
AI Generated
Feedback for

Students’
Assignment
Submissions

A case study in generating feedback for students’ submissions
using ChatGPT

Lars Nysom

Assistant Professor

University College of Northern Denmark

lany@ucn.dk

August 2023

Lars Nysom AI Generated Feedback

1

Abstract

In the evolving landscape of education, the transformative potential of AI is gaining
momentum. While AI-powered systems contribute to teaching, a void persists in
generating personalized feedback for assignments. This study bridges this gap by
integrating AI-generated feedback within the UCN didactical framework, exploring a
resource-efficient, student-centric approach.

The study delves into prerequisites to empower a chatbot, utilizing a generative language
model like ChatGPT, to craft tailored feedback for assignments. Educational context,
assignment specifics, evaluation criteria, and an indicative solution serve as input
prompts, generating valuable feedback aligned with lecturer perspectives. The analysis
of AI-generated feedback for the assignments included in the case study reveals
consistent quality.

Developing a feedback system extends beyond ChatGPT, as reliability demands lecturer
validation pre-student receipt, ensuring transparency. A pipeline leveraging the OpenAI
API is proposed for operationalization. This efficient approach resonates with
personalized feedback objectives, complementing pedagogical methods and prompting
subsequent dialogues.

The study's conclusion synthesizes findings and contemplates AI integration
implications. Insights emerge on benefits and challenges, guiding future research.
Establishing AI's role in feedback augments educational needs, fostering enriched
student engagement.

Lars Nysom AI Generated Feedback

2

Table of Content

1. Introduction .. 3

1.1. Problem Statement .. 3

1.2. Problem Definition ... 4

2. Crafting Feedback to Students ... 5

3. Applying AI in Teaching ... 7

3.1. Neural Networks ... 8

3.2. Generative Language Models .. 10

3.3. Large Pre-Trained Language Models ... 10

3.4. ChatGPT... 11

3.5. Prompt Engineering.. 12

4. Method ... 13

4.1. Case study ... 13

4.2. Assignment Cases .. 14

4.3. Evaluation ... 18

4.3.1. Expert Feedback Evaluation .. 18

4.3.2. Student Feedback Perception ... 18

5. Generating Feedback for Cases.. 19

5.1. Case 1: Review Question .. 19

5.2. Case 2: Programming Assignment .. 22

5.3. Case 3: The Formal Essay .. 25

5.4. Summary of Case Studies ... 28

6. Operationalized Feedback ... 28

6.1. Pipeline .. 29

6.2. System Description ... 30

6.2.1. Applications and Services ... 31

6.2.2. Calling OpenAI API .. 32

6.2.3. Student User Interface ... 34

6.2.4. Lecturers User Interface .. 35

7. Conclusion ... 36

Lars Nysom AI Generated Feedback

3

1. Introduction
In recent years, the increasing availability and advancements in AI technologies have
opened new possibilities for enhancing various aspects of education. One such area is
the generation of feedback on student hand-ins, which plays a crucial role in fostering
student growth and improving their understanding of subject matter. This case study
explores the integration of ChatGPT, an AI language model, into the feedback
generation process in the context of applied computer science education.

At the Computer Science programme at University College of Northern Denmark
(UCN) in Aalborg, the subject of programming as well as technology and system
development are taught during the first three semesters. In most of these subjects, the
students work with different assignments where they hand in a synopsis, an extended
abstract, or a piece of software code they have produced.

We encourage the students to reflect over problem solutions rather than learn practices
by heart, so we much prefer assignments there has no fixed solution, that forces the
students to search for knowledge and reflect over the content of their answer more than
remember a phrase or a sentence from a book, since we believe that it will prepare them
better for a job in the industry. Also, one objective for the programme is that the
students become able to assess practice-related problems in relation to computer
systems and select solution options [1]. A characteristic feature in an open assignment
is that it does not have a single solution, even though the question or task is well defined,
the answers can be formulated in different ways and an assignment that results in a piece
of software, can also be programmed differently and still work and contain all the
requested properties.

In these cases, feedback is a very important part of the learning experience, and it is
essential that it is valid and continuous. The fundamental difference between effective
teaching and merely giving out content is, from our point of view, that effective teaching
includes giving constructive feedback. The students must therefore receive feedback
that is adapted to their individual assignment submissions, which can be an enormous
and very time-consuming task for the lecturer.

Due to lack of resources, individual feedback is rarely given and, even though it is the
best option for the individual student, it is only given after major project work, and in
some cases, only on a group basis and orally. Another form of feedback is an indicative
solution to the assignment, and it is then up to the students to self-assess their own
solution or do a peer review. The experience is, however, that the students gain little
from this because of the informal and unstructured approach, and they prefer
personalized and specific written feedback, so they can review it and reflect on their
solution.

1.1. Problem Statement

At UCN we consider these limitations in giving good feedback a problem which
prevents us from delivering good and up-to-date education and we are considering ways
to provide the students with better and more consistent feedback within the financial
framework we are subject to, or in other words, we want to provide lecturers with a tool
that can help them in creating a less generic and more specific feedback to individual
students, considering that time and resources are limited.

Lars Nysom AI Generated Feedback

4

Artificial intelligence (AI) has recently been the subject of much debate, including also
in connection with education and study work, but the prospect of students cheating for
an exam or use AI to write reports takes up most of it. However, it cannot be denied
that it is a tool that can be utilized in many ways, and it is therefore worth examining
for its usefulness in aiding lecturers giving feedback to student’s assignment
submissions.

One popular tool is ChatGPT developed by OpenAI1 which is a natural language
processing tool driven by AI technology that allows you to have human-like
conversation with it. It is trained to follow an instruction in a prompt and provide a
detailed response [2] [3]. In this study we will investigate how ChatGPT can be used to
generate feedback for individual assignment submissions from our students.

The hypothesis for this project is that an AI assisted feedback system will be beneficial
for the lecturers because they do not have to spend a lot of time testing or thoroughly
understand a student’s solution to a given assignment and subsequently write feedback.
They only need to read the feedback generated by the AI and validate the quality of it,
make corrections, if necessary, and give it to the student. Also, the lecturer has the
possibility to refer to previous given feedback for similar assignments to track individual
students progress and to adapt the didactic and pedagogical approach to the subject.
This can be of benefit to the students because they get concrete written suggestions for
improvements they can use in upcoming assignments. Other gains are that the AI
provides fair and open-minded feedback to all students, regardless of factors unrelated
to the assignment (e.g., absence from lectures, political standpoints, etc.).

1.2. Problem Definition

Even though there are already systems that can support teaching using AI (e.g., Coding
Rooms2, MyViewBoard Sens3), we have not found any product that is specifically able
to generate personalized feedback for general assignments which is more suitable for
our didactical method at UCN which is based on three concepts that students must
perform – experience, reflect, and act [4].

Based on the assumption that utilizing AI in the process of providing students with
constructive feedback on their assignments is helpful for the lecturers, save resources,
and is beneficial for both lecturers and students, this report aims to provide an answer
to the following three questions:

1. What is needed to let a chatbot that adopts a generative large pretrained
language model such as ChatGPT generate feedback for a student’s suggested
solution to an assignment?

2. Are any specific kind of assignments better suited for generating feedback?

If we find that an AI can generate personalized feedback to a student’s assignment, the
next step is to describe a formalized system where submissions can be uploaded by the
students after which they receive the feedback. This can be expressed in this final
question, that this study will try to answer:

1 https://openai.com/chatgpt
2 https://www.codingrooms.com
3 https://myviewboard.com/products/sens/

Lars Nysom AI Generated Feedback

5

3. How can the process of giving feedback to students be operationalized?

2. Crafting Feedback to Students
Feedback is an essential component of the learning process in higher education. As
educators, providing constructive and meaningful feedback to university college
students is crucial for their academic and personal growth. In UCN’s basic didactical
principles, feedback is described as an important part of the continuous dialog with the
students about their work and learning process, where the lecturer, students and fellow
students are in a targeted partnership about the work's qualities and development
potential [4].

Feedback is therefore defined as a part of the dialog with each individual student about
their learning process, and as such encourages using oral feedback more than written.
There are good reasons for this as the general understanding of feedback has changed
over the years from a linear approach to a more interactive one based on dialog between
lecturer and student [5].

The scope of this project is, however, not to determine if written feedback is better than
oral, but only to accommodate a request for written feedback from the students. Also,
the definition for good feedback in UCN’s didactical approach is rather vague since it
is based on dialog and in that context will adapt according to the specific scenarios it is
given in. The purpose is to encourage the students to reflect and think innovative by
asking them “why”-questions rather that telling them “how” or “what” in relation to
their work [5]. To force the students to reflect we prefer to give feedback as part of a
dialog with the students and with an intuitive approach where we for instance ask a
question like “why have you chosen this technology” or “why does your
implementation of the singleton design pattern not work”. Feedback is an essential tool
when it comes to innovative thinking, where the student becomes able to push to
already existing solutions they have previously developed, without telling them how.

We have observed that the students seldom take elaborate notes in the feedback
situation, even if they are encouraged to do so, and the information is, to a certain
degree, often forgotten a few days later, especially when it comes to smaller and less
important details. It is also not possible for them to go back to earlier submissions for
a recap of the information that was given.

In the light is this ad hoc approach for giving feedback, providing the students with
written feedback is unsolicited in the context of UCN’s didactical approach, and there
are not any guidelines on how to structure this. To make it fit into the lessons it must
be perceived as a tool for enhancement of the dialog between student and lecturer with
the purpose of contributing to students’ overall learning journey.

To do that, feedback should not only highlight areas for improvement but also
acknowledge students’ strengths and successes. A balance between positive
reinforcement and constructive criticism fosters a supportive learning environment and
encourages students to build upon their existing skills and knowledge.

Vague or general feedback can be confusing and discouraging to students. Instead, we
should offer specific comments on their work, pinpointing areas that require attention
and offering actionable steps for improvement. This helps students understand the
precise changes they need to make and boosts their confidence in implementing those
changes effectively.

Lars Nysom AI Generated Feedback

6

To summarize good feedback should incorporate the following properties to create a
supportive and productive learning environment:

Acknowledgement: Feedback that starts with acknowledging the student's efforts and
achievements. This creates a positive tone and demonstrates that their work has been
recognized, helping to build a rapport between the student and the instructor.

Guidance: Feedback that provides direction and advice on how to improve. It goes
beyond simply pointing out mistakes, offering suggestions on how to enhance their
understanding and skills. This could involve recommending resources, suggesting
alternative approaches, or providing references for further study.

Constructive: Feedback that is designed to be helpful and encouraging. It highlights
both strengths and areas for improvement, aiming to foster a sense of progress and
growth. It avoids being overly negative or discouraging, focusing on the student's
development.

Specific: Feedback that is detailed and specific to the student's work. It avoids vague
statements and generalizations, pinpointing exactly what aspects of their work are
strong and what needs improvement. Specific feedback allows the student to
understand the context and apply changes effectively.

Actionable: Feedback that suggests actionable steps for improvement. It goes beyond
just identifying issues by providing concrete advice on how to address those issues. This
empowers the student to make meaningful changes and see immediate progress.

Highlights areas for improvement: Feedback that doesn't just focus on strengths but
also points out specific areas where the student can enhance their skills or
understanding. It helps the student prioritize their efforts and focus on aspects that will
lead to significant growth.

To be able to assess the quality of feedback, we will do a small comparison
between what is considered good and bad feedback. The assignment below is
imaginary, and the feedback examples are made to highlight the qualitative
differences.

Assignment:

Design a simple login system using Python that takes a username and password,
checks them against a predefined list of credentials, and grants access if the
credentials are valid. Provide comments in your code to explain each step.

Bad feedback:

Your explanation is confusing, and I don't get what you're trying to say. Your
code doesn't make sense. It's not what I expected, and you need to improve your
code and explanations.

Good feedback:

Your code successfully checks credentials but consider using functions to
improve modularity. Your comments provide a clear outline of the steps in your
code. To take it further, you can explain the reasoning behind your choice of the

Lars Nysom AI Generated Feedback

7

list data structure and explore how this might affect performance with larger
datasets.

Analysis:

The bad feedback is unhelpful, vague, and overly negative. It lacks specificity,
guidance, and constructive elements that can guide the recipient toward
improvement.

The good feedback on the other hand is constructive, specific, actionable, and
delivered in a supportive and respectful manner. It helps the recipient understand
both their strengths and areas for improvement, guiding them toward enhancing
their skills and performance.

By understanding the role of the written feedback and how it fits into the didactics of
UCN, we can create a feedback culture that empowers students to thrive academically
and personally. As a result, students become more self-aware, motivated, and confident
learners, better equipped to achieve their academic and professional goals.

3. Applying AI in Teaching
In the realm of education, the integration of AI has emerged as a transformative force,
offering new possibilities to enhance the learning experience for students. In this case
study we will explore the application of AI in the generation of personalized feedback
for students’ assignment submissions.

AI-powered generative language models have demonstrated remarkable capabilities in
understanding and producing human-like text. Leveraging their proficiency in natural
language processing, these models hold the potential to generate coherent and
contextually relevant feedback on students' work. By analyzing the intricacies of the
submitted assignments and referencing vast repositories of knowledge, these language
models can produce detailed and targeted feedback that addresses individual students'
strengths and weaknesses. This personalized approach to feedback not only encourages
continuous improvement but also fosters a more engaging and dynamic learning
environment.

Central to this research is the exploration of large pre-trained language models, which
have showcased unparalleled linguistic prowess across a myriad of language tasks. The
pre-training process on vast datasets equips these models with a deep understanding of
grammar, semantics, and subject-specific knowledge, making them ideal candidates for
providing insightful and domain-specific feedback. By fine-tuning these models on
educational data and assignment samples, their ability to offer precise and accurate
feedback can be honed, significantly enhancing the overall learning experience for
students [6] [7].

Throughout this case study, we will delve into the practical implications of applying AI
in generating feedback for students’ assignment submissions. By experimenting with
generative language models and large pre-trained language models, we seek to uncover
the potential benefits and challenges associated with AI-driven feedback in education.

The goal of this research is to push the boundaries of educational technology and
redefine the feedback process, paving the way for more effective and personalized
learning experiences. By marrying the capabilities of AI with the expertise of educators,

Lars Nysom AI Generated Feedback

8

we envision a future where students receive tailored feedback that nurtures their
academic growth and fosters a deeper understanding of the subject matter.

3.1. Neural Networks

A neural network is a computational model inspired by the structure and function of
the human brain's neural networks. It is a type of machine learning algorithm that is
used for various tasks, including pattern recognition, classification, regression, and
more. The basic building block of a neural network is a neuron, which is a mathematical
function that takes input, processes it using weights and biases, and produces an output.
Neurons are organized into layers, with each layer connecting to the next, forming a
network-like structure. The first layer is the input layer where the network receives data
to be processed and the last the output layer, with the layer in between, which can be
multiple, is called the hidden layer. [8] [9].

Figure 1: Layers in a neural network

Each individual neuron in the network is composed of input, weight, bias, and output.
The weight represents the importance of that input in determining the output. Higher
weights mean that the input has a larger influence on the outcome. Bias in a neural
network is like an inherent inclination or prejudice for or against a particular outcome.
It serves as an additional parameter that aids the network in making decisions. In the
context of neural networks, bias helps shift the output of the neuron either up or down,
ensuring flexibility in the decision-making process.

In a neural network, a neuron receives various inputs. Each of these inputs has an
associated weight, indicating its importance. The neuron multiplies each input by its
weight and then combines these products into a single sum. This sum is then processed
by an activation function, which gives an output value. If this output value is above a
certain set limit or threshold, the neuron is considered activated and sends its output to
the following layer. This means that the output from one neuron can serve as an input
for a neuron in the next layer.

Consider a scenario where a student, named Alice, is faced with a multiple-choice
question on her test. To determine if she will answer it, she considers several factors:

Inputs: These represent the different pieces of information Alice remembers or pieces
of knowledge that might help:

 Did I study this topic? (Yes: 1, No: 0)
 Did my friend discuss this with me? (Yes: 1, No: 0)
 Did my teacher emphasize this during a lecture? (Yes: 1, No: 0)

Lars Nysom AI Generated Feedback

9

Weights: Each piece of remembered information does not have equal importance in
helping Alice decide. Weights are like confidence levels:

 Studying is the most reliable source of knowledge for Alice (Weight = 5).
 Discussions with friends are sometimes helpful but not always accurate (Weight

= 2).
 Alice trusts her teacher’s emphasis because important topics are usually

highlighted (Weight = 4).

Multiplication and Summation: Just like in our earlier example, Alice multiplies each
piece of knowledge by its weight (importance) and then sums them up. Suppose Alice
studied the topic (Value = 1), did not discuss it with a friend (Value = 0), but the teacher
emphasized it (Value = 1). The total becomes:

(1 ∗ 5) + (0 ∗ 2) + (1 ∗ 4) = 9

Threshold & Activation Function: Alice has an internal confidence threshold. If the
total from the above step is greater than, say, a value of 6, Alice feels confident enough
to answer the question. If not, Alice might leave it or guess.

Since 9 > 6, Alice answers the question.

The example above does not describe the concept of bias, which in a neural network is
like an inherent inclination or prejudice for or against a particular outcome. It serves as
an additional parameter that aids the network in making decisions. In the context of
neural networks, bias helps shift the output of the neuron either up or down, ensuring
flexibility in the decision-making process. This could be integrated in the example as if
Alice has a personal bias towards always attempting questions, even if they are not
entirely confident. This inherent bias can stem from an experience, such as receiving
partial marks for partially correct answers or being advised to never leave questions
unanswered.

Bias Value: We introduce a bias value. This value represents Alice’s inclination to
answer questions even if the other factors are not strongly pointing towards an answer.
Let us give this a value of -2.

Incorporating Bias into the Decision: Using the previous scenario, where the sum
of Alice’s factors was 9, we add the bias:

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 9 + (−2) = 7

The threshold remains 6. So, even after accounting for the bias, Alice’s total confidence
of 7 is still above the threshold, leading her to answer the question.

Despite being negative, which might seem counterintuitive since Alice’s bias is to
attempt questions, the bias did not change her decision. However, biases in neural
networks can often significantly affect the outcome. For instance, if the summation of
the weights and inputs was closer to the threshold, say 7, and Alice’s inherent bias was
-2, then the bias would push the result below the threshold, influencing the decision to
not answer the question.

The process through which the model adjusts its weights and biases, referred to as
internal parameters, is called learning, and improves its performance on a specific task.
These weights are numerical values that determine how the model transforms its inputs

Lars Nysom AI Generated Feedback

10

into outputs. Learning occurs through a process called training, where the model is
provided with input data along with corresponding target outputs, and it adjusts its
weights to minimize the difference between its predictions and the true targets [9].

In the context of a predefined vocabulary of tokens, such as in natural language
processing, the model's inputs are tokenized text sequences, and the weights learn to
represent the relationships between these tokens. Each token is often represented as a
high-dimensional vector (embedding), and the model adjusts these embeddings to
capture semantic meanings and relationships between words.

So, training a neural network involves feeding it with input data and adjusting the
weights and biases iteratively through a process called backpropagation where the model
calculates the gradient of the loss with respect to its weights. Backpropagation uses
optimization techniques like gradient descent to minimize the difference between the
predicted output and the actual target output. This process helps the neural network
learn to make more accurate predictions over time. During the training process, the
model adjusts the weights and biases based on the input data to learn patterns and
relationships within the data [9].

3.2. Generative Language Models

A generative language model is a neural network architecture, specifically based on the
Transformer model, designed for natural language processing tasks [7]. It relies on the
concept of self-attention mechanisms, which allows the model to capture dependencies
between different words in a sentence effectively. The model is "generative" because it
can generate coherent and contextually relevant text by predicting the likelihood of the
next word or token in a sequence given the preceding tokens. Through extensive
training on large corpora of text data, the generative language model learns to model
the statistical patterns and relationships within the language, enabling it to generate
human-like text for various applications, such as machine translation, text completion,
and creative writing [8].

This human-like text is generated in response to prompts. In the context of natural
language processing (NLP), generative language models focus on generating coherent
and contextually relevant text based on the patterns and structures they learn from vast
amounts of training data comprising diverse examples of human language, allowing
them to learn the statistical patterns and relationships between words, phrases, and
sentences.

However, generative language models can sometimes generate outputs that may seem
plausible but are factually incorrect or misleading, especially if the training data contains
biased or unreliable information. Researchers and developers work continuously to
improve these models and make them more reliable and useful for various real-world
scenarios [9] [10].

In other words, a generative language model can take what it has learned from the
examples it’s been shown and create something entirely new based on that information.

3.3. Large Pre-Trained Language Models

A Large Pre-Trained Language Model (LPLM) is a type of artificial intelligence model
designed to understand and generate human language. It is "pre-trained" in the sense
that it has been exposed to vast amounts of text data from various sources before being

Lars Nysom AI Generated Feedback

11

fine-tuned for specific tasks. These models are built using deep learning techniques,
particularly using neural networks [7].

The main idea behind LPLMs is to leverage the vast amount of textual information
available on the internet and use it to train a general language understanding capability.
This pre-training phase involves predicting missing words or next words in a sentence,
given the context of the surrounding words. The model learns to understand the syntax,
grammar, semantics, and other linguistic patterns during this phase.

The most well-known and widely used examples of Large Pre-trained Language Models
include:

GPT (Generative Pre-trained Transformer): Developed by OpenAI, it was one of the
first LPLMs to gain widespread attention. GPT is based on a transformer architecture,
which allows it to handle long-range dependencies in text efficiently [7].

BERT (Bidirectional Encoder Representations from Transformers): Developed by
Google, BERT is another influential LPLM. It introduces a "masked language model"
pre-training task, where it predicts randomly masked words in a sentence, considering
the context [11].

These LPLMs have revolutionized natural language processing (NLP) tasks due to their
ability to generate coherent and contextually relevant text. After pre-training, these
models can be fine-tuned on specific tasks, such as text classification, sentiment analysis,
question-answering, language translation, and more. Fine-tuning involves taking the
pre-trained model and training it further on a smaller, task-specific dataset, thereby
adapting its language understanding to a particular application.

Large Pre-trained Language Models have been widely adopted because they offer
numerous benefits, including:

Transfer Learning: Pre-training allows models to learn general language
representations that can be transferred to various downstream tasks without extensive
training on task-specific data.

Reduced Data Requirements: Fine-tuning on smaller datasets can yield impressive
results, even with limited labeled examples.

Versatility: These models can be applied to a wide range of NLP tasks with only slight
adjustments and achieve state-of-the-art performance in many cases.

3.4. ChatGPT

Chatbot GPT (Generative Pre-trained Transformer) is a language model developed by
OpenAI. It is part of the GPT series of models, which are designed to generate human-
like text based on the input they receive. It is a highly advanced language model that is
trained on a vast amount of data from the internet. It uses a transformer architecture,
which enables it to process and generate text more effectively, making it capable of
understanding context and generating coherent responses.4

4 https://openai.com/chatgpt

Lars Nysom AI Generated Feedback

12

It can interact with users through text-based conversations, answering questions,
providing information, and engaging in natural language dialogues. With over 175
billion learnable elements, it is one of the most powerful language models available. Its
extensive training allows it to perform a wide range of tasks, including language
translation, question-answering, text completion, text generation, and more.

This makes it interesting in relation to this project because it should be able to
understand the same assignments that the students get as well as context about the
assignment, and therefore validate the quality of the student’s submission.

3.5. Prompt Engineering

Prompt engineering refers to the practice of crafting effective prompts or instructions
to interact with a language model like ChatGPT. It involves formulating clear and
specific prompts that guide the model's responses towards the desired output [12] [13].

In the context of using a language model, prompt engineering is important because it
helps achieve more accurate and relevant results. By carefully designing the prompt,
users can influence the model's behavior and steer it towards providing helpful and
informative responses.

Some key aspects of prompt engineering are:

Clarity: A well-crafted prompt should be clear and unambiguous, providing precise
instructions to the model. Vague or ambiguous prompts may lead to unpredictable or
nonsensical outputs.

Context: Including relevant context in the prompt can help the model understand the
desired direction of the conversation. By providing background information or
specifying the desired format, users can guide the model's response more effectively.

Examples: Providing specific examples related to the desired output can help the
model understand the expected format, style, or content. This can improve the
relevance and accuracy of the responses.

System Messages: System messages are instructions or guidance provided to the
model within the conversation. They can be used to set the behavior or role of the AI
assistant in the conversation. System messages are often used to establish a consistent
persona for the model or to remind it of specific guidelines.

Experimentation: Prompt engineering often involves an iterative process of trial and
error. Users may need to experiment with different prompts, parameters, or techniques
to find the most effective approach for their specific use case.

It's worth noting that prompt engineering is not about "hacking" or tricking the model
but rather about providing explicit instructions and guidance to achieve the desired
outcomes. Responsible and thoughtful prompt engineering is essential to ensure that
the model provides accurate, helpful, and ethical responses.

Lars Nysom AI Generated Feedback

13

It I also worth noticing that using the ChatGPT web interface has its issues related to
the prompt. There are certain limitations in place to ensure that the use of AI technology
remains safe, respectful, and appropriate for users5.

4. Method
The Computer Science programme at UCN covers topics from the process of
developing software, technology, and programming and the main goal for the students
is to become software developers. Every assignment the students work with is designed
to help them achieve knowledge, skills, and competencies towards that.

The types of assignments range widely, from programming exercises to multiple-choice
questionnaires to small essays with reflections over a relevant topic or a simple short
review question, it will be relevant for this experiment to select assignments of different
types to be able to find out if some types are better suited or more relevant than others.
A multiple-choice questionnaire typically holds the correct answers when given to the
students, meaning that it is only possible for the student to select a correct or incorrect
answer and feedback can be instant. Also, a solution to a programming exercise seems
at first rather straightforward since it can be evaluated as “if it works, it is correct”, but
there are still parameters that can be looked at and evaluated, for instance how well does
the proposed solution comply with the SOLID principles6 in relation to object-oriented
programming, or could the solution be done in a simpler way with fewer lines of code?
To generate feedback for the student regarding those features would need a thorough
analysis of the code.

4.1. Case study

A case study is a qualitative research method that involves in-depth investigation and
analysis of a specific subject, event, group, organization, or situation. It is commonly
used in various fields, including business, psychology, medicine, social sciences, and
more [13] [14].

This method allows us to delve deeply into a specific AI system or application, in this
case it will be ChatGPT, understanding its unique characteristics and context. This
depth of exploration can uncover nuances and complexities that might be missed in
broader quantitative studies. By focusing on a real AI system, a case study provides a
more authentic and realistic context for understanding how feedback generation works
in practice. This can help bridge the gap between theory and application.

Using the case study method to investigate how feedback could be generated by an AI
can provide several benefits and insights about the subject, and can, because of the
explorative and evolving format, easily be adapted based on our findings along the way.

A case study will be conducted using ChatGPT, based on the three different types of
assignments described in the following section. The assignments were given to students
on the 2nd semester of the Computer Science programme, and they have handed in their
submissions as text files. These submissions will be used individually as input to
ChatGPT along with the description, indicative solution, and evaluation criteria, asking

5 https://openai.com/policies/usage-policies
6 The SOLID abbreviation describes five different principles that must be observed in object-oriented programming

(https://en.wikipedia.org/wiki/SOLID).

Lars Nysom AI Generated Feedback

14

the chatbot to generate feedback. The output from ChatGPT will afterwards be
examined by experienced lecturers to find whether the output is useful or not.

4.2. Assignment Cases

The three assignments that have been chosen for this case study, are from subjects that
are taught in the 2nd semester of the Computer Science programme. They are all
assignments with open solutions, where students would benefit from individual
feedback to highlight their professional strengths and weaknesses and they are also
representing three of the most common assignment types given to students: the review
question, the programming exercise, and the formal essay.

Case 1: A short review question related to the subject of operating systems

Subject Operating Systems

Assignment Briefly explain each state in the Five-State Process model.

Description This is a review question that the student answer by handing in a short description (max.
1200 characters including spaces).

Indicative solution Running: The process that is currently being executed.

Ready: A process that is prepared to execute when given the opportunity.

Blocked: A process that cannot execute until some event occurs, such as the completion
of an I/O operation.

New: A process that has just been created but has not yet been admitted to the pool of
executable processes by the operating system.

Exit: A process that has been released from the pool of executable processes by the
operating system, either because it halted or because it aborted for some reason.

Evaluation Criteria All five states described in the book should be included and described correctly in the
students answer.

Lars Nysom AI Generated Feedback

15

Case 2: A small programming assignment

Subject Programming with Java

Assignment Explain the singleton design pattern and give an example implementation.

Description This is a programming exercise where the students must demonstrate that they are able to
implement a specific programming pattern and explain how it works. The solution must
be handed in as a code-snippet7 where the explanation can be embedded in the code as a
comment.

Indicative answer The Singleton pattern is a creational software design pattern that restricts the instantiation
of a class to a singular instance. This can be done by making the constructor private and
create a public static method in the class that creates and returns an instance once and
subsequently returns that instance.

public class Singleton {
 private static Singleton instance;

 private Singleton() {
 System.out.println("Creating new instance");
 }

 public static Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }
 return instance;
 }
}

public class Main {
 public static void main(String[] args) {
 // Test 1: Create an object
 ProductContainer obj1 = ProductContainer.getInstance();

 // Test 2: Try to create a second object, the first one
should be returned
 ProductContainer obj2 = ProductContainer.getInstance();

 // Test 3: Ensure both references point to the same object
 System.out.println(obj1 == obj2); // This should print
"true"

 // Test 4: Attempt to call the class constructor directly
(should not be possible)
 // ProductContainer obj3 = new ProductContainer(); //
Uncommenting this line should result in a compile-time error
 }
}

Evaluation Criteria The purpose and the functionality of the singleton pattern must be described in a few
sentences.

The sample implementation should ensure that only one instance of an object can be
created, by running tests that:

 Creates an object.

 When trying to create a second object, the first one is returned.

 It must not be possible to call the class constructor directly.

7 A code-snippet in this context is a piece of code that is syntactically correct, but not executable. It is possible to test it,
but not run it without integrating it in an executable program.

Lars Nysom AI Generated Feedback

16

Case 3: A formal essay about a specific topic.

Subject Asynchronous Programming

Assignment Explain the properties of mutual exclusion in concurrent operations using the Dining
Philosophers Problem. Be sure to emphasize on some of the side effects such as deadlock
and starvation and give examples on how they can be solved.

Description In this type of assignment, the students must demonstrate a deeper understanding of a
specific topic. In this case it is the property of mutual exclusion that relates to
concurrency control in asynchronous, or parallel, execution of code where a resource is
shared between concurrent operations.

The students will hand in a short essay with their answer (max. 7200 characters including
spaces)

Indicative answer The Dining Philosophers Problem is a well-known example on the challenges in
concurrent programming related to synchronization issues when accessing shared
resources. Five philosophers dine together at the same table eating from one bowl of
noodles placed at the center of the table. There are five chopsticks placed on the table,
one between every philosopher, and any philosopher needs to pick up both the chopstick
to the left and to the right of him, thus making every chopstick a shared resource. The
philosophers alternate between thinking and eating, and when in thinking mode both
chopsticks are placed at the table making them available for the philosophers next to the
one thinking.

The challenge is to create an algorithm such that no philosopher will starve, which will
happen if all philosophers want to eat at the same time and picks up one chopstick and
waits for the other to be released, which will never happen since they all are waiting.

To solve this, we look at Stallings lists of requirements for mutual exclusion:

1. Mutual exclusion must be enforced: only one process at a time is allowed into
its critical section, among all processes that have critical sections for the same
resource or shared object. When a philosopher has picked up a chopstick, it
will be flagged as in use so no other philosopher can pick it up.

2. A process that halts in its non-critical section must do so without interfering
with other processes. When the philosophers are thinking they are in their
non-critical section of the code where they do not access any shared resource.
If the thinking process halts, it will therefore not affect any other process.

3. It must not be possible for a process requiring access to a critical section to be
delayed indefinitely: no deadlock or starvation. A simple solution is found in
the asymmetric approach where one philosopher picks up the chopsticks in
reverse order, which will remove the problem of all picking up the left
chopstick at the same time. One philosopher will try to pick up the chopstick
to the right, and if he succeeds this will prevent the philosopher next to him to
pick up his left chopstick, and forces him to wait, or the philosopher himself
must wait, until the philosopher next to him is finished. If all philosopher
wants to eat at the same time, there will always be one that cannot eat before
the one next to him is finished.

4. When no process is in a critical section, any process that requests entry to its
critical section must be permitted to enter without delay. When a philosopher
is done thinking and wants to pick up a chopstick, this is allowed only if the
chopstick is placed on the table. This can be done using the synchronized
keyword in Java.

5. No assumptions are made about relative process speeds or number of
processors. Depending on the programming language, decisions about which
processor to use is up to the operating system, which is the case with Java.
Otherwise, this must be handled in another process running independently of
the program running the Dining Philosophers.

6. A process remains inside its critical section for a finite time only. A
philosopher is only allowed eating for a finite time, which must be
implemented in the code.

Lars Nysom AI Generated Feedback

17

Evaluation Criteria All six requirements from Stallings book must be referenced and taken into consideration
in relation to solving the Dining Philosophers Problem.

There are several known solutions to the Dining Philosophers Problem (e.g., Dijkstra’s,
Resource hierarchy, Arbitrator, Chandy/Misra, Asymmetric) and the students should
name and describe at least one.

The cases described above are real assignments given to and answered by students (see
Appendix AAppendix A) who submit a text containing their solution. The submission
should comprehend the descriptions in the assignments and can be their reflections on
the matter, a piece of code or a short concise text. The assignment and the indicative
solution are formulated in natural language, or code, but there will of course be some
variations in them depending on the assignment. For example, in a programming
assignment, the syntactic limitations of the chosen coding language could determine the
formulation of the question. In the same way, the answers to the tasks will be formulated
within such a delimitation, but in addition there will be variations based on the students’
personality, professional level, knowledge, etc. The answers must be evaluated based on
the criteria that defines the correctness of the proposed assignment solution.

To answer the first question from the problem definition (see section 1.2), it is necessary
to work with the structure of the prompt, to make ChatGPT generate promising
feedback for the student’s assignment submission.

1) The educational context must be provided to the prompt so the chatbot can
generate the feedback in the correct academic language.

2) The exact wording of the assignment must also be added to the prompt to
make the model understand what problem the student is trying to solve.

3) A description of what is formally expected of the students’ submissions (e.g.,
type of answer, length, code language, etc.)

4) To be able to identify which criteria the submission must meet, they must also
be provided.

5) The indicative solution to the assignment should also be added to the prompt
since we cannot trust the model to be able to answer the assignment correctly.

6) The student’s submission.

Whether to provide the prompt with the indicative solution or not, has been decided
on the background that ChatGPT is not necessarily able to generate a correct answer
itself. This became apparent in the preliminary work for this case study, where some
conversations with the chatbot indicated that this was indeed the case (see Appendix
C).

Another question that was raised in this process was whether to include a reference to
the literature and sources used in the subject. This was deselected as the data for the
model comes from the internet, and we cannot be sure that the books are available in
the public domain.

To summarize, the form on the input to the chatbot will as a starting point contain the
following:

Context: A short description of the context in which the feedback should be given.
Since all assignments are from the same education, this will be the same for all the cases
and will contain the level of education, the purpose of the request, what information is
provided in the prompt, and what type of assignment is in question.

Lars Nysom AI Generated Feedback

18

Assignment, Indicative solution, Evaluation Criteria: These three will be sent to
the chatbot as they are described in the cases above.

Students Submission: The text that constitutes the student's assignment submission,
cleared of personal information such as name or class.

The second question in the problem statement requires a comparison of the generated
feedback for the different types of assignments, which can be difficult since they are
different and shared properties used for comparison can be hard to identify. However,
the generated feedback needs to be evaluated and validated by both experts and students
to make sure it is valid and useful for the students, so based on such an assessment, it
can be established if some assignment types are better suited than others. In other
words, a grading of the quality of the generated feedback must be done between the
different assignment types.

4.3. Evaluation

The findings from the evaluation and student perception study are analyzed and
discussed. The strengths and limitations of using ChatGPT for feedback generation in
applied computer science education are critically examined. Factors such as accuracy,
efficiency, scalability, and adaptability to different assignments and educational settings
are considered.

If the evaluation of a generated feedback fails, it simply cannot be considered useful,
and we must reconsider if the prompt could be changed and how. As mentioned in the
previous section, both experts and students should evaluate the generated feedback to
be able to make a qualified assumption of its usefulness. It could however be
questioned; does it make sense to have students evaluate? From their perspective there
will be no difference if they were provided with human-generated feedback or AI-
generated, and before this they were only used to self-assess against the indicative
solution. It would make more sense to involve the students in relation to the third and
last question from the problem definition since they would constitute most of the user
group and should be considered as such in relation to operationalizing the feedback
process. That said, the students can still contribute information about the content of
the generated feedback in relation to the feedback, or lack thereof, they receive today
so this will be the focus.

4.3.1. Expert Feedback Evaluation

Two experienced professors that are familiar with the specific domain of applied
computer science will first evaluate the students’ assignments and then evaluate the
quality and effectiveness of the feedback generated by ChatGPT compared to their own.
This is to compares the AI-generated feedback against human-generated feedback for
a set of hand-ins and metrics such as accuracy, clarity, and relevance are considered.

4.3.2. Student Feedback Perception

To gauge the perception and acceptance of feedback by students, a survey or interviews
will be conducted later. The students will be asked to compare the AI-generated
feedback with the feedback forms they normally receive which is an indicative solution
or general lecturer-provided feedback in plenum and provide their opinions on its
usefulness, comprehensibility, and potential for improvement. This will take place when
the first prototype is ready for testing in a realistic environment.

Lars Nysom AI Generated Feedback

19

5. Generating Feedback for Cases
In the following section, the students' submissions to the three cases will be reviewed
and the lecturers will summarize their observations and comments. It is important to
emphasize that this is not normal practice, and the students will normally only be given
the indicative solutions for the purpose of self-evaluation. Nevertheless, we have found
it useful letting the lecturers make comments to compare with the AI-generated
feedback, so that the quality of it can be assessed. The lecturers have been told to
comment the submission in the same way they would if they were to give feedback to
the students, but since some only provides feedback orally, the result shown here is a
summary of several lecturers’ contribution. An important point here is, that the lecturers
are not asked to maintain a specific form or template when generating their feedback,
but they are encouraged to do as they usually do. The feedback texts have been
approved by all before it was added to the report.

The three cases will be reviewed by comparing the comments from the lecturers with
the generated feedback from ChatGPT.

The feedback generated by ChatGPT is quite comprehensive, so it is assembled in
Appendix B and the case reviews will not reference it explicitly.

5.1. Case 1: Review Question

Student 1

The lecturer has evaluated the student’s submission and has the following comments:

The student has answered the question quite thoroughly and includes five stages
in the submitted text. Compared to the indicative solution, it is not a brief
description though, and it exceeds the 1200-character limit. There are two states
that is named slightly wrong compared to the indicative solution and the subject
book, but the student’s description of them demonstrates some understanding
of their purpose. In general, it is a rather vague answer that shows an overall
understanding of the subject without concretizing the five states.

The lecturers point out in their feedback that the student answered the question
thoroughly and included all five stages in the response. Also, that the response is not
brief and exceeds the character limit. Some state names are slightly wrong, and the
overall answer is somewhat vague and lacking concretization.

The AI-generated feedback highlights the strengths of the student’s submission,
showing understanding of the model and some effort to explain each state in their own
words. There are also specific and constructive suggestions to improve the response,
addressing issues related to length, accuracy, terminology, completeness, and focus.

The AI-generated feedback is comprehensive and constructive, offering praise for what
the student did well and providing clear guidance on how to enhance their submission.
By pointing out strengths, such as understanding the model and trying to explain the
states, the student gains confidence and motivation. The feedback's areas for
improvement are specific and actionable, giving the student a roadmap to enhance their
response effectively.

Lars Nysom AI Generated Feedback

20

In contrast, the lecturers feedback focuses on general observations of the submission
without providing actionable steps for improvement. While it acknowledges the
thoroughness of the answer, it lacks specific guidance on how to address the identified
issues, such as exceeding the character limit, using inaccurate state names, and offering
vague descriptions. As a result, the feedback may not be as beneficial for the student's
growth and improvement.

The AI-generated feedback encourages the student to be more concise and accurate
while emphasizing the importance of using the correct terminology. It also directs the
student to explicitly describe all the required states and stay focused on the model itself.
Finally, the feedback offers a revised suggestion that serves as a model for the student
to follow when revising their response.

Student 2

The lecturer has evaluated the student’s submission and has the following comments.

This answer covers all five states in the model and shows an overall
understanding of their individual purpose.

Comparing the two feedbacks, the AI-generated feedback is more detailed, specific, and
helpful for the student’s learning and improvement, where the lecturers’ feedback is too
vague and general. While it acknowledges that the answer covers all five states and
shows an overall understanding, it lacks the crucial details and specific pointers needed
for improvement.

The AI-generated feedback provides details on each state in the Five-State Process
model, pointing out the specific inaccuracies and inconsistencies in the student’s
descriptions. This specificity helps the student understand precisely where they went
wrong and what needs improvement. Not only identifies this feedback the errors, but
it also offers constructive criticism on how to correct them, which guides the student
towards the right direction and helps them rectify their mistakes. It also emphasizes the
importance of clarity and precision in the descriptions and provide clear and concise
definitions for each state, ensuring the student understands the correct way to explain
each state in the model.

In conclusion, the AI-generated feedback is the most useful for the student. It addresses
the inaccuracies, provides constructive criticism, offers a revised version, and evaluates
the submission comprehensively. This kind of feedback not only helps the student
improve their assignment but also enhances their understanding of the subject matter,
making it a more valuable learning experience.

Student 3

The lecturer has evaluated the student’s submission and has the following comments.

The student covers all five states in the model. However, it is not all states that
are described correct. A process is not blocked by the CPU, but for example by
an I/O request where the process is forced to wait until the request is answered.
The explanation of the Ready state is not precise enough.

The lecturers’ feedback acknowledges that the student covers all five states in the model
and points out and clarifies that the student got it wrong according to a process that is

Lars Nysom AI Generated Feedback

21

blocked and why. It also points out that not all states are described correct but does not
specify which states are described incorrectly. Neither does it provide guidance on how
to improve the explanation of the "Ready" state.

The AI-generated feedback provides specific remarks on each state, highlighting what
the student got right and what needs improvement. It suggests clarifications and
elaborations for each state, helping the student understand the concepts better. It is a
little fussy though and calls out minor inaccuracies, but it is not clear which states are
inaccurate without a comparison to the student’s original submission. Also, it says the
students’ explanation for the “exit” state is acceptable, but the student has not
mentioned this state in the submission.

Example 4: Excerpt from AI-generated feedback

Exit: The student's explanation is acceptable as it correctly mentions that a
process in the "Exit" state has been released from the pool of executable
processes by the operating system, either because it halted or aborted.

A quick comparison with the indicative solution reveals that the AI might have wrongly
perceived that as a part of the students’ submission. However, this does not apply to
the rest of the submission.

Example 5: Excerpt from indicative solution

Exit: A process that has been released from the pool of executable processes by
the operating system, either because it halted or because it aborted for some
reason.

Even so, the AI-generated feedback is more useful and effective for the student’s
learning and improvement. It provides constructive criticism, specific areas for
improvement, and clear suggestions on how to enhance the submission. It
acknowledges the student’s effort and points out the areas where the student
demonstrates a basic understanding. Moreover, the AI-generated feedback offers a
revised and improved submission, making it easier for the student to comprehend the
correct explanations for each state. It is necessary to make changes before the student
get it back.

In contrast, the lecturers’ feedback is less specific and fails to provide the necessary
guidance for the student to correct their errors. It only points out the presence of
inaccuracies without specifying which states need improvement or how to enhance the
explanations.

Yes

No

Neutral

Table 1: Submission meet evaluation criteria

Evaluation Criteria Student 1 Student 2 Student 3

All five states described in the book should be included and
described correctly in the students answer.

Yes Yes No

Lars Nysom AI Generated Feedback

22

Table 2: Feedback quality comparison summary

Criteria for good feedback

Student 1 Student 2 Student 3

Human AI Human AI Human AI

Acknowledgement

Guidance

Constructive

Specific

Actionable

Highlights areas for improvement

5.2. Case 2: Programming Assignment

Student 1

The lecturer has evaluated the student’s submission and has the following comments.

The explanation demonstrates an understanding of how the singleton pattern
works. However, the implementation lacks a private constructor, which means
the class can be instantiated more than once and is therefore not a singleton. If
the code included a test to prove that it was in fact an implementation of a
singleton, this could have been discovered.

The lecturers feedback recognizes the student's understanding of how the Singleton
pattern works, which is a positive aspect. It also points out a major flaw in the
implementation – the absence of a private constructor, which renders the class
incapable of being a true singleton.

It might be debatable if the feedback provides specific guidance on how to fix the issue
with the missing constructor. The sentence: “the implementation lacks a private constructor”
can be interpreted as the correct solution will be to add a private constructor, however
it could be made crystal clear with an example implementation of the pattern and an
explanation of the impact of adding private constructors to a class. It does state though,
that a test would have been helpful to identify this specific issue, but again without
providing guidance how. It does not mention the general importance of including a test
to verify the implementation’s correctness.

The AI-generated feedback is organized into distinct sections, addressing both the
purpose of the Singleton pattern and the implementation evaluation. It also provides
constructive suggestions for improvement, including specific tests that need to be
included.

While this is more comprehensive than the first, it doesn't clearly praise the student for
understanding the Singleton pattern and providing a reasonable implementation. It
could also have emphasized the positive aspects more explicitly before diving into the
areas for improvement.

Overall, the AI-generated feedback is more detailed and helpful. It takes a more
constructive approach by not only pointing out the areas that need improvement but

Lars Nysom AI Generated Feedback

23

also providing specific suggestions on how to improve the assignment. It also provides
a clear evaluation criterion, such as purpose, functionality, and sample implementation,
which helps the student understand what aspects to focus on. The feedback emphasizes
the importance of including tests to validate the correctness of the implementation,
which is crucial for assessing whether the code follows the Singleton pattern correctly.

Student 2

The lecturer has evaluated the student’s submission and has the following comments.

This submission lacks a sample implementation, and all the explanation
illuminates, is a basic understanding of the purpose of the pattern and an example
on its use.

The lecturers feedback points out that the student has a basic understanding of the
purpose of the Singleton pattern, which indicates some level of comprehension. It also
highlights the presence of an example on the use of the pattern in the submission.

However, the feedback is mostly negative, mentioning the lack of a sample
implementation without providing specific guidance on how to improve it. It doesn't
acknowledge any positive aspect of the student's submission, which might be
demotivating. The feedback is too brief and doesn't provide constructive feedback or
evaluation criteria to guide the student's improvement.

The AI-generated feedback provides specific points of improvement, highlighting the
need for more clarity and precision in the explanation of the Singleton pattern’s purpose
and functionality, as well as acknowledging the students’ correct understanding of the
Singleton pattern’s core concept. It points out that the student has implemented the
pattern correctly and appreciates the relevance and effectiveness of the tests provided
by the student, which is wrong since the student has not submitted any implementation.
As for case 1, it seems like the AI takes the indicative solution and thinks it is part of
the students’ submission, since it mentions specifically that a private static instance
variable, a private constructor, and a public static method to retrieve the instance are
defined.

It could have included more positive reinforcement to motivate the student and build
confidence in their understanding of the Singleton pattern. The feedback could also
have given more guidance on how to improve clarity and precision in the explanation
as well as an example implementation of the pattern (e.g., the indicative solution).

Despite its shortcomings, the AI-generated feedback is still more comprehensive and
constructive than the human-generated. It highlights both the strengths and areas for
improvement in the student’s submission and it acknowledges the correct
understanding of the Singleton pattern and providing specific guidance on how to
enhance the explanation.

On the other hand, the human-generated feedback is rather discouraging, focusing only
on the absence of a sample implementation, and giving little constructive input. It does
not give credit for the student’s basic understanding or acknowledge any positive
aspects of the submission.

The error in the generated feedback points out the necessity of human validation before
it is given back to the students.

Lars Nysom AI Generated Feedback

24

Student 3

The lecturer has evaluated the student’s submission and has the following comments.

The student explains the overall purpose of the singleton design pattern but is
wrong in relation to the implementation. The initializer method cannot be
private, as in that case no instances of the class can be created at all. the
implementation lacks a constructor even though it is mentioned in the
explanation that a private constructor is needed to implement the pattern.

The lecturers feedback clearly highlights the incorrect points in the student's
explanation and implementation. It provides specific details on what is wrong with the
implementation, such as the incorrect private modifier for the initializer method and
the lack of a constructor. There is a lack of constructive guidance on how to improve
the assignment and it does not mention any positive aspects of the submission.

The AI-generated feedback acknowledges the student’s basic understanding of the
Singleton pattern and provides detailed constructive feedback on the purpose,
functionality, and implementation of the pattern. It points out the error in the
implementation but downplays the severity of it by calling it a “small issue”, which it is
not.

The modified description and implementation examples provided are clear and accurate
and it includes suggestions for adding test cases, which were part of the evaluation
criteria and is valuable for the student as it helps the student to demonstrate a deeper
understanding of the pattern and its practical application. However, it could have been
more explicit in pointing out the specific errors made by the student, especially because
the error in the code means that the implementation does not work at all.

Both feedbacks point out areas for improvement in the student's assignment
submission, but the AI-generated offers constructive criticism and provides specific
directions for improvement. It helps the student to enhance their knowledge and
comprehension of the Singleton design pattern and its implementation.

Yes

No

Neutral

Table 3: Submission meet evaluation criteria

Evaluation Criteria Student 1 Student 2 Student 3

The purpose and the functionality of the singleton pattern must be
described in a few sentences.

The sample implementation should ensure that only one instance
of an object can be created

Contains minimum number of tests (3)

Table 4: Feedback quality comparison summary

Criteria for good feedback

Student 1 Student 2 Student 3

Human AI Human AI Human AI

Acknowledgement

Lars Nysom AI Generated Feedback

25

Guidance

Constructive

 Specific

Actionable

Highlights areas for improvement

5.3. Case 3: The Formal Essay

The three students' submissions to this assignment reflect that all have either
misunderstood the assignment or have not been able to solve it.

Student 1

The lecturer has evaluated the student’s submission and has the following comments.

This submission is not sufficient, and the student must do a new attempt. Only
four requirements are described, and these are not linked to the dining
philosopher’s problem. The 5th requirement “No assumptions are made about
relative process speeds or number of processors” is described correct but very
briefly. None of the known solutions are mentioned.

The lecturers feedback points out one requirement that is described correctly, albeit
briefly. Other than that, the feedback is mostly negative without specific guidance on
how to improve. If does not provide any direction on linking the content to the Dining
Philosophers Problem, nor does not mention any solutions to the problem or side
effects like deadlock and starvation.

Even though the submission might be insufficient, as the lecturers feedback claims, the
AI-generated feedback starts with a neutral remark on the submission’s overall content
as being concise and it makes it clear that there are important errors and omissions in
the submitted work. It continues giving specific guidance on what aspects of the
assignment the student needs to address and lists clear criteria for improvement, such
as linking to the Dining Philosophers Problem, emphasizing side effects, providing
examples, and referencing requirements mentioned in the subject book.

The AI-generated feedback is the most useful because it not only points out the areas
that need improvement but also provides specific guidance on how to enhance the
submission. The student is given clear directions on what is missing and what to include
to meet the assignment requirements fully. Moreover, the feedback encourages the
student to research and provide concrete examples, which can significantly enrich the
submission. In summary, even though the student’s submission does not meet the
requirements for the assignment, this feedback keeps the constructive tone by providing
some concrete actionable points the student can work with.

In contrast, the feedback from the lecturers is more discouraging and lacks specificity
on how to improve. It does not provide any valuable direction to the student, making
it less useful for their learning and progress of the subject matter.

Student 2

Lars Nysom AI Generated Feedback

26

The lecturer has evaluated the student’s submission and has the following comments.

The student only mentions four requirements, and although they are mostly
correct, the description of them is very brief and superficial. Also, they are not
linked to the dining philosopher’s problem. None of the known solutions are
mentioned.

The lecturers feedback acknowledges that the student has mentioned four requirements,
which are mostly correct. The feedback is too brief though and does not provide
specific areas of improvement or guidance on how to address the shortcomings in the
submission. So, while acknowledging the correctness of some parts, the feedback lacks
depth and direction for the student to improve their work effectively.

In the AI-generated feedback, details and specific points for improvement are provided,
that identifies areas that needs clarification and elaboration, as well as additional content
that should be included in the submission. The need to include all six requirements from
the subject book is also pointed out, as is the importance of understanding the Dining
Philosopher's Problem and its relationship to mutual exclusion. The feedback
encourages the student to research and cite external sources properly, which will
enhance the credibility and validity of the essay.

The AI-generated feedback is well-structured and covers multiple aspects of the
assignment, giving the student clear directions on how to improve their work. It helps
the student understand the areas where they need to focus and the specific actions, they
can take to enhance their submission.

In conclusion, the AI-generated feedback is the best and most useful for the student. It
provides a comprehensive assessment of the student's submission and offers
constructive guidance on how to address the identified weaknesses. The feedback
emphasizes the importance of research, accuracy, and proper citation while encouraging
the student to delve deeper into the topic and provide a more comprehensive
explanation.

Student 3

The lecturer has evaluated the student’s submission and has the following comments.

This submission is not sufficient, and the student must hand in a new attempt.
The list in the submission contains only four points which, by the way, have
nothing to do with the requirements for mutual exclusion, but can only be seen
as results of correctly implemented mutual exclusion. We suspect that the student
has misunderstood the assignment.

The lecturer’s feedback is mostly negative and does not provide any specific guidance
on how to improve the submission. They suspect that the student misunderstood the
assignment but do not clarify what exactly is wrong with the submission.

The AI-generated feedback acknowledges the students attempt and appreciates their
effort to solve the problem. It also provides clear and specific points for improvement,
covering aspects such as comprehensiveness, requirement references, known solutions,
clear explanations, examples, academic references, and code implementation. It offers
actionable advice on how the student can enhance their work. For instance, they advise

Lars Nysom AI Generated Feedback

27

the student to elaborate on each property, reference the requirements from the
textbook, provide examples, and include code implementations.

By suggesting the inclusion of academic references and exploring well-known solutions
to the Dining Philosophers Problem, ChatGPT motivates the student to conduct more
research and broaden their understanding of the topic. It also highlights the importance
of explaining how the properties of mutual exclusion are essential in the context of the
Dining Philosophers Problem. This helps the student understand the practical relevance
of the topic.

Instead of naming the suspicion that the student has misunderstood the assignment,
ChatGPT clarifies the requirements of the assignment, emphasizing the importance of
relating the properties of mutual exclusion to the Dining Philosophers Problem
explicitly. This ensures that the student understands what is expected.

By comparing the feedbacks, it is evident that the AI-generated is more constructive
and helpful for the student. It offers constructive criticism, actionable steps for
improvement, and highlights the aspects that need enhancement to meet the
assignments requirements. It encourages the student to dive deeper into the topic,
provide examples, use academic references, and better explain their points.

Yes

No

Neutral

Table 5: Submission meet evaluation criteria

Evaluation Criteria Student 1 Student 2 Student 3

All six requirements from Stallings book must be referenced.

The requirements must be taken into consideration in relation to
solving the Dining Philosophers Problem.

The student should name and describe at least one of the following
solutions: Dijkstra’s, Resource hierarchy, Arbitrator,
Chandy/Misra, Asymmetric

Table 6: Feedback quality comparison summary

Criteria for good feedback

Student 1 Student 2 Student 3

Human AI Human AI Human AI

Acknowledgement

Guidance

Constructive

 Specific

Actionable

Highlights areas for improvement

Lars Nysom AI Generated Feedback

28

5.4. Summary of Case Studies

After collecting the data used in this case study, it was known that the quality of the
human-generated feedback was exceptionally bad and did not comply with the
guidelines given by UCN. Considering this, it has been easy to ascertain that the quality
of the generated feedback has been significantly better, so the question must be: is it
good enough?

In all the cases above, the chatbot has generated feedback for the students that is mostly
positive and constructive to foster a supportive learning environment. Also, it has
offered specific comments on the students work, pointing out areas that needed their
attention and given actionable steps for improvement.

It is evident that the AI-generated feedback is comprehensive and complies with the
principles for feedback as stated in section 2. Even in cases where the students submit
work, that is unacceptable from an academic point of view, which lecturers across the
board reject, the chatbot zealously handles the analysis of their effort and generates
useful and constructive feedback. However, in some cases the AI-generated feedback
is overly positive, and confuses the indicative solution with the students’ work.

6. Operationalized Feedback
Since we cannot trust the model to generate correct feedback, it is necessary to involve
the lecturer in the process to validate the generated output. That way, we can be sure it
complies to the curriculum as well as the indicative solution and the evaluation criteria
for the assignment.

This also means that it is not possible to create a fully automated system where the
students upload their submissions and receive the feedback instantly. There must be at
least one step in between where the generated feedback will be validated and approved
by an expert or a lecturer. However, this does not make it impossible to operationalize
the feedback process or make a system designed to streamline the feedback loop by
automating certain stages while maintaining expert validation for accuracy and
educational quality.

Figure 2: Feedback workflow

Input Stage: The first step in the proposed system is the input stage, where students
submit their assignments through an online platform. This platform should be user-
friendly and accessible, allowing students to upload various file formats, such as
documents, code files or multimedia content. The platform will be a web application
where students can upload their documents or enter their responses for the
assignments.

Lars Nysom AI Generated Feedback

29

Generate Feedback: Upon submission, the system leverages AI technology to
generate initial feedback for each student's assignment. This feedback will cover the
areas mentioned in the assignment description as well as the evaluation criteria. To do
this, the system will call the OpenAI API8 with the assignment text as input and receive
the AI-generated feedback as the output. The API will use the pre-trained language
model to analyze the content and provide relevant feedback.

Evaluate Feedback: To maintain the integrity and accuracy of the feedback, the
system incorporates a crucial step of expert validation. After the AI generates the
feedback, it is sent to a qualified lecturer or subject matter expert who reviews and
validates the comments. The expert’s role is to ensure that the feedback aligns with the
learning objectives, evaluation criteria, and provides actionable insights to help students
improve their work.

Correcting Flawed Feedback: Recognizing that AI-generated feedback may not
always be flawless, the system should include a mechanism for students and educators
to flag and correct any inaccuracies or errors in the feedback. If a student believes that
the feedback provided is incorrect or inappropriate, they can submit a request for
review. Additionally, the lecturer or subject matter expert who validated the feedback
in the previous step may also identify areas where the AI-generated feedback can be
improved.

Making Feedback Available for Students: Once the feedback has been duly
validated, it is made available to the students via the same online platform used for
assignment submission. Each student receives their personalized feedback securely and
privately. The feedback should be presented in a clear and understandable format,
highlighting both strengths and areas for improvement, thereby fostering a growth-
oriented mindset among the students. In this case, nothing is mentioned about the use
of AI, and it is also not important from the user’s perspective.

6.1. Pipeline

The steps described in the previous section are interconnected stages through which
the students’ submissions flow in a specific order to achieve feedback for it. Such a
construction can be called a pipeline which is derived from its real-world counterpart,
where fluids, materials, or products flow through a series of connected pipes in a
manufacturing or distribution process.

In software development, the pipeline pattern is used to automate and streamline some
process of tasks or operations setup in a series of stages. An example is the Azure
Pipeline that automates software deployment in stages of integrating the code in the
code repository, running unit tests, and deploying the code to various environments
such as test, demo, or production9. Each stage in the pipeline represents a specific task
or operation that takes the output of the previous stage as input and produces its output.
This facilitates the efficient and reliable delivery of the outcome.

A pipeline can be implemented in several ways. In this section, we present the design
and implementation of a service-oriented architecture for a web-based feedback
pipeline, catering to the dynamic needs of generating, evaluating, and delivering
assignment feedback to students. The primary objective of this system is to streamline

8 https://platform.openai.com/
9 https://learn.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops

Lars Nysom AI Generated Feedback

30

the process of generating constructive feedback for assignment submissions while
ensuring efficient collaboration between lecturers and students in an academic
environment.

To achieve the desired flexibility, scalability, and maintainability for our feedback
pipeline, we have chosen a service-oriented architecture (SOA) approach. The SOA
paradigm allows us to decompose the system into a set of loosely coupled, independent
services, each responsible for specific functionalities. By doing so, we promote
modularity and reusability, enabling seamless integration with existing systems and
accommodating future expansions with ease.

The web-based feedback pipeline consists of three main steps derived from the steps
described above:

Text processing and feedback generation: The pipeline begins with the ingestion of
a student's assignment submission as text. The first step in the pipeline is responsible
for the text processing and feedback generation. The upload of the submission will be
handled through a web-based portal, where the students have a dedicated area for all
their submissions that gives them a status overview. The OpenAI API are employed by
a web-service to analyze the content and generate constructive feedback. The generated
feedback is temporarily stored in a data repository by that service.

Lecturer evaluation and approval: After the feedback generation step, the
participation of lecturers is needed. They are provided with a user-interface to review
the generated feedback. Lecturers have the option to approve the feedback as is or make
necessary edits and improvements. Upon evaluation, the revised feedback is stored in
the repository for further processing.

Feedback delivery to students: In the final step of the pipeline, the approved or edited
feedback is delivered to the respective students. Students can access the feedback
through a secure web-based portal, allowing them to understand their performance
better and make necessary improvements.

The entire pipeline will be handled by another service to lower the coupling between
the individual steps. That way it is relatively easy to add more steps (e.g., automated unit
testing) to the pipeline or replace existing.

6.2. System Description

The system servicing the pipeline is designed as a web-based system, accessible through
standard web browsers. This approach ensures that users, including students and
lecturers, can conveniently access and interact with the system from any internet-
enabled device, eliminating the need for specialized software installations.

The adoption of a service-oriented architecture for the feedback pipeline offers
numerous benefits. Firstly, it facilitates enhanced modularity, enabling the individual
services to evolve independently, thereby simplifying updates and maintenance.
Secondly, it promotes reusability, allowing us to leverage existing services for other
future applications within the academic domain. Lastly, the web-based implementation
ensures widespread accessibility and ease of use, fostering greater engagement and
participation among stakeholders.

In conclusion, the utilization of a service-oriented architecture for our web-based
feedback pipeline presents a robust and adaptable solution to provide timely,

Lars Nysom AI Generated Feedback

31

personalized, and constructive feedback to students, thus fostering a collaborative and
supportive learning environment. This approach aligns with the dynamic requirements
of modern educational systems and positions our feedback pipeline to effectively cater
to the evolving needs of students and educators alike.

6.2.1. Applications and Services

The system is composed of the following applications and services that are illustrated
in Figure 3: System Architecture:

1) Authentication Service
The users of the system are lecturers and students and to be able to secure their
data and limit their options for action, it is necessary to have a mechanism to
authenticate and authorize them, when they log into the system. It is not
decisive to implement the service specifically for this system since UCN already
offers an authentication service that can be integrated.

2) Feedback Service
The whole purpose of this system is to provide feedback for students’
assignment submissions. To generate that we have in this report used OpenAI’s
ChatGPT to prove whether it can be done or not, and to integrate that into the
system, we can call the service equivalent called OpenAI Chat Completions
API. Instead of implementing this function directly into the Pipeline Service,
we have chosen to implement a separate service to remove the dependency.
Doing this we can easily change the AI platform in the Feedback Service and
if the interface to the Pipeline Service is complied with, this will not be affected.

3) Pipeline Service
This service is running the core functionality of the system by keeping track of
the students’ assignments, initiate the generation of feedback, make data
available to lecturers, handle changes made by lecturers, and make data
available to students. We might benefit from splitting this up in more services,
each handling a single step in the pipeline so they can be developed
independently, but this may be subject to a later project.

4) Web Application
The systems entry point is the web application students and lecturers use for
uploading assignment submissions, evaluating the generated feedback, and
reviewing said feedback. It updates data through the Pipeline Service and must
not be aware of, nor dependent on, how the pipeline works. The exact
behaviors of the interfaces are described in the sections below.

Figure 3: System Architecture

Lars Nysom AI Generated Feedback

32

6.2.2. Calling OpenAI API

The OpenAI API allows developers to integrate and interact with OpenAI's language
models, like the GPT-3.5 model, in their own applications, products, or services. So,
instead of using ChatGPT, which is an application that makes the model available via a
web-based user interface, the API enables you to send prompts or text inputs to the
model using HTTP and receive generated text outputs as responses.

The API has various use cases, such as generating human-like text, answering questions,
creating conversational agents, providing language translation, summarizing content,
and more. In short, it opens opportunities for developers to leverage the power of
advanced AI language models without having to build the models from scratch.

As mentioned earlier, we wish to create a separate service for calling the OpenAI API
with the purpose of generating feedback for a students’ assignment. This service will be
designed as an API itself and function as an adapter between our pipeline application
and the OpenAI API. In this way, our system becomes independent of the AI platform,
and we can, in principle, change it later without it affecting the system’s functionality.

Architecture and implementation of our API will be trivial, and will not be reviewed
here, but calling the OpenAI API is a central concept, no matter which platform for
implementation is chosen and a minimally structured HTTP request can look like the
one shown in the sample below.

Code Sample 1: The HTTP request to OpenAI API made for student 1s submission to the first case. The prompt has been
removed to save space. Also, the API key has been removed for obvious reasons.

POST /v1/chat/completions HTTP/1.1
Host: api.openai.com
Content-Type: application/json
Authorization: Bearer <YOUR_API_KEY>
Content-Length: 2791

{
 "model": "gpt-3.5-turbo",
 "messages": [{"role": "user", "content": <INSERT_PROMPT_HERE>}],
 "temperature": 1
}

Headers

This is a common HTTP header where information related to the http request can be
added. The Authorization header is necessary though since it describes the authentication
method provided with the request. In the example above a bearer token is used, which
means the server is using OAuth 2.0 to protect the endpoint. This method requires a
token that here is an API key obtained from OpenAI here:

https://platform.openai.com/account/api-keys

Body

The body of the HTTP POST request contains the payload of the request with various
properties that allow us to customize and control the behavior of the language model.

Lars Nysom AI Generated Feedback

33

The OpenAI API documentation10 explains the properties in the data parameter like
this:

model: Specifies the language model you want to use. In this case, it's set to "gpt-3.5-
turbo", which is the GPT-3.5 Turbo model.

messages: A list of message objects that simulate a conversation between a user and
the AI model. Since HTTP is stateless, so is the conversation between the user and the
AI which means that the service cannot remember the conversation between requests.
So, to simulate a continuous conversation, we need to send the whole list of messages
sent and received in every request to the service. This list will thus over time accumulate
all messages that have been exchanged.

Each message contains two properties:

role: Represents the role of the message sender. It can be "user" or "assistant"
representing the input and responses respectively.

content: The content of the message sent by the sender. For the initial message, we
need to replace <INSERT_PROMPT_HERE> with the actual text prompt we want to provide to
the model. If the lecturer wants to continue the conversation with the model when
validating the generated feedback, it is necessary to include the initial prompt as well.

temperature: The temperature property controls the randomness of the model’s output.
Higher values (e.g., 0.8) make the output more diverse and creative, while lower values
(e.g., 0.2) make it more focused and deterministic. In the case study this property has
not been explicitly set, so the default value of 1 has been used which means the output
is very creative and can vary a lot if we send the same initial message more than once.

The choice of temperature depends on the use case and the desired tone of the
generated text. If we are aiming for more controlled and coherent responses, we should
use a lower temperature. If we are looking for more creativity and diversity, we could
consider using a higher temperature. In Appendix D we have conducted a small
experiment with different temperature values generating feedback, which shows a lower
value for temperature might be preferrable for the system.

The properties listed above are not exhaustive, and there are other advanced options
and parameters available in the API to further customize the behavior of the language
model.

Code Sample 2: Response from OpanAI API

{
 "id": "chatcmpl-7kUo43Ff7M4Y2gB6EOq9lqBeW8cE8",
 "object": "chat.completion",
 "created": 1691315864,
 "model": "gpt-3.5-turbo-0613",
 "choices": [
 {
 "index": 0,
 "message": {
 "role": "assistant",
 "content": <RESPONSE_TEXT>
 },
 "finish_reason": "stop"

10 https://platform.openai.com/docs/api-reference

Lars Nysom AI Generated Feedback

34

 }
],
 "usage": {
 "prompt_tokens": 515,
 "completion_tokens": 416,
 "total_tokens": 931
 }
}

6.2.3. Student User Interface

Student users of the system have three actions they can perform on the system when
they are logged in. They are:

1) Upload assignment submission
2) Read status of feedback progress
3) Review feedback for assignments

Upon logging in, students will be greeted with a dashboard or homepage that provides
an overview of their assignment submissions and feedback progress. The dashboard
should prominently display the key actions they can take, such as uploading
assignments, accessing feedback, and checking progress.

There should be a dedicated section or button on the dashboard to allow students to
upload their assignment submissions. When students click on this option, they can
browse their computer or device to select the relevant file and submit it.

The dashboard should include a section where students can track the status of their
assignment feedback. This section might include a list of submitted assignments with
details on their current feedback status. For example, it could show whether the
feedback is pending, in progress, or complete.

Another section on the dashboard should provide students with access to their received
feedback. Students can click on a specific assignment to view the feedback provided by
the instructor. The feedback will be presented as text.

Other features could be provided as well such as: A notification system to inform
students about updates regarding their submissions, historic information about all
previous feedback received, or support for mobile platforms. However, the first step is
to create a barebone prototype that can be used for testing the concept, so these features
can be added in later development.

Lars Nysom AI Generated Feedback

35

Figure 4: Students' user interface

FEEDBACK_STATUS indicates if the feedback for the submission is: pending, in
progress, or ready.

6.2.4. Lecturers User Interface

The lecturers’ role is to evaluate and validate the generated feedback in the system
before the students can see it. They need to see a list of the assignment submissions
they relate to and their status in the system. The submission will pop-up when they are
uploaded to the system and as soon as the feedback is generated, it will change state, so
it is easy to identity the feedback that needs attention. The lecturer can then open the
feedback, make any corrections, and mark the feedback as approved for release back to
the student. When the student has opened the feedback for review, that information
will also be available.

Before this is possible, the interface must have an administrative screen where
assignments can be created, and students attached to them. Information about students
and classes will be extracted from UCNs administrative system and therefore be
available for the lecturers.

Figure 5: Lecturers' administrative user interface

In the wireframe shown in Figure 5, the lecturers can create and add assignments for
classes or individual students. In the list it is possible to see current assignments waiting
for students’ submissions and their status in the pipeline. When they are submitted and

Lars Nysom AI Generated Feedback

36

feedback is generated, the lecturer presses the Evaluate Feedback button to open the
screen shown in Figure 6. Here the lecturer evaluates and approves the generated
feedback compared to the assignment and the student’s submission. It is also possible
to correct the feedback if necessary.

Figure 6: Lecturers' user interface for correcting and approving the generated feedback.

7. Conclusion
The conclusion summarizes the key findings and discussing the implications of using
AI, specifically ChatGPT, as a tool for generating feedback on student hand-ins in
applied computer science education. The case study provides insights into the potential
benefits and challenges associated with integrating AI into the feedback generation
process, and it highlights directions for future research and improvement.

To answer the problem definition:

What is needed to let a chatbot that adopts a generative large pretrained language model
such as ChatGPT generate feedback for a student’s suggested solution to an assignment?

In the preparation of the case study, it was decided to include educational context, the
assignment wording, description of formal expectations, evaluation criteria, and the
indicative solution as input to the prompt. The indicative solution was particularly a
subject of consideration but was added because we could not trust ChatGPT to be able
to solve the assignment correctly on its own. Furthermore, the indicative solution was
already available in the source material, so it did not require additional work. With these
parameters it was possible to generate feedback for the individual submissions. The
following discussion of this clarified that the generated feedback will be useful from a
lecturer’s point of view. Whether the students think the same is yet to be investigated.

Are any specific kind of assignment better suited for generating feedback?

There are no indications of difference in the quality of the generated feedback between
the selected assignment types in this case study. The feedback generated for the formal

Lars Nysom AI Generated Feedback

37

essay case was all for submissions that had failed of various reasons, so it might be
necessary to run more cases with better submissions, to obtain a more realistic picture
of this. However, in the other cases, where the quality of the submissions where more
diverse, ChatGPT generally generated good quality feedback, that complies with the
principles stated in section 2. In some cases, though, the generated feedback failed in
addressing important errors and generated feedback for parts of the assignment that
was not answered in the submission, which supports an assumption that human
validation is necessary.

How can the process of giving feedback to students be operationalized?

Creating a system with the purpose of operationalize the process of giving feedback to
students is not bound by using ChatGPT or any other tool for generating it. Because of
the unreliability of the models, we know that it is necessary to have a lecturer evaluating
the generated feedback before the students receive it, so the process can in all
circumstances not be entirely automated, and the involvement of an AI is therefore
transparent for the students.

To operationalize the feedback generation process, a pipeline that leverages the
language model with the OpenAI API can be developed. The pipeline must take an
assignment submission as input and produces a feedback report that is available for the
student when the generated feedback is validated and approved by the lecturer. This
will most likely save much time and give better more personalized feedback for each
student, which is the main goal of this project and is as such an acceptable solution.

Finally, to comply with the didactical and pedagogical methods we are subject to at
UCN, written feedback for students’ submission cannot stand alone and must be
followed up in the dialogue with the student.

Lars Nysom AI Generated Feedback

38

References

[1] Curriculum for AP in Computer Science, Aalborg: UCN, 2019.

[2] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller og M.
Simens, »Training language models to follow instructions with human feedback,«
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2203.02155. [Senest
hentet eller vist den July 2023].

[3] OpenAI, »Custom instructions for ChatGPT,« 20 July 2023. [Online]. Available:
https://openai.com/blog/custom-instructions-for-chatgpt. [Senest hentet eller
vist den July 2023].

[4] L. H. Horn, C. G. Jensen, T. Kjærgaard, N. B. Lukassen, I. M. Sørensen, C.
Valbak-Andersen og S. B. Bundgaard, »Hvidbog om Refleksiv Praksislæring,«
2020. [Online]. Available: https://blad.ucn.dk/hvidbog-om-rpl/. [Senest hentet
eller vist den July 2023].

[5] N. B. Lukassen, »Feedback og innovativ tænkning,« i Teori og praksis i
professionsdidaktik, Aalborg Universitetsforlag, 2021, pp. 127-136.

[6] D. Baidoo-Anu og L. Owusu Ansah, »Education in the era of generative artificial
intelligence (AI): Understanding the potential benefits of ChatGPT in promoting
teaching and learning,« Available at SSRN 4337484, 2023.

[7] E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. Dementieva, F. Fischer, U.
Gasser, G. Groh, S. Günnemann og E. Hüllermeier, »ChatGPT for good? On
opportunities and challenges of large language models for education,« Learning and
Individual Differences, årg. 103, p. 102274, 2023.

[8] A. Krogh, »What are Artificial Neural Networks,« Nature Biotechnology, årg. 26, nr.
2, pp. 195-197, 2008.

[9] M. Nielsen, »Neural Networks and Deep Learning,« 2019. [Online]. Available:
http://neuralnetworksanddeeplearning.com/. [Senest hentet eller vist den July
2023].

[10] OpenAI, »GPT-4 Technical Report,« 2023. [Online]. Available:
https://arxiv.org/abs/2303.08774. [Senest hentet eller vist den July 2023].

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, Ł. Kaiser
og I. Polosukhin, »Attention is all you need,« 2017. [Online]. Available:
https://arxiv.org/abs/1706.03762v5. [Senest hentet eller vist den 07 2023].

[12] OpenAI, »Pioneering research on the path to AGI,« OpenAI, 2023. [Online].
Available: https://openai.com/research. [Senest hentet eller vist den July 2023].

Lars Nysom AI Generated Feedback

39

[13] P. Schramowski, C. Turan, N. Andersen, C. A. Rothkopf og K. Kersting, »Large
pre-trained language models contain human-like biases of what is right and wrong
to do,« Nature Machine Intelligence, årg. 4, nr. 3, pp. 258-268, 2022.

[14] J. Devlin, M.-W. Chang, K. Lee og K. Toutanova, »BERT: Pre-training of deep
bidirectional transformers for language understanding,« arXiv preprint
arXiv:1810.04805, 2018.

[15] P. L. a. W. Y. Neubig, J. Fu, Z. Jiang, H. Hayashi og G. Neubig, »Pre-train,
Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural
Language Processing,« 28 July 2021. [Online]. Available:
https://doi.org/10.48550/arXiv.2107.13586.

[16] j. white, q. fu, g. s. hays, m. sandborn, c. olea og h. gilbert, »A Prompt Pattern
Catalog to Enhance Prompt Engineering with ChatGPT,« arXiv preprint
arXiv:2302.11382, 2023.

[17] L. Rienecker og P. S. Jørgensen, Den Gode Opgave, Samfundslitteratur, 2022.

[18] T. A. Schwandt og E. F. Gates, »Case Study Methodology,« i The SAGE Handbook
of Qualitative Research, 5th red., Los Angeles, SAGE, 2018, p. Chapter 14.

Lars Nysom AI Generated Feedback

40

Appendix A: Students Answers

Case 1

Student 1 New: During this phase, an operation is initiated. Resources such as memory and
input/output devices are assigned, and the operation is registered in the operation control
structure (OCS) and given an operation ID (OID). However, it has not yet been
transferred to the primary memory.

Ready: After initialization, the operation is transferred to the primary memory and is set
for execution. It resides in the prepared line until the organizing system grants it access to
the CPu for execution. In the prepared state, the operation possesses all necessary
resources and is merely awaiting its opportunity to execute.

Running: The CPU is actively executin the operation at this stage. It is the active
operation, and its commands are being performed by the processing unit. To be in the
executing state, an operation must have been allocated to a CPU.

Blocked/waiting: In this phase, the operation is on hold for an external occurrence or
resource to become accessible, such as user interaction or the conclusion of an I/O task.
While paused, the operation is unable to proceed with its execution, even if the CPU is
available. The operation returns to the prepared state once the necessary resource or
event becomes available.

Exit/Terminate: The operation's execution is finished, and it is no longer required. In this
phase, the computer's operating system deallocates resources and memory assigned to the
operation, and the operation is removed from the operation control structure. The
operation ceases to exist following this stage.

Student 2 The 5 states in the five-state process model is:

New - refers to a new process having been created

Ready - refers to the process having been loaded into the main memory and is ready to
run

Running - refers to the process being executed

Blocked - refers to the process quitting the CPU, entering a waiting state, until the CPU is
ready to run the process again, in that case the process is moved from the blocked stage,
to the ready stage and then the running stage .

Exit - refers to the process having been terminated and removed from main memory

Student 3 New: when a process is first accepted into a query.

Ready: ready to run

Running: when a process is actively executing

Blocked: a process is blocked when the process is blocked by the CPU. From here the
process can move back to the ready state when either the CPu becomes available again or
the ressource the process has been waiting for is available.

Lars Nysom AI Generated Feedback

41

Case 2

Student 1 The singleton pattern is a creational design pattern, that makes sure that a class can only
have 1 instance in the lifetime of the application. It provides a global point off acces to
the class instance.

public class ProductContainer {

 private static ProductContainer instance;

 public static ProductContainer
getInstance() {
 if (instance == null) {
 instance = new ProductContainer();
 }
 return instance;
 }

This example is from a 1st semester project, and the singleton pattern is used for the
container classes. That way the corresponding controller class and call the getInstance()
method and make a single instance of the container.

Student 2 When implementing the singleton pattern, you ensure that only one instance of the
singleton class will exist at a time and is accessed in a static way. Is often used in container
classes when building a smaller system where a database isn't needed.

Student 3 The singleton pattern is used to ensure that only one instance of a given class can be
initiated. This is accomplished by having private constructors and a private static method
that returns a reference to the object or initiates a new object if an instance has not yet
been initiated.

Example:

public class Singleton{

 private static Singleton instance;

 private static Singleton getInstance(){
 if(instance == null){
 instance = new Singleton();
 }
 return instance;
 }
}

Lars Nysom AI Generated Feedback

42

Case 3

Student 1 Mutal exclusion is an important concept in concurrent programming, where multiple
processes or threads need to access shared resources without causing conflicts or race
conditions.

Key requirements are:

1. Mutual Exclusion: Only one process accesses a shared resource at a time.

2. Progress: The next process to enter the critical section isn't indefinitely postponed.

3. Bounded Waiting: No process is perpetually denied access, preventing starvation.

4. No Speed Assumptions: The solution works regardless of execution speed and process
count.

Student 2 There is four requirement for mutual exclusion:

1. No process more than one process can be in their respective critical section at any time

2. There should be no assumptions to the relative speed of conflicting processes.

3. Processes outside their critical section should not interrupt another process access to
the critical section.

4. When more than one process wants to enter its critical section, it must be granted entry
in a finite time, so that it will never be kept waiting in a infinite loop.

Student 3 No deadlocks

No starvation

Fairness

Fault tolerance

Lars Nysom AI Generated Feedback

43

Appendix B: Generated Feedback from
ChatGPT

Case 1

Student 1

Prompt I am a lecturer at a university college, teaching computer science.

I need to evaluate an assignment of programming for students and provide constructive
feedback for the students submissions.

This is a review question that the student answer by handing in a short description (max. 1200
characters including spaces).

The review question is: Briefly explain each state in the Five-State Process model.

Here is the indicative solution:

Running: The process that is currently being executed.

Ready: A process that is prepared to execute when given the opportunity.

Blocked: A process that cannot execute until some event occurs, such as the completion of an
I/O operation.

New: A process that has just been created but has not yet been admitted to the pool of
executable processes by the operating system.

Exit: A process that has been released from the pool of executable processes by the operating
system, either because it halted or because it aborted for some reason.

The evaluation criteria are:

All five states described in the book should be included and described correctly in the students
answer.

Here is the students submission:

New: During this phase, an operation is initiated. Resources such as memory and
input/output devices are assigned, and the operation is registered in the operation control
structure (OCS) and given an operation ID (OID). However, it has not yet been transferred to
the primary memory.

Ready: After initialization, the operation is transferred to the primary memory and is set for
execution. It resides in the prepared line until the organizing system grants it access to the CPu
for execution. In the prepared state, the operation possesses all necessary resources and is
merely awaiting its opportunity to execute.

Running: The CPU is actively executin the operation at this stage. It is the active operation,
and its commands are being performed by the processing unit. To be in the executing state, an
operation must have been allocated to a CPU.

Blocked/waiting: In this phase, the operation is on hold for an external occurrence or resource
to become accessible, such as user interaction or the conclusion of an I/O task. While paused,
the operation is unable to proceed with its execution, even if the CPU is available. The
operation returns to the prepared state once the necessary resource or event becomes
available.

Exit/Terminate: The operation's execution is finished, and it is no longer required. In this
phase, the computer's operating system deallocates resources and memory assigned to the
operation, and the operation is removed from the operation control structure. The operation
ceases to exist following this stage.

Generated Feedback Overall, the student's submission covers the required states of the Five-State Process model,
but there are some areas for improvement. The feedback should highlight the strengths and
provide constructive suggestions to improve the response. Here's a detailed feedback:

Strengths:

1. The student's submission demonstrates an understanding of the Five-State Process model
by describing the different states that a process can be in during its lifecycle.

2. The descriptions provided by the student show an effort to explain each state in their own
words, which indicates some level of comprehension of the topic.

Areas for Improvement:

Lars Nysom AI Generated Feedback

44

1. Length: The student's submission exceeds the maximum character limit of 1200 characters.
Encourage the student to be more concise and focus on the essential aspects of each state to
meet the assignment's requirements.

2. Accuracy: While the student attempted to explain the states, some descriptions lack accuracy
and precision. Suggest that they review the model's definitions and provide more accurate
descriptions.

3. Terminology: The student uses some technical terms that are not part of the Five-State
Process model. Advise them to stick to the terminology used in the indicative solution to
ensure consistency and accuracy.

4. Completeness: The student's submission lacks a clear mention of all the required states
(New, Ready, Running, Blocked, and Exit). Suggest that they revise their answer and ensure
that each state is explicitly described.

5. Focus: Some parts of the student's response focus on additional details not directly related
to the Five-State Process model, such as memory allocation and operation control structure.
Encourage them to stay focused on the states and their meanings in the context of the model.

Revised Suggestion:

New: The process is newly created and awaiting admission to the pool of executable processes
by the operating system. It has been assigned necessary resources, but it is not yet in the
primary memory.

Ready: The process is in the prepared queue and can be executed if granted access to the CPU
by the operating system. It has all the required resources and is waiting for its turn to run.

Running: The process is actively executing on the CPU. It is the currently active process, and
its commands are being processed by the CPU.

Blocked: The process is on hold, waiting for an external event or resource to become available,
such as user input or the completion of an I/O operation. While blocked, the process cannot
proceed with its execution.

Exit: The process has completed its execution and is released from the pool of executable
processes. The operating system deallocates resources and memory assigned to the process,
and it is removed from the system.

By providing this constructive feedback, you can help the student improve their understanding
and explanation of the Five-State Process model. Encourage them to revise their response and
focus on being clear, accurate, and concise while incorporating all the required states.

Student 2

Prompt I am a lecturer at a university college, teaching computer science.

I need to evaluate an assignment of programming for students and provide constructive
feedback for the students submissions.

This is a review question that the student answer by handing in a short description (max. 1200
characters including spaces).

The review question is:

Briefly explain each state in the Five-State Process model.

Here is the indicative solution:

Running: The process that is currently being executed.

Ready: A process that is prepared to execute when given the opportunity.

Blocked: A process that cannot execute until some event occurs, such as the completion of an
I/O operation.

New: A process that has just been created but has not yet been admitted to the pool of
executable processes by the operating system.

Exit: A process that has been released from the pool of executable processes by the operating
system, either because it halted or because it aborted for some reason.

The evaluation criteria are:

All five states described in the book should be included and described correctly in the students
answer.

Here is the students submission:

The 5 states in the five-state process model is:

New - refers to a new process having been created

Lars Nysom AI Generated Feedback

45

Ready - refers to the process having been loaded into the main memory and is ready to run

Running - refers to the process being executed

Blocked - refers to the process quitting the CPU, entering a waiting state, until the CPU is
ready to run the process again, in that case the process is moved from the blocked stage, to the
ready stage and then the running stage .

Exit - refers to the process having been terminated and removed from main memory

Generated Feedback Overall, the student's submission covers all five states of the Five-State Process model, but
there are some inaccuracies and inconsistencies in their descriptions. Here's the constructive
feedback for the student:

1. **New**: The student correctly states that it refers to a new process that has been created.
However, they should also mention that it has not yet been admitted to the pool of executable
processes by the operating system.

2. **Ready**: The student mentions that the process is loaded into main memory and ready to
run. It's mostly correct, but they should clarify that the process is prepared to execute when
given the CPU time.

3. **Running**: The student's definition is accurate, as it refers to the process currently being
executed.

4. **Blocked**: The student describes the blocking situation reasonably well but incorrectly
mentions that the process is moved from blocked to ready and then running stages. In the
Five-State Process model, a blocked process transitions back to the ready state when the event
it was waiting for (e.g., completion of I/O) occurs, not directly to the running state.

5. **Exit**: The student correctly defines the exit state as the process being terminated and
removed from main memory.

Based on these points, the student's submission is mostly correct but lacks some clarity and
precision in the descriptions. Here's a revised and concise version of their submission:

"The Five-State Process model consists of the following states:

1. New: A newly created process waiting for admission to the pool of executable processes by
the OS.

2. Ready: Process loaded into main memory and prepared to execute when given CPU time.

3. Running: The process currently being executed.

4. Blocked: A process waiting for an event (e.g., I/O completion) before transitioning back to
the ready state.

5. Exit: A process that has been terminated and removed from main memory."

With this feedback, the student's submission should be improved and meet the evaluation
criteria for accuracy and completeness.

Student 3

Prompt I am a lecturer at a university college, teaching computer science.

I need to evaluate an assignment of programming for students and provide constructive
feedback for the students submissions.

This is a review question that the student answer by handing in a short description (max. 1200
characters including spaces).

The review question is:

Briefly explain each state in the Five-State Process model.

Here is the indicative solution:

Running: The process that is currently being executed.

Ready: A process that is prepared to execute when given the opportunity.

Blocked: A process that cannot execute until some event occurs, such as the completion of an
I/O operation.

New: A process that has just been created but has not yet been admitted to the pool of
executable processes by the operating system.

Exit: A process that has been released from the pool of executable processes by the operating
system, either because it halted or because it aborted for some reason.

The evaluation criteria are:

Lars Nysom AI Generated Feedback

46

All five states described in the book should be included and described correctly in the students
answer.

Here is the students submission:

New: when a process is first accepted into a query.

Ready: ready to run

Running: when a process is actively executing

Blocked: a process is blocked when the process is blocked by the CPU. From here the process
can move back to the ready state when either the CPu becomes available again or the
ressource the process has been waiting for is available.

Generated Feedback Overall, the student's submission shows a basic understanding of the Five-State Process
model, but there are some inaccuracies and areas for improvement. Let's provide constructive
feedback on their submission:

1. New: The student correctly mentions that it is when a process is first accepted into a queue.
However, it's important to clarify that the queue they are referring to is the pool of executable
processes managed by the operating system.

2. Ready: The student's explanation is brief but acceptable. However, to provide a more
complete understanding, they should mention that the "Ready" state represents a process that
is waiting to be scheduled by the operating system to run on the CPU.

3. Running: The student's explanation is quite concise but accurate. However, it can be
improved by mentioning that a process is actively executing on the CPU during this state.

4. Blocked: The student's explanation contains some inaccuracies. They mention that a process
is blocked when it is blocked by the CPU, which is not entirely accurate. Instead, the
"Blocked" state occurs when a process cannot proceed because it is waiting for an external
event, such as the completion of an I/O operation or the availability of a resource.

5. Exit: The student's explanation is acceptable as it correctly mentions that a process in the
"Exit" state has been released from the pool of executable processes by the operating system,
either because it halted or aborted.

Based on the evaluation criteria, the student's submission meets the requirement of including
all five states of the Five-State Process model, but there are some minor inaccuracies and lack
of elaboration in some states.

Suggested improved submission:

- New: A process enters the "New" state when it is first created but has not yet been admitted
to the pool of executable processes by the operating system. It waits in a queue until the OS
allocates resources and prepares it for execution.

- Ready: The "Ready" state represents a process that is waiting to be scheduled by the
operating system to run on the CPU. It has all the required resources and is prepared for
execution.

- Running: During the "Running" state, a process is actively executing on the CPU. It is the
current state of a process when it is being processed by the CPU.

- Blocked: A process enters the "Blocked" state when it cannot proceed because it is waiting
for an external event, such as the completion of an I/O operation or the availability of a
resource. Once the event occurs, the process may move back to the "Ready" state.

- Exit: The "Exit" state is reached when a process has completed its execution or has been
terminated for some reason. The operating system releases the process from the pool of
executable processes.

By providing this feedback, the student can gain a clearer understanding of the Five-State
Process model and improve their knowledge of the subject matter.

Case 2

Student 1

Prompt I am a lecturer at a university college, teaching computer science.

I need to evaluate an assignment of programming for students and provide constructive
feedback for the students submissions.

Lars Nysom AI Generated Feedback

47

This is a programming exercise where the students must demonstrate that they are able to
implement a specific programming pattern and explain how it works. The solution must be
handed in as a code-snippet where the explanation can be embedded in the code as a
comment.

The assignment is:

Explain the singleton design pattern and give an example implementation.

Here is the indicative solution:

Description: The Singleton pattern is a creational software design pattern that restricts the
instantiation of a class to a singular instance. This can be done by making the constructor
private and create a public static method in the class that creates and returns an instance once
and subsequently returns that instance.

Implementation:

public class Singleton {

 private static Singleton instance;

 private Singleton() {

 System.out.println("Creating new instance");

 }

 public static Singleton getInstance() {

 if (instance == null) {

 instance = new Singleton();

 }

 return instance;

 }

}

public class Main {

 public static void main(String[] args) {

 // Test 1: Create an object

 Singleton obj1 = Singleton.getInstance();

 // Test 2: Try to create a second object, the first one should be returned

 Singleton obj2 = Singleton .getInstance();

 // Test 3: Ensure both references point to the same object

 System.out.println(obj1 == obj2); // This should print "true"

 // Test 4: Attempt to call the class constructor directly (should not be possible)

 // Singleton obj3 = new Singleton (); // Uncommenting this line should result in a
compile-time error

 }

}

The evaluation criteria are:

The purpose and the functionality of the singleton pattern must be described in a few
sentences.

The sample implementation should ensure that only one instance of an object can be created,
by running tests that:

Lars Nysom AI Generated Feedback

48

1. Creates an object.

2. When trying to create a second object, the first one is returned.

3. It must not be possible to call the class constructor directly.

Here is the students submission:

The singleton pattern is a creational design pattern, that makes sure that a class can only have
1 instance in the lifetime of the application. It provides a global point off acces to the class
instance.

public class ProductContainer {

 private static ProductContainer instance;

 public static ProductContainer getInstance() {

 if (instance == null) {

 instance = new ProductContainer();

 }

 return instance;

 }

This example is from a 1st semester project, and the singleton pattern is used for the container
classes. That way the corresponding controller class and call the getInstance() method and
make a single instance of the container.

Generated Feedback Overall, the student's submission provides a reasonable understanding of the Singleton design
pattern and demonstrates a basic implementation. However, there are some areas where the
submission can be improved. Let's provide constructive feedback based on the evaluation
criteria:

1. Purpose and functionality of the Singleton pattern:

The student's description is mostly accurate, but it lacks a few essential details. Here's how it
can be improved:

Feedback:

"The student correctly describes the Singleton pattern as a creational design pattern that
ensures a class has only one instance throughout the application's lifetime. However, the
description could be enhanced by mentioning the importance of making the class constructor
private to prevent direct instantiation and relying on a static method (like getInstance()) to
control access to the single instance. Additionally, it would be helpful to mention that the
Singleton pattern is commonly used to provide a global point of access to this instance."

2. Sample Implementation Evaluation:

The student's implementation seems to fulfill the criteria, but there are a couple of minor
improvements needed:

Feedback:

- Test 1 and 2: Creating an object and ensuring only one instance is returned.

 The student's implementation appears to be correct as it follows the Singleton pattern by
using a private constructor and a static method (getInstance) to return the instance. However,
it is essential to ensure that the object is instantiated lazily (only when needed) to optimize
resource utilization. The current implementation uses lazy initialization, which is good.

- Test 3: Ensuring both references point to the same object.

 The student did not include a test to validate that both obj1 and obj2 point to the same
object. It's essential to verify this aspect of the Singleton pattern.

Lars Nysom AI Generated Feedback

49

- Test 4: Ensuring the class constructor cannot be called directly.

 The student's implementation is correct in this aspect as it is not possible to call the
constructor directly due to its private access modifier. The commented-out code attempting to
create a new instance should remain commented to avoid compilation errors.

3. General Feedback:

The student's submission is concise and provides a relevant example for the Singleton pattern,
using a ProductContainer class. However, the comment in the code is missing, where the
explanation of the pattern should be embedded. The comment should briefly describe the
purpose and functionality of the Singleton pattern as discussed earlier.

To summarize the feedback:

1. Enhance the purpose and functionality description of the Singleton pattern by adding details
about private constructor and global point of access.

2. Include a test to ensure that both obj1 and obj2 point to the same object.

3. Keep the commented-out code to demonstrate that direct instantiation is not allowed.

4. Add a comment to embed the explanation of the Singleton pattern within the code snippet.

After addressing these points, the student's submission will be well-rounded and demonstrate
a better understanding of the Singleton pattern and its implementation.

Student 2

Prompt I am a lecturer at a university college, teaching computer science.

I need to evaluate an assignment of programming for students and provide constructive
feedback for the students submissions.

This is a programming exercise where the students must demonstrate that they are able to
implement a specific programming pattern and explain how it works. The solution must be
handed in as a code-snippet where the explanation can be embedded in the code as a
comment.

The assignment is:

Explain the singleton design pattern and give an example implementation.

Here is the indicative solution:

Description: The Singleton pattern is a creational software design pattern that restricts the
instantiation of a class to a singular instance. This can be done by making the constructor
private and create a public static method in the class that creates and returns an instance once
and subsequently returns that instance.

Implementation:

public class Singleton {

 private static Singleton instance;

 private Singleton() {

 System.out.println("Creating new instance");

 }

 public static Singleton getInstance() {

 if (instance == null) {

 instance = new Singleton();

 }

Lars Nysom AI Generated Feedback

50

 return instance;

 }

}

public class Main {

 public static void main(String[] args) {

 // Test 1: Create an object

 Singleton obj1 = Singleton.getInstance();

 // Test 2: Try to create a second object, the first one should be returned

 Singleton obj2 = Singleton .getInstance();

 // Test 3: Ensure both references point to the same object

 System.out.println(obj1 == obj2); // This should print "true"

 // Test 4: Attempt to call the class constructor directly (should not be possible)

 // Singleton obj3 = new Singleton (); // Uncommenting this line should result in a
compile-time error

 }

}

The evaluation criteria are:

The purpose and the functionality of the singleton pattern must be described in a few
sentences.

The sample implementation should ensure that only one instance of an object can be created,
by running tests that:

1. Creates an object.

2. When trying to create a second object, the first one is returned.

3. It must not be possible to call the class constructor directly.

Here is the students submission:

When implementing the singleton pattern, you ensure that only one instance of the singleton
class will exist at a time and is accessed in a static way. Is often used in container classes when
building a smaller system where a database isn't needed.

Generated Feedback Overall, the student's submission touches upon the main points of the Singleton pattern but
lacks clarity and some specific details. Let's provide constructive feedback on the student's
submission and evaluate it based on the evaluation criteria.

1. **Purpose and Functionality of Singleton Pattern**:

The student's explanation is correct in stating that the Singleton pattern ensures only one
instance of the class exists at a time and is accessed statically. However, it can be improved by
adding a bit more clarity and precision. The Singleton pattern is typically used when you want
to control the instantiation of a class to a single object, ensuring that all references to the class
refer to the same instance. This is useful in scenarios where multiple instances of the class may
lead to conflicts or unnecessary resource consumption. Additionally, the student mentioned
that it is used in container classes, but this is not a universal use case, so it's better to avoid
such specificity.

Feedback:

- You've correctly stated that the Singleton pattern ensures only one instance of the class exists
and is accessed statically. However, it would be better to mention that this pattern is used
when you want to control the instantiation of a class to a single object, ensuring that all
references to the class refer to the same instance. Avoid being too specific about its use in
container classes as it has broader applications.

Lars Nysom AI Generated Feedback

51

2. **Sample Implementation and Tests**:

The student's implementation is mostly correct and achieves the desired functionality. It
correctly defines a private static instance variable, a private constructor, and a public static
method to retrieve the instance. The tests provided are relevant and validate that:

 - Creating an object using `getInstance()` works.

 - When trying to create a second object, the first one is returned, demonstrating the
Singleton behavior.

 - Attempting to call the class constructor directly should not be possible, which is correctly
enforced by the private constructor.

Feedback:

- Your implementation of the Singleton pattern is on the right track. You have declared a
private static instance variable and a private constructor, ensuring that only one instance can
exist. Your `getInstance()` method correctly handles the instantiation of the class and ensures
that only one instance is created and returned.

- Your tests are relevant and demonstrate the Singleton behavior effectively. You create an
object using `getInstance()` in the first test and show that when attempting to create a second
object, the same instance is returned. The third test checks if both references point to the
same object, which is a crucial property of the Singleton pattern. The commented-out code
attempting to call the constructor directly shows that the private constructor prevents direct
instantiation, which is good.

In summary, your submission is on the right track, and your implementation of the Singleton
pattern is mostly correct. However, for future assignments, try to provide a more detailed and
precise explanation of the pattern's purpose and functionality. Also, remember to avoid being
overly specific about use cases unless explicitly asked for. Keep up the good work!

Student 3

Prompt I am a lecturer at a university college, teaching computer science.

I need to evaluate an assignment of programming for students and provide constructive
feedback for the students submissions.

This is a programming exercise where the students must demonstrate that they are able to
implement a specific programming pattern and explain how it works. The solution must be
handed in as a code-snippet where the explanation can be embedded in the code as a
comment.

The assignment is:

Explain the singleton design pattern and give an example implementation.

Here is the indicative solution:

Description: The Singleton pattern is a creational software design pattern that restricts the
instantiation of a class to a singular instance. This can be done by making the constructor
private and create a public static method in the class that creates and returns an instance once
and subsequently returns that instance.

Implementation:

public class Singleton {

 private static Singleton instance;

 private Singleton() {

 System.out.println("Creating new instance");

 }

 public static Singleton getInstance() {

Lars Nysom AI Generated Feedback

52

 if (instance == null) {

 instance = new Singleton();

 }

 return instance;

 }

}

public class Main {

 public static void main(String[] args) {

 // Test 1: Create an object

 Singleton obj1 = Singleton.getInstance();

 // Test 2: Try to create a second object, the first one should be returned

 Singleton obj2 = Singleton .getInstance();

 // Test 3: Ensure both references point to the same object

 System.out.println(obj1 == obj2); // This should print "true"

 // Test 4: Attempt to call the class constructor directly (should not be possible)

 // Singleton obj3 = new Singleton (); // Uncommenting this line should result in a
compile-time error

 }

}

The evaluation criteria are:

The purpose and the functionality of the singleton pattern must be described in a few
sentences.

The sample implementation should ensure that only one instance of an object can be created,
by running tests that:

1. Creates an object.

2. When trying to create a second object, the first one is returned.

3. It must not be possible to call the class constructor directly.

Here is the students submission:

The singleton pattern is used to ensure that only one instance of a given class can be initiated.
This is accomplished by having private constructors and a private static method that returns a
reference to the object or initiates a new object if an instance has not yet been initiated.

Example:

public class Singleton{

 private static Singleton instance;

 private static Singleton getInstance(){

 if(instance == null){

 instance = new Singleton();

 }

 return instance;

 }

}

Lars Nysom AI Generated Feedback

53

Generated Feedback Overall, the student's submission demonstrates a basic understanding of the Singleton design
pattern. However, there are some areas that could be improved, and some important
evaluation criteria are not fully met. Below is the constructive feedback for the student:

1. Purpose and functionality of the Singleton pattern:

The student's description is on the right track but lacks a few important points. They should
describe that the pattern ensures that a class has only one instance and provides a global access
point to that instance. Additionally, it should mention that the constructor is made private to
prevent direct instantiation and that the pattern is often used to manage shared resources and
configurations.

Modified Description:

"The Singleton pattern is a creational design pattern that guarantees a class has only one
instance and provides a global access point to that instance. This is achieved by making the
constructor private and creating a static method that returns the single instance if it exists or
creates a new instance if none has been created yet. It is commonly used to manage shared
resources, such as configuration settings and database connections."

2. Implementation:

The student's implementation is almost correct, but there is a small issue. The constructor
should be private, not the `getInstance()` method. Also, the student should add comments to
explain each step of the implementation, including the purpose of the `getInstance()` method.

Modified Implementation:

```java 

public class Singleton { 

    private static Singleton instance; 

 

    private Singleton() { 

        System.out.println("Creating new instance"); 

    } 

 

    public static Singleton getInstance() { 

        if (instance == null) { 

            instance = new Singleton(); 

        } 

        return instance; 

    } 

} 

``` 


3. Test Cases:

The student has not provided test cases as part of the submission, which were specified in the
evaluation criteria. They should add the test cases to the Main class as demonstrated in the
indicative solution. The test cases should cover the following scenarios:

a. Test 1: Create an object using `Singleton.getInstance()`.

b. Test 2: Try to create a second object using `Singleton.getInstance()`, and check if it returns
the same instance as Test 1.

c. Test 3: Ensure that both references (obj1 and obj2) point to the same object.

d. Test 4: Attempt to call the class constructor directly (should result in a compile-time error).

Modified Main class with Test Cases:

Lars Nysom AI Generated Feedback

54


```java 

public class Main { 

    public static void main(String[] args) { 

        // Test 1: Create an object 

        Singleton obj1 = Singleton.getInstance(); 

 

        // Test 2: Try to create a second object, the first one should be returned 

        Singleton obj2 = Singleton.getInstance(); 

 

        // Test 3: Ensure both references point to the same object 

        System.out.println(obj1 == obj2); // This should print "true" 

 

        // Test 4: Attempt to call the class constructor directly (should not be possible) 

        // Singleton obj3 = new Singleton(); // Uncommenting this line should result in a 
compile-time error 

    } 

} 

``` 


After addressing these points, the student's submission will provide a more complete and
accurate understanding of the Singleton pattern and its implementation.

Case 3

Student 1

Prompt I am a lecturer at a university college, teaching computer science.

I need to evaluate an assignment of programming for students and provide constructive
feedback for the students submissions.

In this type of assignment, the students must demonstrate a deeper understanding of a specific
topic. In this case it is the property of mutual exclusion that relates to concurrency control in
asynchronous, or parallel, execution of code where a resource is shared between concurrent
operations.

The students will hand in a short essay with their answer (max. 7200 characters including
spaces)

The assignment is:

Explain the properties of mutual exclusion in concurrent operations using the Dining
Philosophers Problem. Be sure to emphasize on some of the side effects such as deadlock and
starvation and give examples on how they can be solved.

Here is the indicative solution:

The Dining Philosophers Problem is a well-known example on the challenges in concurrent
programming related to synchronization issues when accessing shared resources. Five
philosophers dine together at the same table eating from one bowl of noodles placed at the
center of the table. There are five chopsticks placed on the table, one between every
philosopher, and any philosopher needs to pick up both the chopstick to the left and to the
right of him, thus making every chopstick a shared resource. The philosophers alternate
between thinking and eating, and when in thinking mode both chopsticks are placed at the
table making them available for the philosophers next to the one thinking.

The challenge is to create an algorithm such that no philosopher will starve, which will happen
if all philosophers want to eat at the same time and picks up one chopstick and waits for the
other to be released, which will never happen since they all are waiting.

To solve this, we look at Stallings lists of requirements for mutual exclusion:

Lars Nysom AI Generated Feedback

55

1. Mutual exclusion must be enforced: only one process at a time is allowed into its critical
section, among all processes that have critical sections for the same resource or shared object.
When a philosopher has picked up a chopstick, it will be flagged as in use so no other
philosopher can pick it up.

2. A process that halts in its non-critical section must do so without interfering with other
processes. When the philosophers are thinking they are in their non-critical section of the code
where they do not access any shared resource. If the thinking process halts, it will therefore
not affect any other process.

3. It must not be possible for a process requiring access to a critical section to be delayed
indefinitely: no deadlock or starvation. A simple solution is found in the asymmetric approach
where one philosopher picks up the chopsticks in reverse order, which will remove the
problem of all picking up the left chopstick at the same time. One philosopher will try to pick
up the chopstick to the right, and if he succeeds this will prevent the philosopher next to him
to pick up his left chopstick, and forces him to wait, or the philosopher himself must wait,
until the philosopher next to him is finished. If all philosopher wants to eat at the same time,
there will always be one that cannot eat before the one next to him is finished.

4. When no process is in a critical section, any process that requests entry to its critical section
must be permitted to enter without delay. When a philosopher is done thinking and wants to
pick up a chopstick, this is allowed only if the chopstick is placed on the table. This can be
done using the synchronized keyword in Java.

5. No assumptions are made about relative process speeds or number of processors.
Depending on the programming language, decisions about which processor to use is up to the
operating system, which is the case with Java. Otherwise, this must be handled in another
process running independently of the program running the Dining Philosophers.

6. A process remains inside its critical section for a finite time only. A philosopher is only
allowed eating for a finite time, which must be implemented in the code.

The evaluation criteria are:

All six requirements from Stallings book must be referenced and taken into consideration in
relation to solving the Dining Philosophers Problem.

There are several known solutions to the Dining Philosophers Problem (e.g., Dijkstra’s,
Resource hierarchy, Arbitrator, Chandy/Misra, Asymmetric) and the students should name
and describe at least one.

Here is the students submission:

Mutal exclusion is an important concept in concurrent programming, where multiple
processes or threads need to access shared resources without causing conflicts or race
conditions.

Key requirements are:

1. Mutual Exclusion: Only one process accesses a shared resource at a time.

2. Progress: The next process to enter the critical section isn't indefinitely postponed.

3. Bounded Waiting: No process is perpetually denied access, preventing starvation.

4. No Speed Assumptions: The solution works regardless of execution speed and process
count.

Generated Feedback Overall, the student's submission provides a concise overview of mutual exclusion and its key
requirements in concurrent programming. However, there are some important aspects of the
assignment that the student has not addressed yet. Let's provide constructive feedback to help
the student improve their submission:

1. **Linking with the Dining Philosophers Problem**: The student needs to explicitly connect
the concept of mutual exclusion with the Dining Philosophers Problem, as stated in the
assignment. They should explain how mutual exclusion is relevant in the context of
philosophers trying to access shared chopsticks while avoiding deadlock and starvation.

Lars Nysom AI Generated Feedback

56

2. **Emphasize on Side Effects**: The assignment explicitly asks the students to emphasize
side effects such as deadlock and starvation. The student should provide a more detailed
explanation of these side effects and how they can occur in the Dining Philosophers scenario.

3. **Describe at Least One Solution**: The student should name and describe at least one
solution to the Dining Philosophers Problem. The indicative solution mentioned "asymmetric
approach" as a solution. The student should research and describe this solution or any other
known solution to the problem.

4. **Detailed Examples**: The student should provide concrete examples to illustrate the
concepts they discuss. For instance, they could explain a scenario in the Dining Philosophers
context where deadlock or starvation occurs and how it can be resolved using the mentioned
solution.

5. **Reference Stallings' Requirements**: The student should explicitly reference and discuss
how each of Stallings' requirements for mutual exclusion applies to the Dining Philosophers
Problem. They should show how the proposed solution satisfies these requirements.

6. **Addressing All Evaluation Criteria**: The student should ensure they address all the
evaluation criteria listed in the assignment prompt, including discussing all six requirements
from Stallings' book and naming/describing at least one solution to the Dining Philosophers
Problem.

7. **Utilize the Word Limit Effectively**: The student is provided with a maximum word limit
of 7200 characters. While being concise is essential, they should also make sure to use this
word limit effectively to provide a comprehensive and detailed explanation.

Given this feedback, the student can revise their essay to better meet the assignment
requirements and provide a more comprehensive and accurate response to the prompt.

Student 2

Prompt I am a lecturer at a university college, teaching computer science.

I need to evaluate an assignment of programming for students and provide constructive
feedback for the students submissions.

In this type of assignment, the students must demonstrate a deeper understanding of a specific
topic. In this case it is the property of mutual exclusion that relates to concurrency control in
asynchronous, or parallel, execution of code where a resource is shared between concurrent
operations.

The students will hand in a short essay with their answer (max. 7200 characters including
spaces)

The assignment is:

Explain the properties of mutual exclusion in concurrent operations using the Dining
Philosophers Problem. Be sure to emphasize on some of the side effects such as deadlock and
starvation and give examples on how they can be solved.

Here is the indicative solution:

The Dining Philosophers Problem is a well-known example on the challenges in concurrent
programming related to synchronization issues when accessing shared resources. Five
philosophers dine together at the same table eating from one bowl of noodles placed at the
center of the table. There are five chopsticks placed on the table, one between every
philosopher, and any philosopher needs to pick up both the chopstick to the left and to the
right of him, thus making every chopstick a shared resource. The philosophers alternate
between thinking and eating, and when in thinking mode both chopsticks are placed at the
table making them available for the philosophers next to the one thinking.

Lars Nysom AI Generated Feedback

57

The challenge is to create an algorithm such that no philosopher will starve, which will happen
if all philosophers want to eat at the same time and picks up one chopstick and waits for the
other to be released, which will never happen since they all are waiting.

To solve this, we look at Stallings lists of requirements for mutual exclusion:

1. Mutual exclusion must be enforced: only one process at a time is allowed into its critical
section, among all processes that have critical sections for the same resource or shared object.
When a philosopher has picked up a chopstick, it will be flagged as in use so no other
philosopher can pick it up.

2. A process that halts in its non-critical section must do so without interfering with other
processes. When the philosophers are thinking they are in their non-critical section of the code
where they do not access any shared resource. If the thinking process halts, it will therefore
not affect any other process.

3. It must not be possible for a process requiring access to a critical section to be delayed
indefinitely: no deadlock or starvation. A simple solution is found in the asymmetric approach
where one philosopher picks up the chopsticks in reverse order, which will remove the
problem of all picking up the left chopstick at the same time. One philosopher will try to pick
up the chopstick to the right, and if he succeeds this will prevent the philosopher next to him
to pick up his left chopstick, and forces him to wait, or the philosopher himself must wait,
until the philosopher next to him is finished. If all philosopher wants to eat at the same time,
there will always be one that cannot eat before the one next to him is finished.

4. When no process is in a critical section, any process that requests entry to its critical section
must be permitted to enter without delay. When a philosopher is done thinking and wants to
pick up a chopstick, this is allowed only if the chopstick is placed on the table. This can be
done using the synchronized keyword in Java.

5. No assumptions are made about relative process speeds or number of processors.
Depending on the programming language, decisions about which processor to use is up to the
operating system, which is the case with Java. Otherwise, this must be handled in another
process running independently of the program running the Dining Philosophers.

6. A process remains inside its critical section for a finite time only. A philosopher is only
allowed eating for a finite time, which must be implemented in the code.

The evaluation criteria are:

All six requirements from Stallings book must be referenced and taken into consideration in
relation to solving the Dining Philosophers Problem.

There are several known solutions to the Dining Philosophers Problem (e.g., Dijkstra’s,
Resource hierarchy, Arbitrator, Chandy/Misra, Asymmetric) and the students should name
and describe at least one.

Here is the students submission:

There is four requirement for mutual exclusion:

1. No process more than one process can be in their respective critical section at any time

2. There should be no assumptions to the relative speed of conflicting processes.

3. Processes outside their critical section should not interrupt another process access to the
critical section.

4. When more than one process wants to enter its critical section, it must be granted entry in a
finite time, so that it will never be kept waiting in a infinite loop.

Generated Feedback Overall, the student's submission shows some understanding of mutual exclusion and the
Dining Philosophers Problem, but there are areas that need further clarification and
elaboration. Here's a constructive feedback for the student:

1. Depth of Explanation: The student's submission lacks sufficient depth in explaining the
concepts of mutual exclusion and the Dining Philosophers Problem. They need to provide a
more detailed and comprehensive explanation of each requirement.

Lars Nysom AI Generated Feedback

58

2. Completeness: The student's submission only covers four requirements for mutual
exclusion, while the assignment explicitly asks for all six requirements from Stallings book.
They need to refer to Stallings' book and include all six requirements in their answer.

3. Understanding of the Dining Philosophers Problem: The student briefly mentions that no
process can be in its critical section at the same time, but they need to elaborate on how this
relates to the Dining Philosophers Problem specifically. They should explain the challenge of
managing shared resources (chopsticks) and how it leads to issues like deadlock and starvation.

4. Solutions to the Dining Philosophers Problem: The student is expected to name and
describe at least one known solution to the Dining Philosophers Problem. They should
research and include information about the different solutions, such as Dijkstra’s, Resource
hierarchy, Arbitrator, Chandy/Misra, and Asymmetric. They should explain the core idea
behind at least one of these solutions and how it addresses the problem of deadlock or
starvation.

5. Inaccuracies: The student mentions four requirements for mutual exclusion, but some of
them are not entirely accurate. For example, the second requirement about "relative speed of
conflicting processes" is not a standard requirement for mutual exclusion. The student needs
to correct this and provide accurate information.

6. Structure and Clarity: The student's submission lacks a clear structure and organization.
They should divide their essay into clear sections, each addressing a specific requirement or
aspect of the problem. This will make their answer more readable and coherent.

7. Citation and References: The student should provide proper citations and references,
especially when mentioning Stallings' book or any other external sources they might use in
their essay.

8. Grammar and Language: The student's submission has some grammar issues and sentence
structure problems. They should revise their essay to improve its overall readability and clarity.

To summarize, the student has made a good start, but they need to expand on their
explanation, address all six requirements from Stallings' book, include information about at
least one solution to the Dining Philosophers Problem, and improve the overall structure and
clarity of their essay. Encourage them to research more, provide accurate information, and cite
their sources properly.

Student 3

Prompt I am a lecturer at a university college, teaching computer science.

I need to evaluate an assignment of programming for students and provide constructive
feedback for the students submissions.

In this type of assignment, the students must demonstrate a deeper understanding of a specific
topic. In this case it is the property of mutual exclusion that relates to concurrency control in
asynchronous, or parallel, execution of code where a resource is shared between concurrent
operations.

The students will hand in a short essay with their answer (max. 7200 characters including
spaces)

The assignment is:

Explain the properties of mutual exclusion in concurrent operations using the Dining
Philosophers Problem. Be sure to emphasize on some of the side effects such as deadlock and
starvation and give examples on how they can be solved.

Here is the indicative solution:

The Dining Philosophers Problem is a well-known example on the challenges in concurrent
programming related to synchronization issues when accessing shared resources. Five

Lars Nysom AI Generated Feedback

59

philosophers dine together at the same table eating from one bowl of noodles placed at the
center of the table. There are five chopsticks placed on the table, one between every
philosopher, and any philosopher needs to pick up both the chopstick to the left and to the
right of him, thus making every chopstick a shared resource. The philosophers alternate
between thinking and eating, and when in thinking mode both chopsticks are placed at the
table making them available for the philosophers next to the one thinking.

The challenge is to create an algorithm such that no philosopher will starve, which will happen
if all philosophers want to eat at the same time and picks up one chopstick and waits for the
other to be released, which will never happen since they all are waiting.

To solve this, we look at Stallings lists of requirements for mutual exclusion:

1. Mutual exclusion must be enforced: only one process at a time is allowed into its critical
section, among all processes that have critical sections for the same resource or shared object.
When a philosopher has picked up a chopstick, it will be flagged as in use so no other
philosopher can pick it up.

2. A process that halts in its non-critical section must do so without interfering with other
processes. When the philosophers are thinking they are in their non-critical section of the code
where they do not access any shared resource. If the thinking process halts, it will therefore
not affect any other process.

3. It must not be possible for a process requiring access to a critical section to be delayed
indefinitely: no deadlock or starvation. A simple solution is found in the asymmetric approach
where one philosopher picks up the chopsticks in reverse order, which will remove the
problem of all picking up the left chopstick at the same time. One philosopher will try to pick
up the chopstick to the right, and if he succeeds this will prevent the philosopher next to him
to pick up his left chopstick, and forces him to wait, or the philosopher himself must wait,
until the philosopher next to him is finished. If all philosopher wants to eat at the same time,
there will always be one that cannot eat before the one next to him is finished.

4. When no process is in a critical section, any process that requests entry to its critical section
must be permitted to enter without delay. When a philosopher is done thinking and wants to
pick up a chopstick, this is allowed only if the chopstick is placed on the table. This can be
done using the synchronized keyword in Java.

5. No assumptions are made about relative process speeds or number of processors.
Depending on the programming language, decisions about which processor to use is up to the
operating system, which is the case with Java. Otherwise, this must be handled in another
process running independently of the program running the Dining Philosophers.

6. A process remains inside its critical section for a finite time only. A philosopher is only
allowed eating for a finite time, which must be implemented in the code.

The evaluation criteria are:

All six requirements from Stallings book must be referenced and taken into consideration in
relation to solving the Dining Philosophers Problem.

There are several known solutions to the Dining Philosophers Problem (e.g., Dijkstra’s,
Resource hierarchy, Arbitrator, Chandy/Misra, Asymmetric) and the students should name
and describe at least one.

Here is the students submission:

No deadlocks

No starvation

Fairness

Fault tolerance

Generated Feedback It's great that your students have attempted to solve the Dining Philosophers Problem and
submitted their work. However, their solution seems to be quite brief and lacks the necessary
depth and connection to the requirements outlined in the assignment.

To provide constructive feedback, you can address the following points:

Lars Nysom AI Generated Feedback

60

1. **Comprehensiveness**: The students' submission is quite concise, and it does not fully
explain how the properties of mutual exclusion relate to the Dining Philosophers Problem.
Encourage them to elaborate on each property in the context of the problem, how it affects
the philosophers' behavior, and the consequences of not ensuring these properties.

2. **Requirement References**: The assignment explicitly requires students to reference all six
requirements from Stallings book in relation to solving the Dining Philosophers Problem. The
students' submission does not directly refer to any of these requirements. Advise them to
identify which requirements their solution addresses and explain how their solution meets each
of these requirements.

3. **Known Solutions**: The students should name and describe at least one known solution
to the Dining Philosophers Problem. Their current submission doesn't mention any specific
solution, which is a significant gap in their response. They should research and describe at least
one of the well-known solutions like Dijkstra’s, Resource hierarchy, Arbitrator, Chandy/Misra,
or Asymmetric and explain how it satisfies the mutual exclusion property.

4. **Clear Explanation**: The students' submission lacks clarity. Ask them to provide clear
and detailed explanations for each point they mention, including "No deadlocks," "No
starvation," "Fairness," and "Fault tolerance." How do they achieve these properties in the
context of the Dining Philosophers Problem?

5. **Examples**: Encourage the students to provide concrete examples to illustrate their
points. For instance, they can describe a scenario where deadlock or starvation can occur in
the Dining Philosophers Problem and explain how their solution prevents such situations.

6. **Academic References**: Ensure that students back up their explanations with credible
academic references or authoritative sources. This will add credibility to their work and
demonstrate a deeper understanding of the topic.

7. **Code Implementation**: While the assignment does not explicitly mention code
implementation, it can be beneficial to include code examples to demonstrate how the
proposed solution addresses the problem's requirements.

When providing feedback, it's essential to be encouraging and supportive while also
highlighting the areas where improvement is needed. Encourage the students to revise their
submission and provide more detailed explanations and examples, backed by academic
references, to demonstrate their understanding of mutual exclusion in the context of the
Dining Philosophers Problem.

Lars Nysom AI Generated Feedback

61

Appendix C: Preliminary Conversations with
ChatGPT

In this conversation the chat bot was asked to briefly explain each state in the Five-State
Process model (related to Case 1: Review Question). The indicative answer to this is:

Running: The process that is currently being executed.

Ready: A process that is prepared to execute when given the opportunity.

Blocked: A process that cannot execute until some event occurs, such as the completion
of an I/O operation.

New: A process that has just been created but has not yet been admitted to the pool of
executable processes by the operating system.

Exit: A process that has been released from the pool of executable processes by the
operating system, either because it halted or because it aborted for some reason.

The first attempt was the exact question that the students was asked in the assignment,
and since they are using Stallings book, it is implicit that they should use his description
of the model.

The answer provided by ChatGPT is a little unexpected and a quick read-through
suggests that it is talking about how individuals process information and make decisions,
so it is completely out of context and not necessarily wrong. However, a google search

Lars Nysom AI Generated Feedback

62

on the term “Five-State Process model”11 produce a list consisting exclusively of results
related to operating systems processes, so it would be reasonable to assume that this is
the context the question should be interpretated in, and so is its answer a little surprising.

Next, the question was expanded with a little contextual information.

The question was then clarified further…

11 https://www.google.com/search?q=Five-State+Process+model

Lars Nysom AI Generated Feedback

63

Only when the authors name was included in the question, did the bot provide a correct
answer.

Lars Nysom AI Generated Feedback

64

This shows us that some context is needed to point ChatGPT in the correct direction,
so that it generates useful feedback related to the syllabus. It makes good sense as people
also would need that, to answer such a question. However, asking the chatbot a question
such as the one above and providing the context for it, is no guarantee for the
correctness of the answer. There is no way to know which sources the information the
answer is based on comes from and we cannot be sure either, that the model knows the
content of the book. In this case, some older editions of the book is available online, so
it might know it, but if this particular topic has changed between editions, the chatbot
might get it wrong.

Lars Nysom AI Generated Feedback

65

Appendix D: Experimenting with the
Temperature Property

Sending the same prompt to ChatGPT results in different outputs. The meaning of the
message is the same, but the language changes. This is due to the temperature property of
the request, which determines the randomness and creativity of the conversation.

Large language models try to predict the next best word given a prompt. One word at
a time. They assign a probability to each word in their vocabulary, and then picks a word
among those.

A temperature of 0 means the responses will be very straightforward, almost
deterministic because the model will always select the highest probability word. This
also means we almost always get the same response to a given prompt.

A higher temperature, with 1 being the highest, means that the model might select a
word with slightly lower probability, leading to more variation, randomness, and
creativity. Also, this raises the risk that the AI starts selecting words that will make no
sense.

In the following experiments we have requested feedback for Student 1 submission in
Case 1. As can be seen, there is only a very small difference between the output for the
first and second attempt where temperature was set to 0.

The third and fourth attempt are, however, quite different from both each other but
also from the first two. The fourth feedback generated even points out spelling errors
which is outside the scope of the assignment.

The first attempt with temperature = 0

The student's submission includes all five states of the Five-State Process model,
but there are some inaccuracies and missing details in the descriptions.

1. New: The student accurately describes this state as the phase where an
operation is initiated and resources are assigned. However, they do not mention
that the process has not yet been admitted to the pool of executable processes
by the operating system.

2. Ready: The student correctly mentions that the process is transferred to
primary memory and is set for execution. However, they do not mention that it
is in a queue, waiting for the operating system to grant it access to the CPU.

3. Running: The student accurately describes this state as the phase where the
CPU is actively executing the process. However, they do not mention that the
process must have been allocated to the CPU to be in this state.

4. Blocked: The student correctly mentions that the process is on hold for an
external occurrence or resource to become accessible. However, they do not
mention that it cannot proceed with execution even if the CPU is available.
Additionally, they do not mention that the process returns to the ready state once
the necessary resource or event becomes available.

Lars Nysom AI Generated Feedback

66

5. Exit: The student accurately describes this state as the phase where the
process's execution is finished and it is no longer required. However, they do not
mention that the operating system deallocates resources and memory assigned to
the process, and that it is removed from the operation control structure.

Overall, the student's submission includes the basic ideas of each state, but there
are some missing details and inaccuracies. They should provide a more
comprehensive and accurate description of each state.

The second attempt with temperature = 0

The student's submission includes all five states of the Five-State Process model,
but there are some inaccuracies and missing details in the descriptions.

1. New: The student accurately describes this state as the phase where an
operation is initiated and resources are assigned. However, they do not mention
that the process has not yet been admitted to the pool of executable processes
by the operating system.

2. Ready: The student correctly mentions that the process is transferred to
primary memory and is set for execution. However, they do not mention that it
is in a queue, waiting for the operating system to grant it access to the CPU.

3. Running: The student accurately describes this state as the phase where the
CPU is actively executing the process. However, they do not mention that the
process must have been allocated to the CPU to be in this state.

4. Blocked: The student correctly mentions that the process is on hold for an
external occurrence or resource to become accessible. However, they do not
mention that it cannot proceed with execution even if the CPU is available.
Additionally, they do not mention that the process returns to the ready state once
the necessary resource or event becomes available.

5. Exit: The student accurately describes this state as the phase where the
process's execution is finished and it is no longer required. However, they do not
mention that the operating system deallocates resources and memory assigned to
the process, and that it is removed from the operation control structure.

Overall, the student's submission includes the basic understanding of each state,
but there are some missing details and inaccuracies. They should provide a more
comprehensive and accurate description of each state.

The third attempt with temperature = 1

The student's submission includes all five states of the Five-State Process model:
New, Ready, Running, Blocked/Waiting, and Exit/Terminate.

However, there are some inaccuracies and missing details in the student's
description.

1. New: The student correctly mentions that in this state, an operation is initiated
and assigned resources. However, they missed mentioning the OCS and OID as
specified in the indicative solution.

Lars Nysom AI Generated Feedback

67

2. Ready: The student correctly states that the operation is transferred to primary
memory and waits for the CPU. However, they should mention that the
operation is also registered in the OCS and given an OID.

3. Running: The student accurately describes that the CPU actively executes the
operation. However, they should include that the operation has been allocated to
the CPU.

4. Blocked/Waiting: The student correctly states that the operation is on hold
for an external occurrence or resource. However, they should mention that it
returns to the ready state once the necessary resource or event becomes available.

5. Exit/Terminate: The student correctly mentions that the operation's execution
is finished and resources are deallocated. However, they should include that the
operation is removed from the OCS.

In order to provide constructive feedback, it would be helpful to point out these
inaccuracies and missing details to the student. Additionally, it would be
beneficial to suggest that the student refers to the book for a more
comprehensive understanding of each state in the Five-State Process model.

The fourth attempt with temperature = 1

The student's submission includes all five states described in the book and
provides a brief description of each state. However, there are some inaccuracies
and inconsistencies in the description.

1. New: The student accurately describes this state as the phase when an
operation is initiated and resources are assigned. However, they mention the
operation control structure (OCS) and operation ID (OID), which are not
mentioned in the given solution. These details are not necessary for the
explanation and can be omitted.

2. Ready: The student correctly mentions that the operation is transferred to
primary memory and is set for execution in this state. However, they refer to the
"prepared line" and "organizing system," which are not mentioned in the given
solution. The student should use the term "ready queue" and "operating system"
respectively to maintain consistency.

3. Running: The student accurately describes this state as the phase when the
operation is actively executed by the CPU. However, there is a typo in the word
"executin" that should be corrected to "executing."

4. Blocked/waiting: The student correctly mentions that the operation is on hold
for an external occurrence or resource to become accessible. However, they
mention "user interaction" as an example, which is not mentioned in the given
solution. The student should mention that a common reason for blocking is the
completion of an I/O task, which was mentioned in the given solution.

5. Exit/Terminate: The student accurately describes this state as the phase when
the operation's execution is finished and it is removed from the operation control
structure. However, they mention "deallocated resources and memory assigned
to the operation," which is not mentioned in the given solution. The student

Lars Nysom AI Generated Feedback

68

should mention that the process is released from the pool of executable processes
by the operating system, either because it halted or aborted.

Overall, the student's submission includes most of the necessary information,
but there are some inaccuracies and inconsistencies. To improve the submission,
the student should correct these issues and ensure consistency with the given
solution.

