxwell’s equations.
When dealing with Maxwell’s equations it is often more convenient to work in
the frequency domain instead of the time domain. Through a Fourier representa-
tion of the time-dependent equations in (2.1) explicit expressions of the frequency-
dependent equations can be obtained. This is done as in the following example,

15



where Maxwell’s curl equation for the electrical field is used:

~E(~r, t) =
∫

∞

−∞

~̂E(~r,ω)e−iωtdω⇒∫
∞

−∞

∇× ~̂E(~r,ω)e−iωtdω =
∫

∞

−∞

− ∂

∂t

(
~̂B(~r,ω)e−iωt

)
dω⇒

∇× ~̂E(~r,ω) = iω~̂B(~r,ω), (2.3)

where the last step taken is valid because of the linearity of the system which implies
that the equality in the integral equation must apply to each frequency. The vectors
carrying a hat thus denotes the spectrum of the corresponding time-dependent vector
without the hat. Maxwell’s equations in the frequency domain read:

∇× ~̂E(~r,ω) = iω~̂B(~r,ω),

∇× ~̂H(~r,ω) = −iω~̂D(~r,ω)+ ~̂j(~r,ω),

∇ · ~̂D(~r,ω) = ρ̂(~r,ω),

∇ · ~̂B(~r,ω) = 0. (2.4)

From this point and forth, the arguments and hats of the parameters will be under-
stood implicitly and thus omitted—unless they are required for rightful understand-
ing.

16 2. Maxwell’s Equations



Plasmonics 3
Plasmons are typically divided into two groups—surface plasmon polaritons (SPP’s)
and localised surface plasmons (LSP’s).
Surface plasmon polaritons are excitations of the free electrons in the surface of a
metal. The plasmon polaritons form as an impinging electromagnetic field couple
to the oscillations of the electrons. The resulting waves are not confined along the
surface and are termed surface waves. These surface waves are—as opposed to lo-
calised surface plasmons—thus able to propagate at the interface between the metal
and a dielectric. The surface waves are, however, confined in the perpendicular di-
rection in the sense that the waves decay evanescently into both the metal and the
dielectric.
Localised surface plasmons are excitations of the conduction electrons in metallic
nanostructures which couple to the electromagnetic field. These occurring reso-
nances lead to field amplification in the near-field zone of the structure in question.
The two kinds of plasmons will be reviewed in the following.

3.1 Surface Plasmon Polaritons

When looking for a mathematical description of a surface plasmon polariton, the
electrical field must obey the Helmholtz equation:

∇
2~E(~r)+ k2

0ε(~r)~E(~r) = 0, (3.1)

where~k0 is the wave vector in vacuum. A simple waveguide geometry (cf. Figure
3.1) is used in order to more easily illustrate the concept as the problem is greatly
simplified this way. The geometry consists of a conductor surrounded by a vacuum.
The surface wave is assumed to propagate along the x-direction only and the top
surface of the slate is the interface which sustains the surface plasmon polariton.
The electrical field can thus be described as ~E(~r) = ~E(z)eiβx where β is the propa-
gation constant of the surface wave. The propagation constant is due to the choice
of geometry equal to the x-component of the wave vector, ~k0. Inserting this field
into the Helmholtz equation (Equation (3.1)) yields:

~E(z)eiβx(−β
2)+

∂2

∂z2

(
~E(z)eiβx

)
+ k2

0ε(~r)~E(~r) = 0⇒

∂2~E(~r)
∂z2 +

(
k2

0ε(~r)−β
2)~E(~r) = 0. (3.2)

Next, the wave equation must be expressed in order to describe the surface plasmon
polariton. Before this can be done, explicit expressions for the electrical field com-
ponents and the corresponding magnetic field components must be found. For this

17



3.1 Surface Plasmon Polaritons

Conductor

x

y

z

Figure 3.1: Simple planar waveguide geometry.

purpose Maxwell’s curl equations are applied. The media is assumed non-magnetic
and thus ~B = µ0~H. Furthermore, a harmonic time dependence is assumed and thus
the first curl equation yields:

iωµ0

 Hx
Hy
Hz

 =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂

∂x
∂

∂y
∂

∂z
Ex Ey Ez

∣∣∣∣∣∣
=

(
∂Ez

∂y
−

∂Ey

∂z

)
x̂+
(

∂Ex

∂z
− ∂Ez

∂x

)
ŷ+
(

∂Ey

∂x
− ∂Ex

∂y

)
ẑ.(3.3)

It is also assumed that no external current exists and with ~D = ε0ε~E the second curl
equation yields:

− iωε0ε

 Ex
Ey
Ez

 =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂

∂x
∂

∂y
∂

∂z
Hx Hy Hz

∣∣∣∣∣∣
=

(
∂Hz

∂y
−

∂Hy

∂z

)
x̂+
(

∂Hx

∂z
− ∂Hz

∂x

)
ŷ+
(

∂Hy

∂x
− ∂Hx

∂y

)
ẑ.

(3.4)

Because of the assumptions made in connection with the geometric setup, the partial
derivative with respect to the x-direction is proportional to the propagation constant,
i.e. ∂

∂x ⇒ iβ. Furthermore, the derivative with respect to the y-direction is zero. The
equations then simplify to:

iωµ0Hx = −
∂Ey

∂z

iωµ0Hy =
∂Ex

∂z
− iβEz

iωµ0HZ = iβEy

18 3. Plasmonics



3.1 Surface Plasmon Polaritons

−iωε0εEx = −
∂Hy

∂z

−iωε0εEy =
∂Hx

∂z
− iβHz

−iωε0εEz = iβHy. (3.5)

The number of equations can be reduced further if only certain polarisations are
treated. In this context two on each other orthogonal polarisations are observed—
namely the p-polarised electric field which is polarised parallel to the plane of in-
cidence and the s-polarised electric field which thus inherently is polarised perpen-
dicular to the plane of incidence. For the p-polarised case, the y-component of the
electrical field along with the z-component of the magnetic field are both zero. From
this, it follows that also the x-component of the magnetic field is zero. The fourth
and sixth entry in Equation (3.5) yield the non-zero electric field components in
terms of the y-component of the corresponding magnetic field:

Ex = −i
1

ωε0ε

∂Hy

∂z

Ez = − β

ωε0ε
Hy. (3.6)

Inserting these into the second entry of Equation (3.5) yields the wave equation for
the p-polarised mode:

∂2Hy

∂z2 +
(
k2

0ε−β
2)Hy = 0. (3.7)

Similar for the s-polarised case, the z-component of the electric field and the y-
component of the magnetic field are both zero. Correspondingly the x-component
of the electric field turns out to be zero and the magnetic components of the s-
polarised electric field are:

Hx = i
1

ωµ0

∂Ey

∂z

Hz =
β

ωµ0
Ey. (3.8)

While the wave equation governing the s-polarised mode becomes:

∂2Ey

∂z2 +
(
k2

0ε−β
2)Ey = 0. (3.9)

Starting with the s-polarised mode and looking for solutions to the wave equation
(Equation (3.9)) that decay into the vacuum (i.e. for z > 0), the electric field, Ey,
along with the magnetic field components from Equation (3.8) are:

Ey2 = A2e−kz2zeiβx (3.10)

Hx2 = −iA2kz2

1
ωµ0

e−kz2zeiβx (3.11)

Hz2 = A2
β

ωµ0
e−kz2zeiβx. (3.12)

3. Plasmonics 19



3.1 Surface Plasmon Polaritons

Similar for the solution which decays into the metal (for z < 0):

Ey1 = A1ekz1zeiβx (3.13)

Hx1 = iA1kz1

1
ωµ0

ekz1zeiβx (3.14)

Hz1 = A1
β

ωµ0
ekz1zeiβx. (3.15)

In order to match the solutions across the interface (z = 0) continuity is required.
That is—Ey1 = Ey2 and Hx1 = Hx2 . From matching the y-components of the electri-
cal fields it is found that A1 =A2. When matching the x-components of the magnetic
fields a certain condition arises, namely A1(kz1 + kz2) = 0. Through the notation
used so far, the real part of both kz1 and kz2 are required to be positive. If the above
condition must apply, then it is evident that A1 must equal zero, which means that
no surface plasmon polariton exists for s-polarised instances.
Continuing with the p-polarised mode and looking for solutions in the same way
as for the s-polarised mode, the following sets of equations apply. For z > 0, the
magnetic field, Hy, is:

Hy2 = A2e−kz2zeiβx. (3.16)

From this and Equation (3.6), the electric field components follows:

Ex2 = iA2kz2

1
ωε0ε2

e−kz2zeiβx (3.17)

Ez2 = −A2
β

ωε0ε2
e−kz2zeiβx. (3.18)

And for the solution which decays into the metal (z < 0):

Hy1 = A1ekz1zeiβx (3.19)

Ex1 = −iA1kz1

1
ωε0ε1

ekz1zeiβx (3.20)

Ez1 = −A1
β

ωε0ε1
ekz1zeiβx. (3.21)

Next step is to invoke boundary conditions at the interface (z = 0). Continuity of
the normal component of the dielectric displacement field Dz1 = Dz2 requires that:

ε1Ez1 = ε2Ez2 ⇒

−ε1A1
β

ωε0ε1
eiβx = −ε2A2

β

ωε0ε2
eiβx⇒

A1 = A2. (3.22)

Furthermore, continuity of the tangential component of the electrical field is re-
quired. This condition is fulfilled when:

Ex1 = Ex2 ⇒

−iA1kz1

1
ωε0ε1

eiβx = iA2kz2

1
ωε0ε2

eiβx⇒

kz2

kz1

= −ε2

ε1
. (3.23)

20 3. Plasmonics



3.1 Surface Plasmon Polaritons

From the wave equations in both half-spaces it also follows that k2
z1
+k2

0ε1−β2 = 0
and k2

z2
+ k2

0ε2−β2 = 0. Combining these with Equation (3.23) yields:

k2
z2

k2
z1

=
β2− k2

0ε2

β2− k2
0ε1

=
ε2

2

ε2
1
⇒(

β
2− k2

0ε2
)

ε
2
1 =

(
β

2− k2
0ε1
)

ε
2
2⇒

β
2 (

ε
2
1− ε

2
2
)

= k2
0ε1ε2 (ε1− ε2)⇒

β
2 = k2

0
ε1ε2 (ε1− ε2)

(ε1 + ε2)(ε1− ε2)
⇒

β = k0

√
ε1ε2

ε1 + ε2
, (3.24)

which is the dispersion relation for the surface plasmon polariton. If one of the z-
components of the wave vector is isolated instead, further restrictions to the electric
constants and thus the choice of materials can be found:

k2
z1
+ k2

0ε1−β
2 = k2

z2
+ k2

0ε2−β
2⇒

k2
z1

=
ε2

2

ε2
1

k2
z1
+ k2

0 (ε2− ε1)⇒

k2
z1

(
1−

ε2
2

ε2
1

)
= k2

0 (ε2− ε1)⇒

k2
z1

(ε1 + ε2)(ε1− ε2)

ε2
1

= k2
0 (ε2− ε1)⇒

kz1 = k0

√
−ε2

1
ε1 + ε2

. (3.25)

In order for kz1 to be real as required, the denominator (ε1 + ε2) of Equation (3.25)
should be negative. Potentially both materials could have a negative dielectric con-
stant and the expression would still be fulfilled. However, if it is held up against the
surface plasmon dispersion relation, where it is required that also β should be real it
is seen that the product of the dielectric constants should be negative, which implies
that one—and only one—of the materials is required to be a conductor.
The dispersion relation for a metal described through the Drude model is plotted
in Figure 3.2. To the left of the light line, the allowed modes arise for frequencies
above the plasma frequency. These modes are not bound and are termed radiative
modes as they occur in the transparency regime of the conductor and thus radiates
into the metal. The imaginary modes occurring in between the real modes consti-
tute a frequency gap where propagation is prohibited. The real modes to the right
of the light line represent the bound surface modes. Due to the fact that the modes
lie away from the light line, there is a wave vector mismatch which has to be com-
pensated for if a surface plasmon polariton has to be excited. Different techniques
such as grating coupling or phenomena such as enhanced near fields can yield the
required change in wave vector.
In real metals, with attenuation taken into account, the dispersion relation is slightly

3. Plasmonics 21



3.1 Surface Plasmon Polaritons

Figure 3.2: SPP dispersion relation for a Drude metal (ε = 1− ω2
p

ω2 ) combined with a
vacuum (ε = 1). The metal is assumed to be without attenuation and the plasma frequency
is set to ωp = 3 ·1015 s−1.

(a) (b)

Figure 3.3: (a) SPP dispersion relation for gold surrounded by a vacuum. The dielectric
constant for gold has been calculated by use of the refractive index data from [12]. (b)

Drude model (ε = εinterband−
ω2

p
ω(ω+iγ) ) of gold has been used to image the SPP dispersion

relation. The parameters εinterband = 9.25, ωp = 1.325 ·1016 s−1, and γ = 5.850 ·1013 s−1

have been found by fitting them to the data from [12]. The obtained fit of ωp from the
Drude model has been used for normalisation in both cases.

different. In Figures 3.3(a) and (b) are dispersion relations for gold depicted. It is
seen that the implementation of damping to the Drude model and the use of true
dielectric constant data closes the frequency gap experienced in the case of an ideal
conductor. Furthermore, it is seen that the dispersion constant, β of the bound states
no longer approaches infinity, but that now there is actually a maximum wave vector
belonging to the system. Close to this maximum wave vector, the surface plasmons
are confined the most. The surface plasmons also exhibit a rather poor propagation
length close to this frequency. This phenomenon concerning a trade-off between
confinement to the surface and propagation length is a characteristic problem when
dealing with SPP’s [10]. This is illustrated in Figure 3.4(a), where the penetration
depth and propagation length of surface plasmons have been plotted. The propaga-

22 3. Plasmonics



3.1 Surface Plasmon Polaritons

tion length is defined as the length where the intensity of the surface plasmon has
dropped to 1/e of the maximum. As the field of the SPP is proportional to eiβx and
the intensity thus is proportional to the expression squared, the propagation length
is found as L = 1

2Im[β] . The penetration depths are defined in the same way and are

found by zi =
1

2Re[kzi ]
where kzi =

√
β2− εik2

0. It is seen that the poorer the confine-

(a) (b)

Figure 3.4: (a) SPP propagation length and penetration depth in the case of gold sur-
rounded by a vacuum. The SPP propagation constants were found by use of a Drude
model with parameters resembling gold. (b) Zoom-in of Figure (a), where the penetration
depth into the gold half-space now is observable.

ment to the surface, the longer the propagation length of the SPP. Furthermore, the
penetration depth into the gold is seen to be rather small—less than 20 nm across
most of the frequency range.
As before mentioned a wave vector mismatch exists and in order to excite a surface
plasmon this mismatch has to be compensated for—that is—the propagation con-
stant must equal the sum of the wave vector of the impinging electromagnetic field
and some other momentum component, β = k sin(θ)±δkx, where θ is the angle of
incidence of the exciting electromagnetic field and~k is the wave vector in the dielec-
tric media. Different approaches exist for the addition of the required momentum
components. Simple surface roughness can function as scatterers where different
momenta can be obtained. Similar can an enhanced near-field yield the required
change in momentum. These conditions are not necessarily well-controlled and
specific waveguides responding to certain frequencies cannot easily be tailored. If
a certain momentum component is wanted, one can manufacture suitable scatterers.
This can be done by patterning the surface of the conductor with a one-dimensional
grating. The phase-matching condition is fulfilled when β = k sin(θ)±mg, where
g = 2π

a is the reciprocal grating vector of a grating with a period equal to a, and
m = (1,2,3, ...). If the grooves become to deep, > 20 nm, the grating can no longer
be thought of as a small perturbation of the surface and band gaps do in fact evolve
[10]. If the groove depths become even larger again, localised modes within the
grooves can be formed which may enable (potentially unwanted) coupling to the
exciting electromagnetic field [10].
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3.2 Localised Surface Plasmons

3.2 Localised Surface Plasmons

The second type of plasmonics is localised surface plasmons. While surface plas-
mon polaritons are propagating waves coupled to the electrons of a conductor, lo-
calised surface plasmons are non-propagating modes of the coupling between an
electromagnetic field and the confined electrons of metallic nanostructures. These
modes arise in sub-wavelength structures if a resonance condition suiting the excit-
ing electromagnetic field exists. Contrary to surface plasmon polaritons, localised
surface plasmons can be excited by direct illumination—no momentum compensa-
tion has to be employed.
These resonance conditions for the excitation of LSP’s can be found through an
electrostatic approach treating metallic spheres. The fact that the problem is treated
electrostatically implies that the particles of interest are on the order of 50 nm or
smaller in size [6]. For other geometries—other approaches must be taken. If the
particle of interest retain some cylindrical geometry—e.g. a spheroid—the electro-
static method in e.g. [14] can be utilised to obtain the resonance conditions. In the
’simple’ case of a sphere the resonance condition is [6; 10; 11]:

1
ε1(ω)+2ε2

, (3.26)

where ε1 is the dielectric constant of the sphere and ε2 is the dielectric constant
of the surrounding material. A resonance condition is thus obtained when the de-
nominator approaches zero, which yield the requirement that one of the materials
has to be a conductor. Depending on the shape of the particles of interest, different
resonances may evolve. For a spheroid, two resonance condition form—due to the
existence of a minor- and major-axis.
For larger particles where the size approaches the wavelength of the exciting field,
Maxwell’s equations have to be solved. For spheres, Mie-scattering theory can be
used. For structures of arbitrary form, the solution can only be found by solving
Maxwell’s equations—one approach is to use surface or volume integral methods
based on Green’s function [6].
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Integral Method Based on
Green’s Function 4
A concept typically used in scattering problems is that of the electric field gener-
ated by a radiating electric dipole, which also will be the approach in this case.
The relationship between a radiating point source, ~j and the resulting electrical
field, ~E at some arbitrary point,~r is partly described through a tensor,

↔
G which is

termed the Green’s function (cf. Figure 4.1). The road towards a description of the

V

j( r’)
r

r’

E( r )

G( r, r’)

O

Figure 4.1: Illustration of the Green’s tensor and how it relates to a generated electric
field due to a point source, ~j.

Green’s function and its use will take its start by finding the wave equations based
on Maxwell’s equations. If Maxwell’s curl equations are expressed by use of the
constitutive relations in Equation (2.2) they yield:

∇×~E = iωµ0
↔µ~H,

∇× ~H = −iωε0
↔
ε~E +

↔
σ~E +~js.

Next step is to express e.g. the first equation in terms of the second. This is done by
taking the curl of the first equation and inserting the second into it. When the curl
is taken on the right hand side of the first equation in order to make the insertion of
the second equation a problem arises. Generally, the permeability is a function of
position and it can not trivially be interchanged with the curl operator. To circum-
vent this, a restriction to the use of the equation has to be made. In homogeneous
media the material parameters are independent of position and so the permeability
can safely be taken outside the curl operator, then of course it has to be kept in mind
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that from this point the equation only apply for homogeneous media. The first wave
equation yields:

∇×∇×~E = iωµ0
↔µ(∇× ~H)⇒

∇×∇×~E =
ω2

c2
↔µ

(
↔
ε +

i
↔
σ

ωε0

)
~E + iωµ0

↔µ~js, (4.1)

where it has been used that 1
c =
√

ε0µ0. Similarly, the wave equation for the mag-
netic field yields:

∇×∇× ~H =
ω2

c2
↔µ

(
↔
ε +

i
↔
σ

ωε0

)
~H +∇×~js. (4.2)

The expressions in parenthesis are actually complex dielectric constants and com-
monly the meaning of

↔
ε is redefined so that

(
↔
ε + i

↔
σ

ωε0

)
≡ ↔

ε. A further step can be

taken after this. If the identity ∇×∇×~A = ∇(∇ ·~A)−∇2~A is used and Maxwell’s
divergence equations are applied one arrives at what is known as the inhomogeneous
Helmholtz equations:(

∇
2 + k2

0
↔µ
↔
ε

)
~E = −iωµ0

↔µ~js +
1
ε0

↔
ε
−1

∇ρ,(
∇

2 + k2
0
↔µ
↔
ε

)
~H = −∇×~js, (4.3)

where k0 = ω

c is the wave number in vacuum. If no source current or charges are
present, the equations reduce to the homogeneous Helmholtz equations.
At this point it may be suitable to go through some general properties concerning
linear differential equations. If a linear operator acts on a vector field and the result
equals a known source function (exactly as in the above problem) one has to find
an arbitrary particular solution and add it to the homogeneous solution in order to
obtain the full solution. It is assumed that the homogeneous solution, ~A0 for ~B = 0
is known. The differential equation to be solved is:

L~A(~r) = ~B(~r). (4.4)

In the process of finding a solution to this equation one may encounter some diffi-
culties, but a clever trick is to consider the function δ(~r−~r′). One can thus write:

L
↔
G(~r,~r′) =

↔
I δ(~r,~r′), (4.5)

where
↔
I is the unit tensor. If ~B(~r′) is multiplied onto the equation and each side is

integrated, one arrives at:∫
V

L
↔
G(~r,~r′)~B(~r′)dV ′ = ~B(~r). (4.6)

By comparison, the solution to Equation (4.4) yields:

~A(~r) =
∫

V

↔
G(~r,~r′)~B(~r′)dV ′. (4.7)
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The solution, ~A is in other words found by integrating the Green’s function,
↔
G mul-

tiplied with the inhomogeneity, ~B over the source volume, V .
Continuing with the wave equation for the electrical field:

∇×∇×~E− k2
0
↔µ
↔
ε~E = iωµ0

↔µ~js, (4.8)

one can define a Green’s function for each component of ~js. For the x-component
of ~js it is:

∇×∇× ~Gx(~r,~r′)− k2
0
↔µ(~r)

↔
ε(~r)~Gx(~r,~r′) = δ(~r,~r′)x̂, (4.9)

where x̂ is a unit vector in the x-direction. Similar equations apply for a point
source in the other directions. In order to account for an arbitrary orientation of a
point source, the Green’s function must take on the form of a tensor and the Green’s
function for the electrical field is thus defined as:

∇×∇×
↔
G(~r,~r′)− k2

0
↔µ(~r)

↔
ε(~r)

↔
G(~r,~r′) =

↔
I δ(~r,~r′). (4.10)

The columns of the Green’s function thus corresponds to a field due to a point
source directed in either the x-, y-, or z-direction. The source current, ~js can be
thought of as a superposition of point currents and if an integration over the volume
containing the currents is performed, a particular solution to the wave equation can
be expressed as (cf. Equation (4.7)):

~E(~r) = iωµ0
↔µ(~r)

∫
V

↔
G(~r,~r′)~js(~r′)dV ′. (4.11)

To arrive at a general solution to the wave equation, the homogeneous solution ~E0
must be added to the particular solution and the full solution for the electrical field
is:

~E(~r) = ~E0(~r)+ iωµ0
↔µ
∫

V

↔
G(~r,~r′)~js(~r′)dV ′. (4.12)

Similar, the solution for the magnetic field turn out to be:

~H(~r) = ~H0(~r)+
∫

V

(
∇×

↔
G(~r,~r′)

)
~js(~r′)dV ′. (4.13)

These equations are only valid outside the volume V , as a singularity of
↔
G is expe-

rienced for~r =~r′ [11].
The formalism for the use of Green’s function has been established and what is
needed next in order to model a scattering problem is the actual form of Green’s
function,

↔
G. This can be achieved by considering the vector potential ~A and the

scalar potential φ—these are defined by [11]:

~E = iω~A−∇φ,

~H =
1

µ0µ
∇×~A. (4.14)
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Through use of the constitutive relations, the relations in Equation (4.14) are in-
serted into Maxwell’s curl equation for the magnetic field:

∇× 1
µ0µ

∇×~A = −iωε0ε

(
iω~A−∇φ

)
+~js. (4.15)

The potentials are not fully defined through the relations in Equation (4.14) and
using a so-called gauge condition will solidify their relationship. One specific
condition—the Lorenz gauge—is defined as:

∇ ·~A = iωµ0µε0εφ. (4.16)

Using the Lorenz gauge as well as the identity ∇×∇×~A = ∇(∇ ·~A)−∇2~A one
arrive at: (

∇
2 + k2

0µε
)
~A = −µ0µ~js. (4.17)

In practice, the above identity can be written as three separate scalar equations, and
the scalar Green’s function, G0 can be defined if the source term is replaced by a
point source as: (

∇
2 + k2

0µε
)

G0(~r,~r′) = −δ(~r,~r′). (4.18)

The vector potential in Equation (4.17) can by use of Equation (4.7) be expressed
in terms of G0 as:

~A(~r) = µ0µ(~r)
∫

V
G0(~r,~r′)~js(~r′)dV ′. (4.19)

G0 is found through its definition in Equation (4.18). According to [11], the only
physical solutions are:

G0(~r,~r′) =
e±ik0

√
µε|~r−~r′|

4π|~r−~r′|
. (4.20)

The solution with a minus in the exponential describes a spherical wave that goes
towards the origin, whereas the other solution denotes a wave propagating away
from the origin. Of course it is only the solution with the plus sign which is appli-
cable in the current context.
The scalar Green’s function has been found and in the following, it will be expanded
to its tensor form. If the Lorenz gauge, Equation (4.16) is inserted into the equation
for the electrical field found in Equation (4.14) one gets:

~E = iω~A− 1
iωµ0µε0ε

∇(∇ ·~A)⇒

~E = iω
(

1+
1

k2
0µε

∇∇·
)
~A. (4.21)
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The way, the elements of the Green’s tensor were defined in Equation (4.9), the
source current is ~js(~r′) = 1

iωµ0µδ(~r,~r′)x̂′. Inserting this into the equation for the
vector potential (Equation (4.19)) yields:

~A(~r) =
1
iω

∫
V

G0(~r,~r′)δ(~r,~r′)x̂′dV ′⇒

~A(~r) =
1
iω

G0(~r,~r′)x̂. (4.22)

Inserting this into Equation (4.21) and remembering the relation between ~E and ~Gx
gives:

~Gx(~r,~r′) =

(
1+

1
k2

0µε
∇∇·

)
G0(~r,~r′)x̂. (4.23)

Combining the columns of
↔
G ends the road taken towards introducing the formalism

and finding the form of the Green’s function—in its final form the Green’s function
yields:

↔
G(~r,~r′) =

(
↔
I +

1
k2

0µε
∇∇

)
G0(~r,~r′), (4.24)

where the definition ∇ · (G0
↔
I ) = ∇G0 has been used.

This form of the Green’s function only applies for a tree dimensional space. Further-
more the restriction made earlier about a homogeneous media has to be respected.
For e.g. a two dimensional problem, one thus have to find another expression for
the Green’s function—although the formalism itself is still valid.
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Near-Field Modelling 5
When dealing with the modelling of the electrical field around a one-dimensional
grating, it is convenient to only make calculations in two dimensions, since this
results in simpler programs and thus faster processing. A grating as illustrated in
Figure 5.1 is used in connection with the integral method outlined in Chapter 4 and
modelled in the following. A plane wave with wave vector~k(x,y) is incident on

Plane of 
Incidence

x

y

k
θ

Figure 5.1: One-dimensional grating with x- and y-axis as shown and z-axis along the
grating-wires.

the structure and the electrical field is assumed to be oriented along the z-axis. The
incident wave can thus be described as:

E0(x,y) = e−ik0
√

εre f (xcos(θ)+ysin(θ)), (5.1)

where it is assumed that the reference medium is non-magnetic and thus µre f =
1. The incoming field is thus a solution to the homogeneous Helmholtz equation(
∇2 + k2

0εre f
)

E0(x,y) = 0. In order to determine the field distribution in the prob-
lem at hand, the electrical field which emerges due to scattering in the grating struc-
ture has to be found—i.e. a solution to the inhomogeneous Helmholtz equation is
needed. From Maxwell’s curl equation for the magnetic field, where it is assumed
that no source current and only the induced electric current, ~je exist, one gets:

∇× ~H = −iωε0εre f~E +~je. (5.2)

When an object such as the grating is present in the reference system, the dielectric
response of the object relative to the reference is equal to (ε− εre f ), where ε is the
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dielectric constant of the perturbing object [11]. The induced electric current thus
takes the form:

~je = −iωε0(ε− εre f )~E. (5.3)

Using this, along with the formalism reviewed in Chapter 4, the full solution can be
written as:

E(x,y) = E0(x,y)+ iωµ0

∫
A

g(x,y;x′,y′) je(x′,y′)dx′dy′, (5.4)

where it has been assumed that also the grating media is non-magnetic. Introducing
je explicitly yields:

E(x,y) = E0(x,y)+ k2
0

∫
g(x,y;x′,y′)(ε(x′,y′)− εre f )E(x′,y′)dx′dy′. (5.5)

It was mentioned in Chapter 4 that the found Green’s function only applied for
three-dimensional problems. The Green’s function used in Equation (5.5) is given
by [16]:

g(x,y;x′,y′) =
1
4i

H(2)
0

(
k0

√
(x− x′)2 +(y− y′)2

)
, (5.6)

where H(2)
0 (k0r) is the zeroth order Hankel function of the second kind with re-

spect to the argument k0r. For reference, the functions are depicted in Figure 5.2.
Equation (5.5) can be solved numerically if the grating structure is resolved into a

(a) (b)

Figure 5.2: The zeroth and first order Hankel functions of the second kind. (a) Real part
of the Hankel functions. (b) Imaginary part of the Hankel functions.

number of area elements centred at all (xi,yi) points—the integral thus takes on the
form of a sum over N elements with area ∆A. The value of the electrical field at
(xi,yi) is approximated to apply for the entire area ∆Ai related to that point. In this
way, a set of equations are obtained—all on the form:

Ei = E0,i + k2
0 ∑

j
gi j(ε j− εre f )E j∆A j, (5.7)
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with gi j = g(xi,yi;x j,y j). Since these equations are all coupled, it is necessary to
first solve the system for the grating structure itself and then subsequently use the
obtained result for finding the field outside the grating structure. As mentioned in
Chapter 4, there exists a problem with the Green’s function being singular inside the
source volume/area—namely at points i= j, which is why the equation is only valid
outside the source. Fortunately, one can make an approximation—using a circular
area element with the same size as the rectangular or square area element chosen:
∆A = πa2, where a is the radius of the circle. The approximation yield [16]:

gii ≈
1

2i(k0a)2

(
k0aH(2)

1 (k0a)− i
2
π

)
, (5.8)

where H(2)
1 is the first order Hankel function of the second kind (cf. Figure 5.2).

Using this, it is now possible to evaluate the electric field inside the source structure.

Due to the periodicity in the y-direction, it should be sufficiently to look at the re-
sulting field across a single wire. However, the scattered field from each wire may
influence other wires, which then in return again may have an increased influence
on the field from the ’first’ wire. In order to obtain a valid result, it is therefore
necessary to include several wires in the calculation—even though the field is only
rendered across a single grating period. For a start, one should determine the num-
ber of barriers to include in the calculations. In Figure 5.3, different numbers of
wires are included in the model. The barriers are 60 nm×300 nm in size and placed
with a 600 nm periodicity. The incoming field, E0 arrives normal to the grating,
i.e. θ = 0 and the wavelength of it is 633 nm. The barriers are given the material
parameters of gold, while the reference material is vacuum and thus εre f = 1. As
expected, it is seen that the field is enhanced with an increasing number of barriers.
It is also seen that the field enhancement is primarily located in the space between
the barriers. Now to the question of how many barriers to include; it is quite clear
that one is not enough. If the field between the bottom barrier and the second barrier
from the bottom in Figure 5.3(c) is observed and compared to the field between the
two bottom barriers of Figure (d), it is seen that a slightly increase in intensity is
present. This increase is due to the contribution from primarily the second top-most
barrier. It cannot be ruled out that also the top barrier has an effect, but this contri-
bution is thought to be vanishing. It is thus decided to look at the field emanating
from a total of six barriers—with focus on the field enhancement between the two
middle barriers. The number of six barriers is also partly chosen with computing
hardware in mind—with the used resolution, a seventh and eighth barrier could not
be included due to memory requirements of the program. Due to the memory re-
quirement, also the silicon background has been omitted, why come the observed
field enhancements may differ from e.g. experimental results obtained by near-field
microscopy.
The dependence of wavelength on field enhancement is investigated in the follow-
ing. Calculating and rendering the fields due to all different incoming fields with
wavelength in e.g. the visible regime quickly become overwhelming. Therefore is
an area of only six nm’s width at the edge of the barriers rendered for a range of
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(a) (b)

(c) (d)

Figure 5.3: Model of the electrical field from a number of gold barriers subjected to a
monochromatic field with a wavelength of 633 nm. (a) Real part of the exciting electrical
field. (b) The absolute square of the field due to one gold barrier. (c) The absolute square
of the field due to three gold barriers. (d) The absolute square of the field due to five gold
barriers.

wavelengths and this result is taken as an expression for the overall field enhance-
ment. Figure 5.4 illustrates this result. Three wavelengths seem interesting at first
glance, namely≈480 nm, ≈510 nm, and≈640 nm—these wavelengths are marked
with dashed lines. The largest field enhancements are observed around λ =480nm
and λ =640nm. However, it is not given that the field is enhanced the most at these
wavelengths—the observed change in intensity may also emanate from a spatial
shift of the enhancement, i.e. the enhancement may move further along in between
the barriers or farther apart from them.
In Figure 5.5 is the resulting field from a wavelength of 640 nm rendered—flanked
by results for λ=610 nm and λ=670 nm. It is seen that the field is enhanced further
from λ =610 nm to λ =640 nm. Despite from what could have been expected from
Figure 5.4, the field is further enhanced towards λ =670 nm. It is seen that the cen-
tre of the enhancement is still located between the barriers, but that it moves away
from them, i.e. the field is to a better degree localised above the grating surface than
in between the grating wires.
Figure 5.6 shows an image of the absolute square of the field due to a wavelength
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Figure 5.4: Field enhancement between barriers as a function of wavelength—the hor-
izontal lines mark the sides of the barriers. The contribution from six barriers has been
included in the calculation.

(a) (b) (c)

(d)

Figure 5.5: The absolute square of a field around two gold barriers. (a) Wavelength,
λ =610 nm. (b) Wavelength, λ =640 nm. (c) Wavelength, λ =670 nm. (d) Same as Figure
(b), but a larger area has been rendered in order to have a better overview.

of 480 nm plotted—flanked by results for λ =450 nm and λ =510 nm. It is seen
that very large field enhancements are observed at λ =480 nm—at least compared
to the enhancements noted at other wavelengths. There are still observed enhance-

5. Near-Field Modelling 35



(a) (b) (c)

(d)

Figure 5.6: The absolute square of a field around two gold barriers. (a) Wavelength,
λ =450 nm. (b) Wavelength, λ =480 nm. (c) Wavelength, λ =510 nm. (d) Same as Figure
(b), but a larger area has been rendered in order to have a better overview.

ments between the barriers, but smaller than around e.g. λ =640 nm instead there
are localised maxima farther away from the barriers, i.e. the surface of the grating.
Furthermore, localised maxima are found on top of the gold wires, which around
λ =480 nm extend into the barrier itself—this is most clearly seen in Figure 5.4.
The maxima still exist as the wavelength is altered towards λ =510 nm, but the in-
tensity drops a great deal.
The results can possibly be explained by looking at the refractive index for gold (cf.
Figure 5.7). It is seen that the maximum noted in Figure 5.4 around λ =480 nm lies
around the interband transition of gold.
According to Schider et al. [15], experimental results show that the extinction max-
imum in the spectra from a silver grating red-shifts with increasing wire width. If
this also applies for gold nano wires, one can possibly tailor the desired resonance
frequency for the sensing application. However, in production this also require
even more precise manufacturing as a deviation from the wanted grating specifica-
tion may result in a false positive or negative, when the sensor is used. To see if the
width is of importance in general, it is varied at a specific wavelength. The result is
seen in Figure 5.8. Again a 6 nm wide area from the outermost edge of the barriers
is used to represent the entire result from each barrier width. It is seen that the width
of the barriers indeed have an impact on the field enhancement between the barriers.
In order to clarify if the observed phenomenon in Figure 5.8 is due to altered field
strength or placement of the enhancement, a larger area is rendered at the specified
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Figure 5.7: Refractive index of gold.

Figure 5.8: Field enhancement between barriers as a function of barrier width. The
contribution from six barriers has been included in the calculation and the wavelength
used was λ =640 nm.

barrier widths—namely 240 nm, 336 nm, and 400 nm. These are shown in Figure
5.9. The field enhancement is seen to increase with the width of the barriers. At the
same time the enhancement is displaced farther away from the barriers—also with
increasing width. Actually—qualitatively, the same pattern in the development of
the field enhancement can be seen for both the increase in barrier width and the
increase in wavelength around 640 nm—also cf. Figures 5.5 and 5.9.
As mentioned, the above results stem from an s-polarised exciting field. When look-
ing at experimental data, the observed general field enhancements should be kept
in mind—such that observed responses are not wrongfully ascribed to excitation of
plasmon resonances.
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(a)

(b)

(c)

Figure 5.9: The exciting field is with wavelength, λ =640 nm. (a) Barrier width is
240 nm. (b) Barrier width is 336 nm. (c) Barrier width is 400 nm.
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Second Harmonic
Generation 6
It was chosen to investigate the second harmonic response of the produced gratings.
For this purpose, the theoretical concept is reviewed in the following.
Once again the starting point is Maxwell’s equations (cf. Equation (2.4)). The curl
is taken of Maxwell’s curl equation for the electrical field and subsequent the curl
equation for the magnetic field is inserted by use of the constitutive relations (cf.
Equation (2.2)):

∇×∇×~E = iωµ0
↔µ∇× ~H⇒

∇×∇×~E = ω
2µ0ε0

↔µ~E +ω
2µ0

↔µ~P+ iωµ0
↔µ~j. (6.1)

The polarisation can be expressed as a sum of the linear and all non-linear contri-
butions as:

~P = ~P(1)+~P(2)+~P(3)+ . . . . (6.2)

The dielectric constant can be expanded in a similar way and one can write:

ε0~E +~P = ε0
↔
ε
(1)~E +~P(2)+~P(3)+ . . . . (6.3)

In the present context, only non-linear contributions to the second order are of in-
terest and the remaining non-linear contributions are discarded before insertion into
Equation (6.1). It is further assumed that no source currents and charges are present
and through use of ∇×∇×~A = ∇(∇ ·~A)−∇2~A, the following inhomogeneous
Helmholtz equation is obtained:(

∇
2 + k2

0
↔µ
↔
ε
(1))~E = −ω

2µ0
↔µ~P(2). (6.4)

This equation can thus be understood as the description of an electrical field, ~E(2ω)
driven by the second order polarisation, ~P(2).
In the following, it is assumed that the second order polarisation is originating from
a single electrical field, ~E(ω), i.e. sum- and difference-frequency generation sim-
plify to optical rectification and second harmonic generation—also known as fre-

quency doubling. The second order polarisation, ~P(2) = ε0
↔
χ
(2)
e
~E(ω)~E(ω) can thus

be found through the determination of the second order susceptibility,
↔
χ
(2)
e . What

is important in this context is the resonance conditions, an explicit expression for
the susceptibility will therefore be omitted and only the resonance conditions will
be reviewed. Finding the susceptibility can be done through a quantum mechanical
approach based on perturbation theory. The system, i.e. the material subjected to
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the electrical field is in its unperturbed state described by eigenstates related to the
time-independent Schrödinger equation:

Ĥ0|ϕn〉 = En|ϕn〉, (6.5)

where Ĥ0 =− ~2

2m∇2+V (~r, t) is the Hamiltonian operator related to the unperturbed
case and the eigenstates constitute any wave function, |ψ〉, as:

|ψ〉 = ∑
n

an|ϕn〉e−iEnt/~. (6.6)

It is assumed that the eigenstates are known and that the only unknown is the time-
dependent coefficient, an which can be thought of as the probability amplitude and
thus |an|2 is the probability of finding the system in the state |ϕn〉 at time t. If the
system is perturbed by an external perturbation—in this case an electrical field—
the Hamiltonian changes into Ĥ = Ĥ0 +

1
2Ĥ1e−iωt + 1

2Ĥ†
1 eiωt , where Ĥ1 denotes

the spatial part of the perturbation. It is assumed that the time-dependence of the
perturbation is harmonic and in order to describe the time-dependent response of
the system, the time-dependent Schrödinger equation must be solved:

i~
∂|ψ〉

∂t
=

(
Ĥ0 +

1
2

Ĥ1e−iωt +
1
2

Ĥ†
1 eiωt

)
|ψ〉. (6.7)

Inserting the wave function from Equation (6.6) and carrying out the differentiation
yields:

∑
n

(
anEn|ϕn〉+ i~

∂an

∂t
|ϕn〉

)
e−iEnt/~ =

∑
n

an

(
Ĥ0|ϕn〉+

1
2

Ĥ1|ϕn〉e−iωt +
1
2

Ĥ†
1 |ϕn〉eiωt

)
e−iEnt/~. (6.8)

Utilising the eigenvalue condition, the first terms on the left- and right-hand sides
cancel and the equation reduces to:

∑
n

∂an

∂t
|ϕn〉e−iEnt/~ =

1
2i~∑

n
an

(
Ĥ1|ϕn〉e−iωt + Ĥ†

1 |ϕn〉eiωt
)

e−iEnt/~. (6.9)

The eigenstates are mutually orthonormal and thus they satisfy the relation 〈ϕm|ϕn〉=
δnm, where the notation implies:

〈ϕm|ϕn〉 =
∫

ϕ
∗
mϕnd3r. (6.10)

Next step is to multiply Equation (6.9) with 〈ϕm| from the left and integrate to yield:

∂am

∂t
=

1
2i~∑

n
an

(
Hmne−iωt +H†

mneiωt
)

eiEmnt/~, (6.11)

where Emn = Em−En and Hmn = 〈ϕm|Ĥ1|ϕn〉. For electromagnetic perturbations,
the perturbing Hamiltonian, Ĥ1 is proportional to the field strength. The coefficient
am is now expressed in a power series also in terms of field strength:

am = a(0)m +a(1)m +a(2)m + . . . . (6.12)
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In order for Equation (6.11) to be valid, the power in field strength must be the
same on each side and since the perturbation is proportional to the field strength, it
implies:

∂a(p)
m

∂t
=

1
2i~∑

n
a(p−1)

n

(
Hmne−iωt +H†

mneiωt
)

eiEmnt/~, (6.13)

and thus ∂a(0)m
∂t = 0, from which it follows that no perturbation is present at all—i.e.

the system is stationary since the coefficients are constant. The first order coefficient
is found by setting p = 1 and integrating:

a(1)m =
∫ t

−∞

∂a(1)m

∂t ′
dt ′

= −1
2 ∑

n
a(0)n

(
Hmne−iωt

Emn−~ω
+

H†
mneiωt

Emn +~ω

)
eiEmnt/~, (6.14)

and in a similar manner can higher order coefficients be found. A desired observ-
able can now be found by determining the expectation value of its corresponding
operator, i.e.:

〈X〉 = 〈ψ|X̂ |ψ〉= ∑
m,n

a∗man〈ϕm|X̂ |ϕn〉eiEmnt/~

= ∑
m,n

(
a(0)∗m a(0)n +a(0)∗m a(1)n +a(1)∗m a(0)n + . . .

)
〈ϕm|X̂ |ϕn〉eiEmnt/~

= 〈X (0)〉+ 〈X (1)〉+ . . . , (6.15)

where the 〈X (n)〉 terms are comprised of coefficient terms with a total order of n.
It was previously mentioned that |an|2 was in fact the probability of finding the
system in the state, ϕn—which thus also must apply for |a(0)n |2 in the event of an
unperturbed system. In thermal equilibrium then, the absolute square of the n’th
coefficient is equal to the probability distribution at En, which in the present case is
the Fermi-Dirac distribution, f (En). It can be shown that a(0)∗n a(0)m = δmn f (En) [2]
from which it follows that the constant term is:

〈X (0)〉 = ∑
n

f (En)〈ϕn|X̂ |ϕn〉. (6.16)

The linear response—i.e. the first order component of the expansion is:

〈X (1)〉 = ∑
m,n

(
a(0)∗m a(1)n +a(1)∗m a(0)n + . . .

)
〈ϕm|X̂ |ϕn〉eiEmnt/~

= −1
2 ∑

m,n
f (En)〈ϕn|X̂ |ϕm〉

(
Hmne−iωt

Emn−~ω
+

H†
mneiωt

Emn +~ω

)
−1

2 ∑
m,n

f (Em)〈ϕn|X̂ |ϕm〉
(

H†
mneiωt

Enm−~ω
+

Hmne−iωt

Enm +~ω

)
. (6.17)
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The above expression can be decomposed into frequency components:

〈X (1)〉 =
1
2

X (1)(ω)e−iωt +
1
2

X (1)∗(ω)eiωt , (6.18)

where

X (1)(ω) = −∑
m,n

fnm
Hmn〈ϕn|X̂ |ϕm〉

Emn−~ω
, (6.19)

with fnm = f (En)− f (Em). No damping has so far been taken into account, but
this can be rectified by subtracting a loss term, i~Γ in the denominator of Equation
(6.19).
Following the exact same procedure, the second order perturbation can be found.
This is done in e.g. [13] and the frequency components are:

〈X (2)〉 =
1
2

X (2)(0)+
1
2

X (2)∗(0)+
1
2

X (2)(2ω)e−i2ωt +
1
2

X (2)∗(2ω)ei2ωt

(6.20)

where

X (2)(0) = −1
2 ∑

m,n,o
〈ϕm|X̂ |ϕn〉
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f (Em)

H†
omHno

(Eom +~ω)Emn

+ f (Eo)
H†
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(Eno−~ω)(Eom +~ω)
+ f (En)

H†
omHno

Emn (Eno−~ω)

)
(6.21)

and

X (2)(2ω) = −1
2 ∑

m,n,o
〈ϕm|X̂ |ϕn〉

(
f (Em)

HomHno

(Eom−~ω)(Emn +2~ω)

+ f (Eo)
HomHno

(Eno−~ω)(Eom−~ω)
+ f (En)

HomHno

(Emn +2~ω)(Eno−~ω)

)
.

(6.22)

If the perturbing electrical field with amplitude E is oriented along ẑ, the second
order response is found by inserting the polarisation density operator, P̂ = −eẑ

Ω
,

where Ω is the unit cell volume—along with the perturbing Hamiltonian Ĥ1 = eE ẑ.
The second order susceptibility is subsequently found by dividing the obtained ex-
pression with ε0E2. It is straightforward to do and does not alter the resonance
conditions, which therefore will be discussed with background in Equations (6.21)
and (6.22).
The response from Equation (6.21) represent optical rectification which arises from
difference frequency generation. The time-independent terms in fact represent a DC
electrical field which build up in the material due to the applied oscillating electri-
cal field. Equation (6.22) on the other hand represent the sought second harmonic
generated response, which through Equation (6.20) is seen to oscillate with twice
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the frequency of the exciting field. The response is seen to maximise when fre-
quency terms in the denominators match the energy difference between two levels.
Two different types of excitations can occur. If the pump frequency matches the
resonance condition of the material, two photons can be absorbed and the system
enters into a virtual energy state from where a second harmonic photon is emitted
as the system returns to its ground state. Another possibility is when two photons
are absorbed at the same time in such a way that the sum of their frequencies match
the resonance condition of the system and the emitted response thus is of that type.
The situations are illustrated in Figure 6.1 to the left and right, respectively. When

E1

Evirtual

E2

Resonance SH-resonance

Evirtual

ħωj

ħωi

ħωi

ħωj

2ħωi 2ħωj

Figure 6.1: Illustration of the resonance conditions in connection with second harmonic
generation of an electrical response, where the fundamental frequencies are denoted by ωi
or ω j and the second harmonic frequencies are denoted by twice the fundamental frequen-
cies.

using the method of second harmonic spectroscopy as a characterisation method,
the obtained spectra can thus be interpreted as originating from transitions equal
to—or twice—the difference of two energy levels.
In order to obtain a measurable second harmonic response, the electrical field around
the sample material has to be relatively strong, which implicit requires the use of a
laser. The stronger field—the stronger the second harmonic response which means
that e.g. enhanced field strengths in and around metallic particles will result in a
stronger response.
Furthermore, certain selection rules apply. No second harmonic response is ex-
pected from centrosymmetric materials. Amorphous media are always centrosym-
metric whereas crystalline materials may or may not be. A second harmonic re-
sponse is only expected from materials where the inversion symmetry is broken and
thus a bulk response from centrosymmetric materials may occur if the symmetry is
obstructed by defects. This contribution is small compared to the response from the
surface of the material—where the inversion symmetry is clearly broken. Because
of this, second harmonic spectroscopy is extremely surface sensitive. [2]

6. Second Harmonic Generation 43



44 6. Second Harmonic Generation



Experimental

II

45





In this part, the experimental work will be described. First and foremost, the mak-
ing of the gratings will be outlined—where procedures and intermediate results will
be described—along with considerations concerning the choice of the different pa-
rameters used in the process.
Next, the optical setup in connection with measurements will be described and the
results from the measurements will be presented and discussed.
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Grating-Sample
Preparation 7
In this chapter, the production of the samples containing the grating structures will
be described. First, an overview of the process is given and subsequent the proce-
dure is described more thorough.

7.1 Overall Procedure

Two types of gratings were produced. One kind, where grooves were etched into a
plain silicon wafer which previously had been subjected to a lithographic process.
A second kind, where metallic wires (illustrated in Figure 7.1) were deposited onto
a plain silicon wafer also after a lithographic process had been done. The silicon

Silicon

Metal

Figure 7.1: Illustration of the desired metallic grating to be created.

wafers were initially cleansed and covered by polymethylmethacrylate (PMMA)
which functioned as an e-beam resist. This situation is depicted in Figure 7.2(a),
where the top layer is PMMA and the bottom layer is the silicon substrate layer.
Next, the mask for the grating was written by e-beam lithography and developed to
reveal the actual grating pattern (cf. (b)). The silicon gratings were hereafter etched
using reactive ion etching and subsequently finalised be removal of the remaining
PMMA. In case of the metallic gratings, the situation in (c) illustrates that a layer of
metal has been deposited by means of e-beam evaporation and finally in (d), lift-off
has been performed to yield the wanted metal grating. After this, the gratings were
characterised by their physical shape and by means of their optical properties.
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7.2 Deposition of E-beam Resist

(a) (b)

(c) (d)

Figure 7.2: Step by step procedure for the making of a one-dimensional grating with a
rectangular cross section.

7.2 Deposition of E-beam Resist

The e-beam resist could potentially be of arbitrary thickness with respect to the e-
beam writing process, as an appropriate energy dose would have to be found under
any circumstance. However, the structure which has to be made in the lithographic
process may demand certain criteria for the resist thickness. Due to the nanoscaled
features of the grating which had to be produced, requirements for the resist thick-
ness were indeed present and an appropriate thickness of the photo resist had to be
chosen.
It was important that the thickness of the resist layer was not too large compared to
the period of the grating since this could result in a collapse of the structure as illus-
trated in Figure 7.3. The reason for such a collapse can be found in the development
process. Capillary forces can overcome the elastic restoring forces of the e-beam
resist and thus the pattern collapses [3]. The type of resist and the ratio between the
resist thickness and the width of the pattern elements are of importance. The upper
limit for the resist thickness is set to a value smaller than that of the period of the
desired grating. A grating period of 600 nm was chosen for the samples. In Figure
7.9 (f), an example of a pattern collapse is observed. It is, however, believed that the
collapse is caused by overexposure and that the strings of resist are partially lifted
from the silicon wafer.
The resist thickness could also become to small. Because of the etching or lift-off
process which had to be done in a later step, the resist thickness had to be larger than
the thickness removed in the etching process or the thickness of the desired metal
layer—else, lift-off could be impossible to achieve. This can be understood by in-
specting the right-hand side of Figure 7.4 where it is seen that the resist is totally
covered by the metal layer—practically hindering the access of the solvent to the
PMMA. A grating with approximately 200 nm deep grooves was initially desired
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Resist

Resist

Silicon

Silicon

Figure 7.3: Illustration of a situation where a written structure has collapsed.

Figure 7.4: Left: Successful lift-off process. Right: Unsuccessful lift-off process.

and thus the lower limit for the resist thickness had been established.
With these requirements in mind, the PMMA layer thickness should be in between
approximately 200 nm and 400 nm. A resist layer in the high end of the interval—
around 400 nm is preferred, since a thicker resist is less sensitive to small changes
in the e-beam current during the lithographic process.
The PMMA was deposited onto the wafers using a spin coater. First, tests were
made where different spin settings were used in order to yield different thickness’s
of the PMMA layer and thus find appropriate settings. Previously—in correlation
to another project, similar tests were made. The data from these are presented in
Figure 7.5. It is seen that the thickness’s which are desired are well covered in
the data-set. However, in order to yield a layer thickness around 400 nm, a rather
low spin-speed is required. Due to this, non-uniformity of the resist layer is seen
and a variation in resist thickness from sample to sample is expected. If the resist
thickness varies considerably from sample to sample, it becomes impossible to de-
termine the correct dose of electrons which repeatedly will yield the desired degree
of exposure in the lithographic process. Therefore, settings are sought which yield
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Figure 7.5: PMMA (3% solution) layer thickness as a function of spin speed. All sam-
ples were produced using a spin time duration of 1 minute. From [5].

a more uniform resist without reducing the layer thickness.
For this purpose a number of new tests were made—this time using a 4.5% PMMA
solution in order to yield thicker resist layers at higher spin-speeds. The samples
were examined using a profiler and the resulting data are presented in Figure 7.6.
Consulting these data, it was found that a resist layer with a thickness close to

Figure 7.6: PMMA (4.5% solution) layer thickness as a function of spin speed. All
samples were produced using a spin time duration of 1 minute.

400 nm was obtained when a sample was spun at 5000 rpm for 1 minute.
The procedure used when covering the wafers with PMMA was thus as follows:
The wafer was cleaned in acetone in an ultrasonic bath for 1 minute. It was subse-
quently rinsed with ethanol and dried with compressed air before it was placed in
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the spin coater. The wafer was covered in a 4.5% 950 PMMA C resist and spun at
5000 rpm for 1 minute. After deposition of the PMMA layer, the wafer was soft-
baked on a hotplate at 180 ◦C for 90 seconds. Following the baking, the sample was
ready for e-beam writing.

7.3 E-beam Writing

Before the writing of structures could be commenced, the scanning electron micro-
scope (SEM), Zeiss model EVO 60, in combination with an external writing system,
Raith Elphy Plus, should be calibrated and needed settings had to be determined.
The need for and character of these steps are clarified in the following. For a start, a
sample, a Faraday cup, and a wafer with structures in known dimensions are loaded
into the vacuum chamber of the SEM.
The time required for proper exposure of the photo resist depends on the e-beam
current—that is, the amount of electrons emitted from the electron gun. As a con-
sequence, a rather constant current is required which is adjusted using the installed
software. Next, the size of the e-beam current is needed in order to calculate the
exposure time. This current is found by directing the stream of electrons into the
Faraday cup such that no electrons are backscattered. The current is then measured
using the built-in ammeter. A typical current used was 135 pA.
In order to write structures that properly resembles the used template, the write field
of the system has to be calibrated. The write field is the area over which the sys-
tem is capable of scanning at a certain magnification. So for each template that
requires a different size write field, this alignment has to be carried out. The align-
ment is carried out by use of the sample with known structures. A predefined script
is usually run where an image of the structure is taken at the desired magnifica-
tion, subsequently points on the image at certain coordinates are proposed by the
software after which the user—if needed corrects these points so the proposed co-
ordinates are in agreement with the known structure. After this, the software makes
a correction so small discrepancies in the lens system are compensated for. How-
ever, this alignment function was corrupt and the corrections had to be implemented
manually after visual inspection of the aforementioned sample and some of the sub-
sequently produced lithographic writings in a trial and error process.
If desired, the stage holding the sample can be rotated or a software correction can
be made if the written structures are wanted at specific coordinates relative to the
sample. An area of approximately 2 mm×2 mm covered with the grating pattern
is desired. In prior experience with e-beam writing it was found that a write field
of 100 µm×100 µm was well suited for writing structures with the needed resolu-
tion. Obviously, when a 2 mm×2 mm area is wanted, it is required that several
writings are stitched together. Because of this, the software correction is out of the
question since this only acts on the global settings, i.e. the write field is not rotated
accordingly, and the pieces of grating would not be in alignment with each other.
Thus, the sample was rotated in order to align the written pattern with the edges of
the sample. Furthermore, another alignment concerning height adjustment is done.
This is required in order to retain focus on all points on the sample even though the
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sample is not placed completely horizontal. At three arbitrary points on the sample,
the wanted working distance is set and the height of the stage is adjusted until the
sample is in focus. The XYZ positions of the stage are loaded into the software
along with corresponding UVW coordinates of the writing system and the system
then corrects for the skewness of the sample.
Before structures can be written with a fair possibility of success, a so-called dose
test is performed. Earlier it was stated that the size of the e-beam current is needed
in order to determine the proper degree of exposure. Another factor is of course
the thickness of the photo resist layer. There is no way to know exactly how large
a dose is required for proper exposure, so a trial and error process is carried out
where templates simply are written using different doses and the resulting struc-
tures are inspected in order to decide the correct one. A silicon wafer with PMMA
deposited using the previously mentioned settings was subjected to writing of these
templates. After the writing had finished, the structures were developed for 30 sec-
onds in a solution containing one part methylisobutylketone (MIBK) and three parts
isopropanol (IPA), followed by 15 seconds in pure IPA in order to stop the devel-
opment process. Furthermore, a thin layer of gold was sputtered onto the sample
before inspection in the SEM. Some of the resulting structures can be seen in Figure
7.7. From the SEM images, it was thought that a dose factor of 1 did not suffice as
the text was underexposed. With a dose factor of 1.5 and 2, all text was visible as
well were areas with 50% and 200% exposure in fine condition. Higher exposures
resulted in rounding of the corners which indicated overexposure. At even higher
dose factors rounding of corners became more and more evident and even in the
most exposed areas cross linking of the polymer occured. From these images, the
best dose factor was thus found to be around 1.5 to 2. A template for the grating
pattern was made—this is illustrated in Figure 7.8. Another dose test was made
using this pattern and with doses ranging from 1.5 to 2 times the normal dose. All
of these dose factors turned out to be too high and thus deemed inappropriate since
all which was seen in the microscope was 100 µm×100 µm areas stripped from e-
beam resist. Another dose test with doses ranging from 1 to 1.5 times the normal
dose was made. In the lower part of the interval some of the pattern was visible
but in the high end of the interval all resist was removed. The dose tests shown in
Figure 7.7 were so-called area dose tests and thus only suitable for determining the
correct dose for writing of areas with a similar magnitude—therefore the observed
discrepancy between the results.
Based on the previous dose tests, a series of tests spanning from 0.7 to 1.2 times the
normal dose and with an interval of 0.1 times the normal dose was made. Also, in
the tests already made, it was seen that the exposed areas were rotated with respect
to the defined coordinates of the UVW system and furthermore that the areas over-
lapped at the edges. This was due to inaccuracies during the manual set-up of the
write field in the alignment process, so in the tests described in the following also
factors for correction of the write field was sought. In order to decide the correc-
tions, three areas with different spacings were written both laterally and vertically
for each dose. Close-up images of the resulting grating pattern stemming from dif-
ferent doses are shown in Figure 7.9. From the figure it is seen that a dose factor of
0.7 results in a pattern which do not resemble the template—also, the photo resist
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7: SEM images of dose tests. (a): Dose factor 1. (b): Dose factor 1.5. (c): Dose
factor 2. (d): Dose factor 2.5. (e): Dose factor 3. (f): Dose factor 4.

100

100

0.6 0.3

Figure 7.8: Schematic representation of the template used for e-beam writing of the
grating structure on a silicon wafer. The lengths are given in microns.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.9: SEM images of dose tests of 600 nm gratings. (a): Dose factor 0.7. (b):
Dose factor 0.8. (c): Dose factor 0.9. (d): Dose factor 1.0. (e): Dose factor 1.1. (f): Dose
factor 1.2.

is not developed all the way through to the silicon wafer—clearly an underexposed
situation. A dose factor of 0.8 still results in rather pronounced underexposure.
A dose factor of 0.9 yields a slightly underexposed grating. A dose factor of 1.0
shows the best result—the result is as desired with a period of 600 nm and a struc-
tural width of approximately 300 nm. Higher dose factors result in overexposure
where too much of the e-beam resist is removed and ultimately—even collapses of
the pattern are evident. Based on these findings, a dose factor around 1.0 is found
to be the best.
Unfortunately, the overall picture of the grating is quite different—a gradient in the
degree of exposure is seen in all of the writings—cf. Figure 7.10. Additional tests
has been made in order to clarify if the phenomenon persisted. A single test showed
other tendencies (more about this later), but all other tests before and after that one
showed the phenomenon.
Furthermore, another problem became visible. The patterns which were repeated
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Figure 7.10: Captured image of a written grating which shows the all-time present gra-
dient in the degree of exposure.

laterally were written first and subsequently the patterns which were repeated verti-
cally were written. From the developed structures it was clear that the needed dose
for proper exposure changed during the writing process, cf. Figure 7.11. The rows

(a) (b)

Figure 7.11: SEM images of what should have been gratings with structures of 300 nm
width. The structures in both images are written with a dose factor of 0.8.

with the laterally and vertically directed repetitions both show the same tendency
of increased exposure corresponding to an increase in dose factor. However, writ-
ings done with the same dose factor are not exposed to the same degree. This was
believed to be due to a non-constant e-beam current which was altered over time or
an uneven distribution of e-beam resist across the silicon wafer. This problem was
sought clarified in the test described in the following.
Again, another dose test was performed—this time ranging from 0.9 to 1.1 times the
normal dose but with an interval of 0.5 times the normal dose. An overview of the
resulting structures is seen in Figure 7.12. All the structures which are seen repeated
laterally were written first and subsequent all the vertically repeated structures were
exposed—from left to right. The structures are paired up two and two—written with
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Figure 7.12: Overview of the written structures where a time related change in exposure
is observed.

the same dose factor. This clearly indicates that the difference in exposure is inde-
pendent of the place in where it is written and that it must be because of a change
in the e-beam current which happens over time. A dose factor of 1.1 is clearly too
much but locally the rest of the dose factors yield similar and better results. Due to
the still persisting exposure gradient (cf. Figure 7.13) nothing more accurate can be
said at this time.

Figure 7.13: Transition from one exposed area to the next where the gradient in exposure
is observed.

After this, new settings for the correction to the write field were used without de-
liberately changing any other conditions than the e-beam current. In contrast to
previously obtained results, a rather uniform exposure is observed in the images
presented in Figure 7.14. Only in the upper right corner of the written area, non-
uniformity can be observed. Furthermore, the upper right corner seems underex-
posed as opposed to previous writings where the same corner was overexposed. By
use of what is deemed to be the same settings—besides use of both old and new
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(a) (b)

Figure 7.14: SEM images of a grating structure where the previously observed gradient
in exposure has nearly vanished. A dose factor of 0.9 was used for this particular writing.

settings for the write field—several attempts were made to recreate this result, but
all attempts were unsuccessful. Close-up images of the resulting structures are pre-
sented in Figure 7.15. Based on the dimensions of the gratings in these images,

(a) (b)

(c) (d)

Figure 7.15: SEM images of dose tests of 600 nm gratings. (a): Dose factor 0.90. (b):
Dose factor 0.95. (c): Dose factor 1.00. (d): Dose factor 1.05.
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the best dose is determined to be 0.9 times the normal dose. This dose factor was
decided to be used as the initial dose in the following attempts towards uncovering
the reason behind the observed gradient in exposure.
The writing system is connected to two electron microscopes (Zeiss EVO 60 and
1540 XB) through a system of switch-boxes. Samples written using the XB elec-
tron microscope did not show the gradient in exposure (cf. Figure 7.16). The EVO

(a) (b)

Figure 7.16: SEM images of a grating structure written using the XB electron micro-
scope. No gradient in exposure is observed.

60 electron microscope used for the writing of the samples showing the gradient
was placed farther away from the writing system than the XB microscope and to
rule out bad connections or signal quality loss through the relatively long cables
and wires, the writing system was connected directly to the EVO 60 electron mi-
croscope. Three different samples were written with this hardware setup and all
samples still showed the gradient, after which the setup was changed back to its
original configuration. Another hypothesis was investigated. It was believed that
the gradient in exposure could be due to charging of the sample-wafers and steps
were hereafter taken in order to solve this problem. These attempts are described in
the following.

7.3.1 Doped Wafers

If indeed the wafers were charged by the stream of electrons, the problem could
be solved by leading the electrons away more readily. It was investigated if higher
conductivity of the wafers could counteract the observed gradient and so a number
of writings on doped silicon wafers were done. As seen from the examples on some
of the writings in Figure 7.17, the gradient is persistent. As no improvement was
noted—subsequently, ordinary silicon wafers were used for the writings.
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(a) (b)

Figure 7.17: SEM images of writings of gratings on doped silicon wafers.

7.3.2 Exchange of Sample Holder

Increasing the conductivity of the sample did not work. The wafers were attached to
the sample holder by use of conducting carbon tape. In order to confirm or rule out
that the possible charging of the wafer was due to poor contact between the wafer
and sample holder, another sample holder was used instead. This sample holder
was primarily used in the XB microscope which thus also might explain why that
microscope yielded better results. When using this sample holder, the wafers were
placed directly on the holder and held in place by screws.
The results from this change showed clear improvements. The gradient was still
visible, but not as distinct as in the case of previous writings. It was decided to use
this sample holder from this point and on. A few writings were again performed
with the use of doped wafers. This was done in order to investigate if the combined
effect of increased conductivity between the sample holder and sample and in the
sample itself would yield further improvements. Again, the use of doped wafers did
not improve the situation further.

7.3.3 Reduced Resist Thickness

Following the improvements in conductivity, numerous writings were done where
different smaller resist thickness’s were used. The reason for this was, that when
an uneven exposure is noted, the difference in exposure results in smaller overall
deviations at small resist thickness’s than for large thickness’s. Furthermore, a lower
electron dose is required which also may result in lesser charging of the wafer.
Rather good results were seen from wafers covered with ≈100 nm e-beam resist,
but this resist thickness was deemed too low for the intended use of the written
structure. At a resist thickness of ≈225 nm a compromise was made. A useful
resist thickness had been reached, but the trade-off was an increased difference in
exposure across the write field. The result is seen in Figure 7.18. As may be seen
from Figure 7.18 (a), the difference in exposure is most clear in the bottom-left and
top-right corners. It was decided to try to make use of only a part of the write field.
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7.3 E-beam Writing

(a) (b)

Figure 7.18: SEM images of writing done on a wafer covered with 225 nm e-beam resist.

An area of 50 µm×50 µm was written using the 100 µm×100 µm write field and
the result was far better than before even though the gradient in exposure was still
visible (cf. Figure 7.19). Based on this, it was decided that a rather uniform grating

Figure 7.19: 50 µm×50 µm areas stitched together. The gradient in exposure is still
discernible.

could be made. Again, of course there was a trade-off. First, the periodicity of the
over-all grating would be broken more often, due to the increased number of areas
stitched together. Second, the time used to write the desired area was increased
significantly. This was also due to the increased number of area elements which
demanded a four-fold increase in stage operations.

7.3.4 Altered Electron Energy

It is seen from Figure 7.18 (b), that the resulting lines are not entirely straight. The
quality of the exposure could possibly increase with the electron energy in the sense
that the edges of the lines would become more sharp. The energy of the electrons
was therefore increased by changing the high-tension from 10 kV to 30 kV. One of
the results can be seen in Figure 7.20. It is seen that the frequency of the variations
along the written pattern have been increased compared to the situation before. The
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7.4 Gold Gratings

Figure 7.20: Grating structure written with electrons accelerated by 30 kV instead of
10 kV which was previously used.

quality of the structure itself has not been improved as expected. Once again there
is a trade-off for the change in parameters. The exposure of the e-beam resist is
done by secondary electrons. Due to the increased energy of the electrons, they
penetrate deeper into the material and into the silicon wafer why the creation of
secondary electrons in the resist is decreased and as a consequence a higher dosage
of electrons is needed. This of course again results in increased exposure time and
a more time consuming production. In this instance, it was decided that the change
from 10 kV to 30 kV in high-tension was not worth the trade-off and the operation
of the microscope was resumed with an EHT of only 10 kV.

7.4 Gold Gratings

After a dose-test where an appropriate exposure time was found, an area of 2 mm×
2 mm was stitched together by 50 µm×50 µm areas and written on a silicon wafer
covered with 225 nm PMMA. The pattern was developed by placing the sample in
a one part methylisobutylketone (MIBK) and three parts isopropanol (IPA) solution
for 30 seconds and subsequently in an isopropanol solution for 15 seconds. The
sample was loaded into the vacuum chamber of a Cryofox 600 Explorer and≈60 nm
gold was evaporated onto the sample through e-beam evaporation. Following this,
lift-off was performed, where the sample was placed in acetone for half an hour and
placed in an ultra-sonic bath for≈30 seconds at the lowest power setting. The result
is seen in Figure 7.21. First, it is seen that the sample was not 2 mm×2 mm large.
The reason for this was that the filament which provided the electrons broke during
the e-beam writing process. It is also seen that the lift-off process was not a total
success. From Figure 7.21 (b) it seems that the exposure of the grating pattern was
not carried out all the way through to the silicon wafer and as a result the gold wires
are not entirely attached to the silicon surface. In many cases, it also seems that the
wires which were not fully attached were torn off across the entire write field.
It was thus found that the electron dosage was not large enough to obtain a descent
grating. At the same time the dosage was locally too large to obtain the desired
300 nm wide gold wires (cf. Figure 7.22). Based on these findings it was decided to
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7.4 Gold Gratings

(a) (b)

Figure 7.21: (a) Overview of a grating comprised of 50 µm×50 µm areas onto which
gold has been evaporated and lift-off has subsequently been sought performed (the electron
source filament broke during the e-beam writing process). (b) Zoom-in on the lower-left
corner of one of the 50 µm×50 µm areas.

Figure 7.22: Close-up of some gold wires from the sample depicted in Figure 7.21.

maintain the period of the grating structure but increase the width of the gold wires
and in that way obtain a proper gold grating. A dose-test was performed where the
sample was taken through the entire procedure as described in the beginning of this
section to ensure that it was possible to do a proper lift-off. Following this, a number
of samples were written with different electron dosages to obtain different wire
widths and again the procedure outlined previously was followed for all samples.
As the making of 300 nm wide wires is discarded, 100 µm×100 µm write fields
are used instead in order to speed up the process. The resulting 1 mm×1 mm
gratings are presented in Figures 7.23 to 7.27. The width of the gold wires
was found to vary a little across the gratings—typically 5–10 nm’s. The values
given in Figures 7.23 to 7.27 are thus approximate values found in the middle of the
observed interval. Except from Sample E in Figure 7.27, the gratings are all deemed
successful. Few flaws are observed and the gratings seem homogeneous across the
written areas. Sample E on the other hand is seen to have serious flaws. The reason
for this is believed to be cross-linking of the e-beam resist which thus cannot be
removed in the developing process. Again, the gold is not properly attached to the
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7.4 Gold Gratings

(a) (b)

Figure 7.23: (a) Grating overview of Sample A. (b) The width of the gold wires is found
to be ≈340 nm.

(a) (b)

Figure 7.24: (a) Grating overview of Sample B. (b) The width of the gold wires is found
to be ≈350 nm.

(a) (b)

Figure 7.25: (a) Grating overview of Sample C. (b) The width of the gold wires is found
to be ≈355 nm.
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7.4 Gold Gratings

(a) (b)

Figure 7.26: (a) Grating overview of Sample D. (b) The width of the gold wires is found
to be ≈375 nm.

(a) (b)

Figure 7.27: (a) Grating overview of Sample E. (b) The width of the gold wires is found
to be ≈390 nm.

silicon surface and the wires are stripped from the wafer in the lift-off process.
Later, it turned out that it was very difficult to properly focus the laser beam on the
samples during the measurements and as a consequence a larger area was written
by use of the XB electron microscope. The resulting grating is depicted in Figure
7.28. It is seen that the quality of the resulting grating is far better than on the
other samples. The gold wires are seen to be almost straight and not uneven as
compared to previous samples. Finally, the width of the wires is more constant—
again compared to Samples A to E. Sample F was also characterised in an atomic
force microscope (AFM) in order to obtain height information. From Figure 7.29
it is seen that the width of the wires is consistent with that found by use of the
scanning electron microscope. The height is ≈63 nm and the profile is seen to
have tilted edges and not vertical as expected. This may be due to the shape of the
cantilever tip of the AFM which keeps the tip away from precisely following the
shape of the wires.
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7.5 Silicon Gratings

(a) (b)

Figure 7.28: (a) Grating overview of Sample F. The e-beam writing was done on the XB
microscope. (b) The width of the gold wires is found to be ≈325 nm.

(a) (b)

Figure 7.29: (a) AFM image of Sample F. (b) The height of the gold wires is found to
be 60 nm–65 nm.

7.5 Silicon Gratings

The important aspect of this project was to characterise gold gratings. However, in
order to interpret the spectra obtained from optical measurements, it was thought
fruitful also to obtain spectra from silicon gratings. The making of these gratings
started out much in the same way as the gold gratings. Several dose-tests were
made and 1 mm×1 mm areas were written with different doses and subsequent
developed. The samples were etched through reactive ion etching (RIE) and the
surplus PMMA was removed with acetone. The samples were etched for 40 seconds
in a mixed 15 sccm SF6 and 5 sccm O2 gas flow at a pressure of 35 mTorr, using
a power of 50 W. The resulting gratings are seen in Figures 7.30 to 7.32. Sample
H is seen to be the most flawed. One would expect Sample I to be the most flawed
since the width of the silicon tops is largest in this case—corresponding to the least
exposed sample in the e-beam writing process. Sample H is in fact the least exposed
sample—which explains the non-etched corners of the write field areas. The reason
for the smaller wire width is believed to stem from the etching process. Even though
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7.5 Silicon Gratings

(a) (b)

Figure 7.30: (a) Grating overview of Sample G. (b) The width of the silicon wires is
found to be ≈210 nm.

(a) (b)

Figure 7.31: (a) Grating overview of Sample H. (b) The width of the silicon wires is
found to be ≈270 nm.

(a) (b)

Figure 7.32: (a) Grating overview of Sample I. (b) The width of the silicon wires is
found to be ≈320 nm.
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7.5 Silicon Gratings

suitable parameters for a stable etching is sought—sometimes the etching halts for
a small period of time. It is thought that Sample H is effectively etched for a longer
period of time than Sample I which thus explains the discrepancies between the
written masks and the resulting gratings.
Using the XB microscope, also in this case a grating with a larger area was made.
The resulting grating can be seen in Figure 7.33. It is seen that the entire area

(a) (b)

Figure 7.33: (a) Grating overview of Sample J. (b) The width of the silicon wires is
found to be ≈290 nm.

was not exposed evenly and as a result the etching is also uneven. However, an
area large enough to do proper measurements on was successfully made. Sample
J was also characterised through use of an AFM (cf. Figure 7.34). The observed

(a) (b)

Figure 7.34: (a) AFM image of Sample J. (b) The height of the silicon wires is found to
be ≈22 nm.

height of 22 nm of the wires are quite small in comparison to what was expected.
Through previous etchings the height was found to be in the range of a few hundred
nm’s. The reason for this may be that the e-beam resist was not exposed all the
way through to the wafer and that an amount of resist had to be etched away first.
Furthermore it is seen that the FWHM is consistent with the findings from the SEM
images.
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7.5 Silicon Gratings
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Optical Measurements 8
In Chapter 3 it was found that enhanced electrical fields may form if the plasmon
resonance frequency of the material is hit. Furthermore, it was found that scattered
fields could supply a momentum component to the impinging electrical field and
the criteria for surface plasmon polaritons could thus be fulfilled. In Chapter 6 it
was mentioned that second harmonic spectroscopy is extremely surface sensitive
and that strong fields are required to achieve a strong response. Second harmonic
spectroscopy is therefore chosen as an indirect characterisation method for investi-
gating enhanced near-fields in the grating structure.
The experimental setup is illustrated in Figure 8.1. A pulsed 10 MHz signal with
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Figure 8.1: Illustration of the experimental setup in connection with the measurements
of the second harmonic response from the produced samples.

a wavelength of ≈786 nm from a Tsunami laser was lead through a quarter-wave
plate which altered the signal from linear polarisation to elliptical polarisation. In
this way the following polariser could be used to decide if the probing signal should
be p- or s-polarised. Furthermore, the intensity of the signal could be adjusted by
use of the quarter-wave plate. The signal was then carried through a filter which
filtered away wavelengths below 570 nm such that a contribution from the pumping
signal to the measured second harmonic signal was avoided. The signal was then
focused onto the sample which was placed in the sample holder. The sample holder
could be rotated 360 degrees by use of a stepping motor. The response signal from
the sample was lead through a series of filters which filtered away the pumping
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signal and through a second lens which focused the second harmonic signal onto a
photo multiplier tube (PMT) with which the second harmonic response was mea-
sured.

The impinging electromagnetic field was either p- or s-polarised and the plane of
incidence was perpendicular to the wires constituting the gratings at the 0 degrees
position (cf. Figure 8.2). The wavelength of the incident field was 785 nm–787 nm

0

45

90

135

180
225

270

315

360

Figure 8.2: Illustration of the sample orientation compared to the corresponding angle
in the following results.

(a slight shift in wavelength occurred during the measurements). A reference mea-
surement was made on the bare silicon of the different samples. This was done
in order to compensate for skewness occurring when the sample was placed in the
sample holder. Due to the skewness, the reflected signal would hit the PMT un-
even as the sample was rotated. Figure 8.3 shows a plot of raw data and a plot
of the data with reference correction. The correction of the different data points
of the measurements was done by dividing the data values with the correspond-
ing value of the reference measurement and multiplying with the average value
of the reference data-set. Figure 8.4 shows the second harmonic spectra from a
gold grating—namely Sample F. The gratings were made on Si(100) wafers. The
Si(100) interfaces have non-vanishing susceptibility tensor elements which result in
an isotropic second harmonic response during azimuthal rotation as is the case in
these experiments. There is also an anisotropic bulk contribution from the silicon
which arises due to a quadrupole-type non-linearity [4]. This contribution is, how-
ever, deemed negligible in this context.
Different mechanisms are thought to be responsible for the observed response. First,
the responses at 0 degrees and 90 degrees are compared. At 90 degrees the p-
polarised incoming field has a field component perpendicular to the wafer and a
component along the wire-axis. At 0 degrees the field components are perpen-
dicular to the wafer as well as the wire-axis. Focusing on the field components
perpendicular and parallel to the wire-axis, the perpendicular component experi-

72 8. Optical Measurements



(a) (b)

Figure 8.3: Second harmonic response from a gold grating without (a) and with (b)
reference correction.

(a) (b)

Figure 8.4: SHG response from Sample F with ≈325 nm wide gold wires constituting a
grating with a 600nm period.

1
2

Figure 8.5: Illustration of the orientation of the electrical field components at 0 degrees
and 90 degrees—marked by ’1’ and ’2’, respectively.

ences anisotropy (cf. Figure 8.5). It is thus expected that the effective second order
susceptibility is larger at 0 degrees than at 90 degrees and therefore also the ob-
served second harmonic response. By inspection of Figure 8.4 this is seen not to
be the case—at least not as a dominating mechanism. Another explanation must be
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sought.
The second harmonic response is also proportional to the electrical field strength
squared. If Figure 8.5 again is observed, the electrical field component within the
gold wire in the situation marked ’2’ is equal to the electrical field component of the
exciting field. This is the result of the boundary condition across the interface being
fulfilled. In the situation marked ’1’, the boundary condition implies that the normal
component of the dielectric displacement has to be continuous across the interface.
This results in a decrease of the field strength within the gold wire—namely by a
factor 1/εAu. If this mechanism is dominant, the largest second harmonic response
is expected when the grating is rotated to 90 degrees. Again, if the second harmonic
spectra from Figure 8.4 are observed, the response values at 0 degrees and 90 de-
grees are seen to be explained by this mechanism.
In order to solidify these explanations or prove them wrong, the polarisation of the
incoming field was changed from ’p’ to ’s’. The result is seen in Figure 8.6. It is

(a) (b)

Figure 8.6: SHG response from Sample F with ≈325 nm wide gold wires constituting a
grating with a 600nm period.

seen that this spectrum, qualitatively, is the same as the spectrum for p-polarised
excitation. Due to the 90 degrees shift in polarisation, the opposite tendency of Fig-
ure 8.4 should have been observed in Figure 8.4. The assumption concerning the
shift in anisotropy may still be valid and of importance, since it is possible that the
response at 90 degrees in the p-polarised case is dominated by other mechanisms.
A large response is seen at ≈52 degrees. This do not add up with the so far pro-
posed mechanisms. The response is repeated in a symmetric fashion which renders
a high probability that the response is related to the periodicity of the grating. The
second harmonic response measured from Sample J is shown in Figure 8.7. In this
instance, a larger response is found at 0 degrees than at 90 degrees, which indicates
that the dominating reason for the response is the change in effective susceptibil-
ity due to the anisotropy of the grating—which also was the indication from the
s-polarised case of Sample F. Also in this spectrum, the characteristic periodic re-
sponse is present. The characteristic peaks in intensity are found at the same angles
as in the spectrum for Sample F, which further indicates that the response is due
to the period of the grating. The second harmonic response due to an s-polarised
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(a) (b)

Figure 8.7: SHG response from Sample J with ≈290 nm wide silicon wires constituting
a grating with a 600nm period.

(a) (b)

Figure 8.8: SHG response from Sample J with ≈290 nm wide silicon wires constituting
a grating with a 600nm period.

incoming electrical field was also obtained for Sample J. The response is seen in
Figure 8.8. It is seen that the response at 0 degrees and 180 degrees found in Figure
8.7 now seems to be found at 90 degrees and 270 degrees which also would be ex-
pected from the change in polarisation.
To further investigate if the grating periodicity has an impact on the second har-
monic response, the linear response is measured. For this purpose a photo diode
was introduced into the experimental setup—right after the sample holder. The lin-
ear responses for both Sample F and J are shown in Figure 8.9. For both gratings
the characteristic angles seen from the second harmonic responses are once again
prominent. This amplifies the assumption that the observed responses at these an-
gles are related to the distinct periodicity of the gratings. The explanation for the
observed second harmonic response may be found from the grating equation:

a(sin(θout,m)+ sin(θin)) = mλ, (8.1)

where a is the grating period, and m = (0,±1,±2, ...). The diffracted angles as a
function of the rotated angle are shown in Figure 8.10. It is seen that for m = ±2,
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(a) (b)

(c) (d)

Figure 8.9: (a) and (b) Linear response from Sample F. (c) and (d) Linear response from
Sample J.

Figure 8.10: The first orders of diffracted angles as a function of the rotated angle.
The grating period is 600 nm, the wavelength is 786 nm and the angle of incidence is
45 degrees.
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Figure 8.11: Second harmonic diffraction condition for the first few orders as a function
of the rotated angle. The grating period is 600 nm, the wavelength is 786 nm and the angle
of incidence is 45 degrees.

the diffraction lies in the plane of the grating (diffracted angle=90 degrees) at the
specific angles observed in the spectra for both the linear and second harmonic re-
sponses. The increase in second harmonic response at these angles can thus be due
to further enhanced near-fields due to the linear diffracted orders. The diffracted
m =±2 orders also diffract at -90 degrees at some angles of the rotation, however,
these angles do not show up in the measured spectra as particularly important.
Another explanation could be found in the diffraction condition for the second har-
monic response. The pumping wave vector can be written as~kin = kω

0 (x̂sin(α)−
ẑcos(α)) where α is the angle of incidence. The diffracted second harmonic wave
vector can then be written~kout = kω

0 x̂sin(α)+m~G+ ẑ fm,α where f is some value
that depends on the angle of incidence and the diffracted order. ~G = 2π

a (x̂cos(θ)+
ŷsin(θ)) is the vector describing the reciprocal grating, where a is the grating period
and θ is the rotated angle. The diffraction condition thus become:

|x̂kω
0 sin(α)+m

2π

a
(x̂cos(θ)+ ŷsin(θ))| < k2ω

0 ⇒

(kω
0 sin(α)+m

2π

a
cos(θ))2 +(m

2π

a
sin(θ))2 < (k2ω

0 )2 (8.2)

Solving this for the first few orders yield the result seen in Figure 8.11. It is seen that
the condition for diffraction goes from being fulfilled to not being fulfilled at angles
not corresponding to those instances where the strong responses are observed in the
second harmonic spectra. It thus seem that the first outlined mechanism is the most
plausible.

Second harmonic measurements on the 1 mm×1 mm area samples are shown in
Figures 8.12 to 8.19. During the rotation, the p-polarised laser beam could not
be kept wholly within the grating area. Three measurements were done on each

8. Optical Measurements 77



sample and in between each measurement the sample was reorientated in an attempt
to improve the result.

(a) (b)

Figure 8.12: SHG response from Sample A with ≈340 nm wide gold wires constituting
a grating with a 600 nm period.

(a) (b)

Figure 8.13: SHG response from Sample B with ≈350 nm wide gold wires constituting
a grating with a 600 nm period.

Taking into account that the gratings were not illuminated evenly during the 360 de-
grees rotation, qualitatively, the spectra resemble those from Samples F and J. The
wire width has been increased for the gold gratings from Sample A to E. No clear
dependence of wire width on the second harmonic response is observed. From the
modelled near-fields in Chapter 5, it was found that an increase in field enhancement
between the wires could be expected with increasing wire width while the grating
period was kept constant. One could thus expect an increase in response from Sam-
ple A to Sample E. In fact, a small increase is observed but due to the uncertainty of
how well the exciting field was focused on the gratings, this connection cannot be
solidified.
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(a) (b)

Figure 8.14: SHG response from Sample C with ≈355 nm wide gold wires constituting
a grating with a 600 nm period.

(a) (b)

Figure 8.15: SHG response from Sample D with ≈375 nm wide gold wires constituting
a grating with a 600 nm period.

(a) (b)

Figure 8.16: SHG response from Sample E with ≈390 nm wide gold wires constituting
a grating with a 600 nm period.
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(a) (b)

Figure 8.17: SHG response from Sample G with ≈210 nm wide silicon wires constitut-
ing a grating with a 600 nm period.

(a) (b)

Figure 8.18: SHG response from Sample H with ≈270 nm wide silicon wires constitut-
ing a grating with a 600 nm period.

(a) (b)

Figure 8.19: SHG response from Sample I with≈320 nm wide silicon wires constituting
a grating with a 600 nm period.
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In this part, a conclusion is found which sums up what was done and investigated
during the project.
In the end, a chapter is located which suggests further possible actions to learn
more about the optical nature of metallic gratings and their making.
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Conclusion 9
Two types of plasmons exist—namely surface plasmon polaritons and localised sur-
face plasmons. Both types of plasmons are collective oscillations of electrons due
to an exciting electromagnetic field. The surface plasmon polariton is the excitation
of electrons in the surface of a metal with a surrounding dielectric. The forming of
a surface plasmon polariton requires an electromagnetic field incident on the sur-
face such that both a perpendicular and in-plane wave vector component is present.
The surface plasmon polariton is free to move along the surface but is confined per-
pendicular to the surface-plane. The plasmon decays exponentially into both the
metal and the dielectric. Through modelling it was found that if the waveguide is
made of gold, the penetration depth of the plasmon into the gold surface is in the
range of ≈20 nm. In order to excite a surface plasmon polariton, a momentum
component is needed to be added to the in-plane wave vector component of the ex-
citing field. This wave vector component can originate from enhanced near-fields or
from periodic scatterers like e.g. a grating. Localised surface plasmons are locally
confined to metallic nanostructures, where the resonance condition of the plasmon
arises naturally as a consequence of metal-type and dimensions of the nanostructure
i.e. confinement of the electrons is required. Resonance conditions can be found
analytically for very small nanoparticles with cylindrical geometry. Larger particles
and arbitrary shaped structures requires that Maxwell’s equations are solved for the
problem.
Through use of Green’s function, Maxwell’s equations are solved for a gold grating
where the electrical field is oriented along the wire-axis of the grating. With this
polarisation of the electrical field, the plasmon resonance condition could not be
fulfilled since no confinement of the electrons along the electrical field was possi-
ble. Still, a change in near-field intensity was observed between the wires. Within
the visible regime, it was found that the intensity of this near-field increased with
the wavelength of the exciting field—furthermore, the placement of the near-field
moved farther away from the surface of the wires. The near-fields were situated
within a couple of hundreds nm’s from the grating surface. Also, a variation of
the wire widths was done. For increasing wire width, the same phenomenon as for
an increase in wavelength was observed. Again the intensity of the near-fields in-
creased and the placement of the field moved away from the grating.

Gold and silicon gratings were produced through e-beam lithography. The lithog-
raphy process was problematic. Different initiatives were taken towards resolving
the problem and in the end—more or less successful gratings were produced. The
silicon gratings were etched from plain silicon wafers. The gold gratings were
made by evaporating gold onto silicon wafers with lithographically written struc-

85



tures and subsequently performing lift-off. Gratings with different wire widths were
made and these were characterised by scanning electron microscopy. All gratings
were with a 600 nm period and the widths of the gold wires ranged from ≈325 nm
to ≈390 nm while the height through atomic force microscopy was found to be
≈60 nm to ≈65 nm.
The theory of second harmonic generation relates the second harmonic response
particularly to surfaces where the inversion symmetry is broken and to strongly en-
hanced electrical fields. This optical characterisation method was thus chosen as an
indirect way of possibly identifying plasmon resonances in connection with the pro-
duced gratings. No unambiguous signs of excited plasmon resonances was found.
The observed responses—and change in responses—was accredited to mainly changes
in the effective second order susceptibility due to the structure of the grating. Also,
diffraction from the gratings were believed to be of dominant importance. This
was further solidified by linear measurements and theoretical modelling. It is be-
lieved that the theoretical dependence of wire width on near-field intensity for an
s-polarised field can be transferred to the p-polarised situation. This dependence
was sought verified by second harmonic measurements, but again no unambiguous
relation could be established—primarily due to the quality of the measured second
harmonic spectra.
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Perspectives 10
It could be interesting to investigate the response of the produced gratings at a ro-
tated angle of 0 degrees and 90 degrees for a continuum of pumping wavelengths.
Also, it would make sense to produce additional gratings with altered periodicity
in order to solidify that the effects believed to originate from diffraction conditions
are in fact valid. A more direct way of investigating the near-fields of the gratings
would be to perform near-field microscopy on them.
The near-field modelling in Chapter 5 was done without the silicon background
and only for s-polarised excitation. Future modelling could involve the excitation
with a p-polarised field in order to investigate if any plasmon resonance conditions
are being fulfilled. It was mentioned that the memory requirements for the written
program were quite high and a solution to this could be to use commercialised mod-
elling software like e.g. COMSOL. COMSOL also offer the possibility of invoking
periodic boundary conditions in the model and so the model can be made with only
a single wire. Another interesting project could be to model wires with a triangular
cross section—these geometries are known to have strongly enhanced near-fields at
the corners.
Also, gratings of wires with triangular cross sections could be produced and inves-
tigated with respect to their optical properties. This could e.g. be done through
ion-milling where a gold surface is subjected to writing by a focused ion beam.
Through a lithographic process, it is rather cumbersome to make triangular wires.
One possible way of attaining the desired wires would be to produce a grating mask
as done in the present project—but on a silicon on insulator (SOI) wafer. Next, the
sample is subjected to reactive ion etching—using much the same settings as de-
scribed in Section 7.5, but leaving out the oxygen flow. The silicon is more readily
etched than the silicon dioxide and etching the sample for a prolonged period of
time will create a cavity beneath the PMMA mask (cf. Figure 10.1). The reason

Silicon Dioxide

Silicon

PMMA

Figure 10.1: Formed cavity due to prolonged etching.

for leaving out the oxygen flow is that the PMMA is not etched away as fast as if
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the oxygen was present. Following this, gold is sputtered onto the sample which
gradually closes the mask holes and letting smaller and smaller amounts of gold
reaching the insulator layer. Finally the remaining silicon on top of the insulator
and the PMMA mask can be removed through etching and the wanted structure has
been finished. Another possible way of attaining the triangular cross sections is to
follow the approach as outlined by [1].
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