
Optimizing the Performance of
Machine Learning Algorithms in
Detecting Malicious Files using

Hybrid Models

Master’s Thesis

A S M Farhan Al Haque

Aalborg University
Electronics and IT

Electronics and IT
Aalborg University

http://www.aau.dk

Title:
Optimizing the Performance of Machine
Learning Algorithms in Detecting Mali-
cious Files using Hybrid Models.

Theme:
Malicious Files Detection

Project Period:
Summer Semester 2023

Participant(s):
A S M Farhan Al Haque

Supervisor(s):
Jens Myrup Pedersen
Ashutosh Dhar Dwivedi

Copies: 1

Page Numbers: 71

Date of Completion:
August 3, 2023

Abstract:

The exfiltration of digital systems us-
ing malcrafted files has been an evolv-
ing issue for the last two decades. Ma-
licious actors deploy diverse payloads
through files that posses potentiality of
evading possible detection mechanism
and cause alarming harm. Leverag-
ing the universal file format, support
of advanced features like JavaScript,
and inclusion of additional files make
Portable Document File (PDF) and
Portable Executable (PE) an apparent
choice for to be weaponized by the
hackers. This project explores the per-
formance of different branches of ma-
chine learning approaches in malware
detection. Two dataset each for PDF
and PE files are selected after an exten-
sive review of the existing research. At
first, Gaussian Naive Bayes (GNB) and
Logistic Regression (LR) algorithms
are applied from the classical branch.
Random Forest (RF) from bagging and
Adaptive Boosting (AdaBoost) from
boosting are selected from the ensem-
ble classification. Next, three variants
of Artificial Neural Network (ANN)
are deployed to improve the detec-
tion. Finally, a novel hybrid approach
integrating ANN and ensemble tech-
niques is proposed for both PDF and
PE files and discovered that the hybrid
model outperforms all the previous
models. The hybrid model combining
ANN with AdaBoost achieve an accu-
racy of 99.51% and F1-score of 99.53%
for malware detection in PDF. Simi-
larly, 98.45% of accuracy and 98.95%
of F1-score for PE files.

http://www.aau.dk

Contents

List of Tables viii

List of Figures ix

Preface xi

1 Introduction 1
1.1 How malicious actors target files? . 2
1.2 Major Attack Vectors using Files . 3
1.3 Machine Learning in Malware Detection 3
1.4 Contribution to the domain . 5
1.5 Deliminations . 6
1.6 Structure of the Thesis . 7

2 Background 8
2.1 Malware Detection vs. Analysis . 8
2.2 Portable Document File (PDF) . 9
2.3 Implement PDF Exploits . 10

2.3.1 JavaScript Code based Attacks 10
2.3.2 File Embedding Attacks . 11
2.3.3 Form submission and URI attacks 11
2.3.4 ActionScript attacks . 11

2.4 Portable Executable (PE) File . 11
2.5 Exploitation of PE File . 13
2.6 Machine Learning (ML) Algorithms 14

2.6.1 Classical Approaches . 14
2.6.2 Ensemble Techniques: bagging and boosting 16
2.6.3 Artificial Neural Network (ANN) 17

2.7 Performance Evaluation . 19
2.7.1 Accuracy . 20
2.7.2 Precision . 20
2.7.3 Recall . 21

v

vi Contents

2.7.4 F1-score . 21
2.7.5 Receiver Operating Characteristic (ROC) Curve 21
2.7.6 Area Under the ROC Curve (AUC) 22

3 Literature Review 23
3.1 Search Engines and Keywords . 23
3.2 Detection Techniques of Malicious PDF 23
3.3 Detection Techniques of Malicious PE 26
3.4 Summary . 28

4 Design and Implementation 29
4.1 Methodology . 29
4.2 Phase-1 (Project Initialization) . 31

4.2.1 Data Collection . 31
4.2.2 System Configurations . 32
4.2.3 Experimental Setup . 32

4.3 Phase-2 (Application of Machine Learning) 33
4.3.1 Data Preprocessing . 34
4.3.2 Feature Selection & Dimensionality Reduction 37
4.3.3 Data Splitting . 37
4.3.4 Implementation of Classical Machine Learning 38
4.3.5 Implementation of Ensemble Techniques (Bagging and Boost-

ing) . 40
4.3.6 Implementation of ANN . 42

4.4 Phase-3 (Model Evaluation) . 45
4.5 The Proposed Hybrid Solution . 46

4.5.1 Architecture . 46
4.5.2 Implementation . 46

5 Result and Analysis 49
5.1 Result Analysis of Classical Machine Learning 49
5.2 Result Analysis of Ensemble Techniques 52
5.3 Result Analysis of ANN . 52
5.4 Result Analysis of the Hybrid Solution 55
5.5 Result Analysis of PE Dataset . 56
5.6 Summary . 60

6 Conclusion 61

Bibliography 63

A PDF Dataset 66
A.1 Correlation Matrix of the Features . 67

Contents vii

B PE Dataset 69

List of Tables

1 Table with acronyms and abbreviations used throughout the report xii

4.1 Libraries used for the project . 32
4.2 System configuration . 32
4.3 Number of samples in the datasets . 38

5.1 Evaluation metrics of classical ML approaches 50
5.2 Evaluation metrics of ensemble techniques 50
5.3 Evaluation metrics of the three ANN models 50
5.4 Evaluation metrics of the ANN-ensemble hybrid models 50
5.5 Results for evaluation metrics on PE dataset 56
5.6 Comparison table with other related works 59

A.1 Name and Type of the features in the dataset 66
A.1 Name and Type of the features in the dataset 67

viii

List of Figures

1.1 Malicious Actors compromise systems with files 2
1.2 Overview of Intrusion Detection System or Prevention System (ID-

S/IPS) . 4

2.1 Structure of PDF [22] . 9
2.2 DOS Header in PE file . 12
2.3 DOS stub header in PE file . 12
2.4 File header in PE file . 13
2.5 Sigmoid function for LR [21] . 15
2.6 Overview of RF [35] . 16
2.7 Overview of the AdaBoost model [24] 17
2.8 Overview of the ANN model [34] . 18
2.9 ROC curve . 22

4.1 Phase-1 of methodology of the solution 29
4.2 Phase-2 of methodology of the solution 30
4.3 Phase-3 of methodology of the solution 30
4.4 Overview of the solution . 33
4.5 Datasets used for experiments in this project 34
4.6 Architectures of the ANN models . 43
4.7 Architecture of the proposed solution 47
4.8 Architecture of the feature extractor using ANN 48

5.1 Confusion Matrix and ROC curves of classical ML approaches . . . 51
5.2 Confusion Matrix and ROC curve of Ensemble Techniques 51
5.3 Confusion Matrix of the three ANN models 51
5.4 Training and validation accuracy of the three ANN models 53
5.5 Training and validation loss of the three ANN models 53
5.6 ROC curve for the three ANN models 53
5.7 Confusion matrix and ROC curves of the two hybrid models 55
5.8 Feature extraction using ANN for hybrid models 56
5.9 ANN model architecture for implemented PE dataset 57

ix

x List of Figures

5.10 Confusion Matrix of different apporaches on PE dataset 58
5.11 ROC curves for PE dataset . 58

A.1 Correlation of features . 68

B.1 PE header fields in the dataset [36] . 70
B.2 PE sections and fields in the dataset [36] 71

Preface

Being a student of Computer Science, I have always had interest in the field of Ma-
chine Learning. I have always desired to apply Machine Learning to a challenging
problem like malware detection.

This thesis explores the performance of different branches of Machine Learning
algorithms. Finally, hybrid solutions integrating Artificial Neural Network and en-
semble techniques like bagging and boosting are proposed that has outperformed
all the previous individual traditional Machine Learning techniques.

It is a matter of joy for me that, the results generated by the proposed mod-
els are outstanding. It has been an exciting journey to indulge into a challenging
project like this and finish with what I planned in the beginning.

I would take the opportunity to thank my supervisors for supporting and in-
spiring me through out this project.

Aalborg University, August 3, 2023

Farhan

A S M Farhan Al Haque
<ahaque21@student.aau.dk>

xi

xii Preface

Table 1: Table with acronyms and abbreviations used throughout the report

Acronym or abbreviation Definition
DPI Deep Packet Inspection
IDS/IPS Intrusion Detection System/ Prevention System
PDF Portable Document Format
GNB Gaussian Naive Bayes
LR Logistic Regression
PE Portable Executable
ML Machine Learning
RF Random Forest
AdaBoost Adaptive Boosting
ANN Artificial Neural Networks
CVE Common Vulnerabilities and Exposures
TP True Positive
FP False Positive
TN True Negative
FN False Negative
ROC Receiver Operating Characteristic
AUC Area Under the ROC curve
IEEE Institute of Electrical and Electronics Engineers
TPR True Positive Rate
FPR False Positive Rate
AUB Aalborg University Database
MLP Multi-layer Perceptron Neural Network
SVM Support Vector Machine
FLF Function Length Frequency
DT Decision Tree
KNN K-nearest Neighbour
DBN Deep Belief Network
CIC Canadian Institute for Cybersecurity
GridSearchCV Grid Search Cross-validation
DLL Dynamic Link Library
API Application Programming Interface

Chapter 1

Introduction

The ever-increasing amount of cyber attacks and the threats relating to it has been
one of the most worrisome concerns over the last two decades [16]. With the im-
mensely growing numbers, the level of sophistication and the magnitude of the
threat landscape have been soaring as well. Owing to the technological evolution,
mankind has embraced digitization ubiquitously. This emergence of computer
technology in every aspect of modern civilization has expanded the potential of
threats caused by the malicious actors. There are contrasting target and motives
for cybercriminals for disrupting different systems by exploiting vulnerabilities.
From financial gain to sensitive data theft or espionage to social engineering, it is
difficult to identify the prominent [18]. There has been many different types of
cyber attacks recorded: malware, man-in-the-middle, phishing, denial-of-service,
ransomware [20]. A severe type of cyber attack is carried out by injecting malicious
files into a system which is capable of stealing or manipulating sensitive data, cor-
rupting other files, even taking control over the entire system the consequence of
which is immense. A study in 2022 brings out that the two most common malware
file types are Portable Executable (PE) and Portable Document Format (PDF).

PDF files being a ubiquitous format that is used worldwide for preparing and
sharing documents. It is a trustworthy format in every sector from academic to
industry. Another key feature is it’s platform independence. PDF is accessible
through diverse applications from any operating system. The support for the rich
media contents, hyperlinks, and JavaScript is also one of the prime reason to make
PDF a viable choice for the hackers spreading malware. For JavaScript, PDF files
can contain forms accommodating check boxes, user inputs or buttons that enhance
it’s features than a normal document. Similarly, PE files also have certain features
to draw the attentions of the attackers. It is a file format for executables, DLLs,
object codes for Windows operating system. PE files have file headers allocating
important information like size or control sequences which if abused, flow of the

1

2 Chapter 1. Introduction

Payload

1. Create
Malicious

files

2. Interaction

3. Compromise
System

5. Send Payload
Download Payload

6. Exploit S
ystem

7. Leak / Hack
Information

Users

Figure 1.1: Malicious Actors compromise systems with files

program can be altered. PE files contain binary codes as well as metadata of the
operating system. Attackers can also exploit exception handling of PE files. PE
files can load external DLLs at runtime that be exploited by the attacker to alter
legitimate DLL file with the malicious one.

1.1 How malicious actors target files?

Figure 1.1 represents a general flow and sequence how malicious actors can utilize
files to compromise systems. Files of different categories are deployed as attack
vectors leveraging potential of high risk. Files are exploited as convenient carri-
ers to proliferate viruses or ransomware in the target systems. Files containing
malicious contents appear as legitimate documents or executables. Unaware of the
incoming threats users open those documents or run the file leading to compromise
the system. Hackers can exploit a wide option of vulnerabilities in any software or
even in operating system by weaponizing files. The attack vector using files can be
categorized into four major type explained in the next section. Out of numerous
numbers few vulnerabilities worth mentioning that had previously exploited by
maliciously crafted PDFs are: CVE-2021-27045, CVE-2021-27036, CVE-2021-27037,

1.2. Major Attack Vectors using Files 3

CVE-2018-4993, CVE-2018-16011. Similarly, examples of recent vulnerabilities ex-
ploited by PE files: CVE-2023-26245, CVE-2023-26246, CVE-2022-28884, CVE-2022-
0026 [3].

1.2 Major Attack Vectors using Files

Files can be used to deploy the following attacks:

• Exploit: Threat actors can craft malicious files by embedding JavaScript
code in the file. When those files are run by the victim the malicious code will
start running to exploit any vulnerability in the software to eventually com-
promise the system. For examples, exploiting vulnerabilities of the reader of
the PDF files or the software processing the malformed PE file.

• Phishing: In these attacks, the files itself does not perform any malicious
activities rather it is used as a bait to manipulate the victim. If the victim
clicks on a specific button or a link in the PDF, the hacker can make certain
actions like downloading and running external files in the system.

• Privilege Escalation: This attack is a consequence of both the previous
two attacks. The hacker can get elevated access to perform unauthorized
actions on sensitive data.

• Trojan and Backdoor attacks: Files specifically PE files can be disguised as
legitimate ones in the form of crack version of any software or even pirated
version. If executed on the system, the malware is installed and hackers can
immediately take remote access on the infected device.

1.3 Machine Learning in Malware Detection

With the help of modern technologies, the advancements are remarkable in the cy-
ber security landscape including digital forensics, intrusion detection and preven-
tion system (IDS / IPS). Traditional detection techniques often fall short detecting
the rapidly evolving threats and their continuously changing executions. Machine
learning (ML) is a great inclusion in the field of IDS being adapt to detect new
and obscured threats by analyzing behaviour of malwares and triggering the mon-
itoring system in case of any abnormalities or deviation from the baseline. Other
techniques like signature-based detection is not effective for detecting new exploits.
Sandbox analysis of malwares is popular detection technique. In recent times, the
malwares are capable of identifying whether they are in a real environment or in
sandbox. Malwares are adaptive and tend to change their usual execution to evade
the analysis process. On the contrary, ML offers dynamic and adaptive approach

4 Chapter 1. Introduction

Figure 1.2: Overview of Intrusion Detection System or Prevention System (IDS/IPS)

that learns from it’s past experiences and execute the knowledge acquired from
training in detecting newer threats. It has enabled the security professionals to
always be a step ahead. However, there will always be room for further improve-
ments. Optimizing ML algorithms to improve computation overhead, reducing
false positives are the areas requiring continuous research and refinement.

Figure 1.2 represents a potential IDS/IPS framework which inspects any in-
coming file from the external network. In modern times, a single mechanism is
not able to provide the necessary security from potential harm. With trained and
expert human interventions, diverse detection techniques must be applied together
as a complete unit to keep the system safe. Specially in case of zero-day attacks,
due to their unknown characteristics, it is a formidable task for a single detection
mechanism like machine learning based detection or deep packet inspection. To
prevent newer and newer threats, collective deployment of appropriate measures
are recommended. In the above framework, any incoming file is passed through
fundamental processing which is then fed to deep packet inspection (DPI). DPI
looks into the contents of the packets, analyze the included protocols, identify the
services used by the traffic. The next unit is behavior analysis, where any anoma-
lies are identified through monitoring.

Although DPI and behavior analysis are both very good tools, they do have
certain operational limitations. One such case worth mentioning here is encrypted
malicious files. DPI cannot retrieve encrypted contents and does not turn out to be
a useful option. Behavior analysis can process some metadata such as file name,

1.4. Contribution to the domain 5

file size, timestamp, source and destination of the encrypted file, sudden spike in
the frequency of encrypted files etc. These metadata can also be valuable input
feature for machine learning based detectors. Machine learning based detection
techniques perform by detecting comparing the network traffic to the dynamic
and adaptive baseline. Both DPI and behaviour analyzer can extract decent fea-
tures for the machine learning detectors to work on. There is a significant impact
due to inclusion of heuristics in detecting malwares for providing supplementary
domain knowledge. Heuristics can contribute to better feature engineering, model
optimization or selection, appropriate labeling of data, updating the baseline and
even threshold adjustments. If any malicious indication in any file is detected, the
IDS/IPS should detect the malware, trigger the alarm, log the behaviour to en-
hance the knowledge-base for future use and then dump the file. And in cases of
benign files, still logging is required for future usage and then allow access through
the firewall to the network.

1.4 Contribution to the domain

This paper aims at performing a malware detection in files using the best machine
learning techniques. We are considering both PDF and PE files for carrying out
experiments in this research. For this, we have used two datasets, one for each type
of file which is discussed thoroughly in 4.1. There are plenty of effective machine
learning algorithms. In this project, two classical machine learning approaches,
bagging, and boosting techniques have been selected and compared them with
more complicated Artificial Neural Network (ANN) techniques. Furthermore, we
deployed hybrid models combining ANN with ensemble techniques to find out if
further improvement of the results is possible or not. The goal is to understand and
examine which algorithms are capable of learning the features of malicious and
benign files the most accurately and precisely. As the effectiveness of the domain
is critical even the robustness of the different models have been examined carefully
with different possible scales. Summarizing, we focus to achieve the following
problem statement:

6 Chapter 1. Introduction

Apply machine learning to analyze static features to detect malwares in PDF
and PE files.

In addition to that, there are following sub-questions:

i. Evaluate the performance of Artificial Neural Network and Ensemble
technique like bagging and boosting over the classical approaches.

ii. Examining the robustness and performance of each model using precise
performance metrics

iii. Propose and formulate a novel hybrid approach comprised of ANN and
ensemble techniques.

iv. Examine whether the previous results can be further optimized and
improved by this hybrid models.

1.5 Deliminations

As stated earlier, the scope of the project is to investigate how well different ML
techniques perform in detecting malicious files. In this project, only PDF and PE,
two types of files are examined. The ML algorithms will be trained and tested
against these two types of benign and malicious samples. This project does not
concern the various other file types.

The Ml techniques deployed in this project will not classify malwares into their
families. This project is restrained in detecting the existence of malicious files on
the basis of useful features. The algorithms used in this project does not analyze
any malicious codes in files.

Referring to the features used in this project are static features only. This project
does not generate and analyze dynamic features during runtime. The project de-
ploys fixed set of features to understand the impact of ML techniques in general-
izing the data to classify the malwares effectively.

Furthermore, scrutinizing the malware detector with evasion attacks is regarded
out of scope for this project. Finally, the goal is not to develop any end product i.e.
antivirus software for detecting malwares. Rather, the focus is to explore different
ML techniques like classical approaches, neural network, deep learning technique
like CNN, or even transfer learning with pre-trained network as feasible solutions
for the purpose of malware detection.

1.6. Structure of the Thesis 7

1.6 Structure of the Thesis

In this chapter, the motivation and importance of this project is highlighted in brief.
The remaining part of the paper is organized to give a top-down approach to the
problem. The following chapaters are as follows:

• Chapter 2 provides a background study on the topic and the formats of PDF
and PE files with a basic overview of the effectiveness machine learning based
detection in this domain.

• Chapter 3 serves a review of the related work in this field and also the search
keywords to find those academic papers from different sources.

• Chapter 4 illustrates the experiment thoroughly. It describes the tools used,
the experimental setup, stages of data pre-processing, parameter selection of
different machine learning algorithms and finally deploying the models in
details.

• Chapter 5 deliberates the results and evaluates performance of different mod-
els.

• Finally chapter 6 concludes the paper with discussion and any further possi-
ble improvement.

Chapter 2

Background

This chapter will reflect a detailed background that serves as a foundation for this
project. Starting with the explanation of malware analysis and detection describing
how the two terms vary. Next, the structure of both the file formats PDF and PE is
discussed in details. It is vital to understand the concept how an attacker can take
advantage of these files by maneuvering it’s components which is stated in this
chapter. Following, the machine learning (ML) algorithms deployed in this project
are introduced and explained. Finally concluding by looking at how a ML-based
detector might aid in the detection of malicious files in a system.

2.1 Malware Detection vs. Analysis

There should be no doubt regarding the necessity of malware detection and pre-
vention. The paramount incurring loss caused by cyber attacks over time has been
an issue of concerns for security professionals. Detection and analysis of malwares
is a crucial research domain. Though detection and analysis, the two phrases sound
similar but they refer to distinct approaches and outcomes.

Malware detection is the process of identifying and removing any malicious
content from the system [12]. There are a handful of approaches for carrying out
this detection. Two of the most popular approaches are signature-based and ma-
chine learning approach. Signature-based detection compares the files with a
database of malicious signatures to detect the existence of any malware in the file.
Machine learning algorithms are trained to learn from datasets having features of
both malicious and benign files.

Once the malware is detected, it is vital to study the malware to gain a compre-
hensive picture of it’s behaviours and patterns [8]. Analysis can be both static and
dynamic. The fundamental difference between the two process is static analysis

8

2.2. Portable Document File (PDF) 9

Figure 2.1: Structure of PDF [22]

does not execute the file whereas the dynamic malware analysis involves proper
execution of the malwares in a controlled environment (sandbox). Both detection
and analysis are critical providing insights to identify the new malware strains and
develop security defense mechanism.

2.2 Portable Document File (PDF)

The structure of a PDF file consists of the following four components illustrated in
Figure 2.1:

• Header: This is usually a line at the beginning of the file that identifies the file
as a PDF. It is a sequence of default characters providing the version number
in the form "%PDF-1.N", where N can be a digit from 0 to 7 [15].

• Body: This section encapsulates different objects for defining pages, inclusion
of any images or annotations, fonts, colors, bookmarks objects and so on.

• Cross-reference (Xref) Table: It is a table which is designed to store each
object’s locations and information with random access to the objects. It uses
a byte offset format to map the object. This table makes it efficient for the
PDF reader to retrieve an object without searching the entire file [2].

10 Chapter 2. Background

• Trailer: The final component is the trailer accommodating key information
like the address of the Xref table, the total number of objects used in the file,
and also the root object. Using these information the PDF reader can read
from the start till the end of the file efficiently. The section initiate with the
keyword trailer and terminates with %%EOF

2.3 Implement PDF Exploits

Selvaraj et el. [27] mentioned that the most suitable three channels to spread mali-
cious PDFs are through targeted attacks, bulk e-mailing, and drive-by downloads.
Targeted attacks is carried out when a PDF is specially crafted to attack an individ-
ual or an organization. This is executed by thorough research on the specific target
which can also be referred to as social engineering. This attack is sophisticated and
the distributed PDF will have the potential of high trust of the target to be opened.
Bulk e-mailing has become popular as we are habituated to receiving PDF files
via e-mails. In this way, malicious PDFs are designed to send to a huge number of
users. The content covers interesting topics or recent incidents to entice the users
to open the document. With the embedded feature the recent browsers are capable
of opening PDF document which can be a reason for drive-by downloads. The
attack is executed under complete stealth with zero knowledge of the users. The
PDF contains codes that downloads crafted executables by the attacker from the
internet.

PDF documents can be exploited in many ways for malicious intent. The most
prominent attacks using PDFs are as follows:

• JavasScript code based attack

• File embedding attacks

• Form submission and URL attacks

• ActionScript attacks

2.3.1 JavaScript Code based Attacks

The highest volume of PDF attacks are carried out by exploiting JavaScript code
[32]. PDF files support JavaScript code to serve purposes like form validation,
any required action like changing the content as requested, even restricting user
controls, displaying multimedia content. These code can also reside in different
places in the file which facilitates the malicious purpose. The primary indicator
of the presence of JavaScript code in a PDF file is the /JS keyword in the dictio-
naries. These dictionaries can be also be placed in filtered stream. So the code

2.4. Portable Executable (PE) File 11

is not anyhow visible in plain text which evades any detection mechanism that
solely depend on this keyword searching. Attackers can leverage the full potential
of this scripting language to infect the users’ system by exploiting vulnerabilities.
The normal flow of execution can be halted by attacks like heap spraying or buffer
overflow attacks. The code can be also be abused to download malicious files or
executables from the internet, opening a malicious website without the knowledge
of the user. Windows system is recorded to be compromised with multiple escala-
tion of privilege attacks including CVE-2018-8166, CVE-2018-8164, CVE-2018-8124,
CVE-2018-8120 [3].

2.3.2 File Embedding Attacks

In this type of attack, a malicious file is embedded inside a legitimate PDF file. So,
the attacker can make use of the possible vulnerabilities. The files are embedded in
such a way so that it tries to evade any sort of detection. These kind of embedded
file can also be used as an obfuscation tool for other attacks. Again with the help
of JavaScript code or PDF command features like OpenAction or Launch from the
ActionClass, the corrupted embedded file can be opened immediately when the
legitimate PDF file is opened. A recent vulnerability identified in 2022 is CVE-
2022-40181, which was capable of executing arbitrary code, reading and altering
other files, or even a carrying out a denial of service attack.

2.3.3 Form submission and URI attacks

In 2013, Valentin et el. [11] illustrated this technique which attackers can use.
Adobe Reader can submit PDF form to any server with the feature SubmitForm
command. If the URL is from a remote web server the responses are stored in
AppData directory which is pops up automatically in the default web browser. An
attacker can exploit the user’s web browser by compromising this pop up.

2.3.4 ActionScript attacks

ActionScript attacks are not as frequent as JavaScript attacks. These attacks exploit
the Flash software that Adobe Reader used. The goal was to perform an arbitrary
code execution. But in December 2020 Adobe’s Flash had been deprecated and
these attacks became less popular.

2.4 Portable Executable (PE) File

Portable Executable is a universal file format for Windows Operating System (OS).
It helps to manage programs and resources in the Windows platform. It holds
information necessary for the OS which is used to load any program into memory

12 Chapter 2. Background

Figure 2.2: DOS Header in PE file

Figure 2.3: DOS stub header in PE file

and execute it. Not only code, Dynamic Link Libraries (DLL), any sort of drivers or
kernel modules are stored in this format also. Upon execution of any program this
PE file format is used to get all the data along with metadata for efficient resource
allocations. PE files are used in tasks related to security by verifying and validating
any alteration of data ensuing the integrity of the system. The structure of PE file
is as follows:

• DOS Header: The first 64 bytes or 4 rows of the file. Starting with 4d 5A
represents MZ, one of the developers of MS-DOS. The last 4 bytes represents
the location of the PE header section which is 00 01 00 00. Figure 2.2 shows
the DOS header in a PE file. The file is generated by a Hex Editor using the
.exe file of a browser.

• DOS Stub: The stub is a code for a message that is shown in the display
"This program cannot be run in DOS mode" in case of non-compatibility
with the OS. If any program executed in a WIN-32 environment which was
not originally built for that environment, then this message will be printed
out. Figure 2.3 shows the DOS stub message in the generated PE file.

• PE Signature: In the location 00 01 00 00, the PE signature starts with a 4
byte signature 50 45 00 00. Figure 2.4 shows the file header section where
the first 4 bytes are PE signature.

• File Header: This section contains important parsing information regarding
the file such as number of section, size of the optional header, time date
stamp, pointer to the symbol table, characteristics etc.

• Section Header Table: The next component is the section headers which rep-
resent information of each section such as name of the section, size, address.

2.5. Exploitation of PE File 13

Figure 2.4: File header in PE file

There can be different sections in the file i.e. text, data, relocation table, re-
source container, debug information.

• Sections: This component holds the different section that is mapped in the
section header table. There is not any particular way of organizing these
sections. .text section usually contains the code and .data section stores all
the variables used in the program. The address and size information import
table is stored in .idata and for export table there is .edata. Import tables
are used to track the APIs required to import by the current executable. And,
export table is for the other executables to use this file.

2.5 Exploitation of PE File

The discussion above makes it obvious that there are clear scope where PE files can
be altered on purpose to make it malicious. The popularity of Windows OS and
the universal acceptance of the PE file make it an obvious choice. Another aspect
of being a target of the hackers is the self-sufficient nature of the file type. Attacks
can be launched solely by the PE files without the support of any additional data
with it.

There are a plenty of mechanisms to exploit PE file format. Attackers are able
to inject or append malicious files in a PE file to execute unauthorized commands
to fulfill evil purposes. Components of OS like device drivers or libraries can be
manipulated by applying rootkit techniques. Altering the metadata for example
changing the file extension or timestamps can make it look benign. DLL hijacking
is recorded to be a demonstrated technique where a malicious DLL replaces a
legitimate DLL for arbitrary code execution. Alteration of resources like image or
any supporting file is also possible.

14 Chapter 2. Background

2.6 Machine Learning (ML) Algorithms

This project entails a brief discussion of different ML algorithms that will be im-
plemented and deployed in the next chapters. This section discusses classical ML
approaches, ensemble techniques like bagging and boosting, and deep learning
technique.

2.6.1 Classical Approaches

There is a long list of classical ML approaches, from where Gaussian Naive Bayes
(GNB) and Logistic Regression (LR) are selected. The description of these two
algorithms are as follows:

Gaussian Naive Bayes (GNB)

GNB is a simple and fast classification algorithm based on the probabilistic ap-
proach using Bayes’ theorem and gaussian distribution. The algorithm best ap-
plied to independent features given the target class but still operates considerably
on the dependant features. It is a good choice for high dimensional datasets. The
steps associated with GNB are discussed below [26]:

Step 1: At first, calculate the probability of each class using the equation 2.1,

P(Cj =
f requency(Cj)

TotalNumber
(2.1)

Step 2: The algorithm calculates the mean and standard deviation using each
of the features for each class using the equation 2.2 and 2.3, where n is the total
number of samples in the training set and xi represents each sample in the dataset.

µ =
1
n

n

∑
i=1

xi (2.2)

σ =

√
1

n − 1

n

∑
i=1

(xi − µ)2 (2.3)

Step 3: To find the class of a new data in the test set, the probability distribution
for each class is determined using the equation 2.4

P(X|C) = 1√
2πσ2

· e−
(x−µ)2

2σ2 (2.4)

Step 4: Calculate the conditional probability of X at class C using the equation
2.5:

P(X|C) =
n

∑
i=1

P(Xi|C) (2.5)

2.6. Machine Learning (ML) Algorithms 15

Figure 2.5: Sigmoid function for LR [21]

Step 5: Finally Calculate the posterior probability of X using the equation 2.6:

P(C|X) = P(X|C) · P(C) (2.6)

Step 6: Assign class labels by selecting the highest maximum probability value
for all the classes.

Logistic Regression (LR)

LR is a popular ML technique that is widely used for classification tasks. The
goal is to calculate the probability of a sample to be in one of classes. The algo-
rithm works great where the features of the dataset are categorical and dependant.
LR employs an ’S’ shaped logistic function, also known as sigmoid function that
predicts the inputs into two classes of values 0 and 1. The sigmoid function is
represented in figure 2.5 and The mathematical equation of the sigmoid function
is given in 2.7. The equation of LR for classification is given in 2.8.

P(y = 1|X) =
1

1 + e−(X·β) (2.7)

S(z) =
1

1 + e−z (2.8)

In the equation 2.8,

• P(y=1|X) represents the probability of input X to be in class ’1’.

• β denotes the parameters learned through training and also represent the
decision boundary or threshold value above which the input falls into class
’1’ otherwise class ’0’.

16 Chapter 2. Background

Figure 2.6: Overview of RF [35]

• The sigmoid function shown in 2.7 maps the linear combination X · β to the
probability value between 0 and 1.

2.6.2 Ensemble Techniques: bagging and boosting

Ensemble techniques are a special ML branch of supervised learning that employs
the collective strengths of different models to improve the performance. The limita-
tions of different models can be mitigated by integrating them together. Ensemble
techniques achieve better results than those individual models separately. Ensem-
ble techniques have various mechanisms, of them bagging and boosting are two
very popular ones. Bagging come from ’bootstrap aggregating’, meaning making
a subset of the training data by replacing. In bagging, a number of instances of
the same base model is trained using the subset of the training data. Then the
average of all the models’ prediction is calculated for the final output. Boosting,
builds weak models repeatedly where each model optimizes the flaws of the pre-
vious ones. The prominent difference between these two techniques is, in bagging
the models are trained parallel, whereas boosting train the weak models sequen-
tially. In this section, Random Forest (RF) from the bagging and Adaptive Boosting
(AdaBoost) from boosting will be discussed.

Random Forest (RF)

The major phases of RF is demonstrated in figure 2.6. RF employs several de-
cision trees on various subsets of training data. The fact that RF also chooses a
random subset of characteristics for the various decision trees is crucial to ensure

2.6. Machine Learning (ML) Algorithms 17

Figure 2.7: Overview of the AdaBoost model [24]

randomness to generalize diverse patterns. For each subset of the training set, a
decision tree is deployed for the selected features. Next, the final model can make
prediction on the unseen data and the performance is calculated. For classifica-
tion problems, RF uses majority voting to determine the classes. For RF, multiple
hyperparameters like the number of trees, depth of each trees, number of features
etc. play critical roles in optimizing the results.

Adaptive Boosting(Adaboost)

Figure 2.7 visualizes the above description. AdaBoost also employs decision trees
as the base learner but not independently like RF. The trees are built in parallel,
each optimizing the result of the previous block. AdaBoost initializes weights on
training data, initially equal weights for all the data. Then, the weak learner pro-
cesses the data and the weighted error is calculated considering all the misclassified
instances. Next, the weights are adjusted and the misclassified data are updated
with higher weights and the correctly classified data with lower weights. The rea-
son is that the misclassified data will be prioritized in the next iterations. Each
classifier tree gains a weight based on its’ classification result and integrated to the
ensemble. The greater the tree’s weight, the greater the contribution it provides.
After training, the ensemble of trees are tested with unseen data. The weighted
majority voting determines the class of each sample.

2.6.3 Artificial Neural Network (ANN)

ANN is the core of deep learning which is a popular branch of ML. As the name
suggests, ANN is inspired by the nerve cells function in human brain. It is con-
structed by interconnected nodes or neuron in layers. The first layer is called input
layer where the training data is fed for training the neurons to learn the patterns of
the data. The intermediate layer is called the hidden layers which can have different
combinations of layers in it. Each node has individual weight and threshold. The

18 Chapter 2. Background

Figure 2.8: Overview of the ANN model [34]

nodes of all the layers are interconnected by weighted edges as well. The hidden
layers process the result and send it to the final output layer. The structure is de-
picted in figure 2.8 Each node has an activation function that determines whether
or not to activate it as an output. This activation function brings in non-linearity
that makes the model capable of learning pattern and classifying instances. Few
examples of the activation function are ReLU, sigmoid function, softmax, tanh, ex-
ponential etc. The choice of the activation function depends on the task.

The flow of the processed data is of two types: forward propagation and back-
ward propagation. The flow of processed data from the input layer to the output
layer is called forward propagation. If activated, each neuron perform calculation
and generates outputs. And, the output of the final layer is the actual prediction
made by the ANN model. In backward propagation, the model adjusts and fine-
tunes the weights of neurons to minimize the error. This technique propagate the
error of the output layer back to the input layer for adjustments.

Hyperparameters

It is important to mention about the hyperparameters for ANN which determines
the efficiency of the model to a great detail. Few of the key hyperparameters are
listed below:

• Number of hidden layers: It decides how deep the network will be con-
structed. Very deep network does not essentially ensure better performance.
The number of layers is dependant on the expected task to perform, the com-
plexity, and the size of the input data, For the model to produce the optimum
results, the architecture of the ANN must be optimized.

• Number of nodes in each layer: Just like the number of layers, number
of nodes play the same role for construction of the ANN. Each layer must

2.7. Performance Evaluation 19

have optimal number of nodes. Hyperparameter tuning can be applied that
employs grid search technique to discover the best architecture for the ANN
model.

• Activation function for the nodes: As stated above, Each node has an acti-
vation function that controls whether or not the node will be active.

• Output activation function: Depending on the type of classification the ANN
model performs. For regression problems linear activation function should
be selected. Sigmoid function should be selected for binary classification
problem. and softmax activation function is the choice for multi-class classi-
fication problem.

• Learning rate: It decides how quickly the ANN model is learning the training
data. The selection of learning rate is critical, as larger learning rate can make
the model learn fast but end up in a sub-optimal solution. Learning rate
directly effects the training time as well. The default learning rate in Keras is
0.001 and in TensorFlow is 0.01.

• Batch size: It is the number of instances from the training set taken at a time
for each epoch. It affects the convergence, training time, and memory usage
as well. Less training and convergence time is required for larger batches.
Conversely, large batch size require more memory to store the intermediate
results.

• Number of Epochs: It decides the number ANN model processes the training
data. It directly influences the training time, higher the number longer the
training time is. However, large number of epochs enables the ANN model
to learn the training data too well that might cause overfitting. It is a case
when the model learns the training data specially well but perform poorly
on the unseen test data.

• Regularization: Overfitting is an issue to handle while constructing the ar-
chitecture of ANN model. To the rescue, regularization can be applied to
make the model robust to overfitting. Few of such techniques are L1 or L2
regularization, dropout, early stopping, data augmentation etc.

2.7 Performance Evaluation

The different branches ML is explored in the previous section. Once implemented
it is vital to examine the performance of individual algorithms. There exist par-
ticular metrics for evaluating algorithms to realize the strength and weaknesses of
the model. For better understanding, there are 4 key terms that need to be defined:

20 Chapter 2. Background

• True Positive (TP): Model predicting a sample in Class A, where it actually
belongs to Class A.

• False Positive (FP): Model predicting a sample in Class B, where it actually
belongs to Class A.

• True Negative (TN): Model prdicting a sample in Class B, where it actually
belongs to Class B.

• False Negative (FN): Model prdicting a sample in Class A, where it actually
belongs to Class B.

2.7.1 Accuracy

Accuracy is the most frequently used metric for performance evaluation. It reflects
the correctness of classification of any model by calculating the number of correct
predictions over the total number of prediction as shown in equation 2.9. Another
representation of accuracy can be devised applying TP, TN, FP, and FN as shown
in equation 2.10. However, accuracy can be deceiving sometime as it does not
always portrays the actual scenario. Specially in cases of the imbalanced dataset
the number of samples of one class is way more than the other. In real world
scenarios, it is difficult to find balanced datasets. For evaluating the robustness of
the model, metrics like precision, recall, F1-score are taken into consideration.

Accuracy =
No. of Correct Predictions

Total No. of Predictions
(2.9)

Accuracy =
TP+TN

TP+FP+FN+TN
(2.10)

2.7.2 Precision

Precision is a useful metric when the dataset is imbalanced. It measures ratio of the
number of correct positive predictions to the total positive predictions as shown in
equation 2.11. A machine learning model is expected to generate high precision
value that points out the model does not predict the negative samples as positive.
Precision is crucial in scenarios where FP might impact heavily.

Precision =
TP

FP + TP
(2.11)

2.7. Performance Evaluation 21

2.7.3 Recall

Recall is calculated as the ratio of hte number of correct positive predictions to
the total number of actual positive samples as shown in equation 2.12. Recall is
calculated in scenarios where FN can impact the results.

Recall =
TP

TP + FN
(2.12)

2.7.4 F1-score

F1-score is the measure that takes both precision and recall into consideration and
provides balance between the two metrics putting equal weights. F1-score solely
can depict a clear overview of the model performance. It is calculated as the har-
monic mean of precision and recall as shown in equation ??.

F1-score =
2

1
Precision + 1

Recall

=
2 ∗ Precision ∗ Recall

Precision + Recall

(2.13)

2.7.5 Receiver Operating Characteristic (ROC) Curve

The curve is generated by tracing out sensitivity against (1-specificity) for each
value of cut-off as shown in Figure 2.9. True positive rate (TPR) and false positive
rate (FPR) can be calculated from the equations 2.14 and 2.16. ROC curves can be
extensively use to select the threshold value for a classifier.

TPR = Sensitivity =
TP

TP + FN
(2.14)

Specificity =
TN

TN + FP
(2.15)

FPR = 1 − Specificity =
FP

FP + TN
(2.16)

When PFR = TPR, the model randomly classifies the samples and the curve
becomes a diagonal straight line at 45-degree. That means the model does not
learn to generalize the data and classify to their actual classes. The closer the ROC
curve is to this diagonal line, the less accurate the model is. On the other hand, the
more this curve shifts to the top left corner of the graph suggests better results.

22 Chapter 2. Background

Figure 2.9: ROC curve

2.7.6 Area Under the ROC Curve (AUC)

This is another metric to understand the performance of any classifier. It repre-
sents the classification quality of the model. This is calculated by the total two-
dimensional area under the ROC curve. Therefore, the better the model performs,
the higher the AUC value leaps.

Chapter 3

Literature Review

This chapter lays a foundation of the project reflecting the existing academic works
proposed. Beginning with the search terms and different sources used to find the
articles in later sections. A brief review on the methodologies implemented by dif-
ferent authors on detection of malware on PDF and PE file is reflected sequentially.

3.1 Search Engines and Keywords

To have a good understanding of the mentioned domain "malware detection", it
was necessary to find relevant academic articles. To serve the purpose, few of
the search engines that was found very helpful are as follows: Google Scholar
database, Institute of Electrical and Electronics Engineers (IEEE) Xplore, Research-
Gate, Aalborg University Database (AUB), Scopus etc. There were many variety of
contrasting keywords was used as search terms to find the relevant papers. Few of
them are as follows:

• "Malware detection using Machine Leaning"

• "Malware detection on PDF"

• "Detection of malicious PE files"

• "Deep Learning for malware detection"

• "Malware family classification"

3.2 Detection Techniques of Malicious PDF

Jason Zhang et el. [37] proposed a novel approach named MLPd f to detect mal-
wares in PDF documents. MLP indicates multi-layer perceptron neural network

23

24 Chapter 3. Literature Review

that uses stochastic gradient descent search to update. The author deployed two
datasets generating 48 features from both benign and malicious PDF documents.
The MLP detector yields a true positive rate (TPR) of 95.12% and is compared with
the result of 8 prominent anti virus (AV) scanners. The MLP-based detector could
outperform the other AV scanners substantially. The author however mentions
the significance of the manual feature engineering to improve the learning of the
model.

Laskov and Nedim et el. [19] devised a model named PJScan to detect the
presence of malicious JavaScript code in PDF. The features of the documents are
analyzed with static lexical process to identify benign or malicious that the authors
claim to incur less run-time overhead compared to dynamic analysis. Support Vec-
tor Machine (SVM) is used for classification that has generated a decent detection
rate of 85%. The authors could identify a shortcoming of the model which is high
false positive rate (FPR) of 16-17%. A major issue with the model is that it only
concerns JavaScript-based exploitation. The model is not adapt to perform well
against different exploitation mechanisms.

Baptista and Shiaeles et el. [1] proposed a neural network based unsuper-
vised malware detection technique for different categories of files such as .exe,
.doc, .txt, .pdf, .htm. The model converts the binary data of the file into
2-dimensional binary visualizing images using an online tool named binvis.io
[5]. The binary representation for optimal clustering of data is ensured by Hilbert
space-filling curves. The authors used a balanced dataset with 4000 samples con-
taining 2000 benign and 2000 malicious files obtained from VirusShare website.
The model attained the average detection rate for all the file types is 74% approx.
with 12% false positives. The highest accuracy achieved was 94% for PDF files. On
the other hand, the least accuracy generated was 60.9% for .htm file. Even so a lim-
itation of this experiment was the sample size of the dataset for different classes.
The model is expected to perform better with more samples. On the bright side,
the neural network was lightweight enough to be trained for 10k iterations within
15 seconds.

Optimal feature extraction process is key to improved classification results. In
[13], the authors have combined function length frequency (FLF) [28] and printable
string information (PSI) [29] techniques to extract features. This process generated
better results than previous individual results. Classical ML techniques and ensem-
ble techniques were deployed on the extracted feature set. Almost 1400 malware
and 161 clean samples were used to train the classifiers. The result of the experi-
ment was carried out by the WEKA tool. Weighted average results were calculated
using k-fold cross validation. Decision Tree (DT) with AdaboostM1 classifier yields

3.2. Detection Techniques of Malicious PDF 25

the overall maximum accuracy of over 98%.

Gavrilut and Cimpoesu et el. [10] built a framework that explores the capability
of different versions of perceptrons and SVM. The authors deployed two datasets
to train and test the classifiers. The training dataset had 2,73,133 benign and 27,475
malware files. The test dataset consisted of 6,522 clean and 11,605 malicious files.
The best version of the perceptron produced an accuracy of over 88% for the test
dataset. With SVM the best accuracy obtained was over 94% on the test set. How-
ever, the time consumption of the models is high and the authors mentioned to
speed up the training time optimizing the models in future.

Maiorca and Giacinto et el. [23] presented a malicious PDF detecting tool
named PDF Malware Slayer (PDFMS). The tool was trained and tested with be-
nign and malicious files both. Benign files were collected by downloading random
PDF files from Yahoo search engine based on a dictionary of a benign source. The
dataset provided by the Contagio team [4] was also used for collecting both types
of files. For training, a balanced 6,000 benign and 6000 malicious PDF files, in
total 12,000 files were used. The test set had 9,146 files containing 3,989 benign
and 5157 malicious files. Experiments were carried out with various classical ML
and ensemble algorithms However, Random Forest (RF) with 18 trees generated
the best detection accuracy of 99% on the training set. The authors compared the
result with other antiviruses of that time-frame. Although the authors mentioned
few weaknesses of the tool. The architecture of the tool was based on keyword fre-
quency only. There was no analysis of any code which makes the tool vulnerable
to certain attacks like injection of a certain malicious keyword with high frequency.
The author considered the necessity of the parser vital.

Torres and Santos et el. [30] presented a framework specifically for cloud com-
puting services that analyze PDF documents online. The authors collected the
benign PDF files from various trusted sources. The training was developed with
care following certain criteria like not having any suspicious call to APIs or any
obfuscation. The benign files were checked against antivirus engines to detect
any malwares in it. The malicious samples were downloaded from sources email
honeypots, public or private malware repositories like malwr.com, Contagio. The
framework was trained with 995 training samples, 217 validation samples, and 500
test samples having 28 features. Three algorithms deployed in the framework were
SVM, RF and Multilayer Perceptron (MLP). Out of the three, MLP performs the
best with detection accuracy of 96%. However, the parsing process of the frame-
work was quite complex that spawned high processing time.

Corum and Jenkins et el. [6] designed a PDF detector using image processing

26 Chapter 3. Literature Review

which converted PDFs to gray-scale images to extract features. The dataset used by
the mentioned authors is Contagio PDF malware dataset. The dataset was evenly
balanced with a equal 6000 benign and malicious samples The authors applied
the optimized feature extraction techniques like texture features and keypoint de-
scriptors. For classification, three algorithms were deployed RF, DT, and k-nearest
neighbour (KNN). Out of all, RF turned out to be the best performing algorithm
with F1-score of over 99%. The authors compared the result of this detector with
some popular antivirus scanners where it holds significant values. Although the
authors pointed out few possible further improvements by extracting more image
feature and applying feature selection to make the model more optimized.

Maryam and Princy et el. [14] presented an computationally expensive stack-
ing learning technique for the detection of malware in PDF files. The authors have
accumulated the previously used extensively used contagio dataset and virustotal.
And they extracted 28 features to build a new dataset. The authors applied four
different models including RF, SVM, MLP, and AdaBoost as the base learner. And
selected any of the LR, K-NN, DT as the meta learner. This heavily structured
stacking algorithm could perform well on the dataset and achieved 99% of accu-
racy. The authors compared their results with the previous work done and issued
better result. One of the prime weakness of this paper is the computation required
for exetectuing 7 algorithms sequentially. The authors did not calculate processing
time in the paper.

Fettaya and Mansour et el. [9] devised an ensemble of CNN algorithm that
process on the byte level eliminating the necessity of extracting features. The size
of the dataset used for this experiment was 18296 malicious PDF files and 70551
benign files. the malicious files were downloaded from VirusTotal [33]. The au-
thors deployed three different models each having unique architecture. The best
performing algorithm yielded a substantial detection rate of 94%. The authors
compared the results of the model with 52 available antivirus and it held 7th posi-
tion.

3.3 Detection Techniques of Malicious PE

. So far different ML based approaches to detect malicious PDF file is discussed.
This section will highlight some previous research carried out in detecting mali-
cious executables specially PE.

At the outset a classical ML based approach is presented by Radwan et el. [25]
to detect the malware in PE file. The approach used static analysis of both raw and
derived features. The author employed a dataset of 5184 samples in which 2683

3.3. Detection Techniques of Malicious PE 27

malware and 2501 benign. The dataset included 55 features out of which 28 fea-
tures are fed to the classifiers. He derived 46 new features to improve the accuracy
of classification. 10-fold cross validation was introduced with a train-test split 70 :
30 ratio. The author deployed seven ML algorithms within which Random Forest
(RF) performs the best with 99% accuracy.

Uppal and Saha et el. [31] developed an approach to detect malicious appli-
cation programming interface (API call sequence. Classical ML techniques were
used in this experiment to analyze the behavior of the malwares. A novel feature
selection technique is used applying N grams and odd ratio selection. The dataset
contained 120 malicious PE files and 150 benign files. SVM produced the best clas-
sification results with over 98%accuracy whereas DT turns out to be least effective
among all the algorithms.

Another ML based solution for classification of malwares in PE files is devised
by Kumar and Kuppusamy et el. [17]. The authors used 10-fold cross validation to
improve the accuracy. To minimize the computation overhead, top N features was
investigated successfully. The authors built a dataset with 68 features out of which
28 are raw and 28 boolean features are derived. The dataset had 2722 malwares
and 2488 benign samples in it. Random Forest again turns out to be the winner
outperforming others with a 98.4% accuracy. Although the model fell short com-
paring with the previous work mentioned in the paper. For optimizing the feature
set the authors investigated with top 5,10,15,20 and 25 features. RF shows the most
promising result for top20 features than the classifier applied.

DeepSign elicited from a deep learning method for automatic signature genera-
tion and classification of the malwares utilizing those signatures. This method was
designed by David and Netanyahu et el. [7]. They named the signature generator
as deep belief network (DBN) which performed dynamic analysis of the malware
behavior. The dataset used for this experiment contains six popular categories
of malwares named Zeus, Carberp, SpyEye, Cidox, Andromeda, DarkComet and
300 samples for each one these categories that makes it a total of 1800 samples. Out
of them, 1200 samples were used training and the rest 600 for testing the classi-
fication performance. The malware executables were run in the Cuckoo sandbox
which accumulated necessary data and stored in a text file as JSON format. This
file was converted to binary format and fed to the DBN which generated the signa-
tures. For classification, SVM, KNN, and ANN were applied where SVM yielding
a satisfactory 96.4% of accuracy. But ANN optimized the result outperforming the
others with an accuracy of 98.6

28 Chapter 3. Literature Review

3.4 Summary

The relevant academic research papers in the domain of malware detection in PDF
and PE files was investigated and discussed through. The approaches used in
these papers has turned out to be extremely helpful to get an overview of the
recent works and their methodology in this field previously. The superiority of an
ensemble technique RF and deep learning techniques are clearly visible the papers
stated above. This overview constructs the foundation of the structure of this thesis
explained in the next chapter in section 4.1. Collection of data is a vital step in
machine learning projects like this. This chapter has helped to gather sources and
details of the different available datasets. Furthermore, a deep understanding of
different performance evaluating methods and application of those methods were
developed that has been benefiting in the implementation of the experiment.

Chapter 4

Design and Implementation

This chapter begins with the illustration of the methodology to discuss each phase
of the project. Next, a comprehensive technical specification of the experimental
design is described. Following, the architecture of ML algorithms with different
parameters are specified. Then the implementation of each phases of the project is
demonstrated with necessary code snippets and explanations.

4.1 Methodology

The methodology of this project is broken down into three phases and depicted
in figures 4.1, 4.2, and 4.3. In phase-1, the project was initiated by establishing
an overview of the domain which was served by performing a thorough literature
study in chapter 3. Putting in the overview, potential sources of data are listed. Two
datasets are selected one each containing features of malicious and benign PDF
and PE files. The raw data is then pre-processed to feed to the ML based malware
detectors for training and testing purposes. Then, the system configurations and
the environment of the experiment is setup. The design of the whole project is
finalized by making sure the data is usable for the experimentation, the system is
up and running with all the necessary tools and frameworks.

Figure 4.1: Phase-1 of methodology of the solution

29

30 Chapter 4. Design and Implementation

Figure 4.2: Phase-2 of methodology of the solution

Figure 4.3: Phase-3 of methodology of the solution

Phase-2 selects the ML algorithms for the malware detector to classify the sam-
ples into malicious or benign. This project showcases the performance of different
approaches of ML in the domain of malware detection. For example classical ap-
proaches: Logistic Regression, Gaussian Naive Bayes, deep learning techniques:
ANN, ensemble techniques: boosting (AdaBoost) and bagging (Random Forest)
are deployed. The models need to be configured well with different parameters to
get the best classification results.

Next, a vital part of the experiment is to evaluate the classification performance
of the detectors which is appointed in phase-3. Specific evaluation metrics are
applied that are best-suited for this experiment details of which are explained in
2.7. And finally, the result is presented in a suitable approach and discussed in
chapter 5. Next, the three phases are discussed in depth with the descriptions,
specifications, implementations with the code snippets of each step.

4.2. Phase-1 (Project Initialization) 31

4.2 Phase-1 (Project Initialization)

4.2.1 Data Collection

For data collection, benign and malicious samples of PDF and PE files are used
to train, validate, and test the malware detectors. Upon pursuing the literature re-
view, the sources of the datasets have been discovered. To be mentioned, one of the
most widely recognized dataset is Contagio (2013) 1. Another, sought-after source
for malwares is VirusTotal2. Users can upload files in their service, then these files
scanned against a number of antivirus. Then both the files and the scanned results
are then available in the database. Another similar database containing old and
new malicious samples is VirusShare 3.

The most recent published dataset concerning features of malicious PDF had
been published in 2022 by the Canadian Institute for Cybersecurity (CIC) oper-
ating at University of New Brunswick in Fredericton 4. The team has used the
above mentioned sources to develop this dataset. They have accumulated 11,173
from Contagio and 20,000 from VirusTotal for malicious samples exhibiting eva-
sive characteristics. For benign samples they have collected 9,109 samples from
Contagio. Upon processing and removing the duplicate samples after merging the
two datasets, the released version has a total 10.025 samples, 5,557 malicious and
4,468 benign. The dataset contains 32 features within which 12 are general features
and the rest are structural. The list of the features are mentioned in table A.1 in
appendix A.

The dataset utilized for detecting malicious PE files contains malwares from
five families including: Spyware, Ransomware , Downloader, Backdoor, and the
rest are Generic [36]. The dataset contains static features extracted with Python’s
pefile library. To prepare the dataset, a total of 79 features are generated analyzing
imported Dynamic Link Libraries (DLLs), API calls, PE headers, and PE sections.
The name of different PE header features and PE section features are given in
figure B.1 andB.2 in appendix B. The dataset contains a total of 19,611 samples
comprising of 14,599 malwares and 5,012 benign files. Both the datasets, and all
the codes implemented in this project can be found in this link 5.

1https://https://contagiodump.blogspot.com/
2https://www.virustotal.com/gui/home/upload
3https://virusshare.com/
4https://www.unb.ca/cic/
5https://github.com/ASMFH/Thesis_Project

32 Chapter 4. Design and Implementation

4.2.2 System Configurations

This section highlights system configurations for the project environment includ-
ing tools, frameworks and libraries are mentioned. Jupyter Notebook has been
used as environment for this project. It enables programmers to integrate code
and documentation at the same place and has great result visualization interface.
It supports the programming language Python for writing the codes of machine
learning. Python 3.10.6 version is used in this project. Table 4.1 enlists the name
and the purpose of the libraries used.

Table 4.1: Libraries used for the project

Python Library Purpose
pandas Data manipulation, use data structures like DataFrames
Scikit-Learn Implement machine learning algorithms
Keras Implement deep learning techniqeus
Matplotlib Data visualization by creating graphs
seaborn Creating heatmap to visualize correlation of the features

4.2.3 Experimental Setup

Table 4.2 displays the configuration of the system. The computation time to train
heavily depends on the specifications of the hardware. In this case, the hardware
used in this project is very moderate with no fancy processors and GPU used. As
a consequence, the model is expected to produce better computation time when
executed in a better hardware.

Table 4.2: System configuration

Environment Oracle VirtualBox 7.0
Host System Windows 11
Virtual OS Ubuntu 23.04 (Lunar Lobster)
Kernel 6.2 Linux kernel
Processor Model 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
No. of Cores 4
Memory 8 GB
Graphics Card NVIDIA GeForce MX330
Cores 384 CUDA Cores
Memory 2 GB GDDR5

4.3. Phase-2 (Application of Machine Learning) 33

Dataset

Benign and
Malicious PDF

samples

Benign and
Malicious PE

samples

Training
(70%)

Validation
(10%)

Test
(30%)

Data
Pre-processing

Feature Selection
&

Reduction

Malware
Detector

Classification
Performance

Classical ML

Deep Learning

Bagging and Boosting

Hybrid Technique

Figure 4.4: Overview of the solution

4.3 Phase-2 (Application of Machine Learning)

The overview of the entire architecture of the solution is depicted in figure 4.4. At
first, the benign and malicious samples of PDF and PE files are used to make the
datasets. The datasets are divided into three parts: training set (70%), validation set
(10%), and test set (20%). Next, the data is pre-processed for the next phase of the
solution. Then, feature selection is applied to the pre-processed data. And feature
reduction is carried out to improve the performance of the model and optimize
the computation overhead. The output of this phase is trained by the malware
detector which is developed by different ML algorithms. After completion of the
training, the classification performance is evaluated using the test samples. The
implementation details are described in the following sections.

34 Chapter 4. Design and Implementation

(a) PDF dataset (b) PE dataset

Figure 4.5: Datasets used for experiments in this project

4.3.1 Data Preprocessing

Data preprocessing is required to make the raw data suitable and prepared for
applying machine learning analysis. The actual goal is to refine and enhance the
data so that the ML algorithms are capable of generalizing the pattern to classify
correctly. Real-world data are generally noisy that is difficult to process. The first
stage of data preprocessing is to develop a grasp over the data structure, formats,
and the ranges of the values to understand any outlier. Cleaning the data removing
any null values is the next stage. Afterwards, handling categorical data is crucial as
ML algorithms can not process those categorical data. For that, data transformation
into suitable formats is required. Lastly, the data is split into training set, validation
set, and test set for operation of ML. Each of the data preprocessing stages are
explained next.

Description of Data

The datasets contain malicious and benign samples of PDF and PE files. The project
is a binary classification system where ML models classifies the files into either one
of the two classes. The PDF dataset after deleting all the missing and null value
contains 5,555 malicious samples and 4,468 benign samples. For PE dataset, the
number of instances in the malicious category is 14599 and in benign category
is 5012. The bar plot of the dataset is shown in figure 4.5 shows the number of
samples of the two classes.

4.3. Phase-2 (Application of Machine Learning) 35

Data Cleaning

The task of the ML models becomes more challenging with the null values. To
overcome that the null values for different samples are identified and excluded
from the dataset. Listing 4.1 shows the source code for loading the dataset and
finding for any missing value. Any row containing missing value are removed
from the dataset and then the number of samples before and after deleting the
missing value is printed. The output of this code is shown in listing 4.2. The null
values of the PE dataset is also excluded in the same manner. In the following
preprocessing steps only the relevant code snippets and explanations are provided
for the PDF dataset. The same steps has also been carried out for the PE dataset as
well.

1 from google.colab import drive
2 drive.mount(’/content/drive’)
3 df = pd.read_csv("/content/drive/MyDrive/PDFMalware2022.csv")
4 df.isnull ().sum()
5 new_df=df.dropna(axis=0,how=’any’)
6 print("Old Dataframe length: ", len(df))
7 print("New Dataframe lenght: ", len(new_df))
8 print("Number of rows with at least 1 Null Values: ",(len(df)-len(

new_df)))

Listing 4.1: Code for data loading and finding missing value

1 Old Dataframe length: 10026
2 New Dataframe lenght: 10023
3 Number of rows with at least 1 Null Values: 3

Listing 4.2: Output after deleting the rows containg missing values

Data Transformation

The models must be fed with the suitable data in order to provide excellent in-
sights. Data transformation is that crucial preprocessing technique that involves
modifying the data into the most compatible format with ML models. Usually,
structured numerical data provides best output for the statistical analysis that ML
algorithm performs. For data transformation, the categorical data is converted
into A feature named ’text’ represents whether the sample contains text in it.
In the dataset, there are five categories of data found which are ’yes’, ’no’,
’unclear’, ’-1’, and ’0’. The number of instances found with the value ’-1’
and ’0’ is 315 which are removed from the experiment due to lack of having mean-
ingful attribute. Listing 4.3 shows the code snippet of the function to transform the
categorical data of ’text’ and ’class’ features into numerical data.

36 Chapter 4. Design and Implementation

1 def convert_categorical ():
2 print(new_df[’text’]. value_counts ())
3

4 new_df = new_df[new_df != ’-1’]
5 new_df = new_df[new_df != ’0’]
6 new_df[’text’]. replace ([’No’,’Yes’,’unclear ’, ’-1’, ’0’

],[0,1,2,3,4], inplace=True)
7 print(new_df[’text’]. value_counts ())
8

9 print("Clas names converted to 1 and 0:")
10 new_df[’Class’]. replace ([’Malicious ’,’Benign ’],[1,0], inplace=True)
11 print(new_df[’Class ’]. value_counts ())

Listing 4.3: Transmorning categorical data into numerical

In the datasets used in this project, the data types are ’object’ and ’float64’
whereas the data inside the datasets are discrete numerical values. For that reason
both the typecasting is performed into ’int64’. The reason to convert float data
to int is for optimizing memory usage that has a slight possibility of enhancing
the overall performance. The code snippet is shown in listing 4.4.

1

2 def typecast_to_int(df):
3 for column in df.columns:
4 # Try converting the column to int type
5 try:
6 dataframe[column] = df[column]. astype(int)
7 except ValueError:
8 # If the conversion fails , skip the column (e.g., if it

contains non -numeric data)
9 pass

10

11 return dataframe

Listing 4.4: Data type transformation code

Data Scaling and Standardizing

Another data transformation technique is StandardScaler() to standardize the nu-
merical features of the dataset. The output converts all the data in the dataset
having a mean of 0 with a standard deviation of 1. ML is a statistical technique
that generates the output processing huge mass of numbers. In real scenarios, sys-
tems have to process data that are different in scales and ranges. Consequently,
the outliers having large numbers sometimes become dominant and impose sig-
nificant impact on the classification performance of the ML models. So converting
and scaling the features in the same standard helps ML models to handle different
features uniformly leading to a more efficient model training.

4.3. Phase-2 (Application of Machine Learning) 37

Although, bagging and boosting technique might not require the Standard-
Scaler as much as deep learning. In this project, it is only applied for the deep
learning techniques. The code snippet to perform standardization is shown in list-
ing 4.5. The training data is both fit and transformed using fit_transform() function.
The validation and test data is supposed to be only transformed for being new and
unseen.

1 from sklearn.preprocessing import StandardScaler
2 scaler = StandardScaler ()
3 X_train = scaler.fit_transform(X_train)
4 X_val=scaler.transform(X_val)
5 X_test=scaler.transform(X_test)

Listing 4.5: Code snippet for standard scaler

4.3.2 Feature Selection & Dimensionality Reduction

As stated before, the dataset containing PDF samples has 31 features excluding the
target variable. To improve the computation speed and efficiency for the ML mod-
els most relevant features are selected in this process. In this project, RFC is applied
to produce the sorted list of features based on their importance values. Listing 4.6
shows the code snippet for implementation of the feature selection process. Once
the importance values are generated it becomes an simple task to decide which
features can be dropped. Out of the 31 features, 13 found to be ineffective and thus
dropped. The dimension of the dataset is then reduced to 18 features from 31.

1 import pandas as pd
2 from sklearn.ensemble import RandomForestClassifier
3 y = fit_df[’Class’]
4 X = fit_df.drop(’Class’, axis =1) # Replace ’target_column_name ’ with

the actual target column name
5 clf = RandomForestClassifier(random_state =42)
6 clf.fit(X, y)
7 feature_importances = clf.feature_importances_
8 feature_importance_df = pd.DataFrame ({’Feature ’: X.columns , ’

Importance ’: feature_importances })
9 feature_importance_df = feature_importance_df.sort_values(by=’

Importance ’, ascending=False)
10 print(feature_importance_df)

Listing 4.6: Implementation of RFC for feature selection

4.3.3 Data Splitting

To build a reliable ML model it is required to split the dataset. In this project
the dataset is split into three parts. 70% of the samples are used for training the
model, 10% for validation, and the rest 20% is to test the system to evaluate the

38 Chapter 4. Design and Implementation

performance of the model on new and unseen data. The generalization capabilities
of a model are significantly influenced by the validation set. It enables researchers
to comprehend how effectively the model generalizes to new data that was not
included in its training set. Validation data is also helpful to determine if the
model has overfitted the training set. The function to split dataset is shown in
listing 4.7. Table 4.3 represents the number of instances for training, validation,
and test set.

1 from sklearn.model_selection import train_test_split
2

3 def data_split(data , data_target):
4 X,X_test ,Y,y_test= train_test_split(data , data_target ,test_size =0.2,

shuffle = True , random_state = 0)
5 X_train ,X_val ,y_train ,y_val = train_test_split(X, Y,test_size =0.2,

shuffle = True , random_state = 0)
6 print("X_train shape: {}".format(X_train.shape), "y_train shape: {}"

.format(y_train.shape))
7 print("X_val shape: {}".format(X_val.shape), "y_val shape: {}".

format(y_val.shape))
8 print("X_test shape: {}".format(X_test.shape), "y_test shape: {}".

format(y_test.shape))
9 return X_train ,X_val ,X_test ,y_train ,y_val ,y_test

10

11 target_name = ’Class ’
12 data_target = new_df[’Class’]
13 data = new_df.drop([’Class’], axis =1)
14 X_train ,X_val ,X_test ,y_train ,y_val ,y_test = data_split(data ,

data_target)

Listing 4.7: Splitting the dataset into training, validaiton, and test set

Table 4.3: Number of samples in the datasets

Dataset
Training Set

Samples (70%)
Validation Set
Samples (10%)

Test Set
Samples (20%)

PDF Dataset 6594 733 1832
PE Dataset 14119 1569 3923

4.3.4 Implementation of Classical Machine Learning

There exist a long list of algorithms falling into the category of classical approaches.
Out of all, two approaches are chosen having simple computation and not so com-
plex. Naive Bayes operating on the probabilistic prediction. And logistic regression
assuming linear relationship between input features and output classes, specially
designed for binary classification. A brief description of how these algorithms
operate is given in section 2.6. In this section, the implementation of both the al-
gorithms are shown in code snippets in listing 4.8 and 4.9. The models are run

4.3. Phase-2 (Application of Machine Learning) 39

with their default parameters without any adjustments to see how well the sim-
pler models perform when compared to more advanced deep learning or ensemble
algorithms.

1 from sklearn.naive_bayes import GaussianNB
2 from sklearn.metrics import accuracy_score
3 gaussian_naive = GaussianNB ()
4 def implement_gaussian_naive_bayes(X_train ,X_val ,X_test ,y_train ,y_val ,

y_test):
5 gaussian_naive.fit(X_train , y_train)
6 acc_gaussian_training = round(gaussian_naive.score(X_train ,

y_train) * 100, 2)
7 y_pred_validation = gaussian_naive.predict(X_val)
8 accuracy_validation = accuracy_score(y_val , y_pred_validation)
9 y_pred_test = gaussian_naive.predict(X_test)

10 accuracy_test = accuracy_score(y_test , y_pred_test)
11 display_result(acc_gaussian_training ,accuracy_validation ,

accuracy_test)
12

13 implement_gaussian_naive_bayes(X_train ,X_val ,X_test ,y_train ,y_val ,
y_test)

Listing 4.8: Gaussian Naive Bayes model implementation

Firstly, the model is trained with the fit() function. The training features and the
target class of those features are passed as arguments. After the training is com-
pleted, the model is applied to the validation set to make predictions. Finally, the
model then makes predictions using the test set. Three accuracies are calculated
for training set, validation set, and test set using the function accuracyscore(). The
function takes two arguments: true labels of the instances and the predicted la-
bels. The code to display the accuracy values for training, validation, and test set
is shown in listing 4.10.

1 from sklearn.linear_model import LogisticRegression
2 def implement_logistic_regression(X_train ,X_val ,X_test ,y_train ,y_val ,

y_test):
3 logreg = LogisticRegression ()
4 logreg.fit(X_train , y_train)
5 acc_logreg = round(logreg.score(X_train , y_train) * 100, 2)
6 y_pred_validation = logreg.predict(X_val)
7 accuracy_validation = accuracy_score(y_val , y_pred_validation)
8 y_pred_test = logreg.predict(X_test)
9 accuracy_test = accuracy_score(y_test , y_pred_test)

10 display_result(acc_logreg , accuracy_validation , accuracy_test)
11

12 implement_logistic_regression(X_train ,X_val ,X_test ,y_train ,y_val ,
y_test)

Listing 4.9: Logistic regression model implementation

40 Chapter 4. Design and Implementation

1 def display_result(acc_training , accuracy_validation , accuracy_test):
2 print("Accuracy on the Training set :{:.2f}\%".format(acc_training))
3 print("Accuracy on the Validation set: {:.2f}\%".format(

accuracy_validation * 100))
4 print("Accuracy on the Test set: {:.2f}\%".format(accuracy_test *

100))

Listing 4.10: Code to display the training accuracy validation and test accuracy

4.3.5 Implementation of Ensemble Techniques (Bagging and Boosting)

Two very popular ensemble techniques: bagging and boosting are applied in this
project. Random forest (RF) is chosen from the branch of bagging algorithms and
adaptive boosting (AdaBoost) from the group of boosting algorithms. The descrip-
tion of the algorithms is found in section 2.6.2. In this section, the implementation
of these two techniques will be discussed along with the suitable code snippets.

Random Forest (RF)

For the implementation of RF, ensemble of base learner is created and the results
are aggregated to construct the final predictions. The base learner for RF is de-
cision tree that are built independently. There are a number of hyperparameters
required to be tuned properly to get the best outcome from the model. For tun-
ing, Grid Search Cross-Validation (GridSearchCV) is implemented to find the best
combination of parameters. GridSearchCV exhaustively looks over all conceivable
combinations of hyperparameters. Also, a cross validation is applied for each com-
binations to bring out the best output. Although, while designing this sort of Grid-
SreachCV, the processing time for training must a considering factor as this process
might require high computational resources. The code snippet to implement RF
and GridSearchCV is shown in listing 4.11. The values of the hyperparameters to
search for are:

• ′n_estimators′ defines the number of decision trees built independently. Here,
the optimal value GridSearchCV will search from the given set [100, 200, 300].

• ′max_depth′ defines the depth of decision trees. Having a large number for
maxdepth can raise the complexity of the model. The assigned set of values
to search for are: [None, 10, 20, 30].

• cv defines the cross validation. The value assigned for cross validation is ’5’.
Hence, the training set will be divided into five random subsets. The model
is trained on the four subsets and tested on the fifth one. This step is iterated
for 5 times and the final result is obtained by computing the average of all
the results.

4.3. Phase-2 (Application of Machine Learning) 41

1 from sklearn.ensemble import RandomForestClassifier ,
GradientBoostingClassifier , ExtraTreesClassifier

2 from sklearn.model_selection import train_test_split , cross_val_score ,
GridSearchCV

3 def implement_random_forest(X_train ,X_val ,X_test ,y_train ,y_val ,y_test)
:

4 random_forest = GridSearchCV(estimator=RandomForestClassifier (),
5 param_grid ={’n_estimators ’: [100, 200, 300],
6 ’max_depth ’: [None , 10, 20, 30],},
7 cv=5).
8 fit(X_train , y_train)
9 random_forest.fit(X_train , y_train)

10 acc_random_forest = round(random_forest.score(X_train , y_train) *
100, 2)

11 print(acc_random_forest ,random_forest.best_params_)
12 y_pred_val_randomforest = random_forest.predict(X_val)
13 accuracy_val_randomforest = accuracy_score(y_val ,

y_pred_val_randomforest)
14 y_pred_test_randomforest = random_forest.predict(X_test)
15 accuracy_test_randomforest = accuracy_score(y_test ,

y_pred_test_randomforest) display_result_random_forest(
acc_random_forest ,accuracy_val_randomforest ,
accuracy_test_randomforest)

16 implement_random_forest(X_train ,X_val ,X_test ,y_train ,y_val ,y_test)

Listing 4.11: Implementation of random forest with hyperparameter optimization

Adaptive Boosting (AdaBoost)

The implementation of AdaBoost is similar to RF and the code snippet is shown
in listing 4.12. In this case, DecisionTreeClassifier() is used to build the ensemble
of base learners. The function has an argument ′max_depth′ which specifies the
depth of each decision tree. The optimal hyperparameters are investigated with
GridSearchCV again. And cross validation is also applied to build a robust model.
The values are:

• ′n_estimators′ gets the set of values: [50, 100, 150].

• ′learning_rate′ defines the contribution of each base learner to the final en-
semble model. After each iteration the weights of the instances of the training
set and the base learner is updated. This ′learning_rate′ is multiplied with
the updated weights of the base learner. It receives the value [0.1, 0.01, 0.001].

• cv receives the value ’5’.

42 Chapter 4. Design and Implementation

1 from sklearn.tree import DecisionTreeClassifier
2 base_estimator = DecisionTreeClassifier(max_depth =3)
3 adaboost_classifier = AdaBoostClassifier(base_estimator=base_estimator

, random_state =42)
4 param_grid = {
5 ’n_estimators ’: [50, 100, 150],
6 ’learning_rate ’: [0.1, 0.01, 0.001] ,
7 }
8 grid_search = GridSearchCV(adaboost_classifier , param_grid , cv=5)
9 grid_search.fit(X_train , y_train)

10 best_params = grid_search.best_params_
11 print(best_params)
12 best_adaboost_classifier = AdaBoostClassifier(
13 base_estimator=base_estimator ,
14 n_estimators=best_params[’n_estimators ’],
15 learning_rate=best_params[’learning_rate ’],
16 random_state =42
17)
18 best_adaboost_classifier.fit(X_train , y_train)

Listing 4.12: Implementation of AdaBoost with hyperparameter optimization

4.3.6 Implementation of ANN

The implementation of ANN is different than the previous ones. In this project,
keras library is leveraged for the implementation purpose. Keras has a dedicated
built in function named Sequential() to construct the layers and nodes in each layer
of the ANN. In this project, three ANN models having different architectures are
deployed to investigate what sort of ANN achieves the goal most accurately. First,
the architecture and then the implementation of the three models are discussed
next.

Architecture

Figure 4.6 depicts the architecture of the three ANN models deployed. Model M1
and M2 having the same architecture and M3 have a deeper architecture. There is a
difference of data pre-processing among the three models. M1 is deployed to test a
neural network’s performance using a dataset that has not been scaled to a certain
range, as recommended by most researchers. So, M1 is not fed with standardized
training set with StandardScaler() whereas both M2 and M3 is trained on the scaled
data. There is no other difference in the feature extraction and selection phase
among the models.

As seen in the figure 4.6a the network consists of six layers, one for input 4
for the hidden layers and 1 for the output layer. The input layer has 16 nodes,
The 4 hidden layers have nodes 32, 32, 16, and 8. The models are pretty shallow

4.3. Phase-2 (Application of Machine Learning) 43

(a) M1 and M2 model (b) M3 model

Figure 4.6: Architectures of the ANN models

and simple. The third model M3 has a deeper architecture and immune to overfit-
ting introducing regularization technique Dropout(). The argument in the function
defines the number of neurons to be ignored during training. The input layer of
M3 consists of a considerably larger 64 nodes. The 5 hidden layers are substan-
tially wide with 128, 64, 32, 16, and 8 nodes sequentially. The input layer and the
first 2 hidden layer has Dropout between them. Looking at the number of train-
able parameters, the dimension of the model M3 can be imagined. The number of
parameters are approximately 10 times more than M1 and M2 model.

Hyperparameters of Neural Network

In ANN, there are plethora of hyperparameters having substantial impact on the
classification performance. It is a difficult task to choose the optimum hyperpa-
rameters. Few of them are listed below:

• Activation function: Different variants of the activation function have been
tried and finalized with the ’relu function’ for input and hidden layers. And,
’sigmoid function’ is applied to the output layer so that the values are only ’0’
and ’1’.

• Dropout(): The input layer has been assigned to drop 20% of the node for
different iterations. The next two layers in the hidden layer has 30% nodes
dropped.

• Optimizer: ’adam’ is used as the optimizer.

• Loss function: The target being classifying files into benign and malicious,
′binarycrossentropy′ is used as the loss function.

44 Chapter 4. Design and Implementation

• Number of epochs: The models have been trained with various number of
epochs (like 50, 100, 200, 300) to discover the suitable number. And finally
found that the models performs best to their ability when the ’epoch’ is ’300’.

• Batch size: Various batch sizes (8, 16, 32, 64) are tried, and 32 are chosen in
the end. Putting a smaller batch size increases the training time substantially
and adds more noise. Larger batch size requires more memory and counters
issues in generalizing data. 32 is selected considering all these factors.

• Learning rate: All three models have 0.001 as the learning rate.

Implementation

The code snippet to implement the M3 model is shown in listing 4.13. The function
create_model() is designed to construct the desired neural network as represented
in figure 4.6b. The model is compiled with the designated optimizer, loss and
metrics. The model is trained for 300 epochs with batch_size 32. Once the training
is finished, the test set is applied on the data to inspect the performance of the
model. Other evaluation metrics like building confusion matrix and calculating
precision, recall, F1-score is performed next. Finally, the ROC curve and AUC
from the ROC curved is computed to acknowledge the results of the models.

1 import tensorflow as tf
2 import keras
3 from keras.models import Sequential
4 from tensorflow.keras import layers
5 from tensorflow.keras.layers import Dense , Dropout , Conv1D ,

MaxPooling1D , Flatten
6 from sklearn.model_selection import cross_val_score , KFold
7 n_splits = 5 # No of folds
8 kf = KFold(n_splits=n_splits , shuffle=True , random_state =42)
9 def create_model ():

10 model = Sequential ([
11 Dense(64, input_dim =19, activation ="relu"),
12 Dense (128, activation = "relu"),
13 Dropout (0.2) ,
14 Dense(64, activation = "relu"),
15 Dropout (0.3) ,
16 Dense(32, activation = "relu"),
17 Dropout (0.3) ,
18 Dense(16, activation = "relu"),
19 Dense(8, activation = "relu"),
20 Dense(1, activation ="sigmoid")
21])
22 model.summary ()
23 model.compile(optimizer=’adam’, loss=’binary_crossentropy ’,

metrics =[’accuracy ’])
24 return model

4.4. Phase-3 (Model Evaluation) 45

25 tf.keras.wrappers.scikit_learn.KerasClassifier(build_fn=create_model ,
epochs =300, batch_size =32)

26 results = cross_val_score(model , data , data_target , cv=kf, scoring=’
accuracy ’)

27 for i, score in enumerate(results):
28 print(f"Fold {i+1}: Accuracy = {score :.4f}")
29 mean_accuracy = np.mean(results)
30 print(f"Mean Accuracy: {mean_accuracy :.4f}")

Listing 4.13: Implementation of the ANN with cross validation = 5

4.4 Phase-3 (Model Evaluation)

Once the models are trained as stated in the previous sections, test set is applied
to examine the classification performance of the models. This project deploys con-
fusion matrix to calculate precision, recall, and f1-score besides accuracy. Further-
more, the ROC curve is used for visual representation of the performance and AUC
value is generated from the curve. The explanations of these metrics can be seen in
section 2.7, whereas this section shows the implementation of the evaluation tech-
niques. Listing 4.14 shows the code snippet to generate and plot the confusion
matrix from which the values of precision, recall, f1-score can be calculated for any
model.

1 def build_confusion_matrix ():
2 y_pred_gauss = gaussian_naive.predict(X_test)
3 cf_matrix = confusion_matrix(y_test , y_pred_gauss)
4 ax = sns.heatmap(cf_matrix/np.sum(cf_matrix), annot=True , fmt=’.2%’,

cmap=’Blues’)
5 ax.set_title(’Confusion Matrix for Naive Bayes\n’);
6 ax.set_xlabel(’\nPredicted Value’)
7 ax.set_ylabel(’Actual Value ’);
8 plt.show()
9

10 build_confusion_matrix ()
11 print(classification_report(y_test , y_pred_adaboost))

Listing 4.14: Implementation of confusion matrix

Next, ROC curve is plotted by putting FPR along x-axis and TPR along y-axis.
The code written to plot the curve and generate the auc value from the values of
TPR and FPR is displayed in listing 4.15.

46 Chapter 4. Design and Implementation

1

2 from sklearn.metrics import roc_curve , auc
3 gaussian_fpr , gaussian_tpr , threshold = roc_curve(y_test , y_pred_gauss

)
4 auc_gaussian = auc(gaussian_fpr , gaussian_tpr)
5 plt.figure(figsize =(5, 5), dpi =100)
6 plt.plot(gaussian_fpr , gaussian_tpr , marker=’.’, label=’Naive Bayes (

auc = %0.2f)’ % auc_gaussian)
7 plt.title(’ROC curve for Malicious PDF Prediction ’)
8 plt.xlabel(’False Positive Rate’)
9 plt.ylabel(’True Positive Rate’)

10 plt.legend ()
11 plt.grid(True)
12 plt.show()

Listing 4.15: Code snippet to plot ROC curve and calculate AUC value

4.5 The Proposed Hybrid Solution

4.5.1 Architecture

As of now application of classical approach, ensemble technique, and neural net-
work in malware detection is carried out and the result is inspected meticulously.
Now, the strengths of ensemble technique and neural network are combined to-
gether for further potential improvement. In this project, a novel approach is pro-
posed where neural network (model M3) is specially fabricated to perform feature
extraction and then feed the output extracted feature to the bagging and boosting
techniques for classification of the malwares. All the previous steps of data col-
lection and data preprocessing is kept uniform. The architecture of the proposed
hybrid solution is represented in figure 4.7 where the hybrid portion is shown in
green. Both bagging and boosting techniques are applied to inspect which one
performs the best.

4.5.2 Implementation

The implementation of the hybrid solution can be sliced into multiple blocks.

• The first one is to build the neural network model and train the model with
the training set.

• Next, a key step where the output layer of the model M3 is sliced out as
the objective of the neural network is not classification, but extracting the
features. Listing 4.16 shows the code snippet to slice out the output layer of
the model. The structure of the model is shown in figure 4.8. Now the model
is ready for the feature extraction from the data.

4.5. The Proposed Hybrid Solution 47

Dataset

Benign and
Malicious PDF

samples

Benign and
Malicious PE

samples

Training
(70%)

Validation
(10%)

Test
(30%)

Data
Pre-processing

Feature Selection
&

Reduction

ANN based
Feature Extractor

Classification
Performance

Random Forest
Classifier

AdaBoost
Classifier

Hybrid Solution

Figure 4.7: Architecture of the proposed solution

48 Chapter 4. Design and Implementation

Figure 4.8: Architecture of the feature extractor using ANN

• Next, the resulting model performs the feature extraction being fed with
training set, validation set, and test set

• Then, the bagging and boosting techniques are trained on the extracted fea-
tures of the training and validation set obtained from the neural network.

• Finally, both bagging and boosting techniques are applied for predicting the
unseen data of the test set.

• Lastly, the model is examined with appropriate evaluation metrics to produce
the results of each of the hybrid approach.

1 feature_extraction_model = Sequential ()
2 for layer in model.layers [: -1]:
3 feature_extraction_model.add(layer)
4 feature_extraction_model.summary ()
5 extracted_features_nn_train = feature_extraction_model.predict(X_train

)
6 extracted_features_nn_val = feature_extraction_model.predict(X_val)
7 extracted_features_nn_test = feature_extraction_model.predict(X_test)

Listing 4.16: Implementation of the ANN based feature extractor for the proposed solution

Chapter 5

Result and Analysis

This chapter focuses on the outcomes produced by several ML approaches in clas-
sifying malwares. The models are subjected to appropriate metrics discussed in
section 2.7 in order to evaluate their performances. To make it easy to compre-
hend, the findings of different methodologies are provided separately with the
required tables, values, and graphs. It is experimentally shown that the proposed
hybrid solution in this thesis achieves better results than the other approaches.

5.1 Result Analysis of Classical Machine Learning

The results of the two classical approaches LR and GNB are shown in table 5.1. On
the provided dataset, both techniques deliver decent results. The confusion matrix
and the ROC curve of both the techniques are shown in figure 5.1. Comparing
between the two classical techniques, LR performs slightly better with the accuracy
of 90.37% on the test set. More rigorous metrics like precision, recall, F1-score are
calculated from the confusion matrix and AUC value is generated from the ROC
curve. The model yields 91.25% for F1-score and the area under the ROC curve
is 90.09%. From figure 5.1c the ROC curve of LR clearly superior to the curve of
GNB. The possible grounds for LR performing better than GNB are as follows:

• LR employs a logistic function (sigmoid) to assign into the target class after
constructing a complex linear relationship among the features. The quality
of how the model performs vastly depends on this linear relationship. In this
case, the features heavily relying on each other making LR a better perform-
ing algorithm than GNB given that GNB perceives features as continuous
fitting the Gaussian or normal distribution independently given the target
class.

• Another evident reason can be GNB performs well with continuous features
but not with the categorical ones. GNB needs them to be converted to contin-

49

50 Chapter 5. Result and Analysis

uous representations which is not carried out in the experiment. However, LR
is effective with both categorical and continuous features making it perform
moderately in this experiment.

Table 5.1: Evaluation metrics of classical ML approaches

Training
Acc.

Val.
Acc.

Test
Acc.

Precision Recall F1-score AUC

GNB 89.76% 88.93% 88.62% 85.66% 94.37% 89.81% 88.23%
LR 91.24% 90.35% 90.37% 88.16% 94.57% 91.25% 90.09%

Table 5.2: Evaluation metrics of ensemble techniques

Training
Accuracy

Val.
Acc.

Test
Acc.

Prec. Recall F1-score AUC

RF 99.81% 97.81% 98.35% 98.07% 98.83% 98.45% 98.32%
AdaBoost 99.30% 98.33% 98.46% 98.45% 98.64% 98.54% 98.44%

Table 5.3: Evaluation metrics of the three ANN models

Training
Acc.

Validation
Acc.

Test
Acc.

Precision Recall F1-score AUC

M1 99.76% 97.55% 97.99% 97.78% 98.44% 98.11% 97.96%
M2 100% 97.68% 98.04% 97.69% 98.64% 98.16% 98.00%
M3 99.97% 98.33% 98.92% 99.46% 99.51% 98.98% 98.87%

Table 5.4: Evaluation metrics of the ANN-ensemble hybrid models

Train.
Acc.

Val.
Acc.

Test
Acc.

Prec. Rec. F1 AUC

Hybrid-1 99.92% 98.91% 98.53% 98.28% 98.96% 98.61% 98.50%
Hybrid-2 100% 99.73% 99.51% 99.48% 99.58% 99.53% 99.51%

The two classical methods work mediocrely, and contemporary systems need to
be more accurate in sensitive cases like malware analysis. Triggered false positives
are critical disrupting usual workflow. Even LR generates 6.75% of false positives
and 2.88% of false negatives. In pursuit of better performance, ensemble techniques
are employed next which is discussed in following section.

5.1. Result Analysis of Classical Machine Learning 51

(a) Gaussian Naive Bayes (b) Logistic Regression (c) ROC curves

Figure 5.1: Confusion Matrix and ROC curves of classical ML approaches

(a) Random forest (b) AdaBoost (c) ROC curve

Figure 5.2: Confusion Matrix and ROC curve of Ensemble Techniques

(a) M1 model (b) M2 model (c) M3model

Figure 5.3: Confusion Matrix of the three ANN models

52 Chapter 5. Result and Analysis

5.2 Result Analysis of Ensemble Techniques

Table 5.2 depicts the results of the two ensemble techniques: bagging (RF) and
boosting (AdaBoost). The confusion matrix and ROC curves for the mentioned
techniques is illustrated in figure 5.2. Discussing about the results, there are mas-
sive improvements seen for ensemble techniques. In comparison to the earlier
classical techniques, both the bagging and boosting algorithms perform signifi-
cantly better. The accuracies by RF and AdaBoost for the test set are 98.35% and
98.46% respectively. The F1-score for RF is 98.45% whereas AdaBoost has a thin
improvement of 98.54%. The ROC curve shown in 5.2c also affirms the upper hand
of AdaBoost over RF producing an AUC value of 98.44%.

If the reason of AdaBoost performing better than previously discussed LR is ex-
amined few intriguing aspects emerge. Ensemble techniques like AdaBoost builds
non-linear relationships among the feature to generate stronger and more com-
plex classifier. This allows the decision boundary of AdaBoost to operate better
by correctly classifying samples that can not be separable by the linear classifier
of LR. Also, AdaBoost can handle outliers better by assigning higher weights for
them during training. However, LR receive impacts from outliers that contribute to
higher errors. At first glance, it might seem there is only one ROC curve. However,
both the curves having same pattern and AdaBoost having more dominance over
RF, the AdaBoost curve has eclipsed the curve of RF. Despite the excellent perfor-
mance of AdaBoost, we will look at potential improvements by deploying ANN in
the next section.

5.3 Result Analysis of ANN

It must be stated that the outcome achieved by AdaBoost is already outstanding. It
will be exceedingly challenging to continue advance from here, and the advance-
ments will be quite minute. Three models have been implemented in this study
to evaluate precisely how ANNs accomplish in malware detection. The imple-
mentation and design specifications of various hyperparameters like batch size,
layers, dropout, no of epochs to train, etc. are discussed previously in sec-
tion 4.3.6 and figure 4.6. Here, the results of each of the models are discussed in
this section and illustrated in table 5.3.

Both model M1 and M2 does not perform better than AdaBoost. M1 and M2
generate a modest accuracies 97.99% and 98.04% for the test set, which is lower
than what AdaBoost achieved previously. The confusion matrix shown in 5.3 for
model M1 and M2 also assert the misclassications with false positives of 1.18%

5.3. Result Analysis of ANN 53

(a) M1 model (b) M2 model (c) M3model

Figure 5.4: Training and validation accuracy of the three ANN models

(a) M1 model (b) M2 model (c) M3model

Figure 5.5: Training and validation loss of the three ANN models

Figure 5.6: ROC curve for the three ANN models

54 Chapter 5. Result and Analysis

for M1 and 1.24% for M2. Besides the confusion matrix, another visualization is
present for the deep learning models illustrating the accuracy and loss curves dur-
ing training shown in figure 5.4 and 5.5. Looking at the accuracy curves of M1
in 5.4a the clear difference between the training and validation curves is observed
though the curves appear orthodox. But the curves for M2 in figure 5.4b exhibits an
unusual pattern being distinctly apart from each other confirming that the model
has overfit the training data with 100% of accuracy whereas the validation and test
accuracy is nowhere close. Overfitting is a critical issue in machine learning and
require to be addressed. Therefore, the third ANN model M3 is implemented and
deployed with a new specification and methodology that enables the model to be
resilient to overfitting.

The results and accuracy curve in 5.4c of the model M3 validate the immunity
against overfitting. The accuracy curve of M3 gets back it’s typical shape and yields
an accuracy of 99.97% for the training set. Finally, M3 could outperform AdaBoost
considerable margin with a test accuracy of 98.92% and emerges as the most effec-
tive strategy out of all those used up to this point.The improvement for F1-score
for M3 is 98.98% superior than the previous best AdaBoost having F1-score 98.54%.
The ROC curve for the three models are depicted in figure 5.6. M3 turns out to be
the best model with the highest AUC of 98.88% concealing the ROC curve of the
other two models.

ANN appears to be the foremost algorithm up to this moment bringing out ex-
traordinary results. Further advancements are attempted to discover any favourable
outcome. Now the proposed novel solution in this thesis will be discussed in the
next section.

5.4. Result Analysis of the Hybrid Solution 55

(a) ANN-RF-hybrid model (b) ANN-AdaBoost-hybrid model (c) ANN-AdaBoost-hybrid model

Figure 5.7: Confusion matrix and ROC curves of the two hybrid models

5.4 Result Analysis of the Hybrid Solution

Improvising an ANN model performing a shade below 99% is a gigantic task. This
thesis proposes a novel hybrid approach, the architectural specifications of which
is found in section 4.5. The results generated by these hybrid models are delineated
in table 5.4. The two hybrid models are manufactured by layering the ANN model
M3 intended exclusively for feature engineering and ensemble techniques like RF
and AdaBoost for the classification. The first hybrid model Hybrid-1 assembled
with RF on top of ANN model M3 generates a test accuracy of 98.53%. Conse-
quently, the Hybrid-1 model outperforms RF and AdaBoost separately but falls
short of the ANN model M3. Nonetheless, the outcomes generated by Hybrid-1 is
still admissible.

However, the Hybrid-2 model combining the strenghts of ANN and boosting,
has outperformed all the previous techniques discussed in this thesis previously.
With a flawless training accuracy of 100%, this hybrid model achieves the best vali-
dation accuracy and test accuracy so far, which are 99.73% and 99.51% respectively.
The confusion matrix and ROC curves of both the hybrid models are shown in fig-
ure 5.7. The false positive and false negative for model Hybrid-2 are optimized
to 0.27% and 0.22% only. The AUC produced by Hybrid-2 is 99.50% outshining
Hybrid-1, also presiding the ROC curve by a cut above.

The accuracy and loss curves for the Hybrid-2 model are displayed in figure
5.8. Both the curves exhibit an immaculate and seamless pattern with no sudden
spikes or drops in values. The curves demonstrates the immunity to overfitting
clearly though the training accuracy is 100%.

56 Chapter 5. Result and Analysis

(a) Accuracy curve for training and validation set (b) Loss curve for training and validation set

Figure 5.8: Feature extraction using ANN for hybrid models

5.5 Result Analysis of PE Dataset

In this section, the result of the PE dataset will be analyzed. For convenience, the
results have been accumulated for all the different approaches together in table
5.5. The visualization of confusion matrix of the different techniques is depicted
in figure 5.10. And the ROC curves of all the techniques deployed is shown in
figure 5.11. Both the ensemble techniques: RF and AdaBoost performed almost
the same having test accuracy 97.62% and 97.25% respectively. RF has produced
2.04% of FP and 0.33% of FN. The classification performance of both the model
can be assured by the satisfactory F1-score values 98.42% and 98.17% for RF and
AdaBoost respectively. The ROC curve of these two techniques is found in figure
5.11a from the AUC values can be obtained which are 95.79% for RF and 95.08%
for AdaBoost. 5.11.

Table 5.5: Results for evaluation metrics on PE dataset

Training
Acc.

Val.
Acc.

Test
Acc.

Prec. Recall F1 AUC

RF 97.7% 97.70% 97.62% 97.32% 989.55% 98.42% 95.79%
AdaBoost 97.0% 96.75% 97.25% 96.86% 99.52% 98.17% 95.08%
ANN 99.26% 97.89% 97.78% 98.49% 98.52% 98.51% 97.07%
Hybrid-3 99.99% 98.09% 97.94.% 98.46% 98.76% 98.61% 95.79%
Hybrid-4 99.18% 98.79% 98.45% 98.60% 99.31% 98.95% 97.62%

Then, ANN has been applied with a deeper architecture corresponding with
the number of the features and size of the dataset. This time utilizing the previous
knowledge on the domain only a single ANN model is applied. The architecture
is shown in figure 5.9. The model is constructed with a bigger number of neu-

5.5. Result Analysis of PE Dataset 57

Figure 5.9: ANN model architecture for implemented PE dataset

ron compared to ANN model deployed for the PDF dataset. The input layer has
512 neurons. There are 11 hidden layers with substantial number of nodes. For
a binary classification output, the output layer has only one neuron. Analyzing
the results, ANN has also produced slightly better test accuracy of 97.78%. The
F1-score improved as well with a decent 98.51%. The ROC curve can be seen in
figure 5.10c. The AUC value obtained from the ANN model is 97.07%.

Next, the proposed hybrid model is deployed for the PE dataset to verify that
this model is indeed a fit for use solution for detecting malwares in files. Hybrid-3
model is constructed by combining ANN without the classification layer with RF
for classification. The test accuracy yielded by Hybrid-3 is 97.94% that is current
maximum accuracy achieved. Hybrid-3 model yields 98.61% of F1-score which
confirms the quality of the classification for each classes of the dataset.

Finally, Hybrid-4 is the last model deployed, composed of putting AdaBoost on
top of ANN feature extractor. Likewise, the PDF dataset, the hybrid model con-
structed with ANN and AdaBoost brings out the best results among all the models
deployed with the test accuracy of 98.45%. The F1-score for Hybrid-4 is 97.62%.
The ROC curves for the hybrid models are represented in the figure 5.11c. The
AUC value obtained is 97.62%.

58 Chapter 5. Result and Analysis

(a) Random Forest (b) AdaBoost Model (c) ANN model

Figure 5.10: Confusion Matrix of different apporaches on PE dataset

(a) Ensemble Techniques (b) ANN model (c) Hybrid models

Figure 5.11: ROC curves for PE dataset

5.5. Result Analysis of PE Dataset 59

Table 5.6 represents a comparison of approaches of different models in the
domain of malware detection. The techniques varies in the size of the dataset and
detection approaches.

Table 5.6: Comparison table with other related works

Related
Work

File
Dataset

Size
Pre-processing Model Acc.

[19] PDF x
Static lexical

Analysis
SVM 85%

[1] PDF 4000
Convert binary

data into
2-D image

NN based
Clustering

94%

[23] PDF 21,146
Keyword

frequency, clustering
Random Forest 99%

[14] PDF
Over

11,000

Data Labeling
with

clustering

Stacking Learning
(SVM+RF+

MLP+AdaBoost)
then

(LR / KNN / DT)

99%

[17] PE 5210
Merging of raw

and
boolean features

Random Forest 98%

[7] PE 1800

Dynamic analysis
to create

JSON file of features
and

convert into binary

Artificial
Neural Network

98%

This
work

PDF 10,000

Data
transformation,
Scaling, Handle

Null values

Hybrid-2
(ANN

+
AdaBoost)

99%

This
work

PE 20,000

Data
transformation,
Scaling, Handle

Null Values

Hybrid-4
(ANN

+
AdaBoost)

99%

60 Chapter 5. Result and Analysis

5.6 Summary

Summarizing the entire picture, this project deploys different ML techniques like
classical approaches, ensemble techniques, ANN and investigates the effectiveness
of each techniques meticulously. ANN M3 model is discovered to be performing
better than bagging and boosting approaches. Finally, hybrid models are engi-
neered by integrating ANN with bagging and boosting techniques together sur-
mounted all the other algorithms investigated in this project. The result obtained
by this Hybrid-2 model is impeccable and can be refereed to as a potential solution
for operation in malware detection.

At last, two ensemble techniques: RF and AdaBoost, ANN model, and two
hybrid models composed of combining ANN and two ensemble techniques are
applied on another dataset of PE data. The primary objective is to inspect whether
the hybrid solutions can be used as a viable solution for different types of data.
And it is experimentally found that, the Hybrid-4 model performed exceptionally
and turned out to be the best performing algorithm among all the approaches.

Chapter 6

Conclusion

Diverse machine learning methods from several branches have been applied in
this research to find malware in PDF and PE files. In pursuit of that, an extensive
review of the existing work is carried out. The outcome of the literature review
provides a broad overview of the domain including sources of the datasets uti-
lized previously, performance of different models, metrics to evaluate the models.
It becomes apparent that ensemble approaches like Random Forest and various
variants of Neural Network perform remarkably well. To discover the superiority
of the algorithms, at first, two classical techniques named Gaussian Naive Bayes
and Logistic Regression have been applied. Next, two ensemble techniques named
Random Forest (RF) and Adaptive Boosting (AdaBoost) have been applied to see if
the results can be improved. And it is observed that the outcomes of the ensemble
techniques have drastically improved from the classical approaches. Then, three
variants of Artificial Neural Network have been deployed to improve the results
even further. It has been a complex task to improve a system that has already per-
formed with accuracy over 98%. However, the third ANN model M3 managed to
produce better result that the previous best ensemble technique.

Finally, a novel solution is proposed combining the strengths of both ensem-
ble techniques and ANN architecture. The novel approach extracts the features
using ANN while the classification of the malwares is executed by the ensemble
technique on the extracted features by ANN. Two hybrid models for each dataset
have been deployed and all of the four hybrid models have generated satisfactory
results.

For the PDF dataset, Hybrid-1 (ANN + RF) generates test accuracy and F1-score
of 98.53% and 98.61% respectively. And the second hybrid model, Hybrid-2 (ANN
+ AdaBoost) achieves the best test accuracy of 99.51% and F1-score of 99.53%. For
PE dataset, a deeper and more complex architecture is needed to train the model

61

62 Chapter 6. Conclusion

effectively. Interestingly, the result of Hybrid-4 (ANN + AdaBoost) also emerges
better than Hybrid-3 (ANN + RF). Hybrid-3 has produced a test accuracy of 97.94%
and F1-score of 98.61%. And, Hybrid-4 yields the best result for the PE dataset with
a test accuracy of 98.45% and F1-score of 98.95%. The results clearly affirm that
both the hybrid models can produce better results than individual execution of
ANN and ensemble algorithms and also they are effective to learn essential fea-
tures from the dataset and detect any new and unseen malwares efficiently.

Although, this project has been successful to generate satisfactory results. Still
there are rooms for further improvements. The processing time of the models is not
evaluated in this project. The processing time is also a good measure to evaluate
the performance of a model. This can be calculated in future and can be further
optimized by reducing the computation performed by the models.

Bibliography

[1] Irina Baptista, Stavros Shiaeles, and Nicholas Kolokotronis. “A novel mal-
ware detection system based on machine learning and binary visualization”.
In: 2019 IEEE International Conference on Communications Workshops (ICC Work-
shops). IEEE. 2019, pp. 1–6.

[2] Curtis Carmony et al. “Extract Me If You Can: Abusing PDF Parsers in Mal-
ware Detectors.” In: NDSS. 2016.

[3] Common Vulnerabilities and Exposures. Accessed: 2023-03-11. url: https://
cve.mitre.org/cve/search_cve_list.html.

[4] Contagio. Accessed: 2023-07-15. url: https://contagiodump.blogspot.com/.

[5] Gregory Conti et al. “A visual study of primitive binary fragment types”. In:
White Paper, Black Hat USA (2010).

[6] Andrew Corum, Donovan Jenkins, and Jun Zheng. “Robust PDF malware
detection with image visualization and processing techniques”. In: 2019 2nd
International Conference on Data Intelligence and Security (ICDIS). IEEE. 2019,
pp. 108–114.

[7] Omid E David and Nathan S Netanyahu. “Deepsign: Deep learning for auto-
matic malware signature generation and classification”. In: 2015 International
Joint Conference on Neural Networks (IJCNN). IEEE. 2015, pp. 1–8.

[8] Manuel Egele et al. “A survey on automated dynamic malware-analysis tech-
niques and tools”. In: ACM computing surveys (CSUR) 44.2 (2008), pp. 1–42.

[9] Raphael Fettaya and Yishay Mansour. “Detecting malicious PDF using CNN”.
In: arXiv preprint arXiv:2007.12729 (2020).

[10] Dragos Gavrilut et al. “Malware detection using perceptrons and support
vector machines”. In: 2009 Computation World: Future Computing, Service Com-
putation, Cognitive, Adaptive, Content, Patterns. IEEE. 2009, pp. 283–288.

[11] Valentin Hamon. “Malicious URI resolving in PDF documents”. In: Journal of
Computer Virology and Hacking Techniques 9.2 (2013), pp. 65–76.

[12] Nwokedi Idika and Aditya P Mathur. “A survey of malware detection tech-
niques”. In: Purdue University 48.2 (2007), pp. 32–46.

63

https://cve.mitre.org/cve/search_cve_list.html
https://cve.mitre.org/cve/search_cve_list.html
https://contagiodump.blogspot.com/

64 Bibliography

[13] Rafiqul Islam et al. “Classification of malware based on string and func-
tion feature selection”. In: 2010 Second Cybercrime and Trustworthy Computing
Workshop. IEEE. 2010, pp. 9–17.

[14] Maryam Issakhani et al. “PDF Malware Detection based on Stacking Learn-
ing.” In: ICISSP. 2022, pp. 562–570.

[15] Kazumasa Itabashi. “Portable document format malware”. In: Symantec white
paper (2011).

[16] Jagpreet Kaur and KR Ramkumar. “The recent trends in cyber security: A
review”. In: Journal of King Saud University-Computer and Information Sciences
34.8 (2022), pp. 5766–5781.

[17] Ajit Kumar, KS Kuppusamy, and Gnanasekaran Aghila. “A learning model to
detect maliciousness of portable executable using integrated feature set”. In:
Journal of King Saud University-Computer and Information Sciences 31.2 (2019),
pp. 252–265.

[18] Sumeet Kumar and Kathleen M Carley. “Approaches to understanding the
motivations behind cyber attacks”. In: 2016 IEEE Conference on Intelligence and
Security Informatics (ISI). IEEE. 2016, pp. 307–309.

[19] Pavel Laskov and Nedim Šrndić. “Static detection of malicious JavaScript-
bearing PDF documents”. In: Proceedings of the 27th annual computer security
applications conference. 2011, pp. 373–382.

[20] Yuchong Li and Qinghui Liu. “A comprehensive review study of cyber-
attacks and cyber security; Emerging trends and recent developments”. In:
Energy Reports 7 (2021), pp. 8176–8186. issn: 2352-4847. doi: https://doi.
org/10.1016/j.egyr.2021.08.126. url: https://www.sciencedirect.com/
science/article/pii/S2352484721007289.

[21] Logistic Regression in Machine Learning. Accessed: 2023-07-11. url: https://
www.javatpoint.com/logistic-regression-in-machine-learning.

[22] Davide Maiorca, Battista Biggio, and Giorgio Giacinto. “Towards adversar-
ial malware detection: Lessons learned from PDF-based attacks”. In: ACM
Computing Surveys (CSUR) 52.4 (2019), pp. 1–36.

[23] Davide Maiorca, Giorgio Giacinto, and Igino Corona. “A pattern recognition
system for malicious pdf files detection”. In: International workshop on machine
learning and data mining in pattern recognition. Springer. 2012, pp. 510–524.

[24] Master the AdaBoost Algorithm: Guide to Implementing Understanding AdaBoost.
Accessed: 2023-07-11. url: https://www.analyticsvidhya.com/blog/2021/
09/adaboost-algorithm-a-complete-guide-for-beginners/.

https://doi.org/https://doi.org/10.1016/j.egyr.2021.08.126
https://doi.org/https://doi.org/10.1016/j.egyr.2021.08.126
https://www.sciencedirect.com/science/article/pii/S2352484721007289
https://www.sciencedirect.com/science/article/pii/S2352484721007289
https://www.javatpoint.com/logistic-regression-in-machine-learning
https://www.javatpoint.com/logistic-regression-in-machine-learning
https://www.analyticsvidhya.com/blog/2021/09/adaboost-algorithm-a-complete-guide-for-beginners/
https://www.analyticsvidhya.com/blog/2021/09/adaboost-algorithm-a-complete-guide-for-beginners/

Bibliography 65

[25] Akram M Radwan. “Machine learning techniques to detect maliciousness
of portable executable files”. In: 2019 International Conference on Promising
Electronic Technologies (ICPET). IEEE. 2019, pp. 86–90.

[26] Rajeev DS Raizada and Yune-Sang Lee. “Smoothness without smoothing:
why Gaussian naive Bayes is not naive for multi-subject searchlight studies”.
In: PloS one 8.7 (2013), e69566.

[27] Karthik Selvaraj and Nino Fred Gutierrez. “The rise of PDF malware”. In:
Symantec Security Response (2010).

[28] Ronghua Tian, Lynn Margaret Batten, and SC Versteeg. “Function length
as a tool for malware classification”. In: 2008 3rd international conference on
malicious and unwanted software (MALWARE). IEEE. 2008, pp. 69–76.

[29] Ronghua Tian et al. “An automated classification system based on the strings
of trojan and virus families”. In: 2009 4th International conference on malicious
and unwanted software (MALWARE). IEEE. 2009, pp. 23–30.

[30] Jose Torres and Sergio De Los Santos. “Malicious PDF documents detection
using machine learning techniques”. In: Proceedings of the 4th International
Conference on Information Systems Security and Privacy (ICISSP 2018). 2018,
pp. 337–344.

[31] Dolly Uppal et al. “Malware detection and classification based on extraction
of API sequences”. In: 2014 International conference on advances in computing,
communications and informatics (ICACCI). IEEE. 2014, pp. 2337–2342.

[32] Cristina Vatamanu, Dragoş Gavriluţ, and Răzvan Benchea. “A practical ap-
proach on clustering malicious PDF documents”. In: Journal in Computer Vi-
rology 8.4 (2012), pp. 151–163.

[33] Virus total. Accessed: 2023-07-15. url: https://www.virustotal.com/gui/
home/upload.

[34] What is a Neural Network? Accessed: 2023-07-11. url: https://www.tibco.
com/reference-center/what-is-a-neural-network.

[35] What is a Random Forest? Accessed: 2023-07-11. url: https://www.tibco.
com/reference-center/what-is-a-random-forest.

[36] Muhammad Irfan Yousuf et al. “Multi-feature Dataset for Windows PE Mal-
ware Classification”. In: arXiv preprint arXiv:2210.16285 (2022).

[37] Jason Zhang. “MLPdf: an effective machine learning based approach for PDF
malware detection”. In: arXiv preprint arXiv:1808.06991 (2018).

https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.tibco.com/reference-center/what-is-a-neural-network
https://www.tibco.com/reference-center/what-is-a-neural-network
https://www.tibco.com/reference-center/what-is-a-random-forest
https://www.tibco.com/reference-center/what-is-a-random-forest

Appendix A

PDF Dataset

Table A.1: Name and Type of the features in the dataset

Sl. No Feature Name Type of Feature
1 Name of the PDF General feature
2 Size of the PDF General feature
3 Metadata size General feature
4 No. of pages in the PDF General feature
5 No. of Xref entries Structural feature
6 No. of characters in the title General feature
7 Encryption applied General feature
8 No. of embedded files inside the document General feature
9 No. of images in the document General feature
10 Presence of text inside PDF General feature
11 PDF header General feature
12 No. of objects in the PDF General feature
13 No. of keywords "endobj" Structural feature
14 Average stream size Structural feature
15 No. of keyword "endstream" Structural feature
16 No. of Xref entries Structural feature
17 No. of keyword "/Trailer" Structural feature
18 No. of keyword "/Startxref" Structural feature
19 No. of pages in the PDF General feature
20 No. of keyword "encrypt" General feature
21 No. of stream objects Structural feature
22 No. of keyword "/JS" Structural feature
23 No. of keyword "/JavaScript" Structural feature
24 No. of keyword "ÄA" Structural feature

66

A.1. Correlation Matrix of the Features 67

Table A.1: Name and Type of the features in the dataset

Sl. No Feature Name Type of Feature
25 No. of keyword "OpenAction" Structural feature
26 No. of keyword Acrobat forms Structural feature
27 No. of keyword "/JBIG2Decode" Structural feature
28 No. of keyword "/Richmedia" Structural feature
29 No. of keyword "/launch" Structural feature
30 No. of embedded files General feature
31 No. of keyword "/XFA" Structural feature
32 No. of colors used in the PDF Structural feature

A.1 Correlation Matrix of the Features

68 Appendix A. PDF Dataset

Figure A.1: Correlation of features

Appendix B

PE Dataset

69

70 Appendix B. PE Dataset

Figure B.1: PE header fields in the dataset [36]

71

Figure B.2: PE sections and fields in the dataset [36]

	Front page
	English title page
	Contents
	List of Tables
	List of Figures
	Preface
	1 Introduction
	1.1 How malicious actors target files?
	1.2 Major Attack Vectors using Files
	1.3 Machine Learning in Malware Detection
	1.4 Contribution to the domain
	1.5 Deliminations
	1.6 Structure of the Thesis

	2 Background
	2.1 Malware Detection vs. Analysis
	2.2 Portable Document File (PDF)
	2.3 Implement PDF Exploits
	2.3.1 JavaScript Code based Attacks
	2.3.2 File Embedding Attacks
	2.3.3 Form submission and URI attacks
	2.3.4 ActionScript attacks

	2.4 Portable Executable (PE) File
	2.5 Exploitation of PE File
	2.6 Machine Learning (ML) Algorithms
	2.6.1 Classical Approaches
	2.6.2 Ensemble Techniques: bagging and boosting
	2.6.3 Artificial Neural Network (ANN)

	2.7 Performance Evaluation
	2.7.1 Accuracy
	2.7.2 Precision
	2.7.3 Recall
	2.7.4 F1-score
	2.7.5 Receiver Operating Characteristic (ROC) Curve
	2.7.6 Area Under the ROC Curve (AUC)

	3 Literature Review
	3.1 Search Engines and Keywords
	3.2 Detection Techniques of Malicious PDF
	3.3 Detection Techniques of Malicious PE
	3.4 Summary

	4 Design and Implementation
	4.1 Methodology
	4.2 Phase-1 (Project Initialization)
	4.2.1 Data Collection
	4.2.2 System Configurations
	4.2.3 Experimental Setup

	4.3 Phase-2 (Application of Machine Learning)
	4.3.1 Data Preprocessing
	4.3.2 Feature Selection & Dimensionality Reduction
	4.3.3 Data Splitting
	4.3.4 Implementation of Classical Machine Learning
	4.3.5 Implementation of Ensemble Techniques (Bagging and Boosting)
	4.3.6 Implementation of ANN

	4.4 Phase-3 (Model Evaluation)
	4.5 The Proposed Hybrid Solution
	4.5.1 Architecture
	4.5.2 Implementation

	5 Result and Analysis
	5.1 Result Analysis of Classical Machine Learning
	5.2 Result Analysis of Ensemble Techniques
	5.3 Result Analysis of ANN
	5.4 Result Analysis of the Hybrid Solution
	5.5 Result Analysis of PE Dataset
	5.6 Summary

	6 Conclusion
	Bibliography
	A PDF Dataset
	A.1 Correlation Matrix of the Features

	B PE Dataset

