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Chapter 1

Introduction

Gantry cranes are considered to be an essential part of various industries, including man-
ufacturing, construction and shipping. The latter being the focus of this paper.

The freight industry has its largest network by sea, which conclusively means that most
of the wares bought and sold are transported by ships, approximately 90% according to
journalist Rose George [1]. Sea transportation is therefore the biggest contributor to the
world’s trade of goods. This is where gantry cranes come into the picture. According to
the United Nations Conference on Trade and Development (UNCTAD), the container port
throughput was measured to be of approximately 800 million TEU1 in 2020 [2]. To be able
to maintain the shipment of the 800 million containers a year, ports need to be equipped
with various gantry cranes, capable of loading and unloading them.

In general, these cranes require of a human operator to carry out the different tasks it
has to perform. During the last decade, a number of automations have been implemented
on gantry cranes, for example in the planification of the loading and unloading of con-
tainers as proposed by Martínez et al. [3]. Yang et al. [4] mentions the existence of the
Xiamen Ocean Gate automated container terminal, in China. The port contains three main
sections, the unloading of the ships section, the container transportation section and the
container placing section, which is where gantry cranes are utilised. The cranes pick up
the containers from the Automatic Guided Vehicles2 and place them in the correct position
within the container yard, an area of land within the port’s ground where containers are
stored for further transportation.
This example confirms the existence of automated gantry cranes, for example in the men-
tioned Xiamen Port, where some ZPMC gantry cranes are in use. These companies tend

1Twenty-foot Equivalent Unit: represents the volume of a standard 20 feet long intermodal container used for loading,
unloading, repositioning and transshipment[2].

2These vehicles transport the containers unloaded from the ships to the container yard, where containers are
organised and placed for further use

2
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to avoid releasing the algorithms utilised for performing path planning and control of
their cranes, which has reduced the ability of the group to obtain relevant information on
the subject. Nevertheless, the research carried out in this paper has shown that overhead
cranes have been used in various fields and some conclusions could be derived.

Some of the conclusions reached from the research show that reducing the cost and in-
creasing the efficiency of the loading and unloading tasks have been of interest to various
companies related to the shipping industry. One of these, Fuji Electric Co., Ltd. proposed
the automation of gantry crane as a research topic. Within this topic, three main concerns
were found, namely, sway angle under unfavorable conditions, path planning optimisa-
tion and the final landing problem. These concerns have in common the need for a control
system that can manage them all.

In this paper, following the proposal presented by Fuji Electric Co., a controller is pre-
sented and the performance of two path planning algorithms have been compared. The
paper is organised as follows: Chapter 2 contains work related to the path planning prob-
lem and different algorithms in use nowadays, as well as some control solutions which
could, potentially, be utilised on gantry cranes. Chapter 3 describes the equations of mo-
tions of an existing gantry crane (of small dimensions), from which a 3D model is derived.
Furthermore, the intricacies of setting up the physical system is also explained in this
chapter. Chapter 4 states the requirements of specifications for the solution presented in
this paper. It also describes how the different path planning algorithms are compared, as
well as the conditions that the controller must follow. Next, Chapter 5 defines the im-
plementation of the algorithms researched, on the physical crane. In Chapter 6, the tests
performed on the solutions and the results obtained from them, are listed. The following
two chapters, Chapter 7 and Chapter 8, conclude the paper.



Chapter 2

Technical Analysis

In this chapter the various matters which can be related to the problem at hand will be
analysed. Firstly, some related work will be introduced. Then, some more specific areas of
study will be analysed.

2.1 Overhead Cranes

Gantry cranes, also referred to as overhead cranes, in the shipping industries are utilised
extensively in the in-port transportation of containers and the placing of these on the cor-
rect positions. Two types of cranes can be seen in ports, quay cranes and yard cranes.
Quay cranes are those that have the task of loading and unloading containers from the
ships, and are placed on the quay1. The second crane mentioned, yard cranes, refer to the
gantry cranes situated on the container yards2. The focus of this project is on these yard
cranes, as the proposal received and the available crane concurs with the physical aspects
of these -cranes and their utilisation.

In Figure 2.1, the unloading of a container, as well as its placing on the yard, can be
seen. The grid shown under the crane represents the container yard, where each individ-
ual container placement is a single rectangle. The figure does not show the quay crane
which would be responsible for performing tasks A to B.

1Platform close to the water that ease the accessibility to the ships
2Area within a port where the containers are stored before their transportation

4



2.1. Overhead Cranes 5

Figure 2.1: Figure depicting an example of the tasks performed when unloading a shipping container from
a ship. Task A: the container is lifted from the ship by the quay crane and moved towards land. Task B: the
container is placed on the ground, close to yard crane. Task C: the gantry crane picks the container and moves
it towards the container’s specified position. Task D: the crane places the container on the floor or, on top of
another container.

Another element that sometimes appears in these tasks is the use of a motorised platform
that serves as a connection between the two types of cranes mentioned.

The implementation of this project was done on a down-scaled gantry crane located at
Aalborg University’s Control Lab at Fredrik Bajers Vej 07C 2-104. The crane is referred to
as a 2D crane, as it only allows the movement of a payload in two dimensions, namely
width and height. It has to be mentioned that, although the payload can swing in a three
dimensional space due to disturbances on the wires, the crane is still considered to only
act on two dimensions.

In the following image, Figure 2.2, a schematic drawing of the crane can be seen. The
parts that form said crane are also listed and will be further expanded in following para-
graphs.
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Figure 2.2: Depiction of the crane used for the implementation and testing of the solution presented in this
paper. Due to the size of the original image some parts, considered unimportant, have been removed.

2.1.1 Crane Overview

In this section, an overview of the crane is given based on the drawing shown in Figure
2.2.
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The head of the crane, see Figure 2.3, is one of
the only mobile elements of the crane. It moves
lengthwise and crosswise to pick and place
objects within its workplace.

The head consists of an Arduino Nano MPU-
6050, a gyroscope, an accelerometer, and an
electromagnet. The Arduino Nano is imple-
mented with a script that allows the user to send
and receive information from the sensors. It also
enables the use of the magnet, for attaching and
dropping the objects. The connection is done
using the cable seen on the top-right corner of
the image.

Figure 2.3: Head of the crane.

The trolley, see Figure 2.4, is pulled by the motors through some steel cables and has the
head hanging from itself. The trolley does not contain any electronic device and its only
purpose is to hold the head, moving in the x-axis in both positive and negative direction.

Figure 2.4: The trolley, which connects the head to the structure of the crane.
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In the figure to the right, Figure 2.5, the motor
and gears that actuate the mentioned wires can
be seen. Behind the visible parts, shown in the
image, is the other motor which manages the
up- and downward movement of the head. The
motors are Axem Disc DC Servo Motor type F9
M2.

These motors are managed by the Motor
Drivers shown in Figure 2.6. There is one driver
per motor, both placed behind the metal plate.
These drivers had to be reprogrammed to fit the
project. This is briefly explained in Section 3.2.1.

In the same figure, two more panels can be
seen. The red panel contains buttons and plugs
that allows the user to control the drivers phys-
ically, by allowing current to pass through or
preventing the drivers from receiving any, these
are the two black switches at the bottom of the
panel. On top pf these two, three connectors are
visible. The red allows for an external positive
supply, the white one is for connecting an addi-
tional sensor and lastly, the black connector is for
ground.

The other panel, between the red and the
metal panels, contains multiple connectors and
switches to control and measure signals that
from/to the crane.

Figure 2.5: Section of the crane where both
motors and their respective gears are lo-
cated.

Figure 2.6: Section of the crane where the
motor drivers and various connectors are lo-
cated.

The following table contains the accuracy specifications of the sensors used on the crane.

Sensor Accuracy
Potentiometer 0.02%

Tachometer 1.5 %
IMU 0.05 ◦/s RMS

Table 2.1: Accuracy of sensors.
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2.2 Related Work

The research on gantry cranes spans over a wide variety of areas of use, though, in gen-
eral, the research tends to focus on individual subsystems of what can be defined as the
overall Gantry Crane System. One example of a general solution for an automated crane
is presented by Sawodny et al. [5], where they introduce the idea of a gantry crane as a
large robotic workspace. Apart from the concept of the crane being a robot, the control
system is approached as a decentralised linear control, i.e., the control is divided between
some subsystems, each of which will generally have a means of communicating with the
others.
As mentioned, researchers emphasise their work on less generalised solutions than the
one by Sawodny et al. Thus, the obtained papers have been divided into those focused on
Control Systems and those focused on Path/Trajectory Planning.

2.2.1 Path/Trajectory Planning

Path Planning is a crucial system needed to achieve crane automation, as the main task
of said cranes is to transport a payload from one point to another. Thus, a path planner
that is capable of delivering a fast, safe path is necessary. Different approaches to path
planning on overhead cranes have been researched.

Non-deterministic Algorithms

A number of papers prefer the use of more flexible approaches to path planning and
utilise non-deterministic algorithms. These can derive multiple valid solutions for a prob-
lem, even when the initial conditions are the same. One of the advantages of these are, as
mentioned, the flexibility of obtaining some random path to the goal. This can be consid-
ered positive as the problem itself allows for multiple solutions.

One recurring non-deterministic approach is the Rapidly-exploring Random Tree (RTT).
This algorithm efficiently searches the specified area by randomly generating points in
space and connecting the latest node to each non-obstacle point. One example of this
being utilised on a crane is the paper from Zhimei et al. [6], which combines the RRT
algorithm with another non-deterministic method, namely Particle Swarm Optimisation
(PSO). A "tree" is made using the RRT and then, the PSO algorithm smooths the path
allowing the crane to perform it.

Another implementation of the RRT algorithm is in Du et al. [7], where the improved
RRT-Connect is utilised. RRT-Connect constructs two RRTs, one at the start node and one
at the goal, that grow towards each other through some greedy heuristic.
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One additional paper that implements a non-deterministic solution to crane path plan-
ning is Waikoonvet et al. [8]. The algorithm in use is the Ant Colony Optimisation (ACO)
for planning a collision free path for the crane, modified by using the cubic spline formula
to generate a trajectory.

Deterministic Algorithms

Contrary to their counterpart, deterministic algorithms will always output the same so-
lution for the same initial conditions, meaning no randomness is involved in deriving a
solution.

Vu et al. [9] present a motion planning solution for a laboratory gantry crane. The planning
is divided into offline pre-computation of trajectories and an online trajectory planning.
The offline part of the solution computes the possible trajectories of the crane between
two points in the workspace, where obstacles are present. Both points are considered to be
within known sub-spaces, described as grids. Then, an optimal trajectory is planned offline
using the direct transcription method. The online planning is performed if the start and
end states are changing while the gantry crane is performing a task. A seven milliseconds
calculation-time for a single trajectory is obtained using the database built with the offline
trajectories computed. When the start and/or end state of the trajectory changes, the on-
line planner selects the trajectory closest to the solution, from the mentioned database, and
reduces the deviation from the closest trajectory to the new better-planned trajectory.

Other researchers attempt to reduce the swing produced by the crane’s trolley on the
payload. This issue affects not only the physical component of the crane, i.e., the payload
knocking on the surrounding elements of the workspace, but it can also have an effect on
energy consumption. Zhou et al. [10] presented a solution for an optimal path planner
for a gantry crane, utilising five trajectories from some other models for comparison. All
the five trajectories are considered by Zhou et al. to be un-optimised. To solve this, they
present three optimal control strategies, a swing-optimal model, an energy-optimal model
and lastly, a time-optimal model. The first model tries to optimise the crane for the swing
of its payload while moving horizontally. The energy-optimal model minimises the energy
consumption on each trajectory. The last model searches for the minimal transportation
time of moving a payload from an initial to a final state. Another proposal which focuses
on minimising time is Zhang et al. [11], which implements the quasi-convex optimisation
method to find the solution which takes the least time while considering the constraints of
the angle of the payload, the restricted velocity and acceleration, and the jerk the trolley
suffers while moving.

The idea of a trajectory where the coupling behaviour between trolley and payload in
a crane is taken into consideration has been proposed by Ning et al. [12]. The approach
presented is based on the theory that two interacting objects are considered as coupled.
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This helps at planning a trajectory that minimises payload swing. The specific model
followed for the generation of the path is the S-curve motion profile. This motion is a
smoothed-out variant of the trapezoidal profile, which contains sharp turns. By using
this type of motion profile together with the coupling theory, the unwanted sway angle
of the payload gets dampened down. The S-curve profile is also used by Fang et al. [13],
with the main difference that empirical data is used to bound the trajectory within desired
constraints. The constraints determined in this paper are the limitation of the velocity at
which the trolley moves, for which a maximum velocity was set. The acceleration is also
constrained similarly to the velocity by defining a maximum a acceleration that ensures
the payload reaches its goal without any mishaps. Lastly, the trolley must move towards
the goal coordinate, both for time efficiency and for energy efficiency.

Path Planning for mobile cranes

Algorithms for searching paths have also been applied to self-driven gantry cranes, which
as their name implies, are capable of moving around without human intervention. Some
examples for this are the research performed by Kaneshige et al. [14] and [15].
Since focus of this paper is on the craning task of the gantry crane, research on mobile
cranes will not be necessary.

Summary

Different solutions regarding path planning for gantry cranes have been researched. Three
groups have been found, the deterministic and non-deterministic algorithms, and path
planning for mobile cranes. This last group has been considered as unimportant for this
project and thus, will not be explored further. Non-deterministic algorithms appear to
allow for more flexibility towards path planning than the deterministic ones, this is due
to the first one allowing for random correct solutions for a problem. Some of the men-
tioned non-deterministic algorithms are RTT, PSO or ACO. In the case of deterministic
algorithms, these focus on deriving solutions capable of responding to certain inputs to
derive an specific output, where there is no randomness involved.
As seen, various approaches can be implemented in a gantry crane to solve the path plan-
ning problem. Nevertheless, due to the research not highlighting any specific solution, the
research on path planning algorithms is expanded further in Section 2.3.

2.2.2 Control Systems

Robotic solutions always include a control system that organises and commands the solu-
tion. Gantry cranes also need this characteristic, especially so for automated gantry cranes,
as no human will have direct control of the crane. Some crane control methods have been
researched in this section.
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The paper from Fang et al. [13], mentioned previously, does also implement a control
method that utilises S-curve profile for the motion planner. A control method is designed
based on the energy analysis of the overhead crane to derive an adaptive tracking con-
troller. This controller keeps the trolley within the set limits of velocity and acceleration
while reducing the swing of the payload. According to the results shown, the control
method ensures an asymptotic tracking result, i.e. the disturbances become insignificant
compared to the tracking of either velocity or acceleration.

One common strategy in the control of gantry cranes is to minimise the sway angle of
the payload, this can be seen in [16] and [17]. The first article utilises a combination of
two PI controllers to control the trolley with the payload attached. For the output of this
controller to be considered optimal, the controller parameters need to be adjusted. This
was done by utilising PSO to obtain the optimum four parameters. In article [17], an im-
proved PID controller that minimises payload swinging is proposed. A PID controller is
designed using an approximate model of the system and Fuzzy logic is utilised for tuning
the parameters of said PID. According to the authors, this is needed due to PID controllers
having difficulties performing with varying parameters. Sorensen et al. [18] also utilises a
PID-based controller for solving payload sway. Their approach differs in that the solution
is derived based on three sub-modules, an oscillation cancelling sub-module, a sub-module
for precisely measuring payload position and a disturbance rejection sub-module.

One more article that combines PSO, as a parameter tuner, and a PID controller is [19].
The controller consists of a PID and a PD controller, managing the position of the trolley
and minimising the sway of the payload. As with the approach presented by Suvorov et
al.[16], PSO is utilised to optimise the parameters of both controllers. The PSO used is
improved by introducing a priority condition where steady-state is considered the highest
priority, then overshoot, followed by settling time. This means that the optimal solution
will be decided by the particles whose fitness function fit best the desired outcomes in the
respective order.

Summary

Some gantry crane controllers have been listed. Different approaches have been discov-
ered, some utilise PID controllers while on some other cases, the authors design their own
control system, for example Fang’s et al. solution, which bases its controller on energy
analysis.
One focus which several authors seem to emphasise is the sway angle. This has to be
taken into account when designing a control system for a gantry crane. Some controllers
have been listed but it has been considered that they may not cover all the possibilities
that could be implemented into the final solution of this paper. Therefore, a more in-depth
analysis of control systems can be seen in Section 2.4.
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2.3 Path Planning Algorithms: A Review

In Section 2.2, path planning approaches for gantry cranes have been discussed. Different
algorithms have been used with distinct solutions for each of them. The research did not
show any clear preference for any specific algorithm, but it depicted two clear approaches.
Those where deterministic algorithms were utilised and those where the preference was
on non-deterministic path planning algorithms. At the same time, a third group was dis-
covered, that is, Evolutionary Algorithms. The algorithms forming this group may be
assigned to one of the other two types of algorithms, but due to the nature of evolutionary
algorithms, it has been decided to create a separate subsection to describe them. Following
this discovery, a review of various path planning algorithms has been made. These do not
necessarily relate directly to gantry cranes, but have been chosen as there exists a possibil-
ity that they can be implemented on cranes. A comparison on some algorithms from the
different categories could give an insight into which type of path planning algorithms are
more optimal than the others for a gantry crane.

2.3.1 Non-deterministic algorithms:

Non-deterministic algorithms refer to some process containing a certain degree of ran-
domness that outputs variable solutions. Different algorithms have been found and cate-
gorised, those are PSO, Simulated Annealing and, ACO.

Particle Swarm Optimization:

Proposed by Kennedy et al.[20], is the optimisation of a problem by improving a solution
over many iterations, based on some measure of quality. A number of possible solutions,
"particles", populate a search-space. Using a formula to stir them around, the particles will
position themselves in space, according to some criteria that defines both, each particle’s
local best known positions and the space’s best known positions. For each iteration, the po-
sitions get updated and the particles will get attracted to these knew best known positions.

In [21], different variants and applications of PSOs are listed. One type of PSO that he
refers to are those that combine it with one or more algorithms, such as the hybrid algo-
rithm proposed by Girija et al.[22]. Here, they combine PSO with Artificial Potential Field
(APF). APF is used to generate a potential field, this field repels the particles of the PSO
from whatever obstacles may be in the environment. This increases the speed at which
the PSO can find the optimal solution for the path planning. Another improved version
is the PSO-Gray Wolf Optimisation (GWO) proposed by Cheng et al.[23]. The GWO emu-
lates the behaviour of wolfs in their hunting environment, where a leadership hierarchy is
followed by the wolfs. GWO increases the speed at which the PSO can derive a solution.
It does that by applying a hierarchy of the fittest solution to the particles, before PSO is
applied. GWO orders the particles in terms of the optimal fitness value, inciting the other
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particles to move to the best known positions.

PSO algorithms have one main advantage, and that is its low number of tuning parameters.
On the contrary, some of the most important disadvantages are premature convergence,
poor global search capability, and slow convergence speed. Premature convergence hap-
pens due to the decrease of particle velocity, which forces the particles to local minima,
not converging on the desired goal [24]. This disadvantage derives into the one mentioned
next, poor global search capabilities. Since the particles get lost in local minima, the search
for the optimal solution is less effective or, may never reached. It could also be mentioned
that, when combined with other algorithms, such as APF of GWO, the PSO algorithm
improves in its performance.

Simulated Annealing:

Annealing refers to the process of heating a metal or alloy close to its melting point and
then, allowing it to cool down. During the slow cooling, the atomic movements of the ex-
cited atoms get reduced until a lowest-energy state is reached [25]. This process is utilised
to reduce the hardness of the material, to make it more malleable by heating it up. When
it cools, the material recovers its stiffness. Simulated Annealing works by following this
principle.
The algorithm works by pre-defining a reasonable solution and an initial temperature for
the problem at hand, as well as an end condition that stops the annealing. A temperature
reduction function is defined based on how the temperature should decrease. At each time
step, the temperature will drop and a new solution will be obtained. The cost between the
previous and the new solution is calculated. If the cost is greater than zero, then the new
solution is better, so it gets accepted. If not, the cost is lower than zero and the previous
solution is considered superior. Before accepting this solution, a random number between
zero and one is selected and if this number is under some value, it gets accepted, else, the
new solution gets selected.

Miao et al.[26] present an enhanced simulated annealing algorithm for path planning.
The enhancement made to the algorithm is the initial determination of a path, which re-
duces the computation resources needed to run the algorithm. The dynamic environment
considers static and moving obstacles which the robot should avoid. The initial path is
derived offline, and only considers static obstacles. When the robot initiates its motion, it
follows the predefined path. If a moving obstacle gets detected by its sensors, the robot
calculates its direction and determines whether or not it will collide with it, calculating a
new path if needed. The online calculation of the new path is evaluated using Simulated
Annealing.
Multiple uses of Simulated Annealing come together with some other algorithm which
have the constrain of getting stuck in local minima. This is because Simulated Annealing
is capable of making the system leave this minima. One example of this is [27], where



2.3. Path Planning Algorithms: A Review 15

Zhu et al. utilise Simulated Annealing together with APF, briefly explained in the PSO
description. A path planning approach is proposed in [27], using APF to traverse the en-
vironment and reach the end goal. As mentioned, potential fields have the drawback of
falling into local minimum, not being capable of leaving them. By combining it with PSO,
this minima do not pose a threat and the robot should be capable of reaching the desired
solution.

Some advantages of simulated annealing are, the easy coding and use, its robustness
against noisy data as well as the ability to treat nonlinear models. It also benefits from its
ability to escape local minima and reach the global optimum solution. The cooling aspect
of this algorithm makes it slow at deriving a solution. This trade-off can be obviated if
the time aspect is unimportant for the application. Even when good against various local
minima, if the environment is smooth and the number of local minima can be neglected,
it could be considered excessive the implementation of simulated annealing, considering
the slowness of the algorithm.

Ant Colony Optimization:

Method proposed by Dorigo et al.[28], inspired on the pheromone-based communication
that ants use. The algorithm works by sending a number ants into a search-space from
an initial position. The ants search this space leaving a trail of pheromones looking for
the goal. When an ant reaches the goal, it follows its own trail back "home", updating the
pheromones left on the path with information. This information varies depending on the
application of ACO, in terms of path planning, said information could describe the length
of the path or the total time needed to cover the path. This process of sending ants and
retrieving path information is iterated several time. The data for the paths found will be
used as a baseline for the new ants, which, due to a random component, will sometimes
stray from from the path, generating a new one. If the newest path is considered as better,
depending on the requirements defined, it will overwrite the previous path.

In 2018, Akka et al.[29] proposed an improved ACO for path planning pf robotic sys-
tems. Akka introduces an stimulant to the algorithm. This stimulus supports the ants in
selecting the next step on the grid, directing them to the desired solution. By doing this,
the convergence increases, enhancing the speed at which the algorithm finds a solution.
Yee et al.[30] utilise ACO to obtain the fastest path between the start and the goal nodes.
The solution presented in the paper is a direct implementation of the ACO algorithm.
They tested the algorithm against different maps with varying difficulties, which were
obtained from Sedighi et al.[31] where a genetic algorithm was used for path planning.
The results were compared, and according to Yee et al., ACO derives faster paths than the
genetic algorithm developed by Sedighi et al.

Ant Colony Optimisation has its main disadvantage in the convergence speed and accu-
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racy with large datasets. Nevertheless, it is advantageous in that it can adapt to dynamic
environments, i.e. it can adjust itself to changes in real time.

2.3.2 Evolutionary Algorithms

Evolutionary Algorithms are search strategies based on the Darwin’s theory of evolution,
encompassing natural selection and genetics. These try to derive a solution which may
not be the most optimal, but are still considered of good quality. According to Petrwoski
et al.[32], these are generally implemented on problems whose solutions are considered
unrealistic by "exact methods". An Evolutionary Algorithm uses mechanisms inspired by
biological evolution, such as reproduction, mutation, recombination, or selection. Depend-
ing on the mechanisms, evolutionary algorithms can be divided into different groups. The
types of Evolutionary Algorithms are [33]:

• Genetic Algorithms: derive a solution based on recombination and mutation3 (opti-
mization problems). These algorithms have a group of possible outcomes, depending
on the problem at hand. These problem are defined using an objective function on
which the different outcomes are fitted to. The confidence of a solution being good
is contingent on how well the outcome fits the mentioned objective function. This
process evaluates each individual of the possible outcomes group, from which the
better valued solutions are passed onto a new generation of the group. And the
process is repeated, deriving only the "best" individuals/solutions to a problem. The
solution is outputted as a binary string of fixed length.
An example of its implementation as a path planner can be seen in the paper men-
tioned previously, from Sedighi et al. [31]. Utilising the Genetic Algorithm instru-
ments mentioned, and following the requirements set by the problem, in this case
the path length and the number of turns. The generations will continuously mutate
to fit the objective function, until reaching the optimal path.

• Genetic Programming: is similar to Genetic Algorithms but introduces genetic op-
erators. One main difference between the two is that Genetic Programming can be
expressed as a tree of functions, whereas Genetic Algorithms work in a linear matter,
resulting in a binary string. The use of a tree-like structure allows for exchange of
information between the branches. Genetic Algorithms are generally used to gener-
ate optimised programs of variable length, as its tree-like structure can be seen as
multiple functions correlated to each other and that have been optimised. The main
evolutionary operators used are mutation and crossover4.
Kala et al. [34] utilise Genetic Programming to optimise the path planing of multiple
robots that have to collaborate with each other. The author divides the system into

3Values of particular genes/solutions are changed randomly.
4Parts of an outcome are exchanged between two selected outcomes.
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two, master and slave, whereas the slave system is formed by the paths of all individ-
ual robots respectively. And the master, is the optimal general path for the swarm.
The tree-like structure allows the paths of the individual robots to communicate with
each other, permitting the master to compute the optimal path.

• Evolutionary Programming: genetic programming outputs optimised programs of
variable length, on the contrary, the Evolutionary Programming’s structure of the
program is fixed, and it is the parameters that are allowed evolve. It mainly uses the
mutation operator, compared to genetic programming which also utilises crossover.
Combined with an Artificial Bee Colony (ABC) algorithm, Contreras-Cruz et al.[35]
utilise Evolutionary Programming to optimise the smoothness and length of the
paths. The ABC algorithm generates numerous paths, all of which get evaluated by
the evolutionary programming. It generates a population of feasible paths obtained
by the ABC, exposes the population to the environment, checks if the members fit
the objective function, mutates some members and selects some of them for a new
population. Repeating this process until some condition set by the author is met.

• Evolution Strategy: uses vectors to represent the outcomes and utilises self-adaptive
mutation rates. Evolution Strategies originate from the idea of natural selection, in
which individuals with features valuable for survival are more prone to pass these
features down to the following population than negative characteristic that hinder
the individual’s survival.
Evolution Strategy is used by Zhao et al. [36] to optimise non-linear problems, they
specifically use the Covariant Matrix Adaptive Evolution Strategy (CMA-ES). CMA-
ES works by adjusting the mutation direction of the members in a population, by
continuously updating the covariance matrix until the optimal solution is reached.
The algorithm goes as follows, it initialises the parameters and settings; mutates the
population; evaluates the population individuals and the preferred individuals are
chosen as the parents for the following generation; next, the parameters: the mean,
followed by the covariance matrix and the step size, get updated. If the conditions
are met, the algorithm will output a solution, if not, the process is repeated for the
new population.

• Differential Evolution: is mainly used in optimisation problems, specifically in a
continuous space. One main difference compared to Genetic Algorithms is the use
of directional information of the individuals in a population by assigning a goal and
unit vectors. The algorithm optimises the problem with a number of potential solu-
tions which are mutated by a specified parameter and compared to a crossover rate
parameter, which describes the rate at which two individuals (solutions) interchange
elements with each other. Some benefits of these algorithms, stated in [32], are the
low computational complexity and effort, the ease of use, and the efficiency of mem-
ory usage.
Xiaobing et al. [37] developed a constrained differential evolution algorithm for
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UAVs. The algorithm randomly generates a population. The individuals are evalu-
ated based on the fitness function and the constraint violations, and are then sorted
as feasible and unfeasible. For the next step, some of the individuals are selected
based on their rankings, which defines the possibility of each individual to be se-
lected. After the selection, a vector is generated using the mutation and crossover.
This vector is utilised to generate "off-springs" that will shape the following evolu-
tion. Repeating this process until reaching the optimal solution.

2.3.3 Deterministic Algorithms

Deterministic algorithms refer to those methods which, given some inputs, will always
output the same solution and in the case of robotic solutions, the device will always per-
form the same actions. The research highlighted two types of deterministic algorithms:
Fuzzy Logic-based, and Potential Fields, these can be seen in the following subsections.

Fuzzy Logic

Introduced by mathematician L. A. Zadeh [38] and later expanded by the same author
in [39], Fuzzy Logic is defined as a logic where the truth can be any variable within the
range 0 to 1. This is similar to binary logic where the solution instead of being one of
two options, 0 or 1, the solution in fuzzy logic can be any number between the mentioned
interval. This increases the possibility of finding solutions depending on the degree of
truth or falseness, referred to as "partial truth". Fuzzy logic is utilised in various fields in
robotics, of which the focus will be on path planning.

Pandey et al.[40] developed a fuzzy logic-based path planner with static obstacle avoid-
ance. The designed robot had the task of moving in an environment with no previous
knowledge about it. The algorithm works by utilising multiple input variables and out-
putting some variables parallel to the inputs received. Using the relationship between in-
puts and outputs, a path where objects are avoided is generated. The input variables men-
tioned are Obstacle In Front, Obstacle Right, and Obstacle Left; whereas the outputs
are Right Wheel Speed and Left Wheel Speed. These variables are part of their Fuzzy
Inference System, the three inputs mentioned are evaluated by 27 rules of their own ac-
cording and the two output variables are obtained. In [41], Wang et al. propose the use
of fuzzy logic for solving the local minima problem that affect numerous path planning
algorithms in unknown environment. The robot in this paper finds a path with the imple-
mented Path-Searching behaviour. This technique follows the idea of memory grid, which
stores obstacles and grid points in a memory. The path is selected within the stored paths,
based on the number of obstacles and grid points of each of them. The more grid points
there are in a path, the longer it takes for the robot to traverse, thus the less preferred it
is. Fuzzy logic is then utilised for the obstacle avoidance, following a similar approach as
the one proposed by Pandey et al.[40]. Where the distance to each object is calculated and
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divided into one of the three directions the robot can go (left, right front). Then, a set of
rules determine the behaviour the robot has, i.e. the speed of the robot, depending on the
distance and position of the obstacles.

One of the advantages of Fuzzy Logic is the similarities it can have to human reason-
ing, which could be considered as the best way of solving a problem. This comes with a
trad-off, and that is that recreating human reasoning can be difficult and time consuming,
as these reasonings have to be translated from a human point of view to a robotic lan-
guage. According to Hentout et al. [42], Fuzzy Logic is beneficial when the problem at
hand is difficult to analyse with other approaches.

Potential Fields

One approach utilised for path planning and obstacle avoidance is Potential Fields. These
are domains in which Laplace’s equations are true, for example electrical fields. In robotics,
Potential Fields have been utilised in numerous occasions to perform path planning and
obstacle avoidance for both ground robots as well as aerial robots. Due to the variety of
existing implementations, applying a Potential Field path planner on gantry crane could
be feasible.
Generally, Potential Fields consist of two fields, i.e. Attractive Fields and Repulsive Fields.
The combination of these two is what makes this algorithm suitable to traverse environ-
ments with obstacles. Attractive fields are used to define the goal towards which the robot
should got. Whereas Repulsive fields try to keep the robot away from both the boundaries
of the workspace and from the obstacles. On each point of the environment, a potential
is computed, by summing the mentioned fields together. This will derive point with high
potential and point with low potential. Wherein the low potentials are generally consid-
ered to define the correct direction of the robot towards the goal, and high potential points
drive the robot away from itself, which again would drive the robot towards the lowest
potential, the goal.

An example of Potential Fields being utilised for path planning is in the paper by Hwang
et al. [43]. The planner is designed to be a two step process, a global planner and a local
planner. First, an initial path is generated using Minimum Potential Valleys (MPV) which
are the set of saddle points and local minima. It selects the shortest path between start
and goal with the less amount of obstacles that could cause a crash. The local planner will
then change the reference path so that the robot does not collide with any obstacle as well
as impose a cost function that optimises the path in terms of length and time. Wang et al.
[44] derived a potential field algorithm based on steady-state heat transfer. It follows the
concepts of heat transfer, which they define as a "sink pulling heat in". The main aspect
of this approach compared to the previously explained Potential field is, that it utilises
a heat conductivity variable, K, to assign heat values instead of potentials per se. One
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advantage that steady-state heat transfer has is its harmonic property5, that eliminates the
local minima problem that the potential field algorithm tends to suffer from.

Potential Fields are considered to be computationally efficient in terms of time, as men-
tioned by [45], which also remarks the ability of these algorithms to allow online parametri-
sation and configuration. In terms of disadvantages, the main one is its inability to escape
local minima on its own. As mentioned in the above paragraph, there exists approaches
that can solve this problem, for example the mentioned steady state heat transfer approach
[44]. Lin et al. [45] also mentions the difficulties potential fields suffer with the oscillations
of the system when passing between obstacles.

Summary

Three groups of path planning algorithms have been researched, namely Deterministic,
Evolutionary, and other Non-deterministic Algorithms. Reviewing non-deterministic al-
gorithms has proven that the three main types are PSO, ACO and Simulated Annealing.
It also revealed that Ant Colony Optimisation could be a potential solution for the path
planning of the gantry crane. That is because it has relatively low memory consumption,
and can adjust to a dynamic environment. Simulated Annealing has been discussed to be
too slow for this solution and PSO is considered to be implementable only if it is combined
with some other algorithm, which could prove to be time and resource consuming.
Within the deterministic algorithms only two have been discussed, both of which have
been considered as potential solutions for this project. The advantages of both these algo-
rithms, Fuzzy Logic and Potential Fields, are deemed as positive to the solution.
The last grouping of algorithms mentioned are the Evolutionary Algorithms. These follow
the principles of Darwin’s theory of evolution, such as mutations or crossovers. The main
advantage of these algorithms is the ability to derive an approximate solution to a prob-
lem. This is, in many cases, preferable than spending an excessive amount of processing
time calculating the optimal solution.

The analysis of the various algorithms described in this chapter has shown various ap-
proaches that may be suitable for a gantry crane. Within the ones listed in this section,
its has been decided to test and implement two algorithms, Ant Colony Optimisation and
Potential Fields. The first one was selected as it appears to be the most suitable from the
non-deterministic algorithms researched. A potential field solution seems to fit the project
at hand, as its generated paths are similar to how a crane operator handles the pick and
place of containers. The evolutionary algorithms have been discarded from possible solu-
tion for the path planning in this project as they are considered to not always derive the
optimal solution, which is desired for in this project.

5Function where its value at any point is equal to the mean of its values along any circle around that point
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2.4 Control Systems: A Review

Control systems are solutions implemented into various kinds of systems to manage and
regulate how these behave. A brief description of these will be given in the following list,
and some of their advantages and disadvantages will be described.

• PID Control. This controller combines three fundamental controllers, namely Pro-
portional control (P-control), Integral control (I-control) and Derivative control (D-
control). A PID controller is a closed-loop control system that relies on feedback
to compensate for the error signal by applying the three control approaches men-
tioned. P-control amplifies the error signal, as it makes the control signal directly
proportional to the error signal. The I-control generates an output which is equal
to the integral of the error signal. Similarly, the D-controller outputs a signal that is
the derivative of the error signal. These three can be combined and a control signal,
which takes into account the three signal characteristics mentioned, can be obtained.

Figure 2.7: Illustration of a PID Controller. u refers to the control signal, r is the reference/input
signal and y, the output signal. e is the error signal. From top to bottom, the first block refers to the
action performed by the proportional control. The block under is the integral control. And lastly, the
derivative control. Combining these three, the control signal u is obtained.

Multiple solutions utilise PID controllers to solve the control problem. This is due to
the benefits obtained from each individual controllers, P, I and D. Furthermore, when
combining these, some of the disadvantages that these controller have on their own
get cancelled by the effect the others have on it. For example, the integral controller
can counteract the steady-state error 6 generated by the proportional controller.

• Fuzzy Control. This type of control system tries to utilise a ’human-like’ way of
interpreting data to solve a problem. It resembles Boolean logic, where the solution
can only be 1 or 0, in that 0 and 1 are both possible outcomes. The difference with
Fuzzy Logic is that outcomes within 0 and 1 are also considered as valid solutions
for a problem. One way of describing the functioning of fuzzy logic is using the
programming expression ’if ... else ’, where if an event happens, then something

6A steady-state error is the difference between the setpoint and the output when time goes to infinity, meaning
the system’s output has deviated from its initial output.
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happens, consequentially, if another event were to happen (else) then something
different may be outputted.

Figure 2.8: Illustration of a Fuzzy Logic Controller. u refers to the control signal, r is the reference/input
signal and y, the output signal. e is the error signal.

Fuzzy controllers consist of if-else statements, which reduces the complexity of de-
signing such a controller. It is also mentioned that these controllers may have a
better performance in non-linear systems. Even when utilising the if-else statements
to design a controller, designing it can prove to be time consuming as multitude
of variations can exist for a single problem, and all have to be defined using the
mentioned statements.

• Model Predictive Control. A control solution that utilises a process model to de-
rive future actions of the system. By estimating what the system will do in a future
instance, the Model Predictive controller (MPC) can derive the control output to
change/keep the desired outcome, using what has been defined as a Control Hori-
zon. This horizon describes how a variable will behave in the future based on the
control signal applied to the system to achieve the desired solution. This prediction
is repeated every cycle and the control signal is updated, trying to make the system
follow the desired trajectory.

Figure 2.9: Illustration of an MPC. u refers to the control signal, r is the reference/input signal and y ,
the output signal. e is the error signal and z the disturbances affecting the system. This illustration has
been based on [46].

MPCs are some of the most utilised controllers, this is due to the multiple advantages
that come with its implementation. Some of these advantages are: it can control
multiple variables simultaneously and is robust against disturbances. Furthermore, it
can predict disturbances that may happen in some following time step, allowing the
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controller to prepare a response beforehand.[47] In terms of disadvantages, Airikka
et al.[48] mentions the difficulties this method has at handling non-linear processes.

• Neural Network-based Control. Neural Networks (NNs) are a set of approaches
part of Machine Learning that imitate the brain of animals to solve numerous prob-
lems. One of the applications of NNs is in control systems. NN-based controllers
utilise the ability of this networks to learn, making them optimal for systems that
have to adapt to changes. As mentioned in previous paragraphs, some controllers
have the ability to adjust controller parameters to force the system to act in a desired
fashion. This can be achieved using NNs. When some disturbances are detected,
these can be back-propagated through the network, which tunes the Neural Net-
work, increasing its accuracy to detect and react to these. One of the disadvantages
of this type of controllers is that a training phase, with its needed training data, has
to be acquired.

Figure 2.10: Illustration of a Neural Network-based Controller. The diagram depicts how the NN
solution could be trained. u refers to the control signal, and y, the output signal. u’ is the provisional
control signal and ymodel is the neural network model response. This illustration has been based on [49]

These solutions have the benefit of increasing the computational speed, a sought after
quality in the control industry. By reducing the time needed for these calculations,
faster reactions can be achieved by the controller. Another advantage of NN-based
Control is the ability to ’learn’, i.e. the controller can adjust the parameters on its
own, and through an extended period of time. One of the few disadvantages of this
type of approaches is the training phase. Training such a system and obtaining the
necessary data for it has been proven to be cumbersome in some cases, as the data
has to have sufficient quality and quantity.

Summary

In this section, four control approaches have been reviewed; PID control, Fuzzy control,
MPC and NN-based control. From these, Model Predictive Control has been selected to be
the controller used for this project. This has been decided by comparing the benefits and
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drawbacks that the different control approaches offer. Neural Network-based controllers
have been discarded due to the training phase, which has been considered as time and
resource consuming compared to the other options listed. Another consideration made in
account for this is that NN-based controllers are deemed as unnecessarily complex for a
task such as the one presented in this project.
Fuzzy control was also rejected by similar reasons as NN-based controllers. The parametri-
sation of the controller as well as the design of the rules that make the fuzzy logic has been
deemed as impractical for this project.
The last dismissed controller is the PID. The advantages that PID control offers this project
have been considered to be positive and could potentially be a suitable solution for gantry
crane control. Nevertheless, MPC offered slightly better benefits than PIDs, such as its abil-
ity to generate anticipatory control signals to predict possible outcomes and compensate
for whatever may need compensation.

2.5 Summary

In this chapter, various solutions regarding gantry cranes have been researched and com-
pared. From the initial investigation, it was decided to divide the rest of the analysis into
control and path planning sections. From these various algorithms, some were listed and
selected for further implementation on this project. In terms of path planning algorithms,
Ant Colony Optimisation and Potential Field have been selected as they were deemed to
better suit the project, as mentioned earlier. Since only one path planner can be at use for
the final solution, the two path planning algorithms will be tested and compared. Result-
ing in a planner that can be proven to perform better than the others in the context of path
planning of a gantry crane. The other distinctive group researched was Control Systems.
Four controllers were researched and only one ended up being selected as the most viable
option for this project, namely MPC. It was selected as two of the other options were con-
sidered to be time consuming compared to the other two. MPC was chosen over PID due
to its ability to anticipate for any challenge that may happen.

In the following chapter, Chapter 3, the hardware setup for sensing and controlling the
physical crane will be explained, and the mathematical model of the crane will be pre-
sented. In Chapter 4 the requirements for the solution will be determined. The implemen-
tation of the solution will then be presented in Chapter 5. And the solution will be tested
to determine whether it fulfills the requirements in Chapter 6. The results will then be
evaluated in Chapter 7 with a discussion of the results obtained from testing the solution.
Finalising this paper in a conclusion, Chapter 8.



Chapter 3

Practical Implementation

In this chapter some of the steps required to make the physical and modelled cranes
are mentioned and clarified. The first section delves into the construction and tuning
of the control box that contains the microcontroller in charge of commanding the crane.
Following the mentioned section, a description of the motor drivers and their utilisation
are described, together with the various electronic components of the crane. Lastly, the
mathematical model is described and the steps performed to derive it are shown.

3.1 Control Box

The crane is property of Aalborg University and has been lent to various groups through-
out the years. This means that various changes have been made to the crane, improving it
over time. The control box previously used to control the crane is missing from the labora-
tory. And the project group has therefore decided to make a new one, drawing inspiration
from a previous version described in [50].

In order to implement a solution on this crane, a new control box was built. To make
the control box, a micro-controller, to send and receive data, and some type of cabling be-
tween the crane and the micro-controller were needed. It was decided to use an Arduino
Mega 2560 and a DB-25 connector, as the crane was made with such a connector in mind.
The construction of the box will be detailed in the following Subsections 3.1.1 and 3.1.2.

3.1.1 DB-25 Connector

The Arduino does not have built-in connectivity for a DB-25 cable. Instead, each connect-
ing wire from the cable was soldered onto a shield and connected to the micro-controller
pins. In Figure 3.1, an image of the DB-25 connector can be seen.
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Figure 3.1: Schematic drawing of a male DB-25 connector. The numbering of the pins is as shown, it begins
with pin 1 at the top left corner and goes through to pin 25, changing rows after pin 13. The numbering is
important as different approaches may utilise different numbering.

A cable containing both a male and female DB-25 connector was used. The female part
was cut off and the inside wires were exposed. The wires were each matched to the
corresponding pin on the male part of the connector using a multimeter. And the function
of each wire was identified based on the pin mapping from a previous paper on the crane
[50]. The following table contains the relevant information regarding the pins and the
corresponding wires Table 3.1.

Pin Colour Connect. Description Interface

1
White/

RX-Head
Serial Data transmitted to V-range → 0V - 5V

Brown head Baud-rate → 9600

2 Black X-Tacho
Voltage from X-tachometer

V-range → ±26V
(filtered)

3 White Y-Tacho
Voltage from Y-tachometer

V-range → ±26V
(filtered)

5 Purple
Y-Driver Analogue voltage from Y-

V-range → 0V - 4V
A02 driver

7 Teal X-Enable Enables X-Driver
V-range → 0V - 36V
Logic 0 → < 1V
Logic 1 → > 2.4V

8 Green Y-Pos
Voltage from Y-

V-range → 0V - 5V
potentiometer (unfiltered)

9 Yellow
X-Driver Analogue voltage from X-

V-range → 0V - 4V
A02 driver

10 Pink
Y-Driver Analogue voltage from Y-

V-range → 0V - 4V
A01 driver

11 Orange Vin
Positive power supply to

STD-V → 15V
controller

12 Red Y-Enable Enables Y-Driver
V-range → 0V - 36V
Logic 0 → < 1V
Logic 1 → > 2.4V

13 Brown Pos-Supply
Positive voltage supply

STD-V → 5V
from controller

14
Black/

X-Tacho
Voltage from X-tachometer

V-range → ±26V
Light Gray (unfiltered)
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Table 3.1 – continued from previous page

Pin Colour Connect. Description Interface

15
Black/ X-Driver Analogue voltage from

V-range → 0V - 4V
Dark Grey A01 X-driver

16
Purple/

Y-Tacho
Voltage from Y-tachometer

V-range → ±26V
White (unfiltered)

17
Blue/

X-PWM PWM for X-motor Driver
V-range: 0V - 36V

White Freq.: 10Hz - 5E3Hz
Duty-cycle:10% - 90%

18
Green/

TX-Head
Serial Data received from V-range → 0V - 5V

Black head (unfiltered) Baud-rate → 9600

19
Green/

Y-PWM PWM for Y-motor Driver
V-range: 0V - 36V

White Freq.: 10Hz - 5E3Hz
Duty-cycle: 10% - 90%

20
Yellow/

X-Pos
Voltage from X-

V-range → 0V - 5V
Black potentiometer (unfiltered)

21
Black/

Y-Pos
Voltage from Y-

V-range → 0V - 5V
White potentiometer (filtered)

22
Orange/

X-Pos
Voltage from X-

V-range → 0V - 5V
Black potentiometer (filtered)

23
Orange/

GND Ground connection STD-V → 0V
White

24
Red/

Pos-Supply Positive voltage supply STD-V → 5V
Black

25
Red/

TX-Head
Serial Data received from V-range → 0V - 5V

White head (filtered) Baud-rate → 9600

Table 3.1: Table containing the pins from the DB-25 cable that connects the Arduino to the crane. The colours
listed refer to the colouring of each of the wires in the DB-25 connector. The pins which are not used in
transmitting and receiving information to and from the crane are not listed.

3.1.2 Arduino: Electronics

As mentioned, an Arduino Mega 2560 was used to control the crane. The controller had
to be arranged such that the data flow going through the DB-25 connector, from the crane,
could be interpreted and used.

The DB-25 could now be connected to the Arduino, by wiring the 25 cables to the board.
Due to the quantity of cables that had to be connected, it was decided to utilise a Shield
on which the wires could be soldered. A drawn representation of both the Arduino and
the Shield can be seen in Figures 3.2 and 3.3.
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Figure 3.2: Arduino Mega 2560. Figure 3.3: Arduino Shield.

Figure 3.4: Side view of an Arduino Mega 2560 with an Arduino Shield placed on top.

With this, the end of the cable (male DB-25 connector) could be plugged to the crane.
The cables used and their respective Arduino Mega pin-outs are depicted in the following
figure. The image contains the naming of the pins shown by the specifications.
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Figure 3.5: Schematic of the Arduino MEGA pin-outs and their respective use within this project. Within the
Arduino, the microcontroller pins can be seen, outside of it, the crane elements connected to each pin.
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3.2 Crane Electronics

This section delves into the different electronic components of the overhead crane.

3.2.1 ESCON Motor Driver

The movement of the crane is carried out by two motors, one for each direction. Each
motor is controlled by an ESCON motor driver which can be modified in the program
"ESCON studio". The specifications of the connected motor, as well as control settings
need to be defined in the ESCON setup. Once all the system parameters have been chosen,
the controller monitor in ESCON studio can be used to check whether or not the driver is
receiving control signals and/or outputting measurement data.

3.2.2 PWM Signals

Communication with the motor drivers happens by using PWM signals sent from the
Arduino Mega through the PWM wires in the DB-25. The motor drivers then send a corre-
sponding voltage to the motors. The angular accelerations of the motors are proportional
with the PWM signals in the duty cycle span [10, 90]%. Where a duty cycle of 50% corre-
sponds to no acceleration, 90% corresponds to maximum positive acceleration, and 10%
corresponds to maximum negative acceleration. The outermost duty cycles of [0, 10)% and
(90, 100]% also correspond to no acceleration.

3.2.3 Enable Signals

The motor drivers need to be enabled by an enable signal before they can be used to
control the crane. This signal is sent from the Arduino mega when the main program is
executed, through the X-Enable and Y-Enable wires, Figure 3.5, in the DB-25 connector.

3.2.4 Tachometers

There are two tachometers on the crane, which are used to measure the velocity of the
trolley and the load, respectively. The sensors output a signal with a voltage that is pro-
portional to the velocity, each through a wire of the DB-25 connector. The voltage range of
these signals are [−26, 26]V, where a positive versus negative voltage represents the direc-
tion of the crane’s velocity. The signals need to be received by the Arduino micro controller
to be used in controlling the crane. However, the voltage range of the tachometer signals is
outside of the tolerances of the micro controller, which is only [−0.5, 5.5]V. Therefore, an
op amp (Operational Amplifier) circuit is used to convert the voltage range of the signal
to [0, 5]V, which is the recommended voltage range of the micro controller pins [51].
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Op Amp Circuit

It has been decided that a non-inverting summing amplifier will be used for each tachome-
ter signal, as it can add an offset, Vo f f , to the given tachometer signal, Vtach, resulting in a
non-negative signal. Such a circuit can be described by Equation 3.1:

Vout =

(
1 +

R f

Ri

)
·

Vtach · R2 + Vo f f · R1

R2 + R1
(3.1)

When R1 = R2, the equation can be simplified to:

Vout =

(
1 +

R f

Ri

)
·

Vtach + Vo f f

2
(3.2)

Where R f is the feedback resistor and Ri is the resistor connected to the inverting input of
the op amp.

The resistance part of the equation is essentially a scalar, and leaving it out for now and
choosing an offset of 26V results in a voltage range of [0, 26], which has the desired mini-
mum voltage of 0V.

Figure 3.6: A diagram of the op amp circuit. Where Vtach is the signal from the tachometer, Vo f f is the offset
voltage, and Vout is the output voltage. R1 is the resistor on the tachometer input, R2 is on the offset input, Ri
is on the inverting input of the amplifier, R f is on the feedback loop, and Rd is the voltage dividing resistor.
Rd and the GND connection from the output would not typically be present in a summing amplifier.

The resistors in the circuit can then be chosen such that the maximum voltage is scaled
to the desired 5V. However, mathematically, it would require a resistor with a negative
resistance to do so, because otherwise the left side of Equation 3.2 would always be ≥1.

To solve this problem, it was decided to connect a resistor between the output and GND
as can bee seen in Figure 3.6, it was theorised it would function like a voltage divider (see
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Appendix A). A variable resistor has been used to tune the voltage dividing resistor, Rd,
and Ri such that the output voltage is within the desired voltage range. The other resistors,
R f , R1, and R2 were chosen to be 100kΩ, as high resistance results in low current, which
is desired in this case.

This results in an output signal with a voltage range of Vout = [0, 5]V, given a tachometer
signal of Vin = [−26, 26]V. Through testing several inputs, it has been concluded that the
input-output relation is linear. [52]

3.2.5 IMU

The orientation data from the IMU is received by an Arduino Nano micro controller, which
is attached to the head of the crane. The swing angle of the head of the crane is calculated
on said micro controller. This angle data is then sent to the Arduino mega through serial
communication wires in the DB-25 connector.

3.2.6 Electromagnet

The Arduino Nano is also responsible for activating and deactivating the electromagnet
on the head of the crane, which is used to pick and place the containers. Controlling the
magnet is done through the same serial communication wires as the angle data from the
IMU. When a command is sent from the PC to the Arduino mega, the mega sends a signal
to the Arduino Nano, which then enables or disables the magnet. The commands used are
M1 to enable, and M0 to disable, followed by a new line character, \n.

3.2.7 Potentiometers

Two potentiometers, which are attached to the crane, are used for measuring the position
of the trolley and the head of the crane. The potentiometers output a voltage which is
proportional to the position, which is sent through the DB-25 connector and received by
the Arduino mega micro controller. Additionally, the potentiometers are powered by the
Arduino mega, through the Pos-Supply wire, Figure 3.5 in the DB-25.

3.3 Model of overhead crane

In this section, a model of the overhead crane system will be created for the purpose of
isolating the equations of motion. This crane has been lent by Aalborg University and has
been described in Section 2.1. An extended version of the steps necessary to derive the
model can be seen in Appendix B.
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Figure 3.7: Head and Trolley with angles and positions

where x : Position on the horizontal axis (m)
y : Position on the vertical axis (m)
l : Length of the wire (m)
θ : Angle between the load and its equilibrium point (°)
Jx : Moment of Inertia for the x direction motor (·)
Jl : Moment of Inertia for the wire length motor (·)
rx : Radius of the X direction drum (m)
rl : Radius of the wire-length drum (m)

The model will be derived using Lagrange equations, which start by describing the systems
kinetic and potential energies, which in turn require the positional equation shown below
in Equation 3.3.

p⃗t = xt · i⃗ + yt · j⃗ |yt=0 (3.3)

where p⃗t : Vector position of the trolley (m)
xt : Trolley x position (m)
i⃗ : Unit vector for x (·)
yt : Trolley y position (m)
j⃗ : Unit vector for y (·)

Only a 2-D crane is considered for now, resulting in the y component for the trolley being
zero.
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The position of the load is given in Equation 3.4.

p⃗l = xl · i⃗ + yl · j⃗ = (xt + l · sin(θ)) + (yt + l · cos(θ)) |yt=0

= (xt + l · sin(θ)) + l · cos(θ)
(3.4)

where p⃗l : Vector position of the trolley (m)
xl : Trolley x position (m)
yl : Trolley y position (m)
l : Length of the wire (m)
θ : Angle between trolley and load (°)

With the positional descriptions in place, the Lagrangian can be derived. The kinetic
energy of the system comes from four sources, namely the trolley and the load, as well as
their respective servo motor drums.
The kinetic energy of the trolley:

Tt =
1
2
· mt · ẋ2

t (3.5)

where Tt : Kinetic energy of the trolley (J)
mt : Mass of trolley (kg)
ẋ : x velocity of trolley (m/s)

Kinetic energy of the load:

Tl =
1
2
· ml ·

(
ẋ2

l + ẏ2
l
)

(3.6)

where Tl : Kinetic energy of the load (J)
ml : Mass of load (kg)
ẋ : x velocity of load (m/s)
ẏ : y velocity of load (m/s)

The kinetic energy of the rotating wire drums are calculated as a rotational kinetic energy
instead, which substitutes the mass term for the moment of inertia of the body and the
velocity for angular velocity of the drum. This angular velocity is not a measured quantity
in this project, and is thus related to the linear velocity of the wire and the drums radius.
The kinetic energy of the drum for x is presented in Equation 3.7.

Tpx =
1
2
· Jx ·

(
ẋ
rx

)2

(3.7)

where Tpx : Kinetic energy of the drum for x (J)
Jx : Moment of Inertia of the drum for x (kg · m2)
rx : Radius of the drum for x (m)
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The kinetic energy of the drum for hoisting is presented in Equation 3.8.

Tpl =
1
2
· Jl ·

(
2l̇
rl

)2

(3.8)

where Tpl : Kinetic energy of the drum for l (J)
Jl : Moment of Inertia of the drum for l (kg · m2)
rl : Radius of the drum for l (m)

For Tpl , the velocity is multiplied by two due to the gearing in the drum for the hoisting
wire being different to its counterpart in x, resulting in a different approximation.
The kinetic energy of the system is the sum of its parts and is thus given in Equation 3.9;

T =
1
2
· mt · ẋ2

t +
1
2
· ml ·

(
ẋ2

l + ẏ2
l
)
+

1
2
· Jx ·

(
ẋ
rx

)2

+
1
2
· Jl ·

(
2l̇
rl

)2

(3.9)

The second term of this equation describes the kinetic energies of the system relating to
the velocity of the load, which is not a measured parameter in this project. It can however
be further related to the velocity of the trolley using Equation 3.4, also shown below in
Equation 3.10.

p⃗l = (xt + l · sin(θ)) + l · cos(θ) (3.10)

where xl = (xt + l · sin(θ)) and yl = l · cos(θ).
Isolating the terms representing xl and yl , these can be differentiated and squared to obtain
(ẋ2

l + ẏ2
l ) in Equation 3.9.

ẋl
2 + ẏ2

l = ẋt
2 + l̇2 + l2θ̇2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ) (3.11)

Introducing (ẋ2
l + ẏ2

l ) into Equation 3.9 gives,

T =
1
2
· mt · ẋ2

t +
1
2
· ml ·

(
ẋt

2 + l̇2 + l2θ̇2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ)
)
+

1
2
· Jx ·

(
ẋ
rx

)2

+
1
2
· Jl ·

(
2l̇
rl

)2 (3.12)

The complete equation for the kinetic energies has now been acquired. The next step is to
derive the potential energy.

Assuming the origin for y is set at the trolleys level, it effectively does not have any po-
tential energy, leaving only the load, which is also defined as having zero potential energy
when it is at y = 0. The potential energy equation is thus given as:

V = −ml · g · yl = −ml · g · (yt + l · cos(θ)) |yt=0= −ml · g · l · cos(θ) (3.13)
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where V : Potential energy of system (J)
g : Gravity constant = 9.82 (m · s−2)

The Lagrangian L for the system can now be presented:

L = T − V =
1
2

mt ẋ2
t +

1
2

ml
(
ẋt

2 + l̇2 + l2θ̇2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ)
)

+
1
2

Jx

(
ẋ
rx

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml · g · l · cos(θ)
(3.14)

With this, the equations of motion can be found. Three variables are present, so an equa-
tion for each is needed. The Lagrangian equation when no external force is present and
the Lagrangian when an external force is present, can be defined as:

0 =
d
dt

∂

∂ ṗ
L − ∂

∂p
L (3.15) Fz =

d
dt

∂

∂ ṗ
L − ∂

∂p
L (3.16)

Equation of motion for ẍ

The servo motor, pulling the trolley’s wire, is considered an external force, meaning Equa-
tion 3.16 is used. The force can represented as shown below in Equation 3.17 together
with a friction term,

Fx =
Kex · Ix

rx
− Bx · ẋt (3.17)

where Fx : Force acting along x (N)
Kex : Motor constants for trolley motor (·)
Ix : Current delivered to trolley motor (A)
rx : Radius of trolley drum (m)
Bx : Friction coefficient for moving along x (N)
ẋ : Velocity of the hoisting system (m/s)

The Lagrangian equation for x can now be calculated.

Kex · Ix

rx
− Bx · ẋt =

d
dt

∂

∂ẋt
L − ∂

∂xt
L (3.18)

Which, after some computations, derives in the following equation of motion for ẍ:

ẍt =
1

mt + ml +
Jx
r2

x

(
Kex Ix

rx
− Bx ẋt − ml l̈sin(θ)− 2ml l̇θ̇cos(θ)

− ml lθ̈cos(θ) + ml lθ̇2sin(θ)
) (3.19)
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Equation of motion for l̈

For calculating the forces acting along the hoisting wire, the Lagrange’s equation will be
solved with respect to l. There is a motor applying force on this axis as well, thus the same
form of Lagrange is used. The force term is presented in Equation 3.20;

Fl =
2Kel · Il

rl
− Bl · l̇ (3.20)

where Fl : Force applied by hoisting motor (N)
Kel : Motor constants for hoisting motor (·)
Il : Current delivered to the hoisting motor (A)
rl : Radius of hoisting motor drum (m)
Bl : Friction coefficient for moving along y (·)
l̇ : Velocity of the hoisting system (m/s)

Thus the Lagrange equation to solve is shown in Equation 3.21.

Kel · Il

rl
− Bl · l̇ =

d
dt

∂

∂l̇
L − ∂

∂l
L (3.21)

The solution of calculating the Lagrangian derives in Equation 3.22

l̈ =
1

ml +
4Jl
r2

l

(
Kel Il

rl
− Bl l̇ + ml lθ̇2 + ml gcos(θ)− ml ẍtsin(θ)

)
(3.22)

Equation of motion for θ̈

Since wind is not considered in this project, there is no active force acting on the angle
θ. Friction and air resistance for dampening the sway are also not considered, thus the
resulting Lagrange equation is equal to zero, as seen in Equation 3.23.

0 =
d
dt

∂

∂θ̇
L − ∂

∂θ
L (3.23)

Besides that change, the calculations are the same as for x and l, with each term done
separately as before. Obtaining the equation of motion for θ̈:

θ̈ =
1
l
(
−2θ̇ l̇ − ẍtcos(θ)− gsin(θ)

)
(3.24)

Isolating the accelerations

The model of the crane is simulated using Simulink, a Matlab programming environment
used for simulation and modelling of various systems. To simulate this model, Simulink
requires a certain order to simulate the three equations of motion. This could be solved



3.3. Model of overhead crane 38

by adding delays and stating the preferred order. Nevertheless, it was decided that, to
simplify the modelling and simulation, the equations will be isolated from each other, i.e.,
Ï and θ̈ will be modified as to not directly contain ẍ.

First, the right-hand side of the equations for l̈ and θ̈ are introduced into the equation
of motion for ẍ, so that Equation 3.19 only contains ẍ.
Thereafter, the newly obtained equation of motion for ẍ can be introduced into Equations
3.22 and 3.24, equations of motion for l̈ and θ̈, respectively.

ẍt =
1(

mt + ml +
Jx
r2

x
− mlcos2(θ)− m2

l sin2(θ)

ml+
4Jl
r2
l

)
Kex Ix

rx
− Bx ẋt −

mlKel Ilsin(θ)
rlml +

4Jl
rl

+
ml Bl l̇sin(θ)

ml +
4Jl
r2

l

+ml lθ̇2sin(θ)

1 − ml

ml +
4Jl
r2

l

+ ml gsin(θ)cos(θ)

1 − ml

ml +
4Jl
r2

l


(3.25)

l̈ =
1

ml +
4Jl
r2

l


Kel Il

rl
− Bl l̇ + ml lθ̇2 + ml gcos(θ)− mlsin(θ)(

mt + ml +
Jx
r2

x
− mlcos2(θ)− m2

l sin2(θ)

ml+
4Jl
r2
l

)
Kex Ix

rx
− Bx ẋt −

mlKel Ilsin(θ)
rlml +

4Jl
rl

+
ml Bl l̇sin(θ)

ml +
4Jl
r2

l

+ ml lθ̇2sin(θ)

1 − ml

ml +
4Jl
r2

l


+ml gsin(θ)cos(θ)

1 − ml

ml +
4Jl
r2

l


(3.26)

θ̈ =
1
l

−2θ̇ l̇ − cos(θ)(
mt + ml +

Jx
r2

x
− mlcos2(θ)− m2

l sin2(θ)

ml+
4Jl
r2
l

) (Kex Ix

rx
− Bx ẋt −

mlKel Ilsin(θ)
rlml +

4Jl
rl

+
ml Bl l̇sin(θ)

ml +
4Jl
r2

l

+ ml lθ̇2sin(θ)

1 − ml

ml +
4Jl
r2

l

+ ml gsin(θ)cos(θ)

1 − ml

ml +
4Jl
r2

l


−gsin(θ)]

(3.27)



3.4. Summary 39

With this, the process of deriving the mathematical model for the crane can be considered
finished. As mentioned at the beginning of this section, the expanded version of the
computations described here can be seen in Appendix B. In Appendix C a 3D version of
this section can be seen, derived for future implementation.

3.4 Summary

Chapter 2 analysed different approaches for designing a path planning and control of an
overhead crane. From the analysis, it was concluded to implement and test two algo-
rithms for path planning, ACO and Potential Fields. As the controller, MPC proved to
be a reasonable approach and was, therefore, selected as the controller for this solution.
One requirement of MPC is the need for a mathematical version of the system as well as
knowledge of what the inputs and outputs said controller can receive from the crane. To
obtain this information, the dynamic model of the system has been derived.
This chapter started by describing how the crane communicates with an external device,
by means of a control box. As mentioned, said box was not available, so a new one had
to be built. After the communication was solved, the mathematical model of the overhead
crane was derived and can be seen in Section 3.3.

Some requirements will be set in the following chapter, so that the solution can be tested
and accepted within the desired boundaries. Afterwards, the implementation chapter will
describe the solution designed and how it was implemented.



Chapter 4

Requirements Specification

This chapter will state and and justify the requirements that are needed for the solution to
be considered acceptable, as well as which tests are necessary to verify that these require-
ments are met.

4.1 Requirements

There are three main subsystems in the solution: MPC, hardware and trajectory planning.
All of these will be required to follow a number of conditions which will be stated in
this section. The requirements will be divided into these three groups. The layout of this
section will start by defining the requirements, then, explaining the reasoning and benefits
of each. Lastly, an acceptance test for each requirement will be design.

4.1.1 MPC Requirements

1.1 For a simulated model of the system, any x and l position must be reachable for the MPC.
The MPC must be able to move to and reach a steady state for any given reference
for x and/or l.

1.2 For a simulated model of the system, the MPC must be able to follow any trajectory operating
within the limits of the physical crane. The system relies on the MPC being capable
of following any path that it receives, within the boundaries set by the physical
limitations of the crane.

4.1.2 Hardware Requirements

2.1 The system must be able to measure the position states using potentiometers. The position
states, x, and l, from the inbuilt crane potentiometers, must be available at all times
and represent the physical system.

40
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2.2 The system must be able to measure the velocity states using tachometers. The velocity
states, ẋ, and l̇, from the inbuilt crane tachometers, must be available at all times and
represent the physical system.

2.3 The system must be able to measure the sway angle state using an IMU. The sway angle
state, θ, from the IMU on the crane head, must be available at all times and represent
the physical system.

2.4 The system must be capable of picking up and placing containers. The system must be
able to enable and disable the electromagnet on command, and thereby allow for the
crane to lift, move, and release the shipping container models.

2.5 The system must be able to move the trolley and crane head in all available directions. The
system must be able control the trolley acceleration in both directions along the x-
axis, by sending PWM control signals to the x-motor controller. The system must
be able to control the wire length, l, by sending PWM control signals to the y-motor
controller. In addition, the system must be able to send a valid enable signal to each
motor controller, and thereby enable them.

4.1.3 Trajectory Planning Requirements

3.1 The PF planner must not fall into the Local Minima Problem. Potential Field planning
tends to have difficulties at generating a path due to getting stuck in local minima.
Test if the solution can solve this.

3.2 Potential Field Path Planning has to compute the shortest path. The goal of the path
planning is to derive the shortest path from start to end, therefore, the planner is
only allowed to be 10cm longer than the shortest path possible.

3.3 ACO Path Planning has to compute the shortest path. The goal of the path planning is to
derive the shortest path from start to end, therefore, the planner is only allowed to
be 10cm longer than the shortest path possible.

3.4 Comparison between path planning algorithms. Compare the results of both algorithms
to discover their benefits and disadvantages against each other.

4.1.4 System Requirements

4.1 The MPC must be capable of giving commands to the hardware components of the system.
The control signals derived from the MPC must be followed by the physical crane.

4.2 The solution must complete a task by the continuous interaction of the three subsystems
mentioned, Path Planner, MPC, and Hardware. The overall system consists of three
subsystems that must collaborate with each other for a container crane to perform
the task of moving containers.
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4.2 Acceptance Tests

After stating and defining the requirements, these will have to be accepted using some
procedure that ensures its correct implementation. The following table will contain the
acceptance test for each of the requirements stated in this chapter.

Req: Test procedure: Acceptance:
MPC Requirements

1.1 A reference x and l will be fed to the MPC.
Record the outcome position, velocity and
acceleration of the system variables.

The MPC must be capable of
controlling the system such that
its controlled variables reach
steady state. The result of this
test can be considered accepted
if, for the reference x and l,
the simulated output reaches a
steady state.

1.2 The MPC will follow a desired path. The
simulated outcome of the system will be
recorded.

The solution has been designed
to follow a desired trajectory,
therefore, the MPC must be
capable deriving the necessary
control signals so that the sys-
tem follows said path. The test
is considered passed if the MPC
is capable of following the de-
sired path within the physical
limitations that the crane actu-
ally has.

Hardware Requirements
2.1 Record data of the potentiometers measur-

ing the cranes position for both x and l.
The requirement can be consid-
ered to be fulfilled if the poten-
tiometer measurements can be
obtained and recorded for fur-
ther use.

2.2 Record data of the tachometers measuring
the cranes position for both ẋ and l̇.

The requirement can be con-
sidered to be fulfilled if the
tachometer measurements can
be obtained and recorded for
further use.

Continued on next page
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Table 4.1 – continued from previous page
Req: Test procedure: Acceptance:

2.3 Record data of the IMU where angle of the
crane’s head θ using the IMU.

The requirement can be consid-
ered to be fulfilled if the IMU
measurements for the crane’s
head angle can be obtained and
recorded for future use.

2.4 The crane will be commanded to pick and
place a container using the electromagnet.

The test can be deemed as
passed if it can be proved
that the electromagnet can be
utilised on command.

2.5 The system will be asked to move the
crane’s head in both the horizontal and ver-
tical directions.

The requirement can be
deemed as met if the PWM
signals and enable signals used
to control the motor controllers
deliver the desired motions.

Trajectory Planning Requirements
3.1 Place 1-3 obstacles in different locations of

the workspace. Run the program for 10 dis-
tinct iterations, and store the results.

Potential Field has the disad-
vantage of getting stuck in local
minima. The solution should
have a remedy for this prob-
lem. This test compares the re-
sults of the planner with the
added complement and with-
out it. The test can be con-
sidered as passed if the results
show that the add-on allows
the planner to solve the local
minima problem.

Continued on next page
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Table 4.1 – continued from previous page
Req: Test procedure: Acceptance:

3.2 Place 1-3 obstacles in different locations of
the workspace. Run the program for 10 dis-
tinct iterations, and store the results.

This test examines the ability of
the Potential Field Path Plan-
ner to generate a path from
start to goal. This will be
compared to a manually gen-
erated path, considered to be
the benchmark path for the spe-
cific workspace layout. This re-
quirement can be considered to
be met if the path generated
for each iteration using the po-
tential field approach is within
10cm.

3.3 Place 1-3 obstacles in different locations of
the workspace. Run the program for 10 dis-
tinct iterations, and store the results.

This test examines the ability of
the ACO Path Planner to gen-
erate a path from start to goal.
This will be compared to a
manually generated path, con-
sidered to be the benchmark
path for the specific workspace
layout. This requirement can be
considered to be met if the path
generated for each iteration us-
ing the ACO approach is within
10cm.

3.4 Compare the data obtained when testing
Requirements 3.2 and 3.3.

One of the goals of this project
is to discover which algorithm
is more suitable for the solu-
tion. This test will result in a
decision as to which algorithm
will be part of the final solution.
The algorithm that derives the
shortest paths, compared with
their respective manually gen-
erated paths, will be considered
to be the optimal path planner
for this project.

System Requirements
Continued on next page
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Table 4.1 – continued from previous page
Req: Test procedure: Acceptance:

4.1 Make MPC move the crane to a point in the
workspace and check that it can stabilise in
said position, for both x and l.

4.2 The task of moving a container from one lo-
cation to another must be completed. Said
task should begin by computing a path from
start to finish, which the controller must
then pass on to the crane as control signals.
The crane must pick up the object from the
initial location and place it at the desired
end position.

For the requirement to be met,
the subsystems must be capable
of interacting with each other to
perform the desired task.

Table 4.1: Table specifying the tests and evaluation conditions for the proposed solution.



Chapter 5

Implementation

This chapter will delve into the process of implementing a solution for an overhead crane.
Following the research in Chapter 2, a path planning algorithm will be designed, namely,
Potential Field. To control the system, a Model Predictive Controller will be implemented.

Figure 5.1: System Architecture of an overhead crane managed by a Model Predictive Controller. The crane’s
trajectory is computed utilising a Potential Field-based path planner, which is sent to the controller. Here, the
path is processed and motor inputs are derived. Next, the Arduino program sends the motor inputs to the
crane’s actuators. Sensors are implemented on the crane, which detected various states of the crane. These,
are fed back to Arduino and then back to the MPC.

Figure 5.1 shows the three main groups of the system architecture, Matlab, Arduino and
Crane. The first one, Matlab, refers to the programs that are implemented in Matlab and

46
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cannot be executed directly on the crane. The initial phase is to compute a path for the
crane to perform. Then, the controller receives the coordinates and derives two signals,
which control both motors. The second subsystem is, as it name implies, the program ex-
ecuted in an Arduino Mega. This microcontroller receives the input signals from the MPC
and further feeds it to the crane. Between the first and second subsystems there exists data
flow in both directions, as the MPC not only sends the input signals but but also needs
measurements of the crane’s state. This leads to the third group, Crane. It consists of
three hardware components, the motor drivers, the actuators and the sensors. The drivers
take the input signals, in the form of PWM signals, and transform it into a current, which
makes the actuators move the crane. The sensors are tasked with detecting the changes in
position of the head of the crane, see Figure 2.3.

The following sections will describe the different subsystems mentioned and how these
are implemented.

5.1 Path Planning Algorithms

Two algorithms have been implemented, Potential Field and ACO. The theory behind each
of them and how the implementation for each of them is will be described in the following
subsections.

Potential Field: Path Planning

Potential Fields in Robot Navigation are spaces within which, at each point, the poten-
tial energy of obstacles, robots or any object present in the surroundings, are represented.
This representation of the potential energy is derived by the attractive and repulsive forces.
These forces are the essential elements that makes Potential Fields work in robot naviga-
tion and obstacle avoidance. In this section, the equations used to derive both attractive
and repulsive forces and how these are utilised to derive a path planning and obstacle
avoidance algorithm that can be applied to the gantry crane.

The generation of a potential field starts by assigning a potential to each point on the
space. The robot will navigate through this space, starting at the start point, with the high-
est potential and moving towards the lowest potential at the target point. As mentioned in
the above paragraph, two forces are entrusted with defining the potential field, assigning
a direction to each point.
The potential energy U at each point is the sum of attractive potentials and repulsive
potentials Equation 5.1.

U(⃗r) = Uattractive (⃗r) + Urepulsive (⃗r) (5.1)

In terms of robot navigation, only the target location will have an attractive potential.
Whereas multiple obstacles that may appear in the workspace, generate a repulsive poten-
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tial. the robot should maintain distance from the obstacles and move towards the goal.

U(⃗r) = Uattractive (⃗r) +
n

∑
i=1

Urepulsive (⃗r) (5.2)

Both the attractive and repulsive aspects of potential fields affect the movement of the
robot. These effects can be describe as forces, which have the following relationship with
the potential energy:

F⃗(⃗r) = −∇U(⃗r) (5.3)

As shown, the force is equal to the negative gradient of the potential at each point. F(⃗r) is,
same as with U(⃗r) in Equation 5.1, the sum of the attractive forces and repulsive forces.
Following the relation ship between potential energy and force, Equation 5.3, the following
equation can be obtained:

F⃗(⃗r) = −∇Uattractive (⃗r) +
n

∑
i=1

(
−∇Urepulsive (⃗r)

)
(5.4)

The gradient ∇U(⃗r) can be described in terms of its Cartesian components. Relating this
to F⃗(⃗r), the following equation is obtained:

F⃗(⃗r) = −∇⃗U(⃗r) = −
[

∂U
∂x

∂U
∂y

]T

=
[
Fx Fy

]
(5.5)

By computing the partial derivative of the potential energy U(⃗r) in terms of x, y, the force
constituents on each direction can be derived, namely Fx and Fy.
The computation of the repulsive and attractive forces differ, thus they have to be calcu-
lated individually.

Attractive Force: Target

The attractive potential energy of the target can be described linearly as

Uattractive(r) = kt

√
(x − xt)2 + (y − yt)2 (5.6)

where kt is a constant gain dependent on the potential of the target, and r is the distance
between the present position of the robot and the target position.
From Equation 5.5, the forces on x and y can be isolated into the following:

Ftx = −∂Uattractive

∂x
=

−kt(x − xt)√
(x − xt)2 + (y − yt)2

Fty = −∂Uattractive

∂y
=

−kt(y − yt)√
(x − xt)2 + (y − yt)2

(5.7)

Figure 5.2 shows what the potential field for the crane would look like when only the
attractive force is affecting it. The solution shown is for the specified target, but would be
similar to any other target within the workspace.
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Figure 5.2: Attractive Force. The graph depicts the workspace of the crane in terms of its potential. On this
instance, the crane starts at p(1, 1) and will slide straight to the target point at (510, 50).

Repulsive Force: Obstacles

The repulsive force, inherent to obstacles in this case, can be computed in a similar manner
to the attractive force. The repulsive potential energy can be described as:

Urepulsive(r) =
ko

r
=

ko√
(x − xo)2 + (y − yo)2

(5.8)

where ko is a constant gain that depends on the potential energy of the obstacle(s).
Utilising the above equation, the forces on each direction can be computed.

Fox = −
∂Urepulsive

∂x
=

−ko(x − xo)

[(x − xo)2 + (y − yo)2]
√
(x − xt)2 + (y − yt)2

Foy = −
∂Urepulsive

∂y
=

−ko(y − yo)

[(x − xo)2 + (y − yo)2]
√
(x − xo)2 + (y − yo)2

(5.9)

As multiple objects may appear in the workspace of the crane, the following equation is
necessary.

Fox = ∑
i

Foxi Foy = ∑
i

Foyi (5.10)

where i refers to the obstacles. An example of plotting the repulsive field in Matlab is
shown in Figure 5.3.
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Figure 5.3: Repulsive Force. The graph depicts the repulsive force generated by the two obstacles.

Lastly, the derived forces of both the target and the obstacles can be combined to obtain
the complete solution:

Fx = Ftx + ∑
i

Foxi Fy = Fty + ∑
i

Foyi (5.11)

The last equation needed is the following, which is used to derive the "heading" angle of
the robot. The arc-cosine function allows the computation of the mentioned heading-angle,
utilising the three forces obtained in the previous step.

α = atan2
(

Fy, Fx
)

(5.12)

The implementation on Matlab was done with some changes compared to what has been
shown until now. Equation 5.8 has been changed to the following:

Urepulsive(r) = ko ·
(

1
d

K+1

− 1
d0

)2

(5.13)

where, ko is a constant gain that depends on the potential energy of the obstacle(s). d is
the distance between the obstacle and the actual position of the robot, K is a scaling factor
which determines the strength of the repulsion, its effect can be seen in Figure 5.6. Lastly,
d0 is a condition added to the equation that determines the limits at which the repulsive
force has an effect. Increasing and decreasing this value also strengthens or weakens the
repulsive force.
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Figure 5.4: K = 100 Figure 5.5: K = 50

Figure 5.6: As seen in the graphs, an increase in K affects the swells the area affected by the repulsive force.
On the other hand, decreasing said value diminishes its effect.

The combination of the attractive and repulsive fields is what determines the path the
system will follow. This can be seen in Figure 5.7.

Figure 5.7: Graph depicting the combination of Figures 5.2 and 5.3.

The program written in Matlab is described in the following paragraphs. This program
has been designed to compute the path and obtain the data necessary for the controller to
manage the movement of the crane.

The approach takes as foundation the notion of defining the workspace as a binary im-
age. Each pixel on this image will be assigned either a 1 or 0, being ones those pixel that
compose the obstacles. In the following figure, Figure 5.9, this idea is represented in both
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matrix form and as a binary image.

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 1 1 0 1 1 0 0
0 0 0 1 1 0 1 1 0 0

Figure 5.8: Example of a workspace where there
are two obstacles.

Figure 5.9: On the left, a simplified matrix version of a workspace where there are two obstacles. On the right,
the same workspace is represented as a binary image.

Visually, the objects shown in the images are not the same. On the matrix, the objects
are represented as rectangles, 2:2 and 4:2, whereas on the binary image, the obstacles are
shown as a combination of a rectangle together with a triangle. This is due to a design
choice taken during the development of the program, where the researched disadvantages
of potential fields from Section 2.3, were taken into consideration. The main problem
found for the Potential Field algorithm was its inability to escape local minima. To solve
this, the obstacles have been given a semi-trapezoid structure, where the slope on its left
is of 45◦.

Figure 5.10: Obstacle design. The center rectangle is considered to be the actual object and the adjacent
triangle is added to aid the program at not getting stuck in local minima.

Utilising the frame, shown in Figure 5.10, for encasing the obstacle increases the area of
the repulsive field for each obstacle. The slope added to the object generates a field that
naturally forces the system to slide up the side the object.
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Figure 5.11: The left graph shows the obstacles without any additional area added. As seen on the right side
image, this causes the path to get stuck on a local minima and thus, never reaching the target.

Figure 5.12: The use of a slope on the left side of the obstacle allows for the system to avoid getting stuck on
the local minima and reach the target position.

This approach tries to minimise the probability of the path planner getting trapped in lo-
cal minima. To ensure this technique does perform as desired, testing should be done to it.

After defining the workspace with its obstacles, start and goal positions, the repulsive
forces are computed. Firstly, the Euclidean distance transform of the image is computed.
The transform contains the distance between all the pixels in the image and their respec-
tive nearest obstacle pixel. Equation 5.13 is then used, and a matrix, Fo, of the size of the
grid is obtained. This matrix contains the repulsive force at each point on the workspace.
In a same matter, the attractive field is derived and a matrix Ft is obtained, assigning a
value to each pixel on the grid. After that, both Ft and Fo are added together (F) and the
path can be derived.

The function planner.m takes the force matrix F, the start and target coordinates, and
outputs the path for the crane. The first step is to derive the negative gradient of F using
gradient(-F) which outputs the x and y components of said gradient, gx and gy respec-
tively. These are then used in the main loop, which will loop through the desired number
of iterations. gx and gy used to compute δ, which is the vector that contains the value
and direction of the gradient at the current coordinate and iteration. In this case, only the
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direction in δ is used. The new coordinate is calculated by adding the direction times a
velocity to the current coordinate.
This process is iterated until the distance between actual position and target position is
under the desired tolerance value or, until the loop reaches the end of allowed iterations.

Ant Colony Optimisation: Path Planning

Ant Colony Optimisation is a useful tool in Robot Navigation for pathfinding, as the re-
search in Chapter 2 showed. This approach is based on the natural behaviour of ants when
foraging their surroundings. These ants will move around on the ground while leaving
some pheromones. If the ant finds a meal, it will backtrack its own steps, updating the
pheromone trail it had previously made. The update in pheromones aids other ants find
their way towards the target. One main benefit of this approach is the existence of ran-
domness, which make the ants move spontaneously, creating a different path which, if
better1, will encourage other ants to follow it.

Taking the ants behaviour as a basis, a program that finds the shortest path can be de-
signed. In the following paragraphs, the implementation of an ACO path planner will be
shown/demonstrated.

Figure 5.13: First ant starts at A and finds B, leav-
ing a pheromone behind.

Figure 5.14: Other ants follow the trail left by the
first ant, allowing them to go from A to B.

Figure 5.15: Illustration of how ant pheromone works for finding a path.

Figure 5.15 gives an example of the behaviour of six ants. On the left, one ant discovers a
target and leaves a trail of pheromones. Then, five other ants find said trail an follow it, to
get to the destination.

Now, the implementation will be explained. The first step is to create an environment
where the ants will travel. For this project, a node-based grid is utilised. The grid is
made of nodes that cover all reachable space. The ants will go from node to node un-
til reaching the target node given by the user. In order to add the presence of obstacles

1Shorter, safer, easier to traverse.
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to the workspace, some of these node are made unreachable for the ants. The function
createWorkspace contains the data used to generate the workspace, as well as some addi-
tional information that is used for path finding.

Listing 5.1: workspace is made of five elements, namely x, y, n, D, and isObstalce. x and y state the size of
the workspace, and n is the number of nodes in the workspace, based on the size of it. The matrix D contains
the length of the distances between nodes, and lastly, isObstacle is used to define where the obstacles are
located in the workspace.

1 function workspace = createWorkspace(nrows, ncols, obstacleNodes)
2 x = 1:nrows;
3 y = 1:ncols;
4 [y, x] = meshgrid(y, x);
5 x = x(:);
6 y = y(:);
7

8 n = numel(x); % Number of nodes.
9

10 D = zeros(n, n); % Matrix of distances between nodes.
11

12 isObstacle = false(n, 1); % Define obstacle nodes.
13

14 isObstacle(obstacleNodes) = true; % Set obstacleNodes to true.
15

16 for i = 1:n − 1
17

18 for j = i + 1:n
19

20 D(i, j) = sqrt((x(i) − x(j))^2 + (y(i) − y(j))^2);
21

22 D(j, i) = D(i, j);
23

24 end
25

26 end
27

28 workspace.n = n;
29

30 workspace.x = x;
31

32 workspace.y = y;
33

34 workspace.isObstacle = isObstacle;
35

36 workspace.D = D;
37

38 end

The ants are then generated. This is done by creating empty arrays for each ant’s path and
the cost assigned to each of these. The cost is based on their distance from start to goal,
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the lower the distance, the lower cost is assigned to the paths. Ultimately searching for the
shortest path. The following code shows the ant generation. the matrix ant contains all
the ants, with their respective path and cost.

Listing 5.2: Ant generation. the ant matrix contains all the ants used and ther respective paths and cost of
path.

1 emptyAnt.Path = []; % Empty ant path array.
2

3 emptyAnt.Cost = []; % Empty ant cost array.
4

5 ant = repmat(emptyAnt, nAnts, 1); % Matrix containing all ants.
6

7 bestAnt.Cost = inf; % Best ant.

Next, the main loop. The ants are "sent" to the workspace in order to find the target. As
mentioned, the search works by going from node to node until the target is found. The
selection of each new node is based on the probability of the ant going to each of the
nodes. This probability is calculated by utilising the following equation.

P = τα · ηβ (5.14)

where; P: Probability matrix, τ: Pheromone matrix, α: Pheromone exponential weight, η:
Desirability between nodes, and β: Heuristic exponential value. Changing these values
modifies the conditions for the selection of nodes. P is the normalised so that the prob-
abilities for each node fall between 0 and 1. Then, a function named randNode takes the
probability matrix P and outputs, randomly, a node j.

Listing 5.3: Firstly, a number between 0 and 1 is obtained. Then, the cumulative sum of the probability
matrix is derived. Lastly, the first indice of nonzero value that complies with the condition r <= C, is
selected.Elements with higher probabilities will have a bigger cumulative sums, i.e., it will have higher prob-
abilities of being selected.

1 function j = randNode(prob)
2 r = rand;
3

4 C = cumsum(prob);
5

6 j = find(r ≤ C, 1, 'first');
7

8 end

If the value obtained in j is not an obstacle, it will be added to the path. The isObstacle
variable is utilised during this step by comparing j to the list of nodes in isObstacle,
which represent obstacles.
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The cost of the updated path is calculated and compared with the general2 best cost path.
The pheromone matrix τ is then updated, by reinforcing the edges that are part of bet-
ter paths and evaporating the pheromones, such that the system "forgets", over time, the
suboptimal edges. The cost mentioned in this section has been defined as the path length.

Listing 5.4: A distance d is calculated by adding the distances in the ith and jth elements D. into it.

1 function d = PathLength(path, model)
2 n = numel(path); % Returns the number of elements in path.
3

4 path = [path path(1)]; % Array of the nodes in a path, starts and ...
ends at the same node.

5

6 d = 0;
7

8 for i = 1:n
9

10 d = d + model.D(path(i), path(i+1));
11

12 end
13

14 end

This process is done for all ants and iterations, set before running the program. When the
number of iterations is met, the solution with the shortest path is outputted, see Figure
5.16.

Figure 5.16: Example of a path derived by the ACO planner. The start is at the blue circle and goes to the red
hexagram. The black squares simulate an obstacle of size six by three.

2Refers to the least costly path between the ants.
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5.2 Measurement Unit Normalization

This section will explain some of the normalisation applied to the measurements received
from the potentiometers and tachometers of the crane. The initial units that these measure-
ments had did not align with the rest of the solution, therefore, they need to be changed.

5.2.1 Potentiometers

The measurements obtained with the potentiometers are given as a value between 0 and
1024. This makes modelling of the system difficult, and therefore, in this section a conver-
sion from potentiometer reading to m is shown.

To convert from potentiometer unit to meters, the crane was moved every 10cm along
the x-axis and 3cm along the l-axis, separately, and potentiometer readings and manual
measurements were recorded. Potentiometer readings were matched to manual measure-
ments in meters.
The matched potentiometer and manual measurements were fitted onto a polynomial util-
ising a Matlab polynomial fit function, which takes every pair of points and generates a
polynomial. This could be used to calculated the position in meters of the crane every
time a potentiometer reading is obtained. Instead, since the maximum number of possible
potentiometer readings of the crane is known, all the positions in meters can be calculated
and a map created. This way, the position in meters can always be obtained. Which is
a reduction of computational time compared to calculating the conversion between po-
tentiometer readings and m every time a potentiometer measurement is obtained. In the
following figure, Figure 5.19, the fitted function for both x and l can be seen.

Figure 5.17: Horizontal axis potentiometer read-
ings mapped to meters.

Figure 5.18: Vertical axis potentiometer readings
mapped to meters.

Figure 5.19: Mapping of both vertical and horizontal axes potentiometer readings to meters.

As seen in Figure 5.18, the mapping is one to one, simplifying the conversion between
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the load’s position and the potentiometer readings. On the other hand, for the x-axis,
Figure 5.17, the mapping is more intricate. It is now available for the implementation of
the controller on the crane.

5.2.2 Tachometers

Similarly, the digital tachometer signals are also in the range of [0,1024]. In order to con-
vert this into m/s, an open loop test was run for x, and l respectively. The maximum
velocity was reached, and the velocity in m/s was calculated as the rate of change of the
potentiometer readings. This was done using the average of a span of potentiometer read-
ings at maximum velocity. By comparing the result of this calculation to the tachometer
measurement, it was possible to make a conversion from tachometer reading into m/s.
The Matlab script was then edited such that all received tachometer measurements from
the Arduino are normalized to m/s using the same scaling factor.
The following figure shows the difference between the original tachometer readings and
the normalized tachometer readings, which are scaled to m/s. Where the original tachome-
ter readings are represented as a number between [-1,1].

Figure 5.20: This graph shows an open loop test of the physical system, with the trolley position, x, the original
tachometer signal, x dot, represented in the range [-1,1] to fit in the graph, and the normalized tachometer
readings in m/s, x dot norm
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5.3 Model Predictive Control

MPC is a technique utilised in control theory to manage a dynamical system by deriving
the optimal solution to the problem at hand. The implementation of such a controller will
be explained in this section.

The first step of the implementation has already been shown, namely, modelling the sys-
tem, Section 5.4. The model is a nonlinear system which would require a nonlinear MPC.
Such an MPC does exist but requires extensive computational power, as described by Blet
et al. [53]. Nevertheless, having a nonlinear system can be beneficial for testing the ability
of the MPC at controlling the real system. Linearisation, for this reason, has been deemed
as a necessary step for implementing a linear-MPC on the crane.

The steps for designing a Model Predictive Controller will be enumerated in the following
list.

1. Discretise the Input signal

2. Define the Objectives and Constraints

3. Define the Cost function

4. State the Prediction Horizon

5. Solve the Optimisation Problem

6. Generate a Control signal

7. Update the MPC based on the output measurements

8. Repeat process

1. Discretise the Input signal: The model derived with help of Computed Torque is
continuous-time, but MPC requires it to be discrete.

2. Define the Objectives and Constraints: The crane comes with certain constraints,
both due to its physical and digital properties. These constraints have to be added to the
MPC so it generates a control signal that takes these limitations into consideration. Some
of these constraints are: the allowed voltage per component and the size of the crane. The
main Objective for this implementation is to follow a reference trajectory, generated by the
path planning program. The path received has to be adjusted so that the crane can follow
it. The output signal has to be limited between 10% and 90% duty cycle, as the motors
work with a signal between this interval.
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3. Define the Cost function: A cost function has to be designed for the MPC. This
function will embody the mentioned constraints so that the objective can be met. The goal
of the system is to follow a reference path, therefore, the cost function can be designed as a
Standard Cost function, for example, the one the MPC Toolbox in Matlab may utilise [54]:

J(zk) = Jy(zk) + Ju(zk) + J∆u(zk) + Jε(zk)

Output Reference Tracking:

Jy(zk) =
ny

∑
j=1

p

∑
i=1

(
wy

i,j

sy
j

(
rj(k + i|k)− yj(k + i|k)

))2

where k is current control interval, p the prediction horizon, ny the number output vari-
ables, zk the quadratic programming decision. yj(k + i|k) is the predicted value of the
output at the ith horizon step and rj(k + i|k) is the reference value for the output at the

same ith step.
wy

i,j

sy
j

is the ratio of the tuning weight over the scaling element for the output of

the plant. The equations for the other three terms that appear in the standard cost function
equation, Manipulated Variable Tracking Ju(zk), Manipulated Variable Move Suppression
J∆u(zk) and, Constraint Violation Jε(zk), have a similar variation to the equation for Output
Reference Tracking, so it will not be shown.

4. State the Prediction Horizon: A limit for how far in the control process the MPC
computes the control signal, has to be set. Longer horizons means more computational
power is needed for the MPC to calculate the control action.

5. Solve the Optimisation Problem: The goal of the MPC is to find the optimal control
signal that reduces the cost of performing said action while keeping the constrains and
objective in mind.

6. Generate a Control signal: At this point, a control signal should have been derived.
The signal that will be outputted will depend on the receiving system. In this case, this
signal will signify a PWM value for both motors of the crane.

7. Update the MPC based on the output measurements: Utilising the sensors available
on the crane, the MPC can be updated using the measurements of the crane’s head posi-
tion.

This process is repeated until the objective has been achieved, in this case, delivering
the object to be transported to the target location.
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Figure 5.21: Graph depicting the functioning of MPC. The controller takes the measured states of the system
and predicts a control signal for the motors that will "try" to follow the reference trajectory. Hp refers to the
prediction horizon.

To solve the optimisation problem, a couple of of actions are needed beforehand. Consid-
ering the system has been discretised, the following model is utilised, [55]

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(5.15)

Using the backward difference operator to the system,

∆x̃(k + 1) = x̃(k + 1)− x̃(k)
∆ũ(k + 1) = ũ(k + 1)− ũ(k)

}
=⇒ ∆x̃(k + 1) = A∆x̃(k) + B∆ũ(k)

(5.16)

The terms that have
the tilde symbol on
top, refer to the fu-
ture/predicted value
of said term.

The same notion can be applied to ỹ(k), where,

∆ỹ(k + 1) = ỹ(k + 1)− ỹ(k) = Cx̃(k + 1)− Cx̃(k) = C∆x̃(k + 1)

Introducing ∆x̃(k + 1) from Equation 5.16 into ỹ(k + 1), allows it to be organised as:

ỹ(k + 1)− ỹ(k) = C (A∆x̃(k) + B∆ũ(k))

ỹ(k + 1) = ỹ(k) + CA∆x̃(k) + CB∆ũ(k)
(5.17)

Setting the system back together yields[
∆x̃(k + 1)
ỹ(k + 1)

]
=

[
A 0

CA IHp

] [
∆x̃(k)
ỹ(k)

]
+

[
B

CB

]
∆ũ(k) (5.18)
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The equation will be simplified as follows,

ỹ(k) =
[
0 IHp

] [∆x̃(k)
ỹ(k)

]
, x̃a(k) =

[
∆x̃(k)
ỹ(k)

]
, Aa =

[
A 0

CA IHp

]
,

Ba =

[
B

CB

]
, and Ca

[
0 IHp

] (5.19)

This is done so that the system can be represented as:

x̃a(k + 1) = Aa x̃a(k) + Ba∆ũa(k)

ỹ(k) = Ca x̃a(k)
(5.20)

With the system in this layout, the objective function can be solved. This function tries
to derive a control signal for each time step k so that a predicted state can be obtained,
which can then predict the system’s outputs ỹ. These predicted measurements can then
be introduced in Equation 5.20 and the process of computing the control signal can be
repeated until reaching Hp. This can be described in matrix form as,

x̃a(k + 1|k)
x̃a(k + 2|k)

...
x̃a(k + Hp|k)

 =


Aa

A2
a

...
AHp

a

 x̃a(k) +


Ba

AaBa Ba
...

. . .

AHp−1
a B . . . Ba




∆ũ(k)
∆ũ(k + 1)

...
∆ũ(k + Hp − 1)

 (5.21)

After deriving x̃a, it can be added to:
ỹ(k + 1|k)
ỹ(k + 2|k)

...
ỹ(k + Hp|k)

 =


Ca x̃a(k + 1|k)
Ca x̃a(k + 2|k)

...
Ca x̃a(k + Hp|k)



=


Ca Aa

Ca A2
a

...
Ca AHp

a

 x̃a(k) +


CaBa

Ca AaBa CaBa
...

. . .

Ca AHp−1
a B . . . CaBa




∆ũ(k)
∆ũ(k + 1)

...
∆ũ(k + Hp − 1)


(5.22)

Simplifying the above as Y = W x̃a(k) + Z∆U, it can be utilised to solve the cost function
such that the cost of following a reference path gets reduced.

V(∆U) =
1
2
(rHp − Y)TQ(rHp − Y) +

1
2

∆UTR∆U (5.23)

Q and R are weight matrices that have to be fine-tuned. These weights are selected based
on the desired objective. Depending on which states/measurements are more valuable for
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a certain solution, the weights will be chosen accordingly. rHp is the reference vector that
contains the path that the system must follow.
The next steps will describe how ∆U is isolated, i.e., derive the control signal from k to
k + Hp − 1. The first-order necessary condition test is used to check the cost function,

∂V
∂∆U

= −(rHp − W x̃a(k)− Z∆U)TQZ + ∆UTR (5.24)

The equation is then set to zero.

− rT
Hp

QZ + x̃a(k)TW TQZ + ∆UTZTQZ + ∆UTR = 0

(R + ZTQZ)∆U = ZTQ(rHp − W x̃a(k))
(5.25)

∆U can be isolated, and is now represented as ∆U∗, thus:

∆U∗ = (R + ZTQZ)−1ZTQ(rHp − W x̃a(k)) (5.26)

The second derivative test can then be applied, resolving whether ∆U∗ is a strict minimiser
of the cost function V or not.

∂2V
∂∆U2 = R + ZTQZ > 0 (5.27)

A point z∗ is a strict minimiser of an optimisation problem minz∈Ω f (z) and, ∃ϵ > 0 such
that f (z∗) < f (z)
for z ∈ Ω {z∗} satisfying ||z − z∗|| ≤ f (z) [56]

Lastly, utilising the equation for ∆U∗, ∆u(k) can be obtained.

∆u(k) =
[
Im O · · · O

] (
R + ZTQZ

)−1ZTQ
(
rHp − W x̃a(k)

)
=
[
Im O · · · O

] (
R + ZTQZ

)−1ZTQ · rHp

−
[
Im O · · · O

] (
R + ZTQZ

)−1ZTQW ·
[

Im

O

]
∆x̃(k)

−
[
Im O · · · O

] (
R + ZTQZ

)−1ZTQW ·
[

O
IHp

]
∆ỹ(k)

(5.28)

Im, In and IHp are identity matrices of sizes m,n,Hp (where A ∈ Rn×n, B ∈ Rn×m and
C ∈ RHp×n).
Equation 5.28 can be turned into a block diagram that describes the MPC. This can be seen
in the following figure, Figure 5.22.
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Figure 5.22: Block diagram of an MPC. The terms seen are directly obtained from Equation 5.28.

The implementation of the MPC in this project was done utilising the Simulink MPC
Designer App, part of Model Predictive Control Toolbox, and then exported as an MPC
object to be utilised in the Matlab workspace. This tool simplifies the creation of an MPC,
as it almost only requires to introduce different parameters to it for a controller to be
generated. First, an MPC block is added to Simulink and connected to the crane’s plant,
see Figure 5.23, where two MPC blocks can be seen. Then, the inputs and outputs are
defined, together with the desired sample time. For this project, the number of inputs is
two and only a single output. The first input, mo, contain the measured outputs of the
plant. The other input, ref, is the reference path that the crane has to follow. The sample
time was set to 0.05s. With this, the controller is created. The next steps are to tune the
constraints and requirements.

Figure 5.23: Simulink implementation of the MPC.
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5.4 Computed Torque

The path planning algorithms will deliver a course which the crane will follow. For this
to happen, the solution needs to have a controller that can manage the different actuators
and sensors for the task to be performed within certain requirements. The controller will
receive a path and translate the information into inputs which the actuators can under-
stand. To be capable of deriving the correct conversion between path data (coordinates)
and actuator data (current), the model of the system is needed, as described in Section 3.3.
One technique which can be utilised is linearisation, which, as described in the previous
section, could reduce the computational power required by the MPC to control the crane.
One approach to linearise a system, is Computed Torque, which will be utilised in this
project.

Dynamic systems can be described as,

M(z) · z̈ + C(ż, z)ż + V(z)ż + G(z) = τ (5.29)

where, M(z) is the mass matrix of the system, C is the Coriolis or Centripetal Matrix, V is
the matrix that contains the friction coefficients, G is the gravity vector and lastly, τ is the
input matrix. These matrices describe the system and are obtained from the equations of
motions in Equations 3.25, 3.26, and 3.27.

The final form of the mentioned matrices can be seen in Appendix D.

Computed-torque control is used to derive a linear closed loop system based on the states
of said system. The linearisation starts with deriving a control input that cancels the non-
linear terms that appear in the model, Equation 5.29, so that a direct relationship between
input signal and output can be obtained. This can be done by rewriting the equation into:

z̈ = M(z)−1 · [τ − C(ż, z)ż − V(z)ż − G(z)] (5.30)

The following step is to derive an input τ that can compensate for the nonlinear terms,
namely M(z), C(ż, z)ż, V(z)ż, and G(z).

τ = M̃(z) · Λ + C̃(ż, z)ż + Ṽ(z)ż + G̃(z) | Λ = z̈d + kMPC · e (5.31)

where e(t) = zd(t)− z(t) is the tracking error. This error is the difference in position be-
tween what has been inputted into the crane and the measured position. And, the matrices
containing a tilde refer to the compensation matrices which are used to compensate the
system of the nonlinear terms.
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Figure 5.24: Block diagram of the system with a computed torque control that linearises it. The input Z̈ is
obtained from a controller which will be described later on the report. The two lines at the bottom of the
image, which depict the measured position and velocity of the crane, are connected to the controller which,
for the same reason, will not be showed until a later section.

A block diagram of the system with computed-torque applied to it can be seen in Figure
5.24, depicting the operational principle of computed-torque. As it can be seen, the matri-
ces M̃(z), C̃(z, ż), Ṽ(z) and G̃(z) are inputted into the plant where they alleviate the effects
of the non-linearities of the model, thus obtaining an almost linear system.

The implementation of this method has been done in Simulink and utilising the services
it provides. One main different from the theory presented in this chapter is the use of
linear equations to perform computed torque control, compared to the use of matrices.
One example of this is shown in the following figure.
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Figure 5.25: Snippet of the computed-torque Simulink diagram where ẍ is being treated. The function block
x_ddot2 includes the equation of motion for ẍ. To it, the input signal I_xcomp2 is the computed torque signal,
depicted as τ in Figure 5.24. The mentioned input signal contains the necessary computation to linearise the
effect of the mass, Coriolis, Friction and gravity matrices.

In Figure 5.25, the Simulink diagram of the computed-torque implementation on the crane
can be seen for ẍ. For the other variables, a similar implementation is applied. The output
for x of the system after computed-torque can be seen in Figure 5.26.

Figure 5.26: Output of the position of the crane. The system has was set to reach an x position of one meter.
As seen, it reaches the destination after 3.4 seconds, but has difficulties stabilising. The stabilisation problem
could be solved with the implementation of a controller.

5.5 Taylor series Linearisation

The system designed in this project is inherently non-linear. This aspect, as mentioned
in previous sections, increases the complexity of designing a control system capable of
managing the crane. In Section 5.4, a solution that compensates for the non-linearities of
the system was designed. The outcome from this implementation exposed a drawback on
this project. This is because of the combination of Computed Torque linearisation with
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the model predictive controller. It was made clear that computed torque derived a system
where the input was 1:1 with the output, the controller always deems the system capable
of following its instructions. This oversimplified the solution and is not true for the real
crane, thus this approach was deemed as insufficient.

The linear system calculated with computed torque was tested together with a simple
MPC created with the built-in MPC generator from Matlab. The results were not com-
pletely unusable, but could not be introduces into the crane itself and only performed as
desired in a simulated environment. For this reason, another approach for linearising the
system was researched, namely Taylor Series Linearisation.

With knowledge regarding the system, the following two block diagrams, Figures 5.27
and 5.28, can be defined. The system is divided into two diagrams as x and l are indepen-
dent from each other.

Figure 5.27: Block diagram of the system for x-
position where θ has no effect. R(s) is the ref-
erence or desired x-position. G1(s) is the control
transfer function and G2(s), the plant’s transfer
function. Lastly, H(s) is the feedback block.

Figure 5.28: Block diagram of the system for
l-position.R(s) is the reference or desired l-
position. G1(s) is the control transfer function
and G2(s), the plant’s transfer function. Lastly,
H(s) is the feedback block.

Figure 5.29: Block diagrams depicting the control loops for both x- and l-positions.

As seen in the block diagrams for x and l, θ does not appear. In reality, Figure 5.27 should
contain θ as, the equation of motion for both variables show, θ is dependent on x. This,
together with the inability to directly control θ in this system, requires the above diagram
for x to include an inner loop that adds a θ control. This can be seen in Figure 5.30. The
block diagram for l remains the same as shown.
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Figure 5.30: Block diagram of the system for x-position influenced by θ. This block diagram is the same as
Figure 5.27 but contains an inner loop that includes θ. The inner loops works in a similar matter to the on
showed in the previous figure. R(s) is the reference or desired variables. G1(s) is the controller , in this case,
the MPC. G2(s) is the system’s plant. G3(s) is the pendulum’s transfer function, which shows the output θ.
H(s) is the feedback transfer function.

The diagrams depicted in the previous figures will be utilised in a later step of the lineari-
sation process with Taylor series, for defining the transfer functions necessary to complete
the system. For example, the transfer function relating Ix to θ.

For the purpose of implementing a linear MPC, the current non-linear system will be
linearised. This will be achieved using first order Taylor series approximation, given by
f (zp + ẑ), around an equilibrium point, described by zp, where lp is the current wire length.

f (zp + ẑ) ≈ f (zp) +∇ f (zp)
T ẑ (5.32)

ẑ =
[
θ̈ θ̇ θ l̈ l̇ l ẍ ẋ Ix Il

]T
(5.33)

zp =
[
0 0 0 0 0 lp 0 0 0 0

]T
(5.34)

Equation 5.32 has to be calculated for the three variables of the system, x, l and θ. The
process of obtaining each of the linearised equations of motion will be shown step by step
in the following subsections.

Linearisation of ẍ

The equation for the first order Taylor series approximation of ẍ is shown below,

ẍ(zp + ẑ) = ẍ(zp) +∇ẍ(zp)
T ẑ (5.35)
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As a reminder of the current nonlinear equation for ẍ, its equation can be seen next,

ẍt =
1

mt + ml +
Jx
r2

x

(
Kex Ix

rx
− Bx ẋt − ml l̈sin(θ)− 2ml l̇θ̇cos(θ)− ml lθ̈cos(θ) + ml lθ̇2sin(θ)

)
(5.36)

Using first order Taylor series approximation, the gradient of the Equation 5.36 can be
found,

∇ẍ(ẑ) =



∂
∂θ̈

ẍ
∂
∂θ̇

ẍ
∂
∂θ ẍ
∂
∂l̈

ẍ
∂
∂l̇

ẍ
∂
∂l ẍ
∂

∂ẍ ẍ
∂

∂ẋ ẍ
∂

∂Ix
ẍ

∂
∂Il

ẍ


=



−ml lcos(θ)
−2ml l̇cos(θ) + 2ml lθ̇sin(θ)

ml
(
cos(θ)(lθ̇2 − l̈) + sin(θ)(2l̇θ̇ + lθ̈)

)
−mlsin(θ)
−2ml θ̇cos(θ)

−ml θ̈cos(θ) + ml θ̇
2sin(θ)

0
−Bx

Kex
rx

0



1

mt + ml +
Jx
r2

x

(5.37)

Both Equations 5.36 and 5.37 are evaluated at the equilibrium point,

∇ẍ(zp) =
[
−ml lp 0 0 0 0 0 0 −Bx

Kex
rx

0
]T

(5.38)

ẍ(zp) = 0 (5.39)

These are now substituted into Equation 5.40,

ẍ(zp + ẑ) = 0 +
−ml lp θ̈ − Bx ẋ + IxKex

rx

mt + ml +
Jx
r2

x

(5.40)

Linearisation of l̈

For l̈, the following equations needs to be solved,

l̈(zp + ẑ) = l̈(zp) +∇l̈(zp)
T ẑ (5.41)

The current nonlinear equation for l̈ is shown below.

l̈ =
1

ml +
4Jl
r2

l

(
Kel Il

rl
− Bl l̇ + ml lθ̇2 + ml gcos(θ)− ml ẍtsin(θ)

)
(5.42)
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Using first order Taylor series approximation, the gradient of the Equation 5.42 can be
found,

∇l̈(ẑ) =



∂
∂θ̈

l̈
∂
∂θ̇

l̈
∂
∂θ l̈
∂
∂l̈

l̈
∂
∂l̇

l̈
∂
∂l l̈
∂

∂ẍ l̈
∂

∂ẋ l̈
∂

∂Ix
l̈

∂
∂Il

l̈


=



0
2ml lθ̇

−ml ẍcos(θ)− ml gsin(θ)
0

−Bl
mlθ

2

−mlsin(θ)
0
0

Kel
rl



1

ml +
4Jl
r2

l

(5.43)

Equations 5.42 and 5.43 are now evaluated at the equilibrium point,

∇l̈(zp) =
1

ml +
4Jx
r2

x

[
0 0 0 0 −Bl 0 0 0 0 2kel

rl

]T
(5.44)

l̈(zp) =
ml g

ml +
4Jl
r2

l

(5.45)

The two previous equations, Equations 5.44 and 5.45, are now substituted into Equation
5.46,

l̈(zp + ẑ) ≈ 1

ml +
4Jl
r2

l

(
ml g − Bl l̇ +

2kel Il

rl

)
(5.46)

Linearisation of θ̈

Lastly, the Taylor series equation for θ̈ is,

θ̈(zp + ẑ) = θ̈(zp) +∇θ̈(zp)
T ẑ (5.47)

Solved using current nonlinear equation for θ̈ shown below.

θ̈ =
1
l
(
−2l̇θ̇ − ẍcos(θ)− gsin(θ)

)
(5.48)
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Using first order Taylor series approximation, the gradient of the Equation 5.48 can be
found,

∇θ̈(ẑ) =



∂
∂θ̈

θ̈
∂
∂θ̇

θ̈
∂
∂θ θ̈
∂
∂l̈

θ̈
∂
∂l̇

θ̈
∂
∂l θ̈
∂

∂ẍ θ̈
∂

∂ẋ θ̈
∂

∂Ix
θ̈

∂
∂Il

θ̈


=



0
−2l̇

ẍsin(θ)− gcos(θ)
0

−2θ̇
−1

l

(
−2l̇θ̇ − ẍcos(θ)− gsin(θ)

)
−cos(θ)

0
0
0



1
l

(5.49)

Equations 5.48 and 5.49 are evaluated at the equilibrium point,

∇θ̈(zp) =
1
lp

[
0 0 −g 0 0 0 −1 0 0 0

]T
(5.50)

θ̈(zp) = 0 (5.51)

The two previous equations, Equations 5.50 and 5.51, are now substituted into Equation
5.52,

θ̈(zp + ẑ) ≈ 1
lp

(−gθ − ẍ) (5.52)

Laplace Transform

The linearised equations of motion have now been computed. As mentioned before, it
can now be applied the Laplace transform on them to obtain the transfer functions that
complete the system. Converting the linearised system into transfer functions will be nec-
essary to construct the linear MPC that will be tested and introduced into the solution.

To find the transfer function, first take the Laplace Transform of the differential equations,
Equation 5.53 (with zero initial conditions).

ẍ(zp + ẑ) ≈
−ml lp θ̈ − Bx ẋ + IxKex

rx

mt + ml +
Jx
r2

x

l̈(zp + ẑ) ≈ 1

ml +
4Jl
r2

l

(
ml g − Bl l̇ +

2kel Il

rl

)

θ̈(zp + ẑ) ≈ 1
lp

(−gθ − ẍ)

(5.53)
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The transfer function is the ratio of output to input, for example, for the l̈ equation, the
transfer function is L

(
l̈
Il

)
.

The following equation contains a constant term ml g, making it an affine equation. This
term will be removed during the Laplace transform calculations as it simplifies the math-
ematical operations needed to perform Laplace transform. It can be later added when
simulating the system or when controlling the real crane.

Separate l̈ equation into input and output components.

l̈ =
−Bl l̇ +

2kel Il
rl

ml +
4Jl
r2

l(
ml +

4Jl

r2
l

)
l̈ + Bl l̇ =

2kel

rl
Il

(5.54)

Now, calculate Laplace transform:

L
((

ml +
4Jl

r2
l

)
s2 + Bls

)
= L

(
2kel

rl

)
Gl1 = L

(
l̈
Il

)
=

2kel

rl

1

s
((

ml +
4Jl
r2

l

)
s + Bl

) (5.55)

For the θ̈ equation,

θ̈ = − gθ

lp
− ẍ

lp

θ̈ + gl−1
p · θ = −l−1

p · ẍ
(5.56)

Then, the following Laplace transformation L
(

θ̈
ẍ

)
, is computed.

L
(

θ̈ + gl−1
p · θ

)
= L

(
−l−1

p · ẍ
)

L
(

θ̈

ẍ

)
=

−s2l−1
p

s2 + l−1
p g

(5.57)

The same is done for the ẍ equation, and L
(

ẍ
Ix

)
is obtained. The resulting Laplace trans-

form is:

Gx1 = L
(

ẍ
Ix

)
=

kex

rx

s3lp + sg

s3lp

(
mt +

Jx
r2

x

)
+ s2Bxlp + s

(
mt + ml +

Jx
r2

x

)
g + Bxg

(5.58)
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Gx1 is, in itself, a transfer function that appears in the block diagram shown in Figure 5.30
as G2(s). It has instead been named Gx1, i.e., two more transfer functions that derive from
ẍ appear in said figure, namely Gx2 for the integration from ẍ to ẋ and Gx3, which shows
the double integration between ẍ and x. These are shown in the following equations,
which depict the relationship between the input Ix and the outputs ẋ and x, needed to fit
the linear model to the designed MPC.

Gx2 = L
(

ẋ
Ix

)
= L

(
ẍ
Ix

1
s

)
=

kex

rx

s2lp + g

s3lp

(
mt +

Jx
r2

x

)
+ s2Bxlp + s

(
mt + ml +

Jx
r2

x

)
g + Bxg

(5.59)

Gx3 = L
(

x
Ix

)
= L

(
ẍ
Ix

1
s2

)
=
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rx

s2lp + g

s4lp

(
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Jx
r2

x

)
+ s3Bxlp + s2

(
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Jx
r2

x

)
g + sBxg

(5.60)

To obtain G3 (Figure 5.30), the equation relating θ̈ and ẍ, Equation 5.57, can be used. This
equation relates accelerations whereas the final result is needed as positions. This can be
solved by adding a second degree integrator that reduces θ̈ to θ:

G3 = L
(

θ

Ix

)
= L

(
ẍ
Ix

θ̈

ẍ
1
s2

)
=
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rx

−s
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(
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Jx
r2

x
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)
+ s2Bxlp + sg

(
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Jx
r2

x

)
+ Bxg

(5.61)

The system contains an additional variable, l. The transfer function for this part of the
system can be derived independently from the other two. The block diagram for l can be
seen depicted in Figure 5.28. As with the previous block diagram, l also includes l̈ and
l̇. The first one has already been computed, Equation 5.55. l̇ and l can be seen in the
following two equations:

Gl2 = L
(

l̇
Il

)
= L

(
l̈
Il

1
s

)
=

2kel

rl

1
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) 1
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l
+ s2Bl (5.62)
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l
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1
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=
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rl
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r2
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)
s + Bl

) 1
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2kel
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1

s4ml + s4 4Jl
r2

l
+ s3Bl

(5.63)

At this point, the transfer functions needed for the control system have been obtained.

Matlab Implementation

Lastly, the translation from the mathematical equations, shown in this section, to the Mat-
lab implementation will be described.
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The goal of utilising the Taylor/Laplace approach is to derive the transfer functions that
describe the system, which is comprised of two block diagrams, Figures 5.30 and 5.28.
The transfer functions shown in the mentioned diagrams have been calculated and the
final control loop for x and θ can be seen in Figure 5.31, for l in Figure 5.32.

Figure 5.31: Same block diagram as depicted in Figure 5.30 but with the names given after the mathematical
computations shown in this section.

Figure 5.32: Same block diagram as depicted in Figure 5.28 but with the names given after the mathematical
computations shown in this section.

From the above diagrams, the system transfer function for each can be derived. The system
transfer function for Figure 5.31 is, ẋ

x
θ

 =


ẋ
Ix
x
Ix
θ
Ix

 · Ix (5.64)

For Figure 5.32, [
l̇
l

]
=

[
l̇
Il
l
Il

]
· Il (5.65)
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Combined to represent the whole system, the linear model’s transfer function can be de-
scribed as the following system of matrices,

ẋ 0
x 0
θ 0
0 l̇
0 l

 =



ẋ
Ix

0
x
Ix

0
θ
Ix

0
0 l̇

Il

0 l
Il

 ·
[

Ix

Il

]
(5.66)

To introduce Equation 5.66 into a Matlab script, the function tf([’numerator’], [’denominator’])
can be utilised. Said function only requires the user to introduce the coefficients accompa-
nying s in the numerator and denominator, respectively.

Figure 5.33: Each transfer function as they are in Matlab

The transfer function are organised into a matrix which then represents the plant of the
system. It is then possible to create an MPC using the built in Matlab functions. It is
preferred to have the system in discrete time, so the c2d Matlab function is used, which in
turn requires the system in state space format.

The constraints, horizons and weights are chosen at this point, whereafter the MPC is
simulated for a chosen amount of timesteps and a matrix of references.

Figure 5.34: The MPC is made using Matlab functions

5.6 System Validation

This section will contain tests and essential parameter determination that ensures the
proper implementation of the system. Some of the tests have the purpose of validating
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the model described in Section 3. As well as ensuring that the proper electrical system has
been designed. This section will serve a preliminary assurance that the system delivers
within some desired minimum.

Initially, the model generated output signals that, seen with the naked eye, did not cor-
relate with the outputs recorded from the real system. One of the possible issues that
came up from this was the friction of the system. The initial friction coefficient used were
obtained from a previous group of researchers that operated on the same crane to the one
used in this project. Due to to the difference seen between the behaviour of the model and
the real system, this issue was further investigated.
With the correct friction coefficients, the model can be re-validated, testing that the output
signals from the model equals the crane’s response to the same input values.

5.6.1 Friction Coefficient

Friction is the force that prevents two objects, in contact with each other, from sliding or
rolling relative to one another. This force places a constraint on deriving the input signals
of the motors, therefore, it needs to be correctly defined so that the modelled system reacts
the same way as the real overhead crane. The friction of the system has been described by
its Coulomb, static and viscous friction, Fc, Fs and Fv respectively.

Previously, in Section 3.3, the only friction term used was B which was a placeholder for
the now computed friction coefficients. Friction based on Fc, Fs and Fv has the following
form:

F = Fv · v + Fc · sgn(v) + Fs · sgn(v) (5.67)

where v is velocity.

Figure 5.35: Graph of the friction based on the Coulomb, static and viscous frictions.
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The focus of this section is to obtain the friction coefficients for the three types of friction
described in Figure 5.35. This will be done by a series of tests that will allow for the com-
putation of said coefficients.

The first test will not consider static friction and only Coulomb and viscous friction are
derived. The friction model of such instance, where friction is only dependent on Fc and
Fv, can be described as:

F = Fv · v + Fc · sgn(v) (5.68)

Figure 5.36: Graph of the friction based on
the Coulomb and viscous frictions.

Firstly, the friction coefficients that refer to the x-axis will be computed, thus the coef-
ficients will be written as Fxc and Fxv. Since the goal is to obtain one value for each
coefficient, two equations are needed:

1) ẍ =
kex ·1 Ix(

mt +
Jx
r2

x

)
· rx

− Fxv · ẋ1 + Fxc · sgn(ẋ)
mt +

Jx
r2

x

2) ẍ =
kex ·2 Ix(

mt +
Jx
r2

x

)
· rx

− Fxv · ẋ2 + Fxc · sgn(ẋ)
mt +

Jx
r2

x

(5.69)

Assuming the acceleration is 0 when the velocity is constant, and assuming neither l nor θ

have any effect for this test, the equation of motion for ẍ will only contain the terms shown
in Equation 5.69.

To isolate both friction variables, Fxc and Fxv, the crane will move with two different control
signals Ix. The first run was performed with a control signal 1 Ix of 6.35A in the negative
direction. The second, with a 2 Ix of 5.08A in the negative direction. The velocity terms
seen in the equation, ẋ1, ẋ2, are obtained by averaging the velocity within the span of
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time where the crane’s velocity seems to remain constant. This value should be different
for both tries. It is necessary to compute the average of the velocity as it jerks and never
maintains a constant velocity, as seen in Figure 5.37.

Figure 5.37: Plotted signal of the first test performed for deriving the friction coefficients. The graph depicts
the position, velocity and acceleration of the crane in the x axis. The control signal 1 Ix can also be seen. The
span of time considered to be the most constant can be seen named as avgVel.

For the first test, with an input signal of 6.35A in the negative direction, the measured and
averaged velocity was ẋ1 = −1.16m/s. A second test using an Ix of 8.46A in the negative
direction was performed and it outputted the same velocity ẋ as the 6.35A in the negative
direction signal, therefore, it has been conclude that the maximum allowed velocity for the
crane is delimited to be −1.16m/s when the input signal is between 6.35A in the negative
direction and 11A in the negative direction.

In order to obtain the coefficients for the viscous and coulomb frictions, a second equation
is necessary. The second test was done with an input signal equal to 5.08A in the negative
direction. The maximum velocity recorded, while remaining constant, was −0.56m/s.

1) 0 =
kex(−6.35)(
mt +

Jx
r2

x

)
· rx

− Fxv(−1.16) + Fxc · sgn(ẋ)
mt +
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x

2) 0 =
kex(−5.08)(
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r2

x

)
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− Fxv(−0.56) + Fxc · sgn(ẋ)
mt +

Jx
r2

x

(5.70)



5.6. System Validation 81

Fxc was isolated using the second function 2)
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5.08kex

rx

(5.71)

Fxc · sgn(ẋ) can then be introduced in the first equation 1) which will depend on only Fxv.
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rx

Fxv =
1.27kex
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(5.72)

Using the value of the coefficient, the remaining Coulomb friction coefficient can be ob-
tained.

Fxc = 0.56 · 17.19 − kex(5.08)
rx

= 31.62N (5.73)

After obtaining both the Coulomb and viscous friction coefficients, the static friction coef-
ficient can be obtained. Mathematically, it can be arduous to calculate. Therefore, instead
of deriving its value using mathematical approaches, the static friction can be obtained by
manually tuning the input signal so that it always includes the necessary force to overcome
static friction.
To obtain said value, a simple test can be performed. The crane will be fed an increasing
input signal, stating at 0. The system will be measured at all times until the crane starts
moving. The value of the voltage needed for the crane to start moving will be determined
and utilised in the following equation:

ẍ =
kex · Ix(

mt +
Jx
r2

x

)
· rx

− Fxv · ẋ1 + Fxc · sgn(ẋ) + Fxs · sgn(ẋ)
mt +

Jx
r2

x

(5.74)

This equation is identical to Equation 5.69, but including the term for the static friction.
Assuming Fxv and Fxc are 0 when the system is still, velocity is zero, the equation can be
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simplified as,

0 =
kex · Ix(

mt +
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)
· rx

− Fxs · sgn(ẋ)
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x

(5.75)

The test was performed and the current necessary to compensate for the static friction can
be seen in the following figure.

Figure 5.38: Graph depicting the minimum input signal necessary for the crane to start moving.

As seen in Figure 5.38, the measured velocity starts to change when the input signal
reaches a value of 2.5A. With Ix obtained, it can be introduced into Equation 5.75, which,
after isolating Fxs, derives:

Fxs · sgn(ẋ) =
kex · Ix

rx
=

0.609 · X
0.075

= 20.3N (5.76)

After obtaining the coefficients for the three frictions modelled, the model of the crane
should be capable of performing the same as the real crane.

5.6.2 Model Validation

The dynamics of the crane have been represented, up to this point, in three different ways.
First, is the actual response of the real crane to a control input. This response is considered
to be reality and was used to tune the simulated systems, the nonlinear and linear models.
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The second representation of the system is the nonlinear model, which has the second-
most realistic response. And lastly, the linear model. These three system should have
similar responses to the same input signals. To test that this claim is correct, the three
systems will be compared.

Open loop response for maximum input signal

The static friction has not been modelled as it gave incorrect responses. A test using max
control input for as long as the physical crane allows is chosen. This minimizes the effect
of static friction while showing the largest amount of data for position and velocity. The
response of the crane to this input is shown below in Figure 5.39.
Then the same test was performed for the nonlinear system in Simulink, since its response
should be the most similar to the real crane.

Figure 5.39: Graph showing x position, x velocity and
the angle of the crane. For the test, a max input signal
was given for as long as possible.

Figure 5.40: Graph showing x position, x velocity
and the angle from the nonlinear model. A max
input signal was given for ten seconds. The graph
has been zoomed in to the same timespan as the
crane.

Looking at the graphs and noticing the difference in scale of the y axis, it can be seen that
the velocity of the model increases faster and for much longer. The position consequently
also moves much further in the same amount of time.

As a result of this test, it was chosen to tune the friction coefficients for the models, until
their responses better matched the response of the real crane. It was also chosen to further
simplify the friction to only include viscous friction. This one friction coefficient was then
tuned such that the steady state velocity for a given input matched the steady state of the
measurements from the real crane.
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This was done manually by increasing and decreasing the friction coefficient before check-
ing the systems response. For the linear model of the system this produced a response
in the correct shape but wrong magnitudes, so it was also chosen to modify the accelera-
tion parameters. Doing so produced a model that better represents the actions of the real
system as shown below in Figure 5.41.

Figure 5.41: Graph showing the x position, x velocity and angle after having tuned the parameters.

Open loop response for maximum input signal, 1 second

Having tuned the models, a series of open loop tests are performed for both x and l in
each direction. The systems were asked to move for one second at maximum velocity. This
was done three times for both the x and y axes, in the positive and negative direction of
each of them. The behaviour of both linear and non-linear simulated model, as well as the
crane will be compared.
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X-Axis

Figure 5.42: Linear system tested for the negative
movement of x.

Figure 5.43: Nonlinear system tested for the negative
movement of x.

Figure 5.44: Crane tested for the negative movement
of x.

Figure 5.45: Crane tested for the positive movement
of x.
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Figure 5.46: Linear system tested for the positive
movement of x.

Figure 5.47: Nonlinear system tested for the positive
movement of x.

The graphs depict how the the three systems respond to the same input signal, which
in this case is an input signal of 11A in the negative and positive directions of x-axis
respectively. As it can be seen, the change in position is almost the same for the graphs
in both directions. Between the linear and nonlinear responses, the position, velocity and
acceleration responses are close to identical, but differ from the crane’s response. This is
hypothesised to be due to natural noise which has not been modelled for the simulations.
This is specially true for the velocity and acceleration which could have an increased noise
as an aftereffect of taking the derivative of the position for the velocity and a second
derivative for the acceleration.

Y-Axis

For the y-axis, the same command as for x was given for l. The crane has to move at
maximum velocity for one second for both up and down directions, recording its measured
y position.
The test was performed in the positive and negative direction of the y-axis.
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Figure 5.48: Linear system tested for the positive
movement of l.

Figure 5.49: Nonlinear system tested for the positive
movement of l.

Figure 5.50: Crane tested for the positive movement
of l.

Figure 5.51: Crane tested for the negative movement
of l.

Figure 5.52: Linear system tested for the negative
movement of l.

Figure 5.53: Nonlinear system tested for the negative
movement of l.
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The graphs depict how the the three systems respond to the same input signal, which
in this case is an input signal of 11A in the negative and positive directions of y-axis
respectively. As it can be seen, the change in position is almost the same for the graphs
in both directions. Between the linear and nonlinear responses, the position, velocity and
acceleration responses are close to identical, but differ from the crane’s response. This is
hypothesised to be due to natural noise which has not been modelled for the simulations.
It is especially true for the velocity and acceleration which could have an increased noise
as an aftereffect of taking the derivative of the position for the velocity and a second
derivative for the acceleration.

5.7 Summary

In this chapter the algorithms and approaches selected in Chapter 2, and Chapter 3, have
been further expanded and its implementation on this solution explained. The first sub-
system described was the path planning algorithms, Ant Colony Optimisation and Po-
tential Field planners. The next section, Section 5.4, delved into computed torque. An
approach utilised to linearise the dynamic system, allowing for linear control algorithms
to be utilised. With a linear system, a linear MPC could be implemented. Section 5.3 de-
scribes the process of creating a Model Predictive Controller and the implementation of it
in Matlab. During this process, it was noticed that due to the system being linearised using
Computed Torque, the benefits of using the MPC were reduced. The dynamics of the sys-
tem were simplified to the extent that it is believed that the linearised system would have
practically the same performance with a PD controller as with an MPC. For this reason,
a second approach for linearising was implemented, namely Taylor Series Linearisation.
It was deemed that this method delivered a system that suited the designed MPC, as the
complexity of the dynamic model obtained with it was greater than that of the Computed
Torque approach. Lastly, the system was validated for the linear and nonlinear models.
One of the additions of the model included in this section is the study of friction coeffi-
cients. These were obtained in order for the model to better imitate the real crane.

In the following chapter, the solution will be tested to verify it follows the previously
set requirements. Some of the issues mentioned in this summary will be further expanded
in the discussion and conclusion chapters.



Chapter 6

Testing

This chapter will display the tests performed for proving the requirements set in Chapter
4 have been met. The test will be explained, thereafter, the results will be shown.

6.1 Test Scenario

The solution presented in this project will be designed to operate in a certain environment.
In this section, the test scenario is described.

Figure 6.1: Test Scenario. Example of a scenario for the testing phase. The bottom left block is the object that
will be transported from that starting location to the target location, depicted as a red mat. The other objects
seen in the frame imitate containers that have been stacked beforehand, and act as obstacles for the crane to
avoid.

In Figure 6.1 an example scenario for testing the solution is displayed. Using the im-
plemented trajectory planning, MPC, and hardware, the crane must move the container
object to the target position, while avoiding the obstacles. Different obstacle configura-

89
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tions will be used for different tests. The obstacles in this project will be wooden pillars of
116mm × 390mm. The measurements can be seen in Figure 6.2.

Figure 6.2: Dimensions of the obstacles. The obstacle on the left shows the dimensions that the obstacles have
in the tangible workspace. The one on the right refers to the dimensions used in path planning, ensuring the
size of the transported object is taken into consideration.

Figure 6.3: Dimensions of the
transported object.

Figure 6.2 displays two different dimensions for the same ob-
stacle, one for the real world obstacles and one for the path
planning. This change in dimension of the obstacles has been
done to ensure the transported object is taken into account
when computing a path. The transported obstacle has the
dimension shown in Figure 6.3. This was done due to the
planners only measuring the center position of the crane’s
head, located at the bottom of the electromagnet (see Figure
2.3 in Section 2.1). In the image to the right, Figure 6.3, a red
dot has been drawn on top of the object, marking the point
at which the head of the crane and the object meet. This
point is the one measured by the system and outputted by
the path planners, therefore, the additional lengths that the
object adds to the path needs to be counteracted.

To solve this issue, an offset can be added to the virtual obstacles, as seen in Figure 6.2,
where the offsets have already been added to the obstacle on the right. On the width of
the obstacles, 120mm are added, for the height, 15.6mm. These distances come from the
dimensions of the transportation object which, when in motion, will add its volume to the
cranes trajectory. To ensure the object does not impact with the obstacle, an additional
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distance was added. The width of 15.6mm was obtained by adding a 20% increment to
the height of the transportation object (130mm). For the width, a different approach was
taken. The natural behaviour of the crane allows a greater sway on the horizontal motion
than vertically. Therefore, instead of a 20% increment, the transportation object width was
doubled, allowing an additional 60mm deviation on both sides of the obstacles. The total
dimension of the obstacles for the simulation is 236mm × 546mm.

6.2 MPC Testing

The tests designed for the MPC will be described in this section, together with the results
for each of them.

Test 1.1

Requirement 1.1: The MPC must be able to move to and reach a steady state for any given
reference for x and/or l.

The test designed was:

1.1 A reference x and l will be fed to the MPC.
Record the outcome position, velocity and
acceleration of the system variables

The MPC must be capable of
controlling the system such that
its controlled variables reach
steady state. The result of this
test can be considered accepted
if, for the reference x and l,
the simulated output reaches a
steady state.

The test was performed as stated in the acceptance test in the above table. A reference
x = 1m and l = 1m were given to the MPC which then outputted the resulting action of
the simulated system. The following figure, Figure 6.4 shows the simulated system trying
to reach the desired x and l position.
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Figure 6.4: Graph depicting the steady state response of the simulated nonlinear model using a linear MPC.

As seen in the above graph, the MPC is capable of reaching steady state for the reference
position. l is specifically good at reaching steady state, whereas x requires more time to
do so. In this case, θ is not being controlled as much as the other two. This is because the
MPC in this case has been tuned to focus more on x than θ, as both are interconnected to
each other by the dynamics of the system. Both x and θ are controlled using a single input
signal, this is because no direct control of θ is possible due to the cranes design. In the
following figure, Figure 6.5, the contrary has been done. Having more focus on controlling
θ than x, and maintaining the same control for l.
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Figure 6.5: Graph depicting the same step response as the previous one but with a more aggressive control
on θ than on x.

In this case, θ reacts much less than previously and its oscillation are less aggressive as in
the previous test. Nevertheless, x is not capable of reaching steady state and seems to lack
behind.

The MPC is capable of controlling l regardless of the other two variables. Controlling
x is also possible, if the focus of the tuning falls on x and θ is neglected. The MPC has
been shown to be capable of reaching steady state for both x and l, therefore, it has been
deemed as passed.

Test 1.2

Requirement 1.2: The system relies on the MPC being capable of following any path that it
receives, within the boundaries set by the physical limitations of the crane.

The test designed was:
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1.2 The MPC will follow a desired path. The
simulated outcome of the system will be
recorded.

The solution has been designed
to follow a desired trajectory,
therefore, the MPC must be
capable deriving the necessary
control signals so that the sys-
tem follows said path. The test
is considered passed if the MPC
is capable of following the de-
sired path within the physical
limitations that the crane actu-
ally has.

Figure 6.6: The graph shows the system following a desired path. Both x and l fall a bit behind the desired
position, but it is considered normal.
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Utilising one of the paths obtained from the path planning algorithm, the MPC was tasked
with controlling the linear model of the system so that it followed the given path. As seen
in the above graph, the MPC is capable of following the desired path. The difference
between the reference path and the actual path is approximately one second between the
two for x, which is also similar for l. A longer path is shown in the following graph,
where the time to complete the path is of 100 seconds, which is believed to aid the MPC
in following the desired path.

Figure 6.7: The graph shows the system following a desired path. In this case, more time has been given
to the system to perform the task. Therefore, the difference between desired and actual paths appears to be
smaller than in the previous graph.

Figure 6.7 shows the system following a desired path for about 100 seconds. The MPC
falls behind the desired path as it is not capable to calculate fast enough the control signal
necessary to follow the same path as desired. In this iteration of the test, the most clear
difference between desired and actual path can be seen for l at around 60 seconds. This is
due to the change in position that the followed path shows at that time cannot be followed
by the system, as the velocity would go over the allowed by the crane.

The last path that will be tested is one generated offline by the potential field path plan-
ning algorithm. This path should depict the ability of the MPC to follow a path that the
crane may have to performed in a real scenario.
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Figure 6.8: The graph shows the system following a desired path. In this case, the path to be followed has
been obtained from the potential field path planning algorithm.

As shown for the three different paths, the MPC is capable of following the desired path
with some deviation between the two. As an example of this, the following graph shows
the deviation between desired and actual paths of both x and l for the path in Figures 6.6
and 6.7.

Figure 6.9: Deviation between desired and actual path
for both x and l. Calculated from the path shown in
Figure 6.6

Figure 6.10: Deviation between desired and actual
path for both x and l. Calculated from the path shown
in Figure 6.7
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As it can be seen, the graph on the left has a maximum deviation of about 0.31m whereas
the graph on the right has a much more prominent maximum deviation of 1.75m. The big
maximum deviation of the second graph is due to the unrealistic desired path, as it tries
to change its l position in a timespan that the real crane would not allow.

6.3 Hardware Testing

The aim in this section is to validate the hardware requirements from Subsection 4.1.2.
Each of said requirements are shown again below for ease of reading, and then validated.

Test 2.1

Requirement 2.1: The position states, x and l, from the inbuilt crane potentiometers, must be
available at all times and represent the physical system.

The test designed was:

2.1 Record data of the potentiometers measur-
ing the cranes position for both x and l.

The requirement can be consid-
ered to be fulfilled if the poten-
tiometer measurements can be
obtained and recorded for fur-
ther use.

This requirement was achieved by first connecting the potentiometer output wires from
the DB-25 cable to the Arduino Mega. The measurements are transmitted as an analog
voltage, which is then converted to a digital signal by the ADC (Analog to Digital Con-
verter) on the Arduino Mega. The Arduino Mega communicates with Matlab running on
a PC, through UART serial communication. The potentiometer measurements, along with
other data, are transferred from the Arduino Mega (see Figure 6.1), and updated in the
Matlab script at a rate of about 20 Hz.

The received measurements are represented as a number in the range [0,1024]. And in
order for them to represent the real position of the crane, they are converted using the
mapping explained in Section 5.2, to a value in meters. The measurements, in units that
represent the real system, are then available for use by a controller, and the requirement is
considered fulfilled.
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Listing 6.1: This is a code snippet from the script running on the Arduino Mega when using the crane. In
short, it reads sensor data from the I/O pins and stores it in an array along with other data to be transmitted.
Each array element is transmitted, separated by a comma, and a start and end marker are added to the data
string so it can be distinguished from previous and future data in Matlab.

1 % Read sensor data and store it in the array
2 for (int i = 0; i < 4; i++) {
3 sensorData[i] = analogRead(A0 + 2*i); % Array for holding sensor data
4 }
5 imuDataToFloat(); % Read angle data from nano and store as imuAngle
6 sensorData[4] = imuAngle;
7 sensorData[5] = modifiedValue1; % x control input
8 sensorData[6] = modifiedValue2; % l control input
9 sensorData[7] = j; % "time" variable

10

11 % Send sensor data to MATLAB
12 Serial.print("DATA"); % Start marker
13 for (int i = 0; i < sensorCount; i++) { % sensorCount = 8
14 Serial.print(sensorData[i]); % Array holding data to be sent
15 if (i < sensorCount − 1) {
16 Serial.print(","); % Separator between values
17 }
18 }
19 Serial.println(); % End marker

Additionally, see Figure 6.11 for an example of the trolley position, x, measured by the
potentiometer.

Test 2.2

Requirement 2.2: The velocity states, ẋ, and l̇, from the inbuilt crane tachometers, must be
available at all times and represent the physical system.

The test designed was:

2.2 Record data of the tachometers measuring
the cranes position for both ẋ and l̇.

The requirement can be con-
sidered to be fulfilled if the
tachometer measurements can
be obtained and recorded for
further use.

The crane tachometers output a voltage in the range [-26, 26]V, which is proportional to
the crane’s velocity. However, since the Arduino cannot handle such voltages, an op amp
solution was used, as explained in Subsection 3.2.4, before connecting the tachometer
to the Arduino. The tachometer measurements are transferred to Matlab using the same
serial communication as the potentiometer measurements (see Figure 6.1). The digital rep-
resentation of the analog signal, converted by the ADCs, are a value in the range [0,1024].
Therefore, a conversion to m/s was made, as shown in Subsection 5.2.2. An example
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of the tachometers in use can be seen in Figure 6.11, where the behaviour of the physi-
cal crane does match the measurements. And the requirement is thus considered to be
fulfilled.

Test 2.3

Requirement 2.3: The sway angle state, θ, from the IMU on the crane head, must be available at all
times and represent the physical system.

The test designed was:

2.3 Record data of the IMU where angle of the
crane’s head θ using the IMU.

The requirement can be consid-
ered to be fulfilled if the IMU
measurements for the crane’s
head angle can be obtained and
recorded for future use.

The direct communication with the IMU is handled by the Arduino Nano. The sway angle,
θ, is calculated and transmitted to the Arduino Mega via serial communication, where it
is stored. It is then transmitted via the other serial communication channel to a PC with
Matlab, where it is converted from degrees to radians and stored for use by the controller.
An example of the IMU being used, to measure the sway angle can be seen in Figure 6.11,
along with measured trolley position and trolley velocity.
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Figure 6.11: This graph shows an example of a crane movement while measuring the trolley position, x, trolley
velocity, ẋ, and crane head angle, theta. These are measured by the x potentiometer, x tachometer, and IMU,
respectively.

Test 2.4

Requirement 2.4: The system must be able to enable and disable the electromagnet on command,
and thereby allow for the crane to lift, move, and release the shipping container models.

The test designed was:

2.4 The crane will be commanded to pick and
place a container using the electromagnet.

The test can be deemed as
passed if it can be proved
that the electromagnet can be
utilised on command.

The electromagnet is directly controlled by the Arduino Nano, which is mounted on the
crane head near the electromagnet. UART Serial communication has been set up between
the Arduino Mega and Arduino Nano. In addition, it was desired to control the electro-
magnet from the Matlab script. Therefore, the magnet commands are transmitted first
from Matlab to the Arduino Mega through the previously mentioned serial connection.
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Then the Arduino Mega sends are corresponding magnet command to the Arduino Nano.
And finally, the Arduino Nano sends a corresponding control signal to the electromagnet.
As an example of these magnet commands, a code snippet of a function from the Arduino
Mega main script has been included below.

Listing 6.2: This code snippet shows a function used by the Arduino Mega. It checks the command received
from the Matlab serial communication, and sends a corresponding signal to the Arduino Nano, which is
mounted on the crane head. From the serial communication, the Mega receives either 0, which does nothing,
1, which switches the magnet on, or 2 which switches the magnet off

1 void magnetControl(){
2 if (modifiedValue3 == 1){ % magnet command received from Matlab
3 Serial3.write("M1 \n"); % turn on
4 }
5

6 else if (modifiedValue3 == 2){
7 Serial3.write("M0 \n"); % turn off
8

9 }
10 }

An example of the electromagnet in use can be seen in Figure 6.12. And since the pipeline
of magnet control works, and the system is able to turn the magnet on and off as needed,
the requirement is considered fulfilled.

Figure 6.12: This figure shows a still frame of the crane moving, while the miniature shipping container is
being held up by the electromagnet.
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Test 2.5

Requirement 2.5: The system must be able control the trolley acceleration in both directions along
the x-axis, by sending PWM control signals to the x-motor controller.The system must be able to
control the wire length, l, by sending PWM control signals to the y-motor controller. In addition,
the system must be able to send a valid enable signal to each motor controller, and thereby enable

them.

The test designed was:

2.5 The system will be asked to move the
crane’s head in both the horizontal and ver-
tical directions.

The requirement can be
deemed as met if the PWM
signals and enable signals used
to control the motor controllers
deliver the desired motions.

The PWM signal wires are connected between the Arduino Mega and the motor controllers
through the DB-25 cable. The Matlab and Arduino Mega scripts contain functionality to
send control inputs from Matlab to the Arduino, which sends a corresponding PWM sig-
nal to the motor controllers. And the motor controllers then send a control signal directly
to the motors. This is all done through the previously explained serial communication
channels between Matlab and the Arduino Mega, and between Arduino Mega and the
motor controllers. The PWM signals are explained in further detail in Subsection 3.2.2.

However, before the motor controller can be controlled this way, an enable signal has
to be sent to activate the motors. The enable signal wires are similarly connected to the
motor controllers through the DB-25 cable. And in order to enable them, a 100% duty cycle
PWM signal is sent from the Arduino Mega. This is done once when the main script is run.

Since the motor controllers are able to turn on, and the crane responds as intended to
the control inputs, this requirement is deemed to be fulfilled. An example of PWM-signal
being used to control the crane can be seen in Figure 6.13, where the input causes the state
changes shown.
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Figure 6.13: This figure shows the trolley moving along the x-axis as a result of the applied PWM-signal, Ix.

6.4 Path Planning Testing

The tests designed for the path planning algorithms will be described in this section.

Test 3.1

Requirement 3.1: Potential Field planning tends to have difficulties at generating a path due to
getting stuck in local minima. Implement a solution that solves this issue.

The test designed was:

3.1 Place 1-3 obstacles in differ-
ent locations of the workspace.
Run the program for 10 distinct
iterations, and store the results.

Potential Field has the disadvantage of get-
ting stuck in local minima. The solution
should have a remedy for this problem. This
test compares the results of the planner with
the added complement and without it. The
test can be considered as passed if the results
show that the add-on allows the planner to
solve the local minima problem.

The local minima issue was solved by designing an obstacle area (no-local-minima area)
that included a 45◦ slope on the left side of the obstacle, see Figure 5.10 in Section 5.1.
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The test was to generate a path from a starting position to a target position without falling
into local minima. This was repeated ten times, where the position of the obstacles were
changed. In the following graphs, the paths generated for the different configurations can
be seen.

Figure 6.14: First Iteration. Figure 6.15: Second Iteration.

Figure 6.16: Third Iteration. Figure 6.17: Fourth Iteration.

Figure 6.18: Fifth Iteration. Figure 6.19: Sixth Iteration.
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Figure 6.20: Seventh Iteration. Figure 6.21: Eighth Iteration.

Figure 6.22: Ninth Iteration. Figure 6.23: Tenth Iteration.

For nine out of ten iterations of the test, the algorithm was capable of generating a path
from the start position to the goal. Figure 6.20 shows an instance where the solution
reached a standstill. The reason for this will be discussed in Chapter 7. Without the added
no-local-minima area, the planner would always get stuck in a local minima, as shown in
Figure 6.24.
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Figure 6.24: Example of the outcome when the no-local-minima area is not implemented.

The approach has shown its ability to prevent the planner from getting stuck on a local
minima nine out of ten times. Therefore, the requirement has been met.

Test 3.2

Requirement 3.3: The goal of the path planning is to derive the shortest path from start to end,
therefore, the planner is only allowed to be 10cm longer than the shortest path.

The test designed was:

3.2 Place 1-3 obstacles in differ-
ent locations of the workspace.
Run the program for 10 distinct
iterations, and store the results.

This test examines the ability of the Potential
Field Path Planner to generate a path from
start to goal. This will be compared to a man-
ually generated path, considered to be the
benchmark path for the specific workspace
layout. This requirement can be considered
to be met if the path generated for each it-
eration using the potential field approach is
within 10cm.

In order to test the ability of the potential field algorithm to generate the shortest path
for different workspace configuration, a reference path is necessary. For each iteration of
the test, obstacles where placed on different positions and a path, considered to be the
shortest, generated manually. These are shown in the following graphs as a black line.
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Figure 6.25: PF Path: First configuration. Figure 6.26: PF Path: Second configuration.

Figure 6.27: PF Path: Third configuration. Figure 6.28: PF Path: Fourth configuration.

Figure 6.29: PF Path: Fifth configuration. Figure 6.30: PF Path: Sixth configuration.
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Figure 6.31: PF Path: Seventh configuration. Figure 6.32: PF Path: Eighth configuration.

Figure 6.33: PF Path: Ninth configuration. Figure 6.34: PF Path: Tenth configuration.

Shortest Path PF Path Difference
1 4058.2mm 4267.8mm 209.6mm
2 4078.9mm 4306.7mm 227.8mm
3 4136.5mm 4427.3mm 290.8mm
4 4136.5mm 4465.0mm 328.5mm
5 4104.3mm 4365.9mm 261.6mm
6 4136.3mm 4236.0mm 99.7mm
7 4395.5mm 4546.2mm 150.7mm
8 4154.4mm 4234.0mm 79.6mm
9 4404.9mm 4752.0mm 347.1mm
10 4194.6mm 4543.6mm 349mm

Table 6.1: The measurement on the second column, Shortest Path, contains the manually generated shortest
path per iteration. On its right, the measured distance of the path generated by Potential Field.

Table 6.1 compares the length of each path obtained with the algorithm against the length
of the paths made manually. As it can be seen, the smallest difference between the two is
99.7mm, on the sixth iteration. It is also the only one that is within the maximum limit of
10cm. Thus, the test is considered as having failed.

Test 3.3

Requirement 3.3: The goal of the path planning is to derive the shortest path from start to end,
therefore, the planner is only allowed to be 10cm longer than the shortest path.

The test designed for this requirement can be seen in the table below.
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3.3 Place 1-3 obstacles in differ-
ent locations of the workspace.
Run the program for 10 distinct
iterations, and store the results.

This test examines the ability of the ACO
Path Planner to generate a path from start to
goal. This will be compared to a manually
generated path, considered to be the bench-
mark path for the specific workspace layout.
This requirement can be considered to be met
if the path generated for each iteration using
the ACO approach is within 10cm.

The test was performed the same way as the one made for Requirement 3.2. Ten paths
for ten different workspaces are generated by the algorithm and compared with their
respective shortest path generated manually. The results can be seen in the following
figures.

Figure 6.35: ACO Path: First configuration. Figure 6.36: ACO Path: Second configuration.

Figure 6.37: ACO Path: Third configuration. Figure 6.38: ACO Path: Fourth configuration.

Figure 6.39: ACO Path: Fifth configuration. Figure 6.40: ACO Path: Sixth configuration.
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Figure 6.41: ACO Path: Seventh configuration. Figure 6.42: ACO Path: Eighth configuration.

Figure 6.43: ACO Path: Ninth configuration. Figure 6.44: ACO Path: Tenth configuration.

The black paths represent the shortest path and the green paths are those generated by the
ACO planner. The obstacle configurations depicted are similar to the ones utilised for the
previous requirement. In Table 6.2, the lengths of both generated paths, manually and by
ACO, are listed.

Shortest Path ACO Path Difference
1 4214.21mm 5000mm 785.79mm
2 4214.21mm 5000mm 785.79mm
3 4214.21mm 5600mm 1385.79mm
4 4214.21mm 5800mm 1585.79mm
5 4214.21mm 5000mm 785.79mm
6 4214.21mm 5400mm 1185.79mm
7 4331.37mm 5000mm 668.63mm
8 4214.21mm 5000mm 785.79mm
9 4331.37mm 6200mm 1868.63mm
10 4214.21mm 5200mm 985.79mm

Table 6.2: The measurement on the second column, Shortest Path, contains the manually generated shortest
path per iteration. On its right, the measured distance of the path generated by ACO.

The results seen in the above figure show the difference between the manually generated
paths and the ACO-generated paths. Since the difference between the two is always above
the maximum allowed deviation of 10c, the test has been deemed as not passed.
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Test 3.4

Requirement 3.4: Compare the results of both algorithms to discover their benefits and
disadvantages against each other.

The test designed for this requirement can be seen in the table below.

3.4 Compare the data obtained
when testing Requirements 3.2
and 3.3.

One of the goals of this project is to discover
which algorithm is more suitable for the so-
lution. This test will result in a decision as to
which algorithm will be part of the final solu-
tion. The algorithm that derives the shortest
paths, compared with their respective manu-
ally generated paths, will be considered to be
the optimal path planner for this project.

The results of Tables 6.1 and 6.2 have been gathered on the following table.

Difference PF Path Difference ACO Path
1 209.6mm 785.79mm
2 227.8mm 785.79mm
3 290.8mm 1385.79mm
4 328.5mm 1585.79mm
5 261.6mm 785.79mm
6 99.7mm 1185.79mm
7 150.7mm 668.63mm
8 79.6mm 785.79mm
9 347.1mm 1868.63mm

10 349mm 985.79mm

Table 6.3: The differences shown are those obtained in the previous requirements, from Tables 6.1 and 6.2.

As depicted by Table 6.3, the potential field planner is closer to its manually generated
paths in all ten iterations of the test. Therefore, as stated in Requirement 3.4 the selected
algorithm for the final solution is the Potential Field Path Planner.

6.5 System Requirements

The tests designed for the system as a whole will be described in this section, together
with the results for each of them.
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Test 4.1

Requirement 4.1: The control signals derived from the MPC must be followed by the physical
crane.

The test designed was:

4.1 Make MPC move the crane to a point in the
workspace and check that it can stabilise in
said position, for both x and l.

The MPC controller generated
from the linear model and
tuned to move the nonlinear
model, is transferred to the
script communicating with the
crane. A control signal is gener-
ated using the Matlab function
mpcmove, with the relevant pa-
rameters as well as a reference
of 1.

This test was performed for the simple scenario of moving x from an initial position of
around 0.2 to a position of 1. The results can be seen below in Figure 6.45

Figure 6.45: This graph shows the MPC trying to move the trolley to an x position of 1 while stabilizing theta.

As can be seen, the MPC moves the trolley past the reference and spends more than 10 sec-
onds moving slowly back and forth, while θ grows increasingly unstable. Different MPCs
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and different references have been tried with similar results. Thus it can be concluded that
this requirement is not passed.

Test 4.2

Requirement 4.2: The overall system consists of three subsystems that must collaborate with each
other for a container crane to perform the task of moving containers.

The test designed was:

4.2 The task of moving a container from one lo-
cation to another must be completed. Said
task should begin by computing a path from
start to finish, which the controller must
then pass on to the crane as control signals.
The crane must pick up the object from the
initial location and place it at the desired
end position.

For the requirement to be met,
the subsystems must be capable
of interacting with each other to
perform the desired task.

The test could not be performed as the MPC cannot reasonably control the crane. It
remains an option to transport containers along a path using a simpler control system like
a PD controller, but this avenue was not explored further as the main focus was on the
MPC control.



Chapter 7

Discussion

The testing phase of this project yielded the results shown in the previous chapter, Chapter
6. In this chapter, the results considered to have meaningful outcomes as well as some
other topics that appeared during the implementation of this solution will be discussed.

7.1 MPC

The requirements set for the MPC were tested on the nonlinear model, as it is considered
to simulate more closely the real crane’s response to input signals.

Requirement 1.1

This first requirement stated that the MPC should be capable of controlling the nonlinear
model for reaching steady state in x and l. To test this, a reference position for the men-
tioned states was given and the output response was recorded. The MPC showed that it
could control l without much of a problem, reaching steady state in both graphs shown.
On the other hand, for x, it performed worse.

The control of the system was separated early in the project, to: control on x and con-
trol on l. For the second one, the solution has not shown to have any difficulty at deriving
a control signal which adequately performs the tasks given to the system. The other con-
trol, Ix, has a more complex description. This is due to it controlling two states at the same
time, x and θ. The graphs shown for Requirement 1.1 depicted two version of the same
task, one where Ix was tuned to better control x and one where the focus of the tuning
was on θ. When controlling θ more aggressively, x had difficulties reaching the desired
position but θ had a lower oscillation rate compared to the other graph. When controlling
x more aggressively, θ oscillated much more and x could reach steady state much faster.

It can be discussed that focusing the control on x yielded results that can be considered

114
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acceptable for the real crane as, even though θ oscillated much more, the maximum angle
the crane’s head reached was less than 23 degrees. The real effect of this oscillation should
be tested in order to better evaluate the need for an extended research on anti-sway angle
control for the gantry crane.

Requirement 1.2

As a continuation of the previous requirement, Requirement 1.2 delved into the ability of
the MPC to follow a desired path. Three paths were chosen, one was directly obtained
from the potential field path planner and the other two were manually generated. The
MPC showed that it could follow the path planner’s trajectory with a maximum deviation
of approximately 0.12m which is lower than the other two paths. Figure 6.10 had a large
spike at around 60 seconds and it would have been within the same maximum deviation
as the 0.12m on the path planner’s trajectory. This large deviation can be the result of an
unrealistic path design. The manually designed path did not take into account the limits
on the velocity that the actual crane imposed on the model. Therefore, since the model
could never perform the change in position as fast as the desired path required, such an
event must be considered when computing a path for the solution.

7.2 Hardware

The tests made for this subsystem focused on sensor measurement and communication
between the different system components. All of the requirements in this section have
been deemed as fulfilled.

One aspect of discussion that arose from these tests has to do with the additional states
that are used for data processing. The sensors that allowed to obtain all directly measur-
able states are the potentiometers, the tachometers and the IMU. However, multiple other
states are desired, and have, therefore, been derived from these measurements. An exam-
ple of the estimated states, which are obtained as time derivatives of the measured states,
can be seen in Figure 7.1.
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Figure 7.1: This figure shows a simple crane movement with the measured states shown, with the addition of
estimated trolley acceleration, ẍ, and estimated angular velocity, θ̇.

However, as it is apparent on the graph, both the measured and estimated states are subject
to noise. And as it is a part of each sensor based hardware requirement, that the states
must represent the real system, efforts have been made to reduce said noise. Figure 7.2
shows an example of the implemented noise reduction.
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Figure 7.2: This figure shows the same test as in Figure 7.1, but with noise reduced versions of all the states,
and with potentiometer derived trolley velocity and acceleration.

By comparing Figures 7.1 and 7.2, it can be seen that the signals on Figure 7.2 are less
noisy. This was achieved by implementing simple high/low pass filters, as well as a mov-
ing average filter on most of the signals. In addition, ẋ and ẍ come from first and second
order time derivatives of the potentiometer measurements, instead of the tachometer, since
the tachometer measurements were deemed to be too noisy.

The same methods were applied to l, and these noise reduced state measurements and
estimates are what is used in the other tests in this project, rather than the raw measure-
ments.

7.3 Path Planning

Both path planning algorithms, ACO and PF, were tested in the previous chapter. The
results are discussed in this section.
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Requirement 3.1

For this requirement, the focus was on testing the ability of the designed solution to avoid
falling into local minima and not being capable of leaving it. The results showed that
placing the obstacles at certain positions generated a local minima. The following graphs
show four paths where the obstacle is placed close to the target.

Figure 7.3: Position: 3800 Figure 7.4: Position: 3700

Figure 7.5: Position: 3600 Figure 7.6: Position: 3550

Each graph shows an obstacle that has been moved away from the target coordinate. Fig-
ure 7.3 has its rightmost face at 3800mm on the workspace. Figures 7.4 and 7.5 are spaced
100mm from each other, at 3700mm and 3600mm. On all three, the algorithm gets stuck.
The last graph, Figure 7.6, is the first obstacle placement where the algorithm can escape
local minima and reach the goal coordinate.

This issue showed that the placement of obstacles in the workspace, and with the de-
signed no-local-minima area, is important. For the approach designed in this project, the
closest obstacle must be at least 350mm away from the target. In Figure 7.7 an example of
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the target between obstacles is shown.

Figure 7.7: Target placed between two obstacles.

One issue which has not been mentioned is the placement of an obstacle on top of the
target. This would not be possible in the physical world but, when simulating, the no-
local-minima area an fall on top of a desired goal coordinate. This could be solved by
removing said area to all obstacles on the right side hand of the target.

Requirements 3.2 and 3.3

Both requirements have been deemed as failed as none of the implemented path planners
are capable of following the manually made shortest path with less than 10cm of deviation.
Failing these tests does not signify the ability of the planners to design a path between two
points while avoiding obstacles but it shows that further research on the subject is needed
if the crane must follow the shortest path.

Requirement 3.4

The test was to compare the paths obtained from both path planners in the previous tests.
The comparison showed that the average difference between the best path and the ones
computed by the algorithms was, 234.44mm average deviation for the PF planner and
1082.358mm average deviation for the ACO planner. This meant that the PF planner was
selected as a more suitable option for this project than the ACO approach.

One way which could have improved the outcome for both approaches could be to in-
troduce a series of conditions to the path planning, specific for each algorithm. For ex-
ample, for the ACO approach, introducing a weighting system to the reachable nodes in
the workspace could speed up the time it takes the ants to reach the goal, by assigning
increasingly higher weights the higher up in the y-axis the nodes are.
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7.4 System

The MPC was able to move the crane, but it was not able to stabilise it at the reference
point. The exact reason for this problem was not discovered. However, it is suspected that
it may have to do with the use of the mpcmove command in Matlab. The Matlab command
has many inherent features and assumptions, which could have cause the issue. And it is
not very transparent, so it was difficult to figure out the root of the problem.

One possible solution could have been to have manually implemented the control law
and manually solve the cost function. This way a number of parameters would have been
directly adjustable, which might have helped understand and correct the issue.

Since the system was not able to move to a reference point using the MPC, it was not
able to follow a trajectory with it either. And the test was therefore an automatic failure.
However, the trajectory was generated, control inputs were able to be generated, the crane
was able to respond, albeit incorrectly, and measurements were recorded. As mentioned,
the issue was not found in time, and efforts were instead focused on making the simulated
MPCs and models function as desired, in the final parts of the project period.



Chapter 8

Conclusion

Increasingly complex problems are being automated and the potential benefits for the
shipping industry are significant. Fuji Electric Co. proposed researching this automation
issue.
The task was sectioned into the more specific problems of generating a path, making an
appropriate control system and implementing both of these on a physical model at the
AAU Control Lab.

Several path planning methods were researched and two were chosen and implemented.
The potential fields method produced reliable, expected paths which could be successfully
followed. Ant colony was tried for its theoretical optimal shortest path, but was not fully
realised.
A few control systems were considered and an MPC was chosen for its high potential
and its ability to handle complex dynamical systems. It was successfully implemented in
multiple variants of both linear and nonlinear simulated gantry cranes. It was however
never able to correctly control the physical crane. One of the necessary topics that had
to be researched before designing the MPC was the linearisation of the dynamic model.
Two approaches for linearising the model, Computed Torque and Taylor/Laplace, were
implemented but it was the Taylor/Laplace method was ultimately selected.

The physical system architecture was successfully implemented. The communication be-
tween each of the components was functional. Each of the measurable states were made
available to the controller and continuously updated. And each of the controllable states
were controlled, as shown with a simple PD controller, despite the unsuccessful imple-
mentation of the desired MPC on the physical system.
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Future work

Full implementation of the MPC on the physical system is an obvious task for the future,
along with its variants and different optimization algorithms. Nonlinear dynamics for a
3D gantry crane was made during this project but were never implemented as the scope
was reduced. A truly optimal path generation is also desired, derived from distance, time
or energy etc.



Appendix A

Voltage Dividers

The following section describes a set of voltage dividers which are no longer used in the
hardware setup. However, the explanations about voltage dividers in general are still
relevant, as voltage division is used in the current op amp circuit for the tachometers.

Voltage Dividers

The output signals from the tachometers are high enough voltage and current to poten-
tially damage the Arduino micro controller. Therefore, voltage dividers have been made
and implemented to account for this. The voltage dividers each consist of 2 resistors, R1

and R2, and a GND connection. They receive the tachometer signals as input, and output
a downscaled output signal, V1, to the micro controller. The absolute maximum rating
for operating voltage of the micro controller I/O pins is 5.5V. For safety, the target output
voltage when choosing the resistors for the voltage dividers has been rounded down to
V1 = 5V. The absolute maximum rating for electrical current per I/O pin on the micro con-
troller is 40mA. However, the recommended maximum is 20mA, which will be the target
current. [51]

The pins of the micro controller each utilize an internal pull-up resistor, R3 = 20MΩ,
which can be treated as a parallel resistor to R2. The parallel resistors have an equivalent
resistance, Req, which will also be calculated (Equation A.3).
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Figure A.1: This figure shows the voltage divider used for each tachometer signal in the system. VCC is the
voltage of the input tachometer signal, and V1 and V2 are the output voltages after R1 and Req respectively.
Where Req is the equivalent resistance of parallel resistors, R2 and R3. And R1 is the first resistor.

The input voltage, which is the maximum voltage of the tachometer output signal, is
VCC = 26V. And V2 is known to be equal to 0V, since the sum of voltage drops across
all components in the system is equal to the input voltage, according to Kirchoff’s second
law. The desired resistance of the resistors with the previously mentioned desired output
voltage, V1 = 5V and current I = 20mA, can now be calculated. From Ohm’s law, we get:

R =
V
I

(A.1)

And by considering each part of the system separately, we can extrapolate:

R1 =
VCC − V1

I
= 1050Ω (A.2)

Req =
V1 − V2

I
= 250Ω (A.3)

R2 can then be derived from the equivalent resistance in Equation A.4, based on Kirch-
hoff’s current law;

Req =

(
1

R2
+

1
R3

)−1

1
R2

=
1

Req
− 1

R3

Req · R3 = Req · R3 − R2 · R3

R2 =
Req · R3

R3 − Req
= 250.003Ω

(A.4)
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However, this results in R2 being nearly equal to Req, since R3 = 20MΩ has such a high
resistance in comparison. The 0.003Ω difference is considered insignificant, and a 250Ω
resistor will be used for R2.

The results can be verified using ohm’s law:

I =
VCC

R1 + Req
= 0, 02A

VCC = I · (R1 + Req) = 26V

V1 = VCC − I · R1 = 5V

V2 = V1 − I · Req = 0V

(A.5)

And the results from Equation A.5 match the desired values.

The following figure shows the voltage drops across the resistors, R1 and Req, which are
equal to I · R1 = 21V and I · Req = 5V respectively. [57] [51]

Figure A.2: The voltage drops across R1 and Req in the voltage dividers used for the tachometer signals.
Where Req is the equivalent resistance of parallel resistors, R2 and R3.



Appendix B

Model of overhead crane

This appendix includes an extended version for the computation of overhead crane’s
model in Chapter 3, Section 3.3.

Figure B.1: Head and Trolley with angles and positions
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where x : Position on the horizontal axis (m)
y : Position on the vertical axis (m)
l : Length of the wire (m)
θ : Angle between the load and its equilibrium point (°)
Jx : Moment of Inertia for the x direction motor (·)
Jl : Moment of Inertia for the wire length motor (·)
rx : Radius of the X direction drum (m)
rl : Radius of the wire-length drum (m)

The model will be derived using Lagrange equations, which start by describing the systems
kinetic and potential energies, which in turn require the positional equation shown below
in Equation B.1.

p⃗t = xt · i⃗ + yt · j⃗ |yt=0 (B.1)

where p⃗t : Vector position of the trolley (m)
xt : Trolley x position (m)
i⃗ : Unit vector for x (·)
yt : Trolley y position (m)
j⃗ : Unit vector for y (·)

Only a 2-D crane is considered for now, resulting in the y component for the trolley being
0.
The position of the load is given in Equation B.2.

p⃗l = xl · i⃗ + yl · j⃗ = (xt + l · sin(θ)) + (yt + l · cos(θ)) |yt=0

= (xt + l · sin(θ)) + l · cos(θ)
(B.2)

where p⃗l : Vector position of the trolley (m)
xl : Trolley x position (m)
yl : Trolley y position (m)
l : Length of the wire (m)
θ : Angle between trolley and load (°)

With the positional descriptions in place, the Lagrangian can be derived. The kinetic
energy of the system comes from four sources, namely the trolley and the load, as well as
their respective servo motor drums.
The kinetic energy of the trolley:

Tt =
1
2
· mt · ẋ2

t (B.3)

where Tt : Kinetic energy of the trolley (J)
mt : Mass of trolley (kg)
ẋ : X velocity of trolley (m/s)
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Kinetic energy of the load:

Tl =
1
2
· ml ·

(
ẋ2

l + ẏ2
l
)

(B.4)

where Tl : Kinetic energy of the load (J)
ml : Mass of load (kg)
ẋ : X velocity of load (m/s)
ẏ : Y velocity of load (m/s)

The kinetic energy of the rotating wire drums are calculated as a rotational kinetic energy
instead, which substitutes the mass term for the moment of inertia of the body and the
velocity for angular velocity of the drum. This angular velocity is not a measured quantity
in this project, and is thus related to the linear velocity of the wire and the drums radius.
The kinetic energy of the drum for x is presented in Equation B.5.

Tpx =
1
2
· Jx ·

(
ẋ
rx

)2

(B.5)

where Tpx : Kinetic energy of the drum for x (J)
Jx : Moment of Inertia of the drum for x (kg · m2)
rx : radius of the drum for x (m)

The kinetic energy of the drum for hoisting is presented in Equation B.6.

Tpl =
1
2
· Jl ·

(
2l̇
rl

)2

(B.6)

where Tpl : Kinetic energy of the drum for l (J)
Jl : Moment of Inertia of the drum for l (kg · m2)
rl : radius of the drum for l (m)

The "2" is inserted because the gearing in the drum for the hoisting wire is slightly differ-
ent, resulting in a different approximation.
The kinetic energy of the system is the sum of its parts and is thus given in Equation B.7;

T =
1
2
· mt · ẋ2

t +
1
2
· ml ·

(
ẋ2

l + ẏ2
l
)
+

1
2
· Jx ·

(
ẋ
rx

)2

+
1
2
· Jl ·

(
2l̇
rl

)2

(B.7)

The second term of this equation describes the kinetic energies of the system relating to
the velocity of the load, which is not a measured parameter in this project. It can however
be further related to the velocity of the trolley using Equation B.2, also shown below in
Equation B.8.

p⃗l = (xt + l · sin(θ)) + l · cos(θ) (B.8)
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Isolating the term representing xl ,

xl = (xt + l · sin(θ)) (B.9)

Differentiating with respect to time, using chain rule,

dxl

dt
=

d (xt + l · sin(θ))
dt

(B.10)

dxl

dt
=

d (xt + l · sin(θ))
dxt

· dxt

dt
+

d (xt + l · sin(θ))
dl

· dl
dt

+
d (xt + l · sin(θ))

dθ
· dθ

dt
(B.11)

ẋl = 1 · ẋt + sin(θ) · l̇ + l · θ̇ · cos(θ) (B.12)

Squaring both sides,

ẋl
2 = ẋt

2 + l̇2sin2(θ) + l2θ̇2cos2(θ) + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ) + 2l̇lθ̇sin(θ)cos(θ) (B.13)

The same is done for the term representing yl ,

yl = l · cos(θ) (B.14)

ẏl = l̇ · cos(θ)− l · θ̇ · sin(θ) (B.15)

Squaring both sides again,

ẏ2
l = l̇2cos2(θ) + l2θ̇2sin2(θ)− 2ll̇θ̇cos(θ)sin(θ) (B.16)

Equation B.7 contains ẋ2
l + ẏ2

l , which is now calculated below.

ẋl
2 + ẏ2

l = ẋt
2 + l̇2 + l2θ̇2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ) (B.17)

The complete equation for the kinetic energies is now acquired. The next step is deriving
the potential energy.
If origin for y is set at the trolleys level, it effectively does not have any potential energy,
leaving only the load, which is also defined as having zero potential energy when it is at
y = 0. It is thus given as:

V = −ml · g · yl = −ml · g · (yt + l · cos(θ)) |yt=0= −ml · g · l · cos(θ) (B.18)

where V : Potential energy of system (J)
g : Gravity constant = 9.82 (m · s−2)

The Lagrangian L for the system can now be presented:

L = T − V =
1
2

mt ẋ2
t +

1
2

ml
(
ẋt

2 + l̇2 + l2θ̇2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ)
)

+
1
2

Jx

(
ẋ
rx

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml · g · l · cos(θ)
(B.19)
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With this, the equations of motion can be found. Three variables are present, so an equa-
tion for each is needed. The Lagrangian equation when no external force is present is
defined as:

0 =
d
dt

∂

∂ ṗ
L − ∂

∂p
L (B.20)

The Lagrangian equation when there is an external force present is defined as:

Fz =
d
dt

∂

∂ ṗ
L − ∂

∂p
L (B.21)

Equation of motion for ẍ

The servo motor pulling the trolleys wire is considered an external force, meaning Equa-
tion B.21 is used. The force can represented as shown below in Equation B.22 together
with a friction term,

Fx =
Kex · Ix

rx
− Bx · ẋt (B.22)

where Fx : Force acting along X (N)
Kex : Motor constants for trolley motor (·)
Ix : Current delivered to trolley motor (A)
rx : Radius of trolley drum (m)
Bx : Friction coefficient for moving along X (N)
ẋ : Velocity of the hoisting system (m/s)

The Lagrangian equation for x can now be calculated.

Kex · Ix

rx
− Bx · ẋt =

d
dt

∂

∂ẋt
L − ∂

∂xt
L (B.23)

∂

∂ẋt

(
1
2

mt ẋ2
t +

1
2

ml
(
ẋt

2 + l̇2 + l2θ̇2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ)
)

+
1
2

Jx

(
ẋt

rx

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml glcos(θ)

) (B.24)

Terms without ẋt eliminated.

∂

∂ẋt

(
1
2

mt ẋ2
t +

1
2

ml
(

ẋt
2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ)

)
+

1
2

Jx

(
ẋt

rx

)2
)

(B.25)
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Partial differentiation with respect to ẋt.

∂

∂ẋt
L =

∂

∂ẋt

(
1
2

mt ẋ2
t +

1
2

ml
(

ẋt
2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ)

)
+

1
2

Jx

(
ẋt

rx

)2
)

=
1
2

mt2ẋt +
1
2

ml(2ẋt + 2l̇sin(θ) + 2lθ̇cos(θ)) +
1
2

Jx

(
2ẋt

r2
x

)
= mt ẋt + ml(ẋt + l̇sin(θ) + lθ̇cos(θ)) +

Jx ẋt

r2
x

(B.26)

Now for the time derivative.

d
dt

∂

∂ẋt
L =

d
dt

(
mt ẋt + ml(ẋt + l̇sin(θ) + lθ̇cos(θ)) +

Jx ẋt

r2
x

)
= mt ẍt + ml(ẍt + l̈sin(θ) + 2l̇θ̇cos(θ) + lθ̈cos(θ)

− lθ̇2sin(θ)) +
Jx ẍt

r2
x

(B.27)

Only a single term is left in order to complete the Lagrangian, but since no term in the
equation contains an x without a derivative it vanishes.

∂

∂xt
L =

∂

∂xt

(
1
2

mt ẋ2
t +

1
2

ml
(
ẋt

2 + l̇2 + l2θ̇2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ)
)

+
1
2

Jx

(
ẋt

rx

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml glcos(θ)

)
= 0

(B.28)

Thus a complete Lagrange’s equation for the forces acting on x is present in Equation B.27
and ẍ can be isolated.

Kex Ix

rx
− Bx ẋt = mt ẍt + ml(ẍt + l̈sin(θ) + 2l̇θ̇cos(θ)

+ lθ̈cos(θ)− lθ̇2sin(θ)) +
Jx ẍt

r2
x

Kex Ix

rx
− Bx ẋt = mt ẍt + ml ẍt + ml l̈sin(θ) + 2ml l̇θ̇cos(θ)

+ ml lθ̈cos(θ)− ml lθ̇2sin(θ) + ẍt
Jx

r2
x

Kex Ix

rx
− Bx ẋt = ẍt

(
mt + ml +

Jx

r2
x

)
+ ml l̈sin(θ) + 2ml l̇θ̇cos(θ)

+ ml lθ̈cos(θ)− ml lθ̇2sin(θ)

(B.29)
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ẍt =
1

mt + ml +
Jx
r2

x

(
Kex Ix

rx
− Bx ẋt − ml l̈sin(θ)− 2ml l̇θ̇cos(θ)

− ml lθ̈cos(θ) + ml lθ̇2sin(θ)
) (B.30)

Equation of motion for l̈

For calculating the forces acting along the hoisting wire, the Lagrange’s equation will be
solved with respect to l. There is a motor applying force on this axis as well, thus the same
form of Lagrange is used. The force term is presented in Equation B.31;

Fl =
2Kel · Il

rl
− Bl · l̇ (B.31)

where Fl : Force applied by hoisting motor (N)
Kel : Motor constants for hoisting motor (·)
Il : Current delivered to the hoisting motor (A)
rl : Radius of hoisting motor drum (m)
Bl : Friction coefficient for moving along Z (·)
l̇ : Velocity of the hoisting system (m/s)

Thus the Lagrange equation to solve is shown in Equation B.32.

Kel · Il

rl
− Bl · l̇ =

d
dt

∂

∂l̇
L − ∂

∂l
L (B.32)

Each term on the right will be calculated individually.

∂

∂l̇
L =

∂

∂l̇

(
1
2

mt ẋ2
t +

1
2

ml(ẋt
2 + l̇2 + l2θ̇2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ))

+
1
2

Jx

(
ẋt

rx

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml glcos(θ)

) (B.33)

Eliminating terms without l̇,

∂

∂l̇
L =

∂

∂l̇

(
1
2

ml
(
l̇2 + 2ẋt l̇sin(θ)

)
+

1
2

Jl

(
2l̇
rl

)2)
(B.34)

Partial differentiation,

∂

∂l̇
L =

1
2

ml
(
2l̇ + 2ẋtsin(θ)

)
+

1
2

Jl

(
8l̇
r2

l

)

= ml l̇ + ml ẋtsin(θ) + Jl
4l̇
r2

l

(B.35)
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Adding time derivative term,

d
dt

∂

∂l̇
L =

d
dt

(
ml l̇ + ml ẋtsin(θ) + Jl

4l̇
r2

l

)

= ml l̈ + ml ẍtsin(θ) + ml ẋt θ̇cos(θ) + Jl
4l̈
r2

l

(B.36)

Calculating ∂
∂l L from Equation B.32 separately,

∂

∂l
L =

∂

∂l

(
1
2

mt ẋ2
t +

1
2

ml(ẋt
2 + l̇2 + l2θ̇2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ))

+
1
2

Jx

(
ẋt

rx

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml glcos(θ)

) (B.37)

Eliminating terms without l

∂

∂l
L =

∂

∂l

(
1
2

ml(l2θ̇2 + 2ẋtlθ̇cos(θ)) + ml glcos(θ)
)

(B.38)

Partial differentiation

∂

∂l
L = ml lθ̇2 + ml ẋt θ̇cos(θ) + ml gcos(θ) (B.39)

Putting every term back in Equation B.32

Kel Il

rl
− Bl l̇ =ml l̈ + ml ẍtsin(θ) + ml ẋt θ̇cos(θ) + Jl

4l̈
r2

l

−
(
ml lθ̇2 + ml ẋt θ̇cos(θ) + ml gcos(θ)

) (B.40)

Isolating l̈

Kel Il

rl
− Bl l̇ +

(
ml lθ̇2 + ml ẋt θ̇cos(θ) + ml gcos(θ)

)
− ml ẍtsin(θ)− ml ẋt θ̇cos(θ) = l̈

(
ml +

4Jl

r2
l

) (B.41)

l̈ =
1

ml +
4Jl
r2

l

(
Kel Il

rl
− Bl l̇ + ml lθ̇2 + ml gcos(θ)− ml ẍtsin(θ)

)
(B.42)
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Equation of motion for θ̈

Since wind is not considered, there is no active force acting on the angle. Friction and
air resistance for dampening the sway is also not considered, thus the resulting Lagrange
equation is equal to zero.

0 =
d
dt

∂

∂θ̇
L − ∂

∂θ
L (B.43)

Besides that change, the calculations are the same, with each term done separately as
before.

∂

∂θ̇
L =

∂

∂θ̇

(
1
2

mt ẋ2
t +

1
2

ml(ẋt
2 + l̇2 + l2θ̇2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ))

+
1
2

Jx

(
ẋt

rx

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml glcos(θ)

) (B.44)

Eliminating terms without θ̇

∂

∂θ̇
L =

∂

∂θ̇

(
1
2

ml
(
l2θ̇2 + 2ẋtlθ̇cos(θ)

))
(B.45)

Partial differentiation

∂

∂θ̇
L =

1
2

ml
(
2θ̇l2 + 2ẋtlcos(θ)

)
= ml θ̇l2 + ml ẋtlcos(θ)

(B.46)

Adding time derivative

d
dt

∂

∂θ̇
L =

d
dt

(
ml θ̇l2 + ml ẋtlcos(θ)

)
= ml θ̈l2 + 2ml θ̇ll̇ + ml ẍtlcos(θ) + ml ẋt l̇cos(θ)− ml ẋtlθ̇sin(θ)

(B.47)

Calculating ∂
∂θ L from Equation B.43 separately

∂

∂θ
L =

∂

∂θ

(
1
2

mt ẋ2
t +

1
2

ml(ẋt
2 + l̇2 + l2θ̇2 + 2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ))

+
1
2

Jx

(
ẋt

rx

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml glcos(θ)

) (B.48)

Eliminating terms without θ

∂

∂θ
L =

∂

∂θ

(
1
2

ml
(
2ẋt l̇sin(θ) + 2ẋtlθ̇cos(θ)

)
+ ml glcos(θ)

)
(B.49)
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Partial differentiation

∂

∂θ
L = ml ẋt l̇cos(θ)− ml ẋtlθ̇sin(θ)− ml glsin(θ) (B.50)

Every term added back into Equation B.43

0 =ml θ̈l2 + 2ml θ̇ll̇ + ml ẍtlcos(θ) + ml ẋt l̇cos(θ)− ml ẋtlθ̇sin(θ)

−
(
ml ẋt l̇cos(θ)− ml ẋtlθ̇sin(θ)− ml glsin(θ)

)
= ml θ̈l2 + 2ml θ̇ll̇ + ml ẍtlcos(θ) + ml glsin(θ)

= θ̈l + 2θ̇ l̇ + ẍtcos(θ) + gsin(θ)

(B.51)

Isolating θ̈

θ̈ =
1
l
(
−2θ̇ l̇ − ẍtcos(θ)− gsin(θ)

)
(B.52)

Isolating the accelerations from each other

The model of the crane is simulated using Simulink, a Matlab programming environment
used for simulation and modelling of various systems. To simulate this model, Simulink
requires a certain order to simulate the three equations of motion. This could be solved
by adding delays and stating the preferred order. Nevertheless, it was decided that, to
simplify the modelling and simulation, the equations will be isolated from each other, i.e.,
Ï and θ̈ will be modified as to not directly contain ẍ.
To simplify the calculations, the following changes have been made:

J =
1

mt + ml +
Jx
r2

x

, V =
1

ml +
4Jl
r2

l

, Il =
Kel Il

rl
, Ix =

Kex Ix

rx
(B.53)

First, the right-hand side of the equations for l̈ and θ̈ are introduced into the equation of
motion for ẍ, so that Equation B.30 only contains ẍ.

ẍt =J

(
Ix − Bx ẋt − mlsin(θ)

(
V
(

Il − Bl l̇ + ml lθ̇2 + ml gcos(θ)− ml ẍtsin(θ)
))

− 2ml l̇θ̇cos(θ)− ml lcos(θ)
(

1
l
(
−2θ̇ l̇ − ẍtcos(θ)− gsin(θ)

) )
+ml lθ̇2sin(θ)

)

=J

(
Ix − Bx ẋt − mlVsin(θ)

(
Il − Bl l̇ + ml lθ̇2 + ml gcos(θ)− ml ẍtsin(θ)

)
−2ml l̇θ̇cos(θ)

− ml lcos(θ)
(

1
l
(
−2θ̇ l̇ − ẍtcos(θ)− gsin(θ)

) )
+ml lθ̇2sin(θ)

)
(B.54)
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ẍt

J
=Ix − Bx ẋt − mlVIlsin(θ) + mlVBl l̇sin(θ)− m2

l lV θ̇2sin(θ)− m2
l Vgsin(θ)cos(θ)

+ m2
l Vẍtsin2(θ) + ml ẍtcos2(θ) + ml gsin(θ)cos(θ) + ml lθ̇2sin(θ)

(B.55)

Isolate the terms that contain ẍt to the left-hand side of the equality.

ẍt

(
1
J
− mlcos2(θ)− m2

l Vsin2(θ)

)
= Ix − Bx ẋt − mlVIlsin(θ) + mlVBl l̇sin(θ)

− m2
l lV θ̇2sin(θ)− m2

l Vgsin(θ)cos(θ) + ml gsin(θ)cos(θ) + ml lθ̇2sin(θ)

= Ix − Bx ẋt − mlVIlsin(θ) + mlVBl l̇sin(θ) + ml lθ̇2sin(θ)(1 − mlV)

+ ml gsin(θ)cos(θ)(1 − mlV)

(B.56)

Isolate ẍt,

ẍt =
1(

1
J − mlcos2(θ)− m2

l Vsin2(θ)
)(Ix − Bx ẋt − mlVIlsin(θ) + mlVBl l̇sin(θ)

+ ml lθ̇2sin(θ)(1 − mlV) + ml gsin(θ)cos(θ)(1 − mlV)

) (B.57)

Thereafter, the newly obtained equation of motion for ẍ can be introduced into Equations
3.22 and 3.24, equations of motion for l̈ and θ̈, respectively.
The simplifications made at the beginning of this subsection are switched back.

ẍt =
1(

mt + ml +
Jx
r2

x
− mlcos2(θ)− m2

l sin2(θ)

ml+
4Jl
r2
l

)
Kex Ix

rx
− Bx ẋt −

mlKel Ilsin(θ)
rlml +

4Jl
rl

+
ml Bl l̇sin(θ)

ml +
4Jl
r2

l

+ml lθ̇2sin(θ)

1 − ml

ml +
4Jl
r2

l

+ ml gsin(θ)cos(θ)

1 − ml

ml +
4Jl
r2

l


(B.58)
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l̈ =
1

ml +
4Jl
r2

l


Kel Il

rl
− Bl l̇ + ml lθ̇2 + ml gcos(θ)− mlsin(θ)(

mt + ml +
Jx
r2

x
− mlcos2(θ)− m2

l sin2(θ)

ml+
4Jl
r2
l

)
Kex Ix

rx
− Bx ẋt −

mlKel Ilsin(θ)
rlml +

4Jl
rl

+
ml Bl l̇sin(θ)

ml +
4Jl
r2

l

+ ml lθ̇2sin(θ)

1 − ml

ml +
4Jl
r2

l


+ml gsin(θ)cos(θ)

1 − ml

ml +
4Jl
r2

l


(B.59)

θ̈ =
1
l

−2θ̇ l̇ − cos(θ)(
mt + ml +

Jx
r2

x
− mlcos2(θ)− m2

l sin2(θ)

ml+
4Jl
r2
l

) (Kex Ix

rx
− Bx ẋt −

mlKel Ilsin(θ)
rlml +

4Jl
rl

+
ml Bl l̇sin(θ)

ml +
4Jl
r2

l

+ ml lθ̇2sin(θ)

1 − ml

ml +
4Jl
r2

l

+ ml gsin(θ)cos(θ)

1 − ml

ml +
4Jl
r2

l


−gsin(θ)]

(B.60)

With this, the process of deriving the mathematical model for the crane can be considered
finished.



Appendix C

3D Model of Overhead Crane

This chapter contains the step-by-step derivation of the same overhead crane from Chapter
2 but in 3D.

3-D model

This section will delve into deriving a crane model for a 3-D crane. Said crane has been
designed following the previous 2-D crane and a figure depicting what that crane would
look like can be seen in Figure C.1.
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Figure C.1: Illustration of a 3-D gantry crane based on the crane from the previous section. The above crane
contains depth, where the top beam (which contains the trolley and, subsequently, the head) moves in the
y-direction. For this crane, it has been discussed that said beam and the trolley will act as one component, in
terms of the depth motion. That is, the y movement of the trolley will be equivalent to the beams motion. On
the contrary, the trolley will move on the x-axis in the same manner as it did for the 2-D crane.
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This section differs from the previous in that a new dimension is added to the system. This
will change the variables and the relationships between them, which will, ultimately, mod-
ify the equations derived previously in Section 3.3. Figure C.2 shows said relationships
and variables that will be utilised to model the 3-D crane.

Figure C.2: Figure depicting the relationship between axes and angles. ml refers to the center point of the
load, which is depicted as a mass. mlx and mly are the projections of ml onto their respective planes, Y for mly

and X for mly . These notations are not utilised in deriving the model but are for aiding in understanding the
description of the position of the load. x depends on θ and y on ϕ. The combination of these two plus the
length of the cable l gives the position of the load in 3D space.

where x : Position on the horizontal axis (m)
y : Position on the depth axis (m)
z : Position on the vertical axis (m)
l : Length of the wire (m)
θ : Angle between the load and its equilibrium point (°)
ϕ : Second angle between the load and its equilibrium point (°)
Jx : Moment of Inertia for the x direction motor (·)
Jy : Moment of Inertia for the y direction motor (·)
Jl : Moment of Inertia for the wire-length motor (·)
rx : Radius of the X direction drum (m)
ry : Radius of the Y direction drum (m)
rl : Radius of the wire-length drum (m)
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The model will be derived using Lagrange equations, which start by describing the sys-
tems kinetic and potential energies. This requires the positional equation of the trolley
shown below in Equation C.1. The trolley position only takes x and y into account, hence
zt being 0;

p⃗t = xt · i⃗ + yt · j⃗ + zt · k⃗ |zt=0 (C.1)

where p⃗t : Vector position of the trolley (m)
xt : Trolley X position (m)
i⃗ : Unit vector for X (·)
yt : Trolley Y position (m)
j⃗ : Unit vector for Y (·)
zt : Trolley Z position (m)
k⃗ : Unit vector for Z (·)

The position of the load is given in Equation C.2

p⃗l = xl · i⃗ + yl · j⃗ + zl · k⃗

= (xt + l · sin(θ)) + (yt + l · sin(ϕ)) + (zt + l · cos(θ)cos(ϕ)) |zt=0

= xt + yt + l (sin(θ) + sin(ϕ) + cos(θ)cos(ϕ))

(C.2)

where p⃗l : Vector position of the load (m)
xl : Load X position (m)
yl : Load Y position (m)
zl : Load Z position (m)
l : Length of the wire (m)
θ : Angle between trolley and load (°)
ϕ : Angle between trolley and load (°)

With the positional descriptions in place, the Lagrangian can be derived. The kinetic
energy of the system comes from five sources, namely the trolley and load, as well as their
respective servo motor drums. The trolley is controlled by the use of two servo motors,
one per direction it can move to. Whereas the load’s height is only affected by a single
servo motor.
The kinetic energy of the trolley:

Tt =
1
2
· mt

(
ẋ2

t + ẏ2
t
)

(C.3)

where Tt : Kinetic energy of the trolley (J)
mt : Mass of trolley (kg)
ẋt : X velocity of trolley (m/s)
ẏt : Y velocity of trolley (m/s)
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Kinetic energy of the load:

Tl =
1
2
· ml ·

(
ẋ2

l + ẏ2
l + ż2

l
)

(C.4)

where Tl : Kinetic energy of the load (J)
ml : Mass of load (kg)
ẋl : X velocity of load (m/s)
ẏl : Y velocity of load (m/s)
żl : Z velocity of load (m/s)

The kinetic energy of the rotating wire drums are calculated as a rotational kinetic energy
instead, which substitutes the mass term for the moment of inertia of the body and the
velocity for angular velocity of the drum. Angular velocity is not measured in this project,
and is instead derived by relating the linear velocity of the wire and the drums radius.
The kinetic energies of the drums for the trolley and for the drum of hoisting are shown
in Equation C.5

Tpx =
1
2
· Jx ·

(
ẋt

rx

)2

Tpy =
1
2
· Jy ·

(
ẏt

ry

)2

Tpl =
1
2
· Jl ·

(
2l̇
rl

)2

(C.5)

where Tpx : Kinetic energy of the drum for x (J)
Tpy : Kinetic energy of the drum for y (J)
Tpl : Kinetic energy of the drum for l (J)
Jx : Moment of Inertia of the drum for x (kg · m2)
Jy : Moment of Inertia of the drum for y (kg · m2)
Jl : Moment of Inertia of the drum for l (kg · m2)
rx : Radius of the drum for x (m)
ry : Radius of the drum for y (m)
rl : Radius of the drum for l (m)

The "2" is inserted in Tpl because the gearing in the drum for the hoisting wire is slightly
different from the other two, resulting in a different approximation.
The kinetic energy of the system is the sum of its parts, Tt + Tl , and is thus given in
Equation C.6;

T =
1
2
·mt ·

(
ẋ2

t + ẏ2
t
)
+

1
2
·ml ·

(
ẋ2

l + ẏ2
l + ż2

l
)
+

1
2
· Jx ·

(
ẋt

rx

)2

+
1
2
· Jy ·

(
ẏt

ry

)2

+
1
2
· Jl ·

(
2l̇
rl

)2

(C.6)
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The second term of the Lagrangian equation describes the kinetic energies of the system
in relation to the velocity of the load, which is not a measured parameter in this project.
Instead, the load’s velocities are related to the velocity of the trolley using Equation C.2,
also shown below in Equation C.7:

p⃗l = xt + yt + l · (sin(θ) + sin(ϕ) + cos(θ) · cos(ϕ)) (C.7)

Isolating the term representing xl from the above positional equation;

xl = xt + l · sin(θ) (C.8)

Firstly, the time derivative of xl is computed to obtained the X velocity of the load.

dxl

dt
=

d (xt + l · sin(θ))
dxt

· dxt

dt
+

d (xt + l · sin(θ))
dl

· dl
dt

+
d (xt + l · sin(θ))

dθ
· dθ

dt
(C.9)

ẋl = ẋt + l̇ · sin(θ) + l · θ̇ · cos(θ) (C.10)

Squaring both sides;

ẋl
2 =ẋt

2 + l̇2 · sin2(θ) + l2 · θ̇2 · cos2(θ) + 2 · l̇ · ẋt · sin(θ) + 2 · l · ẋt · θ̇ · cos(θ)

+ 2 · l · l̇ · θ̇ · sin(θ) · cos(θ)
(C.11)

The same is done for the term representing yl

yl = yt + l · sin(ϕ) (C.12)

Firstly, the time derivative of yl is computed to obtained the X velocity of the load.

dyl

dt
=

d (yt + l · sin(ϕ))
dyt

· dyt

dt
+

d (yt + l · sin(ϕ))
dl

· dl
dt

+
d (yt + l · sin(ϕ))

dϕ
· dϕ

dt
(C.13)

ẏl = ẏt + l̇ · sin(ϕ) + l · ϕ̇ · cos(ϕ) (C.14)

Squaring the previous equation results in the following equation;

ẏ2
l =ẏ2

t + l̇2 · sin2(ϕ) + l2 · ϕ̇2 · cos2(ϕ) + 2 · l̇ · ẏt · sin(ϕ) + 2 · l · ẏt · ϕ̇ · cos(ϕ)

+ 2 · l · l̇ · ϕ̇ · sin(ϕ) · cos(ϕ)
(C.15)

The same is done for the term representing zl

zl = l · cos(θ) · cos(ϕ) (C.16)

dzl

dt
=

d (l · cos(θ) · cos(ϕ))
dl

· dl
dt

+
d (l · cos(θ) · cos(ϕ))

dθ
· dθ

dt
+

d (l · cos(θ) · cos(ϕ))
dϕ

· dϕ

dt
(C.17)

żl = l̇ · cos(θ) · cos(ϕ)− l · θ̇ · sin(θ) · cos(ϕ)− l · ϕ̇ · cos(θ) · sin(ϕ) (C.18)
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And lastly, the final component needed to complete the equation for the kinetic energies
is obtained by squaring żl .

ż2
l =l̇2 · cos2(θ) · cos2(ϕ) + l2 · θ̇2 · sin2(θ) · cos2(ϕ) + l2 · ϕ̇2 · cos2(θ) · sin2(ϕ)

− 2 · l · l̇ · θ̇ · sin(θ) · cos(θ) · cos2(ϕ)− 2 · l · l̇ · ϕ̇ · cos2(θ) · sin(ϕ) · cos(ϕ)

+ 2 · l2 · θ̇ · ϕ̇ · sin(θ) · cos(θ) · sin(ϕ) · cos(ϕ)

(C.19)

The complete equation for the kinetic energies has now been acquired, see Equation C.20.

T =
1
2
· mt ·

(
ẋ2

t + ẏ2
t
)
+

1
2
· ml ·

(
ẋt

2 + ẏ2
t + 2 · l̇ · ẋt · sin(θ) + 2 · l · ẋt · θ̇ · cos(θ) + l̇2 · sin2(θ)

+ l̇2 · sin2(ϕ) + 2 · l̇ · ẏt · sin(ϕ) + 2 · l · ẏt · ϕ̇ · cos(ϕ) + l̇2 · cos2(θ) · cos2(ϕ)

+ l2 · θ̇2 · cos2(θ) + l2 · θ̇2 · sin2(θ) · cos2(ϕ) + l2 · ϕ̇2 · cos2(ϕ) + l2 · ϕ̇2 · cos2(θ) · sin2(ϕ)

+ 2 · l · l̇ · θ̇ · sin(θ) · cos(θ) · sin2(ϕ) + 2 · l · l̇ · ϕ̇ · sin2(θ) · sin(ϕ) · cos(ϕ)

+ 2 · l2 · θ̇ · ϕ̇ · sin(θ) · cos(θ) · sin(ϕ) · cos(ϕ)
)
+

1
2

Jx

(
ẋt

rx

)2

+
1
2

Jy

(
ẏt

ry

)2

+
1
2

Jl

(
2l̇
rl

)2

(C.20)

The next step is to derive the potential energy, for this, the following presumption is
stated: If the origin for the Z-axis is set at the trolleys level, this will effectively not have
any potential energy, leaving only the load, which is also defined as having zero potential
energy when it is at z = 0. It is thus given as:

V = −ml · g · zl = −ml · g · (zt + l · cos(θ)) |zt=0= −ml · g · l · cos(θ)cos(ϕ) (C.21)

where V : Potential energy of system (J)
g : Gravity constant = 9.82 (ms−2)

The Lagrangian L for the system can now be presented:

L =T − V =
1
2
· mt ·

(
ẋ2

t + ẏ2
t
)
+

1
2
· ml ·

(
ẋt

2 + ẏ2
t + 2 · l̇ · ẋt · sin(θ) + 2 · l · ẋt · θ̇ · cos(θ)

+ l̇2 · sin2(θ) + l̇2 · sin2(ϕ) + 2 · l̇ · ẏt · sin(ϕ) + 2 · l · ẏt · ϕ̇ · cos(ϕ) + l̇2 · cos2(θ) · cos2(ϕ)

+ l2 · θ̇2 · cos2(θ) + l2 · θ̇2 · sin2(θ) · cos2(ϕ) + l2 · ϕ̇2 · cos2(ϕ) + l2 · ϕ̇2 · cos2(θ) · sin2(ϕ)

+ 2 · l · l̇ · θ̇ · sin(θ) · cos(θ) · sin2(ϕ) + 2 · l · l̇ · ϕ̇ · sin2(θ) · sin(ϕ) · cos(ϕ)

+ 2 · l2 · θ̇ · ϕ̇ · sin(θ) · cos(θ) · sin(ϕ) · cos(ϕ)
)
+

1
2

Jx

(
ẋt

rx

)2

+
1
2

Jy

(
ẏt

ry

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml · g · l · cos(θ)cos(ϕ)
(C.22)
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And with this, the equations of motion can be obtained. Five variables are present, so an
equation for each is needed. These are ẍ, ÿ, l̈, ϕ̈ and θ̈. The Lagrangian equation when no
external force is present is defined as;

0 =
d
dt

∂

∂ ṗ
L − ∂

∂p
L (C.23)

Whereas when there is an external force present, it is defined as;

Fz =
d
dt

∂

∂ ṗ
L − ∂

∂p
L (C.24)

Equation of motion for ẍ

The servo motors pulling the trolleys wire are considered an external force, meaning Equa-
tion C.24 is used. The forces can be represented as shown below in Equation C.25, together
with a friction term

Fx =
Kex · Ix

rx
− Bx · ẋt (C.25)

where Fx : Force acting along X (N)
Kex : Motor constants for trolley motor (·)
Ix : Current delivered to trolley motor (A)
rx : Radius of trolley drum (m)
Bx : Friction coefficient for moving along X (N)
ẋ : Velocity of the hoisting system (m/s)

The Lagrangian equation for x can now be calculated.

Kex · Ix

rx
− Bx · ẋt =

d
dt

∂

∂ẋt
L − ∂

∂xt
L (C.26)

d
dt

∂

∂ẋt
L =

d
dt

∂

∂ẋt

(
1
2

mt
(

ẋ2
t + ẏ2

t
)
+

1
2

ml

(
ẋt

2 + ẏ2
t + 2 · l̇ · ẋt · sin(θ) + 2 · l · ẋt · θ̇ · cos(θ)

+ 2 · l̇ · ẏt · sin(ϕ) + 2 · l · ẏt · ϕ̇ · cos(ϕ) + l̇2 · sin2(θ) + l̇2 · sin2(ϕ) + l̇2 · cos2(θ)cos2(ϕ)

+ l2 · θ̇2 · cos2(θ) + l2 · θ̇2 · sin2(θ)cos2(ϕ) + l2 · ϕ̇2 · cos2(ϕ) + l2 · ϕ̇2 · cos2(θ)sin2(ϕ)

+ 2 · l · l̇ · θ̇ · sin(θ)cos(θ)sin2(ϕ) + 2 · l · l̇ · ϕ̇ · sin2(θ)sin(ϕ)cos(ϕ)

+ 2 · l2 · θ̇ · ϕ̇ · sin(θ)cos(θ)sin(ϕ)cos(ϕ)
)
+

1
2

Jx

(
ẋt

rx

)2

+
1
2

Jy

(
ẏt

ry

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml · g · l · cos(θ)cos(ϕ)

)
(C.27)
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Terms without ẋt get eliminated;

d
dt

∂

∂ẋt
L =

d
dt

∂

∂ẋt

(
1
2

mt ẋ2
t +

1
2

ml

(
ẋt

2 + 2l̇ ẋtsin(θ) + 2lẋt θ̇cos(θ)
)
+

1
2

Jx

(
ẋt

rx

)2
)

(C.28)

First, the partial differentiation with respect to ẋt is derived;

∂

∂ẋt
L = mt ẋt + ml

(
ẋt + l̇sin(θ) + lθ̇cos(θ)

)
+

Jx ẋt

r2
x

(C.29)

Then, the time derivative;

d
dt

∂

∂ẋt
L = mt ẍt + ml ẍt + ml l̈sin(θ) + 2ml l̇θ̇cos(θ) + ml lθ̈cos(θ)− ml lθ̇2sin(θ) +

Jx ẍt

r2
x
(C.30)

Only a single term is left in order to complete the Lagrangian, but since no term in the
equation contains an xt without a derivative, it vanishes. Thus, a complete Lagrange’s
equation for ẍ is presented in Equation C.32:

Kex Ix

rx
− Bx ẋt = mt ẍt + ml ẍt + ml l̈sin(θ) + 2ml l̇θ̇cos(θ) + ml lθ̈cos(θ)− ml lθ̇2sin(θ) +

Jx ẍt

r2
x

(C.31)

ẍt =
1

Jx
r2

x
+ mt + ml

(
Kex Ix

rx
− Bx ẋt − ml l̈sin(θ)− 2ml l̇θ̇cos(θ)− ml lθ̈cos(θ) + ml lθ̇2sin(θ)

)
(C.32)

Equation of motion for ÿ

The servo motors pulling the trolleys wire are considered an external force, meaning Equa-
tion C.24 is used. The forces can represented as shown below in Equation C.33 together
with a friction term

Fy =
Key · Iy

ry
− By · ẏt (C.33)

where Fy : Force acting along y (N)
Key : Motor constants for trolley motor (·)
Iy : Current delivered to trolley motor (A)
ry : Radius of trolley drum (m)
By : Friction coefficient for moving along Y (N)
ẏ : Velocity of the hoisting system (m/s)

The Lagrangian equation for y can now be calculated.

Key · Iy

ry
− By · ẏt =

d
dt

∂

∂ẏt
L − ∂

∂yt
L (C.34)
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d
dt

∂

∂ẏt
L =

d
dt

∂

∂ẏt

(
1
2

mt
(
ẋ2

t + ẏ2
t
)
+

1
2

ml

(
ẋt

2 + ẏ2
t + 2 · l̇ · ẋt · sin(θ) + 2 · l · ẋt · θ̇ · cos(θ)

+ 2 · l̇ · ẏt · sin(ϕ) + 2 · l · ẏt · ϕ̇ · cos(ϕ) + l̇2 · sin2(θ) + l̇2 · sin2(ϕ) + l̇2 · cos2(θ)cos2(ϕ)

+ l2 · θ̇2 · cos2(θ) + l2 · θ̇2 · sin2(θ)cos2(ϕ) + l2 · ϕ̇2 · cos2(ϕ) + l2 · ϕ̇2 · cos2(θ)sin2(ϕ)

+ 2 · l · l̇ · θ̇ · sin(θ)cos(θ)sin2(ϕ) + 2 · l · l̇ · ϕ̇ · sin2(θ)sin(ϕ)cos(ϕ)

+ 2 · l2 · θ̇ · ϕ̇ · sin(θ)cos(θ)sin(ϕ)cos(ϕ)
)
+

1
2

Jx

(
ẋt

rx

)2

+
1
2

Jy

(
ẏt

ry

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml · g · l · cos(θ)cos(ϕ)

)
(C.35)

Terms without ẏt get eliminated;

d
dt

∂

∂ẏt
L =

d
dt

∂

∂ẏt

(
1
2

mtẏ2
t +

1
2

ml

(
ẏ2

t + 2l̇ẏtsin(ϕ) + 2lẏtϕ̇cos(ϕ)
)
+

1
2

Jy

(
ẏt

ry

)2
)

(C.36)

First, the partial differentiation with respect to ẏt;

∂

∂ẏt
L = mtẏt + ml ẏt + ml l̇sin(ϕ) + ml lϕ̇cos(ϕ) +

Jyẏt

r2
y

(C.37)

Then, the time derivative is computed;

d
dt

∂

∂ẏt
L = mtÿt + ml ÿt + ml l̈sin(ϕ) + ml l̇ϕ̇cos(ϕ) + ml l̇ϕ̇cos(ϕ) + ml lϕ̈cos(ϕ)− ml lϕ̇2sin(ϕ)

+
Jyÿt

r2
y

(C.38)

Only a single term is left in order to complete the Lagrangian, but since no term in the
equation contains an yt without a derivative, it vanishes. Thus, a complete Lagrange’s
equation for ÿ can be seen Equation C.40.

Key Iy

ry
− Byẏt = mtÿt + ml ÿt + ml l̈sin(ϕ) + 2ml l̇ϕ̇cos(ϕ) + ml lϕ̈cos(ϕ)− ml lϕ̇2sin(ϕ) +

Jyÿt

r2
y

(C.39)

ÿt =
1

Jy

r2
y
+ mt + ml

(
Key Iy

ry
− Byẏt − ml l̈sin(ϕ)− 2ml l̇ϕ̇cos(ϕ)− ml lϕ̈cos(ϕ) + ml lϕ̇2sin(ϕ)

)
(C.40)
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Equation of motion for l̈

For calculating the forces acting along the hoisting wire, the Lagrange’s equation will be
solved with respect to l. There is a motor applying force on this axis as well, thus the same
form of Lagrange is used. The force term is presented in Equation C.41;

Fl =
2Kel · Il

rl
− Bl · l̇ (C.41)

where Fl : Force applied by hoisting motor (N)
Kel : Motor constants for hoisting motor (·)
Il : Current delivered to the hoisting motor (A)
rl : Radius of hoisting motor drum (m)
Bl : Friction coefficient for moving along Z (·)
l̇ : Velocity of the hoisting system (m/s)

Thus the Lagrange equation to solve is shown in Equation C.42

Kel · Il

rl
− Bl · l̇ =

d
dt

∂

∂l̇
L − ∂

∂l
L (C.42)

Each term on the right will be calculated individually.

d
dt

∂

∂l̇
L =

d
dt

∂

∂l̇

(
1
2

mt
(
ẋ2

t + ẏ2
t
)
+

1
2

ml

(
ẋt

2 + ẏ2
t + 2 · l̇ · ẋt · sin(θ) + 2 · l · ẋt · θ̇ · cos(θ)

+ 2 · l̇ · ẏt · sin(ϕ) + 2 · l · ẏt · ϕ̇ · cos(ϕ) + l̇2 · sin2(θ) + l̇2 · sin2(ϕ) + l̇2 · cos2(θ)cos2(ϕ)

+ l2 · θ̇2 · cos2(θ) + l2 · θ̇2 · sin2(θ)cos2(ϕ) + l2 · ϕ̇2 · cos2(ϕ) + l2 · ϕ̇2 · cos2(θ)sin2(ϕ)

+ 2 · l · l̇ · θ̇ · sin(θ)cos(θ)sin2(ϕ) + 2 · l · l̇ · ϕ̇ · sin2(θ)sin(ϕ)cos(ϕ)

+ 2 · l2 · θ̇ · ϕ̇ · sin(θ)cos(θ)sin(ϕ)cos(ϕ)
)
+

1
2

Jx

(
ẋt

rx

)2

+
1
2

Jy

(
ẏt

ry

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml · g · l · cos(θ)cos(ϕ)

)
(C.43)

Eliminating terms without l̇;

d
dt

∂

∂l̇
L =

d
dt

∂

∂l̇

(
1
2

ml

(
2l̇ ẋtsin(θ) + 2l̇ẏtsin(ϕ) + l̇2sin2(θ) + l̇2sin2(ϕ) + l̇2cos2(θ)cos2(ϕ)

+ 2ll̇θ̇sin(θ)cos(θ)sin2(ϕ) + 2ll̇ϕ̇sin2(θ)sin(ϕ)cos(ϕ)
)
+

1
2

Jl

(
2l̇
rl

)2)
(C.44)
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Partial differentiation;

∂

∂l̇
L =ml ẋtsin(θ) + ml ẏtsin(ϕ) + ml l̇sin2(θ) + ml l̇sin2(ϕ) + ml l̇cos2(θ)cos2(ϕ)

+ ml lθ̇sin(θ)cos(θ)sin2(ϕ) + ml lϕ̇sin2(θ)sin(ϕ)cos(ϕ) +
4Jl l̇
r2

l

(C.45)

Differentiating in terms of time:

d
dt

∂

∂l̇
L = ml ẍtsin(θ) + ml ẋt θ̇cos(θ) + ml ÿtsin(ϕ) + ml ẏtϕ̇cos(ϕ) + ml l̈sin2(θ) + ml l̈sin2(ϕ)

+ ml l̈cos2(θ)cos2(ϕ) + ml l̇ϕ̇sin2(θ)sin(2ϕ) + ml l̇ϕ̇sin2(θ)sin(ϕ)cos(ϕ)

+ ml l̇θ̇sin(θ)cos(θ)sin2(ϕ) + ml l̇θ̇sin(2θ)sin2(ϕ) + ml lθ̈sin(θ)cos(θ)sin2(ϕ)

+ ml lϕ̈sin2(θ)sin(ϕ)cos(ϕ) + ml lθ̇2cos(2θ)sin2(ϕ) + ml lϕ̇2sin2(θ)cos(2ϕ)

+ ml lθ̇ϕ̇sin(θ)cos(θ)sin(2ϕ) + ml lθ̇ϕ̇sin(2θ)sin(ϕ)cos(ϕ) +
4Jl l̈
r2

l
(C.46)

Calculating ∂
∂l L from Equation C.42 separately

∂

∂l
L =

∂

∂l

(
1
2

ml

(
2lẋt θ̇cos(θ) + 2lẏtϕ̇cos(ϕ) + l2θ̇2cos2(θ) + l2θ̇2sin2(θ)cos2(ϕ) + l2ϕ̇2cos2(ϕ)

+ l2ϕ̇2cos2(θ)sin2(ϕ) + 2ll̇θ̇sin(θ)cos(θ)sin2(ϕ) + 2ll̇ϕ̇sin2(θ)sin(ϕ)cos(ϕ)

+ 2l2θ̇ϕ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ)
)
+ml glcos(θ)cos(ϕ)

)
= ml ẋt θ̇cos(θ) + ml ẏtϕ̇cos(ϕ) + ml lθ̇2cos2(θ) + ml lθ̇2sin2(θ)cos2(ϕ) + ml lϕ̇2cos2(ϕ)

+ ml lϕ̇2cos2(θ)sin2(ϕ) + ml l̇θ̇sin(θ)cos(θ)sin2(ϕ) + ml l̇ϕ̇sin2(θ)sin(ϕ)cos(ϕ)

+ 2ml lθ̇ϕ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ)
)
+ml gcos(θ)cos(ϕ)

(C.47)
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Putting every term back in Equation C.42

Kel Il

rl
− Bl l̇ =

(
ml ẍtsin(θ) + ml ẋt θ̇cos(θ) + ml ÿtsin(ϕ) + ml ẏtϕ̇cos(ϕ) + ml l̈sin2(θ)

+ ml l̈sin2(ϕ) + ml l̈cos2(θ)cos2(ϕ) + ml l̇ϕ̇sin2(θ)sin(2ϕ) + ml l̇ϕ̇sin2(θ)sin(ϕ)cos(ϕ)

+ ml l̇θ̇sin(θ)cos(θ)sin2(ϕ) + ml l̇θ̇sin(2θ)sin2(ϕ) + ml lθ̈sin(θ)cos(θ)sin2(ϕ)

+ ml lϕ̈sin2(θ)sin(ϕ)cos(ϕ) + ml lθ̇2cos(2θ)sin2(ϕ) + ml lϕ̇2sin2(θ)cos(2ϕ)

+ ml lθ̇ϕ̇sin(θ)cos(θ)sin(2ϕ) + ml lθ̇ϕ̇sin(2θ)sin(ϕ)cos(ϕ) +
4Jl l̈
r2

l

)
−
(

ml ẋt θ̇cos(θ)

+ ml ẏtϕ̇cos(ϕ) + ml lθ̇2cos2(θ) + ml lθ̇2sin2(θ)cos2(ϕ) + ml lϕ̇2cos2(ϕ)

+ ml lϕ̇2cos2(θ)sin2(ϕ) + ml l̇θ̇sin(θ)cos(θ)sin2(ϕ) + ml l̇ϕ̇sin2(θ)sin(ϕ)cos(ϕ)

+ 2ml lθ̇ϕ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ)
)
+ml gcos(θ)cos(ϕ)

)

(C.48)

Kel Il

rl
− Bl l̇ = ml l̈ + ml ẍtsin(θ) + ml ÿtsin(ϕ)− ml lθ̇2 − ml lϕ̇2 + ml l̇ϕ̇sin2(θ)sin(2ϕ)

+ ml l̇θ̇sin(2θ)sin2(ϕ) + ml lθ̈sin(θ)cos(θ)sin2(ϕ) + ml lϕ̈sin2(θ)sin(ϕ)cos(ϕ)

− ml l̈sin2(θ)sin2(ϕ) + ml lθ̇2cos2(θ)sin2(ϕ) + ml lϕ̇2sin2(θ)cos2(ϕ)

+ ml lθ̇ϕ̇sin(θ)cos(θ)sin(2ϕ) +
4Jl l̈
r2

l
− ml gcos(θ)cos(ϕ)

(C.49)

Finally, isolating l̈, Equation C.51.

Kel Il

rl
− Bl l̇ − ml ẍtsin(θ)− ml ÿtsin(ϕ) + ml lθ̇2 + ml lϕ̇2 − ml l̇ϕ̇sin2(θ)sin(2ϕ)

− ml l̇θ̇sin(2θ)sin2(ϕ)− ml lθ̈sin(θ)cos(θ)sin2(ϕ)− ml lϕ̈sin2(θ)sin(ϕ)cos(ϕ)

− ml lθ̇2cos2(θ)sin2(ϕ)− ml lϕ̇2sin2(θ)cos2(ϕ)− ml lθ̇ϕ̇sin(θ)cos(θ)sin(2ϕ)

+ ml gcos(θ)cos(ϕ) = l̈

(
ml − mlsin2(θ)sin2(ϕ) +

4Jl

r2
l

) (C.50)

l̈ =
1(

ml − mlsin2(θ)sin2(ϕ) + 4Jl
r2

l

)(Kel Il

rl
− Bl l̇ − ml ẍtsin(θ)− ml ÿtsin(ϕ) + ml lθ̇2 + ml lϕ̇2

− ml l̇ϕ̇sin2(θ)sin(2ϕ)− ml l̇θ̇sin(2θ)sin2(ϕ)− ml lθ̈sin(θ)cos(θ)sin2(ϕ)

− ml lϕ̈sin2(θ)sin(ϕ)cos(ϕ)− ml lθ̇2cos2(θ)sin2(ϕ)− ml lϕ̇2sin2(θ)cos2(ϕ)

− ml lθ̇ϕ̇sin(θ)cos(θ)sin(2ϕ) + ml gcos(θ)cos(ϕ)
)

(C.51)
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Equation of motion for θ̈

Since wind is not considered, there is no active force acting on the angle. Friction and
air resistance for dampening the sway is also not considered, thus the resulting Lagrange
equation is equal to zero.

0 =
d
dt

∂

∂θ̇
L − ∂

∂θ
L (C.52)

Besides that change, the calculations are the same, with each term done separately as
before.

d
dt

∂

∂θ̇
L =

d
dt

∂

∂θ̇

(
1
2

mt
(
ẋ2

t + ẏ2
t
)
+

1
2

ml

(
ẋt

2 + ẏ2
t + 2 · l̇ · ẋt · sin(θ) + 2 · l · ẋt · θ̇ · cos(θ)

+ 2 · l̇ · ẏt · sin(ϕ) + 2 · l · ẏt · ϕ̇ · cos(ϕ) + l̇2 · sin2(θ) + l̇2 · sin2(ϕ) + l̇2 · cos2(θ)cos2(ϕ)

+ l2 · θ̇2 · cos2(θ) + l2 · θ̇2 · sin2(θ)cos2(ϕ) + l2 · ϕ̇2 · cos2(ϕ) + l2 · ϕ̇2 · cos2(θ)sin2(ϕ)

+ 2 · l · l̇ · θ̇ · sin(θ)cos(θ)sin2(ϕ) + 2 · l · l̇ · ϕ̇ · sin2(θ)sin(ϕ)cos(ϕ)

+ 2 · l2 · θ̇ · ϕ̇ · sin(θ)cos(θ)sin(ϕ)cos(ϕ)
)
+

1
2

Jx

(
ẋt

rx

)2

+
1
2

Jy

(
ẏt

ry

)2

+
1
2

Jl

(
2l̇
rl

)2

+ ml · g · l · cos(θ)cos(ϕ)

)
(C.53)

Eliminating terms without θ̇ and computing the partial derivative;

d
dt

∂

∂θ̇
L =

d
dt

∂

∂θ̇

(
1
2

ml

(
2lẋt θ̇cos(θ) + l2θ̇2cos2(θ) + l2θ̇2sin2(θ)cos2(ϕ)

+ 2ll̇θ̇sin(θ)cos(θ)sin2(ϕ) + 2l2θ̇ϕ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ)
))

=
d
dt

(
ml lẋtcos(θ) + ml l2θ̇cos2(θ) + ml l2θ̇sin2(θ)cos2(ϕ)

+ ml ll̇sin(θ)cos(θ)sin2(ϕ) + ml l2ϕ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ)
)

(C.54)

Computing the time derivative;

d
dt

∂

∂θ̇
L = ml l̇ ẋtcos(θ) + ml lẍtcos(θ)− ml lẋt θ̇sin(θ) + 2ml ll̇θ̇cos2(θ) + 2ml ll̇θ̇sin2(θ)cos2(ϕ)

+ ml ll̇θ̇cos(2θ)sin2(ϕ) + ml l2θ̈cos2(θ) + ml l2θ̈sin2(θ)cos2(ϕ)− ml l2θ̇2sin(2θ)sin2(ϕ)

+ ml l̇2sin(θ)cos(θ)sin2(ϕ) + ml l2ϕ̈sin(θ)cos(θ)sin(ϕ)cos(ϕ) + ml l2θ̇ϕ̇cos(2θ)sin(ϕ)cos(ϕ)

− ml l2θ̇ϕ̇sin2(θ)sin(2ϕ) + 2ml ll̇ϕ̇sin(θ)cos(θ)sin(2ϕ) + ml l2ϕ̇2sin(θ)cos(θ)cos(2ϕ)

(C.55)
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Calculating ∂
∂θ L from Equation C.52 separately:

∂

∂θ
L =ml l̇ ẋtcos(θ)− ml lẋt θ̇sin(θ) + ml l̇2sin(θ)cos(θ)sin2(ϕ)− ml l2θ̇2sin(θ)cos(θ)sin2(ϕ)

− ml l2ϕ̇2sin(θ)cos(θ)sin2(ϕ) + ml ll̇θ̇cos(2θ)sin2(ϕ) + 2ml ll̇ϕ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ)

+ ml l2θ̇ϕ̇cos(2θ)sin(ϕ)cos(ϕ)− ml glsin(θ)cos(ϕ)
(C.56)

Every term is introduced back into Equation C.52:

0 = +ml lẍtcos(θ) + 2ml ll̇θ̇ − 2ml ll̇θ̇sin2(θ)sin2(ϕ) + ml l2θ̈ − ml l2θ̈sin2(θ)sin2(ϕ)

− ml l2θ̇2sin(θ)cos(θ)sin2(ϕ) + ml l2ϕ̈sin(θ)cos(θ)sin(ϕ)cos(ϕ)− ml l2θ̇ϕ̇sin2(θ)sin(2ϕ)

+ 2ml ll̇ϕ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ) + ml l2ϕ̇2sin(θ)cos(θ)cos2(ϕ) + ml glsin(θ)cos(ϕ)
(C.57)

Isolating θ̈, Equation C.58 can be obtained.

θ̈ =
1

l (1 − sin2(θ)sin2(ϕ))

(
−ẍtcos(θ)− 2l̇θ̇ + 2l̇θ̇sin2(θ)sin2(ϕ) + lθ̇2sin(θ)cos(θ)sin2(ϕ)

− lϕ̈sin(θ)cos(θ)sin(ϕ)cos(ϕ) + lθ̇ϕ̇sin2(θ)sin(2ϕ)− 2l̇ϕ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ)

− lϕ̇2sin(θ)cos(θ)cos2(ϕ)− gsin(θ)cos(ϕ)

)
(C.58)

Equation of motion for ϕ̈

Since wind is not considered, there is no active force acting on the angle. Friction and
air resistance for dampening the sway is also not considered, thus the resulting Lagrange
equation is equal to zero.

0 =
d
dt

∂

∂ϕ̇
L − ∂

∂ϕ
L (C.59)

The calculations are the same as the previous, with each term done separately as before.
Firstly, the terms without ϕ̇ are eliminated. Then, the partial derivative in terms of ϕ̇ is
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done;

d
dt

∂

∂ϕ̇

(
1
2

ml

(
2lẏtϕ̇cos(ϕ) + l2ϕ̇2cos2(ϕ) + l2ϕ̇2cos2(θ)sin2(ϕ) + 2ll̇ϕ̇sin2(θ)sin(ϕ)cos(ϕ)

+ 2l2θ̇ϕ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ)
))

=
d
dt

(
ml lẏtcos(ϕ) + ml l2ϕ̇cos2(ϕ) + ml l2ϕ̇cos2(θ)sin2(ϕ) + ml ll̇sin2(θ)sin(ϕ)cos(ϕ)

+ ml l2θ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ)
)

(C.60)

Next, the above equation is derived in terms of time:

d
dt

∂

∂ϕ̇
=

d
dt

(
ml lẏtcos(ϕ) + ml l2ϕ̇cos2(ϕ) + ml l2ϕ̇cos2(θ)sin2(ϕ) + ml ll̇sin2(θ)sin(ϕ)cos(ϕ)

+ ml l2θ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ)

)
= ml l2ϕ̈ + ml l2ϕ̈sin2(θ)sin2(ϕ) + ml ll̈sin2(θ)sin(ϕ)cos(ϕ) + ml lÿtcos(ϕ) + 2ml ll̇ϕ̇

+ ml l2θ̈sin(θ)cos(θ)sin(ϕ)cos(ϕ) + ml l̇ẏtcos(ϕ)− ml lẏtϕ̇sin(ϕ) + ml ll̇ϕ̇sin2(θ)

− ml l2ϕ̇2sin2(θ)sin(2ϕ) + ml l2θ̇2cos(2θ)sin(ϕ)cos(ϕ) + ml l̇2sin2(θ)sin(ϕ)cos(ϕ)

+ 2ml ll̇θ̇sin(2θ)sin(ϕ)cos(ϕ)− ml l2θ̇ϕ̇sin(2θ)sin2(ϕ) + ml l2θ̇ϕ̇sin(θ)cos(θ)cos(2ϕ)

(C.61)

Calculating ∂
∂ϕ L from Equation C.59 separately

∂

∂ϕ

(
1
2

ml

(
2l̇ẏtsin(ϕ) + 2lẏtϕ̇cos(ϕ) + l̇2sin2(ϕ) + l̇2cos2(θ)cos2(ϕ) + l2θ̇2sin2(θ)cos2(ϕ)

+ l2ϕ̇2cos2(ϕ) + l2ϕ̇2cos2(θ)sin2(ϕ) + 2ll̇θ̇sin(θ)cos(θ)sin2(ϕ) + 2ll̇ϕ̇sin2(θ)sin(ϕ)cos(ϕ)

+ 2l2θ̇ϕ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ)
)
+ml glcos(θ)cos(ϕ)

)
= ml l̇ẏtcos(ϕ)− ml lẏtϕ̇sin(ϕ) + ml l̇2sin(ϕ)cos(ϕ)− ml l̇2cos2(θ)sin(ϕ)cos(ϕ)

− ml l2θ̇2sin2(θ)sin(ϕ)cos(ϕ)− ml l2ϕ̇2sin(ϕ)cos(ϕ) + ml l2ϕ̇2cos2(θ)sin(ϕ)cos(ϕ)

+ 2ml ll̇θ̇sin(θ)cos(θ)sin(ϕ)cos(ϕ) + ml ll̇ϕ̇sin2(θ)cos(2ϕ) + ml l2θ̇ϕ̇sin(θ)cos(θ)cos(2ϕ)

− ml glcos(θ)sin(ϕ)
(C.62)
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Re-introducing every term into Equation C.59:

0 =ml l2ϕ̈ + ml l2ϕ̈sin2(θ)sin2(ϕ) + ml ll̈sin2(θ)sin(ϕ)cos(ϕ) + ml lÿtcos(ϕ) + 2ml ll̇ϕ̇

+ ml l2θ̈sin(θ)cos(θ)sin(ϕ)cos(ϕ)− 2ml ll̇ϕ̇sin2(θ)sin2(ϕ) + 2ml ll̇θ̇sin(2θ)sin(ϕ)cos(ϕ)

+ ml l2ϕ̇2cos2(θ)sin(ϕ)cos(ϕ) + ml l2θ̇2cos2(θ)sin(ϕ)cos(ϕ)− ml l2θ̇ϕ̇sin(2θ)sin2(ϕ)

+ ml glcos(θ)sin(ϕ)
(C.63)

Isolating ϕ̈, the last equation can be derived, Equation C.64.

ϕ̈ =
1

l (1 + sin2(θ)sin2(ϕ))

(
−l̈sin2(θ)sin(ϕ)cos(ϕ)− ÿtcos(ϕ)− 2l̇ϕ̇ + 2l̇ϕ̇sin2(θ)sin2(ϕ)

− lθ̈sin(θ)cos(θ)sin(ϕ)cos(ϕ)− 2l̇θ̇sin(2θ)sin(ϕ)cos(ϕ)− lϕ̇2cos2(θ)sin(ϕ)cos(ϕ)

− lθ̇2cos2(θ)sin(ϕ)cos(ϕ) + lθ̇ϕ̇sin(2θ)sin2(ϕ)− gcos(θ)sin(ϕ)
)

(C.64)



Appendix D

Computed Torque Matrices

The final form of the matrices that form the dynamic system can be seen in the following
equations:

M(z) =


mt + ml +

Jx
r2

x
− mlcos2(θ)− m2

l sin2(θ)

ml+
4Jl
r2
l

, 0, 0

0, ml +
4Jl
r2

l
, 0

0, 0, l

 (D.1)

C(z, ż)ż =



0, 0, ml lθ̇sin(θ)

(
1 − ml

ml+
4Jl
r2
l

)

0, 0, ml lθ̇ −
m2

l lθ̇sin2(θ)

1− ml

ml+
4Jl
r2
l


mt+ml+

Jx
r2
x
−mlcos2(θ)−

m2
l sin2(θ)

ml+
4Jl
r2
l



0, −2θ̇, −
ml lθ̇sin(θ)cos(θ)

1− ml

ml+
4Jl
r2
l


mt+ml+

Jx
r2
x
−mlcos2(θ)−

m2
l sin2(θ)

ml+
4Jl
r2
l





(D.2)

V(z)ż =



−Bx, ml Blsin(θ)
ml+

4Jl
r2
l

, 0

− Bxmlsin(θ)

mt+ml+
Jx
r2
x
−mlcos2(θ)

m2
l sin2(θ)

ml+
4Jl
r2
l

, −Bl −
m2

l Blsin2(θ)(
ml+

4Jl
r2
l

)mt+ml+
Jx
r2
x
−mlcos2(θ)−

m2
l sin2(θ)

ml+
4Jl
r2
l


, 0

Bxcos(θ)

mt+ml+
Jx
r2
x
−mlcos2(θ)−

m2
l sin2(θ)

ml+
4Jl
r2
l

, − ml Blsin(θ)cos(theta)(
ml+

4Jl
r2
l

)mt+ml+
Jx
r2
x
−mlcos2(θ)−

m2
l sin2(θ)

ml+
4Jl
r2
l


, 0


(D.3)
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G(z) =



ml gsin(θ)cos(θ)

(
1 − ml

ml+
4Jl
r2
l

)

ml gcos(θ)−
m2
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