
RESUME
I dette projekt har vi studeret området for data-flow analyse for programmeringssproget ReScript.
ReScript er et funktionelt programmeringssproget baseret på OCaml, med fokus by at compile til
JavaScript. I forhold til andre sprog med at compile til JavaScript som mål, introducerer ReScript
et robust type system. Selvom ReScript er baseret på OCaml, så anvender ReScript deres eget
build system og kun anvender dele af OCaml. Dette, og at ReScript stadigvæk er et ungt sprog,
mangler ReScript analyse værktøjer der kan hjælpe udvikler og optimerer compileren. De har
dog et eksperimentelt analyseværktøj, ReAnalyze, som kan give informationer såsom død-code og
terminering.
Her er data-flow analyse en teknik brugt til at samle information der bliver brugt igennem et

program, som ofte anvendes til at optimere et program. Under optimeringsprocessen, bliver data-
flow analysen brugt til en række forskellige områder, såsom eliminering af død-kode og konstant
propagation. Eftersom mange programmeringssproget introducer lokationer og pointers som en
del af sproget, skal data-flow analysen også tage højde for aliasering, altså hvilke variabler der
deler samme location, som bliver brugt til at sørger for sikkerheden af analysen.

Til dette har vi valgt at lave et data-flow analyse værktøj for ReScript, hvor vi har valgt at
fokuserer på en delmængde af ReScript sproget, altså for et 𝜆-calculus med mønstermatching,
muterbarhed, og lokale deklarationer. Eftersom vi analyserer på et funktionelt sprog, som derved
er udtryk baseret, laver vi analysen på forekomster af syntaktiske og semantiske elementer, altså af
udtryk, variabler, og lokationer. Siden vi er intereseret i forekomster, annoterer vi forekomster med
program punkter.
Hertil, præsenterer vi en formel beskrivelse af sproget, dets syntaks og semantik, hvor det

præsenteret semantiske formål er at vise den semantiske data-flow et program. For at kunne
repræsentere data-flow for et program indsamler vi de semantiske forekomster anvendt til at
evaluere en forekomst. Vi definerer afhængigheder af, som de variabler og lokationer, anvendt i en
evaluering. Vi introducerer også en afhængighedsfunktioner som binder deklaration, argumenter
fra abstraktioner, og lokation forekomster til de forekomster de er afhængige af.

Siden afhængighedsfunktionen ikke indeholder en ordning i sig selv, bruger vi også en relation
af de programpunkter, der er i afhængighedsfunktionen. Denne relation bliver anvendt når der skal
slås op i afhængighedsfunktionen, e.g., når vi skal slå op hvad en variabel eller lokation er afhængig
af, hvortil vi anvender en funktion til at slå op for det maksimale programpunkt en forekomst er
bundet til.

Baseret på sproget, definerer vi et type system for data-flow analyse, med formål at samle
afhængigheder der bliver brugt og alias information for en syntaktisk forekomst. Siden de egen-
skaber vi vil fange i et program er forekomst afhængighed og aliasing, præsenterer vi type som
repræsenterer de forskellige værdier i sproget, altså funktioner, rekursive funktioner, lokationer,
etc. Siden lokationer er en semantisk notation, introduceres notation for interne variable, som er
den syntaktiske repræsentation af lokationer.

Vi introducerer en base type og abstraktions-type, hvor abstraktions-typen repræsenterer funk-
tioner, mens base typen repræsenterer typen af de andre værdier. Hertil består basen af en mængde
af forekomster og mængden af alias informationen. Mængden af forekomster bliver brugt til at
samle de forekomster der er blevet anvendt til at evaluerer en forekomst, og dermed den syntaktiske
repræsentation og afhængighed. Alias information er en mængde, der kan indeholde variabler og
intern variable. Denne mængde repræsenterer, hvis værdien af en forekomst er en lokation, så vil
alias mængden indeholde information omkring lokationen.

1

1:2

Ligesom semantikken, introducerer vi type miljøet, som er en approksimation af afhængigheds-
funktionen. Hvortil vi, ligesom to afhængighedsfunktion, introducerer en funktion til at slå op
for det maksimale element. Siden type miljøet også indeholder global information, anvender vi en
funktion til at slå op for alle maksimale forekomster. Siden vi approksimerer i type system, kan der
være grene, introduceret af mønstermatchingen, hvor vi sørger for at få den maksimale forekomst
for hver gren.

Til sidst præsenterer vi sundhedsresultatet af type systemet, hvor vi viser hvordan bindingsmod-
ellerne i type systemet og semantikken relaterer til hinanden, og at typen respekterer afhængighed-
erne i semantikken.

1

Data-flow analysis of dependencies and aliases for a
functional programming languages

NICKY ASK LUND, Aalborg University, Denmark

As ReScript introduces a strongly typed language that targets JavaScript, as an alternative to gradually typed
languages, such as TypeScript. While ReScript is built upon OCaml, it provides its own build system and
integration with JavaScript, as such not much analysis has been introduced to ReScript. They do provide an
experimental analysis tool to analyze areas, such as dead-code and termination.

As data-flow analysis has been used for decades in compiler optimization, as they provide information
about the data-flow in programs. As many languages use locations, the data-flow analysis must consider
aliasing to ensure safety.

In this paper, we present a type system for data-flow analysis for a subset of the ReScript language, more
specific for a 𝜆-calculus with mutability and pattern matching. We present the syntax and semantics of the
language, where we extends the semantics with a semantic data-flow analysis. The type system is a local
analysis that collects information about what variables are used and alias information. We show that how
the binding models relate for the semantics and type system and shows that the type system gives a sound
approximation of dependencies and alias information.

Additional Key Words and Phrases: Data-flow analysis, Alias analysis, Program analysis, Programming
languages, Type systems

Contents

Abstract 3
Contents 3
1 Introduction 4
2 Language 5
2.1 Syntax 5
2.2 Environments and stores 7
2.3 Dependencies 8
2.4 Collection semantics 10
3 Type system for data-flow analysis 13
3.1 Types 13
3.2 Basis and type environment 14
3.3 The type system 16
4 Soundness 19
4.1 Type rules for values 19
4.2 Agreement 20
4.3 Properties 23
5 Conclusion 26
5.1 discussion 26
5.2 Future work 27
References 28
A Collection Semantics 29
A.1 Pattern matching 31
A.2 Extending𝑤 31
B Type system Judgement 33

Author’s address: Nicky Ask Lund, nlund18@student.aau.dk, Aalborg University, Institute of Computer Science, Aalborg,
Denmark.

1:4

B.1 𝜎 function 35
C Proofs of theorems and lemmas 35
C.1 History 35
C.2 Strengthening 39
C.3 Soundness 43

1 INTRODUCTION
Data-flow analysis has been studied for decades to better to provide flow information of programs.
This flow information has been used for different tasks for compiler optimization, debugging and
understanding programs, testing and maintenance. In the context of compiler optimization, where
the flow information provides data that may be used at given parts of the program at runtime.
The classical way of doing data-flow analysis has been by using iterative algorithm based on

representing the control-flow of programs as graphs. The purpose of such graphs is to give a sound
over-approximation of the control flow of a program, where edges represent the flow and nodes
represent basic blocks. By using the information of control-flow graphs, many algorithms have
been developed to use those by annotating the graphs and solving the maximal fix-point[5, 9]. (Ref
to algorithms, such as kilders) Other techniques have also been presented, such as a graph-free
approach [4] or through type systems with refinement types [8].

When analysing languages, such as C/C++ or other languages that explicitly handles pointers, it
is important to take into account aliasing, i.e., multiple variables referring to the same location.
Many data-flow analysis uses alias algorithms to compute this information. Two overall types of
alias algorithm has been used, flow-sensitive which give precise information but are expensive,
and flow-insensitive which are less precise but are inexpensive [3, 6].

This paper will focus on data-flow analysis with focus on a subset of the functional language
ReScript, a new language based on OCaml with a JavaScript inspired syntax which targets JavaScript.
ReScript offers a robust type system based on OCaml, which provides an alternative to other
gradually typed languages that targets JavaScript.[1]

As ReScript provides integration with JavaScript, it provides its own compiler toolchain and build
system for optimizing and compile to JavaScript. ReScript does, however, introduce an analysis
tool for dead-code, exception, and termination analysis, but the tool is only experimental.[2] As
ReScript introduces mutability, through reference constructs for creation, reading, and writing,

We will the present a type system for data-flow analysis for bindings and alias analysis. As type
system have been used to provide a semantic analysis of programs usually used to characterize
specific type of run-time errors. Type systems are implemented as either static or dynamic analysis,
i.e., on compile time or run-time. Type systems are widely used, from weakly typed languages such
as JavaScript, to strongly typed languages commonly found in functional languages such as Haskell
and Ocaml.

This work is a generalization of [7], which focused on dead-value analysis. We will present the
analysis for a language based on a subset of the ReScript language, for a 𝜆-calculus with mutability,
local bindings, and pattern matching. The type system we proposes provides the data information
used at each program point and the alias information used. Since the analysis we present focus
collecting dependencies that are used to evaluate a part of a program, we present a local analysis of
programs.

Data-flow analysis 1:5

We will first present the language, its syntax and semantics, in section 2 and the type system for
data-flow analysis in section 3. Then we will present the soundness of the type system in section 4,
and lastly we will conclude in section 5.

2 LANGUAGE
This sectionwill introduce a functional programming language, based on a subset of ReScript. As this
is a generalization of a dead-value analysis system, the language presented here is based on the one
found in [7]. The language we present is basically a 𝜆-calculus with bindings, pattern matching and
mutability. As the purpose of the dependency analysis is to analyse each subexpression of a program
and differentiate them, the language is extended with labelling, which we also call program points,
all expressions and subexpressions. When labelling a syntactical element or semantic element, we
call it an occurrence, such that the analysis is done for an occurrence and its sub-occurrences, while
the semantic occurrences are variables and locations.
In the language we assume that all local bindings, and recursive bindings, are unique, which

can be ensured by using 𝛼-conversion on an occurrence. We also make a distinction between
labelled and unlabelled expressions, such that we call occurrences as labelled expression, and we
call unlabelled expressions as expressions.
In this section we will first formally introduce the abstract syntax for the language, where we

will then present binding models. Then we will present the dependency function, to model the
semantic flow-data, and lastly we will present the semantic as a big-step operational semantics.

2.1 Syntax
This section introduces the abstract syntax of the language, based on the one presented in [7]. The
syntactic categories for the language is defined as:

𝑝 ∈ P − The category for program points
𝑒 ∈ Exp − The category for expressions, or unlabelled occurrencens
𝑜 ∈ Occ − The category for occurrences, or labelled expressions
𝑐 ∈ Con − The category for constants

𝑥, 𝑓 ∈ Var − The category for variables
𝓁 ∈ Loc − The category for constants

We also introduce a notation for occurrences of categories where, for a category 𝑐𝑎𝑡 , we write
𝑐𝑎𝑡P to denote the pair 𝑐𝑎𝑡 × P, for occurrences as such: ExpP = Exp × P.

Since the category for occurrences are labelled expressions, it can further be defined as:

Occ = Exp
P

The formation rules is then presented in fig. 1.

1:6

𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜 ::= 𝑒𝑝

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒 ::= 𝑥 | 𝑐 | 𝑜1 𝑜2 | 𝜆𝑥.𝑜
| 𝑐 𝑜1 𝑜2
| let 𝑥 𝑜1 𝑜2
| let rec 𝑥 𝑜1 𝑜2
| case 𝑜1 �̃� 𝑜

| ref 𝑜 | 𝑜1 := 𝑜2 | !𝑜

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑠 ::= 𝑛 | 𝑏 | 𝑥 | _

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐 ::= 𝑛 | 𝑏
| 𝑃𝐿𝑈𝑆

| 𝑀𝐼𝑁𝑈𝑆

| 𝑇 𝐼𝑀𝐸𝑆

| 𝐸𝑄𝑈𝐴𝐿

| 𝐿𝐸𝑆𝑆

| 𝐺𝑅𝐸𝐴𝑇𝐸𝑅

𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 �̃� ::= (𝑠1, · · · , 𝑠𝑛)

𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜 ::= (𝑒𝑝11 , · · · , 𝑒𝑝𝑛𝑛)

Fig. 1. Abstract syntax

Some notable constructs is further explained below.

Abstractions 𝜆 𝑥.𝑜 denotes an abstraction, with a parameter 𝑥 and body 𝑜 .
Constants 𝑐 are either natural numbers 𝑛, boolean values 𝑏, or functional constants. We

introduce a function 𝑎𝑝𝑝𝑙𝑦, that for each functional constant 𝑐 returns the result of applying
𝑐 to its arguments.

𝑎𝑝𝑝𝑙𝑦 (𝑃𝐿𝑈𝑆, 2, 2) = 2 + 2

Bindings let 𝑥 𝑜1 𝑜2 and let rec 𝑓 𝑜1 𝑜2, also called local declarations, are immutable bindings
that binds the variables 𝑥 to values 𝑜1 evaluates to. We also introduces non-recursive and
recursive bindings, by using the rec keyword.

Reference ref o is the construct for creating references which are handled as locations and
allows for binding locations to local declarations. We also introduces constructs for reading
from references, !𝑜 , and writing to references, 𝑜1 := 𝑜2.

Pattern matching case 𝑜1 �̃� 𝑜 , matches an occurrence with the ordered set, �̃� , of patterns.
For each pattern in �̃� there is also an occurrence in 𝑜 , as such, both sets must be of equal
size. We also denote the size of patterns as |�̃� | and the size of occurrences as |𝑜 |.

Example 2.1. Consider the following occurrence:

(l e t x (r e f 3
1
)
2

(l e t y (l e t z (5
3
)
4

(x
5
: = z

7
)
8
)
9

(! x)
10
)
11
)
12

Here, we first creates a reference to the constant 3 and binds this reference to 𝑥 (Such that 𝑥 is an alias

of this reference). Secondly we create a binding for 𝑦, where create a binding 𝑧, to the constant 5, before

writing to the reference, that 𝑥 is bound to, to the value that 𝑧 is bound to. Lastly, we read the reference

that 𝑥 is bound to, where we expect to retrieve the value 5.

Next we defined the notion of free variables, in the usual way for 𝜆-calculus, as follows:

Data-flow analysis 1:7

Definition 2.1 (Free variables). The set of free variables is a function 𝑓 𝑣 : Occ → P(Var), given
inductively by:

𝑓 𝑣 (𝑥𝑝) = {𝑥}
𝑓 𝑣 (𝑐𝑝) = ∅

𝑓 𝑣 ([𝜆 𝑦.𝑒𝑝′]𝑝) = 𝑓 𝑣 (𝑒𝑝′)\{𝑦}
𝑓 𝑣 ([𝑒𝑝11 𝑒

𝑝2
2]𝑝) = 𝑓 𝑣 (𝑒𝑝11) ∪ 𝑓 𝑣 (𝑒𝑝22)

𝑓 𝑣 ([𝑐 𝑒𝑝11 𝑒
𝑝2
2]𝑝) = 𝑓 𝑣 (𝑒𝑝11) ∪ 𝑓 𝑣 (𝑒𝑝22)

𝑓 𝑣 ([let 𝑦 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝) = 𝑓 𝑣 (𝑒𝑝11) ∪ 𝑓 𝑣 (𝑒𝑝22)\{𝑦}

𝑓 𝑣 ([let rec 𝑓 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝) = 𝑓 𝑣 (𝑒𝑝11) ∪ 𝑓 𝑣 (𝑒𝑝22)\{𝑓 }

𝑓 𝑣 ([case 𝑒𝑝′ (𝑠1, · · · , 𝑠𝑛) (𝑒𝑝11 , · · · , 𝑒𝑝𝑛𝑛)]𝑝) = 𝑓 𝑣 (𝑒𝑝′) ∪ 𝑓 𝑣 (𝑒𝑝11) ∪ · · · ∪ 𝑓 𝑣 (𝑒𝑝𝑛𝑛)\(𝜏 (𝑠1) ∪ · · · ∪ 𝜏 (𝑠𝑛))
𝑓 𝑣 ([ref 𝑒𝑝′]𝑝) = 𝑓 𝑣 (𝑒𝑝′)

𝑓 𝑣 ([!𝑒𝑝′]𝑝) = 𝑓 𝑣 (𝑒𝑝′)
𝑓 𝑣 ([𝑒𝑝11 := 𝑒

𝑝2
2]𝑝) = 𝑓 𝑣 (𝑒𝑝11) ∪ 𝑓 𝑣 (𝑒𝑝22)

where 𝜏 (𝑠), for a pattern 𝑠 , is denoted as:

𝜏 (𝑠) =
{
{𝑥} if 𝑠 = 𝑥

∅ otherwise

2.2 Environments and stores
We will now introduce the binding model used in the semantics, where we will present the
environments and stores. Since the language we focus on introduces mutability, through the
referencing, this needs to be reflected in our bindings model. Here, the referencing constructs can
also be seen as how locations, or pointers, are created and handled, as such we introduce notion of
stores to describe how they are bound.

Since this language is a 𝜆-calculus, the environment keeps the bindings we currently know and as
such the environment is a function from variables to values. The set of values, Values, is comprised
by:

• All constants are values.
• Locations are values.
• Closures, ⟨𝑥, 𝑒𝑝′

, 𝑒𝑛𝑣⟩ are values.
• Recursive closures, ⟨𝑥, 𝑓 , 𝑒𝑝′′

, 𝑒𝑛𝑣⟩, are values.
• Unit values, (), are values.

Where a value 𝑣 ∈ Values is an expression given by the following formation rules:

𝑣 ::= 𝑐 | 𝓁 | ⟨𝑥, 𝑒𝑝′
, 𝑒𝑛𝑣⟩ | ⟨𝑥, 𝑓 , 𝑒𝑝′′

, 𝑒𝑛𝑣⟩ | ()

Definition 2.2. The set of all environments, Env, is the set of partial functions from variables to

values, given as:

Env = Var ⇀ Values

Where 𝑒𝑛𝑣 ∈ Env denotes an arbitrary environment in Env.

1:8

Definition 2.3 (Update of environments). Let 𝑒𝑛𝑣 ∈ Env be an environment. We write

𝑒𝑛𝑣 [𝑥 ↦→ 𝑣] to denote the environment 𝑒𝑛𝑣 ′ where:

𝑒𝑛𝑣 ′ (𝑦) =
{
𝑒𝑛𝑣 (𝑦) if 𝑦 ≠ 𝑥

𝑣 if 𝑦 = 𝑥

We also introduce a function which, for a given value 𝑣 , returns all variables that is bound to 𝑣 .
Definition 2.4 (inverse env). Let 𝑣 be a value and 𝑒𝑛𝑣 ∈ Env be an environment, the inverse

function 𝑒𝑛𝑣−1 is then given as:

𝑒𝑛𝑣−1 (𝑣) = {𝑥 ∈ 𝑑𝑜𝑚(𝑒𝑛𝑣) | 𝑒𝑛𝑣 (𝑥) = 𝑣}
The store is a function that keeps the location bindings currently known. We also introduce a

placeholder 𝑛𝑒𝑥𝑡 , that represents the next free location.
Definition 2.5. The set of all stores, Sto, is the set of partial functions from locations, and the 𝑛𝑒𝑥𝑡

pointer, to values, given as:

Sto = Loc ∪ {𝑛𝑒𝑥𝑡} ⇀ Values

Where 𝑠𝑡𝑜 ∈ Sto denotes an arbitrary store in Sto.
Definition 2.6 (Update of stores). Let 𝑠𝑡𝑜 ∈ Sto be a store. We write 𝑠𝑡𝑜 [𝓁 ↦→ 𝑣] to denote the

store 𝑠𝑡𝑜 ′ where:

𝑠𝑡𝑜 ′ (𝓁1) =
{
𝑒𝑛𝑣 (𝓁1) if 𝓁1 ≠ 𝓁

𝑣 if 𝓁1 = 𝓁

We also assume the existence of a function 𝑛𝑒𝑤 : Loc → Loc, which takes a location and finds
the next location. This function is used on the location 𝑛𝑒𝑥𝑡 points to, to get a new free location,
which is not already bound in our store.

2.3 Dependencies
The goal of the collection semantics is to collect the semantic dependencies as they appear in a
computation. To this end, we use a dependency function that will tell us for each variable and
location occurrence what other, previous occurrences they depend upon.
As such, we use the dependency function to model the semantic flow of dependencies in an

occurrence, where we present and ordering between those occurrences to denote the flow.
Definition 2.7 (Dependency function). The set of dependency functions, W, is a set of partial

functions from location and variable occurrences to a pair of dependencies, such that:

W = Loc𝑃 ∪ Var𝑃 ⇀ P(Loc𝑃) × P(Var𝑃)
A lookup in a dependency function𝑤 is for an element 𝑢𝑝 ∈ Loc

𝑃 ∪ Var
𝑃 , such that:

𝑤 (𝑢𝑝) = ({𝓁𝑝1
1 , · · · , 𝓁𝑝𝑛

𝑛 }, {𝑥𝑝
′
1

1 , · · · , 𝑥𝑝
′
𝑚

𝑚 })
This should be read as: a lookup of an occurrence 𝑢𝑝 , a variable or location occurrence, returns a
pair of location and variable occurrences. We also denote the pair, retrieved from the dependency
function, which we call a dependency pair such that (𝐿,𝑉) contains a set of location occurrences
𝐿 = {𝓁𝑝1

1 , · · · , 𝓁𝑝𝑛
𝑛 } and a set of variable occurrences 𝑉 = {𝑥𝑝

′
1

1 , · · · , 𝑥𝑝
′
𝑚

𝑚 }.
Definition 2.8 (Update of dependency functions). Let𝑤 ∈ W be a dependency function and

𝑢𝑝 be either a variable or location occurrence. We write 𝑤 [𝑢𝑝 ↦→ (𝐿,𝑉)] to denote the dependency
function𝑤 ′

where:

𝑤 ′ (𝑣𝑞) =
{
𝑤 (𝑣𝑞) if 𝑣𝑞 ≠ 𝑢𝑝

(𝐿,𝑉) if 𝑣𝑞 = 𝑢𝑝

Data-flow analysis 1:9

Example 2.2. Consider the occurrence from example 2.1, where we can infer the following bindings

for a dependency function𝑤𝑒𝑥 over this occurrence:

𝑤𝑒𝑥 = [𝑥2 ↦→ (∅, ∅), 𝑧4 ↦→ (∅, ∅), 𝑦9 ↦→ (∅, {𝑥5}), 𝓁2 ↦→ (∅, ∅), 𝓁8 ↦→ (∅, {𝑧7})]
Where 𝓁 is the location created from the reference construct. Here, we can see that the variable bindings

are distinct, an the location 𝓁 is bound multiple times, for the program points 2 and 8.
If we want to read a variable or location in𝑤𝑒𝑥 , we must also know for which program point since

there can exists multiple bindings for the same variable or location.

By considering example 2.2, we would like to read the information from the location, that 𝑥 is an
alias to. As it is visible from the occurrence in example 2.1, we know that we should read from 𝓁

8,
since we wrote that reference at the program point 8. We can also see that from𝑤𝑒𝑥 alone it is not
possible to know which occurrence to read, since there are no order defined between the bindings.
We then present the notion of ordering, as a binary relation over program points:

Definition 2.9. Let P be a set of program points in an occurrence. Then ⊑ is a binary relation of P,
such that:

⊑⊆ P × P

Since we are interested in the ordering of the elements in a dependency function𝑤 , we will define
an instantiation of definition 2.9. Since𝑤 , is a function from occurrences to a pair of occurrences,
we first present a function for getting the program points from a set of occurrences:

Definition 2.10 (Occurring program points). Let 𝑂 be a set of occurrences, then 𝑝𝑜𝑖𝑛𝑡𝑠 (𝑂) is
given by:

𝑝𝑜𝑖𝑛𝑡𝑠 (𝑂) = {𝑝 ∈ P | ∃𝑒𝑝 ∈ 𝑂}

With definition 2.10 defined, we present the instantiation of definition 2.9 over a dependency
function𝑤 :

Definition 2.11. Let𝑤 ∈ W be a dependency function. Then ⊑𝑤 is given by:

⊑𝑤⊆ {(𝑝, 𝑝′) | 𝑝, 𝑝′ ∈ (𝑝𝑜𝑖𝑛𝑡𝑠 (𝑑𝑜𝑚(𝑤) ∪ 𝑝𝑜𝑖𝑛𝑡𝑠 (𝑟𝑎𝑛(𝑤))))}

As the dependency function𝑤 is a model of which occurrences an occurrence is dependent on,
the relation on𝑤 should also model the order a value is evaluated in, as such we define the partial
order over a dependency function.

Definition 2.12 (Partial order of𝑤). Let𝑤 ∈ W be a dependency function and ⊑𝑤 be a binary

relation over𝑤 . We say that𝑤 is partial order if ⊑𝑤 is a partial order.

Example 2.3. Consider the example from example 2.2, if we introduce a binary relation over the

dependency function𝑤𝑒𝑥 , such that:

⊑𝑤𝑒𝑥
= {(2, 4), (2, 9), (5, 9), (2, 8), (8, 2)}

From this ordering, it is easy to see the ordering of the elements. The ordering we present also respects

the flow the occurrence from example 2.1 would evaluate to. We then know that the dependencies for

the reference (that 𝑥 is an alias to) is for the largest binding of 𝓁.

As presented in definition 2.7 and definition 2.11, the dependency function and the binary relation
are used to define the flow of information. As illustrated by example 2.3, we need to lookup the
greatest of ⊑𝑤 .
We first present a generic function for the greatest binding of a relation ⊑ of program points.

1:10

Definition 2.13 (Greatest binding). Let 𝑢 be an element, either a variable or location, and 𝑆 be

a set of occurrences, then 𝑢𝑓 (𝑢, 𝑆) is given by:

𝑢𝑓 (𝑢, 𝑆) = inf{𝑢𝑝 ∈ 𝑆 | 𝑢𝑞 ∈ 𝑆.𝑞 ⊑ 𝑝}

Based on definition 2.13, we can present an instantiation of the function for the dependency
function𝑤 and an order over𝑤 , ⊑𝑤 :

Definition 2.14. Let𝑤 be a dependency function, ⊑𝑤 be an order over𝑤 , 𝑢 be an element, that is

either a variable or location, then 𝑢𝑓⊑𝑤
is given by:

𝑢𝑓⊑𝑤
(𝑢,𝑤) = inf{𝑢𝑝 ∈ 𝑑𝑜𝑚(𝑤) | 𝑢𝑞 ∈ 𝑑𝑜𝑚(𝑤.𝑞 ⊑𝑤 𝑝}

Example 2.4. As a continuation of example 2.3, we can now lookup the greatest element for an

element, e.g., a variable or location. As we were interested in finding the greatest bindings a location is

bound to in𝑤𝑒𝑥 , we can now use the function 𝑢𝑓⊑𝑤
:

𝑢𝑓⊑𝑤𝑒𝑥
(𝓁,𝑤𝑒𝑥) = inf{𝓁𝑝 ∈ 𝑑𝑜𝑚(𝑤) | 𝓁𝑞 ∈ 𝑑𝑜𝑚(𝑤).𝑞 ⊑𝑤𝑒𝑥 𝑝}

Where the set we get for 𝓁 are as follows: {𝓁2, 𝓁8}. From this, we find the greatest element:

𝓁
7 = inf{𝓁2, 𝓁8}

As we can see, from the 𝑢𝑓𝑤𝑒𝑥 function, we got 𝓁
8
which were the occurrence we wanted.

2.4 Collection semantics
We will now introduce the big-step semantics for our language and highlight some interesting
transition rules. In the big-step semantics, the transitions are of the from:

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′′
〉

Where 𝑒𝑛𝑣 ∈ Env, 𝑠𝑡𝑜 ∈ Sto, and𝑤 ∈ W. This should be read as: given the store 𝑠𝑡𝑜 , a dependency
function 𝑤 , A relation over 𝑤 , and the previous program point 𝑝 , the occurrence 𝑒𝑝′ evaluates
to a value 𝑣 , an updated store 𝑠𝑡𝑜 ′, an updated dependency function 𝑤 ′, a relation over 𝑤 ′, the
dependency pair (𝐿,𝑉), and the program point 𝑝′′ reached after evaluating 𝑒𝑝′ , given the bindings
in the environment 𝑒𝑛𝑣 .

The transition system is given by:

((Occ∪Values)×Store×(W×(P×P)×P,→,Values×Store×(W×(P×P))×P(Loc𝑃×Var𝑃)×P)
A highlight of the rules for → can be found in fig. 2, the rest can be found in appendix A.

(Const) rule, for the occurrence 𝑐𝑝′ , is the simplest rule, as it has no premises and does not
have any side effects. As constants are evaluated to the constant value, no dependencies are
used, i.e., no variable or location occurrences are used to evaluate a constant.

(Var) rule, for the occurrence 𝑥𝑝′ , uses the environment to get the value 𝑥 is bound to and uses
dependency function𝑤 to get its dependencies. To lookup the dependencies, the function
𝑢𝑓⊑𝑤

is used to get the greatest binding a variable is bound to, in respect to the ordering
⊑𝑤 . Since the occurrence of 𝑥 is used, it is added to the set of variable occurrences we got
from the lookup of the dependencies for 𝑥 .

(Let) rule, for the occurrence [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝′ , creates a local binding that can be used in 𝑒

𝑝2
2 .

The (Let) rule evaluate 𝑒𝑝11 , to get the value 𝑣 , that 𝑥 will be bound to in the environment
for 𝑒𝑝22 , and the dependencies used to evaluate 𝑒𝑝11 is bound in the dependency function. As
we reach the program point 𝑝1 after evaluating 𝑒

𝑝1
1 , and it is also the program point before

evaluating 𝑒𝑝22 , the binding of 𝑥 in𝑤 is to the program points 𝑝1.

Data-flow analysis 1:11

(Ref) rule, for the occurrence [ref 𝑒𝑝′]𝑝′′ , creates a new location and binds it in the store 𝑠𝑡𝑜 ,
to the value evaluated from 𝑒𝑝

′ . The (Ref) rule also binds the dependencies, from evaluating
the body 𝑒𝑝

′ , in the dependency function 𝑤 at the program point 𝑝′′. As the (Ref) rule
creates a location (where we get the location from the 𝑛𝑒𝑥𝑡 pointer), and binds it in 𝑠𝑡𝑜 . The
environment is not updated as (Ref) does not in itself give any alias information. To create
an alias for a location, it should be bound to a variable using the (Let) rule.

(Ref-read) rule, for the occurrence [!𝑒𝑝1]𝑝′ , evaluates the body 𝑒𝑝1 to a value, that must
be a location 𝓁, and reads the value of 𝓁 in the store. The (Ref-read) rule also makes a
lookup for the dependencies 𝓁 is bound to in the dependency function𝑤 . As there could
be multiple bindings for 𝓁, in𝑤 , at different program points, we use the 𝑢𝑓⊑𝑤′ function to
get greatest binding of 𝓁 with respect to the ordering ⊑𝑤′ , and we also add the location
occurrence 𝓁𝑝′ to the set of locations.

(Ref-write) rule, for the occurrence [𝑒𝑝11 := 𝑒
𝑝2
2]𝑝′ , evaluate 𝑒𝑝11 to a location 𝓁 and 𝑒

𝑝2
2

to a value 𝑣 , and binds 𝓁 in the store 𝑠𝑡𝑜 to the value 𝑣 . The dependency function is also
updated with a new binding for 𝓁 at the program point 𝑝′.

1:12

(Const)

𝑒𝑛𝑣 ⊢
〈
𝑐𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→ ⟨𝑐, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (∅, ∅), 𝑝′⟩

(Var)

𝑒𝑛𝑣 ⊢
〈
𝑥𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (𝐿,𝑉 ∪ {𝑥𝑝′ }), 𝑝′

〉
Where 𝑒𝑛𝑣 (𝑥) = 𝑣 , 𝑥𝑝′′

= 𝑢𝑓⊑𝑤
(𝑥,𝑤), and𝑤 (𝑥𝑝′′) = (𝐿,𝑉)

(Let)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1] ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤2, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝2
〉

𝑒𝑛𝑣 ⊢
〈[
let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where𝑤2 = 𝑤1 [𝑥𝑝1 ↦→ (𝐿,𝑉)]

(Ref)

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

𝑒𝑛𝑣 ⊢
〈[
ref 𝑒𝑝′]𝑝′′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝓁, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊑′

𝑤), (∅, ∅), 𝑝′′
〉

Where 𝓁 = 𝑛𝑒𝑥𝑡 , 𝑠𝑡𝑜 ′′ = 𝑠𝑡𝑜 ′ [𝑛𝑒𝑥𝑡 ↦→ 𝑛𝑒𝑤 (𝓁), 𝓁 ↦→ 𝑣], and
𝑤 ′′ = 𝑤 ′ [𝓁𝑝′ ↦→ (𝐿,𝑉)]

(Ref-read)

𝑒𝑛𝑣 ⊢ ⟨𝑒𝑝1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝⟩ →
〈
𝓁, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
[!𝑒𝑝1]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿 ∪ 𝐿1 ∪ {𝓁𝑝′′ },𝑉 ∪𝑉1), 𝑝′
〉

Where 𝑠𝑡𝑜 ′ (𝓁) = 𝑣 , 𝓁𝑝′′
= 𝑢𝑓⊑′

𝑤
(𝓁,𝑤 ′), and𝑤 ′ (𝓁𝑝′′) = (𝐿,𝑉)

(Ref-write)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝓁, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣, 𝑠𝑡𝑜2, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2), 𝑝2
〉

𝑒𝑛𝑣 ⊢
〈[
𝑒
𝑝1
1 := 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
(), 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿1,𝑉1), 𝑝′
〉

Where 𝑠𝑡𝑜 ′ = 𝑠𝑡𝑜2 [𝓁 ↦→ 𝑣], 𝓁𝑝′′
= 𝑖𝑛𝑓⊑2

𝑤
(𝓁,𝑤2),

𝑤 ′ = 𝑤2 [𝓁𝑝′ ↦→ (𝐿2,𝑉2)], and ⊑′
𝑤=⊑2

𝑤 ∪(𝑝′′, 𝑝′)

Fig. 2. Selected rules from the semantics

Data-flow analysis 1:13

3 TYPE SYSTEM FOR DATA-FLOW ANALYSIS
This section will introduce the type system for data-flow analysis on the language presented in
section 2. Similarly to the language, the type rules, types and other parts are based on [7]. The type
system presented in this section is a type checker for local analysis of occurrences. The type checker
assign types, presented in section 3.1, to occurrences given the basis, which will be presented in
section 3.2, and using the type assignment, which is presented in section 3.3. Since the language
contains local information as bindings, and global information as locations, the type checker should
reflect this. Since locations are a semantic notation, we will present internal variables to represent
locations in the type system, as 𝜈𝑥, 𝜈𝑦 ∈ IVar where IVar is the syntactic category for internal
variables.

As references are not always bound to variables, as such the reference does not contain any alias
information, the analysis provides alias information used for evaluating an occurrence. Here, we
are going to introduce the basis for aliasing, as a partition of all variables and internal variables
used in an occurrence. As such, it is possible to analyse, from the type information of occurrences,
which aliases are actually used.

We also impose some restrictions on the type system, where the first restrictions is that references
cannot be bound to abstractions. Since we do not introduce polymorphism, the use case for
abstractions are reduced, as an abstraction cannot be used at multiple places. Consider the following
occurrence:

(l e t x (𝜆 y . y1) 2 (x3 (x4 15) 6) 7) 8

To type the occurrences used in both places where we apply the abstractions, we type of the
argument in the innermost application is empty, as it applies a constant. For the second, and
outermost, application, the argument type must contain the occurrence 𝑥4, as it were used to
evaluate the value for the argument.

3.1 Types
We denote the set of types as Types, which are given by the following formation rules:

𝑇 ::= (𝛿, 𝜅) | 𝑇1 → 𝑇2

Here, we introduce two types, the base type (𝛿, 𝜅) and the abstraction type 𝑇1 → 𝑇2. The idea is
that an occurrence have the abstraction type if it represents an abstraction that takes an argument
of type 𝑇1 and returns a type of 𝑇2. The base type represent all other values, where 𝛿 represent the
set of occurrences, used to evaluate an occurrence, and 𝜅 represent the set of alias information.
Here, if an occurrence have a type containing alias information, then it represent a location, where
if the occurrence have a base type with alias information, then the occurrence must represents a
reference. If the occurrence have the abstraction type where either 𝑇1 or 𝑇2 have are base types
with alias information, then the abstraction either takes a reference as input or returns a reference.

Example 3.1. Consider the following occurrence:

(l e t x (3
1
)
2

(l e t y (r e f x
3
)
4

(! y)))

Here, we can type 𝑥 with (∅, ∅) as 𝑥 is bound to a constant and there a no variables or internal variables

used. 𝑦 can then be given the type (∅, {𝑥, 𝜈𝑦}), as the reference construct 𝑟𝑒 𝑓 creates a new reference,

which 𝑦 is then an alias to, e.g., 𝑦 is bound to a location. Her 𝜈𝑦 represents the reference from 𝑟𝑒 𝑓 , and

can thus be given the type ({𝑥3}, ∅), where 𝜈𝑦 is bound to a constant, because of 𝑥 , but the occurrence

𝑥3 were used, so it should be part of the set of occurrences 𝛿 .

1:14

Since the type system approximates the occurrences used to evaluate an occurrence, we introduce
two unions. The first union is a simple union that expects the types to be similar, that is, only the
base types are allowed to be different.

Definition 3.1 (Type union). Let 𝑇1 and 𝑇2 be two types, then the type union, ∪, are as follows:

𝑇1 ∪𝑇2 =

{
If 𝑇1 = (𝛿, 𝜅) and 𝑇2 = (𝛿 ′, 𝜅′) then (𝛿 ∪ 𝛿 ′, 𝜅 ∪ 𝜅′)

else if 𝑇1 = 𝑇 ′
1 → 𝑇 ′′

1 and 𝑇2 = 𝑇 ′
2 → 𝑇 ′′

2 then (𝑇 ′
1 ∪𝑇 ′

2) → (𝑇 ′′
1 ∪𝑇 ′′

2)

The second type union, is to add additional type information to an arbitrary type. This type
union is used to add an occurrence to a type, e.g., in the (Var) rule where the variable occurrence
needs to be added to the type of that variable.

Definition 3.2 (Base type union). Let 𝑇 be an type and (𝛿, 𝜅) be a base type, then the union of

these are as follows:

𝑇 ⊔ (𝛿, 𝜅) =
{

If 𝑇 = (𝛿 ′, 𝜅′) then (𝛿 ∪ 𝛿 ′, 𝜅 ∪ 𝜅′)
else if 𝑇 = 𝑇1 → 𝑇2 then 𝑇1 → (𝑇2 ⊔ (𝛿, 𝜅))

3.2 Basis and type environment
Next, we will present the basis and type environment for the type system. The basis we are
presenting here are assumptions used by the type checker, in addition to the assignment of types
which are presented in section 3.3, where we are going to present a type base for aliasing and an
approximated order of program points.
We will also introduce the type environment, which are similar to the environment and store

used in the semantics, as the type environment keeps track of the type of variables and internal
variables. As such, the type environment is also a approximation of the dependency function, as
the purpose of the type system is to collect information about which occurrences are used and
what alias information is used.

Similar to the lookup of the greatest binding for the dependency function, we are going to
introduce an instantiation of the function from definition 2.13 for the type environment in respect
to the basis for approximated order of program points.

We will then introduce the type base for aliasing, as a partition of variables and internal variables
used in an occurrence.

Definition 3.3 (Type Base for aliasing). For an occurrence 𝑜 , let 𝑣𝑎𝑟 be the set of all variables

and 𝑖𝑣𝑎𝑟 be the set of all internal variables in 𝑜 . The type base 𝜅0 = {𝜅01, · · · , 𝜅0𝑛} is then a partition of

𝑣𝑎𝑟 ∪ 𝑖𝑣𝑎𝑟 , where 𝜅0𝑖 ∩ 𝜅0𝑗 = ∅ for all 𝑖 ≠ 𝑗 .

The idea behind the base for type alias 𝜅0 is to make a partition of the variables and internal
variables used in an occurrence. This partition represents the assumption about which variables
are actually an alias to internal variables. As such multiple variables can only belong to the same
element 𝜅𝑖0 ∈ 𝜅0, if there also exists an internal variable in 𝜅𝑖0.

Definition 3.4 (Approximated order of program points). An approximated order of program

points Π is a pair, such that:

Π = (P, ⊑Π)
where

• P is the set of program points in an occurrence,

• ⊑Π⊆ P × P, where

Data-flow analysis 1:15

The approximated order of program points is an assumption about the order for program points
for an occurrence 𝑜 , as such, this approximation should be an approximation of the order that that
can be derived from the semantics, presented in section 2.4, for 𝑜 .

Definition 3.5 (Partial order of Π). Let Π = (P, ⊑Π) be an approximated order of program

points. We say that Π is a partial order if ⊑Π is a partial order.

Next, we will introduce the type environment:

Definition 3.6 (Type Environment). A type environment Γ is a partial function Γ : Var𝑃 ∪
IVar𝑃 ⇀ Types

Definition 3.7 (Updating Type Environments). Let Γ be a type environment.Wewrite Γ [𝑢𝑝 : 𝑇],
for an occurrence 𝑢𝑝 , to denote the type environment Γ′ where:

Γ′ (𝑦𝑝′) =
{
Γ(𝑦𝑝′) if 𝑦𝑝

′
≠ 𝑢𝑝

𝑇 if 𝑦𝑝
′
= 𝑢𝑝

Similar to the lookup of dependencies in the semantics, we need to similarly define how to
lookup in the type environment. As the type environment contains both local information, for local
declarations, and global information, for references, both cases should be handled.
For local information we introduce, similarly to lookup in the dependency function, and in-

stantiation of the function presented in definition 2.13. The lookup is for information in the type
environment, over the relation between program points defined by the basis for approximated
order of program points.

Definition 3.8. Let 𝑢 ∈ Var ∪ IVar, be either a variable or internal variable, Γ be a type environ-

ment, and Π be the approximated order of program points that is a partial order, then 𝑢𝑓⊑Π is given

by:

𝑢𝑓⊑Π (𝑢, Γ) = inf{𝑢𝑝 ∈ 𝑑𝑜𝑚(Γ) | 𝑢𝑞 ∈ 𝑑𝑜𝑚(Γ).𝑞 ⊑Π 𝑝}

Where the lookup for global information needs to be handled differently as the language contains
pattern matching, and as such, the language can contain different path of evaluation (where each
pattern in the pattern matching construct introduces a new path). To handle the lookup of global
information, we will first introduce the notion of 𝑝-chains as chains of program points with respect
to the approximated order of program points, where the maximal program point is 𝑝 . The idea of
these 𝑝-chains is to describe the history behind an occurrence 𝑢𝑝 , and can thus be used to describe
what an internal variable depends on.

Definition 3.9 (𝑝-chains). Let Π be an approximated order of program points, that is a partial

order, and 𝑝 be a program point. We then say that a 𝑝-chain, denoted as Π∗
𝑝 , is a maximal chain of

with the maximal element 𝑝 with the respect to the order Π. As such, any 𝑝-chain is a total order,

where Π∗
𝑝 does not contain any pairs (𝑝, 𝑞) ∈⊑Π , where 𝑝 ≠ 𝑞, then (𝑝, 𝑞) ∉⊑Π∗

𝑝
.

We also denote Π∗
𝑝 ∈ Π, if the 𝑝-chain Π∗

𝑝 can be be derived from Π. Since there can exists
multiple paths in an occurrence, we define the set of all 𝑝-chains as follows:

Definition 3.10. Let Π be an approximated order of program points and 𝑝 be a program point. We

say that Υ𝑝 is the set of all 𝑝-chains in Π.

Since Υ𝑝 contains all 𝑝-chains in an approximated order of program points Π, with 𝑝 as the
maximal element, we can then define the function to lookup all greatest element less than or equal
to 𝑝 .

1:16

Definition 3.11. Let 𝑢 ∈ Var ∪ IVar, be either a variable or internal variable, Γ be a type

environment, and Υ𝑝 be a set of 𝑝-chains, then 𝑢𝑓Υ𝑝 is given by:

𝑢𝑓Υ𝑝 (𝑢, Γ) =
⋃

Π∗
𝑝 ∈Υ𝑝

𝑢𝑓Π∗
𝑝
(𝑢, Γ)

The function, defined in definition 3.11, takes the union of the greatest binding, for an element,
for each 𝑝-chain using the function defined in definition 3.8.

3.3 The type system
We will now present the judgement and type rules for the language, that is, how we assign types to
occurrences.

The type judgement is defined as:
Γ,Π ⊢ 𝑒𝑝 : 𝑇

And should be read as: the occurrence 𝑒𝑝 has type 𝑇 , given the dependency bindings Γ and the
approximated order of program points Π.

A highlight of type rules can be found in fig. 3, and all type rules can be found in appendix B.
(T-Const) rule, for occurrence 𝑐𝑝 , is the simplest type rule, as there is nothing to track for

constants, and as such it has the type (∅, ∅).
(T-Var) rule, for occurrence 𝑥𝑝 , looks up the type for 𝑥 in the type environment, by finding

the greatest binding using definition 3.8, and add the occurrence 𝑥𝑝 to the type.
(T-Let-1) rule, for occurrence [let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2]𝑝 , creates a local binding for a variable, with

the type of 𝑒𝑝11 that can be used in 𝑒
𝑝2
2 . The (T-Let-1) rule assumes that the type of 𝑒𝑝11 is

a base type with alias information, i.e., 𝜅 ≠ ∅. If this is the case, then 𝑒
𝑝1
1 must evaluate

to a location, in the semantics. The other cases, when 𝑒
𝑝1
1 is not a base type with alias

information, are handled by the (T-Let-2) rule. Since a pattern can be a variable, we updates
the type environment with the type of 𝑒𝑝 .

(T-Case) rule, for occurrence [case 𝑒𝑝 �̃� 𝑜]𝑝′ , is an over-approximation of all cases in the
pattern matching expression, by taking an union of the type of each case. Since the type of
𝑒𝑝 is used to evaluate the pattern matching, we also add this type to the type of the pattern
matching.

(T-Ref-read) rule, for occurrence [!𝑒𝑝]𝑝′ , is used to retrieve the type of references, where 𝑒𝑝
must be a base type with alias information. Since the type system is an over-approximation,
there can be multiple internal variables in 𝜅 and multiple occurrences we need to read from.
As such we need to lookup for all internal variables and also possible for multiple program
points. As such, we use the 𝑢𝑓𝑈𝑝𝑠𝑖𝑙𝑜𝑛𝑝′ to lookup for all 𝑝′-chains.

Example 3.2 (Data-flow for abstractions). Consider the following occurrence for application:

((𝜆 y . (PLUS 3
1

y
2
)
3
)
4

5
5
)
6

The derivation tree for the occurrence can be found in fig. 4. Here, we show two applications, for (T-App)

and (T-App-const), where we create an abstraction that adds the constant 3 to the argument of the

abstraction, and applying the constant 5 to the abstraction.
When typing the abstraction, we need too make an assumption about the parameter 𝑦 and the body.

As we are applying a constant to the argument, we can make an assumption that the type of the

parameter should be (∅, ∅).
Based on this assumption for the type, we can then type the body of the abstraction. As the body is an

application for a functional constant, (T-App-const), we take a union for the types of each argument.

Data-flow analysis 1:17

Example 3.3 (Data-flow for references). Consider the following occurrence:
(l e t x (r e f 1

1
)
2

(l e t y (x
3
) (! x

4
)
5
)
6
)
7

The derivation tree for the occurrence can be found in fig. 5. Here, we show the typing of references

where we create a reference and create 2 aliases for it before reading from the reference. When typing

the reference, it modifies the base type Γ with a new internal variable. From the type information, it is

clear that only 𝑥 and the internal variable 𝜈𝑥 is used.

(T-Const)

Γ,Π ⊢ 𝑐𝑝 : (∅, ∅)

(T-Var)

Γ,Π ⊢ 𝑥𝑝 : 𝑇 ⊔ ({𝑥𝑝 }, ∅)
𝑥𝑝

′
= 𝑢𝑓⊑Π (𝑥, Γ), and Γ(𝑥𝑝′) = 𝑇

(T-Let-1)

Γ,Π ⊢ 𝑒𝑝11 : (𝛿, 𝜅)
Γ′,Π ⊢ 𝑒𝑝22 : 𝑇2

Γ,Π ⊢ [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝 : 𝑇2

Where Γ′ = Γ [𝑥𝑝 : (𝛿, 𝜅 ∪ {𝑥})] and 𝜅 ≠ ∅

(T-Case)

Γ,Π ⊢ 𝑒𝑝 : (𝛿, 𝜅)
Γ′,Π ⊢ 𝑒𝑝𝑖

𝑖
: 𝑇𝑖 (1 ≤ 𝑖 ≤ |�̃� |)

Γ,Π ⊢ [case 𝑒𝑝 �̃� 𝑜]𝑝′ : 𝑇 ⊔ (𝛿, 𝜅)
Where 𝑒𝑝𝑖

𝑖
∈ 𝑜 and 𝑠𝑖 ∈ �̃� 𝑇 =

⋃ |�̃� |
𝑖=1𝑇𝑖 , and

Γ′ = Γ [𝑥𝑝 : (𝛿, 𝜅)] if 𝑠𝑖 = 𝑥

(T-Ref-read)

Γ,Π ⊢ 𝑒𝑝 : (𝛿, 𝜅)
Γ,Π ⊢ [!𝑒𝑝]𝑝′ : 𝑇 ⊔ (𝛿 ∪ 𝛿 ′, ∅)

Where 𝜅 ≠ ∅, 𝛿 ′ = {𝜈𝑥𝑝′ | 𝜈𝑥 ∈ 𝜅}, 𝜈𝑥1, · · · , 𝜈𝑥𝑛 ∈ 𝜅.
{𝜈𝑥𝑝11 , · · · , 𝜈𝑥𝑝𝑚1 } = 𝑢𝑓Υ𝑝′ (𝜈𝑥1, Γ), · · · , {𝜈𝑥

𝑝′
1

𝑛 , · · · , 𝜈𝑥𝑝
′
𝑠

𝑛 } = 𝑢𝑓Υ𝑝′ (𝜈𝑥𝑛, Γ), and
𝑇 = Γ(𝜈𝑥𝑝11) ∪ · · · ∪ Γ(𝜈𝑥𝑝𝑚1) ∪ · · · ∪ Γ(𝜈𝑥𝑝

′
1

𝑛) ∪ · · · ∪ Γ(𝜈𝑥𝑝
′
𝑠

𝑛)

Fig. 3. Selected rules from the type system

1:18

(T-Let)

(T-Abs)

(T-App-const)

(T-Const)
Γ′,Π ⊢ 31 : (∅, ∅)

(T-Var)
Γ′,Π ⊢ 𝑦2 : ({𝑦2}, ∅)

Γ′,Π ⊢ [𝑃𝐿𝑈𝑆 31 𝑦2]3 : ({𝑦2}, ∅)
Γ,Π ⊢ [𝜆 𝑦.(𝑃𝐿𝑈𝑆 31 𝑦2)3]4 : (∅, ∅) → ({𝑦2}, ∅)

(T-Const)
Γ,Π ⊢ [55]8 : (∅, ∅)

Γ,Π ⊢ [(𝜆 𝑦.(𝑃𝐿𝑈𝑆 31 𝑦2)3)4 55]6 : ({𝑦2}, ∅)
Where Γ′ = Γ [𝑦𝑝0 : (∅, ∅)]

Fig. 4. Abstraction type example

(T-Let)

(T-Ref)

(T-Const)
Γ,Π ⊢ 11 : (∅, ∅)

Γ,Π ⊢ [𝑟𝑒 𝑓 11]2 : (∅, {𝜈𝑥})
(T-Let)

(T-Var)
Γ′,Π ⊢ 𝑥3 : ({𝑥3}, {𝜈𝑥})

(T-Ref-read)

(T-Var)
Γ′′,Π ⊢ 𝑥4 : ({𝑥4, 𝜈𝑥5}, {𝜈𝑥})

Γ′′,Π ⊢ [!𝑥4]5 : ({𝑥4, 𝜈𝑥5}, ∅)

Γ′,Π ⊢ [𝑙𝑒𝑡 𝑦 (𝑥3) (!𝑥4)5]6 : ({𝑥4, 𝜈𝑥5}, ∅)

Γ,Π ⊢ [𝑙𝑒𝑡 𝑥 (𝑟𝑒 𝑓 11)2 (𝑙𝑒𝑡 𝑦 (𝑥3) (!𝑥4)5)6]7 : ({𝑥4, 𝜈𝑥5}, ∅)
Where Γ = Γ [𝜈𝑥2 ↦→ (∅, ∅)], Γ′ = Γ [𝑥2 ↦→ (∅, {𝜈𝑥})], and Γ′′ = Γ′ [𝑦3 ↦→ ({𝑥3}, {𝜈𝑥})]

Fig. 5. Reference type example

Data-flow analysis 1:19

4 SOUNDNESS
We will now show the soundness of the type system, i.e., the type of an occurrence correspond to
the dependencies and the alias information from the semantics. To show that the type system is
sound, we will first introduce the type rules for values and the relation between the semantics and
the type system. After that, we will present some properties in the semantics and type system that
are used in the soundness proof. And lastly, we will show the soundness of the type system.

4.1 Type rules for values
For the sake of proving the type system, we present type rules for the values presented int section 2.2,
where the type rules is given in fig. 6.

As the values for closures and recursive closures contains an environment, from where they
where declared, as such, before introducing the type rules for values we will present the notion for
well-typed environments.

Definition 4.1 (Environment judgement). Let 𝑣1, · · · , 𝑣𝑛 be values such that Γ,Π ⊢ 𝑣𝑖 : 𝑇𝑖 ,
for 1 ≤ 𝑖 ≤ 𝑛. Let 𝑒𝑛𝑣 be an environment given by 𝑒𝑛𝑣 = [𝑥1 ↦→ 𝑣1, · · · , 𝑥𝑛 ↦→ 𝑣𝑛], Γ be a type

environment, and Π be the approximated order of program points. We say that:

Γ,Π ⊢ 𝑒𝑛𝑣
iff

• For all 𝑥𝑖 ∈ 𝑑𝑜𝑚(𝑒𝑛𝑣) then ∃𝑥𝑝
𝑖
∈ 𝑑𝑜𝑚(Γ) where Γ(𝑥𝑝

𝑖
) = 𝑇𝑖 then

Γ,Π ⊢ 𝑒𝑛𝑣 (𝑥𝑖) : 𝑇𝑖
In definition 4.1 we show the notion of well-typed environments, which states that: given the

type of all values, 𝑇𝑖 , for all variables, 𝑥𝑖 , bound in the 𝑒𝑛𝑣 , then there exists an occurrence of 𝑥 in
Γ, where the type from looking up for that occurrences is is 𝑇𝑖 . As such, we know that all bindings
𝑥 in 𝑒𝑛𝑣 also have a type in Γ from when 𝑥 were declared.

(Constant) type rule differs from the rule (T-Const), since most occurrences can evaluate
to a constant and as such we know that its type should be a base type. Since constants can
depend on other occurrences, we know that 𝛿 can be non-empty, but since constants are
not locations, we also know that it cannot contain alias information, and as such 𝜅 should
be empty.

(Location) type rule represents locations, where we know that it must be a base type. Since
locations can depend on other occurrences, we know that 𝛿 can be non-empty. As locations
can contains alias information, and that a location is considered to always be an alias to
itself, we know that 𝜅 can never be empty, as it should always contain an internal variable.

(Closure) type rule represents abstraction, and as such we know that it should have the
abstraction type, 𝑇1 → 𝑇2, where we need to make an assumption about the argument type
𝑇1. Since a closure contains the parameter, body, and the environment for an abstraction from
when it were declared, we also need to handle those part in the type rule. The components
of the closure is handled in the premises, where the environment must be well-typed. We
also type the body of the abstraction, where we know that we need to update the type
environment with the type 𝑇1 for its parameter, Where we type the body with 𝑇2.

(Recursive closure) type rules is similar to the (Closure) rule, but since this is a recursive
closure, we additionally need to update the type environment with the name of the recursive
binding to the type of the abstraction.

(Unit) type rule simply have the base type, as it is not an abstraction and it also cannot have
alias information. As the unit value is introduced fromwriting to references,𝑜 = [𝑜1 := 𝑜2]𝑝 ,

1:20

we know that from the type rule (Ref-write) that the dependencies from the occurrence 𝑜
should also contain the set of occurrences. As such, the (Unit) rule also contains a set of
occurrences, 𝛿 .

(Constant)

Γ,Π ⊢ 𝑐 : (𝛿, ∅)

(Location)

Γ,Π ⊢ 𝓁 : (𝛿, 𝜅)
Where 𝜅 ≠ ∅

(Closure)
Γ,Π ⊢ 𝑒𝑛𝑣

Γ [𝑥𝑝 : 𝑇1],Π ⊢ 𝑒𝑝′ : 𝑇2

Γ,Π ⊢
〈
𝑥𝑝 , 𝑒𝑝

′
, 𝑒𝑛𝑣

〉𝑝′′
: 𝑇1 → 𝑇2

(Recursive closure)
Γ,Π ⊢ 𝑒𝑛𝑣

Γ [𝑥𝑝 : 𝑇1, 𝑓 𝑝
′ : 𝑇1 → 𝑇2],Π ⊢ 𝑒𝑝′′ : 𝑇2

Γ,Π ⊢
〈
𝑥𝑝 , 𝑓 𝑝

′
, 𝑒𝑝

′′
, 𝑒𝑛𝑣

〉𝑝3 : 𝑇1 → 𝑇2

(Unit)

Γ,Π ⊢ () : (𝛿, ∅)

Fig. 6. Type rules for values

4.2 Agreement
This section introduces the agreement between the type system and the semantics, where we will
present the relation between the binding models in the type system and semantics, and show the
relation between them.
We will first introduce the agreement between the binding models, i.e., show how the type

environment and approximated order of program points relate to the environment, store, and
dependency function. Then we will show the type agreement, i.e., show the conditions for when a
type agrees with the semantics. As such, the type agreement needs to show when the dependencies
agrees and alias if the alias information agrees with the basis.

The first agreement we present is the environment agreement, which ensures that that the type
environment and approximated order of program points are a good approximation of the binding

Data-flow analysis 1:21

model in the semantics, i.e., for the environment 𝑒𝑛𝑣 , store 𝑠𝑡𝑜 , dependency function𝑤 , and the
relation of program points over𝑤 .
Here 𝑒𝑛𝑣 , 𝑠𝑡𝑜 , and𝑤 contains information for en evaluation in the semantics, either before or

after an evaluation. The type environment Γ contains the local information for variable bindings
and global information for internal variables, and the approximated order of program points Π is
an approximation of all program points in an occurrence.

Definition 4.2 (Environment agreement). Let (𝑤, ⊑𝑤) be a pair containing the dependency
function and a relation over it, 𝑒𝑛𝑣 be an environment, 𝑠𝑡𝑜 be the a store, Γ be a type environment,

and Π be an approximated program point order. We say that:

(𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π)
if

(1) ∀𝑥 ∈ 𝑑𝑜𝑚(𝑒𝑛𝑣).(∃𝑥𝑝 ∈ 𝑑𝑜𝑚(𝑤)) ∧ (𝑥𝑝 ∈ 𝑑𝑜𝑚(𝑤) ⇒ ∃𝑥𝑝 ∈ 𝑑𝑜𝑚(Γ))
(2) ∀𝑥𝑝 ∈ 𝑑𝑜𝑚(𝑤).𝑥𝑝 ∈ 𝑑𝑜𝑚(Γ) ⇒ 𝑒𝑛𝑣 (𝑥) = 𝑣 ∧𝑤 (𝑥𝑝) = (𝐿,𝑉) ∧ Γ(𝑥𝑝) = 𝑇 .

(𝑒𝑛𝑣, 𝑣, (𝑤, ⊑𝑤), (𝐿,𝑉)) |= (Γ,𝑇)
(3) ∀𝓁 ∈ 𝑑𝑜𝑚(𝑠𝑡𝑜) .(∃𝓁𝑝 ∈ 𝑑𝑜𝑚(𝑤)) ∧ (∃𝜈𝑥 .∀𝑝 ∈ {𝑝′ | 𝓁𝑝′ ∈ 𝑑𝑜𝑚(𝑤)} ⇒ 𝜈𝑥𝑝 ∈ 𝑑𝑜𝑚(Γ))
(4) ∀𝓁𝑝 ∈ 𝑑𝑜𝑚(𝑤).∃𝜈𝑥𝑝 ∈ 𝑑𝑜𝑚(Γ) ⇒ 𝑤 (𝓁𝑝) = (𝐿,𝑉)∧Γ(𝜈𝑥𝑝) = 𝑇 .(𝑒𝑛𝑣, 𝓁, (𝑤, ⊑𝑤), (𝐿,𝑉)) |=

𝑇

(5) if 𝑝1 ⊑𝑤 𝑝2 then 𝑝1 ⊑Π 𝑝2
(6) ∀𝓁𝑝 ∈ 𝑑𝑜𝑚(𝑤).∃𝜈𝑥𝑝 ∈ 𝑑𝑜𝑚(Γ) ⇒ ∃𝑝′ ∈ P.𝑢 𝑓⊑𝑤

(𝓁,𝑤) ∈ 𝑢𝑓Υ𝑝′ (𝜈𝑥, Γ)

The idea behind the environment agreement is that we need to make sure that semantics and type
system talks about the same, i.e., if the dependencies in the semantics is also captured in the type
environment, the alias information is captured, that Π is a good approximation, in respect to𝑤 , and
the 𝑝-chains captures the global occurrence. As such, the type environment focuses on three areas:
1) local information variables, 2) the global information for references, and 3) the approximated
order of program points. It should be noted at the agreement only relates the information known
by 𝑒𝑛𝑣 , 𝑠𝑡𝑜 , and𝑤 .

1) The agreement for local information only relates the information currently known by 𝑒𝑛𝑣 ,
and that the information known by 𝑤 and Γ agrees, in respect to definition 4.3. This is
ensured by 1) and 2).

2) We similarly handles agreement for the global information known, which is ensured by 3)

and 4). Since Γ contains the global information for references, we require that there exists a
corresponding internal variable to the currently known locations, by comparing them by
program points. We also ensures that the dependencies from a location occurrence agrees
with the type of a corresponding internal variable occurrence, in respect to definition 4.3.

3) We also needs to ensure that Π is a good approximation of the order ⊑𝑤 and the greatest
binding function for 𝑝-chains ensures that we always get the necessary reference occur-
rences. 5) ensures that if an order is defined in ⊑𝑤 , then Π also agrees on this order.
For 6), we need to ensure that for any location currently known the exists a corresponding
internal variable where, getting the greatest binding of this occurrence, 𝓁𝑝 , then there exists
a program point 𝑝′, such that looking up all greatest bindings for the 𝑝′-chain, there exists
an internal variable occurrence that corresponds to 𝓁

𝑝 .

With the environment agreement defined, we can present the type agreement. As the type can be
abstractions and base types, with or without alias information, we have different requirements for
handling them, as such we relate each requirement to a value Here, the idea is that if the value is a
location, then we check that both the set of occurrences agrees with the dependency pair, presented

1:22

in definition 4.4, and check if the alias information agrees with the semantics, definition 4.5. If
the value is not a location, then the type can either be an abstraction type or base type. For the
base type, we check that the agreement between the set of occurrences and the dependency pair
agrees. If the type is an abstraction, then we check that 𝑇2 agrees with binding model. We are only
concerned about the return type 𝑇2 for abstractions, since if the argument parameter is used in the
body of the abstraction, then the dependencies would already be part of the return type.

Definition 4.3 (Type agreement). Let 𝑒𝑛𝑣 be an environment,𝑤 be a dependency function, ⊑𝑤

be a relation over𝑤 , (𝐿,𝑉) be a dependency pair, and 𝑇 be a type. We say that:

(𝑒𝑛𝑣, 𝑣, (𝑤, ⊑𝑤), (𝐿,𝑉)) |= (Γ,𝑇)

iff

• 𝑣 ≠ 𝓁 and 𝑇 = 𝑇1 → 𝑇2:

– (𝑒𝑛𝑣, 𝑣, (𝑤, ⊑𝑤), (𝐿,𝑉)) |= (Γ,𝑇2)
• 𝑣 ≠ 𝓁 and 𝑇 = (𝛿, 𝜅):

– (𝑒𝑛𝑣, (𝐿,𝑉)) |= 𝛿

• 𝑣 = 𝓁 then 𝑇 = (𝛿, 𝜅) where:
– (𝑒𝑛𝑣, (𝐿,𝑉)) |= 𝛿

– (𝑒𝑛𝑣, (𝑤, ⊑𝑤), 𝑣) |= (Γ, 𝜅)

Definition 4.4 (Dependency agreement). Let 𝑒𝑛𝑣 be an environment, (𝐿,𝑉) be a dependency
pair, and 𝛿 be a set of occurrences. We say that:

(𝑒𝑛𝑣, (𝐿,𝑉)) |= 𝛿

if

• 𝑉 ⊆ 𝛿 ,

• For all 𝓁
𝑝 ∈ 𝐿 where 𝑒𝑛𝑣𝓁 ≠ ∅, we then have {𝑥 ∈ 𝑑𝑜𝑚(𝑒𝑛𝑣) | 𝑒𝑛𝑣 (𝑥) = 𝓁} ⊆ 𝜅0𝑖 for a 𝜅

0
𝑖 ∈ 𝛿

• For all 𝓁
𝑝 ∈ 𝐿 where 𝑒𝑛𝑣𝓁 = ∅ then there exists a 𝜅0𝑖 ∈ 𝛿 such that 𝜅0𝑖 ⊆ IVar

The dependency agreement, defined in definition 4.4, ensures that 𝛿 at leas contains all informa-
tion from the dependency pair.

Definition 4.5 (Alias agreement). Let 𝑒𝑛𝑣 be an environment, 𝑤 be a pair of a dependency

function, ⊑𝑤 be a relation over𝑤 , 𝓁 be a location, and 𝜅 be an alias set. We say that:

(𝑒𝑛𝑣, (𝑤, ⊑𝑤), 𝓁) |= (Γ, 𝜅)

if

• ∃𝓁𝑝 ∈ 𝑑𝑜𝑚(𝑤).𝜈𝑥𝑝 ∈ 𝑑𝑜𝑚(Γ) ⇒ 𝜈𝑥 ∈ 𝜅

• 𝑒𝑛𝑣−1 (𝓁) ≠ ∅.∃𝜅0𝑖 ∈ 𝜅0 ⇒ (𝑒𝑛𝑣−1 (𝓁) ⊆ 𝜅0𝑖) ∧ (∃𝓁𝑝 ∈ 𝑑𝑜𝑚(𝑤).𝜈𝑥𝑝 ∈ 𝑑𝑜𝑚(Γ) ⇒
𝜈𝑥 ∈ 𝜅0𝑖 ∧ 𝜈𝑥 ∈ 𝜅)

• 𝑒𝑛𝑣−1 (𝓁) = ∅.∃𝜅0𝑖 ∈ 𝜅0 ⇒ (∃𝓁𝑝 ∈ 𝑑𝑜𝑚(𝑤).𝜈𝑥𝑝 ∈ 𝑑𝑜𝑚(Γ) ⇒ 𝜈𝑥 ∈ 𝜅0𝑖 ∧ 𝜈𝑥 ∈ 𝜅)

The alias agreement, defined in definition 4.5, ensures that the alias information in𝜅 is also known
the environment. To do this, we ensure that if there exists alias information in the environment
𝑒𝑛𝑣 , then there exists an alias base 𝜅0𝑖 ∈ 𝜅0 such that the currently know alias information known
in in 𝑒𝑛𝑣 is a subset of 𝜅0𝑖 , and that there exists a 𝜈𝑥 ∈ 𝜅, such that 𝜈𝑥 ∈ 𝜅0𝑖 . If there is no currently
known alias information, we simply check that there exists a corresponding internal variable, that
is part of an alias base.

Data-flow analysis 1:23

4.3 Properties
Before we present the soundness proof, we will first present some properties about the semantics
and type system. The first property we present is for the dependency function,since the dependency
function is global, and as such they can contain side effects after an evaluation. This property
states that if any new variable bindings is introduced to the dependency function, by evaluating an
occurrence 𝑒𝑝 , those variables are not free in 𝑒𝑝 .

Lemma 4.1 (History). Suppose 𝑒𝑝 is an occurrence, that

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝′

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′′
〉

and 𝑥𝑝1 ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤). Then 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝)
The proof for lemma 4.1 can be found in appendix C.1.
The second property is the strengthening of the type environment, which states that if there is a

binding the type environment, used to type an occurrence 𝑒𝑝 , and the variables is not free in 𝑒𝑝

then the binding can be removed.
Lemma 4.2 (Strengthening). If Γ [𝑥𝑝′ : 𝑇 ′],Π ⊢ 𝑒𝑝 : 𝑇 and 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝), then Γ,Π ⊢ 𝑒𝑝 : 𝑇
The proof for lemma 4.2 can be found in appendix C.2.
With history, lemma 4.1, and strengthening, lemma 4.2, definedwe can then present the soundness

theorem. This theorem compares the semantics, for an occurrence, to a type rule that concludes this
occurrence. Since we are interested in, if the type system is a sound approximation of the semantics,
we need to make sure that an evaluation of an occurrence, and the type for the occurrence agrees.
As such, we assume that the type environment and approximated order of program points are in
an agreement with the binding models in the semantics, and we also assume that the environment
is well-typed.

Based on these assumptions, we then need to make sure that, after an evaluation, we are still in
agreement, we can type the value, and the type is in agreement with the semantics.

Theorem 4.3 (Soundness of type system). Suppose 𝑒𝑝′
is an occurrence where

• 𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′′
〉
,

• Γ,Π ⊢ 𝑒𝑝′ : 𝑇
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π)

Then we have that:

• Γ,Π ⊢ 𝑣 : 𝑇
• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π)
• (𝑒𝑛𝑣, (𝑤 ′, ⊑′

𝑤), 𝑣, (𝐿,𝑉)) |= (Γ,𝑇)
Proof. The proof proceeds by induction on the height of the derivation tree for

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′
, 𝑠𝑡𝑜,𝜓, 𝑝

〉
→ ⟨𝑣, 𝑠𝑡𝑜 ′,𝜓 ′, (𝐿,𝑉), 𝑝′′⟩

We will only show the proof of four rules here, for (Var), (Case), (Ref), and (Ref-write), the full
proof can be found in appendix C.3.

(Var) Here 𝑒𝑝′
= 𝑥𝑝

′ , where

(Var)

𝑒𝑛𝑣 ⊢
〈
𝑥𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (𝐿,𝑉 ∪ {𝑥𝑝′ }), 𝑝′

〉
Where 𝑒𝑛𝑣 (𝑥) = 𝑣 , 𝑥𝑝′′

= 𝑢𝑓⊑𝑤
(𝑥,𝑤), and𝑤 (𝑥𝑝′′) = (𝐿,𝑉)

1:24

And from our assumptions, we have:
• Γ,Π ⊢ 𝑥𝑝′ : 𝑇
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π)

To type the occurrence 𝑥𝑝′ we use the rule (T-Var):

(T-Var)

Γ,Π ⊢ 𝑥𝑝 : 𝑇 ⊔ ({𝑥𝑝 }, ∅)

Where 𝑥𝑝′′
= 𝑢𝑓⊑Π (𝑥, Γ), Γ(𝑥𝑝

′′) = 𝑇 .
We need to show that 1) Γ,Π ⊢ 𝑐 : 𝑇 , 2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π), and
3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇).
1) Since, from our assumption, we know that Γ,Π ⊢ 𝑒𝑛𝑣 , we can then conclude that

Γ,Π ⊢ 𝑣 : 𝑇
2) Since there are no updates to 𝑠𝑡𝑜 and (𝑤, ⊑𝑤), we then know from our assumptions

that (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π) holds after an evaluation.
3) Since there are no updates to 𝑠𝑡𝑜 ′ and (𝑤 ′, ⊑′

𝑤), that (𝐿,𝑉) is a result from looking
up 𝑥𝑝′′ in (𝑤, ⊑𝑤), and the type 𝑇 is from to looking up 𝑥𝑝′′ in Γ, we then know that
(𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇). Due to definition 4.3 we can conclude that:

(𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉 ∪ {𝑥𝑝′′ })) |= (Γ,𝑇 ⊔ {𝑥𝑝′′ })

(Case) Here 𝑒𝑝′
=
[
case 𝑒𝑝′′

�̃� 𝑜
]𝑝′

, where

(Case)

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣𝑒 , 𝑠𝑡𝑜

′′, (𝑤 ′′, ⊑′′
𝑤), (𝐿′′,𝑉 ′′), 𝑝′′

〉
𝑒𝑛𝑣 [𝑒𝑛𝑣 ′] ⊢

〈
𝑒
𝑝 𝑗

𝑗
, 𝑠𝑡𝑜 ′′, (𝑤 ′′′, ⊑′′

𝑤), 𝑝′′
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿′,𝑉 ′), 𝑝𝑖
〉

𝑒𝑛𝑣 ⊢
〈[
case 𝑒𝑝′′

�̃� 𝑜
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where𝑚𝑎𝑡𝑐ℎ(𝑣𝑒 , 𝑠𝑖) =⊥ for all 1 ≤ 𝑢 < 𝑗 ≤ |�̃� |,𝑚𝑎𝑡𝑐ℎ(𝑣𝑒 , 𝑠 𝑗) = 𝑒𝑛𝑣 ′, and
𝑤 ′′′ = 𝑤 ′′ [𝑥 ↦→ (𝐿′′,𝑉 ′′)] if 𝑒𝑛𝑣 ′ = [𝑥 ↦→ 𝑣𝑒] else𝑤 ′′′ = 𝑤 ′′

And from our assumptions, we have that:
• Γ,Π ⊢

[
case 𝑒𝑝′′

�̃� 𝑜
]𝑝′

: 𝑇 ,
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π),

To type [case 𝑒𝑝′′
�̃� 𝑜]𝑝′ we need to use the (T-Case) rule, where we have:

(T-Case)

Γ,Π ⊢ 𝑒𝑝 : (𝛿, 𝜅)
Γ′,Π ⊢ 𝑒𝑝𝑖

𝑖
: 𝑇𝑖 (1 ≤ 𝑖 ≤ |�̃� |)

Γ,Π ⊢ [case 𝑒𝑝 �̃� 𝑜]𝑝′ : 𝑇

Where 𝑇 = 𝑇 ′ ⊔ (𝛿, 𝜅), 𝑇 ′ =
⋃ |�̃� |

𝑖=1𝑇𝑖 , 𝑒
𝑝𝑖
𝑖

∈ 𝑜 and 𝑠𝑖 ∈ �̃� , and Γ′ = Γ [𝑥𝑝 : (𝛿, 𝜅)] if 𝑠𝑖 = 𝑥 .

Data-flow analysis 1:25

We must show that 1) Γ,Π ⊢ 𝑣 : 𝑇 , 2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤)) |= (Γ,Π), and

3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ,𝑇).

To conclude, we first need to show for the premises, where due to our assumption and from
the first premise, we can use the induction hypothesis to get:
• Γ,Π ⊢ 𝑣𝑒 : (𝛿, 𝜅),
• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊑′′

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤 ′′, ⊑′′

𝑤), (𝐿,𝑉)) |= (Γ, (𝛿, 𝜅))
Since in the rule (T-Case) we take the union of all patterns, we can then from the second
premise:
• Γ,Π ⊢ 𝑣 : 𝑇𝑗 ,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇𝑗)
If we have a) Γ′,Π ⊢ 𝑒𝑛𝑣 [𝑒𝑛𝑣 ′] and b) (𝑒𝑛𝑣 [𝑒𝑛𝑣 ′], 𝑠𝑡𝑜 ′′, (𝑤 ′′′, ⊏′′𝑤)) |= (Γ′,Π), we can then
conclude the second premise by our induction hypothesis.
a) We know that either we have Γ′ = Γ [𝑥 ↦→ (𝛿, 𝜅)] and 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣𝑒] if 𝑠 𝑗 = 𝑥 , or Γ′ = Γ

and 𝑒𝑛𝑣 if 𝑠 𝑗 ≠ 𝑥 .
• if 𝑠 𝑗 ≠ 𝑥 : Then we have Γ,Π ⊢ 𝑒𝑛𝑣
• if 𝑠 𝑗 = 𝑥 : Then we have Γ [𝑥 ↦→ (𝛿, 𝜅)],Π ⊢ 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣𝑒], which hold due to the
first premise.

b) We know that either we have Γ′ = Γ [𝑥 ↦→ (𝛿, 𝜅)] and 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣𝑒] if 𝑠 𝑗 = 𝑥 , or Γ′ = Γ
and 𝑒𝑛𝑣 if 𝑠 𝑗 ≠ 𝑥 .

• if 𝑠 𝑗 ≠ 𝑥 : then we have (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊏′′𝑤)) |= (Γ,Π).
• if 𝑠 𝑗 = 𝑥 : then (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣𝑒], 𝑠𝑡𝑜 ′′, (𝑤 ′′′, ⊏′′𝑤)) |= (Γ [𝑥 ↦→ (𝛿, 𝜅)],Π), since we

know that (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊏′′𝑤)) |= (Γ,Π), we only need to show for 𝑥 . Since we
have 𝑥 ∈ 𝑑𝑜𝑚(𝑒𝑛𝑣), 𝑥𝑝 𝑗 ∈ 𝑑𝑜𝑚(𝑤 ′′′) and 𝑥𝑝 𝑗 ∈ 𝑑𝑜𝑚(Γ′) and due to the first
premise, we know that (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣𝑒], 𝑠𝑡𝑜 ′′, (𝑤 ′′′, ⊏′′𝑤)) |= (Γ [𝑥 ↦→ (𝛿, 𝜅)],Π).

Based on a) and b) we can then conclude:
1) Since Γ′,Π ⊢ 𝑣 : 𝑇𝑗 , then we also must have Γ′,Π ⊢ 𝑣 : 𝑇 , since 𝑇 only contains more

information than 𝑇𝑗 .
2) By the second premise, lemma 4.1, and lemma 4.2, we can then get

(𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤)) |= (Γ,Π)

3) Due to 1), 2), a), and b) we can then conclude that

(𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ,𝑇)

(Ref-read) Here 𝑒𝑝′
= [!𝑒𝑝11]𝑝′ , where

(Ref-read)

𝑒𝑛𝑣 ⊢ ⟨𝑒𝑝1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝⟩ →
〈
𝓁, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
[!𝑒𝑝1]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿 ∪ 𝐿1 ∪ {𝓁𝑝′′ },𝑉 ∪𝑉1), 𝑝′
〉

Where 𝑠𝑡𝑜 ′ (𝓁) = 𝑣 , 𝓁𝑝′′
= 𝑢𝑓⊑′

𝑤
(𝓁,𝑤 ′), and𝑤 ′ (𝓁𝑝′′) = (𝐿,𝑉)

And from our assumptions, we have that:
• Γ,Π ⊢ [!𝑒𝑝11]𝑝′ : 𝑇 ,
• Γ;Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π),

1:26

To type [!𝑒𝑝11]𝑝′ we need to use the (T-Ref-read) rule, where we have:

(T-Ref-read)

Γ,Π ⊢ 𝑒𝑝 : (𝛿, 𝜅)
Γ,Π ⊢ [!𝑒𝑝]𝑝′ : 𝑇 ⊔ (𝛿 ∪ 𝛿 ′, ∅)

Where 𝜅 ≠ ∅, 𝛿 ′ = {𝜈𝑥𝑝′ | 𝜈𝑥 ∈ 𝜅}, 𝜈𝑥1, · · · , 𝜈𝑥𝑛 ∈ 𝜅.
{𝜈𝑥𝑝11 , · · · , 𝜈𝑥𝑝𝑚1 } = 𝑢𝑓Υ𝑝′ (𝜈𝑥1, Γ), · · · , {𝜈𝑥

𝑝′
1

𝑛 , · · · , 𝜈𝑥𝑝
′
𝑠

𝑛 } = 𝑢𝑓Υ𝑝′ (𝜈𝑥𝑛, Γ), and
𝑇 = Γ(𝜈𝑥𝑝11) ∪ · · · ∪ Γ(𝜈𝑥𝑝𝑚1) ∪ · · · ∪ Γ(𝜈𝑥𝑝

′
1

𝑛) ∪ · · · ∪ Γ(𝜈𝑥𝑝
′
𝑠

𝑛).
We must show that (1) Γ,Π ⊢ 𝑣 : 𝑇 , (2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π), and
(3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇).
To conclude, we first need to show for the premises, where due to our assumption and from
the premise, we can use the induction hypothesis to get:
• Γ,Π ⊢ 𝓁 : (𝛿, 𝜅),
• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ, (𝛿 ′, 𝜅′))
Due to (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π) and (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ, (𝛿 ′, 𝜅′)), and due

to our assumptions, we can conclude that:
(1) Γ,Π ⊢ 𝑣 : 𝑇 ,
(2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π),
(3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿 ∪ {𝓁𝑝′′ },𝑉)) |= (Γ,𝑇 ⊔ (𝛿 ∪ 𝛿 ′, ∅))
□

5 CONCLUSION
In this paper, we have introduced a type system for local data-flow analysis for a language based
on a subset of ReScript. The type system we present here differs from other data-flow analysis
techniques, that instead of solving constraints, gives a semantic analysis of a program.
In the type system, we have shown how to handle data-flow analysis for different language

constructs, for patternmatching, local declarations, and referencing. As patternmatching introduces
branches to the language, we showed a sound over-approximation of how to handle these branches.
Additionally, since we also have mutability, through referencing, the approximation should also, in
case of reading from a reference, get all places where a reference binding could exist in the type
environment. Since some branches could write to a reference, while others do not, it was important
to consider each branch separately when reading from references.

5.1 discussion
The type systemwe have presented is for a small language without many constructs. However, some
interesting constructs were introduced to the language, such as mutability and pattern matching
which introduces some challenges when trying to make a good approximation of data-flow.

The challenges from having both pattern matching and mutability introduced challenges, as
each branch could not simply be thought of as locally, since reference operations introduce side
effects. To references, we represent them as internal variables, i.e., variables that do not exist in
the syntax, and treating them as global information. To handle the problem of branching, when
reading from a reference, we look at each branch independently to find the information necessary.

Since we focused on a functional language, that is based on expressions, we focused the data-flow
analysis on the flow of variables, i.e., which variables are used to evaluate an occurrence. As the

Data-flow analysis 1:27

language is primarily a series of declaration of functions, variables, and references, this allows for
analyzing where variables are used on which are useful evaluating an occurrence.
Additionally by representing referencing as internal variables, it allows for understanding of

which references are used and where they are used in the occurrence. This information can be used
by compilers to make sure that references can be safely cleaned up, after the last place they were
used. The alias information also implies which aliases were used in the occurrence.

However, the type system introduced contains some restrictions, also called slack, for which
occurrences it accepts. As the type system does not allow for type polymorphism, the use cases for
abstractions are restricted. In one place, where abstractions are quite limited is when binding them
to a local declaration, this local declaration cannot be used at multiple places, as this would mean it
would contain occurrences at multiple program points.

Another area of the type system contains slack, is for references as abstractions cannot be bound
to them. Here, another issue occurs as the environment only contains local information, and an
abstraction thus only knows about the variables known when it was declared. As the type system is
currently defined, the type environment should be bound with the abstraction, but the current type
system does not allow this, as the type environment both includes local and global information.

5.2 Future work
We will now introduce potential future work, as areas of improvement for the type system

Implementation of a type checker. Implementing a type checker for the type system presented
here would allow for testing how well the information is used. It would also allow for comparing
how well it performs, compared to other data-flow analysis techniques.

Polymorphism. Introducing polymorphism would be an ideal place to extend upon the type
system, as abstractions are restricted in the current type system. Here, polymorphism for the base
type, that is for (𝛿, 𝜅), would allow for abstractions to be used multiple times in an occurrence, the
input and output type would not be restricted from only allowing the exact same input type. As
such, consider the following occurrence:

(l e t x (𝜆 y . y1) 2 (x3 (x4 15) 6) 7) 8

If polymorphism is introduced, occurrences like this could be defined, since when typing the
applications, the type of the argument changes, since the occurrence 𝑥4 is present in the second
application.

Extending references. References are defined currently in the type system, they cannot be bound to
abstractions. However, this would also introduce complications, as abstractions need the information
known at the time they were declared. Another complication would be that if different references
had different types, e.g., if it had an abstraction type at one point and a base type at another
point. Here, either we should require references to always have the same type, e.g., with base type
polymorphism. Consider the following occurrence:

((! (c a s e 1 (1 1) (l e t z 52 (r e f (𝜆 y . (PLUS z3 y4) 5) 6)) 7) 8) 9 5) 10

This occurrence would create a reference to a local abstraction which depends on the locally declared
variable 𝑧 before reading from the reference and applying the constant to it. In the semantics, the
environment would be added to the abstraction closure, and when evaluating the body of the
abstraction, in an application, it would use the environment in the closure.

1:28

Type inference. Another area is to make a type inference algorithm, which can find the type
information. To make type inference for the type system would need to find an approximated order
of program points, find a proper 𝜅0 and type for abstractions, that is, find all the places where the
parameter should be bound.

Extending with more language constructs. It would also be interesting to introduce more language
constructs, as the language presented only contains a small amount of constructs, such as mutability
and pattern matching. Some interesting constructs to add could be records, constructors and
deconstructors, modules, or lazy evaluation. Here, lazy evaluation could take multiple forms, either
by introducing it as a core part of the language, where every binding is lazy evaluated, or add
special constructs for lazy evaluation. Modules, on the other hand, would allow for wrapping an
occurrence, or multiple occurrences into a module, which could then be used in multiple places.

REFERENCES
[1] ReScript Association. 2020. BuckleScript and Reason Rebranding. https://rescript-lang.org/blog/bucklescript-is-

rebranding
[2] ReScript Association. 2020. reanalyze. https://github.com/rescript-association/reanalyze
[3] Maryam Emami, Rakesh Ghiya, and Laurie Hendren. 1994. Context-sensitive interprocedural points-to analysis in the

presence of function pointers. In Conference on Programming Language Design and Implementation: Proceedings of the

ACM SIGPLAN 1994 conference on Programming language design and implementation; 20-24 June 1994 (PLDI ’94). ACM,
242–256.

[4] R. Niegel Horspool, Juris Hartmanis, and Jan van Leeuwen. 2002. A Graph—Free Approach to Data—Flow Analysis. In
COMPILER CONSTRUCTION, PROCEEDINGS. Lecture Notes in Computer Science, Vol. 2304. Springer Berlin / Heidelberg,
Germany, 46–61.

[5] Gary A Kildall. 1973. A unified approach to global program optimization. (1973).
[6] Donglin Liang and Mary Harrold. 1999. Equivalence analysis: a general technique to improve the efficiency of data-flow

analyses in the presence of pointers. In Proceedings of the 1999 ACM SIGPLAN-SIGSOFT workshop on program analysis

for software tools and engineering (PASTE ’99). ACM, 39–46.
[7] Nicky Ask Lund. 2023. Type system to determine dead value in ReScript.
[8] Zvonimir Pavlinovic, Yusen Su, and Thomas Wies. 2021. Data flow refinement type inference. Proceedings of ACM on

programming languages 5, POPL (2021), 1–31.
[9] Barbara Ryder and Marvin Paull. 1988. Incremental data-flow analysis algorithms. ACM transactions on programming

languages and systems 10, 1 (1988), 1–50.

https://rescript-lang.org/blog/bucklescript-is-rebranding
https://rescript-lang.org/blog/bucklescript-is-rebranding
https://github.com/rescript-association/reanalyze

Data-flow analysis 1:29

A COLLECTION SEMANTICS

(Const)

𝑒𝑛𝑣 ⊢
〈
𝑐𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→ ⟨𝑐, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (∅, ∅), 𝑝′⟩

(Var)

𝑒𝑛𝑣 ⊢
〈
𝑥𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (𝐿,𝑉 ∪ {𝑥𝑝′ }), 𝑝′

〉
Where 𝑒𝑛𝑣 (𝑥) = 𝑣 , 𝑥𝑝′′

= 𝑢𝑓⊑𝑤
(𝑥,𝑤), and𝑤 (𝑥𝑝′′) = (𝐿,𝑉)

(Abs)

𝑒𝑛𝑣 ⊢
〈[
𝜆 𝑥.𝑒𝑝

′]𝑝′′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→ ⟨𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (∅, ∅), 𝑝′′⟩

Where 𝑣 =
〈
𝑥, 𝑒𝑝

′
, 𝑒𝑛𝑣

〉
(App)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜 ′, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣 ′, 𝑠𝑡𝑜 ′′, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2), 𝑝2
〉

𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣 ′] ⊢
〈
𝑒
𝑝3
3 , 𝑠𝑡𝑜 ′′, (𝑤3, ⊑3

𝑤), 𝑝2
〉
→

〈
𝑣 ′′, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿3,𝑉 ′
3), 𝑝3

〉
𝑒𝑛𝑣 ⊢

〈[
𝑒
𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣 ′′, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where (𝐿,𝑉) = (𝐿1 ∪ 𝐿3,𝑉1 ∪𝑉3), 𝑣 =
〈
𝑥, 𝑓 , 𝑒

𝑝3
3 , 𝑒𝑛𝑣 ′

〉
,𝑤3 = 𝑤2 [𝑥𝑝2 ↦→ (𝐿2,𝑉2)]

(App-rec)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣2, 𝑠𝑡𝑜2, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2), 𝑝2
〉

𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣2, 𝑓 ↦→ ⟨𝑥, 𝑓 , 𝑒, 𝑒𝑛𝑣 ′⟩] ⊢
〈
𝑒
𝑝3
3 , 𝑠𝑡𝑜2, (𝑤3, ⊑2

𝑤), 𝑝2
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿3,𝑉3), 𝑝3
〉

𝑒𝑛𝑣 ⊢
〈[
𝑒
𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where (𝐿,𝑉) = (𝐿1 ∪ 𝐿3,𝑉1 ∪𝑉3), 𝑣1 =
〈
𝑥, 𝑓 , 𝑒

𝑝3
3 , 𝑒𝑛𝑣 ′

〉
,𝑤3 = 𝑤2 [𝑥𝑝2 ↦→ (𝐿2,𝑉2)]

(App-const)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣2, 𝑠𝑡𝑜

′, (𝑤 ′, ⊑′
𝑤), (𝐿2,𝑉2), 𝑝2

〉
𝑒𝑛𝑣 ⊢

〈[
𝑐 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where 𝑎𝑝𝑝𝑙𝑦 (𝑐, 𝑣1, 𝑣2) = 𝑣 and (𝐿,𝑉) = (𝐿1 ∪ 𝐿2,𝑉1 ∪𝑉2)

1:30

(Let)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1] ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤2, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝2
〉

𝑒𝑛𝑣 ⊢
〈[
let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where𝑤2 = 𝑤1 [𝑥𝑝1 ↦→ (𝐿,𝑉)]

(Let-rec)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣
[
𝑓 ↦→

〈
𝑥, 𝑓 , 𝑒

𝑝1
1 , 𝑒𝑛𝑣 ′

〉]
⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝2
〉

𝑒𝑛𝑣 ⊢
〈[
let rec 𝑓 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where 𝑣 =

〈
𝑥, 𝑒

𝑝′

1 , 𝑒𝑛𝑣 ′
〉
, and𝑤2 = 𝑤1 [𝑓 𝑝2 ↦→ (𝐿1,𝑉1)]

(Case)

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣𝑒 , 𝑠𝑡𝑜

′′, (𝑤 ′′, ⊑′′
𝑤), (𝐿′′,𝑉 ′′), 𝑝′′

〉
𝑒𝑛𝑣 [𝑒𝑛𝑣 ′] ⊢

〈
𝑒
𝑝 𝑗

𝑗
, 𝑠𝑡𝑜 ′′, (𝑤 ′′′, ⊑′′

𝑤), 𝑝′′
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿′,𝑉 ′), 𝑝𝑖
〉

𝑒𝑛𝑣 ⊢
〈[
case 𝑒𝑝′′

�̃� 𝑜
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where𝑚𝑎𝑡𝑐ℎ(𝑣𝑒 , 𝑠𝑖) =⊥ for all 1 ≤ 𝑢 < 𝑗 ≤ |�̃� |,𝑚𝑎𝑡𝑐ℎ(𝑣𝑒 , 𝑠 𝑗) = 𝑒𝑛𝑣 ′, and
𝑤 ′′′ = 𝑤 ′′ [𝑥 ↦→ (𝐿′′,𝑉 ′′)] if 𝑒𝑛𝑣 ′ = [𝑥 ↦→ 𝑣𝑒] else𝑤 ′′′ = 𝑤 ′′

(Ref)

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

𝑒𝑛𝑣 ⊢
〈[
ref 𝑒𝑝′]𝑝′′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝓁, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊑′

𝑤), (∅, ∅), 𝑝′′
〉

Where 𝓁 = 𝑛𝑒𝑥𝑡 , 𝑠𝑡𝑜 ′′ = 𝑠𝑡𝑜 ′ [𝑛𝑒𝑥𝑡 ↦→ 𝑛𝑒𝑤 (𝓁), 𝓁 ↦→ 𝑣], and
𝑤 ′′ = 𝑤 ′ [𝓁𝑝′ ↦→ (𝐿,𝑉)]

(Ref-read)

𝑒𝑛𝑣 ⊢ ⟨𝑒𝑝1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝⟩ →
〈
𝓁, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
[!𝑒𝑝1]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿 ∪ 𝐿1 ∪ {𝓁𝑝′′ },𝑉 ∪𝑉1), 𝑝′
〉

Where 𝑠𝑡𝑜 ′ (𝓁) = 𝑣 , 𝓁𝑝′′
= 𝑢𝑓⊑′

𝑤
(𝓁,𝑤 ′), and𝑤 ′ (𝓁𝑝′′) = (𝐿,𝑉)

(Ref-write)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝓁, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣, 𝑠𝑡𝑜2, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2), 𝑝2
〉

𝑒𝑛𝑣 ⊢
〈[
𝑒
𝑝1
1 := 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
(), 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿1,𝑉1), 𝑝′
〉

Where 𝑠𝑡𝑜 ′ = 𝑠𝑡𝑜2 [𝓁 ↦→ 𝑣], 𝓁𝑝′′
= 𝑖𝑛𝑓⊑2

𝑤
(𝓁,𝑤2),

𝑤 ′ = 𝑤2 [𝓁𝑝′ ↦→ (𝐿2,𝑉2)], and ⊑′
𝑤=⊑2

𝑤 ∪(𝑝′′, 𝑝′)

Data-flow analysis 1:31

A.1 Pattern matching
Pattern matching matches the first expression, 𝑒 , with each pattern to find a match. Here, we define
the function𝑚𝑎𝑡𝑐ℎ : 𝑉𝑎𝑙 × 𝑃𝑎𝑡 → (V𝑎𝑟 ⇀ E𝑥𝑝), where 𝑃𝑎𝑡 is the set of patterns.
The 𝑚𝑎𝑡𝑐ℎ(𝑣, 𝑠) = 𝑒𝑛𝑣 function, where we get a substitution 𝑒𝑛𝑣 . We defined the function

inductively as follows:

𝑚𝑎𝑡𝑐ℎ(𝑛, 𝑛) = 𝑖𝑑

𝑚𝑎𝑡𝑐ℎ(𝑏,𝑏) = 𝑖𝑑

𝑚𝑎𝑡𝑐ℎ(𝑣, _) = 𝑖𝑑

𝑚𝑎𝑡𝑐ℎ(𝑒, 𝑥) = [𝑥 ↦→ 𝑒]
𝑚𝑎𝑡𝑐ℎ(_, 𝑝) =⊥

number and boolean. Matching of numbers and booleans are an equality match, so those cases
returns the identity.

variables. Variable pattern matching instantiates the pattern, by binding the expression to the
variable.

patterns. Matching a record matches on all patterns in the expression 𝑒 , where 𝐼 denote a finite
amount of records fields. Since there are multiple record fields, each of those need to be instantiated
𝜎𝑖 =𝑚𝑎𝑡𝑐ℎ({𝑙𝑖 = 𝑒𝑖 }𝑛𝑖∈𝐼 , {𝑙𝑖 }

𝑛
𝑖∈𝐼)

wildcard and fail. The last two patterns to match are the wildcard and fail cases. The wildcard
accepts any input 𝑒 and gives an emtpy sybstitution, the fail case just return a false boolean value,
since it were an unsuccessful match.

A.2 Extending𝑤

Similarly to the pattern matching function, we define a function that extends the dependency
function for binding pattern bindings to it liveness information. This is similarly defined, where
𝑚𝑎𝑡𝑐ℎ𝑤 (𝑠, 𝑝, (𝐿,𝑉)) = 𝜓 is a function that returns an extension𝜓 . The𝑚𝑎𝑡𝑐ℎ𝑤 function can thus
be defined by:

𝑚𝑎𝑡𝑐ℎ𝑤 (𝑠, 𝑝, (𝐿,𝑉))) =
{
[𝑥𝑝 ↦→ (𝐿,𝑉)] if 𝑠 = 𝑥

[] otherwise (1)

1:32

Data-flow analysis 1:33

B TYPE SYSTEM JUDGEMENT

(T-Const)

Γ,Π ⊢ 𝑐𝑝 : (∅, ∅)

(T-Var)

Γ,Π ⊢ 𝑥𝑝 : 𝑇 ⊔ ({𝑥𝑝 }, ∅)
𝑥𝑝

′
= 𝑢𝑓⊑Π (𝑥, Γ), and Γ(𝑥𝑝′) = 𝑇

(T-Abs)

Γ [𝑥𝑝0 : 𝑇1],Π ⊢ 𝑒𝑝 : 𝑇2
Γ,Π ⊢ [𝜆 𝑥.𝑒𝑝]𝑝′ : 𝑇1 → 𝑇2

Where 𝑝′ ⊑Π 𝑝0 ∧ 𝑝0 ⊑Π 𝑝

(T-App)

Γ,Π ⊢ 𝑒𝑝1 : 𝑇1 → 𝑇2

Γ,Π ⊢ 𝑒𝑝
′

2 : 𝑇1

Γ,Π ⊢ [𝑒𝑝1 𝑒
𝑝′

2]𝑝′′ : 𝑇2

(T-App-const)

Γ,Π ⊢ 𝑒𝑝1 : (𝛿1, ∅)
Γ,Π ⊢ 𝑒𝑝

′

2 : (𝛿2, ∅)

Γ,Π ⊢ [𝑐 𝑒𝑝1 𝑒
𝑝′

2]𝑝′′ : (𝛿1 ∪ 𝛿2, ∅)
Where 𝑐 is a functional constant.

(T-Let-1)

Γ,Π ⊢ 𝑒𝑝11 : (𝛿, 𝜅)
Γ′,Π ⊢ 𝑒𝑝22 : 𝑇2

Γ,Π ⊢ [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝 : 𝑇2

Where Γ′ = Γ [𝑥𝑝 : (𝛿, 𝜅 ∪ {𝑥})] and 𝜅 ≠ ∅

(T-Let-2)

Γ,Π ⊢ 𝑒𝑝11 : 𝑇1
Γ [𝑥𝑝 : 𝑇1],Π ⊢ 𝑒𝑝22 : 𝑇2

Γ,Π ⊢ [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝′ : 𝑇2

1:34

(T-Let-rec)

Γ,Π ⊢ 𝑒𝑝1 : 𝑇1 → 𝑇2
Γ [𝑓 𝑝 : 𝑇1 → 𝑇2],Π ⊢ 𝑒𝑝2 : 𝑇

Γ,Π ⊢ [let rec 𝑓 𝑒
𝑝

1 𝑒
𝑝′

2]𝑝′′ : 𝑇

(T-Case)

Γ,Π ⊢ 𝑒𝑝 : (𝛿, 𝜅)
Γ′,Π ⊢ 𝑒𝑝𝑖

𝑖
: 𝑇𝑖 (1 ≤ 𝑖 ≤ |�̃� |)

Γ,Π ⊢ [case 𝑒𝑝 �̃� 𝑜]𝑝′ : 𝑇 ⊔ (𝛿, 𝜅)
Where 𝑒𝑝𝑖

𝑖
∈ 𝑜 and 𝑠𝑖 ∈ �̃� 𝑇 =

⋃ |�̃� |
𝑖=1𝑇𝑖 , and

Γ′ = Γ [𝑥𝑝 : (𝛿, 𝜅)] if 𝑠𝑖 = 𝑥

(T-Ref)

Γ,Π ⊢ 𝑒𝑝 : (𝛿 ′, 𝜅′)
Γ [𝜈𝑥𝑝′ : (𝛿 ′, 𝜅′)],Π ⊢ [ref 𝑒𝑝]𝑝′ : (∅, 𝜅)

Where 𝜈𝑥 is fresh, and 𝜅 = {𝜈𝑥}

(T-Ref-read)

Γ,Π ⊢ 𝑒𝑝 : (𝛿, 𝜅)
Γ,Π ⊢ [!𝑒𝑝]𝑝′ : 𝑇 ⊔ (𝛿 ∪ 𝛿 ′, ∅)

Where 𝜅 ≠ ∅, 𝛿 ′ = {𝜈𝑥𝑝′ | 𝜈𝑥 ∈ 𝜅}, 𝜈𝑥1, · · · , 𝜈𝑥𝑛 ∈ 𝜅.
{𝜈𝑥𝑝11 , · · · , 𝜈𝑥𝑝𝑚1 } = 𝑢𝑓Υ𝑝′ (𝜈𝑥1, Γ), · · · , {𝜈𝑥

𝑝′
1

𝑛 , · · · , 𝜈𝑥𝑝
′
𝑠

𝑛 } = 𝑢𝑓Υ𝑝′ (𝜈𝑥𝑛, Γ), and
𝑇 = Γ(𝜈𝑥𝑝11) ∪ · · · ∪ Γ(𝜈𝑥𝑝𝑚1) ∪ · · · ∪ Γ(𝜈𝑥𝑝

′
1

𝑛) ∪ · · · ∪ Γ(𝜈𝑥𝑝
′
𝑠

𝑛)

(T-Ref-write)

Γ,Π ⊢ 𝑒𝑝11 : (𝛿, 𝜅)
Γ,Π ⊢ 𝑒𝑝22 : (𝛿2, 𝜅2)

Γ′,Π ⊢ [𝑒𝑝11 := 𝑒
𝑝2
2]𝑝′ : (𝛿, ∅)

Where Γ′ = Γ [𝜈𝑥1 : (𝛿2, 𝜅2), · · · , 𝜈𝑥𝑛 : (𝛿2, 𝜅2)]
and 𝜈𝑥1, · · · , 𝜈𝑥𝑛 ∈ {𝜈𝑥 | 𝜈𝑥 ∈ 𝜅}

Data-flow analysis 1:35

B.1 𝜎 function
The 𝜎 function is used to extend Γ in case of a variable pattern, which takes as input Γ, a pattern 𝑠 ,
a program point 𝑝 , and a type 𝑇 . 𝜎 can then inductively be defined as:

𝜎 (𝑛,𝑇) = 𝑖𝑑

𝜎 (𝑏,𝑇) = 𝑖𝑑

𝜎 (_,𝑇) = 𝑖𝑑

𝜎 (𝑥,𝑇) = [𝑥𝑝 : 𝑇]

C PROOFS OF THEOREMS AND LEMMAS
C.1 History
Here, we present the proof for the history, that is, all variables introduced in an evaluation of an
occurrence, and bound to the dependency function, is not free.

Lemma C.1 (History). Suppose 𝑒𝑝 is an occurrence, that

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝′

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′′
〉

and 𝑥𝑝1 ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤). Then 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝)

Proof. The proof proceeds by induction on the height of the derivation tree for

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′
, 𝑠𝑡𝑜,𝜓, 𝑝

〉
→ ⟨𝑣, 𝑠𝑡𝑜 ′,𝜓 ′, (𝐿,𝑉), 𝑝′′⟩

In the base case, we have (Const), (Var), and (Abs):
(Cons) Here 𝑒𝑝′

= 𝑐𝑝
′ , where

(Const)

𝑒𝑛𝑣 ⊢
〈
𝑐𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→ ⟨𝑐, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (∅, ∅), 𝑝′⟩

Since there is no updates to𝑤 , this case follows immediately.
(Var) Here 𝑒𝑝′

= 𝑥𝑝
′ , where

(Var)

𝑒𝑛𝑣 ⊢
〈
𝑥𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (𝐿,𝑉 ∪ {𝑥𝑝′ }), 𝑝′

〉
Where 𝑒𝑛𝑣 (𝑥) = 𝑣 , 𝑥𝑝′′

= 𝑢𝑓⊑𝑤
(𝑥,𝑤), and𝑤 (𝑥𝑝′′) = (𝐿,𝑉)

Since there are no updates to𝑤 , this case follows immediately.
(Abs) Here 𝑒𝑝′

= [𝜆 𝑥.𝑒𝑝
′′]𝑝′ , where

(Abs)

𝑒𝑛𝑣 ⊢
〈[
𝜆 𝑥.𝑒𝑝

′]𝑝′′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→ ⟨𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (∅, ∅), 𝑝′′⟩

Where 𝑣 =
〈
𝑥, 𝑒𝑝

′
, 𝑒𝑛𝑣

〉
Since there is no updates to𝑤 , this case follows immediately.

1:36

Next, follows the induction step:
(App) Here 𝑒𝑝′

= [𝑒𝑝11 𝑒
𝑝2
2]𝑝′ , where

(App)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜 ′, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣 ′, 𝑠𝑡𝑜 ′′, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2), 𝑝2
〉

𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣 ′] ⊢
〈
𝑒
𝑝3
3 , 𝑠𝑡𝑜 ′′, (𝑤3, ⊑3

𝑤), 𝑝2
〉
→

〈
𝑣 ′′, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿3,𝑉 ′
3), 𝑝3

〉
𝑒𝑛𝑣 ⊢

〈[
𝑒
𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣 ′′, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where (𝐿,𝑉) = (𝐿1 ∪ 𝐿3,𝑉1 ∪𝑉3), 𝑣 =
〈
𝑥, 𝑓 , 𝑒

𝑝3
3 , 𝑒𝑛𝑣 ′

〉
,𝑤3 = 𝑤2 [𝑥𝑝2 ↦→ (𝐿2,𝑉2)]

By virtue of our induction hypothesis, we can get the follow from the premises:
1) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤1)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝11)
2) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤2)\𝑑𝑜𝑚(𝑤1) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝22)
3) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤3) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝33)

We the need to show that: if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′). By definition 2.1 we
know that 𝑓 𝑣 ([𝑒𝑝11 𝑒

𝑝2
2]𝑝′) = 𝑓 𝑣 (𝑒𝑝11) ∪ 𝑓 𝑣 (𝑒𝑝22), and the only variable that is not handled by

1), 2), and 3) is 𝑥𝑝2 . But since 𝑥 is not a free variable in 𝑒
𝑝1
1 or 𝑒𝑝22 , this case then follows.

(App-const) Here 𝑒𝑝′
= [𝑒𝑝11 𝑒

𝑝2
2]𝑝′ , where

(App-const)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣2, 𝑠𝑡𝑜

′, (𝑤 ′, ⊑′
𝑤), (𝐿2,𝑉2), 𝑝2

〉
𝑒𝑛𝑣 ⊢

〈[
𝑐 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where 𝑎𝑝𝑝𝑙𝑦 (𝑐, 𝑣1, 𝑣2) = 𝑣 and (𝐿,𝑉) = (𝐿1 ∪ 𝐿2,𝑉1 ∪𝑉2)

By virtue of our induction hypothesis, we can get the following from the premises:
1) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤1)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝11)
2) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤1) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝22)

We the need to show that: if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′). By definition 2.1 we
know that 𝑓 𝑣 ([𝑒𝑝11 𝑒

𝑝2
2]𝑝′) = 𝑓 𝑣 (𝑒𝑝11) ∪ 𝑓 𝑣 (𝑒𝑝22), this case then follows.

(App-rec) Here 𝑒𝑝′
= [𝑒𝑝11 𝑒

𝑝2
2]𝑝′ , where

(App-rec)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣2, 𝑠𝑡𝑜2, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2), 𝑝2
〉

𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣2, 𝑓 ↦→ ⟨𝑥, 𝑓 , 𝑒, 𝑒𝑛𝑣 ′⟩] ⊢
〈
𝑒
𝑝3
3 , 𝑠𝑡𝑜2, (𝑤3, ⊑2

𝑤), 𝑝2
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿3,𝑉3), 𝑝3
〉

𝑒𝑛𝑣 ⊢
〈[
𝑒
𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where (𝐿,𝑉) = (𝐿1 ∪ 𝐿3,𝑉1 ∪𝑉3), 𝑣1 =
〈
𝑥, 𝑓 , 𝑒

𝑝3
3 , 𝑒𝑛𝑣 ′

〉
,𝑤3 = 𝑤2 [𝑥𝑝2 ↦→ (𝐿2,𝑉2)]

By virtue of our induction hypothesis, we can get the following from the premises:
1) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤1)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝11)

Data-flow analysis 1:37

2) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤2)\𝑑𝑜𝑚(𝑤1) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝22)
3) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤3) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝33)

We the need to show that: if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′). By definition 2.1 we
know that 𝑓 𝑣 ([𝑒𝑝11 𝑒

𝑝2
2]𝑝′) = 𝑓 𝑣 (𝑒𝑝11) ∪ 𝑓 𝑣 (𝑒𝑝22), and the only variable that is not handled by

1), 2), and 3) is 𝑥𝑝2 . But since 𝑥 is not a free variable in 𝑒
𝑝1
1 or 𝑒𝑝22 , this case follows.

(Let) Here 𝑒𝑝′
= [let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2]𝑝′ , where

(Let)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1] ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤2, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝2
〉

𝑒𝑛𝑣 ⊢
〈[
let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where𝑤2 = 𝑤1 [𝑥𝑝1 ↦→ (𝐿,𝑉)]

By virtue of our induction hypothesis, we can get the following from the premises:
1) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤1)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝11)
2) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤1) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝22)

We then need to show that: if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′). By definition 2.1
we know that 𝑓 𝑣 ([let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2]𝑝′) = 𝑓 𝑣 (𝑒𝑝11) ∪ 𝑓 𝑣 (𝑒𝑝22)\{𝑥}, and the only variable that is

not handled by 1), 2), and 3) is 𝑥𝑝2 . Where 𝑥 is not a free variable in 𝑒
𝑝1
1 , but 𝑥 is possibly

free in 𝑒
𝑝2
2 . From definition 2.1, we know that 𝑥 is not free in [let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2]𝑝′ , we then get:

if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′).
(Let-rec) Here 𝑒𝑝′

= [let rec 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝′ , where

(Let-rec)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣
[
𝑓 ↦→

〈
𝑥, 𝑓 , 𝑒

𝑝1
1 , 𝑒𝑛𝑣 ′

〉]
⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝2
〉

𝑒𝑛𝑣 ⊢
〈[
let rec 𝑓 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where 𝑣 =

〈
𝑥, 𝑒

𝑝′

1 , 𝑒𝑛𝑣 ′
〉
, and𝑤2 = 𝑤1 [𝑓 𝑝2 ↦→ (𝐿1,𝑉1)]

By virtue of our induction hypothesis, we can get the following from the premises:
1) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤1)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝11)
2) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤1) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝22)

We then need to show that: if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′). By definition 2.1
we know that 𝑓 𝑣 ([let rec 𝑓 𝑒

𝑝1
1 𝑒

𝑝2
2]𝑝′) = 𝑓 𝑣 (𝑒𝑝11)∪ 𝑓 𝑣 (𝑒𝑝22)\{𝑓 }, and the only variable that is

not handled by 1), 2), and 3) is 𝑓 𝑝2 . Where 𝑓 is possible free in 𝑒𝑝11 and 𝑒𝑝22 . From definition 2.1,
we know that 𝑓 is not free in [let rec 𝑓 𝑒

𝑝1
1 𝑒

𝑝2
2]𝑝′ , we then get: if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤)

then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′).
(Case) Here 𝑒𝑝′

= [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝′ , where

1:38

(Case)

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣𝑒 , 𝑠𝑡𝑜

′′, (𝑤 ′′, ⊑′′
𝑤), (𝐿′′,𝑉 ′′), 𝑝′′

〉
𝑒𝑛𝑣 [𝑒𝑛𝑣 ′] ⊢

〈
𝑒
𝑝 𝑗

𝑗
, 𝑠𝑡𝑜 ′′, (𝑤 ′′′, ⊑′′

𝑤), 𝑝′′
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿′,𝑉 ′), 𝑝𝑖
〉

𝑒𝑛𝑣 ⊢
〈[
case 𝑒𝑝′′

�̃� 𝑜
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where𝑚𝑎𝑡𝑐ℎ(𝑣𝑒 , 𝑠𝑖) =⊥ for all 1 ≤ 𝑢 < 𝑗 ≤ |�̃� |,𝑚𝑎𝑡𝑐ℎ(𝑣𝑒 , 𝑠 𝑗) = 𝑒𝑛𝑣 ′, and
𝑤 ′′′ = 𝑤 ′′ [𝑥 ↦→ (𝐿′′,𝑉 ′′)] if 𝑒𝑛𝑣 ′ = [𝑥 ↦→ 𝑣𝑒] else𝑤 ′′′ = 𝑤 ′′

By virtue of our induction hypothesis, we can get the following from the premises:
1) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′′)
2) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤 ′′′) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝 𝑗

𝑗
)

We then need to show that: if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′). By definition 2.1
we know that 𝑓 𝑣 ([case 𝑒𝑝

′′
�̃� 𝑜]𝑝′) = 𝑓 𝑣 (𝑒𝑝 𝑗

1) ∪ · · · ∪ 𝑓 𝑣 (𝑒𝑝𝑛𝑛)\(𝜏 (𝑠1) ∪ · · · ∪ 𝜏 (𝑠𝑛)), this
case then follows.

(Ref) Here 𝑒𝑝′
= [let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2]𝑝′ , where

(Ref)

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

𝑒𝑛𝑣 ⊢
〈[
ref 𝑒𝑝′]𝑝′′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝓁, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊑′

𝑤), (∅, ∅), 𝑝′′
〉

Where 𝓁 = 𝑛𝑒𝑥𝑡 , 𝑠𝑡𝑜 ′′ = 𝑠𝑡𝑜 ′ [𝑛𝑒𝑥𝑡 ↦→ 𝑛𝑒𝑤 (𝓁), 𝓁 ↦→ 𝑣], and
𝑤 ′′ = 𝑤 ′ [𝓁𝑝′ ↦→ (𝐿,𝑉)]

By virtue of our induction hypothesis, we can get the following from the premises:
1) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝11)

By definition 2.1 we can then conclude that: if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′)
(Ref-read) Here 𝑒𝑝′

= [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝′ , where

(Ref-read)

𝑒𝑛𝑣 ⊢ ⟨𝑒𝑝1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝⟩ →
〈
𝓁, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
[!𝑒𝑝1]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿 ∪ 𝐿1 ∪ {𝓁𝑝′′ },𝑉 ∪𝑉1), 𝑝′
〉

Where 𝑠𝑡𝑜 ′ (𝓁) = 𝑣 , 𝓁𝑝′′
= 𝑢𝑓⊑′

𝑤
(𝓁,𝑤 ′), and𝑤 ′ (𝓁𝑝′′) = (𝐿,𝑉)

By virtue of our induction hypothesis, we can get the following from the premises:
1) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝11)

By definition 2.1 we can then conclude that: if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′)
(Ref-write) Here 𝑒𝑝′

= [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝′ , where

Data-flow analysis 1:39

(Ref-write)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝓁, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣, 𝑠𝑡𝑜2, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2), 𝑝2
〉

𝑒𝑛𝑣 ⊢
〈[
𝑒
𝑝1
1 := 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
(), 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿1,𝑉1), 𝑝′
〉

Where 𝑠𝑡𝑜 ′ = 𝑠𝑡𝑜2 [𝓁 ↦→ 𝑣], 𝓁𝑝′′
= 𝑖𝑛𝑓⊑2

𝑤
(𝓁,𝑤2),

𝑤 ′ = 𝑤2 [𝓁𝑝′ ↦→ (𝐿2,𝑉2)], and ⊑′
𝑤=⊑2

𝑤 ∪(𝑝′′, 𝑝′)

By virtue of our induction hypothesis, we can get the following from the premises:
1) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤1)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝11)
2) if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤1) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝22)

We then need to show that: if 𝑦𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′). By definition 2.1
we know that 𝑓 𝑣 ([𝑒𝑝11 := 𝑒

𝑝2
2]𝑝′) = 𝑓 𝑣 (𝑒𝑝11) ∪ 𝑓 𝑣 (𝑒𝑝22). From definition 2.1, we then get: if

𝑦𝑝
′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦 ∉ 𝑓 𝑣 (𝑒𝑝′).

□

C.2 Strengthening
Here, we present the proof for strengthening of type environments.

Lemma C.2 (Strengthening). If Γ [𝑥𝑝′ : 𝑇 ′],Π ⊢ 𝑒𝑝 : 𝑇 and 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝), then Γ,Π ⊢ 𝑒𝑝 : 𝑇

Proof. The proof proceeds by induction on the structure of the derivation tree for the type
judgment:

Γ,Π ⊢ 𝑒𝑝 : 𝑇
In the base case, we have (T-Const) and (T-Var):

(T-Const) Here 𝑒𝑝 = 𝑐𝑝 , where

(T-Const)

Γ,Π ⊢ 𝑐𝑝 : (∅, ∅)

and from our assumption, we know that 𝑥 ∉ 𝑓 𝑣 (𝑐𝑝). We can thus conclude that:

Γ;Π ⊢ 𝑐𝑝 : (∅, ∅)

(T-Var) Here 𝑒𝑝 = 𝑥𝑝 , where

(T-Var)

Γ,Π ⊢ 𝑥𝑝 : 𝑇 ⊔ ({𝑥𝑝 }, ∅)
𝑥𝑝

′
= 𝑢𝑓⊑Π (𝑥, Γ), and Γ(𝑥𝑝′) = 𝑇

From our assumption, we know that 𝑥 ∉ 𝑓 𝑣 (𝑥𝑝). We can thus conclude that:

Γ,Π ⊢ 𝑦𝑝 : (∅, ∅)

Next, follows the induction step:

1:40

(T-Abs) Here 𝑒𝑝 = [𝜆 𝑦.𝑒𝑝11]𝑝 , where

(T-Abs)

Γ′ [𝑦𝑝0 : 𝑇1],Π ⊢ 𝑒𝑝11 : 𝑇2

Γ′,Π ⊢ [𝜆 𝑦.𝑒𝑝11]𝑝 : 𝑇1 → 𝑇2

Where Γ′ = Γ [𝑥𝑝′ : 𝑇1] and 𝑝 ⊑Π 𝑝0 ∧ 𝑝0 ⊑Π 𝑝1. From our assumption, we know that
𝑥 ∉ 𝑓 𝑣 (𝑒𝑝). By definition 2.1 we know that 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝11) where from our induction hypothesis
we get that:

Γ [𝑦𝑝0 : 𝑇1],Π ⊢ 𝑒𝑝11 : 𝑇2
We can thus conclude that:

Γ,Π ⊢ [𝜆 𝑦.𝑒𝑝11]𝑝 : 𝑇1 → 𝑇2

(T-App) Here 𝑒𝑝 = [𝑒𝑝11 𝑒
𝑝2
2]𝑝 , where

(T-App)

Γ′,Π ⊢ 𝑒𝑝1 : 𝑇1 → 𝑇2

Γ′,Π ⊢ 𝑒𝑝
′

2 : 𝑇1

Γ′,Π ⊢ [𝑒𝑝1 𝑒
𝑝′

2]𝑝′′ : 𝑇2

Where Γ′ = Γ [𝑥𝑝′ : 𝑇1]. From our assumption, we know that 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝). By definition 2.1,
we then know:
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝11),
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝22)

Then from our induction hypothesis we can get:
• Γ,Π ⊢ 𝑒𝑝11 : 𝑇1 → 𝑇 ,
• Γ,Π ⊢ 𝑒𝑝22 : 𝑇1

Where we can then conclude that:

Γ,Π ⊢ [𝑒𝑝11 𝑒
𝑝2
2]𝑝 : 𝑇2

(T-App-const) Here 𝑒𝑝 = [𝑐 𝑒𝑝11 𝑒
𝑝2
2]𝑝 , where

(T-App-const)

Γ,Π ⊢ 𝑒𝑝1 : (𝛿1, ∅)
Γ,Π ⊢ 𝑒𝑝

′

2 : (𝛿2, ∅)

Γ,Π ⊢ [𝑐 𝑒𝑝1 𝑒
𝑝′

2]𝑝′′ : (𝛿1 ∪ 𝛿2, ∅)

Where Γ′ = Γ [𝑥𝑝′ : 𝑇1], and 𝑐 is a functional constant. From our assumption, we know that
𝑥 ∉ 𝑓 𝑣 (𝑒𝑝). By definition 2.1, we then know:
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝11),
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝22)

Then from our induction hypothesis we can get:
• Γ,Π ⊢ 𝑒𝑝11 : (𝛿1, ∅),

Data-flow analysis 1:41

• Γ,Π ⊢ 𝑒𝑝22 : (𝛿2, ∅)
Where we can then conclude that:

Γ,Π ⊢ [𝑐 𝑒𝑝11 𝑒
𝑝2
2]𝑝 : 𝑇2

(T-Let-1) Here 𝑒𝑝 = [let 𝑦 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝 , where

(T-Let-1)

Γ′,Π ⊢ 𝑒𝑝11 : (𝛿, 𝜅)
Γ′,Π ⊢ 𝑒𝑝22 : 𝑇2

Γ′′,Π ⊢ [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝 : 𝑇2

Where Γ′ = Γ′′ [𝑥𝑝 : (𝛿, 𝜅 ∪ {𝑥})] and 𝜅 ≠ ∅, and Γ′′ = Γ [𝑥𝑝′ : 𝑇1]. From our assumption,
we know that 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝). By definition 2.1 we know:
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝11),
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝22)

By our induction hypothesis we can get:
• Γ,Π ⊢ 𝑒𝑝11 : (𝛿, 𝜅),
• Γ [𝑦𝑝1 : (𝛿, 𝜅 ∪ {𝑦})],Π ⊢ 𝑒𝑝22 : 𝑇

Where we can then conclude that:
Γ,Π ⊢ [let 𝑦 𝑒

𝑝1
1 𝑒

𝑝2
2]𝑝 : 𝑇

(T-Let-2) Here 𝑒𝑝 = [let 𝑦 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝 , where

(T-Let-2)

Γ′,Π ⊢ 𝑒𝑝11 : 𝑇1
Γ′ [𝑥𝑝 : 𝑇1],Π ⊢ 𝑒𝑝22 : 𝑇2

Γ′,Π ⊢ [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝′ : 𝑇2

Where Γ′ = Γ [𝑥𝑝′ : 𝑇1]. From our assumption, we know that 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝). By definition 2.1
we know:
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝11),
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝22)

By our induction hypothesis we can get:
• Γ,Π ⊢ 𝑒𝑝11 : 𝑇1,
• Γ [𝑦𝑝1 : 𝑇1],Π ⊢ 𝑒𝑝22 : 𝑇

Where we can then conclude that:
Γ,Π ⊢ [let 𝑦 𝑒

𝑝1
1 𝑒

𝑝2
2]𝑝 : 𝑇

(T-Let-rec) Here 𝑒𝑝 = [let rec 𝑦 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝 , where

(T-Let-rec)

Γ′,Π ⊢ 𝑒𝑝1 : 𝑇 → 𝑇2
Γ′ [𝑓 𝑝 : 𝑇 → 𝑇2],Π ⊢ 𝑒𝑝2 : 𝑇2

Γ′,Π ⊢ [let rec 𝑓 𝑒
𝑝

1 𝑒
𝑝′

2]𝑝′′ : 𝑇2

1:42

Where Γ′ = Γ [𝑥𝑝′ : 𝑇1]. From our assumption, we know that 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝). By definition 2.1
we know:
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝11),
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝22)

By our induction hypothesis we can get:
• Γ,Π ⊢ 𝑒𝑝11 : 𝑇1 → 𝑇2,
• Γ [𝑓 𝑝1 : 𝑇1 → 𝑇2],Π ⊢ 𝑒𝑝22 : 𝑇

Where we can then conclude that:

Γ,Π ⊢ [let rec 𝑓 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝 : 𝑇2

(T-Case) Here 𝑒𝑝 = [case 𝑒𝑝′′
�̃� 𝑜]𝑝 , where

(T-Case)

Γ′,Π ⊢ 𝑒𝑝 : (𝛿, 𝜅)
Γ′′,Π ⊢ 𝑒𝑝𝑖

𝑖
: 𝑇𝑖 (1 ≤ 𝑖 ≤ |�̃� |)

Γ′,Π ⊢ [case 𝑒𝑝 �̃� 𝑜]𝑝′ : 𝑇 ⊔ (𝛿, 𝜅)

Where Γ′ = Γ [𝑥𝑝′ : 𝑇1], 𝑒𝑝𝑖𝑖 ∈ 𝑜 and 𝑠𝑖 ∈ �̃� 𝑇 =
⋃ |�̃� |

𝑖=1𝑇𝑖 , and Γ′′ = Γ′ [𝑥𝑝 : (𝛿, 𝜅)] if 𝑠𝑖 = 𝑥

From our assumption, we know that 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝). By definition 2.1 we know:
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝′′),
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝𝑖

𝑖
) for all 1 ≤ 𝑖 ≤ |�̃� |

By our induction hypothesis we can get:
• Γ,Π ⊢ 𝑒𝑝′′ : (𝛿, 𝜅),
• Γ [𝑥𝑝 : (𝛿, 𝜅)],Π ⊢ 𝑒𝑝𝑖

𝑖
: 𝑇𝑖 if 𝑠𝑖 = 𝑥

• Γ,Π ⊢ 𝑒𝑝𝑖
𝑖

: 𝑇𝑖 if 𝑠𝑖 ≠ 𝑥

Where we can then conclude that:

Γ,Π ⊢ [case 𝑒𝑝′′
�̃� 𝑜]𝑝 : 𝑇

(T-Ref) Here 𝑒𝑝 = [ref 𝑒𝑝11]𝑝 , where

(T-Ref)

Γ,Π ⊢ 𝑒𝑝 : (𝛿 ′, 𝜅′)
Γ [𝜈𝑥𝑝′ : (𝛿 ′, 𝜅′)],Π ⊢ [ref 𝑒𝑝]𝑝′ : (∅, 𝜅)

Where 𝜈𝑥 is fresh, 𝜅 = {𝜈𝑥}, and Γ′ = Γ [𝑥𝑝′ : 𝑇1].
From our assumption, we know that 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝). By definition 2.1 we know:
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝11),

By our induction hypothesis we can get:
• Γ,Π ⊢ 𝑒𝑝11 : (𝛿 ′, 𝜅′),

Where we can then conclude that:

Γ,Π ⊢ [ref 𝑒𝑝11]𝑝 : (∅, 𝜅)

(T-Ref-read) Here 𝑒𝑝 = [!𝑒𝑝11]𝑝 , where

Data-flow analysis 1:43

(T-Ref-read)

Γ′,Π ⊢ 𝑒𝑝 : (𝛿, 𝜅)
Γ′,Π ⊢ [!𝑒𝑝]𝑝′ : 𝑇 ⊔ (𝛿 ∪ 𝛿 ′, ∅)

Where Γ′ = Γ [𝑥𝑝′ : 𝑇1], 𝜅 ≠ ∅, 𝛿 ′ = {𝜈𝑥𝑝′ | 𝜈𝑥 ∈ 𝜅}, 𝜈𝑥1, · · · , 𝜈𝑥𝑛 ∈ 𝜅.
{𝜈𝑥𝑝11 , · · · , 𝜈𝑥𝑝𝑚1 } = 𝑢𝑓Υ𝑝′ (𝜈𝑥1, Γ), · · · , {𝜈𝑥

𝑝′
1

𝑛 , · · · , 𝜈𝑥𝑝
′
𝑠

𝑛 } = 𝑢𝑓Υ𝑝′ (𝜈𝑥𝑛, Γ), and
𝑇 = Γ(𝜈𝑥𝑝11) ∪ · · · ∪ Γ(𝜈𝑥𝑝𝑚1) ∪ · · · ∪ Γ(𝜈𝑥𝑝

′
1

𝑛) ∪ · · · ∪ Γ(𝜈𝑥𝑝
′
𝑠

𝑛).
From our assumption, we know that 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝). By definition 2.1 we know:
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝11),

By our induction hypothesis we can get:
• Γ,Π ⊢ 𝑒𝑝11 : (𝛿 ′, 𝜅′),

Where we can then conclude that:

Γ,Π ⊢ [!𝑒𝑝11]𝑝 : (𝛿 ∪ 𝛿 ′, ∅)
(T-Ref-write) Here 𝑒𝑝 = [!𝑒𝑝11]𝑝 , where

(T-Ref-write)

Γ′,Π ⊢ 𝑒𝑝11 : (𝛿, 𝜅)
Γ′,Π ⊢ 𝑒𝑝22 : (𝛿2, 𝜅2)

Γ′′,Π ⊢ [𝑒𝑝11 := 𝑒
𝑝2
2]𝑝′ : (𝛿, ∅)

Where Γ′ = Γ [𝑥𝑝′ : 𝑇1], Γ′′ = Γ′ [𝜈𝑥1 : (𝛿2, 𝜅2), · · · , 𝜈𝑥𝑛 : (𝛿2, 𝜅2)] and 𝜈𝑥1, · · · , 𝜈𝑥𝑛 ∈ {𝜈𝑥 |
𝜈𝑥 ∈ 𝜅}
From our assumption, we know that 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝). By definition 2.1 we know:
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝11),
• 𝑥 ∉ 𝑓 𝑣 (𝑒𝑝22),

By our induction hypothesis we can get:
• Γ,Π ⊢ 𝑒𝑝11 : (𝛿, 𝜅),
• Γ,Π ⊢ 𝑒𝑝11 : (𝛿2, 𝜅2),

Where we can then conclude that:

Γ1,Π ⊢ [𝑒𝑝11 := 𝑒
𝑝2
2]𝑝 : (𝛿, ∅)

Where Γ1 = Γ [𝜈𝑥1 : (𝛿2, 𝜅2), · · · , 𝜈𝑥𝑛 : (𝛿2, 𝜅2)]
□

C.3 Soundness
Here, we present the proof for the soundness of the type system.

Theorem C.3 (Soundness of type system). Suppose 𝑒𝑝′
is an occurrence where

• 𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′′
〉
,

• Γ,Π ⊢ 𝑒𝑝′ : 𝑇
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π)

Then we have that:

• Γ,Π ⊢ 𝑣 : 𝑇

1:44

• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤)) |= (Γ,Π)

• (𝑒𝑛𝑣, (𝑤 ′, ⊑′
𝑤), 𝑣, (𝐿,𝑉)) |= (Γ,𝑇)

Proof. The proof proceeds by induction on the height of the derivation tree for

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′
, 𝑠𝑡𝑜,𝜓, 𝑝

〉
→ ⟨𝑣, 𝑠𝑡𝑜 ′,𝜓 ′, (𝐿,𝑉), 𝑝′′⟩

In the base case we have the (Const), (Var), (Abs) rules:
(Const) Here 𝑒𝑝′

= 𝑐𝑝
′ , where

(Const)

𝑒𝑛𝑣 ⊢
〈
𝑐𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→ ⟨𝑐, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (∅, ∅), 𝑝′⟩

And from our assumptions, we have:
• Γ,Π ⊢ 𝑐𝑝′ : 𝑇
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π)

To type the occurrence 𝑐𝑝′ we use the rule (T-Const):

(T-Const)

Γ,Π ⊢ 𝑐𝑝′ : (∅, ∅)

We need to show that 1) Γ,Π ⊢ 𝑐 : 𝑇 , 2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤)) |= (Γ,Π), and 3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤

), (𝐿,𝑉)) |= (Γ,𝑇).
1) Since we know that the value is a constant, we need to use the (Constant) rule:

(Constant)

Γ,Π ⊢ 𝑐 : (𝛿, ∅)

Since both the dependency pair and type for constants are (∅, ∅), we can then conclude
that 𝛿 = ∅.

2) Since there are no updates to 𝑠𝑡𝑜 , (𝑤, ⊑𝑤), we then know from our assumptions that
(𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π) holds after an evaluation.

3) Since there are no updates to 𝑠𝑡𝑜 , (𝑤, ⊑𝑤), and that the dependency pair and type
are (∅, ∅), we then know from definition 4.3 that (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (∅, ∅)) |= (Γ, (∅, ∅))
holds.

(Var) Here 𝑒𝑝′
= 𝑥𝑝

′ , where

(Var)

𝑒𝑛𝑣 ⊢
〈
𝑥𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (𝐿,𝑉 ∪ {𝑥𝑝′ }), 𝑝′

〉
Where 𝑒𝑛𝑣 (𝑥) = 𝑣 , 𝑥𝑝′′

= 𝑢𝑓⊑𝑤
(𝑥,𝑤), and𝑤 (𝑥𝑝′′) = (𝐿,𝑉)

And from our assumptions, we have:

Data-flow analysis 1:45

• Γ,Π ⊢ 𝑥𝑝′ : 𝑇
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π)

To type the occurrence 𝑥𝑝′ we use the rule (T-Var):

(T-Var)

Γ,Π ⊢ 𝑥𝑝 : 𝑇 ⊔ ({𝑥𝑝 }, ∅)

Where 𝑥𝑝′′
= 𝑢𝑓⊑Π (𝑥, Γ), Γ(𝑥𝑝

′′) = 𝑇 .
We need to show that 1) Γ,Π ⊢ 𝑐 : 𝑇 , 2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π), and
3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇).
1) Since, from our assumption, we know that Γ,Π ⊢ 𝑒𝑛𝑣 , we can then conclude that

Γ,Π ⊢ 𝑣 : 𝑇
2) Since there are no updates to 𝑠𝑡𝑜 and (𝑤, ⊑𝑤), we then know from our assumptions

that (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π) holds after an evaluation.
3) Since there are no updates to 𝑠𝑡𝑜 ′ and (𝑤 ′, ⊑′

𝑤), that (𝐿,𝑉) is a result from looking
up 𝑥𝑝′′ in (𝑤, ⊑𝑤), and the type 𝑇 is from to looking up 𝑥𝑝′′ in Γ, we then know that
(𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇). Due to definition 4.3 we can conclude that:

(𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉 ∪ {𝑥𝑝′′ })) |= (Γ,𝑇 ⊔ {𝑥𝑝′′ })

(Abs) Here 𝑒𝑝′
= [𝜆 𝑥.𝑒𝑝

′′]𝑝′ , where

(Abs)

𝑒𝑛𝑣 ⊢
〈[
𝜆 𝑥.𝑒𝑝

′]𝑝′′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→ ⟨𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), (∅, ∅), 𝑝′′⟩

Where 𝑣 =
〈
𝑥, 𝑒𝑝

′
, 𝑒𝑛𝑣

〉
And from our assumptions, we have:
• Γ,Π ⊢ [𝜆 𝑥.𝑒𝑝

′′]𝑝′ : 𝑇
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π)

To type the occurrence
[
𝜆 𝑥.𝑒𝑝

′′]𝑝′
we use the rule (T-Abs):

(T-Abs)

Γ [𝑥𝑝0 : 𝑇1],Π ⊢ 𝑒𝑝11 : 𝑇2

Γ,Π ⊢
[
𝜆 𝑥.𝑒

𝑝1
1
]𝑝′

: 𝑇1 → 𝑇2

Where 𝑝′ ⊑Π 𝑝0 ∧ 𝑝0 ⊑Π 𝑝 .
We need to show that 1) Γ,Π ⊢ [𝜆 𝑥 .𝑒𝑝

′′] : 𝑇 , 2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤)) |= (Γ,Π), and 3)

(𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ,𝑇).

1) Since the value (Abs) evaluates to is a closure, we must use the (Closure) rule:

1:46

(Closure)

Γ,Π ⊢ 𝑒𝑛𝑣
Γ [𝑥𝑝0 : 𝑇1],Π ⊢ 𝑒𝑝11 : 𝑇2

Γ,Π ⊢
〈
𝑥𝑝0 , 𝑒

𝑝1
1 , 𝑒𝑛𝑣

〉
: 𝑇1 → 𝑇2

We get the first premise from our assumption, and the second premise we can get from
the first premise from (T-Abs). The closure type we get from (T-Abs).

2) Since there are no updates to 𝑠𝑡𝑜 and (𝑤, ⊑𝑤), we then know from our assumptions
that (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π) holds after an evaluation.

3) Since there are no updates to 𝑠𝑡𝑜 , (𝑤, ⊑𝑤), and that the dependency pair is (∅, ∅), we
then know from definition 4.3 that (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (∅, ∅)) |= (Γ, (∅, ∅)) holds.
Next, follows the induction step:

(App) Here 𝑒𝑝′
=

[
𝑒
𝑝′

1 𝑒
𝑝′′

2

]𝑝′

, where

(App)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜 ′, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣 ′, 𝑠𝑡𝑜 ′′, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2), 𝑝2
〉

𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣 ′] ⊢
〈
𝑒
𝑝3
3 , 𝑠𝑡𝑜 ′′, (𝑤3, ⊑3

𝑤), 𝑝2
〉
→

〈
𝑣 ′′, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿3,𝑉 ′
3), 𝑝3

〉
𝑒𝑛𝑣 ⊢

〈[
𝑒
𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣 ′′, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where (𝐿,𝑉) = (𝐿1 ∪ 𝐿3,𝑉1 ∪𝑉3), 𝑣 =
〈
𝑥, 𝑓 , 𝑒

𝑝3
3 , 𝑒𝑛𝑣 ′

〉
,𝑤3 = 𝑤2 [𝑥𝑝2 ↦→ (𝐿2,𝑉2)]

And from our assumptions, we have that:
• Γ,Π ⊢

[
𝑒
𝑝1
1 𝑒

𝑝2
2
]𝑝′

: 𝑇 ,
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π),

To type [𝑒𝑝11 𝑒
𝑝2
2]𝑝′ we need to use the (T-App) type rule, where we have:

(T-App)

Γ,Π ⊢ 𝑒𝑝11 : 𝑇1 → 𝑇

Γ,Π ⊢ 𝑒𝑝22 : 𝑇1

Γ,Π ⊢ [𝑒𝑝11 𝑒
𝑝2
2]𝑝′ : 𝑇

We must show that 1) Γ,Π ⊢ 𝑣 : 𝑇 , 2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤)) |= (Γ,Π), and

3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ,𝑇).

1) To conclude, we first need to look at the premises. Due to the first premise: since from
our assumptions we have (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π) and Γ,Π |= 𝑒𝑛𝑣 , and from the
first premise of (T-App), we can get the following our induction hypothesis:

• Γ,Π ⊢ 𝑣1 : 𝑇1 → 𝑇 ,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1)) |= (Γ,𝑇1 → 𝑇)
Due to the first premise and the second premise of (T-App) we can get the following
our induction hypothesis:

Data-flow analysis 1:47

• Γ,Π ⊢ 𝑣2 : 𝑇1,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜2, (𝑤2, ⊑2

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2)) |= (Γ,𝑇1)
For the third premise, we first need to look at the value of the first premise, where
since we know it is an abstraction, it is concluded by the (Closure) rules:

(Closure)

Γ,Π ⊢ 𝑒𝑛𝑣 ′
Γ1,Π ⊢ 𝑒𝑝33 : 𝑇

Γ;Π ⊢
〈
𝑥𝑝0 , 𝑒

𝑝3
3 , 𝑒𝑛𝑣 ′

〉
: 𝑇1 → 𝑇

Where Γ1 = Γ [𝑥𝑝0 : 𝑇1]. We then need to show that there exists a Γ1 such that a)
Γ1;Π ⊢ 𝑒𝑝33 : 𝑇 , and b) (𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣2], 𝑠𝑡𝑜2, (𝑤3, ⊑3

𝑤)) |= (Γ1,Π).
a) From our assumption, we know that Γ,Π ⊢ 𝑒𝑛𝑣 and since we do not allow binding

a closure to a location, we then also know that 𝑒𝑛𝑣 = 𝑒𝑛𝑣 ′ [𝑒𝑛𝑣 ′′] for some 𝑒𝑛𝑣 ′′,
i.e., 𝑒𝑛𝑣 contains more bindings than 𝑒𝑛𝑣 ′. Based on this, we then also know that
Γ,Π ⊢ 𝑒𝑛𝑣 ′, which then conclude the first premise of the (Closure) rule.
For the second premise, we need to show that there exists a 𝑥𝑝0 : 𝑇1, where
from the (T-Abs) rule we know that 𝑝0 ⊑Π 𝑝3. Since we know that 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣2],
and from the second premise of (T-App) that Γ;Π ⊢ 𝑣2 : 𝑇1 and𝑤 ′

2 = 𝑤2 [𝑥𝑝2 ↦→
(𝐿2,𝑉2)], there must be a 𝑥𝑝2 such that 𝑝0 = 𝑝2 and Γ1 = Γ [𝑥𝑝2 : 𝑇1].

b) We know that (𝑒𝑛𝑣, 𝑠𝑡𝑜2, (𝑤2, ⊑2
𝑤)) |= (Γ,Π) from the second premise. From a)

we know that 𝑒𝑛𝑣 = 𝑒𝑛𝑣 ′ [𝑒𝑛𝑣 ′′] as such we also know that (𝑒𝑛𝑣 ′, 𝑠𝑡𝑜2, (𝑤2, ⊑2
𝑤

)) |= (Γ,Π). We then need to show that (𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣2], 𝑠𝑡𝑜2, (𝑤3, ⊑2
𝑤)) |= (Γ1,Π),

where𝑤3 = 𝑤2 [𝑥𝑝2 ↦→ (𝐿2,𝑉2)] and Γ1 = Γ [𝑥𝑝2 : 𝑇1].
We then only need to show that the updates for 𝑥𝑝2 holds. Since 𝑥𝑝2 is bound in
𝑤3, Γ1, and 𝑥 is bound in 𝑒𝑛𝑣 , that (𝑒𝑛𝑣, 𝑣, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2)) |= (Γ,𝑇1), and that
𝑝2 ⊑2

𝑤 𝑝2. By definition 4.2 we then know that (𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣2], 𝑠𝑡𝑜2, (𝑤3, ⊑2
𝑤)) |=

(Γ1,Π).
From a) and b), we can then conclude the third premise of (App) by our induction
hypothesis:

• Γ1,Π ⊢ 𝑣 : 𝑇 ,
• (𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣2], 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ1,Π),
• (𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣2], (𝑤 ′, ⊑′

𝑤), (𝐿3,𝑉3)) |= (Γ,𝑇)
As such, since 𝑥𝑝2 ∉ 𝑓 𝑣 (𝑣) then by lemma 4.2 we get Γ,Π ⊢ 𝑣 : 𝑇

2) Due to 1) we know that (𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣2], 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤)) |= (Γ1,Π), and from lemma 4.2

we know 𝑥𝑝2 ∉ 𝑓 𝑣 (𝑣). From lemma 4.1 we can get the following:
• if 𝑥𝑝′′ ∈ 𝑑𝑜𝑚(𝑤1)\𝑑𝑜𝑚(𝑤) then 𝑥𝑝

′′
∉ 𝑓 𝑣 (𝑒𝑝11)

• if 𝑥𝑝′′ ∈ 𝑑𝑜𝑚(𝑤2)\𝑑𝑜𝑚(𝑤1) then 𝑥𝑝
′′
∉ 𝑓 𝑣 (𝑒𝑝22)

• if 𝑥𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤3) then 𝑥𝑝
′′
∉ 𝑓 𝑣 (𝑒𝑝33)

We then also know that: if 𝑥𝑝′′ ∈ 𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑥𝑝
′′

∉ 𝑓 𝑣 (𝑒𝑝′). We can
then get (𝑒𝑛𝑣 ′, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π). Since 𝑒𝑛𝑣 = 𝑒𝑛𝑣 ′ [𝑒𝑛𝑣 ′′] and we know that
(𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤3, ⊑2

𝑤)) |= (Γ,Π), due to definition 4.2 since𝑤3 = 𝑤2 [𝑥𝑝2 ↦→ (𝐿2,𝑉2)] and
𝑥𝑝2 ∉ 𝑑𝑜𝑚(Γ). We can then get:

(𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤)) |= (Γ,Π)

1:48

3) Due to 1) and 2) we can then immediatly conclude that:

(𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ,𝑇)

(App-const) Here 𝑒𝑝′
= [𝑐 𝑒𝑝

′

1 𝑒
𝑝′′

2]𝑝′ , where

(App-const)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣2, 𝑠𝑡𝑜

′, (𝑤 ′, ⊑′
𝑤), (𝐿2,𝑉2), 𝑝2

〉
𝑒𝑛𝑣 ⊢

〈[
𝑐 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where 𝑎𝑝𝑝𝑙𝑦 (𝑐, 𝑣1, 𝑣2) = 𝑣 and (𝐿,𝑉) = (𝐿1 ∪ 𝐿2,𝑉1 ∪𝑉2)

And from our assumptions, we have that:
• Γ,Π ⊢

[
𝑒
𝑝1
1 𝑒

𝑝2
2
]𝑝′

: 𝑇 ,
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π),

To type [𝑐 𝑒𝑝11 𝑒
𝑝2
2]𝑝′ we need to use the (T-App-const) rule, where we have:

Γ,Π ⊢ 𝑒𝑝1 : (𝛿1, ∅)
Γ,Π ⊢ 𝑒𝑝

′

2 : (𝛿2, ∅)

Γ,Π ⊢ [𝑐 𝑒𝑝1 𝑒
𝑝′

2]𝑝′′ : (𝛿1 ∪ 𝛿2, ∅)

Where 𝑐 is a functional constant. We must show that 1) Γ,Π ⊢ 𝑣 : 𝑇 ,
2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π), and 3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ,𝑇).

1) As we know that the application of all functional constants are constants, we know
that the type of the value must be concluded by (Constant).

(Constant)

Γ,Π ⊢ 𝑐 : (𝛿, ∅)

Where we know that the type can contain occurrences used. From the type rule (T-
App-const) we first need to look at the premises. Due to the first premise: since from
our assumptions we have (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π) and Γ,Π |= 𝑒𝑛𝑣 , and from the
first premise of (T-App-const), we can get the following our induction hypothesis:

• Γ,Π ⊢ 𝑣1 : 𝑇1 → 𝑇 ,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1)) |= (Γ,𝑇1 → 𝑇)
Due to the first premise and the second premise of (T-App-const) we can get the
following our induction hypothesis:

• Γ,Π ⊢ 𝑣2 : 𝑇1,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜2, (𝑤2, ⊑2

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2)) |= (Γ,𝑇1)

Data-flow analysis 1:49

As we can see from the rule (T-App-const), we take an union of 𝛿1 and 𝛿2, we can
conclude that: Γ,Π ⊢ 𝑣 : 𝑇 .

2) Due to 1), we can conclude that: (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤)) |= (Γ,Π).

3) Due to 1), and 2), and that the dependency pair is an union of the dependencies from
the premises, and the type is an union of the set of occurrences in the premises, we
then know from definition 4.3 that: (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇).
(App-rec) Here 𝑒𝑝′

=

[
𝑒
𝑝′

1 𝑒
𝑝′′

2

]𝑝′

, where

(App-rec)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣2, 𝑠𝑡𝑜2, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2), 𝑝2
〉

𝑒𝑛𝑣 ′ [𝑥 ↦→ 𝑣2, 𝑓 ↦→ ⟨𝑥, 𝑓 , 𝑒, 𝑒𝑛𝑣 ′⟩] ⊢
〈
𝑒
𝑝3
3 , 𝑠𝑡𝑜2, (𝑤3, ⊑2

𝑤), 𝑝2
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿3,𝑉3), 𝑝3
〉

𝑒𝑛𝑣 ⊢
〈[
𝑒
𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where (𝐿,𝑉) = (𝐿1 ∪ 𝐿3,𝑉1 ∪𝑉3), 𝑣1 =
〈
𝑥, 𝑓 , 𝑒

𝑝3
3 , 𝑒𝑛𝑣 ′

〉
,𝑤3 = 𝑤2 [𝑥𝑝2 ↦→ (𝐿2,𝑉2)]

And from our assumptions, we have that:
• Γ,Π ⊢

[
𝑒
𝑝1
1 𝑒

𝑝2
2
]𝑝′

: 𝑇 ,
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π),

To type [𝑒𝑝11 𝑒
𝑝2
2]𝑝′ we need to use the (T-App) type rule, where we have:

(T-App)

Γ,Π ⊢ 𝑒𝑝11 : 𝑇1 → 𝑇

Γ,Π ⊢ 𝑒𝑝22 : 𝑇1

Γ,Π ⊢ [𝑒𝑝11 𝑒
𝑝2
2]𝑝′ : 𝑇

The rest of the proof for this case follows (App).
(Let) Here 𝑒𝑝′

=
[
let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, where

(Let)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1] ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤2, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝2
〉

𝑒𝑛𝑣 ⊢
〈[
let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where𝑤2 = 𝑤1 [𝑥𝑝1 ↦→ (𝐿,𝑉)]

From our assumption, we know that
• Γ,Π ⊢

[
let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

: 𝑇 ,
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π),

To type [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝′ we have two choices, depending on what 𝑒𝑝11 evaluates to, i.e., if

𝑣1 = 𝓁 or 𝑣1 ≠ 𝓁.

1:50

I) If 𝑒𝑝11 evaluates to a location, 𝑣1 = 𝓁, we need to use the (T-Let-1) rule, since the binding
is an alias to 𝓁, where we have:

(T-Let-1)

Γ,Π ⊢ 𝑒𝑝11 : (𝛿, 𝜅)
Γ1,Π ⊢ 𝑒𝑝22 : 𝑇

Γ,Π ⊢ [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝′ : 𝑇

Where 𝜅 ≠ ∅, and Γ1 = Γ [𝑥𝑝1 : (𝛿, 𝜅 ∪ {𝑥})]. From our assumptions we have
(𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π) and Γ,Π |= 𝑒𝑛𝑣 , and due to the first premises of (Let)
and (T-Let-1), we can then get from our induction hypothesis:

• Γ,Π ⊢ 𝑣1 : (𝛿, 𝜅), where 𝜅 ≠ ∅,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1)) |= (Γ, (𝛿, 𝜅))
Since the first premise evaluates to a location, we then also know that 𝜅 ≠ ∅, and as
such, the value is concluded by (Location).
In the second premise, we first need to show that a) Γ [𝑥𝑝1 : (𝛿, 𝜅 ∪ {𝑥})],Π ⊢ 𝑒𝑛𝑣 [𝑥 ↦→
𝑣1] and b) (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1], 𝑠𝑡𝑜1, (𝑤2, ⊑1

𝑤)) |= (Γ1,Π).
a) Since we know from the first premise that Γ,Π ⊢ 𝑣1 : (𝛿, 𝜅), Γ [𝑥𝑝1 : (𝛿, 𝜅 ∪ {𝑥})],

and 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1], we then also know from definition 4.1 that
Γ1,Π ⊢ 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1]

b) Due to (a)) , (𝑒𝑛𝑣, 𝑠𝑡𝑜1, (𝑤1, ⊑1
𝑤)) |= (Γ,Π), and definition 4.3 we only need to

show that (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1], (𝑤2, ⊑1
𝑤), 𝓁) |= (Γ1, 𝜅 ∪ {𝑥}).

Since, due to the first premise, we know that (𝑒𝑛𝑣, 𝑣, (𝑤2, ⊑1
𝑤), 𝓁) |= (Γ, 𝜅) must

hold. We also know that if 𝜅0 is a good partition, then there must exists a 𝜅0𝑖 ∈ 𝜅0,
such that 𝑥 ∈ 𝜅0𝑖 and there must also be a 𝜈𝑥 ∈ 𝜅 such that 𝜈𝑥 ∈ 𝜅0𝑖 . Based on this
we know that (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1], (𝑤2, ⊑1

𝑤), 𝓁) |= (Γ [𝑥𝑝1 : (𝛿, 𝜅 ∪ {𝑥})], 𝜅) must also
hold.

From this, we can then use our induction hypothesis on the second premise, where we
then get:

• Γ1,Π ⊢ 𝑣 : 𝑇 ,
• (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1], 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ1,Π),
• (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1], (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ1,𝑇)
From lemma 4.2, we know that 𝑥𝑝1 ∉ 𝑓 𝑣 (𝑣) and by lemma 4.1 we know that: if 𝑥𝑝′′ ∈
𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑥𝑝

′′
∉ 𝑓 𝑣 (𝑒𝑝′). We can the conclude, for this case:

• Γ,Π ⊢ 𝑣 : 𝑇 ,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇)
II) If 𝑒𝑝11 does not evaluate to a location, we need to use the (T-Let-2) type rule, where

we have:

(T-Let-2)

Γ,Π ⊢ 𝑒𝑝11 : 𝑇1
Γ1,Π ⊢ 𝑒𝑝22 : 𝑇

Γ,Π ⊢ [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝′ : 𝑇

Data-flow analysis 1:51

Where Γ1 = Γ [𝑥𝑝1 : 𝑇1]. From our assumptions we have (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π)
and Γ,Π |= 𝑒𝑛𝑣 , and due to the first premises of (Let) and (T-Let-1), from our induction
hypothesis we can get:

• Γ,Π ⊢ 𝑣1 : 𝑇1,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1)) |= (Γ,𝑇1)
We also know that the type of 𝑣1 is not a location, because then it would be concluded
by I). In the second premise, we first need to show that a) Γ1,Π ⊢ 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1] and
b) (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1], 𝑠𝑡𝑜1, (𝑤2, ⊑1

𝑤)) |= (Γ1,Π).
a) Since we know from the first premise that Γ,Π ⊢ 𝑣1 : 𝑇1, Γ1 = Γ [𝑥𝑝1 : 𝑇1] and

𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1], due to definition 4.1 we then know that:

Γ1,Π ⊢ 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1]
b) Due to a), we know know that since we bind 𝑥 in 𝑒𝑛𝑣 , 𝑥𝑝1 in𝑤 and Γ, we then

know that (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1], 𝑠𝑡𝑜1, (𝑤2, ⊑1
𝑤)) |= (Γ1,Π).

From a) b) we can then use the induction hypothesis
• Γ1,Π ⊢ 𝑣 : 𝑇 ,
• (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1], 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ1,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ1,𝑇)
From lemma 4.2, we know that 𝑥𝑝1 ∉ 𝑓 𝑣 (𝑣) and by lemma 4.1 we know that: if 𝑥𝑝′′ ∈
𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑥𝑝

′′
∉ 𝑓 𝑣 (𝑒𝑝′). We can the conclude, for this case:

• Γ,Π ⊢ 𝑣 : 𝑇 ,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇)
(Let-rec) Here 𝑒𝑝′

=
[
let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, where

(Let-rec)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣1, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣
[
𝑓 ↦→

〈
𝑥, 𝑓 , 𝑒

𝑝1
1 , 𝑒𝑛𝑣 ′

〉]
⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝2
〉

𝑒𝑛𝑣 ⊢
〈[
let rec 𝑓 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where 𝑣 =

〈
𝑥, 𝑒

𝑝′

1 , 𝑒𝑛𝑣 ′
〉
, and𝑤2 = 𝑤1 [𝑓 𝑝2 ↦→ (𝐿1,𝑉1)]

From our assumption, we know that
• Γ,Π ⊢

[
let 𝑥 𝑒

𝑝1
1 𝑒

𝑝2
2
]𝑝′

: 𝑇 ,
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π),

To type [let 𝑥 𝑒
𝑝1
1 𝑒

𝑝2
2]𝑝′ we need to use the (T-Let-2) type rule:

(T-Let-rec)

Γ,Π ⊢ 𝑒𝑝1 : 𝑇1 → 𝑇2
Γ [𝑓 𝑝 : 𝑇1 → 𝑇2],Π ⊢ 𝑒𝑝2 : 𝑇

Γ,Π ⊢ [let rec 𝑓 𝑒
𝑝

1 𝑒
𝑝′

2]𝑝′′ : 𝑇

1:52

Where going to denote 𝑒𝑛𝑣 ′ = [𝑓 ↦→
〈
𝑥, 𝑓 , 𝑒

𝑝1
1 , 𝑒𝑛𝑣 ′⟩

]
and Γ′ = Γ [𝑓 𝑝 : 𝑇1 → 𝑇2]. From

our assumptions we have (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π) and Γ,Π |= 𝑒𝑛𝑣 , and due to the first
premises of (Let-rec) and (T-Let-rec), we can from our induction hypothesis get:
• Γ,Π ⊢ 𝑣1 : 𝑇1,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1)) |= (Γ,𝑇1)
In the second premise, we first need to show that a) Γ′,Π ⊢ 𝑒𝑛𝑣 ′
b) (𝑒𝑛𝑣 ′, 𝑠𝑡𝑜1, (𝑤2, ⊑1

𝑤)) |= (Γ′,Π).
a) Since we know from the first premise that Γ,Π ⊢ 𝑣1 : 𝑇1, and we know that

Γ1 = Γ [𝑥𝑝1 : 𝑇1] and 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1]. Due to definition 4.1 we then know that:

Γ1,Π ⊢ 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1]
b) Since we bind 𝑥 in 𝑒𝑛𝑣 , 𝑥𝑝1 in 𝑤 and Γ, and due to a) we then know that (𝑒𝑛𝑣 [𝑥 ↦→

𝑣1], 𝑠𝑡𝑜1, (𝑤2, ⊑1
𝑤)) |= (Γ1,Π).

From a) b) we can then use the induction hypothesis
• Γ1,Π ⊢ 𝑣 : 𝑇 ,
• (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣1], 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ1,Π),
• (𝑒𝑛𝑣, , 𝑣 (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ1,𝑇)
From lemma 4.2, we know that 𝑥𝑝1 ∉ 𝑓 𝑣 (𝑣) and by lemma 4.1 we know that: if 𝑦𝑝′′ ∈
𝑑𝑜𝑚(𝑤 ′)\𝑑𝑜𝑚(𝑤) then 𝑦𝑝′′

∉ 𝑓 𝑣 (𝑒𝑝′). We can the conclude, for this case:
• Γ,Π ⊢ 𝑣 : 𝑇 ,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇)
(Case) Here 𝑒𝑝′

=
[
case 𝑒𝑝′′

�̃� 𝑜
]𝑝′

, where

(Case)

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣𝑒 , 𝑠𝑡𝑜

′′, (𝑤 ′′, ⊑′′
𝑤), (𝐿′′,𝑉 ′′), 𝑝′′

〉
𝑒𝑛𝑣 [𝑒𝑛𝑣 ′] ⊢

〈
𝑒
𝑝 𝑗

𝑗
, 𝑠𝑡𝑜 ′′, (𝑤 ′′′, ⊑′′

𝑤), 𝑝′′
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿′,𝑉 ′), 𝑝𝑖
〉

𝑒𝑛𝑣 ⊢
〈[
case 𝑒𝑝′′

�̃� 𝑜
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

Where𝑚𝑎𝑡𝑐ℎ(𝑣𝑒 , 𝑠𝑖) =⊥ for all 1 ≤ 𝑢 < 𝑗 ≤ |�̃� |,𝑚𝑎𝑡𝑐ℎ(𝑣𝑒 , 𝑠 𝑗) = 𝑒𝑛𝑣 ′, and
𝑤 ′′′ = 𝑤 ′′ [𝑥 ↦→ (𝐿′′,𝑉 ′′)] if 𝑒𝑛𝑣 ′ = [𝑥 ↦→ 𝑣𝑒] else𝑤 ′′′ = 𝑤 ′′

And from our assumptions, we have that:
• Γ,Π ⊢

[
case 𝑒𝑝′′

�̃� 𝑜
]𝑝′

: 𝑇 ,
• Γ,Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π),

To type [case 𝑒𝑝′′
�̃� 𝑜]𝑝′ we need to use the (T-Case) rule, where we have:

(T-Case)

Γ,Π ⊢ 𝑒𝑝 : (𝛿, 𝜅)
Γ′,Π ⊢ 𝑒𝑝𝑖

𝑖
: 𝑇𝑖 (1 ≤ 𝑖 ≤ |�̃� |)

Γ,Π ⊢ [case 𝑒𝑝 �̃� 𝑜]𝑝′ : 𝑇

Where 𝑇 = 𝑇 ′ ⊔ (𝛿, 𝜅), 𝑇 ′ =
⋃ |�̃� |

𝑖=1𝑇𝑖 , 𝑒
𝑝𝑖
𝑖

∈ 𝑜 and 𝑠𝑖 ∈ �̃� , and Γ′ = Γ [𝑥𝑝 : (𝛿, 𝜅)] if 𝑠𝑖 = 𝑥 .

Data-flow analysis 1:53

We must show that 1) Γ,Π ⊢ 𝑣 : 𝑇 , 2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤)) |= (Γ,Π), and

3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ,𝑇).

To conclude, we first need to show for the premises, where due to our assumption and from
the first premise, we can use the induction hypothesis to get:
• Γ,Π ⊢ 𝑣𝑒 : (𝛿, 𝜅),
• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊑′′

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤 ′′, ⊑′′

𝑤), (𝐿,𝑉)) |= (Γ, (𝛿, 𝜅))
Since in the rule (T-Case) we take the union of all patterns, we can then from the second
premise:
• Γ,Π ⊢ 𝑣 : 𝑇𝑗 ,
• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇𝑗)
If we have a) Γ′,Π ⊢ 𝑒𝑛𝑣 [𝑒𝑛𝑣 ′] and b) (𝑒𝑛𝑣 [𝑒𝑛𝑣 ′], 𝑠𝑡𝑜 ′′, (𝑤 ′′′, ⊏′′𝑤)) |= (Γ′,Π), we can then
conclude the second premise by our induction hypothesis.
a) We know that either we have Γ′ = Γ [𝑥 ↦→ (𝛿, 𝜅)] and 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣𝑒] if 𝑠 𝑗 = 𝑥 , or Γ′ = Γ

and 𝑒𝑛𝑣 if 𝑠 𝑗 ≠ 𝑥 .
• if 𝑠 𝑗 ≠ 𝑥 : Then we have Γ,Π ⊢ 𝑒𝑛𝑣
• if 𝑠 𝑗 = 𝑥 : Then we have Γ [𝑥 ↦→ (𝛿, 𝜅)],Π ⊢ 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣𝑒], which hold due to the
first premise.

b) We know that either we have Γ′ = Γ [𝑥 ↦→ (𝛿, 𝜅)] and 𝑒𝑛𝑣 [𝑥 ↦→ 𝑣𝑒] if 𝑠 𝑗 = 𝑥 , or Γ′ = Γ
and 𝑒𝑛𝑣 if 𝑠 𝑗 ≠ 𝑥 .

• if 𝑠 𝑗 ≠ 𝑥 : then we have (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊏′′𝑤)) |= (Γ,Π).
• if 𝑠 𝑗 = 𝑥 : then (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣𝑒], 𝑠𝑡𝑜 ′′, (𝑤 ′′′, ⊏′′𝑤)) |= (Γ [𝑥 ↦→ (𝛿, 𝜅)],Π), since we

know that (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊏′′𝑤)) |= (Γ,Π), we only need to show for 𝑥 . Since we
have 𝑥 ∈ 𝑑𝑜𝑚(𝑒𝑛𝑣), 𝑥𝑝 𝑗 ∈ 𝑑𝑜𝑚(𝑤 ′′′) and 𝑥𝑝 𝑗 ∈ 𝑑𝑜𝑚(Γ′) and due to the first
premise, we know that (𝑒𝑛𝑣 [𝑥 ↦→ 𝑣𝑒], 𝑠𝑡𝑜 ′′, (𝑤 ′′′, ⊏′′𝑤)) |= (Γ [𝑥 ↦→ (𝛿, 𝜅)],Π).

Based on a) and b) we can then conclude:
1) Since Γ′,Π ⊢ 𝑣 : 𝑇𝑗 , then we also must have Γ′,Π ⊢ 𝑣 : 𝑇 , since 𝑇 only contains more

information than 𝑇𝑗 .
2) By the second premise, lemma 4.1, and lemma 4.2, we can then get

(𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤)) |= (Γ,Π)

3) Due to 1), 2), a), and b) we can then conclude that

(𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ,𝑇)

(ref) Here 𝑒𝑝′
=
[
ref 𝑒𝑝11

]𝑝′
, where

(Ref)

𝑒𝑛𝑣 ⊢
〈
𝑒𝑝

′
, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉), 𝑝′
〉

𝑒𝑛𝑣 ⊢
〈[
ref 𝑒𝑝′]𝑝′′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝓁, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊑′

𝑤), (∅, ∅), 𝑝′′
〉

Where 𝓁 = 𝑛𝑒𝑥𝑡 , 𝑠𝑡𝑜 ′′ = 𝑠𝑡𝑜 ′ [𝑛𝑒𝑥𝑡 ↦→ 𝑛𝑒𝑤 (𝓁), 𝓁 ↦→ 𝑣], and
𝑤 ′′ = 𝑤 ′ [𝓁𝑝′ ↦→ (𝐿,𝑉)]

From our assumption, we know that
• Γ,Π ⊢

[
ref 𝑒𝑝11

]𝑝′
: 𝑇 ,

• Γ,Π ⊢ 𝑒𝑛𝑣

1:54

• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π),
To type [ref 𝑒𝑝11]𝑝′ we need to use the (T-Ref) type rule:

(T-Ref)

Γ,Π ⊢ 𝑒𝑝11 : (𝛿 ′, 𝜅′)

Γ [𝜈𝑥𝑝′ : (𝛿 ′, 𝜅′)],Π ⊢ [ref 𝑒𝑝11]𝑝′ : (∅, 𝜅)

Where 𝜅 = {𝜈𝑥}. We need to show that 1) Γ,Π ⊢ [𝜆 𝑥.𝑒𝑝
′′] : 𝑇 , 2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |=
(Γ,Π), and 3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), 𝑣, (𝐿,𝑉)) |= (Γ,𝑇).
To conclude, we first need to show for the premise, where due to our assumption and from
the premise, we can use the induction hypothesis, where we then get:
• Γ,Π ⊢ 𝑣1 : (𝛿 ′, 𝜅′),
• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊑′

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤 ′′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ, (𝛿 ′, 𝜅′))
We are also going to denote Γ′ = Γ [𝜈𝑥𝑝′ : (𝛿 ′, 𝜅′)].
1) Since we know that (Ref) evaluates to a location, we know it should be concluded by

(Closure).

(Location)

Γ,Π ⊢ 𝓁 : (𝛿, 𝜅)

Where 𝜅 ≠ ∅. From the (T-Ref) rule, we know that the type is (∅, {𝜈𝑥}), we can then
conclude that 𝛿 = ∅ and 𝜅 = {𝜈𝑥}.

2) Since we know that (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′′, (𝑤 ′′, ⊑′
𝑤)) |= (Γ,Π), we then need to show for the

extension to 𝑠𝑡𝑜 ′′,𝑤 ′′, and Γ′. Due to 1), (𝑒𝑛𝑣, 𝑣, (𝑤 ′′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ, (𝛿 ′, 𝜅′)), and

since we bind 𝓁
𝑝′ in 𝑠𝑡𝑜 ′′ and 𝜈𝑥𝑝′ in Γ, we can then conclude that (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤

)) |= (Γ′,Π)
3) Due to 1) and 2) we can conclude that (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇).
(Ref-read) Here 𝑒𝑝′

= [!𝑒𝑝11]𝑝′ , where

(Ref-read)

𝑒𝑛𝑣 ⊢ ⟨𝑒𝑝1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝⟩ →
〈
𝓁, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
[!𝑒𝑝1]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿 ∪ 𝐿1 ∪ {𝓁𝑝′′ },𝑉 ∪𝑉1), 𝑝′
〉

Where 𝑠𝑡𝑜 ′ (𝓁) = 𝑣 , 𝓁𝑝′′
= 𝑢𝑓⊑′

𝑤
(𝓁,𝑤 ′), and𝑤 ′ (𝓁𝑝′′) = (𝐿,𝑉)

And from our assumptions, we have that:
• Γ,Π ⊢ [!𝑒𝑝11]𝑝′ : 𝑇 ,
• Γ;Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π),

To type [!𝑒𝑝11]𝑝′ we need to use the (T-Ref-read) rule, where we have:

(T-Ref-read)

Γ,Π ⊢ 𝑒𝑝 : (𝛿, 𝜅)
Γ,Π ⊢ [!𝑒𝑝]𝑝′ : 𝑇 ⊔ (𝛿 ∪ 𝛿 ′, ∅)

Data-flow analysis 1:55

Where 𝜅 ≠ ∅, 𝛿 ′ = {𝜈𝑥𝑝′ | 𝜈𝑥 ∈ 𝜅}, 𝜈𝑥1, · · · , 𝜈𝑥𝑛 ∈ 𝜅.
{𝜈𝑥𝑝11 , · · · , 𝜈𝑥𝑝𝑚1 } = 𝑢𝑓Υ𝑝′ (𝜈𝑥1, Γ), · · · , {𝜈𝑥

𝑝′
1

𝑛 , · · · , 𝜈𝑥𝑝
′
𝑠

𝑛 } = 𝑢𝑓Υ𝑝′ (𝜈𝑥𝑛, Γ), and
𝑇 = Γ(𝜈𝑥𝑝11) ∪ · · · ∪ Γ(𝜈𝑥𝑝𝑚1) ∪ · · · ∪ Γ(𝜈𝑥𝑝

′
1

𝑛) ∪ · · · ∪ Γ(𝜈𝑥𝑝
′
𝑠

𝑛).
We must show that (1) Γ,Π ⊢ 𝑣 : 𝑇 , (2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π), and
(3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ,𝑇).
To conclude, we first need to show for the premises, where due to our assumption and from
the premise, we can use the induction hypothesis to get:
• Γ,Π ⊢ 𝓁 : (𝛿, 𝜅),
• (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿,𝑉)) |= (Γ, (𝛿 ′, 𝜅′))
Due to (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π) and (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ, (𝛿 ′, 𝜅′)), and due

to our assumptions, we can conclude that:
(1) Γ,Π ⊢ 𝑣 : 𝑇 ,
(2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ,Π),
(3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′

𝑤), (𝐿 ∪ {𝓁𝑝′′ },𝑉)) |= (Γ,𝑇 ⊔ (𝛿 ∪ 𝛿 ′, ∅))
(Ref-write) Here 𝑒𝑝′

= [𝑒𝑝11 := 𝑒
𝑝2
2]𝑝′ , where

(Ref-write)

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝1
1 , 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝

〉
→

〈
𝓁, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), (𝐿1,𝑉1), 𝑝1
〉

𝑒𝑛𝑣 ⊢
〈
𝑒
𝑝2
2 , 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤), 𝑝1
〉
→

〈
𝑣, 𝑠𝑡𝑜2, (𝑤2, ⊑2

𝑤), (𝐿2,𝑉2), 𝑝2
〉

𝑒𝑛𝑣 ⊢
〈[
𝑒
𝑝1
1 := 𝑒

𝑝2
2
]𝑝′

, 𝑠𝑡𝑜, (𝑤, ⊑𝑤), 𝑝
〉
→

〈
(), 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤), (𝐿1,𝑉1), 𝑝′
〉

Where 𝑠𝑡𝑜 ′ = 𝑠𝑡𝑜2 [𝓁 ↦→ 𝑣], 𝓁𝑝′′
= 𝑖𝑛𝑓⊑2

𝑤
(𝓁,𝑤2),

𝑤 ′ = 𝑤2 [𝓁𝑝′ ↦→ (𝐿2,𝑉2)], and ⊑′
𝑤=⊑2

𝑤 ∪(𝑝′′, 𝑝′)

And from our assumptions, we have that:
• Γ,Π ⊢ [𝑒𝑝11 := 𝑒

𝑝2
2]𝑝′ : 𝑇 ,

• Γ;Π ⊢ 𝑒𝑛𝑣
• (𝑒𝑛𝑣, 𝑠𝑡𝑜, (𝑤, ⊑𝑤)) |= (Γ,Π),

To type [𝑒𝑝11 := 𝑒
𝑝2
2]𝑝′ we need to use the (T-Ref-write) rule, where we have:

(T-Ref-write)

Γ,Π ⊢ 𝑒𝑝11 : (𝛿, 𝜅)
Γ,Π ⊢ 𝑒𝑝22 : (𝛿2, 𝜅2)

Γ′,Π ⊢ [𝑒𝑝11 := 𝑒
𝑝2
2]𝑝′ : (𝛿, ∅)

Where Γ′ = Γ [𝜈𝑥1 : (𝛿2, 𝜅2), · · · , 𝜈𝑥𝑛 : (𝛿2, 𝜅2)] and 𝜈𝑥1, · · · , 𝜈𝑥𝑛 ∈ {𝜈𝑥 | 𝜈𝑥 ∈ 𝜅}
Wemust show that (1) Γ′,Π ⊢ 𝑣 : 𝑇 , (2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′

𝑤)) |= (Γ′,Π), and (3) (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤

), (𝐿,𝑉)) |= (Γ′,𝑇).
To conclude, we first need to show for the premise, where due to our assumption and from
the first premise, we can use the induction hypothesis, where we then get:
• Γ,Π ⊢ 𝓁 : (𝛿, 𝜅),
• (𝑒𝑛𝑣, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤1, ⊑1

𝑤), (𝐿,𝑉)) |= (Γ, (𝛿, 𝜅))
And from the second premise we can get that:

1:56

• Γ,Π ⊢ 𝑣 : (𝛿2, 𝜅2),
• (𝑒𝑛𝑣, 𝑠𝑡𝑜2, (𝑤2, ⊑2

𝑤)) |= (Γ,Π),
• (𝑒𝑛𝑣, 𝑣, (𝑤2, ⊑2

𝑤), (𝐿,𝑉)) |= (Γ, (𝛿 ′, 𝜅′))
Since we know that (𝑒𝑛𝑣, 𝑠𝑡𝑜1, (𝑤1, ⊑1

𝑤)) |= (Γ,Π), (𝑒𝑛𝑣, 𝑠𝑡𝑜2, (𝑤2, ⊑2
𝑤)) |= (Γ,Π) and we

bind 𝓁 to 𝑣 . We also know that from (𝑒𝑛𝑣, 𝑣, (𝑤1, ⊑1
𝑤), (𝐿,𝑉)) |= (Γ, (𝛿, 𝜅)), that all internal

variable in 𝜅 agrees with the location 𝓁. We can then conclude that 2) (𝑒𝑛𝑣, 𝑠𝑡𝑜 ′, (𝑤 ′, ⊑′
𝑤

)) |= (Γ′,Π).
1) Since we know that the value is unit, (), this must be conclude by (Unit):

(Unit)

Γ′,Π ⊢ () : (𝛿, ∅)

3) Due to 1) and 2) we can then conclude that (𝑒𝑛𝑣, 𝑣, (𝑤 ′, ⊑′
𝑤), (𝐿,𝑉)) |= (Γ′,𝑇).

□

	Abstract
	Contents
	1 Introduction
	2 Language
	2.1 Syntax
	2.2 Environments and stores
	2.3 Dependencies
	2.4 Collection semantics

	3 Type system for data-flow analysis
	3.1 Types
	3.2 Basis and type environment
	3.3 The type system

	4 Soundness
	4.1 Type rules for values
	4.2 Agreement
	4.3 Properties

	5 Conclusion
	5.1 discussion
	5.2 Future work

	References
	A Collection Semantics
	A.1 Pattern matching
	A.2 Extending w

	B Type system Judgement
	B.1 function

	C Proofs of theorems and lemmas
	C.1 History
	C.2 Strengthening
	C.3 Soundness

