
SUMMARY
Graph databases have over the recent years become increasingly popular. The graph data model can be used to model real-world

entities, their relationships, and domain semantics. A reason for the rapid growth of graph databases is due to their schematic

flexibility and the ability to naturally model application data. Specifically, knowledge graphs (KGs) model data as a set of

triples consisting of a subject, predicate, and object. KGs are stored in triplestores and queried via the SPARQL language. A

SPARQL query in its most basic form consists of one or more triple patterns which describe subgraph patterns to match against.

Evaluating two overlapping triple patterns requires joined over the overlapping variable(s). These joins can be expensive to

compute on disk-based triplestores due to expensive disk operations. Join operations on triple patterns containing a single

variable on which the join is performed will perform existence checks. These existence checks will in some triplestores perform

disk lookup which is expensive and unnecessary. Specifically, Apache Jena is one such triplestore.

We conduct an extensive study of the Apache Jena query engine and propose to integrate a Bloom filter (BF) to skip

disk-based lookups when a given triple pattern does not exist. We call our approach JenaBloom. A BF is a compact bit vector

and a set of hash functions used to flip bits in the bit vector. An item is hashed using all of the BF hash functions, and the

corresponding bit vector bits are flipped to 1s. During existence checks, the same hash functions are applied to check whether

all of the corresponding bits have been flipped to 1s. We use BF existence check for triple patterns only containing the one

variable being joined on. When the BF returns negative, i.e., the triple pattern does not exist, the standard disk-based indexes

are skipped. This saves a significant amount of time. However, BF positives are not guaranteed to be true. Hence, it is required

to also perform existence check in the standard disk-based indexes to verify the triple pattern existence. Therefore, both BF true

and false positives induce additional runtime, as the BF existence check becomes an additional step to the standard existence

check using the standard indexes. It is therefore essential to apply BF existence only for triple patterns involved in joins that

produce enough BF negatives such that BF existence check optimizes query execution. We therefore experiment with the

application of triple predicate statistics and apply BF existence check only for triple patterns containing predicates that belong

to the top 80th percentile of most frequent predicates in the KG. The aim with this statistical approach is use BF existence only

triple patterns that have larger result sets which are likely to perform a higher number of existence checks.

We create a benchmark consisting of queries used to evaluate a worst-case optimal join (WCOJ) approach in Leapfrog

Triejoin and queries used to evaluate MilleniumDB. From these queries, we generate a set of queries that return empty results

set. We furthermore manually handcraft queries that are designed to maximize existence checks. Our experiments clearly show

that we are able to improve query execution time for queries that return empty result sets. These queries time out in Apache

Jena but terminate successfully in JenaBloom. However, JenaBloom is not able to outperform Apache Jena on the remaining

queries. Leapfrog Triejoin also proves to outperform Apache Jena and JenaBloom for almost any type of query. The reason

JenaBloom does not outperform Apache Jena for some queries is because the fraction of BF negatives is too small. Thus, the

sum of additional runtime gained from the positive BF existence checks out-balances the runtime saved from BF negatives.

Finally, it is evident that JenaBloom applying statistics to predict when to apply BF existence check does not perform this

prediction well, and hence, this approach does once again not improve runtime. This is due to the statistical approach being

too simplistic and not considering that a frequent triple predicate is also more likely to produce BF positives.

Jena Bloom:Query Execution with Bloom Filter Existence Check
Martin Pekár Christensen

Aalborg University

Denmark

mpch@cs.aau.dk

Matteo Lissandrini

Aalborg University

Denmark

matteo@cs.aau.dk

Katja Hose
∗

TU Wien

Austria

katja.hose@tuwien.ac.at

ABSTRACT
In recent years, graph data management, triplestores, and knowl-

edge graphs have increasingly have attracted interest. However, it

still remains challenging to efficiently query triplestores, as many

optimization strategies from traditional databases are still left unex-

plored. As a first step to optimize triplestores, this paper examines

the question of how to improve query execution time by addressing

costly existence checks in join operations. To achieve this goal, we

integrate a Bloom filter residing entirely and compactly in-memory

to be used in place of disk-based indexes for existence check oper-

ations. We furthermore apply triple statistics in determining the

specific join operations in which Bloom filter existence checks ben-

efit execution time. We extend a reference triplestore (Jena) with

Bloom Filters and integrate our approach for query optimization.

We evaluate our approach, JenaBloom, on a large set of more

than 1,500 queries, and show its effectiveness on queries returning

empty result sets, as well as those returning non-empty result sets.

1 INTRODUCTION
In recent years, graph DBMS have arisen as a specialized type

of DBMS to store and analyze data modelled via the graph data

model [2, 13, 22]. Recently, there has been an increasing interest in

graph databases [2], where the graph data model is employed to

model real-world entities and their intermediate relationships, as

well as the desired domain semantics. Typically, graph databases

are employed where data inter-connectivity or topology are impor-

tant, as well as schematic flexibility [1, 2]. Hence, many applica-

tions where inter-connectivity is key have moved from traditional

database models, such as relational databases and object-oriented

databases, to graph databases. One of the advantages of graph

databases is that they allow to model application data more nat-

urally. This allows graph database queries to refer directly to the

graph structure, as well as applying graph-oriented operations and

constraints over the graph structure. It furthermore allows for ex-

ecuting common graph algorithms, such as finding shortest path

and finding sub-graphs.

One particular graph data model that has gained interest recently

is that of Knowledge Graphs (KGs) [7, 17], i.e., databases that model

information as a set of subject-predicate-object (𝑠, 𝑝, 𝑜) triples, also
called facts or statements. An (𝑠, 𝑝, 𝑜) triple represents entities 𝑠 and
𝑜 connected by a predicate 𝑝 representing the relation between the

two entities, e.g., ⟨𝑀𝑖𝑐ℎ𝑎𝑒𝑙_𝐽𝑜𝑟𝑑𝑎𝑛, 𝑏𝑖𝑟𝑡ℎ𝑝𝑙𝑎𝑐𝑒, 𝐵𝑟𝑜𝑜𝑘𝑙𝑦𝑛⟩ (see
Figure 1).

KGs are typically stored in graph database management sys-

tems (GDBMSs), referred to as triplestores [22] and queried via

the SPARQL query language [19] (see example query in Listing 1).

∗
Also with Aalborg University, khose@cs.aau.dk.

Typical graph queries require to find all the matches of substruc-

tures (i.e., pattern matching of subgraphs) within the larger graph,

these are called triple patterns and basic graph patterns (BGPs).

These operations are usually modelled in logical plans as a series

of joins on relations corresponding to the edge types. Their query

optimization is challenging because of the hardness of problems

like query cardinality prediction [18], which can lead to highly

under-performing execution plans.

1 PREFIX db: <http://dbpedia.org/resource/>
2 PREFIX dbp: <http://dbpedia.org/property/>
3 SELECT ?o WHERE {
4 db:iri5 dbp:team ?o .
5 ?o rdf:type db:iri7
6 }

Listing 1: Wikidata SPARQL query.

For example, some queries that require joins between two triple

pattern will perform existence checks. As an example, consider the

query in Listing 1. This query asks for the team of iri5 which is

of type iri7. The query engine will solve the first triple pattern to

find intermediate solutions to variable ?o. It will then substitute

these solutions into the same variable in the second triple pattern

and check for existence of this second triple pattern. Therefore,

many existence check operations will be performed: one for each

intermediate solution of the variable ?o from the first triple pattern.

These existence check operations will perform disk operations in

disk-based triplestores which are expensive in terms of runtime.

Moreover, if a triple pattern with a large result set is joined with

another triple pattern, and the intersection between the two is

small, many existence checks will be performed, most of which

return negative using standard indexes that do not suffer from

false positives. Therefore, a Bloom filter (BF) can be utilized to

remove the runtime overhead of disk-based existence checks for

triple patterns that do not exist.

Therefore, in this work, we propose JenaBloom: BF existence
check for triple pattern joins. In practice, we analyze a reference

open-source triplestore implementation, Apache Jena
1
, which exe-

cutes queries as a series of index-nested loop joins. Then, we extend

its query execution via the use of BFs, a typical optimization to

reduce disk-based index access which was not implemented in this

and similar systems [22]. Therefore, we implement a BF for triples

to substitute the cost of disk operations when the join operation

requires to check if a given triple exists in the database. We call

our proposal JenaBloom and implement it in Apache Jena 3.17. Our

evaluation (Section 5) shows that queries with empty result sets

time out in Jena but are executed efficiently in JenaBloom. We show

in our experiments the type of queries and constraints required for

1
https://jena.apache.org/

2

https://jena.apache.org/

“Charlotte Hornets”

db:iri4

“Michael Jordan”

ex:iri8

“Athlete”

dbp:team

2003

db:iri5

db:iri7

rdf:label
“Broklyn”

rdf:typedb:iri9

“Organization”

Figure 1: Sample KG describing Michael Jordan.

BFs to be efficient in query execution, as well as the case in which

BFs are inefficient. Since the use of BFs benefits only particular

queries with high degree of negatives, queries with high positive

rates on joins could actually experience a slowdown. Therefore,

we experiment with the application of statistics over stored triples

to determine when to apply BF existence check. Therefore, our

contributions are the following:

(1) We study the query engine of Apache Jena and propose an

integration strategy of BF existence checks.

(2) We implement a prototype applying BFs in the query execution

module of Apache Jena, showing the optimization opportu-

nity of this technique in SPARQL query execution, identifying

advantages and limitations.

(3) We implement the application of triple statistics in determining

when to apply BF existence checks and evaluate its effect on

queries in which BF existence checks are inefficient.

The rest of this paper is structured as follows: Section 2 presents

necessary preliminaries of RDF triplestores and BFs, Section 3

presents related work, and Section 4 presents the methodology

behind query execution using BF existence check. Finally, we evalu-

ate our approach in Section 5 and conclude the results in Section 6

as well as present some future directions for this research problem.

2 PROBLEM DEFINITION
In this section, we introduce the definition of the RDF data model

behind KGs and the SPARQL query language. We further introduce

how Bloom filters can be used for SPARQL query execution, and

thus provide a problem definition.

2.1 RDF and SPARQL
Knowledge graphs are usually stored using the data model provided

by the Resource Description Framework (RDF) [12]. RDF KGs are

represented as a directed graph consisting of triples (see Figure 1).

Definition 2.1 (Knowledge Graph). An RDF knowledge graph

is a set of triples where a triple 𝑡 :(𝑠, 𝑝, 𝑜) consists of a subject s,
predicate p, and an object o, where s and o are KG nodes connected

by an edge with label p. Thus, given, the set of IRIs (identifiers of
entities) I, the set of blank nodes (placeholder for nodes) B, and the

set of literals (named constants) L, we have that 𝑠∈𝐼∪𝐵, 𝑝∈𝐼 and
𝑜∈𝐼∪𝐵∪𝐿, which means a triple 𝑡 :(𝑠, 𝑝, 𝑜)∈(𝐼∪𝐵)×𝐼×(𝐼∪𝐵∪𝐿).

SPARQL [26] is the standard query language to query RDF data.

In its simplest form, a SPARQL query contains a projection clause

and a basic graph pattern (BGP) of triple patterns [16]. A triple

pattern consists of a subject, predicate, and object, following the

definition of a triple, but with the addition of a variable ?𝑥∈X from a

set of named variables distinct from 𝐼 , 𝐵 and 𝐿, i.e.,X∩(𝐼∪𝐵∪𝐿) = ∅.
The goal of a query engine when executing a SPARQL query is,

among other things, to compute bindings for the triple pattern

variables and execute joins between triple patterns, such that, when

replacing the variables with the bindings, the triples obtained in

this way exists in the KG.

For example, consider the SPARQL query in Listing 1. The query

asks for all objects o that appears in triples where s is iri5 and

p is db:team, as well as in triples where p is rdf:type and o is

db:iri7. 2 Thus, here we have two triple patterns joined on the

single variable ?o with solution db:iri4 in Figure 1.

Given a BGP, the responsibility of the query engine is to iter-

ate triple patterns contained within the BGP to compute variable

solutions. Variable solutions are used in join operations between

triple patterns as mentioned earlier and to filter solutions using

existence checks. This results in a final set of variable solutions

which become the BGP output.

2.2 Query optimization with Bloom Filters
A BF [4] is a data structure which is used for fast membership

filtering in constant time complexity and has the advantage of

being very compact in size. A BF is an array of bits, initially all set

to 0, and a collection of hash functions used to check for existence

or to flip 0-bits when inserting items. Whenever an element is to

be inserted into the set, a specific number of hash functions are

applied on the element to determine which bits in the array must

be set to 1. To check for existence of an element, the same set of

hash functions are applied to check whether all bits in the array

positions that the hash functions point to are set to 1. If not, the

element is guaranteed to not exist in the set. However, even in case

all the required bits are set to 1, the element might still not exist

in the set because another combination of inserted object might

have flipped the exact same set of bit array positions. Hence, BFs

suffer from false positives. The false positive rate is tunable at the

expense of consuming more memory, i.e., the false positive rate can

be decreased by increasing the size of the bit array, as well as the

number of hash functions. The probability of false positives [15] for

a BF of𝑚 bit array bits, 𝑛 inserted elements, and 𝑘 hash functions

can be described as

𝜖 = (1 − (1 − 1

𝑚
)𝑘𝑛)𝑘 (1)

The optimal number of bits in the BF can be approximated as

𝑚 = −𝑛 ∗ 𝑙𝑛(𝜖)
𝑙𝑛(2)2

(2)

Hence, as an example, given 1,000 elements to be inserted into the

BF, a false positive rate of 0.01, and 5 hash functions as parameters,

the size of the bit array is approximately −1, 000∗𝑙𝑛(0.01)/𝑙𝑛(2)2 =
9, 585 bits. The actual probability of false positives is then (1 − (1 −
1/9, 585)5∗1,000)5 = 0.011.

Given their one-sided error, BFs have often been used to reduce

data-access in many application algorithms [11, 24], and their ap-

plication within index-nested-loop-join algorithms is a classical

2
Here, every non variable atom is an IRI where db: and dbp: are shorthand prefixes.

3

textbook example where the BF is probed in constant time before

accessing a B
+
-tree (which requires logarithmic time).

A prototypical implementation in a triplestore, e.g., in Apache

Jena, is to store triples in a relation and store it within a B
+
-tree. In

practice, Apache Jena deploys a set of at least 3 B
+
-trees to store in

different orders the elements of each triple, e.g., a tree for SPO, a tree

for OPS, and a tree for PSO. Therefore, to find bindings for a triple

pattern, e.g., the first one in Listing 1, one would first access one of

the trees, e.g., the SPO three to find all ?𝑜 for the prefix (db:ir5,
dbp:team), and then for each value found in this way, another index
would be accessed to identify values that satisfy the join condition,

e.g., the SPO again for each value for ?𝑜 . Thus, in the second step,

accessing the index equates to an existence check, i.e., given that we

found the triple (db:ir5, dbp:team, db:iri4), verify if the triple

(db:ir4, rdf:type, db:iri7) exists in the graph. For very large

graphs, in the case where the first triple pattern produces a large

number of results, the application of BFs when solving the second

triple pattern could then save a huge amount of index accesses. Yet,

in the case where most of the results of the first triple pattern lead to

triples that actually exist in the graph, accessing the BF will instead

cause a decrease in performance. Furthermore, BFs introduce false

positives for triples that do not exist. Hence, when the BF returns

positive, the B
+
-tree needs to be accessed to verify the BF positive.

This means that the BF existence check becomes an additional step

in the existence check operation and thereby introduces runtime

overhead for BF positives.

2.3 Problem Definition
In this work, we aim at removing expensive disk-based index

lookups on join operations by employing BFs in place of standard

indexes on existence checks. We formally define our problem as

follows:

Problem 1 (Query Processing Existence Check). Given a
knowledge graph 𝐺 and a query 𝑄 , minimize the number of disk
operations.

In this work, joins are performed using nested-index-loop join

over B
+
-trees implemented by default in Apache Jena. In JenaBloom,

the joins also adopt BF existence checks.

Therefore, we perform BF existence check when joining two

triple patterns, and when the triple pattern being evaluated contains

no other variables than the variable included in the join operation.

On BF negatives, the index existence check is skipped. However,

on positives, index existence check is still required, due to the prob-

ability of false positives. This can drastically under-perform when

compared to the standard one. Therefore, we define the following

problem and experiment with applying statistics in determining

when to apply BF existence check given the predicate of the triple

pattern.

Problem 2 (BF Existence Check Under-Performance). Given
a query 𝑄 and the optimized and the corresponding unoptimized
query processing plans 𝑂 and𝑈 , respectively, determine which of 𝑂
and𝑈 is most efficient for each triple pattern 𝑡𝑝𝑖 ∈ 𝑄 .

3 RELATEDWORK
We present here the different indexing approaches as well as query

optimization techniques for improving query evaluation scalability.

3.1 Triplestore Indexing
Hexastore [27] and RDF-3X [16] are RDF triplestores proposing to

optimize query performance by sacrificing index space, where 6

distinct B
+
-tree indexes are used to materialize all possible com-

binations of triple terms. This allows for using an index that is

optimal for a given triple pattern, whereas Apache Jena only uses

3 distinct indexes. Leapfrog Triejoin [8] is a worst-case optimal

join implementation in Apache Jena and is another example that

adds three additional B
+
-tree indexes to a total of 6 indexes in order

to implement this join. Hence, these approaches introduce index

redundancy, as defined by T. Sagi et al [22] Similarly, we perform BF

existence check on a subset of join operations: those that contain

only the single variable that the triple patterns are being joined

on. This additionally requires a populated BF which in turn also

introduces a low level of redundancy due to the BF compactness.

Alternatively, other RDF triplestores, including Virtuoso [6] and

BitMat [3], use bit maps to optimize the performance of join queries.

A bit map is simply a bit sequence, and a bit map index on an at-

tribute consists of one bit map for each value the attribute can

take [23]. The number of bit map bits is determined by the number

of entities in the KG. The ith bit of the bit map is set to 1 if the entity

number i has the value the bit map represents for the attribute cor-

responding to the bit map. As an example, consider entity db:iri4
in Figure 1 and its property rdf:type, and let the universe of dis-

tinct types be 𝑇 . This means |𝑇 | bit vectors are needed, one for

each type type 𝑡 ∈ 𝑇 . The dimension of the bit vectors are equal

to the number of entities in the KG. As entity db:iri4 has type

db:iri7, the bit vector representing the type db:iri7 has the bit

in the position corresponding to entity db:iri4 flipped to a 1.

Bit maps can also be used for existence check in constant time

complexity, but are not as compact compared to BFs due to the

large number of bit vectors for all possible distinct values for all

distinct entity properties. BitMat is an example of a triplestore that

utilizes bit maps for existence checks.

3.2 Optimized Indexes
Hash indexes are popular index choices for point lookup queries.

Both MH-Index [14] and Redis++ [28] propose dynamic hashing

schemes that optimize query efficiency with a two-level hash index.

The MH-Index is based on the linked list structure, where each

element in the linked list is referred to as a cell. However, unlike
traditional linked lists, cells within theMH-Index can be retrieved in

constant time by hashing. Hence, theMH-Index does not suffer from

the linear time complexity when retrieving cells as in traditional

linked lists. As in dynamic hashing schemes, each MH-Index cell

or Redis++ bucket consists of multiple nodes, where each node

contains the data records to be inserted into the index. However,

these indexes are only applicable for point lookup queries and are

therefore not applicable in the evaluation of triple pattern range

queries. Second, the indexes are not compact and would not be a

scalable solution when applying them only for existence checking.

4

Query engine

Solver

IndexDisk IO Yes

No

Bloom
filter

exists?

Query

SELECT ?o WHERE {
db:iri5 dbp:team ?o .
?o rdf:type db:iri7

}

Query Plan

⋈

TP(db:iri5 dbp:team ?o) TP(?o rdf:type db:iri7)

BGP

Projection

Figure 2: Approach architecture.

Learned indexes have become increasingly popular in database

systems as they prove to improve indexing performance over the

traditional data structures, such as the B
+
-tree [5, 10]. However,

learned indexes are designed to improve the general index perfor-

mance and are therefore not well-suited for existence checking

alone due to the indexes still requiring disk operations.

3.3 Existence Check
FBF [11] is an enhanced BF that enhances capabilities of Bloom

Filters by supporting fuzzy membership queries. Given a set of

strings, the goal is to compute whether a query string exists in

the set by computing a score for the query string. This score is

dependent on the degree of similarity to the set of strings. When

inserting strings, the input string is hashed using locality-sensitive

hashing, where similar strings get similar hashes. Thus, strings with

similar hashes are inserted into the same bin. There are already

many works that use locality-sensitive hashing in BFs [9, 20, 21].

When querying for the existence of a string, the query string is

hashed the same way using locality-sensitive hashing, and a bin

is chosen based on this hash. Existence of a query string is then

computed by the similarity between the query string and the strings

in the bin. However, the FBF introduces false negatives whichmakes

it unsuitable for existence checking in triplestores, as it cannot

guarantee that a triple pattern does not exist. Therefore, an FBF

may incorrectly skip index lookup.

4 EXISTENCE CHECK
The most common index data structure employed in triplestores

is the B
+
-tree. During query processing, the B

+
-tree is utilized

to find the mappings to triple pattern variables. These mappings

are in practice disk locations in which the variable solutions can

be found. These solutions form the intermediate result set of the

triple pattern, and the intermediate result set will be combined with

other triple patterns using a component we refer to as the solver.
Specifically, given the intermediate result set of one triple pattern,

the solver will join the triple pattern with other triple patterns using

the intermediate results. After performing the triple pattern joins,

the intermediate result set will be passed to the individual query

operators in the classical tree-structured fashion.

The architecture of JenaBloom with a Bloom filter is depicted

in Figure 2. We have chosen to integrate BF from Google’s Guava

31.1 library into Apache Jena TDB version 3.17. This BF hashes

elements into a given numeric datatype. The BF in JenaBloom is

loaded with all stored KG triples by inserting each triple on by

one when loading the triplestore. That is, every triple is hashed

using a single hash function, and the corresponding bit in the BF

bit array is flipped to a 1. We initially discovered that using 4-byte

integers led to many triple hash collisions due to the fact that 4-byte

integers can barely represent the number of stored triples in our

experiments. We therefore opted to use 8-byte integer values which

results in a more uniform hash distribution. We use a modular

hashing function in our BF, as we observed this function to perform

well compared to other hash functions.

The evaluation of some queries include performing existence

checks. Disk operations performed from existence checks are often

redundant, as existence checks seek Boolean answers and can to

some degree be answered fully in-memory since it is only of interest

knowing whether a given index key exists. Hence, a significant

amount of runtime can potentially be saved by minimizing the

amount of disk operations performed during query execution.

As an example, consider the SPARQL query in Listing 1 of two

triple patterns joined on the single variable ?𝑜 . In case the triple

pattern on line 4 has a large result set 𝑆 for variable ?𝑜 , the second

triple pattern on line 5 will be evaluated by |𝑆 | existence checks to
filter away those solutions for ?𝑜 in the first triple pattern that are

not solutions to ?𝑜 in the second triple pattern. This leads to a large

number of IO operations performed by index lookups. The size of

the intersection of variable ?𝑜 shared in the two triple patterns is

thus the number of positive existence checks.

4.1 Bloom Filter Existence Check
As mentioned earlier, BF existence checks are only applied on triple

patterns containing no other variables than the one that the join is

performed on. As seen in Figure 2, a query is given as input to the

query engine. The central component of the query engine is the

Solver which is responsible for computing variable bindings and

joining triple patterns. For each triple pattern suited for existence

check, the solver first performs existence check using the BF before

using one of the standard indexes.

We implement two options for the application of BFs during BGP

evaluation in Apache Jena: (1) where BF existence check is applied

whenever a given triple pattern in the BGP is fully concrete and

(2) when our statistical approach determines that the triple pattern

is frequent. The fist option pays the penalty of adding runtime

on positive existence check, as this would require performing B
+
-

tree existence checks to guarantee true positiveness. The second

5

option tries to mitigate this penalty by not using BF existence check

during the evaluation of a given triple pattern when evaluating

triple pattern containing infrequent predicates. The second option

will be described in the following section.

During query execution, Jena performs a series of triple pattern

evaluations that require B
+
-tree lookups. Hence, the theoretical

query execution runtime for Jena is defined as

𝐽𝑒𝑛𝑎𝑅 = 𝐼 ∗ 𝑟𝑡 (𝐵𝑇) (3)

where 𝐼 is the number of (B
+
-tree) index searches and 𝑟𝑡 is a

function returning the runtime of a single B
+
-tree (𝐵𝑇) search.

Then, using BF existence check, a fraction of the B
+
-tree index

searches are avoided due to BF negatives, denoted 𝐵𝐹𝑛 . BF posi-

tives, denoted 𝐵𝐹𝑝 , adds additional runtime because B
+
-tree search

is then required. We define the theoretical runtime of JenaBloom

for index searches that cannot use BF existence check as 𝐽𝑒𝑛𝑎𝐵𝑅𝐼
=

(𝐼 − (𝐵𝐹𝑝 + 𝐵𝐹𝑛)) ∗ 𝑟𝑡 (𝐵𝑇), the runtime when using BF existence

check that return positives as 𝐽𝑒𝑛𝑎𝐵𝑅𝐵𝐹𝑝
= 𝐵𝐹𝑝 ∗ (𝑟𝑡 (𝐵𝑇) +𝑟𝑡 (𝐵𝐹)),

and the runtime when BF existence checks return negative as

𝐽𝑒𝑛𝑎𝐵𝑅𝐵𝐹𝑛
= 𝐵𝐹𝑛 ∗ 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 (𝐵𝐹). Aggregating these runtimes, we

define the final, theoretical runtime for JenaBloom as

𝐽𝑒𝑛𝑎𝐵𝑅 = 𝐽𝑒𝑛𝑎𝐵𝑅𝐼
+ 𝐽𝑒𝑛𝑎𝐵𝑅𝐵𝐹𝑝

+ 𝐽𝑒𝑛𝑎𝐵𝑅𝐵𝐹𝑛
(4)

Using Equations 3 and 4, we derive the following constraint to

be satisfied for JenaBloom to be faster than Jena:

𝐽𝑒𝑛𝑎𝑅 ≥ 𝐵𝐹𝑝 ∗𝑟𝑡 (𝐵𝐹)+𝐼 ∗𝑟𝑡 (𝐵𝑇)−𝐵𝐹𝑛 ∗𝑟𝑡 (𝐵𝑇)+𝐵𝐹𝑛 ∗𝑟𝑡 (𝐵𝐹) (5)

Based on experiments, 𝑟𝑡 (𝐵𝑇) = 2771ns and 𝑟𝑡 (𝐵𝐹) = 734ns.

4.2 Existence Check Using Statistics
So far, BF existence check is applied on every evaluation of a triple

pattern containing no other variables than those being joined on.

This can be a disadvantage for some queries that result in many

BF positives, as mentioned in Section 2.2. For this reason, we ex-

periment with the application of collected statistics about stored

triples to determine whether to use BF existence check for a given

triple pattern. Specifically, we collect the frequency of predicates

among the stored triples and save those predicates that belong to

the top 80th percentile. Triple patterns with frequent predicates are

more likely to have large result sets. Hence, evaluating these triple

patterns requires performing larger joins with more BF existence

checks. Therefore, for a given triple pattern, we first check whether

the frequency of the predicate of the triple pattern belongs to the

80th predicate frequency percentile. If so, BF existence check will

be applied.

5 EVALUATION
We evaluate the runtime performance when applying JenaBloom

in triplestores to answer whether BF existence checking is effective

in removing redundant disk operations. We furthermore evaluate

whether using statistics is effective in predicting when to apply BF

existence check to minimize the runtime overhead introduced by

BF false positives. Specifically, we apply our BF existence check

approach and evaluate the runtime improvement against the triple-

store Jena and Leapfrog Triejoin [8]. We refer to the baselines as

Jena and Leapfrog, respectively, for the remainder of this section.

We query JenaBloom and the baselines using Fuseki 2.

Our code base
3
and benchmark

4
are available on GitHub.

We run the experiments on a server with 2TB of RAM and a

64-core CPU.

5.1 Benchmark

Original
SELECT (COUNT(*) AS ?count) WHERE {

?x1 <http://www.wikidata.org/prop/direct/P485> ?x2 .
?x2 <http://www.wikidata.org/prop/direct/P4195> ?x3 .
?x3 <http://www.wikidata.org/prop/direct/P1753> ?x4

}

Empty
SELECT (COUNT(*) AS ?count) WHERE {

?x1 <http://www.wikidata.org/prop/direct/P136> ?x2 .
?x2 <http://www.wikidata.org/prop/direct/P4195> ?x3 .
?x3 <http://www.wikidata.org/prop/direct/P1753> ?x4

}

Modified
SELECT (COUNT(*) AS ?count) WHERE {

<http://www.wikidata.org/entity/Q43878362> ?p ?x2 .
?x2 <http://www.wikidata.org/prop/direct/P4195> ?x3 .
?x3 <http://www.wikidata.org/prop/direct/P1753> ?x4

}

Figure 3: Generation of benchmark queries.

Table 1: Number of queries in each query group, number of
queries slower than 100ms in Jena, and their description.

Type # queries # slow Description

BGP 850 526

Leapfrog experiment

queries containing

simple BGPs

MilleniumDB 436 323

MilleniumDB

experiment queries

Empty 1286 540

Return empty result

set

Modified 474 67

Return small result

set

Existence check 119 71

Specialized to

maximize negative

existence checks

in joins

We evaluate on the Wikidata KG consisting of 1,838,908,292

triples. Our benchmark consists of 3,315 queries of different shapes

based on the benchmark used in the evaluation of Leapfrog Triejoin
5
.

We group our set of queries depending on their characteristics, sum-

marized in Table 1. These groups of queries are further grouped

into sub-groups, depending on shape. We have also included the

3
https://github.com/dkw-aau/jenaclone-3.17

4
https://github.com/dkw-aau/leapfrog-rdf-benchmark

5
https://github.com/GQgH5wFgzT/benchmark-leapfrog

6

https://github.com/dkw-aau/jenaclone-3.17
https://github.com/dkw-aau/leapfrog-rdf-benchmark
https://github.com/GQgH5wFgzT/benchmark-leapfrog

Ti
m
eo

ut

Ti
m
eo

ut

Ti
m
eo

ut
Ti
m
eo

ut

Ti
m
eo

ut

Ti
m
eo

ut

Ti
m
eo

ut
Ti
m
eo

ut

Ti
m
eo

ut
Ti
m
eo

ut

Ti
m
eo

ut

Ti
m
eo

ut

Ti
m
eo

ut

Ti
m
eo

ut

Ti
m
eo

ut
Je

na
Je

na
B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

S
ta
ts

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Figure 4: Performance on Empty queries.

set of queries used in the evaluation of MilleniumDB [25]. Finally,

we filter our full set of queries such that we keep those that take

at least 100ms to execute in Jena. This leaves us with 1,615 queries

which also is reflected in Table 1.

The Empty queries have been generated from the BGP queries,

where a random query predicate is substituted with a predicate

that belongs to the top-100 most frequent predicates, excluding

rdf:Type and rdf:Label. These queries return an empty result set.

The Modified queries are also generated from the BGP queries, but

where the first triple pattern predicate is a variable instead of a URI,

and every occurrence of the subject variable in the first triple pattern

is substituted with the same variable solution from the original BGP
query. Finally, the Existence check queries are manually designed

such that they perform a high number of existence checks, and

the intersections between the joined triple patterns are minimal.

Figure 3 shows the original query and how it has been modified

according to the different query groups (except for existence check

queries).

We measure the average runtimes as the response time from

issuing the query from the client to receiving an output. We mea-

sured the average network delay for a subset of queries to be 6.65

ms.

5.2 Bloom Filter Existence Check
We have experimented with different set of parameters to choose

the optimal ones for our experiments. We use a single, modular

hash function and a false positive rate of 1%. The size of the BF bit

array is adjusted to fulfill these parameters.

We observe that JenaBloom outperforms Jena for queries with

empty result sets (Figure 4). All of these queries perform existence

checks which most often are negative, as the result sets are empty.

Hence, JenaBloom outperforms Jena which times out for all of these

queries.

However, JenaBloom did not outperform Jena on the queries

designed specifically for existence check (Figure 5). These queries

are mostly cyclic and have small result sets. Specifically, these

queries contain joins with large, almost disjoint, intermediate result

sets. When joining triple patterns, Jena computes solutions to the

variables of the first triple patterns and inserts these solutions into

the the overlapping variables of the second triple pattern. For each

variable solution, Jena performs an existence check of the second

triple pattern using the solutions and filters out solutions that return

negative. When the BF is used for existence check and returns

negative, runtime is saved, as the B
+
-tree lookups are omitted.

However, because some of the existence checks return positive

(some are false positives), the BF existence check adds additional

runtime, and hence, JenaBloom does not outperform Jena in Figure 5.

The fraction of negatives among all existence checks required for

JenaBloom to be faster is shown in Figure 7. The figure shows that

the queries that are faster in JenaBloom perform a higher fraction

of BF existence checks that are negative. Specifically, queries faster

in JenaBloom than Jena in our benchmark perform on average 3.3

times more negative BF existence checks than those queries that

7

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

S
ta
ts

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

S
ta
ts

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

S
ta
ts

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

S
ta
ts

Le
ap

fr
og

Figure 5: Performance on Existence queries.

are slower. Hence, the fraction of positive BF existence checks is

too high in most of the queries plotted in Figures 5, 8, and 9.

Finally, it is clear that Leapfrog is several times faster than any of

the other approaches. However, there are exactly 112/1,615 queries

that are faster in JenaBloom than in Leapfrog. Specifically, List-

ings 2, 3, and 4 are examples of queries where JenaBloom is faster

than Leapfrog. For the query in Listing 2 from the BGP query group,

JenaBloom improves runtime over Leapfrog by 11.6%. For the query

in Listing 3 from the Existence check query group, the improvement

is 39.1%. Finally, the query in Listing 4 is from the Modified query

group and has an improvement of 10.2%. These three queries are

examples of queries where the fraction of negative BF existence

checks is great enough such that more runtimes is saved than gained

from positive BF existence checks.

5.3 Bloom Filter Existence Check with Statistics
We described in Section 4.2 our approach using predicate statistics

to determine when to apply BF existence checks. We observe that

JenaBloom with statistics does not outperform JenaBloom for the

majority of queries, and there are only improvements on a few

queries among the Empty queries. Specifically, JenaBloom using

statistics for the query shapes among the Empty queries in Figure 4

labelled T3, Tr1, Tr2, and TI2 are faster than JenaBloom. Among

the BGP queries in Figure 8, JenaBloom using statistics improves

the runtime of JenaBloom for query shapes labelled T2, Tr1, and
Tr2. Therefore, this approach is generally not performing well in

identifying when to apply BF existence checks during query execu-

tion. This is due to our approach using statistics is naive and does

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

S
ta
ts

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Figure 6: Runtime for large (> 350), small (< 50), and empty
result set sizes.

Figure 7: Fraction of existence checks with negative answers.

not consider other triple patterns in its decision on when to apply

BF existence checks. For example, consider the query in Listing 1

containing two triple patterns joined on the variable ?𝑜 . BF exis-

tence check will be enabled because the predicate rdf:type in the

triple pattern that perform existence checks is frequent. Hence, the

second triple pattern is more likely to perform positive BF existence

checks compared a triple pattern containing an infrequent pred-

icate. On the other hand, if we substitute the frequent predicate

rdf:type with an infrequent predicate, BF existence check will

be disabled, and the runtime of this approach will be the same as

Jena. Therefore, it is unlikely that JenaBloom using statistics will

improve the runtime of JenaBloom, as it is likely that queries where

BF existence check is enabled using statistics result in too many BF

existence check positives.

1 PREFIX wdp: <http://www.wikidata.org/prop/direct/>
2 SELECT (COUNT(*) AS ?count) WHERE {
3 ?x1 wdp:P5130 ?x2 .
4 ?x2 wdp:P463 ?x3
5 }

Listing 2: Wikidata SPARQL query.

8

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

St
at
s

Le
ap

fr
og

Figure 8: Performance on BGPs queries.

1 PREFIX wdp: <http://www.wikidata.org/prop/direct/>
2 SELECT (COUNT(*) AS ?count) WHERE {
3 ?s wdp:P1435 ?o1 .
4 ?s wdp:P1435 ?o2 .
5 ?o1 wdp:P279 ?o2
6 }

Listing 3: Wikidata SPARQL query.

1 PREFIX wdp: <http://www.wikidata.org/prop/direct/>
2 PREFIX wdq: <http://www.wikidata.org/entity/>
3 SELECT (COUNT(*) AS ?count) WHERE {
4 wdq:Q7015 ?p ?x2 .
5 ?x2 wdp:P155 ?x3 .
6 ?x3 wdp:P1204 ?x4 .
7 ?x4 wdp:P156 wdq:Q7015
8 }

Listing 4: Wikidata SPARQL query.

We show in Figure 6 the runtimes of all of the approaches for

different result set sizes. Unfortunately, the pattern shows that

JenaBloom generally is slower than Jena no matter the result set

size. JenaBloom using statistics is even slower than JenaBloom due

to the approach being too naive, as previously explained.

6 CONCLUSION AND FUTUREWORK
We have explored the application of Bloom filters to perform exis-

tence check when joining triple patterns. We have applied predicate

statistics to determine which triple patterns should be evaluated

with BF existence check. We summarize our findings and future

Ti
m
eo

ut

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

S
ta
ts

Le
ap

fr
og

Je
na

Je
na

B
lo
om

Je
na

B
lo
om

S
ta
ts

Le
ap

fr
og

Figure 9: Performance onMilleniumDB queries.

work as follows:

Finding 1: Nested-loop-join is a heavy computation. This comes

to display for some of the complex queries. Specifically in those re-

turning empty result sets, where nested-loop-join times out. Faster

query processing using BF for existence checking or worst-case

optimal join can successfully execute these queries.

Finding 2: Query processingwith BF existence check under-performs

for the majority of queries, even for those that are specifically de-

signed to maximize existence checks. This is due to the fraction

of BF positives being too large for the majority of our benchmark

9

queries, and hence, BF existence check often must verify its result

using disk-based indexes because of the risk of false positives. We

express the requirement of fraction of BF negatives in Equation 5.

Finding 3: We observe, as expected, that worst-case optimal join

out-performs nested-loop-join. Nested-loop-join with BF existence

check can compete with worst-case optimal join for a minority of

queries.

Finding 4: The statistical approach to determine the application

of BF existence check is too simplistic and does not perform well

in determining which triple patterns are suited for BF existence

check. This is due to the approach not considering contextual query

information in join operations that might impact the probability of

BF negatives.

Future work: We would like to experiment with expanding the

usage of BF existence checks to triple patterns containing one addi-

tional variable that is not included in the join. This would require

a much bigger BF, as we need to store each triple three times for

each combination of variable positions in the triple. However, this

is not a problem, as BFs are compact in size. We would furthermore

like to experiment with building BFs of intermediate results sets

during query processing.

10

REFERENCES
[1] Renzo Angles. 2012. A Comparison of Current Graph Database Models. In

2012 IEEE 28th International Conference on Data Engineering Workshops. 171–177.
https://doi.org/10.1109/ICDEW.2012.31

[2] Renzo Angles and Claudio Gutierrez. 2008. Survey of Graph Database Models.

ACM Comput. Surv. 40, 1, Article 1 (Feb. 2008), 39 pages. https://doi.org/10.1145/

1322432.1322433

[3] Medha Atre, Jagannathan Srinivasan, and James A Hendler. 2009. BitMat: A main

memory RDF triple store. Tetherless World Constellation, Rensselar Plytehcnic
Institute, Troy NY (2009).

[4] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.

[5] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Han-

tian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, David

Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned Index. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,

New York, NY, USA, 969–984. https://doi.org/10.1145/3318464.3389711

[6] Orri Erling and Ivan Mikhailov. 2010. Virtuoso: RDF Support in a Native RDBMS.
Springer Berlin Heidelberg, Berlin, Heidelberg, 501–519. https://doi.org/10.1007/

978-3-642-04329-1_21

[7] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’amato, Gerard De Melo,

Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Se-

bastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid,

Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, and Antoine Zim-

mermann. 2021. Knowledge Graphs. ACM Comput. Surv. 54, 4, Article 71 (jul
2021), 37 pages. https://doi.org/10.1145/3447772

[8] Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. 2019. A Worst-

Case Optimal Join Algorithm for SPARQL. In The Semantic Web – ISWC 2019,
Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtěch Svátek, Isabel Cruz,

Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon (Eds.). Springer

International Publishing, Cham, 258–275.

[9] Yu Hua, Bin Xiao, Bharadwaj Veeravalli, and Dan Feng. 2012. Locality-Sensitive

Bloom Filter for Approximate Membership Query. IEEE Trans. Comput. 61, 6
(2012), 817–830. https://doi.org/10.1109/TC.2011.108

[10] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). As-
sociation for Computing Machinery, New York, NY, USA, 489–504. https:

//doi.org/10.1145/3183713.3196909

[11] Rishabh Kumar, Hari Prasanna P, Mukund Rungta, Swetha Kashinath Phuleker,

Hemant Tiwari, and Vanraj Vala. 2021. FBF: Bloom Filter for Fuzzy Member-

ship Queries on Strings. In 2021 IEEE 15th International Conference on Semantic
Computing (ICSC). 25–32. https://doi.org/10.1109/ICSC50631.2021.00010

[12] Ora Lassila, Ralph R Swick, et al. 1998. Resource description framework (RDF)

model and syntax specification. (1998).

[13] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. 2018. Beyond

Macrobenchmarks: Microbenchmark-Based Graph Database Evaluation. Proc.
VLDB Endow. 12, 4 (dec 2018), 390–403. https://doi.org/10.14778/3297753.3297759

[14] Yung-Feng Lu and Sheng-Shang Ye. 2012. A Multi-dimension Hash index design

for main-memory RFID database applications. In 2012 International Conference
on Information Security and Intelligent Control. 61–64. https://doi.org/10.1109/

ISIC.2012.6449708

[15] Lailong Luo, Deke Guo, Richard T. B. Ma, Ori Rottenstreich, and Xueshan Luo.

2019. Optimizing Bloom Filter: Challenges, Solutions, and Comparisons. IEEE
Communications Surveys & Tutorials 21, 2 (2019), 1912–1949. https://doi.org/10.

1109/COMST.2018.2889329

[16] Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable

management of RDF data. The VLDB Journal 19, 1 (2010), 91–113.
[17] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and

Jamie Taylor. 2019. Industry-Scale Knowledge Graphs: Lessons and Challenges.

Commun. ACM 62, 8 (jul 2019), 36–43. https://doi.org/10.1145/3331166

[18] Yeonsu Park, Seongyun Ko, Sourav S. Bhowmick, Kyoungmin Kim, Kijae Hong,

and Wook-Shin Han. 2020. G-CARE: A Framework for Performance Benchmark-

ing of Cardinality Estimation Techniques for Subgraph Matching. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data (Port-
land, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York,

NY, USA, 1099–1114. https://doi.org/10.1145/3318464.3389702

[19] Eric Prud’hommeaux and Andy Seaborne. 2008. SPARQL query language for

RDF. W3C recommendation, W3C. URL: http://www. w3. org/TR/rdf-sparql-query
(2008).

[20] Jiangbo Qian, Zhipeng Huang, Qiang Zhu, and Huahui Chen. 2018. Hamming

Metric Multi-Granularity Locality-Sensitive Bloom Filter. IEEE/ACM Transac-
tions on Networking 26, 4 (2018), 1660–1673. https://doi.org/10.1109/TNET.2018.

2850536

[21] Jiangbo Qian, Qiang Zhu, and Huahui Chen. 2015. Multi-Granularity Locality-

Sensitive Bloom Filter. IEEE Trans. Comput. 64, 12 (2015), 3500–3514. https:

//doi.org/10.1109/TC.2015.2401011

[22] Tomer Sagi, Matteo Lissandrini, Torben Bach Pedersen, and Katja Hose. 2022.

A design space for RDF data representations. The VLDB Journal 31, 2 (2022),

347–373.

[23] Abraham Silberschatz, Henry F Korth, Shashank Sudarshan, et al. 2020. Database
system concepts. Vol. 7. McGraw-Hill New York.

[24] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and John Lockwood. 2005.

Fast hash table lookup using extended bloom filter: an aid to network processing.

ACM SIGCOMM Computer Communication Review 35, 4 (2005), 181–192.

[25] Domagoj Vrgoc, Carlos Rojas, Renzo Angles, Marcelo Arenas, Diego Arroyuelo,

Carlos Buil Aranda, Aidan Hogan, Gonzalo Navarro, Cristian Riveros, and Juan

Romero. 2021. MillenniumDB: A Persistent, Open-Source, Graph Database. CoRR
abs/2111.01540 (2021). arXiv:2111.01540 https://arxiv.org/abs/2111.01540

[26] W3C. 2013. SPARQL Query Language for RDF. https://www.w3.org/TR/rdf-

sparql-query/

[27] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. 2008. Hexastore:

Sextuple Indexing for Semantic Web Data Management. Proc. VLDB Endow. 1, 1
(aug 2008), 1008–1019. https://doi.org/10.14778/1453856.1453965

[28] Peng Zhang, Lichao Xing, Ninggou Yang, Guolin Tan, Qingyun Liu, and Chuang

Zhang. 2018. Redis++: A High Performance In-Memory Database Based on

Segmented Memory Management and Two-Level Hash Index. In 2018 IEEE Intl
Conf on Parallel Distributed Processing with Applications, Ubiquitous Comput-
ing Communications, Big Data Cloud Computing, Social Computing Networking,
Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/Sustain-
Com). 840–847. https://doi.org/10.1109/BDCloud.2018.00125

11

https://doi.org/10.1109/ICDEW.2012.31
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1007/978-3-642-04329-1_21
https://doi.org/10.1007/978-3-642-04329-1_21
https://doi.org/10.1145/3447772
https://doi.org/10.1109/TC.2011.108
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1109/ICSC50631.2021.00010
https://doi.org/10.14778/3297753.3297759
https://doi.org/10.1109/ISIC.2012.6449708
https://doi.org/10.1109/ISIC.2012.6449708
https://doi.org/10.1109/COMST.2018.2889329
https://doi.org/10.1109/COMST.2018.2889329
https://doi.org/10.1145/3331166
https://doi.org/10.1145/3318464.3389702
https://doi.org/10.1109/TNET.2018.2850536
https://doi.org/10.1109/TNET.2018.2850536
https://doi.org/10.1109/TC.2015.2401011
https://doi.org/10.1109/TC.2015.2401011
https://arxiv.org/abs/2111.01540
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.14778/1453856.1453965
https://doi.org/10.1109/BDCloud.2018.00125

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 RDF and SPARQL
	2.2 Query optimization with Bloom Filters
	2.3 Problem Definition

	3 Related Work
	3.1 Triplestore Indexing
	3.2 Optimized Indexes
	3.3 Existence Check

	4 Existence Check
	4.1 Bloom Filter Existence Check
	4.2 Existence Check Using Statistics

	5 Evaluation
	5.1 Benchmark
	5.2 Bloom Filter Existence Check
	5.3 Bloom Filter Existence Check with Statistics

	6 Conclusion and Future Work
	References

